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Résumé

Vers une approche d'estimation de l'effort des changements dans les exigences logicielles en utilisant les techniques d'apprentissage automatique Zaineb SAKHRAWI L'estimation a souvent été considéré comme l'un des défis les plus importants dans la plupart des organisations logicielles. Plusieurs projets s'achèvent en retard, en dehors des budgets, avec moins de fonctionnalités que prévues et sans aucune indication sur leur degré de qualité. Des considérations comme celles de l'utilisation des estimations inexactes influent fortement sur le succès des projets logiciels. En effet, des estimations inexactes suscitent des attentes irréalistes et contribuent à l'insatisfaction du client. Des estimations précises conviennent à des prises de décisions appropriées au moment opportun. D'autre part, des demandes d'améliorations pour ajouter de nouvelles exigences, changer des exigences existantes ou même améliorer l'usage du produit logiciel constitue une source d'erreurs dans ces estimations. Par conséquent, ils peuvent augmenter le coût de développement ou de maintenance de logiciels, perturber le calendrier du projet et même influencer la qualité du produit final. Plusieurs approches avec divers modèles d'estimation sont proposées pour fournir une estimation plus précise de l'effort des projets logiciels. Il existe trois grandes catégories de ces modèles tels que le jugement d'expert, les modèles algorithmiques (exemple, COCOMO II) et les modèles non algorithmiques (tels que les techniques d'apprentissage automatique). Plusieurs chercheurs s'entendent sur l'efficacité de l'utilisation des techniques d'apprentissage automatique comparativement aux autres techniques d'estimations.

Face aux problèmes ci-dessus énumérés, nous avons proposé les contributions suivantes:

-La première contribution consiste à mener une étude d'arrimage systématique de la littérature (SMS) sur l'estimation de l'effort requis pour compléter une amélioration dans les projets logiciels en se basant sur « A Systematic Mapping Study -IV SMS in Software Engineering [1]». La revue a été réalisée en examinant les articles pertinents durant la période de 1995 à 2020 pour déterminer les principaux facteurs utilisés dans l'évaluation des améliorations et l'estimation de l'effort correspondant à l'aide des techniques de ML. L'approche par SMS a pu sélectionner 30 études pertinentes. 19 extraits de revues et 11 actes de conférence via quatre moteurs de recherche (Google Scholar, IEEExplore, ACM Digital library, and ScienceDirect).

Cette revue supporte les chercheurs à identifier et à structurer les méthodes utilisées dans le domaine d'estimation de l'effort dans les projets d'améliorations de logiciels. Les résultats de l'étude SMS ont montré qu'il y a très peu d'investigation dans l'estimation de l'effort requis pour implémenter une amélioration dans les projets d'améliorations de logiciels. La plupart des approches proposées utilisent les techniques d'apprentissage automatique.

-La deuxième contribution est la proposition d'une nouvelle approche de prédiction de l'effort d'une amélioration dans les exigences logicielles (SEEE). Cette approche porte sur deux volets. Le premier volet consiste à proposer un nouveau modèle basé sur l'ontologie pour la classification des demandes d'améliorations en des changements fonctionnels et des changements techniques. Cette étude a été conduite en se basant sur des résultats expérimentaux menés sur des projets réels provenant de l'industrie du logiciel et sur le référentiel PROMISE. La classification permet aux gestionnaires et aux intervenants d'être sélectifs dans l'utilisation des méthodes MTF (Mesure de taille fonctionnelle de logiciels). Ainsi, nous avons construit notre ensemble de données en associant chaque demande d'amélioration fonctionnelle avec son effort correspondant en utilisant le jugement d'expert. Le deuxième volet porte sur la prédiction de l'effort d'améliorations des exigences logicielles en utilisant l'ensemble de données construit dans le premier volet. Nous avons choisi quatre méthodes d'apprentissage automatiques pour faire la prédiction: Ada Boost Regression (ABR), Gradient Boosting Regression (GBR), Linear support Vecteur Regression (Linear SVR) et Random Forest Regression (RFR). Les résultats ont montré que le degré de précision de SEEE est meilleur en utilisant l'ontologie avec l'algorithme RFR.

-La troisième contribution consiste à examiner l'utilisation des méthodes MTF du logiciel de IFPUG et COSMIC pour vérifier l'impact de l'utilisation de la taille fonctionnelle d'une amélioration logicielle sur la précision de l'estimation de l'effort requis pour compléter cette amélioration. Cette contribution a abouti à l'efficacité de la deuxième génération de MTF (COSMIC) comparativement à la première génération (IFPUG) pour mesurer la taille des améliorations et son utilisation pour prédire l'effort d'amélioration des exigences et celui de produit logiciel résultant.
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-La quatrième contribution consiste à utiliser l'algorithme de sélection des caractéristiques corrélées (CFS) pour sélectionner les attributs (features) les plus pertinents en utilisant le référentiel ISBSG (International Software Benchmarking Standards Group). L'application du CFS a montré qu'il y a une forte corrélation entre la taille et l'effort d'amélioration logicielle. Nous avons utilisé l'algorithme M5P pour prédire l'effort (SEEE). La performance de cet algorithme (M5P) a été comparée par rapport à trois techniques de régression d'apprentissage automatique: Gradient Boosting Regressor (GBRegr), Linear support Vector Regression (LinearSVR) et Random Forest Regression (RFR). Les résultats ont montré que le degré de précision de SEEE est meilleur en utilisant l'algorithme CFS avec l'algorithme M5P.

-La cinquième contribution consiste à proposer une nouvelle approche qui a étudié Estimating has often been seen as one of the biggest challenges in most software organizations. Several projects are ending late, out of budget, with less functionality than expected, and without any indication of their levels of quality. Considerations such as the use of inaccurate estimates strongly influence the success of software projects. This is because inaccurate estimates raise unrealistic expectations and contribute to customer dissatisfaction. Accurate estimates are suitable for making appropriate decisions at the right time. On the other hand, enhancement requests to add new requirements, improve existing requirements or change the usage of software products are a source of errors in these estimates. Therefore, they can increase the cost of software development or Enhancement (maintenance) projects, disrupt the project schedule, and even influence the quality of the final product. Many approaches with various estimation models are proposed to provide a more accurate effort estimation of software development and enhancement projects. There are three main categories of these models such as expert judgment, algorithmic models (e.g., COCOMO II), and non-algorithmic models (such as Machine Learning techniques). Several researchers agree on the effectiveness of the use of ML techniques compared to other estimation techniques.

To resolve those problems listed above, we proposed the following contributions:

-The first contribution consists in conducting a review on estimating the effort required to complete an enhancement in software projects based on "A Systematic Mapping Study -SMS in Software Engineering [1]". The SMS was carried out by surveying relevant papers from 1995 to 2020 to determine the main factors used in VII evaluating ER and estimating the corresponding effort using ML techniques. The SMS selects 30 relevant studies. 19 published journals and 11 conference proceedings via four search engines (Google Scholar, IEEExplore, ACM Digital library, and ScienceDirect). This review supports researchers in identifying and structuring methods used in the field of effort estimation in software development and enhancement projects. The results of the SMS showed that there is a very little investigation on estimating the effort required to implement an enhancement in software enhancement projects. Most of the proposed approaches used ML techniques.

-The second contribution consists in proposing a new approach for estimating the effort required to implement an enhancement in software requirements. This approach has two phases. The first phase consists in proposing an Ontology-based Model Classification (OMC) for classifying customer ER as either Functional Change or Technical Change. This study was conducted based on experimental results carried out on real projects from the software industry and on the PROMISE repository.

The classification allows managers and stakeholders to be selective in the use of the FSM (Functional size measurement) method. Thus, we built a data set by associating each Enhancement Request (ER) with its corresponding effort using Expert judgment. The second phase deals with the prediction of Software enhancement effort (SEEE) using the dataset built in the first part. Four machine learning methods were selected to make the prediction: Ada Boost Regressor (ABR), Gradient Boosting Regressor (GBR), Linear support Vector Regression (Linear SVR), and Random Forest Regression (RFR). Results showed that the level of accuracy of the SEEE is improved when using the ontology with the RFR algorithm.

-The third contribution consists in investigating the impact of an enhancement functional size through the use of IFPUG and COSMIC FSM methods on the accuracy of the SEEE. This contribution resulted in the effectiveness of the second generation COSMIC FSM method compared to the first generation IFPUG for sizing an enhancement and its use to make an enhancement estimation, and that of the resulting software product.

-The fourth contribution consists in using the Correlated Feature Selection (CFS) algorithm to select the most relevant features using the ISBSG (International Software Benchmarking Standards Group) repository. The application of CFS has shown that there is a strong correlation between size and software enhancement effort. The M5P algorithm was used to provide the SEEE. The performance of this algorithm was compared against three ML regression techniques: Gradient Boosting Regressor (GBRegr), Linear support Vector Regression (LinearSVR), and Random VIII Forest Regression (RFR). Results showed that the accuracy of SEEE was improved when using the CFS algorithm with the M5P algorithm.

-The fifth contribution consists in proposing a new approach that investigates the use of the "Stacking Ensemble" model to increase the level of accuracy of SEEE. Our constructed Stacking Ensemble model combines three regression models: GBRegr, LinearSVR, and RFR. Compared to the approach based on using a single learning model (M5P), the Stacking Ensemble model gives more accurate results.

-The sixth contribution consists in developing a Web application named "ERWe-bApp" to quickly make SEEE. The developed Web application is intended to first generate the functional size of an enhancement, then estimate the effort corresponding to this enhancement using the "Stacking Ensemble" model. 

Ernest William Hobson

Context

Managing and planning software projects are regarded as one of the challenging problems in software engineering. A software project may include three types of development: new development, enhancement, and redevelopment [2]. Unlike software development which is requirements driven [3], software maintenance is event-driven and it is categorized as correction or enhancement [4]. Although most of the software projects are maintained [5], Software maintenance has not received the same degree of attention that the other phases have [6]. Among the major key issues of software maintenance is the cost estimation [6].

More accurate estimation of software maintenance effort or cost contributes to better management and control for software maintenance [7]. The category of Software maintenance used in our study is enhancement. The enhancement is defined as a change to an existing software product to meet a new requirement [4]. Software maintenance is problematic if the software product is not developed for maintenance [8]. Software estimation (also known as software prediction) is one of the key activities of software development and maintenance project planning. According to a study on Software development effort estimation [9], effort prediction is needed. However, only a few studies investigate the importance of enhancement effort [5]. Accurate estimates reduced the costs of software enhancement projects. However, inaccurate estimates have a significant impact on the INTRODUCTION success of software projects by creating unrealistic expectations and contributing to customer dissatisfaction. Even in industries that use modern software development methods such as agile methodology, software estimation is still a critical process. Regarding the listed issues, this thesis looked at how to obtain an accurate estimate of software enhancement effort when using ML techniques in both traditional and agile software projects. It focused also on identifying the impact of the Functional Size (FS) of an Enhancement Request (ER) generated from different standardized Functional Size Measurement (FSM) methods on the effort estimation performance. It proposes an approach for estimating software enhancement effort that is based on the use of the COSMIC FSM method as a primary independent variable and Machine Learning (ML) techniques.

In this introduction, we will discuss the different research problems in Software Enhancement Effort Estimation (SEEE). Then, we list the thesis objectives and contributions. Afterward, in comparison to previous studies, we present the originality of our work. Following that, we provide an overview of the research process methodology. Finally, we outline the thesis's structure.

Research Problem Statement

Customers may now share, post, and tweet their satisfaction or dissatisfaction with any services, and as a result, they have the power to directly influence the software organization's vision. As Bill Gate said, "Your most unhappy customers are your greatest source of learning" 1 . Indeed, the ability to meet all customer requests should never be used to determine the success of a software project. It can only be proven by its ability to meet the customer's requests over time [10]. Because enhancement requests are frequent software project planning should be reviewed regularly. Thus, customers often expressed their feedback or ER in natural language. These requests are most often ambiguous and not well defined. In order to provide an accurate SEEE, an improved ER description is needed. It is important to note that the accuracy of the SEEE model varies according to the nature of the project and the type of software to be developed or maintained. When compared to software development, the cost of software maintenance typically necessitates more time and resources. Many models have been developed to help with estimation [START_REF] Singh | Analysis of software maintenance cost affecting factors and estimation models[END_REF]. Indeed, for some organizations, approximate estimates are sufficient to determine the project's required value. On the other hand, other organizations believe that accurate 1. https://www.oxfordreference.com/view/10.1093/acref/9780191826719.001.0001/q-oro-ed4-00012282 estimates are the foundation of good project management. Many approaches with various estimation models are proposed to provide more accurate software effort estimation. This mandate requires immediate attention to several Research Questions (RQ):

-RQ1: How should ER be identified and classified? -RQ2: What is the most suitable FSM method to use for measuring the FS of an enhancement? -RQ3: What attributes (or features) influence estimate accuracy? -RQ4: How can effort estimates be improved? -RQ5: How assessing the performance or the accuracy of a model for estimating software enhancement effort? -RQ6: How important is the accurate estimate for improving both traditional and Agile software project management?

Objectives and Contributions

In short, to meet the listed RQ, the objectives of this thesis are:

-Identify and classify ER using a semantic model.

-Investigate the effectiveness of using ISO Functional Size Measurement Methods such as IFPUG ISO 20926 (first generation) and COSMIC ISO 19761 (second generation) as independent variables.

-Verify the impact of using FSM methods on the accuracy of SEEE in both traditional and modern (agile) enhancement projects.

-Identify the appropriate ML techniques for generating accurate SEEE.

-Provide automatically SEEE through a web application to help estimators quickly and efficiently make SEEE.

To achieve these objectives, we have targeted the following contributions:

1. Conduct a Systematic Mapping Study (SMS) to identify the pertinent area in SEEE.

Develop an ontology-based model to identify and classify customer ER as either

Functional Change (FC) or Technical Change (TC). Prediction results using the stacking ensemble model will be compared to the model using only the M5P algorithm.

6. Develop a web application named "ERWebApp" to quickly and efficiently make SEEE. The developed ERWebApp is intended to first generate the enhancement size in CFP units, and then estimate its corresponding effort using the stacking ensemble model.

Originality

Regarding the software maintenance effort prediction approaches proposed in the literature, a small number of researchers have considered the quality of the estimation inputs. This thesis highlights the influence of dataset quality on estimate accuracy. Choosing the appropriate model input with a good understanding of enhancement requests is necessary for an accurate prediction of the effort required for their implementation. Besides, classifying enhancement requests will provide an understanding of both the project level (effect on the project) and the requirements level (effect on other requirements). This thesis aims to improve estimation models inputs by: -Exploring the use of Ontology for semantically identifying and classifying ER. Ontologies have long been used in the life sciences to formally represent and reason about domain knowledge. It has recently become more popular as a source of background knowledge in similarity-based analysis and ML techniques.

-Identifying the relationship between the independent variables (e.g, Enhancement FS) and the dependent variable (the enhancement effort) using the Feature Selection methods, namely the CFS algorithm.

When improving the accuracy of software effort estimation models, research papers investigated the use of ML techniques. Compared to the existing estimation models that are based on algorithmic and non-algorithmic, ML techniques have been successfully used as effective models for an accurate estimation of software effort. In the field of SM, we discovered that only single models were used to predict maintenance effort. In this context, this thesis aims to improve the estimation model output by constructing a stacking ensemble model. The built stacking ensemble model combines three different ML techniques (GBRegr, LinearSVR, and RFR). Predictions made with the stacking ensemble model will be compared to those made with different single algorithms separately.

Since agile methodology encourages changes, several estimation techniques have been proposed. In practice, story point-based estimations are used. Even in the scrum context, some ER are trivial while others pose serious threats to the software project's success.

Consequently, software organizations need rigorous and structured approaches to evaluate ER. In this context, this thesis aims to improve the estimation model by investigating:

-The effectiveness of COSMIC methods for describing ER and sizing User Story (US) in CFP units within the Scrum context.

-The use of FS (generated by COSMIC) of ER (expressed in the form of US) as a primary independent variable for predicting enhancement effort for a scrum software project.

Consequently, this thesis proposes a new Enhancement effort estimation approach that can be applied in traditional and agile projects as well. -Phase 1: Reviews relevant papers in the field of SEEE using the SMS Methodology.

Research Design Methodology

Phase 1 is detailed in Chapter 2. The results are published in [START_REF] Sakhrawi | Software Enhancement Effort Prediction Using Machine-Learning Techniques: A Systematic Mapping Study[END_REF].

-Phase 2: First, proposes an Ontology-based Classification Model (OCM) that distinguishes two types of ER associated with software enhancement projects which are referred to as functional Change (FC) and technical Change (TC). The results are reported in [START_REF] Sakhrawi | Requirements Change Requests Classification: An Ontology-Based Approach[END_REF]. Second, it uses the proposed OCM and the Expert Judgment estimation approach in order to construct a semantic dataset. This dataset is used as input for constructing a ML-based SEEE model. The results are published in [START_REF] Sakhrawi | Software Enhancement Effort Estimation using Machine Learning Regression Methods[END_REF]. Phase 2 is detailed in Chapter 3.

-Phase 3: Investigates the applicability of the CFS algorithm for making a comparison between the first and second FSM generations. IFPUG and COSMIC methods
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are used for measuring the size of functional changes. Therefore the measurement results are used as input for predicting SEE. The findings are published in [START_REF] Sakhrawi | Investigating the Impact of Functional Size Measurement on Predicting Software Enhancement Effort Using Correlation-Based Feature Selection Algorithm and SVR Method[END_REF]. Phase 3 is detailed in Chapter 4.

-Phase 4: Investigates the applicability of the COSMIC FSM method for measuring the size of functional changes within the scrum context and determining their impact on enhancement effort prediction. The findings are published in [START_REF] Sakhrawi | Support vector regression for enhancement effort prediction of Scrum projects from COSMIC functional size[END_REF]. Phase 4 is detailed in Chapter 4.

-Phase 5: Improves the input (International Software Benchmarking Standards Group (ISBSG) dataset) of the SEEE where a set of selected ML techniques are trained on a dataset with relevant features using the CFS algorithm. Then, the use of the stacking ensemble model for estimating the enhancement effort of software projects is evaluated. The stacking ensemble model is used to improve prediction accuracy over individual models. As using this model manually is time-consuming, we developed an ERWebApp to quickly and efficiently make SEEE. The results of this phase are published in [START_REF] Sakhrawi | An Improved Prediction of Software Enhancement Effort using Correlation-based Feature Selection and M5P ML algorithm[END_REF] and [START_REF] Sakhrawi | Software enhancement effort estimation using correlation-based feature selection and stacking ensemble method[END_REF]. Phase 5 is detailed in Chapter 5.

Thesis Structure

This thesis is divided into five chapters, where:

-Chapter 1 introduces the general concepts of effort estimation for software maintenance projects and software size measurement.

-Chapter 2 presents an SMS on the use of ML techniques for SEEE. The SMS was carried out by surveying relevant papers from 1995 to 2020. We followed well-known procedures.

-Chapter 3 provides an OCM for classifying ER as FC or TC. The proposed approach is applied to real-world projects from the software industry (six software development project datasets including functional requirements requests and the PROMISE repository including ER). We constructed our dataset by associating each ER classified as FC with its corresponding effort using Expert Judgement.

The constructed dataset is used as input for various ML techniques for SEEE.

-Chapter 4 Investigates the use of the first and second FSM generations (i.e., IF-PUG and COSMIC FSM methods for respectively sizing ER). And also the use of the CFS algorithm. Firstly, the obtained FS will be used as input for estimating -Finally, we summarize our work, highlight the restrictions and outline some of its prospective extensions.

Table 1.1 summarizes the research problem tackled in this thesis.

Table 1 -Summary of the research problem

Motivation

Enable stakeholders in a software company (project management, development team, scrum master, etc.) to be selective (1) in their use of the appropriate measurement method (COSMIC or IFPUG) regarding the customers' ER and (2) using the suitable effort estimation model that improves the accuracy of the results (or estimates). This is useful for the software company to not only evaluate but also make appropriate decisions regarding the effort required to implement an ER.

Object/Inputs

ER classified through an ontology model, FS measured through COS-MIC FSM method, ML techniques Purpose Explore the applicability of (1) the COSMIC FSM method for sizing ER (2) identify the impact of using enhancement size on the estimated effort that is required to implement this ER in both traditional and agile software projects (3) use of ML techniques to provide more accurate estimated effort (in the traditional and agile project)

Perspective

The software company roles include customer, project manager, analysis and design team, implementation and validation team, etc. For most software organizations, it is a challenge to produce high-quality software product that meets user requirements and customer expectations within a specified time, scope, and cost. Indeed, software organizations' survival depends not only on rapid development but also on the adaptability to the enhancement requests. This thesis addresses the problem of enhancement requirements management including enhancement identification, presentation, measurement, and effort estimation. We start this chapter by describing three basic concepts which are: software maintenance, software measurement, and software project estimation.

In Short

Introduction

In software maintenance activity, responding to the user ER is a critical task. The more ER are clear, precise, and well-defined, the better software developers/ maintainers will understand the functionality to be enhanced. Oppositely, unclear, imprecise, and inaccurate ER forces software maintainers to ask for more clarifications. Consequently, this may slow down the software maintenance progress. Identifying ER is integrated into the requirements management activity. According to various research studies, the main cause of project failure is the inability to manage changes to requirements or ER [START_REF] Basri | A Novel Effort Estimation Approach for Requirement Changes during Software Development Phase[END_REF]. As a result, managing requirements is important for understanding the impact of ER on the enhancement effort and the project progress.

Requirements management is one of the four main software requirements process activities [START_REF] Fairley | Managing and leading software projects[END_REF], which are requirements elicitation, requirements analysis, requirements acceptance, and requirements management. The requirements elicitation activity concerns the identification of the users' needs and customers' expectations. During the requirements analysis phase, more details about the users' needs and the customer's expectations are provided. Both activities (requirements elicitation/analysis) require negotiation with the customer and users. The requirements acceptance activity concerns the requirements verification. By the end of this phase, the requirements baseline is provided. Thereafter, when an ER is proposed, a requirement management activity is required to analyze the enhancement impact on the requirements baseline. Hence, some modifications can be made. ER can be expensive in terms of the common predictable variables; that is, effort, time, and size. The effort represents the number of hours needed to develop or maintain a software product in terms of person-months [START_REF] Boehm | Software Cost Estimation with COCOMO II[END_REF]. Time also named software project schedule, duration, etc [2]. Afterward, the software size is expressed in terms of lines of code or Function points [START_REF] Sheetz | Understanding developer and manager perceptions of function points and source lines of code[END_REF]. To make changes and deliver the enhanced software product with respect to the estimated deadlines and budget, it is required to establish an effective evaluation of every single ER. To address this issue, in this chapter, we will investigate the importance of using formal representation tools (such as ontology) to provide a clear understanding of the enhancement purpose and assess its impact on the software system as well as the development and maintenance progress.

In the same context, we propose to improve the ER description (i.e., a detailed description of the ER that facilitates their sizing). Measuring the Functional Size (FSM) of a given requirement or an enhancement is one of the most important factors influ- 

Definition

Software maintenance is defined as « the totality of activities required to provide costeffective support to a software product » (ISO/IEC 14764) [4]. Software maintenance activities are identified [START_REF] Singh | Analysis of software maintenance cost affecting factors and estimation models[END_REF] as: « process implementation; problem and change analysis; change implementation; maintenance review/acceptance; migration; and retirement. » Software maintenance is the field of Software Engineering which have been ignored over the last period. It has not received the same degree of attention that the other phases have [6]. Nevertheless, it is the most crucial field in software life [START_REF] Ali | Effort Estimation Problems in Software Maintenance-A Survey[END_REF]. In most software organizations, software development is far more important than software maintenance.

Software maintenance begins when software development begins and continues until the software system enters the retirement process, as shown in Figure 1.1. Software mainte-Figure 1.1 -Software Maintenance Process [START_REF] Ali | Effort Estimation Problems in Software Maintenance-A Survey[END_REF] nance is the general process of changing a system after it has been delivered. Typically, the term "Software maintenance" refers to custom software in which separate development teams are involved before and after delivery. Changes to the software may be simple (e.g., correcting coding errors) complex (e.g., correcting design errors), or significant (e.g., correcting specification errors) or accommodating new requirements. Changes are made by altering existing system components and, if necessary, adding new ones.

The ISO 14764 standard defines enhancement maintenance as "a change to an existing software product to meet a new requirement." According to ISO 14764, software maintenance is categorized into four types: corrective, adaptive, preventive, and perfective [6].

ISO 14764 classifies adaptive and perfective maintenance as enhancements and corrective and preventive maintenance as the correction. Adaptive maintenance is the modification of a software product performed after delivery to keep a software product usable in a changed or changing environment [4]. Perfective maintenance is defined as "modifying a software product after delivery to detect and correct latent faults in the software product before they manifest as failures" [4]. The same document defines corrective maintenance
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as "reactive modification of a software product performed after delivery to correct discovered problems." Preventive maintenance is defined as "modifying a software product after delivery to detect and correct latent faults in the software product before they become operational faults."

Software Maintenance Challenge

Many issues that are related to software maintenance can be traced to the requested changes [START_REF] Singh | Analysis of software maintenance cost affecting factors and estimation models[END_REF]. It is difficult to predict how the system will respond if the software code is changed for maintenance purposes, which can lead to overestimation. ER are welcome when they provide a means for software improvement [START_REF] Basri | A Novel Effort Estimation Approach for Requirement Changes during Software Development Phase[END_REF]. But, in some cases, they are large in scope and create some challenges for maintainers. software maintenance is difficult if the software product was not designed for it. One problem encountered in the software development progress (including the maintenance phase) is how to provide an accurate estimate? Hence, distinguishing FC from TC is a necessity. We believe that the SEEE must take into account the (i) type of ER (i.e., either a FC or a TC. Another reason could be that the organization is not concerned with perfection, but rather with getting the system up and running as soon as possible [START_REF] Ali | Effort Estimation Problems in Software Maintenance-A Survey[END_REF]. Once the ER is identified, the software project planner/manager must estimate: (i) how long will take the maintenance phase and

(ii) the required effort for each ER. This information is needed for the schedule planning and resources (hardware and software) distribution. In the next sections, we describe the estimations approaches the most used in practice. However, despite their popularity, they have been widely criticized. For instance, Pressman considers that estimation models used many variables (human, technical, environment, etc.) which can affect the estimation results [START_REF] Pressman | Software engineering: a practitioner's approach[END_REF]. Whereas, the project managers prefer accurate estimates in terms of effort, time, and cost. In addition, inaccurate measures of the software size lead to false effort estimation and consequently late delivery. For this reason, instead of focusing only on how to determine the effort estimation, we will also focus on the ER descriptions and their corresponding sizing.

Software Measurement

Measuring is no longer restricted to a single area. It is critical in science, engineering, and even everyday life. Measurement is used in all aspects of human activity, including social, medical, industrial, and academic activities. Measurement has been popular in engineering fields since the 18Th century. It has been investigated in the Software Engineering (SE) literature to discover and mitigate various issues in software businesses, such as missed time-to-market deadlines, negative cost trends, omissions in client needs, and so on. As noted in [START_REF] Hugo | Practical software measurement. Objective information for decision makers[END_REF], measuring software provide managers with valuable information for improving communication, tracking specific project objectives, identifying and correcting problems early, making crucial trade-off decisions, etc. Furthermore, practitioners must understand the significance of software measurements. This requirement is reflected in the IEEE definition of SE: "The application of a systematic, disciplined, quantifiable approach to the development, operation and maintenance of software; that is, the application of engineering to software" [6]. In addition, software measurement enables project, product, and process management. DeMarco [START_REF] Rook | Controlling software projects[END_REF] depicted the following:

"You cannot control what you cannot measure". As a result, measuring has emerged as a critical phase in the field of SE.

Two key reasons for measuring software size were summarized by Symons [START_REF] Symons | A comparison of the key differences between the IFPUG and cosmic functional size measurement methods[END_REF]:

-Measurement is fundamental to improving project management of software projects.

Software size helps managers to regulate both new software creation and the maintenance or upgrade of current software. Furthermore, the size of the program allows managers to track performance metrics (project productivity, project speed, etc.).

-Measurement is used to estimate the time and effort needed to complete a software project. In this situation, measuring the program size early in the SLC is critical (requirements phase).

In the SE, software measurement is a crucial process. The interpretation and analysis of measurement results help managers evaluate the software project's progress and quality.

As a result, a great variety of measures, such as software size measurement methods have been proposed over the last forty years.

Software Size

Software, like any other concept, can be measured in terms of its size. Even though size measures do not convey external factors such as "coding difficulty," they are extremely valuable. FSM methods measure the software size by quantifying the Functional User Requirements (FUR). User requirements are classified into three categories: Functional
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User Requirements (FUR), Non-Functional Requirements (NFR) and Project Requirements and Constraints (PRC) [START_REF] Abran | Guideline on Non-Functional and Project Requirements: How to Consider non-functional and Project Requirements in Software Project Performance Measurement, Benchmarking and Estimating[END_REF]. Where:

-FUR express "what the software is expected to do in terms of tasks and services." [START_REF] Abran | Guideline on Non-Functional and Project Requirements: How to Consider non-functional and Project Requirements in Software Project Performance Measurement, Benchmarking and Estimating[END_REF].

-NFR includes "any requirement for a hardware/software system or for a software product, including how it should be designed and maintained, as well as how it should perform in operation" [START_REF] Abran | Guideline on Non-Functional and Project Requirements: How to Consider non-functional and Project Requirements in Software Project Performance Measurement, Benchmarking and Estimating[END_REF].

-PRC describes "how a software system project should be managed and resourced, as well as the constraints that affect its performance" [START_REF] Abran | Guideline on Non-Functional and Project Requirements: How to Consider non-functional and Project Requirements in Software Project Performance Measurement, Benchmarking and Estimating[END_REF].

Abran differentiated between two types of software size: technical (e.g., length measures)

and functional (e.g., functionality measures) [START_REF] Abran | Software project estimation: the fundamentals for providing high quality information to decision makers[END_REF]:

-The developer's perspective is used to determine the technical size. It is based on the number of elements such as the number of LOC, modules, components, etc.

-The user's view is used to determine the functional size. It is measured in terms of software functionality, regardless of any technological constraints or implementation decisions.

Source Lines of Code (SLOC)

The amount of source instructions in the program to be produced is counted to determine the software size in terms of SLOC. The comments and header lines are not included in the count [START_REF] Mall | Fundamentals of software engineering[END_REF]. Managers break down the problem into modules to estimate the number of Lines of Code (LOC) at the start of the SLC. Where each module can be subdivided into a set of sub-modules, and so on, until the sizes of the various entities (modules, submodules, etc.) can be approximated [START_REF] Mall | Fundamentals of software engineering[END_REF].

LOC counting like SLOC (Source LOC) and TLOC (Total LOC) is straightforward and easy to count. Calculating LOC is quite popular since it is provided most simply when compared to the available sizing. Furthermore, measurement results expressed in terms of LOC can be used as an input to the vast majority of estimating models and approaches. Despite their widespread use, the use of LOC can cause several difficulties.

Counting the number of LOCs in software is akin to counting the bricks in a structure, although a building's area is typically represented in terms of the number and size of rooms [START_REF] Mall | Fundamentals of software engineering[END_REF]. Furthermore, LOC is related to the programming language used. The size of an application is determined by IFPUG based on its Functional User Requirements (or by other software artifacts that can be abstracted in terms of FURs).

Each FUR is functionally decomposed into Base Functional Components (BFC), and each BFC is classified into one of five Data or Transactional BFC Types to identify the software's set of features [START_REF]IFPUG International Function Point Users Group, A Functional Size Measurement Method,COSMIC and IFPUG Glossary of terms[END_REF].

COSMIC FSM Method

The COSMIC FSM method was proposed in 1999 to correct some of the structural deficiencies of the first-generation FSM methods and overcome a number of their limitations.

It is widely used all over the world for a variety of purposes, the most common ones are:

-measure and compare projects performance with similar characteristics as the software is being measured.

-estimates the project effort/cost in terms of hours.
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-drive decisions on the development project activities.

The COSMIC method was designed to be independent of any implementation decisions embedded in the operational artifacts of the software to be measured. Each data movement is measured as 1 COSMIC Function Point (CFP). The COSMIC measurement process [START_REF]IFPUG International Function Point Users Group, Common Software Measurement International Consortium, COSMIC and IFPUG Glossary of terms[END_REF] includes three phases: Measurement strategy phase, Mapping phase, and Measurement phase.

-The Measurement Strategy Phase: Before starting the measurement, it is required to identify a set of parameters to ensure a correct interpretation of the measurement results. These main parameters are measurement purpose, scope, level of decomposition, functional users, and level of granularity. For instance, the Purpose identifies why the measurement is needed and what the measurement results will be used for.

For example, measurement purpose can be "to estimate the effort of implementing a change to manage the project scope creep" [START_REF] Abran | The cosmic functional size measurement method[END_REF]. The Scope determines the set of functionality to be measured. For example, the measurement scope can be "all the changes required for a new release of a piece of existing software" [START_REF] Abran | The cosmic functional size measurement method[END_REF].

-The Mapping Phase: At this phase, the FUR are mapped to the COSMIC "Generic Software Model" components.

-The Measurement Phase: At this phase, one CFP is attributed for each identified data movement. The Functional Size of a Functional Process (noted by FS(FP)) is

given by Equation 1.1:

FS(FP i ) = Σsize(E i ) + Σsize(X i ) + Σsize(R i ) + Σsize(W i ) (1.1) 
Where:

-FS(FP i ): the functional size of the functional process FP i .

-Σsize (E i ): the functional size of entries in FP i .

-Σsize (X i ): the functional size of exits in FP i .

-Σsize (R i ): the functional size of reads in FP i .

-Σsize (W i ): the functional size of writes in FP i .

The functional size of software is obtained by performing an arithmetic addition of the functional sizes of its functional processes, as given by Equation 1.2:
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FS(SW ) = n ∑ i=1 FS(FP i ) (1.2)
Where:

-FS(SW) is the functional size of the software.

-FS(FPi) is the functional size of the functional process FPi.

-n is the number of the functional processes identified in the software.

Sizing software enhancement using COSMIC FSM Method

Compared to other FSM methods, COSMIC is designed to objectively measure the functional size of a change to software as well as the size of the software that is added, modified, or deleted [START_REF] Abran | The cosmic functional size measurement method[END_REF]. Results showed that the COSMIC method has been successfully used in the software industry. It contributes to exploring ways of increasing productivity, monitoring software progress, and performance specifications, while other measures have been tried and were found to be lacking [START_REF] Abran | The cosmic functional size measurement method[END_REF]. COSMIC FSM is used by many organizations for agile projects due to its objectivity and ability to be used at all levels of aggregation [START_REF] Abran | The cosmic functional size measurement method[END_REF]. Before determining the effort required to implement the US, the functional size of the US can be measured using the COSMIC method [START_REF] Abran | The cosmic functional size measurement method[END_REF].

An ER that affects the FUR is called an FC. An FC may propose the addition of new functionality or the deletion/modification of existing functionality. Measuring the functional size of an FC (noted by FS(FC)) is needed to estimate the required cost/effort to handle the change. COSMIC can be used to measure the size of an FC to software in terms of CFP units and the size of the software that is added, changed, or deleted as well [START_REF] Symons | A comparison of the key differences between the IFPUG and cosmic functional size measurement methods[END_REF]. COSMIC defines a FE as "any combination of additions of new data movements or modifications or deletions of existing data movements" [START_REF] Abran | The cosmic functional size measurement method[END_REF]. The FS(FC) is given by the aggregation of the sizes of all the added, deleted, and modified data movements (see Equation 1.3). The FS(FC) has at least a value of 1 CFP with no upper limits.

FS(FC) = ΣFS(addeddatamovements)+ΣFS(deleteddatamovements)+ΣFS(modi f ieddatamovements)

(1.3)
Where:

-FS(FC) is the functional size of the functional change.
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-ΣFS(addeddatamovements) is the functional size of the added data movements.

-ΣFS(deleteddatamovements) is the functional size of the deleted data movements.

-ΣFS(modi f ieddatamovements) is the functional size of the modified data movements.

The software's functional size after changing its functionality is measured as given by Equation 1.4. Taking into account the original size, plus the functional size of all the added data movements, minus the functional size of all the removed data movements [START_REF] Abran | The cosmic functional size measurement method[END_REF].

Modifying data movements has no influence on the software functional size measured after the FC since the modified data movements exist before and after the FC.

FS(SW

) f inal = FS(SW ) initial -ΣFS(deleteddatamovements) + ΣFS(addeddatamovements) (1.4) 
Where:

-FS(SW ) f inal is the functional size of the software after the FE.

-FS(SW ) initial is the functional size of the software before the FE.

-ΣFS(addeddatamovements) is the functional size of the added data movements.

-ΣFS(deleteddatamovements) is the functional size of the deleted data movements.

To illustrate how this works, let's examine the example of a software with three functional We assume that a FE request proposes to:

-add one new functional process (FP4), where the FS(FP4) has value of 6 CFP;

-add one data movement to FP2;

-modify three data movements in FP3; and -delete two data movements in FP1.

Hence, the total size of the FE is the sum of: 

Software Project Estimation Models

Based on the functional size of the software, estimators can provide estimates in terms of effort, duration, and cost required to implement the software. In practice, after identifying the user requirements, it is possible to generate the software functional size using an FSM method. However, during the software development process, software size may change when ER occurs. The impact on the software development progress may put off the delivery of the final product. For this reason, researchers proposed to estimate the effort required to handle an ER (or Functional change) to (i) evaluate if the available resources (human and material) will be enough to implement the change or the original budget needs to be maintained, and (ii) determine if the risks associated to the change is increased or reduced.

Like the traditional project, agile projects also use an estimation-based approach to predict the software maintenance effort in person-hours or to determine the actual working hours required to complete development/maintenance tasks. As depicted in Figure 1.2, there are three popular approaches or models: algorithmic, non-algorithmic, and ML techniques that have been widely used to predict maintenance effort [START_REF] Mahmood | Software effort estimation accuracy prediction of machine learning techniques: A systematic performance evaluation[END_REF]. Planning. The primary input to these models is software size. Typically, the size is measured in terms of function points, source lines of code (SLOC), or use case points (UCP).

Non-algorithmic model

Non-algorithmic models are based on analytical assessments and interpretations for estimating software effort [START_REF] Nerkar | Software Cost Estimation using Algorithmic Model and Non-Algorithmic Model a Review[END_REF]. These models analyze historical data from previously completed projects. The expert judgment is also referred to as the expert opinion-based process [START_REF] Abran | Guideline on Non-Functional and Project Requirements: How to Consider non-functional and Project Requirements in Software Project Performance Measurement, Benchmarking and Estimating[END_REF].

Several studies showed that the expert judgment approach is one of the most common estimation techniques used in software project estimation [START_REF] Nerkar | Software Cost Estimation using Algorithmic Model and Non-Algorithmic Model a Review[END_REF]. Because of its simplicity and flexibility, software development teams prefer to use this technique over formal estimation models [START_REF] Nerkar | Software Cost Estimation using Algorithmic Model and Non-Algorithmic Model a Review[END_REF]. However, there is no evidence in the consulted literature that the results produced by this approach are completely accurate.

ML techniques for Regression problem

ML techniques are alternatives to algorithmic models [START_REF] Sangwan | Software effort estimation using machine learning techniques[END_REF]. ML is a subset of artificial intelligence that focuses on the creation of models that can be trained on some data and then used to predict new data in the future. An ML approach can be divided into three parts: the Data Preprocessing phase, Prediction models phase, and Decision-making phase.

Data Preprocessing phase

The data preprocessing phase in the knowledge discovery process is guided through the data transformation activities from raw data to training and test data [START_REF] Zhang | Machine learning[END_REF]. This complex and multidisciplinary phase involves concepts and structured knowledge in distinct and specific ways in the literature and specialized tools, necessitating the services of data scientists with appropriate expertise. Datasets including customers' ERs must be managed consistently to reduce the risk exposure and guarantee the software development progress. The requirements process spans the whole software maintenance life cycle.

Change management and maintaining requirements in a state that accurately mirrors the software to be built, or that has already been built, are critical to the success of the software engineering process [6]. Requirements Change Management (RCM) is concerned with making rational decisions about whether or not to implement a requested change.

It is also concerned with justifying the decision for determining which information (such as documents and other requirements) will be impacted by the proposed change. Even in the best of circumstances, change management is difficult to execute, and it becomes even more difficult when executed globally due to the nature of distributed development projects and the diversity of stakeholders [START_REF] Fairley | Managing and leading software projects[END_REF]. In this thesis, we will make focus on semantically describing customer ER to facilitate the RCM process by proposing an Ontology-based model. Ontology can be considered a useful data preprocessing technique in ML are [START_REF] Kulmanov | Semantic similarity and machine learning with ontologies[END_REF]. Recently, there has been a lot of interest in the design of ontologies for data mining, resulting in a plethora of ontologies for various purposes. Instead of focusing on the use of ontology, we will focus on another popular data preprocessing technique named the CFS algorithm. According to Rashwan, ontology is a conceptual modeling tool that describes information systems at the semantic and knowledge levels [START_REF] Rashwan | Ontology-based classification of non-functional requirements in software specifications: a new corpus and BIBLIOGRAPHY 123 svm-based classifier[END_REF]. The goal is to capture knowledge in related fields, identify commonly recognized terms in this field, describe the semantics of concepts through conceptual relationships, and provide a common understanding of field knowledge. Recently, there has been a lot of interest in the design of ontologies for data mining, resulting in a plethora of ontologies for various purposes. Ontologies [START_REF] Rashwan | Ontology-based classification of non-functional requirements in software specifications: a new corpus and BIBLIOGRAPHY 123 svm-based classifier[END_REF] is a well-established tool for modeling knowledge in various domains, and as such, they can play an important role in modeling the various steps of a data mining application and supporting application design.

On the other hand, the goal of feature selection is to find the best feature in the data set [START_REF] Blessie | Sigmis: A feature selection algorithm using correlation based method[END_REF]. Data can be classified using ML techniques into a set of class features and targets.

ML techniques can classify data into a set of class features and targets. ML or pattern recognition applications have variable or feature domains containing tens to hundreds of variables or features. Several techniques have been developed to address the issue of removing irrelevant and excessive variables. Feature selection (variable elimination) aids in data comprehension, reduces computing requirements, reduces dimensional curse effects, and improves performance. Filters, wrappers, and hybrid algorithms are the three types of feature selection algorithms [START_REF] Blessie | Sigmis: A feature selection algorithm using correlation based method[END_REF].

-Filter methods select features based on the characteristics of the dataset without the use of any learning techniques. Following that, this subset of features is fed into In this thesis, we will use the main measure called CFS. CFS is selected since it evaluates all the possible combinations [START_REF] Hall | Correlation-based feature selection for machine learning[END_REF]. It can update the subset of selected features during the evaluation process. In contrast to greedy forward selection and greedy backward elimination, they do not update the subset of features during the evaluation process [START_REF] Blessie | Sigmis: A feature selection algorithm using correlation based method[END_REF]. CFS uses correlation to evaluate a feature subset derived from the Pearson correlation coefficient [START_REF] Hall | Correlation-based feature selection for machine learning[END_REF]. This method is a multivariate feature Filter, which means it evaluates various feature subsets and selects the best one. Hall proposed the concept of CFS which evaluates feature subsets using a heuristic evaluation function [START_REF] Hall | Correlation-based feature selection for machine learning[END_REF]. This thesis is based on the hypothesis "A good feature subset contains features highly correlated with the class, yet uncorrelated with each other" [START_REF] Hall | Correlation-based feature selection for machine learning[END_REF]. The choice of feature selection methods differs among various application areas [START_REF] Hall | Correlation-based feature selection for machine learning[END_REF][START_REF] Blessie | Sigmis: A feature selection algorithm using correlation based method[END_REF].

Prediction models phase

There are four types of ML algorithms: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. No method is thought to be superior to the others, and their strengths and weaknesses are frequently complementary.

As a result, in our context, we used various experiment learning methods to determine which one was best suited to our situation. Thus, we present in this section a number of ML techniques to be used in this thesis. Each technique will be explained in detail next.

A. Supervised Learning Algorithm

Supervised learning is a labeling learning technique [START_REF] Zhang | Machine learning[END_REF]. Supervised learning algorithms are given a labeled training dataset (i.e., inputs and known outputs) to build the system model representing the learned relationship between the input and output. When a new input is fed into the system after training, the trained model can be used to obtain the expected output [START_REF] Zhang | Machine learning[END_REF]. Regression analysis falls under supervised ML, especially where the constructed model tries to predict a value for an input based on previous information.

The selected supervised learning algorithms used in this thesis are detailed as follows:

(a) Random Forest Regression (RFR)

Breiman created the RFR at first [START_REF] Breiman | Random forests[END_REF]. RFR is an improved classification and regression tree method that has gained popularity due to its robustness and flexibility inappropriately modeling the input-output functional relationship. A random forest is made up of numerous decision trees. To reduce overfitting and improve accuracy, the random forest method constructs each decision tree by randomly selecting a subset of the feature space.

The random forest method is used to classify a new data sample in three steps: (a) Assign a data sample to each tree in the forest. (b) Each tree provides a classification result, which serves as its "vote." (c) The data sample will be classified into the class with the highest number of votes.

(b) Linear Support Vector Regression (LinearSVR)

Vapnik first introduced the SVR in 1995 [START_REF] Zhang | Machine learning[END_REF]. To use the Support Vector algorithm for regression estimation, an analog of the margin is constructed in the space of the target values using Vapnik's insensitive loss function [START_REF] Cortes | Support-vector networks[END_REF]. To generalize the Support Vector algorithm to regression estimation, an analog of the margin is constructed in the space of the target values using Vapnik's insensitive loss function [START_REF] Cortes | Support-vector networks[END_REF]. Variables in the SVR model structure belong to continuous space. The kernel function chosen is determined by the training dataset. If the dataset is linearly separable, the linear kernel function performs well. If the dataset cannot be separated linearly, polynomial and RBF kernel functions are commonly used [START_REF] Cortes | Support-vector networks[END_REF].

(c) Ada Boost Regression (ABReg)
Freund Schapire were the first researchers who proposed the AdaBoost algorithm [START_REF] Freund | A desicion-theoretic generalization of online learning and an application to boosting[END_REF].

This algorithm solved many of the problems encountered by previous boosting algorithms [START_REF] Freund | A short introduction to boosting[END_REF]. The idea behind AdaBoost is to build a strong model by combining multiple weak classifiers into a single strong classifier. A weak classifier is a classifier that performs poorly but outperforms random guessing [START_REF] Hidmi | Software development effort estimation using ensemble machine learning[END_REF].
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(d) Gradient Boosting Regressor (GBReg)

GBR is an ML technique that is widely used today. The advantage of using GBR is that it can solve almost all objective functions. It is also effective in many cases, and allows for flexibility in the selection of loss functions [9]. Unlike supervised learning, an unsupervised learning algorithm uses a set of unlabeled inputs (i.e., without labeled) [START_REF] Zhang | Machine learning[END_REF]. An unsupervised learning algorithm seeks to discover patterns, structures, or knowledge in unlabeled data by grouping sample data into different groups based on their similarity. Unsupervised learning techniques are widely used in data clustering and aggregation [START_REF] Zhang | Machine learning[END_REF].

(C) Reinforcement Learning Algorithm
Reinforcement Learning is another well-known learning technique [START_REF] Zhang | Machine learning[END_REF]. An agent, a Statespace S, and an Action space A are all involved in Reinforcement Learning. The agent is a learning entity that interacts with its surroundings to determine the best course of action
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to maximize its long-term reward. The long-term reward is a discounted cumulative reward that includes both immediate and future rewards.

Decision-making phase

For SEEE, there are various evaluation metrics used to evaluate and compare the accuracy of the estimation model. The choice of the appropriate performance metric and evaluation is consistently situated according to the problem type which can be a regression, classification, or clustering [START_REF] Alsolai | A systematic literature review of machine learning techniques for software maintainability prediction[END_REF].

The evaluation metrics used in this thesis can be summarized as follows: (1) AE: absolute error (2) Pred (x): prediction level (3) MMER: mean magnitude of error relative to the estimate (4) MMRE: mean magnitude of relative error (5) RMSE: root mean squared error.

Estimating in the Context of Traditional and Agile Software Projects

Since the year 2000, Agile Methodologies (Scrum) have grown in popularity. The software maintenance phase of the software lifecycle is the most expensive and timeconsuming, and it makes extensive use of Agile methodologies [START_REF] Devulapally | Agile in the context of Software Maintenance A Case Study[END_REF]. It promotes flexibility and adaptability to make software upgrades over time.

Switching from Waterfall to Agile

Since 1970, all software companies used the traditional waterfall model for software development. If a particular phase is not completed and approved, moving to the next phase or any other is not possible. Due to its shortcomings, the software development using the Waterfall model follows a linear, sequential design approach in which the project is delivered throughout a set of phases. These should be completed one after another.

Even making changes is difficult. The maintenance cost associated with the use of this approach was increasing. To address these issues, the Agile methodology in which all the phases overlap and the requirements are gathered iteratively and incrementally, was introduced. This minimizes the shortcomings of the waterfall model and hence improves the software development process cost-efficiently. With agile, maintaining software becomes quite easy which enhances the quality as well as reduces the cost. Agile is based Background: The nature of Software Maintenance, Measurement and Estimating on its four factors which include: Cost, Schedule, Requirements, and Quality [START_REF] Devulapally | Agile in the context of Software Maintenance A Case Study[END_REF].

The different Agile Approaches

Many agile approaches implement the values and principles of Agile manifest differently. Most of these approaches are used in developing and maintaining the software at a lower cost. The common Agile approaches are Scrum, XP, Kanban [START_REF] Devulapally | Agile in the context of Software Maintenance A Case Study[END_REF].

eXtreme Programming

eXtreme Programming is one of the most widely adopted agile methodologies which was created by Kent Beck [START_REF] Choudhari | Iterative maintenance life cycle using extreme programming[END_REF]. It primarily focuses on the development phase rather than the managerial aspect of software projects [START_REF] Choudhari | Iterative maintenance life cycle using extreme programming[END_REF]. A release plan is developed initially.

Users write user stories to describe what they want and are part of the developer team.

This ensures that all the requirements are being added in accordance with and presence of a user. The team breaks the tasks into iterations and at the end of it.

Scrum

Ken Schwaber and Mike Beedle popularized Scrum in the 1990s [START_REF] Merzouk | The proposition of Process flow model for Scrum and eXtreme Programming[END_REF]. Scrum is also one of the most popular Agile approaches and is incremental and iterative. Scrum is based not only on development but also on management [START_REF] Arora | A Systematic Literature Review of Machine Learning Estimation Approaches in Scrum Projects[END_REF]. Scrum divides work into sprints, which are cycles of work. Requirements are prioritized and referred to as user stories during each sprint.

Kanban

Kanban is described by Anderson as "an evolutionary change strategy that uses a kanban (small k) pull system, visualization, and other tools to accelerate the adoption of Lean principles [START_REF] Anderson | Kanban: Successful Evolutionary Change for Your Technology Business[END_REF]. It is an iterative and evolutionary process". The main goal of the Kanban system is to maximize unit productivity by reducing the process idle time. When used correctly, the Kanban system is a very cost-effective process [START_REF] Anderson | Kanban: Successful Evolutionary Change for Your Technology Business[END_REF].

Although there are a lot of similarities between Agile approaches, Scrum is used the most in practice [START_REF] Arora | A Systematic Literature Review of Machine Learning Estimation Approaches in Scrum Projects[END_REF]. 

Differences between Traditional and Agile approaches

The main advantage of agile over the traditional (waterfall) model is that it is based on the concept of iterations. Following each iteration, users will be able to obtain a working version of their project. Based on this, even after the design phase has begun, the user can easily add or change the requirement. However, in the waterfall model, all requirements must be submitted at the start of the project. With the involvement of the user/customer in the agile process, the software product becomes most easy to enhance and stay within the allocated budget [START_REF] Cervone | Understanding agile project management methods using Scrum[END_REF]. The values represent the effort required to develop or maintain the particular US. Planning Poker operates based on team consensus [START_REF] Choudhari | Ugrasen, points based effort estimation model for software maintenance[END_REF]. Typically, the outcomes would be acceptable, with fewer risks and errors [START_REF] Choudhari | Ugrasen, points based effort estimation model for software maintenance[END_REF]. Participants in this process will be given special decks of Planning Poker cards. Basically, the numbers in the sequence reflect that uncertainty grows proportionally with the story size. A high estimate means that the Background: The nature of Software Maintenance, Measurement and Estimating story is not well understood and should be decomposed into smaller stories (if possible).

The Fibonacci sequence is often utilized by software teams [START_REF] Grenning | Planning poker or how to avoid analysis paralysis while release planning[END_REF], even though there is no consensus on these values.

(B) Expert Judgment

Expert is the most experienced person working in the software industry regarding the estimation of various projects [START_REF] Lavazza | On the evaluation of effort estimation models[END_REF]. They have extensive knowledge, which has a significant impact on development time and cost, as well as the deviation of actual costs from estimates. As a result, experts' advice is frequently sought when analyzing project costs and timelines. Expert's judgment method is influenced by a variety of subjective factors such as bias, the influence of the work environment, the type of projects handled by the concerned experts, and human errors [START_REF] Richardson | Project management theory and practice[END_REF]. It is a practical and efficient method for estimating small and medium-sized projects [START_REF] Richardson | Project management theory and practice[END_REF].

Conclusion

In this chapter, we established a background on software maintenance (enhancement), software measurement, and effort estimation in software projects within both traditional and agile contexts. We presented an overview of FSM and a comparison between the FSM methods supported by ISO standards. We showed that COSMIC ISO 19761 has been widely used to measure the functional change size of any type of software. Finally, we presented the techniques used when estimating effort in the context of traditional and Scrum projects. We presented the most popular effort models used in software development and enhancement projects, in particular algorithmic and non-algorithmic, and ML techniques. In the next chapter, we will present an SMS on the use of ML In the software industry, estimating is crucial for the success of software project planning and management. Several approaches used ML techniques to anticipate the software project effort to improve the accuracy of estimates. This second chapter is about SEEE with the use of ML techniques. Its goal is to present an SMS on the use of ML techniques for SEEE. The SMS was carried out by reviewing pertinent papers from 1995 to 2020. We followed well-known procedures. We found 30 relevant studies using four search engines: 19 from journals and 11 from conference proceedings. Based on the results obtained in this SMS, estimators should be aware that SEEE using ML techniques as part of a non-algorithmic model has demonstrated high predictive accuracy compared to algorithmic models. The use of ML techniques, in general, provides reasonable precision when using the enhancement functional size as an independent variable.

In Short

Introduction

The software industry has been progressing over recent years. The cost of software maintenance is greater than that of software development [5]. Similar to software development, software maintenance is also important. Among the cost drivers, human effort is the most important. In software engineering, the expression "Effort estimation" is similar to "Cost estimation" [START_REF] Nassif | Software development effort estimation using regression fuzzy models[END_REF]. As a result, the majority of the proposed effort estimation is expressed in terms of Person-Month [START_REF] Ali | Effort Estimation Problems in Software Maintenance-A Survey[END_REF]. Software effort estimation, also known as software effort prediction, is regarded as the most important domain of both software development and software maintenance projects [START_REF] Sangwan | Software effort estimation using machine learning techniques[END_REF]. In software industries, the development phase has traditionally been valued more than the software maintenance phase [6]. Indeed, according to a recent survey on the software maintenance process [START_REF] Ulziit | A conceptual framework of challenges and solutions for managing global software maintenance[END_REF], software maintenance is the longest and, in most cases, the most expensive phase of the software maintenance life cycle. As a result, predicting software maintenance effort is an important task that, if done correctly, can reduce the costs of software development and maintenance projects.

Consequently, accurate estimates of software maintenance effort have a positive impact on project planning and management [START_REF] Heričko | The size and effort estimates in iterative development[END_REF]. By reducing uncertainty and increasing customer confidence.

Even with the use of modern software development approaches such as agile, software industries have to revise and refine effort estimation when changes occur. It may be necessary to make an accurate estimate based on relevant and standardized information. This is a useful tool for project managers who want to improve their industries. Of course, when the same definition and measurement standard are used as inputs to the prediction process. However, predicting will be ineffective, or will damage future business opportunities, if not done correctly (underestimate, overestimate). Many approaches with various estimate models are presented to give more accurate software estimation. Expert judgment, algorithmic models (such as COCOMO II), and non-algorithmic models are the three types of models (such as ML techniques [START_REF] Sangwan | Software effort estimation using machine learning techniques[END_REF]). Many researchers claim that applying ML techniques (as a non-algorithmic model) can increase estimation accuracy [START_REF] Malhotra | A systematic review of machine learning techniques for software fault prediction[END_REF].

Software development becomes more complex as the software project grows and evolves. Some ER is required to improve software quality characteristics that are likely to be transformed into functional requirements (e.g., perfective maintenance). Other requests are used to implement new requirements (e.g., Adaptive maintenance). It is clear when managing the software maintenance process, particularly after the software has been delivered, the estimated cost of which exceeds 70 percent of the total costs of the software development process [10].

Consequently, Enhancement is a type of software maintenance that may necessitate major project re-planning and improved implementation. Special attention is devoted to evaluating ER (i.e., functional changes affecting user requirements) and predicting their impact on the estimated effort. As a result, user ER appears not only during the software maintenance phase but also throughout the software development project.

For these reasons, estimating the effort required to implement ER or functional changes should be regarded as the key activity in managing a software project. Although there are several methods for improving the accuracy of SEEE, the choice of suitable SEEE is not only limited to the ability of software developers/maintainers to handle ER but also to its evaluation. When assessing the performance of a prediction model, the choice of a suitable one is based on the quality of its inputs, data sets, and, most importantly, the use of international standards [START_REF] Abran | Software project estimation: the fundamentals for providing high quality information to decision makers[END_REF]. As a result, when managing a software project, choosing the appropriate prediction model when the user's requirements are subject to change has become a significant challenge.

This chapter reports on the SMS of relevant research papers (journals and conference proceedings papers) investigating the topic of SEEE using ML techniques. 

SMS Methodology for SEEE

A SMS identifies the nature and extent of empirical study data that is accessible to answer a specific mapping research question in a systematic and objective manner [1].

According to [1], SMS is divided into six steps : (1) Defining the mapping questions,

(2) Finding primary studies, (3) Screening studies, (4) Abstract key-wording, ( 5) Data extraction, and (6) Mapping Results.

Defining the mapping questions

The mapping questions (MQ) addressed in this SMS, as well as their associated objectives, are listed in table 2.1. To assess the significance of using the FSM method for evaluate the accuracy of SEEE. MQ4. 4 Which single models are most frequently used for SEEE?

To identify the most commonly used single models for SEEE.

Conducting the search for primary studies

We followed Kitchenham's guideline for conducting SMS studies in order to have a clear description of our search strategy. Following the steps discussed, the research was carried out in four digital libraries:

-Google Scholar, -IEEExplore, -ACM Digital library, and -ScienceDirect. AND (software, system, application, or product) AND (project OR activity).

Screening studies

The following inclusion and exclusion criteria were used to select the most relevant studies.

Studies that fulfill the following criteria are selected for inclusion:

-Studies including the keywords directly related to the Software enhancement maintenance field (adaptive/perfective maintenance, software change), effort prediction/estimation.

-Studies that contain the exact keyword "effort prediction" or synonyms.

-For the period 1995-2020, studies written in English and including the most recent publication are included.

Excluded studies are those that do not meet the inclusion criteria:

-Studies without the keywords "software enhancement effort prediction" -Studies without the exact keyword "effort prediction", or its synonym. Number of studies passed our quality assessment [START_REF] Sakhrawi | Software Enhancement Effort Estimation using Machine Learning Regression Methods[END_REF] The quality assessment follows the defined quality checklist as proposed by Kitchenham [START_REF] Kitchenham | Systematic literature reviews in software engineering-a systematic literature review[END_REF]. The primary goal of the quality assessment is to evaluate and select studies that answer our MQs, as well as to support more in-depth analysis of inclusion and exclusion criteria. The quality assessment questions scoring procedure
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The scoring procedure for the quality assessment questions of our chosen primary studies (see Table 2.6) is as follows [START_REF] Alsolai | A systematic literature review of machine learning techniques for software maintainability prediction[END_REF]:

-1 represents Yes.

-1/2 represents Partly.

-0 represents No.

The scores rank the papers into three categories [START_REF] Alsolai | A systematic literature review of machine learning techniques for software maintainability prediction[END_REF]:

excellent(6.5 ≤ score ≤ 8) good(2.5 ≤ score ≤ 6) f air(1 ≤ score ≤ 2)
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Data Extraction

When using the SMS, data extraction is an important step to take [START_REF] Abdallah | Enterprise Architecture Measurement: An Extended Systematic Mapping Study[END_REF]. As a result,

in order to answer the mapping questions listed in Table 2.1, the data extraction was designed to collect all relevant data from each chosen primary study, which would then be used to answer our research questions. As shown in 

Mapping results

This section discusses the mapping questions to be addressed.

MQ1: What are the trends in software maintenance prediction research from 1995 to 2020? This mapping study will be conducted between 1995 and 2020 (see table 2.4). The distribution of research over the years is shown in When estimating the effort of a software enhancement project, identifying only the types of changes requested is effective. In other words, in order to provide an accurate effort estimation in software projects, the characteristics of each type of requirements ER must be identified [START_REF] Chua | Criteria for Estimating Effort for Requirements Changes[END_REF]. Therefore, effort estimates must be performed before maintaining software products. Furthermore, it is critical to meet and satisfy the changing needs of the customer. In the same context, Basri et al. [START_REF] Basri | A Novel Effort Estimation Approach for Requirement Changes during Software Development Phase[END_REF] assume that the effort required in the maintenance phase (after the software product is delivered) is less than the effort required in the development phase. As a result, software managers must make sound decisions when dealing with changes during software development or maintenance. The prediction of the change effort produced by the changes is one type of information that assist decision-making. Predicting the effort of implementing an ER is not an easy task for both the manager and the development team when the software is being developed. An accurate effort prediction can prevent software projects from going over or under budget.

Overestimation can lead to financial failure for the organization, while underestimation can lead to exhausted software quality and, as a result, software project failure. Estimates may be inaccurate because there is not enough information on the project at the start, and requirements are almost always poorly described. The 2018 study by PMI's Pulse of the Profession puts the average number of the primary causes of those failures.

The main causes of software project failures are changes in requirements (such as organizational priorities, project objectives, and so on), inaccuracy in requirements gathering, and inaccurate estimates (in terms of costs or time) [START_REF] Fairley | Managing and leading software projects[END_REF].

The amount of information required to develop a detailed cost/effort estimate is frequently missing in the early stages of the SLC. A poorly defined requirement is a big obstacle to project success. Furthermore, requirements are represented in many formats. Software requirements, for example, might be expressed by a textual description of a UML use case or the US within the scrum process. Table 2.5 lists the quality criteria for requirements. To assist in identifying business opportunities and facilitating system design, the quality requirement should be correct, feasible, necessary, unambiguous, complete, consistent, testable, clear, and traceable. A detailed description of requirements throughout the SLC helps to predict their size more precisely. Following that, it contributes to a more precise estimation of the change effort, resulting in better-informed decisions. This is in contrast to many other prediction models, which do not take quality requirements into account. Linking each requirement to its source is essential, to achieve it, each requirement must be written in a structured and precise way

In [START_REF] Andrés | Using Nonlinear Quantile Regression for the Estimation of Software Cost[END_REF], effort was predicted based only on software functional size. In [START_REF] Nassif | Analyzing the nonfunctional requirements in the desharnais dataset for software effort estimation[END_REF] model, the quality requirements attributes have increased software effort by 30 percent.

MQ3: How is enhancement effort predicted and assessed? There are four types of software maintenance classified as correction maintenance including corrective maintenance and preventive maintenance, and enhancement maintenance including adaptive maintenance and perfective maintenance. The main study selected for this SMS (see The two current models algorithmic and non-algorithmic models are widely used for estimating enhancement effort. The algorithmic model predicts maintenance effort using mathematical formulas. Non-algorithmic models predict using past project experiences. 

Study

Prediction accuracy criterion S1 [START_REF] López-Martín | Predictive accuracy comparison between neural networks and statistical regression for development effort of software projects[END_REF] Absolute Residuals Friedman statistical S2 [START_REF] Ku | Estimating software maintenance effort from use cases: An industrial case study[END_REF], S3 [START_REF] Nguyen | A controlled experiment in assessing and estimating software maintenance tasks[END_REF], S7 [START_REF] Leung | Estimating maintenance effort by analogy[END_REF], S8 [START_REF] Kitchenham | An empirical study of maintenance and development estimation accuracy[END_REF], S9 [START_REF] Fioravanti | Estimation and prediction metrics for adaptive maintenance effort of object-oriented systems[END_REF], S10 [START_REF] Jorgensen | Experience with the accuracy of software maintenance task effort prediction models[END_REF], S11 [START_REF] Ramil | Metrics of software evolution as effort predictors-a case study[END_REF], S13 [5], S14 [START_REF] Rijwani | Enhanced Software Effort Estimation using Multi Layered Feed Forward Artificial Neural Network Technique[END_REF] Mean Relative Error (MRE) S4 [START_REF] Yu | Indirectly predicting the maintenance effort of open-source software[END_REF] Correlation coefficient S6 [START_REF] Ahn | The software maintenance project effort estimation model based on function points[END_REF] Coefficient of determination (r2) S5 [START_REF] Huffman Hayes | A Metrics-Based Software Maintenance Effort Model[END_REF] Standard error of the estimate, MMRE -Mean Magnitude of Relative Error, MdMRE -Median Magnitude of Relative Error, PRED(25) S12 [START_REF] Cerón-Figueroa | Stochastic gradient boosting for predicting the maintenance effort of softwareintensive systems[END_REF], S13 [5] Absolute Residuals (AR), Mean of Absolute Residuals(MAR) S4 [START_REF] Yu | Indirectly predicting the maintenance effort of open-source software[END_REF], S8 [START_REF] Kitchenham | An empirical study of maintenance and development estimation accuracy[END_REF] Pred(25) S10 [START_REF] Jorgensen | Experience with the accuracy of software maintenance task effort prediction models[END_REF] Pred(50) S11 [START_REF] Ramil | Metrics of software evolution as effort predictors-a case study[END_REF] MdMRE -Median Magnitude of Relative Error, Pred (10) and Pred(50) S14 [START_REF] Rijwani | Enhanced Software Effort Estimation using Multi Layered Feed Forward Artificial Neural Network Technique[END_REF] Mean-Square-Error (MSE)

error (MAE) is the average of the absolute value differences between the actual and predicted effort. N denotes the total number of projects. It is calculated as follows: MRE equals (actual effort -estimated effort / actual effort). The distribution of evaluation metrics used by selected primary studies is depicted in Figure 2.3. The MRE is the most widely used evaluation metric for predicting enhancement effort (48%) followed by Absolute Residuals and PRED (25%) (12 percent ). terms of what is used to provide a more accurate SEEE model, we find that regression problems outnumber those of ML (see Table 2.6). The regression models used in the selected studies were statistical regressions [START_REF] Yu | Indirectly predicting the maintenance effort of open-source software[END_REF][START_REF] Rijwani | Enhanced Software Effort Estimation using Multi Layered Feed Forward Artificial Neural Network Technique[END_REF][START_REF] Jorgensen | Experience with the accuracy of software maintenance task effort prediction models[END_REF], General Regression [START_REF] López-Martín | Predictive accuracy comparison between neural networks and statistical regression for development effort of software projects[END_REF], Support Linear Regression models [START_REF] López-Martín | Predictive accuracy comparison between neural networks and statistical regression for development effort of software projects[END_REF], SVR [5], and decision trees stochastic gradient boosting [START_REF] Cerón-Figueroa | Stochastic gradient boosting for predicting the maintenance effort of softwareintensive systems[END_REF]. The purpose of regression models is to construct a function f(x) that adequately maps a set of independent variables (X1, X2,..., Xn) into a dependent variable Y [START_REF] Sangwan | Software effort estimation using machine learning techniques[END_REF]. highlights the variety of datasets used for SEEE. A dataset is a "collection of connected sets of data that may be utilized to run ML-based models, and it is regarded as the foundation for developing prediction models" [START_REF] Sammut | Encyclopedia of machine learning[END_REF]. When constructing a learning model, the dataset is divided into two parts: a training set for model input and a testing set for evaluating the built model [START_REF] Sammut | Encyclopedia of machine learning[END_REF].

MQ4
Table 2.8 depicts a summary of the various types of datasets used in the selected primary studies. Primary study datasets are classified into two types.
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-Public dataset: The dataset can be found as an appendix or table in a published paper or in a publicly accessible repository [START_REF] Alsolai | A systematic literature review of machine learning techniques for software maintainability prediction[END_REF], such as the ISBSG Release 11 in S1 [START_REF] López-Martín | Predictive accuracy comparison between neural networks and statistical regression for development effort of software projects[END_REF], S13 [5], and S12 [START_REF] Cerón-Figueroa | Stochastic gradient boosting for predicting the maintenance effort of softwareintensive systems[END_REF]. The ISBSG maintains a Development and Enhancement Repository [2] (also known as the "ISBSG dataset"). In S14 [START_REF] Rijwani | Enhanced Software Effort Estimation using Multi Layered Feed Forward Artificial Neural Network Technique[END_REF] and S7 [START_REF] Leung | Estimating maintenance effort by analogy[END_REF],

we additionally acknowledged the use of the COCOMO II dataset, as well as the NASA Goddard Space Flight Center dataset in S4 [START_REF] Yu | Indirectly predicting the maintenance effort of open-source software[END_REF].

-Private dataset: The dataset is not publicly available and was obtained from a private software system, such as in S8 [START_REF] Kitchenham | An empirical study of maintenance and development estimation accuracy[END_REF], S10 [START_REF] Jorgensen | Experience with the accuracy of software maintenance task effort prediction models[END_REF], S6 [START_REF] Ahn | The software maintenance project effort estimation model based on function points[END_REF], S9 [START_REF] Fioravanti | Estimation and prediction metrics for adaptive maintenance effort of object-oriented systems[END_REF] and S5 [START_REF] Huffman Hayes | A Metrics-Based Software Maintenance Effort Model[END_REF]. a difference in the number of studies using public versus private datasets. The majority of the selected primary studies were conducted using private datasets, as opposed to public datasets. This explains the lack of studies addressing SEEE with public datasets. As a result, we observed a lack of comparative studies among researchers' effort prediction results in the field of software maintenance. This is since each dataset's features are unique.

As stated in MQ3, one of the important factors influencing one choice over another is the dataset used for learning. In other words, the selection of the datasets' features is critical for more accurate prediction. Some research studies focused on feature selection [START_REF] Jović | A review of feature selection methods with applications[END_REF] in order to select the relevant features and provide the best configuration. Other research studies, on the other hand, focused on the use of independent variables (that we detailed in the next question). As a result, several factors, such as the size of the dataset, can have an impact on the prediction results [START_REF] Elmidaoui | Machine learning techniques for software maintainability prediction: Accuracy analysis[END_REF]. Therefore, many research studies used a single dataset [START_REF] López-Martín | Predictive accuracy comparison between neural networks and statistical regression for development effort of software projects[END_REF]. However, we observed the use of more than one dataset in other research studies [START_REF] Huffman Hayes | A Metrics-Based Software Maintenance Effort Model[END_REF].

MQ4.3: What are the independent variables used to improve performance of SEEE model? The data features derived from the ISBSG dataset are used for three distinct purposes in SEEE [START_REF] González-Ladrón-De-Guevara | The usage of ISBSG data fields in software effort estimation: A systematic mapping study[END_REF]:

-Filtering features [START_REF] González-Ladrón-De-Guevara | The usage of ISBSG data fields in software effort estimation: A systematic mapping study[END_REF]: The filtering phase is carried out in order to identify the most relevant set of projects.

-Dependent features [START_REF] González-Ladrón-De-Guevara | The usage of ISBSG data fields in software effort estimation: A systematic mapping study[END_REF]: The dependent variable in effort prediction models is usually 'Effort'. The dependent variable representing the output is the one that must be predicted.

-Independent features [START_REF] González-Ladrón-De-Guevara | The usage of ISBSG data fields in software effort estimation: A systematic mapping study[END_REF]: A large number of the 118 features in the ISBSG dataset are most likely considered effort factors. As a result, the criteria for selecting appropriate independent variables are not standardized. It all depends on the area of study. In most cases, the independent variable displays the most significant data values [START_REF] González-Ladrón-De-Guevara | The usage of ISBSG data fields in software effort estimation: A systematic mapping study[END_REF].

Table 2.9 lists the independent variables used in the primary studies to predict maintenance effort. Table 2.9 shows that there is a broader range of using functional size (in Table 2.9 -Independent variables used for SEEE Study Independent Variables S1 [START_REF] López-Martín | Predictive accuracy comparison between neural networks and statistical regression for development effort of software projects[END_REF], S6 [START_REF] Ahn | The software maintenance project effort estimation model based on function points[END_REF], S8 [START_REF] Kitchenham | An empirical study of maintenance and development estimation accuracy[END_REF], S13 [5], S12 [START_REF] Cerón-Figueroa | Stochastic gradient boosting for predicting the maintenance effort of softwareintensive systems[END_REF] Function Points Size S2 [START_REF] Ku | Estimating software maintenance effort from use cases: An industrial case study[END_REF] Size Parameter (use cases) S4 [START_REF] Yu | Indirectly predicting the maintenance effort of open-source software[END_REF] Lags time (Lag time), the number of LOC changed (LOC change), and the number of modules changed (Module change) S5 [START_REF] Huffman Hayes | A Metrics-Based Software Maintenance Effort Model[END_REF] Percentage of operators changed and the number of lines of codes changed edited, added or deleted (DLOC) S9 [START_REF] Fioravanti | Estimation and prediction metrics for adaptive maintenance effort of object-oriented systems[END_REF] Size and complexity S10 [START_REF] Jorgensen | Experience with the accuracy of software maintenance task effort prediction models[END_REF] Size of the changed application S11 [START_REF] Ramil | Metrics of software evolution as effort predictors-a case study[END_REF] SubsysInclCreations, SubsysChanged, SubsysHandled, ModulesCreated, ModulesHandled, Mod-ulesChanged, TotalHandlings, Modiflandlings S14 [START_REF] Rijwani | Enhanced Software Effort Estimation using Multi Layered Feed Forward Artificial Neural Network Technique[END_REF] KLOC terms of function points) as independent variables. The authors [START_REF] González-Ladrón-De-Guevara | The usage of ISBSG data fields in software effort estimation: A systematic mapping study[END_REF] 

Implication for research and practice

Understanding and defining the product to be predicted is one of the first steps in any estimate. However, predicting is difficult because a software system is intangible, invisible, and intractable [START_REF] Fairley | Managing and leading software projects[END_REF]. Understanding and predicting a product or process that cannot be seen or touched is inherently more difficult. Furthermore, software grows and changes as it is written. As a result, the stakeholders and manager must make good decisions when managing requirements changes during software development or maintenance.

Because underestimation is the more prevalent trend, it is critical to consider factors (i.e., project size, team maturity, etc.) that may cause project delays. Identifying and taking into account these factors can help to reduce overestimation. Some researchers argue that because change is frequent, it is difficult to provide an accurate estimate and predict the future (it is a waste of time). However, the effort required to implement a change must be determined. This is to avoid failures and make appropriate decisions.

There are numerous software cost/effort estimation/prediction models/techniques in the literature, including algorithmic models and non-algorithmic models. Recent research on software maintenance effort prediction has focused on comparing the accuracy of ML techniques as non-algorithmic for effort prediction.

A review of various ML techniques (such as regression learning models) used in predicting effort revealed that estimate accuracy can be achieved. No model is necessarily superior to another. Strengths and weaknesses are frequently complementary to one another. Which prediction models should be used for a specific project based on the project's environment? As a result, having a good understanding of requirements changes is re-
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quired for predicting the effort required to rework them. However, no standard method for classifying requirements changes exists that can provide an understanding of both the project level (effect on the project progress) and the requirements level (effect on other requirements).

Size in software engineering datasets can refer to "the physical size of the program, measured in lines of code (LOC); or the functional size of the problem, measured in Function Points." [START_REF] González-Ladrón-De-Guevara | The usage of ISBSG data fields in software effort estimation: A systematic mapping study[END_REF]. FSM is especially useful when development/maintenance effort must be predicted. Despite the fact that COSMIC FSM method [2] is the most widely used standard of the FSM method, we discovered that none of the primary studies datasets used for SEEE used it, only the ISBSG dataset. The COSMIC FSM method [START_REF] Abran | The cosmic functional size measurement method[END_REF] can also be used to approximate software size at the start of the software life-cycle. The COS-MIC FSM method has been used successfully to size data manipulation-rich software as well as some scientific/engineering software [START_REF] Abran | The cosmic functional size measurement method[END_REF]. Recently, research papers looked at the use of an ensemble of learning machines to improve software effort estimation [START_REF] Minku | A Principled Evaluation of Ensembles of Learning Machines for Software Effort Estimation[END_REF]. An ensemble of learning machines is defined as "a group of learners who have been trained

to perform the same task and have been combined to improve predictive performance." [START_REF] Minku | A Principled Evaluation of Ensembles of Learning Machines for Software Effort Estimation[END_REF]. According to our mapping study findings, only single models have been used to predict maintenance effort. According to the findings of our mapping study, only single models have been used to predict maintenance effort. Even when considering ensemble, Leandro et al. [START_REF] Minku | A Principled Evaluation of Ensembles of Learning Machines for Software Effort Estimation[END_REF] conclude that there is very unlikely to be a universally best model.

The estimation process of a software project is divided into three major parts in the software industry: estimation inputs, estimation model, and estimation output [START_REF] Abran | Software project estimation: the fundamentals for providing high quality information to decision makers[END_REF].

Frequently, the first section, known as estimation inputs, includes all three types of software requirements: functional and non-functional requirements, as well as project constraints. However, there is no standardized method for ensuring the quality of each of these parts. No agreement has been reached on the quality of each part of the estimation process. The software industry is frequently plagued by a number of poor estimation practices [START_REF] Abran | Software project estimation: the fundamentals for providing high quality information to decision makers[END_REF]. The majority of researchers are focused on developing new prediction models. A minority of researchers, however, have considered the quality of estimation input [START_REF] Abran | Software project estimation: the fundamentals for providing high quality information to decision makers[END_REF].

Finally, it is important to note that the inability to assess the quality of prediction models influences the selection of the best model. Indeed, employing the prediction process will help in the elimination of common research errors (i.e., focusing on the Learning Techniques improvement of prediction models, instead of focusing on improving the input to these prediction models). As a result, using common terminology and measurement standards in the same context is essential for improving estimate quality (the output). Then, how estimates are gathered and used can have an impact on their usefulness for planning and, as a result, the success of a software project. The main goal of this chapter is to investigate and bring to light the major shortcomings of SEEE models involved in literature reviews.

Results showed a lack of studies dealing with the SEEE using ML techniques. Based on the use of SMS, the findings of the mapping research questions were as follows:

-MQ1: The time frame for this mapping study has been set between 1995 and 2020.

Although many prediction models have been proposed for development projects, few have been proposed for software maintenance.

-MQ2: It is critical for Software Managers to (1) make effective decisions when managing changes during software maintenance and (2) focus on software system aspects that are likely to change.

-MQ3: The majority of selected primary studies used regression methods such as Statistical Regression (SR), SVR, and Stochastic Gradient Boosting (SGB) to predict software maintenance (enhancement) effort. Whereas the majority of the primary studies used the Magnitude of Relative Error (MRE) to evaluate performance.

-MQ4: When it comes to the use of ML techniques for SEEE models, regression problems are more common than other ML problems.

-MQ4.1: Enhancement (including adaptive and perfective maintenance) is not well considered for effort prediction. ML techniques are the most frequently non-algorithm method used for enhancement effort prediction.

-MQ4.2: For SEEE, two types of datasets were used: public datasets and private datasets. The majority of the primary studies chosen were conducted using private datasets rather than public datasets.

-MQ4.3: There is a wide range of using software functional size (in terms of CFP) as independent variables.

-MQ4.4: When using the ISBSG dataset, the results show that SVR is the most commonly used model, and Stochastic Gradient Boosting (SGB) is closer to meeting the MAR criteria (=0.36) for building an accurate SEEE model.
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Conclusion

As this chapter was designed as an SMS, our analysis was limited to a broad overview of the software maintenance (enhancement) effort prediction research field. When proposing a new ML prediction technique in the field of software maintenance, this mapping review takes an unbiased approach to decision-making. This chapter investigated some of the most important issues that should be addressed in the context of SEEE. The first review used 30 studies from 1995 to 2020. Then we chose 14 studies to be examined.

This study enables researchers and practitioners to determine what needs to be done in the field of SEEE. In the next chapter, we discuss the effectiveness of using both ontology and ML techniques to improve the accuracy of SEEE models.

Chapter 3

Ontology-based Classification of Enhancements with their corresponding Effort Estimation Next, each enhancement request classified as Functional Change will be associated with its corresponding enhancement effort using Expert Judgment. Finally, the constructed ontology model is populated with a historical dataset to predict the required SEEE to complete an effort for software enhancement using ML techniques.

In Short

Introduction

Software enhancement is regarded as one of the critical activities in the software maintenance life cycle. It is defined as changes made to an existing application in which new functionality is added or existing functionality is modified or deleted. This would include adding a module to an existing application, regardless of whether any of the existing functionality is changed or removed [START_REF] Group | Glossary of terms for software project development and enhancement[END_REF]. Given that effort estimation is one of the primary activities of software project planning, it is necessary to define the components of an estimation process. The quality of an estimation process's outcome is determined by the quality of its inputs (such as product requirements, software development process, and project constraints) [START_REF] Abran | Software project estimation: the fundamentals for providing high quality information to decision makers[END_REF]. Requirements are the foundation of any software project.

Identifying complete and clear requirements throughout the SLC is a difficult task. As a result, adjustments are required. ER can occur during the development of software or even after it has been delivered. To effectively evaluate enhancements and the effort required to complete these enhancements, the use of both an appropriate measurement method and an accurate estimation model is required. However, choosing an appropriate measurement method will depend on the type of ER.

ER are most commonly expressed in natural language, accounting for up to 90 percent of all specifications [START_REF] Rashwan | Ontology-based classification of non-functional requirements in software specifications: a new corpus and BIBLIOGRAPHY 123 svm-based classifier[END_REF]. ER expressed in natural language are difficult to analyze and may result in confusion, inefficient distinction of requirement types, ambiguity, etc. According to [START_REF] Fairley | Managing and leading software projects[END_REF], each proposed ER has to be analyzed to determine whether it is "in-scope" or "out-of-scope". "In-scope" ER fall within the scope of the project so that they can be implemented with little or no disruption to the planned activities. They involve minor adjustments to an existing requirement. They usually have a minor effort within the project process. While "out-of-scope" ER falls outside the scope of the project and must be accompanied by an adjustment to project planning with significant effort impact [6].

As mentioned in chapter 1, requirements for software system projects are divided into three categories [6]: functional user requirements (FUR), non-functional requirements (NFR), and project requirements and constraints (PRC). In this chapter, we propose to classify ER into two categories they affect. Using ontology, ER that affect Functional User Requirements are classified as FC. ER that affects NFR or PRC is classified as TC. The classification of ER allows stakeholders to be selective in the use of the appropriate measurement method. As a result, they can evaluate the impact of ER on the effort required for their implementations. This is useful when they need to improve their
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understanding of management decisions.

In this chapter, we first propose an OMC which will be used for classifying ER into FC or TC. Therefore, every effort is made based on this categorized ER using Expert Judgement (which serves as input to the SEEE model). A detailed description of the enhancement request will be presented in this chapter. Next, We estimate the software enhancement effort based on the use of four ML techniques. We evaluate how well FC is correlated to the SEEE. We also present which of the selected ML techniques provides more accuracy for estimating.

The remainder of this chapter is organized as follows: section 3. 

Research Work Process Overview

In order to ensure that results are generally valid, the empirical evaluation of the proposed models must cover a wide range of conditions. These conditions include various parameter settings and datasets of varying size, skewness, and noisiness, as well as various preprocessing approaches. Our research work process (see Figure 3.1) includes the following three steps:

1. Gathering Data 2. Ontology Semantic Classification

Constructing Prediction Models and Evaluation

Gathering Data

Many scientific disciplines make extensive use of public experiment repositories to facilitate the sharing of experiment data. On the other hand, unambiguous description languages which are based on a careful examination of the concepts are created to be used within a domain and its relationships. This is formally represented by ontologies, which are machine-manipulable domain models that clearly describe each concept (class). ER collected from customers' reviews in PROMISE1 . These sources provide the system contextual requirements including system purpose, system scope, and system overview.

Our research study takes into account the ER as an input, (1) identifies its types (add, modify or delete), ( 2) measures the actual effort corresponding to each ER classified as FC derived from experts' opinions, uses the outputs of ( 1) and ( 2) as an input to construct an SEEE based ML techniques.

Ontology based-Semantic Classification

As shown in Figure 3.2, this phase proposed an OCM where we focused on the impact of semantic classification for improving the performance of ML experiment results.

An ontology consists of the following elements: (i) a set of concepts; (ii) a set of relations describing concept hierarchy or taxonomy; (iii) a set of relations linking concepts non-taxonomic; and (iv) a set of axioms, usually expressed in a formal language-for a 
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Ontology Specification

This step usually includes analyzing concepts to determine whether they are classes or entities, as well as the relationship between classes. This is to identify their categories (as either FC or TC). The classification of ER is intended to identify the type of enhancement to be made, the actions to be taken and the appropriate service to be implemented. Table 3.1 lists the main classes of our proposed ontology. Table 3.2 depicts the interrelationships between classes (domain/range). 
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Add in External TC External TC to be created Add in External FC External FC to be created Manipulation of instances is a critical step in our ontology model. There are many approaches used by ontology management systems: OWL schema2 and object-oriented development 3 . We used OWL schema and Jena to populate automatically our ontology with ER (i.e., users' reviews) derived from the PROMISE repository. These requests are conducted on implemented software and previous software development projects. The collected data (ER) is used to complete the task of the Ontology population.

Populating Ontology with Enhancement effort derived from Expert judgment approach

In this step, we employ Expert Judgment to identify each FC of an ER with its corresponding effort. When a company does not have any historical data in its database [START_REF] Bajwa | Investigating the nature of relationship between software size and development effort[END_REF], the Expert Judgment will be useful. Here, the estimates have been updated and calibrated based on the organization's past expert experience. In our study, as shown in Table 3.3, we asked seven estimators with at least three years of experience. As

Years of software Experience Numbers of estimators 3 years 2 4 years 3 10 years 2 

Ontology Implementation

In our contribution, we proposed a set of Semantic Web Rules Language (SWRL) 4 and Description Logic Query (DL query) 5 based on the definition of the ISO 25010 software quality characteristics and the description of the users' reviews within PROMISE repository. The first step is to choose a set of terms that are relevant to the domain, which can be done manually or automatically. It is associated with the recognition of subject, object, and relationships. The linguistic motivation for this identification is that the meaning of common terms is hidden in their relationships with other terms. These terms are organized into classes using the Protégé 4 editor. And then, converted into a set of rules. These concepts can be used to quickly identify the required Instances. Table 3.5 lists our proposed classes and their corresponding key concepts (i.e., users' reviews from PROMISE repository). The following steps are required for our proposed ontology solution: (A) Implementation of the rules, (B) Queries about the knowledge using DL query, (C) Invoke a pellet reasoner that builds a knowledge-based ontology domain, and (D) Ontology output and solution discussion. Following the conceptualization step, we propose a set of rules for our Ontology. With the explanation of the first rule, Table 3.6 includes four columns: the name of class (class), the attribute (Data property), the instances (individuals) and the result (output). One line including the proposed rules. This table is applicable to the following rules (R1, R2, and R3).

-R1: SystemRequirementsChangeRequest(?F), Change Value(?F, ?V), contains(?V, "stopped played ") -External Change(?F) R1 is used to determine the source of ER. An ER may come from multiple stakeholders, each with its own set of priorities. The reviews of users are classified as either external ER or internal ER. External ER is related to the users' perspectives. For example, "I loved the app, but since I installed iOS7 and updated it, it no longer works; please fix it".

External ER help to identify and define internal ER (from the developer's perspective).
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It is critical to distinguish internal ER from external ER to better prioritize ER and determine the role of stakeholders.

-R2: SystemRequirementsChangeRequest(?F), Change Value(?F,?V), contains(?V, "events"), contains(?V, "update")-Functional Change(?F) R2 is used to identify FE that affect functional requirements (FUR).

-R3: SystemRequirementsChangeRequest(?F), Change Value(?F,?V), contains(?V, "resources"), contains(?V, "update")-Technical Change(?F) R3 is used to identify TC that affect quality requirements including both (NFR and PRC).

B. Queries about the knowledge using DL query

The reasoning features of the proposed rules specified in the DL Query were used to verify and validate the ontology. For searching a classified ontology, DL includes a powerful and simple feature. The query language (class expression) supported by the plugin is built on the Manchester OWL syntax, a user-friendly OWL-DL syntax. Because of its expressiveness and power, we selected OWL to represent our ontology-based approach. 
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C. Invoking a pellet reasoner that builds a knowledge-based ontology domain

To illustrate the use of our ontology, we used the DL Query tab in conjunction with the reasoner pellet to retrieve all of the corresponding class instances. The reason why ontology is used is for reasoning. In Protégé, there are two types of models: asserted and inferred (Figure 3.5). Test results are displayed in the form of inferred individuals.

Figure 3.5 -Ontology with Reasoner

The ontology reasoner may discover significant connections and implications among the various components (concepts, relations, and properties) used to construct our ontology.

D. Ontology output and solution discussion

For a more appropriate response to an ER, we identify three types of requirements ER, which are categorized by FC and TC: Addition (), Deletion (), and Modification ().

-If the ER is an "Addition of a new requirement," it will produce more information.

-If the ER is a "Deletion of an existing requirement," deletion output will be provided.

-If the ER is for a "Modification of an Existing Requirement," the sources of the modification types must be identified (Refine or Replace).

As an example of rule R1, "the system must be able to display student information," and ER means "the system must be able to display student information: full name and grade level."

To make ontology information available as background knowledge for ML techniques, it is required to use a statistic and semantic-based approach to process textual data.
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One of the most widely used techniques to process textual data is TF-IDF [START_REF] Jones | A statistical interpretation of term specificity and its application in retrieval[END_REF]. A common phrase (or non-unique phrase) that appears frequently in a document may not be important if it also appears in many other documents. To consider the uniqueness of key phrases, the Term Frequency and Inverse Document Frequency (TF-IDF) approach is recommended [START_REF] Jones | A statistical interpretation of term specificity and its application in retrieval[END_REF]. As its name implies, TF-IDF vectorizes/scores a word by multiplying the word's Term Frequency (TF) with the Inverse Document Frequency (IDF), where:

-Term Frequency (TF) is the number of times a term or word appears in a document in comparison to the total number of words in the document.

-Inverse Document Frequency: IDF of a term reflects the proportion of documents in the corpus that contain the term.

Constructing Prediction Models and Evaluation

In this section, the chosen ML techniques are trained and tested for a variety of experiments. Our prediction model was created using the Google Colaboratory Python programming language. Google Colaboratory, also known as Google Colab, is an opensource service that Google offers to anyone with a Gmail account. Google Colab 6 provides GPU for research to the people who do not have enough resources or cannot afford one.

Six software development projects were used to test our proposed SEEE model. In this section, two types of experiments are carried out. In the first set of experiments, the dataset is randomly divided into two subsets, a training set, and a test set. The second set of experiments is carried out using the widely used tenfold cross-validation method.

Simple split

For the first set of experiments, we used the classic approach that is to do a simple 70%-30%. We frequently divide our data into two sets: training and validation/test. It shows evidence of its powerful predictive capacity. In addition, the GBReg presents good results. However, the bad results are presented by the ABReg method. 

Cross validation

In cross-validation, we do more than one split. We used 10-fold cross-validation in our model. It has been used in a variety of experiments to assess the performance of four MLRM. We can obtain more metrics and draw important conclusions about our algorithm and data by employing Cross-Validation. One of the most obvious reasons for performing cross-validation is that it allows us to make better use of our data and provides us with a lot more information about the performance of our algorithms. Table 3.8 illustrates the results of using these two metrics (accuracy/prediction) for Cross-validation method. 

Discussion and Comparison

The use of Ontology with ML techniques improves the accuracy of the SEEE. The advantage of using Ontology is its ability to categorize ER from simple classification to semantic classification. As stated in section 3.4, the data quality (models input) was improved using an ontology-based classification approach. Furthermore, this approach necessitates that the request for enhancements is clearly and completely defined.

From Figure 3.6, we can confirm the validity of ML techniques as an alternative to the traditional estimation approaches (such as Expert Judgement). This estimation will help experts make decisions on whether to accept, defer or deny an ER.

All the participants in the software project recognize the importance of developing an accurate SEEE since it plays a key role in the success of the software project planning and management. The main idea of our research is to present an effective model for SEEE.

We focused on the importance of semantic classification, and therefore we investigate their impacts for a good prediction.

The proposed SEEE model is quite effective and demonstrates the minimum MAE of 0.040 using a real dataset project. After learning, the ML techniques were able to produce reasonably accurate predictions. This study and experiment were done to evaluate four ML methods ABR, GBR, LinearSVR, and RFR. These methods are used to predict effort for an ER that occurs in the software development project. The RFR is established to be the more effective algorithm when compared with the other three methods.

We used two methods for evaluation. The first method used a simple split. The second method used 10-fold cross-validation. In addition, we used the R2 score for crossvalidation. Based on the obtained results, we noted small values of MSE, MRE, and RMSE when applying a simple method alone. It demonstrates the effectiveness of the used methods. Good accuracy of 90% is obtained when the 10-fold cross-validation with an R2 score in the best scenario is used. To identify the effective determinants of the
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SEEE, we calculate the importance of each feature. Furthermore, a model that uses Actual effort and ER features delivers superior performance as compared to a model that uses all proposed features. In addition, a model that incorporates a combination of 10-fold cross-validation and R2 score demonstrates better performance when compared with a model that uses a simple split (train/test). As a result, we can conclude that the RFReg and GBReg techniques improve estimate accuracy.

Conclusion

In this chapter, we investigated the problem of providing accurate SEEE. We designed an OCM for classifying ER as FC or TC. We populate the OCM with real-world projects from the software industry where we associate each ER with its corresponding effort using Expert Judgement. The output of the OCM (dataset) is used as input to make SEEE using ML techniques. Four ML techniques (ABR, GBR, LinearSVR, and RFR.) are used for estimation. The RFR gives a more accurate SEEE compared to the others selected ML techniques. In the next chapter, we discuss the effectiveness of using the COSMIC FSM method as a primary independent variable for improving the accuracy of SEEE.

Chapter 4

Towards the use of COSMIC FSM method for improving SEEE within the context of classical and Agile projects One of the most important factors influencing effort estimation is the software size.

Several FSM methods have been proposed to be used as input for estimating development/maintenance effort. There is only one second-generation FSM method, the COSMIC, and four first-generation FSM methods, including the IFPUG. There are two main contributions to be investigated in this chapter: (1) investigate the effectiveness of the first and second FSM generations for sizing functional changes and examining their impact on predicting software enhancement effort in traditional and agile projects, (2) the applicability of COSMIC sizing as an independent variable in scrum projects. The use of the CFS algorithm in conjunction with the Support Vector Regression (SVR) model.

In Short

Introduction

The majority of the well-known estimation models, techniques, and tools use the software size as an input for their estimations [2]. As we mentioned in Chapter 1, the software size can be expressed in SLOC or function points units. Effort or cost estimations using functional size measures are gaining more and more attention since the software functional size can be generated at any phase of the SLC compared to the SLOC. Moreover, the obtained measurement results using FSM methods are independent of any technical criteria. These two advantages motivated the researchers to use the FSM methods for more accurate effort estimation.

Despite a large number of proposals interested in finding accurate estimates, there is no clear evidence in determining which model is the best for estimating enhancement effort (the factors to be considered when choosing one model over others). As a result, it is critical to identify and assess the inputs to estimation models. Customer dissatisfaction and project failure are the results of inaccurate estimates. On the other hand, accurate estimates reduce uncertainty and facilitate more effective software project management [6].

In this context, software size is widely recognized as a major cost driver for the effort and cost required for software projects. Researchers believe that the size variables are closely related to the required effort [START_REF] González-Ladrón-De-Guevara | The usage of ISBSG data fields in software effort estimation: A systematic mapping study[END_REF]. It is important to note that functional size is the only standardized way to measure the software size [START_REF] Bajwa | Investigating the nature of relationship between software size and development effort[END_REF]. As sensitivity to changes in functional size has a greater impact on project effort [START_REF] Abdallah | Enterprise Architecture Measurement: An Extended Systematic Mapping Study[END_REF], knowing the functional size of the software to be developed/redeveloped or maintained is useful. Software size can be used for many purposes such as: improve organizational performance, estimate the effort of new development, estimate the enhancement effort, and control software development, and so on [START_REF]IFPUG International Function Point Users Group, A Functional Size Measurement Method,COSMIC and IFPUG Glossary of terms[END_REF][START_REF]IFPUG International Function Point Users Group, Common Software Measurement International Consortium, COSMIC and IFPUG Glossary of terms[END_REF]. Several studies used the IFPUG and COSMIC sizing to predict the effort in software development project. However, only a few research studies investigated the efficiency and the impact of using FSM on predicting the effort is software enhancement project. On the other hand, predicting effort for managing scrum projects is performed differently compared to the traditional ones [START_REF] Arora | A Systematic Literature Review of Machine Learning Estimation Approaches in Scrum Projects[END_REF]. There are many prediction techniques such as Expert opinion, Planning Poker, and a few more [START_REF] Arora | A Systematic Literature Review of Machine Learning Estimation Approaches in Scrum Projects[END_REF]. A Survey of five studies conducted on Basic Estimation techniques showed that the most popular effort prediction technique used in Scrum projects is the Planning Poker (PP) technique [START_REF] Arora | A Systematic Literature Review of Machine Learning Estimation Approaches in Scrum Projects[END_REF]. The basis of the PP technique is practitioners' opinions that are expressed in terms 4.2 On the use of FSM methods for more accurate Prediction in the traditional software Enhancement projects 73

of Story Points. In practice, it is used for predicting the effort required to complete software requirements or User Stories. In scrum, enhancements that are categorized as Functional User Requirements are represented in the form of US at a high level of detail. The US is a brief description of the user's request [START_REF] Desharnais | Using the COS-MIC method to estimate Agile user stories[END_REF]. Besides the need of PP, several international standards provide well-documented methods for measuring or approximating the US functional size, such as the COSMIC FSM method. Indeed, there is a growing body of work on the use of the CFP [START_REF]IFPUG International Function Point Users Group, Common Software Measurement International Consortium, COSMIC and IFPUG Glossary of terms[END_REF] for prediction and performance measurement of software development projects, which can be adapted for predicting agile software enhancement effort as well.

In this chapter, we make two contributions. The first contribution is for making comparison between the most popular FSM methods (IFPUG and COSMIC) when they are used as independent variables in predicting SEEE in the context traditional project.

The second contribution is to investigate the application of the best SEEE model (the results of the first contribution) in the Agile (scrum) enhancement project). For both contributions, we used the CFS algorithm, SVR model and ISBSG dataset.

The rest of this chapter is organized as follows: Section 4.2 describes the first contribution. Section 4.3 describes the second contribution. Section 4.4 provides the results and discussion. Section 4.5 presents the conclusion.

On the use of FSM methods for more accurate Prediction in the traditional software Enhancement projects

In this section, we carry out two experiments setting up two regression-based models: one using the IFPUG and the other using the COSMIC. Then, we compare their prediction accuracy to determine whether the COSMIC method provides more accurate results than the IFPUG for the SEEE. We use a training dataset to predict the total effort for the software enhancement projects in man-hours. Our research methodology is depicted in 

Data Preprocessing

The ISBSG Release 12 dataset was used to train and test the prediction model [START_REF] González-Ladrón-De-Guevara | The usage of ISBSG data fields in software effort estimation: A systematic mapping study[END_REF].

The ISBSG dataset is widely used for estimating software projects [START_REF] González-Ladrón-De-Guevara | The usage of ISBSG data fields in software effort estimation: A systematic mapping study[END_REF]. It maintains a repository of finished software projects, including new, improved, and redeveloped ver- sions. The ISBSG dataset contains a variety of information about finished software projects, including methods, tools, and methodologies, as well as process and product data, that may be used for benchmarking, monitoring, quality control, and performance management [START_REF] González-Ladrón-De-Guevara | The usage of ISBSG data fields in software effort estimation: A systematic mapping study[END_REF]. The ISBSG dataset is the largest available for effort estimating research, and it has already been used in several publications. It has been thoroughly
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examined for its suitability in the construction of effort estimation models, including the effects of outliers and missing data [START_REF] Bala | Use of the multiple imputation strategy to deal with missing data in the ISBSG repository[END_REF]. We selected the data regarding « enhancement » as the « development type » where « count approaches » were IFPUG and COSMIC methods. In addition, we consider only data with soundness and high level of integrity (i.e., records having « Data Quality Rating » of « A » or « B »). Table 4.1 shows the data fields, the values assigned to them in this study, and the number of projects. Following the preprocessing phase, we chose 17 attributes/features for COSMIC data and 13

attributes/features for IFPUG data. 

Using the CFS algorithm

Following the selection of a project with high-quality data (after the preprocessing phase), we propose using the CFS algorithm to select the features that are relevant for predicting effort for a software enhancement project. That is, after building the CFS algorithm, we determine which features appear in the optimal set of features globally and consistently. The Pearson's Correlation Coefficient algorithm is one of the most commonly used algorithms, which is used to filter the data in this step [START_REF] Biesiada | Feature selection for high-dimensional data-a Pearson redundancy based filter[END_REF]. The Pearson correlation coefficient is a single number that expresses the strength and direction of a linear relationship between two continuous variables. The range of possible values is -1 to +1, with 0 indicating no correlation, 1 indicating total positive correlation, and -1 indicating whole negative correlation [START_REF] Biesiada | Feature selection for high-dimensional data-a Pearson redundancy based filter[END_REF]. We will use the Pearson correlation heat map in our example. Each attribute is sorted according to the p correlation score (See Equation 4.2).

p = cov(Xi,Y ) var(Xi)var(Y ) (4.1) 
Where var(Xi) and cov(Xi,Y) represent the variance of feature Xi and the covariance between a feature Xi and the target class Y, respectively.
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Pearson's correlation coefficient

Following the preprocessing phase, we chose 17 attributes, 16 of which are independent variables and one of which is a dependent variable (NormalizedWorkEffort). Pearson's COSMIC sizing is an effective FSM method for determining the functional size of an enhancement (i.e., functional change size) that has been identified within the enhancement projects. Table 4.2 illustrates the selected features and their corresponding correlation coefficients (score greater than 0.4) between functional change size (FunctionalSize) and enhancement effort, estimated using COSMIC_dataset (NormalizedWorkEffort). When compared to other features, the correlation coefficient value of 0.5 indicates an adequate correlation of functional change size with enhancement effort (such as CHANGEWorkEffort and UnrecordedWorkEffort). As a result, the size of the functional change is chosen as the key independent variable.

Computation of Score P for the selected features from IFPUG_dataset using Pearson's correlation coefficient

Following the preprocessing phase, we chose a total of 13 features, 12 of which are independent variables and one of which is a dependent variable (NormalizedWorkEffort).

Only features with a correlation greater than 0.4 (taking into account absolute value) are chosen for the output variable. The CFS algorithm selects 33.3 percent of the IFPUG dataset (4 out of the 12 features) (see Fig. 4. Functional change size and enhancement effort when using data from the ISBSG dataset is 0.1 (see Fig. EffortBuilt and EffortTest). The findings suggest that using a functional change size derived from IFPUG sizing as the key independent variable may not give an appropriate estimate of enhancement effort. On the other hand, a close examination of the Pearson's correlation algorithm's feature list (see Table 4.3) reveals that the EffortTest, Effort-Built, SummaryWorkEffort, and NormalizedWorkEffortLevel1 were the most important features in predicting effort.

3). The correlation coefficient between

Constructing SEEE Models

This section investigated the use of the SVR method through a series of experiments.

The traditional method for conducting experiments is to divide the sample into two parts: 

Empirical Results

This section assesses the prediction performance of the SVR used in this study, which includes two types of experiments using the CFS algorithm. We used a variety of evaluation metrics [START_REF] Shepperd | Evaluating prediction systems in software project estimation[END_REF] to assess the accuracy of the SEEE models, including root mean square error (RMSE) and mean absolute error (MAE). We also used the Standardized Accuracy (SA) metric based on the MAE as described in [START_REF] Shepperd | Evaluating prediction systems in software project estimation[END_REF].

Performance Assessment when using COSMIC sizing

The CFS algorithm selects features for SVR to be trained and tested. When the Functional Change Size is utilized as the independent variable, using CFS algorithms with the SVR approach can lead to a more accurate SEEE (see Table 4 

Discussion and Comparison

Using the ISBSG dataset, we notice that the prediction accuracy increases when the COSMIC method is selected as « count approaches » for « enhancement projects » in comparison with the IFPUG method (see Table 4.5 and 4.6). The key reason for selecting software functional size as an independent variable in our study is that it is highly correlated to software project effort. The sensitivity to the functional change size has a stronger impact on Software project effort [START_REF] Bhardwaj | Estimation of Testing and Rework Efforts for software Development Projects[END_REF]. The relevance of each feature is identified using the CFS algorithm in order to discover the effective determinants for SEEE. When software is being maintained, the SVR model is used to predict the effort to implement an enhancement. When compared to the IFPUG FPA method, the COSMIC FSM method is deemed to be the most effective. It is obvious from the results, which show a minimal MAE of 0.0382 and a 98 percent accuracy rate for accurate predictions.

Furthermore, the CFS algorithm results demonstrate the significance of the Functional Change Size feature when employing the COSMIC FSM method. As expected, the CFS algorithm in our case has significantly contributed not only to reducing the number of features required to achieve prediction performance but also to improving such performance. To summarize the findings of this study, software organizations interested in planning and managing software enhancement projects should select the appropriate sizing method based on their objectives and capabilities. As a result, a good measurement program is an investment for project success because it allows for an accurate evaluation of an enhancement and the effort required to complete this enhancement. Enhancement where the functional specifications can be considered as an enhancement.

Effort generated from the application of Planning Poker technique

An enhancement can be requested by one of the stakeholders (e.g., the product owner, the development team, etc.) and described in the form of "US". The US can be quantified and estimated using Planning Poker (expressed in Story Points). It is also sized using
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COSMIC FSM method [START_REF] Sellami | Towards an Assessment Tool for Controlling Functional Changes in Scrum Process[END_REF].

Several factors (Technical/Non-technical factors) can affect the prediction results such as the size of the database (technical factor) [START_REF] Singh | Analysis of software maintenance cost affecting factors and estimation models[END_REF]. For this reason, several research studies used a single dataset while other research studies used more than one dataset [START_REF] Huffman Hayes | A Metrics-Based Software Maintenance Effort Model[END_REF]. Some data set attributes still missing in certain data sets [START_REF] Moritz | time series missing value imputation in R[END_REF]. Some other research studies focused on the use of independent variables [START_REF] Jović | A review of feature selection methods with applications[END_REF].

Accordingly, the choice of features in the dataset is important for more accurate predictions [START_REF] Blessie | Sigmis: A feature selection algorithm using correlation based method[END_REF]. The dataset used in our study includes 93 US that is executed by the same team on the same application within a set of eight iterations. The effort devoted to implementing the US is expressed in terms of Story Points. It consists of four worksheets:

summary, details, actors, and stats.

1. The "Summary" focuses on the kinds of information used in the Stories such as the status of each US. This means each US status can range from "being elaborated" right through to "gone live". Since our work focus on enhancement, to exclude trivial projects, the following filters are applied: Actual Development Time (man_days), full life cycle effort for a project is greater than 80 man-hours, and "Stats" other than "implement" were excluded.

2. The "Details" provide the detailed information for each US. In the selected dataset the US involves determining: Who will do the US or find it valuable < Actor >, What it can be used for < Goal >, and Why it is valuable or important <value or expected benefit>. In scrum, the description of a US is most often described as follows:

As an <Actor> I want to <Goal> so that <value or expected benefit> 3. The "Actors" specifies all actors (Human users or external systems).

4. The "Stats" show the development progress for individual increments in the form of the "burndown chart". The release burndown chart is presented daily to the Scrum Master to monitor progress toward completion of the increments [START_REF] Cooper | Agile-Stage-Gate: New idea-to-launch method for manufactured new products is faster, more responsive[END_REF]. When the US is completed, the development team may use the Planning Poker technique to generate the actual effort expressed in terms of story points. Thereafter, the estimated effort will be compared against the actual effort to determine how well the project is progressing. -The purpose: Predicting Effort for implementing an enhancement (i.e., FC).

-Overall scope: Generating the functional size of an ER and predicting its corresponding effort.

-Functional users: are human users in this case.

-Layer: An industrial dataset (eight sprints).

-Level of granularity: one level of granularity 4.3.1.2.2 Mapping Phase: US to COSMIC Functional Process (FP) The US exhibits a high-level requirement description. There is no general standard for the US representation [START_REF] Sellami | Towards an Assessment Tool for Controlling Functional Changes in Scrum Process[END_REF]. The level of granularity for sizing requirements (or enhancements) in the form of a US must be that of the COSMIC FP [START_REF] Desharnais | Using the COS-MIC method to estimate Agile user stories[END_REF]. For that reason, the mapping of a US to a COSMIC FP necessitates the identification of the following concepts (see Table 4.7) [START_REF] Angara | Towards Benchmarking User Stories Estimation with COSMIC Function Points-A Case Example of Participant Observation[END_REF]. -<Actor>represents the user of the US referred to as the functional user in COSMIC.
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-<Goal>represents the ER of the US referred to as an enhancement or a FP in COSMIC.

Functional Changes are mainly classified into three types: add (new requirements to be created), delete (existing requirements to be deleted), and modify (existing requirements to be modified) [START_REF] Sakhrawi | Requirements Change Requests Classification: An Ontology-Based Approach[END_REF]. Several stakeholders find it useful to evaluate rapidly a change and improve their understanding and managing decisions [START_REF] Sakhrawi | Requirements Change Requests Classification: An Ontology-Based Approach[END_REF].

-Each US is typically written using the following template (As an actor. . . I can).

The effort required to implement a US (representing a ER) is estimated using PP technique (story points).

-For each US, the corresponding COSMIC FP is presented and classified by type (add, delete, modify).

Measurement phase

According to [START_REF] Symons | Measurement of Software Size: Advances Made by the COSMIC Community[END_REF], the data movements can be identified based on some common word cases (such as create, select, delete, add, share, display, etc.).

Using the identified data movement types that are repeatedly executed by the user will facilitate the measurement process.

The table in Appendix 5.7 shows that there is a perfect size-effort relationship. When sizing increases, the level of total effort increases. This information can be explained by the ability of the COSMIC FSM method on detailing the Functional change process (from process to sub-process) as presented in Table 4.8, which exposes more iterations and therefore more data movements.

Once the dataset for estimating is created, the question is how well the Functional Size of the change is correlated to the SEEE in the scrum context? total software effort early in a project where usually a cost/benefit analysis is needed before committing to the project. Thus, it is recommended for software organizations to adopt the COSMIC FSM method for sizing enhancement and providing accurate effort of the enhancement. The main reason for using COSMIC is its objectivity and it can be used at any phase of the SLC, and at all levels of aggregation, [START_REF] Symons | Measurement of Software Size: Advances Made by the COSMIC Community[END_REF].

Creating Prediction Models

This section conducted a series of empirical analyses to investigate the use of the SVR ML techniques. For empirical analysis, we have used the hold-out method. The main reason for using the hold-out method (70%-30% split) compared to Leave-one-out cross-validation is because it is good to use for a very large dataset. Nevertheless, the Leave-one-out cross-validation, which is a special case of k-fold cross-validation is used when a data set or for a class value is small [START_REF] Yadav | Analysis of k-fold cross-validation over holdout validation on colossal datasets for quality classification[END_REF]. The data split ratio for training and testing is one of the most important factors to consider when using the retention method.

This is a particularly difficult decision to make, and even a minor error in selecting the check size can result in over or under adjustment [START_REF] Yadav | Analysis of k-fold cross-validation over holdout validation on colossal datasets for quality classification[END_REF]. The retention method, on the other hand, works well when we have a very large data set or when starting to build an initial model in a data science project. We split data into training (70%) and test sets (30%). The training set is used to train the model, and the test set is used to validate it on data it has never seen before. Thereafter, to carry out the empirical analysis, the CFS algorithm and validation test prediction of the SVR model were performed using the Google Colab python programming. Table 4.11 lists the predefined range of parameter values of the SVR model. An important factor affecting SVR performance is how to correctly select model parameters which play an important role in obtaining good performance:

-Kernel=linear: It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. The most suitable one to use in our model is the linear kernel.

-Complexity (C): The larger C is, the better performance SVR has. However, if C is too large, then the goal is only to minimize the empirical risk, without considering the complexity of the model in the optimization formula. In our situation, we achieve good performance when using 1,2.

-epsilon=0.2: A larger epsilon value results in fewer SVs selected and in more "flat" (less complex) regression estimates. The selected value in our situation gives an 

Empirical Analysis Results

This section evaluates the prediction performance of the SVR model used in this study. We conduct two types of empirical analysis: with and without the use of the enhancement Size. The appropriate performance evaluation metric is always chosen based on the problem type, which can be regression, classification, or clustering [START_REF] Yadav | Analysis of k-fold cross-validation over holdout validation on colossal datasets for quality classification[END_REF]. In our situation which is a regression problem, we used two types of evaluation metrics. The root mean square error (RMSE) and the mean absolute error (MAE) to evaluate the accuracy of our prediction models. 

Performance Assessment without the Enhancement size feature

Discussion and Comparison

In this chapter, we demonstrated the effectiveness of the COSMIC FSM method not only for sizing the functional changes but also when it is used as an independent variable to estimate the effort required to complete an enhancement in both traditional and agile software enhancement projects contexts. The SVR model is used to predict the effort of a new enhancement when it occurs throughout the scrum process. The results showed a minimum MAE of 0.2402 and a Standardized Accuracy (SA) metric of 98% which indicates an accurate prediction. The main reason behind selecting COSMIC sizing is its accurate measurement results compared to the IFPUG method.

Besides, the CFS algorithm is also applied to identify the significant drivers of effort in the enhancement project with Scrum. The correlation between the enhancement size measured using the COSMIC FSM method and the actual effort expressed in terms of Story Points is provided. Consequently, the COSMIC functional size of an enhancement is evaluated to be an effective significant feature, since it increases the accuracy of the SEEE. This is demonstrated by the results, which have a Score P of 0.6. Using a burn-Figure 4.9 -Positive correlation curve down chart which is the popular method of reporting progress when using Agile Project Management [START_REF] Cervone | Understanding agile project management methods using Scrum[END_REF]. We illustrate in Figure 4.9 that the feature "actual effort" increases when the feature "Functional size" increases. The feature "actual effort" decreases as the feature "Functional size" decreases. It means that the two discussed features are positively correlated. A positive correlation exists as is illustrated by the CFS algorithm.

The feature "Functional change size" will impact the feature "actual effort". A positive correlation is a relationship between two variables (or features) in which both variables move in tandem-that is, in the same direction 3 . It is also noted that the curve presenting the effort required to implement an enhancement having a size derived from the use of the COSMIC FSM method is higher than the curve presenting the enhancement effort derived from the use of the PP technique. This explains that sizing a US (representing an enhancement) expressed in terms of COSMIC Functional Points gives more details than sizing the US expressed in terms of Story Points. Consequently, the COSMIC FSM method is evaluated to be the most effective when compared to the use of the PP technique. It is evident from the results with the minimum MAE of 0.06. To summarize, the benefits of this study are oriented to the software organizations focusing on planning and managing software enhancement projects in the scrum context. Predicting the effort required to implement an enhancement (described in the form of US) is important to help in managing software enhancement projects successfully. It is preferred to be sized using a standardized method such as COSMIC FSM. Accurate estimates reduce uncertainty and support software project management more effectively. Therefore, it is necessary to use COSMIC enhancement size as an independent variable for the SEEE within the scrum project.

Towards the use of COSMIC FSM method for improving SEEE within the context of classical and Agile projects

Conclusion

The findings of our empirical study investigated in this chapter were as follows:

-The correlation score between COSMIC enhancement size and enhancement effort has a value of 0.6 which denotes a good correlation as compared to the estimated Story Points. Therefore, choosing the COSMIC enhancement size as the primary independent variable provides a more accurate SEEE.

-The estimated effort that results from the SVR model provides good accuracy.

Consequently, COSMIC can be considered as an effective measurement method for sizing an enhancement within a Scrum project and thereafter predicting its corresponding effort.

-It was found that the SVR enhancement effort-based prediction model is more accurate with small MAE and RMSE values results and with quite good performance when the enhancement Functional size is used as the independent variable.

In the next chapter, we discuss the effectiveness of using the stacking ensemble model for improving the accuracy of the SEEE.

Chapter 5 In software project management, estimating software enhancement efforts has become a difficult task. Recent studies have concentrated on identifying the best ML algorithms for software project estimation. The majority of the research papers looked at the use of ensemble learning to improve the accuracy of software project estimates. Intending to increase the estimation accuracy over individual models, this chapter investigates the use of the stacking ensemble method for SEEE. We make a comparison between two ML-based approaches for SEEE: The M5P (as an individual model) and the stacking as an ensemble method combining different regression models (GBRegr, LinearSVR, and RFR) using the ISBSG dataset. The CFS algorithm is used to achieve efficient data reduction. The selected two experiments models were trained and tested on the dataset with relevant features leading to the improvement of the SEEE accuracy.

In Short

Introduction

The benefits of using SEEE models are numerous: Estimation models, for example, can help in making decisions about when to restructure or re-engineer a software component to make it more maintainable, or in understanding the underlying causes of the difficulty in correcting specific types of errors [START_REF] Antonio Susto | Machine Learning for Predictive Maintenance:A Multiple Classifier Approach[END_REF]. ML techniques are widely used in this field to improve the accuracy of SEEE. ML techniques are best suited for dealing with highdimensional problem modeling [START_REF] Antonio Susto | Machine Learning for Predictive Maintenance:A Multiple Classifier Approach[END_REF]. However, there is no agreement among researchers on the technique that can achieve better estimation [START_REF] Wen | Systematic literature review of machine learning based software development effort estimation models[END_REF]. Case-based reasoning, neural networks (NN), decision trees (DT), Bayesian networks, support vector machines (SVM), genetic algorithms, genetic programming, and association rules are all examples of statistical regressions or ML-based models that have been proposed for SEEE (ARU) [START_REF] Wen | Systematic literature review of machine learning based software development effort estimation models[END_REF].

More recently, research publications investigated the use of ensemble learning for improving the accuracy of the software effort estimation [START_REF] Shukla | A Stacking Ensemble-based Approach for Software Effort Estimation[END_REF]. Consequently, various ensemble methods, such as those presented in chapter 1 are considered [START_REF] Shukla | A Stacking Ensemble-based Approach for Software Effort Estimation[END_REF].

The main motivation for this research study comes from the fact that existing single techniques for SEEE have several limitations, while other innovative approaches for estimating, such as the ensemble method, have yet to be adopted in the industry [START_REF] Wang | Improving the robustness of beach water quality modeling using an ensemble machine learning approach[END_REF].

In this chapter, we have set up two SEEE models. Regarding the first model, the SEEE is carried out by applying four individuals ML techniques (M5P, GBRerg, LinearSVR, and RFR). Constructing the first model, we have also made the focus on the selection of optimal feature set in the ISBSG dataset using the CFS algorithm investigating the impact of the COSMIC FSM method on improving SEEE performance. Three different ML-based models (GBRegr, LinearSVR, and RFR) are combined in the second SEEE model named Stacking ensemble model.

Following that, we make a comparison between the two SEEE based on ML approaches. We highlight the impact of using individuals and the stacking ensemble model for improving the accuracy of SEEE. The four chosen ML techniques were trained and tested using industrial projects from the ISBSG Release 12 dataset [2]. Staking estimation results will be compared to those obtained using an individual algorithm (M5P).

The rest of this chapter is organized as follows: In Section 5.2, we present an overview description of our research methodology process consisting for achieving better SEEE. In section 5.3, the results of using individuals ML techniques are evaluated and discussed. In section 5.4, the results of using the stacking ensemble model are evaluated and discussed. method outperforms the other three ML techniques, with a SA of 99 percent (See Figure 5.3). Using the CFS algorithm with the selected ML techniques leads to more accurate SEEE when the enhancement Size is used as the independent variable (see Table 5.5). 

Constructing Estimation stacking ensemble model

Our stacking ensemble technique is based on the idea that "when weak models are correctly aggregated, the strength of the union leads to higher performance and more accurate SEEE." To construct the staking model it is important to (1) choose which models to use as "estimators" and which models to use as "meta-models," and (2) then generate estimates by the feeding estimator predictions into the selected meta-model. 0.0612. The results achieved when using a simple method demonstrate M5P's efficiency.

It has small MAEs and RMSEs values. A good accuracy (SA) of 99% is obtained when using the 10-fold cross-validation.

The relevance of each feature is computed using the CFS algorithm to discover the effective determinants for SEEE. Furthermore, when compared to the model that used all of the selected features, the model utilizing the CFS method performs better (17 features). As a result, adopting the M5P ML technique enhances the SEEE accuracy.

In the second experiment model, we studied the possibility of adopting a stacking ensemble method by merging the weak ML techniques to secure the above results (GBRerg, LinearSVR, and RFR). The M5P algorithm is used to compare the experimental outcomes (see Table 5.9). The results demonstrate the usefulness of the stacking ensemble method (see Figure 5.6 and Figure 5.7). This is supported by the results with the minimum MAE of 0.0383, RMSE of 0.1973, and a good r2_score of 0.987. In this chapter, we have used the CFS algorithm for selecting the attributes from one of the well-known historical software project datasets (the ISBSG dataset that contains many attributes). Since we restricted the study to numerical attributes only 17 features have been selected which constitutes 17% of all the attributes in the ISBSG dataset after the phase of prepossessing data. Six features have been selected after using the CFS algorithm that constitutes 6% of all the attributes in the ISBSG dataset. This is why the findings of this work may differ from other studies that use other types of data.

Indeed, conducting more experiments with other kinds of datasets that present quality characteristics are required. Although the experiments were performed using CFS, it is still compulsory to test other FS algorithms with different ML techniques.

The SEEE in our study is provided based on the independent variable (i.e., the enhancement size). Even the results about the performance accuracy of the selected ML techniques provide good accuracy with 99%, the correlation coefficients computed between enhancement functional size and enhancement effort is still a moderate value, this is because enhancement functional size is identified at a high level of abstraction 

Automatically SEEE through a ERWebApp

Recall that our research goal is to help estimators efficiently estimate the effort of an enhancement in both traditional and scrum projects. Regarding this goal, we found that using the stacking ensemble model is the most accurate approach. However, using this approach manually is time-consuming. Manual solutions are not practical. For this reason, we propose to develop an ERWebApp to rapidly make SEEE. The proposed ER-WebApp is designed to first generate the enhancement functional size and then estimate its corresponding effort. To create a user-friendly interface, we follow human-computer interaction design guidelines [START_REF] Guney | Considerations for human-computer interaction: user interface design variables and visual learning in IDT[END_REF]. The ERWebApp is developed using Bootstrap4 , Anvil Platform5 , and Python6 . Python is used in the backend to create the prediction model that maps the input and output data based on the ensemble model, while Anvil's Platform and Bootstrap are used in the frontend to display content. In order to transfer content between the ERWebApp and the prediction model, the use of the Anvil platform appeared to be beneficial. It is used to help in the visualization of the prediction model by creating and hosting the prediction web page, which is entirely written in Python using predictable and minimal resources (CPU, memory, threads). The ERWebApp is styled using Bootstrap, which adds responsiveness to the interface as well as cross-browser compatibility.

ERWebApp Users

The ERWebApp is designed to meet the needs of the three Scrum roles: Product Owner, Scrum Master, and Development team members. It will enable estimators to express the ER in the form of the US. Of course, described in the textual form. Based on the description of a US, its functional size will be generated in terms of CFP units.

The estimator then receives the estimated effort based on ontology and ML techniques without extensive knowledge beforehand. This implies that the three scrum roles would be able to perform the following actions in the web interface:

1. The Scrum Master: is responsible for the revised planning and deciding on the execution of the ER.

2. The Product Owner: Submit the ER description. (3) estimate the effort required to implement the ER.

The main part of the ERWebApp is described throughout three pages of interfaces including a projects overview (for Scrum Master), a submit ER form (for Product owner)

and regulate ER form (for the development team). Focusing on making the ERWebApp easy to use, we created three sessions for the three scrum roles. Indeed, we created three login sessions/profiles for the three roles. 

Product Owner Interface: Submit ER

When a new enhancement occurs in an existing project, the ER description must be submitted by the Product owner. As shown in Figure 5.9, ER have to be implemented by the Development team. Once the ER was approved, a detailed description can be developed (in other words, going from an informal to a formal ER description). Using this interface page, the Product Owner can express and submit an enhancement requested in natural language.

Development Team Interface

We concentrated on the development team session because that is the team in charge of managing and implementing the enhancement. The development team will provide the COSMIC sizing of an enhancement as well as an estimate of the corresponding effort.

Figure 5.10 depicts the output via the user interface.

Enhancement Request Details

The web interface page of the Development team includes the enhancement details. 

Conclusion

The following are the results of the experiment studies investigated in this chapter:

-The correlation coefficient calculated between enhancement functional size and enhancement effort has a value of 0.5 indicating that there is a strong relationship. As a result, the enhancement functional size was selected as the primary independent variable.

-M5P is more accurate with small MAEs= 0.0612 and with quite good performance of 99% compared to GBRerg, LinearSVR, and RFR.

-The stacking ensemble method (combining GBRerg, LinearSVR, and RFR) is more accurate with small MAEs= 0.0383 and R2 Score=0.987 compared to M5P algorithm.

We also built an ERWebApp for SEEE. The main purpose of the ERWebApp is to facilitate the prediction of the effort required to complete an enhancement. Of course, it will evolve re-actively in response to competition across many organizations by building a web application.

Conclusion and Perspectives

This chapter highlights the research's contributions, addresses some of its limitations, and offers future research directions based on the findings.

Recall Thesis Contributions

This thesis proposed an approach for estimating software enhancement effort. It assessed and analyzed the impact of using the COSMIC FSM method on the accuracy of SEEE. The proposed approach is intended to help stakeholders in effectively managing Enhancement Requests.

For this purpose, we started by an SMS, presenting our first contribution, which is divided into six steps: (1) Defining the mapping questions, (2) Finding primary studies,

(3) Screening studies, (4) Abstract key-wording, (5) Data extraction, and (6) Mapping

Results. Based on the findings obtained in this SMS, estimators should be aware that SEEE using ML techniques as part of non-algorithmic models demonstrated increased accuracy prediction over the algorithmic models. When employing the enhancement functional size as independent variables, ML techniques often achieve a reasonable level of accuracy. In the SMS, we proved that the majority of the research studies using FSM methods focused mainly on the development phase. In addition, we investigated the use of FSM methods (IFPUG and COSMIC) to identify their impact on improving SEEE performance. The results of this investigation showed that the functional size of an enhancement is useful when it is used as an independent variable for SEEE. Our main proposal in this thesis is to investigate the use of the powerful FSM method, which is the COSMIC ISO 19761 method. Taking into account the enhancement size, we estimate the software enhancement effort using ML techniques. The result of this contribution is published in [START_REF] Sakhrawi | Software Enhancement Effort Prediction Using Machine-Learning Techniques: A Systematic Mapping Study[END_REF].

Our second contribution is split into two parts. First, we proposed to develop an ontology-based model for classifying ER as either FC or TC. We used the Protégé editor to classify ER (user reviews) from the PROMISE repository and create a comprehensive representation of the ER. Thus, each ER classified as FC is associated with its corresponding effort using expert judgment. Second, considering the output of the first part, we investigate the effectiveness and performance of four ML techniques: ABR, GBR, LinearSVR, and RFR to provide an accurate SEEE. The results of this contribution are published in [START_REF] Sakhrawi | Requirements Change Requests Classification: An Ontology-Based Approach[END_REF] and [START_REF] Sakhrawi | Software Enhancement Effort Estimation using Machine Learning Regression Methods[END_REF].

Our third contribution investigated the impact of using the first and second FSM generations (i.e., IFPUG and COSMIC FSM methods) on the accuracy of SEEE. The CFS algorithm is used to select the appropriate features. The enhancement FS is used as an independent variable to the SEEE model in the context of traditional projects. Following that, a comparison of IFPUG with COSMIC is conducted to provide the effectiveness of the FSM method. In this contribution, we also select the use of the appropriate FSM method, that is COSMIC sizing. In this case, we used the SVR model to provide a more accurate SEEE not only in traditional projects but also in software agile (scrum) projects.

The results of this contribution are published in [START_REF] Sakhrawi | Investigating the Impact of Functional Size Measurement on Predicting Software Enhancement Effort Using Correlation-Based Feature Selection Algorithm and SVR Method[END_REF] and [START_REF] Sakhrawi | Support vector regression for enhancement effort prediction of Scrum projects from COSMIC functional size[END_REF].

Our fourth contribution evaluated and analyzed the use of the stacking ensemble method over the individual models in improving the accuracy of the SEEE within the scrum context. We compared two ML-based models for SEEE: the M5P (as an individual ML technique) and stacking as an ensemble method combining different regression models (GBRegr, LinearSVR, and RFR) using the ISBSG dataset. Regarding experimental results, we found that using the stacking ensemble model is the most accurate model.

However, using this model manually is time-consuming. Of course, manual solutions are not practical. For this reason, we propose to develop an ERWebApp to rapidly and automatically make SEEE. The ERWebApp is designed to first generate the enhancement functional size and then estimate its corresponding effort. The results of this contribution are published in [START_REF] Sakhrawi | An Improved Prediction of Software Enhancement Effort using Correlation-based Feature Selection and M5P ML algorithm[END_REF] and [START_REF] Sakhrawi | Software enhancement effort estimation using correlation-based feature selection and stacking ensemble method[END_REF].

Threats to Validity

This thesis proposed an approach to provide a more accurate SEEE using ML techniques and taking into account the COSMIC functional size of an ER as an independent variable.

Conclusion and Perspectives

The validity of this thesis's results is pertinent to internal validity and external validity.

-The internal validity threats are related to three issues:

-The first issue affecting the internal validity of our approach is its dependence on a detailed description of the ER classified as FC. Such information may not always be available. There are so many different styles of writing US today that each company has its own. In this thesis, enhancement requests are identified and classified using an Ontology model. Nonetheless, the FSM method used in this thesis is independent of the used format to describe the enhancement request (use cases, activities, user stories, etc.).

-The second issue, affecting the internal validity, is the use of a high-level ontology model. Some COSMIC functional processes may appear to be implemented as a new requirement while others do not implement new requirements (adaptive maintenance) and need existing software (perfective maintenance).

As a result, all the measurement results must be always updated following the identified functional processes as an enhancement.

-The third issue is that the scope of this study is limited to the ER classified as FC. While the FUR is more likely to change during the SMLC, the NFR and PRC may also change. For example, technical debt can result in more time spent developing per functional process. As a result, dealing with technical debt may necessitate a significant amount of effort in terms of code restructuring. In this thesis, however, we used the COSMIC FSM method to measure the functional size of an ER. COSMIC method, in general, measures the functional size of software based on the FUR. Whereas, some software engineering researchers' used COSMIC FSM to measure the NFR size as well. Especially, when NFR evolves into FUR.

-The fourth issue is related to the use of the CFS algorithm. In fact, even though the selected CFS algorithm gives improved experiment results, it is still compulsory to test other CFS algorithms.

-On the other hand, external validity threats deal with the possibility to generalize the results of this study.

-The first issue is the limited number of both traditional and agile software projects to test the proposed SEEE approach. In fact, for the traditional development method, only six private projects and a single PROMISE dataset containing enhancement requests are used to evaluate enhancement requests semantically. A single popular ISBSG dataset containing measurement in COSMIC Function Points is used to investigate the impact of using an ER size in order to improve the accuracy of the SEEE. For Scrum projects, we used a single public dataset to measure the FS of an ER and estimate the corresponding enhancement effort. This limited number of software projects is insufficient to generalize the results of our study. Thus, testing the proposed approach in an industrial environment is required.

-Concerning the SEEE, we used individual and ensemble ML techniques, and also the Expert judgment approach. Regarding the scrum context, the experts' judgment estimation is the closest one to reality. Expert-based estimation taking into consideration if the changed functionality is implemented or not does not have a major value. However, experts' estimation may cause less transparency about how they found their results. In our study, we showed that it is possible to use ML models for estimating the desired ER Effort. The problem is that the choice of the estimation model depends on many factors like the dataset, and therefore the software company domains, etc. Using a given SEEE model, software stakeholders can make acceptable decisions that will contribute to ultimate project success.

Perspectives

The perspectives of this work can be summarized in the following main points:

-Sizing enhancement request at different levels of detail so that SEEE can be determined at different levels of accuracy. We believe that approximate and rapid ER evaluation is required, particularly for an urgent ER (i.e., emergency maintenance).

When there was not enough time to carry out the entire COSMIC measurement process. As a result, we propose that for future work, we use an approximation method to measure the enhancement size as proposed by the enhancement requester in natural language.

-For future work, we propose to focus not only on the different types of software maintenance, but also on an in-depth analysis of ER using the structural size mea-

Conclusion and Perspectives

surements, as proposed by Hakim et al. [START_REF] Sellami | A measurement method for sizing the structure of UML sequence diagrams[END_REF].

-Analyze the use of different feature selection algorithms. We are currently working on analyzing and evaluating the relationship between dataset attributes using the OLS regression algorithm. The results of this study have been accepted in the Innovation and system and software engineering Journal 2021 [START_REF] Taher | On the Use of OLS regression algorithm and Pearson correlation algorithm for improving the SLA establishment process[END_REF].
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  l'utilisation de la technique « Stacking Ensemble » pour accroitre le degré de précision de SEEE. Le modèle Stacking Ensemble que nous avons construit combine trois modèles de régression: GBRegr, LinearSVR et RFR. Comparativement à l'approche basée sur l'utilisation d'un seul modèle d'apprentissage (M5P), le modèle Stacking Ensemble a donné des résultats plus précis. -La sixième contribution consiste à développer une application web "ERWebApp" pour obtenir rapidement le SEEE. L'application Web développée est destinée à générer tout d'abord la taille fonctionnelle d'une amélioration, puis à estimer l'effort correspondant à cette amélioration à l'aide du modèle « Stacking Ensemble ». Mots-clés: Étude d'arrimage systématique (SMS), amélioration ou Changement fonctionnel, Prédiction, Estimation, Effort, Apprentissage Automatique, Agile Abstract Towards a Software Enhancement Effort Estimation Approach Using Machine Learning Techniques Zaineb SAKHRAWI
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 3 Use the correlation-based feature selection (CFS) to select the relevant variables to our estimate (SEEE).
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 4 Construct SEEE model using ML techniques separately: M5P algorithm, Ada Boost Regression (ABReg), Gradient Boosting Regression (GBReg), LinearSupport Vector Regression (LinearSVR), and Random Forest Regression (RFR). 5. Build a stacking ensemble model to predict the total enhancement effort in personhours for a software enhancement project. The constructed Stacking ensemble model combines three different ML techniques (GBRegr, LinearSVR, and RFR).

Figure 1

 1 Figure 1 presents our research process, where:

  processes (FP1, FP2 and FP3), where: FS(FP1) = 10 CFP, FS(FP2) = 11 CFP, FS(FP3) = 9 CFP and FS(SW) initial = 10 CFP + 11 CFP + 9 CFP = 30 CFP.

  6 + 1 + 3 + 2 = 12 CFP. The software size after the change is equal to: FS(SW) f inal = FS(SW) initial + 6 + 1 -2 = 35 CFP. The sizes of the functional processes after the FE are as follow: FS(FP1) = 10 -2 = 8 CFP, FS(FP2) = 11 + 1 = 12 CFP, FS(FP3) = 9 CFP and finally FS(FP4) = 6 CFP.
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 12 Figure 1.2 -Classification of software effort estimation models
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 4 Software Project Estimation Models a classification/prediction algorithm as input. -Wrapper methods choose feature subsets based on the performance of a given learning technique, as measured by a performance metric. -Embedded or hybrid methods combine filter and wrapper techniques to perform the selection and model building steps simultaneously. Dependency measures are one of the measures used in feature selection. There have been numerous proposals for dependency-based algorithms.

(

  e) M5P algorithm M5P is a powerful implementation of Quinlan's M5 algorithm for inducing both Models Trees and Regression Trees [48]. It is an extended work based on the M5 algorithm [48]. M5 algorithm was originally developed by Quinlan and used in data mining which combines the decision tree and multilinear regression. Decision trees are used to classify input and output. The M5 tree development has three steps: tree construction, tree pruning, and smoothing. M5P is a modified version of the M5 tree algorithm. It is designed to handle enumerated attributes and missing values. M5P is used in categorical and continuous variables and missing values. It is based on surrogate splitting to deal with missing values. After the splitting is done the missing values are converted by the average values of the attributes of the training example.

1 .

 1 (f) Ensemble learningEnsemble learning techniques are types of ML techniques in which different base models are combined to create a single best-fit predictive model. Ensemble learning has been shown to outperform ensemble members[START_REF] Idri | Systematic literature review of ensemble effort estimation[END_REF]. It is successfully used in both supervised and unsupervised learning tasks (regression, classification, and distance learning) (density estimation). The three types of ensemble methods we employed in our research are as follows[START_REF] Shukla | A Stacking Ensemble-based Approach for Software Effort Estimation[END_REF]: BAGGing is an abbreviation for Bootstrap AGGregating. BAGGing gets its name from the fact that it combines Bootstrapping and Aggregation into a single ensemble model. A given sample of data is used to generate multiple bootstrapped subsamples. A Decision Tree is built on each of the bootstrapped subsamples. An algorithm is used to aggregate the Decision Trees to form the most efficient predictor after each subsample Decision Tree is formed. 2. Boosting: The boosting ensemble also combines different types of classifiers. Boosting is a sequential ensemble method in which each model or classifier is run based on attributes that will be used by the following model. The boosting method distinguishes a stronger learner model from a weaker learner model by averaging their weights. In other words, a stronger trained model is reliant on a number of weakly trained models. A weak learner, also known as a weak trained model, has a low correlation with true classification. In contrast, the next weak learner is slightly more correlated with true classification. When such disparate weak learners are combined, a strong learner is produced. It is highly correlated with the true classification. 3. Stacking: This method also employs a meta-classifier or meta-model to combine multiple classifications or regression techniques. The combined model is trained to use the outputs of the lower-level models, which are trained using the complete training dataset. Unlike boosting, each lower-level model is subjected to parallel training. The training dataset for the next model is the prediction from the lowerlevel models, generating a stack in which the top layer of the model is more trained than the bottom layer of the model. The top layer model has high prediction accuracy and is built based on lower-level models. The stack grows until the best prediction is carried out with the least amount of error. The combined models or meta-prediction models are based on the predictions of the various weak models or lower layer models. It aims to create a model with fewer biases. (B) Unsupervised Learning Algorithm
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 3813 On the use of COSMIC method for more accurate SEEE in Scrum On the use of COSMIC method for more accurate SEEE in Scrum sThe research process adopted in this contribution is depicted in Fig.4.4. Our work is divided into four steps: data collection, applying the CFS algorithm, creation of prediction models, and evaluation (empirical results). Each step is described next.
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 383312 On the use of COSMIC method for more accurate SEEE in Scrum Enhancement Size generated form the application of COSMIC methodThe enhancement functional size of the same set of 93 US were measured using the COSMIC FSM method. It was carried out by examining the four worksheets documentation of each US. As described in chapter 1, the COSMIC FSM process includes three phases: the measurement strategy, the mapping of concepts, and the measurement of the identified concepts (see Figure4.5).
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  -today FunctionalSize(COSMIC FP) Functional Size using COSMIC StoryPoints(Actual) Effort-actual-cumulative calculated based on the use of Story Point StoryPoints(Estimated) Effort-estimated-cumulative calculated based on the use of Story Point the correlated features having a coefficient larger than 0.4 with the output variable. Of course, when taking into account absolute value. The use of the CFS algorithm selects 80% (4 out of 5 features) (see Figure 4.6).
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 43133 hancement and its corresponding effort Determining the correlation between the COS-MIC Functional Size of an enhancement and its corresponding effort answer the question of what is the key factor that impacts the enhancement effort prediction? From the results, the correlation coefficient (score P) has a value of 0.6 which indicates an acceptable correlation of the enhancement Functional Size with its corresponding enhancement effort expressed in terms of Story Points (seeFigure 4.6). The use of Functional size (COS-MIC) can significantly improve the prediction of an enhancement effort when compared to other features (e.g., StoryPoints(Estimated)). Therefore the enhancement functional Size is chosen as the primary independent variable. It has been observed that COSMIC sizing is an efficient standardized method for measuring not only software size but also the functional size of an enhancement that may occur during the scrum enhancement project. The resulted enhancement sizes are objective and well correlated to the actual effort. Determining the correlation between the SEEE and the Actual effort With the determination of the correlation coefficient, the deviation between the predicted enhancement effort and the actual enhancement effort in terms of Story points can be identified. As shown in table 4.10, the correlation (Score P) has a value of 0.4, which indicates a weak correlation of the predicted enhancement effort with the actual enhancement effort. It has been observed that the use of Story Points is only practicable when measuring the actual effort of USs. However, Story Points cannot help in predicting the
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 6 Automatically SEEE through a ERWebApp 107

3 .

 3 The Development Team: reformulate the ER in three steps: (1) specify a formal description of the ER, (2) generate the Functional size of the ER in CFP units, and
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 5 8 displays an example of the Product owner login session page.

Figure 5 . 109 Figure 5 . 8 -Figure 5 .

 5109585 Figure 5.10, contains two buttons: the blue-button downloads the ER description validated by the Product Owner, and the green button generates a formal explanation of a specific ER. An ER's formal description is written as described in section 4.3.1.1 of Chapter 4.
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  Investigates the use of the stacking ensemble model for estimating the enhancement effort (EME) of software projects. The goal is to improve the accuracy of the estimation model over the individual models' ones as described in Chapter 4. We compare two ML-based approaches for predicting SEE: the M5P (as an indi-

	INTRODUCTION
	software effort in traditional enhancement projects. Following that, a comparison of
	IFPUG with COSMIC is conducted to provide which one is more effective. Second,
	in this chapter, we also investigate the use of the COSMIC FSM method as an in-
	dependent variable for software estimation using the SVR enhancement estimation
	model within the Scrum context.
	-Chapter 5
	Figure 1 -Research Work Process

vidual model) and the stacking ensemble model as an ensemble method combining different regression models (GBRegr, LinearSVR, and RFR) on the ISBSG dataset.

Afterward, we develop the ERWebApp. The proposed ERWebApp is designed to first generate the enhancement FS and then estimate its corresponding effort.

Table 1 . 1 -

 11 Agile vs. Traditional software development

	Waterfall model	Agile development process
	Linear, sequential design approach	Iterative and incremental
	Fixed scope	Flexible scope
	Late warning of risk	Early warning of risk
	Low uncertainty	High uncertainty
	Lack of customer involvement	High customer interaction
	Suitable for large project	Not suitable for large project
	Make changes	Embrace change
	Late and unpredictable delivery	Early and predictable delivery
	1.5.4 Estimating in the context of Scrum
	(A) Planning Poker	
	Planning Poker is a widely used estimation technique. With the PP technique, the ag-
	ile team used values that can be a Fibonacci sequence or any other choice progression.

Estimating is the process of predicting or approximating the effort required to complete a particular US, including analysis, development, testing, and maintenance effort.

It is done at a high level and detailed level during release planning and iterative planning. Several estimation techniques are proposed. For instance, expert judgment-based techniques and planning poker are commonly used in agile effort estimation studies

[START_REF] Arora | A Systematic Literature Review of Machine Learning Estimation Approaches in Scrum Projects[END_REF]

.

Table 2 .

 2 

		1 -Mapping questions and objectives
	ID	Question Details	Objective
	MQ1	What are the trends in software	To ascertain the temporal trends in
		maintenance prediction research	SEEE publications.
		from 1995 to 2020?	
	MQ2	How can software enhancement	To explain how to account for
		(i.e., functional changes) effort pre-	changes in SEEE.
		diction be improved?	
	MQ3	How is enhancement effort pre-	To describe the methods for mea-
		dicted and assessed?	suring and evaluating enhancement
			effort prediction that have been pro-
			posed.
	MQ4	What type of ML problems ad-	To investigate the different types of
		dressed in SEEE fall into?	ML problems: regression, classifi-
			cation, and clustering.
	MQ4.1	What are the proposed methods	To describe the proposed methods
		for predicting software enhance-	used for predicting software en-
		ment effort?	hancement effort.
	MQ4.2	What are the SEEE datasets used to	To identify various datasets com-
		build prediction models?	monly used in the SEEE domain.
	MQ4.3	What are the independent variables	
		used to improve SEEE model per-	
		formance?	

Table 2 .

 2 

2 contains relevant journal and conference proceedings in the SEEE field for identifying search sources. The search was limited to articles published between 1995 and 2020. A review of various ML techniques for predicting SEEE revealed that estimation accuracy can be achieved

[START_REF] López-Martín | Predictive accuracy comparison between neural networks and statistical regression for development effort of software projects[END_REF] 

[START_REF] Ku | Estimating software maintenance effort from use cases: An industrial case study[END_REF]

. However, we chose some studies that did not employ ML techniques because they answered some of our MQs. The following is a list of search strings: (Mapping OR literature) AND (context OR area OR field) AND (approach OR method OR technique) AND (information OR requirement) AND (maintain OR enhance OR modify OR change) (effort, cost, size, or time) AND (estimate, predict)

Table 2 .

 2 2 -Selected journals and conference proceedings

	Source			Number of stud-	Published by	Impact factor/
				ies		Rank
	Journal				
	Applied Soft Comput-	1	Elsevier	4.873
	ing				
	Empirical Software En-	1	IEEE	4.457
	gineering				
	IEEE Transactions on	5	IEEE	3.92
	software engineering		
	Information and Soft-	6	Elsevier	2.76
	ware Technology (IST)		
	Journal of Software	2	Wiley	1.320
	Maintenance and Evo-		
	lution: Research and		
	Practice				
	Journal of Quality in	1	Emerald Group	1.46
	Maintenance Engineer-		Publishing Ltd.
	ing				
	Journal of systems and	1	Elsevier	1.352
	software				
	International Journal	1	World Scientific	0.644
	of Software Engineer-		Publishing Co.
	ing and Knowledge		Pte Ltd
	Engineering			
	International	Arab	1	Zarqa University 0.410
	Journal of Information		
	Technology			
	Conference			
	International	Con-	5	IEEE	A
	ference on Software		
	Maintenance (ICSM)		
	Asia-Pacific Software	2	IEEE	B
	Engineering	Confer-		
	ence (APSEC)			
	IEEE	International	2	IEEE	A
	Conference on Soft-		
	ware Maintenance and		
	Evolution				
	-Studies without the combination of "software enhancement" and "effort prediction",
	or its synonym		

The number of studies chosen after screening Full Papers

[START_REF] Boehm | Software Cost Estimation with COCOMO II[END_REF] 

taking into account the models and approaches proposed in the area of software maintenance effort prediction; the evaluation metrics used to perform the proposed models Number of studies selected after screening Papers' Inclusion and Exclusion Criteria

[START_REF] Sakhrawi | Software Enhancement Effort Estimation using Machine Learning Regression Methods[END_REF] 

taking into account the discussed inclusion and exclusion criteria.

Table 2

 2 

	.3, the listed mapping

Table 2 .

 2 3 -Data Extraction Properties with their mapping questions

	Research Questions Field	Research question	
	software maintenance challenges	MQ1,MQ2,MQ4	
	Software enhancement (changes request)	MQ2		
	SEEE models	MQ4,	MQ4.1,	MQ4.2,
		MQ4.3		
	Software enhancement evaluation metric	MQ3		
	Software enhancement single (individual) models	MQ4, MQ4.4	

Table 2 .

 2 5 -Characteristics of a "good" Requirement

	Criteria [96]	Explanation
	Correct	Each requirement must accurately describe the functionality
		to be delivered.
	Feasible	Implement each requirement within the known capabilities
		and limitations of the system and its environment.
	Necessary	Each requirement should document something the cus-
		tomers really need.
	Unambiguous	Write each requirement in simple straightforward language
		of the user domain.
	Complete	No requirements or necessary information should be miss-
		ing.
	Consistent	Consistent requirements do not conflict with other software
		requirements or with higher level requirements.
	Testable	Testers should be able to verify whether the requirement is
		implemented correctly.
	Clear	concise, simple, precise
	Traceable	

Table 2 .

 2 6) includes two types of software enhancement effort prediction. For each type of maintenance, we provide more detailed information on the definitions and methods used to predict the software effort.

		Table 2.6 -Software Maintenance type used for effort prediction
	Study	Type of Maintenance Description
	S1 [67]	Enhancement	Applying ML technique: a radial Basis Func-

tion Neural Network (RBFNN), Support Linear Regression (SLR), Multiplier Linear Perceptron (MLP), and Gradient Regression Neural Network (GRNN). diction performance of the SGB algorithm and statistical regression, neural network, SVR , decision trees, and association rules.

Table 2 .

 2 first question, the choice of ML Techniques is dependent on the situation surrounding the project taking for example the first study[START_REF] López-Martín | Predictive accuracy comparison between neural networks and statistical regression for development effort of software projects[END_REF] the author used casebased reasoning and decision trees because they are intuitive and easy to understand.The neural networks algorithm can learn non-linear functions. There is evidence here that the situation, or more specifically the nature of the historical dataset to be used for such a learning problem. It has a significant impact on selecting the ML technique that best meets the accurate prediction. Regarding the second question, it should be noted that no works have proposed the use of Ensemble models which explore the combination of two or more ML techniques to predict effective enhancement effort. Many researchers

	Systematic Mapping Study: Software Enhancement Effort Estimation using Machine
	Learning Techniques

6 

shows that ML techniques ( or non-algorithm models) are most commonly used for enhancement effort prediction. Various ML techniques including RBFNN, neural network (NN), the rule engine (RE), multi-regression, a multilayer feed-forward neural network (MFFNN) with back-propagation algorithm and Bayesian regularization training, stochastic gradient boosting (SGB) model, Virtual Neighbor (VN), and SVR, are used in the selected primary studies (SVR). It is worth noting that COCOMO II is one of the most widely used algorithmic models in the industry for estimating effort

[START_REF] Rijwani | Enhanced Software Effort Estimation using Multi Layered Feed Forward Artificial Neural Network Technique[END_REF] 

[START_REF] Boehm | Software Cost Estimation with COCOMO II[END_REF]

.

From table 2.6, the main questions to answer are: Is there any relationship between the techniques used? Is it possible to use a combination of several techniques? To be clear about the assessed the performance of their proposed model using various error metrics such as MRE, Pred, etc. The metrics used to evaluate the accuracy of SEEE are listed in Table

2

.7. Table

2

.7 also reveals that the majority of the selected primary studies were used for performance evaluation of the Magnitude of Relative Error (MRE). The mean absolute

Table 2 .

 2 7 -Criteria used for evaluating SEEE

Table 2 .

 2 8 -ML techniques and data sets used for SEEE

	Study	Used Techniques	Source
	S1 [67]	Radial Basis Function Neural	ISBSG Release 11
		Network, SLR, MLP and GRNN	
	S2 [68]	Linear Regression Analysis	Commercial software Process
			Management tool.
	S3 [99]	Three LOC metrics: LOC added,	24 projects from 23 graduate stu-
		modified, and deleted.	dents and one senior majoring in
			computer science.
	S4 [89]	Linear Regression	200 software projects maintained
			in the NASA Goddard Space
			Flight Center
	S5 [92]	Multiple Regression, Simple Re-	32 projects and an industrial
		gression	project developed in Lexington,
			Kentucky.
	S6 [100]	Regression analysis with Func-	
		tional Points	

.1: What are the proposed models for SEEE? Many researchers proposed developing SEEE models in order to obtain more accurate estimates. The findings of a literature review for which various ML techniques are investigated in terms of their ability to generate accurate prediction models are presented. Between 1995 and 2020, 14 studies proposing SEEE models were published. Table

2

.8 displays the techniques and data sets used for SEEE.

Table 2 .

 2 10 -Performance of MRE value for selected primary studies using ISBSG dataset

	Systematic Mapping Study: Software Enhancement Effort Estimation using Machine
			Learning Techniques
	Study	Used Techniques	The best accuracy predic-	MRE
			tion model	
	S1 [67]	Radial Basis Function Neu-	Radial Basis Function Neural	0.46
		ral Network (RBFNN), SLR,	Network (RBFNN)	
		MLP and GRNN		
	S12 [90]	Statistical regression (SR),	Stochastic Gradient Boosting	0.36
		NN, SVR, DT and Stochastic	(SGB)	
		Gradient Boosting (SGB)		
	S13 [5]	SLR, MLP, DT, ARU, -SVR	PK-SVR	0.49
		and -SVR		

assume that the size features are solely related to the amount of effort required. Sizing is considered one of

Table 3 .

 3 

		1 -Ontology class specifications
	Class	Description
	System ERs	Customers ER from PROMISE repository.

Table 3 .

 3 

		2 -Ontology Inter-relationship description
	Inter-relationship	Domain	Range
	among classes		
	is composed of	System ER	FC, TC
	Decomposed in	TC	External TC, Internal TC.
	Decomposed in	FC	External FC, Internal FC
	Decomposed in	External FC	Modify in External FC, Delete in
			External FC, Add in External FC
	Decomposed in	Internal FC	Modify in Internal FC, Delete in In-
			ternal FC, Add in Internal FC
	Decomposed in	Internal TC	Modify in Internal TC, Delete in In-
			ternal TC, Add in Internal TC
	Decomposed in	External TC	Modify in External TC, Delete in
			External TC, Add in External TC
	Is Equivalent to	TC	Non-FC, Projects ER and constraint
	3.4.2 Ontology Conceptualization	
	Using the Protégé 4.3 ontology editor, we create an ontology-based on the enumerated
	concepts in table 3.1 and table 3.2. The conceptual model entails a set of domain concepts
	and their relationships. Of course, concepts such as class, attributes, objects property,
	data property, and their relationships must be defined. Figure 3.3 depicts the various
	classes of the proposed ontology model:	
	-The main class is named "System Requirements Enhancement Request".
	-The classes named "Functional Enhancement Request" and "Technical Enhance-
	ment Request" are subclasses of the class "System Requirements Enhancement Re-
	quest".		

-The classes named "Non-Functional Enhancement Request" and "Project Enhancement Requirement and Constraints" are subclasses of the class "Technical Enhancement Request". -The classes named "Modify in Internal Technical Enhancement Request", "Delete in Internal Technical Enhancement Request" and "Add in Internal Technical Enhancement Request" are sub-classes of the class "Internal Technical Enhancement Request". -The classes named "Modify in Internal Functional Enhancement Request", "Delete in Internal Functional Enhancement Request" and "Add in Internal Functional Enhancement Request" are sub-classes of the class "Internal Functional Enhancement Request". -The classes named "Modify in External Functional Enhancement Request", "Delete in External Functional Enhancement Request" and "Add in External Functional Enhancement Request" are sub-classes of the class "External Functional Enhancement Request".

Table 3 .

 3 

	3 -Expert Judgement Experience
	shown in Table 3.4, each ER is associated with its corresponding estimated effort based
	on Expert judgments. The outcomes are based on information provided by estimators

such as the product's previous history (i.e., previous changes), the functional size of the new function, similar previous implementations, the amount of new code, the deadline pressure, and the product's expected lifetime.

Table 3 . 4

 34 

-Example: Enhancement Effort Estimation based on Expert Judgement

Table 3 .

 3 

			5 -Categorizing the Customer's ER
	Classes		Key concepts
	Functional En-	must contain, play, view, select, manage, operate
	hancement		
	Technical	En-	maintain, produce, corporate, load, upload, synchro-
	hancement		nize, appearance, transaction
	External-		Cannot, please, doesn't, none, problems, no access,
	Enhancement		bugs, stopped working
	Internal-		Product must, product shall, administrators must, sys-
	Enhancement		tem must, application parameters, change
	Create		Add, build, design, generate, organize, set up, pro-
			duce,
	Delete		Delete, black out, destroy, exclude, cut out, eliminate,
			cancel.
	Modify		adapt, revise, modify, correct, rework, repair

4. https://www.w3.org/Submission/SWRL/ 5. https://github.com/stardog-union/DLQuery

Ontology-based Classification of Enhancements with their corresponding Effort Estimation

A. Implementation of rules

Table 3 .

 3 

	6 -Rule 1

Table 3 . 7

 37 The training set is used to train the model, and the validation/test set is used to validate data that it has never seen before. The results of our built SEEE models are compared to a widely used set of evaluation metrics such as mean square error (MSE), root mean

	Ontology-based Classification of Enhancements with their corresponding Effort
	68			Estimation
	Method/parameters	MAE	MSE	RMSE
	ABReg	0.450	0.263	0.513
	GBReg	0.108	0.070	0.265
	RFR	0.040	0.045	0.215
	LinearSVR	0.100	0.479	0.190

square error (RMSE), and mean absolute error (MAE) as demonstrated in Table

3

.7. All error metrics indicate quite values. It is evident from the results (see Figure

3

.6) that the RFR method delivers the best performance when compared with the other three MLRM.

6. https://colab.research.google.com/notebooks/welcome.ipynb -Prediction analysis using MAE, MSE and RMSE

Table 4 .

 4 1 -First Data of software enhancement projects from the ISBSG dataset

	ISBSG	Selected	Selected	Discarded	Projects	Projects
	data field	Values for	Values for	Values	for COS-	for IFPUG
		COSMIC	IFPUG		MIC	_dataset
		_dataset	_dataset		_dataset	
	Data qual-	A, B	A,B	C,D	4000	4000
	ity rating					
	Count Ap-	COSMIC	IFPUG	NESMA,	449	3104
	proach			FISMA,		
				etc.		
	development	Enhancement Enhancement New devel-	302	1084
	Type			opment and		
				Redevelop-		
				ment		

Table 4 .

 4 4.2 On the use of FSM methods for more accurate Prediction in the traditional software Enhancement projects 77 2 -Selected Feature correlation when using COSMIC_dataset

	Selected Features	Value -Round(Correlation target)
	CHANGEWorkEffort	0.4
	UnrecordedWorkEffort	0.5
	FunctionalSize	0.5
	EffortTest	0.4
	SummaryWorkEffort	0.8
	NormalizedWorkEffortLevel1 1

Table 4 .

 4 3 -Selected Feature correlation when using IFPUG_dataset

	Selected Features	Value -Round(Correlation target)
	EffortBuilt	0.8
	EffortTest	0.9
	SummaryWorkEffort	1
	NormalizedWorkEffortLevel1 1

  70 percent and 30 percent. The ISBSG dataset is divided into two parts: training and validation/test. The « test_size » argument specifies the size of the split. In our model, 4.2 On the use of FSM methods for more accurate Prediction in the traditional software Enhancement projects 79 30 percent of the dataset is allocated to the test set, while 70 percent is allocated to the training set. The training set is used to train the model, and the validation/test set is used to validate it on new data. Following that, the CFS algorithm and the validation test prediction of the SVR method were carried out using Google Colab. Table 4.4 lists the predefined range of parameters values of the SVR method.

	Table 4.4 -Parameters values for Grid Search
	ML Technique	Parameters
	SVR	Kernel=Linear; Complexity=1, 2; epsilon=0.2; Devi-
		ation=0.001, 0.0001

Table 4 .

 4 

			7 -Mapping of US in sprint 1 with COSMIC Functional Change
	US Id US description			COSMIC
							Functional
							Change
							description
		As	an	I can . . . (Goal)	Story	Change	FC description
		. . . (actor)			Points	Type
						effort	
	1	Organization	Add a custom evidence	4	ADD( )	Add Custom Evi-
		User		type to an assessment			dence Type
				criterion (because the		
				standard evidence types		
				are not appropriate for		
				me)			
	2	XYZ ABC	Create bulk emails to be	5	ADD( )	Create	Bulk
		User		sent to users			Email
	4	Organisation	Add an improvement	5	ADD( )	Add	Improve-
		User		action against a specific			ment Action
				attainment criterion		
	5	Assessment	Add and amend general	3	ADD( )	Add	Widget
		Completer	comments for my re-			Comments
				quirement response		
	6	General		View an organisa-	4	MODIFY(	View Improved
		User		tion's	Assessment		)	Assessment
				Report with various			Report
				enhancements		
	7	Organisation	Create, amend and	3	MODIFY(	Maintain Users
		User		delete users within		)	(Simplified
				my organisation user			Interface)
				(using the simplified		
				interface)			
	8	XYZ ABC	Delete a pending bulk	1	DELETE( ) Delete	Bulk
		User		email				Email
	9	General		View Improved Assess-	3	ADD( )	Create an HTML
		User		ment Report -HTML			version of the as-
				Version				sessment report

Table 4 .

 4 Xi, Y) represent the covariance between a feature Xi and the target class Y, and var(Xi), var (Y) represents the variance of feature Xi, feature Y, respectively. TheTowards the use of COSMIC FSM method for improving SEEE within the context of classical and Agile projectsTable 4.8 -Sizing the "Add Custom Evidence Type" enhancement in CFP units 9 illustrates the definition of the features used to facilitate the interpretation of 4.3 On the use of COSMIC method for more accurate SEEE in Scrum 87 the Pearson correlation heat map. Following the advice of Field [119], we selected only Table 4.9 -Description of Selected Features

	4.3.1.3 Applying CFS algorithm		
	The Pearson's Correlation Coefficient algorithm, the most commonly used algorithm,
	is used for filtering in this step. Pearson's correlation coefficient is a single number
	that indicates the strength and direction of a linear relationship between two continuous
	variables. The values can range from -1 to +1, where -1 represents a total negative
	correlation, 0 represents no correlation, and 1 represents a total positive correlation. We
	will create a Pearson correlation heat map in this case. Each feature is ranked according
	to the correlation score obtained (See Equation 4.2) [110]: ).	
	p =	cov(Xi,Y ) var(Xi)var(Y )	(4.2)
	where, cov(		

Table 4 .

 4 

	10 -Selected Features
	Selected Features Correlated	Correlation target
	with StoryPoints(Actual)	
	StoryPoints(Actualtoday)	0.495189
	FunctionalSize(COSMIC)	0.618766
	StoryPoints(Estimated)	0.445416
	StoryPoints(Actual)	1.000000
	4.3.1.3.2 Determining the correlation between the COSMIC Functional Size of an en-

  Towards the use of COSMIC FSM method for improving SEEE within the context of classical and Agile projects

	accurate estimation.		
	-Deviation=0.001, 0.0001; The smaller deviation value is the best performance of
	SVR.		
	Table 4.11 -Parameters values for Grid Search
	ML Technique	Parameters	
	SVR	Kernel=Linear;	Complexity=1,
		2; epsilon=0.2; Deviation=0.001,
		0.0001	

Table 4 .

 4 [START_REF] Sakhrawi | Software Enhancement Effort Prediction Using Machine-Learning Techniques: A Systematic Mapping Study[END_REF] shows that the Error metrics (such as MAE and RMSE) provide quite better results using the SVR model (MAE=0.6174; RMSE=0.6763). Using the SVR

Table 4 .

 4 [START_REF] Sakhrawi | Software Enhancement Effort Prediction Using Machine-Learning Techniques: A Systematic Mapping Study[END_REF] -MAE and RMSE without sizing the "Functional change" feature

	Algorithm/ parame-	MAE	RMSE
	ters		
	SVR	0.6174	0.6763

model, we observed that the SEEE is more accurate when the effort is estimated using story points (see Figure

4

.7).

Table 4

 4 

	.13 illustrates that error metrics (such as

Table 4 .

 4 [START_REF] Sakhrawi | Requirements Change Requests Classification: An Ontology-Based Approach[END_REF] -Prediction analysis using MAE, RMSE with the Enhancement size feature

	Model/ parameters	MAE	RMSE
	SVR	0.2402	0.6469

Towards the use of COSMIC FSM method for improving SEEE within the context of classical and Agile projects

Figure 4.8 -Performance Assessment with the Enhancement size feature

Table 5

 5 

.2 lists the selected ML techniques with their corresponding predefined range of parameters values. The selected ML techniques are trained and tested using (1) dataset without filter and (2) features 1. https://www.cs.waikato.ac.nz/ml/weka/

Table 5 .

 5 4 -Prediction analysis using 10-folds Cross Validation methods

	Method/	MAE	RMSE	SA(%)
	param-			
	eters			
	M5P	0.0612	0.3381	97.25%
	GBRegr 0.1846	0.3634	50.55%
	SVR	0.2407	0.3379	54.30%
	RFR	0.1738	0.3300	56.42%
	5.3.2 Performance Assessment using CFS algorithm

Table 5 .

 5 5 shows that error metrics (such as MAEs and RMSEs) reveal relatively low values when using M5P (MAE=0.0571; RMSE=0.2514). The results show that the M5P

Table 5 .

 5 

	5 -Prediction analysis using MAE, RMSE and SA
	Method/	MAE	RMSE	SA(%)
	param-			
	eters			
	M5P	0.0571	0.2514	99.36%
	GBRegr 0.2625	0.3447	85.43%
	LinearSVR0.1110	0.3020	89.69%
	RFR	0.1665	0.3187	87.54%

Table 5 .

 5 9 -Prediction analysis using MAE, RMSE and r2_score

	Method/ parameters	MAE	RMSE r2_score
	M5P	0.0612	0.2514	0.985
	Stacking Regressor	0.0383	0.1973	0.987

  Investigate the enhancement which is categorized as TC. Even though most of NFR evolves into FUR, we believe that the conjunction of both the ISO 25000 series of software quality model and the COSMIC ISO 19761 can be used to control and evaluate the software enhancement project progress.-Analyze SEEE in depth. SEEE can be presented through five attributes: Plan effort, Specify Effort, Design Effort, Implement Effort, and Test effort. Hence, we are currently working on identifying the significant drivers (one of the five substep effort) of the total required effort for SEEE. We assume that estimating the enhancement (or test cases) effort for testing activity (regression testing) is also a key activity of software enhancement project. 4.1

						MQ	MQ	MQ	Total	Rating
						4.2	4.3	4.4	score
	S1	Y Y Y Y Y Y P	P	7	Excellent
	[93]								
	S2	Y P	N Y P	P	P	N 4	Good
	[68]								
	S3	Y N N Y P	N Y N 3.5	Good
	[99]								
	S4	Y P	Y Y P	P	N P	5	Good
	[89]								
	S5	Y P	Y Y P	P	P	P	5.5	Good
	[92]								
	S6	Y Y P	P	P	P	Y Y 6	Good
	[100]								
	S7	Y P	P	P	P	P	N N 3.5	Good
	[71]								
	S8	Y N P	P	Y P	P	N 4	Good
	[72]								
	S9	Y P	Y P	Y P	P	P	5.5	Good
	[73]								
	S10	Y P	P	P	P	Y P	P	5	Good
	[74]								
	S11	Y P	Y Y Y P	Y Y 7	Excellent
	[90]								
	S12	Y P	Y Y Y P	Y Y 7	Excellent
	[5]								
	S13	Y P	Y Y Y P	Y Y 7	Excellent
	[91]								

http://promise.site.uottawa.ca/SERepository/datasets-page.html

https://www.w3.org/OWL/

https://www.w3.org/TR/sw-oosd-primer/

https://www.investopedia.com/terms/p/positive-correlation.asp

https://getbootstrap.com/

https://anvil.works/open-source

https://www.python.org/

the most accepted methods which have a greater impact on predicting software project effort [START_REF] Abdallah | Enterprise Architecture Measurement: An Extended Systematic Mapping Study[END_REF]. The Size metric and effort estimations are the most intriguing metrics which, if correct, have a positive impact on software project planning and management [START_REF] Heričko | The size and effort estimates in iterative development[END_REF].

Nowadays, FSM methods, including the first generation (e.g., IFPUG) and secondgeneration (i.e., COSMIC) are widely used in the software industry to the size software product. The obtained functional size is identified as an independent variable in the prediction models. The IFPUG software size is frequently used as an independent variable for estimating software effort. Furthermore, the COSMIC functional size is used to appropriately estimate software size as well as the size of an ER (add, modify, delete) [START_REF] Sakhrawi | Investigating the Impact of Functional Size Measurement on Predicting Software Enhancement Effort Using Correlation-Based Feature Selection Algorithm and SVR Method[END_REF].

Industry results assume that the COSMIC sizing method is successfully used in the software industry estimating process.

MQ4.4: Which single models are most frequently used for SEEE? When investigating the primary selected studies, Table 2.6 reveals that all studies used only single prediction models (i.e., individual models). The most commonly used single models for predicting maintenance effort are SVR (including linear and multi regression) and ANN (see Figure 2.5). The evaluation metrics used to compare and evaluate the prediction In Section 5.5, we intend to discuss the experimental results. Section 5.6 proposes SEEE automation through the development of a web application named "ERWebApp". Finally, in Section 5.7, we conclude the chapter.

Research Process

Our research process set up two models to predict SEEE (see Figure 5.1). The first model is constructed using four selected regression ML techniques (M5P, LinearSVR, GBRegr, and RFR) separately. The second model constructs a stacking ensemble method (that combines LinearSVR, GBRegr, and RFR). For this second model, the meta-model provided via the "final_estimator" argument (LinearSVR) is trained to combine the estimation of the chosen regression ML techniques provided via the "estimators" argument (GBReg, RFR). Finally, we make a comparison of the estimation accuracy of the two mentioned models.

Data Collection

The dataset used to train and test the SEEE model is from ISBSG Release 12. The description of the used dataset is already detailed in chapter 4 (section 4.2.1) with the same filter considering only "enhancement" as the "development type", the "count approach" was the COSMIC FSM method, and data with a high level of integrity and soundness (i.e., Records with a "Data Quality Rating" of "A" or "B").

Relevant Features Extraction based on the CFS algorithm

We applied the CFS algorithm to determine which features globally and consistently appear in the optimal set of features. A correlation matrix is extracted using Pearson correlation. Matrix results are presented in Figure 5.2. The use of CFS algorithm selects 37.5% (6 out of 16) of features (see Table 5.1). The CFS algorithm is used not only to select features, but also to evaluate the impact of the enhancement size feature on the accuracy of the SEEE.

As described in Chapter 4, it has been observed that COSMIC sizing is an effective method for measuring not only software size but also the functional size of the ER that will occur throughout the maintenance life cycle [START_REF] Haoues | Towards functional change decision support based on COSMIC FSM method[END_REF]. Figure 5.2 shows that the correlation coefficients between enhancement functional size and enhancement effort have a value of selected during the preprocessing phase (CFS).

Performance Assessment without using CFS algorithm

The prediction errors (MAE and RMSE) are calculated for each prediction. The predicted values are compared against the actual target values. It is evident from the results that M5P method gives better performance when compared to other three ML techniques (with MAE=0.4035, RMSE=0.4002). We also used cross-validation method [START_REF] Yadav | Analysis of k-fold cross-validation over holdout validation on colossal datasets for quality classification[END_REF]. Cross-validation methodology is used to compare models by dividing data into two segments: one used to learn or train a model and the other used for testing to validate the model [START_REF] Yadav | Analysis of k-fold cross-validation over holdout validation on colossal datasets for quality classification[END_REF]. The accuracy of prediction models can be increased as the model predicts new data that were not used in its prediction. Crossvalidation strives to measure the generalization power of a model: how well it will predict new data [START_REF] Yadav | Analysis of k-fold cross-validation over holdout validation on colossal datasets for quality classification[END_REF]. In this study, we used 10-fold cross-validation. Since it is the most used for experiments and to analyze the performance of ML techniques [START_REF] Yadav | Analysis of k-fold cross-validation over holdout validation on colossal datasets for quality classification[END_REF]. Table 5.4

illustrates the results of using these metrics. Base estimators which will be stacked together. final_estimator

Constructing Estimation stacking ensemble model

Software Enhancement Effort Estimation using Stacking Ensemble method

An estimator which will be used to combine the base estimators be used as "final_estimator" and which ones should be used as "estimators". In this case, we selected the r2_score evaluation metric 3 to evaluate the overall performance of the selected prediction model to provide an adequate combination. Table 5.7 illustrates the r2_score results where the best possible score stands at 1.0. Figure 5.4 shows the ML "estimators" and the average of their predictions. 

Constructing the SEEE model

Each ML regression technique is trained on the ISBSG dataset with relevant features filtered using the CFS algorithm allocated for training (see section 5.2.2). The outputs of "estimators" are therefore fed into the "final_estimator" which combines each regression estimator model with a weight and delivers the final estimation. Regarding Table 5.7, LineanrSVR is selected to be used as the final_estimator. Table 5.8 shows the stacking ensemble method parameter that defines the best combination.

When the enhancement functional Size is utilized as the independent variable (see Table 5.9), the CFS algorithm combined with the constructed stacking ensemble approach yields an appropriate SEEE. When the findings are compared to the other three ML techniques, it is clear that the stacking ensemble method outperforms them all. The r2 score now stands at 0.987 (See Figure 5.7). 

Software Enhancement Effort Estimation using Stacking Ensemble method

Discussion and Comparison

The first experimental model was conducted to evaluate the accuracy of four ML techniques (M5P, GBRerg, LinearSVR, and RFR) separately. The selected ML techniques are used to provide the SEEE when software is being maintained. M5P is the most effective of the ML algorithms tested. The results back this up, with a minimum MAE of 

Software Enhancement Effort Estimation using Stacking Ensemble method

Study