
HAL Id: tel-04430364
https://hal.science/tel-04430364v3

Submitted on 29 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Branch-price-and-cut algorithms for integrated
optimisation problems in transportation and healthcare

Matteo Petris

To cite this version:
Matteo Petris. Branch-price-and-cut algorithms for integrated optimisation problems in transporta-
tion and healthcare. Computer science. Centrale Lille Institut, 2023. English. �NNT : 2023CLIL0021�.
�tel-04430364v3�

https://hal.science/tel-04430364v3
https://hal.archives-ouvertes.fr

CENTRALE LILLE

THÈSE

Présentée en vue d'obtenir le grade de

DOCTEUR

En

Spécialité : Informatique

Par

Matteo PETRIS
DOCTORAT DELIVRE PAR CENTRALE LILLE

Titre de la thèse :

Algorithmes de branch-price-and-cut pour des problèmes

d'optimisation intégrés en transport et santé

Branch-price-and-cut algorithms for integrated optimisation

problems in transportation and healthcare

Soutenue le 20 septembre 2023 devant le jury d'examen :

Président M. Yves CRAMA Professeur, HEC Liège, Belgique

Rapporteur Mme Renata MANSINI Professeur, Università degli Studi di Brescia, Italie

Rapporteur M. Stefan RØPKE Professeur, Danmarks Tekniske Universitet, Danemark

Examinateur M. Roberto ROBERTI Chercheur, Università degli Studi di Padova, Italie

Directeur de thèse M. Frédéric SEMET Professeur, Centrale Lille, France

Co-encadrant Mme Claudia ARCHETTI Professeur, ESSEC Paris, France

Co-encadrant M. Diego CATTARUZZA Maître de conférences, Centrale Lille, France

Co-encadrant M. Maxime OGIER Maître de conférences, Centrale Lille, France

Thèse préparée au Centre de Recherche en Informatique, Signal et Automatique de Lille
CRIStAL - UMR CNRS 9189 et au Centre Inria de l'Université de Lille - Centrale Lille

École Doctorale MADIS 631

Acknowledgements

First, I would like to thank my supervisors Frédéric Semet, Claudia Archetti, Diego

Cattaruzza and Maxime Ogier for their continuous support and guidance. In particular,

I would like to thank Frédéric for having directed the thesis sharply and Claudia for her

willingness even from far away. There are no words to express how much I appreciated

the patience and the daily support of Diego and Maxime. I tried to learn as much as

I could from you all.

I would like to express my gratitude to the PhD jury committee: Renata Mansini,

Stefan Røpke, Yves Crama and Roberto Roberti. Their comments helped to improve

the thesis and the discussion during the defense was interesting and full of insights.

Especially, I would like to thank Yves Crama who was not appointed as reviewer, but

reviewed the thesis thoroughly and Renata Mansini whose kindness relieved the stress

before the defense.

In addition, I would like to thank Martine Labbé, Marius Roland, Martin Schmidt,

Andrea Schaerf, Luca Di Gaspero and Roberto Maria Rosati with whom I had the

pleasure to work on side projects during the PhD. For the same reason, I also want

to thank Paola Pellegrini, Bianca Pascariu, Federico Naldini, Sonia Sobieraj Richard,

Grégory Marliere and Joaquin Rodriguez from the COSYS-LEOST laboratory in Lille.

Special thanks are due to Ra�aele Pesenti, without whom I would not have started

the PhD and to Franca Rinaldi whose words I have been carrying for all these years.

Finally, I thank my colleagues and friends in the INOCS team: Luis S., Nathalia,

Juan, Francesco, Wenjiao, Luis R., Gael, Pablo, Tifaout, Mathieu, Arnaud, Yuan,

Wenjuan and Daniel.

i

ACKNOWLEDGEMENTS

ii

Contents

Acknowledgements i

Acknowledgements i

Table of Contents ii

List of Figures vii

List of Tables viii

Introduction 1

1 A tutorial on Branch-Price-and-Cut algorithms for vehicle routing-

like problems 7

1.1 Introduction . 8

1.2 From Branch-and-Bound to Branch-Price-and-Cut 9

1.2.1 Branch-and-Bound algorithm 10

1.2.2 Column generation . 12

1.2.3 Branch-and-Cut algorithm . 17

1.2.4 Branch-Price-and-Cut algorithm 19

1.3 Problem description and formulation 20

1.4 Solving by a Branch-Price-and-Cut algorithm 23

1.4.1 Restricted master problem . 23

1.4.2 Pricing problem: the (E)SPPRC 24

1.4.3 Algorithms for the SPPRC . 27

1.4.4 Algorithms for the ESPPRC . 27

1.4.4.1 Monodirectional algorithm of Feillet et al. (2004) . . . 31

iii

CONTENTS

1.4.4.2 Bounded bidirectional algorithm of Righini & Salani

(2006) . 33

1.4.5 Relaxing the elementarity constraint 35

1.4.6 Dual bound and termination condition 38

1.4.7 Valid inequalities . 41

1.4.8 Branching scheme . 44

1.4.9 Additional speed up techniques 45

1.4.9.1 Column generation degeneracy 46

1.4.9.2 Primal heuristics . 48

1.4.9.3 Pricing heuristics . 49

1.4.9.4 Strong branching . 50

1.5 Final remarks . 52

2 A heuristic with a performance guarantee for the Commodity con-

strained Split Delivery Vehicle Routing Problem 53

2.1 Introduction . 55

2.2 Problem description . 58

2.3 Problem formulation . 59

2.4 A restricted master heuristic . 60

2.4.1 Column generation . 61

2.4.2 Pricing problem . 61

2.4.3 Solution of the pricing problem 62

2.4.3.1 Preprocessing phase 63

2.4.3.2 A new two-phase pricing heuristic 63

2.4.3.3 Reduced graph heuristics 66

2.4.4 Valid inequalities . 68

2.4.5 Initialization of the set R′ . 68

2.4.6 Local search . 69

2.5 Computational experiments . 70

2.5.1 Benchmark instances . 71

2.5.2 Impact of the novel pricing heuristic 72

2.5.3 Results on the whole testbed . 73

2.5.4 Comparison with Gu et al. (2019) and Soleilhac (2022) 77

2.6 Conclusions . 79

iv

CONTENTS

3 A Branch-Price-and-Cut algorithm for the Multi-Commodity two-

echelon Distribution Problem 81

3.1 Introduction . 83

3.2 Literature review . 84

3.3 Problem description . 86

3.4 Problem formulation . 88

3.4.1 Valid inequalities . 89

3.5 Branch-Price-and-Cut algorithm . 94

3.5.1 Column generation . 95

3.5.2 Management of the valid inequalities 97

3.5.3 Branching strategies . 99

3.5.4 Accelerating strategies . 101

3.6 Computational experiments . 102

3.6.1 Benchmark instances . 102

3.6.2 Impact of valid inequalties . 105

3.6.3 Evaluation of the BPC algorithm 106

3.6.4 Results on the whole testbed . 107

3.7 Conclusions . 112

4 Solving the Kidney Exchange Problem with long cycles and chains

via a Branch-Price-and-Cut algorithm 115

4.1 Introduction . 116

4.2 Literature review . 119

4.3 Problem formulation . 122

4.4 A Branch-Price-and-Cut algorithm . 124

4.4.1 Column generation . 124

4.4.2 Pricing problem formulation . 125

4.4.3 Pricing problem solution . 127

4.4.4 Cut generation . 130

4.4.4.1 Subset-row inequalities 130

4.4.4.2 Odd-hole inequalities 131

4.4.4.3 Cut generation strategy 133

4.4.5 Branching scheme . 133

4.4.6 Accelerating techniques . 134

4.5 Computational experiments . 136

v

CONTENTS

4.5.1 Benchmark instances . 136

4.5.2 Results on the whole testbed . 137

4.5.2.1 Results on the PrefLib dataset 137

4.5.3 Results on the set of instances of Pansart et al. (2022) 139

4.5.4 Results on the set of instances of Delorme et al. (2023) 142

4.5.5 Impact of the valid inequalities 145

4.5.6 Impact of the length constraints on the objective function . . . 148

4.6 Conclusions . 149

5 Collaborative and fairness aspects in the Iterative International Kid-

ney Exchange Problem 151

5.1 Introduction . 152

5.2 Concepts of cooperative game theory 157

5.3 Problem description . 159

5.3.1 Kidney Exchange Problem . 159

5.3.2 International Kidney Exchange Problem with stability 160

5.3.3 Iterative International Kidney Exchange Problem 161

5.4 Formulation for the IKEP with stability and fairness in a single round . 165

5.5 Solution procedure for the IIKEP . 166

5.5.1 Branch-Price-and-Cut algorithm to solve formulation [Pt] 167

5.6 Computational experiments . 168

5.6.1 Generation of the testbed . 169

5.6.2 Assessment of the stability conditions 169

5.6.3 Assessment of the fairness conditions 172

5.7 Conclusions . 177

Conclusions and Perspectives 179

References 184

Résumé étendu en français 203

vi

List of Figures

2.1 Pricing multi-graph G′ for the C-SDVRP instance de�ned in Example 2.4. 66

2.2 Graphs of the �rst and second phase of the novel pricing heuristic built

in Example 2.4. 67

5.1 Distribution of values devt[%] over the 24 rounds among the 20 instances

with obj:#TR. 174

5.2 Distribution of values devt[%] over the 24 rounds among the 20 instances

with obj:MB. 175

5.3 Assessment of the fairness in two instances with obj:#TR and four coun-

tries (left) or eight countries (right). 176

5.4 Assessment of the fairness in two instances with obj:MB and four coun-

tries (left) or eight countries (right). 177

vii

LIST OF FIGURES

viii

List of Tables

1 Content of the chapters. 5

1.1 Notation. 24

1.2 Memory of the vertices in G. 37

1.3 Ng-path label extension to obtain path p. 37

1.4 Value of attribute M(S) and discount of σS from the reduced cost for

labels to build path p. 43

2.1 Characteristics of the small, mid-size and large instances. 71

2.2 Impact of the two-phase pricing heuristic on the instances with |N| = 100

and |K| = 4. 72

2.3 Results on the small and mid-size instances. 74

2.4 Results on the large instances. 76

2.5 Impact of the performance guarantee. 77

2.6 Comparison with Gu et al. (2019) on the instances with |K| = 2, 3 and

customers' locations from C101 and R101. 78

2.7 Comparison with Soleilhac (2022) on the instances with |N| = 100 and

|K| = 2, 3 and customers' locations from C101 and R101. 79

3.1 Characteristics of the sets of instances. 103

3.2 Comparison of four variant of the BPC algorithm 106

3.3 Results on set small. 108

3.4 Aggregated results on the instances solved to optimality by the BPC

algorithm . 109

3.5 Aggregated results on the instances not solved to proven optimality by

the BPC algorithm . 111

4.1 Characteristics of the sets of instances. 137

ix

LIST OF TABLES

4.2 Results on the PrefLib dataset. 138

4.3 Results on the set of instances of Pansart et al. (2022) with up to 250

pairs. 140

4.4 Results on the set of instances of Pansart et al. (2022) with at least 500

pairs. 141

4.5 Results on the set of instances of Delorme et al. (2023) where the objec-

tive is the maximisation of the number of transplants. 143

4.6 Results on the set of instances of Delorme et al. (2023) where the objec-

tive is the maximisation of the medical bene�t. 144

4.7 Comparison of two variant of the BPC algorithm on the instances solved

to optimality. 146

4.8 Comparison of two variant of the BPC algorithm on the instances not

solved to optimality. 147

4.9 Average number of SR and OH inequalities added to the RMP. 148

4.10 Impact of the path length increase on the set of instances of Pansart et al.

(2022) when the objective is the maximisation of the medical bene�t (MB).149

5.1 Computational statistics on solving formulation [P1] with stability con-

ditions. 170

5.2 Assessment of the stability conditions. 172

5.3 Computational statistics when solving the IIKEP. 173

x

Introduction

Mathematical optimisation provides tools to help decision-makers in solving problems

arising in di�erent �elds of applications. Recent advances in the exact algorithms

allow to solve large instances of well-known problems to optimality, even if they are

theoretically NP-hard. Examples of such problems are the Travelling Salesman Problem

or the Capacitated Vehicle Routing Problem. Nowadays, the more challenging problems

are those that integrate two optimisation problems or those whose resolution entails

solving other optimisation problems, which are usually complex on their own. In the

�rst case, the problem either integrates problems at two di�erent decision levels, e.g.,

tactical and operational, or two subproblems at the same decision level. In the second

case, solving the main optimisation problem requires the computation of some values

obtained by the resolution of other optimisation problems.

Such problems may arise in di�erent �elds of application, here, we focus on trans-

portation and healthcare areas. In transportation, we consider an integrated problem

which integrates two problems at the same operational level. Precisely, we consider

a problem arising in the short and local food supply chain (Berti & Mulligan, 2016):

high-quality agricultural products need to be delivered from medium-sized farms to cus-

tomers whose primary concerns are product quality and traceability (King et al., 2014).

Such supply chains may involve several suppliers (farms) and customers, however, their

locations have to be within a maximal distance of less than 100km (Blanquart et al.,

2010). In this context, suppliers produce several agricultural products, such as fruits,

vegetables, and/or meat. In addition, such types of products may only be provided by

some of the suppliers, but they may di�er from one to the other. Similarly, customers

have a demand for di�erent types of products. Hence, these supply chains commonly

involve intermediate facilities, known as distribution centres, whose role is to consol-

idate the products before the deliveries and, consequently, reduce the transportation

costs (Berti & Mulligan, 2016). Indeed, in this application, suppliers are interpreted

1

INTRODUCTION

as small-sized farms which do not have the resources to manage the transportation

and logistics on their own. Hence, commonly, the collection and delivery of the prod-

ucts are coordinated by a central decision-maker embodied by, e.g., an association of

farmers or a political authority. The central decision-maker aims to minimise the total

transportation cost of the system, which arises from the following operations. Suppli-

ers possess their own vehicles with large capacities to bring agricultural products to

the distribution centres via direct trips. Once demand has been consolidated at each

distribution centre, it is delivered to customers by a �eet of smaller capacity vehicles

managed by the distribution centre itself. The vehicles follow routes that begin and

end at the distribution centre to which they belong.

The optimisation problem arising in this speci�c application is theMulti-Commodity

two-echelon Distribution Problem (MC2DP), a routing problem de�ned on two echelons

where the multiple commodities have to be considered explicitly. Indeed, only some of

the suppliers provide the same commodities, and the demands of the customers may

be delivered by di�erent vehicles.

In healthcare applications, we consider an integrated problem where the main prob-

lem is enriched with additional conditions that entail solving other optimisation prob-

lems. Precisely, we consider a problem arising in the context of kidney transplants

which involve living donors. Such practice gives patients a�ected with a severe kidney

disease an additional transplant option when a kidney from a deceased donor is not

promptly available (Lentine et al., 2023; Nemati et al., 2014). Nowadays, it is common

that each country runs its own kidney exchange programme to coordinate the kidney

transplants between patients and living donors a�liated with all the hospitals of that

country (see, e.g., Biró et al., 2019a). Such programmes are often run periodically,

typically every 3 or 4 months. One of the major concerns in kidney transplantation

is the risk of rejection. To decrease this risk, transplants are performed only between

patients and donors, compatible with each other according to several medical require-

ments (Kälble et al., 2005). Finding patients and donors who meet such requirements is

often challenging, even when the transplants are managed at the country level. Hence,

in recent years, some countries have started to collaborate by merging their pool of

patients and donors to increase the possibilities of performing more transplants and/or

transplants of better quality (see, e.g., Böhmig et al., 2017; Scandiatransplant, 2023;

Valentín et al., 2019). As for the single countries, programmes involving multiple coun-

tries are run periodically. Under this collaborative setting, other than determining the

2

INTRODUCTION

transplants to perform, one aims to ensure: (i) the stability of the system at each run:

no country should be incentivised to leave the system; (ii) the fairness of the system:

the disparities in the number or quality of the transplants assigned to the countries

are smoothed over the course of the programme. We call the underlying optimisation

problem Iterative International Kidney Exchange Problem (IIKEP).

Both the MC2DP and the IIKEP fall in the class of integrated optimisation prob-

lems. The MC2DP integrates the activities of the collection and delivery echelons at

the operational level. In addition, the delivery echelon is composed of di�erent delivery

problems, one per distribution centre, referred to as the Commodity constrained Split

Delivery Vehicle Routing Problem (C-SDVRP). The C-SDVRP is an extension of the

CVRP, which deals explicitly with multiple commodities. Each customer requires sev-

eral commodities which are compatible and can be mixed in the vehicles. To reduce the

cost, the demand of a customer can be served by several vehicles, but for convenience

reasons, the delivery of a single commodity cannot be split. The IIKEP integrates the

well-known Kidney Exchange Problem (KEP) with stability and fairness conditions.

The KEP aims to determine a set of kidney transplants in a pool of patients and

donors such that the number or the quality of the transplants is maximal.

Integrated optimisation problems may be tackled by means of di�erent methods:

metaheuristics, dedicated heuristics with or without a performance guarantee, or exact

algorithms. The aim of this thesis is to design exact algorithms or methods which

are able to provide good bounds on the optimal values of problem instances, that is

heuristic algorithms with a performance guarantee. Well-known techniques to achieve

such results are based on column generation and the Branch-Price-and-Cut (BPC)

paradigm (Barnhart et al., 1998). The main challenge in devising e�cient algorithms

for integrated problems lies in the ability to solve the core problems, in our case the

C-SDVRP and the KEP, very e�ciently.

Contributions

In what follows, we summarise the main contributions we achieve in this thesis.

1. To solve the C-SDVRP very e�ciently, we devise a heuristic algorithm with a

performance guarantee based on column generation. The algorithm embeds a

new pricing heuristic dedicated to the multi-commodity aspect of the problem.

Extensive experiments on benchmark instances from the literature show that our

3

INTRODUCTION

algorithm provides several new (best-known) solutions and signi�cantly improves

the computational time compared with a state-of-the-art heuristic for the C-

SDVRP. The new pricing heuristic helps in reducing computational time.

2. For the MC2DP, we propose an extended formulation based on the one for the

C-SDVRP, and we develop an exact BPC algorithm to solve the problem. The al-

gorithm includes two families of robust valid inequalities which exploit the multi-

commodity aspect of the problem. We test the BPC algorithm on benchmark

instances previously introduced in the literature. Almost 60% of the instances are

solved to optimality, while the remaining ones are left with an average positive

gap equal to 2.1%.

3. In order to solve the KEP very e�ciently, we propose a BPC algorithm which

includes two families of non-robust valid inequalities. We assess the performances

of the proposed BPC on three sets of benchmark instances from the literature.

Our BPC is the �rst to be tested on instances for the KEP with di�erent charac-

teristics. For each set, we test the BPC against a reference algorithm. The BPC

produces comparable results with the literature on the easiest set of instances

and outperforms the results on the remaining two sets.

4. For the IIKEP, we propose an iterative procedure, where, the problem arising at

each iteration is a KEP with stability and fairness conditions. Such a problem

is solved by adapting the BPC algorithm we designed for the KEP. We provide

a managerial analysis of the impact of the stability and fairness conditions on

the solutions. In the analysis of the experiments, we show that the instability of

the system is heavily reduced and the deviations w.r.t. an ideal fair scenario are

small. Remark that under this collaborative setting, the improvement in terms

of medical bene�t is great. Compared to such improvement, the price to pay for

the stability and fairness conditions is small. Hence, under these assumptions,

countries are incentivised to join an international kidney exchange programme.

Structure of the thesis

In this section, we summarise the content of the thesis in more detail. The thesis is

composed of seven chapters, introduction included. Table 1 reports the main informa-

tion about the chapters' content. Each row corresponds to a chapter. The columns

4

INTRODUCTION

specify the application associated with the chapter content, the name of the problem

and the method applied to solve it. We use the notation CG for column generation.

Table 1: Content of the chapters.

application name of the problem method

Chapter 1 - general tutorial on BPC algorithms

Chapter 2
transportation

C-SDVRP CG heuristic with performance guarantee

Chapter 3 MC2DP BPC algorithm

Chapter 4
healthcare

KEP BPC algorithm

Chapter 5 IIKEP BPC algorithm

In what follows, we describe the content of each chapter in more detail.

� In Chapter 1, we review the main techniques to embed in a BPC algorithm to

solve a generic class of problems where both our applications fall. The presen-

tation is pedagogical-oriented, with several examples and implementation details

to help understand these techniques.

� Chapters 2 and 3 are devoted to the application in transportation. Precisely, in

Chapter 2, we study a heuristic with a performance guarantee based on column

generation for the C-SDVRP. Then, in Chapter 3, we present a BPC algorithm

for the MC2DP, which exploits the work done for the C-SDVRP.

Chapter 2 has been submitted to Networks. Chapter 3 has been submitted to

Computers & Industrial Engineering.

� Chapters 4 and 5 are dedicated to the application in healthcare. In Chapter 4,

we develop an e�cient BPC algorithm to solve the KEP. Then, in Chapter 5,

we devise an iterative procedure to solve the IIKEP. At each iteration of the

procedure, a KEP enriched with stability and fairness conditions is solved by a

modi�ed version of the BPC algorithm designed to solve the KEP.

� Finally, we discuss the main contributions of the thesis, and we provide future

research directions.

5

INTRODUCTION

6

Chapter 1

A tutorial on Branch-Price-and-Cut

algorithms for vehicle routing-like

problems

Contents
1.1 Introduction . 8

1.2 From Branch-and-Bound to Branch-Price-and-Cut 9

1.2.1 Branch-and-Bound algorithm 10

1.2.2 Column generation . 12

1.2.3 Branch-and-Cut algorithm . 17

1.2.4 Branch-Price-and-Cut algorithm 19

1.3 Problem description and formulation 20

1.4 Solving by a Branch-Price-and-Cut algorithm 23

1.4.1 Restricted master problem . 23

1.4.2 Pricing problem: the (E)SPPRC 24

1.4.3 Algorithms for the SPPRC 27

1.4.4 Algorithms for the ESPPRC 27

1.4.5 Relaxing the elementarity constraint 35

1.4.6 Dual bound and termination condition 38

1.4.7 Valid inequalities . 41

1.4.8 Branching scheme . 44

7

1.4.9 Additional speed up techniques 45

1.5 Final remarks . 52

1.1 Introduction

In this chapter, we provide an overview on Branch-and-Price-and-Cut (BPC) algo-

rithms to solve a generic class of problems whose aim is to �nd a set of feasible paths

in a graph from a given source to a given destination such that all the vertices of the

graph are visited at least (or at most) once while a cost function associated with the

paths is minimised (or maximised). A path is said to be feasible if it respects some

resource consumption constraints, where the resource type is a problem-speci�c fea-

ture. The presentation of the concepts is done for a minimisation problem, knowing

that they can be trivially adapted to the maximisation case. A typical example of a

problem which falls in this class is the Capacitated Vehicle Routing Problem (CVRP).

In the CVRP, we are given a depot and a set of customers J having a positive demand

Dj > 0, j ∈ J. A �eet of K homogeneous and capacitated vehicles of capacity Q

performs the deliveries from the depot to the customers. The objective of the problem

is to determine a set of K feasible paths such that all customers are visited exactly

once, and the total cost is minimised. A feasible path starts and ends at the depot and

has to respect the capacity constraint, i.e., the sum of demands of customers visited in

the path has to be lower than or equal to the capacity of the vehicles.

Deriving compact formulations for the problems in this class usually leads to weak

linear relaxations. Hence, standard branch-and-bound algorithms are rather ine�-

cient. For this reason, it is common to apply Dantzig-Wolfe decomposition to model

these problems using an extended formulation where the exponentially-many variables

correspond to the feasible paths. Remark that the number of variables is exponential

w.r.t. to the size of the instance, e.g., in the CVRP variables correspond to routes

which are exponentially-many w.r.t. the number of customers. To handle the expo-

nential number of variables in such formulations, methods based on column generation

are commonly adopted. Precisely, several state-of-the-art exact algorithms are based

on a BPC paradigm.

In the �rst decade of the 2000's, surveys on BPC algorithms started to appear in

the literature. Ribeiro et al. (2002) provides implementation details for accelerating

column generation methods for vehicle routing and crew scheduling problems. The

8

1.2 From Branch-and-Bound to Branch-Price-and-Cut

book of Desaulniers et al. (2006) reviews BPC algorithms for di�erent applications.

The �rst chapter of this book (Desrosiers & Lübbecke, 2005) focuses on a didactic

introduction to BPC algorithms emphasising the relation between Dantzig-Wolfe de-

composition and Lagrangian relaxation. A similar focus is considered by Lübbecke

& Desrosiers (2005). A tutorial on BPC algorithms for vehicle routing problems is

proposed by Feillet (2010). The author provides insights on how to design a BPC

algorithm. However, he does not consider implementation details.

More recently, two works by Costa et al. (2019) and Pessoa et al. (2020), whose aim

is similar to the one of this chapter, appeared in the literature. Precisely, Costa et al.

(2019) propose a survey which covers several modeling and methodological contribu-

tions made over the years on BPC algorithms for Vehicle Routing Problems (VRPs).

Whereas, Pessoa et al. (2020) present their generic BPC solver for vehicle routing

and related problems along with the state-of-the-art techniques embedded in it. The

large amount of contributions reviewed in both these works allows only a high-level

presentation. The lack of implementation details is often critical when one wants to

develop a well-performing BPC. Therefore, in this chapter, we focus on fewer of these

state-of-the-art techniques and provide a more pedagogical-oriented presentation of

them, following to some extent the tutorial of Feillet (2010). Speci�cally, we give more

room to examples and implementation details (as in Ribeiro et al. (2002)), which are

sometimes necessary to understand such techniques and how they interact.

The remainder of the paper is organised as follows. In Section 1.2, we provide

a generic description of a BPC algorithm by presenting its main components: the

Branch-and-Bound algorithm, the column generation procedure and the Branch-and-

Cut algorithm*. In Section 1.3, we formally describe the class of problems we consider

and provide a generic extended formulation. Finally, in Section 1.4, we present the

main techniques that might be implemented in a BPC algorithm to solve the problems

of the class we consider. Finally, Section 1.5 reports some �nal remarks.

1.2 From Branch-and-Bound to Branch-Price-and-Cut

In this section, we describe the building blocks of a Branch-Price-and-Cut (BPC) al-

gorithm, namely the Branch-and-Bound algorithm (B&B), the column generation pro-

*The presentation of these algorithms is inspired by the course notes of Optimisation I and II by
Franca Rinaldi, Università degli Studi di Udine.

9

cedure and the Branch-and-Cut algorithm (B&C). Precisely, BPC algorithms are used

to solve integer programming models de�ned by means of an exponential number of

variables. They can be seen as variants of the B&B algorithm where the bounding step

is performed using a column generation procedure. As in a B&C algorithm, the value

of the relaxation at each node of the branch and bound tree may be strengthened by

including cuts.

1.2.1 Branch-and-Bound algorithm

The Branch-and-Bound (B&B) algorithm was introduced in 1960 by Land & Doig

(1960) to solve integer programming models exactly. Without loss of generality, we

consider an integer programming model of the following form

[MIP] min cx (1.1)

s.t. Ax ≥ b (1.2)

x ∈ Zn
≥0, (1.3)

where c ∈ Rn is a cost vector, A is the m × n constraints matrix, b ∈ Rm is the

vector of right hand-sides and x ∈ Zn
≥0 is the vector of integer variables. We denote

by S = {x ∈ Zn
≥0 : Ax ≥ b} the feasible region of [MIP]. The idea behind the

B&B algorithm is to perform an implicit and e�cient exploration of set S. Precisely,

problem [MIP] is recursively decomposed in subproblems such that the union of their

feasible regions is at least a covering of S (branching). The linear relaxation of these

smaller subproblems is then solved instead of [MIP]. Dominance conditions allow us

to avoid solving some of the linear relaxations without giving up the correctness of the

algorithm (bounding). The recursive procedure at the base of a B&B algorithm can be

represented by a search tree, which is referred to as branch-and-bound search tree.

The pseudocode of a B&B algorithm is reported in Algorithm 1. The following

notation is used. We denote z∗ the optimal value of [MIP], and x̄ and z̄ the current

best integer solution of [MIP] and its value, respectively. Let L be the list of problems

to be solved, i.e., of problems associated with nodes of the branch-and-bound tree yet

to be explored. Each problem Q in list L is associated with a lower bound zQ. Value

z = min{zQ : Q ∈ L} is the lower bound of z∗ computed during the exploration of the

branch-and-bound tree.

10

1.2 From Branch-and-Bound to Branch-Price-and-Cut

Algorithm 1: Pseudocode of a B&B algorithm.
Input: L := {[MIP]}, z[MIP] := −∞, z := −∞, x̄ := NULL, z̄ := ∞

1 while L ̸= ∅ do

2 select a problem Q from L;
3 remove Q from L;
4 if zQ < z̄ then // pruning

5 solve the linear relaxation (RQ) of Q ; // bounding

6 if (RQ) admits a feasible solution then

7 let x̃(RQ) and z̃(RQ) be an optimal solution of (RQ) and its value;

8 if z̃(RQ) < z̄ then // pruning

9 if solution x̃(RQ) is integer then

10 update x̄ := x̃(RQ) and z̄ := z̃(RQ);

11 else // branching

12 let Q1 and Q2 be the problems associated with the two selected branches;
13 add Q1 and Q2 to L;
14 set zQ1

:= z̃RQ and zQ2
:= z̃(RQ);

15 update z := min{zQ : Q ∈ L};
16 end

17 end

18 end

19 end

20 end

21 update z := z̄;

The list of problems is initialized with problem [MIP]. The lower bound z[MIP]

associated with [MIP] is set to minus in�nity. The same initialization is done for lower

bound z on z∗. The current best incumbent integer solution x̄ and its value z̄ are set

to NULL and in�nity, respectively.

At each iteration of the algorithm, a problem Q is selected and removed from list

L. First, a pruning step is performed to verify whether problem Q is worthy to be

processed. Precisely, we check whether lower bound zQ is strictly less than the best

incumbent value z̄. Indeed, zQ ≥ z̄ means that no feasible solution in the subtree

rooted at the current node (problem Q) can improve the current best incumbent value.

Then, the bounding step is performed, i.e., the linear relaxation (RQ) of Q is solved,

e.g., using the simplex method. If (RQ) does not admit any feasible solution, we move

to the next iteration. Otherwise, we denote by x̃(RQ) and by z̃(RQ) an optimal solution

and the optimal value of (RQ), respectively. A second pruning step is performed to

avoid exploring non promising subtrees: again, we check whether z̃(RQ) < z̄. Let us

suppose this condition is veri�ed. Now, if solution x̃(RQ) is integer, we found a new

best incumbent solution for [MIP]. Otherwise, branching rules are applied to build two

subproblems of Q, denoted as Q1 and Q2, which are included in list L. Precisely, let

x̃(RQ)i, i ∈ {1, . . . , n}, be a fractional value in solution x̃(RQ). Then, Q1 and Q2 are the

two subproblems of Q characterised by the inclusion of constraints xi ≤ ⌊x̃(RQ)i⌋ and

11

xi ≥ ⌈x̃(RQ)i⌉, respectively. Commonly, the fractional value in the solution is selected

according to maximal fractional part, i.e., maxi=1,...,n{min{x̃(RQ)i − ⌊x̃(RQ)i⌋, ⌈x̃(RQ)i⌉ −
x̃(RQ)i}}. The lower bounds zQ1

and zQ2
associated with these two subproblems are set

to be equal to z̃(RQ). Here, the lower bound z on z∗ is also updated. When all the

problems in L are processed, such lower bound is set to be equal to the incumbent

value z̄ and incumbent solution x̄ is proven to be optimal for [MIP].

We conclude the section with some remarks.

Remark 1.1 (Exploration of the branch-and-bound tree). The order in which problems

are stored in list L models the way the branch-and-bound tree is explored. Common

exploration strategies are depth-�rst search, breadth-�rst search and best-�rst search.

In depth-�rst search, list L is managed using Last In First Out (LIFO) rule: at each

iteration, we consider the last problem inserted in L. In breadth-�rst search, list L is

managed according to a First In First Out (FIFO) rule: at each iteration, we consider

the �rst problem inserted in L. In best-�rst search, problems in list L are arranged by

increasing value of lower bounds and at each iteration, the problem with the minimal

lower bound is considered. The interested reader may refer to Libralesso (2020) for a

more comprehensive study on branch-and-bound tree exploration strategies.

Remark 1.2 (Early termination of the algorithm). Note that if the B&B algorithm is

terminated before list L is empty, lower and upper bounds z and z̄ provide an estimation

of the error arising by the early termination. Precisely, the error of accepting the best

incumbent solution in lieu of the optimal one is z̄/z∗, which is bounded from above by

value z̄/z.

1.2.2 Column generation

In this section, we present the column generation procedure as a variant of the sim-

plex method to solve linear programming models with an exponential number of vari-

ables (Gilmore & Gomory, 1961). In this context, it is impossible to enumerate all

the variables a priori to solve the model using the standard simplex method. The idea

behind the column generation procedure is to iteratively generate only the variables

needed to solve the model to optimality. As in the simplex method, the search for such

meaningful variables is guided by information from the dual problem. We now recall

some basic concepts about the standard simplex method.

12

1.2 From Branch-and-Bound to Branch-Price-and-Cut

Without loss of generality, let us consider a linear programming model expressed

in standard form:

[MLP] min cx (1.4)

s.t. Ax = b (1.5)

x ∈ Rn
≥0, (1.6)

where c ∈ Rn is a cost vector, A is the m× n constraints matrix, b ∈ Rm is the vector

of right hand-sides and x ∈ Rn is the variables vector. Without loss of generality, we

suppose that m ≤ n and the rank of matrix A is equal to m. The simplex method

exploits the fundamental theorem of linear programming: [MLP] is either infeasible,

unbounded or its optimum is attained on at least one extreme vertex of the feasible

region of [MLP], i.e., of the polyhedron F = {x ∈ Rn
≥0 : Ax = b}. In the �rst phase, the

method detects if [MLP] is infeasible (F = ∅) or, otherwise, it determines one of the
extreme vertices of F. Then, starting from such vertex, the vertices of F are iteratively

explored until [MLP] is proved to be unbounded or optimality conditions are met.

It is out of the scope of this section to provide a thorough description of the simplex

method. We focus only on showing how the extreme vertices of F can be characterised

from an algebraic point of view and on the conditions to state that one of these vertices

is optimal. We introduce the following notation and de�nitions. Given j ∈ {1, . . . , n},
we denote Aj the j-column of matrix A. A basis is a subset of the columns indices

B ⊆ {1, . . . , n}, |B| = m such that the submatrix AB = (Aj)j∈B of A obtained by

considering the columns of A with index in B is non-singular. Matrix AB is called basic

matrix. Given a basis B, the columns of A can be permuted so that A = (AB, AN),

where AN = (Aj)j∈N and N = {1, . . . , n} \ B. Analogously, we write c = (cB, cN)

and x = (xB, xN), where xB and xN are called basic variables and non-basic variables,

respectively.

Remark that a basis B always exists since the rank of A is equal to m. In addition,

AB is non-singular, hence, model [MLP] can be rewritten in the following manner:

[MLP] min cBxB + cNxN (1.7)

s.t. xB = A−1
B b− A−1

B ANxN (1.8)

xB ∈ Rm
≥0, xN ∈ Rn−m

≥0 . (1.9)

13

It is easy to see that vector x̂ = (x̂B = A−1
B b, x̂N = 0) satis�es Ax̂ = b, where we

denote by 0 the vector of zeros of the required size. In addition, if x̂B ≥ 0 holds,

then x̂ belongs to the feasible region of [MLP]. We call x̂ basic feasible solution. It is

well-known that each basic feasible solution x̂ corresponds to an extreme vertex of F

and each extreme vertex of F corresponds to a basic feasible solution for at least one

basis. This characterises the extreme vertices of F from an algebraic point of view.

Now, let us suppose that vertex x̂ is visited at a certain iteration of the simplex

method. We need to test if x̂ is an optimal solution for [MLP], i.e., if cx̂ ≤ cx, for

each feasible solution x ∈ F, holds. For the algebraic characterisation of the vertices,

it exists a basis B such that x̂ = (x̂B = A−1
B b, x̂N = 0). The cost of x̂ is cx̂ = cBA

−1
B b.

In light of (1.8), the cost of any feasible solution x can be expressed in terms of basis

B in the following manner:

cx = cBxB + cNxN = cBA
−1
B (b− ANxN) + cNxN = cx̂+ (cN − cBA

−1
B AN)xN.

Hence, since xN ≥ 0, inequality cx̂ ≤ cx holds if cN − cBA
−1
B AN ≥ 0. Given j ∈ N,

we call c̄j = cj − cBA
−1
B Aj the reduced cost of j. If it exists a non-basic variable (i.e. its

index is in N) such that c̄j < 0, then the current basic feasible solution is not optimal.

We highlight the following remarks, which are helpful to formally introduce the

column generation procedure as a variant of the standard simplex method.

Remark 1.3. The simplex method explores the extreme vertices of polyhedron F. Such

vertices are characterised as basic feasible solutions. The number of non-zero compo-

nents in such solutions is at most equal to the number m of constraints. Indeed, the

cardinality of a basis is m, and the value of all the non-basic variables, i.e., the ones

with indices in N, is set to zero. Hence, even if the number of variables n is exponential,

only a limited number of them will appear with a positive value in a basic solution.

Remark 1.4. In the simplex method, the explicit knowledge of the entire constraint

matrix is required only when the reduced costs have to be computed to prove the opti-

mality of a basic feasible solution. Hence, it is clear that if the number of variables is

exponential, this step needs to be performed "implicitly".

Remark 1.5. We explicit the relation between the simplex method and the dual problem

14

1.2 From Branch-and-Bound to Branch-Price-and-Cut

[DLP] of [MLP]:

[DLP] max ub (1.10)

s.t. uA ≤ c (1.11)

u ∈ Rm. (1.12)

Recall that the expression of the reduced cost of j ∈ N is c̄j = cj − cBA
−1
B Aj. If B

is optimal for [MLP], it is easy to see that vector û = cBA
−1
B is the optimal solution

of [DLP] associated with x̂ = (A−1
B b,0). Indeed, the feasibility of û follows from the

optimality conditions on x̂ (cN − cBA
−1
B AN ≥ 0):

ûA = û(AB, AN) = (cBA
−1
B AB, cBA

−1
B AN) = (cB, cBA

−1
B AN) ≤ (cB, cN) = c.

Then, we observe that the value of solution x̂ in [MLP] and the value of solution û in

[DLP] are the same:

ûb = cBA
−1
B b = (cB, cN)(A

−1
B b,0) = cx̂.

The reduced cost of j ∈ N can be stated in terms of the dual solution û as c̄j = cj− ûAj.

Hence, there is no explicit need to know matrix A−1
B to compute such reduced costs.

Now, we formally introduce the column generation procedure. We consider again

model [MLP] expressed as in (1.4)-(1.6), but, this time, we suppose that the number of

variables n is exponential and that [MLP] admits a feasible solution. In this context,

model [MLP] is called Master Problem (MP). As in the simplex method, we consider a

subset of variables indices K ⊆ {1, . . . , n} such that the restriction of model [MLP] to

the variables with indices in K admits a feasible solution. Such restriction is referred

to as Restricted Master Problem (RMP) and is modelled as follows:

[MLP (K)] min cKxK (1.13)

s.t. AKxK = b (1.14)

xK ∈ R|K|
≥0, (1.15)

where AK = (Aj)j∈K, cK = (cj)j∈K and xK = (xj)j∈K.

Remark 1.6 (Dummy variables). Identifying a set K in order to ensure the feasibility

of [MLP (K)] can be not trivial in some applications. The introduction of one or many

15

dummy variables may come in handy to overcome this issue (see, e.g., Feillet, 2010).

These variables must satisfy Constraints (1.14) and appear in the objective function

with a very high cost. For example, in the case of the CVRP, a single dummy variable

representing a path visiting all the customers can be considered. Such variables ensure

the feasibility of the model. However, its associated path violates the capacity constraint.

Hence, it must appear in the objective function with a very high cost.

In addition, if a dummy variable still appears in the optimal solution at the end of

the column generation procedure, the model [MLP] is proved to be infeasible.

The size of model [MLP (K)] allows it to be solved by a standard simplex method.

Let x̂′ be one of its optimal solutions. We easily obtain a basic feasible solution x̂ for

model [MLP] from x̂′. Indeed, it su�ces to assign the same value as x̂K to the variables

with indices in K and value zero to the variables with indices in K̄ = {1, . . . , n} \K.

At this point, we want to verify whether x̂ is an optimal solution of [MLP]. To do so,

we exploit the optimality condition arising from the reduced costs and Remark 1.5. Let

û′ be the optimal solution of the dual of [MLP (K)]. We need to verify whether it exists

a variable with index in j ∈ K̄ whose reduced cost c̄j = cj − û′Aj is negative. If such

an index exists, x̂ is not proven optimal for [MLP], and the corresponding non-basic

variable has to be included in [MLP (K)]. At this point, a new iteration has to start.

Remark 1.7 (Column generation from the dual problem point of view). Note that

problem [DLP] has an exponential number of constraints. Indeed, it has a constraint

for each variable in [MLP]. Hence, generating negative reduced cost columns for prob-

lem [MLP] converts into generating violated constraints for problem [DLP]. Column

generation can be interpreted as a Kelley's cutting plane algorithm (Kelley, 1960) from

the point of view of the dual.

As mentioned in Remark 1.4, verifying the optimality conditions requires knowledge

of the entire constraint matrix A. However, verifying such conditions is equivalent to

solving the optimisation problem c̄∗ = min{c̄j : j ∈ K̄} = min{cj − û′Aj : j ∈ K̄},
referred to as pricing problem. Indeed, if c̄∗ ≥ 0, no negative reduced cost variable

exists, and x̂ is an optimal solution of [MLP]. Otherwise, the pricing problem identi�es

a new column Aj to include in matrix AK de�ning the RMP. Such a column can

typically be associated with an optimal solution for the pricing problem. Note that

any column corresponding to a variable with negative reduced cost could also be added

to AK.

16

1.2 From Branch-and-Bound to Branch-Price-and-Cut

It is clear that the optimality conditions can be veri�ed implicitly if we are able

to solve the pricing problem without enumerating all columns Aj, j ∈ K̄. Since x̂K

is optimal for [MLP (K)], the reduced cost of variables whose indices are in K are

non-negative. We can state the pricing problem as c̄∗ = min{c̄j : j ∈ {1, . . . , n}}.
Finally, the structure of the pricing problem depends on the particular problem under

consideration. Hence, the performances of the column generation procedure highly rely

on how e�ciently we are able to solve such pricing problem.

Algorithm 2 reports the pseudocode of the column generation procedure. The RMP

and the pricing problem are solved sequentially, while the latter provides negative

reduced cost columns. Once the optimality conditions are met, the pricing problem

certi�es that the current basic feasible solution is optimal, and the procedure stops.

Algorithm 2: Column generation procedure

Input: Subset K ⊆ {1, . . . , n} of columns.
1 do

2 solve the RMP [MLP (K)];

3 get the optimal solution of dual of [MLP (K)] and build pricing problem [PP];
4 solve [PP] c̄∗ = min{c̄j : j ∈ {1, . . . , n}};
5 add negative reduced cost columns to [MLP (K)];

6 while c̄∗ < 0;

1.2.3 Branch-and-Cut algorithm

In this section, we describe the Branch-and-Cut algorithm (B&C), introduced by Pad-

berg & Rinaldi (1991), to solve exactly integer programming models, as, e.g., [MIP]

considered in Section 1.2.1.

B&C algorithms are variants of the B&B algorithm where the linear relaxation at

each node of the branch-and-bound tree may be strengthened by including inequalities.

Hence, to be able to develop a B&C algorithm, we need to identify a priori a family

L of valid inequalities for the feasible region S of [MIP], i.e., inequalities satis�ed by

all the points in S.

The procedure is very similar to the one of the B&B algorithm. In the following, we

highlight the di�erences making references to Algorithm 1. First, among the inputs,

we also provide a set L of valid inequalities. Then, every time a problem Q is selected

from list L, instead of solving its linear relaxation once (Algorithm 1, line 5), the

iterative procedure described in Algorithm 3 starts. Precisely, each iteration entails

17

solving the linear relaxation (RQ) and the so-called separation problem, the latter only

if the optimal solution x̃(RQ) of (RQ) is fractional.

Remark 1.8 (Separation problem). In its general form, the separation problem can be

formally stated as follows:

Given a family L of inequalities de�ned in Rn and x̃ ∈ Rn, the aim of the separation

problem is to determine whether x̃ satis�es all the inequalities in L or identify an

inequality of L violated by x̃.

The computational complexity of the separation problem is related to the nature of

the inequalities in L . In a B&C algorithm, such a problem can be solved exactly or

heuristically. Indeed, the role of valid inequalities is to strengthen the linear relaxations.

The guarantee that the B&C algorithm terminates with an optimal solution for [MIP]

is ensured by the branching rules.

Hence, in a B&C algorithm, the role of the separation problem is to identify at

least one inequality in L which is violated by x̃(RQ), if it exists. Such inequality is then

added to problem Q to cut x̃(RQ) from the feasible region of (RQ). The next iteration

starts. The procedure terminates if either solution x̃(RQ) is integer or it is fractional and

the separation problem does not provide any violated inequality. In this latter case,

branching rules are applied (Algorithm 1, line 12). Remark, including valid inequalities

to cut the current optimal fractional solution of (RQ) ensures that the value of (RQ) at

one iteration is at least as good as the one of the previous iteration. This means that

the quality of the lower bound associated with the subproblems of Q increases. Hence,

we also increase the chances for these subproblems to be pruned in future iterations

and consequently, we may reduce the number of nodes of the branch-and-bound to be

explored.

We conclude the section with a remark.

Remark 1.9 (Cutting plane method). In the description of the B&C algorithm, we

do not make any assumption on the valid inequalities of L . In case set L provides a

complete external description of convex hull conv(S) of S, the B&C algorithm reduces to

a cutting plane method (Kelley, 1960). Such methods can be seen as a B&C algorithm

where no branching is needed to ensure that an optimal solution of [MIP] is found

at termination. The correctness of the cutting plane method relies on a geometric

observation: convex hull conv(S) is a polyhedron whose vertices are elements of S. For

these reasons, remark that in a cutting plane method, the separation problem must be

solved exactly.

18

1.2 From Branch-and-Bound to Branch-Price-and-Cut

Algorithm 3: Pseudocode of a B&C algorithm.
Input: Problem Q, termination = false

1 while termination = false do

2 solve the linear relaxation (RQ) of Q;
3 if (RQ) is infeasible then

4 termination = true;
5 else

6 let x̃ be an optimal solution of (RQ);
7 if x̃ is integer then

8 termination = true;
9 else

10 solve the separation problem w.r.t. x̃ and L ; // separation

11 if no inequality is detected then

12 termination = true;
13 else

14 add the detected inequality to (RQ);
15 end

16 end

17 end

18 end

1.2.4 Branch-Price-and-Cut algorithm

In this section, we consider the integer model [MIP] de�ned over an exponential number

of variables. We put together the methods described in Sections 1.2.1, 1.2.2 and 1.2.3

to present the Branch-Price-and-Cut (BPC) algorithm.

Classical branch-and-bound algorithms cannot e�ciently solve formulation [MIP]

due to the exponential number of variables involved. To overcome this issue, Barn-

hart et al. (1998) proposed a Branch-Price-and-Cut (BPC) algorithm, a variant of the

branch-and-bound algorithm to deal with integer programming models that have an

exponential number of variables. Precisely, at each node of the branch-and-bound tree,

the linear relaxation of the formulation [MIP], referred to as the Master Problem, is

solved by means of a column generation procedure. If the solution of the MP is frac-

tional, a separation problem dynamically identi�es violated inequalities from a set L

to insert in the MP. Then, the column generation procedure is repeated while violated

valid inequalities are found or a termination condition is satis�ed. As in a B&C algo-

rithm, remark that including valid inequalities is not necessary to ensure the correctness

of the algorithm (see Remark 1.8). However, they permit to provide better bounds and,

consequently, reduce the exploration of the branch-and-bound tree. Di�erently from

a B&C algorithm, including valid inequalities in the MP induces modi�cations in the

pricing problem. Such modi�cations may be troublesome in case they modify the struc-

ture of the pricing problem and increase its complexity. Finally, branching rules are

applied to ensure the integrality of the solution.

19

We report the pseudocode of a BPC algorithm in Algorithm 4.

Algorithm 4: Pseudocode of a BPC algorithm.
Input: L := {[M]IP }, z

[M]IP
:= −∞, z := −∞, x̄ := NULL, z̄ := ∞

1 while L ̸= ∅ do

2 select a problem Q from L;
3 remove Q from L;
4 let F = ∅ be the set of violated valid inequalities;
5 if zQ < z̄ then // pruning

6 do

7 insert inequalities in F in problem Q;
8 set F = ∅;
9 solve the linear relaxation (RQ) of Q ; // bounding by column generation

10 if (RQ) admits a feasible solution then

11 let x̃(RQ) and z̃(RQ) be an optimal solution of (RQ) and its value;

12 if z̃(RQ) < z̄ then // pruning

13 if solution x̃(RQ) is integer then

14 update x̄ := x̃(RQ) and z̄ := z̃(RQ);

15 else

16 detect violated valid inequalities and add them to F; // separation

17 if F = ∅ then // branching

18 let Q1 and Q2 be the problems associated with the two selected branches;
19 add Q1 and Q2 to L;
20 set zQ1

:= z̃RQ and zQ2
:= z̃(RQ);

21 update z := min{zQ : Q ∈ L};
22 end

23 end

24 end

25 end

26 while F ̸= ∅;
27 end

28 end

29 update z := z̄;

1.3 Problem description and formulation

In this section, we provide a formal description and an extended formulation of the

problem class we consider. Let G = (V,A) be a directed weighted graph, where V = J∪
{s, t}, J is a non-empty set, s and t are the source and destination vertices, respectively.
Hence, G can be either a complete or a sparse graph. Each arc (i, j) ∈ A is associated

with a cost Cij ≥ 0. In addition, we consider a unique resource whose maximal

available quantity is denoted by R̄. A consumption Rj of such a resource is associated

with vertices j ∈ J. Last, a path p in graph G starting at s and ending in t is feasible

if the total amount of resource consumed along the path does not exceed the maximal

available resource quantity, i.e., if
∑

j∈J(p)Rj ≤ R̄, where J(p) is the subset of vertices

visited by the path. Let P be the set of feasible paths in G. The cost of a path p ∈ P

is Cp =
∑

(i,j)∈A(p)Cij, where A(p) is the subset of arcs traversed by the path. Remark

20

1.3 Problem description and formulation

that we do not make any assumptions on the structure of the paths, e.g., elementarity

constraints (a path cannot visit the same vertex more than once). Hence, collections

V(p) and A(p) may include multiple times a vertex and an arc, respectively. The

constraints imposed on a path are particularly important from an algorithmic point of

view, so we will discuss this issue later in section 1.4.2.

The class of problems we consider can be stated as follows. It is to determine a set

of feasible paths from s to t in graph G such that the vertices of J are visited at least

once with the objective of minimising the total cost of the paths. A similar de�nition

arises in case of maximisation: it is to determine a set of feasible paths from s to t

in graph G such that the vertices of J are visited at most once with the objective of

maximizing the total pro�t of the paths. Moreover, note that it is usual to consider

that the number of paths selected has to be between a minimum v and a maximum

v̄. In addition, the special case where the vertices of J must be visited exactly once

also falls in our problem class as a particular case. Remark that if the cost of the arcs

satis�es the triangular inequality, an optimal solution exists that visits each vertex

exactly once, even when the problem is formulated as each vertex has to be visited at

least once.

Remark 1.10. We consider a unique resource associated with the vertices whose con-

sumption along the path is additive. The presentation in the next sections can be easily

adapted to the case of multiple resources of this type. Note that resources with di�erent

types of consumption can be considered: for example, see the Vehicle Routing Prob-

lem with Time Windows (VRPTW), where the resource associated with time is not

additive. (Feillet, 2010).

In the following, we provide an extended formulation for the class of problems we

consider, which can be modelled by means of a set covering formulation as follows. For

each path p ∈ P, we introduce an integer parameter apj representing the number of

times path p visits vertex j ∈ J. Then, we de�ne a binary variable λp for each p ∈ P

taking value one if path p is selected in the solution and zero otherwise.

21

The Set Covering formulation [SC] reads as follows:

[SC] z∗ = min
∑
p∈P

Cpλp (1.16)

s.t.
∑
p∈P

apjλp ≥ 1 ∀j ∈ J (1.17)∑
p∈P

λp ≥ v (1.18)∑
p∈P

λp ≤ v̄ (1.19)

λp ∈ {0, 1} ∀p ∈ P. (1.20)

Objective function (1.16) minimises the total cost of the selected paths. Constraints (1.17)

are the so-called covering constraints and state that all the vertices in set J must be

visited (that is covered) by at least one path in P. Constraints (1.18) and (1.19) im-

pose, respectively, a lower and an upper bound on the number of paths in the solution.

Finally, Constraints (1.20) de�ne variables λp as binary.

Remark 1.11 (Compact formulations). We stress that compact formulations may be

considered as well to model the problems in this class. In our context, such formulations

are commonly de�ned over arc-�ow variables. Binary variable xij indicates whether

arc (i, j) ∈ A is used in the solution (xij = 1) or not (xij = 0). However, these

formulations usually su�er from weak linear relaxations and inner symmetries. Hence,

standard branch-and-bound methods may perform poorly (see Barnhart et al., 1998,

for further details). Employing extended formulations with an exponential number of

variables usually yields better bounds and eliminates symmetries.

Example 1.12 (Symmetries in the CVRP). We consider the three-index (vehicle-

�ow) formulation for the CVRP introduced by Golden et al. (1977) where the number

of vehicles to be used is given. Arc �ow variable xkij takes value one if vehicle k traverses

arc (i, j) and zero otherwise. Hence, given a solution of the formulation, it is possible

to determine as many equivalent solutions as the permutations of the vehicles. Indeed,

one can permute the indices of the vehicles of variables xkij to obtain a di�erent solution

with the same value.

22

1.4 Solving by a Branch-Price-and-Cut algorithm

1.4 Solving by a Branch-Price-and-Cut algorithm

In this section, we apply the generic description of a BPC algorithm presented in Sec-

tion 1.2 to solve formulation [SC]. In Section 1.4.1 we present the RMP associated with

formulation [SC] and its dual problem. In Sections 1.4.2, 1.4.3 and 1.4.4, we show how

the pricing problem can be formulated and solved. In Section 1.4.6, we discuss termi-

nation conditions based on the computation of a Lagrangian bound. Valid inequalities

and branching rules are presented later in Sections 1.4.7 and 1.4.8, respectively. Some

additional speed-up techniques are discussed in Section 1.4.9.

1.4.1 Restricted master problem

In this section, we present the RMP used when solving the linear relaxation of [SC] by

means of a column generation algorithm. To do so, let P′ ⊆ P be a subset of paths.

The RMP reads as follows:

[RMP(P′)] z̃′ = min
∑
p∈P′

Cpλp (1.21)

s.t.
∑
p∈P′

apjλp ≥ 1 (ρj) ∀j ∈ J (1.22)∑
p∈P′

λp ≥ v (τ1) (1.23)∑
p∈P′

λp ≤ v̄ (τ2) (1.24)

λp ≥ 0 ∀p ∈ P′. (1.25)

Remark 1.13. Note that we relaxed constraints λp ≤ 1, for all p ∈ P. We do so to

avoid managing the dual variables associated to those constraints in the pricing problem.

As it will be explained later, such task is troublesome because each dual variable is

associated with a speci�c path. Removing such constraints is valid because we are

solving a relaxation of [SC].

We denote by ρj ≥ 0, j ∈ J the dual variables associated with Constraints (1.22) and

by τ1 ≥ 0 and τ2 ≤ 0 the dual variables associated with Constraints (1.23) and (1.24),

respectively (in blue in [RMP(P′)]). The dual problem D-RMP of the RMP reads as

23

follows:

[D-RMP(P′)] w̃′ = max
∑
j∈J

ρj + vτ1 + v̄τ2 (1.26)

s.t.
∑
j∈J

apjρj + τ1 + τ2 ≤ Cp ∀p ∈ P′ (1.27)

ρj ≥ 0 ∀j ∈ J (1.28)

τ1 ≥ 0 (1.29)

τ2 ≤ 0. (1.30)

In Table 1.1, we report the notation we use for the optimal values of [SC], the [MP],

the dual [D-MP] of the [MP], the [RMP(P′)] and its dual [D-RMP(P′)].

Table 1.1: Notation.

Notation meaning

z∗ optimal value of [SC]
z̃ optimal value of the MP
w̃ optimal value of the D-MP
z̃′ optimal value of [RMP(P′)]
w̃′ optimal value of [D-RMP(P′)]

1.4.2 Pricing problem: the (E)SPPRC

In this section, we describe the structure of the pricing problem arising in the column

generation procedure. Hereinafter, given a set of vertices V′ ⊆ V, we denote by δ−(V′) =

{(i, j) ∈ A : i /∈ V′, j ∈ V′} the set of arcs entering in vertices of V′ and by δ+(V′) =

{(i, j) ∈ A : i ∈ V′, j /∈ V′} the set of arcs exiting from vertices of V′. To lighten the

notation if V′ = {i} is a singleton, we write δ−(i) and δ+(i).

At each iteration of the procedure, λp, p ∈ P variables are priced out. Speci�cally,

the pricing problem to solve is [PP] C̄∗ = min{C̄p : p ∈ P}, where

C̄p = Cp −
∑
j∈J

apjρj − τ1 − τ2

is the reduced cost associated with λp variable. Note that C̄p represents the slack of

Constraints (1.27), and having a negative value of C̄p means that the corresponding

24

1.4 Solving by a Branch-Price-and-Cut algorithm

constraint in [D-MP] is violated. λp variables are associated with feasible paths in

graph G starting in vertex s and ending in vertex t. Hence, solving the pricing problem

entails searching for negative reduced cost feasible paths from source s to destination t

in graph G where suitable costs on the arcs are de�ned. Precisely, for each arc (i, j) ∈ A

we de�ne its cost as follows:

C̄ij =


Cij − ρj, if i ̸= s and j ̸= t

Cij − τ1 − τ2, if i = s

Cij, if j = t.

In our context, the resource consumption is associated with vertices j ∈ J, that is,

resource Rj is consumed every time a path visits vertex j.

Elementarity constraints, i.e., each node must be visited at most once, have a major

impact on the formulation of the pricing problem and the e�ciency of its solution. If

such requirements are not imposed, the pricing problem can be formulated as a Shortest

Path Problem with Resource Constraints (SPPRC).

The SPPRC can be formulated by means of an integer programming model (Beasley

& Christo�des, 1989). Let xij be an integer variable representing the number of times

arc (i, j) ∈ A is traversed by the path. We denote by M a large positive constant. The

model reads as follows.

[PP] C̄∗ = min
∑

(i,j)∈A

C̄ijxij (1.31)

s.t.
∑

(s,j)∈δ+(s)

xsj = 1 (1.32)

∑
(j,t)∈δ−(t)

xjt = 1 (1.33)

∑
(i,j)∈δ−(j)

xij =
∑

(j,i)∈δ+(j)

xji ∀j ∈ J (1.34)

∑
j∈J

∑
(i,j)∈δ−(j)

Rjxij ≤ R̄ (1.35)

∑
(i,j)∈A:i∈S,j∈S

xij ≤M
∑

(i,j)∈δ+(S)

xij ∀S ⊆ V \ {t} (1.36)

xij ∈ N ∀(i, j) ∈ A. (1.37)

25

Objective function (1.31) minimises the reduced cost of a path. Constraints (1.32)

and (1.33) force a path to start in vertex s and to end in vertex t. Constraints (1.34)

are the �ow balance constraints stating that if a vertex j ∈ J is visited, the �ow

entering j has to be equal to the �ow going out from j. Constraint (1.35) ensure the

feasibility of the path with respect to the resource constraint. Constraints (1.36) forbid

having a cycle disconnected from the path. More precisely, given a subset of vertices

S ⊆ V \ {t}, Constraints (1.36) state that if some arcs are used between vertices of S,

then at least one arc has to exit from set S. Note that these constraints do not forbid

having vertices visited several times in the path. Finally, Constraints (1.37) de�ne the

variables involved in the model as integer.

The SPPRC is NP-hard even if graph G is acyclic (Di Puglia Pugliese & Guer-

riero, 2013). However, dynamic programming techniques based on the Bellman-Ford

algorithm are particularly well-adapted to e�ciently solve the problem with a pseudo-

polynomial complexity (see, e.g., Desrochers, 1988).

There are many applications where paths are required to be elementary. This is typ-

ically the case of the CVRP, where a customer is visited only once in a path. To satisfy

this elementarity requirement, the pricing problem can be formulated as an Elemen-

tary Shortest Path Problem with Resource Constraints (ESPPRC). To formulate the

ESPPRC by means of an integer programming model, we need to modify model (1.31)-

(1.37) to prevent the existence of cycles in the solution. To do so, Constraints (1.36)

are replaced by the following constraints:∑
(i,j)∈A:i∈S,j∈S

xij ≤ |S| − 1 ∀S ⊆ V. (1.38)

Such constraints are referred to as subtour elimination constraints. Remark that

other subtour elimination constraints may be used, such as the ones introduced in Dantzig

et al. (1954) or in Miller et al. (1960) to obtain a compact formulation. Note that to

model the ESPPRC, variables xij will never take a value greater than one, so con-

straints (1.37) can be updated to de�ne the variables as binary.

In the following sections, we discuss solution algorithms for the SPPRC and the

ESPPRC. Note that the ESPPRC is strongly NP-hard (Dror, 1994) and requires more

sophisticated techniques to be solved e�ciently than the SPPRC. For these reasons,

the focus of the next sections is more oriented to the solution of the ESPPRC. Observe

26

1.4 Solving by a Branch-Price-and-Cut algorithm

that the topology of the graph may simplify the ESPPRC, e.g. if G is acyclic, then the

ESPPRC reduces to a SPPRC.

1.4.3 Algorithms for the SPPRC

The SPPRC can be modelled via the following Bellman's recursive formula:{
V (0, s) = 0

V (R, j) = mini∈V:(i,j)∈δ−(j){V (R−Rj, i) + C̄ij}, ∀j ∈ V,∀Rj ≤ R ≤ R̄,
(1.39)

where we denoted by V (R, j) the value of an optimal feasible path starting in

vertex s, ending in vertex j ∈ V and with a resource consumption equal to R. The

spatial and temporal complexity of dynamic program (1.39) are O(R̄|V|) and O(R̄|A|),
respectively.

As mentioned in the previous section, although the SPPRC is NP-hard, variants

of the Bellman-Ford algorithm can e�ciently solve the SPPRC in pseudo-polynomial

time (see, e.g., Jaumard et al., 1999). We present one of such variants in Algorithm 5.

Algorithm 5: A Bellman-Ford algorithm for the SPPRC

Input: Graph G = (V,A).
Initialization: V (0, s) := 0 and p0s := s, V (R, j) := ∞ and pRj = null for all j ∈ V \ {t} and R = 0, . . . , R̄.

1 forall R = 0, . . . , R̄ do

2 forall j ∈ V \ {s} do

3 if R ≥ Rj then

4 forall (i, j) ∈ δ−(j) do
5 if V (R−Rj , i) + C̄ij < V (R, j) then
6 set V (R, j) := V (R−Rj , i) + C̄ij ;

7 set pRj = i;

8 end

9 end

10 end

11 end

12 end

1.4.4 Algorithms for the ESPPRC

The ESPPRC can be formulated with a Bellman's recursive equation:
V ({s}, s) = 0

V (S, j) = mini∈S:(i,j)∈δ−(j){V (S \ {j}, i) + C̄ij},
∀j ∈ V, S ⊆ V : j ∈ S,

∑
i∈S Ri ≤ R̄,

(1.40)

27

where we denoted by V (S, j) the value of an optimal feasible path starting in vertex s,

ending in vertex j ∈ S ⊆ V and visiting all the vertices in S.

Note that the recursive formula does not take into account the resource. Indeed,

we consider a resource that has an additive consumption associated with the ver-

tices. Hence, given a set of vertices S, the associated resource consumption is known

(
∑

i∈SRi), so only the sets such that the resource consumption does not exceed R̄ are

considered. The spatial complexity of such a dynamic program is O(|V|2|V|), and the

temporal complexity is O(|A|2|V|).
Dynamic programming algorithms are commonly employed and well-suited to solve

the ESPPRC in the context of column generation. First, they allow to provide not

only one negative reduced cost column but several of them. This is known to speed

up the convergence of the column generation procedure. Second, it is easy to stop the

algorithm prematurely when some negative reduced cost paths have been identi�ed. In

this section, we discuss two exact label correcting algorithms to solve the dynamic pro-

gram (1.40) for the ESPPRC. Such algorithms stem from the Bellman-Ford algorithm.

The idea behind them is to associate feasible partial paths starting from s with labels

which encode the attributes needed to identify such paths. Labels are then repeatedly

extended from vertex to vertex until there is no more possible extension. All the labels

extended to the destination t correspond to feasible paths, the ones with negative re-

duced cost can be reported as new columns to the RMP, while the ones with the most

negative reduced cost are optimal solutions of the ESPPRC.

Note that the interest in using such labelling algorithms to solve the ESPPRC

instead of a classical Bellman-Ford algorithm relies on the possibility of encoding the

paths in well-suited data structures, the labels. Indeed, when solving the SPPRC with

a Bellman-Ford algorithm as presented in Algorithm 5, a matrix of size equal to the

number of vertices in the graph times the maximum consumption of resources R̄ is

enough to encode all the states of the dynamic programming. When we are interested

in retrieving the optimal path, a matrix of the same size is also needed: for each vertex,

the entries of such matrix store the vertex previously visited in the path. Conversely,

when solving the ESPPRC, to ensure the elementarity constraints, the states of the

dynamic programming have to contain the set of vertices S visited in the partial path.

Doing so in a Bellman-Ford algorithm entails using a matrix whose rows are the vertices

of the graph and whose columns are the subsets of vertices of the graph, i.e., a matrix of

exponential size. Such a matrix has to be built a priori and traversed at each iteration

28

1.4 Solving by a Branch-Price-and-Cut algorithm

of the algorithm. In a labelling algorithm, we do not need to build any data structure

a priori, paths are encoded in labels generated on the �y.

For the sake of completeness, we should point out that there exist cases where a

dynamic programming approach is not well-suited: e.g., in the presence of additional

constraints that force a group of vertices to be visited together in the same path. To

deal with this case, some recent works use integer programming techniques to solve an

ESPPRC (see, e.g., Briant et al., 2020; Hintsch & Irnich, 2020).

In practice, a dynamic programming approach performs well when the total amount

of resource R̄ is small w.r.t. the resource consumption of the vertices. Indeed, in such

cases, only a few partial paths (subsets of V) are feasible, and the number of feasible

paths can be rather small in comparison with the total number of subsets of V.

In what follows, we present the main ingredients of the labelling algorithm. Pre-

cisely, we formally introduce the labels, the rule to extend them and the dominance

rules to prune unpromising labels.

Let p be a partial path starting from source s and ending in vertex j ∈ J. Path p

is represented by label l = (j, R, C̄,U) where j: is the last visited vertex in p; R: is the

accumulated resource consumption, i.e., R =
∑

i∈J(p)Ri; C̄: is the accumulated reduced

cost, i.e., C̄ =
∑

(h,i)∈A(p) C̄hi; U: is the set of vertices visited by the path, i.e., U = J(p).

Note that set U is the label attribute that distinguishes the solution of an ESPPRC

from the one of a SPPRC (see Beasley & Christo�des, 1989). As mentioned in Feillet

et al. (2004), the label de�nition presented above can be improved by generalising the

de�nition of set U to include also the vertices that cannot be visited in any extension

of p due to some other resource consumption, i.e., UI = U ∪ {i ∈ J : R + Ri > R̄}.
The vertices in UI are called unreachable, while the ones in J \UI are called reachable.

In the following, we adopt this extended de�nition of the labels. A label is said to be

feasible if the associated partial path is feasible, i.e., if R ≤ R̄.

Now, we present the extension rule to extend a label l = (j, R, C̄,UI) encoding a

path ending at vertex j along an arc (j, j′) ∈ A. In terms of paths, this operation

corresponds to appending vertex j′ to the partial path associated with l.

The extended label l′ = (j′, R′, C̄ ′,U′
I) is de�ned as follows:

R′ = R +Rj

C̄ ′ = C̄ + C̄jj′

U′
I = {i ∈ J : i ∈ UI ∪ {j′} ∨R′ +Ri > R̄}.

(1.41)

29

Extending all the labels until no further extension can be performed (due to the

resource constraint) ensures the correctness of the algorithm. However, extending

all the labels may be intractable: in the worst-case scenario, there are 2|V| subsets

to consider, and for each subset S ⊆ V, there are |S|! possible labels. To limit the

explosion of the number of labels, dominance rules are applied to prune unpromising

labels, i.e., partial paths that would not lead to an optimal solution. We stress that

dominance rules are a speedup technique, i.e., removing them has no impact on the

correctness of the algorithm. However, it highly a�ects its e�ectiveness.

Let us present the dominance rules that can be applied in the labelling algorithm.

Let l = (j, R, C̄,UI) and l′ = (j, R′, C̄ ′,U′
I) be two labels encoding two paths ending at

vertex j. We say that l dominates l′ if
R ≤ R′

C̄ ≤ C̄ ′

UI ⊆ U′
I

(1.42)

and at least one of these inequalities is strict. Here, the existence of label l allows to

prune label l′ without a�ecting the correctness of the algorithm. Indeed, let p̃ be a

partial path from j to t such that the concatenation of the path encoded in l′ with

p̃ leads to a complete feasible path. Observe that all the vertices that are reachable

in an extension of l′ are also reachable in an extension of l, in addition, l consumes

less resource and provides a better reduced cost w.r.t. the ones of l′. Hence, the

concatenation of the partial path encoded in l with p̃ leads to a complete feasible path,

as well, with a cost which is at least as good as the one provided by the concatenation

of the partial path associated with l′ and p̃.

Note that verifying the third condition in (1.42) is computationally expensive. One

should verify the inclusion relation between two sets whose potential size may be equal

to |J|. Hence, although UI is de�ned as a set, at the implementation level, it is usually

de�ned as a bitset. Such data structures are well-suited to perform set operations

e�ciently: the average time complexity to perform tasks such as intersections, unions

or verifying inclusion relations is constant.

We now present descriptions of two classical algorithms for the ESPPRC due to

Feillet et al. (2004) and to Righini & Salani (2006) with some details about their

possible implementations.

30

1.4 Solving by a Branch-Price-and-Cut algorithm

1.4.4.1 Monodirectional algorithm of Feillet et al. (2004)

In the following, we say that a label is associated with a vertex j if its partial path

ends in vertex j. Further, we denote by Lj, j ∈ V the set of labels associated with

vertex j and by L̄j ⊆ Lj the subset of the labels of j not extended yet. We report the

pseudocode of the monodirectional algorithm in Algorithm 6.

Algorithm 6: Monodirectional algorithm of Feillet et al. (2004)

Input: Graph G = (V,A).
Initialization: Lj := ∅, for all j ∈ V; Ls = L̄s := {(s, 0, 0, ∅)}; termination := false.

1 while termination ̸= true do

2 set termination := true;
3 forall j ∈ V \ {t} do

4 forall l = (j, R, C̄,UI) ∈ L̄j do

5 forall (j, j′) ∈ δ+j s.t. j′ /∈ UI do

6 let l′ = (j′, R′, C̄′,U′
I) be the extension of l to j′;

7 if DOM(Lj′ , l
′) then

8 set termination := false;
9 end

10 end

11 remove l from L̄j ;

12 end

13 end

14 end

The algorithm takes in input graph G = (V,A). In the initialisation step, the sets

of labels of all the vertices are set to be empty, except for the one of the source vertex

s, where a label with zero resource consumption and zero cost is included. In addi-

tion, Boolean variable termination to detect whether the execution of the algorithm

is �nished is set to false.

At each iteration of the algorithm, the variable termination is set to true. Then, the

algorithm loops over the vertices of graph G, the labels not yet extended, and the arcs

going out from the vertices to detect some new non-dominated labels. If it succeeds,

termination is set to false, and the iteration repeats. Now, we discuss how new non-

dominated labels may be detected. Let j ∈ V \ {t} be a vertex, l = (j, R, C̄,UI) ∈ L̄j

a label of j not extended yet and (j, j′) ∈ δ+j be an arc going out of j such that

vertex j′ is reachable by the partial path represented by l and its inclusion in the path

represented by l respect the resource consumption constraints. The extended label

l′ = (j′, R′, C̄ ′,U′
I) is produced as speci�ed by rules (1.41). Then, function DOM(Lj′ , l

′)

tests if label l′ is not dominated by other labels in Lj′ by implementing rules (1.42). If

this is the case, it inserts l′ in Lj′ and removes from Lj′ all the labels dominated by l′.

Once all the possible extensions of label l are processed, we remove it from set L̄j.

31

Function DOM(Lj′ , l
′) is usually the bottleneck of the algorithm. On the one hand,

it helps in limiting the explosion of the number of labels, on the other hand, it is called

every time a new label is generated and the tests it performs are time consuming. In

the following, we provide details on how these two objectives can be balanced. Once

again, we would like to stress that the correctness of the algorithm is valid if the

function DOM is removed from it. Remark that to perform the dominance tests in DOM,

we need to loop over the entire set of labels Lj′ . Hence, a good practice is to sort

the labels stored in sets Lj, j ∈ V to avoid useless tests. Precisely, labels are sorted

by increasing reduced cost, and if the reduced cost is the same, they are ordered by

increasing resource consumption. Hence, in function DOM, the loop over set Lj′ can be

split in three steps:

1. consider the labels l ∈ Lj′ such that C̄ < C̄ ′ and test whether l dominates l′;

2. consider the labels l ∈ Lj′ such that C̄ = C̄ ′ and test whether l dominates l′ and

the vice-versa;

3. consider the labels l ∈ Lj′ such that C̄ > C̄ ′ and test whether l′ dominates l.

Clearly, the loop stops if label l′ is dominated in one of the �rst two steps. Otherwise,

label l′ has to be inserted right after the second step is performed, and, in the third

step, labels in set Lj′ which are dominated by l′ are erased from the set.

Even this improved management of function DOM may not be enough in some ap-

plications. Indeed, the dominance function may be called too many times. Hence,

one idea to limit the calls to the dominance rule is to organise the labels in sets Lj

in subsets called buckets. Each bucket contains labels characterised by similar values

of resource consumption. One can discretise interval [0, R̄] corresponding to the possi-

ble resource consumption values. Let {r0 = 0, r1, . . . , rm = R̄} be such discretisation.

Sets Lj can be partitioned in m buckets, each corresponding to an interval [rl, rl+1),

l = 0, . . . ,m − 1 (the last interval contains also rm) of resource consumption. When

a new label is generated, we identify the bucket where it should be stored, and we

perform the dominance tests only considering the labels in that bucket and, eventually,

the ones stored in "adjacent" buckets. Given that dominance rules do not a�ect the

correctness of the algorithm, one can perform the dominance tests partially instead

of the entire set of labels. Sadykov et al. (2021) extend the idea of the buckets by

introducing the concept of bucket graph, we refer to their work for further details.

32

1.4 Solving by a Branch-Price-and-Cut algorithm

1.4.4.2 Bounded bidirectional algorithm of Righini & Salani (2006)

As already mentioned, labelling algorithms, even with dominance rules, may su�er from

the explosion of the number of labels. In this case, the performances of the algorithm

are heavily a�ected. To limit this phenomenon, Righini & Salani (2006) proposed to

improve the algorithm of Feillet et al. (2004) with two techniques: bidirectional search

and bounding. The idea of the bidirectional search is to extend labels forward from s to

t and backward from t to s. By doing so, an algorithm would produce double the labels

of the monodirectional search. Hence, Righini & Salani (2006) couples the bidirectional

search with the bounding: only labels that consume less than a certain fraction of the

available maximal resource quantity are extended forward and backward. This limit

value is called halfway point. Righini & Salani (2006) set this value to be half of the

available maximal resource quantity, i.e., to R̄/2. Note that Tilk et al. (2017) proposed

a more e�cient and dynamic way to de�ne the halfway point that is not considered

here. Once the forward and backward extensions are performed, forward and backward

labels are merged to obtain labels corresponding to complete feasible paths.

In the following, we report some details regarding the bounded bidirectional algo-

rithm. We denote by LF
j , j ∈ V the set of forward labels associated with vertex j and

by L̄F
j ⊆ LF

j the subset of the forward labels of j not yet extended. Analogously, we

de�ne sets LB
j and L̄B

j , j ∈ V for the backward labels. We do not report the pseudocode

of the bounded bidirectional algorithm, but only the procedure to merge forward and

backward labels (see Algorithm 7). Indeed the forward and backward extensions are

obtained by applying a few modi�cations to the monodirectional algorithm (see Algo-

rithm 6). Precisely, to produce a set of forward labels, one can apply the procedure of

Algorithm 6 where sets Lj and L̄j are replaced with sets LF
j and L̄F

j , respectively, and

a label l ∈ L̄F
j is extended only if its consumption is strictly less than R̄/2. Similarly,

to obtain a set of backward labels, one applies the same procedure where the roles of

source s and sink t are inverted and loop over the out-going arcs becomes a loop over

the in-going arcs.

Hence, we discuss only function Merge whose pseudocode is in Algorithm 7. Let

l = (j, R, C̄,UI) be a forward label of vertex j ∈ J and l′ = (j′, R′, C̄ ′,U′
I) be a

backward label of vertex j′ ∈ J. These two labels can be merged if the total amount of

resource consumed is less than the maximal available resource quantity (R + R′ ≤ R̄)

and if the vertices in U ⊆ UI visited along the path encoded by l are reachable by the

path encoded by l′, i.e., U∩U′
I = ∅, and vice-versa U′ ∩UI = ∅. If this is the case, the

33

merged label lmerge is built. Such a label corresponds to the path obtained by merging

path (s, . . . , j) associated with label l with the path (j′, . . . , t) associated with label l′.

The resulting merged label is lmerge = (t, R +R′, C̄ + C̄ ′ + C̄jj′ ,UI ∪ U′
I).

Algorithm 7: Merge function of algorithm by Righini & Salani (2006)

Input: LF
j ,LB

j , for all j ∈ V.

1 forall j ∈ J do

2 forall l = (j, R, C̄,UI) ∈ LF
j do

3 forall j′ ∈ J s.t. (j, j′) ∈ A do

4 forall l′ = (j′, R′, C̄′,U′
I) ∈ LB

j′ do

5 if R+R′ ≤ R̄ ∧ U ∩ U′
I = U′ ∩ UI = ∅ then // Merge feasibility test

6 let lmerge be the label resulting from merging l with l′;
7 end

8 end

9 end

10 end

11 end

We conclude the section with a remark about a special case where the computational

burden to solve the ESPPRC can be further reduced. This special case leads to a variant

of the algorithm of Righini & Salani (2006) and is referred to as implicit version of the

bidirectional algorithm and was applied by Bode & Irnich (2012) and Goeke et al.

(2019). Precisely, we suppose that G is a symmetric graph (i.e., if (i, j) ∈ A, then

(j, i) ∈ A) and the costs associated with its arcs are symmetric as well (C̄ij = C̄ji).

Under these assumptions, forward and backward labels are essentially identical. Hence,

it is su�cient to perform only the forward extension and then to merge two forward

labels. In such a case, it is also su�cient only to merge labels corresponding to partial

paths ending at the same node. Hence some minor modi�cations have to be considered

as described in the following.

First, labels with a resource consumption less than or equal to R̄/2 are extended in

the forward extensions. The equality case has to be considered to avoid missing a path

where each half consumes exactly R̄/2 units of resource. Then, the function Merge has

to be modi�ed as in Algorithm 8. It is su�cient to merge labels associated with the

same vertex and one of the two must exceed the value of the halfway point. Indeed, all

labels corresponding to feasible paths from s to t with a resource consumption less or

equal R̄/2 are generated during the forward extension. Hence, the merge function needs

to look only for labels with a resource consumption greater than R̄/2. In addition, a

feasible path from s to t can result from merging di�erent partial paths, depending

on where the path is split. Hence, �ltering partial paths with resource consumption

34

1.4 Solving by a Branch-Price-and-Cut algorithm

greater than R̄/2 does not eliminate any feasible path and permits avoiding computing

too many times the same path.

Moreover, since two partial paths ending at the same vertex are merged, the merging

condition must be updated as shown in Line 5 of Algorithm 8. The resulting merged

label lmerge from labels l = (j, R, C̄,UI) and l′ = (j, R′, C̄ ′,U′
I) is l

merge = (t, R + R′ −
Rj, C̄ + C̄ ′,UI ∪ U′

I).

Algorithm 8: Merge function of implicit version of the bidirectional algorithm

Input: LF
j , for all j ∈ V.

1 forall j ∈ J do

2 forall l = (j, R, C̄,UI) ∈ LF
j do

3 if R > R̄/2 then

4 forall l′ = (j, R′, C̄′,U′
I) ∈ LF

j do

5 if R+R′ −Rj ≤ R̄ ∧ U ∩ U′
I = U′ ∩ UI = {j} then // Merge feasibility test

6 let lmerge be the label resulting from merging l with l′;

7 end

8 end

9 end

10 end

11 end

1.4.5 Relaxing the elementarity constraint

Requiring the elementarity of the paths makes the pricing problem strongly NP-hard

and less tractable from a computational point of view. Hence, a rather vast branch of

research was devoted to study e�cient relaxations of the elementarity constraint. Note

that instead of solving the MP where λp variables correspond to elementary feasible

paths, one might solve a relaxation of the MP where λp variables also correspond

to some non-elementary paths. In such a case, coe�cients apj in Constraints (1.22)

indicate the number of times vertex j is visited in path p. Solving such a relaxation

by column generation provides a lower bound for the MP, that is also a lower bound

of [SC]. The main interest is to solve a relaxation of the ESPPRC when solving the

pricing problem. Solving, for example, a (non-elementary) SPPRC can be done using a

pseudo-polynomial algorithm (see Section 1.4.3). Conversely, solving a relaxation might

lead to poor quality lower bounds. Hence, the objective of these studies on e�cient

relaxations of the elementarity constraint was to �nd a balance between making the

solution of the ESPPRC more tractable while not weakening too much the value of the

linear relaxation of the RMPs.

35

It can also be noticed that e�ciently solving relaxations of the ESPPRC can be

useful in the pricing step, even when solving the MP with elementary paths. Indeed,

if the optimal value of the relaxation is positive or zero, it proves there are no more

negative reduced cost paths. Also, if solving the relaxation provides some negative

reduced cost elementary paths, they can be included in the RMP without solving the

ESPPRC. However, if solving the relaxation only provides negative reduced cost non-

elementary paths, then the ESPPRC has to be solved. So such approaches make sense

only if the relaxation can be solved e�ciently and easily provides elementary negative

reduced cost paths.

In this section, we brie�y report the main relaxations proposed through the years.

Then, we focus the discussion on the so-called ng-path relaxation introduced in Baldacci

et al. (2011), nowadays implemented in almost all state-of-the-art BPC algorithms.

The �rst idea in this direction appeared in Desrochers et al. (1992): the authors

proposed to relax the elementarity constraint while forbidding 2-cycles, i.e., paths with

cycles of size two. Irnich & Villeneuve (2006) extended the idea of forbidding cycles

in the paths to the generic case of the k-cycles. Computational experiments showed

that a good trade-o� between improving the value of the linear relaxation and keeping

the solution of the pricing problem tractable was attained by forbidding cycles up to

size four. Boland et al. (2006) and Righini & Salani (2008) simultaneously developed

a procedure based on state space relaxation. Precisely, the procedure starts by solving

the SPPRC and dynamically includes elementarity constraints for some of the vertices.

Finally, Baldacci et al. (2011) proposed the ng-path relaxation. Vertices are assigned

with a neighbourhood, and cycles are allowed only if the vertex visited more than

once in a path is not in the neighbourhood of its predecessor in that path. We notice

that such a neighbourhood can be dynamically adjusted during the execution of the

algorithm (Roberti & Mingozzi, 2014). However, we discuss the static case where the

neighbourhoods are pre-assigned to the vertices. In the following, we provide a detailed

description of the ng-path relaxation.

A neighbourhood Nj ⊆ J of size ∆ > 0 is assigned to each vertex j ∈ J. Such

neighbourhood must contain vertex j and, e.g., the closest ∆ − 1 vertices to j. Set

Nj, j ∈ J has to be seen as a memory of vertex j. Hence, if a path visits vertex j, we

keep in memory only the previously visited vertices that are in the neighbourhood of

j. When extending the path, the extension to a vertex in the memory is not allowed.

36

1.4 Solving by a Branch-Price-and-Cut algorithm

In order to use the ng-path relaxation, the following modi�cations to the labelling

algorithm for the pricing problem have to be implemented. In the de�nition of the

labels, the vector of unreachable vertices UI becomes the memory of the label. The

rule to extend UI of label l = (j, R, C̄,UI) from j to j′ to obtain a new label l′ =

(j′, R′, C̄ ′,U′
I) becomes:

U′
I = (UI ∩Nj′) ∪ {j′}. (1.43)

Remark that dominance rules do not need any modi�cations. We clarify the explana-

tion of the ng-paths with the following example.

Example 1.14 (Ng-path). We consider a complete graph G = (V = J ∪ {s, t},A),

where J = {1, 2, 3, 4, 5}. Table 1.2 reports the memory of the vertices in J with ∆ = 3.

Table 1.2: Memory of the vertices in G.

j ∈ J Nj

1 {1, 2, 3}
2 {1, 2, 5}
3 {2, 3, 4}
4 {1, 2, 4}
5 {2, 3, 5}

Let us consider an ng-path p = (s, 1, 2, 3, 1, t) where vertex 1 is visited twice. In

Table 1.3, we report how the memory of the labels required to build path p is extended.

The �rst column of Table 1.3 reports the partial path associated with the label and the

second column reports the memory of the label.

Table 1.3: Ng-path label extension to obtain path p.

partial path UI

(s) ∅
(s, 1) {1} = (∅ ∩N1) ∪ {1}
(s, 1, 2) {1, 2} = ({1} ∩N2) ∪ {2}
(s, 1, 2, 3) {2, 3} = ({1, 2} ∩N3) ∪ {3}
(s, 1, 2, 3, 1) {1, 2, 3} = ({2, 3} ∩N1) ∪ {1}
(s, 1, 2, 3, 1, t) ∅

Vertex 1 is allowed to be visited two times: when the path is extended to vertex 3,

the �rst visit to 1 is forgotten since the memory of the partial path (s, 1, 2, 3) is {2, 3}.

Remark that if neighbourhood Nj only contains vertex j, we are solving the SPPRC.

Conversely, if they contain all the vertices, we are solving the ESPPRC. In practice,

37

small size neighbourhoods, e.g., ∆ ≤ 8 (Pessoa et al., 2020), yield very good results:

many paths generated by the pricing are elementary while the solving time decreases

signi�cantly.

1.4.6 Dual bound and termination condition

In the context of a BPC algorithm, column generation is used to solve the MP at

each node of the branch-and-bound tree. If one is interested in solving the MP to

optimality at each node, an obvious termination condition is given by the solution

of the pricing problem. Indeed, the pricing problem certi�es the optimality of the

current solution of the RMP when no negative reduced cost columns are identi�ed.

In a BPC algorithm, column generation may be terminated earlier than the point

at which the pricing problem condition is met without giving up its correctness. In

this section, we discuss such a termination condition, which exploits the link between

column generation and Lagrangian relaxation. Precisely, Lagrangian relaxation allows

us to compute a lower bound on the value of the MP at each iteration of the column

generation procedure. The lower bound can be used to end the column generation

procedure before the termination condition given by solving the pricing problem is

met.

Let us consider the MP, i.e., the linear relaxation of formulation [SC], see Section 1.3.

We relax in a Lagrangian fashion covering Constraints (1.17). Let L : R|J|
≥0 → R be the

dual function de�ned as:

L(ρ) = min

{∑
p∈P

Cpλp +
∑
j∈J

ρj

(
1−

∑
p∈P

apjλp

)
: (1.18), (1.19), λp ≥ 0,∀p ∈ P

}
.

The problem de�ned by L(ρ), ρ ∈ R|J|
≥0, is a relaxation of the MP. Hence, for each

ρ ∈ R|J|
+ , value L(ρ) is a lower bound for the optimal value z̃ of the MP. The associated

Lagrangian dual problem reads as follows:

[LD] max{L(ρ) : ρ ∈ R|J|
≥0}

and provides the best among these lower bounds.

By duality, problem [LD] can be reformulated as a linear program which corresponds

to the MP.

38

1.4 Solving by a Branch-Price-and-Cut algorithm

By de�nition, we have

[LD] max{L(ρ) : ρ ∈ R|J|
≥0}

=max

{
min

{∑
p∈P

Cpλp +
∑
j∈J

ρj

(
1−

∑
p∈P

apjλp

)
: (1.18), (1.19), λp ≥ 0,∀p ∈ P

}
: ρ ∈ R|J|

≥0

}

=max

{∑
j∈J

ρj +min

{∑
p∈P

(
Cp −

∑
j∈J

apjρj

)
λp : (1.18), (1.19), λp ≥ 0,∀p ∈ P

}
: ρ ∈ R|J|

≥0

}
.

Let us consider the inner minimisation problem de�ned over the λ variables. We

denote by τ1 and τ2 the dual variables associated to Constraints (1.18) and (1.19),

respectively. The dual of this LP can be written as:

max

{
vτ1 + v̄τ2 : τ1 + τ2 ≤ Cp −

∑
j∈J

apjρj,∀p ∈ P, τ1 ≥ 0, τ2 ≤ 0

}
.

Hence, problem [LD] can be formulated as the following maximisation problem:

[LD] max

{∑
j∈J

ρj + vτ1 + v̄τ2 : τ1 + τ2 ≤ Cp −
∑
j∈J

apjρj, ∀p ∈ P, ρ ∈ R|J|
≥0, τ1 ≥ 0, τ2 ≤ 0

}

=max

{∑
j∈J

ρj + vτ1 + v̄τ2 :
∑
j∈J

apjρj + τ1 + τ2 ≤ Cp,∀p ∈ P, ρ ∈ R|J|
≥0, τ1 ≥ 0, τ2 ≤ 0

}
.

By denoting with λ the dual associated to each constraint
∑

j∈J a
p
jρj + τ1+ τ2 ≤ Cp

, the dual of [LD] can be formulated as:

min

{∑
p∈P

Cpλp : (1.17), (1.18), (1.19), λp ≥ 0,∀p ∈ P

}

This last problem is exactly the MP.

Now, we denote by (ρ̄, τ̄1, τ̄2) an optimal solution of the dual of the MP. ρ̄ is an

optimal solution also for [LD]. Indeed, it is a feasible solution for [LD] since the values

are positive. Then using the strong duality theorem, we have that: (i) the optimal

value of the dual of the MP is equal to the optimal value of the MP, and (ii) the

optimal value of [LD] is equal to the optimal value of its dual. Since the dual of [LD] is

the MP, we have that the optimal value of the dual of the MP is equal to the optimal

value of [LD].

39

Let us de�ne (ρ̄, τ̄1, τ̄2) an optimal solution of the D-RMP. In the following, we show

how it is possible to compute, at each iteration of the column generation, L(ρ̄) that is

a lower bound for the optimal value of the MP.

Value L(ρ̄) can be re-written in terms of optimal values of the RMP and of the

pricing problem:

L(ρ̄) =min

{∑
p∈P

Cpλp +
∑
j∈J

ρ̄j

(
1−

∑
p∈P

apjλp

)
: (1.18), (1.19), λp ≥ 0,∀p ∈ P

}

=
∑
j∈J

ρ̄j +min

{∑
p∈P

(
Cp −

∑
j∈J

apj ρ̄j

)
λp : (1.18), (1.19), λp ≥ 0,∀p ∈ P

}
.

Remark that given (ρ̄, τ̄1, τ̄2) an optimal solution of the D-RMP, the reduced cost of a

variable λp is C̄p = Cp−
∑

j∈J a
p
j ρ̄j−τ̄1−τ̄2. Hence, we have Cp−

∑
j∈J a

p
j ρ̄j = C̄p+τ̄1+τ̄2.

In addition,
∑

j∈J ρ̄j + vτ̄1 + v̄τ̄2 corresponds to the optimal value of the dual of the

RMP, that is equal to z̃′ the optimal value of the RMP by strong duality. Hence,∑
j∈J ρ̄j = z̃′ − vτ̄1 − v̄τ̄2. L(ρ̄) can then be written as:

L(ρ̄) =z̃′ − vτ̄1 − v̄τ̄2 +min

{∑
p∈P

(
C̄p + τ̄1 + τ̄2

)
λp : (1.18), (1.19), λp ≥ 0,∀p ∈ P

}
.

Note that problem

min

{∑
p∈P

(
C̄p + τ̄1 + τ̄2

)
λp : (1.18), (1.19), λp ≥ 0,∀p ∈ P

}

admits a trivial optimal solution λ̂ de�ned as:

λ̂p =


v̄, if p = p∗ and C̄p∗ < −τ̄1 − τ̄2

v, if p = p∗ and C̄p∗ ≥ −τ̄1 − τ̄2

0, otherwise,

where p∗ is an optimal solution of the pricing problem [PP] de�ned over (ρ̄, τ̄1, τ̄2).

Now, knowing the optimal value z̃′ of the RMP and the optimal value of pricing

problem [PP] allows to compute L(ρ̄), i.e., a lower bound on the optimal value of the

MP.

In a BPC algorithm, the MP associated with each node of the branch-and-bound

40

1.4 Solving by a Branch-Price-and-Cut algorithm

tree is solved by a column generation procedure where a lower bound on the optimal

value of the MP can be computed at each iteration. Hence, the column generation

procedure can be terminated as soon as the lower bound exceeds the best incumbent

value ẑ available for [SC], i.e., L(ρ̄) ≥ ẑ. In addition, in the speci�c case where all

coe�cients of the objective function of [SC] are integer, the column generation can be

terminated when the ceiling of lower bound L(ρ̄) is greater than or equal the ceiling of

the optimal value of the RMP, i.e., ⌈L(ρ̄)⌉ ≥ ⌈z̃⌉.

1.4.7 Valid inequalities

As mentioned in Section 1.2.3, valid inequalities are commonly used to strengthen the

MP. According to the taxonomy introduced in de Aragao & Uchoa (2003), in a BPC

algorithm, the inequalities can be classi�ed into robust or non-robust depending on the

impact they have on the pricing problem.

Robust inequalities do not modify the structure of the pricing problem, and their

dual variables can be easily included in the cost of the arcs of graph G when solving

the pricing problem (see Section 1.4.2). The generic form of a robust inequality is∑
p∈P

∑
(i,j)∈A

dijb
p
ijλp ≥ d, (1.44)

where bpij is a binary parameter with value one if path p ∈ P traverses arc (i, j) ∈ A

and zero otherwise, dij ∈ Z is a coe�cient associated with arc (i, j) ∈ A and d ∈ Z is

the right hand-side.

If we denote by β the associated dual variable, the reduced cost of a λp variable is

then

C̄p = Cp −
∑
j∈J

apjρj − τ1 − τ2 − β
∑

(i,j)∈A

dijb
p
ij.

Hence, to take into account the additional term on the cost C̄ij of arcs (i, j) ∈ A in

graph G, it su�ces to subtract dijβ.

In general, inequalities expressed in terms of the arc �ow variables xij of a compact

formulation lead to robust valid inequalities. Indeed, it is easy to see that an inequality

of the form
∑

(i,j)∈A dijxij ≥ d can be transformed into an inequality of the form

of (1.44).

41

Example 1.15 (Rounded capacity cuts for the CVRP). In the case of the CVRP, the

capacity cuts (Laporte et al., 1985) are an example of robust valid inequalities. For

each subset of customers S, such inequalities impose a lower bound on the number of

vehicles to serve the customers in the subset:

∑
p∈P

 ∑
(i,j)∈δ−(S)

bpij

λp ≥
⌈∑

j∈SDj

Q

⌉
∀S ⊆ J, (1.45)

where Dj denotes the demand of customer j and Q is the vehicle capacity.

Conversely, non-robust inequalities modify the structure of the pricing problem and

increase its complexity. Indeed, the states of dynamic programming equation (1.40) get

more attributes, and consequently, the state space enlarges. In other words, additional

resources are required to manage the dual variables of these constraints when solving

the pricing problem via a labelling algorithm. Note that while robust inequalities can

also be expressed in terms of the arc �ow variables, non-robust inequalities can usually

only be expressed in terms of the λ variables. Hence they have no direct correspondence

in a compact formulation. For this reason, such inequalities can only be considered in

a BPC algorithm, not in a B&C one. Non-robust inequalities also usually permit to

improve the quality of the lower bound signi�cantly, which is why it is worth adding

such cuts despite the di�culty of their management in the pricing problem.

The type and the number of additional resources depends on the speci�c family

of valid inequalities. In the following, we report, as an example, the management of

the subset-row inequalities introduced in Jepsen et al. (2008). The interested reader

may refer to Contardo et al. (2014) or Costa et al. (2019) for the management of other

families of non-robust valid inequalities.

Example 1.16 (Subset-row inequalities for the CVRP). Given a subset S ⊆ V and a

multiplier pi ≥ 0 for each i ∈ S, the subset-row inequalities are expressed as

∑
p∈P

⌊∑
i∈S

pia
p
i

⌋
λp ≤

⌊∑
i∈S

pi

⌋
, S ⊆ V. (1.46)

Pecin et al. (2017) provide a management of the subset-row inequalities, which

is also valid in the case where the elementarity of the paths is relaxed. In the label

de�nition, we include an attribute for each inequality whose dual variable is di�erent

from zero.

42

1.4 Solving by a Branch-Price-and-Cut algorithm

Given a subset S ⊆ V corresponding to a subset-row inequality, let us denote by σS ≤
0 the corresponding dual variable, and byM(S) an attribute added to the label de�nition.

M(S) models the fractional part of the coe�cient of the variables in Constraint (1.46).

The role of M(S) is to tell when dual variable σS has to be discounted from the reduced

cost of the partial path. Remark that the coe�cients of the variables in the left hand-

side of Constraint (1.46) are rounded to the nearest integer down. Hence, σS is to be

discounted each time a partial path visits enough vertices of S to increase M(S) above

one. To sum up, when a label is extended to vertex i ∈ S, attributeM(S) is incremented

by pi and if M(S) ≥ 1, dual variable σS is discounted from the reduced cost, and M(S)

is decremented by one unit.

In addition, the dominance rules (1.42) need to be modi�ed. Speci�cally, The second

condition in (1.42) has to be replaced by

C̄ ≤ C̄ ′ +
∑
S∈M

M(S)>M ′(S)

σS, (1.47)

where M is the set of subsets S ⊆ V representing the subset-row inequalities in the

RMP whose dual variable σS is di�erent from zero.

Think of a subset-row inequality de�ned over set S = {1, 2, 3} with multipliers pi =

1/2, i = 1, 2, 3. Table 1.4 shows the value of attribute M(S) and if dual variable σS

is discounted from the reduced cost C̄ for the labels associated to several partial paths

permitting to build a path p = (s, 1, 4, 2, 1).

Table 1.4: Value of attribute M(S) and discount of σS from the reduced cost for labels
to build path p.

partial path M(S) −σS added to C̄

(s) 0 no
(s, 1) 1/2 no
(s, 1, 4) 1/2 no
(s, 1, 4, 2) 0 yes
(s, 1, 4, 2, 1) 1/2 no

Now, we show why the modi�cation in dominance rule is required. To do so, we

consider partial path p = (s, 1, 4, 2, 1) and a second partial path p′ = (s, 3, 4, 5, 1) and

we set σS = −10. Attribute M(S) is equal to 1/2 for p and to 0 for p′. We assume

that the reduced cost of p is C̄ = 95, the one of p′ is C̄ ′ = 100 and that p dominates

p′ according to the dominance rules in (1.42). Hence, with no modi�cation in the

dominance rule, path p′ would be erased from the list of labels associated with vertex

43

1. However, let us suppose to extend both paths to vertex 2 and let C̄12 = −5 be the

reduced cost associated with arc (1, 2). The reduced cost of the extension of p becomes

C̄+ C̄12−σS = 100, whereas the one of p′ becomes C̄ ′+ C̄12 = 95, which contradicts the

correctness of the dominance rules. Note that with the modi�cation in Equation (1.47),

path p′ would have not been erased. Indeed, the modi�ed condition is not satis�ed:

C̄ = 95 > C̄ ′ + σS = 100− 10 = 90.

1.4.8 Branching scheme

The branching scheme ensures the correctness of a BPC algorithm, i.e., it guarantees

that the algorithm terminates with an integer solution. The branching rules to adopt

depend on the speci�c problem under consideration. In this section, we report some

generic remarks about the branching rules and the di�erent strategies to select them.

Imposing any branching rule entails including constraints in the MP and also ap-

plying modi�cations in the column generation procedure at the pricing level. In the

following, we denote by λ̄ the fractional optimal solution at a node of the branch-and-

bound tree.

Note that branching on variables λ̄p, p ∈ P, as in a standard branch-and-bound

algorithm, is highly ine�cient: the resulting branch-and-bound tree is highly unbal-

anced. Indeed, on the one hand, imposing a constraint like λ̄p = 1, is strong: we impose

a decision for all the vertices visited by p ∈ P. On the other hand, imposing λ̄p = 0 is

rather weak: it only forbids the use of path p. In addition, managing constraint λ̄p = 0

in the pricing problem is not easy as we need to prevent the pricing problem [PP] from

producing path p again.

More e�cient branching rules for the generic class of problems we consider are:

branching on the number of paths , i.e., on fractional value g =
∑

p∈P λ̄p; such

rule gives rise to two branches identi�ed by the following constraints∑
p∈P

λp ≤ ⌊g⌋
∑
p∈P

λp ≥ ⌈g⌉.

Managing these constraints in the pricing is analogous to Constraints (1.18)

and (1.19).

branching on the visits to the vertices given a vertex j ∈ J, we branch on frac-

tional value vj =
∑

p∈P a
p
j λ̄p. The two branches are identi�ed by the following

44

1.4 Solving by a Branch-Price-and-Cut algorithm

constraints ∑
p∈P

apjλp ≤ ⌊vj⌋
∑
p∈P

apjλp ≥ ⌈vj⌉.

The management of these constraints in the pricing is similar to Constraints (1.17),

hence, we do not provide further details. Note that if ⌊vj⌋ = 0, then vertex j has

to be removed from graph G when solving the pricing problems in the associated

node.

branching on the �ow on the arcs given an arc (i, j) ∈ A, we branch on fractional

value fij =
∑

p∈P b
p
ijλ̄p, where b

p
ij is a binary parameter with value one if path

p ∈ P traverses arc (i, j) ∈ A and zero otherwise. The two branches are identi�ed

by the following constraints

∑
p∈P

bpijλp ≤ ⌊fij⌋
∑
p∈P

bpijλp ≥ ⌈fij⌉.

The dual variables associated with these two constraints are managed in the same

manner in the pricing problem. Hence, let ϕij ≤ 0 be the dual variable associated

with the �rst of the two constraints. To express the reduced cost of a λp variable,

it su�ces to subtract ϕij from the cost C̄ij of arc (i, j) when solving the pricing

problem. Again, if ⌊fij⌋ = 0, then arc (i, j) has to be removed from graph G

when solving the pricing problem in the associated node.

Such rules might not be enough to ensure the correctness of the algorithm. Addi-

tional rules such as the Ryan Foster branching rules (Ryan & Foster, 1981) or valid

inequalities (see, e.g., Gschwind et al., 2019) may be required.

Branching rules are usually applied hierarchically, i.e., one at a time in a given

order. Among the fractional values of a same branching rule, a common strategy is to

select the one closest to 0.5.

1.4.9 Additional speed up techniques

In this section, we report some additional techniques to improve the performance of a

BPC algorithm.

45

1.4.9.1 Column generation degeneracy

It is well known that the column generation procedure may su�er from slow convergence

(see Desrosiers & Lübbecke, 2005). To explain this phenomenon, we need to look at

the interpretation of column generation procedure from the dual point of view. In

Section 1.2.2, we highlighted that a column generation procedure for a primal problem

is interpreted as a cutting plane method in the associated dual problem. At each

iteration of the procedure, new variables are added to the RMP, which correspond to

new constraints included in the D-RMP. Recall that each time a constraint is included

in the D-RMP, the current optimal dual solution is cut, i.e., becomes infeasible. At the

early iterations of the column generation procedure, the D-RMP is poor in constraints.

Hence, it is likely that several very di�erent solutions of the D-RMP with the same costs

(or very similar costs) exist. Consequently, when, at a given iteration, a constraint is

included in the D-RMP to cut its current optimal solution, the new optimal solution of

the D-RMP may have a similar cost, but the dual variable values may be completely

di�erent. They may oscillate between extreme values, i.e., given a dual variable, its

value is either very high or very low. This makes the convergence to the optimal solution

of the D-MP not smooth. We clarify this phenomenon in the following example.

Example 1.17. We consider an instance of the problem class with �ve vertices, i.e.,

J = {1, 2, 3, 4, 5}. For simplicity, we do not consider Constraints (1.18) and (1.19) in

formulation [SC]. We initialise the MP with two paths: one visiting vertices 1, 2 and

3 with cost 100 and the other one visiting vertices 1, 4 and 5 with cost 120. In this

example, we mimic a possible oscillating behaviour at the �rst iterations of a column

generation procedure to solve the MP. We focus on the dual point of view. At the

beginning of the column generation procedure the D-RMP is:

max ρ1 + ρ2 + ρ3 + ρ4 + ρ5

s.t. ρ1 + ρ2 + ρ3 ≤ 100

ρ1 + ρ4 + ρ5 ≤ 120

ρ1, ρ2, ρ3, ρ4, ρ5 ≥ 0,

where dual variables ρ1, ρ2, ρ3, ρ4, and ρ5 are associated to the vertices in J. At the �rst

iteration of the procedure, the RMP and D-RMP optimal value is 220. An optimal dual

solution associated to it is: ρ̃1 = ρ̃3 = ρ̃5 = 0, ρ̃2 = 100 and ρ̃4 = 120. We suppose that

the pricing problem returns a path of reduced cost equal to −10 and visiting vertices 2

46

1.4 Solving by a Branch-Price-and-Cut algorithm

and 4. This translates in adding constraint ρ2+ρ4 ≤ 210 in the D-RMP. At the second

iteration, again, the optimal value of the RMP and D-RMP is 220. An optimal dual

solution to attain such value is: ρ̃1 = ρ̃2 = ρ̃4 = 0, ρ̃3 = 100 and ρ̃5 = 120. Now, we

suppose the pricing problem returns a path of cost −5 and visiting vertices 3 and 5.

Constraint ρ3 + ρ5 ≤ 215 is added in the D-RMP. Finally, at the third iteration, the

optimal value of the RMP and D-RMP is 220. An optimal dual solution to attain such

value is: ρ̃1 = ρ̃3 = ρ̃4 = 0, ρ̃2 = 100 and ρ̃5 = 120.

We observe that in these three iterations of the column generation procedure no

progress is made: the optimal value of the RMP did not change. In addition, the

values of the dual variables take extreme values from one iteration to the next one.

Now, recall that the convergence of the primal is guided by the optimal dual solu-

tions of the D-RMP. Indeed, as mentioned in Remark 1.5 in Section 1.2.2, the expression

of the reduced cost of the primal variables involves the optimal dual solution. In our

context, dual variables are associated to vertices. Therefore, when solving the pricing

problem, few vertices may have a very high dual price while the others have a very

small one, and the generated negative reduced cost paths would tend to contain only

those vertices with an overestimated cost w.r.t. their optimal cost at the end of the

column generation. This slows down the process since the quality of the columns re-

ported in the RMP is not good. So even if the pricing problem seems to provide very

interesting columns, the value of the RMP decreases very slightly.

A simple idea to limit this phenomenon is to provide a good initialisation of the

column subset before starting the execution of the BPC algorithm. How to compute

such columns depends on the speci�c problem at hand. Heuristic or greedy algorithms

should be considered to generate columns such that each vertex is covered by several

of them. Note that in the dual this allows us to have enough constraints to guide the

solution. However, the initial number of columns must remain small w.r.t. the size of

the instance to avoid solving too large RMPs in the column generation procedure.

A more sophisticated methodology to deal with this phenomenon is to consider

stabilisation techniques. Such techniques aim to guide the trajectory towards a dual

optimal solution, avoiding jumps from one iteration to the other. Several di�erent

stabilisation techniques have been proposed through the years. In the early work

of Marsten (1975), the values of a dual solution are constrained to be in "boxes"

de�ned around the values of the previous dual solution. This is achieved by considering

additional constraints of the form lj ≤ ρj ≤ uj in the D-RMP where uj and lj represent

47

the bounds of the box for dual variable ρj. This implies considering additional variables

in the RMP. Note that to prove the optimality of the RMP, the dual variables need to

be unconstrained, i.e., ρj ∈]lj;uj[. In the RMP, it means the additional variables have

value zero.

Stabilisation techniques based on adding constraints in the dual problem, the so-

called dual inequalities, have also been proposed by Amor et al. (2006), Gschwind &

Irnich (2016) and Haghani et al. (2022). Another technique entails "correcting" the

values of a dual solution based on the values of the previous solution (see Wentges

(1997), Neame (2000) and Pessoa et al. (2018)). Conversely, Du Merle et al. (1999),

Briant et al. (2008), and Amor et al. (2009) proposed stabilisation techniques based on

applying penalties in the dual objective function for the deviation from an incumbent

dual solution. Recently, a technique based on adding redundant constraints in the

primal problem was proposed by Costa et al. (2022).

Embedding such techniques in a column generation procedure is usually not triv-

ial. Moreover, their e�ectiveness is sometimes unclear: Costa et al. (2022) used the

technique of Pessoa et al. (2018) without obtaining signi�cant results.

1.4.9.2 Primal heuristics

In the execution of a B&B or a BPC algorithm, having an upper bound z̄ of good

quality helps in reducing the size of the tree (see pruning tests in lines 5 and 12 of

Algorithm 4). Typically, upper bounds are detected quite deep in the branch-and-

bound tree, when enough branching constraints allow to determine an integer solution.

However, it would be bene�cial to detect good quality upper bounds at the early levels

of the tree. For this reason, primal heuristics, i.e., auxiliary procedures to quickly

detect integer solutions for formulation [SC] may be applied. Such procedures are

commonly called when a node is solved. A compromise between the time spent in the

heuristic and the quality of the upper bound should be assessed with computational

experiments.

In this section, we describe a simple and well-known heuristic: the Restricted Master

Heuristic (RMH). We refer to Sadykov et al. (2019) for a thorough presentation on

primal heuristics.

The RMH entails restricting formulation [SC] to the current subset of variables

identi�ed in the execution of the BPC algorithm and solve it as a monolithic integer

48

1.4 Solving by a Branch-Price-and-Cut algorithm

program with a commercial solver. Although set covering/packing/partitioning for-

mulations are well managed by commercial solver, a time limit on the execution of

the solver should be imposed. In addition, the previous current best incumbent inte-

ger solution should be given as a warm-start to the solver to speed up the resolution.

The RMH can be called each time a node of the branch-and-bound tree is processed

(Archetti et al., 2013). However, we can reduce the calls of such a heuristic by impos-

ing that between two consecutive calls to the RMH, the BPC has to identify at least a

given number of new columns.

1.4.9.3 Pricing heuristics

An e�cient management of the pricing problem is a critical component in a BPC

algorithm, in particular when the pricing problem is modelled as an ESPPRC.

In some applications, solving the ESPPRC directly by means of an exact algorithm

may be time consuming even with the speed-up strategies described in Section 1.4.4 and

the ng-paths relaxation presented in Section 1.4.5. Hence, more sophisticated solution

schemes which employ heuristic algorithms to solve the ESPPRC may be considered to

solve the MP at each node of the branch-and-bound tree. Observe that an exact pricer

is needed only to prove the optimality of the MP that is, to prove no negative reduced

cost columns exist. Any procedure able to provide negative reduced cost columns can

be employed as long as the exact pricer is called to prove the optimality or provide

further negative reduced cost columns when the heuristic procedures fail to do so. In

this section, �rst, we report two of these solution schemes. Then, we discuss three

simple and generic heuristic algorithms that may be considered in such schemes.

We denote by h1, h2, . . . , hH the algorithms to solve the ESPPRC in the order in

which we want to apply them. Typically, the algorithms are ordered from the fastest to

the slowest. We suppose that h1, . . . , hH−1 are heuristics and hH is an exact algorithm

for the ESPPRC. Hence, being the exact prices the last one to be applied, we ensure

that the MP is solved to optimality.

The �rst solution scheme to solve the MP at each node of the branch-and-bound

tree consists in considering sequentially each algorithm hl, l = 1, · · · , H to solve the

ESPPRC over the iterations of the column generation. At the beginning, the ESPPRC

is solved with the heuristic h1. When, at a given iteration of the column generation

procedure, solving the ESPPRC with heuristic hl does not yield any negative reduced

cost columns, the ESPPRC is then solved with heuristic hl+1. Heuristic hl will never

49

be considered anymore to solve the ESPPRC in the next iterations of the column

generation. Hence, in the last iterations, only the exact algorithm is applied to solve

the ESPPRC.

Conversely, the second solution scheme works as follows: at each iteration of the

column generation procedure, the ESPPRC is solved by algorithms h1, h2, . . . , hH in

this order until one of them provides negative reduced cost columns or exact algorithm

hH certi�es that the current solution of the MP is optimal.

In the following, we report three simple and generic heuristic algorithms. The

�rst algorithm entails imposing an early termination on the exact algorithm. Precisely,

once the exact algorithm identi�es a given number of negative reduced cost columns, its

execution is stopped and such columns are inserted in the RMP.We refer to Pessoa et al.

(2020) for an implementation of this algorithm. The second heuristic algorithm exploits

the fact that the pricing problem entails �nding paths in a graph. The algorithm

follows the ideas presented by Toth & Vigo (2003) to reduce the size of the graph

where the exact algorithm is applied. Speci�cally, each vertex j ∈ J is assigned with

a neighbourhood of size g containing the closest g customers to j. A label associated

with vertex j can be extended only to vertices in the neighbourhood of j. This heuristic

is implemented by preprocessing the arcs of graph G: all the arcs (j, i) ∈ A where i is a

vertex not in the neighbourhood of j are removed. The ESPPRC is solved considering

a sequence of increasing neighbourhood sizes g. The value of g is incremented when the

associated algorithm does not provide any negative reduced cost column. For example,

we refer to Gschwind et al. (2019) and Petris et al. (2023) for more details about the

procedure. Finally, the third algorithm exploits the fact that we solve the ESPPRC

by means of a labelling algorithm. In such algorithms, the dominance checks are time

consuming. A heuristic version of the dominance rules may be applied: the test on the

unreachable vertices U ⊆ U′ is removed from (1.42) (see Desaulniers, 2010).

1.4.9.4 Strong branching

In this section, we present a more sophisticated selection strategy for the branching

rules presented in Section 1.4.8, the so-called strong branching introduced in Applegate

et al. (1995). Røpke (2012) embed such procedure in a BPC algorithm for vehicle

routing problems. Such a selection strategy entails spending time to evaluate the

branching candidates associated with a fractional solution of the MP at a node of

the branch-and-bound tree. For example, given the branching rule on the visits to

50

1.4 Solving by a Branch-Price-and-Cut algorithm

the vertices, a branching candidate is a vertex j ∈ J whose associated value vj is

fractional (see Section 1.4.8). Usually, there are several branching candidates with

similar fractional values, the strong branching strategy aims to evaluate the potential

good candidates before selecting one. The evaluation of a candidate exploits the column

generation procedure. Precisely, each candidate gives rise to two child nodes c1 and c2
in the branch-and-bound tree. A few iterations of the column generation procedure are

performed in both child nodes to obtain two values of the RMP, z̃′1 and z̃
′
2, respectively.

Such values are used to assign a score sc(c1, c2) to the candidate. Finally, the candidate

with the best score is selected. Commonly, the score is computed according to the

product rule proposed by Achterberg (2007):

sc(c1, c2) = max{ϵ, z̃′1 − z̃} ×max{ϵ, z̃′2 − z̃}

where z̃ is the value of the MP at the current node of the branch-and-bound tree. The

idea of the score is to provide an estimation on the increase of the lower bound if the

candidate is selected to be solved. Indeed, for each children i = 1, 2, value z̃′i − z̃ is an

overestimation of the lower bound increase if child ci is solved to optimality.

This procedure is rather costly in terms of computational time. Hence, it should be

used only in the lowest levels of the branch-and-bound tree, i.e., in nodes of the tree

close to the root. In addition, remark that taking good decisions in the lowest levels

of the tree has a higher impact on the e�ciency of the solution approach. A successful

implementation of the strong branching rule appeared recently in Pessoa et al. (2020).

Following Pessoa et al. (2020), we detail an example of a simple two-rounds strong

branching procedure:

Round 1. At most d branching candidates are evaluated according to the score pre-

sented above, where the values of the RMPs associated with the child nodes are

computed without generating any new column. The three candidates with the

highest score move to round 2.

Round 2. The three candidates from round 1 are evaluated with more computational

e�ort by applying a strategy similar to the previous round. The scores are com-

puted in the same way, the di�erence is that some iterations of the column gen-

eration procedure are performed in order to have a better estimation of the lower

bound increase if the candidate is selected. The candidate with the highest score

is �nally selected.

51

1.5 Final remarks

In this section, we provide some �nal remarks for an interested reader who wants to

develop a BPC algorithm. The bottleneck of a BPC algorithm for a problem in the

class we consider is usually the procedure to solve the pricing problem to optimality, in

particular in the presence of the elementarity constraints for the paths. For this reason,

the �rst step to devise an e�cient BPC algorithm should be dedicated to the design

and implementation of an e�cient exact pricing algorithm. We stress that particular

attention has to be given to the implementation details, such as the choice of data

structures and the memory usage. Then, such an algorithm should be embedded in a

column generation procedure to solve the linear relaxation of formulation [SC], i.e., the

MP at the root node of the branch-and-bound tree. Here, the objective is to evaluate

the quality of the lower bound at the root node. These values can be compared with

known upper bounds or optimal values from the literature if such exist. Otherwise,

one might implement a primal heuristic at the root node like the Restricted Master

Heuristic. In addition, the inclusion of valid inequalities can be assessed at this point

by evaluating the improvement they bring to the lower bound. First, robust valid

inequalities can be assessed since they are easy to manage in the pricing and will not

deteriorate performance. Then, if the quality of the lower bound at the root node is

not very good, non-robust inequalities can be added.

If the column generation convergence is slow, the following solutions can be applied.

1. Provide a good set of columns to the RMP at initialisation. By considering the

values of the dual variables one should check they are not oscillating too much.

2. Design a set of pricing heuristics to quickly generate negative reduced cost columns

during the �rst iterations of the column generation procedure.

3. Consider to add stabilisation techniques if the convergence is still slow.

Finally, the branching rules should be implemented in order to explore the branch-

and-bound tree to provide an optimal solution. If many nodes are explored in the

branch-and-bound tree, one might investigate adding more cuts and applying strong

branching.

52

Chapter 2

A heuristic with a performance

guarantee for the Commodity

constrained Split Delivery Vehicle

Routing Problem

Contents
2.1 Introduction . 55

2.2 Problem description . 58

2.3 Problem formulation . 59

2.4 A restricted master heuristic 60

2.4.1 Column generation . 61

2.4.2 Pricing problem . 61

2.4.3 Solution of the pricing problem 62

2.4.4 Valid inequalities . 68

2.4.5 Initialization of the set R′ . 68

2.4.6 Local search . 69

2.5 Computational experiments 70

2.5.1 Benchmark instances . 71

2.5.2 Impact of the novel pricing heuristic 72

2.5.3 Results on the whole testbed 73

53

2.5.4 Comparison with Gu et al. (2019) and Soleilhac (2022) 77

2.6 Conclusions . 79

The content of this chapter was presented at the following workshop: ROUTE 2022.

This chapter corresponds to the paper "A heuristic with a performance guarantee for the

Commodity constrained Split Delivery Vehicle Routing Problem" submitted to Networks

An international journal on 28 November 2022 and received major revision on 18 May

2023.

Abstract: The Commodity constrained Split Delivery Vehicle Routing Problem

(C-SDVRP) is a routing problem where customer demands are composed of multiple

commodities. A �eet of capacitated vehicles must serve customer demands in a way

that minimizes the total routing costs. Vehicles can transport any set of commodities

and customers are allowed to be visited multiple times. However, the demand for a

single commodity must be delivered by one vehicle only. In this work, we developed a

heuristic with a performance guarantee to solve the C-SDVRP. The proposed heuristic

is based on a set covering formulation, where the exponentially-many variables cor-

respond to routes. First, a subset of the variables is obtained by solving the linear

relaxation of the formulation by means of a column generation approach which embeds

a new pricing heuristic aimed to reduce the computational time. Solving the linear

relaxation gives a valid lower bound used as a performance guarantee for the heuristic.

Then, we devise a restricted master heuristic to provide good upper bounds: the for-

mulation is restricted to the subset of variables found so far and solved as an integer

program with a commercial solver. A local search based on a mathematical program-

ming operator is applied to improve the solution. We test the heuristic algorithm on

benchmark instances from the literature. Several new (best-known) solutions are found

in reasonable computational time. The comparison with the state of the art heuristics

for solving C-SDVRP shows that our approach signi�cantly improves the solution time,

while keeping a comparable solution quality.

Keywords: Vehicle routing problems, Multiple commodities, Split delivery, Col-

umn generation, Matheuristic, Pricing heuristic.

54

2.1 Introduction

2.1 Introduction

Splitting customer demands has proven to be bene�cial in reducing the transportation

costs and the number of vehicles (see Archetti et al., 2006a, 2016). A �rst work in

this direction is the article by Dror & Trudeau (1989). The authors introduced the

Split Delivery Vehicle Routing Problem (SDVRP), where customer demands are com-

posed of a single commodity and can be split among any number of vehicles. This

problem and its variants have been widely studied and exact (e.g. Archetti et al., 2014;

Belenguer et al., 2000; Desaulniers, 2010; Munari & Savelsbergh, 2022) and heuristic

algorithms (e.g. Archetti et al., 2006b; Bortfeldt & Yi, 2020; Chen et al., 2016b; Silva

et al., 2015) were proposed. Among these, Chen et al. (2016a) studies a particular case

of the SDVRP, where customer demands are discretised a priori.

Although this delivery policy brings remarkable cost savings when compared with

the policy where no splits are allowed, it is hardly applicable from a practical point

of view. Indeed, customers are usually not keen to accept an unconstrained split

delivery Archetti et al. (2016). One step in the direction of making the split deliveries

more adherent to real-world logistics is made in Gulczynski et al. (2010). The authors

proposed a variant of the SDVRP where the quantity delivered to each customer has

to be greater than a preset minimum amount.

Finally, under a multi-commodity setting, a delivery policy that might reduce cus-

tomer inconvenience due to split deliveries is to allow demands to be split by com-

modity. Whenever a vehicle delivers a commodity to a customer, the entire quantity

associated with the commodity has to be provided. This policy was �rstly studied in

the Discrete Split Delivery Vehicle Routing Problem (DSDVRP) proposed in Nakao &

Nagamochi (2007) to deal with a real-life case study. The problem was formally intro-

duced in the literature under the name of Commodity constrained Split Delivery Vehicle

Routing Problem (C-SDVRP) in Archetti et al. (2016). In the C-SDVRP, a minimum

cost set of routes have to be determined such that the customer demands, composed

of multiple commodities, are met, and the capacity of the vehicles is respected. The

authors showed that the C-SDVRP is a relaxation of the Capacitated Vehicle Routing

Problem (CVRP) where all commodities of each customer are delivered with a single

vehicle, and a restriction of the SDVRP. In addition, they proposed an in-depth analy-

sis to assess the bene�ts of the C-SDVRP in terms of cost savings and applicability in

comparison with the CVRP and the SDVRP. To do so, they introduced the �rst com-

pact mathematical formulation and devised a branch-and-cut and a heuristic algorithm

55

to solve it. Finally, they introduced a �rst set of benchmark instances characterised by

15, 20, 40, 60, 80 or 100 customers requiring 2 or 3 commodities.

Despite its practical relevance, the literature on the C-SDVRP and its variants is

quite limited. An exact approach for the C-SDVRP was proposed in Archetti et al.

(2015). Speci�cally, the authors modelled the problem by means of a set covering for-

mulation and devised a �rst branch-price-and-cut (BPC) algorithm. They formulate

the pricing problem as an Elementary Shortest Path Problem with Resource Constraints

(ESPPRC) and solve the ng-path relaxation by means of a label setting dynamic pro-

gramming technique. Gschwind et al. (2019) enhanced the performances of the BPC

algorithm of Archetti et al. (2015) by embedding new procedures as the implicit bidi-

rectional labelling search to solve the ESPPRC, the separation of non-robust valid

inequalities to strengthen the lower bound, and the stabilization of the column gen-

eration procedure via dual-optimal inequalities. The authors extended the test-bed

introduced in Archetti et al. (2016) with 336 new instances with 4, 5 and 6 commodi-

ties. The enhanced BPC algorithm outperformed the one of Archetti et al. (2015),

being faster and providing several new optima and better lower bounds.

Conversely, Gu et al. (2019) focused on a heuristic algorithm for the C-SDVRP

and proposed an adaptive large neighbourhood search (ALNS) that exploits the in-

herent characteristics of the problem. Speci�cally, several existing local search moves

were adapted to better deal with the multi-commodity aspect, and a mathematical

programming operator was developed to reassign commodities to routes. The authors

assess the performance of their ALNS on the test-bed introduced in Archetti et al.

(2016). The ALNS found the optimal value for 81 out of the 84 instances with 15 and

20 customers, and provided 344 new best-known solutions for the 380 instances with

more than 40 customers. In Soleilhac (2022) the authors propose a small and large

neighbourhood search (SLNS) which is capable of solving di�erent variants of routing

problems, among those the C-SDVRP. The SLNS is compared with the ALNS proposed

in Gu et al. (2019) on 320 instances with 100 customers and 2 and 3 commodities. The

SLNS found 155 new best-known solutions, while the computational time is on average

three times the one of the ALNS.

Finally, variants of the C-SDVRP (or of the DSDVRP) have been studied, see

e.g. Alinaghian & Shokouhi (2018); Guo et al. (2021); Mirzaei & Wøhlk (2019); Qiu

et al. (2018); Salani & Vacca (2011); Wang et al. (2015); Zbib & Laporte (2020).

In Salani & Vacca (2011), customer demands are composed of multiple items grouped in

56

2.1 Introduction

orders. Each order can be seen as a commodity required by a customer in the C-SDVRP.

In addition to the C-SDVRP, this variant includes time windows for the customers and

considers service times that depend on the order delivered. The authors proposed a

branch-and-price approach. An extension of the aforementioned problem in a pickup

and delivery context is the Vehicle Routing Problem with Discrete Split Deliveries and

Pickups proposed by Qiu et al. (2018). Mirzaei & Wøhlk (2019) study the e�ect of

splitting customer demands by commodity in a multi-compartment vehicle routing

problem. The authors propose a branch-and-price to solve this multi-compartment C-

SDVRP. Zbib & Laporte (2020) addressed another multi-compartment C-SDVRP in

the context of a capacitated arc routing problem arising in the collection of recyclable

waste. Vehicles with multiple compartments may make multiple visits to the same

household to collect di�erent recyclables, however, the amount of a single recyclable

cannot be split.

In this paper, we consider a set covering formulation for the C-SDVRP, where the

exponential number of variables are related to routes. Generating all such variables is

intractable. Hence, we propose a restricted master heuristic (Sadykov et al., 2019) to

solve the problem. This heuristic scheme consists in solving the formulation restricted

to a subset of variables as a static integer program. Similar approaches have been

successfully applied to deal with vehicle routing problems (see, e.g., Briant et al., 2020;

Muter et al., 2010; Parragh & Schmid, 2013; Taillard, 1999). The main di�erence

in the methodologies proposed in these works is the way the subset of variables is

generated. Taillard (1999) and Muter et al. (2010) developed a tabu search heuristic to

populate a subset of variables for the solution of a routing problem with a heterogeneous

�eet of vehicles and the Vehicle Routing Problem with Time Windows, respectively.

In Parragh & Schmid (2013), the authors devised a restricted master heuristic for the

dial-a-ride problem: variables are generated by means of a hybrid column generation

procedure where a variable neighbourhood search heuristic is employed to identify

negative reduced cost columns. Finally, Briant et al. (2020) deals with the Joint Order

Batching and Picker Routing Problem (JOBPRP). The authors proposed formulation

with exponentially many variables and solve its linear relaxation by means of column

generation. The objective is twofold: determining a subset of variables to use in a

restricted master heuristic and calculating a lower bound on the optimal solution value.

The approach proposed in the current paper follows the strategy used in Briant

et al. (2020). Unlike the existing literature on the C-SDVRP, our approach is a heuris-

57

tic that provides lower and upper bounds even for large-scale instances of the problem

within reasonable computation times. The lower bound serves as a performance guar-

antee for our heuristic. In the column generation step, the pricing problem reduces to

solve an ESPPRC. E�cient handling of the pricing problem is essential in a column

generation procedure. Therefore, heuristics are commonly used to address the pricing

problem before solving it exactly. In this respect, we devise a new pricing heuristic

that exploits the multi-commodity aspect of the problem. More precisely, the heuristic

articulates in two phases: Phase 1 computes a set of promising customer sequences

by solving the ESPPRC on a modi�ed version of the pricing graph; Phase 2 is called

for each customer sequence produced by the �rst phase and determines all the negative

reduced cost routes arising from the sequence by solving the Shortest Path Problem

with Resource Constraints (SPPRC) on acyclic graphs. It is noteworthy that the �rst

phase of our heuristic also provides a valid lower bound on the value of the pricing

problem. After the column generation procedure, upper bounds are identi�ed by the

restricted master heuristic. Finally, a local search step is applied to improve the upper

bound. This step uses the mathematical programming operator proposed in Gu et al.

(2019) to reassign commodities to the routes. Computational experiments proved that

our approach successfully provides upper bounds of good quality in shorter computa-

tional time than the state-of-the-art heuristic approaches. More precisely, it is capable

of solving large size instances with four, �ve, and six commodities and improves few

best-known solution values from the literature. When compared against the state-of-

the-art heuristics of Gu et al. (2019) and Soleilhac (2022), our approach improves the

solution time with an average speedup ratio of 17.0, while keeping the percentage gap

with respect to the upper bounds to 0.55% on average.

The reminder of the paper is organized as follows. In Section 2.2, we give a formal

description of the C-SDVRP and introduce the notation. In Section 2.3, we present a set

covering formulation for the problem. In Section 2.4 we describe the main components

of the restricted master heuristic we devised to solve it. Finally, the computational

results obtained on the benchmark instances are reported and discussed in Section 2.5.

2.2 Problem description

In the Commodity constrained Split Delivery Vehicle Routing Problem (C-SDVRP) the

commodities of a set K = {1, . . . , κ} have to be delivered from a depot 0 to a set of

58

2.3 Problem formulation

customers N = {1, . . . , n}. The request of a customer j ∈ N may be composed of

multiple commodities and is identi�ed by set Kj = {k ∈ K : Djk > 0}, where Djk ≥ 0

is the demand of commodity k ∈ K to be delivered to customer j. An unlimited �eet

performs the distribution of the commodities to the customers. Each vehicle has a

capacity Q and is initially based at the depot. The vehicles can transport any subset

of commodities provided that their capacity is not exceeded. We suppose without loss

of generality that Q ≥ max{Djk : j ∈ N, k ∈ Kj}. When a vehicle visits a customer

j ∈ N, a non-empty subset of commodities in Kj is delivered to j. Hence, a customer

request may be split, and a customer may be visited multiple times. However, when a

vehicle visits customer j, the amount of each commodity k delivered by the vehicle to

j must be equal to Djk. In other words, the demand for a single commodity cannot be

split.

The C-SDVRP can be de�ned on a directed weighted graph G = (V,A). The

vertex set V = {0} ∪ N contains a vertex 0 representing the depot, and the set N of

vertices representing the customers. The arc set A = {(i, j) : i, j ∈ V, i ̸= j} contains

arcs modelling each possible vehicle travel between two distinct vertices. Each arc

(i, j) ∈ A is associated with a non-negative cost Cij which corresponds to the cost of

traversing arc (i, j). We suppose that the arc costs satisfy the triangular inequality. A

route in graph G is a non-empty circuit starting and ending at the depot. A route is

feasible if the total amount of commodities delivered to the customers visited along the

route does not exceed the vehicle capacity Q. The set of feasible routes is denoted by

R. The cost of a route r is Cr =
∑

(i,j)∈A(r)Cij, where A(r) is the set of arcs traversed

by the route.

The C-SDVRP aims to �nd a least-cost set of feasible routes such that all the

customer requests are served.

2.3 Problem formulation

We consider the set covering formulation proposed in Archetti et al. (2015). For each

feasible route r ∈ R, we introduce a binary coe�cient arjk with value one if commodity

k ∈ K is delivered to customer j ∈ N by route r and zero otherwise. Then, for

r ∈ R, we introduce a binary variable λr taking value one if the route is selected in

the solution and zero otherwise. Last, we de�ne an auxiliary variable v to count the

number of vehicles in the solution.

59

The Set Covering formulation [SC] reads as follows:

[SC] min
∑
r∈R

Crλr (2.1)

s.t.
∑
r∈R

arjkλr ≥ 1 ∀j ∈ N,∀k ∈ Kj (2.2)∑
r∈R

λr = v (2.3)

v ≤ v ≤ v̄ (2.4)

λr ∈ {0, 1} ∀r ∈ R (2.5)

Objective function (2.1) minimizes the total routing costs. Constraints (2.2), which

we refer to as covering constraints, ensure that the customer demands are met. Con-

straints (2.3) and (2.4) de�ne an auxiliary variable v and impose a lower bound and

an upper bound on it, i.e., on the number of vehicles used in the solution. Finally,

constraints (2.5) de�ne variables λr as binary.

Bounds in constraints (2.4) can be obtained by solving an instance of the Bin

Packing Problem (BPP), where bins represent vehicles associated with their capacity,

and objects, with the respective weights, are the customer demands. The BPP is

formulated as an integer program and solved with a commercial solver within a time

limit. Values d and d̄ denote the obtained lower and upper bounds, respectively. Hence,

the number of vehicles is bounded from below by the ceil function of d (v := ⌈d⌉) and
from above by the minimum between twice value d̄ (see Federgruen & Simchi-Levi,

1995) and the number of customers (v̄ := min{2d̄, |N|}).

2.4 A restricted master heuristic

This section describes the main components of the restricted master heuristic we de-

signed to tackle [SC]. The heuristic scheme articulates in three steps.

In the �rst step, the Master Problem (MP), i.e., the linear relaxation of the for-

mulation [SC] is solved using a column generation procedure (see, e.g., Desrosiers &

Lübbecke (2005)) to obtain a subset of variables R′ ⊆ R and a valid lower bound. Af-

terwards, if the solution of the MP is fractional, valid inequalities are possibly included

to strengthen the lower bound and enrich the set R′. The procedure is then repeated.

In the second step, an upper bound is obtained by solving formulation [SC] de�ned on

60

2.4 A restricted master heuristic

the variables of R′ generated in the �rst step. Speci�cally, [SC] restricted to R′ is solved

as a static integer program with a commercial solver run within a time limit. Note

that the set R′ is preprocessed before solving [SC] to repair all the routes whose total

amount of delivered commodities is not tight with respect to the vehicle capacity. For

each of these routes, we randomly select commodities to be delivered to the customers

they visit in order to generate new routes that �ll the vehicle capacity. Finally, in the

third step, the mathematical programming operator proposed in Gu et al. (2019) to

reassign commodities to the routes is used to improve the upper bound determined in

the second step.

2.4.1 Column generation

As mentioned above, we developed a column generation algorithm to solve the MP and

populate a subset of variables R′ ⊆ R. The restriction of the MP to R′ is referred to as

Restricted Master Problem (RMP). At each iteration of the procedure, the RMP and

the pricing problem are solved sequentially. The pricing problem aims to either identify

negative reduced cost variables (columns) to add to R′ or to produce a certi�cate of

optimality for the solution of the MP. We consider some heuristic approaches to quickly

identify negative reduced cost variables when solving the pricing problem. Among

others, we devised a novel pricing algorithm which exploits the multi-commodity aspect

of the C-SDVRP. When the heuristic column generators do not yield negative reduced

cost variables, we solve the pricing problem using an exact algorithm to produce a

certi�cate of optimality. In addition, it allows us to compute the Lagrangian bound, a

valid lower bound on the value of [SC] which we use to provide an optimality gap for

the solution of the restricted master heuristic.

2.4.2 Pricing problem

In this section, we use the terms path and route interchangeably.

As in Archetti et al. (2015), at each iteration of the column generation procedure,

we price out routing variables λr, r ∈ R. The reduced cost of λr is given by:

C̄r = Cr −
∑
j∈N

∑
k∈Kj

arjkρjk − τ,

61

where ρjk and τ are the dual prices associated with constraints (2.2) and (2.3), respec-

tively.

Archetti et al. (2015) showed that the pricing problem reduces to an Elementary

Shortest Path Problem with Resource Constraints (ESPPRC), where the resource is

associated with the vehicle capacity. Following to some extent Gschwind et al. (2019),

we formulate the ESPPRC on a directed multi-graph G′ = (V′,A′) de�ned over the

original graph G as follows. We include in vertex set V′ two replica i′ and i′′ of each

vertex i ∈ V. In arc set A′, we include an arc (i′′, j′) for each arc (i, j) ∈ A to model

the trip of a vehicle from vertex i to vertex j. Finally, for all non-empty subsets of

commodities Mj ⊆ Kj, we introduce an arc (j′, j′′)Mj to model the delivery of Mj to

customer j. The resource consumption D̄ is set to zero (D̄i′′j′ := 0) on arcs (i′′, j′),

whereas on arcs (j′, j′′)Mj , it is equal to the demand associated with commodity subset

Mj, i.e., D̄
Mj

j′j′′ :=
∑

k∈Mj
Djk. Finally, the cost on arcs (i′′, j′) is C̄i′′j′ := Cij if i′′ ̸= 0′′

and j′ ̸= 0′, and C̄i′′j′ := Cij − τ/2, otherwise. The cost on arcs (j′, j′′)Mj considers the

dual prices of constraints (2.2) associated with customer j ∈ N and the commodities

k ∈ Mj, that is C̄
Mj

j′j′′ := −
∑

k∈Mj
ρjk.

Solving the pricing problem results in searching for a negative reduced cost elemen-

tary path in G′ from 0′′ to 0′ such that the resource consumption does not exceed the

vehicle capacity Q.

2.4.3 Solution of the pricing problem

Negative reduced cost paths are retrieved in the multi-graph G′ by solving the ESPPRC

by means of a label setting dynamic programming algorithm (see Feillet et al., 2004).

More precisely, labels identify partial paths in G′ starting at 0′′ and are characterised by

the following resources: reduced cost, accumulated demand, set of visited customers,

and for each customer, the subset of commodities delivered. The starting point of

the procedure is a label associated with vertex 0′′ with resources set to zero or empty.

Then, labels are propagated from a vertex to another while satisfying the elementarity

and capacity constraints: each customer is visited at most once along a partial path ,

and the accumulated demand cannot exceed the vehicle capacity Q. Dominance rules

are applied to prune unpromising labels.

In order to accelerate the solution of the pricing problem, we implemented some

state-of-the-art procedures. Speci�cally, the �rst one is the ng-path relaxation (Bal-

dacci et al., 2011) which partially relaxes the elementarity constraint of the paths: a

62

2.4 A restricted master heuristic

neighbourhood is pre-assigned to each customer, and cycles are allowed only if the cus-

tomer visited more than once in a path is not in the neighbourhood of its predecessor in

that path. In addition, we incorporate an implicit version of the bidirectional labelling

search algorithm proposed in Righini & Salani (2006). The labels are extended from

vertex 0′′ to the other vertices of G′ up to a value of the accumulated demand equal

to Q/2. Then, the generated labels are merged to obtain complete paths (see Bode &

Irnich, 2012, for more details).

However, even by embedding the two techniques mentioned above, the exact res-

olution of the pricing problem might be time consuming. We therefore proceed as

follows. First, the pricing problem is solved with a new heuristic coupled with two

reduced graph heuristics similar to those presented in Gschwind et al. (2019). Then,

the same reduced graph heuristics are also applied on the multi-graph G′. Finally, the

exact pricing method is invoked. We switch from one pricing algorithm to the next

one when the �rst fails to produce negative reduced cost paths.

In the following, we give a detailed description the heuristics mentioned above,

together with the description of the preprocessing phase to reduce the size of the

multi-graph G′.

2.4.3.1 Preprocessing phase

We perform the preprocessing procedure proposed in Archetti et al. (2015) and Gschwind

et al. (2019) to reduce the size of the multi-graph G′. At each iteration of the column

generation procedure, we only consider in G′ arcs of type (j′, j′′)Mj whose associated

pair demand-cost (D̄Mj

j′j′′ , C̄
Mj

j′j′′) is Pareto-optimal. Since the number of commodities is

small in the benchmark instances of the C-SDVRP (|K| ≤ 6), the Pareto-optimal com-

modity subsets can be computed by enumeration. The reader may refer to Gschwind

et al. (2019) for a general procedure, based on the solution of the Shortest Path Prob-

lem with Resource Constraints (SPPRC) on acyclic graphs, to determine such subsets

when the enumeration strategy is not applicable.

2.4.3.2 A new two-phase pricing heuristic

The heuristic we propose to solve the pricing problem consists of two phases. Phase

1 aims to compute a set of promising customer sequences. To do so, we solve the

ESPPRC on a modi�ed graph of reduced size compared with the multi-graph G′. Solv-

ing the ESPPRC on such a graph is not only faster than solving it on G′, but Phase

63

1 also permits to derive a valid lower bound on the pricing problem value. Phase 2

aims to determine all negative reduced cost paths arising from each of the customer

sequences provided by Phase 1. We solve the SPPRC on an acyclic graph for each

customer sequence. The topology and size of graph G′ allow to perform such operation

in negligible time.

The graph used in Phase 1, denoted by G′′ = (V′,A′′), di�ers from the multi-graph

G′ in the arcs modelling the deliveries to the customers: in G′′ a unique subset of

commodities can be delivered to each customer. Hence, G′′ is obtained from G′ by

removing, for each customer j ∈ N, all the arcs of type (j′, j′′)Mj but one, which

we denote by (j′, j′′). The demand and cost are set on these arcs so that whenever a

customer j ∈ N is visited the least consuming commodity is delivered and all pro�table

dual prices related to j are collected. Hence, they are de�ned as D̄j′j′′ := min{Djk :

k ∈ Kj} and C̄j′j′′ := −
∑

k∈Kj
ρjk, respectively.

This de�nition of demand and cost permits to derive the following properties.

Proposition 2.1. All feasible solutions of the ESPPRC on multi-graph G′ are feasible

solutions for the ESPPRC on graph G′′.

Proposition 2.2. The optimal solution of the ESPPRC on graph G′′ provides a lower

bound on the optimal value of the ESPPRC on multi-graph G′.

Corollary 2.3. If the optimal value of the ESPPRC on the reduced graph G′′ is positive

then the optimal value of the ESPPRC on multi-graph G′ is positive as well.

In Phase 2, we determine all negative reduced cost routes arising from each customer

sequence (path) generated in Phase 1. We do this by solving the SPPRC on an acyclic

multi-graph for each path. Speci�cally, let p = (j′′0 = 0′′, j′1, j
′′
1 , . . . , j

′
l(p)−1, j

′′
l(p)−1, j

′
l(p) =

0′) be a path produced in Phase 1, where l(p) denotes the length of p. The acyclic multi-

graph G′(p) = (V′(p),A′(p)) associated with p is de�ned as follows. V′(p) is the vertex st

that includes only vertices visited along p, i.e., V′(p) = {j′′0 = 0′′, j′1, j
′′
1 , . . . , j

′
l(p)−1, j

′′
l(p)−1, j

′
l(p) =

0′}. A′(p) contains the arcs of G′ connecting each vertex in V′(p) to its successor in

p, i.e. (i) arcs (j′′h, j
′
h+1), h = 0, . . . , l(p) − 1 to model the travel from jh to jh+1, and

(ii) arcs (j′h, j
′′
h)

Mjh , h = 1, . . . , l(p)− 1, Mjh ⊆ Kj to model the deliveries of subsets of

commodities Mjh to customer jh.

The negative reduced cost routes arising from path p correspond to the negative

cost paths in G′(p) from j0 = 0′′ to jl(p) = 0′, which satisfy the capacity constraint.

These paths are determined by solving the SPPRC on the multi-graph G′(p). Although

64

2.4 A restricted master heuristic

solving the SPPRC on acyclic graphs is NP-hard (see Di Puglia Pugliese & Guerriero

(2013)), the size and particular topology of multi-graphs G′(p) allow to do this operation

very e�ciently in terms of computational time.

In the following, we provide an example to illustrate how the proposed pricing

heuristic works.

Example 2.4. We consider a C-SDVRP instance with three customers N = {1, 2, 3}
and three commodities K = {1, 2, 3}: customer 1 requires the commodity of K1 = {1},
with D11 = 2; customer 2 requires the commodities of K2 = {1, 2, 3}, with D21 = 2,

D22 = 4 and D23 = 3 ; customer 3 requires the commodities of K3 = {1, 3}, with
D31 = 2 and D33 = 1. We assume the travelling cost from the depot to the customers

and between customers to be unitary. The vehicle capacity is set to 10.

Figure 2.1 shows the pricing multi-graph G′ = (V′,A′) arising from such instance

at a certain iteration of the column generation procedure. The consumption and cost

on arcs of type (i′′, j′) ∈ A′ modelling the movement of the vehicle from one vertex

to another are (D̄i′′j′ , C̄i′′j′) = (0, 1). Di�erently, the consumption and cost on arcs of

type (j′, j′′)Mj ∈ A′ modelling the delivery to the customers are reported in the �gure

with the following notation: Mj:(D̄
Mj

j′j′′ , C̄
Mj

j′j′′). We only consider the Pareto-optimal

deliveries to the customers.

The graph G′′ = (V′′,A′′) built at Phase 1 is shown in Figure 2.2a. The consumption

and cost on arcs of type (i′′, j′) ∈ A′ are as in G′ and those on arcs (j′, j′′) ∈ A′

are displayed in the �gure with the same convention as in Figure 2.1. In the �rst

phase,we solve the ESPPRC on the graph G′′ to obtain all non-dominated negative cost

paths (customer sequences) that respect the vehicle capacity. The second phase of the

heuristic identi�es the negative reduced cost routes arising from each of these sequences

by solving the ESPPRC on acyclic multi-graphs. As an example, we show how this is

done on the most negative path found in phase one (in red in Figure 2.2a), i.e., on

p = (0′′, 2′, 2′′, 3′, 3′′, 0′) with consumption and cost equal to 3 and −13, respectively.

The acyclic multi-graph G′(p) associated with path p is shown in Figure 2.2b. In G′(p),

all the possible deliveries to customers 2 and 3 are restored. Finally, the SPPRC is

solved on G′(p) to obtain all non-dominated feasible routes with negative reduced costs.

We obtain six routes that visit customers 2 and 3 in the order imposed by path p and

deliver either subset of commodities {1} or {1, 2} to customer 2, both combined with

all the possible deliveries to customer 3. The route with the most negative reduced cost

(in red in Figure 2.2b) delivers {1, 2} to customer 2 and {1, 3} to customer 3. Its

consumption and reduced cost are 9 and −11, respectively.

65

0′′

1′ 1′′

2′ 2′′

3′ 3′′

0′

{2}:(2,-1)

{1}:(2,-4)

{2}:(4,-5)

{1,2}:(6,-9)
{1,3}:(5,-6)

{1,2,3}:(9,-11
)

{1}:(2,-3)

{3}:(1,-2)

{1,3}:(3,-5)

Figure 2.1: Pricing multi-graph G′ for the C-SDVRP instance de�ned in Example 2.4.

2.4.3.3 Reduced graph heuristics

In this section, we present two classical heuristics based on the reduction of the size of

the pricing graph. They are applied to the multi-graph G′ and to the graph G′′ of the

�rst phase of heuristic, we just described. We discuss them for the case of G′, knowing

that the case of G′′ can be treated similarly.

The �rst heuristic is inspired by Toth & Vigo (2003) and limits the possibilities

of moving between customers. Speci�cally, a neighbourhood containing the g closest

customers is built for each customer j ∈ N. A partial path ending in j can only

be extended to customers belonging to its neighbourhood. This is implemented by

removing from G′ all arcs of type (j′′, l′) such that l does not belong to the neighborhood

of j. The pricing problem is solved considering a sequence of increasing neighbourhood

sizes: g = 3, 6, 10, |N|. The value of g is incremented when the associated pricing

problem produces no negative reduced cost path.

The second heuristic is speci�cally designed to handle the multi-commodity aspect

of the C-SDVRP. Indeed, it aims at reducing the delivery possibilities to customers.

Speci�cally, we impose an upper bound b on the number of customers whose demand

can be split per path. This strategy is motivated by the analysis carried out in Archetti

66

2.4 A restricted master heuristic

0′′

1′ 1′′

2′ 2′′

3′ 3′′

0′

{2}:(2,-1)

{1}:(2,-11)

{3}:(1,-5)

(a) Graph G′′ arising from the �rst phase of the pricing heuristic in Example 2.4.

0′′ 2′ 2′′ 3′ 3′′ 0′

{1}:(2,-4)

{2}:(4,-5)
{1,2}:(6,-9)
{1,3}:(5,-6)

{1,2,3}:(9,-11
)

{1}:(2,-3)

{3}:(1,-2)
{1,3}:(3,-5)

(b) Acyclic multi-graph G′(p) where p = (0′′, 2′, 2′′, 3′, 3′′, 0′) arising from the second phase of
the pricing heuristic in Example 2.4.

Figure 2.2: Graphs of the �rst and second phase of the novel pricing heuristic built in
Example 2.4.

67

et al. (2015) on optimal solutions of the C-SDVRP. They note that in most of them the

number of split deliveries is less than three. To count the number of split customers

in a path, we introduce an integer resource s in the label de�nition. The value of

s is initially set to zero and is incremented by one unit along arcs of type (j′, j′′)Mj ,

if Mj does not correspond to the full delivery to j (Mj ⫋ Kj). On the other arcs,

the value of s is simply propagated. Once s reaches the bound b, all the following

customers visited in the path are delivered only with subset Kj, i.e., only arcs (j′, j′′)Kj

are considered. As for the previous heuristic, we consider an incremental procedure

relying on a sequence of increasing upper bounds: b = 0, 1, 2, 3,∞.

2.4.4 Valid inequalities

We consider a family of robust valid inequalities, the so-called capacity cuts :

∑
r∈R

 ∑
(i,j)∈δ−(S)

brij

λr ≥

⌈∑
j∈S
∑

k∈Kj
Djk

Q

⌉
∀S ⊆ N, (2.6)

where δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} is the set of arcs of graph G having their �nal

extremity in S and brij is a binary coe�cient taking value one if route r ∈ R traverses

the arc (i, j) ∈ A.

If the solution of the MP is fractional, we separate the capacity cuts (2.6). Since

the separation of these inequalities is NP-hard, we do so by means of the heuristic

algorithms presented in Ralphs et al. (2003), namely the extended shrinking heuristic

and the greedy shrinking heuristic. The violated cuts are included in the RMP, and

the associated dual prices πS are incorporated in the de�nition of the reduced cost of

the variables λr, and then considered in the pricing problem solution.

2.4.5 Initialization of the set R′

We initialize the set of routes R′ to avoid starting the column generation procedure with

large dual prices, which usually slows down the pricing problem resolution. Speci�cally,

for each customer j ∈ N, we include a round trip (0-j-0) delivering the commodities of

each subsetMj ⊆ Kj requested by j, feasible with respect to the capacity Q. Moreover,

we insert in R′ the routes obtained by applying a variant of the Clarke-Wright algorithm

(CW) Clarke & Wright (1964). Precisely, we modi�ed the randomized CW algorithm

68

2.4 A restricted master heuristic

proposed in Battarra et al. (2008) to take into account the multi-commodity aspect of

the C-SDVRP. We set a limit of 20 runs.

2.4.6 Local search

In this section, we present the local search we implement to improve the C-SDVRP

solution provided by the restricted master heuristic. Speci�cally, we consider the Math-

ematical Programming Operator (MPO) proposed in Gu et al. (2019) to reassign the

commodities of a speci�c customer j ∈ N to the routes of the solution. We iteratively

call the MPO for each customer in N.

Let j ∈ N be a customer. We introduce the following notation. We denote by R̄−j

the set of routes in the current C-SDVRP solution where all the visits to customer j

are removed. More precisely, R̄−j contains the routes of the current C-SDVRP solution

which do not visit j and, for the ones that visit j, R̄−j contains a copy of those routes

where j has been removed from the sequence of visited customers. For each r ∈ R̄−j,

Qj
r denotes the residual capacity in route r. Finally, we indicate by Cj

r the cost of the

cheapest insertion of customer j in route r ∈ R̄−j.

The MPO consists in solving a Capacitated Facility Location Problem (CFLP) (see

Mirchandani & Francis, 1990) where all commodities k ∈ Kj of customer j have to

be assigned to the routes (facilities) of R̄−j at minimum insertion costs and such that

residual capacities of the routes are not exceeded.

The integer program on which the MPO is based makes use of the following decision

variables. For each k ∈ Kj and each r ∈ R̄−j, we introduce a binary variable

yjkr =

{
1 if commodity k is delivered to customer j by route r

0 otherwise.

In addition, for each r ∈ R̄−j we include a binary variable zjr de�ned as follows

zjr =

{
1 if route r delivers to customer j at least one commodity

0 otherwise.

Note that j refers to a speci�c customer and is not used as an index for the variables.

69

The integer program is for customer j as follows:

min
∑
r∈R̄−j

Cj
rz

j
r (2.7)

s.t.
∑
r∈R̄−j

yjkr = 1 ∀k ∈ Kj (2.8)∑
k∈Kj

Djky
j
kr ≤ Qj

rz
j
r ∀r ∈ R̄−j (2.9)

yjkr ∈ {0, 1} ∀k ∈ Kj,∀r ∈ R̄−j (2.10)

zjr ∈ {0, 1} ∀r ∈ R̄−j (2.11)

The objective function (2.7) minimizes the total insertion cost. Constraints (2.8) guar-

antee that all commodities of customer j are covered by exactly one route. Con-

straints (2.9) ensure that if some commodities of Kj are added to a route, their de-

mand do not exceed the remaining capacity of the route. Finally, Constraints (2.10)

and (2.11) are the binary requirements.

2.5 Computational experiments

Our algorithm is implemented in C++ and compiled in release mode under a 64-bit

version of MS Visual Studio 2019. CPLEX 12.9.0 (64-bit version) is used to solve the

RMP in the column generation procedure and the restricted version of formulation

[SC]. All experiments are carried out on a 64-bit Windows machine equipped with

a Intel(R) Xeon(R) Silver 4214 processor with 24 cores hyper-threaded to 48 virtual

cores, with a base clock frequency of 2.2 GHz, and 96 GB of RAM. A time limit of one

hour and a single thread are imposed for each run of the algorithm.

In the following, we denote by LB and UB, respectively, the lower and upper

bounds returned by our restricted master heuristic. The percentage optimality gap is

de�ned as 100((UB − LB)/LB). The percentage gap with respect to a best-known

solution value UBbk from the literature is computed as 100((UB−UBbk)/UBbk). More

precisely, values UBbk are retrieved from Archetti et al. (2016); Gschwind et al. (2019);

Gu et al. (2019) or Soleilhac (2022). Finally, all the solution times are expressed in

seconds.

In this section, we �rst describe the benchmark instances, then, we measure the

impact of the new two-phase pricing heuristic on the performance of the overall solution

70

2.5 Computational experiments

algorithm. Later, we present the results on the whole testbed. Finally, we compare

our algorithm with the two existing heuristic approaches from the literature providing

the majority of the best-known solution values.

2.5.1 Benchmark instances

We tested our restricted master heuristic on the benchmark instances for the C-SDVRP

proposed by Archetti et al. (2016) and Gschwind et al. (2019). The instances are di-

vided in three groups: small (|N| = 15), mid-size (|N| = 20, 40, 60, 80) and large

(|N| = 100). In each small and mid-size instance, customers' locations are taken from

the C101 and R101 Solomon's instances (Solomon, 1987), whereas, in each large in-

stance, locations are taken from the Solomon's RC101 instances. In addition, the

following parameters de�ne the instances: (i) number of commodities |K|; (ii) proba-
bility p that a customer requires a commodity with a non-zero demand; (iii) interval

∆ to select the non-zero demand of a commodity required by a customer, expressed as

a percentage of vehicle capacity; (iv) percentage α of vehicle capacity with respect to

the maximum demand (Q = αmax{
∑

k∈Kj
Djk : j ∈ N}). Table 2.1 summarises the

values of these parameters which characterise each group of instances.

Table 2.1: Characteristics of the small, mid-size and large instances.

Values of the parameters

Group
Number of |N| customers' |K| p ∆ α
instances locations

small 160 15 C101, R101 2, 3, 4, 5, 6 0.6, 1.0 [40, 60], [1, 100] 1.1, 1.5, 2.0, 2.5
mid-size 320 20, 40, 60, 80 C101, R101 3, 4, 5, 6 0.6, 1.0 [1, 100] 1.5
large 900 100 C101, R101, RC101 2, 3, 4, 5, 6 0.6, 1.0 [40, 60], [1, 100] 1.1, 1.5, 2.0, 2.5

Finally, we report an issue related to some of the benchmark instances' name with

100 customers, which are called C101, whereas their correct customer's location is the

one corresponding to Solomon's instance RC101. This has been corrected in the new

database made available at https://hal.inria.fr/hal-03836982. In addition, we

mention that 40 instances with 100 customers, customer's location RC101, and 2 and

3 commodities are available at https://logistik.bwl.uni-mainz.de/forschung/

benchmarks/, but have not been tested in any of the former papers dealing with

the problem, i.e, in Archetti et al. (2016); Gschwind et al. (2019); Gu et al. (2019)

and Soleilhac (2022). Thus, we exclude this subset of instances when showing the

comparison with benchmark approaches.

71

https://hal.inria.fr/hal-03836982
https://logistik.bwl.uni-mainz.de/forschung/benchmarks/
https://logistik.bwl.uni-mainz.de/forschung/benchmarks/

2.5.2 Impact of the novel pricing heuristic

In this section, we measure the impact of the novel pricing heuristic presented in Section

2.4.3.2 on the performance of the overall solution algorithm. To do so, we de�ne RMH-2P

(RMH-N2P) to be the variant of the resticted master heuristic presented in Section 2.4

where we enable (disable) the two-phase pricing heuristic. We test the two variants on

a subset of 180 instances characterised by 100 customers and 4 commodities, which is

representative for the whole testbed.

The results obtained by comparing RMH-2P against RMH-N2P are shown in Table 2.2.

We group the considered instances by value of ∆, i.e., by the interval where the com-

modity demands are selected. Hence, for each group of instances, we have two columns

associated with RMH-2P and RMH-N2P, respectively. The rows of the table are: avg.

exact pricing it.: average number of iterations of the exact pricing algorithm; avg.

UB : average upper bound value; avg. t[s] : average solution time in seconds.

Table 2.2: Impact of the two-phase pricing heuristic on the instances with |N| = 100
and |K| = 4.

∆ = [40, 60] ∆ = [1, 100]
RMH-2P RMH-N2P RMH-2P RMH-N2P

avg. exact pricing it. 69.37 111.20 128.39 168.42
avg. UB 3 170.03 3 175.56 2 359.43 2 353.60
avg. t[s] 530.17 692.17 1900.58 1942.55

First, we report that both variants are capable of providing a lower bound for

all instances. Variant RMH-2P yields better results on the instances characterised by

∆ = [40, 60]. Indeed, it allows to reduce the iterations of the exact pricing algorithm

by 38% and, consequently, the solution time of on average by 23%. In addition, RMH-2P

provides upper bounds of slightly better quality (see row avg. UB). Di�erently, both

variants behave in a similar manner on the instances with ∆ = [1, 100]. Although

RMH-2P shows a good reduction of 24% of the iterations of the exact pricing algorithm,

the reduction of the solution time of RMH-2P w.r.t. the one of RMH-N2P is rather slim

(2%). This means that the additional time spent by the two-phase heuristic in RMH-2P

is not e�ective enough in lightening the burden on the reduced graph heuristics and on

the exact pricing algorithm.

From these results, we infer that the performance of RMH-2P heavily depends on the

interval of commodity demands ∆. The reason lies in how Phase 1 of the two-phase

72

2.5 Computational experiments

pricing heuristic is designed. The main idea of Phase 1 is to reduce the combinatorics

in the solution of the ESPPRC due to the multi-commodity aspect of the C-SDVRP.

Indeed, each customer is delivered with its least consuming commodity and all the

pro�table dual prices associated with the customer are collected. Clearly, the quality

of such approximation is highly a�ected by the variability of the commodity demands.

If ∆ = [40, 60] , Phase 1 provides a reasonable approximation of the bene�t of serving

a customer, whereas this might not be the case if ∆ = [1, 100]. Indeed, in the latter

case, when a customer is visited, we might collect all the pro�table dual prices against

a very small consumption of the resource associated with capacity.

In light of the analysis conducted in this section, we apply variant RMH-2P to obtain

results on the whole testbed. In the following, such variant will be simply denoted by

RMH.

2.5.3 Results on the whole testbed

In this section, we discuss the results obtained by the restricted master heuristic (RMH)

on the 1380 benchmark instances. Due to the large number of instances, the results

are presented in an aggregated form. The detailed instance-wise version can be found

at https://hal.inria.fr/hal-03836982. We compare the results with best-known

solution values from the state-of-the-art exact and heuristic methods for the C-SDVRP

available in the literature, namely Archetti et al. (2016); Gschwind et al. (2019); Gu

et al. (2019) and Soleilhac (2022). Note that in Section 2.5.4, we compare in more

details RMH against Gu et al. (2019) and Soleilhac (2022).

Table 2.3 shows the results obtained by RMH on the small and mid-size instances.

Each row of the table corresponds to a subset of instances with the same number

of customers and commodities. The �rst four columns report some information re-

garding the instance subsets: |N|: number of customers; |K|: number of commodities;
avg.#CC : average number of customer-commodities (

∑
j∈N |Kj|) per instance; #: num-

ber of instances in the subsets. The remaining eight columns of the table summarise

the results of the RMH: #LB : number of instances for which a LB is found; opt. gap[%]

avg./min./max.: average/minimal/maximal optimality gap expressed as a percentage;

avg. t[s] : average solution time in seconds; #opt : number of optima identi�ed by RMH

with respect to the ones identi�ed by Gschwind et al. (2019); #equal : number of times

RMH returned the best-known solution values from the literature; #impr.: number of

times RMH improved the best-known solution values from the literature (considering

73

https://hal.inria.fr/hal-03836982

also the new solutions, i.e., the cases where no solution was available in the literature);

avg. gap[%].: average percentage gap with respect to the best-known solution values;

if no best-know solution values are available, we write symbol -.

Table 2.3: Results on the small and mid-size instances.

Instances
RMH results

opt. gap[%] best known

|N| |K| avg.#CC #inst. #LB avg. min. max. avg.t[s] #opt #equal #impr. avg. gap[%]

15

2 26.00 32 32 0.29 0.00 2.16 0.32 30 30 0 0.02
3 36.50 32 32 0.68 0.00 5.89 3.98 22 22 0 0.23
4 48.56 32 32 0.43 0.00 2.19 14.59 29 29 0 0.04
5 60.13 32 32 0.84 0.00 6.93 57.30 18 18 0 0.41
6 72.66 32 32 0.63 0.00 2.51 87.25 20 20 1 0.12

20

3 48.70 20 20 0.81 0.00 2.45 4.52 10 10 0 0.19
4 64.10 20 20 0.94 0.00 2.70 33.54 9 9 1 0.24
5 80.50 20 20 0.97 0.00 4.70 137.27 11 12 2 0.12
6 96.10 20 20 0.98 0.04 2.76 467.27 11 11 2 0.28

40

3 98.10 20 20 1.69 0.24 2.79 58.76 2 2 0 0.41
4 129.10 20 20 1.90 0.79 4.16 243.24 0 0 9 0.76
5 160.40 20 20 2.35 0.58 5.27 749.61 1 1 14 0.71
6 192.45 20 20 2.74 0.73 5.91 1627.37 0 0 17 0.27

60

3 145.00 20 20 2.27 1.14 3.38 170.76 0 0 0 0.76
4 193.70 20 20 2.66 0.62 4.89 556.42 0 0 18 0.51
5 240.10 20 20 3.46 0.92 6.21 1848.11 0 0 20 -
6 287.70 20 20 4.66 1.71 7.70 2467.48 0 0 20 -

80

3 195.20 20 20 2.75 1.47 5.02 354.51 0 0 2 0.98
4 256.40 20 20 3.74 1.52 8.34 1045.47 0 0 20 -
5 320.80 20 20 4.31 2.31 7.46 2268.34 0 0 20 -
6 386.75 20 20 6.16 2.37 13.28 3044.60 0 0 20 -

Note that RMH provides a lower bound for all the small and mid-size instances.

For the instances with |N| = 15 and |N| = 20, the branch-price-and-cut algorithm

of Gschwind et al. (2019) provides 158 and 71 optima over 160 and 80 instances,

respectively. RMH is able to identify 119 of them if |N| = 15 and 41 of them if |N| = 20.

In respectively 50 and 6 of such cases, RMH proves the optimality of the obtained

solutions (opt. gap = 0). Overall solutions are good, being the optimality gap on

average equal to 0.69% and larger than 2.5% only in nine instances out of 240. In

addition, RMH provides good solution values since the average gap with respect to the

best-known solution is 0.18%. Six new best solutions are found (see column #impr.)

and the optimality gap referred to these six new best solution is on average 2.09%.

For the instances with |N| = 40, 60, 80, the number of commodities has a great

impact on the measure of quality of the solutions found by RMH: the greater the number

of commodities, the larger the average optimality gap (see columns opt. gap[%]).

However, the number of instances for which the optimality gap exceeds 5% is limited

74

2.5 Computational experiments

(35 out of 240) and most of them correspond to instances with 80 customers and a

number of commodities larger than four. For these instances, no further insight can

be drawn in terms of solution quality, indeed, no solution is available in the literature.

RMH equals three best-known solutions and improves 160 of them (see columns #equal.

and #impr.). Note that, out of those 160, RMH provides a new solution for 39, 58 and

60 instances with 40, 60 and 80 customers, respectively. The average optimality gap

of such solutions is 2.72%, 3.68% and 4.73%. The gap w.r.t. the best-known solution

values is on average equal to 0.70% and larger than 2.5% only in four cases.

In general, RMH runs within relatively short computational times on the small and

mid-size instances. Also, Table 2.3 shows that the average solution time grows with

the number of commodities and the number of customers.

Table 2.4 shows the results obtained on the large instances (|N| = 100) which are

grouped by number of commodities |K|, interval ∆ of customer demand and proba-

bility p that a customer requires a commodity. The remaining columns reporting the

instance details are the same as in Table 2.3. The columns which summarise the re-

sults of the RMH are: #LB : number of instances for which a LB is found; opt. gap[%]

avg./min./max.: average/minimal/maximal optimality gap expressed in percentage;

avg.t[s] : average solution time in seconds; #impr.: number of times RMH improved the

best-known solution values from the literature (counting also the new solutions); gap[%]

avg./min./max.: average/minimal/maximal percentage gap with respect to the best-

known solution values; if no best-know solution values are available, we write symbol

-.

First, we note that RMH manages to provide a lower bound for 874 of the 900

instances. The 26 instances where it fails to do so are characterised by |K| = 5, 6

and 25 of these also by p = 1 and ∆ = [1, 100], i.e., they count 500 or 600 non-

zero customer demands. When a lower bound is found, the optimality gap mirrors

the behaviour observed in Table 2.3: it deteriorates as the number of commodities

increases. More precisely, it is usually higher when p = 1, and especially when also

∆ = [1, 100]. In addition, the optimality gap is larger than 5% in 241 instances and,

among those, 191 are characterised by �ve and six commodities. For the instances

with fewer commodities, the average optimality gap is 2.71%, meaning that RMH yields

good performance guarantee. For the ones with |K| = 2, 3, RMH shows a behaviour

comparable with the approaches from the literature yielding the best-known solution

values, namely Archetti et al. (2016), Gu et al. (2019) and Soleilhac (2022). Indeed,

75

Table 2.4: Results on the large instances.

Instances
RMH results

best known

opt. gap[%] gap[%]

|K| ∆ p avg.#CC #inst. #LB avg. min. max. avg.t[s] #impr. avg. min. max.

2
[40,60]

0.6 136.40 40 40 1.36 0.03 3.39 30.49 0 0.43 0.00 1.74
1 200.00 50 50 1.39 0.09 3.12 68.28 11 0.39 -0.05 1.10

[1,100]
0.6 136.40 40 40 2.40 1.06 5.24 183.20 0 0.95 0.04 2.87
1 200.00 50 50 1.94 0.54 3.95 250.62 16 0.48 -0.23 2.27

3
[40,60]

0.6 188.40 40 40 1.77 0.70 3.22 155.42 1 0.45 -0.15 1.79
1 300.00 50 50 2.46 0.74 7.22 247.15 12 1.09 -0.60 5.17

[1,100]
0.6 188.40 40 40 2.46 0.67 5.54 459.32 2 0.89 -0.11 3.49
1 300.00 50 50 3.51 1.50 6.71 995.53 13 1.62 -0.45 4.48

4
[40,60]

0.6 242.95 40 40 2.42 1.00 5.00 379.13 40 - - -
1 400.00 50 50 3.91 0.93 9.11 651.01 50 - - -

[1,100]
0.6 243.30 40 40 3.29 0.80 7.33 1100.49 40 - - -
1 400.00 50 50 5.10 2.05 9.61 2540.64 50 - - -

5
[40,60]

0.6 299.13 40 40 3.66 1.65 6.19 957.39 40 - - -
1 500.00 50 50 5.19 2.54 10.08 1609.24 50 - - -

[1,100]
0.6 301.48 40 40 4.82 1.66 13.01 2196.31 40 - - -
1 500.00 50 45 5.85 2.99 11.50 3479.58 50 - - -

6
[40,60]

0.6 359.65 40 40 4.78 2.03 8.05 1764.76 40 - - -
1 600.00 50 50 6.43 2.95 11.98 2641.67 50 - - -

[1,100]
0.6 357.73 40 39 6.04 3.14 15.24 2972.40 40 - - -
1 600.00 50 30 7.37 4.99 11.89 3622.95 50 - - -

the gap against the best-known solution values is on average 0.79% and it is zero

for �ve instances with two commodities. Our approach provides a new solution for

the 540 instances with |K| = 4, 5, 6. In addition, RMH manages to improve the value

of 55 instances with |K| = 2, 3, 40 of these are new solutions. More insights about

the comparison against the existing heuristic methods in the literature are drawn in

Section 2.5.4.

We conclude this section with a discussion regarding the price to pay to have a per-

formance guarantee, i.e., to compute good lower bounds. In the case of RMH, providing

lower bounds entails solving the exact pricing algorithm within the column generation

procedure and the separation of the capacity cuts (2.6).

To analyse the impact of computing the lower bound, we store the upper bounds and

computational time before the �rst iteration of the exact pricing algorithm. Note that

such upper bounds are obtained by solving formulation [SC] restricted to the subset

of columns found so far, and applying the mathematical programming operator. Such

results are labelled in Table 2.5 with RMH-NG. The rows of the table represent subset of

instances which share the same number of customers. The columns are: |N|: number

76

2.5 Computational experiments

of customers; #inst.: number of instances; avg.UB : average upper bounds of RMH-NG

and RMH; avg.gap[%] : average percentage gap between the upper bounds of RMH with

respect to the ones of RMH-NG; avg.t[s] : average solution time in seconds of RMH-NG

and RMH; avg.ratio: ratio between the solution time of RMH with respect to the one of

RMH-NG;

As expected, the price to compute a performance guarantee is paid in terms of

computational time: the one of RMH is on average 3.9 times the one of RMH-NG. The

additional time spent in RMH serves not only to compute good lower bounds, but also to

improve the quality of the upper bounds. Indeed, several more columns are generated

in RMH and the improvement of the upper bounds of RMH with respect to the ones

of RMH-NG is on average 0.6%. These results shows that RMH can be easily adapted

according to the needs: in case a solution is needed within a short computing time,

RMH-NG can be used without sacri�cing solution quality to a large extent.

Table 2.5: Impact of the performance guarantee.

Instances
RMH-NG vs. RMH

avg. UB avg.t[s]

|N| #inst. RMH-NG RMH avg. gap[%] RMH-NG RMH avg. ratio

15 160 389.35 386.69 -0.65 9.92 32.69 3.93
20 80 703.78 693.76 -1.41 41.47 160.65 4.07
40 80 1152.61 1139.68 -1.14 135.62 669.74 5.67
60 80 1659.90 1644.11 -0.96 254.19 1260.69 4.72
80 80 2126.85 2113.77 -0.66 361.21 1678.23 4.45
100 900 2793.71 2780.10 -0.38 382.29 1348.10 3.64

2.5.4 Comparison with Gu et al. (2019) and Soleilhac (2022)

In this section, we analyse how RMH performs against the two existing heuristic al-

gorithms available in the literature providing the majority of the best-known solution

values, namely Gu et al. (2019) and Soleilhac (2022). Remark that, di�erently from Gu

et al. (2019) and Soleilhac (2022), our approach also provides a performance guarantee

on the solution values. The authors of Gu et al. (2019) consider instances with two and

three commodities, given that the ones with more commodities were not yet available.

Among the instances used in Gu et al. (2019), Soleilhac (2022) considers only the ones

with 100 customers. Hence, in this section, the testbed is restricted accordingly. The

77

experiments in Gu et al. (2019) and Soleilhac (2022) are carried on machines with

similar characteristics to our when run with a single thread.

Tables 2.6 and 2.7 report the comparison against Gu et al. (2019) and Soleilhac

(2022), respectively. The rows of the tables correspond to subset of instances with the

same number of customers and commodities. The �rst three columns report the number

of customers (|N|), commodities (|K|) and instances (#inst.) in each subset. The next

�ve columns compare the upper bounds reporting the number of instances where RMH

matches (#equal) or improves (#impr.) the upper bounds from the competitor and

the average/minimal/maximal gap (gap[%] avg./min./max.). The �nal three columns

show the average solution times (avg.t[s]) of RMH, the one of the compared heuristic

and the average ratio between the solution times of the compared heuristic w.r.t. the

ones of RMH (avg.ratio).

Table 2.6: Comparison with Gu et al. (2019) on the instances with |K| = 2, 3 and
customers' locations from C101 and R101.

Instances
RMH vs. Gu et al. (2019)

UB

gap[%] avg.t[s]

|N| |K| #inst. #equal #impr. avg. min. max. RMH Gu et al. (2019) avg.ratio

15 2 32 30 0 0.02 0.00 0.28 0.32 8.91 35.12
15 3 32 22 0 0.17 0.00 2.47 3.98 15.63 21.05
20 3 20 12 0 0.18 0.00 0.98 4.52 56.78 14.28
40 3 20 2 2 0.36 -0.09 1.01 58.76 117.14 2.72
60 3 20 0 0 0.70 0.05 2.15 170.76 281.83 1.94
80 3 20 0 2 0.98 -0.26 2.83 354.51 511.00 1.47

100
2 160 5 42 0.34 -0.67 2.66 136.07 445.09 9.46
3 160 0 24 0.91 -0.96 5.17 481.80 822.60 4.02

The RMH runs much faster than the other heuristics: the speedup ratio is on average

9.4 and 28.0 against Gu et al. (2019) and Soleilhac (2022), respectively. Although the

good decrease in the solution time, the quality of the solutions provided by RMH stays

comparable with the one of the competitors. Indeed, when compared with Gu et al.

(2019), RMH matches 71 upper bounds, improves 70 of them of on average 0.26% and

the percentage gap of the remaining ones is on average 0.83%. The results show a

similar trend in the comparison with Soleilhac (2022): RMH matches �ve upper bounds,

improves 36 of them of on average 0.35% and the percentage gap of the remaining ones

78

2.6 Conclusions

Table 2.7: Comparison with Soleilhac (2022) on the instances with |N| = 100 and
|K| = 2, 3 and customers' locations from C101 and R101.

Instances
RMH vs. Soleilhac (2022)

UB

gap[%] avg.t[s]

|N| |K| #inst. #equal #impr. avg. min. max. RMH Soleilhac (2022) avg.ratio

100
2 160 5 12 0.49 -0.34 2.84 136.07 1800 44.62
3 160 0 24 0.63 -1.45 4.03 481.80 1800 11.47

is on average 0.69%. Recall that our heuristic provides also a performance guarantee

contrary to Gu et al. (2019) and Soleilhac (2022).

2.6 Conclusions

In this paper, we considered the Commodity constrained Split Delivery Vehicle Routing

Problem (C-SDVRP), a routing problem where customer demands may be composed

of multiple commodities and split deliveries are allowed as long as the demand of a

single commodity is delivered all in once. We presented a heuristic with a performance

guarantee to solve the problem. Our heuristic is based on a column generation approach

which embeds a new pricing heuristic that exploits the multi-commodity aspect of the

problem. Such contribution allowed to reduce the computational time on instances

where the variability of the customer demands is not large. We performed a thorough

computational analysis on the 1380 benchmark instances available in the literature.

We provide an upper bound for all the considered instances, the majority of those

are guaranteed to be of good quality (optimality gap less than 5%). Some new best-

known solutions are found. Finally, our approach outperforms the state-of-the-art

metaheuristic for the C-SDVRP (Gu et al. (2019) and Soleilhac (2022)) in terms of

computational time while maintaining the quality of the upper bounds comparable.

Future research may be devoted to the inclusion of additional families of valid

inequalities (possibly robust) to improve both the lower and upper bounds. Finally,

our approach may be adapted to solve variants of the problem where the additional

constraints can be easily handled in the pricing problem (e.g. a multi-compartment

C-SDVRP).

79

80

Chapter 3

A Branch-Price-and-Cut algorithm for

the Multi-Commodity two-echelon

Distribution Problem

Contents
3.1 Introduction . 83

3.2 Literature review . 84

3.3 Problem description . 86

3.4 Problem formulation . 88

3.4.1 Valid inequalities . 89

3.5 Branch-Price-and-Cut algorithm 94

3.5.1 Column generation . 95

3.5.2 Management of the valid inequalities 97

3.5.3 Branching strategies . 99

3.5.4 Accelerating strategies . 101

3.6 Computational experiments 102

3.6.1 Benchmark instances . 102

3.6.2 Impact of valid inequalties . 105

3.6.3 Evaluation of the BPC algorithm 106

3.6.4 Results on the whole testbed 107

3.7 Conclusions . 112

81

The content of this chapter was presented at the following conferences: ROADEF

2022, Odysseus 2021, VeRoLog 2022 and TRISTAN XI 2022. This chapter corresponds

to the paper "A Branch-Price-and-Cut algorithm for the Multi-Commodity two-echelon

Distribution Problem" submitted to Computers & Industrial Engineering on 17 July

2023.

Abstract: In the Multi-Commodity two-echelon Distribution Problem (MC2DP),

multiple commodities are distributed in a two-echelon distribution system involving

suppliers, distribution centres and customers. Each supplier may provide di�erent

commodities and each customer may request several commodities as well. In the �rst

echelon, capacitated vehicles perform direct trips to transport the commodities from the

suppliers to the distribution centres for consolidation purposes. In the second echelon,

each distribution centre owns a �eet of capacitated vehicles to deliver the commodities

to the customers through multi-stop routes. Commodities are compatible, i.e., they

can be mixed in the vehicles. Finally, customer requests can be split by commodities,

that is, a customer can be visited by several vehicles, but the total amount of each

commodity has to be delivered by a single vehicle. The aim of the MC2DP is to

minimise the total transportation cost to satisfy customer demands.

We propose a set covering formulation for the MC2DP where the exponential num-

ber of variables relates to the routes in the delivery echelon. We develop a Branch-

Price-and-Cut algorithm (BPC) to solve the problem. The pricing problem results

in solving an Elementary Shortest Path Problem with Resource Constraints (ESP-

PRC) per distribution centre. We tackle the ESPPRC with a label setting dynamic

programming algorithm which incorporates ng-path relaxation and a bidirectional la-

belling search. Pricing heuristics are invoked to speed up the procedure. In addition,

the formulation is strengthened by integrating capacity cuts and two families of valid

inequalities speci�c for the multiple commodities aspect of the problem.

Our approach solves to optimality 439 over the 736 benchmark instances from the

literature. The optimality gap of the unsolved instances is 2.1%, on average.

Keywords: Two echelon routing problems, Multiple commodities, Split delivery,

Branch-Price-and-Cut.

82

3.1 Introduction

3.1 Introduction

In a two-echelon distribution system, goods are transferred from origins (depots, sup-

pliers) to destinations (customers) via intermediate facilities (satellites, distribution

centres) (see Guastaroba et al., 2016). In the collection echelon, large vehicles bring

goods from the origins to the intermediate facilities where consolidation operations are

performed. Whereas, in the delivery echelon, smaller vehicles are in charge of distribut-

ing the goods to the �nal customers. Routing decisions are usually required in both

echelons. Two-echelon systems take advantage of consolidating goods at intermediate

facilities and using di�erent �eets within each echelon to reduce overall transportation

costs. An example of this delivery strategy can be encountered in city logistics (Cat-

taruzza et al., 2017; Crainic et al., 2023) where the aim is also to grant the access in

urban areas only to environmental-friendly vehicles that usually have a small capacity.

In this article, we consider a two-echelon distribution problem arising in the short

and local fresh food supply chains, namely the Multi-Commodity two-echelon Distri-

bution Problem (MC2DP) introduced in Gu et al. (2022). In this context, origins,

intermediate facilities and destinations are referred to as suppliers, distribution centres

and customers, respectively. There are few vehicle routing problems which explicitly

deal with multiple commodities within a two-echelon distribution system. To the best

of our knowledge, among these problems, the MC2DP is the only one considering a

many-to-many setting. In fact, in the MC2DP, the commodity requested by a customer

is not pre-assigned to a speci�c supplier, so it can be collected at any supplier or sub-

set of suppliers where it is available. The amount of the commodities available at the

suppliers is limited. In contrast with the usual setting in the literature, the MC2DP re-

quires routing decisions only in the delivery echelon. Indeed, commodities are collected

from the suppliers and brought to the distribution centres via direct round trips. In the

delivery echelon, a �eet of vehicles performing routes starting and ending at the same

distribution centre is used to deliver the commodities to the customers. All vehicles in-

volved in the distribution system are capacitated and commodities are compatible, i.e.,

they can be mixed inside all vehicles. Finally, as in the Commodity constrained Split

Delivery Vehicle Routing Problem (C-SDVRP) Archetti et al. (2016), customers can be

visited by multiple vehicles as long as the demand of a single commodity is served by

a single vehicle. The aim of the MC2DP is to determine a distribution plan to satisfy

customer demands while respecting the capacity of the vehicles and not exceeding the

83

commodity availabilities at the suppliers and such that the total transportation cost is

minimised.

The authors in Gu et al. (2022) proposed a compact Mixed Integer Linear Pro-

gramming (MILP) formulation and a sequential heuristic for the MC2DP. The authors

decompose the MC2DP in two subproblems: one for the collection from suppliers, and

the other one for the delivery to customers. The collection subproblem is modeled as

a MILP and solved with a commercial solver while the delivery subproblem is solved

by an Adaptive Large Neighbourhood Search (ALNS) algorithm.

The contribution of this paper is to present an exended model and to propose

the �rst ever exact approach based on a Branch-Price-and-Cut (BPC) algorithm to

solve the MC2DP. Similar exact approaches have recently been proposed to deal with

two-echelon vehicle routing problems (see e.g. Li et al., 2022; Marques et al., 2020,

2022; Mhamedi et al., 2022). However, our BPC algorithm is designed to take into

account explicitly the multi-commodity dimension. Speci�cally, our algorithm relies

on a set covering formulation for the MC2DP where the exponentially-many number

of variables correspond to the routes in the delivery echelon starting and ending at

each distribution centre. We also strengthen the formulation by the insertion of capac-

ity cuts, valid inequalities arising from the set covering polytope (Balas & Ng, 1989)

and a new family of valid inequalities based on the number partitioning problem poly-

tope. While capacity cuts are classical inequalities derived for the Capacitated Vehicle

Routing Problem (CVRP) (see Laporte et al., 1985), the other two families of inequal-

ities tackle the multi-commodity aspect of the problem. Finally, several state-of-art

speed-up techniques are also incorporated in our BPC algorithm

The remainder of the paper is organized as follows. Section 3.2 provides a literature

review. In Section 3.3, a formal description of the MC2DP is provided. In Section 3.4,

a set covering formulation is presented along with di�erent families of valid inequalities.

Our Branch-Price-and-Cut algorithm is described in Section 3.5. Finally, in Section 3.6

we analyse the results obtained by the proposed algorithm on the benchmark instances

introduced in Gu et al. (2022) to assess its e�ectiveness.

3.2 Literature review

In this section, we review the existing literature on the two-echelon distribution prob-

lems, with particular attention to the ones dealing with multiple commodities. The �rst

84

3.2 Literature review

two-echelon routing problem introduced by Jacobsen & Madsen (1980) was motivated

by a speci�c application. Newspapers have to be distributed from a printing o�ce to

sales points possibly passing through some transfer points whose locations are to be de-

cided. Crainic et al. (2004) and Crainic et al. (2009) proposed a formal description of a

rich class of two-echelon routing problems along with some economic insights. However,

the seminal problem in this class, namely the two-echelon Capacitated Vehicle Routing

Problem (2E-CVRP), was introduced in the literature and studied for the �rst time

in Perboli et al. (2011). In the 2E-CVRP, a single commodity has to be transferred from

a single origin to several destinations through some intermediate facilities. Two �eets

of capacitated vehicles perform routes in the two echelons to transport the commodity

from the origin to the intermediate facilities and from the intermediate facilities to the

destinations. The objective of the 2E-CVRP is to minimise the total transportation

cost of the distribution system. The authors proposed two math-heuristics to solve the

problem, a diving and a sub-MIP heuristic.

The 2E-CVRP and related problems have received increasing attention in recent

years and many variants have been addressed, e.g., 2E-CVRP with (i) time windows

(Mhamedi et al., 2022); (ii) mobile satellites (Li et al., 2020); (iii) synchronization

(Grangier et al., 2016) and bi-synchronization (Li et al., 2021b); (iv) simultaneous

pickup and delivery (Li et al., 2022); (v) electric vehicles (Breunig et al., 2019) and

battery swapping stations (Jie et al., 2019); (vi) real-time transshipment capacity vary-

ing (Li et al., 2018); (vii) covering options (Enthoven et al., 2020); (viii) delivery options

(Zhou et al., 2018); (ix) stochastic demands (Sluijk et al., 2021). The interested reader

may refer to Cuda et al. (2015); Li et al. (2021a) and Sluijk et al. (2023) for recent

surveys on the subject.

According to the existing literature, the vast majority of the two-echelon routing

problems deal with the single commodity case. Apart from the MC2DP, which is ad-

dressed in this paper, only a few works integrate multiple commodities in a two-echelon

routing problem (e.g. Dellaert et al., 2021; Gu et al., 2022; Jia et al., 2023). In Dellaert

et al. (2021), the authors extended the 2E-CVRP by introducing multiple origins and

multiple commodities. In addition, hard time windows are imposed for the delivery

at the destinations. In their problem, customers have a commodity demand from a

speci�c origin, i.e., there is a one-to-one setting. Several mathematical formulations

are proposed and a BPC algorithm is devised to solve the problem. In Jia et al. (2023),

85

the problem setting is similar to the one of Dellaert et al. (2021). However, the multi-

commodity aspect is handled with more restrictions: only two origins are considered

and each destination requires one commodity per origin (one-to-one setting). The au-

thors developed an ALNS algorithm to solve large-scale instances of the problem. The

MC2DP introduced in Gu et al. (2022) di�ers from Dellaert et al. (2021) and Jia et al.

(2023) for three reasons:(i) there is a many-to-many setting for the commodities, i.e.

any commodity requested by a customer can be served from any supplier; (ii) suppliers

provide commodities in limited amounts; (iii) routing decisions are not required in the

collection echelon.

3.3 Problem description

In the Multi-Commodity two-Echelon Distribution Problem (MC2DP), a set of com-

modities K is distributed in a system involving a set of suppliers (origins) S, a set of

distribution centres (intermediate facilities) D and a set of customers (destinations)

C. The system is split in two echelons: the collection echelon where the commodities

are collected at the suppliers and brought to the distribution centres, and the deliv-

ery echelon where the commodities at the distribution centres are delivered to the

customers. More precisely, in the collection echelon, each supplier i ∈ S provides a

maximal amount Pik ≥ 0 for each commodity k ∈ K. Note that a supplier i ∈ S

might not supply a commodity k ∈ K, and in that case, Pik takes value 0. An un-

limited �eet of homogeneous vehicles of capacity QS performs direct round trips from

the distribution centres to collect the commodities from the suppliers. The vehicles

can transport any subset of commodities. Due to the limited capacity of the vehicles,

direct round trips between a distribution centre o ∈ D and a supplier i ∈ S may be per-

formed by several vehicles. The problem associated with the collection operations can

be modeled as a Multi-commodity Capacitated �xed-charge Network Design Problem

(MCNDP, Magnanti & Wong, 1984) with a speci�c cost structure: there is a step-wise

cost function de�ned by a unitary cost associated with each vehicle used between a

distribution centre and a supplier.

Di�erently, the problem of distributing the commodities from the distribution cen-

tres to the customers is a multi-depot version of the Commodity constrained Split

Delivery Vehicle Routing Problem (C-SDVRP). Each customer j ∈ C has a demand

Djk ≥ 0 for all commodities k ∈ K. The request of customer j is identi�ed by set

86

3.3 Problem description

Kj = {k ∈ K : Djk > 0}. Each distribution centre owns an unlimited �eet of ho-

mogeneous and capacitated vehicles of capacity QD which performs routes to deliver

the commodities to the customers. Each vehicle has to end its route at its starting

distribution centre. As in the collection echelon, a vehicle can be loaded with any

commodities. Without loss of generality, we suppose QD ≥ max{
∑

k∈Kj
Djk : j ∈ C}.

Furthermore, customer requests can be split, i.e., di�erent vehicles can serve the same

customer. However, the demand of a single commodity cannot be split: it has to be

delivered by a single vehicle. Note that direct trips from suppliers to customers and

inter-connections between distribution centres are not allowed.

Finally, the collection and delivery operations taking place in the two echelons are

coordinated at the distribution centres by means of the so-called load synchronization

strategy Drexl (2012): the total amount of each commodity collected at the suppliers

by each distribution centre must be su�cient to serve the customer demands of that

commodity delivered by a vehicle of that distribution centre.

We formulate the MC2DP on a directed weighed graph G = (V,A). Set V =

S ∪ D ∪ C contains a vertex for each supplier, distribution centre and customer. Arc

set A = AS ∪ AD is de�ned as the union of two sets of arcs which model the possible

vehicle travels in the two echelons. Speci�cally, set AS = (S×D)∪(D×S) includes the

arcs modelling the direct trips from suppliers to distribution centres in the collection

echelon, whereas AD = (D×C)∪ (C×D)∪ (C×C) contains all arcs between customers

and between distribution centres and customers. Each arc (i, j) ∈ A is assigned with

a non-negative cost Cij which represent the transportation cost of a vehicle traversing

(i, j). The arc costs are symmetric and satisfy the triangular inequality. In graph G, a

route in the delivery echelon is a non-empty circuit starting and ending at a distribution

centre o ∈ D. A route is feasible if the total amount of the delivered commodities to

the customers visited along the route does not exceed vehicle capacity QD. The cost

of any feasible route r is Cr =
∑

(i,j)∈A(r)Cij, where A(r) is the set of arcs traversed by

the route. Finally, the total transportation cost of the distribution system arising from

the MC2DP is the sum of the cost of the direct round trips in the collection echelon

and the routing costs in the delivery echelon.

The aim of the MC2DP is to determine a distribution plan, i.e., the direct round

trips in the collection echelon and the routes in the delivery echelon, which satis�es

the customer requests, does not exceed the commodity availabilities at the suppliers,

87

satis�es the vehicle capacities in both echelons and respects the load synchronization

constraints while minimising the total transportation cost.

3.4 Problem formulation

We model the MC2DP by means of a set covering formulation, where the exponentially-

many variables are associated with the routes in the delivery echelon.

For each distribution centre o ∈ D, we de�ne Ro as the set of all feasible routes

starting and ending at o. The set of all feasible routes is denoted by R =
⋃

o∈D Ro.

We de�ne a binary coe�cient arjk with value one if commodity k ∈ K is delivered to

customer j ∈ N by route r ∈ R and zero otherwise.

For each supplier i ∈ S and each distribution centre o ∈ D, we introduce an integer

variable xio to represent the number of vehicles traversing arc (i, o) ∈ AS. For each

i ∈ S, o ∈ D and k ∈ K, we de�ne a non-negative continuous variable qkio that represents

the amount of commodity k collected at supplier i by distribution centre o. Finally,

for each route r ∈ R, we introduce a binary variable λr taking value one if r is selected

in the solution and zero otherwise.

The Set Covering formulation [SC] for the MC2DP reads as follows:

[SC] min
∑

(i,o)∈AS

2Cioxio +
∑
r∈R

Crλr (3.1)

s.t.
∑
o∈D

qkio ≤ Pik ∀i ∈ S,∀k ∈ K (3.2)∑
k∈K

qkio ≤ QSxio ∀i ∈ S, ∀o ∈ D (3.3)∑
r∈R

arjkλr ≥ 1 ∀j ∈ C,∀k ∈ Kj (3.4)∑
i∈S

qkio ≥
∑
r∈Ro

∑
j∈C

arjkDjkλr ∀o ∈ D,∀k ∈ K (3.5)

xio ∈ Z≥0 ∀i ∈ S,∀o ∈ D (3.6)

qkio ∈ R≥0 ∀i ∈ S,∀o ∈ D,∀k ∈ K (3.7)

λr ∈ {0, 1} ∀r ∈ R (3.8)

Objective function (3.1) minimises the total transportation cost. Constraints (3.2)

ensure that the commodity availabilities at each supplier are respected. Constraints (3.3)

88

3.4 Problem formulation

guarantee that a su�cient number of vehicles perform the collection operations and

that the capacity of these vehicles is not exceeded. Covering Constraints (3.4) impose

that each commodity required by a customer is served by at least one route. In ad-

dition, the load synchronization constraint linking the collection and delivery echelons

is expressed in constraints (3.5): the quantity of each commodity collected by each

distribution centre has to be large enough to satisfy the demand for that commod-

ity delivered by a route of that distribution centre. Finally, Constraints (3.6), (3.7)

and (3.8) de�ne variable domains.

3.4.1 Valid inequalities

In this section, we introduce four families of valid inequalities considered to strengthen

formulation [SC]. Two of these inequalities are known in the context of vehicle routing

problems, while the other two are tailored to deal with the multi-commodity aspect

of the MC2DP. Note that such inequalities are valid for the C-SDVRP, hence for the

MC2DP.

In what follows, given a subset of customers C′ ⊆ C, we de�neD(C′) =
∑

j∈C′
∑

k∈Kj
Djk

to be the total demand requested by the customers in C′. In addition, we introduce a

binary coe�cient brij with value one if route r ∈ R traverses arc (i, j) ∈ AD and zero

otherwise. Finally, we de�ne erjM =
∏

k∈M a
r
jk to be a binary coe�cient equal to one

if route r delivers all the commodities of subset M ⊆ Kj to customer j ∈ C and zero

otherwise.

Bounds on the number of vehicles

The following inequalities set bounds on the number of vehicles in the collection

and delivery echelons (see Marques et al., 2020):

∑
(i,o)∈AS

xio ≥
⌈
D(C)

QS

⌉
(3.9)

and ∑
r∈R

λr ≥ ⌈v⌉ (4.10a)∑
r∈R

λr ≤ min{|C|, 2v̄}. (4.10b)

89

In inequalities (4.10a) and (4.10b), values v and v̄ are obtained by solving an instance

of the Bin Packing Problem (BPP), where bins have size equal to the vehicle capacity

QD, and each customer demand has a corresponding item to be packed with size

Djk. Precisely, we solve an integer program for the BPP on such an instance with a

commercial solver within a short time limit: v and v̄ are the obtained lower and upper

bounds. If the instance is solved to optimality within the time limit, v = v̄ holds. The

right hand-side of (4.10b) is the minimum between twice value v̄ (see Federgruen &

Simchi-Levi, 1995) and the number of customers.

Capacity cuts

Laporte et al. (1985) introduced the capacity cuts to deal with the Capacitated

Vehicle Routing Problem:

∑
r∈R

 ∑
(i,j)∈δ−(C′)

brij

λr ≥
⌈
D(C′)

QD

⌉
∀C′ ⊆ C, (3.11)

where δ−(C′) = {(i, j) ∈ AD : i /∈ C′, j ∈ C′} is the set of arcs of graph G reaching

a vertex in C′. Given a subset of customers C′, inequality (3.11) states that at least

⌈D(C′)/QD⌉ vehicles of the delivery echelon are required to cover the requests of the

customers in C′.

Set covering polytope

We present a family of valid inequalities inspired by the facet-de�ning inequalities

proposed in Balas & Ng (1989) for the set covering polytope. Although these inequali-

ties were proposed several years ago, to the best of our knowledge, they have not been

used in BPC algorithms before. We adapted them to deal with the multi-commodity

aspect of the problem.

Let us �rst brie�y present a formulation for the set covering problem. Let I bet a

set of elements to be covered, and J be a set of subsets of I. We denote by cj the cost

associated to subset j ∈ J, and dij a binary parameter that takes value one if element

i ∈ I is in subset j ∈ J, and zero otherwise. Let xj be a binary decision variable

taking value one if subset j ∈ J is selected, zero otherwise. An integer programming

90

3.4 Problem formulation

formulation for the set covering problem is

min
∑
j∈J

cjxj

s.t.
∑
j∈J

dijxj ≥ 1 ∀i ∈ I

xj ∈ {0, 1} ∀j ∈ J

Given a subset I′ ⊆ I, the inequalities introduced in Balas & Ng (1989) reads as

follows:

2
∑
j∈JI′

xj +
∑
j∈J̄I′

xj ≥ 2,

where JI
′
= {j ∈ J : dij = 1,∀i ∈ I′} is the set of the elements of J which cover I′

and J̄I
′
= {j ∈ J :

∑
i∈I′ dij ≥ 1 ∧

∏
i∈I′ dij = 0} is the set of the elements of J which

contain some, but not all, the elements in I′. The inequalities express how subset I′

may be covered: either it su�ces to select a unique element in J that covers I′, i.e., an

element in JI
′
, or at least two elements in J that partially cover I′ have to be selected,

i.e., at least two elements in J̄I
′
. Under speci�c conditions, these constraints are facet

de�ning for the set covering polytope.

In what follows, we adapt these inequalities to the MC2DP to express how the

subsets of commodities required by a given customer may be covered. For the ease of

readability, we introduce the following notation. Let j ∈ C be a customer andMj ⊆ Kj

be a subset of the commodities requested by j. We denote by R
Mj

j ⊆ R the subset of

routes delivering all commodities in Mj to j, i.e., R
Mj

j = {r ∈ R : erjMj
= 1}.

In addition, we write R̄
Mj

j ⊆ R for the subset of routes which deliver some of the

commodities in Mj to j, but not all of them, i.e., R̄
Mj

j = {r ∈ R :
∑

k∈Mj
arjk ≥

1 ∧ erjMj
= 0}.

The set covering polytope inequalities for the MC2DP are de�ned as follows:

2
∑

r∈R
Mj
j

λr +
∑

r∈R̄
Mj
j

λr ≥ 2 ∀j ∈ C,∀Mj ⊆ Kj. (3.12)

Inequalities (3.12) state that subset of commodities Mj ⊆ Kj of customer j ∈ C can

be covered either by a single route in R
Mj

j or by at least two routes in R̄
Mj

j . Note that

these inequalities are meaningful only if |Mj| ≥ 3. Indeed, if |Mj| = 2, they can be

retrieved as an aggregation of covering constraints (3.4).

91

Number partitioning polytope

We propose a novel family of valid inequalities which exploits the multi-commodity

aspect of the MC2DP. More precisely, given a customer j ∈ C, these inequalities specify

the possible combinations of routes to deliver the set of commodities Kj required by

customer j.

For each customer j ∈ C, we denote by Rl
j the subset of routes which deliver exactly

l = 1, . . . , |Kj| commodities to j, i.e., Rl
j = {r ∈ R :

∑
k∈Kj

arjk = l}.
Equalities

|Kj |∑
l=1

l
∑
r∈Rl

j

λr = |Kj| ∀j ∈ C (3.13)

ensure that the selected routes that serve customer j will exactly bring |Kj| commodi-
ties to customer j. As an example, let j̄ ∈ C be a customer having a demand for three

commodities, i.e., |Kj̄| = 3. Equality (3.13) for customer j̄ states that the commodities

of Kj̄ can be covered by (i) a single route of R3
j̄ or (ii) one route of R

2
j̄ and a route of

R1
j̄ or (iii) three routes of R

1
j̄ .

Proposition 3.1. Inequalities
∑|Kj |

l=1 l
∑

r∈Rl
j
λr ≥ |Kj|, ∀j ∈ C, are implied by set

Covering Constraints (3.4) and inequalities

|Kj |∑
l=1

l
∑
r∈Rl

j

λr ≤ |Kj| ∀j ∈ C (3.14)

are valid for the MC2DP.

Proof. It is straightforward that equalities (3.13) are valid for the MC2DP. Hence, we

only need to show the �rst statement of the proposition. Let j ∈ C be a customer.

By summing up the Covering Constraints (3.4) associated with j and swapping the

summation order, we obtain ∑
r∈R

∑
k∈Kj

arjkλr ≥ |Kj|.

Let Mr
j denote the subset of commodities delivered to customer j by route r. We have∑

k∈Kj
arjk = |Mr

j |. The proof follows from partitioning the set of routes as R =
⋃|Kj |

l=0 R
l
j,

92

3.4 Problem formulation

where we denoted by R0
j the subset of routes which do not visit j. Indeed, it holds

|Kj| ≤
|Kj |∑
l=0

∑
r∈Rl

j

|Mr
j |λr =

|Kj |∑
l=1

l
∑
r∈Rl

j

λr.

Remark that if we model the MC2DP by means of a set partitioning formulation,

i.e., we impose the equality in Constraints (3.4), Equalities (3.13) become trivial. In-

deed, they can be retrieved as an aggregation of the partitioning constraints.

Given a customer j ∈ C and l = 1, . . . , |Kj|, we introduce an auxiliary variable

ylj ∈ Z≥0 de�ned as ylj :=
∑

r∈Rl
j
λr. Now, let

Fj := {yj ∈ Z|Kj |
≥0 :

|Kj |∑
l=1

lylj ≤ |Kj|}

be the set of the integer points which satisfy inequality (3.14), rewritten in terms of ylj
variables.

Proposition 3.2. The inequalities de�ning the convex hull of Fj, j ∈ C, are valid for

the MC2DP.

Determining the external description of a convex set is not an easy task, in particular

in large dimensions. In the following, we propose a general procedure to determine the

external description of the convex hull of sets Fj for customers j ∈ C with an arbitrary

(and reasonable) number of commodities. However, given that customers require at

most three commodities in the benchmark instances of Gu et al. (2022) for the MC2DP,

we explicitly derive the external description of the convex hull of sets Fj ⊆ Z3, j ∈ C.

The procedure reads as follows:

1. determine the extreme vertices of the convex hull of Fj; by de�nition of Fj, this

operation reduces to determine the integer partitions of number |Kj| which are

pair-wise linear independent;

2. enumerate all the half-spaces containing all such extreme vertices, and originating

from hyperplanes generated by the extreme vertices of Fj.

93

Note that inequalities (3.14) are meaningful only for customers j ∈ C who require

at least three commodities, i.e., |Kj| ≥ 3. The external description of the convex hull

of sets Fj, j ∈ C such that |Kj| = 3 reads as follows:

y1j + 2y2j + 3y3j ≤ 3 (3.15a)

y1j − y2j ≥ 0 (3.15b)

y2j ≥ 0 (3.15c)

y3j ≥ 0. (3.15d)

Inequalities (3.15c) and (3.15d) are trivial, indeed, they are implied by the de�nition of

variables ylj. Therefore, inequalities (3.15a) and (3.15b) are the only meaningful ones

in the case of a customer j ∈ C requiring three commodities (|Kj| = 3); in terms of λ

variables, they are expressed respectively as

|Kj |∑
l=1

l
∑
r∈Rl

j

λr ≤ |Kj| ∀j ∈ C : |Kj| = 3 (3.16)

∑
r∈R1

j

λr −
∑
r∈R2

j

λr ≥ 0 ∀j ∈ C : |Kj| = 3. (3.17)

In conclusion, the number partitioning polytope valid inequalities we consider are

(3.16) and (3.17).

3.5 Branch-Price-and-Cut algorithm

We solve formulation [SC] by means of a Branch-Price-and-Cut (BPC) algorithm (Barn-

hart et al., 1998), i.e., a variant of the branch-and-bound algorithm which deals with

integer programming model with exponentially-many variables. Speci�cally, at each

node of the branch-and-bound tree, the Master Problem (MP), that is the linear re-

laxation of formulation [SC], is solved by a column generation procedure (Desrosiers &

Lübbecke, 2005). If the solution of the MP is fractional, violated valid inequalities of

Section 3.4.1 may be inserted and the column generation procedure is repeated while

some valid inequalities are violated. Finally, branching rules are applied to ensure the

integrality of the solution. We impose a time limit as a termination criterion for our

BPC algorithm.

94

3.5 Branch-Price-and-Cut algorithm

In this section, we describe the main components of our BPC algorithm. Speci�cally,

in Section 3.5.1 we present the column generation scheme applied in our BPC algorithm.

In Section 3.5.2, we detail the management of the valid inequalities, and their impact

on the pricing problem. Branching strategies and accelerating techniques are presented

in Sections 3.5.3 and 3.5.4, respectively.

3.5.1 Column generation

At each node of the branch-and-bound tree, a column generation procedure solves the

MP de�ned on the exponentially-many variables λr, r ∈ R, which correspond to the

routes in the delivery echelon. The starting point is the Restricted Master Problem

(RMP). The column generation procedure iteratively solves a Restricted Master Prob-

lem (RMP), i.e., the MP restricted to a subset of variables λr. At each iteration of the

procedure, after the RMP is solved, a subproblem, named pricing problem is solved.

The aim of the pricing problem is to identify a variable (column) with the smallest

reduced cost. If such a column has a negative reduced cost, it is added to the RMP in

order to decrease (in a minimization problem) the current value of the solution, and

the column generation procedure iterates. The procedure ends when the solution of

the pricing problem is a non negative reduced cost column, proving the optimality of

the MP.

More precisely, the pricing problem is

[PP] min{C̄r : r ∈ R}

where C̄r denotes the reduced cost of λr variable. Note that set of routes R can

be partitioned per distribution centre, i.e., R =
⋃

o∈D Ro where Ro is the set of routes

starting and ending at o. Hence, solving [PP] can be done by solving sequentially |D|
independent problems with the same structure:

[PP(o)] min{C̄r : r ∈ Ro}, o ∈ D.

Speci�cally, the aim of problem [PP(o)] is to determine the most negative reduced

cost λr, r ∈ Ro, or to detect that none of them exists. The column generation procedure

terminates once all problems [PP(o)], o ∈ D do not yield any negative reduced cost

variable.

95

In the following, we detail how a problem [PP(o)] for o ∈ D is formulated and solved.

By denoting ρjk ≥ 0, ∀j ∈ C, k ∈ Kj and σok ≥ 0, ∀o ∈ D, k ∈ K as the optimal dual

prices associated with Constraints (3.4) and (3.5), respectively, the reduced cost of a

λr, r ∈ Ro variable is de�ned as follows:

C̄r = Cr −
∑
j∈C

∑
k∈Kj

arjk(ρjk −Djkσok). (3.18)

As mentioned in Section 3.3, the delivery echelon is a multi-depot version of the

C-SDVRP. Hence, the problem [PP(o)] is the pricing problem arising in Branch-Price-

and-Cut approaches for the C-SDVRP (see Archetti et al., 2015; Gschwind et al.,

2019) and is formulated as an Elementary Shortest Path Problem with Resource Con-

straints (ESPPRC) on a graph G(o) = (V(o),A(o)). Such graph is analogous to the

one presented in Gschwind et al. (2019) to formulate the ESPPRC in the context of

the C-SDVRP. Vertex set V(o) contains two copies o′ and o′′ of distribution centre o

and two copies j′ and j′′ of each customer j ∈ C. Each arc of set A(o) is associated

with two resources: demand D̄ and cost C̄. Arc set A(o) contains:

1. an arc (i′′, j′) for each arc (i, j) ∈ A to model the movement of a vehicle from

vertex i to vertex j; the demand and cost are set to D̄i′′j′ := 0 and C̄i′′j′ := Cij,

respectively.

2. an arc (j′, j′′)Mj for each customer j ∈ C and each subset Mj ⊆ Kj to model

the delivery of the commodities of Mj to j; the demand and cost are set to

D̄
Mj

j′j′′ :=
∑

k∈Mj
Djk and C̄

Mj

j′j′′ := −
∑

k∈Mj
(ρjk −Djkσok), respectively.

Solving problem [PP(o)] results in searching for negative reduced cost elementary paths

in G(o) from o′′ to o′ such that the resource consumption (demand) does not exceed

the vehicle capacity QD.

To do so, we adopt a two phase procedure:

Phase 1 computes the Pareto-optimal (demand, cost) pairs (D̄Mj

j′j′′ , C̄
Mj

j′j′′) for each cus-

tomer j ∈ C.

Phase 2 solves the ESPPRC on graph G(o) which includes all arcs of type (i′′, j′),

and only the Pareto-optimal arcs of type (j′, j′′)Mj that have been computed in

phase 1. Precisely, the ESPPRC is solved by means of a label setting dynamic

programming technique Feillet et al. (2004) which works with an implicit version

96

3.5 Branch-Price-and-Cut algorithm

of the bidirectional labelling search (see Bode & Irnich, 2012; Righini & Salani,

2006). The elementarity constraints are the bottleneck of such procedure, hence,

we partially relax it by solving the ng-path relaxation (Baldacci et al., 2011) of

the ESPPRC. For each customer j ∈ C, we consider a �xed size ng-neighbourhood

which includes the 10 closest customers to j and j itself. Remark that such

relaxation allows a route to serve the same commodity to the same customer

multiple times. Hence, the coe�cients of the constraints and valid inequalities

need to be update accordingly: e.g., in the covering constraints 3.4, arjk becomes

an integer coe�cient expressing the number of times customer j ∈ C is delivered

with commodity k ∈ Kj by route r ∈ R.

The reader may refer to Archetti et al. (2015) and Gschwind et al. (2019) for further

details. The resolution of the ESPPRCs is the bottleneck of our algorithm, hence,

we heuristically solve the ESPPRC with the objective of quickly �nding a negative

reduced cost column. When all the heuristics fail to identify such a column, we solve

the ESPPRC exactly.

Among others, we apply the two-phase heuristic proposed in (Petris et al., 2023)

which exploits the multi-commodity aspect of our problem.

3.5.2 Management of the valid inequalities

In this section, we �rst describe how the valid inequalities presented in Section 3.4.1

are considered in the pricing problem. Then, we present the cutting strategy adopted

in our BPC algorithm.

Impact of the valid inequalities on the pricing problem

First, note that inequality (3.9) imposes a lower bound on the number of vehicles

used in the collection echelon. Therefore, it has no impact on the pricing problem. The

other inequalities presented in Section 3.4.1 are all robust, i.e. they do not change the

structure of the pricing problem, and their associated dual prices have to be integrated

into the objective function of pricing problems [PP(o)], o ∈ D, i.e. on the cost of arcs

in graph G(o).

The arc costs in graph G(o) are modi�ed in the following way:

Inequalities (4.10a) and (4.10b). Let τ+ ≥ 0 and τ− ≤ 0 be the optimal dual prices

associated with valid inequalities (4.10a) and (4.10b) respectively. The value

97

τ+/2 + τ−/2 is subtracted from the cost of arcs of type (i′′, j′), if vertices i or j

represent distribution centre o.

Inequalities (3.11). Let ξC′ ≥ 0 be the optimal dual prices associated with the ca-

pacity cut (3.11) de�ned over the subset of customers C′ ⊆ C. Let δ−(C′) be the

subset of arcs in graph G entering in vertices of C′. The value ξC′ is subtracted

from the cost of arcs (i′′, j′), for all (i, j) ∈ δ−(C′).

Inequalities (3.12). Let γjMj
≥ 0 be the optimal dual prices associated with the

inequality (3.12) identi�ed by customer j ∈ C and commodity subset Mj ⊆ Kj.

The value 2γjMj
is subtracted from the cost of arcs (j′, j′′)M

′
j , for all M′

j ⊆ Kj

that contain at least all the commodities of Mj , i.e., Mj ⊆ M′
j. The value γjMj

is subtracted from the cost of arcs (j′, j′′)M
′
j for all M′

j that contain some, but

not all, commodities of Mj, i.e. M′
j ∩Mj ̸= ∅ and M′

j ∩Mj ̸= Mj.

Inequalities (3.16) and (3.17). Let j ∈ C be a customer requiring exactly three com-

modities (|Kj| = 3) and let ψ ≤ 0 and χ ≥ 0 be the optimal dual prices associated

with inequalities (3.16) and (3.17) de�ned on j. For all Mj ⊆ Kj, the cost of arc

(j′, j′′)Mj is modi�ed as follows: value |Mj|ψ is subtracted, value χ is added if

|Mj| = 2, and value χ is subtracted if |Mj| = 1.

Management of the valid inequalities in the RMP

Valid inequalities on vehicle bounds, namely (3.9), (4.10a) and (4.10b), are included

in the formulation from the beginning of the solution procedure. Di�erently, a cut gen-

eration procedure manages the insertion of violated inequalities (3.11), (3.12), (3.16)

and (3.17) in the RMP. Such a procedure is called at each node of the branch-and-

bound tree of level at most equal to 5, if the associated solution of the RMP is frac-

tional. Speci�cally, it separates the inequalities hierarchically according to the sequence

: (3.11), (3.12), (3.16), and (3.17). When the separation of a given inequality fails,

we separate the next one in the above order. The separation of inequalities (3.11) is

done using the heuristic algorithms presented in Ralphs et al. (2003), namely the ex-

tended shrinking heuristic and the greedy shrinking heuristic. Then, although, inequal-

ities (3.12) are exponentially-many, the size of the problem instances allows the sepa-

ration by enumeration. The same separation strategy is applied for inequalities (3.16)

and (3.17), whose number is linear in the number of customers |C|. Finally, we limit

98

3.5 Branch-Price-and-Cut algorithm

the number of inequalities (3.11) to 100 in each cut generation round. For the other

inequalities, we include all the violated inequalities.

3.5.3 Branching strategies

Let (x̄, q̄, λ̄) be a fractional optimal solution of the MP at a certain node of the branch-

and-bound tree. We consider eight branching rules that are hierarchically applied.

Rules 1 and 3 are speci�c for the MC2DP, while the other ones are used to solve the

C-SDVRP by Branch-and-Price. The interested reader can refer to Gschwind et al.

(2019) for more details about these latest branching rules.

Rule 1 is on the number of vehicles traversing an arc in the collection echelon, i.e., on

value x̄io, i ∈ S, o ∈ D. Since λr variables are not concerned by this rule, there

is no impact on the pricing problem.

Rule 2 is on the number of vehicles used at each distribution centre o ∈ D in the

delivery echelon, i.e., on value
∑

r∈Ro
λ̄r.

Rule 3 forces the assignment of a delivery to a distribution centre. Speci�cally, given a

distribution centre o ∈ D, a customer j ∈ C and a commodity k ∈ Kj, we branch

on value pojk :=
∑

r∈Ro
arjkλ̄r. The branching decisions related to this rule can be

expressed as follows: commodity k required by customer j is either delivered from

distribution centre o, i.e.
∑

o′∈D\{o}
∑

r∈Ro′
arjkλr = 0; or not delivered from o,

i.e.
∑

r∈Ro
arjkλr = 0. Note that both decisions entail modi�cations in the pricing

problem. As an example, if the �rst decision is imposed, then we prevent the

pricing problem from generating routes starting and ending at distribution centres

o′ ∈ D \ {o} and delivering commodity k to customer j. Arcs of type (j′, j′′)Mj ,

with Mj ⊆ Kj and k ∈ Mj, are removed from all graphs G(o′), o′ ∈ D \ {o}.

Rule 4 is on the number of visits to each customer j ∈ C from a distribution centre

o ∈ D, i.e., on value wo
j :=

∑
r∈Ro

drj λ̄r, where d
r
j is a binary parameter with value

one if route r visits customer j and zero otherwise. The branching decisions

arising from this rule may enforce modi�cations in the pricing problem. As an

example, if customer j ∈ C cannot be visited from distribution centre o ∈ D,

then we eliminate vertices j′ and j′′ from graph G(o).

99

Rule 5 considers the �ow on the edges in the delivery echelon coming from a speci�c

distribution centre. Speci�cally, given a distribution centre o ∈ D and an arc

(i, j) ∈ A2, we branch on value zoij :=
∑

r∈Ro
(brij+b

r
ji)λ̄r. If a zero-�ow is imposed

on edge (i, j) from distribution centre o, then the arcs in G(o) associated to (i, j)

and (j, i) are removed.

Rules 6 and 7 implement the Ryan and Foster branching rules (Ryan & Foster,

1981). More precisely, given two customers i, j ∈ C and two commodities h ∈ Ki

and k ∈ Kj, we branch on value f jk
ih :=

∑
r∈R a

r
iha

r
jkλr. The branching decisions

related to these rules, namely the separate and together branches, force the two

customer requests to be served by di�erent routes or by the same route, respec-

tively. Rule 6 concerns the case where i and j represent the same customer, i.e.,

i = j. Here, in the separate branch we remove arcs (j′, j′′)M, M ⊆ Kj, such that

h, k ∈ M, from all graphs G(o), o ∈ D. Symmetrically, in the together branch, we

remove arcs (j′, j′′)M, M ⊆ Kj, which model the delivery of only one commodity

between h and k, i.e., such that h ∈ M and k /∈ M (or vice versa). Conversely,

Rule 7 concerns the case where i and j represent di�erent customers, i.e., i ̸= j.

Here, both branching decisions entails non-robust constraints in the MP which

enforce the introduction of binary resources in the solution of the ESPPRC in

the pricing problem. We refer to Gschwind et al. (2019) for further details.

Rule 8 is the separation of strong-degree inequalities (Contardo et al., 2014).

The branch-and-bound tree is explored according to a best-bound �rst strategy

to favour the improvement of the dual bound. The strategies to select the branch-

ing decisions are presented in the following. For rule 2, we branch on the fractional

value closest to 0.5. For rules 6 and 7, we branch on the �rst fractional value f jk
ih

that is found. For all the other rules, we consider a two-round strong branching pro-

cedure Røpke (2012) similar to the one presented in Pessoa et al. (2020). In the �rst

round, we evaluate at most 100 branching candidates according to the product rule

(Achterberg, 2007). More precisely, each candidate gives rise to two branching de-

cisions d1 and d2 and is evaluated by applying such decisions to the RMP and by

solving it without generating columns. Then, each candidate is assigned with a score

sc(d1, d2) = max{ϵ,∆LB1}×max{ϵ,∆LB2}, where ϵ = 10−6 and ∆LBi is the increase

of the lower bound obtained by applying decision di to the RMP. The three candidates

100

3.5 Branch-Price-and-Cut algorithm

with the highest scores are sent to the second round, where the same evaluation cri-

terion is used to select the winning candidate. Di�erently from the �rst round, the

RMP is solved with an iteration of the column generation procedure where the pricing

problem is solved heuristically.

The strong branching procedure is employed in nodes of the branch-and-bound tree

of level at most 5. In the other levels, we evaluate the branching candidates based on

the fractional value closest to 0.5 for all the rules.

3.5.4 Accelerating strategies

The BPC algorithm incorporates the following accelerating strategies:

Initialization of set R. We initialize the set of routes R to avoid very large dual

prices at the �rst iterations of the column generation procedure which may slow

down the pricing solution (Desaulniers, 2010). Speci�cally, for each distribution

centre o ∈ D, we include round-trips (0-j-0) to each customer j ∈ N, which

deliver the commodities of each subset Mj ⊆ Kj requested by j. In addition,

we modi�ed the randomised Clarke-Wright algorithm (CW) (Clarke & Wright,

1964) proposed in Battarra et al. (2008) to take into account the multi-commodity

aspect of our problem. The algorithm is run 10 times per distribution centre and

the obtained routes are inserted into R.

Heuristic column generators. Before solving the pricing problem to optimality, we

consider heuristic column generators to speed up the solution of problems [PP(o)],

o ∈ D.As mentioned in Section 3.5.1, each problem [PP(o)] is the pricing problem

arising in a BPC algorithm for the C-SDVRP. Hence, we apply the same heuristic

scheme used in Petris et al. (2023) which proved to be e�ective in accelerating

such pricing problems. This scheme considers two reduced graph heuristics and

the two-phase heuristic introduced in Petris et al. (2023) which proved to be

e�ective in dealing with the multi-commodity aspect of the C-SDVRP. The two

reduced graph heuristics reduce the size of graphs G(o), o ∈ D by limiting both

the possibilities of travelling between customers and of deliveries to customers. In

the two-phase heuristic, the aim of the �rst phase is to compute a set of promising

customer sequences by solving the ESPPRC on a modi�ed version of graphs G(o)

where only one delivery per customer is allowed. Speci�cally, when visiting a

customer, the least consuming commodity is delivered and all the pro�table dual

101

prices are collected. In the second phase, for each of the customer sequences

generated by the �rst phase, we solve the ESPPRC on the associated acyclic

graphs to obtain all negative reduced cost routes arising from the sequence. We

refer to Petris et al. (2023) for more details.

Restricted master heuristic. We invoke a restricted master heuristic, which con-

sists in solving the formulation [SC] restricted to the subset of variables gener-

ated so far, to obtain good upper bounds. Such a technique helps to reduce the

integrality gap (see Archetti et al., 2013). Note that variables λr are then binary.

We call the restricted master heuristic every 1000 explored nodes in the branch-

and-bound tree as well as when the time limit of the algorithm is reached. When

the restricted master heuristic is called during the tree exploration a time limit

of 3 seconds is imposed, while the time limit is 30 seconds when the algorithm

terminates.

3.6 Computational experiments

We implemented the BPC algorithm in C++ and compiled it in release mode under a

64-bit version of MS Visual Studio 2019. IBM CPLEX 12.9.0 (64-bit version) is used as

a solver. We performed the experiments on a 64-bit Windows machine equipped with

a Intel(R) Xeon(R) Silver 4214 processor with 24 cores hyper-threaded to 48 virtual

cores, with a base clock frequency of 2.2 GHz, and 96 GB of RAM. For each run of the

algorithm, we impose one hour time limit and allow a single thread.

In this section, �rst, we describe the characteristics of the benchmark instances

for the MC2DP introduced in Gu et al. (2022). Then, we discuss the impact of valid

inequalities (3.12), (3.16) and (3.17). Finally, we evaluate the e�ectiveness of the BPC

algorithm against solving the compact formulation for the MC2DP presented in Gu

et al. (2022) with a commercial solver and we present the results obtained by the BPC

algorithm on the benchmark instances.

3.6.1 Benchmark instances

Gu et al. (2022) introduced arti�cial instances as well as instances arising from a real-

world case study in the context of a short and local fresh food supply chain. In the

following computational experiments, we only consider the arti�cial instances. Indeed,

102

3.6 Computational experiments

the sizes of the instances based on the case study are too large to be tackled e�ciently

with the BPC algorithm.

First, Gu et al. (2022) generated a base set of arti�cial instances S and, then, they

produced 12 additional sets by applying modi�cations to one of the characteristics of

the base set. In Table 3.1, we summarise the main characteristics of all sets of arti�cial

instances, the generation of which is detailed below. Each row in the table represents a

set of instances. The columns of the table report: set : the name of the set of instances;

#: the number of instances in the set; |S|: the number of suppliers; |C|: the number of
customers; |K|: the number of commodities; description: a brief description of the main
characteristic of the set. In all sets of instances, the number of distribution centres is

�xed to two.

Table 3.1: Characteristics of the sets of instances.

Characteristics
set # |S| |C| |K| description

S 64 8 30 2, 3 base set
S S

1 64 8 30 2, 3 unbalanced supplier locations (6-2)
S S

2 64 8 30 2, 3 unbalanced supplier locations (8-0)
S C

1 64 8 30 2, 3 unbalanced customer locations (5-10, with δ = −5, 30)
S C

2 64 8 30 2, 3 unbalanced customer locations (5-10, with δ = 10, 30)
S C

3 64 8 30 2, 3 unbalanced customer locations (10-5, with δ = −5, 30)
S C

4 64 8 30 2, 3 unbalanced customer locations (10-5, with δ = 10, 30)
S O 32 8 30 2 unbalanced available amounts at the suppliers

S Sadd
1 64 10 30 2, 3 increased number of supplier to 10

S Sadd
2 64 12 30 2, 3 increased number of supplier to 12

S Cadd
1 64 8 50 2, 3 increased number of customer to 50

S Cadd
2 64 8 70 2, 3 increased number of customer to 70

small 36 4, 6 10, 15, 20, 25 2, 3 small instances

First, we describe how Gu et al. (2022) generated base set S . The 64 instances

of S involve two distribution centres (|D| = 2), eight suppliers (|S| = 8) and 30 cus-

tomers (|C| = 30). The features of the delivery echelon are based on the 64 small

instances proposed in Archetti et al. (2016) for the C-SDVRP. Such instances are char-

acterised by: (i) 15 customers; (ii) customers location from the C101 or R101 instances

for the Vehicle Routing Problem with Time Windows (Solomon, 1987); (iii) number of

commodities |K| equal to two or three; (iv) probability p that a customer requires a

commodity with a non-zero demand equal to 0.6 or 1; (v) interval ∆ to select the non-

zero commodity demands of a customer equal to [1, 100] or [40, 60]; (vi) parameter α to

103

determine the vehicle capacity (QD = αmax{
∑

k∈Kj
Djk : j ∈ N}) in {1.1, 1.5, 2, 2.5}.

Each C-SDVRP instance gives rise to a MC2DP instance where the locations of one

distribution centre and 15 customers are the ones of the C-SDVRP instance. Customer

demands are also as in the C-SDVRP instance. Such distribution centre and 15 cus-

tomers are duplicated and their locations are modi�ed. Speci�cally, a translation of

δ = 30 is applied to both locations' coordinates. In addition, customer locations are

rotated of 180 degrees around the modi�ed location of the distribution centre. Then,

four suppliers are randomly located around each distribution centre within a circle of

radius equal to 30. The availability of commodity k ∈ K at supplier i ∈ S is set to

Pik =
⌈
ζ
∑

j∈C Djk

|S|

⌉
, where ζ = 1.2.

In the following, we report how Gu et al. (2022) obtained the remaining 12 sets of

instances from base set S .

Sets S S
1 and S S

2 (second and third rows in Table 3.1) are obtained by unbalancing

the number of suppliers around the distribution centres. Speci�cally, in set S S
1 , the

two distribution centres are surrounded by respectively, six and two suppliers. In set

S S
2 all the eight suppliers are located around one distribution centre.

Sets S C
1 , S C

2 , S C
3 and S C

4 (fourth to seventh rows in Table 3.1) are obtained by

modifying the locations of some of the 15 duplicated customers. Precisely, in sets S C
1

and S C
2 the translation parameter δ used to compute the locations of the �rst �ve

duplicated customers is set to δ = −5 and δ = 10, respectively. The same parameter

values are used to compute the locations of the �rst 10 duplicated customers in sets S C
3

and S C
4 . The locations of the remaining customers is determined as for the instances

in base set S , i.e., with δ = 30.

The instances of set S O (eighth row of Table 3.1) are characterised by unbalanced

amounts of commodities available at the suppliers. This set counts 32 instances, as

in Gu et al. (2022) only the instances in base set S with two commodities were mod-

i�ed. The amounts of commodities 1 and 2 available at the four suppliers around one

of the two distribution centres are set to Pi1 =
⌈
ζ
1.8

∑
j∈C Dj1

|S|

⌉
and Pi2 =

⌈
ζ
0.2

∑
j∈C Dj2

|S|

⌉
,

respectively. The availability of commodities 1 and 2 is reversed for the suppliers

around the other distribution centre.

In sets S Sadd
1 and S Sadd

2 (ninth and tenth rows of Table 3.1) the number of sup-

pliers is increased to 10 and 12, respectively. As in set S , each distribution centre is

surrounded by half of the suppliers.

104

3.6 Computational experiments

Similarly, in sets S Cadd
1 and S Cadd

2 (eleventh and twelfth rows of Table 3.1) the

number of customers is increased to 50 and 70, respectively. The additional customers

are copies of customers in the corresponding instance of the base set. Their location is

modi�ed by applying a translation of parameter randomly chosen in [−20, 20].

Finally, the 36 instances in set small are characterised by a reduced number of

customers and suppliers (see the last row of Table 3.1). Di�erently from the other sets,

the instances in small are obtained from instances of S , S S
1 and S S

2 . Gu et al. (2022)

generated such instances to compare the quality of the solutions obtained by their

heuristic approach against the solutions obtained by solving a compact formulation for

the MC2DP with a commercial solver.

3.6.2 Impact of valid inequalties

In this section, we assess the impact of valid inequalities. To do so, we consider

the 32 instances of base set S having three commodities. Indeed, as mentioned in

Section 3.4.1, if the number of commodities is equal to two, inequalities (3.12), (3.16)

and (3.17) can be retrieved as an aggregation of covering constraints (3.4).

We examine the following four variants of the BPC algorithm. BPC: valid inequalities

on bounds on the number of vehicles are inserted, and no valid inequalities is separated

in the course of the algorithm; BPC+CC: only capacity cuts (valid inequalities (3.11)) are

separated; BPC+SC+NP: only the inequalities arising from the set covering polytope (SC),

i.e., inequalities (3.12), and the ones arising from the number partitioning polytope (NP)

are separated, i.e., inequalities (3.16) and (3.17), are separated; BPC+CC+SC+NP: all valid

inequalities are separated.

Each row of Table 3.2 corresponds to a BPC variant. The �rst two columns report

the average lower bound (avg.LB) and time (avg.t[s]) at the root node of the branch-

and-bound-tree. The next four columns show the results at the end of the execution of

the corresponding BPC variant: the average number of nodes of the branch-and-bound

tree (avg.#nodes), the average lower bound at termination (avg.LB) the average time

(avg.t[s]) and the number of instances solved to optimality (#opt./#inst.) over the 32

instances.

105

Table 3.2: Comparison of four variant of the BPC algorithm

BPC variant
Root node BPC results

avg.LB avg.t[s] avg.#nodes avg.LB avg.t[s] #opt./#inst.

BPC 983.00 25.30 3235.72 1028.08 3145.03 6/32

BPC+CC 1000.35 54.51 1721.53 1039.61 2484.34 14/32

BPC+SC+NP 985.36 46.19 2970.78 1029.42 2992.08 7/32

BPC+CC+SC+NP 1001.31 76.40 1623.84 1039.61 2454.58 14/32

As expected, BPC yields the worst results solving only six instances out of the 32

considered. Variant BPC+SC+NP solves an additional instance w.r.t. BPC, however, the

improvement of the lower bound at the root node is mediocre. The best results are

obtained when the well-established capacity cuts are separated, namely with variants

BPC+CC and BPC+CC+SC+NP. Both variants solve the same 14 instances to optimality

and yield the best lower bounds at the root node, being on average equal to 1000.35

and 1001.31 in BPC+CC and BPC+CC+SC+NP, respectively. The same remark applies

to the lower bounds at termination which is on average equal to 1039.61 in BPC+CC

and BPC+CC+SC+NP. In both cases, lower bounds at the root node and at termination

improve signi�cantly with respect to BPC. We also observe that the addition of inequali-

ties (3.12), (3.16) and (3.17) in BPC+CC+SC+NP slightly improves the results with respect

to BPC+CC in terms of lower bounds at the root node, number of explored branch-and-

bound nodes and solution time. Hence, we choose BPC+CC+SC+NP as the con�guration

for our BPC algorithm.

3.6.3 Evaluation of the BPC algorithm

The aim of this section is to evaluate the e�ectiveness of the BPC algorithm. To do so,

we compare the results obtained by the BPC algorithm on the instances of set small

with the ones obtained by solving a compact formulation for the MC2DP on the same

instances with CPLEX 12.8. The latter results are retrieved from Gu et al. (2022)

and were obtained on a machine with Intel (R) Core(TM) i7-4600U processor with a

base clock frequency of 2.10GHz and with 16 GB of RAM. The performances of such

machine are comparable with the ones of our machine given that we allow a single

thread in the experiments. A time limit of one hour is imposed on both methods.

106

3.6 Computational experiments

Table 3.3 presents the results of the comparison. Each row of the table corresponds

to an instance in set small. The �rst �ve columns report some characteristics of the

instance (see Section 3.6.1).The following �ve columns report the results of the BPC

algorithm: #nodes : number of nodes of the branch-and-bound tree; LB : lower bound

at termination; UB : value of the best solution found; gap[%] : percentage optimality

gap (100((UB − LB)/LB)) if the instance in not solved to optimality, opt otherwise;

t[s] : total computational time in seconds of the BPC algorithm. Last, in the last two

columns, we report the optimality gap (gap[%]) and computational time (t[s]) obtained

by Gu et al. (2022) when solving the compact formulation. In column gap[%], a '-'

indicates that CPLEX was not able to provide a feasible solution.

The results of Table 3.3 show that the BPC algorithm proved to be a e�ective as

it provides 34 optima over 36 instances. The two unsolved instances are with 20 and

25 customers and are left with an optimality gap of 0.74% and 3.57%, respectively.

Conversely, the performances of the compact formulation deteriorates as the size of

the instances grows. The formulation provides only eight optima, all obtained for

instances with 10 customers, and it fails to return a feasible solution for two instances

with 25 customers. The average optimality gap of the remaining 26 instances is 31.73%.

Finally, when both approaches prove the optimality of a solution, the BPC algorithm

is generally faster than the compact formulation by at least one order of magnitude.

3.6.4 Results on the whole testbed

In this section, we present a summary of the results obtained by the BPC algo-

rithm in Tables 3.4 and 3.5 on the 12 sets of benchmark instances with one-hour

time limit. The instance-by-instance results can be found at https://hal.inria.fr/

hal-03946477v1.

In Table 3.4, we report results only for the instances solved to optimality and ta-

ble 3.5 summarises the results for the remaining instances. Each row of both tables

corresponds to a subset of instances from the same set and with the same number

of commodities. The �rst three columns of the tables report some information about

the instance subset (see Section 3.6.1). The column headings of Table 3.4 are de-

�ned as follows: #opt.: number of considered instances (solved to optimality); #nodes

avg./min./max.: average/minimum/maximum number of nodes of the branch-and-

bound tree; avg.gaproot[%] : average optimality gap at the root node expressed as a

percentage, i.e., 100((OPT − LBroot)/LBroot), where OPT is the value of the optimal

107

https://hal.inria.fr/hal-03946477v1
https://hal.inria.fr/hal-03946477v1

Table 3.3: Results on set small.

Instances BPC CPLEX
|S| |C| |K| p set #nodes LB UB gap[%] t[s] gap[%] t[s]

4 10

2 0.6 S 161 394.655 394.655 opt 5.26 opt 240.00
2 1 S 17 579.522 579.522 opt 0.98 5.55 3600.00
3 0.6 S 7787 470.77 470.77 opt 1446.16 opt 378.00
2 0.6 S S

1 101 406.52 406.52 opt 4.28 opt 108.00
2 1 S S

1 11 562.34 562.34 opt 1.19 opt 1441.00
3 0.6 S S

1 227 437.98 437.98 opt 14.10 opt 486.00
2 0.6 S S

2 23 406.52 406.52 opt 1.11 opt 57.00
2 1 S S

2 13 663.52 663.52 opt 0.66 opt 2261.00
3 0.6 S S

2 19 463.58 463.58 opt 0.80 opt 41.00

4 15

2 0.6 S 181 510.88 510.88 opt 10.75 8.45 3600.00
2 1 S 15 742.71 742.71 opt 1.37 17.89 3600.00
3 0.6 S 13785 551.87 551.87 opt 3469.76 6.87 3600.00
2 0.6 S S

1 195 533.43 533.43 opt 13.98 13.82 3600.00
2 1 S S

1 3185 784.05 784.05 opt 349.18 15.79 3600.00
3 0.6 S S

1 3829 553.49 553.49 opt 624.91 20.42 3600.00
2 0.6 S S

2 33 590.55 590.55 opt 2.32 7.25 3600.00
2 1 S S

2 17 893.09 893.09 opt 1.67 20.62 3600.00
3 0.6 S S

2 117 590.71 590.71 opt 11.41 15.26 3600.00

4 20

2 0.6 S 45 636.71 636.71 opt 7.64 22.09 3600.00
2 1 S 233 1007.04 1007.04 opt 24.61 31.75 3600.00
3 0.6 S 63 708.62 708.62 opt 24.26 28.15 3600.00
2 0.6 S S

1 139 659.37 659.37 opt 35.82 37.59 3600.00
2 1 S S

1 13848 1069.54 1077.43 0.74 3631.00 30.18 3600.00
3 0.6 S S

1 1209 768.57 768.57 opt 528.33 37.92 3600.00
2 0.6 S S

2 43 713.16 713.16 opt 7.29 27.87 3600.00
2 1 S S

2 5 1177.46 1177.46 opt 0.98 43.37 3600.00
3 0.6 S S

2 157 835.00 835.00 opt 74.17 37.47 3600.00

6 25

2 0.6 S 209 815.15 815.15 opt 70.15 - 3600.00
2 1 S 661 1184.62 1184.62 opt 227.48 31.32 3600.00
3 0.6 S 555 826.12 826.12 opt 334.55 58.7 3600.00
2 0.6 S S

1 287 784.11 784.11 opt 70.08 37.76 3600.00
2 1 S S

1 1111 1258.91 1258.91 opt 310.47 54.77 3600.00
3 0.6 S S

1 4073 876.72 908.00 3.57 3632.66 87.9 3600.00
2 0.6 S S

2 35 881.02 881.02 opt 9.95 - 3600.00
2 1 S S

2 99 1367.61 1367.61 opt 29.11 60.19 3600.00
3 0.6 S S

2 15 939.52 939.52 opt 18.84 65.95 3600.00

108

3.6 Computational experiments

solution found by the BPC algorithm and LBroot is the lower bound at the root node

after the valid inequalities have been inserted; avg.t[s] : average computational time;

dev. Gu et al. (2022) avg./min./max.: average/minimum/maximum deviation from the

best solution value UB reported in Gu et al. (2022), i.e., 100((OPT − UB)/UB).

Table 3.4: Aggregated results on the instances solved to optimality by the BPC algo-
rithm

Instances
BPC results

#nodes dev. Gu et al. (2022)

set |K| # #opt. avg. min. max. avg.gaproot[%] avg.t[s] avg. min. max.

S
2 32 31 791.19 11 7037 3.50 241.78 -0.19 -2.21 0.00

3 32 14 751.79 23 2197 4.24 921.14 -0.95 -2.61 0.00

S S
1

2 32 30 2126.47 47 21125 4.90 621.02 -0.19 -1.69 0.00

3 32 15 872.00 29 2674 4.51 837.63 -1.02 -3.08 0.00

S S
2

2 32 26 3350.61 51 18367 4.93 768.70 -1.65 -5.31 0.00

3 32 20 1932.25 47 12259 4.95 1417.92 -2.11 -6.71 0.00

S C
1

2 32 29 667.83 13 2669 3.82 430.16 -0.61 -2.94 0.00

3 32 15 600.13 39 1547 3.48 872.74 -1.13 -4.04 0.00

S C
2

2 32 27 674.85 5 3213 4.08 449.58 -0.66 -3.00 0.00

3 32 15 780.53 81 1855 3.98 1058.08 -1.01 -3.63 0.00

S C
3

2 32 24 2627.50 25 41105 4.58 747.43 -0.65 -3.64 0.00

3 32 15 1040.20 141 4269 4.81 1125.06 -0.91 -3.49 0.00

S C
4

2 32 26 958.85 15 11217 4.21 471.72 -0.88 -3.70 0.00

3 32 13 978.23 219 2109 4.06 909.64 -0.83 -3.09 0.00

S O 2 32 14 5925.57 435 20135 6.44 1360.41 -2.34 -4.24 0.00

S Sadd
1

2 32 30 1339.33 79 12299 5.34 444.41 -0.35 -1.99 0.00

3 32 17 727.18 87 2247 4.57 904.53 -0.16 -2.55 0.00

S Sadd
2

2 32 32 1160.37 1 17735 6.43 284.21 -0.12 -1.77 0.00

3 32 23 622.13 65 2651 7.07 826.92 -0.09 -1.64 0.00

S Cadd
1

2 32 16 1900.87 43 5481 3.08 1292.03 -0.23 -1.12 0.00

3 32 4 404.25 27 728 2.53 875.52 -0.04 -0.16 0.00

S Cadd
2

2 32 3 2884.33 663 5855 1.68 1159.56 -0.71 -0.97 -0.36

3 32 0 - - - - - - - -

Table 3.4 shows that the BPC algorithm identi�es 439 optima over the 736 instances.

109

The number of nodes of the branch-and-bound tree varies widely: it ranges from 1 to

41105 and its average is 1458 while its standard deviation is 3237. Note that we found

no correlation between the number of nodes of the branch-and-bound tree and the gap

at the root node. The average time needed to prove the optimality of a solution is 720

seconds. Among the 439 optima provided by the BPC algorithm, 416 are obtained on

the 10 sets of instances with 30 customers (�rst ten sets in Table 3.4).

We observe that, except for set S O, the BPC algorithm behaves homogeneously

on instances with 30 customers, i.e., on S , S S
1 , S S

2 , S C
1 , S C

2 , S C
3 , S C

4 , S Sadd
1 and

S Sadd
2 . Indeed, the BPC algorithm solves to optimality at least 60.9% of the 64 in-

stances belonging to each set. This percentage increases to 73.4% and 85.9% for the

two sets of instances with a larger number of suppliers (see S Sadd
1 and S Sadd

2 in Ta-

ble 3.4). Increasing the number of suppliers seems to make the instances easier to

solve. In addition, in each of the sets with 30 customers, the BPC algorithm proves

the optimality of almost all the instances with two commodities (at least 24 out of

32) and of around half of the instances with three commodities (on average 16 out of

32). Hence, we can conclude that the BPC algorithm seems rather insensitive with

respect to the distinctive characteristics of the sets of instances with 30 customers, i.e.,

unbalanced customer/supplier locations and an increased number of suppliers. Con-

versely, increasing the number of customers has a major impact on the performance

of the BPC algorithm. Indeed, when the number of customers increases to 50 and 70

(see sets S Cadd
1 and S Cadd

2 in Table 3.4), the number of optima decreases to 20 and 3,

respectively.

Finally, we note that the sequential heuristic of Gu et al. (2022) was able to identify

220 out of 439 optima. For the remaining instances, the BPC algorithm improves the

solution values found by Gu et al. (2022) by 1.46% on average (see the last three

columns of Table 3.4).

Table 3.5 reports the results on the instances not solved to proven optimality by the

BPC algorithm. The meaning of the rows and columns in Table 3.5 is similar to the

ones of Table 3.4. The di�erences are: the column #opt. is replaced with the column

#notOpt. which indicates the number of instances not solved to proven optimality, and

the column avg.t[s] is replaced by the columns gap[%] avg./min./max. reporting the

average, minimum, and maximum optimality gap computed as 100((UB − LB)/LB),

where UB is the value of the best solution found by the BPC algorithm and LB is

the lower bound when the time limit is reached. Similarly, the average gap at the root

110

3.6 Computational experiments

node avg.gaproot[%] :] and the average deviation from the best solution value reported

in Gu et al. (2022) are computed by replacing the optimal value OPT with UB.

Table 3.5: Aggregated results on the instances not solved to proven optimality by the
BPC algorithm

Instances
BPC results

#nodes gap[%] dev. Gu et al. (2022)

set |K| # #notOpt. avg. min. max. avg. min. max. avg.gaproot[%] avg. min. max.

S
2 32 1 653.00 653 653 3.31 3.31 3.31 14.08 2.07 2.07 2.07

3 32 18 2319.17 29 13135 2.44 0.01 6.46 6.80 0.92 -1.95 5.85

S S
1

2 32 2 3880.00 940 6820 3.38 0.41 6.35 11.97 1.01 -0.06 2.09

3 32 17 3057.65 19 16126 3.01 0.20 10.01 8.82 0.91 -2.67 5.10

S S
2

2 32 6 12069.00 941 46006 0.37 0.06 1.03 6.92 -1.15 -3.61 0.07

3 32 12 3212.42 40 13254 1.87 0.01 4.71 6.69 -1.30 -5.89 3.67

S C
1

2 32 3 29380.33 12463 40874 0.98 0.03 1.77 4.09 -0.58 -0.90 -0.29

3 32 17 1913.18 1 10229 2.61 0.34 7.11 6.68 0.16 -1.78 3.36

S C
2

2 32 5 18695.80 7 40567 0.78 0.03 2.82 3.55 -0.43 -1.00 0.02

3 32 17 1856.53 23 9311 2.58 0.21 6.09 7.00 0.08 -1.67 2.86

S C
3

2 32 8 4371.88 380 12552 1.09 0.12 2.25 5.34 0.17 -0.92 1.94

3 32 17 2070.71 29 12984 2.72 0.03 10.89 7.65 0.85 -1.31 10.69

S C
4

2 32 6 4876.50 342 12698 1.09 0.10 1.94 5.78 0.11 -1.13 1.62

3 32 19 1463.68 10 12005 2.47 0.18 5.96 7.23 0.41 -1.68 2.26

S O 2 32 18 9788.83 1033 50109 2.24 0.13 9.17 8.15 0.05 -2.98 4.85

S Sadd
1

2 32 2 774.50 763 786 2.37 1.05 3.69 18.86 1.32 0.69 1.96

3 32 15 2484.00 37 12241 2.60 0.00 8.76 10.65 0.65 -1.77 2.40

S Sadd
2

2 32 0 - - - - - - - - - -

3 32 9 2990.11 16 14444 1.99 0.07 6.03 9.21 0.75 0.00 4.05

S Cadd
1

2 32 16 4300.00 180 32352 1.15 0.00 3.52 6.27 0.25 -0.84 2.11

3 32 28 1344.14 1 6585 2.60 0.08 10.19 6.06 0.65 -1.20 4.63

S Cadd
2

2 32 29 2141.07 337 14413 1.15 0.04 3.78 3.64 -0.18 -1.83 2.98

3 32 32 684.22 1 2820 2.45 0.04 9.31 3.97 0.26 -2.32 2.93

The BPC algorithm cannot prove the optimality for 297 instances. For these in-

stances, the average optimality gap at the root node is 6.63%. However, the exploration

of the branch-and-bound tree allows the optimality gap to be reduced to 2.1% on av-

111

erage. The �nal optimality gap is larger than 5% for only 29 instances. The number of

nodes of the branch-and-bound tree follows the trend observed in Table 3.4: it varies

greatly, with an average of 3429 nodes, while the standard deviation is 6809. The com-

parison with Gu et al. (2022) (last three columns of Table 3.5) shows mixed results.

The BPC algorithm �nds larger upper bounds for 161 instances. On these instances,

the average deviation is 1.23%. For 24 instances, the BPC algorithm �nds the same

value as the one reported by Gu et al. (2022). Finally, for the remaining 112 instances,

the BPC algorithm provides a lower value with an average improvement of 1.02%.

3.7 Conclusions

In this paper, we presented a Branch-Price-and-Cut (BPC) algorithm to solve the

Multi-Commodity two-echelon Distribution Problem (MC2DP), a two-echelon routing

problem where multiple commodities are sent from suppliers to customers via distri-

bution centres. The collection operations are done by capacitated vehicles performing

direct round trips between the distribution centres and the suppliers. The delivery op-

erations are also performed by capacitated vehicles. Each delivery vehicle performs a

route starting and ending at the same distribution centre. Customers are allowed to be

visited multiple times, provided that the amount of a single commodity is delivered at

once by a single vehicle. Commodities can be mixed inside all vehicles. The objective

is to minimise the transportation costs of the distribution system.

The BPC algorithm incorporates several state-of-the-art accelerating techniques

and three families of robust valid inequalities: capacity cuts, valid inequalities arising

from the set covering polytope, and a new family of valid inequalities based on the

number partitioning polytope. The inequalities improve the lower bound at the root

node and reduce the number of nodes of the branch-and-bound tree and the compu-

tational time. The BPC algorithm is able to solve to optimality nearly 60% of the

benchmark instances introduced in Gu et al. (2022) within one-hour time limit. The

�nal optimality gap is reasonable for the remaining instances, with an average value

of 2.1%. Finally, we identi�ed 331 new best-known solutions compared to the results

of Gu et al. (2022).

The main issue with the instances left unsolved by the BPC algorithm is the large

optimality gap at the root node. To overcome this di�culty, future research should be

devoted to the inclusion of new dedicated valid inequalities. Adding non-robust valid

112

3.7 Conclusions

inequalities known for routing problems is also an interesting perspective. However, it

would lead to more di�cult pricing problems to solve. In addition, Gu et al. (2022)

proposed a sequential heuristic for the MC2DP. Therefore, another line of research

could be the development of heuristic algorithms that address the problem from an

integrated point of view.

113

114

Chapter 4

Solving the Kidney Exchange Problem

with long cycles and chains via a

Branch-Price-and-Cut algorithm

Contents
4.1 Introduction . 116

4.2 Literature review . 119

4.3 Problem formulation . 122

4.4 A Branch-Price-and-Cut algorithm 124

4.4.1 Column generation . 124

4.4.2 Pricing problem formulation 125

4.4.3 Pricing problem solution . 127

4.4.4 Cut generation . 130

4.4.5 Branching scheme . 133

4.4.6 Accelerating techniques . 134

4.5 Computational experiments 136

4.5.1 Benchmark instances . 136

4.5.2 Results on the whole testbed 137

4.5.3 Results on the set of instances of Pansart et al. (2022) 139

4.5.4 Results on the set of instances of Delorme et al. (2023) 142

4.5.5 Impact of the valid inequalities 145

115

4.5.6 Impact of the length constraints on the objective function . . 148

4.6 Conclusions . 149

Abstract: In this paper, we study a Kidney Exchange Problem (KEP) with altru-

istic donors and incompatible patient-donor pairs. Kidney exchanges can be modelled

in a directed graph as circuits starting and ending in an incompatible pair or as paths

starting at an altruistic donor. For medical reasons, both circuits and paths are of

limited length and are associated with a medical bene�t which evaluates the quality of

the transplants. The aim of the KEP is to determine a set of disjoint kidney exchanges

of maximal medical bene�t or of maximal cardinality.

We consider an extended set packing formulation for the KEP where the exponentially-

many variables correspond to the circuits and paths, and develop a Branch-Price-and-

Cut algorithm (BPC) to solve it. We show that the pricing problem can be decomposed

into a subproblem to price out the variables associated with paths and several subprob-

lems, one per each incompatible pair, to price out the variables associated with circuits.

The subproblem to price out paths can be formulated as a variant of the Elementary

Shortest Path Problem with Resource Constraints (ESPPRC), that is NP-hard in the

strong sense, and it is solved by means of a label correcting dynamic programming algo-

rithm. Conversely, the subproblems to price out circuits can be formulated as a variant

of the Shortest Path Problem with Resource Constraint (SPPRC) that can be solved

in polynomial time by a variant of the Bellman-Ford algorithm. In our BPC algorithm,

we separate two families of non-robust valid inequalities, namely, the subset-row and

the odd-hole inequalities.

We perform extensive computational experiments to assess the performances of the

BPC algorithm on three sets of instances from the literature. On each set of instances,

an algorithm for the KEP from the literature is used as a reference method. On the

set with the easiest instances, the BPC algorithm yields comparable results with the

literature, and it is able to outperform the results on the two other sets.

Keywords: Kidney exchange, altruistic donors, elementary paths, elementary

circuits, Branch-Price-and-Cut.

4.1 Introduction

Kidneys are essential organs for the survival of the human body: (i) they produce the

urine by �ltering the blood to expel wastes and toxins; (ii) they play a role in maintain-

116

4.1 Introduction

ing the homeostasis of the body by regulating the acid-base balance, the concentrations

of electrolyte; (iii) they secrete several hormones responsible, for example, of the matu-

ration of the red blood cells or of regulating the blood pressure. Unfortunately, kidneys

may su�er from chronic diseases or failures which prevent them to perform their usual

tasks. According to Kovesdy (2022), more than 10% of the worldwide population was

a�ected by such diseases in 2022.

Chronic kidney diseases or failures are often treated by dialysis or transplanta-

tion (Levey & Coresh, 2012). Transplantation is the most preferable treatment: it

a�ects less the quality of life of the patients, it o�ers a longer expectancy of life and

it is more cost e�cient (see, e.g., Axelrod et al., 2018; Yoo et al., 2016). However,

such operations have to be performed with extreme care in order to minimise the risk

of rejection. For this reason, several medical requirements must be met for a patient

and a donor to be considered eligible for a transplant. Precisely, patient and donor

must be compatible according to several indicators such as blood type and presence

of speci�c antibodies (Kälble et al., 2005). In addition, when di�erent patients and

donors are compatible between each other, each possible transplant is assigned with a

medical bene�t which quanti�es the medical interest of performing the transplant.

Kidneys are harvested from either deceased or living donors. Usually, the former

case constitutes the majority of the transplants. In 2021, more than the 60% of the

92 532 worldwide transplants involved a deceased donor*. However, patients must

register to a waiting list and might wait several years before (possibly) receiving a

kidney from a compatible deceased donor (Lentine et al., 2023). Transplants from living

donors may help patients in receiving a kidney more promptly (Nemati et al., 2014).

Such transplants are possible because one functioning kidney is enough for a human

being to conduct a healthy life. The organisation of transplants from living donors

is more complex than the one from deceased donors. Indeed, patients need to �nd a

willing and compatible donor in their circle of acquaintances that is often not easy. Most

of the times, a patient is capable of �nding a willing donor with whom it is unfortunately

not compatible. However, together, they can form an incompatible patient-donor pair

and join a kidney exchange programme (see Rapaport (1986) and Roth et al. (2004)).

Such programmes aim to determine the best (in terms of medical bene�t) set of kidney

exchanges in a pool of incompatible patient-donor pairs. An exchange takes place

when a donor of a pair gives a kidney to a patient of another pair with whom he/she is

*https://www.transplant-observatory.org/

117

https://www.transplant-observatory.org/

compatible. For obvious reasons, in this context, a donor is willing to be in an exchange

only if his/her associated patient is guaranteed to receive a kidney as well. Hence, the

set of exchanges to be determined must give rise to cycles of donations. The transplants

associated with a cycle of donation are usually performed simultaneously to avoid the

risk of donor withdrawals. Hence, for practical reasons (e.g., limited facilities or medical

sta�), regulations impose a maximal number of pairs in a cycle, usually set up to

four (Biró et al., 2019a). However, we report the breakthrough cases of cycles involving

�ve, six or seven pairs in the Czech-Austrian kidney exchange programme (Viklicky

et al., 2020). In recent years, altruistic donors, i.e., donors who are not paired with any

patient, may join the pool of a kidney exchange programme (Roodnat et al., 2010).

Thanks to their presence, the set of exchanges may also include chains of donations

(domino donations) where the altruistic donors are at the start of the chains. In a

chain of donation, surgeries are not required to be performed simultaneously, hence, the

number of incompatible pairs involved in them, although usually limited by regulations,

is larger than the one of the cycles*

Typically, kidney exchange programmes are run regularly (e.g., each one, three,

four months depending on the country regulation (Biró et al., 2021)) within one or

more hospitals belonging to a single or di�erent countries. At each round, an optimi-

sation algorithm is called to solve the Kidney Exchange Problem (KEP) whose aim is

to determine a set of cycles and chains of donations in the current pool of incompat-

ible patient-donor pairs and altruistic donors such that the overall medical bene�t is

maximised.

In our work, we study a uni�ed exact approach to solve the KEP with long cycles

and chains. Recently, Riascos-Álvarez et al. (2020) and Arslan et al. (2022) proposed

two Branch-and-Price (BP) algorithms to solve the same problem. Both works employ

an extended formulation based on the Extended Edge Formulation introduced in Con-

stantino et al. (2013). The exponentially-many variables correspond to the cycles and

chains. Hence, in the column generation procedure, the pricing problem is decomposed

in several subproblems to price out variables associated with cycles or chains. All these

subproblems can be formulated as variants of the Elementary Shortest Path Problem

with Resource Constraints (ESPPRC), where the unique resource is the length. The

ESPPRC is strongly NP-hard. However, the pricing subproblems associated with the

*https://www.uwhealth.org/news/uw-health-led-nation-in-paired-kidney-exchanges-in-2020

118

https://www.uwhealth.org/news/uw-health-led-nation-in-paired-kidney-exchanges-in-2020

4.2 Literature review

cycles can be solved in polynomial time. Indeed, even for a generic resource, the ele-

mentarity constraints can be dropped (sub-tours are cycles themselves). Hence, pricing

cycles can be done in pseudo-polynomial time by solving the Shortest Path Problem

with Resource Constraints (SPPRC). In addition, when the resource is the length the

SPPRC can be solved in polynomial time, given that the maximal length is bounded

by the number of vertices in the graph. The same does not apply in the case of pricing

variables associated with chains even if the only resource is the length. The complexity

remains strongly NP-hard due to the elementarity requirement.

In this work, we propose a Branch-Price-and-Cut (BPC) algorithm based on the cy-

cle formulation for the KEP introduced by Roth et al. (2007) where the exponentially-

many variables corresponds to cycles and chains. We exploit the theoretical results

of Arslan et al. (2022) to solve as few as possible ESPPRCs. However, instead of

calling an integer program to solve the ESPPRC in the case of the chains, as done

by Arslan et al. (2022), we make use of a labelling algorithm. Labelling algorithms are

more e�cient than solving integer programs and they allow to manage the dual vari-

ables of non-robust inequalities in an easier manner. In this respect, we separate two

families of non-robust valid inequalities, namely the subset-row and odd-hole inequal-

ities, which help in strengthening the linear relaxation for the hardest instances. In a

thorough computational experiments, the BPC algorithm shows its superiority against

other approaches for the KEP in the literature on most of the benchmark instances.

The reminder of the paper is organized as follows. In section 4.2, we review the

existing literature regarding the KEP. In Section 4.3, we formally introduce the KEP

and we present a set packing formulation for the problem. The main components of our

Branch-Price-and-Cut algorithm are described in Section 4.4. Finally, in Section 4.5,

we report and analyse the results obtained by the BPC algorithm on three sets of

benchmark instances.

4.2 Literature review

In this section, we survey the existing literature on solution approaches for the Kidney

Exchange Problem (KEP).

Roth et al. (2005) study the KEP with only cycles of length two. Such variant of

the KEP can be reduced to a Maximum Weighted Matching Problem and thus solved

in polynomial time by, e.g., the Edmond's algorithm (Edmonds, 1965). However, the

119

KEP with cycles of length larger than two (and chains of arbitrary length) is proven

to be NP-hard (Abraham et al., 2007; Roth et al., 2007). For this reason, several

formulations and solution methods have been proposed through the years.

In the following we review the main formulations proposed for the KEP with cycles.

Roth et al. (2007) introduced the edge formulation for the KEP, a �rst formulation with

an exponential number of constraints and a polynomial number of variables w.r.t. the

size of the instance. Whereas the �rst extended formulation, the cycle formulation,

was introduced by Roth et al. (2007) and Abraham et al. (2007) the same year. The

authors proved that the cycle formulation dominates the edge formulation in terms of

linear relaxation. As a solution method, they considered a column generation approach

where the pricing problem is solved by enumeration. Constantino et al. (2013) pro-

posed the �rst compact formulation for the KEP with cycles only, the extended edge

formulation. Klimentova et al. (2014) presented the disaggregated cycle formulation,

a variant of the cycle formulation where the set of cycles is decomposed in subsets,

one per each pair, containing the cycles starting at that pair. Both Constantino et al.

(2013) and Klimentova et al. (2014) adopt an idea to break symmetries: a cycle starting

at pair i does not contain pairs with an index lower than i.

In addition, Dickerson et al. (2016) introduced the position-indexed edge formula-

tion, a compact formulation which achieves equivalent linear relaxation bounds as the

cycle formulation. More recently, Delorme et al. (2023) exploited the idea of repre-

senting a cycle by two compatible halves and introduced the half-cycle formulation to

solve the KEP with cycles only and where the objective is to maximise the number

of transplants. Such formulation has less variables than the cycle formulation while

keeping the same quality of the linear relaxation bound. The authors proposed to

solve the formulation by enumerating all the possible half-cycles and by applying a

destructive bound procedure coupled with a variable-�xing strategy. Precisely, �rst,

an upper bound on the maximum number of transplants is obtained by solving the

linear relaxation of the formulation. Then, an iterative procedure starts: the half-cycle

formulation is solved by a commercial solver with the upper bound imposed as value

for the objective function, if an integer solution is found the procedure stops, otherwise

the upper bound is decreased by one and the procedure repeats. Their results consid-

ered instances with up to 1000 incompatible pairs and cycles of length up to eight. All

these formulations can be easily adapted to solve the KEP with altruistic donors and

thus with chains. For example, Pansart et al. (2022) extended the cycle formulation

120

4.2 Literature review

to include the chains, as well. The interested reader may refer to Mak-Hau (2015) for

a survey on formulations for the KEP up to 2015.

For scalability reasons, several works focus on developing column generation ap-

proaches for the KEP. As already mentioned, Abraham et al. (2007) presented the

�rst Branch-and-Price (BP) algorithm to solve the KEP with cycles only. The works

of Glorie et al. (2012), Glorie et al. (2014), Klimentova et al. (2014) and Plaut et al.

(2016a) developed BP algorithms to solve the KEP with both cycles and chains. How-

ever, Plaut et al. (2016b) proved that the algorithms of Glorie et al. (2012), Glorie

et al. (2014) and Plaut et al. (2016a) were not correct. In addition, Klimentova et al.

(2014) did not provide any computational experiments with KEP instances with chains.

Based on the work of Klimentova et al. (2014), Lam & Mak-Hau (2020) built the �rst

BPC algorithm for the KEP with cycles only. They tested the BPC algorithm on

the 80 instances of the PrefLib dataset with 16 to 2048 pairs and without altruistic

donors. The length of the cycles was limited to three or four. The BPC algorithm was

able to solve all the instances when the length is limited to three and the majority of

them when the length is limited to four. However, the considered valid inequalities are

rather ine�ective in strengthening the linear relaxation. Pansart et al. (2022) is the

�rst column generation approach capable of dealing with both cycles and chains. The

objective is to maximise the total medical bene�t. The authors proposed a restricted

master heuristic where the cycles are enumerated and the chains are detected via the

solution of the pricing problem. Precisely, they proposed new heuristic algorithms to

solve the pricing. The correctness of their algorithm is based on the solution of the

pricing problem via an exact dynamic programming labelling algorithm. Pansart et al.

(2022) presented results on instances with up to 1000 incompatible pairs, 111 altruistic

donors, cycles of length up to three and chains with length up to 12. Precisely, their

approach solved to optimality the majority of the instances with up to 250 pairs.

The �rst work proposing a column generation approach which prices variables asso-

ciated with cycles and chains is Riascos-Álvarez et al. (2020). The authors developed a

BP algorithm based on the disaggregated cycle formulation of Klimentova et al. (2014)

where the pricing problem is tackled viamulti-valued decision diagrams and the solution

of linear and integer linear programs. The authors exploited the idea of Constantino

et al. (2013) to represent each cycle by its vertex with the lowest index, that permits

to apply a preprocessing procedure which reduces the subset of cycles to consider in

the formulation of Klimentova et al. (2014). Consequently, the number of the pricing

121

subproblems associated with the cycles is heavily reduced. Their approach is tested on

the instances of the PrefLib dataset with cycles and chains of maximal length equal

to three or four and chains of maximal length from three to six. The large majority

of the instances are solved to optimality at the root node. However, their results are

outperformed by the BP algorithm of Arslan et al. (2022). Precisely, the BP algorithm

of Arslan et al. (2022) builds on the one of Riascos-Álvarez et al. (2020) by identifying

theoretical conditions where also the pricing subproblems associated with the chain

variables can be solved in polynomial time. Precisely, if the maximal length of the

chains is less than or equal to the maximal length of the cycles plus one, proving that

no more positive reduced cost chains exist can be done by relaxing the elementarity

constraints. The authors make use of variants of the Bellman-Ford algorithm to price

both cycles and chains (when the elementarity constrains are relaxed) in polynomial

time. However, to ensure the correctness of the algorithm, it might be necessary to

solve an ESPPRC to prove that no more elementary positive reduced cost path exist.

Arslan et al. (2022) do so by modelling the ESPPRC as an integer program with an

exponential number of constraints and solve it by means of a branch-and-cut algorithm.

4.3 Problem formulation

Let I be the set of incompatible patient-donor pairs and let D be the set of altruistic

donors. The KEP can be de�ned on a directed weighted graph G = (V,A) referred to

as compatibility graph. Vertex set V = I ∪D contains a vertex for each incompatible

patient-donor pair of I and each altruistic donor of D. The arcs in A model all the

possible transplants between donors and patients. Hence, arc set A contains an arc

(i, j) from each vertex i ∈ V to each patient-donor pair j ∈ I, if the kidney of the

donor associated with i is compatible with the patient of pair j. We assign a weight

Wij to each arc (i, j) ∈ A representing the utility (medical bene�t) of the associated

transplant. Cycles and chains of kidney exchanges between donors and patients are

modelled in graph G by two types of subgraphs, namely circuits and paths. The length

of a cycle or a chain is equal to the number of arcs in the circuit or path. In this

respect, we call an exchange circuit an elementary circuit in graph G of length at most

LC > 1. Similarly, we call an exchange path an elementary path in graph G of length

at most LP > 1. Given that vertices associated with altruistic donors do not have

122

4.3 Problem formulation

in-going arcs, exchange circuits are composed only of vertices associated with patient-

donor pairs and exchange paths must start with a vertex associated with an altruistic

donor. Given an exchange circuit or path e, the weight We of e is de�ned as the sum of

the weights of the arcs traversed by e, i.e., We :=
∑

(i,j)∈A(e)Wij, where A(e) is the set

of arcs traversed by e. Finally, we de�ne an exchange scheme as a union of pairwise

vertex-disjoint exchanges circuits and paths. The KEP aims to determine an exchange

scheme of maximum weight, where the weight of an exchange scheme is the sum of the

weights of the exchanges circuits and paths composing it. An exchange scheme may

not contain all the vertices of V. Remark that if all weights Wij, (i, j) ∈ A, are set

to one, the objective of the KEP is to maximise the number of transplants. In what

follows, with abuse of language, we refer to an exchange circuit or path with the term

exchange.

We now report the set packing formulation proposed in Pansart et al. (2022) to

model the KEP.

We denote by E = EC ∪ EP the set of the exchanges in graph G, where EC (EP)

denotes the set of the exchange circuits (paths) in graph G. Let aei be a binary parameter

equal to one if vertex i ∈ V is involved in exchange e ∈ E and zero otherwise. For each

exchange e ∈ E, we de�ne a binary variable λe taking value one if exchange e is part

of the exchange scheme and zero otherwise.

The Set Packing formulation [SP] for the KEP reads as follows:

[SP] max
∑
e∈E

Weλe (4.1)

s.t.
∑
e∈E

aeiλe ≤ 1 ∀i ∈ V (4.2)

∑
e∈E

λe ≤
|V|
2

(4.3)

λe ∈ {0, 1} ∀e ∈ E. (4.4)

Objective function (4.1) maximises the weight of the exchange scheme. Con-

straints (4.2) referred to as packing constraints ensure that each incompatible pair and

altruistic donor is involved in at most one exchange circuit or path. Constraint (4.3)

imposes an upper bound on the number of the exchanges in an exchange scheme. Re-

mark that such constraint is redundant, indeed, each exchange circuit or path cannot

be composed of less than two vertices. We include it in the formulation to compute a

123

valid upper bound in the column generation procedure, namely the Lagrangian bound.

Such bound may be used as a termination condition in the column generation proce-

dure (see Desrosiers & Lübbecke, 2005, for more details). Finally, Constraints (4.4)

de�ne variables λe as binary.

Valid inequalities to strengthen formulation [SP] will be presented in Section 4.4.4.

4.4 A Branch-Price-and-Cut algorithm

Formulation [SP] is an integer model de�ned over exponentially-many variables λe,

e ∈ E. We solve [SP] by means of an exact algorithm based on a Branch-Price-and-

Cut (BPC) paradigm (Barnhart et al., 1998). BPC algorithms are variants of the

branch-and-bound algorithm where at each node of the branch-and-bound tree the

linear relaxation of [SP] is solved via a column generation procedure (Desrosiers &

Lübbecke, 2005). The linear relaxation of [SP] is commonly referred to as the Master

Problem (MP). If the solution of the MP is fractional, a separation procedure may be

called to identify violated valid inequalities (see Section 4.4.4). If such inequalities are

found, they are included in the MP and the column generation procedure is repeated.

Finally, when no valid inequalities are detected, branching rules are applied to ensure

the correctness of the BPC algorithm.

The outline of this section is as follows. Section 4.4.1 is devoted to the column

generation procedure we employ in our BPC algorithm. In Sections 4.4.2 and 4.4.3,

we formulate the pricing problem and we present an exact procedure to solve it. In

Section 4.4.4, we present the family of valid inequalities we consider in our separation

procedure and the cut generation strategy, as well. Finally, the branching strategies

are discussed in Section 4.4.5.

4.4.1 Column generation

The MP is solved by means of a column generation procedure at each node of the

branch-and-bound tree. The procedure starts by solving the Restricted Master Problem

(RMP), i.e., the MP restricted to a subset of λ variables. Each iteration of a column

generation procedure comprises two consecutive steps: solve the RMP and solve the

so-called pricing problem. When the RMP is a maximisation problem, the role of the

pricing problem is to detect the most positive reduced cost variable (column), i.e., the

variable which will increase the most the value of the RMP when included in it. When

124

4.4 A Branch-Price-and-Cut algorithm

the pricing problem fails to detect such variable, the current solution of the RMP is

then proven to be optimal for the MP, as well.

4.4.2 Pricing problem formulation

Let πi ≥ 0, i ∈ V and β ≥ 0 be the dual prices associated with Constraints (4.2)

and (4.3), respectively. The reduced cost of a λe variable is:

W̄e = We −
∑
i∈V

aeiπi − β.

The pricing problem reads as follows:

[PP] max{W̄e : e ∈ E}.

We observe that exchange set E can be partitioned in the following manner:

E = EC ∪ EP =
⋃
i∈I

EC
i ∪ EP ,

where EC
i is the set of the exchange circuits starting and ending at incompatible pair i ∈

I. Hence, pricing problem [PP] can be decomposed in |I|+1 independent subproblems:

[PP-C](i) max{W̄e : e ∈ EC
i }, i ∈ I

[PP-P] max{W̄e : e ∈ EP}.

The aim of problem [PP-C](i) is to determine the most positive reduced cost variable

λe, e ∈ EC
i , associated with exchange circuits starting and ending in i ∈ I or state that

no positive reduced cost variable exists. Similarly, the aim of problem [PP-P] is to

determine the most positive reduced cost exchange path variable λe, e ∈ EP or state

that no positive reduced cost variable exists.

In the following, we show that problems [PP-C](i), i ∈ I, and [PP-P] share the

same structure: they can be formulated as an Elementary Longest Path Problem with

Length Constraint (ELPPLC), i.e., a variant of the Elementary Shortest Path Problem

with Resource Constraints (ESPPRC).

First, we formally de�ne the ELPPLC having as a reference Pansart et al. (2022).

Let H = (N,F) be a directed weighted graph, where the weights associated with

125

the arcs (i, j) ∈ F are denoted by W̄ij. The objective of the ELPPLC is to �nd an

elementary path e∗ in graph H starting at a given vertex s ∈ N, ending at a given

vertex t ∈ N and such that its weight W̄e∗ =
∑

(i,j)∈A(e∗) W̄ij is maximum and its length

is less than or equal to L̄ > 0. The topology of the graph H depends on the nature of

the pricing subproblem, and we will describe it in more detail in the following.

Now, let i ∈ I be a pair. To model [PP-C](i) as an ELPPLC, we de�ne a directed

weighted graph HC
i = (NC

i ,F
C
i) as follows. The vertices of HC

i are the incompatible

pairs of I plus a copy i′ of pair i, i.e., NC
i := I ∪ {i′}. The arcs of HC

i are FC
i =

{(h, j) ∈ A : h, j ∈ I, j ̸= i} ∪ {(j, i′) : (j, i) ∈ A}. Precisely, FC
i contains the arcs of

compatibility graph G between the incompatible pairs, except those entering in pair i

and for all arcs (j, i) ∈ A entering in i, we add an arc (j, i′) entering in the copy i′ of i.

Remark that circuits in graph G starting and ending in i correspond to paths in graph

HC
i starting in i and ending in i′. Weights W̄hj assigned to arcs (h, j) ∈ F are de�ned

as follows

W̄hj =


Whj − πj − β, if h = i

Whi − πi, if j = i′

Whj − πj, otherwise .

To consider the path length, we de�ne a resource consumption Lhj = 1 for each arc

(h, j) ∈ F. Solving problem [PP-C](i) consists in �nding the most positive reduced

cost elementary path starting at i and ending at i′ in graph HC
i such that the length

of the path is less than or equal to LC .

We model [PP-P] as an ELPPLC on graph HP = (NP ,FP) de�ned as compatibility

graph G augmented with source vertex s and an arc from s to each altruistic donor

of D. Precisely, we set NP := {s} ∪ V and FP = A ∪ {(s, i) : i ∈ D}. Given an arc

(i, j) ∈ FP , its weight W̄ij is de�ned as follows

W̄ij =

{
Wij − πj − β, if i = s

Wij − πj, otherwise.

Resource consumption Lij is set to be one on all arcs (i, j) ∈ FP . Problem [PP-P]

consists in �nding the most positive reduced cost elementary path starting at s ∈ N

and ending in a vertex j ∈ NP \ {s} in graph HP such that the length of the path

is less than or equal to LP + 1. Remark that to be consistent with the de�nition of

exchange paths given in Section 4.3, here, [PP-P] looks for paths of length at most

126

4.4 A Branch-Price-and-Cut algorithm

LP + 1. Indeed, in the underlying graph HP used to solve [PP-P], we add a source

vertex s which is not included in the compatibility graph G.

In the following, we report two theoretical results which identify conditions under

which subproblems [PP-C](i), i ∈ I, and [PP-P] can be formulated as Longest Path

Problems with Length Constraint (LPPLC). The �rst result states that the subproblems

to price the circuits reduce to an LPPLC. Remark that a non-elementary circuit is

composed of at least two elementary circuits. Hence, if the LPPLC returns a positive

reduced cost non-elementary circuit when solving problem [PP-C](i), i ∈ I, then at least

one of the elementary circuits composing it must have a positive reduced cost. Remark

that such circuit might not be a solution of [PP-C](i), but of another subproblem. The

LPPLC always identi�es a positive reduced cost elementary circuit even if it may not

be the most positive one.

The second result is an original result of Arslan et al. (2022) and it identi�es a

subclass of the problem instances where it is possible to solve problem [PP-P] by

dropping the elementarity requirement of the paths, i.e., [PP-P] reduces to a LPPLC,

as well. Precisely, if LP ≤ LC + 1 and problems [PP-C](i), i ∈ I, do not identify

any positive reduced cost circuit, then problem [PP-P] reduces to a LPPLC. Indeed,

a non-elementary path of length l contains a sub-tour of length at most l − 1 which

is composed only of pairs. Hence, if problems [PP-C](i), i ∈ I, do not identify any

circuit with a reduced cost larger than −β (of length at most LC), then [PP-P] will

not provide any positive reduced cost path which is non-elementary.

Remark that if LP > LC + 1, solving the LPPLC on graph HP provides an upper

bound on the value of [PP-P] since the LPPLC is a relaxation of the ELPPLC.

4.4.3 Pricing problem solution

In this section, we present an exact procedure similar to the one of Arslan et al. (2022)

to solve the pricing problem.

The pseudocode of such a procedure is presented in Algorithm 9. It can be noticed

that an ELPPLC needs to be solved for [PP-P] only if (i) the maximal length of the

chains is strictly larger than the maximal length of the cycles plus one, i.e., LP > LC+1;

(ii) no positive reduced cost circuits is detected, i.e, [PP-C](i) W ∗
i = max{W̄e : e ∈

EC
i } ≤ 0, for all i ∈ I; (iii) the LPPLC version of the [PP-P] provides no positive

reduced cost elementary path, but provides a positive reduced cost non-elementary

path of length greater than or equal to LC + 2. Indeed, if the LPPLC do not �nd any

127

positive reduced cost non-elementary path, then [PP-P] does not admit any positive

reduced cost elementary path, as well. In addition, if some positive reduced cost

elementary paths are found when solving the LPPLC, these can be included in the

RMP without the need to solve [PP-P] with an ELPPLC.

Finally, the following proposition provides a correctness result for the column gen-

eration procedure shown in Algorithm 9.

Proposition 4.1. The procedure of Algorithm 9 solves the MP to optimality at each

node of the branch-and-bound tree.

Algorithm 9: Column generation procedure.

1 do

2 solve the RMP;
3 get the optimal solution of the dual of the RMP;
4 build pricing subproblems [PP-C](i), i ∈ I and [PP-P];
5 solve [PP-C](i) and let W̄ ∗

i be its optimal value, for all i ∈ I;

6 let W̄ ∗C = max{W̄ ∗
i : i ∈ I};

7 Solve the LPPLC on graph HP and let W̄ ∗P be its optimal value;

8 if LP > LC + 1 then

9 if W̄ ∗C ≤ −β and W̄ ∗P > 0 and solving the LPPLC on graph HP do not provide any positive

reduced cost elementary path and it provides a positive reduced cost non-elementary path of

length l ≥ LC + 2 then

10 solve the ELPPLC on graph HP and let W̄ ∗P be its optimal value;
11 end

12 end

13 add positive reduced cost elementary circuits and paths to the RMP, if any is detected;

14 while max{W̄ ∗C , W̄ ∗P } > 0;

In the following, we describe the algorithms to solve: (i) the LPPLC to provide so-

lutions for subproblems [PP-C](i) and [PP-P], and (ii) the ELPPLC to provide optimal

solutions for [PP-P].

First, we remark that although the SPPRC is NP-hard (Di Puglia Pugliese &

Guerriero, 2013) for a generic resource constraint, it becomes solvable in polynomial

time if the resource is the length of the path. Indeed, the SPPRC on a graph H =

(N,F) can be solved by pseudo-polynomial algorithms with a temporal complexity of

O(R̄|F|) (Desrochers, 1988) where R̄ is the maximal amount of resource.

In the context of a LPPLC, the maximal amount of resource R̄ is the maximal

length of the path L̄, which is bounded from above by the number of vertices in the

graph |N|. Hence, the LPPLC can be solved with a polynomial temporal complexity

of O(|N||F|).
We report a polynomial time procedure based on the Bellman-Ford algorithm to

solve the LPPLC. Precisely, such algorithm corresponds to the �rst L̄ iterations of the

128

4.4 A Branch-Price-and-Cut algorithm

Bellman-Ford algorithm, and is detailed in Algorithm 10, where we make use of the

generic notation introduced in Section 4.4.2. In addition, we denote by W l
i the weight

of a path of length l = 0, . . . , L̄ starting in s and ending in vertex i ∈ N. Matrix

(pli)l=0,...,L̄,i∈N stores the predecessor pli of vertex i ∈ N a path of length l starting in s

and ending in vertex i. We write P for the set of the positive reduced cost paths found

by the algorithm.

Algorithm 10: A Bellman-Ford algorithm for the LPPLC

Input: Graph H = (N,F).
Initialization: W 0

s := 0 and p0s := s, W l
i := −∞ and pli = null for all i ∈ N \ {s} and l = 0, . . . , L̄ and P = ∅.

1 forall l = 1, . . . , L̄ do

2 forall i ∈ N do

3 forall (i, j) ∈ δ+(i) do

4 if W l−1
i + W̄ij > W l

j then

5 set W l
j := W l−1

i + W̄ij ;

6 set plj = i;

7 end

8 end

9 end

10 end

// retrieve positive reduced cost paths

11 forall l = 1, . . . , L̄ do

12 forall i ∈ N do

13 if W l
i > 0 then

14 apply backtracking to pli to build the path;
15 add the path to P;

16 end

17 end

18 end

19 return P;

To complete this section, we describe a label correcting dynamic programming algo-

rithm (Feillet et al., 2004) to solve the ELPPLC. In the work of Arslan et al. (2022), the

ELPPLC is tackled by a mixed integer programming formulation with an exponential

number of constraints. Here, we chose a label correcting dynamic programming algo-

rithm for its e�ciency and for its �exibility when it comes to incorporate non-robust

valid inequalities to strengthen the formulation (see Section 4.4.4).

In a label correcting algorithm, vertices are repeatedly processed and their as-

sociated labels, which identify paths in the graph, are extended. Precisely, a label

l = (L, W̄ ,U, i) represents a path in graph H starting at vertex s and ending in vertex

i ∈ N characterised by its accumulated weight W̄ , its length L and the subset of visited

vertices U ⊆ N. A label l = (L, W̄ ,U, i) associated with vertex i can be extended along

arc (i, j) ∈ F if the length constraint (L < L̄) and the elementarity constraint (j /∈ U)

are respected. If this is the case, a new label l′ = (L+1, W̄ +Wij,U∪{j}, j) associated

129

with vertex j ∈ V is obtained. Dominance rules are commonly applied in labelling

algorithms to prune labels which would not lead to any optimal solution. Given two

labels l = (L, W̄ ,U, i) and l′ = (L′, W̄ ′,U′, i) associated with the same vertex i, we say

that l dominates l′ if: 
L ≤ L′

W̄ ≥ W̄ ′

U ⊆ U′
(4.5)

and one of the inequalities (inclusion) is strict.

The elementarity constraint makes the ELPPLC strongly NP-hard and slows down

the solution algorithm. Adopting the ng-path relaxation (Baldacci et al., 2011), which

partially relaxes the elementarity constraint of the paths, helps in accelerating the

solution of the ELPPLC. Each vertex i ∈ N is assigned with a neighbourhood Ui of

a given size. Circuits along a path are then allowed only if each vertex visited more

than once does not belong to the neighbourhoods of its predecessors in the path. The

label de�nition and extension rule are modi�ed accordingly. Precisely, the set of visited

customers U becomes the memory of the label. The extension of l = (L, W̄ ,U, i) along

arc (i, j) is l′ = (L+ 1, W̄ +Wij, (U ∩ Uj) ∪ {j}, j).

4.4.4 Cut generation

We consider two families of valid inequalities, namely, the subset-row (SR) inequali-

ties (Jepsen et al., 2008) and the odd-hole (OH) inequalities (Padberg, 1973). Both

families of valid inequalities are non-robust, that is, considering their dual variables in

the pricing problem solution modi�es the structure of the pricing problem itself. Re-

garding the OH inequalities, we separate them by the procedure of Ho�man & Padberg

(1993), however, we insert them in the RMP as subset-row inequalities, as presented

in Section 4.4.4.2.

4.4.4.1 Subset-row inequalities

Given a subset S ⊆ V and a multiplier pi for each i ∈ S, SR inequalities are obtained

as a Chvátal-Gomory rounding of the Constraints (4.2) associated with elements in S:

∑
e∈E

⌊∑
i∈S

pia
e
i

⌋
λe ≤

⌊∑
i∈S

pi

⌋
, S ⊆ V. (4.6)

130

4.4 A Branch-Price-and-Cut algorithm

We restrict ourselves to consider only subsets S of cardinality three and multipliers

pi = 1/2 for each i ∈ S. Hence, the separation of these inequalities is performed by

enumeration. Let σS ≥ 0 be the dual variable associated with SR inequality (4.6)

de�ned for subset S ⊆ V. To consider such dual variable in the ELPPLC, we follow

the procedure proposed in Pecin et al. (2017). We choose to do so because Pecin et al.

(2017) provides a general management rule of the SR inequalities which is valid also

in the case where the elementarity of the paths is relaxed. In the label de�nition, we

include a state for each SR inequality in the RMP whose dual variable is di�erent from

zero. The state of a SR inequality identi�ed by S ⊆ V is a parameter M(S) which

records the visits of a path to vertices in S and establishes when dual variable σS has

to be discounted from the reduced cost of the path. Precisely, parameter M(S) is

initialized to 0 and every time a path visits a vertex i ∈ S, M(S) is incremented by

pi = 1/2. If M(S) ≥ 1, dual variable σS is discounted from the reduced cost and M(S)

is decremented by one unit.

The second condition in dominance rule (4.5) has to be replaced by

W̄ ≥ W̄ ′ +
∑
S∈M:

M(S)>M ′(S)

σS,

where M is the set of subsets S ⊆ V representing SR inequalities in the RMP whose

dual variable σS is di�erent from zero.

4.4.4.2 Odd-hole inequalities

Given an exchange e ∈ E, we denote by V(e) the set of vertices in exchange e. We

say that two exchanges e, e′ ∈ E are in con�ict if they share common vertices, i.e.,

if V(e) ∩ V(e′) ̸= ∅. Variables associated with exchanges in con�ict between each

other cannot both be one in an integer solution. Given a fractional solution λ̃, we

de�ne the so-called con�ict graph C = (Q,T) as follows. Node set Q contains the

exchanges e ∈ E whose corresponding variable appear in the fractional solution with

value λ̃e ∈ (0, 1). Edge set T contains an edge (e, e′) if exchanges e ∈ E and e′ ∈ E

are in con�ict. Odd-hole inequalities correspond to particular subgraphs in graph C,

namely to odd cycles without chords. An odd cycle without chords is a set of nodes

P = {e1, e2, . . . , e2k+1}, k ≥ 2, such that edge set T contains edges ti = (ei, ei+1),

i = 1, . . . , 2k, and t2k+1 = (e2k+1, e1) and no other edge incident only in nodes of P.

131

The odd-hole inequality associated with P is:

∑
e∈P

λe ≤
|P| − 1

2
. (4.7)

The separation of these inequalities is done through the exact procedure of Ho�man

& Padberg (1993). Such procedure considers each vertex of the con�ict graph and de-

termines all the odd-hole inequalities associated to odd cycles without chords starting

at the considered vertex. This procedure is rather time consuming. Therefore, as sug-

gested by Ho�man & Padberg (1993), when determining the inequalities, we randomly

consider the 30% of the vertices of the con�ict graph as starting vertex.

OH inequalities are de�ned over a subset of variables P, hence, the management of

the associated dual variable θP ≥ 0 when solving the pricing problem is not tractable.

Indeed, when solving the pricing problem, we need to identify circuits and paths asso-

ciated with the variables in P to discount dual variable θP from the reduced cost.

For this reason, we show how it is possible to retrieve a SR inequality from an

OH inequality de�ned on cycle P. Moreover such SR inequality is a lifted version of

the associated OH inequality. For each edge ti = (ei, ei+1) ∈ T, i = 1, . . . , 2k and

t2k+1 = (e2k+1, e1) ∈ T, of the odd cycle P, we select elements vi ∈ V(ei) ∩ V(ei+1) and

v2k+1 ∈ V(e2k+1) ∩ V(e1), which are vertices in compatibility graph G. Remark that in

the odd cycle there are no chords, hence, all the vi are di�erent from each other. The

associated SR inequality is de�ned over S = {v1, . . . , v2k+1} and multipliers pi = 1/2

for each i ∈ S: ∑
e∈E

⌊
1

2

∑
i∈S

aei

⌋
λe ≤

⌊
|S|
2

⌋
. (4.8)

Lemma 4.2. If a fractional solution λ̃ violates OH inequality (4.7) then it violates also

SR inequality (4.8) associated with inequality (4.7).

Proof. First, we observe that the right hand-side of inequality (4.8) coincides with the

one of inequality (4.7), indeed, it holds |S| = |P| by construction and |P| is odd. Then,
in the left hand-side of inequality (4.8), at least the variables associated with exchanges

in P appear with coe�cient one. Indeed, such exchanges visit exactly two vertices in

S. Finally, it holds

∑
e∈E

⌊
1

2

∑
i∈S

aei

⌋
λ̃e ≥

∑
e∈P

⌊
1

2

∑
i∈S

aei

⌋
λ̃e =

∑
e∈P

λ̃e >
|P| − 1

2
=

⌊
|S|
2

⌋
(4.9)

132

4.4 A Branch-Price-and-Cut algorithm

and λ̃ violates inequality (4.8).

Note that Inequality (4.8) is a lifted version of Inequality (4.7). Indeed, the left

hand-side of (4.8) contains additional variables in E \ P with positive coe�cients.

The impact on the pricing problem is the same as the one of the SR inequalities.

4.4.4.3 Cut generation strategy

We adopt the following cut generation strategy. We separate at most 100 inequalities

in the branch-and-bound tree. We allow ten minutes for the overall time spent in the

separation procedures, beyond such threshold, we do not separate any inequality. At

each separation round, we separate OH and SR inequalities in this order, and when

20 violated inequalities have been detected, we stop looking for other inequalities in

that round. A time limit of one minute is imposed for the separation of each of the

two families of inequalities at each round. In addition, if during one round no OH

inequalities are detected, we keep separating only SR inequalities at that node.

Remark that if non-robust valid inequalities are active in the RMP, the circuits are

priced by a labelling algorithm instead of the variant of the Bellman-Ford algorithm

presented in Section 4.4.3. Indeed, dealing with non-robust inequalities makes the pric-

ing problem more complicated as it requires more resources, one per each non-robust

inequality. In that context, labelling algorithms are well-suited for the management of

these additional resources.

4.4.5 Branching scheme

To ensure the integrality of the solution returned by the BPC algorithm, we branch

on the use of the arcs in A. Let λ̃ be an optimal fractional solution of the MP at a

node of the branch-and-bound tree. We branch on values fij =
∑

e∈E b
e
ijλ̃e, (i, j) ∈ A,

where parameter beij takes value one if arc (i, j) ∈ A belongs to exchange e ∈ E and

zero otherwise. Precisely, we select the branching candidate whose value is the closest

to 0.5. Remark that fij ∈ (0, 1), hence, in one branch we force arc (i, j) to be used

(
∑

e∈E b
e
ijλe = 1) while in the other branch, we forbid its use (

∑
e∈E b

e
ijλe = 0). In the

former case, the dual variable associated with the branching constraint is considered

when solving the pricing problem. In this latter case, arc (i, j) is removed from graph

H when we solve the pricing problem. Last, the branch-and-bound tree is explored

according to the best-�rst strategy.

133

4.4.6 Accelerating techniques

We make use of the following accelerating techniques to speed up our BPC algorithm:

Preprocessing of Pansart et al. (2022). Imposing length constraints on cycles and

chains allows us to perform a preprocessing procedure to reduce the size of com-

patibility graph G. Such procedure was introduced by Pansart et al. (2022) and

is based on the Floyd-Warshall algorithm to compute the shortest path between

each pair of vertices in a graph. Precisely, we consider a graph G̃ = ({s} ∪V, Ã),

where Ã = A ∪ {(s, i) : i ∈ D}. Graph G̃ is de�ned as graph HP used to price

out variables associated with exchange paths. The weights on the arcs are set to

one. Then, the Floyd-Warshall algorithm is applied to G̃ to detect the minimum

length l∗(i, j) paths between each pair of vertices i, j ∈ {s} ∪ V. We remove all

arcs (i, j) ∈ A that satisfy the following two conditions:

1. the length of the shortest path from source s to vertex i is larger than or

equal to the maximal chain length, i.e., l∗(s, i) ≥ LP + 1;

2. the length of the shortest path from vertex j to vertex i is larger than or

equal to the maximal cycle length, i.e., l∗(j, i) ≥ LC .

Finally, isolated vertices are removed from V as well.

Preprocessing of Riascos-Álvarez et al. (2020). Riascos-Álvarez et al. (2020) pro-

posed a procedure to reduce the number of pricing subproblems [PP-C](i), i ∈ I,

to be processed in the pricing problem solution. In addition, the same proce-

dure allows to reduce the size of pricing graphs HC
i . As in Constantino et al.

(2013) and Klimentova et al. (2014), Riascos-Álvarez et al. (2020) exploits the

symmetry of the circuits subproblems: a circuit starting at vertex i considered

in subproblem [PP-C](i) and containing vertex j will also appear as a circuit

starting at vertex j when solving [PP-C](j). The procedure reads as follows. In

the following, we work on a copy of compatibility graph G = (V,A) where we

progressively remove vertices and arcs. For the ease of readability, we keep nota-

tion G = (V,A) to refer to this copy. We write l∗(i, j) for the value of the shortest

path, in terms of length, from i to j in compatibility graph G = (V,A). First,

the incompatible pairs with no in-going or no out-going arcs are removed from I.

Indeed, these pairs cannot be part of any circuit. The remaining ones are sorted

by decreasing number of incident arcs. Then, the �rst pair i ∈ I is selected and

134

4.4 A Branch-Price-and-Cut algorithm

graph HC
i = (NC

i ,F
C
i) is built as follows. We include in NC

i all pairs j ∈ I whose

distance from i is less than or equal to the cycle length, i.e., l∗(i, j)+l∗(j, i) ≤ LC .

Once the vertex set is built, arc set FC
i contains all the arcs (i′, j′) ∈ A whose

extremes are in NC
i and such that l∗(i, i′) + l∗(j′, i) + 1 ≤ LC . Finally, vertex i is

removed from graph G along with its incident arcs. Set I is re-ordered according

to the reduced graph G and a new iteration starts. The procedure terminates

when either all the pairs in I are processed or there is no pair with both in-going

or out-going arcs. Those reduced graphs HC
i are then used to price the variables

associated to the circuits.

Initialization of set E. It is well known that column generation su�ers from degener-

acy which may slow down its convergence (Desrosiers & Lübbecke, 2005). A good

initialisation of the set of columns helps in reducing this inconvenience. Hence,

we generate at most 30000 exchange circuits and paths of length up to three and

insert them in set E. Precisely, to ensure diversity, we generate 30000/|V| ex-
change circuits/paths starting at each incompatible pair/altruistic donor in the

compatibility graph.

Primal heuristic. Embedding primal heuristics in a BPC algorithm helps in reduc-

ing the integrality gap and, consequently, the size of the branch-and-bound

tree (Archetti et al., 2013). We adopt the so-called restricted master heuris-

tic, i.e., we solve formulation [SP] restricted to the subset of variables generated

so far by means of a commercial solver. We call such heuristic after the root node

is solved and every time 500 new columns are inserted in the RMP. We impose a

time limit of 60 seconds for the �rst call and of 10 seconds for the other ones.

Tabu list. As in Arslan et al. (2022), when a pricing subproblem [PP-C](i), i ∈ I,

does not provide any positive reduced cost circuit, we insert such subproblem in

a tabu list. All subproblems in the tabu list are not solved in the following column

generation iterations. They are solved only when subproblem [PP-P] does not

provide any positive reduced cost path to ensure the correctness of the column

generation procedure.

135

4.5 Computational experiments

Our BPC algorithm is implemented in C++ and compiled in release mode under a 64-

bit version of MS Visual Studio 2019. The linear programming models in the column

generation procedure and the integer programming models in the restricted master

heuristic are solved by GUROBI 9.5.2 (64-bit version). All the experiments are run

on a 64-bit Windows machine equipped with a Intel(R) Xeon(R) Silver 4214 processor

with 24 cores hyper-threaded to 48 virtual cores, with a base clock frequency of 2.2

GHz, and 96 GB of RAM. For each run of the algorithm, we impose one hour time

limit and allow a single thread.

In this section, �rst, we present the characteristics of the benchmark instances we

consider. Then, we compare the results obtained with the BPC algorithm on the

benchmark instances with those reported in Pansart et al. (2022), Arslan et al. (2022)

and Delorme et al. (2023). Note that these authors reported computational results

on di�erent datasets. We assess the impact of the valid inequalities considered in

Section 4.5.5. Finally, in Section 4.5.6, we assess the impact of the length constraints

on the objective function value.

4.5.1 Benchmark instances

We assess the e�ciency of the BPC algorithm on three di�erent sets of instances consid-

ered in the literature: the �Kidney Data (00036)" set from the PrefLib dataset (Mattei

& Walsh, 2013), the set proposed by Pansart et al. (2022) and the one considered

by Delorme et al. (2023). The instances belonging to the �rst two sets are produced

by the so-called Saidman generator (Saidman et al., 2006), while the ones belonging

to the third set are produced by the generator introduced by Delorme et al. (2022).

Both generators take as input the number of incompatible patient-donor pairs (|I|),
the number of altruistic donors (|D|) and several medical related parameters to build a

realistic compatibility graph G. The medical related parameters in�uence the density

of the graph and the medical bene�t associated with the arcs of the graph. Note that

default values for such parameters are suggested in the generator of Delorme et al.

(2022). The interested reader may refer to Saidman et al. (2006) and Delorme et al.

(2022) for more information.

Table 4.1 summarises the characteristics of the instances in the three sets. The

rows of the tables are associated with the sets of instance. The column headings are

136

4.5 Computational experiments

as follows: set : name of the set; #: total number of instances in the set; |I|: number
of incompatible patient-donor pairs in the set; |D|: percentage of altruistic donors

w.r.t. the number of pairs; avg. density of G: average density of compatibility graph

G expressed as a percentage of arcs w.r.t. the number of arcs in a complete graph with

the same number of vertices as G; LC : maximum length of the cycles; LP : maximum

length of the chains; obj.: type of objective function, either maximisation of the number

of transplants (#TR) or of the medical bene�t (MB).

Table 4.1: Characteristics of the sets of instances.

Characteristics

set # |I| |D| avg. density
LC LP obj.

of G

PrefLib 2000
16, 32, 64, 128, 0%, 5%,

25% 3, 4
0, 3, 4,

#TR
256, 512, 1024, 2048 10%, 15% 5, 6

Pansart et al. (2022) 270
50, 100, 250, 0%, 5%,

5% 3 3, 6, 12 MB
500, 750, 1000 10%, 15%

Delorme et al. (2023) 840
50, 100, 200, 400,

0% 10%
3, 4, 5,

0 #TR, MB
600, 800, 1000 6, 7, 8

4.5.2 Results on the whole testbed

In this section, we present the aggregated results obtained by the BPC algorithm on the

three sets of instances. We compare our results with those reported in the literature.

Throughout the section the percentage optimality gap is computed as ((UB −
LB)/UB)100, where UB and LB are the upper and lower bounds returned by the

BPC algorithm.

4.5.2.1 Results on the PrefLib dataset

In this section, we compare the results obtained by the BPC algorithm on the instances

of the PrefLib dataset with those obtained by the BP algorithm of Arslan et al. (2022).

Table 4.2 reports the results on the PrefLib dataset. The rows of the table group

instances with given maximal path lengths and given numbers of incompatible pairs.

Note that the �rst row groups all small size instances with a maximum of 512 pairs,

while the results for large instances with 1024 or 2048 pairs are reported in the other

rows. The �rst three columns report some information about the instance subset. The

137

next three columns summarise the results obtained by the BPC algorithm: number

of instances solved to optimality (#opt.), average number of nodes of the branch-

and-bound tree (avg.#nodes) and average computational time (avg.t[s]). The last

column reports the computational time of the BP algorithm of Arslan et al. (2022)

(avg.t[s]). The authors implemented their BP algorithm using Julia language and ran

the experiments on a 2 Dodeca-core Haswell Intel Xeon E5-2680 v3 2.5 GHz machine

with 128Go RAM running Linux OS. In this column, we make use of character '-' when

no result is available: Arslan et al. (2022) does not test the BP algorithm on instances

where only circuits are to be priced, i.e., those with LP = 0. No further information is

required about their algorithm, since, it manages to solve to optimality all the instances

at the root node.

Table 4.2: Results on the PrefLib dataset.

Instances BPC Arslan et al. (2022)

LP |I| # #opt. avg.#nodes avg.t[s] avg.t[s]

0, 3, 4, 5, 6 16, 32, 64, 128, 256, 512 1480 1480 1.00 1.13 0.99

0
1024 20 20 1.00 6.14 -

2048 20 20 1.00 53.61 -

3
1024 60 60 1.00 9.82 3.75

2048 60 60 1.02 148.94 11.93

4
1024 60 60 1.00 10.66 3.70

2048 60 60 1.00 148.28 12.46

5
1024 60 60 1.00 11.00 3.72

2048 60 60 1.00 163.91 12.56

6
1024 60 60 1.00 11.05 3.72

2048 60 60 1.00 149.17 12.46

From the results of Table 4.2, it can be observed that both approaches yield com-

parable results on instances with up to 1024 pairs, regardless of the maximal length

of the paths. Indeed, both algorithms solve those instances to optimality at the root

node within computational times of the same order of magnitude. Even though all the

instances characterised by a number of pairs equal to 2048 are solved to optimality

by both approaches, the BP algorithm of Arslan et al. (2022) is faster than the BPC

algorithm by an order of magnitude. The majority of the computational time of the

BPC algorithm is spent during the column generation procedure. Although the same

138

4.5 Computational experiments

pricing procedure is applied, the implementation of Arslan et al. (2022) is probably

more e�cient than the one of the BPC algorithm.

4.5.3 Results on the set of instances of Pansart et al. (2022)

In this section, we discuss the results obtained by the BPC algorithm on the instances

introduced by Pansart et al. (2022). We compare the BPC algorithm performances

with the restricted master heuristic of Pansart et al. (2022) on the subset of small

instances characterised by a number of pairs up to 250. We recall that the approach

of Pansart et al. (2022) is a heuristic with a performance guarantee, that is, it provides

valid lower and upper bounds on the optimal value of formulation [SP]. The restricted

master heuristic is run on a machine equipped with an Intel Xeon E5-2440 v2 @ 1.9

GHz processor and 32 GB of RAM. Note that on instances with more than 500 pairs,

we do not compare with the results of Pansart et al. (2022) since it is clear that the

BPC algorithm provides better results. Moreover, Pansart et al. (2022) do not test

their procedure on all these instances.

Table 4.3 summarises the results of the comparison between the BPC algorithm and

the restricted master heuristic of Pansart et al. (2022). The rows of the table group

instances with the same maximal path length and the same number of incompatible

pairs. The �rst three columns report some information about the instance subset: max-

imal path lengths (LP), number of incompatible patient-donor pairs (|I|) and number

of instances (#). The next three columns show the results obtained by the BPC algo-

rithm: number of instances solved to optimality (#opt.), average number of nodes of

the branch-and-bound tree (avg.#nodes) and average computational time (avg.t[s]).

The last three columns report some statistic related to the algorithm of Pansart et al.

(2022): number of instances solved to optimality (#opt.), average computational time

(avg.t[s]) and optimality gap expressed as a percentage for the instances not solved

to optimality (avg.gap[%] noOpt.). If all the instances in a row are solved to optimal-

ity by the algorithm of Pansart et al. (2022), we make use of character '-' in column

avg.gap[%] noOpt..

139

Table 4.3: Results on the set of instances of Pansart et al. (2022) with up to 250 pairs.

Instances BPC Pansart et al. (2022)

LP |I| # #opt. avg.#nodes avg.t[s] #opt. avg.t[s] avg.gap[%] noOpt.

3

50 15 15 1.00 0.03 15 1.07 -

100 15 15 1.00 0.14 9 1.21 0.33

250 15 15 1.00 1.03 7 3.45 0.07

6

50 15 15 1.27 0.04 14 1.20 0.05

100 15 15 2.07 0.33 8 2.17 0.64

250 15 15 40.27 93.60 2 27.74 0.32

12

50 15 15 1.00 0.04 15 2.52 -

100 15 15 1.13 0.29 14 26.59 0.19

250 15 15 40.47 142.81 8 1420.20 1.26

From the results in Table 4.3, the BPC algorithm solves all the 135 instances to

optimality. The optimality is proven at the root node for 111 instances in on average

0.52 seconds. For the remaining ones, the BPC algorithm explores a few tens of nodes

on 22 instances and a few hundreds on the remaining two. For these instances, the com-

putational time increases. On average, it is equal to 153 seconds and it is above 1000

seconds for one instance only. Conversely, the heuristic with a performance guarantee

of Pansart et al. (2022) proves the optimality of 92 instances, leaving the remaining

ones with a positive optimality gap equal to 0.47%, on average. In terms of compu-

tational time, the BPC algorithm is faster than the heuristic of Pansart et al. (2022)

on 126 instances. For the other nine instances where the BPC algorithm is slower, it

corresponds to cases where the BPC algorithm is not able to prove the optimality at

the root node. Hence the BPC algorithm branches, while the heuristic of Pansart et al.

(2022) stops at the root node.

In Table 4.4, we report the results obtained by the BPC algorithm on the instances

of Pansart et al. (2022) with |I| = 500, 750, 1000. The rows of the table correspond to

instances with the same maximal path length and the same number of incompatible

pairs. The �rst three columns have the same meaning as those in Table 4.3. The next

three columns summarise the results obtained by the BPC algorithm on the instances

solved to optimality: number of instances solved to optimality (#), average number

of nodes of the branch-and-bound tree (avg.#nodes) and average computational time

(avg.t[s]). The last three columns summarise the results obtained by the BPC algo-

rithm on the instances not solved to optimality: number of instances not solved to

140

4.5 Computational experiments

optimality (#), average number of nodes of the branch-and-bound tree (avg.#nodes)

and optimality gap expressed as a percentage (avg.gap[%]). If the BPC algorithm is

not able to prove the optimality of any instance of a row, we write character '-' in

columns avg.#nodes and avg.t[s].

Table 4.4: Results on the set of instances of Pansart et al. (2022) with at least 500
pairs.

Instances
BPC results

solved instances unsolved instances

LP |I| # # avg.#nodes avg.t[s] # avg.#nodes avg.gap[%]

3

500 15 14 23.71 117.09 1 439.00 0.03

750 15 10 227.40 817.41 5 371.60 0.04

1000 15 5 91.80 544.26 10 241.80 0.08

6

500 15 5 3.80 15.95 10 242.90 0.25

750 15 5 268.60 1200.19 10 208.30 0.64

1000 15 0 - - 15 206.13 0.60

12

500 15 7 57.86 707.15 8 185.13 0.98

750 15 3 23.67 867.48 12 126.83 1.35

1000 15 0 - - 15 83.73 1.68

Table 4.4 shows that the performances of the BPC algorithm decrease as the size

of the instances increases, both in terms of maximal path length and number of pairs.

The BPC algorithm identi�es 49 optima out of the 135 instances: 29 of them are

attained on instances with LP = 3 and the remaining ones are equally distributed on

the instances with LP = 6 and LP = 12. Detailed results show that the time required

to prove the optimality varies heavily even within instances characterised by the same

values of LP and |I|. Precisely, it increases with the number of nodes of the branch-

and-bound tree explored by the BPC algorithm. As an example, in the 14 instances

solved to optimality with LP = 3 and |I| = 500, the computational time is less than 3

seconds when the instances are solved to optimality at the root node while it is larger

than 500 seconds when more than 100 nodes are explored.

The BPC algorithm is not able to prove the optimality of 86 instances. However,

they are left with a small optimality gap, on average, equal to 0.06%, 0.51% and 1.41%

for the instances with LP = 3, LP = 6 and LP = 12, respectively. We observe that

exploring the branch-and-bound tree is rather ine�cient in improving the upper bound.

141

Indeed, the improvement of the upper bound w.r.t. the one obtained at the root node

is on average equal to 0.05%.

Although we do not report a detailed comparison with the results of Pansart et al.

(2022), we mention that their restricted master heuristic is tested on a subset of 45

instances with at most 750 incompatible pairs and path length up to six. The re-

sults provided on those instances are worse than ours. Only one instance is solved to

optimality, the remaining ones are left with an average optimality gap of 0.24%.

4.5.4 Results on the set of instances of Delorme et al. (2023)

Table 4.5 reports the results obtained on the instances of Delorme et al. (2023) when

the objective function is the maximisation of the number of transplants. A comparison

with the results of Delorme et al. (2023) is also conducted. The algorithm of Delorme

et al. (2023) was implemented in C++ and ran on a machine equipped with an Intel(R)

Core(TM) i5-1135G7, 2.40GHz and 32GB of memory.

Each row of the table corresponds to a subset of instances characterised by the same

number of pairs and the same maximal length of the cycles. The �rst three columns

report the characteristics of the subset of instances: the maximal length of the cycles

(LC), the number of pairs (|I|) and the number of instances in the subset (#). The next

two columns report the results obtained by the BPC algorithm, namely, the number

of instances solved to optimality (#opt.) and the average time expressed in seconds

to solve the instances to optimality (avg.t[s]). The last two columns report the same

two statistics on the results obtained by Delorme et al. (2023). Columns are doubled

to include all the instances in the table.

The results of Table 4.5 clearly highlight the superiority of the BPC algorithm w.r.t.

the destructive bound procedure of Delorme et al. (2023). Indeed, the BPC algorithm

solves to optimality all the 840 instances within 30 seconds. 821 instances are solved

at the root node, the remaining ones by exploring at most 13 nodes of the branch-and-

bound tree. Conversely, the procedure of Delorme et al. (2023) su�ers from lack of

scalability. Indeed, such procedure entails enumerating all the half-cycles of length up

to ⌈LC⌉+ 1. This operation becomes intractable when the size of the instance grows.

In Table 4.6, we present the results obtained by the BPC algorithm where the

objective function is the maximisation of the medical bene�t. Delorme et al. (2023) do

not test their procedure in the case of maximisation of the medical bene�t. The rows

and the �rst three columns of the table have the same meaning as those in Table 4.5.

142

4.5 Computational experiments

Table 4.5: Results on the set of instances of Delorme et al. (2023) where the objective
is the maximisation of the number of transplants.

Instances BPC Delorme et al. (2023) Instances BPC Delorme et al. (2023)
LC |I| # #opt. avg.t[s] #opt. avg.t[s] LC |I| # #opt. avg.t[s] #opt. avg.t[s]

3

50 20 20 0.04 20 0.00

6

50 20 20 0.02 20 0.00
100 20 20 0.02 20 0.00 100 20 20 0.11 20 0.00
200 20 20 0.08 20 0.00 200 20 20 2.41 20 15.00
400 20 20 0.56 20 0.00 400 20 20 0.96 20 680.00
600 20 20 2.02 20 1.00 600 20 20 2.40 0 3600.00
800 20 20 3.25 20 3.00 800 20 20 4.02 - -
1000 20 20 4.26 20 6.00 1000 20 20 6.85 - -

4

50 20 20 0.02 20 0.00

7

50 20 20 0.02 20 0.00
100 20 20 0.04 20 0.00 100 20 20 0.57 20 0.00
200 20 20 2.06 20 0.00 200 20 20 1.74 20 57.00
400 20 20 0.82 20 7.00 400 20 20 0.95 10 3138.00
600 20 20 2.25 20 41.00 600 20 20 2.55 0 -
800 20 20 3.36 20 107.00 800 20 20 4.77 - -
1000 20 20 4.58 20 294.00 1000 20 20 7.59 - -

5

50 20 20 0.02 20 0.00

8

50 20 20 0.02 20 0.00
100 20 20 0.11 20 0.00 100 20 20 0.47 20 1.00
200 20 20 1.39 20 2.00 200 20 20 1.78 20 250.00
400 20 20 0.83 20 76.00 400 20 20 1.03 0 -
600 20 20 2.58 20 623.00 600 20 20 2.62 - -
800 20 20 3.73 13 2735.00 800 20 20 5.16 - -
1000 20 20 5.64 0 3600.00 1000 20 20 8.23 - -

143

The next three columns report results regarding the instances solved to optimality by

the BPC algorithm: the number of such instances (#), the average number of nodes of

the branch-and-bound tree to prove the optimality (avg.#nodes) and the average time

expressed in seconds (avg.t[s]). The last three columns report the results regarding

the instances not solved to optimality by the BPC algorithm: the number of such

instances (#), the average number of nodes of the branch-and-bound tree explored

by the BPC algorithm (avg.#nodes) and the average optimality gap expressed as a

percentage (avg.gap[%]). We consider only instances characterised by a number of

pairs up to 400.

Table 4.6: Results on the set of instances of Delorme et al. (2023) where the objective
is the maximisation of the medical bene�t.

Instances
BPC results

solved instances unsolved instances
LC |I| # # avg.#nodes avg.t[s] # avg.#nodes avg.gap[%]

3

50 20 20 1.00 0.04 0 - -
100 20 20 1.10 0.02 0 - -
200 20 20 4.80 0.10 0 - -
400 20 20 62.50 28.23 0 - -

4

50 20 20 1.00 0.02 0 - -
100 20 20 2.10 0.17 0 - -
200 20 20 61.90 44.49 0 - -
400 20 6 420.83 1502.51 14 511.14 0.22

5

50 20 20 1.00 0.02 0 - -
100 20 20 3.40 0.47 0 - -
200 20 20 158.75 245.58 0 - -
400 20 0 - - 20 247.30 0.51

6

50 20 20 1.00 0.02 0 - -
100 20 20 8.40 2.72 0 - -
200 20 17 391.06 534.63 3 42.33 0.25
400 20 0 - - 20 201.05 0.93

7

50 20 20 1.00 0.02 0 - -
100 20 20 18.90 9.32 0 - -
200 20 13 510.38 940.12 7 425.57 0.18
400 20 0 - - 20 173.00 1.10

8

50 20 20 1.10 0.02 0 - -
100 20 20 6.20 6.98 0 - -
200 20 15 395.53 823.12 5 201.80 0.20
400 20 0 - - 20 155.80 1.29

From the results of Table 4.6, it can observed that the type of the objective function

has a huge impact on the results. Maximising the medical bene�t makes the instances

144

4.5 Computational experiments

much harder to be solved by the BPC algorithm. The BPC algorithm still provides 371

optima out of the 480 instances. However, contrary to the results where the objective

is to maximise the number of transplants, those optima are obtained by exploring more

nodes of the branch-and-bound tree (115, on average) and by spending more time (133

seconds, on average). The 110 instances not solved to optimality are characterised by

either 200 or 400 pairs and a maximal length of the cycles at least equal to four. None

of the instances with 400 pairs and maximal length larger or equal to �ve is solved to

optimality. Nonetheless, the average optimality gap when the time limit is reached is

small, 0.76%, on average. The same behaviour was observed when considering instances

with more tha 400 pairs.

4.5.5 Impact of the valid inequalities

In this section, we evaluate the impact of the valid inequalities presented in Sec-

tion 4.4.4, namely the SR inequalities (4.6) and the OH inequalities (4.7). We conduct

this analysis on the most challenging instances in the case where the objective is the

maximisation of the medical bene�t, namely those of Pansart et al. (2022) with a num-

ber of pairs larger than 500 and those of Delorme et al. (2023) with a number of pairs

larger than 200.

Other than the con�guration of the BPC algorithm we used to run the experiments,

we consider a con�guration of it where no valid inequality is separated. We denote the

two con�gurations BPC and BPC basic, respectively.

Table 4.7 compares the results obtained by the two con�gurations when the in-

stances are solved to optimality. The rows of the table correspond to the two subsets

of instances we consider. The �rst two columns report the name of the set of in-

stances (set) and the number of instances in the set (#). For each con�guration, the

columns report the number of instances solved to optimality over the number of in-

stances in the subset (#opt.), the average number of nodes of the branch-and-bound

tree (avg.#nodes) and the average computational time (avg.t[s]). An additional col-

umn reports the average time spent in the separation procedure (avg.t[s] sep.) for

con�guration BPC.

145

Table 4.7: Comparison of two variant of the BPC algorithm on the instances solved to
optimality.

BPC basic BPC

set # #opt. avg.#nodes avg.t[s] #opt. avg.#nodes avg.t[s] avg.t[s] sep.

Pansart et al. (2022) 135 46 287.93 531.46 49 100.06 534.04 212.33

Delorme et al. (2023) 240 126 403.02 357.54 131 209.92 374.36 93.58

The results are similar on both sets of instances. Indeed, con�guration BPC solves

to optimality a few more instances than BPC basic: three more for the instances

of Pansart et al. (2022) and �ve more for the instances of Delorme et al. (2023). On

average, BPC explores at least half of the number of nodes of the branch-and-bound

tree w.r.t. BPC basic. The average time to solve the instances remains comparable

between the two con�gurations (see columns avg.t[s]). Probably, the explanation is

that the average time taken by the separation procedure is rather high: a more e�-

cient implementation of such procedure may be required. Moreover, considering the

instances of Pansart et al. (2022), it can be noticed that only 44 instances out of the

46 solved to optimality by PBC basic are also solved to optimality by BPC. When we

consider only these 44 instances solved to optimality in both con�gurations, the po-

tential of BPC clearly emerges. On average, BPC basic explores 297.11 nodes of the

branch-and-bound tree and spends 447.71 seconds to solve the instances, whereas BPC

explores 54 nodes and spends 392.44 seconds. The same trend emerges on the instances

of Delorme et al. (2023).

Table 4.8 compares the results obtained by the two con�gurations when the in-

stances are not solved to optimality. The rows and the �rst two columns of the table

have the same meaning as in Table 4.7. For each con�guration, the columns report the

number of instances not solved to optimality over the number of instances in the subset

(#noOpt.), the average number of nodes of the branch-and-bound tree (avg.#nodes)

and the average upper bound when the time limit is hit (avg.UB). An additional col-

umn reports the average time spent in the separation procedure (avg.t[s] sep.) for

con�guration BPC.

146

4.5 Computational experiments

Table 4.8: Comparison of two variant of the BPC algorithm on the instances not solved
to optimality.

BPC basic BPC

set # #noOpt. avg.#nodes avg.UB #noOpt. avg.#nodes avg.UB avg.[s] sep.

Pansart et al. (2022) 135 89 331.11 38 241.97 86 192.77 38 679.58 591.94

Delorme et al. (2023) 240 114 452.39 17 738.34 109 246.00 17 898.47 569.34

BPC explores on average less nodes of the branch-and-bound tree. This re�ects in

the average upper bound returned by both con�gurations at the time limit. The up-

per bound of BPC basic is slightly better than the one of BPC. Hence, it seems that

exploring the branch-and-bound tree is more promising than including valid inequali-

ties. However, also in this case, the potential of BPC emerges when the comparison is

done on the instances not solved to optimality by both con�gurations. Indeed, on the

instances of Pansart et al. (2022), BPC returns upper bounds of slightly better qual-

ity by exploring less nodes. For BPC the average upper bound and number of nodes

are 38 528.57 and 195.56, respectively, whereas for BPC basic they are 38 532.40 and

282.46, respectively. The same observation can be done for the instances of Delorme

et al. (2023). Again, this is another hint for the need to improve the e�ciency of the

separation procedure which in both cases reaches the 10 minutes time limit, on average.

In addition, remark that when valid inequalities are active in the RMP, the circuits

are priced by a labelling algorithm in lieu of the less time consuming variant of the

Bellman-Ford algorithm presented in Section 4.4.3.

Finally, Table 4.9 reports the average number of OH and SR inequalities added

to the RMP. The two rows of the table correspond to the two sets of instances we

consider. The �rst column reports the name of the set of instances (set). The next

two columns report the average number of OH inequalities (avg.#OH) and of SR

inequalities (avg.#SR) added to the RMP, for the instances solved to optimality by

the BPC algorithm. The last two columns show the same statistics for the instances

not solved to optimality by the BPC algorithm.

147

Table 4.9: Average number of SR and OH inequalities added to the RMP.

solved instances unsolved instances

set avg.#OH avg.#SR avg.#OH avg.#SR

Pansart et al. (2022) 44.8 14.2 24.5 27.7

Delorme et al. (2023) 43.5 25.0 29.2 26.5

From Table 4.9, we observe that the number of inequalities added to the RMP is

far from 100, i.e., the maximal number of inequalities we separate in the branch-and-

bound tree. Hence, in particular in the case of the unsolved instances, the separation

procedure reaches the 10 minutes time limit without providing the possible inequalities.

4.5.6 Impact of the length constraints on the objective function

In this section, we assess the impact of the length constraints of the exchange paths

on the objective function value. To conduct such analysis, we take into account both

objective function types, i.e., maximisation of the number of transplants (#TR) and

maximisation of the medical bene�t (MB). For the former case, we only consider the

instances of the PrefLib dataset with maximal length of the circuits LC = 3; for the

latter case, we only consider the instances of Pansart et al. (2022) with 50, 100, or 250

incompatible pairs. In both sets, we group the instances characterised by the same

compatibility graph and we observe how the objective function value behaves when the

maximal length of the exchange paths increases. Remark that all these instances are

solved to optimality by the BPC algorithm.

In the case of the maximisation of the number of transplants, we do not report any

table because the improvements are extremely sporadic. Indeed, on the 230 instances

characterised by the same compatibility graph, the number of transplants improves

only 19 times when we increase the length of the paths from 3 to 4, from 4 to 5 or

from 5 to 6. Therefore, it seems that the in�uence of the path length on the number

of transplants is negligible.

Finally, Table 4.10 reports the average improvements of the medical bene�t when

the maximal length of the paths increases on the instances of Pansart et al. (2022)

with up to 250 incompatible pairs. The rows of the table group instances with the

same number of incompatible pairs (same compatibility graph). The �rst two columns

report the number of incompatible pairs (|I|) and the number of instances (#) in each

148

4.6 Conclusions

group. The remaining two columns report the average improvement of the medical

bene�t (objective function value) expressed as a percentage (avg.impr[%]) when the

maximal path length increases from three to six (LP : 3 → 6) and from six to twelve

(LP : 6 → 12), respectively.

Table 4.10: Impact of the path length increase on the set of instances of Pansart et al.
(2022) when the objective is the maximisation of the medical bene�t (MB).

Instances avg.impr[%]

|I| # LP : 3 → 6 LP : 6 → 12

50 15 9.31 2.13

100 15 15.77 5.41

250 15 14.36 5.13

A di�erent trend emerges from the results in Table 4.10 w.r.t. the case of the

maximisation of the number of transplants. Indeed, we observe that the maximal

length constraints on the paths has a great impact on the value of the objective function.

The largest improvements of the medical bene�t are obtained when the path length is

increased from three to six. Such improvements are lessened when the maximal length

is increased from six to twelve.

4.6 Conclusions

In this paper, we introduced an exact approach which is able to solve the Kidney

Exchange Problem (KEP) where long cycles and chains of donations are considered.

Our approach is based on a Branch-Price-and-Cut (BPC) algorithm where the pricing

problem is decomposed in subproblems to price out variables associated with cycles

and chains, respectively. We consider two families of non-robust valid inequalities to

strengthen the relaxation, namely subset-row and odd-hole inequalities. We test the

BPC algorithm against the three algorithms recently proposed in the literature, namely,

the restricted master heuristic of Pansart et al. (2022), the destructive bound procedure

of Delorme et al. (2023) and the Branch-and-Price algorithm of Arslan et al. (2022).

The BPC algorithm outperforms the results of the �rst two and, against the third

one, it provides the same optima, but in slower computational time. In addition, the

impact of the valid inequalities is assessed: they permit to reduce both the time and the

exploration of the branch-and-bound tree when the instances are solved to optimality.

149

However, the results on the instances which are not solved to optimality reveal that

a more e�cient separation procedure is to investigate as future work. In addition,

another research direction may consider the development of a BPC algorithm based

on the formulation introduced by Delorme et al. (2023), where the exponentially-many

variables are the half-cycles.

150

Chapter 5

Collaborative and fairness aspects in

the Iterative International Kidney

Exchange Problem

Contents
5.1 Introduction . 152

5.2 Concepts of cooperative game theory 157

5.3 Problem description . 159

5.3.1 Kidney Exchange Problem . 159

5.3.2 International Kidney Exchange Problem with stability 160

5.3.3 Iterative International Kidney Exchange Problem 161

5.4 Formulation for the IKEP with stability and fairness in a

single round . 165

5.5 Solution procedure for the IIKEP 166

5.5.1 Branch-Price-and-Cut algorithm to solve formulation [Pt] . . 167

5.6 Computational experiments 168

5.6.1 Generation of the testbed . 169

5.6.2 Assessment of the stability conditions 169

5.6.3 Assessment of the fairness conditions 172

5.7 Conclusions . 177

151

Abstract: Kidney exchange programmes aim at determining a set of kidney trans-

plants between patients and donors such that the medical bene�t associated with the

transplants is maximised. In order to perform a transplant, the patient and the donor

must be compatible. i.e., they must meet certain medical requirements. Commonly,

kidney exchange programmes are run individually by a single country over multiple

rounds. However, in recent years, several countries subscribe to a common programme

to increase the chances of performing transplants. In this collaborative environment,

we study the Iterative International Kidney Exchange Problem (IIKEP). The aim of

the IIKEP is to periodically determine a set of transplants between the patients and

donors of di�erent countries such that the disparities between the countries are min-

imised. Precisely, we borrow concepts from cooperative game theory to model stability

and fairness conditions for the system.

The nature of the problem induces an iterative solving procedure. The problem

arising at each iteration (round) is a Kidney Exchange Problem (KEP) enriched with

stability and fairness conditions. Compared with the existing literature on the IIKEP,

our underlying KEP considers the possibility of performing both cycles and long chains

of kidney transplants. We model such problem by means of a set packing formulation

involving an exponential number of variables and constraints and we solve it by means

of a Branch-Price-and-Cut (BPC) algorithm.

The experimental results show that the stability and fairness conditions we im-

pose help in reducing the disparities between the countries and make the collaborative

system more sound.

Keywords: Kidney exchange, stability, fairness, cooperative game theory, Branch-

Price-and-Cut.

5.1 Introduction

Kidney transplantation remains the preferable treatment for patients with a severe

kidney condition (Yoo et al., 2016). Such operations are performed between patients

and donors who are compatible with each other according to several medical indica-

tors (Kälble et al., 2005). Indeed, one of the major concerns related to the transplants

is the risk of rejection. In this respect, each transplant is assigned with a medical

bene�t which measures the goodness of performing it. Although the majority of the

kidneys to transplant come from deceased donors, transplants involving a living donor

152

5.1 Introduction

are on the rise*. Indeed, human beings can have a healthy life with one functioning

kidney. Usually, a patient is able to �nd a willing donor among his/her acquaintances.

If the donor is compatible with him/her, the kidney transplantation can be performed.

However, in many cases, the compatibility requirements are not met and the transplan-

tation cannot be performed. Under these circumstances, the patient and donor form a

so-called incompatible patient-donor pair. The donor of such a pair is willing to give a

kidney to a patient of another pair, if its associated patient is guaranteed to receive a

kidney, as well. Kidney transplants which involve incompatible patient-donor pairs are

organised by the Kidney Exchange Programmes. Other than incompatible pairs, such

programmes may also involve altruistic donors, i.e., donors who are willing to give a

kidney to whomever patient. Nowadays, kidney exchange programmes are commonly

run periodically, every three or four months, at country levels (see, e.g., Biró et al.,

2019a; Biró et al., 2021, for the regulations of the European programmes), i.e., they

involve incompatible pairs and altruistic donors of several hospitals of a same country

to increase the medical bene�t arising from the transplants. Precisely, at each round,

they entail solving an optimisation problem referred to as Kidney Exchange Problem

(KEP). In the KEP, the objective is to determine a set of kidney exchanges in a pool

of incompatible patient-donor pairs and altruistic donors such that the medical bene�t

is maximised. The kidney exchanges to be determined can be of two types: cycles of

donations or chains of donations. The former are composed of only incompatible pairs

where the donor of a pair gives its kidney to the patient of the following pair in the cy-

cle and so on. The latter is a domino donation which is started by an altruistic donor.

Both cycles and chains of donations are of limited length due to practical reasons or

regulations. We refer to Chapter 4 for a more detailed review on the KEP.

Nowadays, running a kidney exchange programme with incompatible pairs and al-

truistic donors of a unique country is a well-established practice. In this context, a

state institution acts as a central coordinator and a unique regulation is applied. How-

ever, in order to increase the possibilities of �nding compatible patients and donors,

di�erent countries merge their pool of incompatible patient-donor pairs and altruis-

tic donors to solve the KEP jointly (see, e.g., Böhmig et al., 2017; Scandiatransplant,

2023; Valentín et al., 2019). Such practice appeared only in recent years due to the

di�culties in the logistics of performing transplants with patients and donors of dif-

ferent countries and in the merging of the regulations applied in the programmes of

*https://www.transplant-observatory.org/

153

https://www.transplant-observatory.org/

the di�erent countries. In this context, the KEP is often referred to as International

Kidney Exchange Problem (IKEP). Clearly, solving the IKEP leads to solutions which

are globally better than those obtained by solving the KEP for the single countries

separately (Kute et al., 2018). However, the solutions of the IKEP may be detrimental

for some countries or group of countries. Indeed, the medical bene�t obtained for their

transplanted patients can be worst in a solution of the IKEP in comparison with the

solution they could achieve on their own. In order to prevent some countries from

leaving the system, it is necessary to impose stability conditions in this collaborative

setting. As for the KEP within a single country, also the IKEP is run periodically,

so we refer to it as Iterative International Kidney Exchange Problem (IIKEP). In this

context, at every round of the IKEP, there is a global surplus of medical bene�t w.r.t.

the situation where each country would act individually. In an ideal situation, this sur-

plus should be fairly allocated to the countries participating in the programme. Note

that at a given round, since a set of transplants has to selected, it is not possible to

guarantee this ideal fair allocation to the countries, and there is usually a deviation

between the solution and the ideal fair allocation. In the long term, however, fairness

conditions can be considered. Precisely, at each round of the IKEP, the medical ben-

e�t assigned to each country should not deviate too much from an ideal fair target of

medical bene�t computed for the countries taking into account the existing deviations

from the previous rounds of the IKEP.

Recently, several works dealing with stability and fairness in the context of the

IIKEP appeared in the literature. Many of them make use of concepts coming from non-

cooperative and cooperative game theory. In the former case, the idea is to determine

a game plan which gives no incentive to the countries to hide information from the

central authority that determines the kidney exchanges in the merged pool. In the

latter case, the countries usually reveal all the information about their pool and form

a coalition to maximise the global medical bene�t. In the following we review these

works.

Carvalho et al. (2016) is the �rst to model the IKEP as a non-cooperative game.

The authors focus on studying the game associated with the IKEP with only cycles of

length two and where the objective is the maximisation of the number of transplants.

Precisely, they prove that the game admits a pure Nash equilibrium which can be

computed in polynomial time. In addition, they show that a Nash equilibrium where

the maximum number of transplants is achieved always exists. Carvalho & Lodi (2023)

154

5.1 Introduction

generalises the result of Carvalho et al. (2016) to games with more than two players,

i.e., countries. In Carvalho et al. (2016) and Carvalho & Lodi (2023), the stability

of the system is ensured by means of a two-round procedure: round 1 : each country

solves the KEP on its own; round 2 : the countries share their patients and donors not

involved in the transplants determined in the �rst round and an independent agent

determines a solution for the associated IKEP. In addition, the game arising from the

IKEP when the objective is the maximisation of the medical bene�t is also studied.

In the following, we review the works which model the problem as a cooperative

game. Smeulders et al. (2022) consider a special case where the countries have to decide

which subset of incompatible pairs participate in the common pool. They model the

problem as a Stackelberg game and draw some theoretical results about its complexity.

Hereinafter, we review the works where all the incompatible pairs of each country

participate in the common pool.

Biró et al. (2019b) studied the generalised matching game arising when modelling

the IKEP with only cycles of length two as a cooperative game with transferable utility.

Remark that solving the IKEP with cycles of length two entails determining a matching

in a graph, that can be performed in polynomial time.

Klimentova et al. (2021) impose both stability and fairness conditions in an IIKEP.

Precisely, the authors exploit the fact that the (I)KEP has several equivalent optimal

solutions and, at each round, they select the one that is the most stable and fair for

the system. The stability is modelled as an intra-round condition: each single country

achieves a number of transplants larger than or equal to the one obtained by solving

the KEP on its own. The fairness is modelled as an inter-round condition: at each

round, each country should achieve a number of transplants as close as possible to a

target number of transplants. Such target number is computed by taking into account

information of the previous rounds and an ideal number of transplants that the country

should achieve at the current round.

Benedek et al. (2021) apply the fairness measure of Klimentova et al. (2021) in

the IIKEP with only cycles of length two. Contrary to Klimentova et al. (2021), the

target number of transplants at each round is computed by borrowing concepts from

the theory of cooperative games, such as the Shapley value and the nucleolus. The

authors, �rst, compute a target number of transplants for each country, then, they

determine a solution of the IKEP which minimises the deviation from such targets.

155

They are the �rst to test their approach on instances with a large number of countries,

up to 15.

Finally, Benedek et al. (2023) also consider the IIKEP with only cycles of donations.

Here, the IKEP arising at each round is modelled as a newly introduced class of games,

the partitioned matching games. Fairness conditions are applied as in Klimentova

et al. (2021). The authors provide computational complexity results on determining

a maximal matching which minimises the deviation from the target fair allocations of

the countries, at each round.

In this work, we extend the works of Klimentova et al. (2021) and Benedek et al.

(2021) for the IIKEP. First, we impose the stability of the system by borrowing the

concept of least-core from the cooperative game theory. The idea is to minimise the

possibility for any subset of countries to leave the system. Klimentova et al. (2021) en-

sure this condition only for single countries (subsets of cardinality one), while we ensure

this condition for all subsets of countries. We impose fairness as an inter-round condi-

tion as in Klimentova et al. (2021). In addition, Klimentova et al. (2021) and Benedek

et al. (2021) consider the maximisation of the number of transplants as objective for

the IKEP while, here, we consider a more general case that is the maximisation of the

medical bene�t. We conduct computational experiments considering large instances as

in Benedek et al. (2021) with initial pools with 1000 and 2000 pairs. However, contrary

to the previous works in the literature which either do not consider chains of donation

or consider chains of small length (see, e.g., Klimentova et al., 2021), our instances

also include altruistic donors and the possibility of building chains of length up to 7.

Under this assumption, the IKEP cannot be solved by polynomial-time algorithms as

in Benedek et al. (2021) or by enumeration as in Klimentova et al. (2021), but requires

more sophisticated techniques as Branch-Price-and-Cut algorithms (see Chapter 4).

The reminder of the chapter is organized as follows. In section 5.2, we recall the

concepts of the theory of cooperative game with transferable utility we use in this work.

In Section 5.3, we formally describe the IIKEP. In Section 5.4, we present a formulation

with an exponential number of variables and constraints for the IKEP arising at each

round of the IIKEP where stability and fairness constraints are applied. The solution

procedure for the IIKEP is detailed in Section 5.5. Finally, in Section 5.6, we analyse

the stability and fairness of the solutions we obtained on the IIKEP.

156

5.2 Concepts of cooperative game theory

5.2 Concepts of cooperative game theory

In this section, we recall some useful concepts from the theory of cooperative games with

transferable utility. Given a set N, we denote by P(N) its power set. Let Γ = (N, v)

be a cooperative game with transferable utility in coalitional form de�ned over set of

players N ̸= ∅ and coalition function v : P(N) → R, v(∅) = 0. Given a coalition

S ∈ P(N), i.e., a subset of players playing the game together, value v(S) represents the

pro�t that the players in S can achieve. The coalition N containing all the players is

referred to as grand coalition. If v(N) ≥ v(S) for all S ∈ P(N), then the set of players N

has an interest to form the grand coalition. In the context of transferable utility, when

a coalition S ∈ P(N) is formed, pro�t v(S) can be divided in any possible way among

the players in S. An allocation of v(N) can be represented by a vector x ∈ R|N|. The

question is then how to allocate v(N) among the players such that no set of players

has interest to leave the grand coalition.

A reasonable answer to this question is given by the allocations which belong to

the core of the game, i.e., to set

C(Γ) =

{
x ∈ R|N| :

∑
i∈N

xi = v(N) ∧
∑
i∈S

xi ≥ v(S),∀S ∈ P(N)

}
.

Indeed, an allocation x in the core distributes value v(N) of the grand coalition among

the player in a stable manner. It is ensured that value x(S) :=
∑

i∈S xi allocated to

each coalition S is larger than or equal to value v(S) that the players of S could achieve

if playing on their own. Hence, no coalition would get any bene�t to disagree on a

pro�t allocation in the core.

Example 5.1 (The core). We consider a toy game with three players: Γ = (N =

{1, 2, 3}, v), where v({1}) = v({2}) = v({3}) = 10, v({1, 2}) = 30, v({1, 3}) =

v({2, 3}) = 80, and v({1, 2, 3}) = 100. It is easy to see that, for example, allocation

x = (10, 20, 70) is in the core, indeed, all the conditions are satis�ed:

x1 + x2 + x3 = v({1, 2, 3}) = 100,

x1 = 10 ≥ v({1}), x2 = 20 ≥ v({2}), x3 = 70 ≥ v({3}),
x1 + x2 = 30 ≥ v({1, 2}), x1 + x3 = 80 ≥ v({1, 3}), x2 + x3 = 90 ≥ v({2, 3}).

The non-emptiness of the core (C(Γ) ̸= ∅) depends on the property of the game and
in several applications it is not guaranteed. To overcome this issue, several other pro�t

157

allocation methods have been proposed whose aim is to determine an allocation �as

close as possible" to satisfy the conditions that de�ne the core. Among these methods,

we present in the following the least-core (see Peleg & Sudhölter, 2007). First, given

ϵ ∈ R, the ϵ-core Cϵ(Γ) is de�ned as a relaxation of the core as follows:

Cϵ(Γ) =

{
x ∈ R|N| :

∑
i∈N

xi = v(N) ∧
∑
i∈S

xi ≥ v(S)− ϵ,∀S ∈ P(N)

}
.

Value ϵ can be interpreted as the cost to pay when the coalitions form. Hence, the

pro�t allocations in an ϵ-core cannot be improved by any coalition, if cost ϵ is to be

paid.

The least-core is de�ned as the intersection of all non-empty ϵ-cores, that is the

ϵ-core with the smallest cost to pay for the formation of the coalitions.

Another pro�t allocation method is the so-called Shapley value ϕ(Γ) ∈ R|N| intro-

duced by Shapley et al. (1953) and de�ned by the following expression:

ϕi(Γ) =
∑

S∈P(N)
i/∈S

|S|!(|N| − |S| − 1)!

|N|!
(v(S ∪ {i})− v(S)), i ∈ N.

Value ϕi(Γ) is a weighted sum of the contribution that player i ∈ N brings to each

coalition, where the weights are the probabilities of the occurrence of the coalitions.

Note that the Shapley value permit to allocate v(N) among the players, that is:∑
i∈N ϕi(Γ) = v(N). However, if the core is non-empty, the Shapley value may not

belong to it. In addition, in many applications its computation is time consuming

when |N| is large.
Finally, we report the de�nitions of the bene�t and contribution values, denoted

by β(Γ) ∈ R|N| and by κ(Γ) ∈ R|N|, respectively. The bene�t value measures the

additional pro�t obtained when considering a player i in the grand coalition rather

than considering that player alone:

β(Γ)i = v(N)− v(N \ {i})− v({i}), i ∈ N.

The contribution value measures the additional pro�t brought by a player i to the

grand coalition:

κ(Γ)i = v(N)− v(N \ {i}), i ∈ N.

158

5.3 Problem description

Both such values require less computational e�ort to be computed than the Shapley

value. Note that these value do not permit to share the grand coalition value v(N)

directly, however, they can be used to share the extra pro�t generated by forming

the grand coalition w.r.t. the case where each player acts individually, that is value

v(N) −
∑

i∈N v({i}). Following Klimentova et al. (2021), using the bene�t value, the

value xi allocated to each player i ∈ N is computed as:

xi = v({i}) +

(
v(N)−

∑
j∈N

v({j})

)
β(Γ)i∑
j∈N β(Γ)j

.

An allocation based on the contribution value is computed as in the above formula,

where the bene�t value is replaced with the contribution value.

Example 5.2 (Shapley, bene�t and contribution values). We consider the toy game

Γ = (N, v) as de�ned in Example 5.1. The Shapley value associated with Γ is ϕ(Γ) =

(25, 25, 50). Note that allocation ϕ(Γ) does not belong to the core, indeed, e.g., it violates

the condition for coalition {1, 3}: ϕ(Γ)1 + ϕ(Γ)3 = 75 < v({1, 3}) = 80.

The allocation associated with the bene�t value is x = (18.75, 18.75, 62.5) and the

one associated with the contribution value is x = (22.7, 22.7, 54.6).

5.3 Problem description

The aim of this section is to introduce the Iterative International Kidney Exchange

Problem (IIKEP). To do so, we �rst describe the basic Kidney Exchange Problem

(KEP) in Section 5.3.1. Then, in Section 5.3.2, we describe the International Kidney

Exchange Problem (IKEP), i.e., the KEP arising when di�erent countries share their

pool of donors and patients. Finally, the IIKEP is presented in Section 5.3.3.

5.3.1 Kidney Exchange Problem

Let I be the set of incompatible patient-donor pairs and let D be the set of altruistic

donors. The KEP can be de�ned on a directed weighted graph G = (V,A) referred to

as compatibility graph. Vertex set V = I ∪D contains a vertex for each incompatible

patient-donor pair and each altruistic donor. The arcs in Amodel all the possible trans-

plants between donors and patients. Hence, arc set A contains an arc (i, j) from each

vertex i ∈ V to each patient-donor pair j ∈ I if the kidney of the donor associated with

159

i is compatible with the patient of pair j. We assign a weightWij to each arc (i, j) ∈ A

representing the medical bene�t of the associated transplant. Kidney exchanges be-

tween donors and patients are modelled in graph G by two types of subgraphs, namely

circuits and paths. In this respect, we call an exchange circuit an elementary circuit in

graph G of length at most LC > 1. Similarly, we call an exchange path an elementary

path in graph G of length at most LP > 1. To avoid any confusion we emphasize that

the length of a circuit or a path is de�ned as the number of edges it contains, that is a

circuit with n vertices has length n and a path with n vertices has length n− 1. Given

that vertices associated with altruistic donors do not have in-going arcs, exchange cir-

cuits are composed only of vertices associated with patient-donor pairs and exchange

paths must start with a vertex associated with an altruistic donor. We denote by E

the set of the exchanges in graph G, i.e., of the exchange circuits and paths in graph

G. We de�ne the weight of an exchange e ∈ E as the sum of the weights of the arcs

traversed by e, i.e., We :=
∑

(i,j)∈A(e)Wij, where A(e) is the set of arcs traversed by e.

Finally, we de�ne an exchange scheme as a union of pairwise vertex-disjoint exchanges

of E. The KEP aims to determine an exchange scheme of maximum weight, where the

weight of an exchange scheme is the sum of the weights of the exchanges composing it.

5.3.2 International Kidney Exchange Problem with stability

When di�erent countries join a common kidney exchange programme, an International

Kidney Exchange Problem (IKEP) arises. In the IKEP, the countries share their pool

of patients and donors to solve the KEP jointly. Doing so, the total medical bene�t

of the system increases. However, stability conditions need to be applied in order to

ensure the soundness of the system.

Let H be the set of countries participating in a kidney exchange programme. We

suppose that the countries agree on a common maximal length of the exchange circuits

and paths. We denote by Gh = (Vh = Ih∪Dh,Ah) the compatibility graph arising from

the set of incompatible patient-donor pairs Ih and the set of altruistic donors Dh avail-

able for country h ∈ H. We set G = (V =
⋃

h∈H Vh,A) to be the compatibility graph

whose vertex set is the union of the incompatible patient-donor pairs and altruistic

donors available for the countries in H. Arc set A models the possible transplants in

vertex set V and it is de�ned similarly to the KEP (see Section 5.3.1). As for the KEP,

in the IKEP, an exchange scheme X on graph G is to be determined. However, under

this collaborative setting, the interest is not only to determine an exchange scheme,

160

5.3 Problem description

but also to ensure the stability of the system. We say that the system is stable if no

country or coalition of countries has interest in leaving the system in order to get a

better pro�t, i.e., a better medical bene�t by doing a kidney exchange programme on

its own.

We model the stability of the system by means of the concept of the least-core of

a cooperative game with transferable utility (see Section 5.2). First, we model the

IKEP as a cooperative game with transferable utility (Biró et al., 2019b). We consider

a game Γ = (H, v) where the set of players is the set of countries and the coalition

function v : P(H) → R is de�ned as v(S) = KEP (S). Given a coalition S ∈ P(H),

KEP (S) is the value of the KEP computed on the subgraph GS = (VS =
⋃

h∈S Vh,AS)

of compatibility graph G whose altruistic donors and incompatible pairs are those of

the countries in S. To ensure the stability we use the conditions de�ning the least-

core. Hence, the objective of the IKEP is to minimise ϵ such that the exchange scheme

solution ensures that for each coalition of countries S, the medical bene�t it gets in

the exchange scheme is greater than KEP (S), if |S| = 1 and greater than KEP (S)− ϵ

otherwise. Note that if a coalition represents a single country it is more natural to

ensure that the medical bene�t it gets in such exchange scheme is larger or equal than

what it would get on its own. In addition, an exchange scheme for which each country

gets a medical bene�t greater or equal to what it would get on its own can always

be found: it is su�cient to consider the exchanges determined when solving the KEP

individually. Retrieving the value KEP (S) requires to solve an optimization problem.

Also, note that here we just derive the concept of least-core to model stability, but the

problem we consider is not a cooperative game with transferable utility. Indeed, we

are not searching for an allocation of the total medical bene�t to the countries, but we

are looking for a stable exchange scheme.

5.3.3 Iterative International Kidney Exchange Problem

In this section, we present the problem arising when a kidney exchange programme

involving di�erent countries is run over multiple rounds. At each round, the countries

collaborate to solve an IKEP in order to increase the total medical bene�t of the system.

However, disparities on how to distribute the medical bene�t among the countries may

rise. Indeed, even by including stability conditions a solution may produce unfair

allocation of the extra medical bene�t generated by the grand coalition. It is possible

to compute ideal fair allocation of such extra bene�t, and a solution should not deviate

161

too much from these ideal values. Trying to guarantee small deviations in a single

period is not easy, given that a set of transplants has to be determined. However,

small deviations can be attained on the long term, by exploiting the fact that, at each

round, an instance of the (I)KEP usually has multiple equivalent optimal solutions (see

Klimentova et al., 2021).

Running the kidney exchange programmes over several rounds helps in reducing

such disparities. In the following, we present the Iterative International Kidney Ex-

change Problem (IIKEP) which extends the work of Klimentova et al. (2021). Precisely,

�rst, we describe how a kidney exchange programme is run over multiple rounds. Then,

we describe the fairness conditions we apply to smooth the disparities between the

countries over the rounds.

Let H be the set of countries participating in a kidney exchange programme which

is run for T rounds. We denote by Gt
h = (Vt

h = Ith ∪Dt
h,A

t
h) the compatibility graph

arising from the set of incompatible patient-donor pairs Ith and the set of altruistic

donors Dt
h available for country h ∈ H at round t = 1, . . . , T . Arc set At

h models the

possible transplants available for country h at round t and it is de�ned on vertex set Vt
h

as for the KEP (see Section 5.3.1). Gt = (Vt =
⋃

h∈H Vt
h,A

t) is the compatibility graph

whose vertex set is the union of the incompatible patient-donor pairs and altruistic

donors available for the countries in H at round t = 1, . . . , T . Arc set At models

the possible transplants available for all the countries at round t, i.e., it is de�ned on

vertex set Vt. At each round t = 1, . . . , T , an exchange scheme X t on graph Gt is to

be determined. Remark that such exchange scheme may not involve all the patients

and donors available at round t. We refer to the incompatible pairs involved in an

exchange scheme at round t as served, and unserved otherwise. Similarly, we refer

to the altruistic donors involved in an exchange scheme at round t as exploited, and

unexploited otherwise. In addition, if e ∈ X t is an exchange path, the patient of the last

pair in the path receives a kidney, but the associated donor does not donate a kidney.

We call such pairs partially served pairs. The unserved pairs and the unexploited

altruistic donors at round t need to be considered in the next round. From a practical

point of view, we suppose that if an incompatible pair is unserved for the �rst time at

round t, it stays available in the waiting list only for a maximum number of rounds

which covers one year. Indeed, after one year the patient may consider a di�erent

treatment or may have deceased (Benedek et al., 2021). Usually, the programmes are

run quarterly, hence, a pair entering the programme at round t exits it after round

162

5.3 Problem description

t + 3, if it has never been served. The donors of the partially served pairs at round t

need to be considered as altruistic donors in the next round t + 1. Hence, the system

evolves from a round t = 1, . . . , T − 1 to a round t+ 1 in the following manner:

� altruistic donors and pairs newly disclosed at round t+ 1 enter the system;

� all served pairs and exploited altruistic donors at round t exit the system and are

not considered at round t+ 1;

� all partially served pairs at round t enter the system as altruistic donors at round

t+ 1;

� all unserved pairs at round t, entering the system at rounds t− 2, t− 1 or t are

considered at round t + 1, the ones entering the system before round t − 2 are

not considered at round t+ 1;

� all unexploited altruistic donor at round t are considered at round t+ 1.

The aim of the Iterative International Kidney Exchange Problem (IIKEP) is to

determine an exchange scheme X t at each round t = 1, . . . , T such that the disparities

between the distribution of the medical bene�t among the countries is minimised. In

the context of the IIKEP, minimising the disparities between the countries encompasses

two elements. First, at each round, the system should be stable. Hence, the stability

is an intra-round condition which is modelled as in Section 5.3.2, in the context of

the IKEP. Then, the system should be fair in sharing the extra bene�t incurred by

the countries when joining the programme. We follow the idea of Klimentova et al.

(2021) to incorporate the fairness in the system, but here, such fairness is expressed

in terms of medical bene�t associated with the transplants rather than the number of

transplants. Precisely, at each round t = 1 . . . , T , given an ideal medical bene�t γth for

each country h ∈ H, we de�ne a fair target medical bene�t τ th which considers past

information. For each country h ∈ H, value τ th can be de�ned recursively as follows:{
τ 1h = γ1h
τ th = γth + τ t−1

h − Zt−1
h ,

(5.1)

where we denoted by Zt−1
h the medical bene�t obtained by country h in the ex-

change scheme X t−1 at round t − 1, i.e., Zt−1
h =

∑
e∈Xt−1 W

(t−1)e
h , where W (t−1)e

h =∑
(i,j)∈A(e):j∈I(t−1)

h
Wij is the sum of the medical bene�ts associated with incompatible

163

pairs of country h involved in exchange e. By developing recursive relation (5.1) for

each country h ∈ H, we obtain:

τ th =
t∑

s=1

γsh −
t−1∑
s=1

Zs
h. (5.2)

Hence, the target fair allocation for country h at round t is equal to the cumulative

ideal medical bene�ts for country h up to round tminus the cumulative medical bene�ts

really obtained for country h in the past.

In the following, we present how the ideal medical bene�t γth for country h ∈ H at

round t = 1, . . . , T can be computed. We make use of the bene�t value as underlying

fairness measure as proposed by Klimentova et al. (2021). Indeed, it is easy to compute

and Klimentova et al. (2021) report good results using this value.

As in Section 5.3.2, we model the problem arising at each round as a cooperative

game with transferable utility to de�ne the fairness measures. We add an index t

to the notation of the game to stress its dependency on the round, i.e., we write

Γt = (H, vt) where vt(S), S ⊆ P(H) is the value of the KEP on compatibility graph

Gt
S = (Vt

S =
⋃

h∈S V
t
h,A

t
S).

The fairness measure we consider, i.e., the bene�t value, allows to allocate the

surplus in the medical bene�t obtained when solving the KEP for all countries w.r.t.

solving the KEP individually for each country. At each round t = 1, . . . , T , value γth
is the medical bene�t vt({h}) obtained by country h individually, plus a share of the

total surplus computed according to a fairness measure f , i.e.,

γth = vt({h}) +

(
vt(H)−

∑
k∈H

vt({k})

)
f t
h∑

k∈H f
t
k

. (5.3)

For each country h ∈ H, value f t
h represents a measure of the �power" of country h in

the grand coalition. Such measure is computed as the bene�t value (see Section 5.2):

f t
h = vt(H)− vt(H \ {h})− vt({h}). (5.4)

As done by Benedek et al. (2021), the Shapley value and the contribution value

introduced in Section 5.2 could also be considered as fairness measures in the compu-

tation of allocations γth, h ∈ H.

164

5.4 Formulation for the IKEP with stability and fairness in a single round

5.4 Formulation for the IKEP with stability and fair-

ness in a single round

In this section, we propose a mathematical formulation for the IKEP arising at each

round t = 1, . . . , T . Such formulation is based on the formulation for the KEP intro-

duced by Pansart et al. (2022), and is enriched to consider the stability and fairness

conditions of the IIKEP.

For each round t = 1, . . . , T , let Et be the set of exchanges in graph Gt, and let aei
be a binary parameter equal to one if vertex i ∈ Vt is involved in exchange e ∈ Et and

zero otherwise. For each round t = 1, . . . , T and each exchange e ∈ Et, we de�ne a

binary variable λe taking value 1 if exchange e is part of the exchange scheme X t and

0 otherwise. Let ϵ be the non-negative continuous variable used to model the epsilon-

core-like condition. Let δh be the non-negative continuous variable which registers the

distance between the medical bene�t e�ectively allocated to country h ∈ H in exchange

scheme X t and the fair target allocation τ th which considers the past rounds.

Formulation [Pt] for the IKEP with stability and fairness arising at round t reads

as follows:

[Pt] min ϵ+
∑
h∈H

δh (5.5)

s.t.
∑
e∈Et

aeiλe ≤ 1 ∀i ∈ Vt (5.6)∑
h∈S

∑
e∈Et

W te
h λe ≥ vt(S) ∀S ⊆ H, |S| = 1 (5.7)∑

h∈S

∑
e∈Et

W te
h λe ≥ vt(S)− ϵ ∀S ⊆ H, |S| > 1 (5.8)∑

e∈Et

W te
h λe + δh ≥ τ th ∀h ∈ H (5.9)∑

e∈Et

W te
h λe − δh ≤ τ th ∀h ∈ H (5.10)

λe ∈ {0, 1} ∀e ∈ Et (5.11)

δh ≥ 0 ∀h ∈ H (5.12)

ϵ ≥ 0. (5.13)

Objective function (5.5) minimizes ϵ variable in the ϵ-core conditions and the dis-

165

tance from the fair target allocation τ th, h ∈ H. Packing constraints (5.6) ensure that

each incompatible pair or altruistic donor is involved in at most one exchange. Con-

straints (5.7) impose that each single country is allocated with a medical bene�t which

is at least as good as the one it could get on its own. Constraints (5.8) are the ϵ-core

like constraints and permit to ensure the stability of the system. Constraints (5.9)

and (5.10) de�ne variables δh as the deviation of the medical bene�t e�ectively al-

located to country h from the fair target allocation τ th initially computed. Finally,

Constraints (5.11), (5.12) and (5.13) de�ne variables domains.

When considering the linear relaxation of formulation [Pt], i.e., when Constraints (5.11)

become λe ≥ 0 for all e ∈ Et, we denote by πi ≤ 0 the dual variables associated with

Constraints (5.6), by ϕS ≥ 0 the ones associated with Constraints (5.7) and (5.8) and by

θ1h ≥ 0 and θ2h ≤ 0 the ones associated with Constraints (5.9) and (5.10), respectively.

We report the dual of the linear relaxation of formulation [Pt]:

[Dt] max
∑
i∈Vt

πi +
∑

S∈P(H)

vt(S)ϕS +
∑
h∈H

τ th(θ
1
h + θ2h) (5.14)

s.t.
∑
i∈Vt

aeiπi +
∑

S∈P(H)

∑
h∈S

W te
h ϕS +

∑
h∈H

W te
h (θ1h + θ2h) ≤ 0 ∀e ∈ Et (5.15)

∑
S∈P(H),|S|>1

ϕS ≤ 1 (5.16)

θ1h − θ2h ≤ 1 ∀h ∈ H (5.17)

πi ≤ 0 ∀i ∈ Vt (5.18)

θ1h ≥ 0, θ2h ≤ 0 ∀h ∈ H (5.19)

ϕS ≥ 0 ∀S ⊆ H. (5.20)

Note that Constraints (5.15) allow to express the reduced cost of variables λe, e ∈ Et.

5.5 Solution procedure for the IIKEP

In this section, we brie�y describe the solution procedure for the IIKEP. Algorithm 11

displays the pseudocode of such solution procedure. The procedure is iterative and

the iterations correspond to the rounds t = 1, . . . , T . At each round t, compatibility

graph Gt is built and formulation [Pt] is solved by means of the BPC algorithm that

we will describe in Section 5.5.1. Remark that to build formulation [Pt], we need to

166

5.5 Solution procedure for the IIKEP

solve |P(H)| KEPs, one per each coalition of players, to compute the right hand-sides

of Constraints (5.7) and (5.8). The KEPs are solved thanks to the BPC algorithm

described in Chapter 4. Some of those values are also needed to compute fair target

medical bene�ts τ th, h ∈ H.

Algorithm 11: Solution procedure for the IIKEP.

1 for t = 1, . . . , T do

2 build compatibility graph Gt as described in Section 5.3;
3 foreach S ∈ P(H) do
4 build compatibility graph Gt

S
;

5 compute value vt(S) = KEP (S) by solving the KEP on compatibility graph Gt
S
by means of the

BPC algorithm described in Chapter 4;

6 end

7 foreach h ∈ H do

8 compute value τ th as described in Section 5.3;
9 end

10 solve formulation [Pt] by means of the BPC algorithm described in Section 5.5.1;

11 end

5.5.1 Branch-Price-and-Cut algorithm to solve formulation [Pt]

Formulation [Pt] involves the exponentially-many variables λe, e ∈ Et and the exponentially-

many Constraints (5.8). In this section, we adapt the BPC algorithm presented in

Chapter 4 to solve formulation [Pt]. Such adaptation is trivial, indeed, the additional

Constraints (5.7),(5.8),(5.9) and (5.10) do not modify the structure of the pricing prob-

lem, as we show in what follows. In addition, the size of the instances we consider allows

to enumerate Constraints (5.8). We only need to show how the dual variables associ-

ated with Constraints (5.7),(5.8),(5.9) and (5.10) are incorporated in the de�nition of

the reduced cost of the variables.

By looking at Constraints (5.15), the reduced cost of a λe, e ∈ Et variable is:

C̄e = −
∑
i∈Vt

aeiπi −
∑

S∈P(H)

∑
h∈S

W te
h ϕS −

∑
h∈H

W te
h (θ1h + θ2h).

The Pricing Problem is [PP] min{C̄e : e ∈ Et}. As shown in Chapter 4, [PP] can be
decomposed in |It|+ 1 independent subproblems: subproblems [PP-C](i), i ∈ It, price

the variables associated with the circuits and subproblem [PP-P] prices the variables

associated with the chains. In addition, all the subproblems can be formulated as

Elementary Longest Path Problem with Length Constraint (ELPPLC) on given directed

weighed graphs as de�ned in Chapter 4.

167

Now, recall that value W te
h is de�ned as W te

h =
∑

(i,j)∈A(e):j∈Ith
Wij, where A(e) is

the set of arcs traversed by exchange e. Hence, the reduced cost can be reformulated

as follows:

C̄e = −
∑
i∈Vt

aeiπi −
∑

S∈P(H)

∑
h∈S

∑
(i,j)∈A(e)

j∈Ith

WijϕS −
∑
h∈H

∑
(i,j)∈A(e)

j∈Ith

Wij(θ
1
h + θ2h).

It is, then, trivial to see that dual variables ϕS, θ1h and θ2h can be incorporated in the

cost of the arcs of the graphs for which the ELPPLCs are solved.

No further modi�cation needs to be applied to the BPC algorithm described in

Chapter 4 to solve formulation [Pt].

5.6 Computational experiments

We implemented our BPC algorithm in C++ and compiled it in release mode under

a 64-bit version of MS Visual Studio 2019. The (integer) linear programming models

in the BPC algorithm are solved by GUROBI 9.5.2 (64-bit version). We run the

experiments on a 64-bit Windows machine equipped with a Intel(R) Xeon(R) Silver

4214 processor with 24 cores hyper-threaded to 48 virtual cores, with a base clock

frequency of 2.2 GHz, and 96 GB of RAM. We impose one hour time limit to solve

formulations [Pt] at each round t = 1, . . . , T . We allow a single thread for each run of

the algorithm.

In this section, �rst, we present the characteristics of the instances we consider.

Then, we analyse the impact of the stability conditions in the IKEP (in a single round)

and of the fairness conditions in the IIKEP.

In the following, we will use the term BPC algorithm to refer to the algorithm

described in Section 5.5.1 to solve formulation [Pt], and the term BPC-KEP to refer

to the BPC algorithm described in Chapter 4 to solve the KEP.

The optimality gaps for formulations [Pt], t = 1, . . . , T , are expressed in percentage

and computed as 100((UB − LB)/LB), where LB and UB are the lower and upper

bounds returned by the BPC algorithm.

168

5.6 Computational experiments

5.6.1 Generation of the testbed

Following to some extent Benedek et al. (2021), we generate a testbed containing

40 instances. First, we build 10 instances for the KEP using the generator intro-

duced by Delorme et al. (2022) and available at https://wpettersson.github.io/

kidney-webapp/#/. Precisely, we generate �ve compatibility graphs with 1000 in-

compatible pairs and �ve others with 2000 incompatible pairs. All the graphs are

characterised by 10% of altruistic donors. The medical parameters to establish the

compatibility relations are set by choosing the option �Use recipient blood group dis-

tribution from paper" in the generator.

The maximal length of the cycles is set to LC = 3, whereas the maximal length of

the chains is set to LP = 7.

Given these 10 instances for the KEP we build the 40 instances of the IIKEP

as follows. First, we consider the weights on the arcs of the compatibility graphs are

either all set to one or represent the medical bene�t associated with the transplants. In

other words, the underlying KEPs consider as objective either the maximisation of the

number of transplants (obj:#TR) or the maximisation of the medical bene�t (obj:MB).

Second, we consider either four or eight countries (|H| ∈ {4, 8}). Incompatible pairs

and altruistic donors are randomly and equally distributed between the countries, i.e.,

the countries have the same number of pairs and altruistic donors. All the instances

are characterised by 24 rounds (T = 24), that is we consider six years kidney exchange

programs run quarterly, as in Klimentova et al. (2021) and Benedek et al. (2021). The

distribution of the disclosure of the incompatible pairs and altruistic donors is done

as follows. In the �rst round, we disclose a tenth of the vertices of the compatibility

graphs. The remaining vertices of the graphs are assigned to the remaining rounds in

an arbitrary, but equal way.

5.6.2 Assessment of the stability conditions

In order to assess the stability conditions, we consider the results obtained by the BPC

algorithm to solve formulation [Pt] at the �rst round with only stability conditions.

Indeed, stability is an intra-round condition, hence, there is no need to evaluate its

impact over di�erent rounds. Precisely, we consider the results obtained by solving for-

mulation [P1], where we removed variables and constraints associated with the fairness

conditions, i.e., variables δ and Constraints (5.9), (5.10) and (5.12).

169

https://wpettersson.github.io/kidney-webapp/#/
https://wpettersson.github.io/kidney-webapp/#/

First, in Table 5.1, we report some computational statistics. The rows of the table

correspond to the instances grouped by type of objective function considered in the

KEP: either number of transplants (#), or medical bene�t (mb). The column headings

read as follows: obj: type of objective function considered in the KEP; #: the number

of instances in the set; #opt.: number of instances for which formulation [P1] is solved

to optimality by the BPC algorithm; avg.gap[%] : average optimality gap in percentage

returned by the BPC algorithm on formulation [P1]; avg.t[s] : average computational

time in seconds of the BPC algorithm on formulation [P1]; avg.t[s] v(H): average

computational time in seconds for the BPC-KEP algorithm to compute grand coalition

value v(H) = KEP (H) avg.t[s]
⋃

S∈P(H)
|S|=1

v(S): average computational time in seconds

for the BPC-KEP algorithm to solve the KEPs for all the single countries, i.e., to

compute all values v(S) = KEP (S), S ∈ P(H), |S| = 1.

Table 5.1: Computational statistics on solving formulation [P1] with stability condi-
tions.

Instances BPC algorithm BPC-KEP algorithm
obj # #opt. avg.gap[%] avg.t[s] avg.t[s] v(H) avg.t[s]

⋃
S∈P(H)
|S|=1

v(S)

#TR 20 20 0.00 84.91 0.91 0.28
MB 20 15 7.81 1527.23 1.45 0.28

From the results of Table 5.1, we observe that formulation [P1] is much easier to

solve when the objective of the KEP is the maximisation of the number of transplants.

Indeed, the BPC algorithm solves to optimality formulation [P1] on all the 20 instances

in 85 seconds on average. This trend is not observed when the objective of the KEP

is the maximisation of the medical bene�t. In this case, the BPC algorithm solves

to optimality 15 out of the 20 instances with more computational e�ort, being the

average time equal to 1527.23 seconds. The �ve instances not solved to optimality

are characterized by eight countries. The average optimality gap is on average nearly

8%. We recall that here the objective function of [P1] with stability is the value of the

decision variable ϵ.

Regardless from the objective function of the KEP, the value of the grand coalition

v(H) and the values of the single countries v(S), S ∈ P(H), |S| = 1, are retrieved in

negligible time (see last two columns of the table). The explanation is that, in those

cases, the BPC-KEP algorithm needs to solve very small KEP instances. Indeed, the

170

5.6 Computational experiments

compatibility graphs at the �rst round contain around a tenth of the vertices of the

compatibility graph built for the IIKEP, that is, around 100 and 200 vertices.

In the following, we assess the goodness of the stability conditions. Precisely, we

compare the results obtained by solving formulation [P1] by means of the BPC algo-

rithm with those obtained by solving the KEP associated with the grand coalition H

by means of the BPC-KEP algorithm. The analysis is conducted by considering only

the cases where formulation [P1] is solved to optimality using the BPC algorithm.

We introduce some useful notation to interpret the results. Let (λ̄, ϵ̄) be a solution

of formulation [P1] (recall that in this section, we do not consider variables δ). We

say that a coalition S ∈ P(H) is unstable under λ̄ if value
∑

h∈S
∑

e∈EW
e
h λ̄e assigned

to coalition S under λ̄ is strictly smaller than v(S). Then, given λ̄, we compute the

percentage improvement w.r.t. the non collaborative setting where each country solves

the KEP individually as

100

∑
e∈EWeλ̄e −

∑
h∈H v({h})∑

h∈H v({h})
.

Now, by abuse of notation, let λ̄ be a solution of KEP (H) associated with the grand

coalition H. The de�nition of an unstable coalition under λ̄ and the way we compute

the improvement w.r.t. the non collaborative setting are still valid. In addition, it is

possible to compute value ϵ̄ associated with λ̄ also in the case where λ̄ is a solution of

KEP (H):

ϵ̄ = max

{
max

{
v(S)−

∑
h∈S

∑
e∈E

W e
h λ̄e : S ∈ P(H)

}
, 0

}
.

Table 5.2 reports the results of the comparison between solving formulation [P1]

with stability conditions and solving KEP(H), that is with no stability conditions.

Each row corresponds to a subset of instances characterised by the same objective

function for the KEP and the same number of countries. The �rst three columns display

information about the subset of instances: obj: type of objective function considered

in the KEP; |H|: number of countries; #: the number of instances in the subset. The

next six columns report the results obtained with stability conditions (formulation [P1])

against no stability conditions (KEP(H)) on three criteria: avg. value of v(H): report

information about the average value of the grand coalition v(H), avg. value of ϵ: report

information about the average value of ϵ, avg.#unst. coal.: report the average number of

171

unstable coalitions under solution λ̄. The last �ve columns report the same information

for the results obtained by the BPC-KEP algorithm when solving KEP(H).

Table 5.2: Assessment of the stability conditions.

Instances avg. value of v(H) avg. value of ϵ avg. #unst. coal.
obj |H| # stability no stability stability no stability stability no stability

#TR
4 10 43.80 44.00 0.20 3.10 0.70 4.90
8 10 43.50 44.00 0.70 4.50 33.20 90.90

MB
4 10 3714.60 3732.20 18.30 213.60 1.90 3.80
8 5 4614.20 4643.00 29.20 362.20 18.40 77.60

The general remark by looking at the results of Table 5.2 is that the solutions

obtained by considering stability conditions make the collaborative system much more

stable, while keeping the number of transplants or medical bene�t comparable with

the case without stability conditions. Indeed, the decrease of the average value of v(H)

is negligible when considering stability conditions. In addition, the average value of ϵ

and the average number of unstable coalitions decrease signi�cantly when considering

stability conditions.

5.6.3 Assessment of the fairness conditions

In this section, we assess how the fairness conditions impact the collaborative system.

Recall that such conditions are inter-round, hence, to conduct this analysis we look at

the results obtained by the iterative procedure for the IIKEP described in Section 5.5.

First, we examine the results of the iterative procedure from a computational point of

view and, then, we assess the impact of the fairness conditions.

Table 5.3 reports some computational information about the iterative procedure

run over T = 24 rounds. Each row of the table represents a subset of the instances

with the same objective for the KEP and the same number of countries. The �rst

three columns report information about the instance: obj: type of objective function

considered in the KEP; |H|: number of countries; #: the number of instances in the

subset. The last two columns show avg.#opt.[Pt] : the average number of rounds per

instance where the BPC algorithm solves to optimality formulation [Pt], t = 1, . . . , T ;

#opt.inst.: the number of instances where formulation [Pt] is solved to optimality at

each round t = 1, . . . , T .

The results of Table 5.3 show that the BPC algorithm solve to optimality formula-

tion [Pt] for on average 19 out of the 24 rounds which characterise the instances of the

172

5.6 Computational experiments

Table 5.3: Computational statistics when solving the IIKEP.

Instances results
obj |H| # avg.#opt.[Pt] #opt.inst.

#TR
4 10 19.70 0
8 10 19.00 1

MB
4 10 19.40 2
8 10 14.50 0

IIKEP. However, the number of instances where formulation [Pt] is solved to optimality

at each round t = 1, . . . , T is very small.

Here, we do not discuss again the stability conditions, indeed, the behaviour ob-

served in Section 5.6.2 at the �rst round, repeats in the following rounds, as well. The

values of variable ϵ which measure the instability of the system are small w.r.t. the

values v(H) of the KEP associated with the grand coalition. In addition, adding both

stability and fairness conditions do not penalise much the objective of the KEP: its

deviation from value v(H) is on average equal to 1.61% for the instances with obj:#TR

and to 4.52% for the instances with obj:MB.

In the following, we assess the impact of the fairness conditions. To do so, for each

instance, each round t = 1, . . . , T and each country h ∈ H, we compute the deviation

of the medical bene�t obtained by the country h at round t from the ideal medical

bene�t of that country at round t:

devth =
|γth − Zt

h|
γth

.

In addition, for each instance and each period t = 1, . . . , T , we compute the average of

the above de�ned deviations over the countries:

devt =
1

|H|
∑
h∈H

devth.

Precisely, we write devth[%] and dev
t[%] meaning that such deviations are expressed in

percentage.

Figures 5.1 and 5.2 display the distribution of values devt[%] for instances where the

objective of the KEP is the maximisation of the number of transplants (obj:#TR) and

the maximisation of the medical bene�t (obj:MB), respectively. Precisely, in the two

173

�gures, the abscissas represent the rounds and the ordinates the magnitude of values

devt[%]. In each �gure, for each round t = 1, . . . , T , the distribution of values devt[%]

for the 20 instances is graphically represented through a box-and-whisker plot (Tukey

et al., 1977). The elements of a box-and-whisker plot are: end of the lower whisker : the

lowest of the values, outliers excluded; bottom edge of the box : �rst quartile of the values;

edge inside the box : median of the values; upper edge of the box : third quartile of the

values; end of the upper whisker : highest value of the data, outliers excluded; symbols

beyond the whiskers : outliers (see circle, squares, stars, diamonds), i.e., values which

di�er signi�cantly from the data.

Figure 5.1: Distribution of values devt[%] over the 24 rounds among the 20 instances
with obj:#TR.

0 5 10 15 20 25

0

5

10

15

20

Rounds

d
ev

t [
%
]

From Figure 5.1, the global trend is clear: the average deviation decrease over the

rounds, with less variability between the instances. Indeed, in the �rst rounds, the

deviations �uctuate heavily and some outliers where the average deviation is large

appear, as well. This means that some instances provide solutions with a very high

average deviation at the �rst rounds. Starting from the tenth round, the average

deviations tend to stabilise in terms of variability and their maximal values (end of

the upper whiskers) are always less than �ve percent. In the last rounds, the box-and-

whisker plots reveal that the average deviations are of similar and small magnitude

(see the boxes).

174

5.6 Computational experiments

Figure 5.2: Distribution of values devt[%] over the 24 rounds among the 20 instances
with obj:MB.

0 5 10 15 20 25

0

10

20

30

40

Rounds

d
ev

t [
%
]

A similar behaviour can be observed in Figure 5.2 for the instances where the

objective of the KEP is the maximisation of the medical bene�t (obj:MB). The main

di�erence that we can observe is that the average percentage of deviations tend to have

larger values when maximising the medical bene�t in comparison with the maximisation

of the number of transplants.

For a complete understanding of the results, we stress that in some cases the per-

centage deviations of some countries might not reach zero. This behaviour is intrinsic

to our integrated approach and can be explained by looking at the de�nition of the

ideal target of transplants γth. At each period t = 1, . . . , T , such values are computed

in terms of value v(H), i.e., the ideal medical bene�t the grand coalition can guar-

antee itself without any stability condition (see Equations (5.3) and (5.4)). However,

the actual medical bene�t the grand coalition can guarantee itself at period t accord-

ing to formulation [Pt] is
∑

h∈H
∑

e∈Et W te
h λ̄h, which may be smaller than v(H) (see

Constraints (5.8) and results in columns avg.impr.[%] no collab. of Table 5.2). As a

consequence, at period t, the sum of the medical bene�ts obtained by the countries

can be smaller than the sum of the ideal medical bene�ts, i.e.
∑

h∈H Z
t
h <

∑
h∈H γ

t
h.

Hence, these discrepancies may propagate over the periods, making impossible for the

deviations to be close to zero. A procedure to adjust the values of γth according to the

175

actual medical bene�t obtained by the solution of formulation [Pt] could be investigated

to avoid such positive deviations.

Figures 5.1 and 5.2 show the behaviour of the average deviation over the countries.

In what follows, we consider some instances to analyse more in details the disparities

between the countries. Figures 5.3 and 5.4 show the trend of the percentage deviations

devth for each country h ∈ H over the rounds t = 1, . . . , T on four representative

instances. Precisely, Figure 5.3 considers two instances where the objective of the KEP

is the maximisation of the number of transplants and with four or eight countries.

Whereas, Figure 5.4 considers two instances where the objective of the KEP is the

maximisation of the medical bene�t and with four or eight countries. In each �gure,

each country is represented by a color, and the trend of values devth for country h ∈ H

is represented by a piece-wise linear function over the rounds.

Figure 5.3: Assessment of the fairness in two instances with obj:#TR and four countries
(left) or eight countries (right).

0 5 10 15 20 25

0

5

10

15

Rounds

d
ev

t h
[%

]

0 5 10 15 20 25

0

10

20

30

40

Rounds

d
ev

t h
[%

]

176

5.7 Conclusions

Figure 5.4: Assessment of the fairness in two instances with obj:MB and four countries
(left) or eight countries (right).

0 5 10 15 20 25

0

2

4

6

8

10

12

Rounds

d
ev

t h
[%

]

0 5 10 15 20 25

0

2

4

6

8

Rounds

d
ev

t h
[%

]

From the plots of Figures 5.3 and 5.4, we can observe how the disparities of the

deviations between the countries smooth over the rounds. Indeed, in the early rounds,

the variability of the percentage deviation is high. Such variability reduces towards the

last rounds of the programme, meaning that the countries are treated more equally.

5.7 Conclusions

In this paper, we studied the Iterative International Kidney Exchange Problem (IIKEP)

which arises when di�erent countries agree on a common kidney exchange programme

run for multiple rounds. Under this collaborative setting, the objective of the IIKEP

is to determine a set of kidney transplants at each round of the programme which

minimises the disparities between the countries, that is the stability and the fairness

of the collaborative system. We modeled the stability as an intra-round condition by

borrowing the concept of ϵ-core from the cooperative game theory and the fairness as

an inter-round condition similarly to what is proposed by Klimentova et al. (2021).

The nature of the problem entails an iterative solution approach. The problem

arising at each round is a Kidney Exchange Problem (KEP) enriched with the afore-

mentioned stability and fairness conditions. We formulated such problem by means

of a set packing formulation with exponentially-many variables and constraints. The

177

former are required because in our underlying KEP we consider both cycles and long

chains of donations. The latter are induced by the stability conditions. We adapted

a Branch-Price-and-Cut (BPC) algorithm for the KEP to solve the problem at each

round.

We performed experimental analysis to assess the impact of the stability and fairness

conditions we impose in the system. Precisely, we showed that at each round and in

the long run the solutions provided by our approach reduce the disparities between

the countries w.r.t. the case where such conditions are not considered. In addition,

when stability and fairness conditions are included the results demonstrate that the

total medical bene�t or number of transplants decreases slightly (3.03% on average) in

comparison with the case without neither stability nor fairness.

As future work, a more extensive set of experiments may help in a deeper interpre-

tation of the results. In addition, another research direction is related to the modelling

choices, such as the necessity of including all the exponentially many constraints to

ensure stability for all possible coalition of countries, or the consideration of weights in

the objective function to balance stability and fairness. Furthermore, the results sug-

gest that some enhancements for the BPC algorithm should be considered. Indeed, the

BPC algorithm does not systematically solve to optimality the problem at each round.

The inclusion of problem speci�c valid inequalities may help in the solution procedure.

Moreover, di�erent choices to model the ideal medical bene�t in the fairness conditions

may be taken into account, such as the Shapley value or the contribution value.

178

Conclusions and Perspectives

Conclusions

In this thesis, we studied heuristic algorithms with a performance guarantee or exact

methods based on column generation for (integrated) optimisation problems arising

in transportation and healthcare. Albeit the �elds of applications are di�erent, the

problems we consider share a common structure. Precisely, they entail �nding a set

of optimal paths in a weighted directed graph which may be subject to resource and

structural constraints.

In transportation applications, we consider a problem arising in a two-echelon distri-

bution system where multiple commodities are traded between suppliers, distribution

centres and customers. In such a system, not all the suppliers provide the same com-

modities and customer demands are composed of di�erent commodities, as well. In the

collection echelon, capacitated vehicles bring the commodities from the suppliers to

the distribution centres via direct trips. Di�erently, in the delivery echelon, each dis-

tribution centre owns a �eet of capacitated vehicles which perform routes to deliver the

commodities to the customers. All the vehicles involved in the system are �exible, i.e.,

they can transport any subset of commodities. In addition, customers can be visited by

several vehicles to reduce the transportation costs. However, for the customers' conve-

nience, the amount of a single commodity is delivered by one vehicle only. The name of

this problem is the Multi-Commodity two-echelon Distribution Problem (MC2DP). We

also study the core optimisation problem in the MC2DP, the Commodity constrained

Split Delivery Vehicle Routing Problem (C-SDVRP). The C-SDVRP corresponds to

the restriction of the MC2DP to a single distribution centre in the delivery echelon.

In healthcare applications, we consider a problem arising when multiple countries

join a common kidney exchange programme. The objective of such programmes is to

determine the best set of kidney transplants in a pool of patients and donors where the

179

CONCLUSIONS AND PERSPECTIVES

term best refers to the medical bene�t of the transplants. Such optimisation problem is

referred to as Kidney Exchange Problem (KEP). Commonly, the KEP is solved by each

country individually in a multi-period setting. In recent years, countries start to solve

the KEP jointly to obtain better global solutions. However, such solutions may hide

disparities between the countries which may weaken the soundness of the system. For

this reason, we study the Iterative International Kidney Exchange Problem (IIKEP).

The aim of the IIKEP is to minimise such disparities by including stability and fairness

conditions when the KEP is solved jointly and under a multi-period setting. We model

the stability as an intra-period condition and fairness as an inter-period condition by

considering concept from cooperative game theory. As for the transportation applica-

tion, we study both the IIKEP (integrated problem) and the KEP (core problem).

The main contributions of this thesis are listed in the following.

In Chapter 1, we provide an overview on BPC algorithms to solve a generic class of

problems where the set of best paths, according to a given objective function, are to be

determined in a weighted directed graph. Such paths may be subject to resource and

structural constraints such as the elementarity constraints. The objective of the chapter

is to provide the tools to develop a �rst BPC algorithm. First, the mathematical

background needed to understand how the BPC algorithms work is presented. Then,

the main techniques to embed in an e�cient BPC algorithm are presented from a

pedagogical point of view, i.e., with examples and implementation details.

In Chapter 2, we propose a heuristic with performance guarantee for the C-SDVRP

based on a column generation procedure. We devise a novel pricing heuristic which

exploits the multi-commodity aspect of the problem. Such heuristic helps in reducing

e�ectively the computational time on a sub-class of the problem instances. Compared

with the state-of-the-art metaheuristic algorithms for the C-SDVRP, our approach

produces solutions of comparable quality, while improving the computational time.

In Chapter 3, we develop the �rst BPC algorithm for the MC2DP. Several state-

of-the-art accelerating techniques are embedded and three families of valid inequalities

are considered to strengthen the linear relaxation. Two of these families come from the

literature, namely, the capacity cuts and valid inequalities arising from the set covering

polytope. The third family is new and is based on the number partitioning polytope.

Our approach solves to optimality nearly 60% of the benchmark instances from the

literature. The remaining ones are left with a small optimality gap, on average equal

to 2.1%.

180

CONCLUSIONS AND PERSPECTIVES

In Chapter 4, we develop an exact algorithm for the KEP based on a BPC approach.

The BPC incorporates two families of non-robust valid inequalities, namely, the subset-

row and odd-hole inequalities and is able to solve instances with long cycles and chains.

It is the �rst approach to be tested on three sets of benchmark instances from the

literature. Our approach outperforms two state-of-the-art algorithms for the KEP on

two sets of instances and provides comparable results against the third one.

In Chapter 5, we consider the IIKEP, a problem arising when di�erent countries

solve the KEP jointly under a multi-period setting. We exploit the theory of collabora-

tive games with transferable utility to impose stability and fairness constraints for the

system. At each period, the IKEP is solved by an adaptation of the BPC algorithm for

the KEP presented in Chapter 4. Preliminary computational experiments show that

the stability and fairness constraints lead to a more suitable system, i.e., they smooth

the disparities between the countries.

Perspectives

In the following, we present possible future work directions for the problems and meth-

ods considered in this thesis.

From the application point of view, in transportation, one might consider to extend

the MC2DP by allowing routing decisions also in the collection echelon. This choice

could model a situation characterised by many more suppliers which provide smaller

amounts of products. Here, the suppliers may have interest in collaborating with each

other: some of them may be in charge of collecting the products from other suppliers

and bring them to the closest distribution centre. Another extension for the problem

entails adding connections between the actors in the integrated system, by e.g., al-

lowing direct trips from the suppliers to the customers and/or transshipment between

the distribution centres. Direct connections between suppliers and customers are in-

teresting in the context of a short and local supply chain when customers are located

nearby the suppliers. Transshipment between distribution centres could help in the

consolidation of the products before performing the deliveries. Under this setting, the

extended formulation has to be modi�ed by including variables representing routes in

the collection echelon and the additional connections. Since the routes in the collection

echelon are exponentially-many, they need to be priced in a BPC algorithm to solve the

problem. Finally, it seems interesting to incorporate the time aspect in the two-echelon

181

CONCLUSIONS AND PERSPECTIVES

distribution system. Indeed, time windows may be considered for both suppliers and

customers. Moreover, the collection and delivery operations may be synchronised at

the distribution centres by explicitly considering the time. To do so, the time at which

the vehicles in charge of the collection visit the distribution centres must be known.

Furthermore, the vehicles in charge of the delivery start their operations only after the

commodities they deliver have been brought to the distribution centres. Such version

of the problem could still be modelled by means of an extended formulation which

could be solved by a BPC algorithm. However, the synchronisation constraints force

to introduce a time discretisation and additional binary variables to model when a

collection vehicle arrives at a distribution centre and when a delivery vehicle leaves the

distribution centre.

In healthcare application, kidney exchange programmes may su�er from data un-

certainties. Indeed, such programmes plan the transplants for the three or four months

ahead, hence, in such a long period data may change. For example, unexpected in-

compatibilities may arise or patients and/or donors may drop out. In addition, the

medical bene�t assigned to the transplants is modelled by a single value which may be

a�ected by errors in its estimation. As per now, the literature involving uncertainties

in the KEP considers instances with chains and cycles of small length or with a small

number of patients and donors. Hence, a future research direction may be devoted to

introduce such uncertainties in a more realistic KEP instances with long chains and

cycles. Under this setting, we could consider a robust version of the problem or a

two stage approach where in the �rst stage a solution for the deterministic problem is

found and in the second stage some uncertainties are realised and recourse policies are

applied to recover a solution.

Finally, the results presented in all our applications show that the bottleneck of

the BPC algorithms we devised are usually the rather large optimality gaps at the

root node which can be reduced only by exploring the branch-and-bound tree that

is therefore usually quite large. Hence, from the methodological point of view, an

enhancement for the BPC algorithms presented in this thesis may be related to the

introduction of additional valid inequalities to strengthen the linear relaxation. For

the MC2DP, we may consider including non-robust inequalities, classical such as the

subset-row inequalities or new ones which exploits the structure of the problem. As an

example, the robust inequalities we propose for the MC2DP may be considered in a non-

robust manner. For the KEP, non-robust inequalities are considered, however, their

182

CONCLUSIONS AND PERSPECTIVES

management in the BPC algorithm is to be improved. In addition, instead of separating

the subset-row inequalities by enumeration of small-enough sets on which their are

de�ned, one can opt for other separation procedures as, for example, e�cient heuristics

to detect violated clique inequalities in the con�ict graph, which are a particular case

of the subset-row inequalities. In addition, note that the inequalities we considered are

valid for the stable set polytope. Other families of inequalities valid for the stable set

polytope may be investigated.

183

CONCLUSIONS AND PERSPECTIVES

184

Bibliography

Abraham, D.J., Blum, A. & Sandholm, T. (2007). Clearing algorithms for barter

exchange markets: Enabling nationwide kidney exchanges. In Proceedings of the 8th

ACM conference on Electronic commerce, 295�304. 120, 121

Achterberg, T. (2007). Constraint integer programming. 51, 100

Alinaghian, M. & Shokouhi, N. (2018). Multi-depot multi-compartment vehicle

routing problem, solved by a hybrid adaptive large neighborhood search. Omega, 76,

85�99. 56

Amor, H.B., Desrosiers, J. & de Carvalho, J.M.V. (2006). Dual-optimal in-

equalities for stabilized column generation. Operations Research, 54, 454�463. 48

Amor, H.M.B., Desrosiers, J. & Frangioni, A. (2009). On the choice of explicit

stabilizing terms in column generation. Discrete Applied Mathematics , 157, 1167�

1184. 48

Applegate, D., Bixby, R., Chvátal, V. & Cook, W. (1995). Finding cuts in the

tsp (a preliminary report). Tech. rep., Citeseer. 50

Archetti, C., Savelsbergh, M.W.P. & Speranza, M.G. (2006a). Worst-case

analysis for split delivery vehicle routing problems. Transportation Science, 40, 226�

234. 55

Archetti, C., Speranza, M.G. & Hertz, A. (2006b). A tabu search algorithm for

the split delivery vehicle routing problem. Transportation Science, 40, 64�73. 55

Archetti, C., Bianchessi, N. & Speranza, M. (2013). Optimal solutions for

routing problems with pro�ts. Discrete Applied Mathematics , 161, 547�557. 49,

102, 135

185

BIBLIOGRAPHY

Archetti, C., Bianchessi, N. & Speranza, M.G. (2014). Branch-and-cut algo-

rithms for the split delivery vehicle routing problem. European Journal of Operational

Research, 238, 685�698. 55

Archetti, C., Bianchessi, N. & Speranza, M.G. (2015). A branch-price-and-

cut algorithm for the commodity constrained split delivery vehicle routing problem.

Computers & Operations Research, 64, 1 � 10. 56, 59, 61, 62, 63, 66, 96, 97

Archetti, C., Campbell, A.M. & Speranza, M.G. (2016). Multicommodity vs.

single-commodity routing. Transportation Science, 50, 461�472. 55, 56, 70, 71, 73,

75, 83, 103

Arslan, A.N., Omer, J. & Yan, F. (2022). Kidneyexchange. jl: A julia package for

solving the kidney exchange problem with branch-and-price. 118, 119, 122, 127, 129,

135, 136, 137, 138, 139, 149

Axelrod, D.A., Schnitzler, M.A., Xiao, H., Irish, W., Tuttle-Newhall,

E., Chang, S.H., Kasiske, B.L., Alhamad, T. & Lentine, K.L. (2018). An

economic assessment of contemporary kidney transplant practice. American Journal

of Transplantation, 18, 1168�1176. 117

Balas, E. & Ng, S.M. (1989). On the set covering polytope: I. all the facets with

coe�cients in {0, 1, 2}. Mathematical Programming , 43, 57�69. 84, 90, 91

Baldacci, R., Mingozzi, A. & Roberti, R. (2011). New route relaxation and

pricing strategies for the vehicle routing problem. Operations Research, 59, 1269�

1283. 36, 62, 97, 130

Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P. &

Vance, P.H. (1998). Branch-and-price: Column generation for solving huge integer

programs. Operations Research, 46, 316�329. 3, 19, 22, 94, 124, 206

Battarra, M., Golden, B. & Vigo, D. (2008). Tuning a parametric clarke�wright

heuristic via a genetic algorithm. Journal of the Operational Research Society , 59,

1568�1572. 69, 101

Beasley, J.E. & Christofides, N. (1989). An algorithm for the resource con-

strained shortest path problem. Networks , 19, 379�394. 25, 29

186

BIBLIOGRAPHY

Belenguer, J.M., Martinez, M.C. & Mota, E. (2000). A lower bound for the

split delivery vehicle routing problem. Operations Research, 48, 801�810. 55

Benedek, M., Biró, P., Kern, W. & Paulusma, D. (2021). Computing bal-

anced solutions for large international kidney exchange schemes. arXiv preprint

arXiv:2109.06788 . 155, 156, 162, 164, 169

Benedek, M., Biró, P., Kern, W., Pálvölgyi, D. & Paulusma, D. (2023).

Partitioned matching games for international kidney exchange. 156

Berti, G. & Mulligan, C. (2016). Competitiveness of small farms and innovative

food supply chains: The role of food hubs in creating sustainable regional and local

food systems. Sustainability , 8, 616. 1, 203, 204

Biró, P., Haase-Kromwijk, B., Andersson, T., Ásgeirsson, E.I., Baltesová,

T., Boletis, I., Bolotinha, C., Bond, G., Böhmig, G., Burnapp, L. et al.

(2019a). Building kidney exchange programmes in europe�an overview of exchange

practice and activities. Transplantation, 103, 1514. 2, 118, 153, 204

Biró, P., Kern, W., Pálvölgyi, D. & Paulusma, D. (2019b). Generalized match-

ing games for international kidney exchange. 155, 161

Biró, P., van de Klundert, J., Manlove, D., Pettersson, W., Anders-

son, T., Burnapp, L., Chromy, P., Delgado, P., Dworczak, P., Haase,

B., Hemke, A., Johnson, R., Klimentova, X., Kuypers, D., Costa, A.N.,

Smeulders, B., Spieksma, F., Valentín, M.O. & Viana, A. (2021). Modelling

and optimisation in european kidney exchange programmes. European Journal of

Operational Research, 291, 447�456. 118, 153

Blanquart, C., Gonçalves, A., Vandenbossche, L., Kebir, L., Petit, C. &

Traversac, J.B. (2010). The logistic leverages of short food supply chains perfor-

mance in terms of sustainability. In 12th World Conference on Transport Research,

10p. 1, 203

Bode, C. & Irnich, S. (2012). Cut-�rst branch-and-price-second for the capacitated

arc-routing problem. Operations Research, 60, 1167�1182. 34, 63, 97

187

BIBLIOGRAPHY

Böhmig, G.A., Fronek, J., Slavcev, A., Fischer, G.F., Berlakovich, G. &

Viklicky, O. (2017). Czech-austrian kidney paired donation: �rst european cross-

border living donor kidney exchange. Transplant International , 30, 638�639. 2, 153,

205

Boland, N., Dethridge, J. & Dumitrescu, I. (2006). Accelerated label setting

algorithms for the elementary resource constrained shortest path problem.Operations

Research Letters , 34, 58�68. 36

Bortfeldt, A. & Yi, J. (2020). The split delivery vehicle routing problem with

three-dimensional loading constraints. European Journal of Operational Research,

282, 545�558. 55

Breunig, U., Baldacci, R., Hartl, R. & Vidal, T. (2019). The electric two-

echelon vehicle routing problem. Computers & Operations Research, 103, 198�210.

85

Briant, O., Lemaréchal, C., Meurdesoif, P., Michel, S., Perrot, N. &

Vanderbeck, F. (2008). Comparison of bundle and classical column generation.

Mathematical programming , 113, 299�344. 48

Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A.L. &

Ogier, M. (2020). An e�cient and general approach for the joint order batching and

picker routing problem. European Journal of Operational Research, 285, 497�512.

29, 57

Carvalho, M. & Lodi, A. (2023). A theoretical and computational equilibria anal-

ysis of a multi-player kidney exchange program. European Journal of Operational

Research, 305, 373�385. 154, 155

Carvalho, M., Lodi, A., Pedroso, J.P. & Viana, A. (2016). Nash equilibria in

the two-player kidney exchange game. Mathematical Programming , 161, 389�417.

154, 155

Cattaruzza, D., Absi, N., Feillet, D. & González-Feliu, J. (2017). Vehicle

routing problems for city logistics. EURO Journal on Transportation and Logistics ,

6, 51�79. 83

188

BIBLIOGRAPHY

Chen, M.C., Hsiao, Y.H., Reddy, R.H. & Tiwari, M.K. (2016a). The self-learning

particle swarm optimization approach for routing pickup and delivery of multiple

products with material handling in multiple cross-docks. Transportation Research

Part E: Logistics and Transportation Review , 91, 208 � 226. 55

Chen, P., Golden, B., Wang, X. & Wasil, E. (2016b). A novel approach to solve

the split delivery vehicle routing problem. International Transactions in Operational

Research, 24, 27�41. 55

Clarke, G. & Wright, J.W. (1964). Scheduling of vehicles from a central depot to

a number of delivery points. Operations Research, 12, 568�581. 68, 101

Constantino, M., Klimentova, X., Viana, A. & Rais, A. (2013). New insights

on integer-programming models for the kidney exchange problem. European Journal

of Operational Research, 231, 57�68. 118, 120, 121, 134

Contardo, C., Cordeau, J.F. & Gendron, B. (2014). An exact algorithm based

on cut-and-column generation for the capacitated location-routing problem. IN-

FORMS Journal on Computing , 26, 88�102. 42, 100

Costa, L., Contardo, C. & Desaulniers, G. (2019). Exact branch-price-and-cut

algorithms for vehicle routing. Transportation Science, 53, 946�985. 9, 42

Costa, L., Contardo, C., Desaulniers, G. & Yarkony, J. (2022). Stabilized

column generation via the dynamic separation of aggregated rows. INFORMS Jour-

nal on Computing , 34, 1141�1156. 48

Crainic, T.G., Ricciardi, N. & Storchi, G. (2004). Advanced freight transporta-

tion systems for congested urban areas. Transportation Research Part C: Emerging

Technologies , 12, 119�137. 85

Crainic, T.G., Ricciardi, N. & Storchi, G. (2009). Models for evaluating and

planning city logistics systems. Transportation Science, 43, 432�454. 85

Crainic, T.G., Feliu, J.G., Ricciardi, N., Semet, F. & Van Woensel, T.

(2023). 10. operations research for planning and managing city logistics systems.

Handbook on City Logistics and Urban Freight: 0 , 190�223. 83

189

BIBLIOGRAPHY

Cuda, R., Guastaroba, G. & Speranza, M. (2015). A survey on two-echelon

routing problems. Computers & Operations Research, 55, 185 � 199. 85

Dantzig, G., Fulkerson, R. & Johnson, S. (1954). Solution of a large-scale

traveling-salesman problem. Journal of the operations research society of America,

2, 393�410. 26

de Aragao, M.P. & Uchoa, E. (2003). Integer program reformulation for robust

branch-and-cut-and-price algorithms. In Mathematical program in rio: a conference

in honour of nelson maculan, 56�61. 41

Dellaert, N., Woensel, T.V., Crainic, T.G. & Saridarq, F.D. (2021). A

multi-commodity two-echelon capacitated vehicle routing problem with time win-

dows: Model formulations and solution approach. Computers & Operations Research,

127, 105154. 85, 86

Delorme, M., García, S., Gondzio, J., Kalcsics, J., Manlove, D., Petters-

son, W. & Trimble, J. (2022). Improved instance generation for kidney exchange

programmes. Computers & Operations Research, 141, 105707. 136, 169

Delorme, M., Manlove, D. & Smeets, T. (2023). Half-cycle: A new formulation

for modelling kidney exchange problems. Operations Research Letters , 51, 234�241.

vi, x, 115, 120, 136, 137, 142, 143, 144, 145, 146, 147, 148, 149, 150

Desaulniers, G. (2010). Branch-and-price-and-cut for the split-delivery vehicle rout-

ing problem with time windows. Operations Research, 58, 179�192. 50, 55, 101

Desaulniers, G., Desrosiers, J. & Solomon, M.M. (2006). Column generation,

vol. 5. Springer Science & Business Media. 9

Desrochers, M. (1988). An algorithm for the shortest path problem with resource

constraints . École des hautes études commerciales, Groupe d'études et de recherche

en 26, 128

Desrochers, M., Desrosiers, J. & Solomon, M. (1992). A new optimization

algorithm for the vehicle routing problem with time windows. Operations research,

40, 342�354. 36

190

BIBLIOGRAPHY

Desrosiers, J. & Lübbecke, M.E. (2005). A primer in column generation. In Col-

umn Generation, 1�32, Springer-Verlag. 9, 46, 60, 94, 124, 135

Di Puglia Pugliese, L. & Guerriero, F. (2013). A survey of resource constrained

shortest path problems: Exact solution approaches. Networks , 62, 183�200. 26, 65,

128

Dickerson, J.P., Manlove, D.F., Plaut, B., Sandholm, T. & Trimble, J.

(2016). Position-indexed formulations for kidney exchange. In Proceedings of the 2016

ACM Conference on Economics and Computation, 25�42. 120

Drexl, M. (2012). Synchronization in vehicle routing�a survey of VRPs with multiple

synchronization constraints. Transportation Science, 46, 297�316. 87

Dror, M. (1994). Note on the complexity of the shortest path models for column

generation in vrptw. Operations Research, 42, 977�978. 26

Dror, M. & Trudeau, P. (1989). Savings by split delivery routing. Transportation

Science, 23, 141�145. 55

Du Merle, O., Villeneuve, D., Desrosiers, J. & Hansen, P. (1999). Stabilized

column generation. Discrete Mathematics , 194, 229�237. 48

Edmonds, J. (1965). Maximum matching and a polyhedron with 0, 1-vertices. Journal

of research of the National Bureau of Standards B , 69, 55�56. 119

Enthoven, D.L., Jargalsaikhan, B., Roodbergen, K.J., uit het Broek,

M.A. & Schrotenboer, A.H. (2020). The two-echelon vehicle routing problem

with covering options: City logistics with cargo bikes and parcel lockers. Computers

& Operations Research, 118, 104919. 85

Federgruen, A. & Simchi-Levi, D. (1995). Analysis of vehicle routing and

inventory-routing problems. Handbooks in operations research and management sci-

ence, 8, 297�373. 60, 90

Feillet, D. (2010). A tutorial on column generation and branch-and-price for vehicle

routing problems. 4OR, 8, 407�424. 9, 16, 21

191

BIBLIOGRAPHY

Feillet, D., Dejax, P., Gendreau, M. & Gueguen, C. (2004). An exact algo-

rithm for the elementary shortest path problem with resource constraints: Applica-

tion to some vehicle routing problems. Networks , 44, 216�229. iii, 29, 30, 31, 33, 62,

96, 129

Gilmore, P.C. & Gomory, R.E. (1961). A linear programming approach to the

cutting-stock problem. Operations research, 9, 849�859. 12

Glorie, K., Wagelmans, A., van de Klundert, J. et al. (2012). Iterative

branch-and-price for large multi-criteria kidney exchange. Econometric institute re-

port , 11, 2012. 121

Glorie, K.M., van de Klundert, J.J. & Wagelmans, A.P. (2014). Kidney ex-

change with long chains: An e�cient pricing algorithm for clearing barter exchanges

with branch-and-price. Manufacturing & Service Operations Management , 16, 498�

512. 121

Goeke, D., Gschwind, T. & Schneider, M. (2019). Upper and lower bounds for

the vehicle-routing problem with private �eet and common carrier. Discrete Applied

Mathematics , 264, 43�61. 34

Golden, B.L., Magnanti, T.L. & Nguyen, H.Q. (1977). Implementing vehicle

routing algorithms. Networks , 7, 113�148. 22

Grangier, P., Gendreau, M., Lehuédé, F. & Rousseau, L.M. (2016). An adap-

tive large neighborhood search for the two-echelon multiple-trip vehicle routing prob-

lem with satellite synchronization. European Journal of Operational Research, 254,

80�91. 85

Gschwind, T. & Irnich, S. (2016). Dual inequalities for stabilized column generation

revisited. INFORMS Journal on Computing , 28, 175�194. 48

Gschwind, T., Bianchessi, N. & Irnich, S. (2019). Stabilized branch-price-and-

cut for the commodity-constrained split delivery vehicle routing problem. European

Journal of Operational Research, 278, 91�104. 45, 50, 56, 62, 63, 70, 71, 73, 74, 96,

97, 99, 100

192

BIBLIOGRAPHY

Gu, W., Cattaruzza, D., Ogier, M. & Semet, F. (2019). Adaptive large neigh-

borhood search for the commodity constrained split delivery VRP. Computers &

Operations Research, 112, 104761. iv, ix, 54, 56, 58, 61, 69, 70, 71, 73, 75, 77, 78,

79

Gu, W., Archetti, C., Cattaruzza, D., Ogier, M., Semet, F. & Speranza,

M.G. (2022). A sequential approach for a multi-commodity two-echelon distribution

problem. Computers & Industrial Engineering , 163, 107793. 83, 84, 85, 86, 93, 102,

103, 104, 105, 106, 107, 109, 110, 111, 112, 113

Guastaroba, G., Speranza, M.G. & Vigo, D. (2016). Intermediate facilities in

freight transportation planning: A survey. Transportation Science, 50, 763�789. 83

Gulczynski, D., Golden, B. & Wasil, E. (2010). The split delivery vehicle routing

problem with minimum delivery amounts. Transportation Research Part E: Logistics

and Transportation Review , 46, 612�626. 55

Guo, F., Huang, Z. & Huang, W. (2021). Heuristic approaches for a vehicle routing

problem with an incompatible loading constraint and splitting deliveries by order.

Computers & Operations Research, 134, 105379. 56

Haghani, N., Contardo, C. & Yarkony, J. (2022). Smooth and �exible dual

optimal inequalities. INFORMS Journal on Optimization, 4, 29�44. 48

Hintsch, T. & Irnich, S. (2020). Exact solution of the soft-clustered vehicle-routing

problem. European Journal of Operational Research, 280, 164�178. 29

Hoffman, K.L. & Padberg, M. (1993). Solving airline crew scheduling problems

by branch-and-cut. Management science, 39, 657�682. 130, 132

Irnich, S. & Villeneuve, D. (2006). The shortest-path problem with resource con-

straints and k-cycle elimination for k ≥ 3. INFORMS Journal on Computing , 18,

391�406. 36

Jacobsen, S. & Madsen, O. (1980). A comparative study of heuristics for a two-level

routing-location problem. European Journal of Operational Research, 5, 378�387. 85

Jaumard, B., Semet, F. & Vovor, T. (1999). A two-phase resource constrained

shortest path algorithm for acyclic graphs. Cahiers du GERAD - G9648 . 27

193

BIBLIOGRAPHY

Jepsen, M., Petersen, B., Spoorendonk, S. & Pisinger, D. (2008). Subset-row

inequalities applied to the vehicle-routing problem with time windows. Operations

Research, 56, 497�511. 42, 130

Jia, S., Deng, L., Zhao, Q. & Chen, Y. (2023). An adaptive large neighborhood

search heuristic for multi-commodity two-echelon vehicle routing problem with satel-

lite synchronization. Journal of Industrial and Management Optimization, 19, 1187.

85, 86

Jie, W., Yang, J., Zhang, M. & Huang, Y. (2019). The two-echelon capacitated

electric vehicle routing problem with battery swapping stations: Formulation and

e�cient methodology. European Journal of Operational Research, 272, 879�904. 85

Kälble, T., Lucan, M., Nicita, G., Sells, R., Revilla, F.B. & Wiesel, M.

(2005). Eau guidelines on renal transplantation. European urology , 47, 156�166. 2,

117, 152, 205

Kelley, J.E., Jr (1960). The cutting-plane method for solving convex programs.

Journal of the society for Industrial and Applied Mathematics , 8, 703�712. 16, 18

King, R.P., Hand, M.S. & Gómez, M.I. (2014). Growing local: Case studies on

local food supply chains . U of Nebraska Press. 1, 203

Klimentova, X., Alvelos, F. & Viana, A. (2014). A new branch-and-price

approach for the kidney exchange problem. In Computational Science and Its

Applications�ICCSA 2014: 14th International Conference, Guimarães, Portugal,

June 30�July 3, 2014, Proceedings, Part II 14 , 237�252, Springer. 120, 121, 134

Klimentova, X., Viana, A., Pedroso, J.P. & Santos, N. (2021). Fairness models

for multi-agent kidney exchange programmes. Omega, 102, 102333. 155, 156, 159,

162, 163, 164, 169, 177

Kovesdy, C.P. (2022). Epidemiology of chronic kidney disease: an update 2022.

Kidney International Supplements , 12, 7�11. 117

Kute, V.B., Prasad, N., Shah, P.R. & Modi, P.R. (2018). Kidney exchange

transplantation current status, an update and future perspectives. World journal of

transplantation, 8, 52. 154

194

BIBLIOGRAPHY

Lam, E. & Mak-Hau, V. (2020). Branch-and-cut-and-price for the cardinality-

constrained multi-cycle problem in kidney exchange. Computers & Operations Re-

search, 115, 104852. 121

Land, A.H. & Doig, A.G. (1960). An automatic method of solving discrete program-

ming problems. Econometrica, 28, 497�520. 10

Laporte, G., Nobert, Y. & Desrochers, M. (1985). Optimal routing under ca-

pacity and distance restrictions. Operations Research, 33, 1050�1073. 42, 84, 90

Lentine, K.L., Smith, J.M., Miller, J.M., Bradbrook, K., Larkin, L.,

Weiss, S., Handarova, D.K., Temple, K., Israni, A.K. & Snyder, J.J.

(2023). Optn/srtr 2021 annual data report: Kidney. American Journal of Trans-

plantation, 23, S21�S120. 2, 117, 204

Levey, A.S. & Coresh, J. (2012). Chronic kidney disease. The lancet , 379, 165�180.

117

Li, H., Liu, Y., Jian, X. & Lu, Y. (2018). The two-echelon distribution system

considering the real-time transshipment capacity varying. Transportation Research

Part B: Methodological , 110, 239�260. 85

Li, H., Wang, H., Chen, J. & Bai, M. (2020). Two-echelon vehicle routing problem

with time windows and mobile satellites. Transportation Research Part B: Method-

ological , 138, 179�201. 85

Li, H., Chen, J., Wang, F. & Bai, M. (2021a). Ground-vehicle and unmanned-

aerial-vehicle routing problems from two-echelon scheme perspective: A review. Eu-

ropean Journal of Operational Research, 294, 1078�1095. 85

Li, H., Wang, H., Chen, J. & Bai, M. (2021b). Two-echelon vehicle routing problem

with satellite bi-synchronization. European Journal of Operational Research, 288,

775�793. 85

Li, J., Xu, M. & Sun, P. (2022). Two-echelon capacitated vehicle routing prob-

lem with grouping constraints and simultaneous pickup and delivery. Transportation

Research Part B: Methodological , 162, 261�291. 84, 85

195

BIBLIOGRAPHY

Libralesso, L. (2020). Anytime tree search for combinatorial optimization. Ph.D.

thesis, Université Grenoble Alpes [2020-....]. 12

Lübbecke, M.E. & Desrosiers, J. (2005). Selected topics in column generation.

Operations Research, 53, 1007�1023. 9

Magnanti, T.L. & Wong, R.T. (1984). Network design and transportation plan-

ning: Models and algorithms. Transportation Science, 18, 1�55. 86

Mak-Hau, V. (2015). On the kidney exchange problem: cardinality constrained cycle

and chain problems on directed graphs: a survey of integer programming approaches.

Journal of Combinatorial Optimization, 33, 35�59. 121

Marques, G., Sadykov, R., Deschamps, J.C. & Dupas, R. (2020). An improved

branch-cut-and-price algorithm for the two-echelon capacitated vehicle routing prob-

lem. Computers & Operations Research, 114, 104833. 84, 89

Marques, G., Sadykov, R., Dupas, R. & Deschamps, J.C. (2022). A branch-

cut-and-price approach for the single-trip and multi-trip two-echelon vehicle routing

problem with time windows. Transportation Science. 84

Marsten, R.E. (1975). The use of the box step method in discrete optimization.

Tech. rep., National Bureau of Economic Research. 47

Mattei, N. & Walsh, T. (2013). Pre�ib: A library for preferences http://www.

pre�ib. org. In Algorithmic Decision Theory: Third International Conference, ADT

2013, Bruxelles, Belgium, November 12-14, 2013, Proceedings 3 , 259�270, Springer.

136

Mhamedi, T., Andersson, H., Cherkesly, M. & Desaulniers, G. (2022). A

branch-price-and-cut algorithm for the two-echelon vehicle routing problem with

time windows. Transportation Science, 56, 245�264. 84, 85

Miller, C.E., Tucker, A.W. & Zemlin, R.A. (1960). Integer programming for-

mulation of traveling salesman problems. Journal of the ACM , 7, 326�329. 26

Mirchandani, P.B. & Francis, R.L. (1990). Discrete location theory . 69

196

BIBLIOGRAPHY

Mirzaei, S. & Wøhlk, S. (2019). A branch-and-price algorithm for two multi-

compartment vehicle routing problems. EURO Journal on Transportation and Lo-

gistics , 8, 1�33. 56, 57

Munari, P. & Savelsbergh, M. (2022). Compact formulations for split delivery

routing problems. Transportation Science. 55

Muter, �., Birbil, �.�. & �ahin, G. (2010). Combination of metaheuristic and exact

algorithms for solving set covering-type optimization problems. INFORMS Journal

on Computing , 22, 603�619. 57

Nakao, Y. & Nagamochi, H. (2007). A DP-based heuristic algorithm for the dis-

crete split delivery vehicle routing problem. Journal of Advanced Mechanical Design,

Systems, and Manufacturing , 1, 217�226. 55

Neame, P.J. (2000). Nonsmooth dual methods in integer programming . Ph.D. thesis,

University of Melbourne, Department of Mathematics and Statistics. 48

Nemati, E., Einollahi, B., Pezeshki, M.L., Porfarziani, V. & Fattahi, M.R.

(2014). Does kidney transplantation with deceased or living donor a�ect graft sur-

vival? Nephro-urology monthly , 6. 2, 117, 204

Padberg, M. & Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution

of large-scale symmetric traveling salesman problems. SIAM review , 33, 60�100. 17

Padberg, M.W. (1973). On the facial structure of set packing polyhedra. Mathemat-

ical programming , 5, 199�215. 130

Pansart, L., Cambazard, H. & Catusse, N. (2022). Dealing with elementary

paths in the kidney exchange problem. arXiv preprint arXiv:2201.08446 . vi, x, 115,

120, 121, 123, 125, 134, 136, 137, 139, 140, 141, 142, 145, 146, 147, 148, 149, 165

Parragh, S.N. & Schmid, V. (2013). Hybrid column generation and large neigh-

borhood search for the dial-a-ride problem. Computers & Operations Research, 40,

490�497. 57

Pecin, D., Pessoa, A., Poggi, M. & Uchoa, E. (2017). Improved branch-cut-and-

price for capacitated vehicle routing. Mathematical Programming Computation, 9,

61�100. 42, 131

197

BIBLIOGRAPHY

Peleg, B. & Sudhölter, P. (2007). Introduction to the theory of cooperative games ,

vol. 34. Springer Science & Business Media. 158

Perboli, G., Tadei, R. & Vigo, D. (2011). The two-echelon capacitated vehicle

routing problem: Models and math-based heuristics. Transportation Science, 45,

364�380. 85

Pessoa, A., Sadykov, R., Uchoa, E. & Vanderbeck, F. (2018). Automation

and combination of linear-programming based stabilization techniques in column

generation. INFORMS Journal on Computing , 30, 339�360. 48

Pessoa, A., Sadykov, R., Uchoa, E. & Vanderbeck, F. (2020). A generic exact

solver for vehicle routing and related problems. Mathematical Programming , 183,

483�523. 9, 38, 50, 51, 100

Petris, M., Archetti, C., Cattaruzza, D., Ogier, M. & Semet, F. (2023). A

heuristic with a performance guarantee for the Commodity constrained Split Delivery

Vehicle Routing Problem, working paper or preprint. 50, 97, 101, 102

Plaut, B., Dickerson, J. & Sandholm, T. (2016a). Fast optimal clearing of

capped-chain barter exchanges. In Proceedings of the AAAI Conference on Arti�cial

Intelligence, vol. 30. 121

Plaut, B., Dickerson, J.P. & Sandholm, T. (2016b). Hardness of the pricing

problem for chains in barter exchanges. arXiv preprint arXiv:1606.00117 . 121

Qiu, M., Fu, Z., Eglese, R. & Tang, Q. (2018). A tabu search algorithm for

the vehicle routing problem with discrete split deliveries and pickups. Computers &

Operations Research, 100, 102�116. 56, 57

Ralphs, T., Kopman, L., Pulleyblank, W. & Trotter, L. (2003). On the

capacitated vehicle routing problem. Mathematical Programming , 94, 343�359. 68,

98

Rapaport, F. (1986). The case for a living emotionally related international kidney

donor exchange registry. Transplantation proceedings , 18, 5�9. 117

Riascos-Álvarez, L.C., Bodur, M. & Aleman, D.M. (2020). A branch-and-price

algorithm enhanced by decision diagrams for the kidney exchange problem. arXiv

preprint arXiv:2009.13715 . 118, 121, 122, 134

198

BIBLIOGRAPHY

Ribeiro, C.C., Hansen, P., Desaulniers, G., Desrosiers, J. & Solomon,

M.M. (2002). Accelerating strategies in column generation methods for vehicle rout-

ing and crew scheduling problems . Springer. 8, 9

Righini, G. & Salani, M. (2006). Symmetry helps: Bounded bi-directional dynamic

programming for the elementary shortest path problem with resource constraints.

Discrete Optimization, 3, 255�273. iv, 30, 33, 34, 63, 97

Righini, G. & Salani, M. (2008). New dynamic programming algorithms for the

resource constrained elementary shortest path problem. Networks , 51, 155�170. 36

Roberti, R. & Mingozzi, A. (2014). Dynamic ng-path relaxation for the delivery

man problem. Transportation Science, 48, 413�424. 36

Roodnat, J., Zuidema, W., van de Wetering, J., de Klerk, M., Erdman, R.,

Massey, E., Hilhorst, M., IJzermans, J. & Weimar, W. (2010). Altruistic

donor triggered domino-paired kidney donation for unsuccessful couples from the

kidney-exchange program. American Journal of Transplantation, 10, 821�827. 118

Røpke, S. (2012). Branching decisions in branch-and-cut-and-price algorithms for

vehicle routing problems. Presentation in Column Generation, 2012. 50, 100

Roth, A.E., Sönmez, T. & Ünver, M.U. (2004). Kidney exchange. The Quarterly

journal of economics , 119, 457�488. 117

Roth, A.E., Sönmez, T. & Ünver, M.U. (2005). Pairwise kidney exchange. Journal

of Economic theory , 125, 151�188. 119

Roth, A.E., Sönmez, T. & Ünver, M.U. (2007). E�cient kidney exchange: Coinci-

dence of wants in markets with compatibility-based preferences. American Economic

Review , 97, 828�851. 119, 120

Ryan, D. & Foster, E. (1981). Rn integer programming approach to scheduling. 45,

100

Sadykov, R., Vanderbeck, F., Pessoa, A., Tahiri, I. & Uchoa, E. (2019).

Primal heuristics for branch and price: The assets of diving methods. INFORMS

Journal on Computing , 31, 251�267. 48, 57

199

BIBLIOGRAPHY

Sadykov, R., Uchoa, E. & Pessoa, A. (2021). A bucket graph�based labeling

algorithm with application to vehicle routing. Transportation Science, 55, 4�28. 32

Saidman, S.L., Roth, A.E., Sönmez, T., Ünver, M.U. & Delmonico, F.L.

(2006). Increasing the opportunity of live kidney donation by matching for two-and

three-way exchanges. Transplantation, 81, 773�782. 136

Salani, M. & Vacca, I. (2011). Branch and price for the vehicle routing problem

with discrete split deliveries and time windows. European Journal of Operational

Research, 213, 470�477. 56

Scandiatransplant (2023). Scandiatransplant. http://www.scandiatransplant.

org/, accessed: 2023-07-06. 2, 153, 205

Shapley, L.S. et al. (1953). A value for n-person games. 158

Silva, M.M., Subramanian, A. & Ochi, L.S. (2015). An iterated local search

heuristic for the split delivery vehicle routing problem. Computers & Operations

Research, 53, 234�249. 55

Sluijk, N., Florio, A., Kinable, J., Dellaert, N. & Van Woensel, T. (2021).

A chance-constrained two-echelon vehicle routing problem with stochastic demands.

Optimization Online. 85

Sluijk, N., Florio, A.M., Kinable, J., Dellaert, N. & Woensel, T.V. (2023).

Two-echelon vehicle routing problems: A literature review. European Journal of

Operational Research, 304, 865�886. 85

Smeulders, B., Blom, D.A. & Spieksma, F.C. (2022). Identifying optimal strate-

gies in kidney exchange games is σ 2 p-complete. Mathematical Programming , 1�22.

155

Soleilhac, G. (2022). Optimisation de la distribution de marchandises avec sous-

traitance du transport: une problématique chargeur . Ph.D. thesis, Ecole nationale

supérieure Mines-Télécom Atlantique. iv, ix, 54, 56, 58, 70, 71, 73, 75, 77, 78, 79

Solomon, M.M. (1987). Algorithms for the vehicle routing and scheduling problems

with time window constraints. Operations Research, 35, 254�265. 71, 103

200

http://www.scandiatransplant.org/
http://www.scandiatransplant.org/

BIBLIOGRAPHY

Taillard, E.D. (1999). A heuristic column generation method for the heterogeneous

�eet VRP. RAIRO - Operations Research, 33, 1�14. 57

Tilk, C., Rothenbächer, A.K., Gschwind, T. & Irnich, S. (2017). Asymmetry

matters: Dynamic half-way points in bidirectional labeling for solving shortest path

problems with resource constraints faster. European Journal of Operational Research,

261, 530�539. 33

Toth, P. & Vigo, D. (2003). The granular tabu search and its application to the

vehicle-routing problem. INFORMS Journal on Computing , 15, 333�346. 50, 66

Tukey, J.W. et al. (1977). Exploratory data analysis , vol. 2. Reading, MA. 174

Valentín, M.O., Garcia, M., Costa, A.N., Bolotinha, C., Guirado, L., Vis-

toli, F., Breda, A., Fiaschetti, P. & Dominguez-Gil, B. (2019). Interna-

tional cooperation for kidney exchange success. Transplantation, 103, e180�e181. 2,

153, 205

Viklicky, O., Krivanec, S., Vavrinova, H., Berlakovich, G., Marada, T.,

Slatinska, J., Neradova, T., Zamecnikova, R., Salat, A., Hofmann, M.

et al. (2020). Crossing borders to facilitate live donor kidney transplantation: the

czech-austrian kidney paired donation program�a retrospective study. Transplant

International , 33, 1199�1210. 118

Wang, Z., Li, Y. & Hu, X. (2015). A heuristic approach and a tabu search for the

heterogeneous multi-type �eet vehicle routing problem with time windows and an

incompatible loading constraint. Computers & Industrial Engineering , 89, 162�176.

56

Wentges, P. (1997). Weighted dantzig-wolfe decomposition for linear mixed-integer

programming. International Transactions in Operational Research, 4, 151�162. 48

Yoo, K.D., Kim, C.T., Kim, M.H., Noh, J., Kim, G., Kim, H., An, J.N., Park,

J.Y., Cho, H., Kim, K.H. et al. (2016). Superior outcomes of kidney transplanta-

tion compared with dialysis: an optimal matched analysis of a national population-

based cohort study between 2005 and 2008 in korea. Medicine, 95. 117, 152

201

BIBLIOGRAPHY

Zbib, H. & Laporte, G. (2020). The commodity-split multi-compartment capac-

itated arc routing problem. Computers & Operations Research, 122, 104994. 56,

57

Zhou, L., Baldacci, R., Vigo, D. & Wang, X. (2018). A multi-depot two-echelon

vehicle routing problem with delivery options arising in the last mile distribution.

European Journal of Operational Research, 265, 765 � 778. 85

202

Résumé étendu en français

L'optimisation mathématique fournit des outils pour aider les décideurs à résoudre les

problèmes qui se posent dans di�érents domaines d'application. Les progrès récents en

matière d'algorithmes exacts permettent de résoudre à l'optimum de grandes instances

de problèmes bien connus, même si ces derniers sont théoriquement NP-di�cile. De tels

problèmes sont par exemple le problème du voyageur de commerce ou le problème de

tournées de véhicules avec capacité. Aujourd'hui, les problèmes les plus di�ciles sont

ceux qui intègrent deux problèmes d'optimisation ou ceux dont la résolution implique

de résoudre d'autres problèmes d'optimisation, qui sont généralement complexes en

eux-mêmes. Dans le premier cas, le problème intègre des problèmes à deux niveaux de

décision di�érents, par exemple tactique et opérationnel, ou deux sous-problèmes au

même niveau de décision. Dans le second cas, la résolution du problème d'optimisation

principal nécessite le calcul de certaines valeurs obtenues par la résolution d'autres

problèmes d'optimisation.

De tels problèmes peuvent se poser dans di�érents domaines d'application. Ici, nous

nous concentrons sur les domaines du transport et de la santé. Dans le domaine du

transport, nous considérons un problème intégré qui intègre deux problèmes au même

niveau opérationnel. Plus précisément, nous considérons un problème qui se pose dans

les circuits courts et locaux pour des denrées alimentaires (Berti & Mulligan, 2016) : des

produits agricoles de haute qualité doivent être livrés à partir d'exploitations agricoles

de taille moyenne à des clients dont les principales préoccupations sont la qualité et la

traçabilité des produits (King et al., 2014). Ces circuits d'approvisionnement peuvent

impliquer plusieurs fournisseurs (exploitations agricoles) et clients, mais leurs emplace-

ments doivent être situés à une distance maximale de moins de 100km (Blanquart et al.,

2010). Dans ce contexte, les fournisseurs produisent plusieurs produits alimentaires,

tels que des fruits, des légumes et/ou de la viande. En outre, ces types de produits ne

peuvent être fournis que par certains fournisseurs, mais ils peuvent di�érer de l'un à

203

RÉSUMÉ ÉTENDU EN FRANÇAIS

l'autre. De même, les clients ont une demande pour di�érents types de produits. Par

conséquent, ces circuits d'approvisionnement impliquent généralement des installations

intermédiaires, connues sous le nom de plateformes de distribution, dont le rôle est de

consolider les produits avant les livraisons et, par conséquent, de réduire les coûts de

transport (Berti & Mulligan, 2016). En e�et, dans cette application, les fournisseurs

considérés sont des exploitations agricoles de petite taille qui n'ont pas les ressources

nécessaires pour gérer elles-mêmes l'ensemble du transport et de la logistique. Par

conséquent, la collecte et la livraison des produits sont généralement coordonnées par

un décideur central incarné, par exemple, par une association d'agriculteurs ou une

autorité politique. Le décideur central a pour objectif de minimiser le coût total de

transport du système, qui résulte des opérations suivantes. Les fournisseurs possèdent

leurs propres véhicules de grande capacité pour acheminer les produits agricoles vers

les plateformes de distribution par des trajets directs. Une fois que la demande a été

consolidée dans chaque plateforme de distribution, elle est livrée aux clients par une

�otte de véhicules de plus petite capacité gérée par le centre de distribution lui-même.

Les véhicules suivent des itinéraires qui commencent et se terminent dans la plateforme

de distribution à laquelle ils appartiennent.

Le problème d'optimisation qui se pose dans cette application spéci�que est leMulti-

Commodity two-echelon Distribution Problem (MC2DP), un problème de routage dé�ni

sur deux échelons où les di�érents types de produits doivent être pris en compte de

manière explicite. En e�et, seuls certains fournisseurs proposent les mêmes produits et

les demandes des clients peuvent être satisfaites par di�érents véhicules.

Dans les applications de santé, nous considérons un problème intégré dans lequel le

problème principal est enrichi de conditions supplémentaires qui impliquent la résolu-

tion d'autres problèmes d'optimisation. Plus précisément, nous examinons un problème

qui se pose dans le contexte des gre�es de rein impliquant des donneurs vivants. Cette

pratique permet de proposer aux patients atteints d'une maladie rénale grave une op-

tion de transplantation supplémentaire lorsqu'un rein provenant d'un donneur décédé

n'est pas rapidement disponible (Lentine et al., 2023; Nemati et al., 2014). De nos

jours, il est courant que chaque pays gère son propre programme d'échange de reins

pour coordonner les transplantations rénales entre les patients et les donneurs vivants

a�liés à tous les hôpitaux de ce pays (voir, par exemple, Biró et al., 2019a). Ces pro-

grammes sont souvent organisés périodiquement, généralement tous les 3 ou 4 mois.

L'une des principales préoccupations en matière de transplantation rénale est le risque

204

RÉSUMÉ ÉTENDU EN FRANÇAIS

de rejet. Pour réduire ce risque, les gre�es ne sont réalisées qu'entre des patients et des

donneurs compatibles l'un avec l'autre selon plusieurs critères médicaux (Kälble et al.,

2005). Il est souvent di�cile de trouver des patients et des donneurs qui répondent à

ces exigences, même lorsque les transplantations sont gérées au niveau national. C'est

pourquoi, ces dernières années, certains pays ont commencé à collaborer en fusionnant

leurs pools de patients et de donneurs a�n d'augmenter les possibilités de réaliser da-

vantage de gre�es et/ou des gre�es de meilleure qualité (voir, par exemple, Böhmig

et al., 2017; Scandiatransplant, 2023; Valentín et al., 2019). Comme pour les pays

considérés individuellement, des programmes impliquant plusieurs pays sont menés

périodiquement. Dans ce cadre de collaboration entre pays, outre la détermination des

gre�es à e�ectuer, l'objectif est d'assurer : (i) la stabilité du système à chaque exécu-

tion : aucun pays ne doit être incité à quitter le système ; (ii) l'équité du système : les

disparités dans le nombre ou la qualité des gre�es attribués aux pays sont lissées au

cours du programme. Nous appelons le problème d'optimisation sous-jacent Iterative

International Kidney Exchange Problem (IIKEP).

Le MC2DP et l'IIKEP appartiennent tous deux à la catégorie des problèmes d'optimisation

intégrés. Le MC2DP intègre les activités des échelons de collecte et de livraison au

niveau opérationnel. En outre, l'échelon de livraison est composé de plusieurs sous-

problèmes de livraison : un par centre de distribution, appelé Commodity constrained

Split Delivery Vehicle Routing Problem (C-SDVRP). Le C-SDVRP est une extension

du CVRP, qui traite explicitement plusieurs types de produits. Chaque client a be-

soin de plusieurs types produits qui sont compatibles et peuvent être mélangées dans

les véhicules. Pour réduire les coûts, la demande d'un client peut être acheminée par

plusieurs véhicules, mais pour des raisons pratiques, la livraison d'un seul type de pro-

duit ne peut pas être fractionnée. L'IIKEP intègre le problème d'échange de reins

(KEP) avec des conditions de stabilité et d'équité. Le KEP vise à déterminer un en-

semble de gre�es de rein dans un pool de patients et de donneurs de telle sorte que le

nombre ou la qualité des gre�es soit maximal.

Les problèmes d'optimisation intégrée peuvent être résolus avec di�érentes méth-

odes : métaheuristiques, heuristiques dédiées avec ou sans garantie de performance, ou

algorithmes exacts. L'objectif de cette thèse est de concevoir des algorithmes exacts

ou des méthodes capables de fournir de bonnes bornes sur les valeurs optimales des

instances du problème, c'est-à-dire des algorithmes heuristiques avec une garantie de

performance. Les techniques bien connues pour obtenir de tels résultats sont basées

205

RÉSUMÉ ÉTENDU EN FRANÇAIS

sur la génération de colonnes et le paradigme de Branch-Price-and-Cut (BPC) (Barn-

hart et al., 1998). Le principal dé� dans la conception d'algorithmes e�caces pour

les problèmes intégrés réside dans la capacité à résoudre les problèmes centraux, dans

notre cas le C-SDVRP et le KEP, de manière très e�cace.

Dans ce qui suit, nous résumons les principales contributions que nous avons ap-

portées dans cette thèse.

1. Pour résoudre le C-SDVRP très e�cacement, nous concevons un algorithme

heuristique avec une garantie de performance basée sur la génération de colonnes.

L'algorithme intègre une nouvelle heuristique de pricing dédiée à l'aspect multi-

produits du problème. Des expérimentations computationnelles approfondies sur

des instances de référence tirées de la littérature montrent que notre algorithme

fournit plusieurs nouvelles solutions (les meilleures connues) et améliore consid-

érablement le temps de calcul par rapport à une heuristique de pointe pour le

C-SDVRP. La nouvelle heuristique de pricing permet de réduire le temps de

calcul.

2. Pour le MC2DP, nous proposons une formulation étendue basée sur celle du

C-SDVRP, et nous développons un algorithme de BPC exact pour résoudre le

problème. L'algorithme comprend deux familles d'inégalités valides robustes qui

exploitent l'aspect multi-produits du problème. Nous testons l'algorithme de

BPC sur des instances de référence précédemment introduites dans la littérature.

Près de 60% des instances sont résolues à l'optimum, tandis que les autres sont

laissées avec un écart moyen égal à 2.1%.

3. A�n de résoudre le KEP de manière très e�cace, nous proposons un algorithme de

BPC qui inclut deux familles d'inégalités valides non robustes. Nous évaluons les

performances du BPC proposé sur trois ensembles d'instances de référence tirées

de la littérature. Notre BPC est le premier à être testé sur des instances du

KEP ayant des caractéristiques di�érentes. Pour chaque ensemble, nous testons

le BPC par rapport à un algorithme de référence. Le BPC produit des résultats

comparables à ceux de la littérature sur l'ensemble d'instances le plus simple et

surpasse les résultats sur les deux autres ensembles.

4. Pour l'IIKEP, nous proposons une procédure itérative, où le problème qui se pose

à chaque itération est un KEP avec des conditions de stabilité et d'équité. Ce

206

RÉSUMÉ ÉTENDU EN FRANÇAIS

problème est résolu en adaptant l'algorithme de BPC que nous avons conçu pour

le KEP. Nous fournissons une analyse managériale de l'impact des conditions

de stabilité et d'équité sur les solutions. Dans l'analyse expérimentale, nous

montrons que l'instabilité du système est fortement réduite et que les écarts par

rapport à un scénario équitable idéal sont faibles. Il est à noter que dans ce cadre

de collaboration entre pays, l'amélioration en termes de béné�ces médicaux est

importante. Par rapport à cette amélioration, le prix à payer pour les conditions

de stabilité et d'équité est faible. Par conséquent, dans ces conditions, les pays

sont incités à participer à un programme international d'échange de reins.

207

Branch-price-and-cut algorithms for integrated optimisation problems in

transportation and healthcare

Abstract: In this thesis, we study optimisation problems in transportation and healthcare.

For transportation applications, �rst, we address the Commodity constrained Split Delivery

Vehicle Routing Problem (C-SDVRP) a routing problem where customer demands are com-

posed of multiple commodities. Several vehicles can deliver a customer, however, the demand

for a single commodity must be delivered by one vehicle only. Then, we consider an exten-

sion of the C-SDVRP de�ned on two echelons, the Multi-Commodity two-echelon Distribution

Problem. Commodities are collected in the �rst echelon by direct round trips between distri-

bution centres and suppliers, and, in the second echelon, they are delivered to the customers

from each distribution centre as in the C-SDVRP. For healthcare applications, �rst, we study

the Kidney Exchange Problem, whose aim is to �nd the best set of transplants, in terms of

medical bene�t, in a pool of donors and patients. Then, we considered collaboration and fair-

ness in the International Kidney Exchange Problem where di�erent countries join a common

kidney exchange program. All the problems we consider share a common structure: they

reduce in �nding the best set of paths in a graph. We modelled them by means of extended

formulations where the variables correspond to the paths, and we solve them by heuristic or

exact methods based on the branch-and-price paradigm.

Keywords: column generation, integrated operational problems, vehicle routing problems,

kidney exchange problems.

Algorithmes de branch-price-and-cut pour des problèmes d'optimisation intégrés

en transport et santé

Résumé : Dans cette thèse, nous étudions des problèmes d'optimisation en transport et

santé. Pour les applications en transport, nous traitons le problème nommé Commodity con-

strained Split Delivery Vehicle Routing Problem (C-SDVRP) où les demandes des clients sont

composées de plusieurs produits. Plusieurs véhicules peuvent livrer un client, cependant la

demande d'un produit doit être livrée par un seul véhicule. Ensuite, nous considérons une ex-

tension du C-SDVRP dé�nie sur deux échelons, le Multi-Commodity two-echelon Distribution

Problem. Les produits sont collectés au premier échelon par des trajets directs entre les centres

de distribution et les fournisseurs, puis au second échelon ils sont livrés aux clients à partir de

chaque centre de distribution comme dans le C-SDVRP. Pour les applications en santé, nous

étudions le Kidney Exchange Problem, dont l'objectif est de trouver le meilleur ensemble de

gre�es, en termes de béné�ce médical, dans un pool de donneurs et de patients. Ensuite, nous

avons examiné la collaboration et l'équité dans le International Kidney Exchange Problem où

di�érents pays adhèrent à un programme commun d'échange de reins. Tous les problèmes

que nous considérons ont une structure commune : ils se réduisent à la recherche du meilleur

ensemble de chemins dans un graphe. Nous les avons modélisés au moyen de formulations

étendues où les variables correspondent aux chemins ; et nous les avons résolus par des méth-

odes heuristiques ou exactes basées sur un paradigme de type branch-and-price.

Mots-clés : génération de colonnes, problèmes opérationnels intégrés, problèmes de tournées

de véhicules, problèmes d'échanges de reins.

	Acknowledgements
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	1 A tutorial on Branch-Price-and-Cut algorithms for vehicle routing-like problems
	1.1 Introduction
	1.2 From Branch-and-Bound to Branch-Price-and-Cut
	1.2.1 Branch-and-Bound algorithm
	1.2.2 Column generation
	1.2.3 Branch-and-Cut algorithm
	1.2.4 Branch-Price-and-Cut algorithm

	1.3 Problem description and formulation
	1.4 Solving by a Branch-Price-and-Cut algorithm
	1.4.1 Restricted master problem
	1.4.2 Pricing problem: the (E)SPPRC
	1.4.3 Algorithms for the SPPRC
	1.4.4 Algorithms for the ESPPRC
	1.4.4.1 Monodirectional algorithm of Feillet2004
	1.4.4.2 Bounded bidirectional algorithm of Righini2006

	1.4.5 Relaxing the elementarity constraint
	1.4.6 Dual bound and termination condition
	1.4.7 Valid inequalities
	1.4.8 Branching scheme
	1.4.9 Additional speed up techniques
	1.4.9.1 Column generation degeneracy
	1.4.9.2 Primal heuristics
	1.4.9.3 Pricing heuristics
	1.4.9.4 Strong branching

	1.5 Final remarks

	2 A heuristic with a performance guarantee for the Commodity constrained Split Delivery Vehicle Routing Problem
	2.1 Introduction
	2.2 Problem description
	2.3 Problem formulation
	2.4 A restricted master heuristic
	2.4.1 Column generation
	2.4.2 Pricing problem
	2.4.3 Solution of the pricing problem
	2.4.3.1 Preprocessing phase
	2.4.3.2 A new two-phase pricing heuristic
	2.4.3.3 Reduced graph heuristics

	2.4.4 Valid inequalities
	2.4.5 Initialization of the set R
	2.4.6 Local search

	2.5 Computational experiments
	2.5.1 Benchmark instances
	2.5.2 Impact of the novel pricing heuristic
	2.5.3 Results on the whole testbed
	2.5.4 Comparison with Gu2019 and Soleilhac2022

	2.6 Conclusions

	3 A Branch-Price-and-Cut algorithm for the Multi-Commodity two-echelon Distribution Problem
	3.1 Introduction
	3.2 Literature review
	3.3 Problem description
	3.4 Problem formulation
	3.4.1 Valid inequalities

	3.5 Branch-Price-and-Cut algorithm
	3.5.1 Column generation
	3.5.2 Management of the valid inequalities
	3.5.3 Branching strategies
	3.5.4 Accelerating strategies

	3.6 Computational experiments
	3.6.1 Benchmark instances
	3.6.2 Impact of valid inequalties
	3.6.3 Evaluation of the BPC algorithm
	3.6.4 Results on the whole testbed

	3.7 Conclusions

	4 Solving the Kidney Exchange Problem with long cycles and chains via a Branch-Price-and-Cut algorithm
	4.1 Introduction
	4.2 Literature review
	4.3 Problem formulation
	4.4 A Branch-Price-and-Cut algorithm
	4.4.1 Column generation
	4.4.2 Pricing problem formulation
	4.4.3 Pricing problem solution
	4.4.4 Cut generation
	4.4.4.1 Subset-row inequalities
	4.4.4.2 Odd-hole inequalities
	4.4.4.3 Cut generation strategy

	4.4.5 Branching scheme
	4.4.6 Accelerating techniques

	4.5 Computational experiments
	4.5.1 Benchmark instances
	4.5.2 Results on the whole testbed
	4.5.2.1 Results on the PrefLib dataset

	4.5.3 Results on the set of instances of Pansart2022
	4.5.4 Results on the set of instances of Delorme2023
	4.5.5 Impact of the valid inequalities
	4.5.6 Impact of the length constraints on the objective function

	4.6 Conclusions

	5 Collaborative and fairness aspects in the Iterative International Kidney Exchange Problem
	5.1 Introduction
	5.2 Concepts of cooperative game theory
	5.3 Problem description
	5.3.1 Kidney Exchange Problem
	5.3.2 International Kidney Exchange Problem with stability
	5.3.3 Iterative International Kidney Exchange Problem

	5.4 Formulation for the IKEP with stability and fairness in a single round
	5.5 Solution procedure for the IIKEP
	5.5.1 Branch-Price-and-Cut algorithm to solve formulation [Pt]

	5.6 Computational experiments
	5.6.1 Generation of the testbed
	5.6.2 Assessment of the stability conditions
	5.6.3 Assessment of the fairness conditions

	5.7 Conclusions

	Conclusions and Perspectives
	References
	Résumé étendu en français

