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2.3 Ph.D. Student in Automation and industrial computing (Feb. 2010Sep. 2014) My Ph.D. thesis research activity can be roughly grouped into three phases :

1. Ph.D. student at the EEA Laboratory, UY1 (Feb.2010Jun.2011), Cameroon During this period, I focused on deepening the algorithms developed in the Master's thesis, in particular, by applying fuzzy logic to the intelligent management of a roundabout and learning articial neural networks. the control of the mobile part was straightforward. We thought about the hybridization of articial potential elds and type-2 fuzzy logic. The Articial Potential Field (APF) is quick and easy to implement but faces local minima and robustness problems. Type-2 fuzzy logic is robust, free from local minima, but computationally intensive. The objective was to exploit the best of them, namely the computationally ecient of the APF method and the capability of fuzzy logic methods to achieve navigation behaviors without local minima issues. Part of the results obtained has been published in [Melingui et al. 2014e], and [Melingui et al. 2013a]. The manipulative part was the most challenging because although the forward and inverse models were developed [Melingui et al. 2014c, Melingui et al. 2014g, Melingui et al. 2014f], the control was still dicult. Indeed, the platform inherited undesirable eects, such as the pneumatic actuators' hysteresis eect and the memory eect of the component material (polyamide). Therefore, for the same pressure input, different robot congurations could be associated. Consequently, point tracking required on-line correction. We proposed neural control architecture with two correction loops. The rst one is related to the correction of the kinetic model of the CBHA, which consisted of overcoming the memory eect. The second, on the other hand, should reduce positioning errors. Parts of the results obtained were published in [START_REF] Melingui | [END_REF], Melingui et al. 2014a]. The control of the mobile manipulator was proposed in [Melingui 2014].

Research topics

Our research interest focuses on autonomous navigation of mobile robots, modelling and control of rigid manipulators, and modelling and control of continuum manipulators. The following sub-sections provide a summary of these research interests.

Autonomous navigation of mobile robots

The issue of autonomous navigation of mobile robots is a topical and widely studied subject. The problem consists -roughly speaking -in bringing a mobile robot from a starting point to a destination point. Therefore, the robot must [START_REF] Remazeilles | Navigation à partir d'une mémoire d'images[END_REF]]:

have sensors that give it information about its environment, have sensors enabling it to locate itself, be able to decide on the actions to be taken to reach the target, be able to carry out these actions by controlling one's movements correctly.

Navigation algorithms generally aim to give the robot the necessary perception, decision, and action capabilities to perform the assigned tasks. These algorithms are usually divided into two main classes, depending on whether the problem is solved locally or globally. In global approaches, it is assumed that more or less a priori knowledge of the environment is available. In contrast, it is assumed that no global knowledge is available a priori on the environment for local approaches. Therefore, the robot will evolve and decide on its movements according to the desired goal and the sensory data received as it moves towards the target [START_REF] Bonin-Font | Visual navigation for mobile robots: A survey[END_REF].

So far, our contributions in this theme have focused on applying local approaches to mobile robots' autonomous navigation. We have proposed several contributions in this theme, using the articial potential eld technique, fuzzy logic, articial neural networks, or a combination of these [Melingui et al. 2014e, Mbede et al. 2012, Melingui et al. 2014d[START_REF] Loufti | Imrane Mahamat Loufti, Achille Melingui, Joseph Jean-Baptiste Mvogo Ahanda, Frédéric Biya-Motto and Rochdi Merzouki. Articial Potential Field Neurofuzzy Controller for Autonomous Navigation of Mobile Robots[END_REF]. The basic concepts and the proposed algorithms will be developed in chapter 4.

We have recently been interested in global approaches, mainly through the planning of mobile robots' trajectories with minimization of the energy consumed [Datouo et al. 2017].

The prospects in this topic aim at developing pythagorean-hodograph curvesbased type-2 fuzzy logic algorithms. The idea is to propose controllers whose prole of the generated velocities (resulting trajectories) would minimize the consumed energy. Because until now, the fuzzy rules established were centered-experts. They depend on the expert's experience on the system to be controlled and understand the treated problematic. A thesis is currently being developed around this problematic.

We are also interested in the trajectory tracking of autonomous systems based on the articial potential eld.

Modelling and control of rigid manipulators

Our work on this topic covers both the modeling and control aspects. In modeling, we are interested in modeling the inverse kinematics of redundant manipulators [Kouabon et al. 2020a, Jiokou K et al. 2020, Kouabon et al. 2020b]. The aim is to propose algorithms that can be implemented in real-time and allow maximum exploitation of their characteristics, particularly the exploitation of redundancy for the execution of secondary tasks such as the avoidance of singularities, the avoidance of obstacles, the avoidance of joint limits. A thesis is being completed in this area. The prospects in this topic aim to extend the algorithms proposed to the case of mobile manipulators and the cooperation of several mobile manipulators for the execution of common tasks such as the transport of bulky objects.

The contributions on the control of rigid manipulators are concentrated around the control of exible joint manipulators. So far, our contributions have focused on deterministic cases [START_REF] Ahanda | [END_REF], Ahanda et al. 2018a, Ahanda et al. 2018b],

i.e., when the robot environment is stable and known. However, when this environment is unknown or subjected to random vibrations, these methods can no longer ensure good tracking accuracy because of unmodelled dynamics resulting from the vibrations. The prospects on this topic are aimed at handling random vibration environments. The proposed algorithms will be developed in chapter 6.

Modelling and control of continuum manipulators

This theme is the continuation of our thesis work. Our contributions to this theme cover both the modeling and control aspects. Several contributions have been proposed covering both modelling [Melingui 2014, Melingui et al. 2014c, Melingui et al. 2014g, Singh et al. 2018b, Lakhal et al. 2015, Melingui et al. 2019] and control [START_REF] Melingui | [END_REF], Melingui et al. 2017b, Melingui et al. 2017a]. Our contributions to date have focused on modeling and the proposal of control architectures. The prospects in this area aim to extend the algorithms developed to the case of mobile continuum manipulators [START_REF] Boutchouang | [END_REF], the use of deep learning [START_REF] Boutchouang | [END_REF], and the reinforcement learning.
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The proposed algorithms will be further developed in chapter 5.

Participation in research projects

This section summarizes my involvement in past and current projects. Matrice project: Additive manufacturing for the construction industry, 20152017

ERDF-Region funds funded this project on additive printing in construction. I participated in this project as a guest researcher (between Oct.2016 andDec.2016). CRIStAL was in charge of developing an integrated concept of mobile robots and continuum manipulators, dedicated to 3D printing in construction, as well as quality control (Figure 4). In this context, I participated in the co-supervision of the thesis of Mr. Othman Lakhal's thesis. This project is part of the societal issue Construction of the future.

My participation in this project has resulted in the following publications: [Lakhal et al. 2019, Lakhal et al. 2015 focused on Contribution to the modeling and control of hyper-redundant robots: application to additive manufacturing in construction. We contributed, in particular, on the inspection of printed objects. The exibility of the CBHA continuum manipulator was exploited to inspect hard-to-reach areas. The thesis was defended in November 2018. Part of the results obtained has been published in [Lakhal et al. 2019]. The modeling of the CBHA consisted of developing a hybrid approach for the inverse kinematics of continuum manipulators.

Supervision and Mentoring

Initially, a quantitative approach was used to model the CBHA kinematically, inspired by parallel rigid manipulators' modeling. The CBHA was modeled as a vertebrae series. Each vertebra is connected to the next by a exible link; the latter called an intervertebral being modeled by a 3UPS-1UP (Universal-Prismatic-Spherical) joint. The kinematic models of the CBHA were derived from the inverse kinematic equations (IKE) of each intervertebral. A qualitative approach based on neural networks was then used to provide approximate solutions of the IKEs for real-time implementation. Parts of the results obtained were published in [START_REF] Lakhal | [END_REF], Lakhal et al. 2014a].

2. Lecturer at the UY1 in January 2015, Cameroon This approach exploits optimization learning methods that allow obtaining global solutions to the training problem while keeping small-sized regressors. These features accelerate the convergence of the closed-loop system, thus reducing the execution time.

(b)

Command ltered adaptive backstepping control of exible joint manipulators I supervised the Ph.D. student, Joseph Jean-Baptiste Mvogo Ahanda, who was working on the modeling and control of exible manipulators.

The latter was initially under the supervision of Jean Bosco Mbede, professor at the UY1; after his death in March 2017, I had the enormous responsibility of taking over his supervision. The Ph.D. dissertations of several others, including Gino Ambroise Jiokou Kouabon, Audrey Haycinthe Bouyom Bouatchang, Imrane Mathamat Loufti, and Charles Medzo Aba are in progress; they will defend their Ph.D. thesis between September 2021 and March 2022. Regarding Joseph, we were interested in Command ltered adaptive backstepping control of exible joint manipulators. Two novel control laws were proposed; namely, Support vector regression-based command ltered adaptive backstepping approach and Robust adaptive Command ltered control with uncertain dynamic and joint space constraints. Parts of the results obtained have been published in [Ahanda et al. 2018b, Ahanda et al. 2018c]. The thesis was defended in November 2018. A novel Ph.D. thesis on this topic that of Charles is in progress where the robot environment is assumed stochastic. Parts of the results obtained are under review in [START_REF] Aba | [END_REF]].

3. Guest Professor at the University of Lille, Oct.2016Dec.2016, Adaptive algorithms for improving the performance of continuum manipulators.

During my stay, in parallel with the teaching tasks in the MRT Mas- student Ismail Bensekrane on the modeling of energy consumption of overactuated unmanned road vehicles (URVs) using neuroadaptive fuzzy control

architecture. An energy planning strategy for URVs with redundant steering congurations was proposed. In fact, for each segment of the URV's trajectory, indicators on road geometry, actuation redundancy, optimal speed prole, and driving mode were evaluated. The objective was achieved by modeling the energy consumption of the URVs. However, due to the presence of unknown dynamic parameters of the URVs and uncertainties about its interaction with the environment, data-driven-based methods were adopted for the estimation of energy consumption, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS). The ANFIS model was obtained using trained data from the dynamics of a real URV. Some of the results obtained were also published in [START_REF] Bensekrane | [END_REF], Bensekrane et al. 2018]. The thesis was defended in July 2019. During this stay, I also investigated the optimal control of mobile continuum manipulators. The idea is to make a mobile continuum manipulator evolve in constrained environments by using each time the conguration of the mobile manipulator (inverse solution), which minimizes the energy consumed. The algorithms are in development. Beaudelaire dezo Segning, Design and control of a mobile robot using fuzzy logic approach, defended in 2019.

NGAN BAKINDE Salomon Didier , Design and control of a 5 dof manipulator robot, defended in 2019.

Chapter 3

Teaching Activities

Introduction

This chapter aims to give a quick and concise overview of the teaching units covered by my teaching activity since I registered for my doctoral thesis in 2010. We present the teaching units dispensed during my doctoral dissertation and after my recruitment to the National Higher School of Engineering of the UY1 in 2015. 

Previous Teachings

Robotics and vision, UY1

This course is intended for students of Master 2 Mechatronics. The objective Among the reactive approaches to navigation, the Fuzzy logic approach has emerged as an eective technique to tackle the uncertainties and imprecisions present in mobile robots' navigation environments.

[ Sanchez et al. 2015, Hagras 2004, Pandey et al. 2017, Melingui et al. 2014e]. Besides, given a large number of situations that mobile robots face during navigation, it will be difcult and time-consuming for human experts to examine all these situations to nd the right decision-making control.

Thus, soft computing algorithms such as fuzzy logic become suitable candidates in such situations. For example, the type-1 fuzzy logic method has been widely used for navigation and control of mobile robots [START_REF] Beom | A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning[END_REF], Faisal et al. 2013, Surmann et al. 1995, Parhi 2005, Masmoudi et al. 2016[START_REF] Bakdi | Optimal path planning and execution for mobile robots using genetic algorithm and adaptive Bibliography fuzzy-logic control[END_REF]. Based on the experts' knowledge, type-1 fuzzy systems have been developed using fuzzy rules and crisp value membership functions. To improve the performance of these systems, learning techniques, such Chapter 4. Autonomous navigation of mobile robots as genetic algorithms, have also been implemented to tune the parameters of the membership functions [Pratihar et al. 1999, Hagras et al. 2004]. However, it has been demonstrated that fuzzy type-1 systems cannot fully manage or cope with the linguistic and numerical uncertainties associated with the changing and dynamic unstructured navigation environments of mobile robots because they use the crisp values of the membership functions. Because, once the membership functions of fuzzy type-1 systems are chosen or tuned, the performance of the overall system becomes xed, and therefore the eects of uncertainties cannot be eectively reduced or eliminated. On the other hand, higher-order fuzzy logic systems (FLS), such as Interval type-2 FLS using Interval type-2 fuzzy sets, have been shown capable of modeling and handling such uncertainties and impressions [Mendel 2019, Sanchez et al. 2015, Hagras 2004]. Indeed, this capacity is justied by the fact that an interval type-2 membership function can be seen as possessing an uncountable number of type-1 sets. The third dimension of type-2 fuzzy logic sets and its footprint of uncertainty give them more degrees of freedom sucient for better uncertainty modeling than type-1 fuzzy sets. In the literature, there are a large number of works that compare the performance of type-1 and type-2 fuzzy systems as in [Sanchez et al. 2015, Hagras 2004, Melin et al. 2013]. Besides, many optimization algorithms such as the chemical optimization paradigm [START_REF] Astudillo | [END_REF], the particle swarm optimization [Maldonado et al. 2013], the hybrid learning algorithm [Méndez & De Los Angeles Hernández 2013], have also been implemented to nd optimal parameters for fuzzy membership functions.

Concerning the navigation of mobile robots, there has been much research work using type-2 fuzzy systems. Junratanasiri et al. [START_REF] Junratanasiri | Sittichok Junratanasiri, Sansanee Auephanwiriyakul and Nipon Theera-Umpon. Navigation system of mobile robot in an uncertain environment using type-2 fuzzy modelling[END_REF]] used interval type-2 fuzzy logic for obstacle avoidance and position stabilization of mobile robots navigating in dynamic environments. Huang et al.[Huang et al. 2017] proposed an integrated fuzzy logic approach with interval type-2 fuzzy logic for modeling and controlling a two-wheeled mobile inverted pendulum. The objective of the control was to achieve the desired position and direction while maintaining the balance of the system. A reinforcement ant optimized interval type-2 fuzzy logic controller for wheeled mobile-robot wall-following control under reinforcement learning environments was also been proposed in [Juang & Hsu 2009]. [START_REF] Karray | [END_REF] focused on solving the problem of tracking the trajectory of non-holonomic mobile manipulators in the presence of obstacles. An adaptive controller was designed to minimize the eect of model perturbations and uncertainties during trajectory tracking, and two fuzzy controllers were used to keep the robot away from obstacles and reach a virtual target point, respectively. Hagras [Hagras 2004] used interval type-2 FLC to implement the basic navigation behavior and the coordination between these behaviors to produce a type-2 HFLC for twowheel mobile robots navigating in changing and dynamic unstructured indoor and outdoor environments. However, most of the aforementioned methods are based on a hierarchical architecture and the whole system can become complicated and take a long time to accomplish the dierent navigation behaviors. As a consequence, it becomes important to have single structures such as fuzzy neural networks which 4.2. Interval type-2 fuzzy logic controller for autonomous navigation of mobile robots 33 can at the same time combine various navigation behaviors. In this way, Kim and Chwa [START_REF] Kim & Chwa | Obstacle avoidance method for wheeled mobile robots using interval type-2 fuzzy neural network[END_REF] proposed the obstacle avoidance method in the position stabilization for wheeled mobile robots using an interval type-2 fuzzy neural network (IT2FNN). A navigation system using IT2FNN tting Q-learning has been proposed

in [Yi et al. 2019] for mobile robot navigation in complex environments. The approximation capabilities of IT2FNN have been specically used to solve the mapping relationship between the state and the action spaces in Q-learning. In general, the normal type-2 reduction operation used in type-2 FNN systems requires an iterative procedure [Mendel 2017, Liu & Mendel 2011], such as the Karnik-Mendel procedure (K-M) to determine the outputs of the neuro-fuzzy system. However, when the number of fuzzy rules becomes large and the quantity of training data huge, training can take tens or hundreds of hours. In this regard, the normal type-reduction operation has been replaced with weighted bound-set boundaries in [Juang & Juang 2012] to reduce the training time of IT2FNN systems. In the same vein, a simplied interval type-2 fuzzy neural network where the time-consuming K-M iterative procedure is replaced by two design q-factors q l and q r has been proposed in [Lin et al. 2013].

This is of paramount importance in the autonomous navigation context, where the response time of the navigation systems is critical. Besides, the response time can be signicantly reduced if strategies aimed at reducing the size of the fuzzy rule base are considered [Jin 2000, Yam et al. 1999, Melingui et al. 2014e].

Some autonomous navigation methods, when implemented alone, can lead to poor performance; whereas their combinations, when well-thought-out, can yield exceptional performances. Previously, in the framework of mobile robot navigation, it was proposed an IT2FL system with the attractive and repulsive forces of the articial potential eld (APF) as additional linguistic variables [Melingui et al. 2014e, Melingui et al. 2013a]. This controller was able to perform basic navigation behaviours with a small fuzzy rule base. The navigation environment was divided into navigation areas, including areas with local minima and no local minima. The APF controller operated virtually in areas with no local minima while the IT2FL controller operated in areas with local minima. Indeed, while navigation in areas with no local minima, the outputs of the APF controller were directly transferred to the output of the IT2FL controller using a "none" membership function (MF). In fact, for a given fuzzy rule, the "none" MF makes it possible to no consider some linguistic variables in the output computing. In this paper, the performance of the former IT2FL controller is improved by replacing the K-M type-reduction operation by two design q-factors q l and q r which are learned via back-propagation algorithm.

Interval type-2 fuzzy logic controller for autonomous navigation of mobile robots

This section focuses on the description of the IT2FL controller developed in [Melingui et al. 2014e, Melingui et al. 2013a]. We nd this description necessary as the proposed IT2FNN controller is an extension of the latter.

The IT2FL controller developed in [Melingui et al. 2014e, Melingui et al. 2013a] proposed a hybridization of the fuzzy logic concepts and articial potential eld concepts in a common framework. APF method for navigation of mobile robots is computationally ecient and considers both the problems of obstacle avoidance and trajectory planning, but faces the local minima problem. On the other hand, navigation through the fuzzy logic method can be achieved without issues of local minima but is computationally expensive as the fuzzy rule database increases.

Hence, the authors found necessary to combine both methods to exploit the best of them. This hybridization had the objective to exploit the computationally ecient of the APF method and the capability of fuzzy logic methods to achieve navigation behaviours without local minima issues. After noticed that most of local minima situations occur when the potential attractive force and repulsive attractive force are collinear, the navigation environment has been divided into three areas as shown in Fig. 4.1, two areas where it is dicult to encounter local minima situations and another one where the robot can encounter local minima situations. The challenge was to associate these methods without using a switch system which generally involves some oscillations at the time of transition from one controller to another. To achieve this, an APF controller has rst been designed using the information of dierent sensors, and its outputs have been used as additional inputs to the IT2FL controller.

Thus, during navigation in no local minima areas, the outputs of the APF controller were directly transferred to the output of the IT2FL controller by using the "none" membership function. On the other hand, IT2FL was only used in the local minima areas. The association allows the authors to achieve autonomous navigation of a mobile robot named Robotino with only 15 fuzzy rules as shown in Table 4.1. This number of fuzzy rules is signicantly small compared to 40 rules and 128 rules developed for the same platform in [Melingui et al. 2013a] and [Oltean et al. 2010],

respectively.

The following robot' state variables (d l , d f , d r , ∆X, α, F x , F y ) were used as IT2FL controller inputs and the longitudinal velocity V x and the lateral velocity V y as outputs. d l , d f , and d r represent the distance between the robot and the nearest obstacle in the left, front, and right side of the robot, respectively. ∆X the distance between the current position of the robot and the target position and α the orientation of the target relative of the current position of the robot. F x and F y represent the longitudinal and lateral articial forces generated by the APF controller. The linguistic variables d l , d f , and d r were modelled by one rectangular interval type-2 membership function (RIT-2-MF) and two interval type-2 Gaussian membership functions (IT-2-GMF) represented by the labels "None " ( N one), "Near " ( N ), and "Far " ( F ), respectively. The distance between the robot and the goal position was modelled by one RIT-2-MF and two IT-2-GMFs represented by the labels "None " ( N one), "Near " ( N ), and "Far " ( F ), respectively. The orientation of the target relative to the current pose of the robot α, the longitudinal articial force (F x ) and the lateral articial force (F y ) were modelled by one RIT-2-MF and three IT-2-GMFs represented by the labels "None " ( N o), "Negative " ( N E), "Zero" ( Z) "Positive "
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( P O), respectively. Finally, the outputs, that is, the longitudinal velocity V x and the lateral velocity V y were modelled by ve IT-2-GMFs represented by the labels "Fast Backward " ( F BW ), "Backward " ( BW ), "Stop" ( S), "Forward " ( F W ), and "Fast forward " ( F F W ), respectively. The lower and upper membership grades of the RIT-2-MF labeled as "None " are equal to one. The use of the longitudinal articial force (F x ), the lateral articial force (F y ) as additional input variables, combined with "None " MF allow a signication reduction of the number of the fuzzy rules.

We refer the reader to [Melingui et al. 2014e, Melingui et al. 2013a] for more details on the IT2FL controller. 

Articial Potential Field Neurofuzzy Controller for Autonomous Navigation of Mobile Robots

This work aims to make the IT2FL controller proposed in [Melingui et al. 2014e] computationally ecient by replacing the type-reduction operation by two design q-factors q l and q r . The idea is to emulate this controller while making it computationally ecient. This section focuses on the development of the proposed IT2FNN controller. The section rst presents the IT2FNN architecture and ends with the enhancing of the IT2FNN performance through tuning IT2FNN's parameters using a back-propagation algorithm.

IT2FNN architecture

The topology of the IT2FNN controller consists of four layers as shown in Fig. 4.2.

The layers I and II form the antecedent part of the IT2FNN while layers III and IV form the consequent part. The function of each layer is detailed hereafter. 

N d l d f d r ∆ X α F x F y V x V y N one N one N one N one N E P O N E F W BW N one N one N one N one N E P O Z F W S N one N one N one N one N E P O P O F W F W N one N one N one N one P O P O N E F W BW N one N one N one N one P O P O Z F W S N one N one N one N one P O P O P O F W F W F F F N one N one Z N E S F BW F F F N one N one Z Z S S F F F N one N one Z P O S F F W 10 F F Ñ N one Z N one N one F W S 11 Ñ F F N one Z N one N one F W S 12 F Ñ F Ñ Z N one N one S S 13 F Ñ Ñ Ñ Z N one N one S S 14 Ñ Ñ F Ñ Z N one N one S S 15 Ñ Ñ Ñ Ñ Z N one N one S S
u F i j (x k ) =    N m i k 1 , σ i k , x k , x k < m i k 1 1 , m i k 1 ≤ x k ≤ m i k 2 N m i k 2 , σ i k , x k , x k > m i k 2 (4.1) u F i j (x k ) =    N m i k 2 , σ i k , x k , x k ≤ m i k 1 +m i k 2 2 N m i k 1 , σ i k , x k , x k > m i k 1 +m i k 2 2 (4.2)
where

N m i k , σ i k , x k = exp -1 2 x k -m i k σ i k 2 .
Thus, the output of this layer can be expressed as an interval type-1 set

[ū F i j (x k ) , u F i j (x k )].
Layer III (Firing layer)

Each node in this layer computes the ring strength. The IT2FNN's F i ring strength for ith rule is a type-1 set interval, expressed as follows:

F i = f i , f i (4.3)
where This layer combines the outputs of the layer II (f i , f i ) and layer III (y i ), the centroid interval set [w i l w i r ] of the consequent part [Mendel 2017], and the design q-factors [q l , q r ] allowing adaptive adjustment of the upper and the lower values without using the K-M iterative procedure to nd L and R endpoints [Lin et al. 2013]. The use of q-factors signicantly reduces the complexity of type-2 FLS and makes the latter suitable for real-time applications such as autonomous navigation of mobile robots given the large size of their rule base. By using q-factors, the left and right endpoints y l and y r can be computed as follows:

f i = u F i 1 (x 1 ) * . . . * u F i n (x n ) = n j=1 u F i 1 (x j ) (4.4) f i = u F i 1 (x 1 ) * . . . * u F i n (x n ) = n j=1 u F i 1 (x j ) (4.
y l = (1 -q l ) M i=1 f i w i l + q l M i=1 f i w i l M i=1 f i + f i (4.7) y r = (1 -q r ) M i=1 f i w i r + q r M i=1 f i w i r M i=1 f i + f i . (4.8) 
Finally, each defuzzied crisp output y ( x) of the IT2FNN is the average of y l and y r as follows:

y ( x) = y l + y r 2 .

(4.9)

Back-propagation algorithm

This section focuses on training of the IT2FNN through the back-propagation algorithm. The learning process minimizes the following error function:

e p = 1 2 [y ( x p ) -d p ] 2 , p = 1, ..., P, (4.10) 
where P is the number of training data ( x p , d p ).

Let consider η as the learning rate, the means m i k 1

and m i k2 , the standard deviation σ, the consequent weighting factors w i l and w i r , and the q-factors q l and q r of the ith rule are updated as follows: 

m i k1 (p + 1) = m i k1 (p) -η ∂e p ∂m i k1 p , ( 4 
q i l (p + 1) = q i l (p) -η ∂e p ∂q i l p , (4.16 
) 

q i r (p + 1) = q i r (p) -η ∂e p ∂q i r p . ( 4 
∂y l ∂m i k1 p = ∂y l ∂u F i k (x k ) ∂u F i k (x k ) ∂m i k1 + ∂y l ∂u F i k (x k ) ∂u F i k (x k ) ∂m i k1 , (4.22) ∂y r ∂m i k1 p = ∂y r ∂u F i k (x k ) ∂u F i k (x k ) ∂m i k1 + ∂y r ∂u F i k (x k ) ∂u F i k (x k ) ∂m i k1 . (4.23)
From (4.22),(4.23), (4.1), and (4.2), the following relations are derived:

∂u F i k (x k ) ∂m i k1 =        (xk-m i k1 )N(m i k1 ,σ i k ,x k ) σ i k 2 , x k < m i k1 0, m i k1 ≤ x k ≤ m i k2 0, x k > m i k2 (4.24) ∂u F i k (x k ) ∂m i k1 =    0, x k ≤ m i k1 +m i k2 2 (xk-m i k1 )N(m i k1 ,σ i k ,x k ) σ i k 2 , x k > m i k1 +m i k2 2 (4.25) ∂u F i k (x k ) ∂σ i k =          (xk-m i k1 ) 2 N (m i k1 ,σ i k ,x k ) σ i k 3 , x k < m i k1 0, m i k1 ≤ x k ≤ m i k2 (xk-m i k2 ) 2 N (m i k2 ,σ i k ,x k ) σ i k 3 , x k > m i k2 (4.26) 40
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∂u F i k (x k ) ∂σ i k =      (xk-m i k2 ) 2 N (m i k2 ,σ i k ,x k ) σ i k 3 , x k ≤ m i k1 +m i k2 2 (xk-m i k1 ) 2 N (m i k1 ,σ i k ,x k ) σ i k 3 , x k > m i k1 +m i k2 2 (4.27) ∂y l ∂u F i k (x k ) = n j=1 j =k u F i j q l w i l -y l M i=1 f i + f i . (4.28)
Similarly, 

∂y l ∂u F i k (x k ) = n j=1 j =k u F i j (1 -q l ) w i l -y l M i=1 f i + f i , (4.29) ∂y r ∂u F i k (x k ) = n j=1 j =k u F i j q r w i r -y r M i=1 f i + f i , (4.30) ∂y r ∂u F i k (x k ) = n j=1 j =k u F i j (1 -q r ) w i r -y r M i=1 f i + f i . ( 4 
m i k 1 (p + 1) = m i k 1 (p) -1 2 η (y( x p )-d p ) x k -m i k 1 N m i k 1 ,σ i k ,x k σ i k 2 ×   n j=1 j =k u F i j (x k )   [(qlw i l +qrw i r )-(yl+yr)] M i=1 f i +f i      . (4.32) If x p k ≥ m i k1 and x p k > 1 2 m i k 1 + m i k 2
, by following the same procedure, we get the following:
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m i k 1 (p + 1) = m i k 1 (p) -1 2 η (y( x p )-d p ) x k -m i k 1 N m i k 1 ,σ i k ,x k σ i k 2 ×   n j=1 j =k u F i j (x k )   [((1-ql)w i l +(1-qr)w i r )-(yl+yr)] M i=1 f i +f i      . (4.33)
The BP equation for mk2 i can be derived by following a procedure similar to the one described above. 

If x p k < m i k 1 (hence also x p k ≤ (m i k 1 + m i k 2 )/2 ) σ i k (p + 1) = σ i k (p) -1 2 η (y( x p )-d p ) (σ i k ) 3 × x p k -m i k 1 2 N m i k 1 , σ i k , x p k   n j=1 j =k u F i j   (qlw i l +qrw i r -y l -yr) M i=1 f i +f i + x p k -m i k 2 2 N m i k 2 , σ i k , x p k   n j=1 j =k u F i j   ((1-ql)w i l +(1-qr)w i r -y l -yr) M i=1 f i +f i      . (4.34) If x p k > m i k 2 σ i k (p + 1) = σ i k (p) -1 2 η (y( x p )-d p ) (σ i k ) 3 × x p k -m i k 2 2 N m i k 2 , σ i k , x p k   n j=1 j =k u F i j   (qlw i l +qrw i r -y l -yr) M i=1 f i +f i + x p k -m i k 1 2 N m i k 1 , σ i k , x p k   n j=1 j =k u F i j   ((1-ql)w i l +(1-qr)w i r -y l -yr) M i=1 f i +f i      . ( 4 
∂w i l x p k = (1 -q l ) n j=1 u F i j + q l n j=1 u F i j M i=1 f i + f i , ( 4 
w i l (p + 1) = w i l (p) -1 2 η (y ( x p ) -d p ) × (1-q l ) n j=1 u F i j +q l n j=1 u F i j M i=1 f i + f i . (4.39)
By following the same procedure, w i r is obtained as follows:

w i r (p + 1) = w i r (p) -1 2 η (y ( x p ) -d p ) × (1-qr) n j=1 u F i j +qr n j=1 u F i j M i=1 f i +f i . (4.40)
As above, the udpdate of q-factors q l and q r can be derived. Let's consider q l , the BP equation is given as follows: 

q l (p + 1) = q l (p) -η ∂e p
f i w i l + M i=1 f i w i l M i=1 f i + f i , ( 4 
q l (p + 1) = q l (p) -1 2 η (y ( x p ) -d p ) × - M i=1 f i w i l + M i=1 f i w i l M i=1 f i +f i . (4.44)
By following the same procedure, q r is obtained as follows: In this section, the IT2FNN controller proposed in the previous section is implemented in the case of the autonomous navigation of mobile robots. The idea being to emulate the controller [Melingui et al. 2014e] while making it computationally ecient, the same input variables (d l , d f , d r , ∆X, α, F x , F y ) and output variables (V x , V y ) as described in section II are considered.

q r (p + 1) = q r (p) -1 2 η (y ( x p ) -d p ) × - M i=1 f i w i r + M i=1 f i w i r M i=1 f i +f i . ( 4 
The control architecture is given in Fig. APF and fuzzy logic approaches, this number can be greatly reduced (15 fuzzy rules, [Melingui et al. 2014e]). The fuzzy rules developed in the case of the IT2FL controller in [Melingui et al. 2014e] are tuned in this paper by using a back-propagation process via neuro-fuzzy architecture. The standard deviation σ, the uncertain mean that takes values in m i k1 , m i k2 , the centroid interval set [w i l w i r ] of the consequent part, and the design q-factors [q l , q r ] are tuned by using the back-propagation equations developed in subsection III-B.

Simple strategies in mobile robot navigation such as goal-reaching, wallfollowing, corridor-following, U-shaped obstacle avoidance can involve thousands of training data. However, it is dicult for designers to have specic a priori knowledge of all all training samples.Therefore, the proposed IT2FNN is trained directly with fuzzy rules and with some numerical sample data obtained by implemented each simple navigation strategy separately (Target reaching, wall following, corridor following, etc.) using the IT2FL controller developed in [Melingui et al. 2014e]. The input variables (d l , d f , d r , ∆X, α, F x , F y ) and output variables (V x , V y ) are recorded in each step. This data is then processed to eliminate noise and avoid abrupt changes during the movement of the robot. The goal of the learning process is to rst behave like the IT2FL controller regarding obstacle avoidance and target reaching and improve the generalization performance for autonomous navigation of mobile robots. The root-mean-square error between the IT2FNN outputs and the desired outputs obtained at the end of training is small (less than 10 -2 ).

Experiments and results

Two scenarios are considered to validate the proposed IT2FNN controller, three in static environments, and one in a dynamic environment. There are four or ve obstacles in each scenario, and the robot should avoid them while moving to the target position. The obstacles are placed so that the path of the mobile robot passes through them and then encounters other obstacles. The scenarios are selected to evaluate whether the proposed IT2FNN can emulate the IT2FL controller proposed The experimental results in the case of the rst scenario which assesses the strategies of corridor following, obstacle avoidance, and target reaching in presence of obstacles with regular geometry are shown in Figs. 4.7,4.8,and 4.9. Fig.4.7 shows that both IT2FL and IT2FNN can achieve both the target reaching and obstacle avoidance. The robot follows the shorter and smoother path using IT2FNN rather than IT2FL. This implies that the IT2FNN can reach the target position faster than IT2FL. However, the IT2FNN passes closed to some obstacles. Fig. 4.8

shows that the longitudinal velocity of IT2FNN is more than IT2FL. Besides, IT2FL

has more oscillating behavior, mainly when approaching the target position. In Fig. 4.9, we observe almost the same velocity ranges for both controllers, with IT2FL having a more stable velocity than IT2FNN. From the above, we notice that the IT2FL tries to faithfully apply the dierent fuzzy rules, sometimes leading to some abrupt variations in its trajectory, while the IT2FNN, in addition to applying them, performs some interpolation between these rules (a kind of generalization). Table I shows the moved distances and the time spent by each controller to reach the goal position. This scenario also evaluates the strategies of corridor following, obstacle avoidance, and target reaching. The experimental results obtained are given in Figs. 4.10,4.11,and 4.12. Fig.4.10 shows that both IT2FL and IT2FNN can achieve target reaching and obstacle avoidance while dealing with minima situations. The robot follows the shorter path using IT2FL and a smoother one using IT2FNN. However, the IT2FNN remains faster than IT2FL. The moved distances and the time spent by each controller are provided in Table I. The velocity ranges are the same and the longitudinal velocity of the IT2FNN is again more stable than IT2FL as shown in In summary, an analysis of the results obtained in the three scenarios reveals that both controllers can reach a given target position while avoiding the obstacles encountered. We can also say that the expected objectives have been achieved, i.e.

to design a controller that is both robust and computationally ecient. Moreover, in addition to the objectives initially dened, we have noticed that the IT2FNN's generalization capacity allows it to better handle the transition phases between 

Conclusion

We have proposed a robust and computationally ecient navigation system for mobile robots using an IT2FNN. The K-M type-reduction operation is replaced by two design q-factors to make the controller computationally ecient, which are learned by the gradient back-propagation algorithm in the IT2FNN structure. As shown in the experimental results, the mobile robot using the IT2FNN controller can achieve both goals and obstacle avoidance in a satisfactory manner, whatever the form of the obstacle encountered. Comparisons of the moved distances and the traveled time indicate that the robot's performance with IT2FNN is better than the IT2FL controller proposed in [Melingui et al. 2014e]. That is, the new IT2FNN will guarantee the shorter traveled time and achieve the shorter moved distances than the IT2FL before. Therefore, we can conclude that using IT2FNN for the mobile robot, the new navigation system is a more practical approach and works better than the T2FL controller proposed in [Melingui et al. 2014e], as tested in experiments. The fuzzy neural network structure, which can perform multiple tasks simultaneously at a reasonable time, is expected to bring these advantages. We Chapter 5

Modelling and control of continuum manipulators

Introduction

In the recent decade, continuum manipulators have been the subject of intensive researches, mainly thanks to their inherent exibility. They can bend along their structure and oer agile positioning even in constraint environments. This characteristic make them suitable for various applications such that surgical interventions [START_REF] Simaan | [END_REF], rescue [Casper & Murphy 2003], and exploration [Walker 2013].

The eective exploitation of the characteristics oered by continuum manipulators requires rigorous modeling and the development of appropriate control laws.

In the literature, many continuum manipulator platforms such that steerable catheters [Camarillo et al. 2008], multi-backbone snake-like robots [START_REF] Jones | [END_REF], Rolf & Steil 2014, Melingui et al. 2015], concentric tube robots [Dupont et al. 2009], exist, and the modelling and control diculty varies from one platform to another, the most challenging being the pneumatic actuating ones [START_REF] Jones | [END_REF], Rolf & Steil 2014, Melingui et al. 2015].

Regarding kinematic modeling, several eorts have been invested. From constant curvature approach [Webster & Jones 2010] to the nite element approach [START_REF] Bieze | Finite element method-based kinematics and closed-loop control of soft, continuum manipulators[END_REF] through variable constant curvature [Mahl et al. 2014], datadriven [Melingui et al. 2014c] and curve-based approaches [Singh et al. 2018b], forward kinematic modelling approaches abound in the literature. However, although all are eective, there are some diculties and limitations when applying on some continuum platforms. Inverse kinematic modeling has been a long time, one of the challenging problems in modeling and controlling continuum manipulators. The forward kinematic equations obtained being mathematically intractable, most of the researches have oriented to numerical solvers [START_REF] Godage | [END_REF], which can become time-consuming as the number of continuum robots' sections increase. For sake of real-time implementation, some researchers have also interested to data-driven methods [Rolf & Steil 2014, Melingui et al. 2015, Giorelli et al. 2015]. However, despite all the eorts made, an eective approach applicable to all platforms and whatever the number of sections does not yet exist.

Regarding the control of continuum manipulators, several control strategies have been proposed [Yip & Camarillo 2014, Qi et al. 2016, Melingui et al. 2017b, Gravagne & Walker 2002, Wang et al. 2020] but they generally remain platform dependent.

Chapter 5. Modelling and control of continuum manipulators

This chapter focuses on data-driven approaches for modeling and control of continuum manipulators. They are free from assumptions and yield accurate models;

the sole drawback is the database building, which becomes more challenging to build as the number of dof increases. It should be noted that, ideally, model-based approaches should be used, as there are already well-structured control laws. Databased approaches make sense only when the system to be controlled is dicult to model or has un-modeled dynamic parts.

This chapter begins with the forward kinematic modeling, follows with inverse kinematic modeling, and ends with control strategies.

Forward kinematic modelling

Among the methods proposed to tackle the forward kinematics of the continuum manipulators, a constant curvature bending approximation is commonly used in the modeling process because of its simplication [Webster & Jones 2010, Godage et al. 2015, Escande et al. 2015]. A complete review of the dierent modeling approaches yielding equivalent results of constant curvature forward kinematic is provided in [Webster & Jones 2010]. From a modeling simplication point of view, the constant curvature modeling method remains one of the best model-based methods, which is increasingly true when the applications do not require a high degree of accuracy. However, in applications requiring high precision, data-driven approaches can be used. It is important to note that it is more suitable for cylinder-shaped continuous manipulators. Regarding data-driven-based methods, from machine learning to deep learning through reinforcement learning and Gaussian processes, learning architectures abound in the literature. The forward kinematic modeling problem can be seen as a non-linear regression problem, where the solving consists of establishing the non-linear map between conguration space variables (inputs) and workspace variables (outputs). Data-driven approaches generally yield acceptable performance; however, choosing an appropriate learning model remains a challenging task.

The section rst presents the constant curvature modeling approach and follows with the data-driven approaches, namely neural networks and deep learning approaches.

Forward kinematic modelling: Constant curvature approach

This section gives a summary of the kinematics of the continuum manipulator based on the shape function [Godage et al. 2011b]. Fig. 5.1 shows the kinematic mapping for a continuum manipulator modelled according to the constant curvature approximation. First, we have a robot specic mapping that transforms actuator space variables (q) to conguration space (λ, φ, θ). Then, an independent mapping of the robot transforms this conguration space into a workspace.

This section focuses on the most popular continuum manipulators with 3 actuators per section.

q i = [l i1 l i2 l i3 ]
T is an actuator variable vector, where i = 1, 2, . . . , N is the section number and j = 1, 2, 3 the actuator number. Note that the length of any actuator at time t is L i0 + l ij (t) with L i0 the initial actuator length. λ, φ, and θ are the curvature radius, the angle subtended by the bending arc, and the bending plane's angle relative to the +X axis, respectively. These three geometrical parameters (λ, φ, θ) can specify the deformation of section i during actuation with respect to local frame (o i x i y i z i ) as shown in Fig. 5.2-b. In terms of multivariate Taylor series, the displacement of an arbitrary point in the continuum manipulator structure can be written as follows: [Godage et al. 2011a]:

u f (t, ξ, q) = S (ξ) q f (t, q) (5.1) u (t, ξ, q) = u 0 (ξ) + S (ξ) q f (t, q) (5.2)
where S ∈ R 3×n , u ∈ R 3×1 , and q f ∈ R n×1 are shape matrix, modal position vector, and elastic coordinate vector, respectively. n is the number of terms obtained for a 6 th order Taylor approximation [Godage et al. 2011a]. The scalar ξ ∈ [0, 1] denes the points across the neutral axis where ξ = 0 corresponds to the base of the section. 

i i-1 T (ξ i , q i ) = R z (θ i ) P x (λ i ) R y (ξφ i ) P x (-λ i ) R T z (θ i ) = R (ξ i , q i ) p (ξ i , q i ) 0 1×3 1 (5.3)
with R z and R y being the translation matrices with respect to the Z and Y axes, and P x is the translation matrix with respect to the X axis [Godage et al. 2011b].

The parameters λ i , φ i , and θ i are expressed as:

λ i (q i ) = (3L i0 +l i1 +l i2 +l i3 )R i 2(l 2 i1 +l 2 i2 +l 2 i3 -l i1 l i2 -l i1 l i3 -l i2 l i3) 1/2 φ i (q i ) = 2(l 2 i1 +l 2 i2 +l 2 i3 -l i1 l i2 -l i1 l i3 -l i2 l i3) 1/2 3R i θ i (q i ) = tan -1 √ 3(l i3 -l i2 ) l i2 +l i3 -2l i1 . (5.4)
As each element of i i-1 T is basically a linear or angular displacement, the modal shape function for each segment of i i-1 T is obtained from the multivariate extension of the Taylor series for section joint space variables at 0 to obtain the modal

transformation matrix (MTM), i i-1 T Φ , as follows i i-1 T Φ (ξ i , q i ) = Φ R (ξ i , q i ) Φ p (ξ i , q i ) 0 1×3 1 (5.5)
where Φ p and Φ R are modal position vector and modal rotation matrix, respectively.

Having obtained the MTM for any i th section, the MTM for all points on the entire continuum manipulator's neutral axis can be deduced relative to the global coordinate frame (OXY Z) by using classical coordinate transformation techniques. (5.6) where q = q T 1 , q T 2 , . . . , q T N T is the actuator space vector and T k is any actuator transformation present at the section joints [Godage et al. 2011a].

N 0 T Φ (ξ, q) = N k=1 k k-1 T Φ (ξ k , q k ) T k = R Φ (ξ, q) p Φ (ξ, q) 0 1×3 1 

The scalar coecient vector

ξ = [ξ 1 , ξ 2 , . . . , ξ N ] T is evaluated as ξ = {ξ r = 1 : ∀ r < i, ξ i , ξ r = 0 : ∀ r > i}.

Forward kinematic modelling: Neural network-based approach

A comparative study made in the case of CBHA robot has shown that the commonly used learning models, namely the multilayer perceptron (MLP), radial based functions (RBF), support vector regression (SVR), and Co-Active adaptive neuro-fuzzy inference system (CANFIS) yield satisfactory performance [START_REF] Mahamat | Learning-Based Approaches for Forward Kinematic Modeling of Continuum Manipulators[END_REF].

Regarding individual performance, the SVR model achieves the best performance, follows by CANFIS, MLP, and RBF, respectively. However, RBF has the best convergence time, followed by MLP, CANFIS, and SVR, respectively. This section gives 5.2. Forward kinematic modelling 55 a summary of the modeling process based on neural networks. The description of the CBHA platform is rst presented, then follows the construction of the learning database, and the section ends with the presentation of some results obtained.

Description of the CBHA platform

The CBHA robot is a two-section continuum manipulator inspired by the elephant's which takes approximately 3 seconds. This delay is due to the pressure regulation system in the dierent tubes because the regulation is performed tube by tube.

For each input pressure vector, the robot's end-eector pose and the corresponding wire-potentiometer voltages are recorded. Results and comments The structure of a conical shaped continuum manipulator can be represented, as shown in Fig. 5.5. Some assumptions are considered to model its kinematic behavior:

1. The manipulator is considered as a series of many sections, each controlled independently.

2. A section is considered as a series of many modules.

3. An inter-module is exible and non-deformable with k-DoFs mobility, as shown in Fig. 5.6. The lower ends of the joints linked to the lower module form a regular polygon, as shown in Fig. 5.7. This is also the case for the upper ends linked to the uppermodule. These joints have variable lengths and are represented by l i,j . They provide the position and orientation of the upper module relative to the lower module. The variable represented by d j is the distance between the centers of gravity of the lower and upper modules; it is considered as a passive joint. The orientation represented by ψ j , θ j and φ j are the roll, pitch, and yaw angles, respectively. The inter-module is then modeled as a parallel robot with k universal-prismatic spheric and one universal-prismatic (kUPS-1UP joints).

Inverse Kinematic Equation of an inter-module

The inverse Kinematic Equations (IKEs) of an inter-module are obtained by calculating the joint variables l i,j of the parallel robot, where i and j are the number of the modules and the number of the universal-prismatic links, respectively. As far as translation movements are concerned, only translation along the z-axis is possible because there are no translations along the x and y axes. The translation along the z-axis is denoted by T rans(z, d j ). The IKEs can, therefore, be formulated as follows:

l i,j = f i (ψ j , θ j , φ j , d j )

(5.7) The endpoints of the module j, the center of the circumscribed circle, and the radius of the circumscribed circle are dened by P i,j , O i , and R j , respectively. The coordinates of the rst endpoint P 1,j located on x j -axis and the origin O i of the reference frame j (O i , x j , y j , z j ) are given as follows:

P 1,j   R j 0 0   and O i   0 0 0  
The coordinates of the endpoint P i,j are obtained by performing a rotation Rot(z j , α i ). Thus, one has

O i P i,j = Rot(O j , α i )O i P 1,j , P i,j   R j cos α i R j sin α i 0   (5.8) with Rot(O j , α i ) =   cos α i -sin α i 0 sin α i cos α i 0 0 0 1   and α i = 2(i-1)π k .
The coordinates of the endpoint P i,j+1 relative to the endpoint P i,j in the reference frame j (O i , x j , y j , z j ) are given as follows:

L i,j 1 = j j+1 T P i,j+1 1 - P i,j 1 
(5.9)

where j j+1 T is the transformation matrix of the upper-module relative to the lowermodule, and expressed as:

j j+1 T =      r j 11 r j 12 r j 13 0 r j 21 r j 22 r j 23 0 r j 31 r j 32 r j 33 d j 0 0 0 1     
(5.10) 60 Chapter 5. Modelling and control of continuum manipulators with r j 11 = Cφ j Cθ j r j 12 = -Sφ j Cψ j + Cφ j Sθ j Sψ j r j 13 = Sφ j Sψ j + Cφ j Sθ j Cψ j r j 21 = Sφ j Cθ j r j 22 = Cφ j Cψ j + Sφ j Sθ j Sψ j r j 23 = -Cφ j Sψ j + Sφ j Sθ j Cψ j r j 31 = -Sθ j r j 32 = Cθ j Sψ j r j 33 = Cθ j Cψ j

The symbols S and C denote the sine and cosine functions, respectively. L i,j is a 3 × 1 matrix. Finally, the prismatic variable l i,j is equal to the distance between the endpoints P i,j+1 and P i,j .

l 2 i,j = L i,j T L i,j (5.11) 
Thus, after introducing (6.2) and ( 6.11) into (6.4), (6.12) can be rewritten in the format of (6.1)

l i,j = sqrt(R 2 j+1 + R 2 j + d 2 j -2R j+1 d j (cos θ j sin ψ j sin α i + sin θ j cos α i ) -2R j+1 R j (cos θ j cos α i cos(α i -φ j ) + cos ψ j sin α i sin(α i -φ j ) + sin θ j sin ψ j sin α i cos(α i -φ j )))
(5.12)

FKM of an inter-module: Deep Neural Networks-based solution

The FKM of an inter-module is achieved by solving the IKEs. This comes down to nding the relation between the joint variables l i,j of an inter-module and the parameters of the upper module ( ψ j , θ j , φ j , d j ) relative to the lower module frame, and dened as (ψ j , θ j , φ j , d j ) = f -1 i (l i,j ).

(5.13) Equation ( 5.37) being highly nonlinear, numerical methods, such as Newton-Raphson, least-squares, or symbolic calculation, are generally used to provide an approximate solution. However, for computational time constraints, learning-based methods become an alternative [START_REF] Lakhal | [END_REF]. A deep learning-based solution can be implemented to provide an approximate solution [bou ].

Deep learning(DL) methods aim to learn feature hierarchies with features of higher levels of the hierarchy formed by the composition of lower levels' features.

Automatically learning features at multiple abstraction levels allow a system to learn complex functions, map the input to output directly from data, without relying entirely on human-made features. This is particularly important for higher-level abstractions, which humans often do not know how to specify explicitly in terms of raw sensory input [START_REF] Bengio | Yoshua Bengioet al. Learning deep architectures for AI[END_REF]]. The architecture of DL adopted in this work Let x be the input vector, h i j (x) the output of the j th neuron in the i th layer with i = 0 the input layer, i = l + 1 the output layer, and l the number of hidden layers. The default activation level is determined by the internal bias b i j of each unit. The output h i j (x) is expressed as follows:

h i j (x) = f (a i j (x)), with a i j (x) = b i j + k W i jk h i-1 k (x) (5.14)
where W i jk denotes the weights matrix between the (i -1) th and i th layers, h i-1 k the output of the k th neuron in the (i -1) th layer, and f (.) the activation function with h 0 (x) = x.

The output layer is determined in the same way as follows: 

O(x) = f (a l+1 (x)), with a l+1 (x) = b l+1 + W l+1 h l (x) (5.

Database generation

The deep learning approach has been implemented to numerical solve the IKEs (5.37) for real-time implementation and prevent the robot from operating for long periods. This subsection describes the database generation procedure. The algorithm showed in Fig. 5.9 is implemented for this purpose. The principle consists rst of all in setting the minimum and maximum limit values of the dierent parameters θ j , ψ j and d j . These limits are obtained experimentally. The parameters are then discretized within the dened ranges, and the equation ( 5.37) is evaluated.

Finally, the sets of parameter values θ j , ψ j and d j whose values of the inter-modules elongations l i,j are within the limits of the latter are saved. A learning base of 32000

samples has been obtained in the case of the CBHA robot. Neural Network are listed in Table 5.4. We notice that the PSO algorithm achieves the best performance in terms of computation time. Moreover, the side of the neural network architecture is also acceptable. 4.8105 × 10 -5
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In the PSO algorithm [START_REF] Poli | [END_REF]], the particles are placed in space, and each particle evaluates the objective function according to its current location and the problem to be solved. Then, each particle calculates its displacement in the search space, taking into account its best location and those of its neighboring particles, the history of its own current location, and some random perturbations.

Once all the particles have been moved, the calculation is repeated. The particles are handled according to the following equations [Eberhart & Shi 1998]:

v id = w • v id + c 1 • rand() • (p id -x id ) + c 2 • rand() • (p gd -x id )
(5.16)

x id = x id + v id (5.17)
where x id is an element of the i th particle X i = x i 1 , x i 2 , . . . , x i D with D the dimension of the vector X i . v id is an element of the rate of the position change (velocity) of the i th particle

V i = v i 1 , v i 2 , . . . , v i D .
p id is an element of the best previous position of the i th particle P i = p i 1 , p i 2 , . . . , p i D and p gd the best particle among all the particles in the population. c 1 and c 2 are the acceleration coecients of v id in the direction of the best p id and p gd . The inertia weight w is employed to control the impact of the previous history of velocities on the current velocity, thereby inuencing the trade-o between global (wide-ranging) and local (ne-grained) exploration abilities of the "ying points".

In the case of DNN parameters optimization, the number of neurons per hidden layer, the activation function for each layer, the learning rate, and the number of epochs constitute the particle position vector elements X i . P i represents the previous best parameter of DNN, and p gd is the best of DNN parameters among all DNN parameters in the population. V i is formed of the step size of DNN parameters.

Derivation of Forward Kinematic Model

The FKM is obtained by following the process depicted in Fig. 5.10. The joint variables (l i,j ) of the inter-modules are obtained from the lengths provided by each tube's length sensors. These joint variables are used as input to the DNNs model, and the end-eector pose is obtained by using the transformation matrices j j+1 T , for j = 1, ..., N -1. The composition of homogeneous transformations allows obtaining the end-eector pose as follows: 64 Chapter 5. Modelling and control of continuum manipulators Analytical approaches establish a set of equations and preconditions that allow direct mapping of EE poses and conguration space variables. They benet from being quick and providing all possible solutions for a given EE pose. In the case of rigid manipulators, Pieper's solution [START_REF] Peiper | [END_REF]] can be used for manipulators having a kinematic conguration involving three concurrent articular axes. However, outside these particular cases, it is dicult to solve the IKs of a general redundant mechanism (more than six DOF). Chirikjian et al. [Chirikjian & Burdick 1994] proposed an analytical modal method to address the IK problem of hyper-redundant manipulators. This is based on a collection of intrinsic curve shape functions of the backbone. Neppalli et al. [Neppalli et al. 2009] have proposed an analytical approach to solving the IK of multi-section robots in the continuum. Assuming that the endpoints of all sections of the robot continuum are known, a closed-form IK solution of the multi-section continuum was developed. However, the modelling only considers the distance constraints between the robot's continuous sections, while position and orientation are physically coupled. As a result, solutions with combinations of curve parameters that could not be transformed into physically feasible conguration space variables could result.

N j=1 j j+1 T =      r f 11 r f 12 r f 13 X f r f 21 r f 22 r f 23 Y f r f 31 r f 32 r f 33 Z f 0 0 0 1      (5.18) with        Ψ f = atan2(r f 32 , r f 33 ) Θ f = atan2 -r f 31 , (r f 11 ) 2 + (r f 21 ) 2 Φ f = atan2(r f 21 , r f 11 ) if Θ f = ± π 2 and      Φ f -sign(Θ f )Ψ f = atan2(r f 23 , r f 13 ) or Φ f -sign(Θ f )Ψ f = -atan2(r f 23 , r f 13 ) if Θ f = ± π 2
On the other hand, when the problem of IKs cannot be solved analytically, numerical methods are used. They have the advantage of working irrespective of the number of DOF of the manipulator. The IKs of non-redundant rigid manipulators are generally solved using the inverse of the Jacobian matrix [Hollerbach 1985].

On the other hand, the pseudo-inverse [Klein & Huang 1983] or the extended Jacobian inverse [Klein et al. 1995] are applied to the redundant ones. In the case of continuum robots, much eort has also been invested in obtaining fast and robust IK algorithms. Jacobian-based numerical methods have been implemented in [START_REF] Jones | [END_REF]], [START_REF] Simaan | [END_REF]], [Webster et al. 2009], and [Mahl et al. 2014] for the Air-OCTOR, Snake-like, Concentric-tube, and Bionic

Handling Assistant (BHA) continuum robots, respectively. A linear transformation mapping between tendon displacements and beam conguration has been proposed in [Camarillo et al. 2008] by implementing minimum and maximum norm algorithms.

Godage [START_REF] Godage | [END_REF]] proposed a kinematic model for continuum manipulators based on modal shape functions.

The method aimed to address some limitations associated with the parametric kinematic curve model [START_REF] Jones | [END_REF]], namely the diculty of modeling straight arm poses of continuum sections due to a numerical singularity. The iterative approach, depending on the Jacobian matrix, was used to deduce IKs. However, the Jacobian matrix approaches usually suer many disadvantages, including processing and high implementation time, local minima, and singularities. Moreover, according to the quality of the initial guess or the distribution of the singularities in the conguration space, poor performance or non-convergence problems can occur. [START_REF] Guilamo | [END_REF].

Machine learning tools have also been explored to solve the IKs of continuum manipulators. A comparison of the performance of a feedforward neural network and a Jacobian method has been proposed in [START_REF] Giorelli | [END_REF] in the framework of IK modeling of nonconstant curvature manipulators. The results revealed that the feedforward neural network was faster and more reliable than the Jacobian approach. In the IKs of the BHA manipulator, a goal babbling approach was used [Rolf & Steil 2014]. However, in these methods, only one IK solution was provided among the redundancy manifolds. A new analysis of self-motions,

where the tip of the manipulator remains in a xed position, has been proposed in [START_REF] Kapadia | [END_REF] for two sections planar continuum manipulators. Three types of self-motions are dened, namely: a rst is due to the manipulator's extension; a second is due to the manipulator's bending; and a third, where the manipulator is entirely free of motion.

In previous work, a neural network approach via a distal supervised learning architecture was proposed to solve the IK problem of the CBHA manipulator [START_REF] Melingui | [END_REF]. In [Melingui et al. 2017b], support vector regressors have also been used for oering ideal and identical solutions with less evaluation time and small-size regressors to speed up the convergence of the closed-loop learning system. A hybrid approach was used in [START_REF] Lakhal | [END_REF] to solve the IKs.

The CBHA was considered as a series of vertebrae, where a exible link connected two successive vertebrae. Pythagorean Hodograph curves have also been used to deal with the IK problem of continuum robots [Singh et al. 2018b]. A 3D shape of the continuum manipulator is rst reconstructed, and the IKs are then derived.

However, in these approaches, only one optimal or non-optimal IK solution can be provided.

This section focuses only on data-driven modeling approaches. It essentially presents two approaches; the rst one leads to a single inverse kinematic solution while the second one allows obtaining several inverse kinematic solutions. the results in sensation space [Jordan & Rumelhart 1992]. Although direct inverse modeling has been shown to be a viable technique [Chiddarwar & Babu 2010], it has two drawbacks that limit its usefulness: First, when a many-to-one mapping characterizes the environment from actions to sensations, the inverse mapping will map more than one image to a given point. The particular manner in which the inconsistency is resolved depends on the form of the cost function. The sum-of-squared error yields an arithmetic average over points that map to the same endpoint (centroid).

If the centroid does not belong to the images' manifold, the non-linear many-to-one mappings can yield non-convex inverse images. The second drawback with direct in-5.3. Inverse kinematic modelling of continuum manipulators 67 verse modeling is that it is not "goal-directed." The algorithm samples in the action space without regard to particular targets or errors in sensation space. There is no direct way to nd an action that corresponds to a specic desired sensation. To overcome the two problems, a Distal Supervised Learning [Jordan & Rumelhart 1992]. However, the learning algorithm must not alter the forward model (kept xing forward weights) while the composite system is being trained. The inverse model will eventually be learned if the training input-output pairs stand for the identity function. In this way, the eect is that only one of the possible solutions is chosen for a given target point. Without additional information about the particular structure of the input-to-action mapping, there is no way of predicting which of the possibly innite set of inverse models the procedure will nd. Moreover, a further virtue of the distal learning approach is the possibility to incorporate additional constraints in the learning procedure. 

J = 1 2 (Y d -Y ) T (Y d -Y ) + λ 1 2 U 2 (5.19)
With . the Euclidean norm. It has shown that [Wu et al. 2006], the larger the coecient λ is, the smaller U becomes. The penalty term λ provides a possibility to eectively control the magnitude of U . Hence, to select a particular inverse solution.

Inverse kinematic with maintaining of multiple IK solutions

A single-section continuum manipulator's ability to reach any point located in the vicinity of its end-eector (EE) can be exploited to maintain multiple IK solutions 5.3. Inverse kinematic modelling of continuum manipulators 69 of continuum manipulators. The innite number of IK solutions can be reduced to a nite number by discretizing the robot's actuating space. Besides, the IK problem of multi-section continuum manipulators can be transformed into single-section ones by parameterizing the rst (n -1) sections' actuating variables. The parameterization is performed by clustering the manipulator workspace using the growing neural gas (GNG) algorithm. The proposed method is split into two phases: one oine and one online. The oine process or learning phase includes:

Discretizing the conguration space of the continuum manipulator;

Building a learning base (q i ,x i ), with q i the conguration vector and x i the pose of the EE of the manipulator;

Clustering the conguration space and workspace of the robot, i.e., forming clusters of all the congurations of the manipulator that lead approximately to the same position of the EE.

For a given EE pose, the online phase includes:

Selecting the valid equivalent cluster;

Considering all conguration vectors of the cluster (for multiple IK solutions)

or selecting a particular conguration vector randomly or based on a redundancy resolution criterion (minimum bending energy conguration, avoidance of physical actuator limits, obstacle avoidance, or singularity avoidance);

Keep the values of the conguration variables of the rst (n -1)-sections of the selected conguration(s) and deduce the values of the last section's conguration variables that lead to the desired pose of the EE.

The Growing Neural Gas (GNG) network [Fritzke 1995] is utilized in workspace clustering.

In contrast, a neighborhood function is used for the actuator space clustering [Kumar et al. 2010]. Unlike neural gas and self-organizing maps [Martinetz et al. 1990, Kohonen 1998], GNGs do not have parameters that alter with time. They will continue to learn, introducing neurons and connections until reaching a given performance criterion [Fritzke 1995]. The neighborhood function is introduced to ensure the conservative characteristic of IK solutions. GNGs have also been successfully implemented in the framework of the IKs of hyper-redundant rigid manipulators in [Kouabon et al. 2020a].

The proposed LIKM is illustrated in Fig. 5.13. The learning database consists of samples pairs (x k , q k ), where x k and q k the pose of the manipulator tip and the vector of the actuator variables, respectively. The rst step includes clustering the robot's workspace with clustering algorithms such as self-organization maps, neural gas, growing neural gas. The aim is to organize the workspace manipulator into clusters dependent on the similarities of input data. The input vectors in the same cluster are more similar to each other than those belonging to another cluster. This is done using only the Cartesian information of the samples. The Euclidean distance between the samples is used as a clustering criterion. Clustering in the robot actuator space is the next step. The goal is to construct a pair of (x k , q k ) while eliminating actuator-too-related space vectors. The neighborhood function is used in this stage to preserve the conservative properties of the IK solutions obtained. [START_REF] Walter | [END_REF].

It should be noted that the generalization capability of neural network architectures ensures belonging for any point in the robot's workspace to a valid cluster.

The next step, called redundancy resolution, is to select one particular actuator space vector in the redundancy manifolds where various performance criteria can be used. After the redundancy resolution, the nal step consists of determining the end-section parameters by solving the non-redundant forward kinematic equations obtained after parameterizing the variables in the rst (n -1) sections.

Clustering in workspace

The IK problem of continuum manipulators usually results in an innite number of IK solutions. However, some of them are too close to each other to be easily deduced from the others. The discretization of the workspace allows passing from an innite number of IK solutions to a nite number. However, since only a limited number of workspace positions are considered, the learning database must cover all manipulator workspace regions. Thus, the actuating space's sampling period plays a crucial role in ensuring that redundant congurations are included in the training database. Fortunately, although it is generally challenging to nd two separate actuation vectors that correspond to the same position of the manipulator, grouping in the workspace allows redundant actuation vectors to be formed. Another critical parameter is the maximum number of clusters in that it governs the number of redundant solutions. The ability of GNG [Fritzke 1995] to automatically insert new nodes into hidden layers eliminates this critical parameter.

The rapid convergence of GNGs compared to other incremental neural 5.3. Inverse kinematic modelling of continuum manipulators 71 network architectures such as fuzzy adaptive resonance theory (ARTMAP) [Carpenter et al. 1992], SOINN [START_REF] Furao | An incremental network for on-line unsupervised classication and topology learning[END_REF], growing cell structures [Fritzke 1994] and their low dependence on GNG's parameter variations make GNGs an ideal architecture for classication. Besides, given the complexity of continuum manipulator platforms, clustering methods that oer acceptable performance with small networks are practical for real-time implementation. work is generated incrementally using a competitive Hebbian learning algorithm [Martinetz et al. 1990]. Let x k be a Cartesian vector; the algorithm consist of updating the winning prototype vector w p and its direct topological neighbors w i with i ∈ Q wp and p ∈ F wp . F wp and Q wp represent sets of winning prototype vectors and direct topological neighbors that are connected to w p by an edge. The update rule is set as follows [Fritzke 1994]:

GNGs

∆w p = ε b (x k -w p ) , ∆w i = ε n (x k -w i ) , ∀i ∈ Q wp (5.20)
where ε b and ε n denote the learning rate constants of the winning prototype and its topological neighbors, respectively.

Clustering in actuator space

The objective of clustering in the actuator space is to associate each winning prototype vector with their corresponding actuator space vectors while suppressing nearly identical actuator space vectors. Suppose that the winning vector w p is associated with a number N wp of actuator space vectors denoted by q j wp , j = 1, 2, ..., N wp , as depicted in Fig. 5.13. The incoming input vector q k is used to create a new actuator space vector if it is not too close to one of the existing vectors or update the existing ones otherwise. A dened threshold K is used to decide whether the incoming actuator space vector is too close to the existing ones or not. Note that the actuator space vectors' association with winning prototype vectors is straightforward since the pair actuator-Cartesian vectors are available. Workspace clustering implicitly implies actuator space clustering. The only task is to remove actuator space vectors that are too close while updating the remaining vectors to avoid large Cartesian errors and to ensure the IK solutions' conservative property. q β wp -q k < K (5.21) where q β wp is the winning actuator space vector. β = arg min j q j wp -q k , j = 1, 2, . . . , N wp (5.22) Chapter 5. Modelling and control of continuum manipulators

The actuator space vector is updated using the following competitive rule q j wp (t + 1) = q j wp (t) + ηh j q k -q j wp (t) (5.23) where h j = exp -(β -j) 2σ 2 t is a neighbourhood function [Kumar et al. 2010].

The latter provides continuous and smooth paths in the actuator space for a given continuous path in the workspace.

Resolution of redundancy

The clustering in the actuator space yields manifold actuator space vectors for a

given task space vector. The set q j wp , j = 1, 2, . . . , N wp is the potential IK solutions for a given task space vector x k . An actuator space vector can be chosen among redundant manifolds following specic criteria such as: Minimum variation of the actuator space vector β = arg min j q j wp -q c , (5.24) where q c is the current continuum manipulator actuator space vector; Minimum norm of the actuator space vector β = arg min j q j wp .

(5.25) 

Derivation of the IK solution

Typically, any IK solution chosen will result in small Cartesian errors ∆e i . This solution can be used directly as an IK solution for specic applications that do not require very high accuracy (sorting objects, packaging). At this stage, we can follow either a numerical or an analytical approach to reduce or eliminate these remaining errors. For example, the selected Ik solution can be considered as an initial solution for an iterative method, the only drawback being a possible increase in computation time. An analytical method can also be implemented to avoid iterative loops in the learning IK scheme. It is the latter which is developed. The approach consists of parameterizing the variables of the rst (n -1)-sections of the continuum manipulator using the values of the variables of the rst (n -1)sections of the selected IK solution(s). This parameterization then transforms the IKs problem of multi-section continuum manipulators to a single-section IKs one, which can be easily solved. Let T EE be the matrix representing the pose of the EE of the continuum manipulator:

T EE =     s x n x a x p x s y n y a y p y s z n z a z p z 0 0 0 1     (5.26)
The MTMs N -1 0 T Φ (ξ, q) being determined from the values of the parameters of the rst (n -1)-sections of the selected IK solution, the MTM N N -1 T Φ (ξ, q) of the last section of the continuum manipulator can be obtained as follows:

N N -1 T Φ (ξ, q) = N -1 N -2 T -1 Φ • • • • • 2 1 T -1 Φ • 1 0 T -1 Φ • T EE (ξ, q) , (5.27) 
N being the total number of the sections. The method exploits the proximity of the selected IK solutions to the desired position of the manipulator EE, and the ability of a single section continuum manipulator to reach any point located in the vicinity of its EE.

Simulation and Results

The proposed LIKM is implemented on a three-section continuum manipulator with three pneumatic muscle actuators each. All continuum manipulator sections are assumed to be physically identical and share the equivalent values for L i0 , R i , l i,min , and l i,max as 70 mm, 50 mm, 0 mm, and 30 mm, respectively. 

Inverse position kinematics

This sub-section is dedicated to IK solutions for a given EE position. results for tracking a trajectory with an assigned orientation. Fig. 5.17-a and Figure 5.17-b show the simulation results for tracking the above line-shaped trajectory with an orientation vector [0, 0, π/6] with a random selection of IK and lazy-arm conguration solutions, respectively. Fig. 5.17-c and Fig. 5.17 

Experiments and results

The proposed approach is validated through two experiments. The rst experiment consists of tracking a circle-shaped trajectory in an unconstrained environment.

The second experiment assessed the performance in a constrained environment.

The lazy-arm conguration criterion is used to select the IK solution in the rst In light of all the above, we can arm that the experiments' results would be close to those obtained in simulation in the presence of a perfect controller. the idea that continuum robot performance can be improved through adaptive control algorithms. First, we assume that the large numbers of local minima present in the NN objective function are the main cause of the non-adaptive NN controller's poor performance. After that, we show that even using global optimization approaches (i.e., SVR), non-adaptive control schemes are not sucient to yield high performance. The SVR algorithms are also used to reduce the computational time as they yield accurate solutions with a short evaluation time and small size regressors.

This section gives a brief introduction of multi regression support vector regressors (M-SVR). We show how global optimization is acquired by using the SVR algorithm subsequently.

Single-output SVR

The goal of the linear support vector regression problem with ε-insensitive loss function introduced by Vapnik [Vapnik 2013] is nding a function f : R d → R such that:

f (x) = φ (x) w + b (5.28)
where x ∈ R d and φ (x) ∈ R h is a non-linear transformation to a higher dimensional space with h ≥ d. Given a set of independent and identically distributed samples, i.e.,{(x i , y i )} n i=1 where x ∈ R d is an incoming vector and y ∈ R an observable output. The single output SVR solves this problem by nding the parameters w ∈ R h and b ∈ R that minimize the following objective function min w∈R h ,b∈R 

1 2 w 2 + C n i=0 L ε (y i -f (x i )) ,

Multi-output SVR

In the case of multi-output system, a multidimensional regression problem needs to be generalized. In M dimension outputs case, the regression problem can be seen as several single output case where equation ( 6.1) becomes:

f j (x) = φ (x) w j + b j , j = 1, 2, . . . , M
(5.30) with w j and b j the regressor parameters. These regression problems can be solved by minimizing the following objective function:

min W,B 1 2 
M j=1 w j 2 + C n i=1
L (µ i ). 

L (W, B) = 1 2 m j=1 w j 2 + C n i=1 L (µ i ) - n i=1 α i µ 2 i -e 2 i , (5.33) 
where α = [α 1 , α 2 , . . . , α n ] T is a vector consisting of Lagrange multipliers and e i = y i -(φ (x i ) W + B). The Karush-Kuhn-Tucker (KKT) conditions for optimality yield the following linear equations [Sánchez-Fernández et al. 2004]:

           ∇ w j L = w j - i α i φ (x i ) y ij -φ (x i ) w j -b j = 0 ∇ b j L = - i α i y ij -φ (x i ) w j -b j = 0 ∇ α i L = µ 2 i -e i 2 = 0 ∇ µ i L = 2C (µ i -ε) -2α i µ i = 0
.

(5.34)

The equation ( 6.3) can be expressed as a linear system of equations: 5.35) where D α = diag {α 1 , α 2 , . . . , α n }, α = [α 1 , α 2 , . . . , α n ] T , j = 1, 2, . . . , n, y j = [y 1j , y 2j , . . . , y nj ] T , and Φ = [φ (x 1 ) , φ (x 2 ) , . . . , φ (x n )]. For simplicity, it is usual to work with the feature space kernel k (x i , x j ) = φ (x i ) φ (x j ) instead of the nonlinear transformation φ (.) [Smola & Schölkopf 2004]. By using the Representer Theorem [Smola & Schölkopf 2004], which states that the best solution for a learning problem, under fairly general condition, can be expressed as a linear combination of training samples in feature space, i.e. (5.36) and substituting this equation ( 6.12) into ( 6.3), the linear system (6.11) becomes: 5.37) where (K) ij = k (x i , x j ) denotes the kernel matrix. The system (5.37) is solved using iterative re-weighted least square (IRWLS) introduced in [Pérez- Cruz et al. 2001].

Φ T D α Φ + I Φ T α α T Φ I T α w j b j = Φ T D α y j α T y j ( 
w j = i φ (x i )θ j = Φ T θ j ,
K + D -1 α I α T K I T α θ j b j = y j α T y j ( 
The IRWLS procedure can be summarized as follows:

1. Initialize k, Θ k , B k to zero, and compute µ k i and α i .

2. Compute the solution to (5.37), and label them as Θ s and B s . Then, dene an operator P k = Θ s -Θ k B s -B k T to evaluate the decrement of each parameter.

3. Get the next step solution

Θ k+1 B k+1 T = Θ k B k T + η k P k
, where η k is a step size computing using backtracking algorithm.

Calculate µ k+1

i and α i , and repeat the above step (2 -4) until the convergence of the algorithm.

Thus, for a new input vector x ∈ R d , the output y ∈ R m of the regressor is computed as follows:

y = φ T (x) • φ T • Θ = K x • Θ (5.38)
where K x is a vector that contains the kernel of the input vector and the training samples, and Θ = θ 1 , θ 2 , . . . , θ m . Note that θ i which corresponds to i-th output, is a column vector of Θ.

Usually, when we are dealing with a large database, the variable selection becomes essential. It is one of the eective ways to reduce the computational cost while improving the regressor's generalization ability. Thus, the goal is to get the smallest set of variables with generalization ability than the initial set of variables.

In this work, a backward variable selection by block deletion [START_REF] Nagatani | [END_REF] is implemented for variable selection. It uses the generalization ability estimated by cross-validation as a selection criterion.
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CBHA controller design

Generally, accurate models in the case of rigid robots give the best performance in a closed-loop. However, this is not always the case for continuum manipulators, where, because of the characteristics of composite materials, the robot model can evolve [START_REF] Melingui | [END_REF], Rolf & Steil 2014, Braganza et al. 2007 

non-adaptive and adaptive control architectures

For simplicity's sake, the low-level control is addressed; the high level can be easily extended by following [START_REF] Melingui | [END_REF]. The control schemes for non-adaptive and adaptive controls are represented in Fig. 5.23 and Fig. 5.24, respectively. The In that case, the voltage errors can be back-propagated through the CBHA model using the back-propagation algorithm. The CBHA model oers a possibility to translate the voltage errors into controller output.

Integration of the adaptive algorithm

Once the regressors are obtained, the adaptation can be easily made by using (6.20).

The latter may be seen as an Adaline NN with the matrix K x as the input vector, Θ as weight matrix, and y as the output vector. The online adaptation is performed by minimizing the following quadratic cost functions successively at each time step k:

J 1 k = 1 2 (U m k -U * k ) T (U m k -U * k ) , J 2 k = 1 2 U d k -U * k T U d k -U * k (5.39)
where J 1 k and J 2 k are the cost functions of the CBHA model and controller, re- spectively. U d k is the vector of the desired voltages. By using the gradient-descend method [Polycarpou et al. 1992], the weight matrix Θ of (6.20) is updated as follows:

θ k+1 ij = θ k ij + η ∂J * k ∂θ k ij (5.40)
where η represents the learning rate and θ ij are the elements of the matrix Θ.

Depending on the updated model, J * k is replaced by either J 1 k or J 2 k . The partial derivative of the cost function with respect to θ ij is expressed as:

∂J * k θ k ij = -U d k -U * k T ∂U * k ∂θ k ij = -U d k -U * k T k * i (5.41)
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where k * i is the element of K x multiplying θ ij .

For input-output data acquisition, the CBHA's posture (wire-potentiometer values) is changing after varying the input pressures inside the bending tubes from the pneumatic actuators. For each desired input pressure, the information provided by wire-potentiometers and pressure sensors is recorded. These desired pressures range from [0, 1.5] bars, where low-level pressure control is performed using PID (Proportional, Integrator, Derivative). Using a step size of 0.5 bar, each tube can be controlled by one of the following pressure values (0, 0. 

k x, x = exp - x -x 2 2σ 2 (5.42)
where σ is a tunable parameter. Model parameters are optimized using a grid search according to the following σ = {0.1, 0.1, . . . , 5}, ε = 10 -6 , 11 • 10 -6 . . . , 10 -3 , and C = {1000, 10 . . . , 5000}. Dierent combinations of σ, ε, and C parameters are tested and that yielded a better accuracy is retained. The best combinations of the trained regressors in terms of mean square error (MSE) on the test samples yields the values reported in Table 5.5, where ε is the insensitive error, C is a xed constant which controls the trade o between the training error and the regularization term, and σ is the standard deviation of the kernel function. 

Stability of the adaptive SVR controller

The goal of the adaptation is to minimize the quadratic cost functions given in (5.39). Let's Consider the following positive denite Lyapunov energy function in discrete form: 5.43) where e k (k

E k = 1 2 e T k e k ( 
) = U d k -U * k .
The variation of the Lyapunov function yields: The equation (5.44) leads

∆E k = E k+1 -E k = 1 2 (e
∆E k = e T k   -η ∂U * k ∂Θ k ∂U * k ∂Θ k T + 1 2 η 2 ∂U * k ∂Θ k ∂U * k ∂Θ k T 2
  e T k .

(5.45)

The variation ∆E k is guaranteed to be negative if the learning rate η is chosen according to:

0 < η < 2 max k ∂U * k ∂Θ k ∂U * k ∂Θ k T .
(5.46)

Similarly, the SVR controller is stable if the learning rate η c is chosen according to:

0 < η c < 2 max k ∂U * k ∂∆P k ∂U * k ∂∆P k T max k ∂∆P k ∂Θ c k ∂∆P k ∂Θ c k T (5.47)
The index c refers to the controller's parameters. Thus, if η c is chosen as ( 5.47), we will have ∆E k < 0. Noticing that E k > 0, according to the Lyapunov stability theory, it is shown that the training error converges to zero as t -→ ∞.

Experimental results

In the following experiments on the CBHA continuum manipulator, four controllers, namely non-adaptive NN controller, adaptive NN controller, non-adaptive SVR controller, and adaptive SVR controller, are implemented to achieve a common mission of path tracking. The non-adaptive controller's implementation allows whether to support earlier ndings [START_REF] Melingui | [END_REF], while that of the adaptive controllers allows assessing improvement in execution time. The NN controllers have been developed in a previous work [START_REF] Melingui | [END_REF]]. The structure is almost identical to that depicted in Fig. 5.24; neural network functions replace only SVR functions. The latter is not developed in this paper. We refer the readers to [START_REF] Melingui | [END_REF] for further details. The implementations are conducted in Matlab using an Intel Core i7-2670QM CPU at 2.20GHz. The experimental platform is rst presented, followed by the results obtained, and the section ends with a discussion.

To better assess the performance achieved by the controller, the CBHA's end- In the view of the obtained results, it is noticed that the non-adaptive SVR controllers oer relatively better performance of the tracking, comparing to the non-adaptive NN controller for the case of the CBHA. The accuracy of tracking the same path is improved by approximately 5%, and the controllers perform better, nearly continuous paths. Based on the above, we note that the more precise the model is, the better the performance. However, despite using the global optimization algorithm, we note only a slight improvement; the Euclidean errors remain large. The performances achieved show that the approximated models' inaccuracy is not the sole cause of the CBHA poor performance. Thus, we can conclude that an accurate kinematic model is not sucient to achieve good performance. However, a signicant improvement of the robot performance is noted when adaptive control algorithms are integrated. We can also conclude that the association of adaptive algorithms dramatically reduces the inuence of the non-desirable eects on the CBHA (memory and hysteresis eects), yielding better performance of the CBHA. Relative to the time of execution, a signicant improvement in execution time is noticed. With the same desired accuracy applied to the same trajectory, the adaptive SVR controller is approximately two times faster than the NN controller.

In summary of the CBHA robot results, the adaptive SVR control scheme can track the desired path in real-time with more accuracy and less execution time than the adaptive NN control. The performance achieved can be signicantly improved for long execution times. However, it is necessary to nd a compromise between the desired precision and the execution time. Compared with NN controllers, SVR controllers are approximately two times faster and easier to implement. In the case of CBHA, the adaptive SVR controller is robust enough to deal with inherent sensory noise, delays during the control, and the varying actuator ranges. The performance achieved by the non-adaptive and adaptive SVR controllers proves the necessity to insert an updating step in the CBHA control scheme. An analysis of recent contributions in the CBHA manipulator provides an additional argument to support the idea that continuum robot performance can be improved through adaptive control algorithms.

Conclusion

In this chapter, we have presented ve contributions. The rst one shows a comparative study of four standard learning-based techniques in the framework of the forward kinematic modeling of multi-section continuum manipulators. MLP, RBF, SVR, and CANFIS models were implemented for forward kinematic modeling of a two-section continuum manipulator. The predictions of the dierent topologies were compared respectively to a high precision motion capture system.

The second one presents a forward kinematic modeling approach for conical shape continuum manipulators. For real-time implementation, the proposed approach includes deep learning-based methods, particularly in solving the resulting inverse kinematic equations. The FKM obtained is computationally inexpensive and can be easily implemented in real-time.

The third one presents a distal supervised learning architecture to solve the inverse kinematics of continuum manipulators. We have demonstrated that the direct supervised learning scheme was not suitable as the learning map can yield multiple inverse functions. Therefore, the inverse kinematic of the continuum manipulator was obtained by rst learning the forward kinematic model, and learn the inverse one in a distal supervised learning scheme. However, this learning scheme can only provide one inverse kinematic solution with the possibility to choose its quality.

The fourth contribution presents a learning scheme that can maintain redundant solutions of continuum manipulators h. Redundant solutions have been preserved by clustering the continuum manipulator workspace and actuation space. The GNG was used in the workspace clustering while a neighborhood function was used in the actuation space clustering. The simulations and experiments performed gave satisfactory results concerning the solving of the IKs and redundant solutions.

Finally, the last contribution focuses on controlling a class of continuum manipulators (CBHA) using the kernel-based learning method. Thus, two controllers based on support vector regression have been designed and implemented. We notice that the performance of the controllers' association with the continuum manipulator (CBHA) can be improved by including adaptive control algorithms. The paper also proposes an adaptive controller, which is approximately two times faster than the previous one [START_REF] Melingui | [END_REF]. Chapter 6 Modelling and control of rigid and exible joint manipulators Kinematically redundant manipulators admit an innite number of inverse kinematic solutions. Solving their IK remains a real challenge, especially in terms of the computational eciency of complex kinematic structures to be used in real-time.

The methods for solving the IK problem of redundant manipulators can be classied into three groups: analytical or closed-form methods, numerical methods, and hybrid methods, i.e., those that combine the two previous ones.

Regarding analytical methods, they express all the inverse kinematic solutions as functions in terms of the variables pose of the EE. They are computationally ecient and yield all IK solutions for a given EE pose. Peiper [START_REF] Peiper | [END_REF]] proposed a procedure to get IK solutions in closed-form for manipulator robots with three consecutive joints whose axes are parallel or intersect at a single point. Later, Paul [Paul 1981] proposed a more general approach based on the manipulation of homogeneous matrices that could be applied to other types of manipulator robots. In [Chang 1987], a closed-form equation for the inverse kinematics of redundant manipulators was also derived using the Lagrangian multiplier method. The addition of an imaginary number of links [Ivlev & Gräser 1998] to the redundant open kinematic chain has been proposed to transform the redundant kinematic structure into a non-redundant one.

The main idea was to complete the system of equations of the redundant kinematic structure with simple geometric equations, which consider the task to be performed or the workspace's properties. A closed-form inverse kinematic solution was derived in [Shimizu et al. 2008] from a parameterization of the joint angles. How joint lim-manipulators its aect the inverse solution's feasibility was also explored to develop an analytical method for computing feasible solutions under the joint limits. Other geometric methods have also been developed [START_REF] Wei | [END_REF][START_REF] Singh | [END_REF]. However, the contributions mentioned above are highly conguration-dependent and can be very costly in terms of computation because of the increase in the number of DOFs.

As regards numerical methods, they work regardless of the number of degrees of freedom of the manipulator.

The inverse of the Jacobian matrix [Hollerbach 1985] is used to solve IK of non-redundant manipulators, while pseudoinverse [Klein & Huang 1983] or extended Jacobian inverse [Klein et al. 1995] are used for their redundant counterparts. However, Jacobian methods suer from several shortcomings, including high computation costs and execution time, the existence of local minima, and joint singularities. Besides, calculating the Jacobian inverse becomes more and more expensive as the number of DOFs increases. The gradient projection method was introduced in [Liegeois 1977] to overcome some limitations of Jacobian-based methods. It exploits redundancy to avoid mechanical limits by projecting the homogeneous solution onto the Jacobian matrix's null space.

However, this method suers from joint oscillations. A closed-loop IK [Liegeois 1977] that uses the feedback from the EE pose and a Jacobian transpose to avoid infeasible solutions around singularities was also proposed. A very popular iterative method for solving IKs of serial chain manipulators known as Cyclic Co-ordinated Descent (CCD) has been developed. However, although it is useful, it cannot consider the manipulator's overall constraints and can take unnatural poses.

Other researchers investigated the use of both previous approaches. Several closed-form solutions for inverse kinematic are derived by parameterizing or xing a set of joint variables. Following that idea, an interesting analytical method based on workspace analysis has been proposed in [Zaplana & Basanez 2018]. The main idea is to reduce redundant manipulators to non-redundant ones by selecting a set of joints, denoted redundant joints, and parameterizing its joint variables.

The inverse kinematics of the non-redundant manipulator got is then solved analytically using either Pieper, Paul, or other geometric methods. However, this method is very depending on the number of degrees of redundancy of the manipulator and can be challenging to implement for high DOF redundant manipulators. A hybrid method of performing IK for general 2n + 1 (n is the number of joints) DOF manipulators with a spherical joint at the wrist has been proposed in [Ananthanarayanan & Ordóñez 2015]. The analytical equations were used to determine the rst two and last three joint angles, and a numerical technique was used to solve the rest. However, this method can be costly in terms of computation time as the number of elbow joints increases. A segmented geometry method has been proposed in [Mu et al. 2018] to solve the IK of hyper-redundant spatial manipulators. According to the hyper-redundant manipulator's geometry, the method segments the manipulator into three sections, namely a shoulder, an elbow, and a wrist. Then, the IK of the manipulator is resolved separately. However, although the computational complexity is simplied, the computation time remains consid- In this paper, we propose a learning framework that preserves the multiple IK solutions of redundant manipulators. The idea comprises dividing the redundant manipulator's workspace into clusters using clustering algorithms and eliminating some joint angle vectors that are too close to each other in each cluster using a neighborhood function (conguration space clustering). Thus, each cluster's remaining joint angle vectors are potential IK solutions for an input vector that belongs to that cluster. Finally, the full set of all IK solutions or a random IK solution can be provided. A criterion such as lazy arm movement, obstacle avoidance, and joint limit avoidance can be applied to select a particular inverse kinematic solution from the redundancy manifolds. However, for a given EE pose, each selected IK solution leads to some pose errors. In [Kumar et al. 2010], an iterative algorithm based on a Jacobian matrix has been proposed to reduce these errors. However, since the selected IK solution is always close to the desired EE pose, the ideal would be to maintain some manipulator's joints xed and use the rest to eliminate these Cartesian errors. In this work, to completely avoid iterative loop in the derivation of IK solutions, an IK solution is selected depending on the redundancy resolution criterion. The conguration of some joints is maintained x. Thus, the IK problem of redundant manipulators is reduced to non-redundant ones, and closed-form analytical methods developed for non-redundant manipulators ( Pieper, Paul) are applied to obtain the IK solution. Regarding the clustering algorithm, we use the GNG algorithm. Unlike self-organizing maps [Kohonen 1990] and neural gas methods [Martinetz et al. 1991], GNGs do not have parameters that change over time and can continue to learn, adding neurons and connections, until a performance criterion is achieved [Fritzke 1994], thus eliminating the crucial parameter of the number of hidden neurons.

The remainder of this section is organized as follows: Sub-section 2 summarizes serial manipulators' forward kinematics. Sub-section 3 focuses on the development of the proposed learning framework for the IK problem of redundant manipulators.

We apply the proposed learning framework to a series of redundant manipulators in Sub-section 4 to show the proposed approach's eectiveness. Sub-section 5 presents 96 Chapter 6. Modelling and control of rigid and exible joint manipulators the implementation of the proposed Ik method on a KUKA LBR IIWA 7 R800 robot. Finally, some concluding remarks and prospects are drawn in Sub-section 6.

6.1.2 Forward kinematics of redundant manipulators Figure 6.1: n-DOF serial manipulator; i-1 H i (θ i ) with i = 1, 2, ..., n, is the homogeneous matrix that represents the coordinate frame of the link i with respect to the frame of the link i -1.

Let us consider the robot's kinematic chain of Figure6.1, the forward kinematic can be derived as follows:

0 H n (θ) = 0 H 1 (θ 1 ) 1 H 2 (θ 2 ) 2 H 3 (θ 3 ) • • • n-1 H n (θ n ) = n i=1 i-1 H i (θ i ) (6.1)
where n and 0 H n represent the total number of DOFs and the homogeneous matrix containing the position and orientation of the EE pose with respect to the reference frame, respectively. θ i with i = 1, 2, ..., n represents the angle position for each robot joint. The homogeneous matrix i-1 H i that transforms the frame attached to link i -1 into the frame attached to link i can be expressed as the product of four basic transformations

i-1 H i (θ i ) = T rotz (θ i ) T transx (a i ) T transz (d i ) T rotx (α i ) , (6.2) 
6.1. Inverse kinematic modelling of high dof Rigid manipulators 97 where θ i , a i , d i , and α i are respectively the joint angle, link length, link oset, and link twist associated with the link and joint i. The relation (6.2) can be rewritten as follows:

i-1 H i =     Cθ i -Sθ i Cα i Sθ i Sα i a i Cθ i Sθ i Cθ i Cα i -Cθ i Sα i a i Sθ i 0 Sα i Cα i d i 0 0 0 1     (6.3)
where C and S refer to the cosine and sine functions, respectively. Equation ( 6.1)

that represents the nal transformation from the EE frame to the base frame can be rewritten as follows: (6.4) where P 3×1 is the EE position vector and R 3×3 is the rotation matrix, which can be reduced to orientations around the three main axes using the Euler or ZY X notation.

0 H n = n i=1 i-1 H i (θ i ) = R 3×3 P 3×1 0 1 

Proposed learning framework for inverse kinematics of redundant manipulators

Kinematically redundant manipulators admit an innite number of inverse kinematic solutions, i.e., for a given EE pose, we can associate several joint angle vectors.

Thus, two problems generally emerge, obtaining all the inverse kinematics solutions for a given EE pose and the redundancy resolution, which consists of selecting a randomly IK solution or a particular one, such as satisfy a secondary task for the manipulator (obstacle avoidance, singularity avoidance). Analytical methods are generally computationally ecient and yield all IK solutions for a given EE pose.

However, for highly redundant manipulators, the IK problem is not trivial to solve, and closed-form IK solutions become challenging to derive. Numerical methods generally work regardless of the number of degrees of freedom of the manipulator.

However, they generally have a high computation cost and execution time as the number of DOF of the manipulator increases. Depending on the application, redundancy resolution criteria are generally applied to derive a particular IK solution. We devote this section to developing the proposed learning framework, which combines the two previous methods to derive the IK solution of redundant manipulators. The section starts with the learning architecture presentation, followed by the clustering in the workspace and conguration space. It ends with the redundancy resolution process.

In general, any selected IK solution results in Cartesian pose errors unless the desired target pose is a learning database sample. The most accurate solution criterion is used in the redundancy resolution process. To reduce the remaining Euclidean distance between the given EE pose and the selected IK solution, an iterative algorithm based on a Jacobian matrix has been proposed in [Kumar et al. 2010]. However, not only this algorithm has an iterative loop; the Cartesian errors are not eliminated. manipulators Figure 6.2: Proposed IK learning architecture: for a task pose vector that belongs to w p cluster, a set of N wp inverse kinematic solutions are associated.

In this work, to completely eliminate the remaining Cartesian errors while without including iterative loops, some conguration joints of the redundant manipulator are xed using the selected IK solution's corresponding values. The redundant manipulator is reduced to a non-redundant one. Then, Paul's method is applied to derive the rest of the joint variables. It is worth noting that the joints' selection criteria to be parameterized vary according to the application and the structure of the manipulator. For instance, with anthropomorphic manipulators, the rst joint responsible for the entire structure's rotation may remain variable. Two of the following joints (2, 3, ..., n -3) and the three joints of the spherical wrist must also be variable. The other joints can be parameterized by clustering in the workspace and in the conguration space. Depending on the application, other conguration joints may be preferred over others. We only need to make sure that we have the necessary joints for the corrections in positioning (3 joints) and orientation (3 joints) of the end-eector.

To implement Paul's method, if the last three joints of the manipulator form a spherical wrist, as is usually the case, then the problem of inverse kinematics can be decoupled. We rst determine the spherical wrist position from the base to the n -3-th joint; then, we use the last three joints to determine the EE orientation. This is done by moving the origin of the frame 0 n to the origin of the frame 0 n-2 .

The position of the spherical wrist will be dened by:

P n-2 = P n -d n • 0 R n • k (6.5)
where d n is the length of the last link, k = 0 0 1 T , and 0 R n is the rotation matrix of the frame n with respect to the frame 0. P n-2 and P n are the position of the spherical wrist and the EE , respectively. Thus, for the EE position, we have

P n = P n-2 + d n • 0 R n • k. (6.6)

Application to anthropomorphic manipulators

The proposed learning scheme is applied to three anthropomorphic manipulators:

7-DOFS, 9-DOFs, and 11-DOFS manipulators. The objective is to demonstrate that the proposed method can be applied regardless of the number of DOFs of the manipulator. In each case, the learning database is built from the forward kinematic model of the considered manipulator. The IK solutions are obtained by performing the clustering in the workspace and conguration space. The GNG algorithm comprises several free parameters. However, preliminary tests have shown that only some parameters have a strong inuence on overcoming the training. As a result, only a few parameters varied within a pre-dened range based on a search grid to empirically select the best model. The adaptation step λ, the learning rate of best ε n , the learning rate of neighbours ε b , and the learning rate of output α were varied during the learning process. The database is normalized in the range [ 0.1, 0.9].

For good topology preservation of GNG models, the resolution and topology preservation are evaluated after each iteration using the C-measure algorithm [START_REF] Kaski | Comparing self-organizing maps[END_REF]. The training is stopped when the stopping criterion is met or when the maximum epochs of 200 are reached. Among the GNG networks that met the stopping criterion, the network with the best resolution and the best degree of preservation of the input space topology was selected as the best.

In the case of the 7-DOF manipulator, the following GNG's parameters ε b = 0.25, ε n = 0.003, α = 0.55, α max = 50, d = 0.995, and λ = 100 have achieved satisfactory performance. The learning process performed in MATLAB software using an Intel Core i7 -2670QM CP U at 2.20 GHz took approximately 16 hours. The clustering in conguration space took approximately 5 minutes. Table 6.1 summarizes the simulation data and results. For a given desired EE pose, there is a slight dierence in the calculation times and accuracies. The dierence in computation time is expected to come from the size of the cluster matrix, as the size of the cluster matrix increases with the number of dofs. Nevertheless, the computation time remains acceptable regardless of the number of dofs. As for the dierence in precision, it is expected to come from the sampling step size, because to reduce the size of the learning bases, the sampling step on the manipulator joints has been increased. Nevertheless, the precision remains acceptable. 
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For the IK solutions' derivation, the joint θ 2 is parameterized via the clustering in the workspace and conguration space. The remaining joints are calculated by using Paul's method. Note that other elbow joints can be xed, but the joint θ 2 joint parameter allows us to deduce the other joints easily.

Let U 0 be the matrix dening the position and orientation of the EE dened as

U 0 =     s x n x a x p x s y n y a y p y s z n z a z p z 0 0 0 1    
The center of the kneecap located at the origin frame 0 5 and its position denotes 0 P 5 will be dened as follows:

P 5 = P 7 -d 7 0 R 7 k (6.7)
Equation ( 6.7) can be rewritten in the following form:

P 5 =   P 5x P 5y P 5z   =   p x -d 7 a x p y -d 7 a y p z -d 7 a z   . (6.8) 
In (6.8), the origin of the frame 0 7 has been translated to origin 0 5 , and the position and orientation matrix at the point 0 5 can be expressed as follows:

U w =     s , x n , x a , x p 5x s , y n , y a , y p 5y s , z n , z a , z p 5z 0 0 0 1    
From the above, the following equalities hold,

U w 0 0 0 1 T = 0 P 5 = 0 H 5 0 0 0 1 T . (6.9) 
By multiplying both members of (6.9) by the inverse of 0 H 1 , we get .10) From this equality, we can draw the following system of equations

1 H 0 × 0 H 5 0 0 0 1 T = 1 H 0 × U w 0 0 0 1 T . ( 6 
   c 1 p 5x + s 1 p 5y = -(c 2 c 3 s 4 + s 2 c 4 ) d 5 -s 2 d 3 p 5z -d 1 = -(s 2 c 3 s 4 -c 2 c 4 ) d 5 + c 2 d 3 s 1 p 5x -c 1 p 5y = s 3 s 4 d 5 (6.11) 
θ 2 being known, (6.11) can be re-written as follows:

   c 1 p 5x + s 1 p 5y = -s 2 (c 4 d 5 + d 3 ) -c 2 c 3 s 4 d 5 s 1 p 5x -c 1 p 5y = s 3 s 4 d 5 p 5z -d 1 = -s 2 c 3 s 4 d 5 + c 2 c 4 d 5 + c 2 d 3 (6.12)
By squaring each term of this system, we obtain:

             (c 1 p 5x ) 2 + (s 1 p 5y ) 2 + 2s 1 c 1 p 5x p 5y = (s 2 (c 4 d 5 + d 3 )) 2 + (c 2 c 3 s 4 d 5 ) 2 + 2 (s 2 (c 4 d 5 + d 3 )) (c 2 c 3 s 4 d 5 ) (s 1 p 5x ) 2 + (c 1 p 5y ) 2 -2s 1 c 1 p 5x p 5y = (s 3 s 4 d 5 ) 2 (p 5z -d 1 ) 2 = (-s 2 c 3 s 4 d 5 + c 2 (c 4 d 5 + d 3 )) 2 = (s 2 c 3 s 4 d 5 ) 2 + (c 2 (c 4 d 5 + d 3 )) 2 -2s 2 c 3 s 4 d 5 c 2 (c 4 d 5 + d 3 ) (6.13)
By adding each side of the equation system (6.13), we get: Knowing θ 4 , we can easily calculate θ 3 since θ 2 is known. The second equation of the system (6.12) gives: Thus, we can calculate θ 1 , the third relationship of the system (6.12) yields: (6.17) Equation ( 6.17) is in the form 6.18) where A 1 = p 5x , A 2 = -p 5y , and A 3 = s 3 s 4 d 5 . Then, the following expressions can be derived

d 1 + c 2 c 4 d 5 + c 2 d 3 -p 5z = s 2 c 3 s 4 d 5 in that way, c 3 = d 1 +c 2 c 4 d 5 +c 2 d 3 -p 5z
s 1 p 5x -c 1 p 5y = s 3 s 4 d 5 
A 1 s i + A 2 c i = A 3 ( 
s 1 = - A 1 A 3 ±A 2 √ A 2 1 +A 2 2 -A 2 3 A 2 1 +A 2 2
and c 1 = -

A 2 A 3 ±A 1 √ A 2 1 +A 2 2 -A 2 3 A 2 1 +A 2 2 ,
Finally, the joint variable θ 1 is obtained as follows:

θ 1 = a tan 2 (s 1 , c 1 ) . (6.19) Concerning the orientation angles, knowing that 0 R 7 is the rotation matrix of U 0 , we have

0 R 7 =   s x n x a x s y n y a y s z n z a z  
By pre-multiplying both sides of this equation by 4 R 0 , we get:

4 R 0 (θ 1 , θ 2 , θ 3 , θ 4 ) • 0 R 7 (θ 1 , θ 2 , θ 3 , θ 4 , θ 5 , θ 6 , θ 7 ) = 4 R 0 (θ 1 , θ 2 , θ 3 , θ 4 ) •   s x n x a x s y n y a y s z n z a z   = 4 R 7 (θ 5 , θ 6 , θ 7 )
.

We can write these equations as: 

U V W = 4 R 7 (θ
U = U x U y U z T , V = V x V y V z T , and W = W x W y W z T with U x = (c 4 c 3 c 2 c 1 -c 4 s 3 s 1 -s 4 s 2 c 1 ) s x + (c 4 c 3 c 2 s 1 + c 4 s 3 c 1 -s 4 s 2 s 1 ) s y + (c 4 c 3 s 2 + s 4 c 2 ) s z , U y = -(s 3 c 2 c 1 + c 3 s 1 ) s x -(s 3 c 2 s 1 -c 3 c 1 ) s y -(s 3 s 2 ) s z , U z = (-s 4 c 3 c 2 c 1 + s 4 s 3 s 1 -c 4 s 2 c 1 ) s x -(s 4 c 3 c 2 s 1 + s 4 s 3 c 1 + c 4 s 2 s 1 ) s y -(s 4 c 3 s 2 -c 4 c 2 ) s z . V x = (c 4 c 3 c 2 c 1 -c 4 s 3 s 1 -s 4 s 2 c 1 ) n x + (c 4 c 3 c 2 s 1 + c 4 s 3 c 1 -s 4 s 2 s 1 ) n y + (c 4 c 3 s 2 + s 4 c 2 ) n z , V y = -(s 3 c 2 c 1 + c 3 s 1 ) n x -(s 3 c 2 s 1 -c 3 c 1 ) n y -(s 3 s 2 ) n z , V z = (-s 4 c 3 c 2 c 1 + s 4 s 3 s 1 -c 4 s 2 c 1 ) n x -(s 4 c 3 c 2 s 1 + s 4 s 3 c 1 + c 4 s 2 s 1 ) n y -(s 4 c 3 s 2 -c 4 c 2 ) n z . W x = (c 4 c 3 c 2 c 1 -c 4 s 3 s 1 -s 4 s 2 c 1 ) a x + (c 4 c 3 c 2 s 1 + c 4 s 3 c 1 -s 4 s 2 s 1 ) a y + (c 4 c 3 s 2 + s 4 c 2 ) a z , W y = -(s 3 c 2 c 1 + c 3 s 1 ) a x -(s 3 c 2 s 1 -c 3 c 1 ) a y -(s 3 s 2 ) a z , W z = (-s 4 c 3 c 2 c 1 + s 4 s 3 s 1 -c 4 s 2 c 1 ) a x -(s 4 c 3 c 2 s 1 + s 4 s 3 c 1 + c 4 s 2 s 1 ) a y -(s 4 c 3 s 2 -c 4 c 2 ) a z .
By multiplying each member of (6.20) by 5 R 4 , we will get the following equality:

  c 5 U x + s 5 U y c 5 V x + s 5 V y c 5 W x + s 5 W y U z V z W z s 5 U x -c 5 U y s 5 V x -c 5 V y s 5 W x -c 5 W y   =   c 6 c 7 -c 6 s 7 -s 6 s 6 c 7 -s 6 s 7 c 6 -s 7 c 7 0   .
It follows, after identifying both sides of this equality, that s 5 W x -c 5 W y = 0, hence, θ 5 = a tan 2 (-W y , -W x ) (6.21) we also have the following equality

c 6 = W z s 6 = -c 5 W x -s 5 W y , hence θ 6 = a tan 2 (s 6 , c 6 ) (6.22)
We also get Figure 6.4 shows the tracking of a circular path with simple conguration vectors, while Figure 6.5 shows the tracking with complex conguration vectors. We can also implement other scenarios, such as obstacle avoidance and joint limit avoidance.

c 7 = s 5 V x -c 5 V y s 7 = -s 5 U x + c 5 U y , hence

Experiments and Results

This section focuses on the experimental validation of the proposed IK approach.

We perform the experiments on a KUKA LBR IIWA 7 R800 robot, shown in Figure The proposed IK method's performance is conducted by comparing the forward kinematic model's poses with those obtained from the motion capture system. We attach the rigid body frames in the base and the manipulator's EE by using reective markers.

Experimental Results

The proposed IK method is validated experimentally through a Lemniscate curve trajectory. The objective is to follow in several ways, a trajectory using the proposed IK method. Since the proposed IK method preserves the multiple IK solutions, the trajectory is tracked using two dierent conguration vectors. The rst solution considered as lazy joint angles uses as the IK solution, the solution whose conguration vector is closer to the current conguration vector of the robot. The second solution uses slightly more complex conguration vectors. The choice of the IK solution to reach the rst point of the trajectory is random, and the lazy joint angles are applied to the rest of the trajectory points to make the motion smoother.

The estimated trajectory is compared each time with the one obtained from the Regarding the plots of the joint angles, we can observe that all the curves are continuous and regular, which guarantees the conservative property of the inverse kinematic solutions obtained. We also note that the more complex the joint angle congurations are, the greater the errors obtained. Therefore, the KUKA Sunrise Cabinet robot controller could also be another source of errors.

In summary, while the error in simulation remains negligible (0.1 mm), maximum

Euclidean errors of the order of 2 mm are observed in experiments. We can therefore conclude, regarding the performance obtained in simulation and experimentation, that the proposed method is not only accurate but also preserves the multiple of IK solutions.

6.2 Contribution to the control of exible-joint robots

Introduction

In recent past decades, new elds of applications for robot manipulators have emerged, where robots and humans have to share common spaces, especially in medicine, rescue, and home automation. In this context, the user's safety, the lightness of the structure, and the reduction in size and energy consumption appear as new constraints. In response to these constraints, robot designers have opted for robots with exible joints. The latter are often actuated using pneumatic actuators or DC motors. However, DC motors are the most used thanks to their low cost, small size, and high controllability. Flexible joint robots also contain elastic elements at the joint level to enable safe physical contact between the robot and human ( belt pulley systems, tendon materials). The joint exibility involves highly non-linearities in the robot dynamic, such as the high coupling between robot links and actuators, under-actuation, dead zone, backlash, and model uncertainties, which introduce serious technical issues to controller design. Therefore, new control challenges emerge:

Consideration of joint stiness and full actuator dynamics in the control design.

Deal with uncertain actuator's and link's dynamic parameters to guaranty the accuracy.

Deal with non-linearities lead to exibility, such as hysteresis, death zone, backlash Deal with joint constraints to avoid collisions.

Reduce computational cost for energy-saving, since, for the case of home automation, the manipulator used embedded energy source.

Ensure fats stabilization to avoid unwanted oscillations.

Deal with oscillations arising when operating in stochastic environments.

Since the 1980s, many attempts have been made to counter one ore more control mentioned above challenges, and now several methods have been developed.

In [START_REF] Huang | Adaptive sliding control for single-link exible-joint robot with mismatched uncertainties[END_REF], an adaptive sliding mode control is proposed to overcome the mismatched uncertainties problem. Authors in [START_REF] Ott | [END_REF] proposed a passivity based impedance controller. The approach can control the stiness and the damping of the FJR without inertia shaping. [START_REF] Kim | Disturbance-observerbased PD control of exible joint robots for asymptotic convergence[END_REF] designed a position controller using a disturbance observer PD control approach.

The strategy can eliminate motor-side uncertainties. A position control approach with online gravity compensation is designed in [Sun et al. 2017]. In [Kim 2017] sliding mode control approach for FJR is revisited, and the tracking performance is improved.

The approach is capable of suppressing residual link vibrations. The energy shaping control method with gravity compensation is revisited in [Yin et al. 2018] to perform a position controller. It is a control strategy that consists of stepping back toward the control input of a given system. The design procedure starts at the known-stable subsystem and back-out new controllers that progressively stabilized each outer subsystem. The process is terminated when the nal external control is reached. The backstepping control approach is a recursive design technique that aims to compute a control law that stabilizes all the system's subsystem. Thus, the Backstepping control approach can handle a high order system (order n > 3), since this kind of system is composed of several subsystems (n subsystems for n-order system). With the backstepping control approach, we have the assurance that each closed-loop signal is stabilized (bounded after a given time). It also oers the possibility to conserve useful non-linearities in contrast to computed torque, sliding mode, or PID control approaches, where certain non-linearities are cancelled to design the controller. Besides, It is also simple to implement robust adaptive controllers with a backstepping control approach. Another advantage is that the Lyapunov function can be easily found since it is constructed recursively, starting with the last subsystems (the one containing the output variable). It is a powerful tool for the design of controllers for non-linear systems in strict-feedback form.

However, the standard backstepping algorithm has a known drawback named "explosion of complexity with the order of the system," which increases the computational cost. This is because the control design uses the derivative of the virtual controls of the subsystems. This drawback has limited the use of the backstepping approach for real-time applications or high-order systems control. In 2009, a new backstepping algorithm named command ltered backstepping (CFB) was proposed [Farrell et al. 2009], where the recursive derivation is avoided by the use of command lters(CF). Besides, ltering errors arising are cancelled using an error compensation mechanism.

We have made several contributions to address this theoretical issue while the previously cited control challenges are solved. The rst contribution was to propose an appropriate command ltered backstepping algorithm for exible joint robot manipulators. In this contribution, support vector regression (SVR) was used to deal with dynamic uncertainties, and a tangent-type robust term was used to cancel tracking and approximation errors. The second contribution was to propose a constrained command ltered backstepping algorithm to deal with joint space constraints. In this contribution, dynamic uncertainties are coped with support vector regression. The third contribution was to propose a nite-time command ltered algorithm to ensure fast stabilization with a settling time managed by the designer.
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In this contribution, dynamic uncertainties are coped with using an adaptive fuzzy logic approach.

The remainder of this chapter is organized as follows. Flexible joint robots and their dynamic modeling are rst presented. After that, the Standard command ltered algorithm for a non-linear system is presented, and the chapter ends with the presentation of our three contributions.

Flexible joint robots

General presentation

When dealing with robot Kinematic, dynamics, or control design, a common assumption is used to reduce the complexity of the problem, namely "manipulators consist only of rigid bodies (links and motion transmission components)." However, this is an ideal situation that may be considered valid only for slow motion and small interacting forces. In practice, joint exibility in robot manipulators is present because of the use of compliant transmission elements. It has been demonstrated that if exibility is not taken into account when considering robot design and control, a degradation of the robot's overall expected performance typically occurs.

Joint exibility is common in current industrial robots when motion transmission/reduction elements such as belts, long shafts, cables, harmonic drives, or cycloidal gears are used. These components' utility is to relocate the actuators on the robot base, thus improving dynamic eciency and reducing the moved overall mass. However, in normal robot operation, these components are subjected to forces/torques. They become intrinsically exible and introduce a time-varying displacement between the actuators' position and the driven links.

Recently, exible actuation/transmission elements have been deliberately selected in robots intended for physical human-robot interaction. This mechanical compliance guarantees inertial decoupling between the actuator and the link and leads to reducing kinetic energy involved in case of a collision with the human. Fig. 6.12 shows two examples of exible joint robot manipulators, the Dexter robot and the lightweight robot manipulator DLR LWR-III.

A dicult trade-o between previously presented safety-oriented mechanical design and the more complex control arising should be found if one wants to preserve rigid robots' same performance. One way to realize this trade-o is to build an ecient, accurate dynamic model.

Dynamic modelling

The usual way to model exible joint robots is to consider that the exible transmission elements' deection is modeled as being concentrated at the robot's joints.

This fact signicantly reduces the complexity of the associated equations of motion.

For the modeling purpose, we consider that the robot is made up of n + 1 rigid bodies, interconnected by n rotary joints, undergoing deection, and actuated manipulators Under these assumptions, and using the Denavit-Hartenberg convention and the Euler-Lagrange formalism, the following simplied dynamic model can be derived M (q) q + C (q, q) q + G (q) + F ( q) = K (N θ m -q) J θm + B θm + N K (N θ m -q) = τ (6.26) where q ∈ n , and θ m ∈ n are the vector of the link angles and the vector of rotor angular position, respectively. M (q) ∈ n×n , C (q, q) ∈ n×n , G (q) ∈ n , and F ( q) ∈ n are the inertia matrix of the links, the Coriolis/centrifugal matrix, the gravity vector and the friction vector, respectively. N ∈ n×n , K ∈ n×n , J ∈ n×n , and B ∈ n×n are positive denite diagonal matrix of the gear reduction, the joint stiness, the actuator inertia and back electromotive force damping, respectively. τ is the torque input on each actuator.
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When the electrical part of the actuator is considered, the motor torque τ is produced by the motor current such that τ = K m I a , and the dynamic equation of this current is given as follows L İa + RI a + K b θm = u(t) (6.27) where I a ∈ n is the armature current vector. L ∈ n×n , R ∈ n×n , and K b ∈ n×n are the diagonal matrix of electrical inductance, armature resistance, and back electromotive force eects, respectively. u(t) ∈ n is the control input voltage.

Equations (6.26) and ( 6.27) represent the reduced dynamic model of the exible joint robot actuated by direct current (DC) motors. Control such a non-linear system is a relevant task. The tracking control design is the hardest and most interesting issue in controlling exible joint robots, and numerous researches have been done in the literature.

Command ltered backstepping algorithm for SISO nonlinear systems

This section presents the modication of the backstepping approach that eliminates the analytic computation of the derivative of virtual control, known as command ltered backstepping control (CFBC). Instead of dierentiation, the derivative of virtual controls is computed using command lters. consider the following class of n-th order single-input-single-output (SISO) nonlinear system.

ẋi = f i (x i ) + g i (x i )x i+1 ẋn = f n (x) + g n (x)u(t) (6.28) where i = 1, 2, ...n -1, xi = [x 1 , ..., x i ] T , x = [x 1 , x 2 , ..., x n ] T ∈ n , x 1 
the rst scalar state, and u(t) the scalar control signal. In this case the function f i and g i are supposed to be known. It is assumed that |g i (x i )| ≥ g 0 ≥ 0. Let x d (t) be the desired trajectory with the derivative ẋd both of which are available and bounded for all t ≥ 0. The objective of the control design is to found the control signal u(t), which steer x 1 (t) from any initial conditions to track the reference x d (t) and to achieve the stability of the closed-loop system.

The design procedure is given by the following steps.

Step 1 : This step aims to stabilize the rst subsystem by the use of virtual control α 1 .

Dene the tracking errors x1 = x 1 -x d , and x2 = x 2 -x 2c , where x 2c is the ltered version of the virtual control α 1 . The later implies that ẋ2c will be the ltered version of the derivative of the virtual control α1 . To compensate for ltering errors x 2c -α 1 , an auxiliary signal ξ 1 is used. Thus new tracking error signals are needed namely the compensated tracking errors: z 1 = x1 -ξ 1 , and z 2 = x2 -ξ 2 , where ξ 2 is the auxiliary state which will be needed in the second step to deal with the ltering error x 3c -α 2 . Taking the derivative of z 1 , yields Chapter 6. Modelling and control of rigid and exible joint manipulators For i = 1, ...n -1 the state space implementation of command lters (CF) are chosen as

ẏi1 = ω n y i2 ẏi2 = -2ζω n y i2 -ω n (y i1 -α i ) (6.46)
with x i+1,c (t) = y i1 , and x i+1,c (t) = ω n y i2 the output of each lter. Th lter initial conditions are set as y i1 (0) = α i (0), and y i2 (0) = 0. ω n ≥ k i+1 and ζ ∈ (0, 1] are lter design parameters.

As we will see in the next section, the command ltered backstepping algorithm needs fundamental modications to control exible joints robot manipulators. Our rst contribution to the domain of command ltered backstepping control (CFBC)

for exible joint robots was this concern. 

Highlight of the contribution

One of the drawbacks of backstepping control approaches is their sensitivity to model uncertainties and external disturbances. This noise sensitivity is more a relevant problem in the CFBC approach due to command lters. There is, therefore, a need to encounter uncertain dynamics and external disturbances by introducing an ecient and robust adaptive architecture in the command ltered backstepping algorithm. Moreover, to simplify the closed-loop robotic systems' stability analysis, the skew symmetry property of the matrix Ṁ (q, q) -2C(q, q) is usually used.

However, the fact that the command ltered backstepping algorithm uses an error compensation mechanism to compensate for ltering errors (x i+1,c -α i ), renders problematic the use of the skew-symmetric property and leads to more complex stability analysis. Based on the drawbacks above, a new command ltered backstepping algorithm is proposed to control exible joint robots. The proposed control approach's eectiveness leads to the introduction of robust adaptive architecture and a new error compensation mechanism.

Adaptive control is a group of methods that provide a systematic approach for automatically adjusting controllers to achieve or maintain a desired level of control performance when the plant's parameters are unknown or change in time. Adaptive law is provided in the control system such that the required performance of the testing system is achieved. In robot manipulators, function approximation technique is used as an adaptive algorithm to learn an unknown or uncertain dynamics.

For instance, in [START_REF] Huang | Adaptive sliding control for single-link exible-joint robot with mismatched uncertainties[END_REF], an adaptive sliding controller is proposed for a single-link exible-joint robot subjected to mismatch uncertainties. Chien et al. [Chien & Huang 2007a] proposed an adaptive control using Fourier's series dynamic uncertainties approximation for exible-joint robot manipulator subjected to time-varying uncertainties. M. M. Fateh [Fateh & Khorashadizadeh 2016] proposed a robust control by adaptive fuzzy estimation of uncertainties. W. He et al. 

Control design

In this part we consider that the model of the robot is given by 6.26 and 6.27. Let dene the state space representation as:

e = q -v, x 1 = θ m , x 2 = θm , x 3 = I a , (6.47) 
with v = qdes -k 0 q and q = q -q des . k 0 , q des , and qdes are a positive diagonal matrix, the desired link position and its derivative, respectively. In this part, the actual and the nominal parameters are supposed to be dierent (model uncertainties). The state space representation of the system becomes 6.48) manipulators where,

M (q) ė = -[M (q) v + C(q, q)(v + e) + G(q) + Kq] +KN x 1 + Ψ 1 (q, q, x 1 , t) ẋ1 = x 2 ẋ2 = K mJ x 3 -B J x 2 -N K J (N x 1 -q) + Ψ 2 (q, x 1 , x 2 , x 3 , t) ẋ3 = L -1 u -R L x 3 -K bL x 2 + Ψ 3 (u, x 2 , x 3 , t), ( 
Ψ 1 (q, q, x 1 , t) = -M (q) M -1 (q)[ K(N x 1 -q) -d 1 -Ĉ(q, q) q -Ĝ(q)] + [K(N x 1 -q) -C(q, q) q -G(q)] Ψ 2 (q, x 1 , x 2 , x 3 , t) = (B J -BJ )x 2 +(K J -KJ )N (N x 1 -q) + d 2 Ψ 3 (u, x 2 , x 3 , t) = ( L-1 -L -1 )u + (R L -RL )x 3 +(K bL -KbL )x 2 + d 3 , (6.49) 
Ψ i represent the dynamic uncertainties of the robot manipulator, d i are the external disturbances. The matrix * represents the actual value of the matrix * . Ψ i are unknown functions, which will be approximated using SVR.

Dene the compensated tracking error as:

z 1 = e -ξ 1 , z 2 = x1 -ξ 2 , z 3 = x2 -ξ 3 , and z 4 = x3 , where, e = q -v, x1 = x 1 -x 1c , x1 = x 2 -x 2c , and x3 = x 3 -x 3c .
Following the command ltered backstepping procedure, the following are found:

The new error compensation mechanism,

M (q) ξ1 = -(C(q, q) + k 1 )ξ 1 + (KN )(x 1c -α 1 ) + KN ξ 2 , ξ2 = -k 2 ξ 2 + (x 2c -α 2 ) + ξ 3 , ξ3 = -k 3 ξ 3 + K mJ (x 3c -α 3 ). (6.50)
The control law, .51) with the update law

α 1 = -((Kr) -1 )[k 1 e -(M (q) v + C(q, q)v + G(q) + Kq) -ŵT 1 φ(q, q, x 1 , t) -δ 1 tanh z 1 / ε 0 ], α 2 = -(k 2 x1 + KN z 1 -ẋ1c ), α 3 = -(K mJ -1 )[k 3 x2 -(B J x 2 + N K J (x 1 -q)) -z 2 -ẋ2c -ŵT 2 φ(q, x 1 , x 2 , x 3 , t) -δ 2 tanh z 3 / ε 0 ], u = -L[k 4 x3 -(R L x 3 + K bL x 2 ) -K mL z 3 -ẋ3c -ŵT 3 φ(x 2 , x 3 , u, t) -δ 3 tanh z 4 / ε 0 ]. ( 6 
ẇ1 = Γ 1 φ(q, q, x 1 , t)z 1 T -σ 1 ŵ1 ẇ2 = Γ 2 φ(q, x 1 , x 2 , x 3 , t)z 3 T -σ 2 ŵ2 ẇ3 = Γ 3 φ(x 2 , x 3 , u, t)z 4 T -σ 3 ŵ3 , (6.52)
where Γ i is positive diagonal matrix, and σ i is a small positive constant, called σ-modication coecient.

It can be demonstrated that the control law 6.51 achieved asymptotic stability of the closed-loop system and a good disturbances rejection. Moreover, the error compensation mechanism 6.50 facilitates the demonstration of the closed-loop stability while ensuring the compensation of ltering errors.

To demonstrate the proposed approach's eectiveness, let conduct a case study using a 3-link exible joint robot manipulator actuated by DC motors. The reference trajectories are chosen as: q des 1 (t) = 0.9t + 0.2t 2 , q des 2 (t) = 1 + 0.5cos(2t), q des 3 (t) = 1 + 0.6(sin(t)) 2 . We consider that, due to the load variation during the robot operations, the actual mass of the third link ( m3 ) is dierent from its nominal mass (m 3 ), and it can be computed as m3 = m 3 + a%m 3 , where a% is the uncertainty's percentage. That is, we consider that the robotic system is perturbed only by Ψ 1 (q, q, x 1 , t) uncertainty. We choose three values of a%, namely 13%, 15%, and 18%. We compare the simulation results of the adaptive command ltered backstepping (ADCFB) and the robust adaptive command ltered backstepping (RADCFB)

for each value. The results are shown in Fig. 6.13. It is observed that the ADCFB performs good tracking performances up to 70% of m 3 uncertainty, while there is a degradation of the ADCFB tracking performances for m 3 uncertainty up to 18, 3%.

As shown in Fig. 6.14, the proposed approach (RADCFB) performs good tracking accuracy without additional control eort. Thus there is an improvement of tracking performances without additional control eort. In practice, constraints are ubiquitous in any physical system and can be manifested as physical stoppages, saturation, and performance and safety specications, among others. It is also known that when the constraints are violated during the system's operation, it may result in performance degradation or system damage. There is, therefore, a need to consider both dynamic uncertainties and constraints in the control of robot manipulators.

The rigorous handling of uncertainties and constraints has become an important research topic in these past few years, and various methods have been proposed.

In [Chien & Huang 2007b, Bürger & Guay 2010] the notion of set invariance control is used to handle constraints. The method consists of switching between a 6.2. Contribution to the control of exible-joint robots 121 nominal controller in the interior of the admissible set and the intervention control at the boundary, using the idea of barrier certicates to ensure invariance.

Predictive control [START_REF] Grüne | Continuous control mode transitions for invariance control of constrained nonlinear systems[END_REF], Magni et al. 2009] ever, all proposed approaches are dicult to implement with a command ltered backstepping algorithm. On of the diculty leads to the presence of an error compensation mechanism. It was recently shown that by using a barrier Lyapunov function, constraint demands could be met [START_REF] Tee | [END_REF], Niu & Zhao 2013]. This is because the barrier Lyapunov function grows to innity whenever it approaches a dened limit. Thus, if the barrier Lyapunov function is kept bounded, the dened constraints will be met. This approach seems closed to the backstepping philosophy since Lyapunov's barrier can be part of Lyapunov's overall backstepping. However, if the control system is of order n, the algorithm presented in [START_REF] Tee | [END_REF], Niu & Zhao 2013], will need the n-th derivative of the desired trajectory. This fact can be computationally and technically impossible in high order systems (n ≥ 3) like exible joint robot manipulators. Because, for such systems, the controls are constructed in the task space. The transformation from task space to joint space (inverse kinematic) cannot compute more than three order's derivative of the desired joint angle. This part's contribution leads to the use of a command lter to overcome the drawback and satisfy practical needs. To achieve constraint requirements, we constraint the rst compensated tracking error z 1 using the barrier Lyapunov function.

Control design

In this part we also consider that nominal and actual parameters are dierent, that is the robot's model can be represented as follows:

M (q)q + C(q, q) q + G(q) = K(N q m -q) + Ψ l (q, q, t) 6.53) 122 Chapter 6. Modelling and control of rigid and exible joint manipulators where Ψ 1 (q, q, θ m , t) = -M (q) M (q) -1 Ĉ(q, q) q + Ĝ(q) + K(N θ m -q) + f dis (t)

J θm + B θm + N K(N θ m -q) = K m I a + Ψ m (q, θ m , t) L İa + RI a + K b θm = u + Ψ i (q, I a , t), ( 
+ [C(q, q) q + G(q) + K(N θ m -q)] Ψ 2 (q, θ m , θm , I a , t) = -J Ĵ-1 B θm + Km I a + N K(N θ m -q) + f m (t) + B θm + K m I a + N K(N θ m -q) Ψ 3 (q, I a , t) = -L L-1 RI a + Kb qm + f i (t) + RI a + K b θm . (6.54)
Let the state space variables be: .55) Substituting these variables in 6.53 yields

x 1 = q, x 2 = q, x 3 = θ m , x 4 = θm , x 5 = I a . ( 6 
ẋ1 = x 2 ẋ2 = D(q) -1 [K (N x 3 -x 1 ) -G(x 1 ) -C(x 1 , x 2 )x 2 + Ψ 1 (x 1 , x 2 , x 3 , t)] ẋ3 = x 4 ẋ4 = J -1 [K m x 5 -Bx 4 -rK (N x 3 -x 1 ) + Ψ 2 (x 1 , x 3 , x 4 , x 5 , t)] ẋ5 = L -1 [u -Rx 5 -K b x 4 + Ψ 3 (x 4 , x 5 , t)] .
(6.56)

The main objective is to satisfy the constraint requirements |x 1 | ≤ k, where k is a vector of constraint values. If the control law u(t) ensure that z 1 , and ξ 1 are bounded, then, based on the fact that x1 = z 1 + ξ 1 , it follows that x1 is bounded. In addition, for a given bounded desired link angle x 1d , the state x 1 will be bounded. To ensure the boundedness of z 1 , a barrier Lyapunov function is used, and for the boundedness of ξ 1 , we proposed a robust adaptive support vector regression. Dene a constant vector b such that |z 1 | ≤ b ≤ k, and a vector Z as 6.57) where b i are the elements of the vector b, and z 1i the elements of the vector z 1 .

Z = [ z 11 b 1 2 -z 11 2 z 12 b 2 2 -z 12 2 ... z 1n b n 2 -z 1n 2 ] T , ( 
Following the command ltered backstepping algorithm, it results to:

The control laws: The update law:

α 1 = ẋ1d -k 1 x1 α 2 = (KN ) -1 [M (x 1 ) ẋ2c -k 2 x2 -Z + Kx 1 + G(x 1 ) + C(x 1 , x 2 )x 2c -ŵT 1 φ 1 -δ 1 tanh( z 2 ε 0 )] α 3 = ẋ3c -k 3 x3 -KN z 2 α 4 = K m -1 J[ ẋ4c -k 4 x4 + J -1 (Bx 4 + N K(N x 3 -x 1 ) -z 3 -ŵT 2 φ 2 -δ 2 tanh( z 4 ε 0 ))] u = L[ ẋ5c -k 5 z 5 -L -1 K m z 4 + L -1 (Rx 5 + K b x 4 -ŵT 3 φ 3 -δ 3 tanh( z 5 ε 0 ))], ( 
ẇ1 = Γ 1 (φ 1 z 2 T -σ 1 ŵ1 ) ẇ2 = Γ 2 (φ 2 z 4 T -σ 2 ŵ2 ) ẇ3 = Γ 3 (φ 3 z 5 T -σ 3 ŵ3 ), (6.59) 
The error compensation mechanism:

ξ1 = -k 1 ξ 1 + (x 2c -α 1 ) + ξ 2 ξ2 = -M (x 1 ) -1 [C(x 1 , x 2 ) + k 2 ]ξ 2 + M (x 1 ) -1 KN (x 3c -α 2 ) + M (x 1 ) -1 KN ξ 3 ξ3 = -k 3 ξ 3 + (x 4c -α 3 ) + ξ 4 ξ4 = -k 4 ξ 4 + J -1 K m (x 5c -α 4 ) . ( 6 

.60)

To found out the virtual control law α 1 , the rst Lyapunov function is chosen as

V 1 = 1 2 n i=1 ln( b i 2 b i 2 -z 1i 2 ) (which is a barrier Lyapunov function). Thus if z 1i → b i , V 1
grows to the innity, which means that the system will be stopped (velocity tends to zeros).

To illustrate the proposed approach's superiority, let conduct a case study using a 3-link exible joint robot manipulator actuated by DC motors. A comparative simulation between the constrained (proposed approach) and the unconstrained command ltered backstepping approaches is shown in Fig. 6.15, where the task is to track the reference x d = 1 -cos(πt), while satisfying the constraints |z 1i | ≤ 0.03, i = 1, ..., n. It is shown that the proposed control satisfy the constraints while the unconstrained command ltered backstepping violet the constraints during and after 124 Chapter 6. Modelling and control of rigid and exible joint manipulators the transient phase (t ≥ 1s). As shown in Fig. 6.16, after the transient phase, the proposed control approach performs the same control voltage as the unconstrained control law after the transient phase. These two results mean that the proposed approach satises the constraint requirements without additional control eort. The proposed two control approaches satisfy the performance requirements after a long transient phase (for instance, in Fig. 6.15, the transient phase ends after 1s). In the context of human-robot collaboration, fast stabilization can be useful to ensure safety. For instance, when the system goes to random oscillations, a control law with rapid stabilization can preserve tracking accuracy and, therefore, the human's security. The contribution of the next part goes to the adaptive nite-time command ltered backstepping control. How to cope with uncertainties to protect command lters (CF) while reducing signicantly computational burden; try property of the matrix Ṁ (q) -2C(d, q) q. Besides reducing the computational burden, an adaptive fuzzy controller is designed where only one adaptive parameter is required to be tuned online. Note that for the SVR adaptive laws developed above, the number of adaptive parameters is equal to the number of support vectors. Thus the new approach is an improvement of the two previous ones in terms of computational duration.

The following Properties and Lemmas are necessary to found out the control law.

Property 1 (Boundedness of inertia matrix) The inertia matrix is bounded in the sense that λ min (M (x)) x 2 ≤ x T M (x)x ≤ λ max (M (x)) x 2 .

(6.61)

Property 2 (Skew Symmetry) The inertia matrix and the centripetal Coriolis matrix have the following property:

x T Ṁ (q) -2C(q, q) x = 0, ∀x ∈ n (6.62)

where Ṁ (q) is the time derivative of the inertia matrix.

Lemma 1 [Zhao et al. 2010] The nite-time command lter (FTCF) is dened as:

ẏi1 = v i1 v i1 = -R 1 |y i1 -α i | 1 
2 tanh((y i1 -α i )/ε i ) + y i2 ẏi2 = -R 2 tanh((y i1 -v i1 )/ε i ) (6.63) 126 Chapter 6. Modelling and control of rigid and exible joint manipulators where R 1 , R 2 and ε i are design parameters, α i the input, x ic = y i1 and ẋic = v i1 are the output of the FTCF.

Lemma 2 [Yu et al. 2005] For any numbers c 1 > 0, c 2 > 0, γ ∈ [0, 1], an extended Lyapunov condition of nite-time stability is dened as V (x)+c 1 V (x)+c 2 V γ (x) ≤ 0, where the settling time is

T ≤ 1 c 1 (1 -γ) ln( c 1 V (x 0 ) 1-γ + c 2 c 2 ) (6.64)
with V (x 0 ) the initial value of V (x).

Lemma 3 [Yu et al. 2005] For a 1 > 0, a 2 > 0 and 0 < γ < 1, the following inequality holds (a 1 + a 2 ) γ ≤ a 1 γ + a 2 γ .

(6.65)

Control design

In this part, we consider that the robot model is given as in 6.26, with N = I n×n .

Let the state variable be as: x 1 = θ m , x 2 = θm , q = q -q des . Then it follows M (q) ė = Kx 1 -C (q, q) e -M (q) v +f 1 q, q, q des ẋ1 = x 2 ẋ2 = J -1 u + f 2 (q, x 1 , x 2 ) (6.66) where f 1 q, q, q des = -[C (q, q) v + G (q) + F ( q) + Kq] f 2 (q, x 1 , x 2 ) = -J -1 [Bx 2 + K (x 1 -q)] .

(6.67)

The objective is to design an adaptive fuzzy nite-time command ltered backstepping control law u for the n-link FJR system (6.66). The derivation of u has to take into account unknown non-linear functions f 1 and f 2 , such that the output q can track the desired trajectory q des in nite-time. Besides, all the closed-loop system signals have to converge to a neighborhood close to zero in nite-time.

To ensure compensation of nite-time lter errors, we have proposed the following mechanism:

M (q) ξ1 = -(k 1 + C(q, q))ξ 1 + K(x 1c -α 1 ) +Kξ 2 -λ 1 ν 1 ξ2 = -k 2 ξ 2 + (x 2c -α 2 ) -Kξ 1 -λ 2 ν (6.68) where k i is a positive denite diagonal matrix, λ i is a positive constant, and ν i is a vector dened as ν i = [tanh(ξ i1 /a i ), tanh(ξ i2 /a i ), ..., tanh(ξ in /a i )] T , with a i > 0.

To guarantee the nite-time convergence of the closed-loop signals, the virtual controls α 1 and α 2 , the control law u and the update law θ are chosen as 2 S 2 ) -σ θ (6.69) where σ, r, γ Remark 1 Achieve nite-time stability of the closed-loop system is the main difculty in the nite-time control of nonlinear system, and particularly when the system is order n > 1. For the case of command ltered backstepping control of FJR system (n ≥ 2), this diculty increase with the presence of errors compensation mechanism. To overcome this diculty we have introduce the terms

M (q) v -1 γ 1 Ξ z 1 [z T 1 M (q)z 1 | 1+β 2
, and -γ i Λ z i |z i | β , i = {2, 3}, in the previous presented command ltered backstepping algorithm exible for joint robots.

Trough Lyapunov stability, it can be proved that the proposed control law ensure the boundedness of the tracking error qj in nite-time T 1 such that χ 0 k 01j ≤ qj (t) ≤ χ 0 k 01j + [q j (0) -χ 0 k 01j ]exp(-k 01j T 1 )

where χ 0 = max{ η 0 k 0 , 2 × ( η 0 2λ 0 ) Remark 2 From the obtained result, it is observed that the settling time T 1 , and the boundsχ 0 k 01j and [q j (0) -χ 0 k 01j ]exp(-k 01j T 1 ) + χ 0 k 01j , of the tracking error qj (t), can become smaller with a good choice of the design parameters, that is the larger values for γ 1 , k 01j , k 1j , k 2j and k 3j , and the smaller values for γ 2 , γ 3 , λ 2 , and σ. Thus in contrast to the previous developed control approaches, the proposed controller can not only deal with model uncertainty, but can also ensure nite-time convergence of the closed-loop signals, and nite-time lter errors compensation.

To show the control approach's eectiveness, let run a case study with a 2-link exible joint robot. We compare the proposed approach's tracking performance with the command ltred backstepping control approach developed by Ling et al. [Ling et al. 2019]. Simulation results are presented in Figs. 6.17 and 6.18. Fig. 6.17 shows the trajectories of the angular position q, the desired angular position 128 Chapter 6. Modelling and control of rigid and exible joint manipulators q des , and the tracking error q for the two controllers. It is shown clearly that the proposed control approach not only has a faster convergence rate but also achieves better tracking error, with a settling time T 1 < 2s and the tracking error bounded as |q| ≤ 4 × 10 -6 rad. Fig. 6.18 shows the control eort for the two controllers. The proposed approach does not require additional control eorts to achieve a better tracking eect. This observation means that the proposed controller performs the best tracking performance with no additional control eort. .17: Case f 1 and f 2 considered known: Angular position q and tracking error q, for link 1 and link 2.

Conclusion

This chapter presents our contributions to the topics of inverse kinematic modeling of redundant manipulators and control of exible joint manipulator robots. Regarding the inverse kinematic modeling of redundant manipulators, we present a general approach to derive the inverse kinematics of high dof rigid manipulators. The proposed method has been validated through simulations and experiments. Concerning the control of exible joint manipulators, three contributions have been presented.

In the rst one, Command ltered backstepping algorithm has been applied to the case of exible joint manipulator control, and support vector regressors (SVR) were used to deal with dynamic uncertainties. A tangent-type robust term was also used to cancel tracking and approximation errors. The second contribution implemented Siding mode control, a master thesis is in progress.

Autonomous navigation of mobile robots

Concerning the autonomous navigation of mobile robots, we have been interested in navigation strategies to move a robot intelligently from one point to another. However, strategies to reduce energy consumption have received little or no attention. proposed were validated both in simulation and experimentally, demonstrating their feasibility. We have succeeded in fullling many constraints existing in a classical control of a mechatronic system. However, the system dynamics or the interaction with the external environment were taken into account only to a limited extent.

Thus, the rst prospect is the validation of the algorithms' extension to the case of mobile continuum manipulators [START_REF] Boutchouang | [END_REF], and those in progress on kinematic modeling based on minimizing the energy of continuum manipulator mobiles. The next one aims at proposing a modeling methodology integrating both the dynamics of the continuum robot and those of its actuators.

The logical next step will be to develop control laws for position and force control.

However, this perspective is not the only envisaged. Indeed, most of the exible robots currently under development are characterized by a very complex mechanical structure. Modeling problems will become more and more recurrent. To this end, very recently, we have been interested in learning architectures dealing with large databases [bou ].

Kinematic modelling of high dof rigid manipulators

Regarding manipulators with rigid joints, much remains to be explored.

After the validation of the extension proposed for mobile manipulators [Kouabon et al. 2020b], the objective is to focus on the kinematic modeling of multisystems. Indeed, most of the robots currently under development are characterized by a complex, often anthropomorphic structure. Moreover, they are designed to be able to interact with humans in an advanced way. Therefore, these robots are called upon to carry out increasingly advanced missions where the need for cooperation can hardly be overlooked. In the future, we wish to move towards the kinematic modeling of systems with two or more mobile manipulators to carry out tasks requiring coordination (cooperative payload transport).

Control of exible joint robots

Concerning the control of exible joint robots, we have extended the strategy of reducing the complexity of backstepping (command lters), previously applicable to simple systems, to manipulators with exible joints. Constraints on control eort were subsequently integrated, and the convergence of the control architecture was improved by oering nite-time control. However, the proposed algorithms were only validated in simulation. Consequently, the logical next step in this theme will be to move towards implementation in real systems. Algorithms developed in particular for the control of the horse leg are currently being implemented.
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The next prospective study is an extension of the developed algorithms. Indeed, most control approaches developed for exible joint robots are focused on deterministic cases, i.e., when the robot environment is stable and known. However, when this environment is unknown or subject to random vibrations, these methods can no longer ensure good tracking accuracy due to the un-modeled dynamics resulting from the vibrations.

When a robot manipulator is used in air or sea transport, it is subjected to ran- We will propose a less complex and more robust control strategy for electrically driven exible joint manipulators working in random vibration environments in future work. The main idea is to use command lters with new error compensation mechanisms to deal with random disturbances to reduce the control structure's complexity. Robust terms will also be used to protect command lters and mitigate the eect of disturbances. Therefore, the tracking error's mean square will converge to an arbitrarily small neighborhood close to zero. A.6 [START_REF] Ahanda | [END_REF] 
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 2 Ph.D. student Visiting at LAGIS, university of Lille (Sep.2011 Jun.2012), France The second phase took place from September 2011 to June 2012 at the Laboratoire d'Automatique, d'Informatique et de Signal (LAGIS) of the University of Lille under the supervision of Belcacem Ould-Bouamama, professor of the Chapter 2. Research Activities University of Lille. I joined this laboratory through an Erasmus Mundus mobility program. The main objective was to implement the Master's thesis algorithms on a real mobile platform. (a) From September 2011 to January 2012, I implemented the type-2 fuzzy logic algorithms on the Robotino mobile platform. The results obtained were published at the IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications in 2012. (b) From February 2012 to March 2012, I was interested in Bond and Graph modeling. The objective is to get involved in the MOCIS team's themes led by Belcacem Ould-Bouamama. (c) From May 2012 to December 2012, I was contacted by Professor Rochdi Merzouki for possible modeling of the inverse kinematics of a class of continuum robots named Compact Bionic Handling Assistant (CBHA) with articial neural networks. Indeed, the system was strongly non-linear, and the forward kinematic equations obtained were mathematically intractable. Therefore, the use of numerical methods or Learning machine tools became necessary. In collaboration with the Ph.D. student, Coralie Escande, we proposed forward and inverse kinematic models using MLP and distal supervised learning, respectively. Some of the results obtained have been published at IFAC 2014 [Melingui et al. 2014c], International Joint Conference on Neural Networks in 2014 [Melingui et al. 2014g], and IEEE 23rd International Symposium on Industrial Electronics in 2014 [Melingui et al. 2014f]. 3. Ph.D. student at LAGIS (Jan.2013 Sep.2014), France The third phase of the thesis work took place from January 2013 to September 2014, notably after a co-tutorship agreement between the University of Lille 1 in France and UY1 in Cameroon. Therefore, my thesis work was under the supervision of Rochdi Merzouki, Professor of the University of Lille, and Jean Bosco Mbede, Professor of the UY1. My thesis's title was Modelling and control of a class of mobile Continuum manipulator robots, case of study Robotino XT. It was necessary to control not only the CBHA but also the entire mobile manipulator XT. With the experience gained before,
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  Project: Smart Ports Entrepreneurial Ecosystem Development I participated in the European project SPEED (Smart Ports Entrepreneurial Ecosystem Development), within the framework of the societal challenge Port of the Future as a guest researcher (between Jan. 2019 and Mar. 2019). This project aims to integrate new advances in data sciences and Internet of Things (IoT) technologies. In this project, I worked on the energy planning of autonomous vehicles developed in the framework of the European project InTraDE (Intelligent Transportation for Dynamic Environment). VASCO project: Autonomous Vehicles For Port Logistics, 2016 2019 This project is of type PSPC (Projet Structurant des Pôles de Compétitivités) of BPI France, with the participation of the companies Gaussin and BA Systèmes and the laboratory LS2N-CNRS. I participated in this project as a guest researcher (between Jan. 2019 and Mar. 2019). The VASCO project aims to develop a concept of autonomous container-carrying vehicles, operating in an unstructured environment, to carry out logistics operations. This project is part of the Port of the Future societal challenge. Within this project's framework, I worked on the estimation of the energy consumption of autonomous container door vehicles. My participation in this project has resulted in the following publications: [Bensekrane et al. 2020, Bensekrane et al. 2018].
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 61 Research activies in bref 1. Posdoctoral fellow (Sep.2014 Dec. 2014) Hybrid approach for modelling and solving the kinematics of the CBHA My postdoctoral research activities began with a postdoctoral contract award from September 2014 to December 2014 at the University of Lille. During this period, I mainly worked with Ph.D. student Othman Lakhal. His thesis work

  (a) Adaptive algorithms for improving the performance of a class of continuum manipulators After my recruitment at the UY1, I became interested in improving the adaptive control architecture developed during my Ph.D. thesis. Since neural networks face local minima problems, we proposed a new adaptive control scheme, namely the adaptive support vector regressor controller.

  ter's program, I implemented the novel control architecture developed earlier on adaptive algorithms for improving the performance of a class of continuum manipulators. Parts of the results obtained were published in[Melingui et al. 2017b, Melingui et al. 2017a]. 4. Guest Professor at University of Lille, Jan.2018 Mar.2018 Modeling of Continuum Manipulators Using Pythagorean-Hodograph Curves Chapter 2. Research Activities During my stay, in parallel with the teaching task, I worked with the Ph.D. student Inderjeet Singh, on the modeling of continuum robots using Pythagorean-hodograph curves. Continuum robots have inherent exibility due to their exible structure, making it very dicult to control them with high performance. Before developing a control strategy for such robots, it is essential to rst reconstruct the robot's behavior by developing a behavioral model. The project consisted of developing a quantitative modeling method based on Pythagorean-hodograph curves. The objective was to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). Part of the results obtained were published in [Singh et al. 2018b, Singh et al. 2018a]. The thesis was defended in November 2018. 5. Guest Professor at University of Lille, Jan.2019 Mar.2019 Contribution to energy planning for the autonomous driving of an over-activated road vehicle During my stay, in parallel with the teaching tasks, I worked with the Ph.D.
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 6 Guest Professor at University of Lille, Jan.2020 Mar.2020 (a) A learning-based approach to inverse kinematics of continuum manipulators During my stay, I focused on developing a general method for deriving the inverse kinematics of continuum manipulators. We proposed a new learning framework that learns and maintains multiple inverse kinematic (IK) solutions of multiple section continuum manipulators. The innite number of IK solutions has been reduced to a nite number by discretizing the robot's operating space. Besides, the IK problem of multi-section continuum manipulators was transformed into single-section manipulators by parameterizing the actuation variables of the rst (n-1)-sections. The parameterization is performed by clustering the manipulator workspace using the growing neural gas network (GNG) algorithm. The proposed method was computationally ecient and can be applied to any continuum manipulator, regardless of the number of sections. Some of the results obtained are under review in [Melingui et al. 2019]. The extension of the approach to the case of mobile continuum manipulator robots, developed by one of my Ph.D. students, is also under review in [Bouyom Boutchouang et al. 2020]. (b) A learning framework for the inverse kinematics of redundant high dof manipulators A similar approach was also applied to inverse kinematics of redundant rigid manipulators in collaboration with my Ph.D. student Gino Ambroise Jiokou Kouabon. Indeed, several joint angle vectors can be associated with a given end-eector (EE) pose of a redundant rigid manipulator. However, for a given EE pose, if a set of joint angles is parameterized, the IK problem of redundant manipulators can be reduced to that of non-redundant ones so that the closed-form analytical methods developed for non-redundant manipulators can be applied to obtain the IK solution. In this work, certain redundant manipulator joints are parameterized by clustering the redundant manipulator's workspace and conguration space. Growing Neural Gas Network (GNG) is used for workspace clustering, while a Neighbourhood Function (NF) is introduced in the conguration space clustering. Some of the results obtained have been published in [Kouabon et al. 2020a, Jiokou K et al. 2020]. The extension of the approach to mobile rigid manipulator robots developed by the same Ph.D. student is under review in [Kouabon et al. 2020b].

  My teaching activities dated back to the beginning of my doctoral thesis registration in 2010. I started as a temporary teacher with the Physics Department of the Faculty of Science from February 2010 to June 2011, for an annual hourly volume of 156 hours of practical work. Then, I worked as a temporary teacher from September 2010 to June 2011 in the mathematics and physical sciences department at the National Higher Polytechnic School and the Higher Teacher Training College of the UY1 for an annual hourly volume of 56 hours and 72 hours of tutorials, respectively. The teaching during this period is summarised in Figure 3.1.
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 31 Figure 3.1: Synthesis of teachings 2009-2011
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 32 Figure 3.2: Synthesis of teachings since 2015

  is to introduce students to robotics and robotic vision. The course presents Chapter 3. Teaching Activities dierent robotic platforms and then focuses on the two most common classes: wheeled mobile robots and industrial manipulators. Direct DH, modied DH, and inverse kinematics(Paul, Pieper, learning approaches), dynamics (Euler-Lagrange and Newton-Euler formulations), and some classical commands such as PID, PID with gravity compensation and computed torque control are discussed. The vision part introduces monocular and binocular vision. Camera calibration techniques are also covered in hands-on exercises using MATLAB.The course ends with practical lab work on the Scorbot ER robot manipulator (validation of forward and inverse kinematics, pick and place object programming, manual and automatic sorting of objects).3.4.3 Master international MRT, University of Lille Articielle IntelligenceThis course is intended for a Master in the international Master of Robotics and Transport (MRT). The goal is to introduce students to articial intelligence techniques with an emphasis on code creation. After the general introduction to articial intelligence, two machine learning methods are discussed: neural networks and fuzzy logic. Regarding neural networks, the course introduces articial neuron learning algorithms (Gradient descent, Newton method, Conjugate gradient, Quasi-Newton method, and Levenberg-Marquardt algorithm) and deals in detail with two neural network topologies, namely multi-layer perceptron and radial-based networks.Fuzzy logic is restricted to conventional fuzzy logic. The fuzzication, fuzzy rule inference, and defuzzication methods are discussed. This theoretical aspect is accompanied by practical work on Matlab and robot implementation. becoming increasingly visible within our society today. From manufacturing industries to space exploration, through rescue operations, surveillance missions, education, military interventions, mass production in agriculture, entertainment, etc., mobile robot applications abound today. To successfully achieve their missions, mobile robots are sometimes equipped with high-performance autonomous navigation systems. Therefore, the autonomous navigation of mobile robots becomes a major research topic[Pandey et al. 2017, Faisal et al. 2013, Hagras 2004[START_REF] Beom | A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning[END_REF]. Depending on the information (complete or incomplete) available from the navigation environment, navigation systems can be grouped into two main classes, namely global navigation and local navigation or reactive navigation. In global navigation, the mobile robot has an overview of the navigation environment, with a priori knowledge of the positions of the obstacles and the target to be reached, while in local navigation the mobile robot has only local knowledge of its environment. Yet, given the dynamic nature of mobile robot navigation environments, global navigation approaches can easily become time-consuming. As a result, much research work in mobile robot navigation has been focused on the local navigation method, where computation time is rational [Patle et al. 2019, Subbash & Chong 2019, Karray et al. 2016, Sanchez et al. 2015, Kim & Chwa 2014, Mbede et al. 2012].
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 41 Figure 4.1: Articial potential force direction when the robot faces with a frontal obstacle in case of a negative ( N e) or positive ( P o) orientation of the target point relative to the robot position.
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 42 Figure 4.2: Interval type-2 fuzzy controller structure

  19), (4.20), (4.21) (4.42), and (4.43) into (4.41), we have:

4 . 3 .

 43 The MFs of the linguistic variables relative to distance (d l , d f , d r , ∆X) with the initial setting parameters are depicted in Fig. 4.4. The MFs of the orientation of the target relative of the current position of the robot α, and the longitudinal F x and lateral F y articial forces are depicted in Fig. 4.5 and Fig. 4.6, respectively. Given the number of input variables and the associated MFs, the number of fuzzy rules should be approximately 432 fuzzy rules which is important. However, by taking into account the advantages oered by
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 4344 Figure 4.3: IT2FNN control structure
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 45 Figure 4.5: The orientation of the target position relative to the current robot position modelled by three interval type-2 Gaussian MFs and labelled as "Negative " ( N E), "Zero" ( Z) "Positive " ( P O).
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 346 Figure 4.6: The longitudinal articial force (F x ) and the lateral articial force (F y ) modeled by three interval type-2 Gaussian MFs and labelled as "Negative " ( N E), "Zero" ( Z) "Positive " ( P O).
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 4748 Figure 4.7: Scenario I: The strategies of corridor following, obstacle avoidance, and target reaching strategies in presence of obstacles with regular geometry.
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 49 Figure 4.9: Scenario I: Lateral velocities provided by IT2FL and IT2FNN controllers
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 411 Figs.4.11. The lateral velocities range are the same as in the previous scenario and both controllers have almost the same behaviours. We observe similar behaviour as in Scenario 1.
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 410 Figure 4.10: Scenario II: The strategies of corridor following, obstacle avoidance, and target reaching in presence local minima situations.
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 412 Figure 4.11: Scenario II: Longitudinal velocities provided by IT2FL and IT2FNN controllers

  studies involving the IT2FNN for autonomous mobile robot navigation to take place.
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 51 Figure 5.1: Kinematic mapping for a continuum manipulator modelled based on constant-curvature approach.
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 52 Figure 5.2: Continuum manipulator schematics

  trunk and made from polyamide materials. It consists of two bending sections, each equipped with three pneumatic actuators (tubes), a wrist axis, and a compliant gripper, as shown in Fig. 5.3. A PID regulator controls the pressure supply in each tube. The elongations of the dierent tubes are provided by six-wire potentiometers placed along each tube. The elastic deformation of the CBHA results in movements with an innite number of degrees of freedom. The properties of the polyamides and the pneumatic actuators that compose it make it a challenging platform as well for modeling as for control. It mainly inherits a compliance and memory eect from polyamide materials' properties and a hysteresis eect caused by its pneumatic actuators.
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 53 Figure 5.3: The CBHA of the RobotinoXT
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 54 Figure 5.4: OptiTrack Motion Capture System

AssumptionsFigure 5 . 5 :

 55 Figure 5.5: Structure of a class of continuum manipulators. The inter-modules are shown in black while the modules are blue.
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 56 Figure 5.6: Inter-module's paramaters in the general case
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 57 Figure 5.7: Spatial conguration of an inter-module

  is a Deep Neural network (DNN) with many levels of non-linearities allowing it to 5.2. Forward kinematic modelling 61 represent highly nonlinear regression functions such as those obtained in (5.37). It has the advantage of allowing the initialization of weights in the region close to a good local minimum thanks to pre-training algorithms [Larochelle et al. 2009].
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 58 Figure 5.8: Training procedure for DNNs using the autoencoder (AE) algorithm for pre-training. (a), (b) and (c) show the pre-training process of the rst, second, and third hidden layers, while (d) shows the ne-tuning of the entire network.

15 )

 15 The training of DNNs as a regression model consists of an unsupervised pretraining part and a supervised ne-tuning part, as shown in Fig.5.8. In the pretraining part, the training is performed layer-by-layer in an unsupervised greedy fashion to maximize training samples' likelihood. Since the backpropagation algorithm is used, the type of hidden units can be a sigmoid (sigm), a hyperbolic tangent (tanh), or an arctangent (atan). Indeed, these activation functions make the backpropagation algorithm stable. Besides, they have an acceptable degree of smoothness and are easily dierentiated[START_REF] Hornik | [END_REF]], unlike a ReLU function, which has a dierentiation problem that can lead to a dying ReLU problem[Hu et al. 2018]. The interested reader is referred to[START_REF] Larochelle | [END_REF]] for a detailed description of DNN and autoencoder algorithms.
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 59 Figure 5.9: Generation algorithm of the learning database
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 510 Figure 5.10: Computation of FKM in using the DL
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 31 Inverse kinematics: distal supervised learning architecture Direct inverse modeling treats the problem of learning an inverse model as a classical supervised learning problem. The idea is to observe the environment's input/output behavior and train the inverse model directly by reversing the inputs and outputs' roles. Data are provided to the algorithm by sampling in action space and observing
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 511 Figure 5.11: Composite learning system[Jordan & Rumelhart 1992] 
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 512 Figure 5.12: Learning architecture for IKM of CBHA

Figure 5 .

 5 Figure 5.13: Proposed LIKM architecture: for a task pose vector that belongs to w 1 cluster, a set of N w 1 inverse kinematic solutions are possible.

  . 2002. , Fatemizadeh et al. 2003]]. They learn a dynamic graph with a variable number of neurons and connections. The principle is to successively add new neurons to an initially small network by assessing the local statistical measures collected in previous adaptation steps. The topology of the net-

Figure 5 . 14 :

 514 Figure 5.14: Resolution of redundancy in inverse kinematic solution space Let us consider the example shown in Fig. 5.14, where P c denotes the position of the robot's current conguration. The robot conguration sol 1 , considered as a particular IK solution, is closer to the desired target denoted by P d . However, given the robot's current conguration, it will require more energy or eort to reach the desired target. The solution sol 3 has slightly larger Cartesian errors than the solution sol 1 , but it is closer to the robot's current conguration. It will be called a lazy-arm conguration IK solution. Other redundancy criteria can also be implemented, namely for obstacle avoidance or actuator physical limits avoidance.

Chapter 5 .

 5 The training database is built from the FKM developed in section II. The actuator variables are varied from 70 mm to 100 mm with a step size of 15mm and lead to a database size of 19683 samples.The LIKM is obtained via clustering in the workspace and the robot actuating space. The dimensions of the task space and actuator space are R 3 and R 9 , respectively. GNG consists of several independent parameters; fortunately, prior tests have shown that only certain parameters have a strong impact on the learning 74 Modelling and control of continuum manipulators outcome. Therefore, to empirically select the best model, only a few parameters within a predened range centered on a search grid were modied. As a result, to empirically select the best model, only a few parameters within a predened range centered on a search grid were varied. Therefore, the adaptation step λ, the learning rate of best ε n , the learning rate of neighbors ε b , and the learning rate of output α were modied throughout the training process.The resolution and the topology preservation of the GNG models are evaluated after each iteration using the measurement algorithm C[START_REF] Kaski | Comparing self-organizing maps[END_REF] for good topology preservation of the obtained models. Unlike other measures of the degree of topology preservation (topographic product, topographic function, etc.), C-measure has the advantage of combining both resolution and topology preservation measures. The training is stopped when the stop criterion (a xed C-measure) is fullled, or a maximum of 200 epochs is reached. The following GNG's parameters ε b = 0.24, ε n = 0.004, α = 0.57, α max = 50, d = 0.994, and λ = 100 have achieved satisfactory performance. The best (lowest) value obtained from the C-measure was 0.042. The training process is conducted on MATLAB software using an Intel Core i7-2670QM CP U at 2.20 GHz. The clustering in the workspace and actuator space took approximately 5 hours and 3 minutes. An essential advantage of the proposed IK method is its eciency in computing and maintaining multiple IK solutions. It is free of iterative loops and non-linear optimization algorithms. The following subsections present the simulation results obtained.
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 515515516 Figure 5.15: Redundancy preservation, a Cartesian point reached with dierent actuator space vectors.
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 517 Figure 5.17: Inverse kinematics with position and orientation: (a) and (b) the EE tracks a line-shaped trajectory with an orientation of [0, 0, π/6] using a random selection of IK and lazy-arm conguration solutions, respectively. (c) et (d) the EE tracks a spiral-shaped trajectory with an orientation of [0, π/3, π] using a random selection and lazy-arm conguration solutions, respectively.
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 518 Figure 5.18: Experimental setup where X d , X, and X * are the desired, estimated, and measured positions, respectively. L and P are the estimated conguration and the pressure vectors, respectively.
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 55 Figure 5.19: Experiment 1: trajectory tracking in unconstrained environment, P 1 , P 2 , and P 3 denote the robot conguration recording during the trajectory tracking.
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 5215 Figure 5.21: Experiment 2: trajectory tracking in environment with three obstacles; P 1 , P 2 , and P 3 denote the robot conguration recording during the trajectory tracking.

Fig. 5 .

 5 Fig.5.19 and Fig.5.20 show the experimental results obtained in the rst experiment. Fig.5.19 shows a collection of the CBHA congurations recorded during the tracking of the desired trajectory. The measured and the achieved trajectories, and the associated Cartesian errors are shown in Fig.5.20. The plots show that the measured and the achieved trajectories are closed. The error plots show the Euclidean errors between ±3mm with the peaks at the beginning and middle of the trajectory. The experimental results obtained in the constrained environment are shown in Fig.5.21 and Fig.5.22. A collection of the CBHA congurations is depicted in Fig.5.21. The measured trajectory and that achieved by the EE tip and also the associated errors are represented in Fig.5.22. The trajectory plots show that the two trajectories are closed. The error plots show the Cartesian errors between -5 mm and +4 mm with the peak errors at the beginning and the end of the path. An analysis of the experimental results obtained shows that the CBHA tip can track a given desired trajectory with Cartesian errors of approximately ±5 mm. These performances remain in the range of the performance achieved by such a continuum manipulators [Melingui et al. 2017b, Lakhal et al. 2015, ?]. However, the experimental results provided combine the performance of two subsystems, namelythe LIKM and the adaptive SVR controller. The performance achieved is similar to that obtained from the adaptive SVR controller[Melingui et al. 2017b], and knowing that the simulation errors are negligible, we can conclude that the adaptive SVR controller caused the remaining errors. The error peaks observed at the beginning and in the middle of the rst experiment's path could be justied as follows. The error peak at the beginning of the path would come from one of the adaptive controllers' limitations. The robot is operating near the limit of actuator actuation, and the adaptive controller is unable to provide the pressures required to eliminate these errors. The same phenomenon would be at the origin of the deviations observed in the second experiment's paths. The error peak found in the middle of the rst experiment's path would come from gravity since this portion of the trajectory corresponds to the robot's rest position, where the pressures in the tubes are almost zero.

4 .

 4 Data-driving based approach for control of continuum manipulators 83 where L ε = max {0, |f (x i ) -y i | -ε} is the ε-insensitive error loss function and C is a xed constant which controls the trade o between the training error and the regularization term. The nal solution (w and b) is a linear combination of the training samples in the transformed space that present the absolute errors equal or greater than ε.
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 2 is the extended Vapnik ε-insensitive loss function based on L 2 -norm [Sánchez-Fernández et al. 2004] and dened by 2µε + ε 2 , µ ≥ ε .

  equations, µ i = e i , e i = y i -(φ (x i ) W + B), W = w 1 , . . . w M , and B = b 1 , . . . b M , the Lagrangian function for the optimization problem (5.31) is expressed as

Figure 5 .

 5 scheme, the adaptive one integrates two adaptive laws. Knowing that the CBHA model changes over time, the rst closed-loop makes its updates. The second one reduces the remaining wire-potentiometer errors by adjusting the SVR controller's parameters. The CBHA model is identied o-line using input-output data. The regressor uses the pressure applied in each tube as input and the voltages of wirepotentiometers as output. The inverse CBHA model (controller) is also trained o-line using the CBHA manipulator's input-output data.U dk ∈ R 6 denotes the desired vector of voltages, and ∆P k ∈ R 6 is the vector of pressures. U m k ∈ R 6 is the measured vector of voltages, and U * k ∈ R 6 is the predicted vector of voltages. The proposed adaptive control scheme guarantees the convergence of voltage errors. Indeed, suppose the CBHA model reproduces the

  Fig.5.28. As expected, the end-eector tracks the desired path with a precision of 5mm. The execution times are respectively 490s and 960s for SVR and NN controllers. We notice that the paths obtained by the controllers are even closer to the desired path.

Figure 5 .

 5 Figure 5.25: CBHA path tracking -Experiment I: Non adaptive NN controller path and associated Euclidean errors with respect to execution time in X, Y, and Z axes.
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 55 Figure 5.26: CBHA path tracking -Experiment I: Non adaptive SVR controller path and associated Euclidean errors in X, Y, and Z axes.
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 45 Figure 5.28: CBHA path tracking -Experiment I: Adaptive SVR controller path and associated Euclidean errors with respect to execution time in X, Y, and Z axes.
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 1 Inverse kinematic modelling of high dof Rigid manipulators6.1.1 Introduction Recently, kinematically redundant manipulators have been the subject of active research, mainly thanks to their high exibility and versatility in executing certain complex tasks. They oer the possibility of simultaneously performing secondary tasks other than the main one, such as joint limit avoidance and obstacle avoidance. These secondary tasks make the solve inverse kinematics (IK) for this class of kinematic structures, an integral part of their real practical application. Typical applications of such systems include collaborative robots[Matthias et al. 2011], space robotic arms[Xu et al. 2011, Xu et al. 2018], dexterous hand[START_REF] Ott | A humanoid two-arm system for dexterous manipulation[END_REF], etc.
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 1 Inverse kinematic modelling of high dof Rigid manipulators 95 erable. Besides, the manipulator's segmentation into many segments can result in the loss of some IK solutions, since the inverse kinematics' resolution afterward is made segment by segment.Machine learning was widely used for solving IK of redundant robotic systems[Raja et al. 2019, Kumar et al. 2010, Bócsi et al. 2011]. Support Vector Regression[Bócsi et al. 2011], articial neural networks[Toshani & Farrokhi 2014, Daachi et al. 2012, Yahya et al. 2014, de Lope et al. 2009], and fuzzy systems[Hu & Woo 2006] have been used to solve IKs of redundant manipulators. Kohonen Self-Organized Map (KSOM) networks have been used in[Kumar et al. 2010] to solve the redundancy of a 7 DoFs arm for tracking trajectories with low errors. The advantages of KSOM networks to maintain continuity of the IK solutions with the possibility to select desired Ik solutions from a set of possible IK solutions have been exploited. However, not only do Cartesian errors remain; several iterative loops may be necessary to improve the position accuracy of the selected IK solution.

  Among the methods developed to derive the forward kinematics of serial manipulators, the DenavitHartenberg (DH) convention[Hartenberg & Denavit 1955] is generally adopted, thanks to its simplicity. The forward kinematic model (FKM) is essential in establishing the inverse kinematic model (IKM) of redundant manipulators, particularly for generating the learning database in the proposed learning framework. This section describes the forward kinematics of a n-DOF serial manipulator, depicted in Figure6.1. The frame assignments follow the DenavitHartenberg (DH) convention[Hartenberg & Denavit 1955], which enables the representation of every coordinate frame's location to every other.
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 63 Figure 6.3: Anthropomorphic 7-DOFs manipulator
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 56524 p 2 5x + p 2 5y + (p 5z -d 1 ) 2 -d 2 3 -d 2 5 = 2c 4 d 3 dIn this way, s 4 = 1 -c 2 4 and θ 4 is derived by using the trigonometric relations given in Appendix A.atan2 (s 4 , c 4 ) .
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 7 Figure 6.4: A circular path tracking by an anthropomorphic 7-DOF manipulator of with simple conguration vectors

6. 6 .

 6 It is a lightweight collaborative robot weighing around 24 kg with a 7 kg payload and a repeatability of ±0.1mm. Made of aluminum, it has 7 degrees of freedom, allowing it to be both exible and accurate. Simultaneously, its powerful sensor technology contributes to its safety and ability to work with humans. The 6.1. Inverse kinematic modelling of high dof Rigid manipulators 105 KUKA LBR IIWA 7 R800 is programmed using the KUKA Sunrise-Workbench.Sunrise Operating System can be interfaced with an external computer using either the Robot Operating System (ROS) or the Fast Research Interface (FRI). The KUKA Sunrise OS controller is programmed into Java so that algorithms can be internally implemented and external sensors interfaced. The section starts with the experimental setup and ends with results obtained.

Figure 6 . 6 :Figure 6 . 7 .

 6667 Figure 6.6: KUKA LBR IIWA 7 R800 robot
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 7696107611 Figure 6.9: Lamniscate curve tracking with lazy joint angles: Associated joint angles

Figure 6 .

 6 Figure 6.12: (a): The lightweight manipulator DLR LWR-III by the German Aerospace Center, (b): The cable-driven robot Dexter by Scienzia Machinale
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 613 Figure 6.13: Comparison of tracking performances between ADCFB and RADCFB under tree cases of m 3 uncertainties
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 614 Figure 6.14: Comparison of output voltages between ADCFB and RADCFB under tree cases of m 3 uncertainties
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 615 Figure 6.15: Compensated tracking error z 1 for constrained (green line) and unconstrained (red line) controllers
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 616 Figure 6.16: Voltage input of constrained (green line) and unconstrained controllers (red line).
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 26 Adaptive Fuzzy Finite-time Command Filtered Backstepping Control of Flexible Joint Robots [Roger et al. 2020] Highlight of the contribution Command ltered backstepping control produces satisfactory performances, for the control uncertain high order nonlinear systems. It can be easily combined with a robust adaptive architecture, as demonstrated in the previous sections. Presently, new challenges for the command ltered backstepping control approaches are related to the following technical issues:

6. 2 .

 2 Contribution to the control of exible-joint robots 125 How to ensure fast ltering, while guaranteeing the lter errors compensation; How to ensure fast stabilization of the closed-loop system despite the presence of inevitable ltering errors and model uncertainties. Several approaches have been proposed to address one, two, or all the aforementioned technical issues. The authors usually use a nite-time control approach [Bhat & Bernstein 2000, Xia et al. 2018] to ensure fast ltering or fast stabilization, while uncertainties are generally coped using neural networks or fuzzy logic systems (FLSs) [C. Bing & Chong 2017, M. Li & Guangdeng 2019]. Yu et al. [Yu et al. 2017] proposed a fuzzy nite-time command ltered control for uncertain single input single output (SISO) system under input saturation. The authors developed new virtual control and error compensation mechanism. Han et al. [Han et al. 2018] developed a nite-time adaptive fuzzy command ltering controller for induction motors under input saturation. In [Yu et al. 2005, Zhao et al. 2010, Galicki 2015, Nguyen et al. 2019] dierent nite-time controllers are proposed for rigid robot manipulators. However, all the control approaches above cannot be useful for nite-time control of exible joint robots. The reason is that joint exibility and actuators dynamics render diculty in the demonstration of the nite-time stability of the closed-loop system. To overcome this theoretical limitation, we use the positiveness and the boundedness of the inertia matrix, and the skew symme-

4 3 }

 3 + max{ c 0 a 0 , 2 × ( }, a 0 = min{(2k 21 -λ 2 ), (2k 22 -λ 2 ), ..., (2k 2n -λ 2 ), 2k 31 , 2k 32 , ..., 2k 3n , σ 2 , 1}, b 0 = min{ 0 k 0 = min{2k 1j , 2k 2j }, λ 0 = min{ √ 2(λ 1 -µ 1 K j ), √2(λ 2 -µ 2 )}, j=1,2,...,n.

Figure 6

 6 Figure 6.17: Case f 1 and f 2 considered known: Angular position q and tracking error q, for link 1 and link 2.

Figure 6 . 18 :

 618 Figure 6.18: Case f 1 and f 2 considered known: The demanded control voltage u.

  the same control approach to the case of joint space constraints. The last one implements the nite-time Command ltered algorithm to ensure fast stabilization. Chapter 7 Conclusion and future work In work presented above, we have presented control strategies for the autonomous navigation of mobile robots. We have also presented learning architectures for the modeling and control of continuum manipulators and a learning architecture that maintains multiple inverse kinematic solutions for high dof rigid manipulators. Finally, we have proposed new control laws for the control of exible joint manipulators. Our prospective study is a continuation of these works and aims at improving the existing ones. Our research team recently interested in Machine Learning algorithms (articial neural networks and machine vectors support), articial intelligence (Fuzzy logic, articial potential eld), and backstepping control. Our main shortterm objective is to reinforce our research team of the UY1, which currently has only two conrmed researchers. In this way, four Ph.D. theses are being nalized. Besides, our research team focuses on new algorithms: Deep neural networks for modeling and control of robotic systems, a Ph.D. thesis and a master thesis are in progress; Reinforcement learning for robot control, a master on the inverse kinematics of manipulator robots via reinforcement learning was completed; -Development PH-curves-based type-2 fuzzy logic algorithms for ecient robot motion planning, and a Ph.D. thesis is in progress;

  Our strategies for minimizing the energy consumed have remained too dependent on the robot model's accuracy developed[Datouo et al. 2017, Bensekrane et al. 2020].However, since an ideal model does not exist, with the research team's experience on PH curve modeling, our rst prospective aims to focus on the development of PHcurves-based type-2 fuzzy logic algorithms. Fuzzy controllers whose prole of the generated velocities directly leads to the minimization of the consumed energy. This theme's second prospective study focuses on vision-based navigation, particularly on a possible coupling between deep learning networks and fuzzy logic.

Chapter 7 .

 7 Conclusion and future work 7.2 Modelling and control of continuum robots Chapter 5 highlights our contributions on the topic of modeling and control of continuum manipulators. The dierent learning architectures and control strategies

  dom vibrations that are dicult to model. It is necessary to know how the random disturbances are modeled to propose an eective control method in this context.The rst attempts in considering random vibration phenomena were rst to consider the noise produced as white noise. Later, the idea was to consider them as the Wiener process's formal derivative process to deduce the Itô type stochastic differential equation systems. By following this idea, several stochastic modeling and controller have been proposed [M.-Y. Cui & Xie 2014, Z. Wu & Shii 2012]. The second idea was to view the produced disturbances as colored noise. Many modeling and controller approaches have been developed for random benchmark and automobile suspension systems [Z. Wu & Cui 2017]. For a class of electrically driven manipulators, presently, only Cui et al. [Cui & Wu 2019] have proposed a modeling approach and a controller design for the case of a random vibration environment.The authors have modeled random disturbances as torque or voltage disturbed colored noises. They have designed a vectorial backstepping controller to deal with joint exibility and random uncertainties. However, the proposed control law is too complicated and can be time-consuming for real-time applications due to the repeated derivation of virtual control signals. The proposed control approach does not reduce the eect of disturbances on the tracking performances through robust terms.

  assumption of constant curvature is often considered to simplify the model formulation. In this work, a quantitative modeling method is proposed, based on the Pythagorean hodograph (PH) curves. The aim is to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). It is noticed that the performances of the PH-based kinematic modeling of continuum manipulators are considerable regarding position accuracy, shape reconstruction, and time/cost of the model calculation, than other kinematic modeling methods, for two cases: free load manipulation and variable load manipulation. This modeling method is applied to the compact bionic handling assistant (CBHA) manipulator for validation. The results are compared with other IKMs developed in case of CBHA manipulator. A.5 [Bensekrane et al. 2020] I. Bensekrane, P. Kumar, A. Melingui, V. Coelen, Y. Amara, T. Chettibi, and R. Merzouki, Energy planning for autonomous driving of an overactuated road vehicle, IEEE Transactions on Intelligent Transportation Systems, 2020.Abstract: In this work, an energy planning strategy is proposed for overactuated unmanned road vehicles (URVs) having redundant steering congurations.In fact, indicators on the road geometry, the actuation redundancy, the optimal velocity prole, and the driving mode are evaluated for each segment of the URV's trajectory. To reach this objective, a power consumption estimation model is developed for the URV. Due to the presence of unknown dynamic parameters of the URV and uncertainties about its interaction with the environment, an articial intelligence (AI) technique, based on data-learning qualitative method, is used for the power consumption estimation, namely Adaptive Neuro Fuzzy Inference System (ANFIS). The ANFIS model is obtained using trained data from a Real URV dynamics. Then, an energy digraph is built with all feasible congurations taking into account the kinematic and dynamic constraints based on a 3D grid map setup, according to velocity, arc-length, and driving mode. In this weighted directed graph, the edges describe the consumed energy by the URV along a segment of a trajectory. The vertices describe the start and end points of each segment. Subsequently, an optimization algorithm is applied on the digraph to get a global optimal solution combining driving mode, power consumption, and velocity prole of the URV. The obtained results are compared with the dynamic programming method for global oine optimization. Finally, the obtained simulation and experimental results, applied on RobuCar URV, highlight the eectiveness of the proposed energy planning.
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				Chapter 2. Research Activities
	This project was co-nanced by the INTERREG IV-B northwest Europe
	(NWE) program. The project aimed to contribute to the socio-economic
	development of ports located in North-West Europe. I participated in this
	project as a Ph.D. student (between 2011 and 2014) and as a post-doc
	(between September 2014 and January 2015).	My work was part of the
	W3Ap action, entitled: Transferability of the European project Intrade. It
	concerned developing strategies for the autonomous control of Omni-drive
	intelligent autonomous vehicles, allowing the handling and routing of loads
	in conned and indoor environments.	Thus, the robot RobotinoXT was
	used as a didactic demonstrator of autonomous transport in a conned
	space. My participation in this project has resulted in the following publica-
	tions:	[Melingui et al. 2014e, Melingui et al. 2014a, Melingui et al. 2015,
	Lakhal et al. 2015,	Melingui et al. 2017b,	Melingui et al. 2013a,
	Melingui et al. 2014d,	Melingui et al. 2017a,	Melingui et al. 2014b,
	Melingui et al. 2014f].	
	InTraDE project: Intelligent Transportation for Dynamic Environ-
	ment, 2009-2015	

  Lakhal et al. 2014c, Lakhal et al. 2014b, Lakhal et al. 2014a, Lakhal et al. 2019] and an international journal[START_REF] Lakhal | [END_REF]]. OthmanLakhal is now a lecturer at the University of Lille in France.I also contributed to the thesis of Inderjeet Singh, defended in November 2018, with Rochdi Merzouki, Professor at the university. The thesis dealt with the modeling of continuum robots using Pythagorean hodograph curves.

	2.6.2 Gratuated PhD students Past PhD thesis supervision I supervised 50% of the thesis of Joseph Jean-Baptiste Mvogo Ahanda, with Bernard Essimbi Zobo, Professor at the UY1, from March 2017 to De-cember 2018. This thesis dealt with the adaptive control of exible manip-ulators using mainly the Backstepping approach. This work was concretised sity of Bamenda in Cameroon. I also supervised 25% of the thesis of Othman Lakhal, with Rochdi Merzouki, Professor at the University of Lille, from September 2015 to November 2018. This thesis dealt with the Contribution to the model-ing and control of hyper-redundant robots: application to additive manu-facturing in construction. This work was concretised by four international conferences [Since September 2017: I am 50% supervising Audrey Haycinthe Bouyom objective of the thesis is to propose a general and computationally ecient approach for the kinematics of mobile continuum manipulators. The results obtained are under review in three international journals [Melingui et al. 2019, Since September 2017: I am 50% co-supervising Imrane Mahamat Loufti's thesis with Fréderic Biya-Motto, Professor at the UY1, which deals with the autonomous navigation of continuous manipulator mobiles. The thesis aims at proposing a computationally ecient navigation strategy for mobile continuum manipulators. The results obtained have been published in an international conference [Mahamat L et al. 2020], and others are under review in an inter-national journal [Mahamat Loufti et al. 2020]. The thesis defense is scheduled for January 2022. Since September 2018: I am 33% supervising Charles Medzo Aba's thesis, with Joseph Jean-Baptiste Mvogo Ahanda and Bernard Essimbi Zobo, re-spectively, Lecturer at the University of Bamenda and Professor at the UY1. Noe paul Ntouba, model predictive control of manipulator robots, de-fended in 2019. Bienvenue Ayissi Nga, Reinforcement learning for inverse kinematics of manipulator robots, defended in 2019. by two international conferences [Ahanda et al. 2017, Melingui et al. Chapter 2. Research Activities Bouatchang's thesis, with Fréderic Biya-Motto, Professor at the UY1, which Yves Mindzié Abessolo, Model adaptive reference control of manipu-deals with the inverse kinematics of continuum mobile manipulators. The lator robots, defended in 2019.
	bou , Bouyom Boutchouang et al. 2020]. The thesis defense is scheduled for
	December 2021.

2017a] and three international journals

[Melingui et al. 2017b, Ahanda et al. 2018b, Ahanda et al. 2018c]

. J. J.B. Mvogo Ahanda is now a lecturer at the Univer-My modest contribution to this work was concretised by an international conference

[Singh et al. 2018a

] and an international journal

[Singh et al. 2018b

].

Inderjeet

Singh is now a post-doc at the University of Texas at Arlington in the USA. In the same vein, I contributed to the thesis work of Ismail Bensekrane, defended in July 2019, with Rochdi Merzouki, Professor at the university. The thesis focused on towards and Energy Planning strategy for Autonomous driving of Over-actuated road vehicles. My modest contribution to this work has been concretised by an international conference [Bensekrane et al. 2018] and an international journal [Bensekrane et al. 2020]. Ismail Bensekrane is currently serving at the military school in Algiers, Algeria. Ongoing PhD students Since September 2017: I am 50% co-supervising the thesis of Gino Ambroise Jiokou Kouabon, with Martin Kom, Professor at the UY1. This thesis deals with the inverse kinematics of redundant manipulators. It aims at proposing a computationally ecient approach for the kinematics of redundant manipulators. The results obtained have been published in an international conference [Jiokou K et al. 2020], an international journal [Kouabon et al. 2020a], and others are under revision in [Kouabon et al. 2020b]. The thesis defense is scheduled for September 2021. This thesis deals with the control of exible joint manipulators operating in a stochastic environment. It is a continuation of Joseph's Ph.D. work on the control of exible joint manipulators. The results obtained are under review in an international journal [Medzo Aba et al. 2020]. The thesis defense is scheduled for March 2022. Since September 2018: I have been supervising 25% of Roger Datouo's thesis, with Joseph Jean-Baptiste Mvogo Ahanda, Fréderic Biya-Motto, and Bernard Essimbi Zobo, Lecturer at the University of Bamenda and Professors at the UY1, which deals with the control of mobile manipulators with exible joints. The results obtained were published in an international conference [Datouo et al. 2017] and an international journal [Roger et al. 2020]. The thesis defense is scheduled for June 2021.

2.6.3 Gratuated M.Sc. and Engineer Students I also supervised several master's and engineering students at the UY1 : 1. M.Sc. Students Patrick Valery OYONO EBOGO, Concept of virtual obstacles for path tracking of autonomous vehicles, defended in 2020.
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	.1: Fuzzy rule base for T2PFL[Melingui et al. 2014e]
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	2: COMPARISONS OF THE EXPERIMENTAL RESULTS
		Moved	distances(m)	Traveled	Times (s)
	Exp	IT2FL	IT2FNN	IT2FL	IT2FNN
	(0,0)(300,0)	3.35	3.13	14.04	10.30
	(0,0)(250,0)	2.35	2.53	10.85	9.962
	(0,0)(300,-50)	3.38	3.16	14.23	10.89

Table 5 .

 5 

1 lists the results obtained for each model, the mean square error (MSE), the learning time, as well as the parameters of each model are provided. One notes MSE of 5.3481 × 10 -5 , 7.0691 × 10 -5 , 2.3383 × 10 -5 , and 4.5232 × 10 -6 for MLP, RBF, CANFIS, and SVR, respectively. The learning times are approximately 01h45mn, 01h15mn, 02h30mn, and 03h41mn for MLP, RBF, CANFIS, and SVR, respectively. Euclidean errors resulting after comparison with the poses provided by motion capture system is listed in Table

5.2 and Table 5.3

. The maximal absolute

Cartesian errors of

4.164mm, 6.039, 2.79, and 3.638 

are noticed for for MLP, RBF, CANFIS, and SVR, respectively, while the maximal orientation errors are

11.604, 15.148, 5.667, and 6.976, respectively. 

Table 5 .

 5 

	Models	Parameters	MSE	learning time
	MLP	28 neurons	5.3481e -5 01h45
	RBF	60 neurons, σ = 0.5 7.0691e -5 01h15
	CANFIS 15 If-then rules	2.3383e -5 02h30
	SVR	C = 4000, σ = 1.2	4.5232e -6 03h41
	Table 5.2: Absolute value of Euclidean errors with position
		Models	X(mm) Y (mm) Z(mm)
		MLP	2.679	3.219	4.164
		RBF	5.960	5.302	6.039
		CANFIS 2.033	3.116	3.638
		SVR	1.406	1.191	2.796

1: Results of MLP, RBF, SVR and CANFIS.

Table 5 .

 5 3: Absolute value of Euclidean errors with orientation

	Models	ψ •	θ •	φ •
	MLP	11.604	2.224	10.876
	RBF	15.148	3.183	12.096
	CANFIS 6.852	1.746	6.976
	SVR	4.870	0.856	5.667
	5.2.3 Forward kinematic modelling: Deep learning-based approach
	Neural networks-based approaches allow obtaining accurate models. However, they
	suer from the learning database explosion that wears down the manipulator during

data collection. This shortcoming can be solved by associating model and learningbased approaches

[START_REF] Lakhal | [END_REF]

. Thus, the learning database can be derived from analytical equations to prevent the robot from operating for long periods; and the huge database obtained may be better handled with Deep Neural Networks

Table 5 .

 5 4: Results of the optimization algorithms for pre-training process

	Algorithms	solution	nding	Performance	on	number of neu-
		time in secondes	validation set		rons
	Genetic	1019		2.0346 × 10 -5		281
	Particle swarm	803		2.3879 × 10 -5		256
	Simulated annealing	1694				

  ]. Such conclusions were made in[Melingui et al. 2014a, Melingui et al. 2015, Lakhal et al. 2015], and in[Mahl et al. 2014, Rolf & Steil 2014]. Such model variations are usually treated by integrating adaptive laws in the robot control architectures [Chen et al. 2010,[START_REF] Melingui | [END_REF][START_REF] Ge | Adaptive neural control of uncertain MIMO nonlinear systems[END_REF]]. However, it is not always easy to eectively integrate an update step in a control system. It is usually easier to integrate an update step in qualitative models obtained from learning-based approaches[Braganza et al. 2007, Rolf & Steil 2014] than quantitative models deriving from analytical equations[Mahl et al. 2014]. This work attempts to show that it is dicult to achieve acceptable global performance even with precise local models.

Therefore, control systems that integrate adaptive laws can improve performance.

Kernel

-based learning methods transform the original problem into a quadratic programming (QP) problem such that QP solvers can obtain global solutions, and regression problems can be solved without the issues of the local minima. In addition, it oers the possibility to easily integrate adaptive control algorithms [Long & Nan 2015, He et al. 2016b]. That is why SVR regression has been preferred to other regression tools. Therefore, two control schemes are implemented in this work, non-adaptive and adaptive architectures. In the following subsections, the control schemes and the integration procedure of the adaptive algorithm are presented.

  5, 1, 1.5) in bars. With six controlled inputs, a database of 4 6 = 4096 samples is collected. For SVR training, the database is scaled to the range [0, 0.9]. The backward selection variable by block deletion algorithm [Nagatani & Abe 2007] is performed in the training set. The database is randomly divided, 80% are used for training, and 20% for validation. At the end of the selection phase, the training set is reduced to 1835 samples. The regressors are trained using Gaussian kernel functions:

Table 5 .

 5 5: Results achieved by each regressor model on the test samples

	Model parameters	C	ε	σ	MSE
	CBHA model	4000 51.10 -6 1.2 2.352.10 -5
	Controller	4000 91.10 -6 1.2 3.456.10 -5

  e k+1 = e k + ∆e k = e k + ∂e k ∂Θ k ∆Θ k . The SVR controller is stable if and only if the CBHA model is stable, because the output errors are back-propagated through the latter.

T k+1 e k+1 -e T k e k )

(5.44) 

where

Table 6 .

 6 

		1: Simulation data and results obtained	
	Manipulators	Database	Learning time	Computing time	Precision
			(hours)	(seconds)	(mm)
	7-DOFS	884736	16	0.25	0.05
	9-DOFS	1953125	35	0.29	0.08
	11-DOFS	4194304	75	0.35	0.1

Table 6 .

 6 2. 

	Table 6.2: Ranges of the input and output spaces
	Range of joint angles	Range of Cartesian workspace

  5 , θ 6 , θ 7 )

	6.1. Inverse kinematic modelling of high dof Rigid manipulators	103
	where	
	(6.20)

  Soltanpour et al. [Soltanpour et al. 2019] developed a position controller based on the voltage sliding mode approach. The controller can cope with structured and unstructured Chapter 6. Modelling and control of rigid and exible joint manipulators uncertainties without using the FJR model. Another voltage based controller is

	presented in [Khorashadizadeh & Sadeghijaleh 2018], where motor uncertainties are
	coped with adaptive fuzzy structure. In [Jin et al. 2016, Kim et al. 2019], the au-
	thors proposed a model-free control approach for friction and disturbance torque
	compensations.						
	The	backstepping	control	approach	appears	as	the	appropriate
	method for highly non-linear systems like exible joint robot manipu-
	lator	systems	[Hwang & Kim 2006,	Huang & Chen 2004,	Oh & Lee 1999,
	SU & Stepanenko 1997].					

  SVR oers the possibility to reduce the training database by a good selection of the so-called support-vectors. This data-based reduction is another advantage over the Neural network or Fourier series approach when coming with adaptive law for online computational cost reduction. SVR is, therefore, a reasonable choice for the design of adaptive architecture. This adaptive architecture is designed using the tangent-type robust term to deal with ltering and approximation errors and external disturbances.

	6.2. Contribution to the control of exible-joint robots	117
	[He et al. 2016a] proposed a neural network control of a robotic manipulator sub-
	jected to input dead zone and output constraint, where adaptive neural networks
	are used to approximate the dead zone and the unknown model. In these valuable
	contributions, the stability of the system is proven by assuming low approximation
	errors. However, in a nonlinear system like exible joint robots, this assumption is
	not always realizable.	
	It has been shown in [Smola & Schölkopf 2004] that support vector regression
	(SVR) generates global solutions, unlike other function approximations techniques
	such as Fourier series and neural networks. This is because SVR transforms the
	regression problem into quadratic programming (QP) one, such that a global so-
	lution can be obtained using QP-solvers. Therefore SVR is a solution to improve
	regression accuracy. Moreover,	

  is another well-known method to control constrained non-linear systems. The technique considers the problem within an optimization framework inherently suitable for handling constraints, by solving an on-line nite horizon open-loop optimal control problem, subject to the system dynamics and constraints. In[Ding et al. 2017], an estimation technique is used to estimate the unknown force-related constraints in the case of the opening door problem. The approach is based on manipulator joint positions measurements instead of force/torque sensors, which is expensive or can be aected by computational delays and physical conditions such as temperature, humidity, or radiation. The estimation technique uses the motor current and the link-side and motor-side encoders. Other notable methods include reference governor based control[Bemporad 1998[START_REF] Gilbert | Nonlinear tracking control in the presence of state and control constraints: a generalized reference governor[END_REF], extremum seeking control[Dehaan & Guay 2005], non-overshooting control[START_REF] Krstic | Nonovershooting control of strict-feedback nonlinear systems[END_REF], adaptive variable structure control[Su et al. 1995] and error transformation [Do 2010]. How-

  1 , γ 2 , γ 3 , h 1 , h 2 , and β ∈ [0, 1] are a positive constants. Λ z i is a diagonal matrix dened asΛ z i = diag([sign(z i1 ), sign(z i2 ), ..., sign(z in )]), with i = 2, 3. Ξ z 1 is a vector dened as Ξ z 1 = [ sign(z 11 )|z 11 |+εe , sign(z 12 ) |z 12 |+εe , ..., sign(z 1n ) |z 1n |+εe ] T , with ε e > 0.

Kinematically, two types of modeling methods exist to describe the robot behavior; quantitative methods describe a model-based method, and qualitative methods describe a learning-based method. In kinematic modeling of continuum manipula-

J. J.-B. M. Ahanda, J. B. Mbede, A. Melingui, and B. Essimbi, Robust adaptive control for robot manipulators: Support vector regression-based command ltered
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Chapter 6. Modelling and control of rigid and exible joint manipulators Chapter 6. Modelling and control of rigid and exible joint manipulators

To ensure the convergence ξ 1 → 0, for t → ∞, to cancel the ltering error x 2c -α 1 , and make z 2 appears in (6.29), choose ξ1 as

where k 1 is a design positive scalar. Substituting (6.30) into (6.29) yields

To found the virtual control law α 1 , choose the Lyapunov function as

Taking its derivative one as

To realized V1 ≤ 0 for z 2 → 0, choose the virtual control as

(6.33) Substituting (6.33) into (6.32) it follows

(6.34)

Step 2: In this step, the virtual control α 2 is computed to stabilise the second subsystem, that is to realize z 2 → 0 for t → ∞. For this purpose, dene the tracking error x3 = x 3 -x 3c , the compensated tracking error z 3 = x3 -ξ 3 , where ξ 3 is an auxiliary state which will be used to compensate for the ltering error x 4c -α 3 , with x 4c the ltered version of α 3 . Taking the derivative of z 2 yields

To ensure the convergence ξ 2 → 0, for t → ∞, to cancel the ltering error x 3c -α 2 , and make z 3 appears in (6.35)

where k 2 is a design positive scalar. Substituting (6.36) into (6.35) yields 6.2. Contribution to the control of exible-joint robots

(6.37)

To found the virtual control law α 2 , choose the Lyapunov function as

Its derivative is given as

To realized V2 ≤ 0 for z 3 → 0, choose the virtual control as

(6.39) Substituting ( 6.39) into (6.38) it follows

(6.40)

Step i (2 ≤ i ≤ n -1): in this step, the virtual control α i is computed to ensure z i → 0 for t → ∞. Following the same line as in step 2, and dening the Lyapunov fucntion as

where z i = xi -ξ i , and ξ chosen as

After simple mathematical rearrangements, the derivative of the Lyapunov function is as follows

Step n: This is the nal step, where the control law u(t) is computed. The procedure is similar to that of step i. By choosing the Lyapunov function as

n , the control law is obtained as Based on the Lyapunov theory, it is demonstrated in [Farrell et al. 2009] that the control law u(t) achieves the same stability properties as the one obtained by using the standard backstepping algorithm.

Publications attached to the manuscript
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