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Abstract 
Perovskite solar cells have attracted a lot of attention in the past years, due to 

high power conversion efficiencies and low cost of fabrication. Material and interface 
properties in these devices have been intensely studied, allowing to significantly 
improve performances. However, the expected lifetime remains short, because of 
numerous potential degradation mechanisms, triggered by various environmental 
factors. 

This work aims at helping the understanding of these degradation processes 
and supporting the development of stable perovskite solar cells. Precisely, modelling 
methods have been developed to distinguish and identify the mechanisms 
responsible for performance degradation under given aging experiments. 

Current voltage curves and photoluminescence spectra measurements, 
performed periodically over the course of aging experiments have been investigated. 
The associated evolutions of optoelectrical parameters over time were at the core of 
the approach developed here. 

In order to investigate the photovoltaic behavior of perovskite solar cells, 
optical (transfer matrices) and electrical (drift diffusion) modeling have been coupled. 
Furthermore, a statistical approach has been developed, because of some unwell 
known input parameters. A genetic algorithm has been designed, providing 
numerous sets of inputs that reproduce the initial performances of a given sample. 
These sets were the basis to simulate various hypothetical unitary degradation 
mechanisms. 

Importantly, pathways are obtained by considering the correlated evolution of 
optoelectrical parameters. They constitute characteristic footprints of the processes 
responsible for the performance degradation, and simulated and experimental 
pathways can be directly compared. As a result, compatible mechanisms can be 
proposed, and others excluded when pathways differ. The causality between 
performance losses and degradation mechanisms is here directly tackled. 

After applying this approach to experimental measurements reported in 
literature, making possible to compare results to authors analyses and  demonstrate 
the validity of the approach, aging experiments performed at IPVF were investigated. 
A first set of samples was prepared with four variations in the deposition method of 
the perovskite layer. Results showed that the perovskite could be excluded as a cause 
for degradation in most cases, except for  a specific method, also having the least 
stable samples. 

A second set, containing devices having different hole and electron transport 
layers was investigated through coupled current-voltage and photoluminescence 
measurements. Interestingly, hole transport layer degradation could be attributed to 
several samples, and a protective role of the electron transport could be envisaged. 
Also, coupling characterization techniques helped to distinguish pathways through 
new complementary planes. 
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Finally, the last part of this work took advantage of the numerous simulations 
performed to investigate degradation. It aimed at simplifying the design of drift 
diffusion simulations by reducing the number of necessary inputs and identifying 
the most important ones. Meta-parameters candidates have been proposed by 
considering relevant quantities in an analytical model. Moreover, their validity to 
define a solar cell performance was assessed through their correlation with its 
optoelectrical outputs. Finally, principal components analyses were also employed 
on subsets selected according to solar cells performances, to point out the most 
important parameters or provide new simple phenomenological models. 

This work shows how modelling can support experimental development of 
stable perovskite solar cells. Notably, insights on the causes of degradation of various 
samples have been proposed. Finally, this also demonstrates that statistical 
approaches can support the solar cell modeling research field, by being less 
dependent on the knowledge of given parameters. 
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List of symbols and acronyms 
Symbols 

𝛼 Absorption coefficient 

𝑁  Acceptor density 

𝐸  Activation energy 

𝐸  Bandgap energy 

𝑘  Boltzmann constant 

𝑉  Built in potential 

𝜎 Capture cross section 

𝑛  / 𝑝  Dark, equilibrium density of electrons / holes 

𝐷  / 𝐷  Diffusion coefficient of electrons / holes 

𝐿  / 𝐿  Diffusion lengths of electrons / holes 

𝑁  Density of defects 

𝑁 /  Density of defects at perovskite / ETL interface 

𝑁 /  Density of defects at perovskite / HTL interface 

𝑁  Donor density 

𝑁  Effective density of states in conduction band 

𝑁  Effective density of states in valence band 

𝑞 Elementary charge 

𝐸 Electrical field 

Φ Electrical potential 

𝜒 Electron affinity 

𝑛 Electron density 

𝐸  Energy level of conduction band 

𝐸  Energy level of valence band 

𝑅  External series resistance 

𝑅  External shunt resistance 

𝐸  Fermi level 

𝐸  / 𝐸  Quasi-Fermi level for electrons / holes 

Δ𝐸  Quasi-Fermi levels splitting 

FF Fill factor 
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𝜈 Frequency 

𝑝 Hole density 

𝑛  Intrinsic carrier concentration 

𝜏 Lifetime 

Jmpp Maximum power point current 

Vmpp Maximum power point voltage 

𝜇  / 𝜇  Mobility of electrons / holes 

Voc Open circuit voltage 

𝜖 Permittivity 

Emax Photon energy at max of photoluminescence emission peak 

𝜙 Photon flux 

ℎ / ℏ Planck constant / reduced Planck constant 

𝐵 Radiative recombination coefficient 

Jsc Short circuit current 

𝑐 Speed of light 

𝑆  / 𝑆  Surface recombination velocity for electrons / holes 

𝑇 Temperature 

𝑣  Thermal velocity 

𝜆 Wavelength 
 

Acronyms 
FA Formamidinium 

JV Current voltage characteristic 

ETL Electron Transport Layer 

HTL Hole Transport Layer 

MA Methylammonium 

PL Photoluminescence 

PV Photovoltaic 

PCA Principal Component Analysis 

TCO Transparent Conductive Oxide 

SRH Shockley-Read-Hall recombination 
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Challenges of energy supply in the context of global 
ecological crisis 

Energy supply, through its nature, availability and cost are main challenges for 
several aspects of society. In the past, the quantity of available energy has been for 
instance at the core of economical and societal development, by allowing to expand 
production means and accelerate transport over longer distances. 

Now, the environmental impact of energy sources is also a main concern, in the 
context of global warming, climate change and ecological crisis. As illustrated in 
Figure 0-1, its major part comes from fossil fuels, which also have the highest CO2 
emission rates. As a result, consumption of fossil fuels is a main cause of greenhouse 
gas emissions, being at the source of global warming and climate change [1]. 

  
Figure 0-1. Left: world energy supply, by source. Other includes geothermal, solar, wind, tide/wave/ocean, heat 
and other sources. Source: IEA [2]. Right: lifetime emission intensity in CO2 equivalent. Source: IPCC [1]. 

In this context, renewable energies such as photovoltaics provide a useful 
alternative to fossil fuels, through low greenhouse gas emissions but also highly 
available and infinite stock, being the solar irradiance. 

However, the quantity of materials necessary to fabricate photovoltaic energy 
production systems is also a key point. The vast majority of solar cells fabricated today 
is based on silicon, an abundant material. However, the total system also necessitates 
aluminum, copper, tin, silver, some polymers and glass. Even if comparatively low 
quantities are employed, the environmental impact of extracting and processing these 
materials has to be considered. Notably, projections show that the annual demand of 
indium (employed in transparent conductive oxides) in a scenario of 700 GW annual 
capacity growth, would necessitate to employ the total current indium production (for 
all industries). Silver, aluminum and copper could also face supply issues [3]. 

The supply of associated raw material could become major issues for the society 
(even more than currently) coupled with the environmental risks associated to mining 
and extraction. 
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Opportunities proposed by perovskite solar cells and 
challenges 

The need of high energy quantities and low material intensive production are 
core motivations for the photovoltaic research today to propose solar cells with high 
power conversion efficiency and low material costs. In fact, such devices are crucial to 
be able to tackle global warming by replacing fossil fuels, without worsening the 
environmental crisis through raw materials extraction. 

For these reasons, perovskite solar cells have been intensely studied over the past 
ten years. They are mostly based on lead-halide perovskite materials, characterized by 
their composition of the type ABX3 (A is a cation, B a metallic cation and X an anion). 
These materials have demonstrated suitable semi-conductor properties to fabricate 
highly efficient solar cells. For instance, they absorb well light due to their direct 
bandgap and allow efficient charge carrier extraction through relatively high 
mobilities, long diffusion lengths and low recombination. 

In the most studied compositions, the A site cation is an organic molecule, the 
metal on B site is lead or tin and the C site a halide such as iodide or bromide. Moreover 
they are usually employed with at least two other layers, responsible for selective 
charge carrier extraction, usually fabricated with polymers or metal oxides. 

Importantly, these solar cells are in the form of thin films, needing low quantity 
of materials.  They can even be deposited through low temperature solution based 
processes, making fabrication costs very low. These aspects constitute significant 
assets that motivate intense research work to understand better the properties of these 
materials and their interfaces when included in a solar cell, in order to propose the 
most suitable combination. As a result, record power conversion efficiencies have 
increased a lot in the past years and attained 26.1 % [4]. They have even been combined 
to silicon solar cells in tandem structures, reaching 33.9 % [4]. 

However, a main challenge for perovskite solar cells is now their stability. Most 
record devices show lifetimes (usually the elapsed time to reach 80 % of initial power 
conversion efficiency) in the order of thousands of hours, when exposed to continuous 
illuminations and ambient lab conditions (usually encapsulated samples) [5]. This is a 
main issue for perovskite solar cells to fulfill the objectives mentioned above: if their 
lifetime is too low, energy production is not low material intensive anymore. 

Therefore, intense work is now focused on investigating stability of these solar 
cells, and a first important aspect is the high number of possible degradation 
mechanisms, triggered by several environmental factors. For instance, water can 
penetrate the perovskite layer, disturb its crystal structure and even react with its A 
site organic cation. Oxygen combined with illumination have been reported to oxidize 
constituents of the perovskite. Moreover, transport layers can also degrade, for 
instance through temperature instability of organic hole transport materials, or 
photooxidation of oxides employed as electron transport layer. As a result, it is often 
difficult to tell the cause of instability for a given sample. 
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Objectives of this work and outline 
These instability aspects are the main motivation for this work, which aims at 

helping to distinguish and identify mechanisms causing degradation. More 
specifically, it aims at analyzing experimental aging measurements, and providing 
insights on the degradation cause for each considered sample. 

To do so, specific modelling methods have been developed, with a statistical 
approach to specifically tackle the challenges of simulating the performance of 
perovskite solar cells. In fact, this work considers several methods to be less dependent 
on the knowledge of some input parameters: exploration of the input space with a 
genetic algorithm and investigation of parameters statistics with principal components 
analyses. 

The first chapter of this manuscript exposes first useful concepts of semi-
conductor physics and important properties of perovskite solar cells. Also, a review of 
degradation mechanisms, together with associated investigation techniques, is 
proposed to expose in detail the motivation of this work. Finally, recent modeling 
studies of the degradation of perovskite solar cells are reported. 

The second chapter exposes the methods employed in this work. Coupled optical 
and electrical modeling have been employed, allowing to reproduce experimental 
characterizations considered in this work: current voltage characteristics and 
photoluminescence spectra. The samples and associated aging studies analyzed in this 
work are also exposed. They were gathered from literature, or from experiments 
performed at IPVF by the dedicated stability team. Notably, such measurements 
(recording characteristics periodically over time) are commonly performed, but their 
dynamics rarely investigated to study degradation processes. 

In the third chapter, the statistical approach employed here is exposed. First the 
input space, associated to parameters for which uncertainty has been considered, is 
presented. Then, it has been explored with a genetic algorithm, allowing to obtain sets 
of inputs, compatible with any given sample. Finally, these sets were the basis to 
simulate the impact of various hypothetical unitary degradation mechanisms on the 
given sample. 

The fourth chapter is dedicated to the main results of this work. Degradation 
pathways are presented, being time independent representations of degrading 
optoelectrical parameters. They allow to directly compare experimental results and 
associated simulated mechanisms, without implementing kinetical or environmental 
activation models. As a result, compatible mechanisms can be proposed, and others 
excluded when pathways differ. Results obtained in a first step on experimental 
measurements reported in literature could be compared to authors analyses and  
demonstrated the validity of the approach. Moreover, aging experiments performed 
at IPVF were investigated. From a first set of samples, variations of the deposition 
technique and its impact on the stability of the perovskite layer could be addressed 
and distinguished from the degradation of other layers. A second set, containing 
devices having different hole and electron transport materials was investigated. Here 
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degradation of the first layer has been found, with a possible influence of the second. 
Importantly, coupling current-voltage and photoluminescence characterizations 
helped to distinguish pathways through information on new complementary aspects, 
allowing to consider pathways from further perspectives. 

Finally, the fifth chapter reports work that takes advantage of the numerous 
simulations performed to investigate degradation. It aimed at simplifying the design 
of drift diffusion simulations through meta-parameters, assessed by their correlation 
with the optoelectrical outputs. Moreover, principal components analyses were also 
employed on specifically designed subsets, to point out the most important parameters 
or provide new simple phenomenological models. This finally supports the 
understanding of the role of the material parameters and their impact on solar cells 
performances. 

In this work, modelling methods have been employed to help the understanding 
of perovskite solar cells degradation mechanisms. Moreover, it illustrates how theory 
based simulation studies can take advantage of the several statistical aspects 
considered here. As a result, this work aims at supporting the photovoltaic research 
community in developing efficient, stable, cost effective and low material intensive 
perovskite solar cells. 
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Chapter introduction 
In this chapter, the aspects necessary to understand what is at stake when 

investigating the stability of perovskite solar cells are exposed. 
First, useful concepts of semiconductors physics, defining the optoelectrical 

performances of a solar cell, are exposed in Section 1.1. 
In Section 1.2, characteristics of perovskite materials explaining their capability 

to provide highly efficient devices are reported. Moreover, materials employed as 
electron and hole transporting layers are also described. 

Importantly, numerous degradation mechanisms can be responsible for 
performance losses. This constitutes the motivation of the work presented here. The 
various processes reported in literature are summarized in Section 1.3. 

Finally, the several modeling approaches employed to examine the impact of 
degradation on solar cells optoelectrical performances are reported in Section 1.4. 

 
 
 
 
 
 
 

 

Chapter key points: 

 Important semiconductors properties to make an efficient solar cell: 
absorption coefficient, carrier mobility, defect densities in bulk and at 
interfaces, doping level and charge carrier selectivity at interfaces. 

 Perovskite materials have high absorption coefficient, good carrier 
mobilities and long diffusion lengths despite high defect densities. 

 Films employed to fabricate perovskite solar cells have properties that 
depend significantly on fabrication processes. 

 Degradation processes in perovskite solar cells can be triggered by 
temperature, humidity, light, oxygen and applied bias. 

 Most materials and interfaces can degrade. 
 Reversible and irreversible processes have been reported. 
 Drift diffusion simulation approaches have now been developed to 

couple ionic and electronic transport, but the link with long term 
degradation is still unclear. 
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1.1 Physics of solar cells 
The fundamental principles of semiconductor physics necessary to understand 

the key aspects of perovskite solar cells are summarized in this section. The concepts 
exposed here allow to understand what the optoelectrical performances of a solar cell 
are. Furthermore, it exposes how degradation of the materials can impact its behavior 
and performances. 

1.1.1 Useful concepts of semiconductor physics 
Semiconductor materials are at the basis of photovoltaic electricity production. 

They are employed to fabricate solar cells and their characteristics define the response 
to illumination and energy production [1], [2]. 

Semi-conductors are defined by their bandgap energy. In fact, the available 
energy states for electrons in the crystal of such material are not continuously 
distributed. The position of these states arises from interactions of the atomic orbitals, 
and their interaction in the crystal. There exists a range of inaccessible energy levels, 
and they constitute the bandgap. Also, the (almost) continuums of available states 
below and above this range are respectively called valence and conduction bands. 

In practice, the valance band is almost full of electrons, and the conduction band 
almost empty. Notably, holes are hypothetical particles denoting the absence of an 
electron in the valence band. They are subjected to the same processes as electrons and 
carry a positive electrical charge. Therefore, the behavior of a semiconductor material 
is usually analyzed in terms of electron and holes densities, mobilities and currents. 

In fact, the energetic distribution of electrons (across available states) is described 
in the dark and at thermal equilibrium by a Fermi-Dirac distribution. This allows to 
express the electron density (noted 𝑛) and hole density (noted 𝑝) in the conduction and 
valence band respectively through the Fermi level (noted 𝐸 ): 

𝑛 = 𝑁  𝑒
 

(1 − 1) 

𝑝 = 𝑁  𝑒
 

(1 − 2) 

𝑁  and 𝑁  are the effective density of states in the conduction and valence band 
respectively and 𝐸  and 𝐸 are the energy level of their respective minimum and 
maximum. 

This shows the importance of the position of the Fermi level in the bandgap to 
describe both carriers’ densities. The closer it is to the conduction band, the higher the 
density of electrons and the lower the density of holes. Inversely if the Fermi level lies 
close to the valence band. 

Notably extrinsic doping is commonly employed to arbitrarily modify the 
density of carriers. Adding atoms with more valence electrons than the semiconductor 
will increase the electron density in the conduction band. This is named n doping. 
Importantly, the Fermi level is displaced accordingly, and the density of holes 
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lowered. The reverse principle occurs when atoms with less valence electrons are 
included in the crystal, resulting in p doping. 

Importantly, another major factor can cause an increase of electrons and holes 
density: illumination. The precise mechanism is exposed in the next sub-section. The 
simultaneous increase of electrons and holes when light is absorbed causes the 
semiconductor to be at quasi-equilibrium. The new carriers rapidly attain similar 
energy levels as the other carriers in the crystal (they thermalize) and their energy 
distribution can be described by a Fermi-Dirac distribution. However, they are not at 
equilibrium with each other as it was in the dark. 

As a result, two Fermi-Dirac distributions are employed to describe their energy 
distribution and density, with two quasi-Fermi levels. Importantly, the difference 
between both quasi-Fermi levels is a crucial quantity to describe the charge carriers’ 
densities. For instance, the product 𝑛 ∙ 𝑝 is related to its value in the intrinsic non 
doped case (noted 𝑛  ) through the expression: 

𝑛 ∙ 𝑝 = 𝑁  𝑒
 

𝑁  𝑒
 

(1 − 3)

= 𝑁 𝑁  𝑒
 

 𝑒
 

(1 − 4)

= 𝑛 𝑒
 

(1 − 5)

 

Finally, the Fermi level can be interpreted as an electrochemical potential of the 
electrons. Therefore, the quasi-Fermi levels splitting is usually related to the maximum 
electrical potential that can be obtained by contacting the semiconductor and perfectly 
collecting holes and electrons. 

1.1.2 Generation, transport and recombination processes 
The densities of electrons and holes and their associated quasi-Fermi levels have 

been exposed in the previous subsection. Now the processes impacting these 
quantities are presented: generation, transport and recombination [1], [2]. 

 
Generation: 
Electron – hole pair generation occurs when a photon is absorbed, and its energy 

is passed to an electron from the valence band to reach the conduction band. The 
associated bandgap energy threshold explains that only part of the light spectrum with 
photon energies higher than the bandgap can be absorbed. The capacity of a material 
to absorb a photon is quantified by its absorption coefficient, noted 𝛼, and described 
by Beers’ law: 

𝑑𝜙(ℎ𝜈, 𝑥)

𝑑𝑥
= −𝛼(ℎ𝜈) 𝜙(ℎ𝜈, 𝑥) = 𝐺(ℎ𝜈, 𝑥) (1 − 6) 

ϕ(ℎ𝜈, 𝑥)  is the flux of photons with energy ℎ𝜈  in the material at a depth 𝑥 . 
𝐺(ℎ𝜈, 𝑥)  is the photogeneration rate. It is to note that in practice, reflections and 
refractions occur at interfaces, making the photon flux more complex to compute 
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across a device depth. This subject is treated in detail in Section 2.1.1. Finally, a greater 
absorption coefficient is usually beneficial for a solar cell, as it allows more electron-
hole pairs to be generated over a thinner material depth. 

 
Transport:  
The role of a solar cell is to collect the photogenerated electrons and holes, in 

order to produce a current and electrical power. This is possible through drift and 
diffusion of the charge carriers. 

Drift is due to the presence of electrical field, and will drive electrons to lower 
electrical potential areas, whereas holes will flow towards higher potential. The 
mobility of the carriers is the characteristic of the material that quantifies the ability of 
the carriers to move in the material when subjected to an electrical field. 

Diffusion is due to a gradient of carrier density, making carriers flow towards 
areas with lower densities. Here the diffusion coefficient characterizes the current 
flow. Notably both mobilities (𝜇) and diffusion coefficient (𝐷) are related through 
Einstein’s relation: 

𝐷 =
𝜇𝑘 𝑇

𝑞
(1 − 7) 

Finally, it is to note that a higher charge carrier mobility will enhance the 
optoelectrical performances of a solar cells, by facilitating the charge currents. This 
material characteristic is usually influenced by the presence of defects in the crystal, 
and by the interactions between electrons and the crystal lattice. 

 
Recombination: 
Before charge carriers are collected, recombination can occur. Such process is 

detrimental to the solar cell, as it reduces the current available to produce electrical 
power. Three types of recombination can occur in a classical semiconductor. 

Radiative recombination is the symmetrical process to photogeneration: it is the 
annihilation of an electron with a hole, with the emission of a photon. The 
recombination rate is directly proportional to the product of electrons and holes, 
because one particle of each type is necessary. The recombination rate is therefore 
expressed as: 

𝑅 = 𝐵 ∙ 𝑛 ∙ 𝑝 (1 − 8) 

𝐵 is the radiative recombination coefficient of the material. Notably, the emission 
of a semi-conductor material has been expressed by van Roosbroeck and Shockley, 
according to thermodynamics (here integrated over all solid angles) [3]: 

𝑅 = 𝜙 (ℎ𝜈) 𝑑ℎ𝜈 = 𝛼(ℎ𝜈)
𝛺 (ℎ𝜈)

4𝜋 ℏ 𝑐

1

𝑒𝑥𝑝
ℎ𝜈 − 𝛥𝐸

𝑘 𝑇
− 1

 𝑑ℎ𝜈 (1 − 9) 
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When combining with the expression of  𝑛 ∙ 𝑝 through the quasi-Fermi levels 
splitting, this gives: 

𝐵 =  
𝛺

𝑛 4𝜋 ℏ 𝑐

𝛼(ℎ𝜈) (ℎ𝜈)

𝑒𝑥𝑝
ℎ𝜈

𝑘 𝑇
− 1

𝑑ℎ𝜈 (1 − 10) 

Importantly, the expression of the radiative recombination rate can be employed 
to relate a ratio of photoluminescence emission ( ) to a variation of quasi-Fermi 

levels splitting (Δ𝐸 − Δ𝐸 ). Importantly it is necessary to assume that the optical 
behavior of the device remains constant, and ℎ𝜈 ≫ Δ𝐸  (usually valid for a photon 
energy range near the bandgap energy). As a result: 

𝜙

𝜙
=

∫ 𝜙 (ℎ𝜈) 𝑑ℎ𝜈

∫ 𝜙 (ℎ𝜈) 𝑑ℎ𝜈
(1 − 11)

=

∫
𝛼(ℎ𝜈)ℎ𝜈

𝑒𝑥𝑝
ℎ𝜈 − 𝛥𝐸

𝑘 𝑇
− 1

 𝑑ℎ𝜈

∫
𝛼(ℎ𝜈)ℎ𝜈

𝑒𝑥𝑝
ℎ𝜈 − 𝛥𝐸

𝑘 𝑇
− 1

 𝑑ℎ𝜈
(1 − 12)

≈

𝑒𝑥𝑝
𝛥𝐸

𝑘 𝑇

𝑒𝑥𝑝
𝛥𝐸

𝑘 𝑇

= 𝑒𝑥𝑝
𝛥𝐸 − 𝛥𝐸

𝑘 𝑇
(1 − 13)

 

This result will be particularly useful to analyze coupled measurements of 
photoluminescence spectra and JV curves, allowing to compare Voc and quasi-Fermi 
levels splitting variations along degradation. 

The second type of recombination is associated to the presence of localized states 
inside the bandgap, generally due to defects in the crystal. The occupation probability 
of such state depends on the energy distribution of the charge carriers (hence the Fermi 
level). If it is empty at equilibrium, an electron can fall into and recombine with 
enhanced probability with a hole, inversely if the state is occupied at equilibrium. 

This type of recombination is called Shockley-Read-Hall (SRH), according to the 
researchers who developed the model describing the associated recombination rate 
[4], [5]. It is obtained by computing the balance of the possible transfers for electrons 
and holes. It depends on trap energy level (noted 𝐸 ), the quasi-Fermi levels  and the 
capture cross section for electrons and holes (𝜎  and 𝜎 , respectively): 

𝑅𝑆𝑅𝐻 =  
𝑛𝑝 − 𝑛𝑖

2

𝜏𝑆𝑅𝐻−𝑝 𝑛 + 𝑛𝑖𝑒
𝐸𝑡−𝐸𝐹−𝑛

𝑘𝐵𝑇 + 𝜏𝑆𝑅𝐻−𝑛 𝑝 + 𝑛𝑖𝑒
−

𝐸𝑡−𝐸𝐹−𝑝

𝑘𝐵𝑇

(1 − 14)
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With 𝜏 =  and 𝜏 = , where 𝑁  is the defect density and 𝑣  

the thermal velocity. Notably, these can be the actual SRH-lifetimes for electrons and 
holes only in the specific cases where all states are occupied by a hole or an electron 
respectively.  

From the above expression, it appears that the recombination rate is maximum 
when the trap energy level is at the middle of the bandgap. In such case, one can 
usually consider 𝜎 = 𝜎 , therefore 𝜏 = 𝜏 = 𝜏 . Moreover, by assuming 
𝐸 − μ ≪ 𝑘 𝑇 and 𝐸 − 𝜇 ≪ 𝑘 𝑇, the following simplification can be obtained: 

𝑅 =
1

𝜏

𝑛𝑝 − 𝑛

𝑛 + 𝑛 𝑒 + 𝑝 + 𝑛 𝑒

(1 − 15)

=
1

𝜏

𝑛𝑝 − 𝑛

2𝑛 + 𝑛 + 𝑝
(1 − 16)

 

A third recombination mechanism exists in semi-conductor materials: Auger 
recombination. It necessitates the simultaneous presence of three carriers and therefore 
is observed only with very high densities (usually above 1018 cm-3). It is most probably 
not relevant for perovskite materials [6]. 

Defects are usually in larger concentration at the surface of a material, due to 
unpaired atoms at the boundary of the crystal or impurities. The physical processes 
are the same as for SRH recombination, but broader distributions of trap energy levels 
are usually present. Therefore, surface recombination velocity is employed as a 
lumped parameter to compute the total recombination rate for electrons and holes, 
respectively: 

𝑅 = 𝑆 𝑛 (1 − 17) 
𝑅 = 𝑆 𝑝 (1 − 18) 

The surface recombination velocity is a function of the surface defect density 
(𝑁 ) and the capture cross section (𝜎  and 𝜎  for electrons and holes respectively): 
𝑆 = 𝜎 ∙ 𝑁  and 𝑆 = 𝜎 ∙ 𝑁 . 

Finally, a very useful concept to qualify behavior of charge carriers in a semi-
conductor material is their lifetime. It is usually defined by considering a spatially 
homogenous distribution of carriers. The continuity equation is expressed just after 
switching off any generation process (for electrons here): 

𝜕𝑛

𝜕𝑡
= − 𝑅 = − 

𝑛

𝜏
(1 − 19) 

However, several definitions and expressions arise from the several 
recombination process and excitation conditions. Moreover, it is necessary to consider 
an effective lifetime, due to the joint presence of several processes in parallel: 
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1

𝜏
=

1

𝜏
(1 − 20) 

In Table 1-1, the lifetimes associated to radiative and SRH recombination are 
summarized. Several cases have to be considered, being realistic approximations in 
specific cases and specific parts of a solar cell. Lifetimes associated to surface 
recombination are more complex to express, due to the influence of bulk properties, 
such as bulk lifetime and diffusion lengths. Detailed expressions have been reported 
in literature in order to interpret time resolved measurements [7]. 

Table 1-1. Carrier lifetimes expressed for different recombination processes and usual specific cases. Note that 𝑛  

and 𝑝  refers to carrier densities at equilibrium and 𝑛 = 𝑛 𝑒 and 𝑝 =  𝑛 𝑒 . 𝑁  is the donor density 
and 𝑁  the acceptor density. 

Type of 
recombination 

Specific case Carrier lifetime 

Radiative 

General case 
𝜏 =

1

𝐵(𝑛 + 𝑝 + 𝛥𝑛)
(1 − 21) 

𝜏 =
1

𝐵(𝑛 + 𝑝 + 𝛥𝑝)
(1 − 22) 

Low injection 𝜏 = 𝜏 =
1

𝐵(𝑛 + 𝑝 )
(1 − 23) 

Low injection, n 
doped 

𝜏 =
1

𝐵𝑁
(24) 

Low injection, p 
doped 

𝜏 =
1

𝐵𝑁
(25) 

SRH 

General case 
𝜏 = 𝜏

𝑛 + 𝛥𝑛 + 𝑛

𝑛 + 𝑝 + 𝛥𝑛
+ 𝜏

𝑝 + 𝛥𝑝 + 𝑝

𝑛 + 𝑝 + 𝛥𝑛
(1 − 26) 

𝜏 = 𝜏
𝑛 + 𝛥𝑛 + 𝑛

𝑛 + 𝑝 + 𝛥𝑛
+ 𝜏

𝑝 + 𝛥𝑝 + 𝑝

𝑛 + 𝑝 + 𝛥𝑛
(1 − 27) 

Deep defects, low 
injection 

𝜏 = 𝜏 = 𝜏
𝑛

𝑛 + 𝑝
+ 𝜏

𝑝

𝑛 + 𝑝
(1 − 28) 

Deep defects, n doped 𝜏 = 𝜏 (29) 

Deep defects, p doped 𝜏 = 𝜏 (30) 

 
The processes exposed in this section control the behavior of electrons and holes 

in a semi-conductor. In a solar cell, generation is maximized in the absorber by 
employing a material with a high absorption coefficient and by optimizing the optical 
behavior of the total stack. On the other hand, recombination is minimized by having 
as low defects as possible, through optimized fabrication processes. 
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1.1.3 Types of junctions employed to make solar cells 
Finally, the concepts exposed in the previous sub-section allow to understand the 

working principles of pn and pin junctions. They all consist in juxtaposing oppositely 
doped materials. Notably, perovskite solar cells are fabricated in the form of a pin 
structure, where the intrinsic absorber is sandwiched between n and p doped layers, 
respectively identified as Electron Transporting Layer (ETL) and Hole Transport Layer 
(HTL). 

When oppositely doped materials are juxtaposed, majority carriers from each 
side diffuse towards the opposite material and recombine with local opposite majority 
carriers. Charged region appears (identified as Space Charge Regions, SCR), in 
equilibrium with a local electrical field. In fact, this electrical field is specifically in 
charge of separating photo-generated carriers when the solar cell is under 
illumination. In Figure 1-1 top, the associated potential drop appears clearly, driving 
electrons to the right side contact, and holes to the left side contact. In the example of 
Figure 1-1, diffusion plays a significant role in the large p doped region. Here no 
electrical field is present (flat bands) and the local minority carriers (electrons) will 
have to diffuse towards the junction and its electrical field to be accelerated towards 
the n region. 

On the contrary, an electrical field is present across the whole intrinsic layer in 
the pin structure (Figure 1-1, bottom), facilitating charge carrier separation. However, 
this electrical field is more impacted by the bias applied to the solar cell than in the pn 
junction case (see bottom right). As a result, charge collection efficiency is less constant 
and decreases more with applied bias. 

Finally, Figure 1-1 displays how the energy bands evolve when a bias is applied. 
At short circuit, the electrical field is maximal and almost all carriers are immediately 
extracted: the current produced by the solar cell is maximal (Jsc). When a positive bias 
is applied, the band bending is reduced, and carriers are less efficiently extracted. As 
a result, they accumulate, quasi-Fermi level splitting increases, and recombination 
reduces the output current.  

 
Figure 1-1. Band diagram of a pn (top) and pin (bottom) solar cell. Left is at short circuit and right is under a 
positive bias. Figure is extracted from [8] 
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However, the electrical potential between carriers extracted at electron and hole 
contacts increases. Finally, open circuit voltage (Voc) is attained when all 
photogenerated carriers recombine within the solar cell and no current is produced. 
Notably, lower quality materials with more recombination will find this point at a 
lower bias, hence having a lower Voc. 

These principles allow to understand the distinct optimization principles of pn 
and pin solar cells. In the first case, higher doping allows stronger built-in potential 
and more efficient charge separation. However, trap energy levels induced by doping 
impurities enhance SRH recombination and lower carriers’ mobility, hindering 
diffusion across the neutral flat band region. 

In the case of perovskite solar cells, high doping of ETL and HTL is used to 
maximize built in potential. Also, energy levels of the three materials must be carefully 
adapted to form the right band bending across the perovskite absorber layer. 

Finally, high quality materials are always necessary to ensure low defect density, 
high carrier mobilities, and minimize recombination losses. 

1.1.4 Analytical model for a pn homojunction 
In order to assess the behavior of a photovoltaic solar cell before performing more 

complex drift diffusion simulations, the following analytical model has been 
employed. It is elaborated for a simple pn homojunction displayed in Figure 1-2: a 
uniformly n doped layer (length 𝑊 , donor density 𝑁 ) and a uniformly p doped layer 
(length 𝑊 , acceptor density 𝑁 )  are bound together. They are formed of the same 
material (absorption coefficient 𝛼) and illuminated through the n side with a photon 
flux 𝜙. The model is elaborated by considering that drift currents define the behavior 
in the doped regions, and SRH recombination are accounted in the space charge region 
[1], [9]. 

Notably, it is applied to a different structure from a pin junction perovskite solar 
cell, without extracting layers and intrinsic absorber. However, it has the advantage to 
be fully analytical. This will allow to point out the differences and common aspects 
with a more elaborated numerical model, applied to the more complex perovskite 
solar cell structure. 

 
Figure 1-2. Considered pn junction and associated x axis. Zero is at the interface and illumination arises upon n 
doped side. 
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First the current extracted from a solar cell, 𝐽, is simply expressed from following 
balance:  

𝐽 = 𝐽 − 𝐽 (1 − 31) 

Where 𝐽  is the photogenerated current and 𝐽  the recombination current. The 
following section will develop the expressions for both terms. 

 
Size of the space charge region: 
As exposed in previous sub-section, a space charge region forms at the interface, 

due to majority carriers’ diffusion. Because of the presence of the electric field, carriers’ 
behavior is different from the rest of the doped regions. This is accounted for in the 
model, and the size of this space charge region is first computed. 

By using the electrical potential continuity, the following expressions are 
obtained for the space charge regions on n and p doped sides, respectively: 

𝑤 =
2𝜖

𝑞 

𝑁

𝑁

1

𝑁 + 𝑁
(𝑉 − 𝑉) (1 − 32) 

𝑤 =
2𝜖

𝑞 

𝑁

𝑁

1

𝑁 + 𝑁
 (𝑉 − 𝑉) (1 − 33) 

𝑉  is the built-in potential, defined as: 𝑉 =  𝑙𝑛 . It is to note that the 

applied bias is directly playing a role here, by considering negligible electric field in 
the quasi-neutral regions. 

Notably, the sizes of the quasi-neutral regions are expressed as following: 

𝑊 = 𝑊 − 𝑤 (1 − 34) 
𝑊 = 𝑊 − 𝑤 (1 − 35) 

Diffusion lengths: 
Furthermore, the minority carrier’s diffusion lengths play a significant role and 

is expressed from effective carrier lifetime (𝜏 ) and diffusion coefficient (𝐷): 

𝐿 = 𝐷 ∙ 𝜏 (1 − 36) 

Importantly carrier lifetime for radiative and SRH recombination has to be 
considered. For radiative recombination, the low injection hypothesis is employed, for 
each doped region: 

𝜏 =
1

𝐵𝑁
(1 − 37) 

𝜏 =
1

𝐵𝑁
(1 − 38) 



Chapter 1 – State of the art 

30 

Also, deep trap levels are considered, with equal capture cross section and 
thermal velocity for electrons and holes, the SRH recombination lifetime is therefore 
equal for both types of carriers: 

𝜏 = 𝜏 = 𝜏 =
1

𝑁 𝜎𝑣
(1 − 39) 

Finally, the effective lifetime is obtained as expressed in previous section. This 
value will be employed to compute the diffusion lengths employed in the expressions 
for currents exposed further in this section. 

1

𝜏
=

1

𝜏
+

1

𝜏
(1 − 40) 

1

𝜏
=

1

𝜏
+

1

𝜏
(1 − 41) 

Photocurrent: 
In this model, electron-hole pairs are generated along the depth of the solar cell 

according to the exponential decay of Beer’s law. In the quasi-neutral regions, 
diffusion is the limiting factor for minority carriers to reach the electrical field in the 
space charge region. Moreover, recombination at front and back side are considered, 
the associated recombination velocity are noted 𝑆  and 𝑆 , respectively. 

At the front n doped side, holes are minority carriers, and the photocurrent is 
obtained by expressing their diffusion current across a layer of size 𝑊 . This current 
depends on the hole diffusion lengths (noted 𝐿 ) and diffusion coefficient (noted 𝐷 ). 
Notably the boundary condition at front side is defined by the recombination velocity 
(noted 𝑆 ). At the SCR interface it is defined by considering a hole density at zero 
because they are strongly extracted in the SCR. 

𝐽

= 𝑞𝜙
𝛼𝐿

𝛼 𝐿 − 1

⎝

⎛

𝑆 𝐿
𝐷

+ 𝛼𝐿 −
𝑆 𝐿

𝐷
𝑐𝑜𝑠ℎ

𝑊
𝐿

+ 𝑠𝑖𝑛ℎ
𝑊

𝐿
𝑒

𝑆 𝐿
𝐷

𝑠𝑖𝑛ℎ
𝑊

𝐿
+ 𝑐𝑜𝑠ℎ

𝑊
𝐿

− 𝛼𝐿 𝑒

⎠

⎞     (1 − 42) 

Similarly, at the back p doped quasi neutral region, electron diffusion current is 
expressed depending on diffusion length (𝐿 ), diffusion coefficient (𝐷 ), and back side 
recombination velocity (𝑆 ). 
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𝐽

= 𝑞𝜙
𝛼𝐿

𝛼 𝐿 − 1
𝑒 𝛼𝐿

−

𝑆 𝐿
𝐷

𝑐𝑜𝑠ℎ
𝑊

𝐿
− 𝑒 + 𝑠𝑖𝑛ℎ

𝑊
𝐿

+ 𝛼𝐿 𝑒

𝑆 𝐿
𝐷

𝑠𝑖𝑛ℎ
𝑊

𝐿
+ 𝑐𝑜𝑠ℎ

𝑊
𝐿

   (1 − 43) 

Finally, photocurrent in the space charge region is directly obtained by 
computing photogeneration, as all carriers are considered to be separated, due to the 
electrical field: 

𝐽 = 𝑞𝜙𝑒 1 − 𝑒 (1 − 44) 

Importantly, the expressions above are written for a monochromatic 
illumination, in fact, absorption coefficient (𝛼) and photon flux (𝜙) are wavelength 
dependent. Therefore, each photocurrent has to be computed for each wavelength, and 
summed. 

 
Recombination current: 
The recombination current is also computed separately in both quasi-neutral 

regions and in the space charge region. For both quasi neutral regions, it is expressed 
for the respective minority carrier, from associated diffusion length, diffusion 
coefficient and surface recombination velocity. For the front n doped quasi neutral 
region: 

𝐽 = 𝑞
𝐷 𝑛

𝐿 𝑁

𝑆 𝐿
𝐷

𝑐𝑜𝑠ℎ
𝑊

𝐿
+ 𝑠𝑖𝑛ℎ

𝑊
𝐿

𝑆 𝐿
𝐷

𝑠𝑖𝑛ℎ
𝑊

𝐿
+ 𝑐𝑜𝑠ℎ

𝑊
𝐿

𝑒 − 1 (1 − 45) 

The same expression is employed for the back side p doped region, with the 
respective parameters for the electron’s minority carriers. 

Finally, the recombination current in the space charge region is obtained by 
integrating SRH recombination current over its total width. However, it varies 
significantly, due to strong variations of carrier densities across its length. Therefore, 
the integral is approximated by the product of an effective length, 𝑤 , and the 
maximum value of the recombination rate. It is noted 𝑅 , derived from equation 
(1-15) where np is expressed from equation (1-5). Importantly, its maximum is attained 
when 𝑛 + 𝑝 is minimum. Due to the product 𝑛 ∙ 𝑝 being constant, it corresponds to 𝑛 =

𝑝 = 𝑛 𝑒 , therefore: 
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𝑅 =  
1

𝜏

𝑛 𝑒 − 1

2𝑛 1 + 𝑒

≈
1

𝜏

𝑛

2
𝑒 (1 − 46) 

Moreover, the effective length is approximated here by considering that this 
maximum value is constant over a range of variation of the potential of . This 

corresponds to a fraction of the total potential variation across the space charge region 

( 𝑉 ) of . Therefore: 𝑤 =  . This estimation overestimates SRH 

recombination, providing an upper limit of its value. As a result: 

𝐽 = 𝑞
1

𝜏

𝑛

2

𝑤 + 𝑤

𝑞 𝑉
𝑘 𝑇

𝑒 (1 − 47) 

The output current of the solar cell is finally obtained by adding all the terms 
expressed above. This model allows to describe the solar cell behavior with fewer 
parameters than drift diffusion simulation, they are summarized in Table 1-2. This 
advantage will be used to compare results derived from both models in parallel, and 
discuss the advantages and drawbacks associated to more elaborated numerical 
simulations, applied to a more complex perovskite solar cell structure. 

Table 1-2. Summary of the 14 input parameters necessary for the analytical model defined in this section. 

Parameter Description 

𝜙 Photon flux entering at the front interface 

𝛼 Absorption coefficient 

𝜖 Permittivity 

𝑊 , 𝑊  Size of the n and p doped materials. 

𝑛  Product of intrinsic carrier densities 

𝐷 , 𝐷  Diffusion coefficients for holes and electrons 

𝐵  Radiative recombination coefficient. 

𝑁 , 𝑁  Donor and acceptor densities in the n and p doped materials. 

𝑆 , 𝑆  Front and back side recombination velocity 

𝜏  SRH recombination lifetime 

 
Finally, it is to note that such analytical approach is very useful to relate 

measured optoelectrical parameters to material characteristic such as recombination 
regimes. For instance, it allows to define general principles governing solar cells 
performances [10] and decipher some aspects of perovskite reversible degradation 
processes [11]. 
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1.2 Perovskite solar cells 
Perovskite solar cells are a vast family of structures, all having in common an 

absorber made of a perovskite material. The absorber is usually not doped, and 
electron and hole extracting layers (ETL and HTL respectively) are employed to form 
a pin junction. The role and working principles of such junction have been exposed in 
the previous section. 

Notably, a front transparent electrode is employed, usually a transparent 
conductive oxide (TCO), and a metallic contact at the back. 

1.2.1 Perovskite materials 
Perovskites are materials having a chemical formula of the type ABX3 (A is a 

cation, B a metallic cation and X an anion), the associated cubic crystal is represented 
Figure 1-3 (left). In order to fabricate solar cells, lead-halide perovskite materials are 
widely employed: the B site metal is lead and the X site anion is a halide, such as iodide 
or bromide. Organic cations such as Methylammonium (MA) or Formamidinium (FA) 
are frequently employed at A site, but the inorganic cesium cation is also common. 
Importantly, mixed composition perovskites are also employed, usually by having 
alternating cations at A site, or X site halide anion [12]. 

 
 

 

Figure 1-3. Left: single crystal of perovskite with cubic structure [12]. Middle: band structure of exemplary 
compositions with two A site cations: MAPbI3 and FAPbI3, top and bottom respectively [13]. Right: 
photoluminescence emission spectra of FAPbIyBr3-y thin films [14]. 

First, modifying the nature or ratios of constituents allows to modify the bandgap 
from 1.5 to 2.5 eV [15]. In Figure 1-3 (middle), the changes in band structure are 
displayed for two compositions, having Methylammonium or Formamidinium as A 
site organic cations. The similarity of the bands indicates that both materials are very 
close, with only a shift in bandgap energy [13]. Furthermore, changing the X site halide 
also modifies the bandgap energy [14], [16], as showed through PL emission spectra 
having shifted peaks in Figure 1-3 (right), illustrating the wide achievable range of 
bandgap energies. 

Halide perovskites also have a direct bandgap (see Figure 1-3, middle), strongly 
impacting the mechanism of light absorption. This makes the absorption coefficient 
significantly higher than in indirect bandgap semi-conductors such as silicon. As a 
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result, only a small quantity of material is needed to absorb light, and thin layers of 
several hundreds of nanometers are usually employed. 

Not only optical properties of perovskites make them interesting for solar cells, 
but they also show good electrical properties for charge carrier transport and 
extraction. For instance, halide perovskites have a high relative permittivity, making 
the exciton binding energy relatively low (values reported in literature vary from 2 
meV to 80 meV) [6], and therefore easy separation of carriers [17]. 

Furthermore, this high relative permittivity makes holes and electrons to behave 
independently, reducing radiative recombination. Moreover, perovskites are not 
doped, and carrier densities remain low. In such conditions, Auger recombination 
(needing the meeting of three carriers) is also of low influence [6]. As a result, carrier 
recombination in perovskites is mainly determined by SRH processes and defect 
densities in crystals and grain boundaries [18]–[20]. Therefore, carrier lifetime depends 
greatly on film deposition. 

Charge carrier mobilities in perovskites films can also attain relatively high 
values. For instance, the sum of both carrier mobilities has been measured to reach 
approx. 30 cm2.V-1.s-1 [21]. However, a wide range of values are in fact reported in 
literature, and also low values of 0.1 cm2.V-1.s-1 have been measured [22]. This 
variability has been associated to “extrinsic” factors that hinder charge transport, such 
as grain boundaries or impurities. These effects are distinct from the interaction of the 
charge carrier with the lattice, which is intrinsic to the material [23]. 

Finally, large values of diffusion length in the range of 100 nm [24] or even more 
than 1 µm have already been reported in literature [22], greatly sufficient to collect 
carriers created in a 500 nm thick layer and assuring high collection efficiencies. 

These features show how metal halide perovskite materials attracted interest as 
good candidates to provide low cost and highly efficient thin film solar cells. Notably 
it also appears that several of the good properties of the films are greatly dependent 
on deposition process, grain boundaries and material quality. This is the motivation 
for the use of the specific simulation procedures employed further in this work. 

1.2.2 Electron and hole transporting materials 
A first requirement for the transport layers is the energy bands alignment with 

the perovskite. Holes will face a potential barrier to the extraction if the valence band 
maximum is lower in the HTL than in the perovskite. Symmetrically, electrons 
extraction will be hindered if the conduction band is higher in the ETL than the 
perovskite. 

 However, it has also been demonstrated that in the presence of interface defects, 
recombination is enhanced by a large band offset (too high HTL valence band or too 
low ETL conduction band). Therefore, a theoretical optimum has been determined to 
be between 0 and 0.2 eV for HTL valence band offset, and between 0 and 0.3 eV for 
ETL band offset [25] (Spiro-OMeTAD, MAPbI3-xClx and TiO2 were considered). 
Moreover, it has even been demonstrated that even a small, inversed band offset could 
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be beneficial, in the specific case of SnO2 ETL / FA0.85MA0.15PbI3 perovskite interface 
[26]. 

Notably, the extracting layers must also play the role of blocking layers. For 
instance, the HTL should have low electron affinity, to show a large potential barrier 
to the electrons in the perovskite. The symmetrical aspect applies for the ETL.  

Good carrier transport is also necessary to maximize collection at the electrode. 
Notably, the materials usually employed have lower mobilities than the perovskite 
absorber. Therefore, improving the material conductivity through doping can be very 
helpful. In fact, it also reduces the potential drop across the layer. This, in turn, 
facilitates carrier flow through the layer, and confines the total voltage drop within the 
perovskite layer [27]. Notably, these aspects also motivate to employ as thin HTL and 
ETL layers as possible (usually several tens of nanometers). 

In addition to the requirements mentioned here, the front extracting layer needs 
to have a sufficiently wide bandgap, to transmit most of the light spectrum to the 
perovskite. Furthermore, it has to be possible to sequentially deposit the films with 
good morphologies, surface coverage and low interface defects. Therefore, the 
chemistry between the different materials and deposition temperatures have to be 
compatible. In fact, significant work has been done to passivate the associated 
interfaces, by considering various treatments and buffer layers [28], [29]. 

Materials employed to fabricate hole transporting materials are most frequently 
organic: for instance, spiro-OMeTAD, PEDOT:PSS and PTAA [30]. However, 
inorganic materials are also investigated, such as NiOx and CuSCN,  as they could 
provide cheaper and more stable alternatives [31], [32]. 

It is to note that significantly different values have been reported in literature for 
the hole mobility in these materials. For instance, values down to 10-5 cm2.V-1.s-1 have 
been reported for spiro-OMeTAD thin films [33] and between 10-5 [34] and 10-2 cm2.V-

1.s-1 [35] for PTAA. In fact, this variability has been associated to differences in solvent 
or material purity, and film deposition techniques [36]. The doping level also plays a 
significant role here, as hole mobility in NiOx has been reported to increase from 10-3 
to 10-2 cm2.V-1.s-1 through copper doping [32]. In addition, the extrinsic doping 
employed can’t always be quantified precisely in terms of acceptor density [27]. 

On the side of electron transporting materials, oxides are frequently employed, 
such as TiO2, SnO2 or ZnO. For instance, their mobility has been reported to be approx. 
1.7x10-2, 3x10-3 and 4x10-3 cm2.V-1.s-1 in thin films [37]. These values attain 1, 250 and 200 
cm2.V-1.s-1 respectively in single crystals, according to the same authors. This striking 
example shows the influence of film morphology, grain boundaries, and therefore 
deposition technique, in defining the materials properties. Furthermore, several 
doping elements (for instance Al, Li, Nb or Mg) can be employed, yielding different 
doping levels and potentially increasing carrier mobility [38]. 

As a result, the characteristics of both HTL and ETL can vary significantly from 
one deposition technique to the other, or one sample to the other. Again, this is a 
motivation to develop the statistical approach employed in this work to simulate the 
performances of the solar cells. 
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1.3 Stability of perovskite solar cells 
The characteristics of the materials making perovskite solar cells highly efficient 

solar cells have been exposed in previous section. However, the long-term stability of 
these device is now a major concern. In this section, the various possible aging 
mechanisms reported in literature are exposed, and it appears that all materials and 
interfaces can be the site of degradation. Furthermore, the main techniques employed 
to assess this stability and investigate degradation causes are  exposed. 

1.3.1 Reported degradation mechanisms of perovskite solar cells 
Numerous studies have reported various degradation mechanisms of perovskite 

solar cells, potentially enhanced by several environmental stressors: temperature, 
humidity, light, oxygen and even applied external bias [39]–[43]. The associated 
mechanisms are exposed in this sub-section. 

 
Temperature: 
The main impact of temperature on perovskite material is related to the stability 

of its crystallinity. In fact, perovskites can usually crystalize into three different phases, 
depending on temperature. At low temperature, most compositions crystalize into an 
orthorhombic phase (not photoactive), tetragonal phase (photoactive) at intermediate 
temperature and cubic phase (photoactive, with best semi-conductor properties) at 
higher temperatures. The phase transition temperatures depend on the composition 
and the sizes of the A, B and X constituents [42]. This is a first thermodynamic 
instability source, when phase transitions occur within usual operation temperature 
ranges. In some cases, the thermodynamically stable phase at ambient temperature is 
not cubic, and annealing is employed to obtain this phase. This is the case for the 
classical MAPbI3, for which the transition between tetragonal and cubic phases occurs 
at 54 °C. Mixed compositions can be employed to avoid such issue. For instance, the 
triple cations composition employed in IPVF, Cs0.05(MA0.17FA0.83)0.95Pb(Br0.17I0.83)3, has 
the same transition at 25 °C [40]. 

Beyond the thermodynamics of the crystal, elevated temperature will enhance 
most of any other degradation mechanism. Importantly, ionic migrations can be 
favored through expanded or distorted crystal lattice, and more lose bounds [44]. 

It will be exposed further in this section how halides can migrate across the 
perovskite layer, upon light exposure or applied bias. In fact, they have already been 
observed to migrate towards the metallic back contact, simply due to their high 
reactivity. This causes degradation of the perovskite material, and corrosion of the 
metallic contact [40]. Here temperature activates the process. Moreover, in nip 
configurations, iodide can reduce the oxidation level of Spiro-MeOTAD, reducing its 
conductivity [45]. Notably, the contrary migration has also been reported, with metal 
diffusion towards the perovskite, inducing defects at its interface [46]. 

Perovskites are not the only materials having potentially detrimental phase 
transitions. Organic HTLs have been reported to degrade at high temperatures, 
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through crystallization or even evaporation [47]. Notably doping additives can 
enhance this phenomenon, by lowering for instance the crystallization temperature of 
spiro-MeOTAD from 100 °C to 85 °C [36]. 
 

Humidity: 
The second major degradation factor for perovskite solar cells is water. It can 

easily enter the films and crystals and form hydrate phases. Grain boundaries have 
been reported to be major pathways for water ingress and the starting point of such 
degradation [48]. In fact, the organic cations usually employed, MA and FA are acidic 
and polar, making them easily interact and even react with water. The formation of 
monohydrate or dihydrate phases is reversible in theory. However, they have weaker 
bonds between A site cation and the rest of the crystal, making them prone to various 
decomposition mechanisms [42]. For instance, the acid-base reaction between water 
and organic cation can be followed by a transfer of the proton to I- and finally 
formations of gaseous CH3NH2 and HI. Only the widely reported decomposition 
product, PbI2, is left. In fact, FA and Cs are alternative cations to MA that have been 
employed for their lower acidity and reactivity with water. Alloys of the three cations 
showed best stability. 

Notably, thiocyanate (SCN) has been employed to improve the resistance to 
water. It replaces I- anions and forms stronger bonds with Pb2+. As a result, the crystal 
structure is stronger, and formation of hydrate phases is hindered. 

Finally, the perovskite layer is not necessarily protected when included in a solar 
cell stack. In fact, the usual  Li-doped spiro-MeOTAD and PTAA are hygroscopic. They 
have been demonstrated to attract water into the solar cell and facilitate its penetration 
through pinholes. As a result, perovskite degradation is enhanced. Even ETL oxides 
play a role here: SnO2 has been for instance pointed out for its better resistance to water 
ingress (lower hygroscopicity) compared to TiO2. It has already been considered to be 
a cause of improved device stability [38], [49]. 

 
Light: 
Some degradation processes have also been reported to be triggered by 

illumination [50]. For instance, reversible halide segregation has been reported to 
occur under illumination, with a return to original state when samples are put back in 
dark [39]. A shifting of PL emission spectrum towards lower energies evidenced the 
presence of I-rich phases and their smaller bandgap. Notably they would locally 
enhance radiative recombination and reduce performances. Light is explained to favor 
this halide segregation by an oxidizing effect of holes on iodide. The smaller size of 
resulting neutral iodine would facilitate interstitials and form iodide vacancies [51]. 

Cation migrations could also be triggered by illumination, as reported in FA-MA-
Cs triple cations perovskite [40]. Cesium cations have been observed to redistribute 
across the perovskite towards HTL interface when the solar cell is under illumination. 
Importantly, changing the TiO2 ETL to SnO2 did prevent cation redistributions [28].  
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Importantly, UV light is a major cause of degradation for ETL such as TiO2. It 
causes desorption of oxygen at its surface, that normally passivates oxygen vacancies 
[40]. As a result, devices rapidly suffer from enhanced interface recombination. Even 
degradation of perovskite material has been reported [52]. Replacing TiO2 by SnO2 is 
now commonly done to successfully avoid this type of degradation [53]. 

 
Oxygen: 
The presence of oxygen has also been reported as triggering degradation of the 

perovskite materials [54]. In the presence of illumination, oxygen coupled with 
photogenerated electrons could form the superoxide O2-, which in turn reacts with 
acidic cations (MA+ for instance) and lead. The water formed can even trigger further 
degradation mechanisms. Notably, the reaction product Pb(OH)2 could act as a 
capping layer, confining degradation at the grain boundaries [51]. However, it is still 
not clear how protective this layer would be in the presence of other degradation 
factors. Moreover, larger perovskite grains and passivated defects have been shown to 
slow this reaction down and for instance, iodide vacancies help the diffusion of oxygen 
and serve as reaction sites [55]. 

 
Applied external bias: 
When an external bias is applied to a perovskite solar cell, the change in internal 

electric field does not only change the charge carrier currents, but it also impacts 
mobile ions. Their nature, mobilities and densities are investigated in numerous 
studies [56], [57]. It appears now that A site interstitial cations and X site halide 
vacancies and interstitials anions could be the most important ones [58]. 

Importantly, these ions act as dopants, and induce low SRH recombination 
because of associated shallow trap states [59]. As a result, a first impact is current 
voltage hysteresis, caused by different ionic redistributions when different biases are 
applied.  

When the applied bias is lower than the solar cell built-in potential, “negative 
accumulation” occurs: positive ions move towards HTL interface and negative ions 
towards ETL. Positive ions act as donor dopants and a localized pn junction forms at 
the HTL interface. The symmetrical phenomenon occurs at the opposite interface. As 
a result, the built-in electrical field that normally spans across the perovskite layer is 
screened. Furthermore, interface recombination is enhanced by the larger electron and 
hole densities near HTL and ETL interfaces respectively, resulting in lower Voc, Jsc 
and FF [60]. 

On the contrary, “positive accumulation” occurs when the applied bias is 
temporarily superior to the built-in potential, and ions flow in the reverse direction. 
When subsequently recording the JV characteristics, the internal electric field is 
temporarily enhanced, and the solar cell shows improved performances. However, 
strong positive accumulation has been showed to reduce Jsc. This has been interpreted 
as unfavorable band bending when the perovskite becomes too n or p doped near ETL 
or HTL respectively. 
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Several factors could enhance migrations, such as humidity and illumination, 
that have been associated to phase segregations. For instance, reversible degradation 
has been observed under dark-light cycles. Strikingly, both opposite cases with 
recovery or further degradation under dark have been reported. In fact, the bias 
applied to the solar cells has been explained to cause the different ionic accumulations, 
inducing the opposite behaviors under dark [61]. Furthermore, film morphology also  
plays a role, as grain boundaries could be channels for ionic transport. Even if the 
processes mentioned here are reversible, they could induce long term degradation 
through formation of deep defects at interfaces or in the bulk [62], [63]. 

Table 1-3. Summary of the degradation mechanisms of perovskite solar cells and their impact on the material 
parameters (in the context of drift diffusion simulation of the solar cells). 

Degradation mechanism Environmental factor Impacted material parameters 

Perovskite phase transition. Temperature 

Carrier mobilities and defects density. 
Eventually change of nature of the 
material: bandgap and energy bands 
levels, permittivity. 

Reaction between 
perovskite halide and 
metallic contact. 

Temperature, 
illumination, applied bias 

Defect density in perovskite bulk and 
interfaces, carrier mobilities.  

Reduction of HTL by 
perovskite halide. 

Temperature, 
illumination, applied bias 

Carrier mobilities and doping level in 
HTL. 

Crystallization or 
evaporation of HTL 

Temperature 
Carrier mobility and doping level in 
HTL. Eventually destruction of the 
material.  

Formation of hydrate 
phases. 

Humidity, temperature. 
Defect density in perovskite bulk and 
interfaces, carrier mobilities. 

Acid-base reaction of A site 
cation with water. 

Humidity, temperature. 
Defect density in perovskite bulk and 
interfaces, carrier mobilities. Eventually 
destruction of the material. 

Phase segregation. 
Illumination, humidity, 
applied bias, temperature. 

Defect density in perovskite bulk and 
interfaces, carrier mobilities. Bandgap 
and energy bands levels. 

TiO2 photo-degradation. 
Illumination, 
temperature. 

Interface defects, carrier mobility and 
doping level in ETL. 

Photo-oxidation of 
perovskite. 

Illumination, oxygen, 
temperature. 

Defect density in perovskite bulk and 
interfaces, carrier mobilities. Eventually 
destruction of the material. 

Ionic migrations. 
Applied bias, 
illumination, humidity, 
temperature. 

Carrier mobilities, local doping level 
and permittivity. Might induce defects 
in bulk and interfaces on long term. 
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The various mechanisms reported in this section, and the several triggering 
factors explain the complexity of investigating the stability of perovskite solar cells. 
The mechanisms are summarized in Table 1-3. Notably, it appears that all layers of the 
solar cell stack and their interfaces can degrade. This situation makes it crucial to 
distinguish the mechanisms or at least the layer or interface in cause. 

Finally, numerous studies focus now on improving device stability through 
various methods. Composition tuning of the perovskite material can enhance the 
crystal stability [64], for instance through larger A site cation. The ultimate point 
achieves 2D perovskite structures, that have better stability than 3D but poorer semi-
conductor properties [39]. Combinations of both are therefore employed [65]. The 
precursors stoichiometry can help to adjust densities of interstitials and vacancies [66]. 
Finally, additives are also employed to reduce defect densities in grains or at 
boundaries, improve film morphology and make devices less prone to degradation. 

Improving adjacent layers and interfaces is also necessary because they often 
degrade. New ETL and HTL materials are now selected for their enhanced stability. 
For instance, tuning the hydrophobicity of the hole transport layer makes the solar cell 
more resistant to water induced degradation [67]. Combining materials [53] or using 
inorganic HTL such as NiOx [31] or replacing TiO2 with SnO2 are examples [68]. 

 Furthermore, interface passivation is key not only for performances, but also for 
stability. It has been exposed that several degradation processes start at the interfaces 
[63], [69] and for instance, passivation has been showed to reduce ion migrations [51]. 
Therefore, self-assembling monolayers, and other passivating layers are now intensely 
studied [29], [70], [71]. 

Finally, encapsulation enhances stability by preventing reactive species such as 
water and oxygen to enter the solar cell [41]. Moreover, gaseous decomposition 
products are also retained at the reaction site, which blocks its advancement [72], [73]. 

 

1.3.2 Characterization techniques to study stability and degradation 
Perovskite solar cells stability have been investigated through various 

approaches, all improving the understanding of the various degradation mechanisms 
exposed in the previous sub section.  

The first widely used method is to precisely characterize the materials and 
interfaces composing the device before and after degradation. As exposed above, the 
various degradation mechanisms can be specifically triggered by aging conditions. 
Under operation, perovskite solar cells will face cyclical variations of illumination, 
temperature and humidity. Importantly, all aspects (even the periodicity and the 
coupling of factors) play a role in aging mechanisms. Therefore, the best conditions to 
assess the reliability of perovskite solar cells should be outdoor testing. However, 
distinguishing the impact of the distinct environmental factors is also useful [74], and 
it not always possible to place samples under the harsh outdoor conditions. Therefore, 
procedures inspired from ISOS protocols (already officially defined for other 
technologies) and adapted for the specific mechanism of perovskite solar cells have 
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been proposed to the research community [75], they are listed in Figure 1-4. Notably 
three levels ranked in harshness and implementation complexity are defined for each 
category, allowing to progressively couple factors and degrade the solar cells. 

Figure 1-4. List of proposed aging protocols proposed in [75], inspired from existing ISOS standards and adapted 
to the specific degradation mechanisms of perovskite solar cells. 

In order to investigate the response of perovskite solar cells to these 
environmental stressors, various characterization techniques are employed [76]. The 
most frequent ones are summarized in Figure 1-5, and two categories can be 
distinguished. 
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On one side, optoelectrical performances are assessed for instance through JV 
characteristics measurements, or photo-luminescence spectroscopy. These are 
indicators of the solar cell photovoltaic behavior and its output power. 

On the other side, various techniques are employed to determine characteristics 
of the materials and interfaces. They can quantify changes in chemistry (or 
composition) of the materials, morphology of the films and variations in band 
structure. Some of these techniques are sufficiently spatially resolved to detect 
uniformities [77], [78], others can probe along depth and therefore also investigate 
interfaces [79]. 

As a result, numerous studies combining these characterization techniques could 
correlate the degradation of solar cells performances to identified material or interfaces 
changes [80], [81]. It is to note, however, that this approach only demonstrates the 
coincidence between material changes and photovoltaic performances degradations, 
not the causality. 

 
Figure 1-5. Summary of main characterization techniques employed to investigate perovskite solar cells stability. 
Extracted from [76] 

Importantly, the next step in this approach is to characterize the solar cells along 
aging, not only before and after degradation. This relies on “in-situ” characterization 
setups that are more and more employed to simultaneously probe structural, 
compositional, morphological, and optoelectronic changes in real-time [82]. 

In fact, periodical records of JV curves along aging are commonly employed to 
assess the stability of the solar cells. Actually, most advances in perovskite solar cell 
fabrication are now simultaneously reported in terms of power conversion efficiency, 
and stability of the JV performances over time [83]–[85]. Such data are, however, often 
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used only to determine an end-of-life time, or the duration needed to reach a given 
lower limit, without analyzing dynamics of degradation. 

Notably, chemical kinetics approaches have been employed to take more 
advantage of such measurements. Reaction rates associated to the decays of 
optoelectrical parameters are determined, and temperature activation (or through 
other environmental factors) can be assessed [86], [87]. Such approach can employ 
models to extrapolate from accelerated tests to long term evolution the solar cell 
performances and even provide predictions of lifetime and produced energy [88]. 
However, the identification of the underlying degradation mechanism cannot be easily 
done. 
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1.4 Models to investigate perovskite solar cells stability 
The various degradation mechanisms exposed in the previous section can be 

triggered by several environmental factors and have dramatic impacts on the solar cell 
performances. Employing models is therefore useful to better understand the physical 
and chemical processes at stake. 

First, models based on the kinetical aspects of degradation are employed to take 
advantage of aging measurements. They can allow to determine activation energies, 
interpret accelerated tests and make predictions on energy production. However, they 
rely on the assumption that the same mechanism is being observed at the several 
temperatures. Moreover, this approach can difficultly allow to understand the 
physical processes and impacts on photovoltaic performances of the degrading solar 
cells. 

Therefore, drift diffusion simulations are usually employed to specifically 
investigate these impacts on charge carrier generation, transport and recombination. 
They allow to study the role of each material and interface. However, they can be time 
consuming and necessitate numerous input parameters. 

Finally, more and more approaches employed now are data-oriented, through 
statistics or machine learning algorithms. An overview of the models and approaches 
reported in literature is given in this section. 

1.4.1 Time dependent models 
A first approach employed to investigate degradation is based on temperature 

activation of most physical processes and associated Arrhenius law. Activation 
through other conditions, such as illumination has also been considered [89], [90], but 
less frequently employed to model experimental data. As a result, the reaction rate is 
usually determined at several temperatures by fitting the temporal evolution of 
indicators of degradation with kinetics expressions. Notably, a hypothesis on the 
reaction order is necessary. The degradation indicators are usually JV parameters [86], 
but others such as XRD peak area [91], [92] can also be employed. When the activation 
energy is obtained, it provides the acceleration factor to extrapolate the reaction rate 
at any temperature. As a result, solar cell lifetimes can be assessed [87]. 

This approach has been interestingly expanded when applied to Voc, Jsc and FF 
with distinct reaction orders and activation energies. This allows the discussion on 
potential different processes impacting the optoelectrical parameters. Finally, this 
model was employed to predict the output power of the perovskite solar cell under 
several climates, having different temperatures [88]. 

In fact, prediction of energy production has already been done by employing 
simple phenomenological degradation rates. With such macroscopic approach, more 
complex systems such as perovskite – silicon tandems and even economic 
consideration can be considered [93]. 

In a more device physics-oriented manner, analytical models such as presented 
in Section 1.1.4 can be combined with time dependent expression of given parameters 
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(that are assumed to degrade). This approach has been employed to fit the 
experimental degradation of solar cells JV curves, with time dependent doping levels 
and space charge region. It provides an interesting reproduction of the observed 
degradation, but the simplicity of the model (pn junction versus pin experimental 
structure) makes the interpretation difficultly reliable [94]. 

1.4.2 Drift diffusion based approaches 
In order to investigate deeper the physics of the solar cells, it can be necessary to 

account for the dynamics of the charge carriers. Drift-diffusion models rely on the local 
equations governing the behavior of charge carriers: the Poisson equation and the 
continuity equation. Importantly, the formulation of charge carrier currents in the 
continuity equation accounts for both drift and diffusion phenomena. Through this 
approach, the materials characteristics actually defining the performance of the device 
are considered, and therefore, the causality with degradation mechanisms can be 
investigated. 

Notably, the drift-diffusion expressions are time dependent and can be fully 
solved to study the dynamics of carriers before reaching steady state. Usually, time 
resolved characterization techniques are employed in parallel, such as time resolved 
photo-luminescence [95]. Although such studies can investigate deeply the charge 
carrier transport and recombination processes, characterizations considered in this 
work, such as JV curves are in fact recorded under steady state. Therefore, drift 
diffusion simulations done in this work and most of those reported in this section are 
under steady state. 

In a first step, such simulations are frequently employed to assess the 
performances of a solar cell with given materials. Studies of the optimization of layer 
characteristics are numerous and they provide useful insights on the role of drift 
diffusion input parameters in the case of perovskite solar cells [96]–[98].  In fact, the 
1D simulation tool employed in this work, SCAPS-1D, has allowed a lot of these 
studies through its easy and simple use [99]. 

Importantly, the behavior of the charge carriers is completely resolved, it is 
therefore possible to reproduce results of various characterization techniques. Not 
only JV characteristics can be investigated, but also for instance impedance 
spectroscopy [100], [101], photoluminescence spectroscopy [102] and space charge 
limited current [103]. Importantly, combining several techniques allows to probe 
complementary operating regimes of the solar cells, and therefore resolve better the 
responsible material characteristics. 

A first intensely studied aspect is the role of ion migrations on hysteresis of JV 
characteristics. This necessitates the coupling of ion transport equations and electrons 
– holes drift diffusion equations [104]–[107]. The associated intensive work has to be 
acknowledged, because of numerical complexity induced by the large difference 
between ions and electrons or holes transport timescales. Moreover, a locally finer 
spatial resolution is necessary to resolve ion accumulation gradients. 
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For instance, such simulations have been employed to show how ionic 
accumulation near interface could modify local doping, screen electric field and cause 
observed JV hysteresis [108], [109]. Notably, the role of extracting layers, through their 
doping and permittivity, has also been demonstrated [104]. Furthermore, the 
reversible degradation observed under dark-light cycles with opposite recovery cases 
under dark or illumination, could be rationalized by simulating the impact of applied 
bias [61]. 

In some cases, fabricating more complex structures than the typical solar cell can 
be useful to probe some properties. For instance, with planar structures with both 
contacts at the back, or lateral junctions. In such case, the usual 1D approximation 
cannot be done, and drift diffusion simulations provide precious tools to understand 
better the more complex electric field in such device [102], [110], [111]. 

Importantly, in the studies reported here, the coupling between ions and electron 
– holes behavior is done through the Poisson equation. Moreover, constant mobile ion 
densities are considered. This is crucial to explain JV hysteresis but might not be 
sufficient to investigate long term degradation. For instance, generation of mobile ions 
would be consistent with observed behavior under illumination. Interactions between 
ions and opposite charge carrier, potentially producing a neutral atom or molecule 
might be to consider as well. Such processes would allow to investigate the long-term 
degradation of perovskite solar cells performances, related to ionic migrations. 

Notably, approaches have been reported, by considering oxidation of halides by 
holes and reduction by electrons. Through first order chemical reactions, the density 
of interstitial species and associated defect density is related to the operating regime 
of the solar cells [107], [112], [113]. This paves the way for further investigations of 
long-term impact of ionic migrations. 

Large advances in the understanding of the perovskite solar cells hysteresis and 
reversible processes have been possible through the studies reported here. It is to note, 
however, that supplementary degrees of freedom arise, such as the densities of mobile 
species and their diffusion coefficients. Their values are poorly known and can 
probably vary significantly from sample to sample. Moreover, the precise nature of the 
reactions responsible for the generation or annihilation of mobile species is still under 
study, and their reaction rates even less known. Therefore, investigating the long-term 
degradation of the solar cells through these mechanisms is still a hugely interesting 
open research field. In this work, it has been chosen not to focus on the perovskite 
layer, but also consider transport layers. No mobile ions were included in the 
simulations to avoid associated parameters assumptions and cover more broadly the 
various degradation processes in the solar cells. 

1.4.3 Statistical and machine learning approaches 
Data oriented approaches are getting a growing interest in photovoltaic research 

field, thanks to the development of machine learning algorithms and neural networks 
[114]. The rising data availability is a significant factor, and initiatives have been 
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proposed to construct global open-access databases with uniformed reporting of 
various device results of perovskite solar cells [115]. 

For instance, such large database has been necessary for the training neural 
networks employed to predict the bandgap of perovskite materials based on their 
composition [116]. Here the machine learning tools provide powerful elaborated 
regressions of the data. 

At the device scale, a large number of material parameters define the 
photovoltaic behavior. This precisely constitutes a difficulty when employing 
theoretical oriented approaches such as drift diffusion simulations. Therefore, machine 
learning algorithms can be employed to find the values of relevant material 
parameters. For instance, Bayesian parameter estimation is a powerful technique that 
has been applied to time resolved photoluminescence measurements to determine the 
underlying carrier mobilities, surface recombination velocities and carrier lifetime 
[117]. Similarly, tree-based methods (single decision tree and random forest) have 
allowed to find the major recombination process in perovskite solar cells (radiative, 
SRH or at interfaces). The algorithms were applied to JV parameters, including diode 
ideality factor and in some cases, material parameters such as doping levels and carrier 
mobilities [118]. Importantly, both studies reported here employed drift diffusion 
simulations to construct their training databases. 

The degradation of perovskite solar cells provides interesting tasks for machine 
learning approaches because of the complexity of the numerous physical and chemical 
processes at play. As a result, no complete theoretical model can easily be developed 
and employed, and in some cases machine learning algorithms are more simply and 
rapidly developed. 

For instance, it has been possible to predict the T80 (the time elapsed for the solar 
cell efficiency to drop to 80 % of its initial value) with 40 % accuracy by employing a 
hybrid machine learning approach. It is to note that the models’ inputs were not only 
device characteristics and ambient conditions parameters. A theoretical model for the 
water induced decomposition rate of MAPbI3, and its results passed to the machine 
learning algorithms. This simplification of the problem allows a higher accuracy but 
restrict the applicability of the model to water induced degradation [119]. 

Furthermore, the ability of neural networks to tackle time series and complex 
non-linear behavior constitute significant strength. This would justify their use to 
tackle the reversible degradation behavior of perovskite solar cells and for instance 
identify cycles of degradation followed by recovery [120]. In another example, neural 
networks have also been employed to identify and distinguish steps of degradation 
from transient photocurrent measurements [121]. 

Interestingly, statistics over sufficiently large datasets can be employed to verify 
the validity of simplified models. For instance, the validity of a theoretical threshold 
required for the doping level of the ETL and HTL could be verified by simulating 
10 000 cases (again with drift diffusion) and by comparing the FF distributions when 
the doping threshold is satisfied or not [27]. 
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Notably, machine learning tools have been developed to determine the 
underlying analytical expression behind experimental data. It has been claimed that 
the Hamiltonian and Lambertian describing the motion behavior of physical systems 
had been discovered  by analyzing motion-tracking data [122]. One could imagine that 
such tools could help to find and discuss the doping level threshold investigated in the 
previous example. Models describing the degradation of the samples could also be 
proposed. 

Principal components analysis is also a powerful tool in the context of highly 
dimensional problems with numerous parameters. In fact, its main use is to reduce the 
number of variables in a dataset, by expressing components that are orthogonal to each 
other [123]. It can be employed as a pre-processing step to reduce the number of inputs 
passed to a machine learning algorithm [120], [124]. In the field of photovoltaics, 
principal components analyses have been employed in energy production forecasting. 
Again, in conjunction with other machine learning algorithms [125]. 

These examples show how machine learning algorithms attract interest and 
support the investigation of perovskite solar cells degradation. In some cases, almost 
no theoretical knowledge on device physics or chemistry seems to be necessary. 
However, it is to note that the best performing, and most explanatory approaches 
relied on theoretical models. Moreover, data-oriented approaches and statistics can 
help to evaluate the validity of new models and provide insights on the underlying 
relations between physical parameters. As a result, the hybrid approaches combining 
machine learning and theory might have the most added value to construct general 
knowledge on the physics and chemistry of perovskite solar cells. 
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Chapter conclusion 
Perovskite cells attract a great interest in the photovoltaic research community. 

Devices attain high power conversion efficiency, and improving their stability is 
becoming a key aspect in current works. This chapter exposed the elements in cause 
for these two aspects. 

First the necessary concepts of semiconductor and solar cell physics have been 
exposed in Section 1.1, to be able to explain the good performances of perovskite solar 
cells. With a direct bandgap and high absorption coefficient, good charge carrier 
mobilities and long diffusion lengths, perovskites are very promising semiconductor 
materials for photovoltaic applications. Moreover, the possibility to tune their 
bandgap through mixed compositions opens optimization possibilities for tandem 
applications. These aspects are exposed in Section 1.2, together with relevant 
characteristics of the usual materials employed as transport layers. 

However, a significant variability of the material properties is reported in 
literature. For the perovskite material, thin film quality and morphology depend on 
deposition process, which impacts relevant semiconductor parameters such as defect 
densities and carrier mobilities. Moreover, the ETL and HTL materials have also been 
reported with variable qualities, having different doping levels and carrier mobilities 
for instance. Importantly, these aspects constitute the motivation to employ the 
statistical approach exposed in Chapter 3. 

Furthermore, numerous chemical and physical processes are responsible for the 
rapid degradation of optoelectrical performances of the perovskite solar cells, as 
reported in Section 1.3. First, various triggering environmental factors have been 
reported: temperature, humidity, light, oxygen and applied bias. The perovskite 
material itself can for instance react with water, or face phase segregation upon light 
or applied bias. Moreover, the materials employed to fabricate HTL can also be 
sensitive to elevated temperature, and ETL materials such as TiO2 can be photo-
oxidized. Even detrimental coupling effects can occur, with for instance migrating 
halides from the perovskite material that can reduce the HTL material on their way to 
react with the metallic contact. These examples recall the various sites where 
degradation can occur: in fact, at every layer and interface. Therefore, the work 
exposed here in Chapter 4 aims specifically at helping to distinguish degradation 
mechanisms through their impact on performances. 

The existence of various processes with various impacts on optoelectrical 
performances is at the source of numerous studies in the research community. In 
Section 1.4, the modeling approaches employed to investigate these issues have been 
reported. Drift-diffusion simulations have now significantly helped to understand 
ionic migrations and their impact on the solar cell’s performances. However, it is still 
not clear how coupling ionic and electronic transport will help to investigate long-term 
degradation. Therefore, the approach employed in this work, exposed in Chapter 2, 
does not employ such coupling. It focuses therefore on the distinction of degradation 
mechanisms taking place in the whole solar cell: in any layer or at any interface. 
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Chapter introduction 
In this chapter, the methods employed to investigate the degradation of 

perovskite solar cells are described. 
First, a coupled scheme of optical (based on transfer matrices) and electrical 

(based on drift diffusion) numerical simulations have been developed and exposed 
here. The basics of these techniques are recalled in Section 2.1, to clearly expose the 
input and output parameters of the simulations performed throughout this work. 

A crucial output is the simulated current voltage (JV) characteristic of the solar 
cell. It is exposed in Section 2.2 how this characterization result is reproduced, and 
how associated parameters are derived. 

Photoluminescence (PL) spectroscopy is a second characterization technique that 
has been considered, and from which the results have been simulated. In Section 2.3, 
specific models employed to reproduce a PL spectrum are exposed, together with the 
associated derived parameters. 

Moreover, numerous experimental results, obtained by other teams have been 
analyzed here. They are exposed in Section 2.4, and they all consist in periodic 
measurements performed over aging studies of various solar cells under different 
conditions. 

Finally, a specific procedure developed to pre-treat experimental results obtained 
at IPVF is exposed in Section 2.5. It mainly consists in data cleaning steps and removal 
of outlier points, in order to extract long term aging trends. 

 

 

Chapter key points: 

 Optical simulations based on transfer matrices are employed to 
compute absorption in the solar cell and carrier photogeneration rate 
across depth. 

 Electrical simulations through drift diffusion allow to compute charge 
carrier transport and recombination behavior. 

 Combining both steps allows to reproduce current voltage curves and 
photoluminescence spectra. 

 From JV curves, the following parameters are derived: Voc, Jsc, FF, 
slope at open circuit and slope at short circuit. 

 From PL spectra, the following parameters are derived: total emission, 
photon energy at the maximum of the peak and slope at low energy 
side. 

 Pre-treatment of experimental results is done by removing outliers and 
applying moving average smoothing, in order to derive long term 
degradation trends. Forward, reverse and average JV curves are 
considered and treated. 
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2.1 Coupled drift diffusion and optical simulations 
In order to investigate the degradation of the solar cell performances, a modeling 

method has been developed. It aims a comparing experimental characterization to 
simulations in order to associate measured changes of optoelectrical parameters to 
changes in the materials characteristics. Therefore, it is necessary to accurately 
simulate the solar cell behavior under the conditions employed to characterize them. 

To do so, a coupling scheme of optical and electrical simulations has been 
developed. First, optical simulations allow to estimate the light behavior in the solar 
cell, the absorbed fraction, and the associated generation profile of electron-hole pairs. 
Then, electrical simulations determine the carriers’ currents, recombination, and 
extraction. 

For the simulations performed in this work, the perovskite solar cell is considered 
as a stack of three active layers: hole transporting material, perovskite and electron 
transporting material. Furthermore, a front stack of glass and transparent conductive 
electrode, as well as a back metallic contact are considered. 

The layers are considered uniform, and all interfaces parallel to each other, the 
simulations are therefore performed in one dimension. 

2.1.1 Optical simulations through transfer matrix method 
The optical simulation block employs transfer matrix method to compute the 

light propagation in the thin-films, and accounts for the transmittance and front side 
reflection of the glass layer as a filter. 

The transfer matrix method is based on Maxwell’s equations formalism of 
electromagnetic waves [1]. Therefore, Fresnel equations describe reflection and 
transmission of light, through continuity of electric and magnetic fields, at a given 
interface. When several interfaces are close to each other, a coupling through partial 
transmissions and reflections occur. 

The electric field in the stack is described by two components, propagating in 
opposite directions (normally to the interfaces): 𝐸  and 𝐸 . Furthermore, the method 
takes advantage of the linearity of the propagation equations, as well as the continuity 
of the tangential component of the electric field at interfaces. As a result, these electrical 
field components are related to each other through matrix products [2]. 

First, the interface matrix describes the transmission and reflection of both 
electrical fields components at a given interface. Between materials 𝑗  and 𝑗 + 1 , it 
relates the electrical fields at both sides of the interface (in 𝑥 ,  and 𝑥 , ) by the 
product: 

𝐸 𝑥 = 𝑥 ,

𝐸 𝑥 = 𝑥 ,

=
1

𝑡 ,

1 𝑟 ,

𝑟 , 1
∙

𝐸 𝑥 = 𝑥 ,

𝐸 𝑥 = 𝑥 ,

(2 − 1) 

𝑡 ,  and 𝑟 ,  are the Fresnel reflection and transmission coefficients. For instance, 
they are defined for s-polarized waves as: 
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𝑡 , =  
𝑞 − 𝑞

𝑞 + 𝑞
(2 − 2)

𝑟 , =  
2𝑞

𝑞 + 𝑞
(2 − 3)

 

Here, 𝑞 = 𝑛 + 𝑖 𝑘 cos 𝜃  and 𝜃  is the angle of refraction in the layer 𝑗, which 
can be expressed from Snell-Descartes law. 

Furthermore, the layer matrix describes the propagation across a given layer of 
both components. For the layer 𝑗 of thickness 𝑑 , it relates the electrical fields at both 
extremities (in 𝑥 ,  and 𝑥 , ) by the product: 

𝐸 𝑥 = 𝑥 ,

𝐸 𝑥 = 𝑥 ,

=
𝑒𝑥𝑝 −𝑖

2𝜋

𝜆
𝑞 𝑑 0

0 𝑒𝑥𝑝 𝑖
2𝜋

𝜆
𝑞 𝑑

∙
𝐸 𝑥 = 𝑥 ,

𝐸 𝑥 = 𝑥 ,

(2 − 4) 

Finally, the electrical field is expressed across the whole stack, accounting for all 
reflections, transmission and propagations. It is obtained by the product of all 
associated matrices. The whole problem is reduced to a two-by-two matrix equation. 
For instance, for three layers, and four interfaces: 

𝐸 (𝑥 = 0)

𝐸 (𝑥 = 0)
= 𝐼 , ∙ 𝐿 ∙ 𝐼 , ∙ 𝐿 ∙ 𝐼 , ∙ 𝐿 ∙ 𝐼 , ∙

𝐸 (𝑥 = 𝑑 )

𝐸 (𝑥 = 𝑑 )
(2 − 5) 

𝐼 ,  are interface matrices and 𝐿  layer matrices. Importantly, the absorbed power 
per unit volume (𝐼, in W.m-3) is related to the electric field dissipated power. It is 
expressed here in material 𝑗, for 𝑥 ∈ [𝑥 , , 𝑥 , ]: 

𝐼(𝑥) =  
1

2
𝑐𝜖 𝛼 𝑛 |𝐸(𝑥)| =  

1

2
𝑐𝜖 𝛼 𝑛 |𝐸 (𝑥) + 𝐸 (𝑥)| (2 − 6) 

Here, 𝛼 = 𝑘  is the absorption coefficient, 𝑐  the speed of light and 𝜖  the 
permittivity of vacuum. 

Finally, usual quantities such as absorptivity and generation rate are derived 
from the absorbed power, and accounting for incident light intensity. Importantly, it 
is not monochromatic, typically the AM1.5g spectrum is considered. In such case, the 
computations presented above have to be performed for each wavelength. 

The absorption rate (at a given depth) is the ratio of absorbed power to incident 
light intensity (in W.m-2): 

𝐴 (𝑥, 𝜆) =
𝐼 (𝑥, 𝜆)

𝐼 , (𝜆)
(2 − 7) 

It is to note that the absorption rate is in m-1, the absorptivity is then obtained by 
integrating over the layer thickness: 
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𝐴(𝜆) =  𝐴 (𝑥, 𝜆)𝑑𝑥 (2 − 8) 

These quantities can be computed for each layer of the solar cell. The example 
from Figure 2-1 is obtained for a stack composed of: Glass / FTO / TiO2 / 
Cs0.05(MA0.17FA0.83)0.95Pb(Br0.17I0.83)3 / PTAA / Gold. FTO is a transparent conductive 
oxide (TCO), TiO2 constitutes the electron transport layer (ETL) and PTAA the hole 
transporting later (HTL). By adding the absorptivity in each layer (and front reflection) 
optical behavior of the solar cell is completely resolved. 

  
Figure 2-1. Left: absorption rate in the perovskite layer of an exemplary solar cell. Note vertical axis starts at the 
bottom interface and light enters through the side at 500 nm.  Right: absorptivity in the perovskite layer as well 
as all other absorptions and reflections. 

Finally, the locally absorbed power can be expressed as a “photon absorption 
rate” by dividing by the energy of a photon. This is the electron-hole pair generation 
rate (in s-1.m-3), which is crucial for the electrical simulations. 

𝐺(𝑥) =  
𝜆

ℎ𝑐
𝐼(𝑥) (2 − 9) 

The generation rate associated to the above example is displayed in Figure 2-2. 

Figure 2-2. Generation rate in an exemplary perovskite solar cell. Note x axis starts at the bottom interface and 
light enters through the side at 600 nm. Only the ETL / perovskite / HTL stack is represented. Both transport 
layers are 50 nm  thick, and the perovskite 500 nm. 
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Finally, the optical simulations were performed with an in-house developed tool, 
OptiPV. Its implementation of the transfer matrix method allows to rapidly obtain the 
generation rate, for any configuration. The only necessary input parameters are the 
complex refractive indices of each layer, and their thickness. 

2.1.2 Electrical simulations through drift diffusion modeling 
The goal of the electrical simulation block is to compute the performances of the 

solar cell under steady state, given the optical behavior mentioned in the previous 
section. Densities and currents of charge carriers are computed locally, across the 
depth of the device, as well as the extracted current at the contacts of the solar cell. 
These drift diffusion simulations were performed with SCAPS, a 1D-numerical solver 
developed for thin-films solar cells, freely available [3] and widely used to investigate 
perovskite solar cells [4]–[8]. 

The drift diffusion model is based on local equations: the Poisson equation and 
the continuity equation. Importantly, the formulation of charge carrier currents 
accounts for both drift and diffusion phenomena. They constitute a system of 
equations in Φ, 𝑛 and 𝑝, which are respectively the electrical potential, the density of 
electrons and the density of holes [9]. 

The Poisson equation relates the electrical potential to the density of charges. In 
a semi-conductor, not only electrons and holes are present (noted 𝑛  and 𝑝 , 
respectively), but also doping impurities (𝑁  and 𝑁  are the densities of ionized 
acceptor and donor impurities). Importantly, the positive elementary charge is noted 
𝑞 in this work. 

𝛻 ∙ (𝜖 𝜖 𝛻𝛷) = −𝑞 𝜎

= − 𝑞(−𝑛 + 𝑝 − 𝑁 + 𝑁 )
(2 − 10) 

Here 𝜙  is the electrical potential, 𝜖  and 𝜖  are the vacuum and relative 
permittivity respectively. 

Furthermore, the continuity equation is expressed for electrons and holes. It 
accounts for both generation (noted 𝐺 ) and recombination processes (noted 𝑅 ). 
Importantly, the currents are expressed as particle flows (in m-2.s-1) in this section. 

𝜕𝑛

𝜕𝑡
= − 𝛻 ∙

𝐽

𝑞
+ 𝐺 − 𝑅 (2 − 11)

𝜕𝑝

𝜕𝑡
= − 𝛻 ∙

𝐽

𝑞
+ 𝐺 − 𝑅 (2 − 12)

 

Importantly, 𝐺 is the generation rate, it is exactly the quantity obtained through 
the optical simulations in the previous section. 

The recombination rate is the sum of radiative and non-radiative processes, 
exposed in Section 1.1. In the perovskite layer, two types of traps were considered: 
deep traps located at the middle of the bandgap and shallow defects located near the 
band edges with exponential distributions in energy. All were considered neutral and 
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therefore act as pure recombination centers [10]. The deep traps have a major impact 
on recombination, and the shallow traps are mainly used to define sub bandgap 
absorption, critical for photoluminescence. Furthermore, neutral deep traps were also 
considered at both perovskite interfaces, with ETL and HTL. 

Finally, the charge carrier currents have to be expressed through both drift and 
diffusion processes: 

𝐽 = + 𝑞 𝑛 𝜇 𝛻𝛷 −  𝑞 𝐷 𝛻𝑛 (2 − 13)
𝐽 = − 𝑞 𝑝 𝜇 𝛻𝛷 − 𝑞 𝐷 𝛻𝑝 (2 − 14)

 

These five coupled equations constitute the drift diffusion equations. It is to note 
that they are nonlinear, due to the expressions of the recombination rate. 

The numerical solving procedure, including mesh definition, discretization of the 
derivative through finite differences is implemented in SCAPS [11]. It consists in a 
Gummel-Iteration scheme with Newton-Raphson sub-steps, and the equations are 
expressed in terms of quasi-Fermi level instead of carrier densities [12], [13]. 
Importantly, only the steady-state working point is calculated. 

Finally, the useful outputs for the device analysis, such as external voltage or 
currents are directly derived from the three unknowns of the system (Φ, 𝑛 and 𝑝) and 
charge carrier currents. Importantly, the quasi-Fermi levels are obtained across the 
whole device, as illustrated in Figure 2-3. Such outputs is crucial to compute the 
emitted photoluminescence spectrum across depth, as exposed in a further section. 

 
Figure 2-3. Example of output of the electrical simulation of a perovskite solar cell. The quasi-Fermi levels are in 
blue and red lines, conduction and valence bands in black lines. The applied bias here is Voc. 

Importantly, solar cells are simulated here as 1D structures, therefore, lateral 
average material properties and charge carrier behavior are considered. In fact, spatial 
non-uniformities at the microscopic level are present in perovskite solar cells. For 
instance, several layers are multi-crystalline and properties at grain boundaries are 
different from inside crystals. Moreover, these aspects have been demonstrated crucial 
in Section 1.3 to understand degradation processes. However, simulating spatially 
resolved phenomena and their impact on macroscopic current voltage properties 
would require numerous assumptions. Also, it might not be possible to distinguish 
these phenomena only by relying on macroscopic measurements such as employed in 
this work. Therefore, it has been chosen to consider simpler 1D simulation methods 
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with more reasonable number of parameters and computation time, in order to focus 
on other aspects. 

It has also been exposed in Section 1.3 how ion migrations in perovskite materials 
can significantly impact the solar cell behavior. In fact, interesting studies coupling 
these ions and charge carrier dynamics in drift diffusion simulations have been 
reported in Section 1.4.2. They have notably significantly helped to understand current 
voltage hysteresis. However, supplementary parameters arise (such as mobile species 
densities and diffusion coefficients) with poorly known values that can probably vary 
significantly from sample to sample. Moreover, the precise nature of the reactions 
responsible for the generation or annihilation of mobile species is still under study, 
and their reaction rates even less known. As a result, simulating the behavior of mobile 
ions is probably a research field in itself.  

Therefore, it has been chosen here not to simulate this coupled behavior to avoid 
associated parameters assumptions. Therefore, the considered properties of solar cells 
reflect an “average behavior” between possible ion accumulation regimes, which is 
believed to still provide valuable insights on perovskite solar cells performances. 

Importantly, the simulations done here can capture a “long-term” impact on 
carrier mobilities or defect densities (or other properties) in the perovskite layer and 
at its interfaces. The presence of mobile ions is therefore not excluded by the approach 
employed here, and it can consider the long-term impact of migrations on material 
properties.  

This constitutes a tradeoff in terms of number of parameters and assumptions 
(ion mobilities and JV scan rate for instance) and accuracy at the transient level, 
allowing to cover more broadly the various degradation processes in the solar cells. 
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2.2 Current – voltage characterization 
The first characterization employed to assess the performances of perovskites 

solar cells in this work is the current voltage characteristic. 
It is obtained experimentally by  measuring the cell current at different biases, 

typically varying between 0 V and its open circuit voltage (Voc). The typical conditions 
are the normalized Standard Test Conditions (STC): cell temperature at 25 °C, 
illumination intensity of 1000 W.m-2 with AM1.5g spectrum. Therefore, solar cells are 
placed under a “solar simulator” to ensure the right illumination, and on a “chiller”, 
to ensure the right temperature. Importantly, JV characteristics are also recorded 
under dark. Both characteristics are complementary and provide insights on different 
working points of the solar cell. 

Some measurements analyzed in this work were done at higher temperature or 
under a laser illumination, in that case, the simulations parameters have to be set 
accordingly. 

This characterization technique is crucial to assess the performances of a solar 
cell because it allows to determine its output power under operating conditions. 
Furthermore, it allows to probe several working points [14], [15], and Figure 2-4 shows 
how the proportion of the different recombination channels change across voltage. 
Recombination at interfaces and contacts only play a role at lower voltages, whereas 
the SRH recombination account for almost all recombination near Voc. It is to note that 
radiative recombination does play a minor role, and that controlling defect densities 
are crucial to improve the perovskite solar cells performances. To illustrate these 
aspects, results in this subsection are obtained for an example of perovskite solar cell 
in nip configuration: TiO2 ETL, Cs0.05(MA0.17FA0.83)0.95Pb(Br0.17I0.83)3 perovskite layer and 
PTAA HTL. Materials are defined with good carrier mobilities and low defect 
densities. 

  
Figure 2-4. Simulation of currents balance across a JV characteristic. Left: balance of extracted current (the 
actually recorded JV characteristic) and losses through recombination or external shunt resistance. Right: 
composition of recombination losses. Interfaces refers to perovskite-ETL and perovskite-HTL interfaces. Contacts 
refers to the outside interfaces of the transport layers. 



Chapter 2 – Modeling methods to simulate given characterization techniques 

70 

In order to quantify the performances of a solar cell from its JV characteristic, five 
parameters are extracted: open circuit voltage (Voc), short circuit current (Jsc), fill 
factor (FF), the slope at open circuit (OC) and the slope at short circuit (SC). Notably, 
these parameters have been extracted for simulated or experimental JV characteristics 
through exactly the same procedure, exposed further. 

Importantly, the actual parasitic resistances are not considered in this work. To 
do so, it would be necessary to fit a model such as a single or double diode model to 
the curve. The fitting procedures (usually based on least-squares reductions) of such 
nonlinear model defined implicitly are however prone to uncertainties or can even be 
time consuming.  

Therefore, it has been chosen in this work to consider the slopes near Jsc and Voc. 
These quantities are not the usual external resistances but constitute indicators that 
can be simply extracted from experimental and simulated JV characteristics. In fact, 
several thousands of curves had to be treated in this work and performing only simple 
linear regressions allowed to obtain faster more reliable results. 

Figure 2-5 shows an example of JV characteristics and associated slopes. 
Importantly the linear fitting ranges are automatically optimized. Multiple ranges are 
tried, and the fit with the lowest R2 value is retained. For the slope at SC, regressions 
were realized between 0 V and 0.4 to 0.9 times Vmpp. For the slope at OC, regressions 
were done between the lowest current value and 0.2 to 0.9 times Jmpp. 

 
Figure 2-5. Example of current voltage and associated optoelectrical parameters. Slopes at OC and SC are 
represented through red lines. 

As a result, the five extracted optoelectrical parameters provide an interesting 
overview of the solar cell behavior. The Voc is strongly impacted by the amount of 
carrier’s recombination. For instance, a sample with high defect density will have a 
lower Voc. The Jsc is in the first order determined by the optical behavior and the 
number of photo-generated charges. It can also be lowered by poor extraction or low 
charge carriers mobilities. The FF is modulated by the nature of the recombination and 
for instance, trap assisted recombination will induce lower FF than radiative 
recombination. The slope at OC is an indicator of the presence of series resistance in 
the total electrical circuit. However, it is to keep in mind that it is not the proper series 
resistance, and it is also dependent on other phenomena such as the nature of the 
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recombination. This is even more significant for the slope at SC, which is not to 
interpret as a proper shunt resistance. In fact, it very strongly depends on the carrier 
collection efficiency, and its dependence on bias. This effect is especially more present 
in pin structures than in pn junctions, as mentioned in Section 1.1.3. 

Finally, an important aspect when recording JV characteristics of perovskite solar 
cells is the voltage scan rate and the scan direction, forward from 0 V to Voc or reverse 
from Voc to 0 V [16].  

In fact, as exposed in Section 1.3.1, mobile ions can migrate when an electric field 
is present across the perovskite layer [17], [18]. This has been reported to potentially 
induce local defects and doping effects which could explain the hysteresis frequently 
obtained between forward and reverse characteristics [19]. These phenomena are still 
not yet fully understood and several manners to record JV characteristics are reported 
in literature. 

A possibility to reduce the hysteresis is to have a preconditioning step (at 0 V, 
Vmpp or above Voc) in order to reach a mobile ions  equilibrium. Then a fast scan rate 
ensures that as few migrations as possible occur between forward and reverse scans. 
However, the state probed by this technique is significantly different from operating 
conditions, in which the solar cells are tracked at their maximum power point. 

The opposite manner, with a low scan rate allowing to reach equilibrium between 
each point could also be possible. Here, the solar cell would not be in the same state 
along the JV characteristic, making the results poorly interpretable. 

As a result, no perfect solution has been found and measurements performed at 
IPVF were done with scan rates of approx. 20 mV.s-1, in forward and reverse directions. 
Both characteristics are still not reflecting realistic operating conditions, which 
probably lies in between with a Vmpp bias. Therefore, the average of both 
characteristics has been exploited in this work. 
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2.3 Photoluminescence spectroscopy 
Photoluminescence spectroscopy is a useful characterization technique to probe 

the carrier densities in the perovskite layer. The emission of photons is caused by 
radiative recombination, which is the reciprocal phenomenon to absorption. 
Therefore, both electrical and optical characteristics of the solar cell play a role. 
Contrary to JV characterization, this technique does not need contacts. Therefore, it 
can be employed on single material layers, or partial solar cell stacks. As a result, it 
allows to compare optoelectrical characteristics at different steps of the solar cell 
fabrication process. 

The luminescence emission by the sample is experimentally measured by a 
spectrometer. Importantly, the signal has to be conveyed through lenses and optical 
fibers. As a result, the exact number of photons emitted by the sample is usually not 
known absolutely. Resolving this constant is done through “absolute calibration”, 
which is important work by itself. The data analyzed in this work was not obtained 
through an absolutely calibrated setup. It is not detrimental to the analysis because 
only relative evolution of the total emission or changes of the spectrum shape was 
investigated and simulated. In fact, the relative evolution of total emission is precisely 
the quantity useful to assess the impact of solar cell degradation. 

The excitation source in photoluminescence spectroscopy is light, usually done 
through a laser. For the measurements analyzed in this work, a 660 nm wavelength 
laser was employed, with variable intensity. 

It can be noted that measurements were performed under steady state, with 
acquisition times in the order of a second. 

2.3.1 General case 
The luminescence emission from a semi-conductor layer arises from radiative 

recombination. It is described by the generalized Planck law, derived from black-body 
radiation theory and Kirchhoff’s law of radiation. 

The photon flux emitted at the surface of a material, ϕ (hν, 𝛺), in a solid angle 
𝑑𝛺 with an angle 𝜃, is expressed as (in m-2.s-1.eV-1): 

𝜙 (ℎ𝜈, 𝛺) = 𝐴(ℎ𝜈, 𝛺)
(ℎ𝜈)

4𝜋 ℏ 𝑐

1

𝑒𝑥𝑝
ℎ𝜈 − 𝛥𝐸

𝑘 𝑇
− 1

𝑐𝑜𝑠𝜃𝑑𝛺 (2 − 15) 

hν is the photon energy, ℏ the reduced Planck constant and 𝑐 the speed of light 
in vacuum. Δ𝐸  is the difference between electron and hole quasi-Fermi levels: the 
quasi-Fermi levels splitting. It is the specific quantity that depends on carrier densities. 

Importantly 𝐴(hν, 𝛺) is the absorptivity of the material. It depends on photon 
energy and the direction of the incoming or emitted light. In this work, measurements 
were all performed under normal incidence. Therefore, the angular dependence of the 
absorptivity is not simulated. 
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It has been shown in Section 2.1 that both absorptivity and quasi-Fermi levels 
splitting are calculated across the device depth, from optical and electrical simulations 
respectively. Therefore, the emitted photon flux across depth can be computed: 

𝜙 (ℎ𝜈, 𝛺, 𝑥) = 𝐴 (ℎ𝜈, 𝑥)
(ℎ𝜈)

4𝜋 ℏ 𝑐

1

𝑒𝑥𝑝
ℎ𝜈 − 𝛥𝐸 (𝑥)

𝑘 𝑇
− 1

𝑐𝑜𝑠𝜃𝑑𝛺 (2 − 16) 

The total emitted flux at the surface is then obtained by integrating over the device 
depth: 

𝜙 (ℎ𝜈, 𝛺) = 𝐴 (ℎ𝜈, 𝑥)
(ℎ𝜈)

4𝜋 ℏ 𝑐

1

𝑒𝑥𝑝
ℎ𝜈 − 𝛥𝐸 (𝑥)

𝑘 𝑇
− 1

𝑐𝑜𝑠𝜃𝑑𝛺𝑑𝑥 (2 − 17) 

The absorption rate has been defined in the previous section as the ratio of the 
number of absorbed photons at a depth x over the number of incident photons at the 
surface. In fact, the reciprocity theorem allows to equalize this probability of being 
absorbed at a depth x with the probability of leaving the material when emitted at this 
depth x. 

The above expression is directly implemented and allows to compute the 
photoluminescence emission of any perovskite solar cell simulated with the methods 
from Section 2.1. Interestingly, Figure 2-6 shows how the shape of the emitted 
spectrum depends on depth. This reflects the varying absorption depth at different 
photon energies. It will also allow to reflect the impact of non-uniform quasi-Fermi 
levels splitting across depth, in the case of localized defect densities for instance. 

  
Figure 2-6. Left: photoluminescence emission rate simulated across the depth of a perovskite layer within a solar 
cell. The same structure as employed for the simulations in Figure 2-1 and Figure 2-3 is employed. Right: 
corresponding emitted photoluminescence spectrum at the surface of the device. 

With the same approach as for JV characteristics, optoelectrical parameters are 
extracted from the simulated and experimental PL spectra. Figure 2-6, right, shows an 
example: total emission, position of the maximum of the peak (Emax), slopes on both 
sides as well as half width at half max are extracted. These parameters will be 
employed to compare simulated to experimental spectra. Notably, the total emission 
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can only be used as relative variations because the experimental setup is not absolutely 
calibrated. 

Similarly to JV characteristics, slopes are extracted to provide practical indicators 
that can rapidly and easily be extracted for the thousands of simulated PL spectra. The 
linear regression extent on each side is defined around the inflection point: it ranges 
from 0.5 to 1.5 times the PL intensity at this point. 

Here again the extracted optoelectrical parameters provide an overview of some 
characteristics of the perovskite solar cell. The total emission indicates on the number 
of radiative recombination taking place and the position of the peak is associated the 
perovskite material bandgap. The slope and width of the spectrum on low energy side 
are dependent on the optical behavior (the absorptivity). It is for instance an indicator 
of sub-bandgap absorption behavior, as developed in the next section. Finally, the 
slope on the high energy side is mainly dependent on temperature. 

2.3.2 Sub-bandgap optical behavior in the presence of shallow defects 
In the computation of the photoluminescence spectrum presented above, the 

optical behavior plays a major role through absorptivity. Experimental spectra of 
perovskite solar cells usually show an important tail on low photon energy side. This 
means that the material can absorb and emit photons that have a lower energy than 
the bandgap. Such phenomenon cannot be explained by the classical model in which 
an electron from the valence band is promoted to a state in the conduction band when 
a photon is absorbed. It is necessary to account for supplementary states within the 
bandgap, near the band edges. It is usually referred to as “Urbach tail” and has been 
already reported for other materials [20].   

Multiple causes have been raised in the literature to explain the presence of such 
tail states in perovskite materials [21]. Structural and dynamical crystal disorder have 
for instance been considered [22]. Also, optically active shallow trap levels, located 
near band edges could explain such behavior [23], by providing supplementary states, 
allowing for lower energy transitions. 

In this work, the modeling of sub-bandgap optical behavior has been done 
considering shallow traps and their optical capture cross section. This quantity defines 
the probability of a photon to be absorbed and induce an energy transition of an 
electron. In fact, two processes are possible: the transition of an electron from the 
valence band to the trap state (this creates a free hole in the valence band), and the 
transition of an electron from this trap state to the conduction band (this creates a free 
electron in the conduction band). 

Shallow states have been considered in both conduction and valence band tails, 
and their density is considered following an exponential decay: 

𝑁 (𝐸 ) = 𝑁 𝑒𝑥𝑝 
𝐸 − 𝐸

𝐸
(2 − 17)

𝑁 (𝐸 ) = 𝑁 𝑒𝑥𝑝 
−𝐸

𝐸
(2 − 18)
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𝐸  is the energy level inside the bandgap, equal to 0 at the valence band edge and 
positive towards higher energy levels. 𝑁  defines the total density of defects and 𝐸  
is the characteristic energy of the exponential distribution of defects. 

As a result, the free electron generation in the conduction band (transition of an 
electron from valence band tail to conduction band), is computed in the form of an 
absorption coefficient. It is expressed, for a defect level 𝐸  and associated energy 
transition 𝐸 − 𝐸 , as: 

𝛼 (ℎ𝜈, 𝐸 ) = 𝑁 (𝐸 )𝑓 (𝐸 )𝜎(ℎ𝜈, 𝐸 − 𝐸 ) (2 − 19) 

Here 𝑁  is the density of states in the valence band tail, 𝑓  the occupation 
probability, and 𝜎(𝐸, 𝐸 − 𝐸 ) the optical capture cross section for a photon of energy 
hν. 

Symmetrically, the free hole generation in the valence band (transition from 
valence band to conduction band tail) is expressed as: 

𝛼 (ℎ𝜈) = 𝑁 (𝐸 )(1 − 𝑓 (𝐸 ))𝜎(ℎ𝜈, 𝐸 − 𝐸 ) (2 − 20) 

Here the conduction band tail defect density plays a role, as well as the 
complementary to the occupation probability. 

Notably, the transitions from valence band to valence band tail and from 
conduction band tail to conduction band are not considered. These transitions follow 
the same laws and are possible, but are associated to very low photon energies, outside 
the ranges explored in photoluminescence spectroscopy. 

Finally, the total absorption coefficient, accounting for all processes (sub bandgap 
and band-to-band absorption), is obtained by summing all contributions [24], [25]: 

𝛼(ℎ𝜈) = 𝛼 (ℎ𝜈) + 𝛼 (ℎ𝜈) + 𝛼 (ℎ𝜈) (2 − 21) 

Here 𝛼 (ℎ𝜈) is the band-to-band absorption coefficient, it has been taken from 
ellipsometry measurements in this work. 

Two models have been employed to compute the optical capture cross section. 
First, Lucovsky reported a model based on the expression for the potential responsible 
for the electrons binding, adjusted from the hydrogen model and considered to be the 
ion core potential[26]. It is expressed as follows: 

𝜎(ℎ𝜈, 𝐸 ) =
1

𝑛

𝐸

𝐸

16𝜋𝑞 ℏ

3𝜖 𝑐𝑚∗
 
𝐸 (ℎ𝜈 − 𝐸 )  

(ℎ𝜈)
(2 − 22) 

 is the effective field ratio. It can be calculated with the Lorentz expression: 

= 1 +  [27]. 𝑚∗ is the effective mass of the electron in the trap state, and n the 

refractive index. In fact, these parameters are not precisely known for the perovskite 
materials. The refractive index for energies below the bandgap is not accurately 
obtained from ellipsometry measurements for instance. 
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Therefore, a simpler approach has also been employed, considering an 
absorption threshold, with a constant value for photon energies above the transition 
value, or zero. 

𝜎(ℎ𝜈, 𝐸 ) =  
𝜎  𝑖𝑓 ℎ𝜈 ≥ 𝐸
0 𝑖𝑓 ℎ𝜈 < 𝐸

(2 − 23) 

Both models have been implemented and compared. An example case is 
displayed in  Figure 2-7, left and middle, for three exemplary defect energy levels (not 
exponential distributions) located near the conduction band edge. In this example, 𝜎  
was set to 10-17 cm2, a realistic value also chosen to be consistent with Lucovsky model 
result. The optical capture cross section associated to the most significant process is 
displayed: the generation of a hole in the valence band. 

   
Figure 2-7. Optical capture cross section for three defect state energy levels. Left: Lucovsky model, the effective 
mass was set to its value in the valence band and the refractive index to its average value in the known range. 
Middle: constant model, 𝝈𝑪 was set to 10-17 cm2. Right: trap occupation probability across the perovskite bandgap 
material, assuming it is intrinsic and at equilibrium. The shallow defects from both band tails are also superposed. 

Both models appear to show different absorption edges in Figure 2-7, left and 
middle, being much less sharp according to Lucovsky model. However, the final 
impact on absorption coefficient and photoluminescence spectrum will have to be 
assessed, to compare the models on usual physical quantities. 

On Figure 2-7, right, the trap occupation probability used in this work is 
displayed. It is computed by making strong assumptions: the material is intrinsic and 
at equilibrium. The difference with using the actual carrier concentrations has been 
quantified in terms of absorption coefficient and it is negligible. Furthermore, the 
necessary coupling of optical and electrical simulations would be very time 
consuming. 

Finally, the band tails represented in Figure 2-7 are employed to compute the 
corresponding absorption coefficient, displayed in Figure 2-8, top. Moreover, 
associated optical and electrical calculations are performed and provide the 
corresponding photo-luminescence spectra. 

In fact, a third model has been employed to generate absorption coefficient and 
PL spectrum: the widely used model proposed by Katahara and Hillhouse [28]. It 
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directly expresses the total absorption coefficient through a convolution product of a 
term accounting for band-to-band and a term for sub-bandgap absorption. 

The first term follows the square dependence on energy of the band’s density of 
states. The second term has the form of an exponential decay (with a possible 
exponent, 𝜃 ). It is actually consistent with the exponential form of the band tails 
considered in this work. Finally, a multiplicative constant, 𝛼 , scales the absorption 
intensity. As a result, this model is not related to any defect density, but proposes a 
purely phenomenological expression: 

𝛼(ℎ𝜈) =  
𝛼

2 𝐸  𝛤(1 + 1/𝜃)
 𝑒𝑥𝑝 −

𝑢

𝐸
ℎ𝜈 − 𝐸 − 𝑢 𝑑𝑢 (2 − 24) 

The absorption coefficient and PL spectrum obtained through this model have 
been compared to those obtained through the previously described models, and the 
same exponential decay characteristic energy (𝐸 ) has been considered. 

   

   
Figure 2-8. Top: absorption coefficient computed from three models for sub-bandgap absorption, and from 
experimental ellipsometry measurements for band-to-band. The sum of hole and electron generation contributions 
is directly displayed. Bottom: associated photoluminescence spectrum obtained by performing optical and electrical 
simulations with the above absorption coefficient. Left: Lucovsky model. Middle: constant model. Right: Katahara-
Hillhouse model. 

Finally, Figure 2-8 shows that all three models provide very similar absorption 
coefficients, and as a result, comparable photoluminescence spectra. It is to note, 
however, that the total density of shallow defects considered in this example is 
significantly high: 1020 cm-3. It has been adjusted to provide a realistic PL spectrum 
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with Lucovsky model. However, its validity in the present case can be questioned, and 
it might underestimate the actual optical capture cross section. 

As a result, it has been chosen to use the constant value further in this work: it 
provides a realistic photon energy dependence of the absorption coefficient and 
combines advantages of both other models. It allows for free adjustment through the 
constant 𝜎 , similarly to 𝛼  in Katahara Hillhouse model. Moreover, it accounts for a 
realistic shallow defect distribution of the band tails, like with Lucovsky model. 
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2.4 Studied devices and experimental results 
The modelling methods exposed in previous section have been developed to be 

able to analyze experimental measurements of degrading perovskite solar cells 
performances.  

Various characterization techniques can be employed to understand better 
degradation mechanisms, as exposed in Section 1.3.2. Notably, recording the evolution 
of the solar cells performances along aging allow to track the dynamics of degradation 
and provide supplementary information than having only two measurements points, 
before and after degradation. Here such results, recorded along aging under constant 
conditions, are investigated. Samples and the employed aging conditions are exposed 
in this section. 

First, experimental results of aging studies published in literature were analyzed. 
This allowed to start investigating concrete examples without yet having results from 
IPVF. Furthermore, this allowed to demonstrate the capabilities of the methods 
developed, in a constrained context, without having full access to all material 
properties or aging characteristics, as it is for studies performed at IPVF. 

In a second step, results obtained in-house were analyzed. It has been the 
opportunity to enhance the methods by considering more comprehensively the results 
(full JV characteristics) and supplementary characterization techniques (PL 
spectroscopy). 

2.4.1 Experimental results extracted from literature 
Evolution of optoelectrical performances along degradation are more and more 

reported in literature, as stability becomes a main concern of the perovskite research 
community. However, the vast majority reports only evolutions normalized to the 
initial performances and mostly only efficiency. The papers used in this section were 
selected because they are among the few to report the evolution of Voc, Jsc and FF over 
time, as well as enough characteristics of the devices: the materials employed and the 
solar cell structure with its performances before degradation. 

The first experimental results extracted from literature were record devices: by 
the time of publication, Peng et al. reported the highest efficiency for perovskite solar 
cells [29]. They studied Cs0.05FA0.88MA0.07PbI2.56Br0.44 based perovskite solar cells (see 
details in Table 2-1) and focused on both ETL and HTL to optimize performance and 
stability. Results extracted for this work are displayed in Figure 2-9: they were 
recorded under STC on encapsulated solar cells having a Spiro-OMeTAD or 
P3HT:CuPc HTL layer. Importantly, aging (in between measurements points) was 
done under damp-heat: 85 °C, 85 % relative humidity under dark.  

Interestingly, authors found the devices with P3HT:CuPc HTL significantly more 
stable. Degradation of doped Spiro-OMeTAD has been widely reported (see Section 
1.3.1), it is therefore consistent to correlate it with the degradation observed here. 
Accordingly, authors attributed the degradation of electrical performances to a 
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deterioration of the HTL/perovskite interface, caused by lithium-ion diffusion (Spiro-
OMeTAD dopant). 

 
Figure 2-9. Evolution of JV parameters reported by Peng et al, for devices fabricated with P3HT:CuPc (left) and 
Spiro-OMeTAD (right) HTL. Aging conditions were 85 °C, 85 % relative humidity and dark. 

The next results published in literature analyzed in this work have been reported 
by Li et al. [30]. They studied the degradation of unencapsulated, FA0.9Cs0.1PbI3 based 
devices (see details in Table 2-1)  under N2 atmosphere during 600h. Among other 
degradation conditions, cells were kept under one sun illumination, at 35 °C, and were 
tracked at maximum power point (MPP) or kept at open circuit (Voc). For each aging 
conditions, eight devices were used, and their JV characteristics recorded periodically. 
Finally, authors reported their average result. 

Furthermore, they employed before and after degradation several microscopy 
characterization techniques with nanoscale spatial resolution, to evidence phase 
segregation of the perovskite material (distinct Cs-rich and FA-rich areas). 
Furthermore, the detrimental impact of Cs-rich areas was demonstrated through X-
ray beam induced current measurements. In addition, authors also focused on HTL 
and gold back contact, by re-coating aged samples with fresh HTL and gold or even 
aging half stacks without HTL and gold from the beginning. As a result, Li et al. 
conclude that the main source of electrical performance degradation is the phase 
segregation of the perovskite itself, not being specifically triggered by HTL or gold. 

Chen et al. optimized the composition of Cs1−xFAxPbI2Br perovskites and studied 
the stability of associated devices [31]. Results analyzed here were obtained with x = 
0.3 (see details in Table 2-1) and devices were kept unencapsulated under ambient 
atmosphere. As a result, other compositions were proved to be all less stable and more 
prone to phase change. 

Authors measured photoluminescence spectra and decays on fresh and aged 
cells, as well as XRD diffractograms on fresh and aged perovskite films. They conclude 
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that the studied compositions suffered from phase instability, and the composition 
with x = 0.3 delayed the most the phase change. Notably, a light soaking step 
associated with improved efficiency at the beginning of the aging study was attributed  
to better charge collection, coming from better interfaces and stress relaxation 
(supported by higher photoluminescence intensity and longer carrier lifetime). 

In order to understand mechanisms occurring during degradation, Lim et al. 
focused on the kinetics of the degrading electrical parameters [32]. In this fourth 
experimental study analyzed here, devices are semi-transparent encapsulated cells 
with FA0.95MA0.05PbI2.85Br0.15 layer (see details in Table 2-1). They are exposed to air 
under one sun at constant temperature, ranging from 25 to 70 °C and results are 
reported in Figure 2-10. Importantly, all JV characteristics measurements were 
performed at 25 °C, even if devices were aged at higher temperature. Therefore, all 
associated simulations were also done at 25 °C. 

   
Figure 2-10. Evolution of JV parameters reported by Lim et al., recorded at 25, 40, 55 and 70 °C. Extracted from 
[32] 

Interestingly, authors determined reaction rates at each temperature and 
deduced activation energies with an Arrhenius law. Furthermore, they combined XRD 
and cross-sectional scanning electron microscopy to compare the perovskite material 
properties before and after degradation. They noted the absence of formation of PbI2, 
as a sign for stability. Similarly, UV-visible spectroscopy measurements done before 
and after aging are analyzed. Authors attributed the main cause of performance losses 
to an oxidation of the Spiro-OMeTAD HTL and iodide ions diffusion from the 
perovskite towards the HTL. 

Finally, the results obtained from all these published studies will be investigated 
in Section 4.4. 
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Table 2-1. Characteristics of the devices and aging studies reported in literature and investigated in this work. 
They were all aged under constant conditions and periodically characterized through JV measurements. 

Source Structure 
Initial performances 
(STC) 

Aging conditions 
Measurement 
conditions 

Peng et al. 

Spiro-OMeTAD / 
Cs0.05FA0.88MA0.07PbI2.56B
r0.44 / TiO2 (nip) 

Voc = 1.18 V 
Jsc = 19.41 mA.cm-2 
FF = 78.0 % 85 % RH, 65 °C, 

dark. 

AM1.5g, 1000 
W.m-2, 25 °C. 
Scan rate 20 mV.s-1. P3HT:CuPc / 

Cs0.05FA0.88MA0.07PbI2.56B
r0.44 / TiO2 (nip) 

Voc = 1.19 V 
Jsc = 19.80 mA.cm-2 
FF = 81.0 % 

Li et al. 
Spiro-OMeTAD + 
PTAA / FA0.9Cs0.1PbI3 / 
SnO2 (nip) 

MPP tracked: 
Voc = 1.079 V 
Jsc = 22.77 mA.cm-2 
FF = 76.3 % 
Voc tracked: 
Voc = 1.092 V 
Jsc = 22.89 mA.cm-2 
FF = 77.1 % 

N2 atmosphere, 
35 °C. 
AM1.5g, 1000 
W.m-2 
MPP or Voc 
tracking. 

Measurement after 
0, 192, 408, and 600 
h. 
AM1.5g, 1000 
W.m-2, 25 °C. 

Chen et al. 
NiOx / Cs0.7FA0.3PbI2Br / 
C60 (pin) 

Voc = 1.09 V 
Jsc = 15.65 mA.cm-2 
FF = 72.0 % 

Ambient 
atmosphere. 

AM1.5g, 1000 
W.m-2, 25 °C. 

Lim et al. 
Spiro-OMeTAD / 
FA0.95MA0.05PbI2.85Br0.15 / 
SnO2 (nip) 

Aged at 40 °C: 
Voc = 1.027 V 
Jsc = 22.29 mA.cm-2 
FF = 59.8 % 
Aged at 55 °C: 
Voc = 1.012 V 
Jsc = 23.34 mA.cm-2 
FF = 62.4 % 
Aged at 70 °C: 
Voc = 1.042 V 
Jsc = 23.16 mA.cm-2 
FF = 57.4 % 

Ambient 
atmosphere. 
1000 W.m-2. 
25, 40, 55 or 70 
°C. 

AM1.5g, 1000 
W.m-2, 25 °C. 
Scan rate 100 mV.s-

1. 

 

2.4.2 Experimental results obtained at IPVF 
Aging experiments are also performed at IPVF by a dedicated team. Such studies 

are critical to assess the long-term stability of  perovskite solar cells. They provide 
insights to the fabrication teams on the aspects that needs to be further developed to 
improve the solar cells stability. Two sets of results obtained by the stability team have 
been gathered and investigated in this work. 

First, aging measurements under constant illumination with periodic 
measurements of JV characteristics were gathered for eight samples. 

These devices were all fabricated with the same materials, but the perovskite 
layer was deposited with four different variations. In fact, this layer is deposited by 
spin-coating of a precursor solution and annealed for crystallization. The precursor 
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solution was prepared following two timelines: either the day before spin-coating, or 
the same day. Moreover, the solution was pre-heated at 70 °C for one hour before 
deposition or kept at room temperature. 

For each method, two samples have been fabricated, they are listed in Table 2-2, 
and their JV characteristics before degradation reported in Appendix B, Figure B1. 
Finally, the stability of these devices has been recorded under N2 atmosphere, ambient 
temperature and constant illumination for more than 1000 h, with  JV measurements 
every 15 minutes. The associated results will be investigated in Section 4.5.1. 

Table 2-2. Characteristics of the devices prepared with four different methods. They were aged under constant 
conditions and periodically characterized through JV measurements. 

Description Structure Name 
Name in 
manuscript 

Aging 
conditions 

Measurement 
conditions 

Prepared on 
deposition day. 
Room temperature. 

Glass / FTO / 
TiO2 / 
Cs0.05(MA0.17FA0.

83)0.95Pb(Br0.17I0.83

)3 / PTAA / 
Gold 

JC17-03 
JC17-04 

JV-1.1 
JV-1.2 

N2 atmosphere. 
Ambient 
temperature. 
Constant 
illumination, 
AM1.5g, 1000 
W.m-2. 

Measurements 
every 15 min. 
Scan rate 20 
mV.s-1. 

Prepared on 
deposition day. 
Pre-heated @ 70 °C. 

JC17-07 
JC17-08 

JV-2.1 
JV-2.2 

Prepared one day 
before deposition. 
Room temperature. 

JC17-09 
JC17-10 

JV-3.1 
JV-3.2 

Prepared one day 
before deposition. 
Pre-heated @ 70 °C. 

JC17-15 
JC17-16 

JV-4.1 
JV-4.2 

 
Furthermore, an in-situ characterization setup has been developed in a climatic 

chamber. It allows to measure periodically current-voltage characteristics and 
photoluminescence spectra, under various environmental conditions. The degradation 
of five samples is investigated in this work, they were all subjected to a damp heat test: 
85 % relative humidity, 65 °C and dark. These conditions correspond to one of the 
standards proposed to the perovskite research community [33], mentioned in Section 
1.3.2. 

 The solar cells were fabricated with slightly different HTLs and ETLs, as 
reported in Table 2-3. Notably TiO2 and SnO2 ETLs have been considered, and PTAA 
and Spiro-MeOTAD HTLs. Only three of the four possible configurations were 
available, but these results can provide insights on the stability of potential substitutes 
to TiO2 and Spiro-MeOTAD, as their poor stability has been mentioned in Section 1.3.1. 
The JV characteristics before degradation of these devices are reported in Appendix B, 
Figure B2. 

Importantly, the illumination source employed for the PL and light-JV 
measurements is the same, a laser with a 660 nm wavelength. This allowed to minimize 
the time necessary for the measurements, by avoiding waiting for the stabilization of 
a AM1.5g illumination source. As a result, the device remained as much as possible 
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under the dark aging conditions. This atypical illumination source for JV 
measurements is the reason for very high Jsc in three cases. Importantly, it has been 
taken into account when performing simulations, as mentioned in Section 2.1. Finally, 
the associated results will be investigated in Section 4.5.2. 

Table 2-3. Characteristics of the devices aged under constant conditions in a climatic chamber and periodically 
characterized through JV and PL measurements. 

Description Structure Name 
Name in 
manuscript 

Aging 
conditions 

Measurement 
conditions 

IPVF baseline 
with TiO2 ETL 
and PTAA HTL. 

Glass / FTO / 
TiO2 / 
Cs0.05(MA0.17FA0.

83)0.95Pb(Br0.17I0.83)
3 / PTAA / Gold 

JC18-02 
JC18-13 1 
JC18-13 2 

JV-PL-1 
JV-PL-2 
JV-PL-3 

85 % R.H. 
65 °C. 
Dark. 

Measurements every 
20 min. 
Illumination 
through 200 mW 
laser @ 660 nm. 
Scan up to Voc. 

IPVF baseline 
with SnO2 ETL 
and PTAA HTL. 

Glass / FTO / 
SnO2 / 
Cs0.05(MA0.17FA0.

83)0.95Pb(Br0.17I0.83)
3 / PTAA / Gold 

MP118-2 JV-PL-4 

Measurements every 
20 min. 
Illumination 
through 50 mW laser 
@ 660 nm. 
Scan up to 1.2 V. 

IPVF baseline 
with TiO2 ETL 
and Spiro-
MeOTAD HTL. 

Glass / FTO / 
TiO2 / 
Cs0.05(MA0.17FA0.

83)0.95Pb(Br0.17I0.83)
3 / Spiro-
MeOTAD / 
Gold 

SG-11 JV-PL-5 

Measurements every 
20 min. 
Illumination 
through 50 mW laser 
@ 660 nm. 
Scan up to 1.2 V. 

 
These two sets of aging studies performed at IPVF are accompanied with a 

comprehensive knowledge on the device characteristics, for instance on the layer 
thicknesses. Moreover, the full JV characteristics (under AM1.5g or laser illumination) 
and PL spectra are available, making possible to extract all optoelectrical parameters 
mentioned in Sections 2.2 and 2.3. This provides a more favorable context compared 
to using experimental data extracted from literature and allows to perform more 
confidently and precisely the analyses reported in this work. In fact, the interactions 
with the fabrication and characterization teams were crucial to properly perform these 
analyses. 
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2.5 Pre-treatment of experimental results 
Experimental data recorded at IPVF were obtained in the form of JV 

characteristics and PL spectra, and optoelectrical parameters were extracted as 
explained in Sections 2.3 and 2.4. 

In facts, thousands of points are available because measurements were 
performed every 15 to 20 minutes during several hundreds of hours. When plotting 
their evolution along time, it appears that measurement noise is present, and some 
points are clear outliers. They are suspected to be caused by variations of 
environmental conditions (light pollution for instance) or noise due to the 
experimental setup or interferences with other setups. A pre-treatment procedure has 
therefore been developed and is summarized in Table 2-4 for JV parameters. 

The first step has to be very carefully tuned, because it directly modifies the JV 
characteristics. It is crucial not to modify them, as it would “flatten” them and modify 
the slopes at SC and OC. The associated voltage window is therefore kept very low. 
Unfortunately, it has been necessary to introduce this step to overcome some obvious 
noise occurred during the measurement of given JV characteristics. 

The second step aims at removing full JV characteristics from the dataset and 
avoid their perturbation of the smoothing step afterwards. It simply works by defining 
thresholds for quantities that are extracted at each JV characteristics. For instance, the 
too low FF or ratio of slopes at SC and OC allow to remove curves that appear shunted. 
Importantly, the time derivative is computed for each optoelectrical parameter and 
compared to its respective median value over the full aging experiment. Too strong 
variations are identified when the value is too far from the median by a certain number 
of times the standard deviation. 

Lastly, a moving median filtering is applied along time at each voltage. Here the 
median has the advantage to be less impacted by outliers than the mean value. This 
finally allows to keep working with a set of full JV characteristics, not only the 
extracted optoelectrical parameters. 

Table 2-4. Summary of the steps employed to remove noise and outliers from JV parameters along time. Values 
of the associated parameters and thresholds are slightly adjusted for each device, an example is exposed in Table 2-
5. 

Task Comments 

Smooth JV characteristics along 
voltage 

Savitzky-Golay filter: a quadratic polynomial is fitted over 
each voltage window. 

Remove outliers 

Identifiers: 
Too low Voc or FF value. 
Too low  slope at SC / slope at OC ratio. 
Too high time derivative. 

Smooth JV characteristics along time 
Moving median filter: the median is retained over each time 
window. 
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When performing such pre-processing, it is absolutely crucial to remain true to 
the original data and avoid creating fake trends for instance. Therefore, the 
optoelectrical parameters are extracted from the JV characteristics after each step and 
plotted together over time. This allows to ensure the validity of the finally obtained 
smoothed data. 

Table 2-5. Pre-processing parameters employed for JV measurements of device JV-1.1. 

Parameter Value 

Voltage smoothing window (V) 0.3 

Voc min (V) 0.2 

FF min (%) 30 

Rsh/Rs min ratio 5 

JV time derivative relative max 3 

JV time smoothing window (h) 30 

 

  

  
Figure 2-11. Degradation over time of device JV-1.1 for reverse measurements. The parameters are extracted from 
the JV characteristics at each step of the pre-treatment. Bottom right shows an example of JV characteristic, at 190 
h of aging. Other optoelectrical parameters are displayed in Appendix B, Figure B3. 
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The conformity of the processed data for device JV-1.1 is illustrated in Figure 2-
11, where the purple points (“Smoothed along time”) remain close to the “Raw” data. 
The parameter values for the pre-processing steps employed in this example are 
summarized in Table 2-5.  

It is to note that the Voc and FF thresholds were not employed here, and most of 
the outliers were identified through the time derivative, as a result 743 out of 1958 
recorded JV characteristics were discarded. 

Furthermore, the slope at SC shows a very significant noise but even Voc, Jsc and 
FF have noise that needs to be filtered out. This example illustrates how the procedure 
allows to extract a true trend. Here the JV characteristic recorded after 190 h of aging 
also illustrates the conformity of the treated data to the original measurement. 

Results for device JV-3.1 in Figure 2-12 show similar features, however, the slope 
at OC is here noisier. One could also argue that the values after the voltage smoothing 
step are slightly higher than the raw data and could attribute this to too strong 
smoothing. However, the associated example of JV characteristic shows that it 
remained very close. This points out a strength of this procedure, as it makes the 
extraction of the slopes more reliable. 

  
Figure 2-12. Degradation over time of device JV-3.1 for forward measurements. Slope at OC is extracted from the 
JV characteristics at each step of the pre-treatment. Right show an example of JV characteristic, at 850 h of aging. 
. Other optoelectrical parameters are displayed in Appendix B, Figure B4. 

When photoluminescence spectra were simultaneously recorded with JV 
characteristics, a similar procedure was employed, with a first smoothing step along 
photon energy. The device JV-PL-1 is illustrated as an example, with associated 
parameters in Table 2-6. Only a prior step, to remove the setup dark signal, and 
account for its bandwidth was necessary. In fact, not all photon energies are received 
with the same efficiency (because of the spectrometer and the optics) and calibration 
of data is necessary. 

Results for device JV-PL-1 are exposed in Figure 2-13. In this example, 213 JV 
characteristics and 50 PL spectra were identified as outliers, out of 768 measurements. 
In fact, the solar cell might have stopped functioning at approx. 275 h: Voc and FF 
instantaneously drop to 0.2 V and less than 25 % respectively. The following points are 
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discarded. This could be associated to the solar cell to become shunted. Notably, such 
almost instantaneous variation cannot be easily analyzed through the methods 
developed here because it is not sufficiently resolved  in time. However, the previous 
long term decrease of Voc and FF is a good example of degradation trend that will be 
investigated further. 

Table 2-6. Pre-processing parameters employed for JV and PL measurements of device JV-PL-1. 

Parameter Value 

Voltage smoothing window (V) 0.3 

Voc min (V) 0.2 

FF min (%) 30 

Rsh/Rs min ratio 5 

JV time derivative relative max 3.5 

JV time smoothing window (h) 20 

Photon energy smoothing window (eV) 0.05 

PL time derivative relative max 3 

PL time smoothing window (h) 20 

 
It is to note that the value of the slope on low energy side appears strongly shifted 

by the procedure on Figure 2-13. However, the PL spectrum recorded after 62 h of 
aging shows that the slope extraction on the raw spectrum is strongly inaccurate.  

Importantly, the improved reliability after smoothing is also illustrated on the JV 
characteristic. Here, obvious un-physical variations of current occur between 0.2 and 
0.4 V. Here, the smoothing along voltage removed part of the noise, and the smoothing 
along time allowed to obtain the realistic slope. In fact, such artefact does not remain 
on consecutive measurements, making the time smoothing at each voltage 
appropriate. 

The examples reported in this section illustrate that a pre-processing step is 
necessary, not only to facilitate the interpretation, but also to improve the reliability of 
the extracted optoelectrical parameters. Furthermore, the procedure is not applied to 
the parameters, but to full JV characteristics and PL spectra. Therefore, the curves 
associated to the smoothed parameters are still available, allowing to keep taking 
advantage of the full measurements in the following analysis steps. 

Importantly, various physical processes can perturb the results over such long 
lasting aging studies. Experimental setups are natural sources of noise and errors can 
occur when acquiring JV characteristics or PL spectra. Also the environment, 
controlled or not, can be perturbed. Therefore, it has been necessary to develop this 
pre-processing strategy to facilitate interpretation of simulation results. Results 
obtained aim at accounting for these effects and removing them. A third of the 
available data points were removed in some cases, but displaying data as done is this 
section allows to ensure that no information is lost. In fact, such procedures could be 
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useful outside degradation studies, by identifying acquisition errors in a broader 
context. However, it has to be kept in mind that a common pitfall at such step is to 
create arbitrary trends, losing the physical meaning of the measurements.  

  

  

  
Figure 2-13. Degradation over time of device JV-PL-1 (reverse JV measurements). The parameters are extracted 
from the JV characteristics and PL spectra at each step of the pre-treatment. Example of JV characteristic and PL 
spectrum were measured at 62 h of aging. Other optoelectrical parameters are displayed in Appendix B, Figure 
B5. 
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Chapter conclusion 
This works aims at providing insights on experimental degradation 

measurements of perovskite solar cells, through modeling. In this section, both 
simulation (models and numerical solvers) and experimental (measurements of 
degradation) tools have been exposed. 

First, a coupling scheme of optical and electrical simulations has been employed 
to reproduce experimental optoelectrical performances of perovskite solar cells. 

Importantly, the transfer matrix method is used to fully describe the optical 
behavior of the solar cell. It provides the spectral absorption rate along depth, total 
absorptivity and charge carriers generation rate. The latter is then used by the drift 
diffusion block, to obtain a full description of the charge carrier densities, 
recombination and currents. 

As a result, current voltage characteristics and photoluminescence spectra are 
simulated. Both provide complementary insights on the optoelectrical performances 
of a solar cell, by probing different regimes. The current voltage characteristic is 
directly related to the maximum power point and output power when the 
photoluminescence spectrum provides insights on the material quality through carrier 
densities and associated radiative recombination. It has been also shown how the sub-
bandgap optical behavior is considered in this work. 

Moreover, these modeling tools have been used to analyze various experimental 
measurements. Aging studies with periodical measurements of JV characteristics and 
PL spectra have been investigated, through the evolution of associated optoelectrical 
parameters over time and along degradation. Notably, these experimental results are 
widely reported, although often to merely demonstrate the stability of a given sample 
(at least for JV characteristics). 

First, periodical measurements published in literature have been investigated. It 
demonstrated the capabilities of the methods developed in this work. This also 
supports the idea that sharing data between research groups can allow to take more 
advantage of given experimental results. Initiatives have been proposed to construct 
global open-access databases with uniformed reporting of various device results [34]. 
Furthermore, experiments performed at IPVF were also employed. In this case, very 
useful complementary information on the nature of the perovskite samples and aging 
conditions was available. Therefore, aging experiments employing only JV or coupled 
JV and PL tracking were analyzed. 

Importantly, a pre-processing procedure has been developed to remove noise 
and outliers from experimental measurements. It has been finely tuned to retain the 
physical meaning of the data, without creating arbitrary trends. 

Finally, these coupled modeling and experimental approaches will permit 
comparisons between each other because both can subject the solar cells to the same 
conditions and characterize the same working points. These comparisons will be the 
core of the work presented further, associated to selections of simulation inputs in 
Chapter 3, or distinctions of degradation mechanisms in Chapter 4. 
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Chapter introduction 
It has been exposed in the previous chapters how drift diffusion simulations are 

employed here, and how they can help to investigate degradation mechanisms of 
perovskite solar cells. A crucial aspect is the significant number of necessary input 
parameters, along with the uncertainty around the value of some of them. 

Therefore, the nature of the inputs needing to be statistically considered because 
of their importance and their variability are exposed in Section 3.1. 

The method employed to explore the associated highly dimensional space is 
defined in Section 3.2. 

Next, in Section 3.3, distributions of inputs parameters obtained with this genetic 
algorithm for exemplary samples are reported, already allowing to discuss the 
characteristics of these solar cells. 

Finally, the results of the genetic algorithms are employed as a basis to simulate 
the impact of given degradation mechanisms. The statistics of the responses are 
discussed in Section 3.4. 

 
 
 
 
 

 

Chapter key points: 

 Drift diffusion simulations require numerous input parameters. Some 
values are not confidently known for a given sample. 

 An input parameters space of dimension 13 has been defined, with up 
to 4e15 potential configurations to explore. 

 A genetic algorithm (based on randomized generation, mutation and 
selection of simulation inputs) has been developed to reproduce closely 
the optoelectrical performances of any given solar cell with approx. 100 
inputs configurations. 

 Three configurations have been employed to select the proper inputs: 
only Voc, Jsc and FF were available from literature data, slopes at SC 
and OC were added for IPVF devices, and peak position and slope on 
low energy side when PL spectra were recorded. 

 Unitary degradation mechanisms are considered by simulating the 
response to a variation of a given material parameters. 

 Statistics of the responses among all sets reproducing a given sample 
performances are determined for further use in the next chapter. 
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3.1 A highly multidimensional space to explore 
In this work, optoelectrical performances of perovskite solar cells are simulated 

by drift-diffusion, coupled with transfer matrix optical simulations. Details of the 
modeling methods are available in Section 2.1. 

The solar cells are simulated as a stack of hole transport layer (HTL) / perovskite 
/ electron transport layer (ETL) and for each layer, numerous parameters are necessary, 
listed in Table 3-1. Importantly, they are divided into several categories, depending on 
their importance and the reliability of available values. 

First, some parameters are directly determined by the experimental conditions, 
or the device fabrication: for instance, illumination intensity, or layer thickness. They 
are “fixed for each experiment” in Table 3-1. 

Other parameters are considered to be reliably available in literature or through 
measurements. They do not vary significantly between fabrication techniques or from 
one sample to the other. For instance, bandgap, electron affinity and density of states 
are core characteristics of a material, and are assumed not to change, unless the nature 
of the material is strictly different. They are “fixed for each material” in Table 3-1. 

In some cases, their role is sufficiently minor that fixed values from literature can 
be employed without impacting too significantly the output. For instance, minority 
carrier mobilities in transport layers or carriers capture cross sections at defects (under 
steady state only the product with defect density will impact recombination). Deep 
defects are considered to be located at mid perovskite bandgap, where their role as 
SRH recombination centers is the strongest. They are fixed to given values in Table 3-
1. In this category, no doping in the perovskite have been considered, although some 
unintentional doping has been reported in literature. Its level and impact on charge 
carriers’ behavior is still not clear, it has therefore been avoided, but could be 
considered in further studies. 

Importantly several parameters are assumed to be variable from one sample to 
the other. For instance, carrier mobilities and defect densities can vary significantly 
even within a single fabrication batch. This is a main cause for the variability of the 
optoelectrical performances of perovskite solar cells (even with same fabrication 
scheme), as mentioned in Section 1.2. Finally, parameters such as doping level of 
extracting layers also vary between experiments because extrinsic doping can be tuned 
on purpose for optimization. However, the actual value of acceptor or donor densities 
are not always available or known. 
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Table 3-1. List of all 50 simulation parameters necessary to perform a drift-diffusion - transfer matrix simulation 
of a perovskite solar cell. Parameters are divided into several categories, depending on their importance and the 
reliability of available values. 

Simulation parameter Fixed / Variable 

Illumination intensity Fixed for each experiment 

Temperature Fixed for each experiment 

External Rs Variable 

External Rsh Variable 

Optical filter average transmission Fixed for each device 

Hole transporting 
material 

Thickness Fixed for each device 

Refractive indices Fixed for each material 

Bandgap Fixed for each material 

Electron affinity Fixed for each material 

Relative permittivity Fixed for each material 

Conduction band effective density of states Fixed for each material 

Valence band effective density of states Fixed for each material 

Electron mobility Fixed for each material 

Hole mobility Variable 

Donor density Fixed to 0 cm-3 

Acceptor density Variable 

HTL / pvk 
interface 

Defect density Variable 

Electron and holes capture cross section Fixed to 10-15 cm2 

Defects energy distribution Fixed to mid pvk gap 

Perovskite 

Thickness Fixed for each device 

Refractive indices Fixed for each material 

Bandgap Fixed for each material 

Electron affinity Fixed for each material 

Relative permittivity Fixed for each material 

Conduction band effective density of states Fixed for each material 

Valence band effective density of states Fixed for each material 

Electron mobility Variable 

Hole mobility Variable 

Donor density Fixed to 0 cm-3 

Acceptor density Fixed to 0 cm-3 

Deep defects density Variable 
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Shallow defects density Variable 

Electron and holes capture cross section Fixed to 10-15 cm2 

Deep defects energy distribution Fixed to mid gap 

Shallow defects energy distribution Variable 

Optical capture cross section Fixed to 10-15 cm2 

ETL / pvk interface 

Defect density Variable 

Electron and holes capture cross section Fixed to 10-15 cm2 

Defects energy distribution Fixed to mid pvk gap 

Electron 
transporting 
material 

Thickness Fixed for each device 

Refractive indices Fixed for each material 

Bandgap Fixed for each material 

Electron affinity Fixed for each material 

Relative permittivity Fixed for each material 

Conduction band effective density of states Fixed for each material 

Valence band effective density of states Fixed for each material 

Electron mobility Variable 

Hole mobility Fixed for each material 

Donor density Variable 

Acceptor density Fixed to 0 cm-3 

 
It is crucial to be able to account for these variabilities when modelling the 

performances of perovskite solar cells. Therefore, ranges of possible values are defined 
and explored, they are summarized in Table 3-2 for an exemplary device. These ranges 
are defined to cover realistic values for each family of semiconductor material, 
according to typical values found in literature. Furthermore, they are discretized to 
avoid considering too close values and to be able to store simulation results in a 
database. The discretization is done in logarithmic scale, as the parameters can vary 
over several orders of magnitude, and they often play a role on outputs in logarithmic 
scale. This also justifies considering logarithmic scales in statistical analyses in Chapter 
5. Note that shallow defects energy distribution is defined in linear scale because of 
smaller range of variation and its almost direct impact on the PL emission spectrum 
slope at low energy side. In fact, both parameters related to shallow defects are very 
finely discretized, because they alone define the shape of emitted spectrum. In general, 
the refinement of the discretization has been adapted depending on gathered 
knowledge on the impact of the parameters. 
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Table 3-2. Example of discretization of the possible values for the parameters considered to be variable between 
experiments. The total number of configurations adds up to 4e15. JV-PL-1 device is considered, constituted of 
PTAA / Cs0.05(MA0.17FA0.83)0.95Pb(Br0.17I0.83)3 / TiO2. 

Simulation parameter Minimum value Maximum value 
Number of 
possible values 

External Rs 0.5 Ohm.cm2 15 Ohm.cm2 29 

External Rsh 100 Ohm.cm2 5000 Ohm.cm2 34 

Hole transporting 
material 

Hole mobility 0.001 cm2.V-1.s-1 0.5 cm2.V-1.s-1 14 

Acceptor density 2e16 cm-3 2e18 cm-3 10 

HTL / pvk interface Defect density 1e13 cm-2 1e20 cm-2 36 

Perovskite 

Electron mobility 0.05 cm2.V-1.s-1 50 cm2.V-1.s-1 30 

Hole mobility 0.05 cm2.V-1.s-1 50 cm2.V-1.s-1 30 

Deep defects density 1e13 cm-3 1e17 cm-3 41 

Shallow defects 
density 

1e18 cm-3 8e18 cm-3 10 

Shallow defects 
energy distribution 

20 meV 28 meV 17 

ETL / pvk interface Defect density 1e13 cm-2 1e20 cm-2 36 

Electron transporting 
material 

Electron mobility 0.5 cm2.V-1.s-1 50 cm2.V-1.s-1 10 

Donor density 1e17 cm-3 1e19 cm-3 11 

 
This discretization also allows to quantify the size of the space to explore by 

computing all possible parameters combinations. As a result, the total number of 
potential configurations to simulate adds up to approx. 1015, in a space of dimension 
13. Considering all of them would not be possible, it is therefore crucial to develop a 
procedure to find the suitable parameters combinations necessary to analyze the 
degradation of a given solar cell. 
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3.2 Exploration of the space with a genetic algorithm 
In order to analyze the degradation of a given perovskite solar cell, it is necessary 

to adjust the simulation parameters as close as possible to their actual value. The 
characterizations of the solar cell performances, current voltage (JV) characteristics 
and photoluminescence (PL) spectra, are therefore used as indicators of the validity of 
a set of simulation parameters. In fact, the more characterization techniques are 
employed the more constrained is the exploration of the simulation space. 

In the work presented here, three case were employed. First, experimental results 
extracted from literature (details in Section 2.4.1) were analyzed, in this case, only three 
JV parameters (under illumination) were available: Voc, Jsc and FF. That means that 
the validity of the simulations performed was evaluated on the values of these three 
parameters only. Second, ageing experiments performed at IPVF through periodical 
JV measurements under illumination were obtained. Here the full JV characteristics 
were available, the exploration could be more constrained by adding the slopes at open 
circuit (OC) and short circuit (SC) to the constraints of the problem. Finally, aging 
experiments with periodical measurements of JV curves under (laser) illumination and 
PL spectra were also performed at IPVF. Details on experimental measurements are 
available in Section 2.4.2. This supplementary data allowed to constraint further the 
input parameters by also considering the position of the peak, its slopes and the half 
width at half maximum. 

Although up to eight optoelectrical parameters were available to evaluate the 
validity of simulations, the number of parameters sets to explore adds up to 4e15. It 
has been therefore necessary to develop an automated procedure to find suitable sets, 
in the form of a genetic algorithm. 

First, a randomized generation step creates input sets with a log-uniform 
distribution in the ranges defined in Table 3-2. At this step, typically 2000 sets are 
generated. 

Second, a selection step based on the available optoelectrical parameters is 
employed. It is simply defined by relative error thresholds to the experimental value, 
for each output. Inputs sets that correspond to results within boundaries for all 
optoelectrical parameters are selected. 

The selected sets are then mutated: the parameters are multiplied by coefficient, 
randomly picked within given boundaries. Here again, a log-uniform distribution is 
used. 

In total, three series of selection and mutation steps are employed one after the 
other, plus a final selection step. This allows to finally obtain, several tens of input sets, 
all reproducing the experimental optoelectrical parameters with typically less than 2 
% relative error. Importantly, thresholds for the maximum authorized relative error 
(at selection steps) have to be adjusted for each experimental device. If too few sets are 
selected at a given step, the mutated sets at the next step might be too close from each 
other, as they would all stem from too few “parents”. On the contrary, if the selection 
thresholds are too broad, convergence towards the experimental value is too low. In 
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fact, the maximum mutation ratio can also be tuned to counterbalance these effects: 
when few sets are selected, wider mutation are authorized, and inversely. 

The values of the parameters associated to the genetic algorithm (size of the 
generated sets, selection thresholds, mutation bounds) are presented in Table 3-3, for 
two examples. Due to PL parameters, the second example has more constraints, it has 
therefore been necessary to start from a bigger generated set at the first step, and the 
selection steps are slightly broader. 

Table 3-3. Parameters for the genetic algorithm and example of values for the analysis of two devices. 

Step Genetic algorithm parameter Device JV1.1 Device JV-PL-5 

Generation Number of sets 2000 4000 

Selection 1 

Voc / Jsc / FF maximum relative error (%) 10 10 

Slope at OC / SC maximum relative error (%) 15 40 

Emax maximum relative error (%)  7.5 

Low side slope / half width at half max maximum 
relative error (%) 

 30 

Mutation 1 
Number of sets 1000 2000 

Maximum mutation ratio 2 2 

Selection 2 

Voc / Jsc / FF maximum relative error (%) 5 5 

Slope at OC / SC maximum relative error (%) 10 20 

Emax maximum relative error (%)  5 

Low side slope / half width at half max maximum 
relative error (%) 

 20 

Mutation 2 
Number of sets 1000 1000 

Maximum mutation ratio 1.5 1.5 

Selection 3 

Voc / Jsc / FF maximum relative error (%) 2.5 2.5 

Slope at OC / SC maximum relative error (%) 6 20 

Emax maximum relative error (%)  2.5 

Low side slope / half width at half max maximum 
relative error (%) 

 17.5 

Mutation 3 
Number of sets 750 1000 

Maximum mutation ratio 1.25 1.25 

Selection 4 

Voc / Jsc / FF maximum relative error (%) 2 2 

Slope at OC / SC maximum relative error (%) 5 / 7.5 20 

Emax maximum relative error (%)  2 

Low side slope / half width at half max maximum 
relative error (%) 

 20 
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3.3 Reproduction of a solar cell performances through 
simulations 

The genetic algorithm exposed in previous section is applied here. Results 
obtained with experimental measurements performed at IPVF, either only through JV 
characterization or both JV and PL are reported in this section. 

Notably, experimental characterization of the fresh solar cells is considered. In 
fact, the genetic algorithm is employed to reproduce the starting point of degradation, 
and the results of the last selection step will be used in a further process to simulate 
degradation mechanisms. 

3.3.1 Distributions of optoelectrical parameters and experimental values 
Results at each step of the genetic algorithm are presented in Figure 3-1 for the 

initial characterization of the sample JV-1.1. Noticeably, the initial generation step 
shows a very broad range of shapes for the JV characteristics. This is expected, because 
the log-uniform  distribution employed to generate the inputs aims at exploring 
uniformly the whole parameters space. In a sense, these characteristics represent the 
range experimental devices that can be analyzed with this method (for a specific set of 
fixed parameters). 

Generation Selection 1 Mutation 1 Selection 2 

Mutation 2 Selection 3 Mutation 3 Selection 4 

Figure 3-1. JV characteristics generated and selected at each step of the genetic algorithm for the device JV-1.1. 
Dotted line shows the experimental JV characteristic.  

Furthermore, the need of multiple mutation and selection steps is illustrated by 
the low number of sets obtained at the first selection steps: only 46, within a wide range 
of 10 % error around the experimental value. However, step after step the selection 
thresholds narrow down and the size of the selected population rises. This is also 
visible in Figure 3-2, where generated and mutated populations show closer 
distributions to the experimental results along  execution of the algorithm. 
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Figure 3-2. Distribution of optoelectrical parameters at each generation and mutation step of the genetic algorithm 
for the device JV-1.1. 

Generation Selection 1 Mutation 1 Selection 2 

Mutation 2 Selection 3 Mutation 3 Selection 4 

Figure 3-3. JV characteristics and PL spectra generated and selected at each step of the genetic algorithm for the 
device JV-PL-5. Dotted lines show the experimental JV characteristic and PL spectrum. 
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When photoluminescence spectra are available, the procedure remains similar, 
and Figure 3-3 shows the results at each step of the genetic algorithm for device JV-
PL-5. Here again, the initial generation step provides widely spread results. In terms 
of PL spectra, it is to note that only the low side of the spectrum significantly varies. 
The shallow defect density and their energetic distribution across the bandgap are the 
two parameters that strongly impact the spectrum. 

In fact, the total emission also varies importantly, depending for instance on 
recombination regimes and defect densities. However, it is not considered here (PL 
spectra are normalized to their maximum) because no experimental value can be 
compared, as the experimental setup was not absolutely calibrated. Therefore, only 
relative evolutions will be considered for the total photoluminescence emissions. 

The distributions of optoelectrical parameters extracted from the JV 
characteristics and PL spectra of Figure 3-3 are displayed in Figure 3-4. Although the 
distributions narrow down around the experimental values, they remain wider than 
in the previous case, with only experimental JV parameters. This is because the 
supplementary constraints from PL parameters complicate the exploration of the 
parameters space. However, 105 sets are still finally selected with the acceptable 
threshold of 2 % error for the Voc, Jsc, FF and Emax and 20 % for the JV and PL slopes. 

   

 

  

Figure 3-4. Distribution of optoelectrical parameters at each generation and mutation step of the genetic algorithm 
for the device JV-PL-5.  

Importantly, the genetic algorithm developed here has been applied to the initial 
performances of all various devices considered in this work, because the selected input 
parameters provide the basis for the simulation of degradation exposed further. 
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In the case of experimental measurements reported in literature, only three 
optoelectrical parameters were available, and employed to select the appropriate 
simulation parameters. Associated results at the last selection step are displayed in 
Appendix C, Figure C1. Moreover, results for each device characterized at IPVF 
through JV measurements are also exposed in Appendix C, Figure C2, and Figure C3 
– C4 for coupled JV and PL measurements. 

Finally, it is demonstrated that approx. 100 sets could be obtained at the last 
selection step for each device. All the associated input sets reproduce closely the 
experimental performances of the solar cells. This number has been found to be an 
optimum balance between to low statistics among closer sets, or too many sets that 
would be less relevant and slow down the next simulation steps. 

Even if exploration of the parameter space can’t be exhaustive (only around the 
uniformly generated points at step 1), the numerous values for the material parameters 
constitute a strength of the probabilistic approach employed here. It makes possible to 
simulate the performances of a perovskite solar cell, even if numerous material 
characteristics are not known. More importantly, it provides distributions of probable 
values for these material parameters. 

3.3.2 Distributions of material parameters 
The distributions of material parameters obtained at the final selection step do 

not only constitute the basis for further simulations of degradation mechanisms, but 
they also provide interesting insights on the device and material characteristics. 

For instance, they are reported for device JV-1.1 in Figure 3-5. This device, like 
others characterized only with JV measurements, was fabricated in a nip structure, 
with TiO2 ETL, Cs0.05(MA0.17FA0.83)0.95Pb(Br0.17I0.83)3 perovskite and PTAA HTL. 

The difference between the primarily log-uniform distribution at the generation 
step and the final selection informs on the importance of the material parameters to 
define the optoelectrical outputs. For instance, the carrier mobilities in the transport 
layers for device JV-1.1 are still widespread, indicating that they do not play a 
significant role (or at least are not limiting factors for the performances) in this case. 
Notably, it is not the case for all devices, for instance more specific values were 
obtained for device JV-4.2 in Appendix C, Figure C5. 

On the contrary, the defect densities show thinner distributions. Here high defect 
densities in the perovskite layer (approx. 1016 cm-3) and rather high carrier mobilities 
(between 1 and 10 cm2.V-1.s-1) were obtained, indicating that the experimental JV 
characteristic could be explained by a perovskite material having a high defect density 
counterbalanced by high carrier mobilities. 

It is to note that some distributions show two distinctive peaks, such as the defect 
density at ETL – perovskite interface and the ETL donor density. This probably 
indicates that the electron extraction is either limited at the interface or in the ETL, and 
the experimental data available here cannot help to discriminate. 

Notably, selected distribution of interface defect densities of device JV-4.2 
(Appendix C, Figure C5) are centered around lower values (approx. 1016 cm-2) than 
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device JV-1.1, but carrier mobilities in the perovskite layer could also be lower (down 
to approx. 10-1 cm2.V-1.s-1 for electron mobility). These differences are crucial aspect that 
will define the responses to degradation mechanisms. One can expect the 
performances of these devices to evolve differently to the same mechanism, 
emphasizing the need to accurately investigate the initial characteristics of each solar 
cell. 

   

  

 

Figure 3-5. Frequency distribution of material parameters in the initial generation and after the final selection 
step of the genetic algorithm for the device JV-1.1. The number of counts per bin in the histogram is normalized 
by the total number of sets. 

For device JV-PL-5, supplementary experimental optoelectrical parameters were 
available to obtain the distributions in Figure 3-6: its photoluminescence spectrum. As 
a result, the constraints to select appropriate input parameters are stricter, and less flat 
distributions were obtained at the final selection step (see also distributions for device 
JV-PL-3 in Appendix C, Figure C6). 

Notably, shallow defect densities and distribution are the main parameters 
responsible for the shape of the PL spectrum on the low energy side. Their 
distributions are therefore finely defined. 

Here, hole mobility in the perovskite layer and HTL as well as defects at the HTL-
perovskite interface are strikingly all of bad quality. In fact, this is consistent with the 
device JV characteristic in Figure 3-3, which shows very low Voc and FF. This shows 
that the method exposed here can already help to discriminate the aspects that need to 
be further optimized in a solar cell. 

Both JV-PL-5 and JV-PL-3 were fabricated with TiO2 ETL, however, the HTL 
materials employed were respectively Spiro-MeOTAD and PTAA. Notably, 
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parameters distributions obtained for JV-PL-3 indicate lower doping level, but higher 
hole mobility in the HTL. Only two examples do not provide sufficient statistics to 
properly compare these materials in general. However, these results show again that 
the method developed here could support  perovskite solar cells development, by 
allowing to compare material properties usually difficult to access.  

   

   
Figure 3-6. Frequency distribution of material parameters in the initial generation and after the final selection 
step of the genetic algorithm for the device JV-PL-5. The number of counts per bin in the histogram is normalized 
by the total number of sets. 

Finally, the results obtained here can serve a double purpose. First this 
demonstrates that statistics-based approaches can help to estimate material properties 
within the solar cell stack. When applied to more exhaustive studies with larger 
sample statistics, distributions of material parameters such as defect densities could 
allow to more precisely discriminate materials and fabrication techniques that need to 
be further developed on, or that are responsible for better solar cell performances. 

Combining several characterization techniques (here JV and PL) has been 
showed to improve the reliability of the results by adding more constraints on the 
input parameters space exploration. Moreover, other techniques easily reproduced by 
drift diffusion simulation could also be added. For instance, capacitance spectroscopy 
would be expected to provide more reliable results on interface behavior. 

The unwell determined distributions of parameters (flat or with several peaks) 
are also part of the robustness of the method. All these undiscriminated possibilities 
will be accounted for when computing responses to degradation mechanisms, without 
needing to do assumptions on given values, that would not be possible to verify. 
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3.4 Simulated degradation of selected sets 
It has been exposed in Section 2.4 that the experimental data investigated in this 

work are constituted of periodic characterization of the solar cell along aging time. 
They allow to consider the temporal evolution of parameters such as Voc or total PL 
emission. 

In order to investigate these measurements, several mechanisms are considered 
and their impact on optoelectrical performances simulated. Similarly to the 
experiment, multiple simulations are performed along the progress of the 
mechanisms. This also allows to track the evolution of the same optoelectrical 
parameters. 

Importantly, the precise nature of the mechanisms and the methods to investigate 
the experimental results through these simulations will be exposed in  a next chapter. 
Here, only the statistical aspects of the simulation results are treated. 

In order to simulate through drift diffusion the response of a given solar cell to a 
degradation mechanism, the inputs sets selected by the genetic algorithm are 
employed. An example is displayed in Figure 3-7 for device JV-PL-5: the formation of 
defects in the perovskite layer is considered, and the response of the 105 selected sets 
is simulated.  

   

   
Figure 3-7. Simulated response to an increase of defect density in the perovskite layer. The 105 inputs sets 
reproducing the initial performances of JV-PL-5 are subjected to the same mechanism and represented with dotted 
lines and crosses. Average and 95 % confidence intervals are calculated at each degradation step. 

Importantly, each of the input set has a different initial defect density, due to the 
statistical approach employed here. These different initial values represent however 
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the same state for the solar cell. Therefore, the relative variation of defect density to 
the starting point is considered for each selected set. 

As a result, it is possible to compute the average response along the relative 
increase of defect density, among the 105 simulated responses. It is displayed as the 
plain red line in Figure 3-7. Moreover, the standard deviation is employed to compute 
the 95 % confidence interval. Importantly, it appears that all responses follow the same 
trend along the increase of defect density, justifying calculating the average response. 

Another example of degradation mechanism is considered in Figure 3-8: a 
decrease of electron mobility in the perovskite layer. Again, most of the responses 
follow the same trend, which is well reproduced by the average response. This 
illustrates the importance of having a sufficiently large number of sets selected 
through the genetic algorithm. Some selected sets can respond with distinct trends and 
here they can be considered as outliers because a vast majority of selected sets 
responds similarly. 

   

   
Figure 3-8. Simulated response to a decrease of the electron mobility in the perovskite. The 105 inputs sets 
reproducing the initial performances of JV-PL-5 are subjected to the same mechanism and represented with dotted 
lines and crosses. Average and 95 % confidence intervals are calculated at each degradation step. 

These examples show how input parameters sets selected through the genetic 
algorithm can be employed to investigate degradation of perovskite solar cells. 
Importantly, their similar responses to degradation mechanisms are consistent with 
the hypothesis that they all reproduce the optoelectrical performances of a given 
perovskite solar cell. 

Finally, the average response and associated confidence interval will be the 
simulation outputs employed to analyze the experimentally recorded degradation. 
The associated method will be exposed in Chapter 4. 
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Chapter conclusion 
From the elements exposed in Chapters 1 and 2, it appears that the simulation 

methods employed here (drift diffusion and transfer matrices) implies the need to 
define numerous material parameters. Moreover, it is possible to reliably assess the 
value of some of them, such as the materials bandgap and electron affinity or the 
thickness of the layers. However, some are not easily measured, or can vary a lot from 
sample to sample within the same fabrication batch. 

It is therefore necessary to define possible ranges for the value of these 
parameters. This defines a high dimensional space, and it has been quantified and 
discretized here to have a dimension of 13 and contain approx. 1015 elements. 

Therefore, a genetic algorithm has been designed and employed to explore this 
space with a randomized approach. By combining several generation, selection and 
mutation steps, numerous sets of inputs parameters that reproduce the experimental 
performances can be obtained. They define distributions of simulated optoelectrical 
parameters that finally approach the experimental value with less than 2 % relative 
error. 

This has been illustrated here with several examples, comprising either only 
experimental JV characterization, or combined JV characteristic and PL spectrum. As 
a result, it demonstrated that combining several characterization methods constrains 
more the selection of valid input parameters, finally providing more reliable 
distributions. Importantly, further characterization techniques could be added, for 
instance capacitance spectroscopy, as drift diffusion simulations allow to compute the 
behavior of solar cells under various conditions. 

At this step, it is moreover already possible to discuss the performances of the 
solar cells through the associated distributions of material parameters. It has been 
showed how interpretation and understanding of the performances of a given solar 
cell can be enhanced. This could provide a useful tool to support perovskite solar cells 
optimizations. 

 Moreover, the selected input parameters sets constitute the basis on which 
simulations of the degradation mechanisms are performed. Exemplary processes have 
been simulated, and the evolution of optoelectrical performances tracked over their 
course. Importantly, average responses among the selected sets for a given sample can 
be computed. 

As a result, this procedure aims at providing simulated responses to degradation 
mechanisms that are in coherence with the actual experimental performances of each 
considered sample. 

Finally, these results also show that a probabilistic approach can allow to go 
beyond the difficulty of finding the actual values of input parameters. First, it provides 
a sense of the importance of the parameters in defining the outputs by associating 
broader or thinner distributions. Also, distributions not only provide insights on the 
parameter’s values, but also on the confidence on these values through their spread. 
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Chapter introduction 
In this work, degradation of perovskite solar cells has been investigated through 

periodical measurements of optoelectrical performances over aging time.  
The temporal evolution of these parameters is considered in Section 4.1. Time 

sequences of interest are extracted to facilitate interpretations. Also, chemical kinetics 
models have been considered to determine and interpret the thermal activation of 
degradation processes. 

Importantly, degradation pathways, consisting in the evolution of the correlation 
of optoelectrical parameters over aging are a major tool employed in this work. In 
Section 4.2., they allow to compare the experimental behavior of the various perovskite 
solar cells investigated in this chapter.  

Moreover, exemplary degradation pathways are simulated in Section 4.3 by 
using an analytical model and drift diffusion numerical simulations. 

This approach is applied first to aging measurements reported in literature in 
Section 4.4, demonstrating the capabilities of the approach developed here. 

It is then employed to investigate two sets of solar cells fabricated and aged at 
IPVF in Section 4.5. A first batch of samples having the same structure but fabricated 
through varying deposition method is analyzed through periodically measured 
current voltage (JV) characteristics. A second set of solar cells having different electron 
transport layer (ETL) and hole transport layer (HTL) materials is investigated through 
this time coupled JV and photoluminescence (PL) measurements. 

The results exposed in this chapter allow to evaluate the capacities of the method 
developed here. These examples show how this modeling-based approach can support 
the development of stable perovskite solar cells by distinguishing the processes 
causing the degradation of optoelectrical performances. 
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Chapter key points: 

 Degradation pathways are obtained by considering the evolution of the 
correlation of solar cells optoelectrical parameters. 

 The position of these pathways is independent from time and therefore 
any speed of reaction: it constitutes a characteristic footprint of the 
underlying process. 

 Unitary degradation mechanisms are simulated by considering the 
variation of a single material parameter. They are distinguishable from 
each other through their distinct pathways. 

 Combining characterization techniques (here JV and PL) allow further 
distinction of degradation pathways. 

 Experimental measurements reported in literature have been 
investigated in Section 4.4 to provide a proof of concept of the 
methodology exposed here. 

 Several degradation sequences over time can be analyzed to consider 
multiple successive degradation mechanisms. 

 The approach employed here directly tackles the cause of optoelectrical 
performance losses. Conducting complementary characterization 
demonstrates concomitance with material evolutions. 

 For most samples investigated in Section 4.5.1 (except from one 
deposition technique), the perovskite layer might have remained 
stable, and the transport layers caused the performance losses. This 
constitutes guidelines for further improvements of stability. 

 Complementary analyzes are necessary to demonstrate this aspect and 
the method exposed here could support a more exhaustive study. 
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4.1 Degradation through temporal evolutions 
The first approach to consider degradation and available experimental results is 

to investigate the evolution of optoelectrical parameters over time. Therefore, this 
section will explain first how useful time sequences are identified and extracted from 
data obtained at IPVF by pointing out artefacts of measurements that must be removed 
from the analysis. In a next step, kinetics of degradation are investigated by associating 
degradation of performances to chemical reaction. Results recorded at different 
temperatures and published in literature are employed here. 

4.1.1 Interpretable time sequences from experimental measurements 
In this section, degradation measurements are considered through their time 

dependence in order to extract meaningful and interpretable sequences. Experimental 
results obtained at IPVF over two types of aging studies are investigated. Details on 
the solar cells’ characteristics, aging conditions, and characterization techniques are 
exposed in Section 2.4.2. 

First, a set of experiments was performed through periodic measurements of JV 
characteristics and eight devices were investigated. They were all of the same nip 
structure: TiO2 / Cs0.05(MA0.17FA0.83)0.95Pb(Br0.17I0.83)3 / PTAA, and aged under the same 
conditions: ambient temperature, N2 atmosphere and constant one sun illumination 
during 1000 h. Associated devices are labelled JV-1.1 to JV-4.2. 

Also, coupled measurements of JV curves and PL spectra along degradation were 
performed on five solar cells. They were all fabricated with the same 
Cs0.05(MA0.17FA0.83)0.95Pb(Br0.17I0.83)3 perovskite material, but with different HTL and ETL 
materials:  PTAA for JV-PL-1 to 4 and Spiro-MeOTAD for JV-PL-5, and TiO2 for JV-PL-
1, 2, 3, 5 and SnO2 for JV-PL-4. The aging of these samples was recorded in a climatic 
chamber under damp heat: 85 % R.H, 65 °C and dark. The JV characteristics of these 
samples were recorded under laser illumination, the same employed for PL 
measurements. As a result, recorded Jsc can exceed the typical values for perovskite 
solar cells under STC. 

Evolution of the JV parameters over time for the device JV-1.1 is displayed in 
Figure 4-1 and in Appendix D, Figure D1. It appears clearly that the behavior is not 
monotonous, and several sequences can be identified. A large increase of Voc and Jsc 
occurs in the first 100 h, strongly different from the slower decrease that follows. This 
clearly indicates that a distinct process occurs from the rest of the aging experiment. 
Importantly, the measurements (and the solar cell illumination) have been stopped 
between 440 and 450h of aging: the same large increase of Voc and Jsc is triggered after 
450h. These sequences are not analyzed in this study, but it is to note that the methods 
developed here could help understanding this form of light soaking effect. 

In order to focus on a sequence with stable environmental conditions, only the 
degradation between 170 and 290 h in the aging experiment from Figure 4-1 is 
extracted. It is to note that a Jsc shift at 160 h is visible for all devices recorded through 
periodical measurement (see JV-3.2 in Appendix D, Figure D2), this could indicate a 
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variation of the illumination intensity, rather than a process related to the solar cells. 
Therefore, the extracted sequences for all these devices start after this point. 

  
Figure 4-1. Degradation over time of the device JV-1.1. Only part of the recorded degradation is extracted to be 
investigated, from 170 to 290 h of aging. All optoelectrical parameters are displayed in Appendix D, Figure D1. 

Unstable conditions are not the only cause of extracting only short-term 
sequences. For instance, JV-2.2 (Appendix D, Figure D3) shows very rapidly an erratic 
behavior which cannot easily be interpreted. This can be caused by faulty contact at 
the electrode. Therefore, only the first (short) monotonous degradation trend is 
extracted. 

  

  
Figure 4-2. Degradation over time of the device JV-PL-1. Only part of the recorded degradation is extracted to be 
investigated, from 20 to 272 h of aging. All optoelectrical parameters are available in Appendix D, Figure D4. 
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For other samples, it has been possible to extract more long-term degradation 
trends, for instance for device JV-PL-1, in Figure 4-2 and in Appendix D, Figure D4. 
Here, a shift in Jsc and Emax is noticeable at 135 h. This can probably be associated to 
an external factor, or at least to a process different from the long-term degradation. 
However, the evolution trends remain significantly the same after the event. Therefore, 
it has been possible to extract the global degradation, characterized by slow and steady 
Voc and Jsc loss, accompanied by a rising slope at short circuit (SC). This constitute the 
long-term degradation trend that can perfectly be compared to simulated mechanisms. 

On this second example the light soaking step is characterized in by a rise of Voc 
and Jsc until 20 h. Importantly, it is also clearly distinguishable in terms of total 
photoluminescence emission and energy of the peak maximum (Emax). Another 
example is displayed in Appendix D, Figure D5, for device JV-PL-3. 

On Figure 4-3, the advantage of considering both JV and PL characterization 
techniques is also demonstrated to help distinguish degradation sequences. The PL 
parameters seem to follow a unique degradation trend after 25 h: a steady decrease of 
PL emission and rather stable Emax (in Appendix D, Figure D6).  

  

  
Figure 4-3. Degradation over time of the device JV-PL-4. Only part of the recorded degradation is extracted to be 
investigated, from 125 to 425 h of aging. All optoelectrical parameters are available in Appendix D, Figure D6. 

However, JV parameters show a break at 125 h: the Voc decreases abruptly after 
being relatively stable and inversely, FF becomes stable after having significantly 
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decreased between 25 and 125 h. This can be associated to a hypothesis of distinct 
degradation mechanisms, having different impacts on the solar cell performances. 

The approach employed in this work allows to tackle this aspect, by successively 
considering different time sequences of the aging experiment. Therefore, two cases 
will be investigated further in this chapter: either considering the degradation starting 
at 25 h (covering both trends), and only after 125 h (focusing on the second trend). 

The same questions arise for device JV-PL-5, where non monotonous Jsc behavior 
might be difficult to interpret (see Appendix D, Figure D7). A first sequence starting 
at 20 h to grasp the full extent of the degradation, and a second sequence after 85 h, 
avoiding non-uniformities.  

The examples illustrated in this section show that displaying the optoelectrical 
parameters against time is crucial to point out artefacts of measurements that must be 
removed from the analysis. 

Notably, the approach developed here is robust towards interruptions, non-
monotonous trends and possible multiple behaviors, by distinguishing sequences of  
degradation. In fact, it can be applied to any aging sequence and the genetic algorithm 
exposed in Section 3.2 will allow to investigate the associated starting point. As a 
result, most aging experiments available for this work have been investigated, even 
when the degradation behavior appear unclear at first glance. 

4.1.2 Chemical kinetic models applied to perovskite solar cells 
A first approach used to model the degradation of perovskite solar cells 

associates degradation of the performances with chemical reactions. It has been 
applied to measurements reported in literature [1] and performed at several 
temperatures. 

Kinetics of chemical reactions are employed by determining reaction rates and 
associated activation energies [1], [2]. In literature, it has been used to derive 
acceleration factors and even potential realistic-conditions lifetimes [3]. 

Progress of the reaction over time has to be measured under several conditions. 
For instance, thermal activation is commonly studied by measuring the reaction rate 
at various temperatures and fitting its temperature dependence to an Arrhenius law 
[4] : 𝑘(𝑇) = 𝐴 ∙ exp − , where 𝑘 is the reaction rate, 𝐸  the activation energy, and 𝐴 

a constant. Other models have been developed, to account for activation through light 
for instance [4]: 𝑘(𝑇, 𝐼) = 𝐴 ∙ 𝐼 ∙ exp − , where 𝐼 is the perceived irradiance. 

A key aspect of this approach is to determine the reaction rate, 𝑘, as its definition 

depends on the reaction order. For a chemical reaction 𝐴 →  𝐵, the three first orders 
have been considered in this work as follow: 

 Zero order: [ ]
=  −𝑘 so: [𝐴](𝑡) = [𝐴] − 𝑘𝑡 (4 − 1) 

 First order: [ ]
=  −𝑘[𝐴] so: [𝐴](𝑡) = [𝐴] exp (−𝑘𝑡) (4 − 2) 

 Second order: [ ]
=  −𝑘[𝐴]² so: [𝐴](𝑡) =

[ ]

[ ]
(4 − 3) 
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[𝐴] is the concentration of specie A and [𝐴]  its initial value. In the context of 
photovoltaic solar cells, optoelectrical parameters such as Voc, Jsc and FF are measured 
and their evolution over time can be studied. As a result, it is possible to assume that 
the evolution of these parameters is proportional to the progress of a chemical reaction 
(not necessarily known). For instance, for Jsc: 

𝐽 (𝑡) =
𝐽 (𝑡)

𝐽
=  

[𝐴](𝑡)

[𝐴]
(4 − 4) 

As a result, the expressions of the three orders can be fitted to the experimental 
measurements, as displayed in Figure 4-4. In fact, experimental measurements on 
semi-transparent encapsulated cells with FA0.95MA0.05PbI2.85Br0.15 layer, reported by Lim 
et al. [1] are employed here (see Section 2.4 for details). Authors periodically measured 
current-voltage curves of devices that were kept under air and 1-sun illumination at 
25, 40, 55 or 70°C.  

   
Figure 4-4. Evolution of normalized optoelectrical parameters reported by Lim et al (crosses).  Perovskite devices 
were aged under one sun, air and at 25, 40, 55 or 70 °C. Fittings of the three investigated reaction orders are in 
lines. 

Although all three orders can reproduce the experimental data, it appears clearly 
that is not possible to distinguish between them and the fit quality remains 
comparable. However, an acceptable fit is still obtained in most cases, as the major 
dynamic of the decay is well reproduced. It allows to draw the temperature 
dependence of the reaction rates in an Arrhenius plot, in Figure 4-5. A linear regression 
of the Arrhenius law is done, and for each optoelectrical parameter, close activation 
energies are obtained for all orders. 
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Voc Jsc FF 

   
Figure 4-5. Arrhenius plots of the temperature dependence of reaction rates for Voc, Jsc and FF (left middle and 
right, respectively) are displayed with crosses and dotted lines. Associated linear regressions (plain lines) provide 
activation energy through the slope. The negative reaction rate obtained for Voc at 25 °C with all orders is 
responsible for the blank in left graph. 

Noticeably, the quality of the linear regression is poor, especially for the FF, 
where the extracted activation energy should not be trusted. In fact, not only the 
reaction orders are poorly distinguishable, but the reliability of the derived activation 
energies is questionable. 

Therefore, another method to determine the order of the reaction has been 
employed. It consists in plotting, for instance for Jsc, log  versus log(𝐽𝑠𝑐). If the 
reaction follows a given order, points should be aligned, and the slope should provide 
the reaction order. Figure 4-6 shows that the points are not always well aligned, and 
some linear regressions are not realistic. 

   
Figure 4-6. Normalized Voc, Jsc and FF reported by Lim et al., plotted as 𝑙𝑜𝑔   versus 𝑙𝑜𝑔(𝑋) (crosses). 
Linear regressions are displayed in plain lines and give estimations of reaction orders. 

Furthermore, different reaction orders are obtained for distinct temperatures (the 
values obtained being valid or not). This raises a significant issue for the kinetics 
approach. It is necessary to have the same reaction occurring at all investigated 
temperatures in order to study the thermal activation of this reaction (or any activation 
process). However, numerous distinct degradation processes have been reported for 
perovskite solar cells. Therefore, it appears inappropriate to analyze the behavior of 
complex optoelectrical parameters with this approach. Studying the degradation of 
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perovskite solar cells needs an approach less dependent on multiple experimental 
conditions, and more compatible with multiple processes. 

In fact, the methods exposed further in this work, allowing to identify compatible 
mechanism could support such kinetics approach, by being applied to each 
temperature degradation. It could indicate if results obtained at different temperatures 
are actually compatible with the same mechanism and help to justify the investigation 
of its thermal activation. 
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4.2 Degradation through pathways 
Instead of focusing on the evolution of the solar cell optoelectrical parameters 

over time, it is useful to consider their correlations. The evolution of such correlations 
describes the several states by which the device passes through, without considering 
the speed with which it passes from one state to another. In other words, the evolution 
of the correlation of the optoelectrical parameters describes pathways that are 
independent from time and any speed of reaction. 

In fact, this allows to avoid considering any activation process through 
environmental conditions such as temperature or irradiance for instance. The series of 
states described by the degradation pathways are finally characteristics footprints of 
the processes responsible for the observed degradation. As a result, it makes possible 
to simulate the degradation of perovskite solar cells without implementing time 
dependent (potential activated by environmental conditions) kinetical models. 

First, the experiments performed through periodic measurements of JV 
characteristics are investigated. As explained in Section 2.4, eight solar cells were 
prepared with four different techniques for depositing the perovskite layer. They were 
all aged under the same conditions. The recorded JV parameters were first analyzed 
through their evolution over time, and sequences of interest extracted as explained in 
Section 4.1. 

Results in Figure 4-7 show results for all eight devices. It appears clearly that 
devices JV-2.1 and JV-2.2 follow a distinct degradation trend from all other samples. 
Notably they were both fabricated preparing the perovskite solution the same day of 
deposition, with a pre-heating step.  These devices show an increase of Voc, and device 
JV-2.1 exhibits even a significant increase of Jsc and a decrease of slope at open circuit 
(OC). This strongly indicates that a distinct mechanism was at play for these two 
devices. It is to note that only short time sequences could be extracted for these devices 
(for 10 to 100 h and 50 to 160 h respectively), because they very rapidly had erratic 
behaviors or stopped functioning, see Appendix D, Figure D3 for JV-2.2. In fact, device 
JV-2.1 is probably still in the light soaking phase, also observed for other devices.  

   
Figure 4-7. Experimental degradation pathways of eight devices characterized through periodic JV measurements. 
Four techniques were employed to prepare the perovskite solution: the day of deposition or one day before, and with 
a pre-heating step of the solution or not. The optoelectrical parameters are normalized to the initial value before 
degradation. 
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The other devices show degradation pathways that resemble more closely to each 
other, with a rather stable Jsc and more significant drop of Voc and FF. 

One exception stands out: device JV-1.1 follows an almost orthogonal pathway 
with no Voc loss, only Jsc variation and very strong loss of FF. In fact, the strong 
increase of slope at OC can be related to this FF reduction. Notably, a short time 
sequence was also extracted for this device, with very distinct trends from the rest of 
the (too noisy and slightly erratic) degradation. 

Also, devices JV-4.1 and JV- 4.2 show a notable increase of slope at SC (only after 
a first decrease for JV-4.2), potentially indicating a specific mechanism inducing this 
improvement. 

Finally, the pathways divide the results into three groups, summarized in Table 
4-1. Notably, the first group contains devices fabricated with three techniques, but the 
present results indicate that the same mechanism can have degraded the sample 
performances. Importantly, this hypothesis will be discussed when comparing 
simulated degradation pathways. 

Table 4-1. Groups of aging behaviors derived from degradation pathways of the eight devices characterized 
through periodic JV measurements. 

Devices Features of degradation pathways 

JV-1.2, JV-3.1, JV-3.2, JV-4.1, JV-4.2 Stable Jsc, joint FF and Voc decrease. 

JV-1.1 Significant Jsc and FF loss. Important increase of slope at OC. 

JV-2.1, JV-2.2 Increase of Voc. Strong increase of Jsc for JV-2.1. 

 
As explained in detail in Section 2.4, coupled JV and PL measurements were also 

performed on five samples, and their evolution over time is discussed in Section 4.1. 
All solar cells were aged in a climatic chamber, at 65 °C under 85 % relative humidity 
atmosphere and dark. Notably the same perovskite material was employed for all 
samples, but combinations of two ETL and HTL materials were employed: TiO2 / 
PTAA for JV-PL-1, 2 and 3, SnO2 / PTAA for JV-PL-4, and TiO2 / Spiro-MeOTAD for 
JV-PL-5. 

Coupling these characterizations delivers complementary insights to the 
degradation process as illustrated in Figure 4-8. For instance, JV-PL-2, JV-PL-3 and JV-
PL-5 show similar pathways according to JV parameters, characterized by similar 
losses of Voc, Jsc and FF. However, the device JV-PL-5 seem to have a smaller 
reduction of PL emission. Importantly, it is displayed here in terms of variation of 
quasi-Fermi level splitting through the following expression (obtained in Section 1.1.2 
by considering constant optical behavior): 

𝛥𝐸 − 𝛥𝐸 = 𝑘 𝑇 𝑙𝑛
𝜙

𝜙
(4 − 5) 

Noticeably, device JV-PL-4 follows distinct pathways from JV-PL-1, as it shows a 
much more pronounced loss of Voc and a slower decrease of quasi-Fermi level 
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splitting. This aspect is interesting because it shows that both quantities do not always 
follow the same trend. Photoluminescence intensity and associated quasi-Fermi level 
splitting are often compared to a “maximum achievable Voc”. Analyzing these 
examples through simulations in the next steps will allow to discuss cases where this 
maximum is attained to different extents. 

   

  

 

Figure 4-8. Experimental degradation pathways of five devices characterized through periodic JV and PL 
measurements. Aging sequence of JV-PL-4 and JV-PL-5 starts at 125 and 85 h respectively. The optoelectrical 
parameters are normalized to their initial value before degradation. 

The selection of the analyzed degradation sequence has been discussed in Section 
4.1. The cases of devices JV-PL-4 and JV-PL-5 are significative, as their parameters 
follow non-monotonous behaviors. In Figure 4-8 the extracted sequences were 
restricted to the last decrease of Jsc. This choice is questioned through the pathways of 
Figure 4-9: here the extracted sequence includes the non-monotonous variations of Jsc 
and FF for both devices. Degradation pathways of other devices remain the same as in 
Figure 4-8. 

For both JV-PL-4 and JV-PL-5, considering a degradation sequence starting 
earlier is associated with an apparently more stable Jsc, resulting in more distinct 
pathways from the other samples. On the contrary, the quasi-Fermi levels splitting 
versus Voc pathways of all five samples are now closer to each other. As a result, the 
distinction of the degradation of these five samples cannot be clearly done yet. 

Notably, the very fast decrease and subsequent increase of Jsc for JV-PL-4 (and 
associated inverse trend of FF) is not interpretable, but can maybe be ignored, as the 
device comes back to a similar state. 
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Figure 4-9. Experimental degradation pathways of five devices characterized through periodic JV and PL 
measurements. Aging sequence of JV-PL-4 and JV-PL-5 starts at 25 and 20 h respectively. The optoelectrical 
parameters are normalized to their initial value before degradation. 

The examples of this section illustrate the possibilities offered by comparing 
experimental degradation pathways, as well as the limitations. First, it can allow to 
categorize degradation in some cases. For instance, distinguishing increases from 
decreases of parameters remains mostly valid and provides insights on the possible 
distinct nature of the underlying degradation mechanism. This has allowed to 
distinguish the degradation of devices JV-2.1 and JV-2.2, from the other devices of the 
same batch. 

However, the variability of the degradation pathways to the starting point can be 
a source of uncertainty for the analysis. It is important to note that relative variations 
to the starting point have been compared here. In fact, the same degradation 
mechanism can have different impacts on the pathways (with different slopes for 
instance), depending on the initial characteristics of the device (the starting point). 

As a result, comparing pathways that come from distinct starting point remains 
to be validated with further analyses. This aspect will be specifically addressed in the 
next sections, by considering simulated degradation pathways. 

 

 

Section key points: 

 Degradation pathways are obtained by considering the evolution of the 
correlation of solar cells optoelectrical parameters. 

 The position of these pathways is independent from time and therefore 
any speed of reaction: they constitute characteristics footprints of the 
underlying processes. 

 Plotting together experimental degradation pathways of several 
samples provides insights on potential distinction of the underlying 
mechanism. 

 Comparison of degradation pathways in terms of normalized 
optoelectrical parameters must be considered with caution: apparent 
distinction of behavior must be validated with complementary 
simulations. 
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4.3 Simulated degradation pathways 
In order to investigate further degradation pathways presented in previous 

section, models are employed. First, the analytical model for a pn junction reported in 
Section 1.4 is employed to estimate the impact of degrading input parameters. This 
constitutes several hypothetical degradation mechanisms that are represented 
together in the form of pathways. 

Similarly, the coupled optical and electrical simulation tools exposed in Section 
2.1 are employed to investigate the degradation of a perovskite solar cell. Again, 
several mechanisms, related to the materials and interfaces of the perovskite solar cell, 
are considered and pathways can be compared. 

Simulation results are displayed in the form of degradation pathways: for each 
considered scenario, the correlated evolution of optoelectrical parameters are plotted 
together, defining a degradation pathway. 

Importantly, the degradation mechanisms simulated in this work are all unitary 
processes: only a single material parameter is considered to degrade monotonously 
(for instance defect density in the perovskite layer, or hole mobility in HTL). No 
combinations are simulated because these would induce supplementary degrees of 
freedom through parameters mutual relative speeds of variation. In such case, 
assumptions on these speeds would multiply greatly the number of simulated cases, 
and counterproductively re-introduce a time dependence in the study. 

It is possible that in reality, degradation processes impact several material 
parameters. As a result, the objective of the study is to determine if a main one had a 
major impact on solar cell performances. 

4.3.1 Degradation using analytical model 
The analytical model reported in Section 1.4, applied to a pn junction, considers 

carriers’ diffusion through quasi-neutral regions and radiative recombination to 
compute photocurrent. Furthermore, radiative, SRH as well as surface recombination 
are considered. 

In this section, a hypothetical pn junction composed of two layers of doped 
perovskite material is considered, see Figure 4-10. Illumination is done through the 50 
nm thick, n-doped side. The p-doped side at the back is 450 nm thick. This is 
comparable to the 500 nm thick absorber in the solar cells investigated in this work.  

 
Figure 4-10. Considered pn junction for analytical model. Illumination arises upon n doped side. 

Three exemplary devices are considered, having variations of a rather good, 
representative perovskite material, with for instance 1.62 eV bandgap, 10 cm2.V-1.s-1 
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carrier mobilities, 1014 cm-3 defect densities. Parameters are summarized in Appendix 
D, Table D1. 

Pathways associated to the nine considered degradation mechanisms are 
represented in Figure 4-11 for the three examples of initial devices. One parameter is 
modified in each case: on left column the defect density is raised to 1017 cm-3, and on 
respectively middle and right columns, the hole and electron mobilities are lowered to 
0.1 cm2.V-1.s-1.  

High defect density Low hole mobility at front Low electron mobility at back 

   

   

   
 

 
Figure 4-11. Simulated degradation pathways obtained through analytical model of a pn junction. Left column: 
high defect density (1017 cm-3). Middle column: low hole mobility in n doped front layer (0.1 cm2.V-1.s-1). Right 
column: low electron mobility in p doped back layer (0.1 cm2.V-1.s-1). All input parameters are in Appendix D, 
Table D1. On Jsc-Voc graphs, plain and dashed black lines show the Jsc-Voc relation according to the single diode 
model, with ideality factor equal to 1 and 2, respectively. 
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The mechanisms can be distinguished through their different pathways. For 
instance, the formation of defects in the space charge region (yellow circles) induces a 
strong loss of Voc and stable Jsc, contrarily to other defects or decreasing mobilities. 

The black lines on Jsc – Voc graphs are obtained with the single diode model 
(ideality factor, 𝑛, equal to 1 and 2 for plain and dotted lines respectively): 

𝑉𝑜𝑐 = 𝑛 𝑘 𝑇𝑙𝑛
𝐽𝑠𝑐

𝐽
+ 1 (4 − 6) 

These lines show the expected variation of Voc if Jsc decreases with the same 
recombination regime (same dark saturation current, 𝐽 ). As expected, the increase of 
defect density induces a strongly different behavior, as it would be associated to an 
increase of 𝐽 . 

It is interesting to note that formation of interface defects follows the dotted line 
(𝑛 = 2) in the high defect density case (left), similarly to the reduction of hole mobility. 
However, they induce a relatively stronger Voc loss in both other cases, contrary to 
reduced mobility. This is a sign that the impact of interface recombination is not the 
same in both cases on charge carrier, between inducing more recombination, and 
hindering transport through modified carrier distributions along depth. 

On FF – Voc graphs, the black plain line is obtained from the following 
expressions for the relationship Voc and FF [5]: 

𝐹𝐹 =
𝑣 −  𝑙𝑛(𝑣 + 0.72)

𝑣 + 1
(4 − 7)

𝐹𝐹 = 𝐹𝐹 (1 − 1.1 𝑟 ) +  
𝑟

5.4
(4 − 8)

𝐹𝐹 = 𝐹𝐹 1 −
(𝑣 + 0.7)

𝑣

𝐹𝐹

𝑟
(4 − 9)

 

Here, 𝑣 = , 𝑟 = , 𝑟 =  and 𝑛  has been adjusted to 

reproduce initial fresh FF value. Similarly to diode model, it estimates the expected FF 
loss when Voc decreases, in the frame of classically functioning solar cell. It appears 
here that all mechanisms induce a stronger reduction of FF than expected by the 
model. This demonstrates stronger modifications of the solar cell behavior.  

Notably, the impact of mobilities is more distinguishable when an asymmetry is 
present. In the middle and right column of Figure 4-11, the hole mobility in the front 
n-doped layer, or the electron mobility in the back p-doped layer have respectively 
low values. The reduction of electron mobility in the back layer is even associated to 
an increase of Voc. This trend could be counter-intuitive, but it is in fact associated to 
a decrease of recombination current in the back quasi neutral region. This is probably 
caused by electrons diffusing less towards the back of the device, and remaining closer 
to the space charge region, where they were mostly generated and where they must 
be accelerated towards front interface. 
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Finally, doping levels define the size of the space charge region, which influences 
greatly the extraction. In fact, an optimum can be found, explaining the rise of Jsc with 
decreasing doping levels. They are associated to wider space charge regions, better 
accordance to the photogeneration profile and therefore better extraction of 
photogenerated carriers. 

It is to note that the doping levels in this model are kept sufficiently high to 
ensure thinner space charge region than the total material length. Therefore, no 
significant decrease could be considered, only down to 3.1017 cm-3 and 8.1015 cm-3 for 
the donor and acceptor density respectively. Furthermore, the impact of these 
parameters is expected to be significantly different than ETL and HTL doping levels 
in perovskite solar cells. In nip or pin structure, there is no optimum position of a space 
charge region in regard to photogeneration profile. 

4.3.2 Degradation using drift diffusion simulations 
Employing an analytical model allowed to derive degradation pathways for a 

simplified pn structure. However, the carrier’s behavior is slightly different in a nip 
perovskite solar cell, as discussed in Section 1.1.3. Notably, extraction relies on 
diffusion in the quasi-neutral regions of the pn junction, where an electrical field 
normally spans the entire absorber depth in the pin structure. Therefore, the modeling 
procedure exposed in Section 2.1 has been applied to exemplary solar cells, with the 
same approach has in the previous section. 

Importantly, degradation scenarios defined here are more consistent with 
realistic processes that could occur in a perovskite solar cell. For the HTL and ETL, 
they consist in losses of carrier mobility (holes or electrons respectively) and decrease 
of doping. Concerning the perovskite layer, increase of defect density as well as 
decrease of carrier mobility are considered. Furthermore, increase of interface defect 
density at its interfaces and respectively increase or decrease of external series and 
shunt resistances are also implemented. 

Similarly to previous section, examples here are based on a hypothetical 
realistically good device. Perovskite material has for instance 1.62 eV bandgap, 10 
cm2.V-1.s-1 carrier mobilities, 1014 cm-3 defect densities. Transport layers are also highly 
doped (up to the corresponding density of states) and have high carrier mobilities of 
0.5 cm2.V-1.s-1. Details on the material characteristics are in Appendix D, Table D2.  

Degradation pathways of this good device are displayed in Figure 4-12. Again, 
the distinction of the mechanism through different pathways is a very useful feature 
for the next step of this work. 
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Figure 4-12. Simulated degradation pathways obtained through drift diffusion simulations of a perovskite solar 
cell. Exemplary hypothetical device with good material qualities (details are in Appendix D, Table D2). 

Here, JV and PL related optoelectrical parameters are used to define the 
pathways. Interestingly, the relation between quasi-Fermi level splitting and Voc 
follows perfectly a 1 to 1 slope for all mechanisms. It can be therefore considered here 
that photoluminescence is very good indicator of the Voc. 

However, it is to note that this specific example is a very good performing 
hypothetical device. Therefore, three variations of this example are considered, with 
one parameter changed at a time: the defect density in the perovskite layer is raised to 
1017 cm-3, or the hole or electron mobilities are lowered to 0.1 cm2.V-1.s-1. Interestingly, 
the relation between Voc and quasi-Fermi level splitting changes in these cases, as it 
appears in Figure 4-13. This is most probably related to changes in carriers’ 
distributions across the depth of the perovskite layer, and the different impacts it can 
have on the recombination regimes. 

In the previous section, a rise of Voc was observed when the mobility of the 
minority carriers at the back side (electrons) decreases. Here, a comparable trend 
occurs for the good performing device of Figure 4-12 and devices with high defect 
density (left column) and low hole mobility (right column) in Figure 4-13. Again, the 
carriers might remain closer to the interface where they have to be extracted (through 
the ETL). 

Furthermore, the device with low electron mobility shows a reversed behavior: 
in this case, the reduction of hole mobility induces the increase of Voc (reversely for 
the device with low hole mobility). Here, hole extraction is not a limiting factor for the 
carrier extraction. This is supported by the fact that reduction of HTL doping is not 
significant anymore. Therefore, reducing their mobility might not limit extraction, but 
only avoid recombination by limiting their diffusion. 

Notably, with asymmetrical carrier mobilities, the impact of doping levels of both 
extracting layers is significantly distinguishable, in terms of Voc, FF and quasi-Fermi 
levels splitting. 
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High defect density Low perovskite electron 
mobility 

Low perovskite hole mobility 

   

   

   
 

 
Figure 4-13. Simulated degradation pathways obtained through drift diffusion simulations of a perovskite solar 
cell. Left: high defect density (1017 cm-3). Middle: low perovskite electron mobility (0.01 cm2.V-1.s-1). Right: low 
perovskite hole mobility (0.01 cm2.V-1.s-1). All material parameters are in Appendix D, Table D2. 

Similarly to previous sub-section, the diode model and the phenomenological 
relations are employed to obtain the black lines on Jsc – Voc and FF – Voc graphs 
respectively.  Notably, no mechanism induces any close behavior to diode model 
prediction with Jsc loss (black plain and dotted lines), all inducing significantly more 
Voc variations. This might be related to the nip structure being less dependent on 
transport processes: when any degradation occurs, it mainly impacts the solar cell 
through enhanced carrier recombination and stronger Voc reduction. Also, similarly 
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to results obtained for the pn junction, the phenomenological relation of FF and Voc 
strongly underestimates the FF loss for all mechanisms. 

Finally, the examples exposed here show that simulated degradation 
mechanisms induce distinguishable pathways. The extent of the optoelectrical 
performance losses depends on the initial characteristics of the device and the factor 
limiting carriers’ behavior. However, it is to note that the position of the pathways 
remains similar from one device to the other. In fact, the statistical approach employed 
in this work can allow to estimate the sensitivity of the degradation pathways to the 
initial point. 

As a result, this constitutes a valuable tool to assess the compatibility of the 
considered mechanisms with the experimental results. Moreover, the specific 
procedure presented in Section 3.2 considers the starting point of experimental 
degradation sequences and has been demonstrated to statistically reproduce its 
performances (see Section 3.3). As a result, consistent degradation pathways are 
generated and compared to the experimental ones in the next sections. 

 

 

Section key points: 

 Unitary degradation mechanisms are simulated by considering the 
variation of a single material parameter. They are distinguishable from 
each other through their distinct pathways. 

 The position of a given degradation pathway depends on the 
characteristics of the device before degradation. 

 Combining characterization techniques (here JV and PL) allows further 
distinction of degradation pathways. 

 Two models have been employed: an analytical model for a pn 
homojunction, and a drift diffusion model for a pin structure. 

 Several mechanisms show common trends with both models (minority 
carriers at one side of the pn junction must be compared to the carriers 
extracted at the same side in the pin structure). 
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4.4 Analysis of experimental results from literature 
In this section, experimental measurements reported in literature are 

investigated by coupling the approaches employed in both previous sections (4.2 and 
4.3). Results are represented in terms of degradation pathways, and experimental and 
simulated mechanisms are superimposed. 

For almost all published results investigated here, Voc, Jsc and FF were the only 
available optoelectrical parameters from which evolution over time was reported by 
authors (details are in Section 2.4.1). Therefore, reproduction of the degradation 
starting point was assessed on these parameters only, as exposed in Section 3.3. 

As a result, the following degradation mechanisms were simulated: losses of 
majority carrier mobility and decrease of doping in HTL and ETL and increase of 
defect density and decrease of carrier mobility in the perovskite layer. Finally, increase 
of interface defect density at the perovskite/HTL or perovskite/ETL interfaces are also 
considered. 

Importantly, it has been exposed in Section 2.1 that solar cells are simulated here 
as 1D structures. Therefore, lateral average material properties, and carrier behavior 
are considered. In reality degradation phenomena do first have an impact at the 
microscopic level. However, simulating these phenomena and their impact on 
macroscopic current voltage properties would require numerous assumptions. Also, 
it might not be possible to distinguish these phenomena only by relying on 
macroscopic measurements such as current voltage characteristics. For these reasons, 
mechanisms related to lateral heterogeneity, such as phase segregations, are not 
directly implemented. They can only be expected to resemble to an average 
degradation of carrier mobility or defect densities. 

Moreover, ion migrations are also not simulated, and the transient effects that 
cause hysteresis, such as electric field screening, variations of defect densities at 
interfaces or local doping are not considered. Therefore, even if considering mobile 
ions would more exactly reproduce the behavior of the devices, the simulations done 
here capture a “long-term” impact on carrier mobilities or defect densities in the 
perovskite layer and its interfaces. This constitutes a tradeoff in terms of number of 
parameters and assumptions (ion mobilities and JV scan rate for instance) and 
accuracy. 

Finally, mechanisms implemented here do remain in the frame of working solar 
cells, where the models used are applicable. Therefore, phenomena associated to a 
strong destruction of a material and potentially to the failure of the solar cell are not 
considered. 

 
Degradation results published by Peng et al.: 
Peng et al. studied Cs0.05FA0.88MA0.07PbI2.56Br0.44 based devices with Spiro-

OMeTAD and P3HT:CuPc HTL [6], details on the devices structures and aging 
conditions are presented in Section 2.4.1. Authors found the devices with P3HT:CuPc 
HTL significantly more stable and degradation of doped Spiro-OMeTAD has been 
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widely reported, it is therefore consistent to correlate it with the degradation observed 
here. Accordingly, authors attributed the degradation of electrical performances to a 
deterioration of the HTL/perovskite interface, caused by lithium-ion diffusion (Spiro-
OMeTAD dopant). 

Initial performances of the devices with Spiro-OMeTAD HTL were reproduced 
with 98 different material parameters sets (details are in Section 3.3). On left side, 
experimental Jsc/Voc pathway resembles to a loss of hole mobility in perovskite layer 
(brown). This mechanism is also a consistent explanation on FF/Voc plane: although 
the FF drop is less pronounced at first, the final stage of degradation meets the 
simulated pathway. Another interpretation of these results arises by looking at only 
the three first points: they describe a significantly distinguishable trend (which is 
already observable when the results are displayed against time by the authors). This 
first part of degradation is close to the simulated pathway for a formation of defects at 
ETL/perovskite interface (pink), on all three planes. 

  

 
Figure 4-14. Experimental degradation pathways from results published by Peng et al.: perovskite devices were 
aged under dark, at 85 °C and 85 % relative humidity. Associated simulated pathways (average over 98 material 
parameters sets used to reproduce initial performances) are superposed (down triangles and dashed lines for causes 
identified by authors, up triangles and dotted lines for others). A formation of defects at ETL/perovskite interface 
(pink) or a decrease of hole mobility in perovskite layer (brown) are the two closest mechanisms explaining 
experimental degradation. 

Devices with P3HT:CuPc HTL have also been investigated, details are in Section 
2.4.1. Reproduction of initial performance are reported in Section 3.3 and 
superposition of experimental and simulated pathways in Appendix D, Figure D8. 
Interestingly, experimental pathway is close to a loss of hole mobility in the perovskite 
layer (brown), similarly to devices with Spiro-OMeTAD HTL. This would be 
consistent with the fact that both structures rely on the same perovskite material, 
potentially being the “limiting factor” for stability of electrical performances. 

As a result, the analysis done here questions the causality of HTL degradation on 
electrical performance losses. Reduction of HTL hole mobility or doping (blue or 
orange) and perovskite/HTL interface deterioration (green) are very distinct from 
experiments. The loss of mobility does not induce Voc variation, and the loss of doping 
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and interface deterioration does not induce Jsc losses. Therefore, these three 
mechanisms could difficultly explain the performance losses reported here. This 
interpretation doesn’t  oppose  a concomitant degradation of HTL: it can still have 
occurred without being the main cause of performance degradation. 

 
Degradation results published by Li et al.: 
Li et al.[7] reported the degradation of unencapsulated FA0.9Cs0.1PbI3 based 

devices kept at MPP or Voc (average behavior over eight samples were reported) and 
details are available in section 2.4.1. Furthermore, they performed before and after 
degradation X-ray diffraction (XRD) measurements and PL- and synchrotron-based X-
ray fluorescence microscopy with nanoscale spatial resolution, to evidence phase 
segregation of the perovskite material (distinct Cs-rich and FA-rich areas). 
Furthermore, the combination with X-ray beam induced current measurements 
showed that Cs-rich areas are photo-inactive and current blocking. In addition, 
authors also focused on HTL and gold back contact. They re-coated aged samples with 
fresh HTL and gold and measured PCE. For some samples, they degraded the full cell 
and removed aged HTL and gold. For other samples, they aged half stacks without 
HTL and gold from the beginning. As a result, Li et al. conclude that the main source 
of electrical performance degradation is the phase segregation of the perovskite itself, 
not being specifically triggered by HTL or gold. 

In the present study, initial reported performances were reproduced with 104 
and 125 different material parameters sets for the cells aged at MPP and Voc 
respectively. First, degradation pathways have been derived for both cases separately. 
It appears that pathways are similar for both groups of devices, which is consistent 
with the fact that they were fabricated in the same batch, with similar performances. 
Therefore, average responses over all simulations for both groups are computed, and 
associated pathways are used to analyze together both experimental results. 
Experimental pathways are superposed on Figure 4-15 and the similarity of both 
experimental results indicates that similar dominant degradation mechanisms 
occurred. 

Furthermore, on Jsc/Voc plane (left), the closest mechanisms to experimental 
points are defects formation in the perovskite layer (red), or loss of doping in ETL 
(yellow) the extent of the Voc loss being more consistent with the first one. This is 
confirmed by the FF/Voc graph, showing a better agreement of experimental behavior 
with defect formation in perovskite layer (red). On FF/Voc graph, the loss of doping in 
ETL (yellow) is significantly different because it starts with a sharp decrease of FF 
without Voc loss. 

The formation of defects in perovskite layer is consistent with the phase 
segregation identified  by Li et al. In fact, such spatially resolved phenomenon cannot 
be simulated with 1D drift diffusion simulations. However, the results obtained here 
show that even if all possible mechanisms cannot be simulated, the analysis presented 
here can help to identify the faulty layer or interface. 
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Figure 4-15. Experimental degradation pathways from results published by Li et al.: devices were aged under one 
sun, N2 atmosphere, at 35 °C and tracked at maximum power point or kept at open circuit voltage. Associated 
simulated pathways are superposed (down triangles and dashed lines for causes identified by authors, up triangles 
and dotted lines for others). A formation of defects in the perovskite layer (red) is the closest mechanism explaining 
experimental degradation. 

Degradation results published by Chen et al.: 
Chen et al.[8] optimized the composition of Cs1−xFAxPbI2Br perovskites and 

studied the stability of associated devices (results analyzed here were obtained with x 
= 0.3), see Section 2.4.1. Authors measured photoluminescence spectra and decays on 
fresh and aged cells, as well as XRD spectra on fresh and aged perovskite films. They 
conclude that the composition with x = 0.3 delayed the most the phase change. Initial 
performances of these most stable devices were reproduced with 87 different material 
parameters sets, see Section 3.3.  Simulated degradation pathways and measured 
degradation pathways are superposed in Figure 4-16. Although noisy experimental 
pathway, the closest simulated mechanism is the reduction of electron mobility in the 
perovskite layer (purple). On the other hand, authors explained the improvement of 
efficiency during the experiment by better charge collection, coming from better 
interfaces and stress relaxation (supported by higher photoluminescence intensity and 
longer carrier lifetime). This, however, would not explain the degradation observed 
during the whole experiment. Supplementary “degradation” mechanisms have been 
simulated for this example, considering respectively reductions of defect densities at 
perovskite/HTL and perovskite/ETL interface. It appears in Figure 4-16 that a rise of 
FF is associated with the healing of the perovskite/HTL interface, contrary to the 
lowering tendency in experimental results. Furthermore, the perovskite/ETL interface 
healing does not induce the rise of Voc observed experimentally. 
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Figure 4-16. Experimental degradation pathways from results published by Chen et al.: perovskite devices were 
unencapsulated and aged under ambient conditions. Associated simulated pathways are superposed (down 
triangles and dashed lines for causes identified by authors, up triangles and dotted lines for others). A decrease of 
electron mobility in perovskite layer (purple) is the closest mechanism explaining experimental degradation. 

Therefore, the analysis here directly suggests the cause of the reduction of power 
conversion efficiency: even with the best composition the perovskite layer itself is in 
cause. This paves the way for further work on devices stability by showing that 
focusing on perovskite is still necessary, after the first optimization step reported by 
Chen et al. 

 
Degradation results published by Lim et al.: 
The objective of the study published by Lim et al.[1] was to study the thermal 

activation of the perovskite degradation, details on the FA0.95MA0.05PbI2.85Br0.15 based 
devices are reported in Section 2.4.1. Authors determined reaction rates at each 
temperature and deduced activation energies with an Arrhenius law. Importantly, it 
is necessary to presuppose that the same mechanism is occurring and being activated 
at all measurements temperatures. This will be discussed, as the method employed 
here allows to distinguish mechanisms at each temperature. Furthermore, authors 
combined X-ray diffraction and cross-sectional scanning electron microscopy to 
compare the perovskite material properties before and after degradation. They noted 
the absence of formation of PbI2, as a sign for stability. Similarly, UV-visible 
spectroscopy measurements done before and after aging are analyzed. They support 
an oxidation of the Spiro-OMeTAD HTL, together with iodide ions diffusion from the 
perovskite towards the HTL. As a result, authors attributed the main cause of 
performance losses to a degradation of HTL. 

Initial performances of the devices aged at 40, 55  and 70 °C were reproduced 
with respectively 101, 109 and 49 different material parameters sets. In Figure 4-17, 
experimental data recorded at 40 and 55 °C follow a behavior close to a loss of hole 
mobility (brown) or a formation of defects (red) in the perovskite layer. Noticeably, 
behavior tends to be different at 70 °C, having a lower variation of Voc and more 
distinct fall of both other parameters. As a result, a loss of hole mobility in HTL (blue) 
appears to be a closer mechanism. 
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The fact that distinct degradation mechanisms occurred at different temperatures 
questions the kinetics approach used by the authors, which aims at studying the 
thermal activation of a given process. However, the higher temperature record has a 
significantly different pathway. If only a thermal activation of the same mechanism 
had been involved, the same pathway would have simply been followed at a different 
speed. 

Moreover, experimental data shows a two-steps trend: first a clear increase of 
open circuit voltage associated with low or positive variations of Jsc and FF, followed 
by a decrease of all parameters. This feature motivates to study these results in two 
steps, extracting first the time period with Voc increase, and then considering the 
second part as being a distinct device, starting from another point. This would 
correspond to a plausible situation in which a first mechanism has the main impact on 
electrical performances during the first part of the experiment, and a second one drives 
the evolution during the second step. 

40 °C 55 °C 70 °C 

   

   
 

 
Figure 4-17. Experimental degradation pathways from results published by Lim et al.: perovskite devices were 
aged under one sun, air and at 40, 55 or 70 °C (left, middle, and right respectively). Associated simulated pathways 
are superposed (down triangles and dashed lines for causes identified by authors, up triangles and dotted lines for 
others). At 40 and 55 °C, the closest mechanism is a loss of hole mobility (brown) or a formation of defects (red) in 
the perovskite layer. At 70 °C, a reduction of hole mobility in HTL (blue) is closer to experimental results. 

The first part of degradation is simply analyzed by considering the first 
experimental points (from 0 to 475, 175 and 10 minutes for measurements done at 40, 
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55 and 70 °C, respectively) with the same simulated behaviors, as showed in Appendix 
D, Figure D9. A loss of perovskite electron mobility (purple) can explain the behavior: 
increase of Voc and decrease of FF. It is to note that at this step, degradations at all 
temperatures induce comparable paths, advocating for a same mechanism, and being 
compatible with kinetics approach.  

In order to simulate degradation pathways for the second step, the procedure has 
been applied to the partially degraded devices, as if they were new fresh devices with 
lower performances. This time, performances of devices aged at 40, 55 and 70 °C were 
reproduced with respectively 72, 74 and 87 material parameters sets. Contrary to the 
first part of degradation, Figure 4-18 shows two distinct trends at distinct temperature 
levels. At 40 and 55 °C, the increase of defect density (red) is confirmed by a very good 
agreement of the experimental and simulated pathways on all three planes. However, 
at 70 °C, a reduction of acceptor density in the HTL (orange) would be a closer 
mechanism. In fact, two other mechanisms related to extracting layers are close to 
experimental results, as they all induce almost no Voc loss: reduction of mobility in 
HTL (blue) and in ETL (grey). Interestingly, this analysis is consistent with authors’ 
findings. 

40 °C 55 °C 70 °C 

   

   
 

 
Figure 4-18. Experimental degradation pathways from results published by Lim et al., measured at 40, 55 and 
70 °C (left, middle and right respectively). Associated simulated pathways are superposed. Second degradation 
step is analyzed. Only the second part of the experimental degradation is extracted from respectively 475, 175 and 
10 minutes. A formation of defects in the perovskite layer (red) is the closest mechanism at lower temperatures 
and experimental pathway at 70 °C is close to a reduction of acceptor density in the HTL (orange). 
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This second step impacts device performances much more than the first one: 
approximatively 40 and 60 % of Jsc and of FF losses respectively, versus almost no Jsc 
variation and a 20 % loss of FF during the first step. This explains why the 
interpretation with a single mechanism leads to comparable conclusions. 

Finally, the analysis done here with results published by Lim et al. shows well 
the strength of the proposed method. It is not necessary to use heavy characterization 
techniques to question the kinetics approach of the authors. Furthermore, the two steps 
analysis shows that it is possible to consider several degradation mechanisms, 
impacting performance sequentially. The degradation mechanism proposed by Lim et 
al., involving the degradation of the HTL could be responsible for the performance 
losses, but only in combination with another mechanism, and only at higher 
temperatures. This shows that directly studying the causality of degradation 
mechanisms instead of concomitance with material evolutions strengthens the 
analysis. 

 

 

Section key points: 

 Experimental measurements reported in literature have been 
investigated to provide a proof of concept of the methodology exposed 
here. 

 Pathways of the data reported by Peng et al. attribute performances 
losses to degradation of the perovskite layer. This can be concomitant 
with the apparent degradation of the HTL layer reported by the 
authors. 

 Consistent results with the interpretation of authors are obtained with 
degradation data published by Li et al.: the perovskite layer is in cause. 

 Even with the optimized composition reported by Chen et al, the 
perovskite layer is still in cause for performance losses of these devices. 

 Kinetics approach employed by Kim et al. is discussed: distinct 
mechanisms might have caused the degradation measured at several 
temperatures. 

 Several degradation sequences over time can be analyzed to consider 
multiple successive degradation mechanisms. 

 The approach employed here directly tackles the cause of optoelectrical 
performance losses. Conducting complementary characterization can 
only demonstrate concomitance with material evolutions. 



Chapter 4 – Modeling degradation mechanisms 

142 

4.5 Analysis of experimental results from IPVF 
Here, aging experiments performed at IPVF are investigated with the same 

approach as in the previous section. 
First, the study of a set of perovskite solar cells made of the same materials, 

degraded under constant illumination and ambient conditions is investigated. Then, 
results obtained in a climatic chamber for solar cells aged under dark are also analyzed, 
this time through coupled JV and steady state PL measurements. Details on the 
samples are reported in Section 2.4.2. 

Here, the full JV curves (measured under illumination) were available, contrary 
to results extracted from literature. Therefore, slopes at SC and OC could be extracted 
and employed to define more precisely the initial performances (details are in Section 
3.3), and degradation pathways in terms of these quantities have been investigated. 
Therefore, two supplementary mechanisms have been simulated, associated to the 
increase of both external resistances. 

Furthermore, the availability of the PL spectrum allowed to constraint even more 
the reproduction of the starting point of degradation. Moreover, a widening of the 
shallow defect distribution could be considered. 

4.5.1 JV characteristics recorded along degradation 
Devices JV-1.1 to JV-4.2 were all fabricated with the same structure (TiO2 ETL, 

triple cations perovskite and PTAA HTL) and four variations were employed to 
prepare the perovskite solution, with a preparation on the day of deposition or one 
day before and preheated or not. Furthermore, these devices were aged under constant 
illumination and N2 atmosphere during 1200 h. Their performances were tracked 
through periodic JV measurements. Details on samples and aging conditions are 
reported in Section 2.4.2. 

 
Devices JV-1.1 and JV-1.2: 
First, devices for which the perovskite solution was prepared on the day of 

deposition, without pre-heating are investigated. Only a short time sequence was 
extracted for device JV1.1 (from 170 to 290 h), because of unstable measurements 
conditions and noisy experimental results. Notably, the sample continued to operate 
after 290 h, but the causes of the distinct further behavior are not investigated here. 

The associated degradation pathway is displayed in Figure 4-19, along with 
associated simulated pathways. The initial experimental JV characteristic was 
reproduced with 113 sets (see Section 3.3), and all were subjected to the 12 mechanisms 
considered in this section. It appears that the increase of external resistance follows a 
very close behavior to the experiment on all graphs, characterized by a sharp decrease 
of Jsc and FF, with no Voc loss. It is in fact the only compatible mechanism, without 
Voc variation. 
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Figure 4-19. Experimental degradation pathway of device JV-1.1 and associated simulated mechanisms. The 
increase of external series resistance (green squares) is very close to experiment. 

The next device was fabricated in the same conditions, it is JV-1.2 and 
experimental measurements for this device could be extracted from 170 to 320 h. Here 
the initial point was reproduced with 107 sets. 

Results are displayed in Appendix D, Figure D10. Here, the reduction of HTL 
doping (blue triangles) is the most compatible with the joint reduction of Voc and Jsc 
and small FF variation. However, a reduction of electron mobility in the ETL (purple 
triangles) cannot be excluded neither. It would induce variations similar to the 
experiment, with only a slightly higher decrease of FF and slope at SC. 

 
Devices JV-2.1 and JV-2.2: 
The degradation of both devices for which the perovskite layer was deposited 

from a preheated solution prepared on the day of deposition occurred quickly. Both 
rapidly stopped operating or showed an erratic behavior. Furthermore, only device 
JV2.2 is considered because device JV-2.1 showed a significant increase of Jsc and Voc, 
probably associated to light soaking and not investigated here. 

The initial JV characteristic of JV-2.2 was reproduced with 114 sets, and 
experimental behavior was extracted from 50 to 160 h, covering most of the recorded 
performances. Results are displayed in Figure 4-20, and an increase of Voc clearly 
visible. The only compatible mechanism is an increase of hole mobility in the 
perovskite layer. It also explains the FF and Jsc losses, as well as the slopes behavior. 
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Figure 4-20. Experimental degradation pathway of device JV-2.2 and associated simulated mechanisms. The 
reduction of hole mobility in perovskite (yellow triangles) is compatible, other mechanisms do not induce an 
increase of Voc. 

Devices JV-3.1 and JV-3.2: 
The perovskite solution for both next devices was prepared the day before 

deposition, without pre-heating. First, aging of device JV-3.1 was extracted from 530 
to 1150 h, covering the long-term degradation trend. Its initial point was reproduced 
with 110 sets. 

As a result, degradation pathways in Figure 4-21 point out two compatible 
mechanisms: reduction of ETL doping (purple triangles) and formation of perovskite 
deep defects (yellow circles). Both can’t be excluded because they induce degradations 
of Voc, FF and slopes of the same order of magnitude as the experiment. 

   

 
Figure 4-21. Experimental degradation pathway of device JV-3.1 and associated simulated mechanisms. 
Reduction of ETL doping (purple triangles) and formation of perovskite deep defects (yellow circles) are compatible. 
Other mechanisms mostly induce too strong Jsc or FF losses.  

Degradation of device JV-3.2, prepared in the same conditions, was only 
extracted between 175 and 410 h. Its initial JV characteristic was reproduced with 111 
sets and results are displayed in Appendix D, Figure D11.  
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Importantly, all simulated mechanisms could be excluded at first, because none 
can explain the stable, even increasing Jsc. The closest mechanisms on this aspect are 
a reduction of electron mobility in ETL (purple squares) or formation of defects at 
perovskite – HTL interface (red squares). The first one underestimates slightly the 
reduction of FF and slope at SC but might remain compatible. However, the second 
would not induce any slope variation. Furthermore, the loss of ETL doping (purple 
triangles) and defect formation in perovskite (yellow circles) could explain well all 
experimental pathways, excepted the Jsc behavior. 
 

Devices JV-4.1 and JV-4.2: 
The last deposition method included preparation of the perovskite solution one 

day before deposition, and a pre-heating step. Degradation of JV-4.1 was extracted 
between 580 and 1160 h (most of the aging experiment) and initial point reproduced 
with 110 sets. 

In Appendix D, Figure D12, no simulated mechanism is compatible with such 
stable Jsc and increase of slope at SC. None of the close mechanisms on FF-Voc plane, 
such as reduction of HTL or ETL doping, or formation of perovskite defects, could be 
associated to increase of slope at SC. Furthermore, the decrease of front transmittance 
induces a purely orthogonal behavior in terms of Jsc-Voc. 

Degradation of the last device investigated in this section, JV-4.2, could also be 
extracted for most of the aging study, from 170 to 1150 h. Its initial point was 
reproduced with 114 sets. 

   

 
Figure 4-22. Experimental degradation pathway of device JV-4.2 and associated simulated mechanisms. No 
simulated mechanism explains such a stable Jsc. However, a loss of ETL doping (purple triangles) and formation 
of defects in perovskite layer (yellow circles) can’t be totally excluded. 

Again, JV-4.2 also shows stable Jsc and increasing slope at SC, that is not 
explained by any simulation. A loss of ETL doping (purple triangles) and formation of 
defects in perovskite layer (yellow circles) are still compatible with Voc and FF 
behavior, and the first degradation points of JV slopes. However, the discrepancies in 
terms of Jsc evolution make this interpretation lowly probable. 
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Intermediate conclusions: 
It has to be kept in mind that the studies done here are not exhaustive in terms of 

considered mechanisms. In fact, when a simulated pathway superposes with the 
experiment, it is only the proof that the mechanism is compatible and a possible 
explanation. It is not the proof that no other mechanisms (potentially not considered 
here, or a combination) can also reproduce the experimental behavior. 

Also, the simulated pathways for these samples were all different to a certain 
extend. This emphasizes the need to accurately reproduce the initial performances 
before degradation to be able to associate the right simulated pathways to the right 
device. 

As a result, Table 4-2 summarizes the lists of compatible mechanisms found in 
this study. Importantly, the two cases where a single mechanism was found 
compatible with good fitting correspond to short degradation sequences: the increase 
of series resistances of device JV-1.1 and reduction of hole mobility in the perovskite 
layer of device JV-2.2. In fact, when analyzing short time sequences, a concomitant 
major impact of several mechanisms might be less probable than over a longer period 
of time. This facilitates the comparison with the unitary degradation mechanisms 
simulated here. 

Table 4-2. Mechanisms associated to the devices investigated in this sub-section. Red: closest mechanism: 
experimental and simulated pathways superpose significantly. Yellow: compatible mechanism: experimental and 
simulated pathways follow mostly similar trends. Green: excluded mechanism: experimental and simulated 
pathways are significantly different. 

Device JV-1.2 JV-3.1 JV-3.2 JV-4.1 JV-4.2 JV-1.1 JV-2.1 JV-2.2 

Features of degradation 
pathways Stable Jsc, joint FF and Voc decrease 

Jsc and 
FF loss 

Increase of Voc, 
increase of Jsc (JV-

2.1) 

HTL hole mobility             

N
ot

 s
im

ul
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ed
 

  

HTL doping               

Pvk-HTL interface               

Pvk defects               

Pvk electron mobility               

Pvk hole mobility               

Pvk-ETL interface               

ETL electron mobility               

ETL doping               

External shunt resistance               

External series resistance               

Front transmittance               
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The five devices with stable Jsc and joint FF and Voc decrease, which apparently 
followed the similar degradation pathways in Figure 4-7, might not have been 
subjected to the same mechanisms. However, degradation of the perovskite layer can 
be excluded for all of them. 

Notably, JV-1.2, JV-3.1 and JV-3.2 are mostly compatible with ETL related 
mechanisms (decrease of doping level or mobility). Furthermore, both devices JV-4.1 
and JV-4.2 have most probably been subjected to distinct mechanisms from the twelve 
considered here, that notably allow a stable Jsc. This means that degradation of the 
perovskite layer can be excluded here also. In fact, only JV-3.1 has been found 
compatible with perovskite layer degradation, but also with a loss of ETL doping. 

The goal of the study done by the IPVF fabrication team was to investigate the 
deposition method of the perovskite layer and try to define an optimum. The results 
obtained here show that none of the four methods stands out and performs better. On 
the contrary, the preparation on the day of deposition with pre-heating (JV-2.1 and JV-
2.2) under-perform significantly, and the results obtained here indicate that the 
perovskite layer might be in cause. 

Devices prepared with other techniques do not necessarily follow the same 
mechanisms. However, results show that their perovskite layer might have remained 
stable, or at least is not in cause for the recorded degradation of performances. 

Also, both devices with solution prepared the day before deposition and pre-
heated (JV-4.1 and JV-4.2) showed an experimental degradation that was not 
compatible with any simulated mechanism in this work, because of the rise of JV slope 
at SC and stable Jsc. It seems possible that both were subjected to the same mechanism, 
but complementary analyses are necessary to provide more reliable indications on this 
aspect. 

Importantly, these results illustrate a powerful aspect of the methodology 
employed here: specific degradation mechanisms can be excluded when pathways are 
incompatible. Here it allows to provide guidelines to improve the stability of the 
perovskite solar cells studied here: it is necessary to focus on the transport layers and 
interfaces. As long as the solution is not prepared and pre-heated on the day of 
deposition, the perovskite layer should be stable. 
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4.5.2 JV characteristics and PL spectra recorded along degradation 
In this section, solar cells periodically characterized during aging through current 

voltage characteristic and photoluminescence spectrum are investigated. Device 
characteristics (materials and structure) and aging conditions are reported in detail in 
Section 2.4.2. Notably the same perovskite material was employed for all samples, but 
combinations of two ETL and HTL materials were employed: TiO2 / PTAA for JV-PL-
1, 2 and 3, SnO2 / PTAA for JV-PL-4, and TiO2 / Spiro-MeOTAD for JV-PL-5. 

As done in previous sub-sections, the variations of photoluminescence intensity 
are represented here in terms of quasi-Fermi levels splitting (expression derived in 
Section 1.1.2). 

 
Device JV-PL-1: 
The first characterized through coupled JV and PL measurements is JV-PL-1. It 

was fabricated with TiO2 ETL, PTAA HTL and its initial performances were 
reproduced with 116 sets. 

According to JV parameters in Figure 4-23, four simulated degradation 
mechanisms are compatible with the experiment: reduction of electron mobility 
(yellow squares) or formation of defects (yellow circles) in the perovskite layer, or 
reduction of doping in HTL (blue triangles) or ETL (purple triangles).  

However, a reduction of perovskite hole mobility would induce an increase of 
quasi-Fermi levels splitting, and the opposite is observed experimentally. Moreover, a 
reduction of doping in ETL seems to induce a slight increase of slope on low energy 
side of PL spectrum, and slight shifting of the peak maximum towards lower photon 
energies. Again, these are inverse trends to experimental results. It is to note however, 
that low confidence is to attribute to these last pathways: the ranges of observed 
variations are extremely low. As a result, only the quadrant in which degradation 
occur might be to interpret. 

Section key points: 

 Pathways that appeared similar when compared in terms of 
normalized parameters are not necessarily attributed to the same 
mechanism. 

 The two samples with the clearest interpretation and attribution of a 
single mechanism were investigated over short time periods. 

 Among the four deposition techniques employed for the perovskite 
layer, one stands out: preparation on the day of deposition with pre-
heating under-performs significantly and results obtained here 
attribute the degradation to the perovskite layer. 

 For most other samples, the perovskite layer might have remained 
stable, and the transport layers caused the performance losses. This 
constitutes guidelines for further improvements of stability. 



4.5 Analysis of experimental results from IPVF 

149 

Finally, formation of defects in the perovskite layer (yellow circles) and reduction 
of doping in the HTL (blue triangles)  are the two mechanisms that can’t be excluded. 

   

  
 

Figure 4-23. Experimental degradation pathway of device JV-PL-1 and associated simulated mechanisms. Two 
mechanisms are compatible on all planes: formation of defects in the perovskite layer (yellow circles) and reduction 
of HTL doping (blue triangles). 

Device JV-PL-2: 
JV-PL-2 has the same structure as previous device, with TiO2 ETL and PTAA 

HTL. In in order to simulate degradation pathways, initial performances were 
reproduced with 114 sets. 

Here again, combining JV and PL parameters in Figure 4-24 allows to point more 
confidently incompatible mechanisms. For instance, reduction of hole mobility in the 
perovskite layer (yellow triangles) is compatible with the experiment according to all 
JV parameters. However, it would induce a rise of both quasi-Fermi levels splitting 
and low energy side slope, which is opposite to experimental behavior. 

As a result, reduction of HTL doping (blue triangles) is the most compatible 
mechanism. Notably, two further mechanisms can’t be excluded with strong 
confidence. The reduction of hole mobility in HTL (blue squares) is also compatible on 
most planes, but with lower decrease of Voc. The reduction of ETL doping (purple 
triangles) is also mostly consistent, with only low increase of JV slope at OC and 
stronger decrease of quasi-Fermi levels splitting. 
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Figure 4-24. Experimental degradation pathway of device JV-PL-2 and associated simulated mechanisms. 
Reduction of HTL doping (blue triangles) is the most compatible, but reduction of hole mobility in HTL (blue 
squares), reduction of ETL doping (purple triangles), or reduction of shunt resistance (green triangles) can’t be 
totally excluded. 

   

  
 

Figure 4-25. Experimental degradation pathway of device JV-PL-3 and associated simulated mechanisms. 
Reduction of shunt resistance (green triangles) is the closest mechanism. Formation of defects in the perovskite 
layer (yellow circles) and reduction of HTL doping (blue triangles) are also compatible with experiment. 
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Device JV-PL-3: 
Initial performances of JV-PL-3, the last device with the same structure (TiO2 ETL 

and PTAA HTL), were reproduced with 108 sets. 
In Figure 4-25, the closest mechanism is the reduction of shunt resistance (green 

triangles), however other mechanisms could also explain the experimental behavior: 
formation of perovskite defects (yellow circles) and reduction of HTL doping (blue 
triangles). Regarding the pathways in terms of PL spectrum slope versus position of 
the maximum, it is to note that in this example, even the range of variation of the slope 
is very low. 

 
Device JV-PL-4: 
The performances of device JV-PL-4 at 25 h were reproduced with 107 sets. 

Contrary to previous devices, JV-PL-4 was fabricated with SnO2 ETL. 
In Appendix D, Figure D13, reduction of electron mobility in perovskite (yellow 

squares) is compatible in terms of JV parameters but has to be excluded according to 
quasi-Fermi levels splitting evolution.  In fact, reduction of ETL doping (purple 
triangles) or shunt (green triangles) could be compatible with the beginning of 
degradation, but simulations did not induce such a large drop of Voc. 

It is to note that here interpretation is not easy: the non-monotonous drop of Jsc, 
associated to a rise of FF is not compatible with any simulated mechanism. 
Furthermore, the interpretation of the rest of the experimental degradation cannot 
confidently by analyzed with the initial point chosen here, before the Jsc drop. 

Because previous results in Appendix D, Figure D13 were difficult to interpret, 
the same experimental degradation experiment was considered only starting at 125 h 
to avoid the initial non monotonous behavior. The same simulation procedure has 
therefore been applied again and initial performances at 125 h were reproduced with 
114 sets. 

In Figure 4-26, however, no simulated mechanism explains the large 
experimental drop in Voc. Again, although slightly compatible in terms of JV 
performances, reduction of perovskite electron mobility (yellow squares) has to be 
excluded because of quasi-Fermi levels splitting behavior. As a result, only a decrease 
of shunt resistance (green triangles) might not be to exclude, although this mechanism 
does not explain well the Voc behavior. 

 
 



Chapter 4 – Modeling degradation mechanisms 

152 

   

  
 

Figure 4-26. Experimental degradation pathway of device JV-PL-4 (starting at 125 h) and associated simulated 
mechanisms. No mechanism reproduces the large Voc drop accompanied with stable Jsc. Decrease of shunt 
resistance (green triangles) might not be excluded. 

Device JV-PL-5: 
The last device investigated in this sub-section, JV-PL-5, was fabricated with TiO2 

ETL and Spiro-MeOTAD HTL. Its initial performances at 20 h were reproduced with 
131 sets. 

In Appendix D, Figure D14, the non-monotonous behavior of the Jsc makes it 
difficult to point out compatible mechanisms. In fact, no mechanism induces such 
stable Jsc for the same Voc loss. The reduction of HTL doping (blue triangles), which 
could be slightly compatible in this plane clearly induces no reduction of PL intensity, 
contrary to the experiment. 

Only the very first experimental points could be associated to compatible 
simulated mechanisms. The formation of defects in the perovskite layer (yellow 
circles) and the reduction of doping in ETL (purple triangles) actually reproduce the 
experimental behavior in term of FF and JV slopes. Even the initial decrease of quasi-
Fermi levels splitting is compatible. 

However, the variations of PL peak slope and position might contradict this 
analysis. The formation of defect would induce an increase of the slope, and the 
reduction of ETL doping a peak shift towards lower energies, both trends are opposite 
to the experiment. As mentioned previously, the ranges of variations for both 
quantities are significantly small (especially Emax), making their interpretation less 
reliable. Therefore, both mechanisms are not totally excluded. 

The non-monotonous Jsc behavior of device JV-PL-5 cannot easily be attributed 
to any simple mechanism and could even be related to external factors such as 
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variations of illumination intensity. Therefore, the experimental behavior recorder 
after 85 h is also studied. Likewise for device JV-PL-4, the whole procedure has been 
applied a second time, and 105 sets reproduce the initial performances.  

   

  
 

Figure 4-27. Experimental degradation pathway of device JV-PL-5 (starting at 85h) and associated simulated 
mechanisms. Reduction of doping in HTL (blue triangles) is close to the experiment but decrease of shunt 
resistance (green triangles) is also compatible. 

This time, the experimental pathway in Figure 4-27 can be more confidently 
associated to simulated mechanisms. First, the reduction of doping in HTL (blue 
triangles) is compatible on all planes, also explaining the stable quasi-Fermi levels 
splitting with strong Voc loss. However, it is to note that the reduction of shunt 
resistance (green triangles) is also compatible and should not be excluded. 

 
Intermediate conclusions: 
First, the analyses of both last devices showed that interpretation of experimental 

degradation in Figure 4-26 and Figure 4-27 is clearer, respectively for devices JV-PL-4 
and JV-PL-5. This illustrates again that shorter and monotonous degradation 
sequences are more easily compared to the simulated unitary degradation 
mechanisms, as mentioned in previous sub-section. 

Also, the different variations of quasi-Fermi level splitting (reduction of 
mobilities or increase of defect density in perovskite layer for instance) did allow to 
confidently exclude some mechanisms. Moreover, even if the slope on the low energy 
side of the spectrum and the position of the peak maximum do not vary significantly 
in most experimental and simulated cases, they could provide insights according to 
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their direction of variation. The five examples of devices investigated here 
demonstrate well the interest of coupling characterization techniques. 

It is to note that the simulation results provide greater insights on the distinction 
of mechanisms than by only comparing experimental degradation pathways. For 
instance, the distinct behavior of JV-PL-1 from JV-PL2 and JV-PL-3 in Figure 4-8 has 
been envisaged in Section 4.2 to be linked to a distinct cause. However, simulated 
pathways show here that the same mechanism, the reduction of HTL doping, could 
induce a pronounced loss of PL intensity versus Voc (for device JV-PL-1) as well as an 
almost stable emission (devices JV-PL2 and JV-PL-3). This demonstrates that 
degradation pathways depend on the initial performances of the solar cell, and how 
reproducing this initial point is crucial for the present work. 

The identified compatible mechanisms for the samples investigated in this sub-
section are summarized in Table 4-3, along with characteristics of the devices and their 
characterization conditions. As a reminder, they were all aged under the same 
conditions: dark, 85 % R.H. and 65 °C (see Section 2.4.2 for all details). 

Table 4-3. Mechanisms associated to the devices investigated in this sub-section. Red: closest mechanism: 
experimental and simulated pathways superpose significantly. Yellow: compatible mechanism: experimental and 
simulated pathways follow mostly similar trends. Green: excluded mechanism: experimental and simulated 
pathways are significantly different. 

Device JV-PL-1 JV-PL-2 JV-PL-3 JV-PL-4 JV-PL-5 

ETL / HTL TiO2 / PTAA TiO2 / PTAA TiO2 / PTAA SnO2 / PTAA TiO2 / Spiro 

HTL hole mobility           

HTL doping           

Pvk-HTL interface           

Pvk defects           

Pvk electron mobility           

Pvk hole mobility           

Pvk-ETL interface           

ETL electron mobility           

ETL doping           

External shunt resistance           

External series resistance           

Front transmittance           

 
Interestingly, it appears that a loss of HTL doping is compatible for all four 

samples with TiO2 ETL (JV-PL1 to JV-PL-3 and JV-PL-5). Of course, other mechanisms 
are compatible, such as the formation of defects in the perovskite for devices JV-PL-1 
and JV-PL-3, or a reduction of shunt resistance. 
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These devices were fabricated with two HTL materials, PTAA for devices JV-PL1 
to JV-PL-3 or Spiro-MeOTAD for JV-PL-5. However, the low stability of both organic 
HTL materials has already been reported, and their sensitivity to heat and moisture 
demonstrated [9]. 

Finally, this second study of samples fabricated at IPVF stresses again the 
importance of the transporting layers for the stability of perovskite solar cells. 
Importantly, exhaustive exploration of materials combinations and higher batch 
statistics are necessary to demonstrate the higher stability of SnO2 based samples. 
Applying the method exposed here would then provide stronger conclusions on the 
processes degrading the solar cells performances and significantly help to point the 
most stable structure. 

 
 

 

Section key points: 

 Non-monotonous degradation sequences can’t be clearly interpreted, 
mostly because simulated processes are monotonous. 

 Combining JV and PL allows to distinguish mechanisms that have 
similar pathways in terms of only JV parameters. 

 Simulation results are necessary to achieve the distinction between 
experimental pathways of distinct devices: because of different starting 
points, the same process can induce different pathways. 

 Degradation of device having a TiO2 ETL might have been caused by 
the HTL layer, regardless of its nature (PTAA or Spiro). 

 The sample fabricated with a SnO2 ETL is the only one not being 
compatible with HTL degradation. 

 Complementary analyzes are necessary to demonstrate this aspect and 
the method exposed here could support a more exhaustive study. 
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Chapter conclusion 
In this chapter, degradation mechanisms of perovskite solar cells have been 

investigated by analyzing the available experimental results summarized in section 
2.4. They all consist in records of the evolution of optoelectrical parameters (derived 
from JV curves or PL spectra) over time, under constant conditions. Two approaches 
were employed to model and analyze degradation 

First, kinetics of the optoelectrical parameters over time at several temperatures 
are investigated. Simple models for the speed of chemical reactions, with several 
reaction orders, were considered. Results showed that all orders could be fitted with 
similar quality, and no clear linear dependence was found on the Arrhenius plots. 

In fact, perovskite solar cells are complex systems, and the degradation reactions 
might have complex impacts on recorded optoelectrical parameters. Furthermore, 
thermal activation studies assume that the same reaction is being observed at different 
temperatures. This cannot be assured with perovskite solar cells, where potential 
mechanisms are numerous. Finally, finding the activation energy of a given 
degradation process might be difficult to interpret, and would not allow to determine 
its nature, for instance. 

Therefore, another approach has been employed for most of the work presented 
here. It is based on considering degradation through the evolution of the mutual 
correlation of recorded optoelectrical parameters. This produces degradation 
pathways that are independent from time, and therefore independent from any 
activation process (through temperature, illumination, humidity, etc.). In fact, these 
pathways are intrinsic characteristics of the mechanisms (for a given device) and can 
be used to distinguish them. 

Experimental results can be represented in the form of pathways and comparing 
them provides insights on the potential common or distinct nature of underlying 
mechanisms. However, the degradation pathways depend on the initial properties of 
the device. In fact, it has been showed that the same mechanism could induce distinct 
pathways. Experimental results that seemed following distinct pathways have been 
finally showed to be compatible with the same mechanism. 

 Therefore, it is highly important to compare experimental results to simulated 
pathways that have been specifically tailored for the considered sample. This is why 
part of this work has been done on reproducing accurately the initial performances of 
the considered devices. 

Importantly, this approach has been applied in a first step to experimental 
measurements reported in literature. This allowed to compare results and demonstrate 
the validity of the novel approach employed here. Interestingly, the method employed 
here directly address the cause of the performance losses. It can therefore provide 
complementary insights to analyses based on materials characterizations before and 
after degradation. Such results only point out the material properties that 
concomitantly changed along performances degradation. 
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Finally, aging experiments performed at IPVF were investigated. More 
exhaustive data on the perovskite solar cells materials and fabrication techniques were 
available. Importantly, the full current-voltage curves were available, allowing to 
consider slopes at OC and SC, and photoluminescence emission spectra were 
simultaneously recorded in some cases. 

Results on the first set of samples, prepared with four variations in the deposition 
method of the perovskite layer, showed that no technique significantly improved the 
solar cells stability. On the contrary one variant (perovskite solution prepared on the 
day of deposition, with pre-heating) did degrade significantly faster than the others. 
Results obtained here indicate that the perovskite layer might be in cause. 

Devices prepared with other techniques do not necessarily follow the same 
mechanisms. However, results show that their perovskite layer might have remained 
stable, or at least is not in cause for the recorded degradation of performances. 

Finally, both devices with solution prepared the day before and pre-heated 
showed an experimental degradation that was not compatible with any simulated 
mechanism in this work. 

The second set of samples contained devices with various structure (different 
HTL and ETL materials). Notably, they were fabricated with two HTL materials, 
PTAA or Spiro-MeOTAD and the sensitivity of both organic materials to heat and 
moisture has already been reported in literature. These samples were investigated 
under the same conditions, through coupled JV and PL measurements in a climatic 
chamber (65 °C and 85 % R.H.). 

Interestingly, it appears that among compatible mechanism found here, a loss of 
HTL doping is common to all four samples with TiO2 ETL. In fact, the only sample 
fabricated with a different ETL (SnO2) is also the only sample from which the 
degradation is not compatible with HTL related mechanisms. The complementarity 
with other characterization techniques could be particularly useful to investigate 
deeper this aspect. 

The work presented in this chapter show how modeling can be employed to take 
the full advantage periodic measurements. JV characteristics were investigated, 
coupled with PL or not, and further techniques could be envisaged, such as 
capacitance spectroscopy, UV-visible spectroscopy or EQE measurements. It has been 
showed here how coupling techniques can help to distinguish pathways through new 
planes. Furthermore, this would constraint more the reproduction of the degradation 
starting point, by considering more comprehensively the associated performances. As 
a result, the confidence in the applicability of the simulated pathways to the specific 
considered sample would be improved. 

Finally, degradation pathways defined here, as being independent from time, 
easily provide intrinsic characteristics of the degradation mechanisms. They provide a 
powerful tool to compare simulated and experimental results, and to distinguish 
chemical-physical processes. 
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Chapter introduction 
The objective in this chapter is to help designing further simulation studies by 

two ways: first, reducing the number of necessary input parameters and second, 
identifying the most important ones. 

First, meta-parameters, defined as combinations of material parameters that 
actually define the solar cell behavior are considered. In Section 5.1, an analytical 
model is employed to propose candidate meta-parameters. 

Importantly, results exposed in the previous chapter were all based on a 
statistical approach, and a large number of simulations was performed. For each 
simulation, inputs and outputs were stored together in the database described in 
Section 5.2. 

In order to assess the validity of candidate meta-parameters to define the solar 
cell performance, their correlation to the output optoelectrical parameters is 
investigated in Section 5.3. 

Furthermore, Principal Component Analyses (PCA) are employed in this work 
to investigate the statistics of the available database. The mathematical framework to 
determine components is exposed in Section 5.4. 

Finally, this method is applied in Section 5.5 to subsets of the database, extracted 
by selecting entries having given output values. Two orthogonal configurations are 
employed by allowing all except one, or one variable output parameter. The first 
approach allows to point out the important input parameters, and the second to 
propose simple phenomenological models. 
 

 

Chapter key points: 

 Statistical approaches can be applied to databases of simulated 
configurations to help simplifying further studies. 

 Meta-parameters are combinations of input parameters (dimensionless 
or not) that actually define the solar cell behavior. 

 Analytical models can provide insights on the role of material 
parameters even in more complex numerical simulations. 

 Principal components analyses provide components in the form of 
combinations of original variables. They are independent from each 
other and ranked in terms of importance. 

 The statistics of the underlying input parameters, all allowing a fixed 
output value can be investigated through PCA. This allows to point out 
the important input parameters to focus on when designing 
simulations, or when developing solar cells.  

 When performing PCA on entries having all output parameters fixed 
except one, the correlation of the first component with the variable 
output allows to propose simple phenomenological models. 
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5.1 What is a meta-parameter ? 
It has been showed in the previous chapters that numerical simulations of 

perovskite solar cells provide insights on the degradation of their performances. 
However, a very large number simulations was necessary, because numerous input 
parameter combinations needed to be explored. In this chapter, methods to reduce the 
number of necessary parameters are explored. 

Such simplification can be done by using meta-parameters. These are 
combinations of input parameters (dimensionless or not) that actually define the solar 
cell behavior. If such parameters exist, it is not necessary to explore combinations of 
the constitutive parameters, only the values of the meta-parameter. 

An example is the diffusion length of carriers in a semi-conductor. It is based on 
the product of the diffusion coefficient and lifetime and defines the behaviors of the 
carriers. If this is actually a meta-parameter for the perovskite solar cells considered in 
this work, only one of the two material parameters would need to be explored. 

5.1.1 Meta-parameters derived from analytical solar cell model 
The first approach to define meta-parameters is based on the model proposed in 

Section 1.1.4. Although it is established for a pn junction, without transport layers, it 
accounts for most physical phenomena present in a perovskite solar cell. Moreover, its 
analytical nature directly provides combinations of material parameters that could be 
meta-parameters. 

It expresses the output current produced by the solar cell through a sum of three 
terms, respectively accounting for photogeneration, recombination in the quasi-
neutral regions, and recombination in the space charge region [1], [2].  

The photocurrent from the front n doped region is expressed as follows: 

𝐽

= 𝑞𝜙
𝛼𝐿

𝛼 𝐿 − 1

⎝

⎛

𝑆 𝐿
𝐷

+ 𝛼𝐿 −
𝑆 𝐿

𝐷
𝑐𝑜𝑠ℎ

𝑊
𝐿

+ 𝑠𝑖𝑛ℎ
𝑊

𝐿
𝑒

𝑆 𝐿
𝐷

𝑠𝑖𝑛ℎ
𝑊

𝐿
+ 𝑐𝑜𝑠ℎ

𝑊
𝐿

− 𝛼𝐿 𝑒

⎠

⎞ (5 − 1) 

From this expression, already two meta-parameters can be identified: 𝐿  and 
, out of three material parameters. Also, the expression for the back p doped 

regions is almost symmetrical with respect to hole and electron parameters, see Section 
1.1.4. 

Additionally, the photocurrent from the space charge region is expressed as: 

𝐽 = 𝑞𝜙𝑒 1 − 𝑒 (5 − 2) 
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Moreover, the recombination current is also distinguished between quasi neutral 
regions and space charge region. For the first one, expressions are symmetrical with 
respect to hole and electron parameters, it is reported here for the front n doped region: 

𝐽 = 𝑞
𝐷 𝑛

𝐿 𝑁

𝑆 𝐿
𝐷

𝑐𝑜𝑠ℎ
𝑊

𝐿
+ 𝑠𝑖𝑛ℎ

𝑊
𝐿

𝑆 𝐿
𝐷

𝑠𝑖𝑛ℎ
𝑊

𝐿
+ 𝑐𝑜𝑠ℎ

𝑊
𝐿

𝑒 − 1 (5 − 3) 

Finally, the expression of the recombination current in the space charge region is 

approximated by the product of an effective length,  , and the maximum value 

of the recombination rate. This estimation overestimates SRH recombination, 
providing an upper limit of its value: 

𝐽 = 𝑞
1

𝜏

𝑛

2

𝑤 + 𝑤

𝑞 𝑉
𝑘 𝑇

𝑒 (5 − 4) 

Importantly, the following quantities play a significant role in the above 
expressions. First, the size of the space charge region at n doped side (symmetrical 
expression for p doped side): 

𝑤 =
2𝜖𝑘 𝑇

𝑞 

𝑁

𝑁

1

𝑁 + 𝑁
 𝑉 − 𝑉 (5 − 5) 

Moreover, the effective hole lifetime (𝜏 ) accounts for both radiative and 
recombination processes, and is employed to compute the associated diffusion length 
(𝐿 ): 

1

𝜏
=

1

𝜏
+

1

𝜏
(5 − 6) 

𝐿 = 𝐷 ∙ 𝜏 (5 − 7) 

Here the same configuration as Section 1.1.4 is considered: deep trap levels with 
equal capture cross section and thermal velocity for electrons and holes, the SRH 
recombination lifetime is therefore equal for both types of carriers. See equations 
(1 − 36) to (1 − 41) for more details. 

Expressions related to the front n doped side and holes minority carriers can 
mostly be symmetrically translated for the back p doped side and electron minority 
carriers. Similarly, the following discussion focuses on holes related quantities, but can 
be symmetrically transposed for electrons minority carriers. 

From above photogeneration term, two dimensionless quantities appear: 𝛼𝐿  
and 𝛼 w + w . The first one arises from minority carriers’ diffusion through the n 
quasi neutral region, and the second from absorption in the space charge region. 
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Furthermore, for the recombination and diffusion through the space charge 
regions, the ratio  appears. It relates the respective region size and minority 

carriers’ diffusion length. Together with the quantity = , they could be 

related to propagation of minority carriers in a doped semi-conductor. 
Finally, the last meta-parameter is maybe the most obvious: the diffusion length 

𝐿 = 𝐷 𝜏  which describes the transport of carriers. 
These six examples of quantities are meta-parameters for a pn homojunction but 

could provide candidates for perovskite solar cells. In fact, all translated meta-
parameters candidates are listed in Table 5-1 and will be investigated in the following 
sections. 

Table 5-1. Meta-parameters established for a pn junction from an analytical model and translated candidates for 
perovskite solar cells. 

pn homojunction Perovskite solar cell 

𝜏 𝐿 = 𝐷 𝜏

𝜏 𝐿 = 𝐷 𝜏

𝜏 𝐿 = 𝐷 𝜏
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𝜏 𝐿 = 𝐷 𝜏

 

𝛼𝐿  𝛼 𝐿  

𝛼𝐿

𝛼 𝐿 − 1
 

𝛼 𝐿

𝛼 𝐿 − 1
 

𝛼𝑤  𝛼 𝑊  

𝑆 𝐿

𝐷
∝ 𝑁

𝜏

𝐷
 

𝑁 /

𝜏

𝐷
 

𝑁 /

𝜏

𝐷
 

𝑊

𝐿
 

𝑊

𝐿
 

𝐷

𝑁 𝐿
=

1

𝑁

𝐷

𝜏
 

1

𝑁

𝐷

𝜏
 

𝑁

𝑁
 

𝑁

𝑁
 

𝑁 + 𝑁  𝑁 + 𝑁  

 
Limiting transport processes differ in nip structures and pn junctions because 

there are no minority carriers in the intrinsic perovskite material. Therefore, hole 
diffusion lengths and coefficients are translated into electron ones but still associated 
to ETL doping level. Even if  electrons are collected at front side, electron transport is 
limiting in the first case and hole transport in the second. 

Importantly, the meta-parameter related to surface / interface defects is split into 
two versions for both carriers, because both densities play a role for recombination. 
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Importantly, all meta-parameters candidates gathered in Table 5-1 are not 
expected to properly describe the performances of a solar cell. Also, the combinations 
of material parameters associated to these meta-parameters would not strictly reduce 
the number of necessary input parameters for a drift diffusion simulation. Therefore, 
the following subsections will investigate the link between these meta-parameters and 
solar cell performances, through their correlation. It will be verified whether it is 
possible to point out significant ones or not. 
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5.2 Available dataset of simulations 
In Sections 3 and 4 numerous simulations have been executed to investigate the 

degradation of given solar cells. Reproducing their initial performances before 
degradation required to explore the input parameters space (see Section 3.2), and 
supplementary simulations have been made to consider several degradation 
mechanisms (see Section 3.4). 

Several devices investigated in this work (JV-1.1 to 4.2) share the same 
architecture (TiO2 / triple cation perovskite / PTAA) and were simulated under the 
same conditions. As a result, all associated simulations share the same fixed 
parameters (bandgap energies, electronic affinities, etc.), see Table 5-2. 

Table 5-2. Fixed material parameters defining the solar cell structure and common to all simulation entries in the 
investigated dataset. 

Simulation parameter Value 

Illumination intensity AM1.5g / 1000 W.m-2 

Temperature 20 °C  

HTL (PTAA) 

Thickness 100 nm 

Bandgap 3.2 eV 

Electron affinity 2.22 eV 

Relative permittivity 3.5 

CB / VB effective density of states 2x1018 cm-3 

Electron mobility 1x10-2 cm2.V-1.s-1 

Perovskite 

Thickness 500 nm 

Bandgap 1.62 eV 

Electron affinity 2.22 eV 

Relative permittivity 64 

CB / VB effective density of states 2x1018 cm-3 

Donor / acceptor density 0 cm-3 

Electron transporting 
material 

Thickness 100 nm 

Bandgap 3.2 eV 

Electron affinity 2.22 eV 

Relative permittivity 3.5 

CB / VB effective density of states 2x1018 cm-3 

Hole mobility 1x10-2 cm2.V-1.s-1 

 
As a result, statistical analyses will be performed over the associated dataset. In 

total, 51 053  entries are available, with different values for the varying parameters 
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(defect densities, carriers mobilities, etc.). Finally, parameters investigated here (inputs 
and outputs) are listed in Table 5-3, they will constitute the original variables of the 
principal component analyses. 

Table 5-3. Variables (simulation inputs and outputs) considered for the principal component analysis. 

Parameters 

Inputs 

HTL 
Hole mobility 

Acceptor density 

HTL / pvk interface Defect density 

Perovskite 

Electron mobility 

Hole mobility 

Deep defects density 

ETL / pvk interface Defect density 

ETL 
Electron mobility 

Donor density 

Outputs 

 Voc 

 Jsc 

 FF 

 
 Importantly, this dataset was generated through the genetic algorithm 

developed to reproduce given experimental performances, and by gathering 
simulations of degradation mechanisms. As a result, the input parameters are not 
distributed uniformly, and this could impact the parameters correlations and principal 
components. Therefore, a subset is extracted by randomly picking entries at equal 
distance, in order to obtain a uniformly distributed dataset. 

In the example of the full 51 053  entries dataset, 27 472 are uniformly extracted, 
distributions before and after extraction are reported in Appendix E, Figure E1. The 
variables are then normalized and considered in logarithmic scale, as explained in the 
previous section. 

The advantage of extracting a uniformly distributed subset is already visible 
when computing the covariance matrix. When computed before extraction, as 
displayed in Appendix E, Figure E2, pollutions through correlations of materials 
parameters make the interpretation less reliable. 

However, the covariance matrix in Figure 5-1, on the uniformly distributed 
subset, provides insights on the importance of material parameters to define the solar 
cell performances. For instance, the defect density in the perovskite layer is strongly 
anti-correlated with Voc. This is due to the fact that non radiative recombination 
impacts the Voc strongly. Interestingly, it appears that the perovskite hole mobility is 
much more correlated to outputs than electron mobility. Moreover, HTL related 
parameters play a more significant role than ETL properties. This is related to fact that 
devices are illuminated through their ETL side. Carriers are photo-generated near this 
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interface and as result, transport properties of holes, which have to cross the whole 
perovskite layer, are more impacting performances. This effect has been verified by 
considering symmetrical devices in pin configuration: in this case ETL properties and 
electron related parameters become more important. 

 
Figure 5-1. Covariance matrix of the uniformly distributed subset (27 472 entries) for all variables. Associated 
95 % confidence interval is in brackets. 
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5.3 Assessment of meta-parameters candidates 
The meta-parameters candidates established in Section 5.1 are investigated here 

by considering their correlations with the output optoelectrical parameters: Voc, Jsc 
and FF. This provides a quantification of their relation to the performances of the solar 
cell. 

For each entry of the uniformly distributed subset described in Section 5.2, the 
associated values of meta-parameters candidates are computed. The covariance matrix 
is then computed, and relevant elements are reported in Figure 5-2. Importantly, the 
logarithmic value of the meta-parameters has been considered. 

Results show that SRH diffusion lengths are always significantly more correlated 
to the outputs than their radiative recombination counterparts. This is consistent with 
a behavior of the simulated solar cells being more dependent on trap assisted than 
radiative recombination. 

Furthermore, consistency with previous covariance matrix is also illustrated by 
the larger correlation of holes transport related meta-parameters, than electron related 
ones. The SRH lifetime and associated diffusion lengths are clear examples. 

 
Figure 5-2. Correlation coefficients of meta-parameters candidates with output optoelectrical parameters. 𝑁  
and 𝑁  are the defect densities at the ETL-pvk and HTL-pvk interfaces respectively, and 𝑁  and 𝑁  the doping 
levels in ETL and HTL, respectively. 

It is to note that in the available database, no variation of absorption coefficient 
has been explored, therefore, associated meta-parameters can’t be properly assessed. 
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Finally, the characteristics of HTL and ETL are only grasped by the meta-
parameters considered here through their doping levels. Their ratio appears not to be 
correlated with outputs in Figure 5-2, and other meta-parameters including these 
quantities might not be more instructive on the role of the ETL and HTL. 

This section shows how an analytical model can help to obtain useful meta-
parameters. For instance, the diffusion length in the perovskite layer (associated to 
SRH lifetime) seems to be a very good indicator. However, because assumptions are 
necessary to derive analytical expressions, the model employed here is applied to a pn 
homojunction. As a result, specific aspects of the perovskite solar cell, such as the 
nature of the ETL and HTL are not properly grasped here. Therefore, principal 
component analyses will be performed in the next section to investigate meta-
parameters in a more statistical oriented approach. 
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5.4 Mathematical formalism of principal component 
analysis 

The principal component analysis is a common technique employed to reduce 
the number of variables in multidimensional datasets[3]–[7]. The principle is to do a 
linear transformation of the dataset variables towards new coordinates[8]. These new 
variables are as much decorrelated as possible, and they are called the principal 
components. Importantly, they are also ranked in terms of explained fraction of dataset 
variance. Therefore, they will be employed to determine the most significantly varying 
quantities in various subsets in the following sections. 

5.4.1 General case 
The problem can be expressed in terms of vector spaces, and the new components 

constitute an orthonormal basis of the dataset space. Finding this family is therefore 
done by performing the singular-value decomposition of the 𝑚 × 𝑛 rectangle matrix, 
associated to the 𝑚 realizations of 𝑛 variables of the dataset. 

This matrix is noted 𝑋, and the singular value decompositions gives [8]: 

𝑋 = 𝑃𝛥𝑄 (5 − 8) 

𝑃 and 𝑄  are respectively 𝑚 × 𝑚 and 𝑛 × 𝑛  square matrices of singular vectors. 
Both constitute orthonormal bases of their respective spaces. 

Importantly, 𝑄  defines the composition of the new components in terms of 
original variables: it is the projection matrix. The values of the realizations in terms of 
the new components (called factor scores) are expressed by the 𝑚 × 𝑛 matrix 𝐹: 

𝐹 = 𝑃𝛥 = 𝑋𝑄 (5 − 9) 

Not all components have the same importance, and this is quantified through the 
fraction of variance they contain from the whole dataset. By using the orthonormal 
property of 𝑃, the covariance of F is expressed as [8]: 

𝐶𝑜𝑣(𝐹) = 𝐹 𝐹 = 𝛥 𝑃 𝑃𝛥 = 𝛥 (5 − 10) 

The variance of the component 𝑖 is the square of the associated singular value: 

𝑉𝑎𝑟(𝐹 ) = 𝑑 (5 − 11) 

Finally, the fraction of total variance explained by the component: 

𝑉𝑎𝑟(𝐹 )

∑ 𝑉𝑎𝑟(𝐹 )
=

𝑑

∑ 𝑑
(5 − 12) 

This demonstrates how the diagonal matrix 𝛥  is employed to rank the 
components. The “principal” components are the ones having the largest 𝑑  value and 
containing the largest fraction of total variance. 
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Instead of performing the singular decomposition of 𝑋, the components can also 
be obtained by diagonalizing its covariance matrix. In fact, this square matrix can be 
expressed as: 

𝐶𝑜𝑣(𝑋) = 𝑋 𝑋 (5 − 13)

= 𝑄𝛥 𝑃 𝑃𝛥𝑄 (5 − 14)

= 𝑄𝛥 𝑄 (5 − 15)

 

Therefore, the eigen values of 𝐶𝑜𝑣(𝑋) are the squared singular values of 𝑋, and 
the eigenvectors are the singular vectors in 𝑄, defining the composition of the principal 
components. 

5.4.2 Vector spaces associated to perovskite solar cells simulations 
In this work, the dataset is composed of simulation input and output parameters 

(for instance defect density and Voc). In total, 𝑛 different parameters are considered 
and are available for 𝑚 realizations (from 𝑚 simulations). 

Furthermore, the data is centered and reduced in order to use dimensionless 
quantities and avoid being impacted by numerical un-balance between variables. Very 
importantly, the variables are considered through their log value, being the quantity 
actually centered and reduced. This will allow to express the components, that are 
linear combinations, in terms of products of physical quantities. Without this step, 
sums of defect densities with carrier mobilities could not be physically interpretable 
for instance. Moreover, material parameters values explored in the database cover 
several orders of magnitude, which have already been discretized in logarithmic scale 
as exposed in Section 3.1. 

Therefore, with ln 𝑋  and 𝜎  being respectively the mean value and standard 
deviation of ln 𝑋 , the following expression of 𝑋  is employed: 

𝑋  =  
𝑙𝑛 𝑋 − 𝑙𝑛 𝑋

𝜎
(5 − 16) 

As a result, the values of the components, obtained by analyzing the variables 𝑋  
are expressed as: 

𝐹 =  𝑋 ∙  𝑞 , (5 − 17)

=
𝑙𝑛 𝑋 − 𝑙𝑛 𝑋

𝜎
𝑞 , (5 − 18)

= 𝑙𝑛 𝑋
,

−
𝑙𝑛 𝑋

𝜎
𝑞 , (5 − 19)
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Finally, this shows the framework of the analyses done further in this chapter. 
The importance of the components will be assessed through their associated singular 
value and explained fraction of total variance and composition of the first component 
will be used to point out the nature of the important variables when simulating the 
behavior of perovskite solar cells. Furthermore, the associated products of physical 
quantities will potentially provide meta-parameters that could be employed to 
elaborate simpler models to describe the solar cells performances. 



5.5 Principal components extracted from sub-datasets 
 

173 

5.5 Principal components extracted from sub-datasets 
In this section, subsets of the main simulation dataset exposed above are 

considered. Here, output variables are not included in the analysis in order to focus on 
the correlation of the material parameters. Two complementary approaches are 
considered to select useful subsets, based on outputs. 

First, a fixed value of one optoelectrical parameter, for instance Voc, is 
considered. The subset is therefore constituted of all available input configurations 
compatible with the considered Voc value. The statistics of these input parameters are 
investigated through principal component analyses. 

In a second step, the orthogonal subset is defined by fixing all output variables, 
except one. Here, all entries of subsets have for instance the same Jsc and FF, but any 
Voc value. Again, principal components are employed to investigate the relevant input 
parameters. 

5.5.1 Fixed value for one optoelectrical parameter 
Here, specific subsets of the global database are defined by gathering all entries 

having the same value for a given output parameter: for instance, all simulations for 
which output Voc is 1.05 V. The objective is then to investigate the distributions of 
input parameters allowing this Voc value. Studying their correlations is expected to 
point out the most relevant input parameters under the Voc value constraint. 

The approach is first illustrated in a simple and favorable case. This allows to 
analytically express the expected relationship between the composition of the first 
component, and the input parameters. Details are exposed in Appendix E, together 
with examples. 

The following expression is considered, where 𝑌 is the single output, and 𝐴, 𝐵 
and 𝐶 the inputs: 

𝑌 = 𝑙𝑛 𝐴 ∙ 𝐵 ∙ 𝐶 (5 − 20) 

𝛼 , 𝛽  and 𝛿  are fixed parameters, and their relation to the PCA results is 
investigated. 

The simple model can be thought as a very simple expression describing a 
relationship similar to the dependence of Voc to dark saturation current and Jsc in a 
single diode model. For instance, if SRH recombination is predominant: 

𝑉𝑜𝑐 =
𝑛𝑘 𝑇

𝑞
𝑙𝑛

𝐽

𝐽
≈

2 𝑘 𝑇

𝑞
𝑙𝑛

𝐽

𝑞
1

𝜏
𝑛
2

𝑘 𝑇𝑤
𝑞 𝑉

(5 − 21) 

The principal component analysis is then performed over a database of (𝐴, 𝐵, 𝐶) 
triplets, all associated to the same 𝑌  value. Importantly, the principal component 
analysis is performed over normalized values, as exposed in Section 5.4.2: for instance, 
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𝐴 = . In the associated space, the first component is associated to the direction 

in which data varies the most, described by the vector: 
𝑞 ,

𝑞 ,

𝑞 ,

 . Moreover, the reduced 

database investigated here has been precisely defined through a fixed value of the 
output, the orthogonal directions to the first component should therefore provide 
insights on the relationship with the output. 

In fact, the ensemble of orthogonal directions to a vector defines a hyperplane, 
expressed as follow in an affine space: 

𝐴𝑞 , + 𝐵𝑞 , + 𝐶𝑞 , = 𝑙𝑛 𝐴
,

∙ 𝐵
,

∙ 𝐶
,

+ 𝐶 = 𝐶 = 𝑓(𝑌) (5 − 22) 

𝐶  is a constant defined by the fixed output value, and 𝐶  contains the term 
∑ 𝑞 , . Importantly, 𝑓  is the unknown function relating 𝐶  to the fixed output 

value. 
By differentiating both sides of this expression with respect to 𝐴, 𝐵  or 𝐶 , the 

following relations can be obtained (details of the derivation are reported in Appendix 
E): 

𝑣 ,

𝜎

𝛼
=

𝑣 ,

𝜎

𝛽
=

𝑣 ,

𝜎

𝛾
(5 − 23) 

Notably, it is also necessary to consider that the 𝑞 ,  elements are defined up to a 
multiplicative constant. This demonstrates that the exponents in the first component 
expression are indicators of the weight of the inputs to define the output. Also, even if 
the considered database subset is associated to a fixed output value, the higher the 
exponent for a given parameter, the higher its weight. 

Importantly, the expressions derived here are based on the simple model in 
equation (5-20). It is not a proof that for other models, the same ratios hold. However, 
Voc depends on a logarithmic scale on dark saturation current, and associated  
material parameters. Therefore, the simple model might not be too far from the actual 
relations. As a result, the approach exposed here will not be used to quantitatively 
determine 𝛼 , 𝛽  and 𝛾 , but rather qualitatively compare the weight of the different 
input parameters. 

Finally, the calculations exposed here justify employing the same approach on 
the dataset exposed in Section 5.2, in which drift diffusion simulations inputs and 
outputs have been gathered for the structure TiO2 / triple cation perovskite / PTAA. 
Voc, Jsc and FF will be alternatively considered as outputs, in place of 𝑌 in above 
computation, and investigated inputs are the nine parameters listed in Table 5-3. 

Moreover, the whole range of available optoelectrical output values is probed: 
the study is performed multiple times by alternatively fixing the output to different 
values. In the following figures, the component’s exponents are displayed across the 
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probed output range. Notably, exponents are all normalized so that one remains fixed 
to +1. This is possible because they are all defined to a multiplicative constant and 
facilitate readability. 

It is to keep in mind that results are impacted by the ranges of explored values 
for each input parameter. In the simplified examples displayed in Appendix E, it 
appears that the exponents can diverge from expected ratios when available data 
points are less uniformly distributed. This is especially clear at the boundaries of the 
explored input space. This aspect can be tracked by the standard deviation of each 
input within the subsets, as illustrated in Appendix E. 

 
Subsets having fixed Voc value 
 Figure 5-3 shows results for Voc: the graphs display exponents values obtained 

for each successive analysis with fixed Voc.  The x axis is therefore defined by the 
available Voc values (with sufficient entries). Also, the exponent associated to the 
defect density in the perovskite layer has been fixed to +1 in each analysis. This doesn’t 
impact the interpretation because only the relative weight between components plays 
a role, and allow comparisons between the successive analyses. 

The standard deviations of each parameter, displayed in Appendix E, Figure E8 
remain stable between 1.05 and 1.1 V, indicating that PCA results in this range might 
be reliable. This also indicates that the peaks for low and high Voc values in Figure 5-
3 are not necessarily meaningful. However, the size of the selected sub-set also varies 
along Voc range due to the nature of the gathered database. Therefore, the 
interpretation of varying standard deviation might not be as direct as in the simplified 
case. 

It appears first that all other parameters from defect density might be of smaller 
importance because their exponents remain significantly lower than 1. This confirms 
that Voc is primarily controlled by defect density. Moreover, the electron mobility 
remains near zero: this could be correlated to the fact that devices considered here 
were all in nip configurations, where electron transport is less crucial than hole 
transport. 

   
Figure 5-3. Exponents of the first component for fixed values of Voc. For each point, entries within 25 mV are 
aggregated. Associated standard deviations are stable in the range 1.05 – 1.1 V, see Appendix E, Figure E8. 
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Finally, the doping levels of each transport layer are associated to slightly higher 
exponents that respective carrier mobility. This might be caused by the fact that no 
current flows at Voc, making carrier transport less impacting than band alignment 
through doping. However, a slight rise of importance of perovskite/ETL interface 
defects from 1.05 V to 1.15 V could be associated to a higher contribution of this 
recombination term for better performing devices. 

 
Subsets having fixed Jsc value 
Results across the Jsc values in Figure 5-4 vary more and no clear trend seem to 

be distinguishable. This can be interpreted as an indication that always combinations 
of factors drive the Jsc value. Furthermore, optical parameters such as the 
transmittance of the front layers are not included here, which would be of very 
significant importance. Also, the standard deviations in Appendix E, Figure E9 are 
stable above 16 mA.cm-2 and cannot explain the noisy results. Moreover, Jsc does not 
depend on logarithmic laws on input parameters as clearly as Voc. This can make the 
conclusions on exponents ratios to be less valid for this more distinct case. 

The common importance of perovskite hole mobility and defect density 
exponents is notable, especially below 18 mA.cm-2. However, this might not be 

compatible with hole diffusion length 𝐿 ∝ , the most correlated meta-

parameter candidate in Figure 5-2, because of expected opposite signs. It could be 
possible that this ratio is approached between 18 and 20 mA.cm-2, however with a very 
large uncertainty due to noisy result. Also, the electron mobility and defect density 
could be compatible with electron diffusion lengths, but the first exponent is only at 
approx. -0.5, and -1 would be expected. 

   
Figure 5-4. Exponents of the first component for fixed values of Jsc. For each point, entries within 1 mA.cm-2 are 
aggregated. Associated standard deviations are stable above 16 mA.cm-2, see Appendix E, Figure E9. 

 
Subsets having fixed FF value 
Finally, the procedure has been employed across FF values, in Figure 5-5. 

Unfortunately, standard deviations in Appendix E, Figure E10 do not allow to easily 
point out a zone where it remains stable, only between 65 and 70 % could be suitable. 
Here, components exponents indicate that the perovskite defect density and hole 
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mobility are the major parameters. The first one translates the expected correlation of 
FF with Voc. For the second, this is different from Voc analysis, where hole mobility 
was almost at zero, but consistent with the fact that good carrier transport is important 
for a good FF. 

Moreover, holes generally have to travel more to reach the HTL at back side, than 
electrons to reach ETL at front side, due to front side illumination and mostly 
exponentially decreasing photogeneration rate. 

   
Figure 5-5. Exponents of the first component for fixed values of FF. For each point, entries within 5 % are 
aggregated. Associated standard deviations are stable in the range 65 – 70 %, see Appendix E, Figure E10. 

Importantly, the simple model employed to illustrate the interpretation of such 
PCA results do not constitute a demonstration in the general case. Also, dataset 
boundaries and  parameters distributions impact the results to an extend that remains 
not fully understood. Therefore, the interpretation of results exposed here might have 
to remain  qualitative. 

However, they still provide insights on the important parameters to focus on. 
This could help to design simulations, but also to develop solar cells and to guide on 
the aspects to be more carefully considered. 

5.5.2 Fixed value for all optoelectrical parameters except one 
The second approach to define sub-sets and perform principal components 

analysis gives an orthogonal perspective to the parameters space. Here, two 
parameters, for instance Jsc and FF, are fixed. All associated entries in the total 
database are gathered, with any possible Voc value. All variability of the sub-dataset 
is then expected to be related to Voc. This is evaluated through the first principal 
component, which contains the most variance of the dataset, and its correlation to the 
Voc. 

Again, only input material parameters are considered as variables for the 
determination of components, to specifically investigate the relation between input 
parameters and output. 

This approach has been employed for several exemplary subset selection and 
expressions of the first principal component are summarized in Table 5-4. Importantly, 
for the same reasons exponents are defined to a multiplicative constant, the first 
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component is defined in absolute value. Therefore, signs in Table 5-4 are adjusted for 
consistency among reported case. 

Interestingly, the product of perovskite hole mobility with defect density is 
present in five out of six expressions. This confirms that the product of both quantities 
generally defines the quality of holes extraction. However, the ratio of their exponents 
varies significantly from one case to another, potentially related to boundaries effects 
that could hinder the interpretation. 

Furthermore, it is envisaged that most variability of the sub-dataset is correlated 
to the specific output parameter that was not fixed. Therefore, the correlation between 
the principal component and this variable is investigated. The linear regressions are 
displayed in Figure 5-6 for three examples presented above. Notably, the correlation 
is not convincing for Jsc, and the graph rather demonstrates an absence of correlation. 
This questions the physical meaning of the associated components presented in Table 
5-4. 

Table 5-4. Examples of sub-sets selected with a single parameter left variable. Associated expression of first 
component and explained fraction of variance. Precision for fixed outputs is ± 0.01 V, ± 0.5 mA.cm-2 and ± 2 % 
for Voc, Jsc and FF respectively. 

Variable 
param. 

Fixed other 
parameters 

Subset 
size 

Variance 
fraction 

First component expression 

Voc 
Jsc = 19.5 mA.cm-2 
FF = 72 % 

1268 17.7 % 𝐹 = ln μ . ⋅ 𝑁 . + 𝐶  

Voc 
Jsc = 18.0 mA.cm-2 
FF = 70 % 

1113 19.2 % 𝐹 = ln μ . ⋅ 𝑁 . + 𝐶  

Jsc 
Voc = 1.02 V 
FF = 50 % 

438 27.1 % 𝐹 = ln
μ . ⋅ 𝑁 .

𝑁 . ⋅ μ . + 𝐶  

Jsc 
Voc = 0.98 V 
FF = 40 % 

159 18.5 % 𝐹 = ln
μ . ⋅ 𝑁 .

𝑁 . ⋅ 𝑁 . ⋅ μ . ⋅ 𝑁 . ⋅ μ . ⋅ 𝑁 . + 𝐶  

FF 
Voc = 1.02 V 
Jsc = 19.0 mA.cm-2 

278 20.5 % 𝐹 = ln
μ . ⋅ 𝑁 .

𝑁 . + 𝐶  

FF 
Voc = 1.02 V 
Jsc = 18.5 mA.cm-2 

369 19.0 % 𝐹 = ln μ . ⋅ 𝑁 . + 𝐶  

 
In fact, not only these examples of fixed parameters combinations have been 

considered, but all possible in the available dataset. In Appendix E, Figures E11-E13 
display R2 values of the associated linear regressions, and correlation plots of the three 
best regressions. It is of low quality for most cases, especially when Jsc and FF are left 
variable. 

However, the correlation of Voc with its associated principal component is still 
significant in several cases, with R² values approaching 0.8. This could validate the 
hypothesis that the variability of the sub-dataset is correlated to the output parameter. 
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Figure 5-6. Correlation plot of first component with variable output parameter, in the examples of Table 5-4. The 
linear regression quantifies the correlation strength. 

The linear regression from Figure 5-6 is expressed as (note that normalized Voc 
is considered to use dimensionless quantities): 

𝑉 = 𝛼 ∙ 𝐹 + 𝛽 (5 − 24) 

When combined with the formulation of the component, this has the advantage 
of providing an analytical expression of the optoelectrical parameter, based on 
material parameters: 

𝑉𝑜𝑐  = 𝛼 𝑙𝑛 𝑋
,

− 𝛼
𝑙𝑛 𝑋

𝜎
𝑞 , + 𝛽 (5 − 25) 

Results for both cases with variable Voc from Table 5-4 are expressed in Table 5-
5. This provides new analytical models for Voc, that could be employed to help 
simulating the behavior of perovskite solar cells. However, when looking at the role 
of the different material parameters, questions arise. For instance, Voc decreases with 
perovskite hole mobility. 

Table 5-5. Expressions for 𝑉𝑜𝑐 derived from first component and its linear regression with Voc. Precision for 
fixed outputs is ± 0.01 V, ± 0.5 mA.cm-2 and ± 2 % for Voc, Jsc and FF respectively. 

Variable 
param. 

Fixed other 
parameters 

R2 Expression for 𝑽𝒐𝒄 

Voc 
Jsc = 19.5 mA.cm-2 
FF = 72 % 

0.78 𝑉𝑜𝑐 = 0.02 ln
1

𝜇 . ⋅ 𝑁 . + 1.1 

Voc 
Jsc = 18.0 mA.cm-2 
FF = 70 % 

0.77 𝑉𝑜𝑐 = 0.02 ln
1

𝜇 . ⋅ 𝑁 . + 1.0 

 

 
Notably, the product carrier mobility – defect density does not correspond to the 

SRH diffusion length, which was the meta-parameter candidate the most correlated to 
Voc in Figure 5-2. However, some other meta-parameters extracted from the 

expressions of recombination current did include the ratio ∝ ∝
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𝜇 𝑁 , especially because the effective lifetime is almost equal to the SRH 
lifetime in the cases present in the database. This quantity is proportional to the 
recombination current, which explains its inverse proportionality to Voc in Figure 5-6. 

Finally, the domain of validity of these expressions has to be kept in mind. All 
solar cells considered in this chapter have the same structure (details are in Table 5-2), 
and the subsets considered to obtain these expressions focuses on specific values for 
Jsc and FF. The particularity of the subset could allow to envisage very local validity 
of these results, but also questions their use. 



Chapter conclusion 
 

181 

Chapter conclusion 
Meta-parameters have been defined as combinations of material parameters 

(dimensionless or not) that actually define the solar cell behavior. An example is the 
diffusion length of carriers in a semi-conductor. It is based on the product of the 
diffusion coefficient and lifetime and defines the transport behavior of carriers. 

For modeling studies with statistical approaches, such as presented in Chapters 
3 and 4, meta-parameters could allow to reduce the dimensionality of the input space 
to explore. In fact, the work presented in these chapters demanded numerous 
simulations, and a large dataset constituted of inputs and outputs could be gathered. 
This allowed to perform the several statistical analyses in this chapter. 

Two methods have been employed to investigate the role of input parameters. 
First, an analytical model for a pn homojunction has been derived, and important 
quantities extracted from its expressions. They have been translated and assessed for 
a perovskite solar cell structure through their correlation with the optoelectrical 
outputs in the available dataset. Some could be validated, such as diffusions lengths. 
However, because of the simplified nature of the structure considered for the 
analytical model, not all characteristics of perovskite solar cells are investigated. 

Therefore, a second method has been considered to investigate deeper the role of 
inputs in the available dataset, through principal components analysis. Computing 
components and ranking them by fraction of explained variance is a common 
technique to extract the most fraction of variability in a database. Furthermore, log 
value of the material parameters was considered, converting the linear combinations 
of the components’ expressions into products that can be related to meta-parameters. 

In a simplified case, it has been shown that extracting the principal component 
of inputs subsets selected according to output values reflects the role of the inputs. For 
instance, the crucial role of defect density to define Voc and FF is illustrated, as 
expected. The role of hole mobility for FF and not Voc is also an interesting result. 

Finally, orthogonal selection of subsets was performed to obtain components 
correlated to the optoelectrical outputs. This even allowed to express their value as 
functions of material parameters and finally provide new simple phenomenological 
models. 

However, it is to be kept in mind that the results obtained in this chapter are 
specific to the perovskite solar cell structure simulated here. Their validity outside this 
configuration is not straightforward and should be assessed. Finally, having a better 
(more uniformly) distributed database, with specifically chosen varied inputs, would 
probably allow to obtain clearer and more general results. The work presented here 
gives in fact insights on how statistical approaches could support the solar cell 
modeling research field. 
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The work presented here is summarized in the first section. It relied on new 

modeling techniques that have been specifically designed to investigate the 
degradation of perovskite solar cells. Results have been obtained on several examples 
of aging studies, demonstrating the capabilities and limits of the proposed method. 
The statistical approach, at the core of this work at each step, even allowed to look back 
towards the underlying physics of solar cells.  

Furthermore, this paves the way for further developments in several directions. 
First to overcome some present limitations, listed in the second section, but also to 
broaden the scope of the studies reported here. Examples are exposed in the third 
section. 



Conclusion 

184 

Summary of the work 
In this work, common characterizations performed periodically over the course 

of aging experiments have been investigated. The associated evolutions of 
optoelectrical parameters over time were at the core of the approach developed here. 

In order to reproduce the photovoltaic behavior of perovskite solar cells, coupled 
optical (transfer matrices) and electrical (drift diffusion) modeling has been employed. 
Furthermore, a statistical approach has been developed, because of some poorly 
known input parameters. A genetic algorithm has been designed, providing numerous 
sets of inputs that reproduce the initial experimental performances of any given 
sample. These sets were the basis to simulate the impact of various hypothetical 
unitary degradation mechanisms. 

Importantly, degradation pathways were obtained by considering the correlated 
evolution of optoelectrical parameters. They constitute characteristic footprints of the 
underlying processes and allow to directly compare simulated and experimental 
degradation pathways. As a result, compatible mechanisms can be proposed, and 
others excluded when pathways differ, directly tackling the causality between 
performance losses and degradation mechanisms. 

This approach has been applied in a first step to experimental measurements 
reported in literature. Obtained results could be compared to authors analyses and  
demonstrated the validity of the approach. Also, aging experiments performed at IPVF 
were investigated, with a first set of samples prepared with four variations in the 
deposition method of the perovskite layer. Results showed that the perovskite could 
be excluded as a cause for degradation in most cases, except for  a specific method, 
also having the least stable samples. A second set, containing devices having different 
hole and electron transport layers was investigated through coupled current-voltage 
and photoluminescence measurements. Interestingly, hole transport layer degradation 
could be attributed to several samples. Also, coupling characterization techniques 
helped to distinguish pathways through new complementary perspectives. 

Finally, the last part of this work took advantage of the numerous simulations 
performed to investigate degradation. It aimed at simplifying the design of drift 
diffusion simulations, first through meta-parameters. Principal components analyses 
were also employed on subsets selected according to solar cells performances, to point 
out the most important parameters or provide new simple phenomenological models. 
This supports the understanding of the role of the material parameters and their 
impact on performances. 

The work presented here shows how coupling of characterization and modelling 
can support experimental development of stable perovskite solar cells. Insights on the 
causes of degradation of various samples have been proposed, based on classical 
experimental measurements that could be investigated more thoroughly. Finally, this 
also demonstrates that statistical approaches can support the solar cell modeling 
research field, by being less dependent on the knowledge of given parameters. 
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Key points: 

 Coupled optical and electrical simulations are employed to compute 
the solar cell behavior and reproduce current voltage characteristics 
and photoluminescence spectra. 

 Simulations require numerous input parameters. Some values are not 
confidently known for a given sample and a highly dimensional input 
parameters space could be to explore. 

 A genetic algorithm has been developed to reproduce closely the 
optoelectrical performances of given solar cells. 

 Unitary degradation mechanisms are considered by simulating the 
response to a variation of given material parameters. 

 Degradation pathways are obtained by considering the evolution of the 
correlation of solar cells optoelectrical parameters. Their position is 
independent from time and therefore any speed of reaction: it 
constitutes a characteristic footprint of the underlying process. 

 Combining characterization techniques allows further distinction of 
degradation pathways. 

 Experimental measurements reported in literature have been 
investigated and provide a proof of concept of the methodology 
exposed here. 

 Several degradation sequences over time can be analyzed to consider 
multiple successive degradation mechanisms. 

 The approach employed here directly tackles the cause of optoelectrical 
performance losses. Conducting complementary characterization 
demonstrates concomitance with material evolutions. 

 For both studies of samples characterized at IPVF, insights on the 
responsible degrading layer were obtained. The perovskite layer might 
have remained stable in most cases of the deposition method study 
(except for one). Degradation of the HTLs have been reported for most 
samples of the second set. 

 Results obtained here constitute guidelines for further improvements 
of perovskite solar cell stability. 
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Limits of the work 
In order to evaluate the reliability of the results obtained in this work, it is crucial 

to consider the limits of the developed methods. 
First, modelling methods and numerical solvers have a given finite accuracy. This 

can especially impact results when simulating strongly atypical cases, at the end of 
simulated degradation mechanism. 

Also, the modelling scheme employed does not couple ionic migrations and 
electron-hole transport. Therefore, distinction of forward and reverse current-voltage 
(JV) characteristics can’t be considered, and the impact on charge carrier transport of 
both configurations is not resolved. Furthermore, simulations are done under one 
dimension, making not possible to consider laterally inhomogeneous processes. 
However, such aspects would need to be compared to spatially resolved 
characterization techniques. 

Slopes at open circuit and short circuit were extracted from JV characteristics, 
instead of proper series and shunt resistances. Considered parameters are rather 
indicators of the fitness of the curve. In fact, it would have been necessary to fit a model 
such as a single diode to have access to resistances. This would have added complexity 
and uncertainty, while being more time consuming.  

Importantly, the methods exposed here have been designed to exclusively 
consider aging studies under constant conditions. Investigating studies under outdoor 
or  cycling conditions would necessitate further models. However, a simple solution 
can be to consider the set of results obtained periodically under the same condition, at 
the same moment in the cycle. 

Also, the experimental data investigated here had only a low sample statistic. 
Reliable conclusions on stability of given materials in given structures would 
necessitate more samples. Furthermore, average behavior of several samples could be 
considered if close enough, which would reduce measurement noise. 

When simulating the impact of degradation mechanisms, the average response 
over inputs sets selected by the genetic algorithm was computed. In fact, selected sets 
must not necessarily respond similarly. If this occurs, the average value cannot 
properly reflect responses, but the wider 95 % confidence interval can still provide  
insights on its reliability. 

Importantly, degradation mechanisms investigated in this work are unitary: they 
are characterized by the change of a single material parameter. Therefore, combined 
evolutions cannot be excluded. In fact, considering such combination would introduce 
degrees of freedom on parameters relative speeds of variation, needing a large number 
of supplementary simulations. 

A very important aspect of the analysis of degradation pathways is that it only 
demonstrates the compatibility of a mechanism with experiment. Even with perfect 
superposition there could be another mechanism being the actual cause. However, 
when pathways are distinct, it is the proof that the processes were distinct. 
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Finally, it is to keep in mind that phenomenological results of statistical 
approaches, such as correlations or PCA, are only valid for configurations covered by 
the database. 

Moreover, the available entries stem from the degradation studies degradation, 
even if a uniformly distributed subset has been extracted, it would be useful to explore 
larger distributions of some parameters in order to avoid boundary effects. 

This could have an impact on principal components analyses performed on 
subsets of fixed output value. The link between the first component composition and 
the output has been demonstrated in a simple case, however, when outputs follow a 
more complex law towards inputs with higher dimensions, the impact of boundaries 
could be larger. 

Finally, in the case of analyses performed on subsets with a varying output, the 
covered domain is very limited, due to the fixed values of both other outputs. 
Therefore, the domain of validity of obtained expressions is very restricted. As a result, 
these expressions might be only useful for specific device optimizations for instance. 
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Perspectives 
Here, perspectives to overcome the limitations mentioned in previous section, or 

to go beyond are proposed. 
The first aspect has already been mentioned several times: further 

characterization techniques can be simulated. For instance, capacitance spectroscopy 
measurements would provide knowledge on interface properties. External quantum 
efficiency would allow to reproduce the optical behavior of the solar cells more 
precisely. Even time resolved measurements (such as time resolved 
photoluminescence) could be useful, but numerical tools would need to be adapted. 
Also, spatial inhomogeneities are a significant aspect of perovskite solar cells 
degradation that could be investigated through the approach developed here, 
provided the suitable characterizations and modelling tools are employed. 

Also any other materials and solar cell technology than perovskites could be 
investigated. The plausible degradation processes and the number of variable 
unknown input parameters might be restricted, leading to an even simpler problem.  

It has been mentioned that larger sample statistics are necessary to provide 
reliable conclusions. In fact, greater numbers of samples could be investigated through 
parallel computing, from which very large improvements of computation speed are 
expected. The simulations performed here (at least at each step of the genetic 
algorithm) do not need the results of other ones, and therefore could almost  run all at 
once in parallel. 

Also, the genetic algorithm employed here has been developed specifically for 
this work, but more elaborate and efficient implementations do exist. Computation 
time would be also improved here, along with the precision of reproduction of the 
solar cell performances. 

Furthermore, diverging responses of selected sets to simulated degradation 
mechanisms could be treated by clustering methods (a type of machine learning 
algorithm). These would find families of similar responses, providing several plausible 
simulated pathways for a given mechanism. This work is in fact under progress, 
through the supervision of an internship at IPVF. 

Interestingly, it could have been possible to go back to kinetics considerations, 
once a dominant mechanism is considered. By associating the experimental time 
evolution to the simulated parameter degradation, its variation speed would have 
been obtained. One could even think to thermal activation studies: the work presented 
here would then be useful to verify that the same process is being recorded at each 
temperature, and to access its reaction speed. 

Combining the unitary degradation mechanisms investigated in this work would 
be time consuming, but the number of necessary simulations is limited to a certain 
extend. For instance, for the combination of two mechanisms, the number of possible 
states by which the solar cell can go through is only defined by the matrix of possible 
couples for both parameters. Then, the relative speeds make the solar cell travel across 
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these possible states (matrix element) in potentially numerous ways. However, only 
the fixed number of matrix element need to be simulated. 

Furthermore, the number of mechanisms combinations could be restricted to 
physically realistic processes, with combinations per layer for instance. However, 
comparison of the numerous simulated pathways and experiment would need to be 
rationalized, by computing their distance to each other for instance. 

Finally, perovskite solar cells are also prone to reversible degradation under 
cycling or outdoor conditions. In a first step, recovery processes have been 
investigated by considering simulated “healing mechanisms” (for instance decrease of 
interface defect densities). Again, this has been done through the supervision of an 
internship at IPVF. 

Importantly, understanding the behavior of perovskite solar cells under outdoor 
conditions is crucial for the community. Such results could be investigated by 
employing models to correct measured performances from their dependency on 
conditions. The obtained evolution, attributable to degradation, could then be 
analyzed with the methods exposed here. 

Also, degradation pathways could be considered through more elaborate 
quantities than optoelectrical parameters. For instance, the slopes of the actual 
pathways, especially at the beginning of the degradation seem to be distinctive 
between mechanisms. Therefore, it could be useful to display these slopes (the 
derivatives of the parameters with respect to each other) that instead of starting from 
the same point, would lie in different potentially distinctive areas. 

As a result, some of the limitations of the present work could be overcome by 
complementary studies, exposed here. Finally, these perspectives show how more 
elaborate methods could be based on those presented here and be helpful to the 
research community to investigate perovskite solar cells stability. 
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Appendix A : Résumé en 
Français 

Les cellules solaires à pérovskite ont attiré beaucoup d'attention ces dernières 
années, en raison de leur rendement élevé et de leur faible coût de fabrication. Les 
propriétés des matériaux et interfaces de ces dispositifs ont été intensément étudiées, 
permettant d'améliorer leurs performances. Cependant, leur durée de vie reste courte 
en raison de nombreux potentiel mécanismes de dégradation, déclenchés par divers 
facteurs environnementaux. 

Ce travail a pour but d'aider à la compréhension de ces mécanismes et de soutenir 
le développement de cellules solaires pérovskites stables. Des méthodes de 
modélisation ont été développées pour distinguer et identifier les mécanismes 
responsables de la dégradation des performances dans le cadre d'expériences de 
vieillissement. 

Afin d'étudier le comportement photovoltaïque des cellules solaires pérovskites, 
des modèles optiques (matrices de transfert) et électriques (dérive diffusion) ont été 
couplés. Une approche statistique a été développée en raison de certains paramètres 
mal connus. Un algorithme génétique a été conçu pour fournir des ensembles d'inputs 
compatibles avec un échantillon. Ces ensembles sont la base pour simuler l'impact de 
divers hypothétiques mécanismes. 

Les chemins de dégradation sont obtenus en considérant l'évolution corrélée de 
paramètres optoélectroniques. Ils constituent des empreintes caractéristiques des 
processus de dégradation et les chemins simulés et expérimentaux peuvent 
directement être comparés. Des mécanismes compatibles peuvent donc être proposés 
et d'autres exclus lorsque les chemins diffèrent. La causalité entre les pertes de 
performance et les mécanismes de dégradation est ici directement considérée. 

Après avoir appliqué cette approche à des mesures expérimentales rapportées 
dans la littérature, permettant de comparer les résultats aux analyses des auteurs et de 
démontrer la validité de l'approche, des expériences de vieillissement réalisées à l'IPVF 
ont été étudiées. Une première série d'échantillons a été préparée avec quatre 
variations de la méthode de dépôt de la couche pérovskite. Les résultats ont montré 
que celle-ci pouvait être exclue comme cause de dégradation dans la plupart des cas, 
à l'exception d'une méthode spécifique, ayant également les échantillons les moins 
stables. 

Un deuxième jeu, contenant des dispositifs ayant différentes couches de 
transport des électrons et trous, a été étudié par des mesures couplés courant-tension 
et photoluminescence. La dégradation de la couche de transport des trous a pu être 
attribuée à plusieurs échantillons et un rôle protecteur de la couche de transport des 



Appendix A : Résumé en Français 

192 

électrons peut être envisagé. En outre, le couplage des techniques de caractérisation a 
permis de distinguer les chemins de dégradation à travers de nouveaux plans 
complémentaires. 

Enfin, la dernière partie de ce travail a tiré parti des nombreuses simulations de 
dégradation réalisées. Elle visait à simplifier la conception des simulations de dérive 
diffusion en réduisant le nombre de paramètres d'entrée nécessaires, et en identifiant 
les plus importants. Des méta-paramètres candidats ont été proposés en considérant 
un modèle analytique, et leur validité évaluée par leur corrélation avec les paramètres 
optoélectroniques. En outre, des analyses en composantes principales ont été 
employées sur des sous-ensembles sélectionnés en fonction des performances des 
cellules solaires, afin de mettre en évidence les paramètres les plus importants ou de 
fournir de nouveaux modèles phénoménologiques simples. 

Ce travail montre comment la modélisation peut aider au développement 
expérimental de cellules solaires pérovskites stables. En particulier, des indications sur 
les causes de la dégradation de divers échantillons ont été proposées. Enfin, ce travail 
démontre également que les approches statistiques peuvent soutenir le domaine de la 
recherche sur la modélisation des cellules solaires, en étant moins dépendants de la 
connaissance de paramètres donnés. 
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Appendix B: Processing 
of experimental 
measurements 

In this appendix are supplementary figures to illustrate the work reported in 
Chapter 2. 

 

 
Figure B1. Initial JV characteristics of the eight devices characterized through periodic JV measurements. Four 
techniques were employed to prepare the perovskite solution: the day of deposition or one day before, and with a 
pre-heating step of the solution or not. 

   

 
Figure B2. Initial JV characteristics and PL spectra of the five devices characterized through periodic JV and PL 
measurements. They were fabricated with the same perovskite material, but combinations of two ETL and HTL 
materials were employed: TiO2 / PTAA for JV-PL-1, 2 and 3, SnO2 / PTAA for JV-PL-4, and TiO2 / Spiro-
MeOTAD for JV-PL-5. Importantly, JV characteristics were recorded under laser illumination, explaining the 
high Jsc values for JV-PL-1 to 3.  
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Figure B3. Degradation over time of device JV-1.1 for reverse measurements. The parameters are extracted from 
the JV characteristics at each step of the pre-treatment. 
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Figure B4. Degradation over time of device JV-3.1 for forward measurements. The parameters are extracted from 
the JV characteristics at each step of the pre-treatment. 
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Figure B5. Degradation over time of device JV-PL-1 (reverse JV measurements). The parameters are extracted 
from the JV characteristics and PL spectra at each step of the pre-treatment. 
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Appendix C: 
Reproduction of initial 
performances of 
investigated devices 

In this appendix are supplementary figures to illustrate the work reported in 
Chapter 3. 
 
 
 
 

Peng et al. Li et al. (MPP) Li et al. (Voc) 

   
Chen et al.   

 

  

Lim et al. – 40 °C Lim et al. – 55 °C Lim et al. – 70 °C 
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Peng et al. (P3HT:CuPc HTL)   

 

  

Lim et al. (from x h) – 40 °C Lim et al. (from x h) – 55 °C Lim et al. (from x h) – 70 °C 

   
Figure C1. Simulated JV characteristics selected to reproduce the initial performances of devices extracted from 
literature. Vertical and horizontal lines show experimental Voc and Jsc, respectively. 
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JV-1.1 JV-1.2 JV-2.2 

   
JV-3.1 JV-3.2 JV-4.1 

   
JV-4.2   

 

  

Figure C2. Simulated JV characteristics selected to reproduce the initial performances of devices JV-1.1 to JV-4.2. 
Dotted lines show the experimental JV characteristic. 
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JV-PL-1 JV-PL-2 JV-PL-3 

   
Figure C3. Simulated JV characteristics and PL spectra selected to reproduce the initial performances of devices 
JV-PL-1 to JV-PL-3. Dotted lines show experimental measurements. 
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JV-PL-4 (from 25 h) JV-PL-4 (from 125 h) JV-PL-5 (from 20 h) 

   
JV-PL-5 (from 85 h)   

 

  

Figure C4. Simulated JV characteristics and PL spectra selected to reproduce the initial performances of devices 
JV-PL-4 and JV-PL-5. Dotted lines show experimental measurements. For each device, two starting points of the 
degradation are envisaged. 
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Figure C5. Frequency distribution of material parameters in the initial generation and after the final selection 
step of the genetic algorithm for the device JV-4.2. The number of counts per bin in the histogram is normalized 
by the total number of sets. 

 

   

   
Figure C6. Frequency distribution of material parameters in the initial generation and after the final selection 
step of the genetic algorithm for the device JV-PL-3. The number of counts per bin in the histogram is normalized 
by the total number of sets. 
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Appendix D: Additional 
details on investigation of 
degradation pathways 

In this appendix are supplementary figures to illustrate the work reported in 
Chapter 4. 

 
 

   

  

 

Figure D1. Degradation over time of the device JV-1.1. Only part of the recorded degradation is extracted to be 
investigated, from 170 to 290 h of aging. 
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Figure D2. Degradation over time of the device JV-3.2. Only part of the recorded degradation is extracted to be 
investigated, from 175 to 410 h of aging. 

 

   

  

 

Figure D3. Degradation over time of the device JV-2.2. Only part of the recorded degradation is extracted to be 
investigated, from 50 to 160 h of aging. 
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Figure D4. Degradation over time of the device JV-PL-1. Only part of the recorded degradation is extracted to be 
investigated, from 20 to 272 h of aging. 
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Figure D5. Degradation over time of the device JV-PL-3. Only part of the recorded degradation is extracted to be 
investigated, from 100 to 200 h of aging. 
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Figure D6. Degradation over time of the device JV-PL-4. Only part of the recorded degradation is extracted to be 
investigated, from 125 to 425 h of aging. 

 
 
 
 
 
 
 
 
 
 



Appendix D: Additional details on investigation of degradation pathways 

208 

 
 
 
 
 

   

  

 

   
Figure D7. Degradation over time of the device JV-PL-5. Only part of the recorded degradation is extracted to be 
investigated, and to cases are considered: from 20 to 140 h of aging, or only starting at 85 h. 
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Table D1. Input parameters for the analytical model of a pn junction. Four hypothetical devices with varying 
defect densities and carrier mobilities are considered. 

Parameter High defect density Low hole mobility Low electron mobility 

𝜙 AM1.5g – 1000 W.m-2 

𝛼 Experimental – IPVF triple cations perovskite 

Illumination side n-doped layer 

𝑇 293.15 K 

𝐸  1.62 eV 

𝜖 30 

𝑁 , 𝑁  1019 cm-3, 1019 cm-3 

𝐵 10-10 cm3.s-1 

𝜎 10-15 cm2 

𝑣  107 cm.s-1 

Front layer 

𝑊  50 nm 

𝑁  1018 cm-3 

𝜇  10 cm2.V-1.s-1 0.01 cm2.V-1.s-1 10 cm2.V-1.s-1 

𝑁  1012 cm-2 

SCR 𝑁  1017 cm-3 1014 cm-3 1014 cm-3 

Back layer 

𝑊  450 nm 

𝑁  1016 cm-3 

𝜇  10 cm2.V-1.s-1 10 cm2.V-1.s-1 0.01 cm2.V-1.s-1 

𝑁  1012 cm-2 

External 𝑅𝑠 1 Ohm.cm2 

External 𝑅𝑠ℎ 10 000 Ohm.cm2 
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Table D2. Input parameters for the drift diffusion model of a perovskite solar cell. Four hypothetical devices with 
varying defect densities and carrier mobilities are considered. 

Simulation parameter Good device High defect 
density 

Low electron 
mobility 

Low hole 
mobility 

𝜙 AM1.5g – 1000 W.m-2 

𝑇 293.15 K 

Illumination side ETL side 

External 𝑅𝑠 1 Ohm.cm2 

External 𝑅𝑠ℎ 10000 Ohm.cm2 

Hole transporting 
material 

W 100 nm 

𝐸  3 eV 

𝛼 Experimental 

𝜒 2.42 eV 

𝜖 10 

𝑁 , 𝑁  1019 cm-3, 1019 cm-3 

𝜇  0.5 cm2.V-1.s-1 

𝜇  0.5 cm2.V-1.s-1 

𝑁  1019 cm-3 

HTL / pvk interface 𝑁 /  1012 cm-2 

Perovskite 

W 500 nm 

𝐸  1.62 eV 

𝛼 Experimental – IPVF triple cations perovskite 

𝜒 3.9 eV 

𝜖 10 

𝑁 , 𝑁  1019 cm-3, 1019 cm-3 

𝜇  10 cm2.V-1.s-1 10 cm2.V-1.s-1 0.01 cm2.V-1.s-1 10 cm2.V-1.s-1 

𝜇  10 cm2.V-1.s-1 10 cm2.V-1.s-1 10 cm2.V-1.s-1 0.01 cm2.V-1.s-1 

𝑁  1014 cm-3 1017 cm-3 1014 cm-3 1014 cm-3 

𝑁  7.8.1018 cm-3 

𝐸  22 meV 

ETL / pvk interface 𝑁 /  1012 cm-2 

Electron 
transporting 
material 

W 100 nm 

𝐸  3 eV 

𝛼 Experimental 

𝜒 4 eV 
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𝜖 10 

𝑁 , 𝑁  1019 cm-3, 1019 cm-3 

𝜇  0.5 cm2.V-1.s-1 

𝜇  0.5 cm2.V-1.s-1 

𝑁  1019 cm-3 

 
 
 
 
 
 
 
 
 

  

 
Figure D8. Experimental degradation pathway of devices studied by Peng et al. with P3HT:CuPc HTL and 
associated simulated pathways. 
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40 °C 55 °C 70 °C 

   

   
 

 
Figure D9. Experimental degradation pathways from results published by Lim et al.: perovskite devices were aged 
under one sun, air and at 40, 55 or 70 °C (left, middle, and right respectively). Associated simulated pathways are 
superposed (down triangles and dashed lines for causes identified by authors, up triangles and dotted lines for 
others). Only the first part of the experimental degradation is extracted until respectively 475, 175 and 10 minutes. 

 

   

 
Figure D10. Experimental degradation pathway of device JV-1.2 and associated simulated mechanisms. The 
reduction of HTL doping (blue triangles) is the most compatible, but loss of ETL doping (purple triangles) can’t 
be excluded. 
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Figure D11. Experimental degradation pathway of device JV-3.2 and associated simulated mechanisms. No 
simulated mechanism explains the increase of Jsc. Reduction of electron mobility (purple squares) or formation of 
defects at pvk – HTL interface (red squares) could still be compatible with experiment. 

 
 
 

   

 
Figure D12. Experimental degradation pathway of device JV-4.1 and associated simulated mechanisms. No 
simulated mechanism explains the stable Jsc or the rise of slope at SC. 
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Figure D13. Experimental degradation pathway of device JV-PL-4 (starting at 25 h) and associated simulated 
mechanisms. Reduction of ETL doping (purple triangles) or shunt resistance (green triangles) are compatible 
mechanisms with the beginning of degradation. 

   

  
 

Figure D14. Experimental degradation pathway of device JV-PL-5 (starting at 20 h) and associated simulated 
mechanisms. Reduction of doping in ETL (purple triangles) and formation of defects in the perovskite layer (yellow 
circles) can be compatible with the first experimental points. 

 



Appendix E : Complements on Principal Components Analyses 

215 

Appendix E : 
Complements on 
Principal Components 
Analyses 

In this appendix are supplementary figures to illustrate the work reported in 
Chapter 5. 
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Figure E1. Distribution of parameters in the global dataset employed to do principal components analyses. 
Original dataset contains 51 053 entries and 27 472 are picked uniformly. 
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Figure E2. Covariance matrix of the full available dataset (51 053 entries before extracting uniformly distributed 
subset) for all variables. Associated 95 % confidence interval is in brackets. 
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Mathematical relationship between first component and 
ouput parameter in a simplified case 

Here, the case investigated in Section 5.5.1 is considered, where one optoelectrical 
parameter is fixed to a given value. The associated subset is therefore constituted of all 
available input configurations compatible with the considered output value. 

In order to express the relashionship between the first component and the output, 
a simplified case is considered, with three inputs (𝐴, 𝐵 and 𝐶) and one output (𝑌): 

𝑌 = 𝑙𝑛 𝐴 ∙ 𝐵 ∙ 𝐶  

𝛼, 𝛽 and 𝛾 are fixed parameters, and their relation to the PCA results is exposed. 
The principal component analysis is performed over a database of (𝐴 , 𝐵 , 𝐶 ) 

triplets, all associated to the same 𝑌 value. 
The normalized values, as exposed in Section 5.4.2, are expressed as follows: 

𝐴 =
𝑙𝑛 𝐴 − 𝑙𝑛 𝐴

𝜎
 

In the associated space, the first component is associated to the direction containing in 
which data varies the most, described by the vector: 

𝑞 ,

𝑞 ,

𝑞 ,

 

This vector defines the following orthogonal hyperplane: 

𝐴
𝐵
𝐶

∈ ℝ  | 
𝐴
𝐵
𝐶

∙

𝑞 ,

𝑞 ,

𝑞 ,

= 𝐶  

𝐶  is a constant that depends on 𝑌. Therefore, there exist an unknown function, 𝑓 
such as: 

𝐶 = 𝑓 𝑙𝑛 𝐴 ∙ 𝐵 ∙ 𝐶  

The expression of the scalar product defining the hyperplane is: 

𝐴𝑞 , + 𝐵𝑞 , + 𝐶𝑞 , = 𝐶

𝑙𝑛 𝐴
,

∙ 𝐵
,

∙ 𝐶
,

+ 𝐶 = 𝑓(𝑌)
 

𝐶  is a constant, containing the term ∑ 𝑞 , , see Section 5.4.2. 
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From now, the following notations are employed: 

𝛼 =
𝑞 ,

𝜎

𝛽 =
𝑞 ,

𝜎

𝛾 =
𝑞 ,

𝜎

 

The previous expression becomes: 

𝑙𝑛 𝐴 ∙ 𝐵 ∙ 𝐶 + 𝐶 = 𝑓 𝑙𝑛 𝐴 ∙ 𝐵 ∙ 𝐶  

Both sides are derived against A: 
Left side: 

𝜕 𝑙𝑛 𝐴 ∙ 𝐵 ∙ 𝐶 + 𝐶

𝜕𝐴
=

1

𝐴 ∙ 𝐵 ∙ 𝐶
∙ 𝛼 𝐴 ∙ 𝐵 ∙ 𝐶

= 𝛼 𝐴

 

Right side: 

𝜕𝑓 𝑙𝑛 𝐴 ∙ 𝐵 ∙ 𝐶

𝜕𝐴
=

𝜕𝑓 𝑙𝑛 𝐴 ∙ 𝐵 ∙ 𝐶

𝜕 𝑙𝑛(𝐴 ∙ 𝐵 ∙ 𝐶 )
∙

1

𝐴 ∙ 𝐵 ∙ 𝐶
∙ 𝛼𝐴 ∙ 𝐵 ∙ 𝐶

=
𝜕𝑓 𝑙𝑛 𝐴 ∙ 𝐵 ∙ 𝐶

𝜕 𝑙𝑛(𝐴 ∙ 𝐵 ∙ 𝐶 )
∙ 𝛼𝐴

=
𝜕𝑓(𝑌)

𝜕𝑌
∙ 𝛼𝐴

 

Finally, the following system is obtained by employing the same method for each 
variable, A, B and C: 

⎩
⎪
⎨

⎪
⎧𝛼 𝐴 =

𝜕𝑓(𝑌)

𝜕𝑌
∙ 𝛼𝐴

𝛽 𝐵 =
𝜕𝑓(𝑌)

𝜕𝑌
∙ 𝛽𝐵

𝛾 𝐶 =
𝜕𝑓(𝑌)

𝜕𝑌
∙ 𝛾𝐶

 

It is important to note here, that 𝛼 , 𝛽 , and 𝛾  exponents are defined to a 
common multiplicative constant. For instance, if they are all multiplied by a factor 𝜆 
the following would hold: 

1

𝜆
𝑙𝑛 𝐴 ∙ 𝐵 ∙ 𝐶 + 𝐶 = 𝑓(𝑌) 

Which could be associated to another unknown function 𝑔, instead of 𝑓: 
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𝑙𝑛 𝐴 ∙ 𝐵 ∙ 𝐶 + 𝐶 = 𝑔(𝑌) 

Therefore, the system in equation (X) becomes: 

⎩
⎪
⎨

⎪
⎧𝜆𝛼 𝐴 =

𝜕𝑔(𝑌)

𝜕𝑌
∙ 𝛼𝐴

𝜆𝛽 𝐵 =
𝜕𝑔(𝑌)

𝜕𝑌
∙ 𝛽𝐵

𝜆𝛾 𝐶 =
𝜕𝑔(𝑌)

𝜕𝑌
∙ 𝛾𝐶

 

The two first equations of the system allow to express: 

𝜆𝛼 𝐴

𝛼𝐴
=

𝜆𝛽 𝐵

𝛽𝐵
𝜆𝛼

𝛼
𝐴 =

𝜆𝛽

𝛽
𝐵

 

In fact, 𝐴 and 𝐵 are two independent variables. It is therefore necessary that both 
sides are equal to a constant, to keep the equality true. This implies that exponents on 
A and B are equal to zero, therefore: 

𝜆𝛼 = 𝛼
𝜆𝛽 = 𝛽

 

Finally, this expresses the important result employed to interpret the PCA results 
in Section 5.5.1: 

𝛼

𝛼
=

𝛽

𝛽
=

𝛾

𝛾
 

This demonstrates that the exponents obtained from PCA (𝛼 , 𝛽 , and 𝛾 ) on a set 
defined by a fixed value of the output are all proportional to the original composition 
of the output (𝛼, 𝛽 and 𝛾). 

Importantly, a simplified and favorable case was considered here. Therefore, this 
is not a demonstration for the analysis of  the drift diffusion results in Section 5.5.1. For 
this reason, interpretations remain mostly qualitative, on the respective balance 
between inputs weight. 
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Illustration of the relationship between first component 
and ouput parameter in a simplified case 

Here several examples are numericaly computed to illustrate the validity of the 
exporessions derived above. Several values of 𝛼, 𝛽 and 𝛾 are considered, as well as 
several explored spaces for 𝐴, 𝐵 and 𝐶. In each example, the analysis is performed over 
the range of available values of Y, similarly to Section 5.5.1. 

 
Example 1: 

𝑌 =  𝑙𝑛(𝐴 ∙ 𝐵 . ∙ 𝐶 . ) 

𝐴 ∈ [5,100], 𝐵 ∈ [5,100], 𝐶 ∈ [5,100] and each input parameter is log-uniformly 
distributed over 200 points. 

First, two examples of subsets are represented in Figure E3, for two fixed values 
of the output. Importantly, a projection of the three-dimensional space on the plane 𝐴 
- 𝐵  is represented. The three components are represented through their vector, 
displayed in plain lines originating at the middle of the subset. It appears clearly how 
the first component extracts the main tendency of the subset. 

  
Figure E3. Total explored input parameters space projected on 𝑨 - 𝑩 plane. Selected inputs for a fixed output 
value are represented in red, and first component (black line) follows the major trend. Two examples of output 
value are displayed (left and right) demonstrating the dependence of the hyperplane on the output. 

Results in Figure E4 also illustrate well the computations exposed above. First, 
the definition to a multiplicative constant of the exponent (left) appears clearly, as for 
one case, exponents are multiplied by -1 with respect to others. 

This is avoided when plotting the ratios of exponents (middle). Here the 
relationship between PCA exponents and original values is almost perfectly verified 
for a range of output values between 6 and 10  (plain lines display the expected values): 

𝛼

𝛽
=

𝛼

𝛽
 

𝛼

𝛾
=

𝛼

𝛾
 

𝛽

 𝛾
=

𝛽

𝛾
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Figure E4. Left: exponents of the first component from PCA performed over the range of fixed output values. 
Middle: ratios of first component exponents. Plain lines display the expected values. Right, standard deviation of 
each input parameter subsets over the range of fixed output values. 

Also, the distribution of available values for the inputs is also important. Here it 
appears that outside the output range 6 to 10, unbalanced distributions of available 
parameters perturb the results. This is in fact linked to the selected sets displayed in 
Figure E3. It appears on right side that available space is truncated when output value 
is set to approx. 5.4. Importantly, the standard deviation in Figure E4, right, is an 
indicator of this effect, as it is artificially lowered near the edges of the input space. 

 
Example 2: 

𝑌 =  𝑙𝑛(𝐴 ∙ 𝐵 . ∙ 𝐶 . ) 

𝐴 ∈ [5,100], 𝐵 ∈ [5,100], 𝐶 ∈ [5,100] and each input parameter is log-uniformly 
distributed over 200 points. 

   
Figure E5. Left: exponents of the first component from PCA performed over the range of fixed output values. 
Middle: ratios of first component exponents. Plain lines display the expected values. Right, standard deviation of 
each input parameter subsets over the range of fixed output values. 
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Example 3: 

𝑌 =  𝑙𝑛(𝐴 ∙ 𝐵 . ∙ 𝐶 . ) 

𝐴 ∈ [5,10], 𝐵 ∈ [5,10], 𝐶 ∈ [5,1000] and each input parameter is log-uniformly 
distributed over 200 points. 

Here the parameters distribution is highly unfavorable because 𝐶 , the least 
important input varies over two more orders of magnitude than 𝐴 and 𝐵. 

Results show that ratios still follow the expected values at the center of the 
distribution, but boundaries effects are more prominent. 

   
Figure E6. Left: exponents of the first component from PCA performed over the range of fixed output values. 
Middle: ratios of first component exponents. Plain lines display the expected values. Right, standard deviation of 
each input parameter subsets over the range of fixed output values. 

Example 4: 

𝑌 =  𝑙𝑛(𝐴 ∙ 𝐵 . ∙ 𝐶 . ) 

𝐴 ∈ [5,1000], 𝐵 ∈ [5,10], 𝐶 ∈ [5,10] and each input parameter is log-uniformly 
distributed over 200 points. 

The boundary conditions are not impacting significantly, and the expected values 
of the ratios are perfectly reproduced. 

   
Figure E7. Left: exponents of the first component from PCA performed over the range of fixed output values. 
Middle: ratios of first component exponents. Plain lines display the expected values. Right, standard deviation of 
each input parameter subsets over the range of fixed output values. 
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Figure E8. Top: standard deviation of each input parameter subsets over the range of fixed Voc values. Bottom: 
total number of entries in each subset. 
 

   

 

  

Figure E9. Top: standard deviation of each input parameter subsets over the range of fixed Jsc values. Bottom: 
total number of entries in each subset. 
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Figure E10. Top: standard deviation of each input parameter subsets over the range of fixed FF values. Bottom: 
total number of entries in each subset. 

 

  

 

   
Figure E11. Top: size of selected subsets for considered Jsc-FF couples and associated R2 values for the linear 
regression of Voc with the first component. Bottom: correlation plot of first component with variable output 
parameter, in the three best cases of R2 value. 
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Figure E12. Top: size of selected subsets for considered Voc-FF couples and associated R2 values for the linear 
regression of Jsc with the first component. Bottom: correlation plot of first component with variable output 
parameter, in the three best cases of R2 value. 

  

 

   
Figure E13. Top: size of selected subsets for considered Voc-Jsc couples and associated R2 values for the linear 
regression of FF with the first component. Bottom: correlation plot of first component with variable output 
parameter, in the three best cases of R2 value. 
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