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Praface

Avec le rythme accéléré du développement technologique, divers produits en fin de vie (EOL) sont
générés rapidement. Selon les données de la Banquemondiale, environ 2,01milliards de tonnes
de déchets sont générées chaque année dans le monde, et ce chiffre devrait atteindre 3,40 mil-
liards de tonnes d’ici 2050. Une gestion inappropriée des produits EOL peut entraîner la produc-
tion de déchets pollués substantiels, conduisant à des dommages environnementaux, sanitaires
et économiques catastrophiques. Une approche prometteuse pour résoudre ce problème con-
siste à recycler les produits EOL pour refabriquer des produits de seconde vie afin d’atteindre un
objectif d’économie circulaire.

En tant qu’élément crucial du recyclage des produits EOL, le démontage sépare les produits
EOL en composants destinés à une destruction ou à une remanufacturation, ce qui a fait l’objet
d’une grande attention ces dernières années. Le processus de désassemblage peut être effectué
sur une ligne de désassemblage, qui consiste en une série de postes de travail où les produits
EOL sont démantelés à travers une séquence de tâches. Pour la ligne de désassemblage, il existe
plusieurs concepts et contraintes importants. En termes de concepts, le schéma de désassem-
blage désigne la combinaison de tâches de désassemblage qui peuvent compléter la décomposi-
tion des produits EOL, et le temps de cycle signifie la plus grande quantité de temps de traitement
nécessaire pour accomplir les tâches parmi toutes les stations de travail. Quant aux contraintes,
premièrement, les relations de préséance des tâches doivent être respectées, ce qui signifie que
les tâches de démontage ne peuvent être exécutées qu’après leurs prédécesseurs. Deuxième-
ment, la somme des temps de traitement de chaque poste de travail ouvert ne peut excéder le
temps de cycle permettant d’équilibrer les charges entre les postes de travail.
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Le problème d’équilibrage des lignes de désassemblage (DLBP), en tant que l’un des prob-
lèmes les plus étudiés concernant le démontage, vise à sélectionner un schéma de désassem-
blage approprié, à déterminer les postes de travail à ouvrir, et à attribuer les tâches correspon-
dantes du schéma sélectionné aux postes de travail ouverts pour optimiser les indicateurs de
performance industrielle, tels que le coût de production, le profit de la ligne de désassemblage
ou les émissions de carbone. Dans la littérature existante, 1) la plupart des problèmes stochas-
tiques d’équilibrage de la ligne de désassemblage supposent que les distributions de probabil-
ité des paramètres incertains soient connues ; 2) la majorité des problèmes d’équilibrage de la
ligne de désassemblage se concentrent sur un seul produit ; 3) peu de travaux portent sur les
problèmes de conception de la chaîne logistique inversée (RSC) liés à l’équilibrage de la ligne de
désassemblage. En réalité, plusieurs RSC liées au désassemblage de produits EOL existent dans
les industries de la remanufacturation, telles que l’automobile, les téléphones mobiles, etc. Pour
combler ces lacunes dans la littérature, trois nouveaux problèmes liés à l’équilibrage de la ligne
de désassemblage sont étudiés dans cette thèse.

Tout d’abord, une DLBP à produit unique avec des informations partielles sur les temps de
traitement des tâches est étudiée, où seules lamoyenne, la borne inférieure et la borne supérieure
des tempsde traitement des tâches sont connues. L’objectif est deminimiser le coût dedésassem-
blage. Pour le problème étudié, un modèle conjoint à contraintes de probabilités est proposé.
Ensuite, une nouvelle formulation sans distribution et une formulation basée sur une approxi-
mation de programme de cônes de second ordre sont construites en fonction des propriétés du
problème. Les résultats expérimentaux sur 7 instances de référence et sur 81 instances générées
aléatoirement montrent l’efficacité de l’approche proposée.

Deuxièmement, une nouve DLBP stochastique multi-produits avec un temps de traitement
de tâche incertain est abordée, où seules la moyenne, l’écart type et la limite supérieure des
temps de tâche sont disponibles. L’objectif est de minimiser le coût de désassemblage. Pour le
problème, un modèle conjoint à contraintes de probabilités est formulé. Ensuite, sur la base de
l’analyse du problème, le modèle conjoint à contraintes de probabilités est approximativement
transformé en un modèle sans distribution. Ensuite, plusieurs inégalités valides et une méthode
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exacte de coupe et de résolution sont conçues pour résoudre efficacement le problème. Les ré-
sultats des expériences sur un exemple illustratif et sur 490 instances générées aléatoirement
démontrent les bonnes performances du modèle proposé, des inégalités valides et de la méth-
ode de résolution.

Enfin, unnouveauproblèmede conceptionde la RSC lié à l’équilibrage de la lignededésassem-
blage multi-produits est étudié, où l’approvisionnement en produits EOL, la demande en com-
posants et les temps de traitement des tâches sont supposés incertains. Les objectifs sont de
maximiser le profit attendu et de minimiser simultanément les émissions de CO2. Pour le prob-
lème, un modèle bi-objectif de programmation stochastique à deux étapes et non linéaire est
formulé, et approximativement transformé en un modèle sans distribution linéaire en fonction
des propriétés du problème. Ensuite, une méthode basée sur des contraintes ε-construites est
proposée, dans laquelle une décomposition de Benders améliorée est conçue pour résoudre les
problèmes transformés à objectif unique. Des expériences numériques comprenant une étude
de cas et sur 200 instances générées aléatoirement sont menées pour évaluer les performances
desméthodes proposées. De plus, une analyse de sensibilité est réalisée pour tirer des enseigne-
ments en matière de gestion.
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Parameter Notations

Parameters:

— I : set of supply points indexed by i, and I = {1, 2, ..., |I|};
— J : set of collection centers indexed by j, and J = {1, 2, ..., |J |};
—K : set of candidate locations for disassembly plants indexed by k, andK = {1, 2, ..., |K|};
— L : set of remanufacturing plants indexed by l, and L = {1, 2, ..., |L|};
—M : set of machines indexed bym, andM = {1, 2, ..., |M |};
—W : set of workstations indexed by w, andW = {1, 2, ..., |W |};
— P : set of EOL products indexed by p, and P = {1, 2, ..., |P |};
— C : set of components indexed by c, and C = {1, 2, ..., |C|};
— R : set of disassembly tasks indexed by r, and R = {1, 2, ..., |R|};
— N : set of subassembly nodes indexed by n, and N = {1, 2, ..., |N |};
— T : set of time periods indexed by t, and T = {0, 1, 2, ..., |T |};
— S : set of scenarios indexed by s, and S = {1, 2, ..., |S|};
— ρs : the probability of scenario s, where s ∈ S;
— hkk′ : binary parameter, equal to 1 if dkk′ ≥ dmin, 0 otherwise, where dkk′ denotes the

distance between candidate disassembly plants k and k′, dmin represents the smallest segrega-
tion distance requirement between every pair of opened disassembly plants, and k, k′ ∈ K , and
k ̸= k′;

— Capj : inventory capacity of EOL products of collection center j, where j ∈ J ;
— Cack : inventory capacity of components of disassembly plant k, where k ∈ K;
— Capk : production capacity of disassembly plant k, where k ∈ K;
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— α : a given probability (risk level) that the workloads of all workstations exceeds the cycle
time;

— Svipts : supply volume of EOL product p at supply point i during period t under scenario s,
where i ∈ I , p ∈ P , t ∈ T , s ∈ S;

—Delcts : demand of component c of remanufacturing plant l during period t under scenario
s, where c ∈ C , l ∈ L, t ∈ T , s ∈ S;

— ptr : processing times of task r, where r ∈ Rp;
— CS

k : fixed cost to set up a disassembly plant at site k, where k ∈ K;
— Cw : fixed cost to open a workstation;
— Ch : fixed cost for handing a hazardous task;
— Cp

p : fixed cost to preprocess (including detect and classify) unit EOL product p in collection
center, where p ∈ P ;

— Cd
p : fixed cost to disassemble unit EOL product p, where p ∈ P ;

— CS−C
ijp : transportation cost of one unit EOL product p from supplier i to collection center j,

where i ∈ I , j ∈ J , p ∈ P ;
— CC−D

jkp : transportation cost of one unit EOL product p from collection center j to disassem-
bly plant k, where j ∈ J , k ∈ K , p ∈ P ;

— CD−R
klc : transportation cost of one unit component c from disassembly plant k to remanu-

facturing plant l, where k ∈ K , l ∈ L, c ∈ C;
— CIP

p : inventory cost of one unit EOL product p in each time period, where p ∈ P ;
— CIC

c : inventory cost of one unit component c in each time period, where c ∈ C;
— σR

c : revenue of fulfilled demand of one component c ∈ C in each time period;
Decision variables:

— xwr : binary variable, equal 1 if task r is assigned to workstation w, 0 otherwise, where
w ∈ W , r ∈ R;

— yw : binary variable, equal 1 if workstation w is opened, 0 otherwise, where w ∈ W ;
— hw : binary variable, equal 1 if workstation w handles hazardous tasks, 0 otherwise, where

w ∈ W ;
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— zk : binary variable, equal 1 if a disassembly plant is set up at site k, 0 otherwise, where
k ∈ K;

— qS−C
ijpts : the quantity of EOL product p transported from supply point i to collection center j

during period t under scenario s, where i ∈ I , j ∈ J , p ∈ P , t ∈ T , s ∈ S;
— qC−D

jkpts : the quantity of EOL product p transported from collection center j to disassembly
plant k during period t under scenario s, where j ∈ J , k ∈ K , p ∈ P , t ∈ T , s ∈ S;

— qD−R
klcts : the quantity of component c transported from disassembly plant k to remanufac-

turing plant l during period t under scenario s, where k ∈ K , l ∈ L, c ∈ C , t ∈ T , s ∈ S;
— τ ICjpts : the inventory of EOL product p at collection center j during period t under scenario

s, where j ∈ J , p ∈ P , t ∈ T , s ∈ S;
— τ IDkcts : the inventory of component c at disassembly plant k during period t under scenario

s, where k ∈ K , c ∈ C , t ∈ T , s ∈ S;
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1.1 Context and Motivations

With the accelerating pace of technology development, various End-of-Life (EOL) products are
generated rapidly. According to the data fromWorld Bank (wor, 2018), approximately 2.01 billion
tons of solid waste are generated worldwide annually, and this number is estimated to increase
to 3.40 billion tons by 2050. For example, China will scrap at least 10 million shared bikes in the
next few years, resulting in nearly 300,000 tons of scrap metal (Sun et al., 2023). Inappropriate
management of EOL products will result in substantial polluted waste, leading to catastrophic
environmental, health and economic damages. One promising approach to address this issue
is recycling EOL products by disassembling them into components to remanufacture second-life
products to achieve circular objectives. Figure 1.1 depicts the diagram of the flows of EOL and
second-life products, where the gray part represents the recycling of EOL products (Diri Kenger
et al., 2020). Firstly, EOL products are transferred from end customers to collection centers,
where they are inspected, classified and stored. Subsequently, EOL products will be transported
to disassembly plants, where they can be decomposed into components, and valuable ones will
be shipped to remanufacturing plants and useless ones will be disposed of.

New components Remanufacturers Distribution Centers

End Customers

Collection CentersDisassembly Centers

Forward flow

Reverse flow

Disposal

Second-life products

EOL products

Figure 1.1: An illustrative diagram of forward and reverse flows of products

Disassembly, as one of the crucial parts in EOL products recycling (Paterson et al., 2017), con-
sists of decomposing EOL products into components for further remanufacturing or disposal.
The disassembly line often comprises a set of workstations in which EOL products are decom-
posed by a sequence of tasks. Figure 1.2 shows a disassembly line for an EOL product, where
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there are three disassembly tasks and two workstations. For the disassembly line, there are sev-
eral important concepts and constraints. In terms of concepts, the disassembly scheme denotes
the combination of disassembly tasks that can complete the decomposition of EOL products, and
cycle time means the largest amount of processing time needed to complete the tasks among
all workstations. As for constraints, firstly, task precedence relationships should be respected,
which means that disassembly tasks can only be executed after their predecessors. For exam-
ple, in Figure 1.2, tasks 2 and 3 should be executed after task 1. Secondly, the sum of processing
times of each opened workstation can not exceed the cycle time to balance loads between work-
stations.

EOL product

Workstation 1 Workstation 2
Components

Task 1 Task 2 Task 3

Figure 1.2: An illustrative disassembly line of an EOL product

Disassembly line balancing problem (DLBP), as one of the most studied problems concern-
ing disassembly, aims to select an appropriate disassembly scheme, determine workstations to
be opened, and assign corresponding tasks of the selected scheme to opened workstations to
optimize industrial performance indicators, such as production cost, disassembly line profit or
carbon emission (Güngör and Gupta, 2002). Most of the existing studies focus on determinis-
tic DLBP (Gungor and Gupta, 2001; McGovern and Gupta, 2007b; Riggs et al., 2015; Fang et al.,
2020a; Li et al., 2020). However, many uncertain factors should be properly considered during
the disassembly process, such as the uncertain task processing times that may be caused by
variable operator skills and structure and quality of EOL products (Bentaha et al., 2015a). Özcey-
lan et al. (2019) indicate that only about 30% of the existing studies investigate DLBP with un-
certainty. Most DLBP studies with uncertainties assume that the distribution information of the
uncertain parameter is known. However, the complete distribution of uncertain parameters may
be unattainable, especially when there is not enough historical data (Ng, 2014; Perakis and Roels,
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2008). Therefore, we first study a stochastic single-product DLBP with limited information of task
processing time.

With the increasing demand for customized products, the scale of EOL products and their
variants entering the recycling streams is rapidly expanding. Thus, the traditional single-product
disassembly line is inappropriate and uneconomical to disassemble such increasing EOL product
variants, which highlights the necessity to design multi-product disassembly lines in practical
disassembly issues (Paksoy et al., 2013). While, approximately 96% of related studies concentrate
on the single-product DLBP (Özceylan et al., 2019), andmulti-product DLBP is rarely studied in the
literature, especially in the context of considering uncertainties. To the best of our knowledge,
there is no work that investigates the stochastic multi-product DLBP with only knowing partial
distribution information. Hence, a new multi-product DLBP considering stochastic task times is
investigated in this thesis.

An efficient reverse supply chain (RSC) is important formanaging the increasing EOL products,
which includes a series of activities, such as collection, recycling, refurbishing, and disassem-
bling, etc (Özceylan and Paksoy, 2014). A RSC is a complex system and its management contains
strategic-level decisions relating to the RSC design (e.g., the number and locations of facilities,
disassembly equipment procurement), and tactical-level decisions associated with disassembly,
transportation and inventory (e.g., disassembly line balancing, transportation amounts, inven-
tory levels) (Yolmeh and Saif, 2021). Most researchers consider RSC design and DLBP separately.
In practice, strategic decisions regarding RSC design have a long-term effect on tactical decisions
related to disassembly line balancing, while the performance of disassembly lines will in turn in-
fluence the profitability of the RSC. Investigating the DLBP related RSC design in an integrated
manner may improve the performance of the whole RSC (Özceylan et al., 2014). Moreover, ex-
isting studies on DLBP related RSC design focus on single product and deterministic settings.
Therefore, addressing a multi-product DLBP related RSC design with considering uncertain fea-
tures of EOL products is necessary.
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1.2 Contents and Contributions

Based on the above observations, this thesis studies the following three novel works:
• Chapter 3: Single-product disassembly line balancing problem.
To support the decision-making for stochastic DLBP under partial information, this study
investigates a new stochastic DLBP with partial information of task processing time distri-
bution, i.e., only themean, upper and lower bounds are known. The problem aims to select
a disassembly scheme for the EOL product, and determine the workstations to be opened,
and assign the selected tasks to opened workstations. The objective is to minimize the to-
tal cost. For the studied problem, a joint chance-constrained model is formulated. Based
on problem properties, the chance-constrainedmodel is approximately transformed into a
distribution-free model, and then a second-order cone program approximation-based for-
mulation is developed. Experimental results demonstrate the effectiveness and efficiency
of the proposed formulation.

• Chapter 4: Multi-product disassembly line balancing problem.
To design an effective disassembly line for multiple EOL products, a novel multi-product
DLBP with identical parts and uncertain task processing times is first addressed. The objec-
tive is to minimize the total cost. A new joint chance-constrained model is established for
the problem, and then approximately converted into a distribution-free model. Two valid
inequalities are constructed to reduce the solution space. To solve the large-scale prob-
lems, a lifted cut-and-solve method is proposed. Numerical experiments are conducted on
benchmark and randomly generated instances to evaluate the performances of the pro-
posed model, valid inequalities and solution method.

• Chapter 5: Multi-product disassembly line balancing related reverse supply chain design.
To efficiently manage multiple EOL products under uncertainty, this chapter studies a new
multi-product disassembly line balancing related RSC design, where EOL product supply,
component demand, and task processing times are assumed to be uncertain. The problem
jointly determines the number and locations of disassembly plants, disassembly machine
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procurement, workstations to be opened, machine and tasks assignments, and inventory
levels of EOL products and components. The objectives are tomaximize the expected profit
and minimize CO2 emissions, simultaneously. A bi-objective two-stage stochastic program-
ming model is formulated for the problem, and then approximately transformed to a lin-
ear distribution-free model. An exact ϵ-constrained method is proposed to solve the bi-
objective problem. Moreover, an improved Benders decomposition is designed to solve
each transformed single-objective problem efficiently. Numerical experiments are con-
ducted to evaluate the performance of proposed methods, and some managerial insights
are drawn based on sensitivity analysis.

1.3 Organization of the Thesis

The structure of this thesis is presented in the following Figure 1.3.
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Figure 1.3: The structure of this thesis
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In this chapter, we first reviewDLBP related studies in Section 2.1. Then, the solutionmethods
are reviewed in Section 2.2. Finally, Section 2.3 concludes this chapter.

2.1 DLBP Related Literature

DLBP has been widely studied since it was first introduced by Gungor and Gupta (1999). Figure
2.1 illustrates the categories of DLBPs according to problem features and properties, in which the
gray parts are studied in this thesis. In the following, we review the related studies from three
aspects: single-product DLBP, multi-product DLBP, and integrated DLBP.

DLBP

Line types

Straight line
U-shaped line
Two-sided line
Parallel line

Disassembly degrees
Complete disassembly

Partial disassembly

Product types
Single product

Multi-(Mixed-) product

Objective functions

Single-objective 

Multi-objective

Parameters settings

Deterministic 

Uncertainty

Minimize cost
Minimize cycle time
Minimize carbon dioxide emission
Maximize profit
Etc.

Uncertain task processing times
Uncertain task failures
Uncertain EOL products supply
Uncertain components demand
Etc.

Integrated problems

Integrated with RSC

Integrated with disassembly planning

Integrated with vehicle routing

Etc.

Figure 2.1: The categories of DLBPs
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2.1.1 Single-product DLBP

Single-product DLBP refers to balancing the disassembly line for a single type of EOL product.
Based on the existence of uncertain factors, the single-product DLBP can be classified into two
main categories, i.e., deterministic and uncertain DLBPs.

For the deterministic single-product DLBP,most studies concentrate on straight line and com-
plete disassembly (McGovern and Gupta, 2007b; Koc et al., 2009; Li et al., 2019a, 2020; Y2lmaz
et al., 2022). Besides the straight line, many other types of disassembly lines have also been in-
vestigated, such as the U-shape disassembly line (Avikal et al., 2013), two-sided disassembly line
(Kucukkoc, 2020; Zhang et al., 2022), parallel disassembly line (Hezer and Kara, 2015; Wang et al.,
2021b). Recently, some researchers have addressed the partial DLBP, where not all components
are dismantled and separated (Ren et al., 2017; Wang et al., 2019; Zhu et al., 2020; Liang et al.,
2023).

For the uncertain single-product DLBP, according to Özceylan et al. (2019), most related stud-
ies assume that the probability distribution of task processing time is known (Aydemir-Karadag
and Turkbey, 2013; Bentaha et al., 2014, 2015a, 2018; Goksoy Kalaycilar et al., 2022). However,
the complete distribution of uncertain parameters may be unattainable in real applications, es-
pecially when there is not enough historical data (Ng, 2014; Perakis and Roels, 2008). Recently,
some researchers have studied the stochastic DLBP with limited information of task processing
time. Zheng et al. (2018) is the first to investigate stochastic DLBP with limited distributional in-
formation, where the mean, standard deviation and upper bound of task processing times are
known. For the problem, a distribution-free model is formulated and a fast algorithm based on
problemanalysis is proposed. Later, He et al. (2019) extend the above problemby simultaneously
optimizing the cost and cycle time, and an improved ε-constraint method is designed to solve the
bi-objective problem. He et al. (2020a) study a bi-objective stochastic DLBP with the same limited
distributional information of task times. The objectives are to minimize the total cost and con-
taminant emission, simultaneously. Liu et al. (2019) develop a new robust optimization model
with partial information of task processing time, i.e., given mean and covariance matrix. The ob-
jective is to minimize the total cost. Then, a two-stage parameter-adjusting heuristic is devised to
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solve the problem. Liu et al. (2020b) investigate a two-stage robust stochastic DLBPwith the given
mean and standard deviation of task processing time. The objective is to minimize the expected
system cost in the worst case. A cutting-plane algorithm is proposed for the problem. It can
be concluded that the existing single-product DLBP with partial information is studied recently,
and all of them assume that the variance, covariance or standard deviation of task processing
time is known. However, in some practical cases, there is not enough data to obtain the variance
or covariance (Perakis and Roels, 2008). This motivates us to investigate the stochastic DLBP
with partial probability distribution of task processing time, i.e., only the mean, upper and lower
bounds are known (Chapter 3).

2.1.2 Multi-product DLBP

In this subsection, we review the multi-product DLBP related studies, which are also classified
into two categories, deterministic and uncertain.

For deterministic multi-product DLBP, Ilgin et al. (2017) examine a multi-objective mixed-
model DLBP in which the same parts of different EOL products are disassembled by so-called
common tasks with processing times that may be different between EOL products. Their study
assumes that the disassembly schemes of EOL products are predetermined. A mixed-integer
linear programming model is proposed for the problem. Then a linear physical programming
method is proposed to solve their problem. Fang et al. (2019) investigate a robotic mixed-model
DLBP with parallel robots in each workstation to simultaneously minimize four objectives, the
cycle time, total energy consumption, peak workstation energy consumption and the number
of robots used. Identical parts of multiple EOL products are not considered in their study. A
mixed-integer linear program is proposed to formulate the studied problem, and a knowledge-
leveraging evolutionary algorithm is designed to solve it. Moreover, they extend their study by
considering energy resource constraints (Fang et al., 2020b). A mixed-integer linear program-
mingmodel is constructed for the problem, and an ε-constraint method based NSGA-II algorithm
is proposed to solve it. Mutlu and Güner (2021) study a two-sided mixed-model DLBP with the
objectives ofminimizing the number of workstations andminimizing the selected task processing
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times. For the problem, amixed-integer linear programmingmodel is formulated, and amemetic
algorithm is designed.

For the uncertain multi-product DLBP, Altekin et al. (2008) study a stochastic multi-objective
mixed-model U-shaped DLBP where the task processing time follows a normal distribution. The
authors assume that the EOL products have no identical parts and the disassembly schemes are
predetermined. A non-linear stochastic programming model is formulated for the problem. A
collaborative ant colony optimization algorithm is proposed to solve the problem. Paksoy et al.
(2013) investigate a multi-objective mixed-model DLBP with fuzzy objectives. For the problem, a
mixed-integer linear programming model is proposed and solved using the commercial solver
LINGO 11.0. Fang et al. (2020a) recently investigate a stochastic multi-objective mixed-model
DLBP with interval task processing times, in which EOL products are disassembled by parallel
robots in each workstation. A mixed-integer linear program is proposed for the problem and
an evolutionary simulated annealing algorithm is developed to solve the problem. Liu et al.
(2022) study a stochastic multi-product DLBP considering workforce assignment. The uncertain
task processing time is represented by partial information of the probability distribution, i.e.,
the mean and covariance matrix. Each workstation in their study can only handle one type of
EOL product. A stochastic program with conditional value-at-risk constraints is developed, and
an exact cutting-plane method is proposed for the problem. Yin et al. (2022) recently study a
multi-product partial DLBP with parallel robots in each workstation, where the uncertain task
processing times are described by interval numbers. The disassembly schemes of EOL products
are predetermined. Amixed-integer programmingmodel is established for the studied problem.
Then, a multi-objective hybrid driving algorithm is proposed to solve the problem.

From the above review on multi-product DLBP, it can be concluded that only a few studies in-
vestigate multi-product DLBP under uncertainty, especially with partial information of uncertain
parameters. Thus, Chapter 4 addresses a stochastic multi-product DLBP, where uncertain task
processing times and identical parts are considered.
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2.1.3 Integrated DLBP

In this subsection, we briefly review related integrated DLBP studies, which can be categorized
based on the decision level, i.e., operational, tactical, and strategic decision-making.

For operational and tactical decision-making, some researchers study the integrated disas-
sembly line balancing and sequencing problem (Liu et al., 2020a; Edis et al., 2022; Zeng et al.,
2022), in which decisions regarding both the disassembly line balancing and task sequencing are
jointly made. The DLBP is also integrated with the collect routing problem recently (Habibi et al.,
2017, 2019; Diri Kenger et al., 2020; Kenger et al., 2021; Liu et al., 2021), where the decisions on
line balancing and routing are made together. More recently, He et al. (2022) investigate an inte-
grateddisassembly line balancing andplanning problemwith considering themachine specificity.
Previous studies are pioneer works of the coordination disassembly line balancingwith upstream
and downstream flows of RSC. Furthermore, integrating the disassembly line balancing and the
whole RSC may have a great impact on supply chain performance. Özceylan and Paksoy (2013)
is the first to study the integrated RSC design and DLBP, which consists of determining the trans-
portation of EOL products and components and balancing the disassembly line. The objective is
to minimize the total cost. For the problem, a mixed-integer nonlinear programming model is
constructed, and an illustrative instance is solved by calling GAMS/BARON. Özceylan and Paksoy
(2014) investigate a similar integrated RSC design and DLBP to minimize the total cost, where
the capacities of plants and customer demands are assumed to be fuzzy. For the problem, a
fuzzy model is proposed and solved by calling GAMS/BARON. Özceylan et al. (2014) address a
joint closed-loop supply chain (CLSC) design and DLBP to minimize the total cost. The problem
is to determine the amounts of collected and dismantled EOL products, transportation, and bal-
ance the disassembly line. The problem is formulated as amixed-integer nonlinear programming
model and solved by calling GAMS-COIN/BONMIN.

For strategic decision-making, Budak (2020) investigate a deterministic integrated RSC de-
sign and DLBP to minimize the total cost, minimize the total emissions, and maximize the social
impact, simultaneously. The problem determines the locations of storage centers, disassembly
plants, and recycling centers, transportation of EOL products and components, inventory quan-
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tities of EOL products, and balances the disassembly line. For the problem, a mixed-integer non-
linear programming model is formulated, and an improved augmented ε-constraint method is
proposed. Yolmeh and Saif (2021) study an integrated CLSC design andDLBP for a single-product,
in which customer demand and quantity of EOL products are assumed to be uncertain and char-
acterized by scenarios. The problem aims to determine the locations of production, assembly,
remanufacturing and disassembly plants, transportation of components and products, and bal-
ance the assembly and disassembly lines. The objective is tominimize the total cost. The problem
is formulated as a two-stage stochastic programming model, which is equivalently decomposed
into a series of line balancing problems and a CLSC optimization problem, and then solved by
CPLEX.

To sum up, we can conclude that 1) there is no work investigating multi-product integrated
disassembly line balancing related RSC problems; 2) no study jointly considers uncertain supply,
demand and task times. Therefore, Chapter 5 investigates a novel integrated multi-product RSC
design and DLBP under uncertain supply, demand and task times.

2.2 Solution Methods

In this section, we review the optimization under uncertainty, multi-objective optimization, and
single-objective optimization, which provides the foundation for developing effective methods
for our problem.

2.2.1 Optimization under uncertainty

There are various optimization methods to deal with uncertainties in the disassembly, such as
fuzzy programming (Paksoy et al., 2013; Özceylan and Paksoy, 2014; Zhang et al., 2017), robust
programming (Xiao et al., 2021), distributionally robust programming (Liu et al., 2019, 2022, 2021),
stochastic programming (Agrawal et al., 2008; Bentaha et al., 2015b; Zheng et al., 2018; Gok-
soy Kalaycilar et al., 2022), etc. In this thesis, we adopt stochastic programming to solve our
problems, because it can efficiently transform uncertain problems into deterministic problems
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by characterizing uncertainties using random scenarios or probability distributions. Thus, we
review stochastic programming through formulations and solution methods in the following.

(1) Formulations for stochastic programming

Considering such an uncertain optimization problemwith two stages of decisions, where the first
stage decisions have to be decided before the realization of uncertain events, and the second
stage decisions are made subsequently based on the results of first stage decisions (Ruszczyński
and Shapiro, 2003). According to Birge and Louveaux (2011), the general formulation of two-stage
stochastic programming can be written as:

min z = cTx+Eξ

[
min q(s)Ty(s)

] (2.1)
s.t. Ax = b (2.2)

T (s)x+Wy(s) = h(s) (2.3)
x ≥ 0,y(s) ≥ 0 (2.4)

where vectorx denotes the first stage decisions, c and b are known vectors,W is a knownmatrix,
and vector y(s) represents the second stage decisions. For a given realization random events
s ∈ S, the associate second stage coefficients q(s), T (s), and h(s) are known. Eξ denotes the
mathematical expectation.

Another widely studied stochastic programming formulation is chance-constrained program-
ming (Charnes and Cooper, 1959). In chance-constrained programming, constraints on random
variables should bemaintained at prescribed probability levels. Consider the general form of the
chance constraint as follows:

Pr (A(x, ξ) ≤ 0) ≥ 1− α (2.5)

where α ∈ [0, 1], ξ denotes a random vector, and this constraint means that the probability of
satisfying A(x, ξ) ≤ 0 is larger than or equal to 1− α.
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Usually, the chance-constrained formulation is computationally intractable. One promising
way is to transform the chance constraint into a solvable one based on the information of ran-
dom variables (Nemirovski and Shapiro, 2007). Therefore, we will briefly review related solutions
methods for stochastic programming in the following subsection.

(2) Solution methods for stochastic programming

In this subsection, wewill review the solutionmethods for stochastic programming via three cate-
gories, i.e., scenario-basedmethod, distribution-basedmethod, andpartial distribution information-
based method.

The scenario-based method approximates the random parameters by a set of scenarios, es-
pecially when the distribution of random parameters is not continuous. One of the most used
approximation methods is the sample average approximation (SAA), which is based on Monte
Carlo sampling techniques (Kleywegt et al., 2002). The SAA generates a set of random samples
of realizations of the random parameters and approximates the random parameters by sam-
ple average values (Nemirovski and Shapiro, 2007). The main advantages of the scenario-based
method are its ease of implementation and no restriction on the distributions of random param-
eters. The solution quality highly depends on the number of samples, while a large number of
samples will sharply increase the computational burden.

The distribution-basedmethod usually assumes that the exact probability distributions of un-
certain parameters are known, and then the stochastic problems are transformed into determin-
istic ones based on the probability density functions of uncertain parameters (Ruszczyński and
Shapiro, 2003). Many researchers have adopted the distribution-basedmethod to solve stochas-
tic disassembly related problems (Bentaha et al., 2015b; Liu and Zhang, 2018; Yolmeh and Saif,
2021). However, the probability distributions of random parameters may be challenging to ob-
tain or can not be precisely defined in real applications.

The partial distribution information-based method aims to solve stochastic programming,
where only limited informationof the probability distribution of the uncertain parameter is known.
Ng (2014) and Perakis and Roels (2008) point out that the complete distribution of uncertain pa-
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rametersmay be unattainable when there is not enough historical data. Therefore, it is necessary
to develop efficient approaches for stochastic DLBP with limited information of task processing
time. So far, only a few studies have studied stochastic DLBP under partial distribution informa-
tion (Zheng et al., 2018; He et al., 2019; Liu et al., 2022).

2.2.2 Multi-objective optimization

We first give the general definition for multi-objective optimization problem, then introduce sev-
eral common solution methods.

(1) Notations for multi-objective optimization

Without loss of generality, consider such a minimization multi-objective optimization problem
(MOOP), which can be written as follows:

MOOP: min (F1(x), F2(x), ..., FN(x)) (2.6)
s.t. x ∈ Ψ (2.7)

where x is the decision vector, Ψ denotes the solution space, Fn represents the nth objective
function, and N is the number of objective functions.

Different from the single-objective optimization problem with one optimal value, MOOP al-
ways involvesmore than one optimal solution, and these objectives often conflict with each other
(Collette and Siarry, 2004). The optimal solutions of MOOP are called non-dominated solutions
or Pareto optimal solutions, which can be defined as follows:
Definition 2.2.1. A solution x∗ ∈ Ψ is a non-dominated solution, if there does not exist any other

solution x ∈ Ψ such that Fn(x) ≤ Fn(x
∗), and Fn(x) < Fn(x

∗) for at least one objective function,

where n = {1, 2, ..., N}.

All the non-dominated solutions form the Pareto front that can reflect the trade-off between
different objectives. Figure 2.2 illustrates the Pareto front of a bi-objective optimization problem,
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F1

F2

Pareto front

A

B
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D

E

Figure 2.2: An illustrative example of the Pareto front
in which points A, B and C denote the Pareto optimal solutions, and points D and E denote the
dominated solutions that are dominated by points A, B and C.

(2) Solution methods for multi-objective optimization

There are various methods for MOOP, such as weighted sum method (Marler and Arora, 2010),
multi-objective evolutionary algorithm (Coello and Lamont, 2004), ε-constrainedmethod (Ehrgott
and Gandibleux, 2002), etc.

The weighted sum method is a priori method, which assigns a weight to each objective, thus
converting a multi-objective problem into a single-objective one for resolution (Zadeh, 1963).

min
N∑

n=1

ωnFn(x)

s.t. x ∈ Ψ

where ωn denotes the weight of objective function Fn(x), and usually ωn ≥ 0 and N∑
n=1

ωn = 1.
However, the weights assigned to these objectives depend on the preferences of decision-

makers and are determined in advance. Only one Pareto optimal solution can be obtained under
one specific combination of weights, which may not reflect the real Pareto front.

For manymulti-objective optimization problems, it is difficult or inefficient to obtain the exact
Pareto front. Consequently, many researchers develop multi-objective evolutionary algorithms
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to obtain an approximation Pareto front (Von Lücken et al., 2014). The multi-objective evolution-
ary algorithm is an iterative search method that begins with a set of initial solutions (population),
and iteratively improves the solution by various evolutionary operations. There are variousmulti-
objective evolutionary algorithms, such as multi-objective genetic algorithm (Deb, 1999; Wang
et al., 2021c), non-dominated sorting genetic algorithm (Deb et al., 2000; Bensmaine et al., 2013),
strength Pareto evolutionary algorithm (Zitzler et al., 2001; Jiang and Yang, 2017), etc. Although
multi-objective evolutionary algorithms may obtain the Pareto solutions fast, they can not guar-
antee the quality of the obtained solutions.

The ε-constrained method transforms the multi-objective problem into the single-objective
problem by setting one objective function as the principal objective and setting other objective
functions to the ε-constraints, and then iteratively solving the single-objective problem by varying
the value of ε (Ehrgott and Gandibleux, 2002; Laumanns et al., 2006). The following bi-objective
optimization problem (BOOP) illustrates the process of the ε-constrained method.

BOOP: min (F1(x), F2(x))

s.t. x ∈ Ψ (2.8)

where F1(x) and F2(x) are objective functions, and x is the decision variable whose solution
space is Ψ.

Consider that F1(x) is set as the principal objective, and the BOOP can be transformed to the
following single-objective optimization problem (SOOP) by introducing a new parameter ε.

SOOP: minF1(x)

s.t. x ∈ Ψ

F2(x) ≤ ε (2.9)

To solve SOOP, we need to predetermine the interval of ε, which can be obtained by solving
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the following four single-objective models.

PI
F1

: F I
1 = minF1(x)

s.t. x ∈ Ψ

PN
F1

: FN
1 = minF1(x)

s.t. x ∈ Ψ

F2 = F I
2

PI
F2

: F I
2 = minF2(x)

s.t. x ∈ Ψ

PN
F2

: FN
2 = minF2(x)

s.t. x ∈ Ψ

F1 = F I
1

Thus, the interval of ε is [F2
I , F2

N ]. Then, the Pareto optimal solutions of BOOP can be ob-
tained by solving a series of SOOPs, where ε is varying in the interval [F2

I , F2
N ]with a proper step

size.
The ε-constrained method is widely applied to solve multi-objective optimization problems,

because it can obtain the exact Pareto front. While it should be careful to choose the principle
objective and determine the step size, which may significantly impact the solving efficiency.

2.2.3 Single-objective optimization

In this subsection, we review solutionmethods for single-objective optimization problems, which
can be classified into approximated and exact methods.

(1) Approximated method

Approximated methods are designed to find a feasible solution for the problem, while the so-
lution can not be proven optimal. The commonly approximated methods include constructive
heuristic, meta-heuristic, matheuristic, etc.

Heuristic is an algorithm that can quickly find the near-optimal solution for the problem, and
usually relies on problem-specific rules, experience, and search strategies (Lin and Kernighan,
1973). For the disassembly line balancing related problems, various heuristics have been applied,
such as greedy algorithm (McGovern and Gupta, 2004, 2005), local search (McGovern and Gupta,
2007a; Li et al., 2019b; Tian et al., 2023), etc. Heuristics have the advantage of being easy to
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implement and capable of quickly finding feasible solutions. While, the optimality and quality of
solutions obtained by heuristics can not be guaranteed.

Meta-heuristic is a more general algorithm, usually inspired by natural phenomena and pop-
ulation based, which can adapt to various problems (Osman and Kelly, 1997; Hussain et al.,
2019). Many researchers have developed different kinds of meta-heuristics to solve the disas-
sembly line balancing related problems, such as genetic algorithm (McGovern and Gupta, 2007b;
Kalayci et al., 2016; Kucukkoc, 2020), simulated annealing algorithm (Fang et al., 2020a; Wang
et al., 2021a), ant colony algorithm (Agrawal et al., 2008; Kalayci and Gupta, 2013a; Çil et al.,
2020), particle swarm algorithm (Kalayci and Gupta, 2013c; Çil et al., 2020), artificial bee colony
algorithm (Kalayci and Gupta, 2013b; Kalayci et al., 2015; Guo et al., 2023), etc. In particular,
meta-heuristic is often designed to find near-optimal or good solutions to complex problems in
a reasonable amount of time, such as NP-hard problems and non-linear problems. However, the
convergence speed of In particular may be slow, especially for the problems with complex and
high-dimensional search spaces.

Matheuristic, short for mathematical heuristics, is a hybrid optimization method that com-
binesmathematical programming techniques and heuristic (Boschetti et al., 2009). There are var-
iousmatheuristics studied in the literature. For the fix-and-optimizematheuristic, a feasible solu-
tion is obtained by a mathematical programming model, and heuristics are used to improve the
current feasible solution (Lindahl et al., 2018; Friske et al., 2022). In the decompositionmatheuris-
tic, the original problem is decomposed into small sub-problems, and some sub-problems are
solved bymathematical programming (Doi et al., 2018; Chitsaz et al., 2019). Matheuristic requires
a specific design depending on the studied problem, and there is a trade-off between optimality
and computational efficiency.

(2) Exact method

The exactmethod aims to solve optimization problems to find global optimal solutions. There are
several types of exact methods commonly used for optimization problems. Branch and Bound
(B&B) is essentially an enumeration method that divides the original problem into sub-problems
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(branches), explores these branches using a tree-like search strategy, and prunes these branches
that cannot lead to a better solution than the best one found so far (Lawler and Wood, 1966).
Branch and Cut (B&C) combines B&B and the cutting-plane method, where cutting-planes (i.e.,
inequalities) are added to strengthen the relaxation of the mixed-integer programming model,
thus improving the efficiency of the search (Tawarmalani and Sahinidis, 2005). Branch and Price
(B&P) incorporates B&B and columns generation approach, in which columns (decision variables)
are iteratively added at each node of the searching tree (Barnhart et al., 1998). In this thesis, we
apply the cut-and-solve and Benders decomposition methods. Consequently, a detailed descrip-
tions of these two methods are introduced in the following.

Cut-and-solve method

The cut-and-solve (CS) method is first introduced by Climer and Zhang (2006) to solve the asym-
metric traveling salesman problem, and then has been successfully used to solvemany combina-
torial optimization problems, such as facility location (Yang et al., 2012; Gadegaard et al., 2018),
and lane reservation (Fang et al., 2013; Wu et al., 2017), etc. CS method is a particular branch
and bound algorithm, where only two sub-problems are considered at each node, and only the
best solution is memorised. Thus, the size of the search tree and the memory required can be
reduced.

In the CS method, the original problem is decomposed into two problems, namely Sparse
Problem (SP) and Dense Problem (DP). At the (i − 1)-th iteration, a Piercing Cut (PCi−1) is con-
structed based on the linear relaxed solution of (DPi−1). At the i-th iteration, PCi−1 cuts the
solution space ofDPi−1 into two sub-spaces that correspond to (SPi) and a new (DPi). SPi gen-
erally has a small solution space and may be exactly solved to yield a new feasible solution of
the original problem, and update the current best upper bound (UB) if possible. DPi often has
a large solution space, and its relaxed problem is generally solved to obtain a lower bound (LB)

of the original problem. Especially, DP0 denotes the original problem. The process continues
until the current LB is greater than or equal to the best UB. Then, the solution of the best UB is
output as an optimal solution of the original problem.
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The convergence rate of the CSmethodmainly depends on the effectiveness of PC , the qual-
ity of the LB and the speed to solve SP . To enhance the performance of the CS method, in this
thesis, we improve the traditional CS method through the following strategies: 1) a construc-
tive heuristic is proposed to obtain an initial UB that may be an optimal solution of the original
problem. 2) double PCs (PC1

i−1, PC2
i−1) based on partially linear relaxation are generated at each

iteration to obtain a better LB. 3) SPi is further divided into two sub-problems (SP 1
i , SP 2

i ) by a
second PC , leading to a fast resolution for SPi.

Benders decomposition

Benders decomposition (BD) is proposed by Benders (1962) and has been widely studied and
applied to solve various problems in the past few decades. In the BD procedure, the original
problem is decomposed into two coupling problems, i.e., master problem (MP) and sub-problem
(SP). MP contains partial constraints and variables of the original problem, which is essentially a
relaxation of the original problem. Without loss of generality, considering a maximization prob-
lem, an upper bound (UB) can be obtained by optimally solving MP (if MP is feasible). The SP
contains the remaining constraints and variables and is solved with the fixed MP solution. If the
SP is solved, we can obtain a lower bound (LB) for the original problem, and then an optimality
cut can be added toMP. Otherwise, a feasibility cut is generated and added toMP. The process it-
erates until the optimal solution is found or other termination criteria are met (Rahmaniani et al.,
2017).

In the literature, there are various kinds of BD, such as logic-based BD (Hooker and Ottosson,
2003; Heching et al., 2019), generalized BD (Geoffrion, 1972; Gharaei et al., 2020), in which the
SP contains integer decision variables or some non-linear constraints. The most studied one is
the classical BD, where the integer decision variables and corresponding constraints are retained
in MP, and SP only contains continuous decision variables. Thus, SP is a continuous linear sub-
problem, and the dual of SP is solved to generate optimal or feasible cuts (Magnanti and Wong,
1981). Our studied problem in Chapter 5 is a stochastic two-stage problem, and the second-
stage problem is a scenario-based linear problem. This motivates us to implement BD to solve
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our problem.
The performance of BD highly depends on the quality of generated optimality cuts. To accel-

erate the convergence rate, we enhance the BD via four strategies: 1) add valid inequalities toMP
to get a tighten UP; 2) partially decompose our problem, which means we retain partial scenario
SPs in MP, which may lead to a high-quality UP; 3) divide scenarios into small groups, and each
group generates a cut, this can reduce the size of MP; 4) additionally generate a Pareto optimality
cut which improves the quality of cut.

2.3 Conclusions

In this Chapter, we first reviewDLBP related literature via three aspects, i.e., single-product, multi-
product, and integrated problems. Then, related solutionmethods, including optimizationmeth-
ods under uncertainties, multi-objective optimizationmethods, andmethods for single-objective
optimization. We can find thatmany research issues have not been investigated, such as stochas-
tic DLBPs with partial information of probability distribution, stochastic multi-product DLBP, and
multi-product disassembly line balancing related RSC design. Therefore, three corresponding
novel problems are studied in Chapters 3-5.

24



Chapter 3

Single-product Disassembly Line Balancing

Problem
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In the literature, the majority of studies focus on deterministic DLBP. Only a few researchers
investigate uncertain DLBP. In addition, most of them assume that probability distributions of
uncertain parameters are known. However, in real applications, due to various factors, such as
the lack of historical data for EOL products, obtaining complete probability distribution informa-
tion is often challenging. Consequently, in this chapter, we study a DLBP with partial information
of task processing time.

The problem studied in this chapter aims to optimally choose a disassembly scheme for EOL
product, determine the number of workstations to be opened, and assign disassembly tasks to
the opened workstations. The objective is to minimize the disassembly cost. For the problem, a
chance-constrainedmodel is proposed. Based on problem property analysis, a new distribution-
free formulation is constructed. Subsequently, a second-order cone program approximation-
based formulation is developed for it. Experimental results on benchmark instances and new
randomly generated instances demonstrate the effectiveness and efficiency of the proposed for-
mulation.

The rest of this chapter is organized as follows. Section 3.1 states the studied problem and
proposes a chance-constrainedmodel. Section 3.2 discusses problemproperties, and adistribution-
free formulation is proposed. Section 3.3 develops a second-order cone programapproximation-
based formulation. Section 3.4 conducts the numerical experiments and analyses the computa-
tional results. Finally, Section 3.5 concludes this chapter.

3.1 Problem Statement and Chance-constrained Model

3.1.1 Problem statement

The studied DLBP investigates a single EOL product with uncertain task processing times, where
only limited information of the probability distribution of task processing time is available, i.e., the
mean, lower and upper bounds. Consider an EOL product with several alternative disassembly
schemes, each containing a set of disassembly tasks with known precedence relationships. There
is a set of available workstations. The problem aims to select a disassembly scheme for the EOL
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product, determine the number of workstations to be opened and assign selected tasks to the
opened workstations to minimize the total cost incurred in the disassembly line.

An example of Hand Light (Tang et al., 2002) is used to intuitively understand the studiedDLBP.
Figure 3.1 illustrates the disassembly scheme graph of the Hand Light, where three types of lines
represent three different disassembly schemes. Let□ and⃝ represent a subassembly node and
a disassembly task, respectively. The Hand Light contains 7 parts andN0 refers to the initial state
of the EOL product. The task is represented byR, which is indexed from 1 to 10. Specifically, tasks
with a gray background represent handling hazardous parts, which requires an extra cost. The
directions of arrows connecting subassemblies and tasks indicate the disassembly order and task
precedence relationship. Disassembly scheme 1 represented by the bold line consists of tasks
{R2, R5, R6, R8, R9, R10} and subassemblies {N0, N2, N3, N5, N6, N7}. Scheme 2 represented by
the thin line consists of tasks {R1, R3, R6, R7, R9, R10} and subassemblies {N0, N1, N3, N4, N6, N7}.
Scheme 3 represented by the dotted line consists of tasks {R2, R4, R6, R7, R9, R10} and subassem-
blies {N0, N2, N3, N4, N6, N7}.

N0
{1,2,3,4,5,6,7}

R1

R2

N1
{2,3,4,5}

R3

N2
{1,2,5,6,7}

R5

R4
N4

{2,5}

N3
{3,4}

N5
{1,5,6,7}

R7

R6

R8

N6
{1,6,7}

R9
N7

{6,7}
R10 END

Figure 3.1: The disassembly scheme graph of the Hand Light

In order to well formulate the problem, the following assumptions are given:
• A single type of EOL product is completely disassembled on a straight disassembly line;
• An opened workstation can handle more than one task and each task cannot be assigned
to more than one workstation, and workstations are independent;
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• Task processing times are independent and can be represented by partial information of
probability distribution, i.e. the mean, upper and lower bounds;

• The tasks precedence constraints have to be respected;
• Handling hazardous tasks incurs additional costs.

3.1.2 Chance-constrained model

Before the chance-constrained model, the notations are defined as follows:
Indices:

— r : index of disassembly tasks;
— w,w′ : indices of workstations;
— n : index of subassembly nodes;
Parameters:

— R : set of disassembly tasks;
—W : set of workstations;
— N : set of subassembly nodes;
— Pn : set of immediate predecessors of subassembly n, where n ∈ N ;
— Qn : set of immediate successors of subassembly n, where n ∈ N ;
— H : set of hazardous tasks;
— ptr : processing time of task r, where r ∈ R;
— pdr : the mean processing time of task r, where r ∈ R;
— pdUr : the upper bound of processing time of task r, where r ∈ R;
— pdLr : the lower bound of processing time of task r, where r ∈ R;
— CT : cycle time of disassembly line;
— α : the probability of task processing time exceeding the cycle time for all workstations;
— cw : fixed cost to open a workstation;
— ch : extra cost for handing a hazardous task;
Decision variables:
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— xwr : binary variable, equal 1 if task r is assigned to workstation w, 0 otherwise, where
r ∈ R, w ∈ W ;

— yw : binary variable, equal 1 if workstation w is open, 0 otherwise, where w ∈ W ;
— hw : binary variable, equal 1 if a hazardous task is assigned to workstation w, 0 otherwise,

where w ∈ W ;
For the problem, a joint chance-constrained model (P1) is formulated as follows:

P1: min

(
cw
∑
w∈W

yw + ch
∑
w∈W

hw

)
(3.1)

s.t.
∑
r∈Q0

∑
w∈w

xwr = 1 (3.2)
∑
w∈w

xwr ≤ 1, ∀r ∈ R (3.3)
∑
r∈Qn

∑
w∈W

xwr =
∑
r∈Pn

∑
w∈w

xwr, ∀n ∈ N\{0} (3.4)
∑
r∈Qn

xw′r ≤
∑
r∈Pn

w′∑
w=1

xwr, ∀n ∈ N\{0},∀w′ ∈ W (3.5)
xwr ≤ yw, ∀r ∈ R,w ∈ W (3.6)∑
w∈W

wxwr ≤
∑
w∈W

yw, ∀r ∈ R (3.7)
xwr ≤ hw, ∀w ∈ W, r ∈ H (3.8)
Pr

(∑
r∈R

ptrxwr ≤ CT, ∀w ∈ W

)
≥ 1− α (3.9)

xwr, yw, hw ∈ {0, 1}, ∀r ∈ R,w ∈ W (3.10)

The objective function (3.1) is to minimize the total cost of the disassembly line, consisting of
two parts: (i) the fixed cost of opening workstations; (ii) the additional cost incurred by the tasks
handing hazardous parts.

Constraint (3.2) guarantees that only one disassembly scheme is selected. Constraints (3.3)
restrict that any tasks can be assigned to at most one workstation. Constraints (3.4) ensure the
flux conservation of each subassembly and only one immediate successor task be selected for

29



each subassembly. Constraints (3.5) indicate the precedence constraint of tasks, i.e., the succes-
sor tasks of each subassembly should be assigned to the workstation with a larger or equal index
to the preceding one. Constraints (3.6) imply the opened workstations. Constraints (3.7) ensure
that all the workstations should be opened from small to large. Constraints (3.8) determine the
workstation handing hazardous tasks. Constraint (3.9) represents that the task processing time
for all workstations is no more than the cycle time with a possibility of at least 1− α. Constraints
(3.10) give the bounds of decision variables.

Since the general DLBP has been proven to be NP-hard (McGovern and Gupta, 2007b,a), the
studied stochastic DLBP is of course NP-hard. Moreover, the joint chance constraints (3.9) make
the problem more challenging to solve. In the following, we first transform model P1 into a
distribution-free model.

3.2 Problem Analysis and Distribution-free Formulation

In this section, we analyze the problemproperties, and then approximately transform the chance-
constrained model into a distribution-free model.

3.2.1 Problem analysis

Regarding the joint chance constraint (3.9), based on the assumption that workstations are inde-
pendent of each other, we have:

Pr

(∑
r∈R

ptrxwr ≤ CT, ∀w ∈ W

)
=
∏
w∈W

Pr

(∑
r∈R

ptrxwr ≤ CT

)
(3.11)

Let βw denote the individual possibility of workstation w, and the joint chance constraint can
further be equivalently transferred into a set of individual chance constraints (Bentaha et al.,
2015a; Cheng and Lisser, 2012).

Pr

(∑
r∈R

ptrxwr ≤ CT

)
≥ 1− βw, ∀w ∈ W (3.12)
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where (1− βw)
|W | = 1− α.

Constraints (3.12) guarantee that the possibility of task processing times of workstation w
not exceeding the cycle time is at least 1-βw. Next, a conservative approximation of (3.12) is
constructed by the following proposition.
Proposition 1. The chance constraint (3.12) is equivalent to

min


∑
r∈R

pdUr xwr,
∑
r∈R

pdrxwr +

√√√√− ln βw
∑
r∈R

((pdUr − pdLr )
2x2wr)

2

 ≤ CT, ∀w ∈ W (3.13)

where pdr, pdUr , pdLr denote the mean, the upper bound, and the lower bound of processing time of

task r, respectively.

Proof. ByHoeffding inequality (Hoeffding, 1994), for any independent randomvariablesXi bounded
in [ai, bi] with the mean value E(X̄) and for any t > 0, the following formula holds:

P
(
X̄ − E(X̄) ≥ t

)
≤ exp

− 2n2t2

n∑
i=1

(bi−ai)
2


(3.14)

Accordingly, inequality (3.12) can be transformed into the following form:

Pr


∑
r∈R

ptrxwr

n
−

∑
r∈R

pdrxwr

n
≥
CT −

∑
r∈R

pdrxwr

n

 ≤ βw,∀w ∈ W (3.15)

where n = |R|.
Note that CT −

∑
r∈R

pdrxwr > 0which implies by α < 50% (α is a risk level and usually α ≤ 10%)
(Bentaha et al., 2015b). Hence, any xrw satisfying

βw ≥ exp

− 2n2(TI)2∑
r∈R

(pdUr xwr−pdLr xwr)
2


, ∀w ∈ W (3.16)

is a feasible solution for (3.15), where TI =
CT−

∑
r∈R

pdrxwr

n
, ∀w ∈ W .
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Naturally, (3.16) can be rewritten as follows:

∑
r∈R

pdrxwr +

√√√√− ln βw
∑
r∈R

(pdUr xwr − pdLr xwr)
2

2
≤ CT, ∀w ∈ W (3.17)

Moreover, when ∑
r∈R

pdrxwr +

√
− lnβw

∑
r∈R

(pdUr xwr−pdLr xwr)
2

2
>
∑
r∈R

pdUr xwr, (3.17) can be replaced
by the following expression to get a better solution.

∑
r∈R

pdUr xwr ≤ CT, ∀w ∈ W (3.18)

Hence, combining (3.16) and (3.18), the chance constraint (3.15) can be reformulated as fol-
lows:

min


∑
r∈R

pdUr xwr,
∑
r∈R

pdrxwr +

√√√√− ln βw
∑
r∈R

(pdUr − pdLr )
2x2wr

2

 ≤ CT, ∀w ∈ W (3.19)

The proof is completed.

3.2.2 Distribution-free formulation

Based on the above analysis, model P1 can be transformed into the following distribution-free
model P2 by replacing constraint (3.9) with constraints (3.19).

P2: min

(
cw
∑
w∈W

yw + ch
∑
w∈W

hw

)

s.t. (3.2)− (3.8), (3.10), (3.19)

Model P2 is still difficult because of constraints (3.19), and can only be solved by a non-linear
solver, which is inefficient. For large-scale instances, it fails to provide a feasible solution within a
reasonable amount of time. In the following, the distribution-freemodel P2 will be approximated
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to a more efficient second-order cone programming (SOCP) for its resolution.

3.3 Second-order Cone Programming

The SOCPhas been investigated in various studies (Altekin, 2017; Bentaha et al., 2015a,b). The key
step of SOCP is to transfer the difficult-solve constraint into a certain type of quadratic constraint,
which can be directly solved by commercial solvers.

Inspired by this, the non-linear constraint (3.19) is transferred. Firstly, we introduce a continu-
ous decision variable Sw to denote the deviation of task procession times of workstation w. Then
the non-linear part of inequality (3.19), i.e., (3.17) can be rewritten as follows:

∑
r∈R

pdrxwr +

√
− ln βw

2
Sw ≤ CT, ∀w ∈ W (3.20)

∑
r∈R

(pdUr xwr − pdLr xwr)
2 ≤ S2

w, ∀w ∈ W (3.21)
Sw ≥ 0, ∀w ∈ W (3.22)

Notice that constraints (3.19) are min(A,B) ≤ C structure. According to Altekin (2017), a
binary decision variable Uw is introduced, where Uw takes a value of 1 if A ≤ B, and 0 otherwise.

Uw =


1 if

∑
r∈R

ptUr xwr ≤
∑
r∈R

pdrxwr +
√

− lnβw

2
Sw,

0 otherwise.

(3.23)

Therefore, constraints (3.19) can be expressed as two independent inequalities, whereM is
a large positive number.

∑
r∈R

ptUr xwr ≤ CT +M(1− Uw), ∀w ∈ W (3.24)
∑
r∈R

pdrxwr +

√
− ln βw

2
Sw ≤ CT +MUw, ∀w ∈ W (3.25)

33



Then, the SOCP formulation (P3) can be formulated as:

P3: min

(
cw
∑
w∈W

yw + ch
∑
w∈W

hw

)

s.t. (3.2)− (3.8), (3.10), (3.20)− (3.22), (3.24)− (3.25)

Formulation P3 is a SOCP model with quadratic constraints, which can be directly solved by
the commercial solver, such as CPLEX.

3.4 Numerical Experiments

In this section, 7 benchmark instances from the literature are firstly studied to verify the effec-
tiveness of the proposed new formulation, then more randomly generated instances are further
tested. Commercial solver CPLEX 12.8 is called in Visual Studio 2019 to solve the proposed for-
mulation. All numerical experiments are implemented on a personal computer with Core I5 with
12GB RAM under Microsoft Windows 8.1 operating system.

3.4.1 Experiments on benchmark instances

The developed new model is firstly tested on 7 benchmark instances from previous literature
Bentaha et al. (2012, 2013a); Koc et al. (2009); Lambert (1999); Ma et al. (2011); Tang et al. (2002),
containing different kinds of EOL products. Denote each instance by the combination of the first
letter of the author and year. Table 3.1 reports all the input data of instances, which are in line
with Zheng et al. (2018). 25% of tasks are assumed hazardous for each case. The confidence
level parameter α is set to 0.05 and the upper and lower bounds of task time are respectively
1.2pdr and 0.8pdr, where pdr is the mean task time. Columns |R|, |N |, |W |, CT represent the total
number of tasks, the number of subassemblies, the number of available workstations and the
cycle time, respectively.

Three different formulations, i.e., the known distribution model (Bentaha et al., 2015b) (B
model), the distribution-free model (Zheng et al., 2018) (Z model), and the new proposed model

34



Table 3.1: Benchmark instances
No. Instance Product |R| |N | |W | CT

1 BBD13a Compass 10 5 3 0.612 BBD13b Piston and connecting rod 25 11 4 1203 KSE09 Sample product 23 13 6 204 L99a Radio set 30 18 9 505 L99b Ball-point pen 20 13 9 106 MJKL11 Automatic pencil 37 22 10 407 TZC02 Hand light 10 7 6 90

P3 are tested and compared. Table 3.2 reports the results of studied instances under threemod-
els (B model, Z model and P3 model). We use the superscript i, where i = 1, 2, 3, to indicate the
three models. The columns |Ri|, |W i|, |W i

h|, Obji represent the number of tasks for the selecting
disassembly scheme, number of opened workstations, number of workstations for handling haz-
ardous tasks, objective value, respectively. As shown in Table 3.2, the numbers of selected tasks
and opened workstations are the same for the three models. However, the numbers of work-
stations handling hazardous tasks are different in some cases, which leads to different objective
values.

Table 3.2: Experimental results of benchmark instances

Instance Distribution-free
B model Z model P3 model

|R1| |W 1| |W 1
h | Obj1 |R2| |W 2| |W 2

h | Obj2 |R3| |W 3| |W 3
h | Obj3

BBD13a 3 2 1 4.88 3 2 1 4.88 3 2 1 4.88BBD13b 4 2 1 960 4 2 1 960 4 2 1 960KSE09 6 3 2 260 6 3 2 260 6 3 2 260L99a 9 3 2 650 9 3 1 550 9 3 1 550L99b 9 3 1 110 9 3 1 110 9 3 1 110MJKL11 7 3 2 455 7 3 1 385 7 3 1 385TZC02 6 3 1 990 6 3 1 990 6 3 1 990

To facilitate the description of the solution, Table 3.3 illustrates the detailed solutions of three
models, where the number ‘1’ in the table means that the corresponding task is done and as-
signed to the corresponding workstation in the column. We can observe that for case TZC02,
although the numbers of opened workstations are the same, the selected tasks are different.
Specifically, B model and P3 model choose tasks {R2, R4, R6, R7, R9, R10}, but Z model selects
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tasks {R1, R3, R6, R7, R9, R10}. The main reason for this result is that more than one disassembly
scheme is meeting the confidence level. In addition, only one workstation is needed to handle
hazardous tasks for Z model and P3 model in cases L99a and MJKL11, while B model needs two.
So the total cost of the disassembly scheme under B model is higher because of the higher ad-
ditional cost of handling hazardous tasks. It can be found that although with less information or
data, the performance of the proposed P3 model is the same as Z model, and even better than
B model in some cases.

Table 3.3: Experimental results of TZC02 instance
Task\workstation B model Z model P3 model

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
R1 1
R2 1 1
R3 1
R4 1 1
R5

R6 1 1 1
R7 1 1 1
R8

R9 1 1 1
R10 1 1 1

3.4.2 Experiments on randomly generated instances

The random instances are generated using the method of Koc et al. (2009). Three parameters
(a, t,N) determine the instance structure, where a denotes the number of artificial nodes (num-
ber of subassemblies) at each level, t denotes the number of tasks for each artificial node, and
N denotes the number of parts of the EOL product. Then, the total number of artificial nodes
A can be calculated by A = a(N − 2) + 1, and the total number of tasks B can be calculated
by B = a(t(N − 3) + 2). Referring to (Koc et al., 2009), we set a = {3, 5, 10}, t = {2, 3, 5}, and
N = {8, 10, 12}. So the largest scale instance has 470 tasks and 101 artificial nodes, while the
smallest scale instance has 36 tasks and 19 artificial nodes. Other input parameters keep the
same with those in former experiments, i.e., cw = 3, ch = 2 and 25% of tasks are hazardous. Task
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processing times are randomly generated from the interval [10, 50]. Besides, the cycle time is set
as 80, and the maximal number of workstations is set as 10. To study the impact of the uncertain
level, the upper (lower) bound and standard deviation parameters (pbi, E[pd2i ]) set as (0.1, 0.01),
(0.15, 0.03) and (0.2, 0.05), which is the same as Ng (2014) and He et al. (2019). Note that when
the upper (lower) bound parameter takes the value of pdi, the corresponding upper and lower
bounds of task processing time are (1 + pdi)pdr and (1 − pdi)pdr, respectively. Computational
results are reported in Tables 3.4 - 3.6.

Table 3.4: Experimental results with low uncertain level (0.1, 0.01)
Set (a, t,N) A B B model Z model P3 model

Obj1 (W 1,W 1
h ) Obj2 (W 2,W 2

h ) Obj3 (W 3,W 3
h )

1 (3, 2, 8) 19 36 640 (2, 1) 640 (2, 1) 640 (2, 1)2 (3, 3, 8) 19 51 640 (2, 1) 480 (2, 0) 480 (2, 0)3 (3, 5, 8) 19 81 720 (3, 0) 720 (3, 0) 720 (3, 0)4 (5, 2, 8) 31 60 720 (3, 0) 720 (3, 0) 720 (3, 0)5 (5, 3, 8) 31 85 720 (3, 0) 720 (3, 0) 720 (3, 0)6 (5, 5, 8) 31 135 480 (2, 0) 480 (2, 0) 480 (2, 0)7 (10, 2, 8) 61 120 640 (2, 1) 640 (2, 1) 640 (2, 1)8 (10, 3, 8) 61 170 640 (2, 1) 640 (2, 1) 640 (2, 1)9 (10, 5, 8) 61 270 480 (2, 0) 480 (2, 0) 480 (2, 0)10 (3, 2, 10) 25 48 880 (3, 1) 880 (3, 1) 880 (3, 1)11 (3, 3, 10) 25 69 720 (3, 0) 720 (3, 0) 720 (3, 0)12 (3, 5, 10) 25 111 720 (3, 0) 720 (3, 0) 720 (3, 0)13 (5, 2, 10) 41 80 960 (4, 0) 960 (4, 0) 960 (4, 0)14 (5, 3, 10) 41 115 720 (3, 0) 720 (3, 0) 720 (3, 0)15 (5, 5, 10) 41 185 640 (2, 1) 640 (2, 1) 640 (2, 1)16 (10, 2, 10) 81 160 880 (3, 1) 880 (3, 1) 880 (3, 1)17 (10, 3, 10) 81 230 720 (3, 0) 480 (2, 0) 480 (2, 0)18 (10, 5, 10) 81 370 480 (2, 0) 480 (2, 0) 480 (2, 0)19 (3, 2, 12) 31 60 960 (4, 0) 960 (4, 0) 960 (4, 0)20 (3, 3, 12) 31 87 880 (3, 1) 880 (3, 1) 880 (3, 1)21 (3, 5, 12) 31 141 880 (3, 1) 880 (3, 1) 880 (3, 1)22 (5, 2, 12) 51 100 1360 (5, 1) 1200 (5, 0) 1200 (5, 0)23 (5, 3, 12) 51 145 960 (4, 0) 960 (4, 0) 960 (4, 0)24 (5, 5, 12) 51 235 720 (3, 0) 720 (3, 0) 720 (3, 0)25 (10, 2, 12) 101 200 1120 (4, 1) 1040 (3, 2) 1120 (4, 1)26 (10, 3, 12) 101 290 880 (3, 1) 720 (3, 0) 880 (3, 1)27 (10, 5, 12) 101 470 720 (3, 0) 720 (3, 0) 720 (3, 0)Average - 49 152 773.3 - 743.7 - 752.6 -

Table 3.4 reports the experiment results under low uncertain level (0.1, 0.01). For the three
models, all 27 instances obtain optimal solutions. Comparing columns 5, 8 and 14, we can see that
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Table 3.5: Experimental results with middle uncertain level (0.15, 0.03)
Set (a, t,N) A B B model Z model P3 model

Obj1 (W 1,W 1
h ) Obj2 (W 2,W 2

h ) Obj3 (W 3,W 3
h )

1 (3, 2, 8) 19 36 720 (3, 0) 640 (2, 1) 640 (2, 1)2 (3, 3, 8) 19 51 640 (2, 1) 640 (2, 1) 640 (2, 1)3 (3, 5, 8) 19 81 720 (3, 0) 720 (3, 0) 720 (3, 0)4 (5, 2, 8) 31 60 880 (3, 1) 720 (3, 0) 720 (3, 0)5 (5, 3, 8) 31 85 720 (3, 0) 720 (3, 0) 720 (3, 0)6 (5, 5, 8) 31 135 480 (2, 0) 480 (2, 0) 480 (2, 0)7 (10, 2, 8) 61 120 880 (3, 1) 720 (3, 0) 720 (3, 0)8 (10, 3, 8) 61 170 720 (3, 0) 640 (2, 1) 640 (2, 1)9 (10, 5, 8) 61 270 480 (2, 0) 480 (2, 0) 480 (2, 0)10 (3, 2, 10) 25 48 880 (3, 1) 880 (3, 1) 880 (3, 1)11 (3, 3, 10) 25 69 960 (4, 0) 720 (3, 0) 720 (3, 0)12 (3, 5, 10) 25 111 720 (3, 0) 720 (3, 0) 720 (3, 0)13 (5, 2, 10) 41 80 1120 (4, 1) 960 (4, 0) 960 (4, 0)14 (5, 3, 10) 41 115 880 (3, 1) 720 (3, 0) 720 (3, 1)15 (5, 5, 10) 41 185 640 (2, 1) 640 (2, 1) 640 (2, 1)16 (10, 2, 10) 81 160 880 (3, 1) 880 (3, 1) 880 (3, 1)17 (10, 3, 10) 81 230 720 (3, 0) 720 (3, 0) 720 (3, 0)18 (10, 5, 10) 81 370 720 (3, 0) 480 (2, 0) 480 (2, 0)19 (3, 2, 12) 31 60 1120 (4, 1) 960 (4, 0) 960 (4, 0)20 (3, 3, 12) 31 87 960 (4, 0) 960 (4, 0) 960 (4, 0)21 (3, 5, 12) 31 141 880 (3, 1) 880 (3, 1) 880 (3, 1)22 (5, 2, 12) 51 100 1520 (5, 2) 1360 (5, 1) 1360 (5, 1)23 (5, 3, 12) 51 145 1120 (4, 1) 960 (4, 0) 960 (4, 0)24 (5, 5, 12) 51 235 880 (3, 1) 880 (3, 1) 880 (3, 1)25 (10, 2, 12) 101 200 1120 (4, 1) 1120 (4, 1) 1120 (4, 1)26 (10, 3, 12) 101 290 880 (3, 1) 880 (3, 1) 880 (3, 1)27 (10, 5, 12) 101 470 880 (3, 1) 720 (3, 0) 720 (3, 0)Average - 49 152 856.3 - 785.2 - 785.2 -
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Table 3.6: Experimental results with high uncertain level (0.2, 0.05)
Set (a, t,N) A B B model Z model P3 model

Obj1 (W 1,W 1
h ) Obj2 (W 2,W 2

h ) Obj3 (W 3,W 3
h )

1 (3, 2, 8) 19 36 880 (3, 1) 640 (2, 1) 640 (2, 1)2 (3, 3, 8) 19 51 720 (3, 0) 640 (2, 1) 640 (2, 1)3 (3, 5, 8) 19 81 720 (3, 0) 720 (3, 0) 720 (3, 0)4 (5, 2, 8) 31 60 960 (4, 0) 720 (3, 0) 720 (3, 0)5 (5, 3, 8) 31 85 880 (3, 1) 720 (3, 0) 720 (3, 0)6 (5, 5, 8) 31 135 480 (2, 0) 480 (2, 0) 480 (2, 0)7 (10, 2, 8) 61 120 880 (3, 1) 720 (3, 0) 720 (3, 0)8 (10, 3, 8) 61 170 720 (3, 0) 720 (3, 0) 720 (3, 0)9 (10, 5, 8) 61 270 640 (2, 1) 480 (2, 0) 480 (2, 0)10 (3, 2, 10) 25 48 1040 (3, 2) 880 (3, 1) 880 (3, 1)11 (3, 3, 10) 25 69 960 (4, 0) 720 (3, 0) 720 (3, 0)12 (3, 5, 10) 25 111 720 (3, 0) 720 (3, 0) 720 (3, 0)13 (5, 2, 10) 41 80 1200 (5, 0) 960 (4, 0) 960 (4, 0)14 (5, 3, 10) 41 115 1120 (4, 1) 880 (3, 1) 880 (3, 1)15 (5, 5, 10) 41 185 720 (3, 0) 640 (2, 1) 640 (2, 1)16 (10, 2, 10) 81 160 880 (3, 1) 880 (3, 1) 880 (3, 1)17 (10, 3, 10) 81 230 720 (3, 0) 720 (3, 0) 720 (3, 0)18 (10, 5, 10) 81 370 720 (3, 0) 720 (3, 0) 720 (3, 0)19 (3, 2, 12) 31 60 1360 (5, 1) 1120 (4, 1) 1120 (4, 1)20 (3, 3, 12) 31 87 1120 (4, 1) 960 (4, 0) 960 (4, 0)21 (3, 5, 12) 31 141 960 (4, 0) 880 (3, 1) 880 (3, 1)22 (5, 2, 12) 51 100 1680 (5, 3) 1360 (5, 1) 1360 (5, 1)23 (5, 3, 12) 51 145 1360 (5, 1) 960 (4, 0) 960 (4, 0)24 (5, 5, 12) 51 235 1120 (4, 1) 880 (3, 1) 880 (3, 1)25 (10, 2, 12) 101 200 1360 (5, 1) 1120 (4, 1) 1120 (4, 1)26 (10, 3, 12) 101 290 1120 (4, 1) 880 (3, 1) 880 (3, 1)27 (10, 5, 12) 101 470 960 (4, 0) 720 (3, 0) 720 (3, 0)Average - 49 152 962.96 - 808.89 - 808.89 -
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bothmodel A2 andmodel Z get the same objective value under all the instances except instances
25 and 26. In addition, P3 model obtains a lower cost than B model over instances 2, 17 and 22.
That is to say, we can open fewer total workstations or fewer workstations to handle hazardous
tasks. From Table 3.5, we can see that P3 model performs as well as Z model under middle
uncertain level (0.15, 0.03) since they have the same cost, and they open fewer workstations than
B model over instances 1, 4, 7, 8, 11, 13, 14, 18, 19, 22, 23 and 27. Furthermore, Table 3.6 shows
the results under high uncertain level 0.2, 0.05. We can capture that P3model performs the same
as Z model. On the other hand, P3 model gets a better result than B model.

In summary, we can observe that the proposed new model can effectively and efficiently op-
timize the disassembly scheme under uncertainty. It performs the same as Z model in middle
and high uncertain situations, and it performs better than B model in most of instances. As the
uncertain level increases, the proposed new model still keeps a relatively good result compared
to other models.

3.5 Conclusions

This chapter investigates a new single EOL product DLBP, where partial information of the proba-
bility distribution of task processing time is known. For the problem, a chance-constrainedmodel
is proposed and transformed into a new distribution-free model based on obtained problem
properties. Then, an approximated SOCP formulation is developed to solve the problem ef-
fectively. Numerical experiments on benchmark instances and randomly generated instances
demonstrate that the proposed new formulation can effectively solve the problem.

However, increasing demand for customized products results in various new products, and
the scale of EOL products and their variants is rapidly expanding in the recycling market. Thus,
in the next chapter, we investigate a new multi-product DLBP.
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Chapter 4

Multi-product Disassembly Line Balancing

Problem
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With the increasing scale of EOL products and their variants, the traditional single-product dis-
assembly line may be inappropriate and uneconomical to handle these increasing EOL product
variants. Fang et al. (2019) indicate that multi-product disassembly line balancing can satisfy in-
creasingmultiple EOL products disassembly demand and reduces line building andmaintenance
costs.

Therefore, in this chapter, we extend our study to a novel multi-product DLBP, where identical
parts of EOL products and uncertainty task times are simultaneously considered. For the prob-
lem, a new joint chance-constrained model is formulated and approximately transformed into
a distribution-free model based on problem analysis. To efficiently solve the problem, several
valid inequalities are provided and an exact lifted cut-and-solve method is designed. Numerical
experiments are conducted to evaluate the performances of the proposed model, valid inequal-
ities and solution method.

The remainder of this chapter is organized as follows. Section 4.1 describes the studied prob-
lem and formulates the problem by a new joint chance-constrained model. Section 4.2 approxi-
mately transforms the joint chance-constrained model into a distribution-free model and devel-
ops several valid inequalities. Section 4.3 proposes an exact lifted cut-and-solve method. Section
4.4 conducts numerical experiments. Section 4.5 concludes this chapter.

4.1 Problem Description and Joint Chance-constrained Model

4.1.1 Problem description

Consider that multiple EOL products have to be disassembled. These EOL products may have
identical components that can be disassembled by the same machine or workstation. The disas-
sembly of identical parts of these products should be accomplished using identical tasks.

To depict the studied problem, we use an Engine Electronic Control Unit (ECU) example (Cuc-
chiella et al., 2016). Figure 4.1 illustrates the disassembly schemes of two ECUs that are repre-
sented by different colors: red and blue for A, and black and green for B. Each of them has 4
identical parts, i.e., front plastic casing (1), left metal piece (2), right metal piece (3), rear metal
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casing (4), and different printed circuit boards (5 or 6). The underlined parts 5 and 6 are printed
circuit boards and assumed to be hazardous. A disassembly task and a subassembly (disassem-
bly state) are represented by⃝ and □, respectively. R and N represent the sets of disassembly
tasks and subassemblies, respectively. Specifically,N1 andN2 denote the initial subassemblies of
A and B, andNFA andNFB represent the final states of A and B, respectively. Unlike the study in
Chapter 3, the taskmay be executedmultiple times because it could belong tomultiple products.
LetRk

r denote that task r can be executed k times because it belongs to k products. For example,
R2

10, and R2
13 are identical tasks and may be executed twice because of identical parts of A and B.

Moreover, tasks 6, 7, 11, 12 with gray color are assumed to be hazardous because they handle
hazardous parts 5 and 6.

N7
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T91
{2,3} 15

N1{1,2,3,4,5}

R21
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R41
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Figure 4.1: Disassembly schemes of products A and B

The studied flexible multi-product DLBP consists of the optimal selection of a disassembly
scheme for each EOL product, determination of the workstations to be opened, and assigning
tasks to opened workstations respecting task precedence relationships and cycle time within
a given risk level. The objective is to minimize the total disassembly cost, including the open
workstation cost and the cost of handling hazardous tasks. Besides the assumptions in Chapter
3, we have the following additional assumptions:

• EOL products may have identical parts, and the disassembly of these identical parts can be
accomplished by identical tasks;
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• One workstation can disassemble several tasks of multiple EOL products, and workstations
are independent and homogeneous.

• Task processing times are assumed to be mutually independent and uncertain, and only
their limited probability distribution information is available, i.e., the mean, standard devi-
ation and upper bound;

4.1.2 Joint chance-constrained model

Before the mathematical model, the related notations are presented as follows:
Indices:

— r : index of disassembly tasks;
— w,w′ : index of workstations;
— n : index of subassembly nodes;
Parameters:

— R : set of disassembly tasks;
—W : set of workstations;
— H : set of hazardous tasks and H ⊂ R;
— N0: set of initial subassembly nodes;
— N : set of subassembly nodes including initial subassembly nodes, N0 ⊂ N ;
— Pn : set of immediate predecessors of subassembly node n, where n ∈ N ;
— Qn : set of immediate successors of subassembly node n, where n ∈ N ;
— ptr : stochastic processing time of task r, where r ∈ R;
— γr : the maximum number of times that task r can be executed, where r ∈ R;
— CT : the cycle time of all workstations;
— α : a given risk level (probability) that the task processing time exceeds the cycle time for

all workstations;
— cw : fixed cost for opening a workstation;
— ch : fixed cost for handing a hazardous task.
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Decision variables:

— xwr: non-negative integer variable, number of times of task r is assigned to workstation w,
where r ∈ R,w ∈ W ;

— yw: binary variable, equal to 1 if workstation w is open, 0 otherwise, where w ∈ W .
For the problem, a joint chance-constrained program P1 is formulated as follows:

P1: min cw
∑
w∈W

yw + ch
∑
r∈H

∑
w∈W

xwr (4.1)
s.t.

∑
r∈Sn

∑
w∈W

xwr = 1, ∀n ∈ N0 (4.2)
∑
w∈W

xwr ≤ γr, ∀r ∈ R (4.3)
∑
r∈Sn

∑
w∈W

xwr =
∑
r∈Pn

∑
w∈W

xwr, ∀n ∈ N\N0 (4.4)
∑
r∈Qn

w′∑
w=1

xwr ≤
∑
r∈Pn

w′∑
w=1

xwr, ∀n ∈ N\N0, ∀w′ ∈ W (4.5)
∑
r∈R

xwr ≤
∑
r∈R

γryw, ∀w ∈ W (4.6)
yw−1 ≥ yw, ∀w ∈ W\{1} (4.7)
Pr

(∑
r∈R

ptrxwr ≤ CT, ∀w ∈ W

)
≥ 1− α (4.8)

yw ∈ {0, 1},∀w ∈ W (4.9)
xwr nonnegative integer, ∀r ∈ R, w ∈ W (4.10)

Objective (4.1) minimizes the total cost, including the workstation opening cost and the extra
cost for handling hazardous tasks. Constraints (4.2) mean that only one task is selected at the
beginning of disassembly for each EOL product. Constraints (4.3) indicate that task r may be
executed at most γr times. Constraints (4.4) ensure the flow conservation of each subassembly,
i.e., equality of the executed times of preceding tasks and succeeding tasks of each subassembly.
Constraints (4.5) respect the precedence relationships of tasks. Constraints (4.6) guarantee that
a task may be assigned to a workstation only when the workstation is opened. Constraints (4.7)
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number the opened workstations from small to large and avoid empty workstations. Constraint
(4.8) ensures the joint probability that the task processing time does not exceed the cycle time
for all workstations is greater than or equal to 1−α. Constraints (4.9) - (4.10) define the domains
of decision variables.

The above-mentioned joint chance-constrained model P1 is stochastic and non-linear be-
cause of its stochastic task processing time ptr, and the joint chance constraint (4.8). To efficiently
solve the studied problem, P1 is approximately transformed into a distribution-free model P2 in
the next section.

4.2 Distribution-free Model and Valid Inequalities

In this section, based on problem analysis, the joint chance-constrainedmodel P1 is transformed
into a distribution-freemodel P2, and valid inequalities are proposed to tighten its solution space.

4.2.1 Distribution-free model

To transform P1 into an approximated distribution-free model, the joint chance constraint (4.8)
in P1 needs to be transformed into individual chance constraints based on the assumption that
workstations are independent of each other and task processing times aremutually independent.
To this end, βw is introduced to represent the individual risk level for respecting the cycle time of
workstation w, ∀w ∈ W , and the joint chance constraint (4.8) can be equivalently transformed to
(4.11) and (4.12) as follows:

Pr

(∑
r∈R

ptrxwr ≤ CT

)
≥ 1− βw, ∀w ∈ W (4.11)

∏
w∈W

(1− βw) = 1− α (4.12)

where 0 ≤ βw ≤ 1,∀w ∈ W .
Constraints (4.11) mean that the workload of workstation w respects the cycle time with at

least a possibility of 1− βw. constraint (4.12) establishes the relationship between βw and α. Ac-
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cording to the commonly usedmethod for determining the value of individual risk level (Bentaha
et al., 2015b; Zheng et al., 2018), which assumes equality of all individual risk levels, parameter
βw is calculated by βw = 1− |W |

√
1− α, ∀w ∈ W , where |W | is the number of workstations.

With given information of the stochastic task processing time ptr, the mean pdr = E[ptr], the
standard deviation σr and the upper bound pdr(1 + br), where br is the limited deviation ratio to
the mean, and similar to Ng (2014) and Zheng et al. (2018), the stochastic task processing time
can be expressed as:

ptr = pdr(1 + Zr), ∀r ∈ R (4.13)

where Zr is the deviation ratio to the mean of the task processing time and is limited by br, i.e.,
Zr ≤ br.

Therefore, the individual chance Constraints (4.11) are reformulated as:

Pr

(∑
r∈R

pdr(1 + Zr)xwr ≤ CT

)
≥ 1− βw, ∀w ∈ W (4.14)

To construct the distribution-free model, Constraints (4.14) are approximately transformed
to the following constraints:

∑
r∈R

(pdr + νr)xwr ≤ CT, ∀w ∈ W (4.15)

where νr is an auxiliary parameter that reflects the uncertainty of task processing time ptr, which
will be explained later.

Then, the distribution-free model P2 is proposed as follows.

P2: min cw
∑
w∈W

yw + ch
∑
r∈H

∑
w∈W

xwr

s.t. (4.2)− (4.7), (4.9), (4.10), (4.15)

As long as the value of νr is determined, P2 becomes a mixed-integer linear program that
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may be solved using a commercial solver, such as CPLEX, at least for small-sized instances. If the
following proposition is true, νr can be pre-determined.
Proposition 2. As long as any νr satisfies the following equation

f(νr) := min
λi>0

{
e−λiνr/pdr

(
1 +

E[Z2
r ]

b2r
(eλibr − λibr − 1)

)
− βw

}
= 0 (4.16)

then, any solution of P2 must satisfy the individual chance Constraints (4.14).
Before demonstrating Proposition 2, Lemmas 1 and 2 are introduced (refer to Ng (2014)).

Firstly, Lemma 1 is introduced below to describe the relationship between Zr and br.
Lemma 1. For any λ > 0, the following inequality must hold:

E[eλZr ] ≤ 1 +
E[Z2

r ]

b2r
(eλbr − λbr − 1) (4.17)

Proof. By the definition of the mean task processing time, we have pdr = E[tr] = E[pdr(1 + Zr)].
Thus, it follows that E[Zr] = 0. Then, eλbr can be expressed as 1 + λbr +

∞∑
m=2

(λbr)m

m!
(according to

the Taylor series expansion). Because Zr ≤ br and br > 0,

E[eλZr ] = 1 +
∞∑

m=2

λmE[Zm
r ]

m!

≤ 1 + E[Z2
r ]

∞∑
m=2

λmE[bm−2
r ]

m!

= 1 +
E[Z2

r ]

b2r

∞∑
m=2

λmbmr
m!

= 1 +
E[Z2

r ]

b2r
(eλbr − λbr − 1) (4.18)

Next, Lemma 2 is proposed to depict the relationship between E[Z2
r ] and σ2

r .
Lemma 2. With the given standard deviation of task processing time σr, we have E[Z2

r ] =
σ2
r

pd2r
.
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Proof. Let D[tr] denote the variance of processing time of task r, we have:

D[tr] = D[pdr(1 + Zr)] = pd2rD[Zr] (4.19)

Note that E[Zr] = 0, hence D[Zr] = E[Z2
r ] − (E[Zr])

2 = E[Z2
r ]. Accordingly, the following

equation
D[tr] = pd2rE[Z

2
r ] (4.20)

must hold, thus E[Z2
r ] =

σ2
r

pd2r
.

Now, we provide the proof of Proposition 2.
Proof. Given a feasible solution xwr obtained by (4.15), if ∑

r∈R
pdr(1 + Zr)xwr > CT , it must fol-

low that ∑
r∈R

pdrZrxwr >
∑
r∈R

νrxwr. Moreover, if pdrZr > νr, it must follows that ∑
r∈R

pdrZrxwr >∑
r∈R

νrxwr. Hence, for simplicity, ∑
r∈R

pdrZrxwr >
∑
r∈R

νrxwr is conservatively approximatedby pdrZr >

νr, so the following inequality must hold:

Pr

(∑
r∈R

pdr(1 + Zr)xwr > CT

)
≤ Pr (pdrZr > νr) , ∀w ∈ W (4.21)

Obviously, we have Pr (pdrZr > νr) = Pr
(
eλZr > eλνr/pdr

). Then, using the Markov inequality:
Pr(X ≥ a) ≤ E(X)

a
, where X ≥ 0, and a > 0. Let X = eλZr and a = eλνr/pdr . With Lemma 1, we

have

Pr
(
eλZr > eλνr/pdr

)
≤ e−λνr/pdrE[eλZr ]

≤ e−λνr/pdr

(
1 +

E[Z2
r ]

b2r
(eλbr − λbr − 1)

)
(4.22)

Since (4.22) is valid for any λ > 0, the following inequality must holds:

Pr

(∑
r∈R

pdr(1 + Zr)xwr > CT

)
≤ min

λ>0
e−λνr/pdr

(
1 +

E[Z2
r ]

b2r
(eλbr − λbr − 1)

)
, ∀w ∈ W (4.23)
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Recall constraints (4.14) that can be rewritten as:

Pr

(∑
r∈R

pdr(1 + Zr)xwr > CT

)
< βw, ∀w ∈ W (4.24)

We can always find a λ such that the right sides of (4.22) and (4.23) to be equal, we can obtain

min
λ>0

e−λνr/pdr

(
1 +

E[Z2
r ]

b2r
(eλbr − λbr − 1)

)
− βw = 0, ∀w ∈ W (4.25)

So any νr satisfies (4.25), then any solution xwr of P2 must satisfy the individual chance con-
straint (4.14).

The value of νr can be obtained by solving equality (4.16). To determine νr, Algorithm 1 is
presented.
Algorithm 1 Calculation of the value of νr
Input: pdr, br, σ2

r , νr = 0, λi = 0.001

1: fvalue = f̂(νr, λi) = e−λiνr/pdr
(
1 + E[Z2

r ]
b2r

(eλibr − λibr − 1)
)
− βw;

2: while fvalue > 0.001 do
3: if f ≤ 1 then
4: λi = λi + 0.001;
5: fvalue = f̂(νr, λi);6: else
7: νr = νr + 0.1;
8: λi = 0.001;
9: fvalue = f̂(νr, λi);10: end if
11: end while
Output: The value of νr

Thebasic idea of the algorithm is to determine a combination of (νr, λ) that satisfies f̂(νr, λi) =
0. Although P2 is a mixed-integer linear programming model once νr is fixed, P2 is still NP-hard
because the deterministic single-product DLBP is NP-hard (McGovern and Gupta, 2007b). There-
fore, effective valid inequalities are proposed to improve P2 in the next section.
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4.2.2 Valid inequalities

This section presents two valid inequalities to tighten the solution space of model P2, and then
an improved distribution-free model is proposed.

Valid inequality 1

The first valid inequality attempts to limit the number of workstations to be opened. To propose
the valid inequality, we relax the assumption that one workstation can execute several tasks
of different EOL products in model P2 to form its relaxed model P2′ , in which one workstation
executes the tasks of only one EOL product. P (indexed by p) denotes the set of EOL products
and |Wp| denotes the number of workstations required for product p in a feasible solution of P2′ .∑
p∈P

|Wp| denotes the total number of workstations of the feasible solution of P2′ . The following
proposition is formulated.
Proposition 3. Let

∑
w∈W

yw be the number of opened workstations in a feasible solution of P2, then

the following inequality:

V I1 :
∑
w∈W

yw ≤
∑
p∈P

|Wp| (4.26)

is a valid inequality for P2.

Proof. VI1 indicates that the number of opened workstations of an optimal solution of P2 does
not exceed ∑

p∈P
|Wp|. Suppose that ∑

w∈W
y

′′
w denotes the optimal number of workstations of P2

and ∑
w∈W

y
′′
w >

∑
p∈P

|Wp|. Let ∑
w∈W

y
′
w denote the optimal number of workstations of P2′ , and we

have ∑
p∈P

|Wp| ≥
∑

w∈W
y

′
w. Thus, ∑

w∈W
y

′′
w >

∑
w∈W

y
′
w. As P2′ is the relaxed model of P2, we can

always find another optimal number of workstations of P2, denoted as ∑
w∈W

y∗w that is smaller
than or equal to ∑

w∈W
y

′
w. Apparently, we have ∑

w∈W
y∗w ≤

∑
w∈W

y
′
w <

∑
w∈W

y
′′
w. So it is contradictory to

the assumption that ∑
w∈W

y
′′
w is the optimal number of workstations of P2. Thus, (4.26) is a valid

inequality of P2.
To determine ∑

p∈P
|Wp|, Algorithm 2 is proposed below, where Lp (indexed by l), Rp

l and AT
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are the disassembly scheme set of product p, the task set of disassembly scheme l in Lp and the
available time of a workstation, respectively. |W l

p| denotes the number of open workstations of
disassembly scheme l of product p.
Algorithm 2 Upper bound determination for opened workstations ∑

p∈P
|Wp|

Input: Disassembly schemes of EOL products (Lp,∀p ∈ P ), task processing times (ptr,∀r ∈ R),cycle time CT
1: p = 1;
2: while (p ≤ |P |) do
3: l = 1, |Wp| = 0;
4: while (l ≤ |Lp|) do5: stationnum = 1, r = 1, AT = CT ;
6: while (r ≤ |Rp

l |) do7: if ptr ≤ T then
8: AT = AT − ptr, r = r + 1;
9: else
10: stationnum = stationnum + 1, AT = CT ;
11: end if
12: end while
13: |W l

p| = stationnum;14: if |W l
p| > |Wp| then15: |Wp| = |W l

p|;16: end if
17: l = l + 1;
18: end while
19: p = p+ 1;
20: end while
Output: The value of ∑

p∈P
|Wp|

Algorithm 2 contains three loops: Lines 6 to 12 calculate the number of workstations of dis-
assembly scheme l of product p in a feasible solution of P2′ , Lines 4 to 18 determine |Wp| =

max
l∈Lp

{
|W l

p|
}, and Lines 2 to 20 obtain ∑

p∈P
|Wp|.

Valid inequality 2

The second valid inequality determines the workstations to which disassembly tasks cannot be
assigned due to their precedence relationships. The task precedence relationship implies that
a task cannot be executed before its predecessors and after its successors. For simplicity, let
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PT l
r andQT l

r denote the sum of processing times of the predecessors and successors of task r in
disassembly scheme l, respectively, where l ∈ Lr andLr is the disassembly scheme set containing
task r. Consequently, the minimum numbers of workstations for predecessors and successors
of task r, npr and nsr may be determined by the following formulas: npr = min

l∈Lr

{
⌈PT l

r/CT ⌉
} and

nqr = min
l∈Lr

{
⌈QT l

r/CT ⌉
}, recall that CT is the cycle time and ⌈x⌉ is the smallest integer greater

than or equal to x.
Without loss of generality, the second valid inequality can be analyzed via the case illustrated

in Figure 4.2, in which tasks are numbered and represented by ⃝. The illustrated EOL product
has two disassembly schemes that contain 11 tasks, and the corresponding processing times
(ptr = pdr + νr) are set as 8, 7, 8, 5, 4, 7, 6, 8, 5, 9, and 7 seconds. With the assumption that only
one scheme of a product can be selected. For the green scheme (l = 1), task 7 has predecessors
{1, 2, 3} and successor {8, 9}, and we obtain PT 1

7 = pt1 + pt2 + pt3 = 23 seconds and QT 1
7 =

pt8 + pt9 = 13 seconds. Similarly for the blue scheme (l = 2), we have PT 2
7 = pt4 + pt5 + pt6 = 16

seconds and QT 2
7 = pt10 + pt11 = 16 seconds. We suppose that the cycle time is 10 seconds,

and we have Wmax = 6 according to Algorithm 2. Therefore, np7 = min(⌈23/10⌉, ⌈16/10⌉) = 2

and nq7 = min(⌈13/10⌉, ⌈16/10⌉) = 2. Task 7 cannot be assigned before workstation np7 = 2 and
after workstation |Wmax| − ns7 + 1 = 5. Therefore, for model P2, we have x17 = x67 = 0 and the
following proposition.case (a): 1 3 4

5

case (b):

2

case (c):

4 5

7

1110

1 2

6

6 7

3

5 6

8
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Figure 4.2: An illustration example of valid inequality 2

Proposition 4. With the pre-determined
∑
p∈P

|Wp| by Algorithm 2, the following inequality:

V I2 : xwr = 0, ∀r ∈ R,w < npr, w >
∑
p∈P

|Wp| − nqr + 1 (4.27)

is a valid inequality for P2.
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Proof. VI2 means that task r cannot be assigned to the workstations smaller than npr or larger
than ∑

p∈P
|Jp| − nqr + 1. Suppose that there exists an optimal solution ζ of model P2 with xwr ̸= 0,

in which w < npr or w >
∑
p∈P

|Wp| − nqr + 1. Naturally, we can always find a solution ζ ′ that
the processors of task r need at least npr − 1 workstations. Thus, it can be observed that solu-
tion ζ ′ requires fewer workstations than the optimal solution ζ. It is contradictory to our former
assumption. Hence, (4.27) is valid for model P2.

Improved distribution-free model

The numerical experiments show that the model with VI1 and VI2 performs best. Therefore, an
improved model P3 is presented:

P3: min cw
∑
w∈W

yw + ch
∑
r∈H

∑
w∈W

xwr

s.t. (4.2)− (4.7), (4.9), (4.10), (4.15), (4.26), (4.27)

Although the improved model P3 is tighter than P2, it is still time-consuming for large-scale
instances. Therefore, an exact lifted cut-and-solve method is proposed in the next section to
solve model P3 efficiently.

4.3 Lifted Cut-and-solve Method

As introduced in Chapter 2, the CS method is a particular branch and bound algorithm and has
been successfully used to solve many combinatorial optimization problems. To enhance the per-
formance of the CS method for solving our problem, a new lifted CS method is devised.

The framework and search tree of the proposed lifted CS method are outlined in Figures 4.3
and 4.4, respectively. Particularly, 1) a constructive heuristic (Algorithm 3) is proposed to obtain
an initial UB that may be an optimal solution of the original problem (see subsection 4.3.1). 2)
double PCs (PC1

i−1, PC2
i−1) based on partially linear relaxation are proposed at each iteration to

obtain a better LB (see subsection 4.3.2). 3) SP is further divided into two sub-problems (SP 1
i ,
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SP 2
i ) by a second PC for an efficient resolution (see subsection 4.3.3).
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Figure 1: The framework of lifted cut‐and‐solve method
Figure 2: The search tree of lifted cut‐and‐solve method
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Figure 4.3: The framework of lifted cut-and-solve method
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Figure 4.4: The search tree of lifted cut-and-solve method

4.3.1 Heuristic to determine an initial UB

The main purpose of the proposed heuristic is to select a disassembly scheme with the mini-
mum sum of task processing times for each EOL product, open workstations for product p one
at a time, p = 1, ..., |P |, and assign the related tasks to workstations respecting task precedence
relationships and cycle time constraints.

Note that Rl
p denotes the ordered task set in which the precedence relationships of tasks are

respected for l ∈ Lp, and Lp is the disassembly scheme set of product p. Recall that ptr = pdr+νr

denotes the processing time of task r,∀r ∈ R. The proposed heuristic is summarised as follows.
Algorithm 3 consists of two parts. Lines 1 to 8 select the disassembly scheme with the mini-

mum sum of task processing times for each EOL product, and Lines 9 to 18 decide the worksta-
tions to be opened and assign the selected tasks to the opened workstations.
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Algorithm 3 The heuristic to obtain an upper bound
Input: ptr, Rl

p,∀l ∈ Lp, p ∈ P, r ∈ Rl
p1: Set p = 1;

2: while p ≤ |P | do
3: for l = 1 → |Lp| do4: Calculate Tl = ∑

r∈Rl
p

ptr;
5: end for
6: R∗

p = Rl∗
p , where l∗ = argmin

l∈Lp

{Rl};
7: p = p+ 1;
8: end while
9: Set w = 0, T = 0, RP =

⋃
p∈P

R∗
p;

10: while (r ≤ |RP |) do
11: if ptRP [r] ≤ T then
12: T = T − ptRP [r];13: xwRP [r] = 1, r = r + 1;
14: else
15: w = w + 1;
16: yw = 1, T = CT ;
17: end if
18: end while
19: Calculate UB = Cw

∑
w∈W

yw + Ch

∑
r∈H

∑
w∈W

xwr;
Output: An UB and its corresponding solution

4.3.2 Double piercing cuts

Existing CS methods generally define one PC, and the corresponding SP may still be difficult
to solve. The double PCs (PC1

i−1, PC
2
i−1) at the (i − 1)-th iteration are designed based on an

optimal solution of linear relaxation of DPi−1 in this study, denoted as (x̃wr, ỹw). Note that the
objective function value is primarily determined by the number of workstations to be opened,
i.e., ∑

w∈W
yw. Because the cost of handling hazardous tasks is the same regardless of which dis-

assembly scheme is selected. A better LB may be obtained with the partial relaxation of DPi−1.
Preliminary experiments show that task r has a larger probability of being assigned to worksta-
tionw in the optimal solution of P3when x̃wr has a large value. Therefore, we propose 1) a partial
relaxation strategy forDPi−1, 2) the first PC with the value of ỹw, 3) the second PC with the value
of x̃wr.

At the (i− 1)-th iteration, with an optimal solution of the relaxedDPi−1, the first piercing cut,
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PC1
i−1, can be defined as follows.

∑
yw∈Ω1

i−1

yw = 0 (4.28)

where Ω1
i−1 = {yw|ỹw = 0, ∀w ∈ W}.

Let Ri−1 denote the set of tasks whose values of x̃wr are fractions. For any task r ∈ Ri−1, the
combination of task r assigned to workstation w, i.e., (w, r) corresponding to the largest values
of x̃wr is presented below:

Ψi−1 =

{
(w, r)|(w, r) = arg max

r∈Ri−1,w∈W
{x̃wr}

}
(4.29)

Consequently, the second piercing cut PC2
i−1 can be defined as follows:

∑
xwr∈Ω2

i−1

xwr ≤ li−1 − 1 (4.30)

where Ω2
i−1 = {xwr|(w, r) ∈ Ψi−1} and li−1 is an integer that takes the value of ∑

(w,r)∈Ψi−1

⌈x̃wr⌉.
The first piercing cut (PC1

i−1) divide the current DPi−1 into two sub-problems DPi and SPi.
The second piercing cut (PC2

i−1) further divide SPi into two sub-problems SP 1
i and SP 2

i . The
formulations of sparse and dense problems are presented below.

4.3.3 Sparse and dense problem formulations

According to the above-defined double PCs, the formulations of the dense problem (DPi) at the
i-th iteration can be presented as follows.

DPi : min cw
∑
w∈W

yw + ch
∑
r∈H

∑
w∈W

xwr

s.t. (4.2)− (4.7), (4.9), (4.10), (4.15), (4.26), (4.27)∑
yw∈Ω1

i−1

yw ≥ 1 (4.31)
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Two sparse problems SP 1
i and SP 2

i are defined as follows:

SP 1
i : min cw

∑
w∈W

yw + ch
∑
r∈H

∑
w∈W

xwr

s.t. (4.2)− (4.7), (4.9), (4.10), (4.15), (4.26), (4.27)∑
yw∈Ω1

i−1

yw = 0

∑
xwr∈Ω2

i−1

xwr ≥ li−1 (4.32)

SP 2
i : min cw

∑
w∈W

yw + ch
∑
r∈H

∑
w∈W

xwr

s.t. (4.2)− (4.7), (4.9), (4.10), (4.15), (4.26), (4.27)∑
yw∈Ω1

i−1

yw = 0

∑
xwr∈Ω2

i−1

xwr ≤ li−1 − 1

To better understand the proposed method, the ECU example mentioned in Section 4.1 is
given below. In the example, there are 2 products and 14 tasks with processing times (in seconds)
of {30, 35, 45, 35, 35, 20, 18, 35, 31, 38, 50, 20, 25, 25}. The costs of opening a workstation (cw)

and handling a hazardous task (ch) are 3 and 2 dollars, respectively. There are 6 workstations
available, and the cycle time CT is 90 seconds. The detailed process of the lifted cut-and-solve
method is depicted below in Figure 4.5.

Next, numerical experiments are conducted to evaluate the proposed lifted CS method’s per-
formance, and the results are discussed.
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Figure 4.5: The detailed process of the algorithm for solving the instance
4.4 Numerical Experiments

Numerical experiments are performed on an illustrative example, 10 instances based on realistic
products and 480 randomly generated instances to evaluate the performance of the proposed
integrated approach. The program is coded using the C++ programming language in Microsoft
Visual Studio 2019. All numerical experiments are performed on a personal computer with Core
I5 and 3.20 GHz CPU with 12GB RAM. All models are solved using the CPLEX solver version 12.9.

4.4.1 An illustrative example

In this part, the ECU example (see Figure 4.1) is investigated to test our models, which contain
14 tasks and 12 subassemblies. The mean task processing times (in seconds) are {30, 35, 45, 35,
35, 20, 18, 35, 31, 38, 50, 20, 25, 25}. The upper bound, standard deviation and risk level are 0.1,
0.01 and 5%, respectively. The costs of opening a workstation and handling a hazardous task are
3 and 2 dollars, respectively. Assume that there are 6 workstations available, and the cycle time
CT is 90 seconds.

Figure 4.6 reports the results of the illustrative instance. In the optimal solution, 3 worksta-
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tions are opened, and the total cost is 13 dollars. For ECUA, the selected disassembly scheme con-
tains tasks {1, 5, 9, 12}, and the selected disassembly schemeof ECUB contains tasks {3, 7, 10, 13},
corresponding to the blue and black lines in Figure 4.2, respectively.

Workstation 1 Workstation 2 Workstation 3

R1
1 R3

1 R5
1R7

1 R10
2 R13

2 R9
1 R12

1

Figure 4.6: The result of ECU example

4.4.2 Instance data and parameter setting

Since there is no standard data set that can be directly used for the multi-product DLBP with
identical parts and stochastic task times, we generate 10 instances based on 7 realistic EOL prod-
ucts used in Chapter 3 (see Table 4.1) by emerging different EOL products to generate the multi-
product instances, which is similar to Fang et al. (2020b) and Liu et al. (2022). The basic informa-
tion of these multi-product instances is summarized in Table 4.2, where each instance scale is
primarily determined by three parameters, i.e., the number of products |P |, the number of tasks
|R|, and the number of available workstations |W |.

Table 4.1: Information of realistic EOL products
Number EOL product Reference
1 Hand light Tang et al. (2002)2 Compass Bentaha et al. (2012)3 Ballpoint pen Lambert (1999)4 Sample product Koc et al. (2009)5 Piston and connecting rod Bentaha et al. (2013b)6 Radio set Lambert (1999)7 Automatic pencil Ma et al. (2011)

Moreover, to thoroughly evaluate the performances of the integrated method, 96 problem
sets, each with 5 instances, for a total of 480 instances are randomly generated. For each EOL
product, 20% of tasks are set as identical tasks, and 20% are set as hazardous tasks. The mean
task processing times (pdr) (in seconds) are randomly generated from [10, 50] consistent with He
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Table 4.2: Information of the multi-product instances based on realistic EOL products
Number Products |P | |R| |W |

1 1,2 2 20 102 1,3 2 30 103 1,2,3 3 40 154 2,3,4 3 53 155 1,2,3,4 4 63 206 2,3,4,5 4 78 207 1,2,3,4,5 5 88 258 2,3,4,5,6 5 108 259 1,2,3,4,5,6 6 118 3010 2,3,4,5,6,7 6 145 30

et al. (2020b). Similar toNg (2014), the upper bound and standard deviation of the task processing
time (br, E[Z

2
r ]) are set as (0.1, 0.01), (0.2, 0.05) and (0.3, 0.10) to represent different uncertainty

levels. The unit fixed cost of a workstation cw and the unit cost for handling hazardous task ch are
set as 3 and 2 dollars, respectively (Bentaha et al., 2015b; He et al., 2020b). The risk level α and the
cycle time CT are set as 5% and 90 seconds, respectively. The input parameters are summarized
in Table 4.3.

Table 4.3: Input parameters of random instances
Parameters Values
Number of products (|P |) 2, 4, ..., 20Number of tasks (|R|) 20, 40, ..., 400number of available workstations (|W |) 6, 10, ..., 86Cost to open a workstation (cw) (dollars) 3Cost to handle a hazardous task (ch) (dollars) 2Cycle time (CT ) (seconds) 90Risk level (α) 5%Mean task times (pdr) (seconds) [10,50]
(br, E[Z2

r ]) (0.1, 0.01), (0.2, 0.05), (0.3, 0.10)

4.4.3 Evaluation of the distribution-free model

The approximated distribution-freemodel P2 (solved via CPLEX) is evaluated by comparison with
the corresponding deterministic model (DM) (solved via CPLEX) and a sampling average approx-
imation (SAA) method. The model with the SAA method mainly refers to Luedtke and Ahmed
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(2008) and Qiu and Wang (2014). For the approximated model, some new parameters are intro-
duced below:

Ω : the set of randomly generated Monte Carlo samples;
η : index of each sample;
zηw: binary variable, equal to 1 if the workload of workstation w ∈ W exceeds the cycle time

under sample η ∈ Ω, 0 otherwise ;
M : a big positive number;
The approximated model using SAA method is proposed in the following:

P4: min cw
∑
w∈W

yw + ch
∑
r∈H

∑
w∈W

xwr

s.t. (4.2)− (4.7), (4.9), (4.10)∑
r∈R

ptr(η)xwr −Mzηw ≤ CT, ∀w ∈ W, ∀η ∈ Ω (4.33)
∑
η∈Ω

∑
w∈W

zηw ≤ ⌊|Ω|α⌋ (4.34)
zηw ∈ {0, 1}, ∀w ∈ W, ∀η ∈ Ω (4.35)

Constraints (4.33) guarantee that the workloads of all workstations will not exceed the cycle
time under all samples by adding a binary variable zηw. Constraint (4.34) restricts the sum value
of zηw, which is determined by the scale of Monte Carlo samples |Ω| and the probability α, where
⌊x⌋ means the largest integer that does not exceed x. Constraints (4.35) define the domains of
decision variables.

The task processing times of the DM are set as the means of the stochastic ones in P2. The
task processing times in SAA are assumed to follow normal distributions, in which their means
and standard deviations are identical to these values in P2. The number of samples is set to 20
based on preliminary experiments. Numerical experiments are first performed on the realistic
EOL product instances.

Tables 4.4-4.6 report the computational results of realistic EOL product instances under 3
uncertainty levels, whereObjDM , TDM ,ObjSAA, TSAA andObjP2, TP2 denote the average objective
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values and computational times of DM, SAA and P2, respectively. In particular, the computational
time unit is seconds denoted by s. We can observe that the average objective value of the DM
is the smallest, which takes the value of 29.5, and the objectives of SAA and P2 are almost the
same. On the other hand, the SAA requiresmore computational time than P2 and DM.Moreover,
with the uncertainty increase, the objective values and the computational times also increase.
Therefore, more workstations are generally needed to deal with the uncertain task times.

Table 4.4: The results of realistic EOL product instances with (br = 0.1, E[Z2
r ] = 0.01)

DM SAA P2
Instance (P,R,W ) ObjDM TDM (s) ObjSAA TSAA(s) ObjP2 TP2(s)

1 (2,20,10) 14.2 0.10 14.2 0.20 14.8 0.092 (2,30,10) 19.0 0.19 20.8 1.05 21.4 0.163 (3,40,15) 22.8 0.35 24.0 2.29 24.0 0.364 (3,53,15) 22.8 0.43 25.6 17.60 25.6 0.665 (4,63,20) 29.6 2.35 30.2 18.78 31.4 2.696 (4,78,20) 27.8 1.14 29.6 305.60 29.6 1.217 (5,88,25) 34.0 2.83 37.0 2411.27 37.0 2.688 (5,108,25) 36.4 4.47 37.4 2782.47 39.4 11.999 (6,118,30) 43.8 4.99 45.8 3626.41 47.4 8.4010 (6,145,30) 44.8 8.72 50.8 4837.71 54.0 17.50
Average - 29.5 2.56 31.5 1400.35 32.5 4.58

Table 4.5: The results of realistic EOL product instances with (br = 0.2, E[Z2
r ] = 0.05)

DM SAA P2
Instance (P,R,W ) ObjDM TDM (s) ObjSAA TSAA(s) ObjP2 TP2(s)

1 (2,20,10) 14.2 0.10 16.0 0.30 15.4 0.102 (2,30,10) 19.0 0.19 23.2 2.41 22.6 0.223 (3,40,15) 22.8 0.35 25.8 12.77 26.4 0.414 (3,53,15) 22.8 0.43 28.2 153.42 27.6 0.885 (4,63,20) 29.6 2.35 32.6 6824.53 33.2 0.876 (4,78,20) 27.8 1.14 30.8 119.36 32.6 11.047 (5,88,25) 34.0 2.83 38.5 2333.57 40.0 3.338 (5,108,25) 36.4 4.47 43.0 5148.70 41.2 11.569 (6,118,30) 43.8 4.99 49.8 6283.63 49.8 32.4810 (6,145,30) 44.8 8.72 51.7 7218.16 54.0 15.26
Average - 29.5 2.56 34.0 2209.69 34.3 7.61

To have an observation of the performances on different methods, experiments are further
conducted on random instance sets with up to 6 products, 120 tasks and 30 workstations. Com-
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Table 4.6: The results of realistic EOL product instances with (br = 0.3, E[Z2
r ] = 0.1)

DM SAA P2
Instance (P,R,W ) ObjDM TDM (s) ObjSAA TSAA(s) ObjP2 TP2(s)

1 (2,20,10) 14.2 0.10 16.6 0.33 17.2 0.112 (2,30,10) 19.0 0.19 24.4 3.19 24.4 0.163 (3,40,15) 22.8 0.35 27.0 34.31 28.2 0.634 (3,53,15) 22.8 0.43 28.6 115.71 28.6 0.735 (4,63,20) 29.6 2.35 36.2 1528.23 36.2 2.916 (4,78,20) 27.8 1.14 33.2 233.04 33.2 2.797 (5,88,25) 34.0 2.83 42.0 4097.66 42.4 134.708 (5,108,25) 36.4 4.47 44.0 5444.01 43.6 68.449 (6,118,30) 43.8 4.99 54.0 7874.54 53.3 15.2710 (6,145,30) 44.8 8.72 56.7 9235.37 55.5 100.11
Average - 29.5 2.56 36.3 2856.64 36.3 32.58

putational results are illustrated in Figures 4.7-4.9, in which sub-figures (a) and (b) report the
objective values and computational times of DM, SAA and P2, respectively. Sub-figures (a) of Fig-
ures 4.7-4.9 show that the curves of the objective values of P2 and SAA almost overlap, and they
are superior to the values of DM. This result indicates that the solution qualities of P2 and SAA
are nearly identical, and DM proposes a better solution because there are no uncertain factors.
On the other hand, sub-figures (b) shows that the curves of the computational times of P2 and
DM almost overlap, and the computational time of SAA increases sharply.
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Figure 4.7: Comparison results of models with (br = 0.1, E[Z2

r ] = 0.01)

The detailed results are presented in Tables 4.7-4.9. Based on Tables 4.7-4.9, the average
gaps of the objective values between DM and P2 can be calculated by the formula (ObjP2 −

ObjDM)/ObjDM × 100%. The gaps under the 3 uncertainty levels are 7.72%, 16.44% and 24.83%,
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Figure 4.9: Comparison results of models with (br = 0.3, E[Z2
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respectively, which indicate that the gaps increase with levels of uncertainty. Considering the av-
erage computational time, SAA are 474, 313 and 258 times of those needed by P2 under 3 different
uncertainty levels. These results indicate that DM and P2 perform better than SAA in terms of
computational time.

Moreover, we utilize the Wilcoxon signed-rank test, a flexible non-parametric statistical hy-
pothesis test (Garc4́a et al., 2009), to compare the performance of the three methods. The prin-
ciple of the Wilcoxon signed-rank test is to calculate the differences between the two compared
methods and analyze these differences to test if they are statistically significantly different. We
prefer the Wilcoxon test because it does not assume the normality of the samples (Chica et al.,
2010) and it has already been demonstrated to help analyze the behavior of evolutionary algo-
rithms, and it has been well adopted in the disassembly line balancing problems (Fang et al.,
2019; Li et al., 2020).

The null-hypothesis H0 is that the compared two methods have equal performance. The sig-
nificance level considered in all the tests to be presented is p = 0.05. A p-value is smaller than
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Table 4.7: The results of random instances with (br = 0.1, E[Z2
r ] = 0.01)

DM SAA P2
Instance (P, I, J) ObjDM TDM (s) ObjSAA TSAA(s) ObjP2 TP2(s)

1 (2,20,6) 17.8 0.08 17.8 0.12 17.8 0.132 (2,20,10) 17.8 0.10 18.4 0.22 17.8 0.123 (2,40,10) 14.8 0.13 16.6 0.33 16.6 0.154 (2,40,14) 14.8 0.10 16.6 0.36 16.6 0.135 (4,40,14) 29.6 0.41 32.6 6.16 32.6 0.376 (4,40,18) 29.6 0.50 32.6 10.92 32.6 0.397 (4,80,18) 29.0 0.92 30.8 11.10 30.8 1.138 (4,80,22) 29.0 0.92 30.8 26.06 30.8 1.019 (6,60,22) 45.6 2.02 49.2 1538.67 49.2 2.5610 (6,60,26) 45.6 2.57 49.8 3708.64 49.2 2.6011 (6,120,26) 42.0 3.58 45.6 5568.77 45.6 14.0012 (6,120,30) 42.0 5.93 45.0 6918.61 45.0 14.95
Average - 29.8 1.44 32.2 1482.50 32.1 3.13

Table 4.8: The results of random instances with (br = 0.2, E[Z2
r ] = 0.05)

DM SAA P2
Instance (P, I, J) ObjDM TDM (s) ObjSAA TSAA(s) ObjP2 TP2(s)

13 (2,20,6) 17.8 0.08 19.6 0.14 20.2 0.1214 (2,20,10) 17.8 0.10 20.2 0.25 20.2 0.1215 (2,40,10) 14.8 0.13 17.2 0.41 17.2 0.1716 (2,40,14) 14.8 0.10 17.2 0.42 17.2 0.1317 (4,40,14) 29.6 0.41 35.6 28.69 35.6 0.4018 (4,40,18) 29.6 0.50 35.0 35.44 35.0 0.4919 (4,80,18) 29.0 0.92 33.8 261.50 33.8 1.3420 (4,80,22) 29.0 0.92 33.8 348.12 33.8 1.1621 (6,60,22) 45.6 2.02 52.8 4641.25 52.2 7.8522 (6,60,26) 45.6 2.57 52.2 6717.90 52.2 12.3523 (6,120,26) 42.0 3.58 49.2 8182.52 49.2 15.8724 (6,120,30) 42.0 5.93 49.2 9236.56 49.2 53.99
Average - 29.8 1.44 34.7 2454.44 34.7 7.83

0.05, denoting a rejection of the null-hypothesis, i.e., the compared two methods perform signif-
icantly differently. The results of the Wilcoxon test are illustrated in Table 4.10. We can obtain
that DM outperforms P2 and SAA statistically because the p-values are smaller than 0.0001. In
comparison, P2 and SAA are not statistically different in terms of the objective values according
to the p-value of 0.3047.

67



Table 4.9: The results of random instances with (br = 0.3, E[Z2
r ] = 0.10)

DM SAA P2
Instance (P, I, J) ObjDM TDM (s) ObjSAA TSAA(s) ObjP2 TP2(s)

25 (2,20,6) 17.8 0.08 20.8 0.18 20.8 0.1126 (2,20,10) 17.8 0.10 21.4 0.24 20.8 0.1527 (2,40,10) 14.8 0.13 17.8 0.34 19.0 0.1628 (2,40,14) 14.8 0.10 19.0 0.34 19.0 0.1429 (4,40,14) 29.6 0.41 38.6 99.29 38.6 1.5230 (4,40,18) 29.6 0.50 37.4 59.58 38.6 1.2331 (4,80,18) 29.0 0.92 35.6 409.25 36.8 4.5632 (4,80,22) 29.0 0.92 36.8 863.36 36.8 9.1233 (6,60,22) 45.6 2.02 55.2 4875.63 55.2 11.7934 (6,60,26) 45.6 2.57 56.4 9333.72 56.4 18.4035 (6,120,26) 42.0 3.58 52.2 12005.20 52.2 20.3036 (6,120,30) 42.0 5.93 51.6 12984.24 52.2 90.04
Average - 29.8 1.44 36.9 3385.95 37.2 13.13

Table 4.10: Results of Wilcoxon signed-rank test for three different methods
Negative difference Positive difference Equal difference
(A > B) (A < B) (A = B) p-value

Compared pairs Number Ranks Number Ranks Number Ranks
A = DM,B = P2 0 0 34 595 2 - < 0.0001
A = DM,B = SAA 0 0 35 630 1 - < 0.0001
A = P2, B = SAA 5 31 4 31 27 - 0.3047

DM: deterministic model solved via CPLEX; P2: P2model solved via CPLEX; SAA: sampling average approximationmethod

4.4.4 Evaluation of valid inequalities

To evaluate the proposed valid inequalities, numerical experiments are performed on realistic
EOL product instances and randomly generated instance sets with up to 10 products, 200 tasks
and 46 workstations.

Table 4.11 reports the computational results of realistic EOLproduct instances, inwhich columns
2 and 3 represent the instance parameters and objective values. Columns 3-6 represent the com-
putational times ofmodel P2, P2with valid inequality 1 (P2+VI1), P2with valid inequality 2 (P2+VI2)
and P2 with valid inequalities 1 and 2 (P2+VI1+VI2), which are denoted by TP2, TP2+V I1, TP2+V I2,
and TP2+V I1+V I2, respectively. From Table 4.11, we can see that the average computational times
of these 4 models are 2.56, 1.75, 1.74, and 1.46 seconds, respectively. It indicates that the pro-
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posed two inequalities are valid.
Table 4.11: Computational results of valid inequalities on realistic EOL product instances

Instance (P,R,W ) Obj TP2(s) TP2+V I1(s) TP2+V I2(s) TP2+V I1+V I2(s)

1 (2,20,10) 14.2 0.10 0.09 0.07 0.052 (2,30,10) 19.0 0.19 0.10 0.10 0.113 (3,40,15) 22.8 0.35 0.24 0.17 0.194 (3,53,15) 22.8 0.43 0.31 0.22 0.225 (4,63,20) 29.6 2.35 1.58 1.98 1.096 (4,78,20) 27.8 1.14 0.75 0.53 0.507 (5,88,25) 34.0 2.83 1.55 1.51 1.458 (5,108,25) 36.4 4.47 2.40 1.68 1.669 (6,118,30) 43.8 4.99 3.83 4.51 3.4510 (6,145,30) 44.8 8.72 6.66 6.70 5.92
Average - 29.5 2.56 1.75 1.74 1.46

Moreover, the results of random instances are reported in Figure 4.10 and Table 4.12. Specif-
ically, the curves in Figure 4.10 represent the computational time ratios that are calculated via
the formula Ri = ptr/TP2 × 100%, where i = P2, P2+ V I1, P2+ V I2 and P2+ V TI1+ V I2. The
results show that each proposed inequality can save computational time, and P2+VI1+VI2 (P3)
is the most efficient. Specifically, the average computational time ratios of P2+VI1, P2+V2 and
P2+VI1+VI2 (P3) are only 33.93%, 33.80% and 25.17%, respectively. Therefore, the performance of
model P3, i.e., P2+VI1+VI2 (P3), is verified.
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Table 4.12: Computational results of valid inequalities on random instances
Instance (P, I, J) Obj TP2(s) TP2+V I1(s) TP2+V I2(s) TP2+V I1+V I2(s)

1 (2,20,6) 17.8 0.14 0.12 0.07 0.072 (2,20,10) 17.8 0.15 0.11 0.11 0.103 (2,40,10) 14.8 0.23 0.14 0.12 0.114 (2,40,14) 14.8 0.20 0.12 0.12 0.115 (4,40,14) 29.6 0.61 0.47 0.41 0.356 (4,40,18) 29.6 0.90 0.43 0.42 0.357 (4,80,18) 29.0 1.93 1.05 1.03 0.918 (4,80,22) 29.0 1.98 0.95 1.01 0.899 (6,60,22) 45.6 4.19 2.71 3.03 2.6110 (6,60,26) 45.6 11.29 2.98 3.25 2.5411 (6,120,26) 42.0 14.81 7.25 6.02 3.5612 (6,120,30) 42.0 18.21 5.16 6.02 3.4213 (8,80,30) 62.2 36.12 9.02 7.00 5.0314 (8,80,34) 62.2 19.50 8.49 9.54 5.2015 (8,160,34) 56.2 50.19 19.96 15.58 12.5116 (8,160,38) 56.2 84.51 16.87 15.95 12.7317 (10,100,38) 75.2 36.45 24.45 33.33 18.6018 (10,100,42) 75.2 44.33 20.29 33.36 17.8119 (10,200,42) 68.4 139.75 54.01 38.09 36.1420 (10,200,46) 68.4 153.52 35.41 34.83 32.69
Average - 44.1 30.95 10.50 10.46 7.79

4.4.5 Evaluation of the lifted CS method

The proposed lifted CS method is first tested on realistic EOL product instances, and then tested
on 20 small-scale random instance sets with up to 10 products, 200 tasks and 46workstations and
20 large-scale random instance sets with up to 20 products, 400 tasks and 86 workstations. The
proposed method is compared with P3 solved by CPLEX (version 12.9) and a classic CS method.

Table 4.13 reports the results on instances based on realistic products. Columns 3-5 illustrate
the computational times of the CPLEX, the classic CS method and the lifted CS method, which
are represented by TP3, TCS and TLCS , respectively. From Table 4.13, we can observe that all
instances are solved within a short time, and the average computational times of CPLEX, classic
CSmethod, and lifted CSmethod are 1.46, 0.71, and 0.55 seconds, respectively. It implies that the
lifted CS method can efficiently solve the instances and can reduce 62.3% of the computational
time required by CPLEX on average.

The experimental results on random instances are illustrated in Figure 4.11, and sub-figures
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Table 4.13: Computational results of lifted cut-and-solve method on realistic EOL product in-stances
Instance set (P, R, W) Obj TP3(s) TCS(s) TLCS(s)

1 (2, 20, 10) 14.2 0.05 0.11 0.062 (2, 30, 10) 19.0 0.11 0.16 0.113 (3, 40, 15) 22.8 0.19 0.27 0.104 (3, 53, 15) 22.8 0.22 0.30 0.195 (4, 63, 20) 29.6 1.09 1.08 0.816 (4, 78, 20) 27.8 0.50 0.38 0.357 (5, 88, 25) 34.0 1.45 0.89 0.508 (5, 108, 25) 36.4 1.66 0.70 0.699 (6, 118, 30) 43.8 3.45 1.07 0.8710 (6, 145, 30) 44.8 5.92 2.19 1.78
Average - 29.5 1.46 0.71 0.55
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Figure 4.11: Comparison results of methods

(a) and (b) report the results of small-scale and large-scale instances, respectively. Sub-figure (a)
shows that the computational times of allmethods are less than 40 seconds and the curves of TCS

and TLCS are below the TP3 curve in most cases, except for instances 1-4. Table 4.14 indicates
that the average computational times of CPLEX, classical CS method and lifted CS method are
7.79, 3.64 and 1.84 seconds, respectively. This result signifies that the lifted CS method globally
outperforms CPLEX and the classical CS method.

For large-scale instances, sub-figure (b) shows that the computational times of all 3 meth-
ods increase with instance set size. However, the computational time of the lifted CS method
increases much more slowly than the classical CS method and CPLEX. Notably, CPLEX and the
classical CS method cannot propose feasible solutions for instance sets 37-40 and instance sets
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Table 4.14: Computational results for random instances with |P | = 2 − 10, |I| = 20 − 200 and
|J | = 6− 46

Instance set (P, I, J) Obj TP3(s) TCS(s) TLCS(s)

1 (2, 20, 6) 17.8 0.07 0.15 0.212 (2, 20, 10) 17.8 0.10 0.16 0.173 (2, 40, 10) 14.8 0.11 0.15 0.114 (2, 40, 14) 14.8 0.11 0.13 0.115 (4, 40, 14) 29.6 0.35 0.26 0.316 (4, 40, 18) 29.6 0.35 0.26 0.157 (4, 80, 18) 30 0.91 0.37 0.358 (4, 80, 22) 30 0.89 0.37 0.449 (6, 60, 22) 45.6 2.61 0.66 0.6210 (6, 60, 26) 45.6 2.54 0.72 0.8911 (6, 120, 26) 42.0 3.56 1.13 1.9612 (6, 120, 30) 42.0 3.42 1.09 1.0313 (8, 80, 30) 62.2 5.03 3.29 1.5414 (8, 80, 34) 62.2 5.20 3.32 4.6215 (8, 160, 34) 56.2 12.51 4.16 2.4516 (8, 160, 38) 56.2 12.73 3.42 2.4217 (10, 100, 38) 75.2 18.60 5.09 4.9018 (10, 100, 42) 75.2 17.81 5.11 3.2419 (10, 200, 42) 68.4 36.14 21.44 5.7820 (10, 200, 46) 68.4 32.69 21.49 5.56
Average - 44.18 7.79 3.64 1.84

39-40 within 50,000 seconds. The computational times of these instances are presented by dot-
ted lines. Table 4.15 shows that the average computational times of CPLEX, the classical CS and
the lifted CS methods are 6356.84, 1657.09 and 673.23 seconds, respectively. For instance sets
1-36, the lifted CS method needs only 17.53% and 40.65% of the computational times required by
the CPLEX and the classic CS method, respectively.

In summary, the proposed lifted CS method is more efficient than CPLEX and the classical CS
method, particularly for large-scale instances.

4.5 Conclusions

This chapter investigates a newmulti-product DLBP with identical parts of multiple products and
uncertain task processing times. To efficiently solve the problem, an integrated approach is de-
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Table 4.15: Computational results for random instances with |P | = 12 − 20, |I| = 120 − 400 and
|J | = 46− 86

Instance set (P, I, J) Obj TP3(s) TCS(s) TLCS(s)

21 (12, 120, 46) 88.2 171.59 18.67 18.6422 (12, 120, 50) 88.2 139.83 21.05 18.7323 (12, 240, 50) 82.0 93.57 40.08 7.3824 (12, 240, 54) 82.0 113.40 38.71 6.2225 (14, 140, 54) 104.2 92.32 52.35 16.8826 (14, 140, 58) 104.2 71.42 45.21 13.4027 (14, 280, 58) 95.0 653.86 165.50 13.6428 (14, 280, 62) 95.0 823.88 357.88 13.9829 (16, 160, 62) 114.2 563.37 460.63 278.6730 (16, 160, 66) 114.2 1505.53 722.52 114.8131 (16, 320, 66) 109.2 3617.95 1299.23 435.6232 (16, 320, 70) 109.2 3564.20 1875.17 504.3033 (18, 180, 70) 132.0 3966.16 2315.86 221.4734 (18, 180, 74) 132.0 5081.14 3153.85 511.5835 (18, 360, 74) 132.2 18852.11 8524.85 4841.8536 (18, 360, 78) 132.2 22182.63 7421.85 3754.5537 (20, 200, 78) 156.2 - 26523.11 5527.6038 (20, 200, 82) 156.2 - 30087.80 9526.5139 (20, 400, 82) 156.0 - - 10854.6040 (20, 400, 86) 156.0 - - 21672.45
Average - 107.1 6356.84 1657.09 673.23
In the table, ′−′ means that the optimal solution has not been found within 50000 seconds. Hence, the averagevalue is obtained from sets 21 to 36.

vised in which 1) the problem is formulated using a novel joint chance-constrained model, 2) a
distribution-free model is proposed based on problem analysis, 3) efficient valid inequalities are
developed to reduce the solution space, and 4) a new lifted CS method is provided to solve the
problem. Numerical experiments on one case study, realistic EOL product instances and random
instances demonstrate the high performance of the integrated approach.

To efficiently manage EOL product disassembly, it is important to focus on disassembly line
balancing, which belongs to a tactical decision level. However, to improve the overall perfor-
mance of the disassembly system, it must consider strategic, tactical and operational decisions
together for better resource utilization. Therefore, in the next chapter, we investigate a new
disassembly line balancing related RSC design problem for multiple EOL products under uncer-
tainty.
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The previous two chapters focus on DLBP, which belongs to tactical-level decisions. Schol-
ars and practitioners recognize that strategic-level decisions impact the overall performance of
a system in the long term, and these two level decisions interact with each other. To improve
the overall performance of disassembly system, it is necessary to consider strategic and tacti-
cal decisions together. Motivated by this fact, this chapter investigates a novel disassembly line
balancing related RSC design problem to maximize the expected profit and minimize CO2 emis-
sions, simultaneously. For the problem, a bi-objective nonlinear two-stage stochastic program-
ming model is formulated and approximately transformed to a linear distribution-free model
based on problem properties (Section 5.1). Then, an exact ε-constrained based method is pro-
posed to efficiently solve the problem. Significantly, the transformed single objective problems
in ε-constrainedmethod are exactly solved by an improved Benders decomposition (Section 5.2).
Numerical experiments comprising a case study and 200 randomly generated instances are con-
ducted to evaluate the performance of the proposed methods. Moreover, sensitivity analysis is
made to draw managerial insights (Section 5.3).

5.1 Problem Description and Formulation

In this section, the studied problem is described and formulated as a bi-objective nonlinear two-
stage stochastic programming model with joint chance constraints. Then, the nonlinear model is
approximately transformed into a linear distribution-free model.

5.1.1 Problem description

Consider a RSC to be designed, which comprises a set of supply points (I), collection centers
(J), candidate disassembly plants (K), and remanufacturing plants (L), as illustrated in Figure
5.1. Firstly, collected multiple EOL products can be transported from supply points to collection
centers, where they are inspected, classified and stored. Then, EOL products will be transported
to opened disassembly plants, where they can be decomposed into components, and valuable
ones will be shipped to remanufacturing plants. The studied RSC network can be represented by
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a directed graph G = {N,A}, where N and A denote sets of nodes and arcs, respectively. We
have N = I ∪ J ∪K ∪ L, and I , J , K , L are mutually disjoint. The values of arcs denote the unit
transportation cost for EOL products or components between different nodes.

)

Demand for 
components 
(uncertain)

Collection 
centers (J)

Disassembly 
plants (K)

Remanufacturing 
plants (L)Supply 

points (I)

i=2

i=3 j=2
k=2 l=2

i=1
j=1

k=1 l=2

Figure 5.1: An illustrative example of the RSC

In this chapter, we assume that several uncertain EOL products are available at each supply
point i ∈ I in a RSC, and the uncertain amount of EOL product p ∈ P at period t ∈ T under
scenario s ∈ S can be represented by Oipts. The percentage of EOL product p ∈ P at supply
point i ∈ I worth to be disassembled is assumed to be known and denoted by θip. A collection
center j ∈ J has a limited capacity Vj to store EOL products. Each candidate disassembly plant
k ∈ K has Wk available workstations, a limited production capacity Ek, and a limited inventory
capacity Uk for components. The cycle time CTk is assumed to be known. At an opened dis-
assembly plant, a number of machines need to be purchased, and disassembly lines must be
balanced to accomplish EOL product disassembly. There areM different types of machines with
different technology levels, which high technology machines have lower CO2 emissions but high
acquisition costs. Due to variable qualities of EOL products, the processing time ptr of task r ∈ R

is assumed to be uncertain, and only partial probability distribution information of task time is
available, i.e., the mean pdr, standard deviation E2

r and upper bound br. Each remanufacturing
plant l ∈ L has an uncertain demand for component c ∈ C and is denoted by Dlcts. For each
scenario s ∈ S, the probability is assumed to be known and represented by ρs.
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For the studied problem, we need to make strategic-level and tactical-level decisions during
a planning horizon composed of |T | periods. The strategic decisions involve determining the
number of disassembly plants to be opened and their locations, and the procurement of multi-
types of equipment (i.e., disassembly machines). The tactical-level decisions consist of assign-
ing tasks to procured machines and assigning procured machines to workstations, deciding the
transportation flows of EOL products and components, and determining the inventory levels of
EOL products and components at period t, where t ∈ T . In summary, we have the following
additional assumptions:

• Aminimumsegregation distancemust be respected for any two selecteddisassembly plants
to mitigate the risk of a geographically-induced disruption to the RSC.

• One disassembly plant can handle multiple EOL products, and the production capacity at a
disassembly plant has to be respected.

• Each machine is capable of processing a given set of tasks, and it can handle only one task
at a time.

• The percentage of EOL products that are worthwhile to be disassembled is assumed to be
known.

• The supply of EOL products and demand for components are uncertain, and are portrayed
by a set of scenarios, and the probability of each scenario is assumed to be known.

• The task precedence relationships of EOL products are known and must be respected.
• The cycle time of each disassembly plant is assumed to be known, and the total processing
time of all workstations cannot exceed the cycle time under a given risk level.

• The numbers of components obtained from one EOL product are assumed to be known,
and the inventory capacities needed for one EOL product and one component are known
and have to be respected.
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This chapter investigates a multi-period integrated disassembly line balancing related RSC
design problem under stochastic EOL products supply, components demand and task times.
Strategic-level decisions (the number of disassembly plants to be opened and their locations,
andmachines procurement) and tactical-level decisions (machines and tasks assignments, trans-
portation and inventory levels of EOL products and components) are simultaneously made. The
objectives are to maximize the expected profit and minimize the CO2 emissions of machines. In
the following, a bi-objective nonlinear two-stage stochastic programming model is formulated.

5.1.2 Bi-objective nonlinear two-stage stochastic programming model

Indices:

— i : index of supply points;
— j : index of collection centers;
— k, k′ : indices of disassembly plants;
— l : index of remanufacturing plants;
—m : index of machines;
— w : index of workstations;
— p : index of EOL products;
— c : index of components;
— r, r′ : indices of disassembly tasks;
— t : index of time periods;
— s : index of scenarios;
Parameters:

— I : set of supply points;
— J : set of collection centers;
—K : set of candidate locations for disassembly plants;
— L : set of remanufacturing plants;
—M : set of machines;
—Wk : set of workstations of disassembly plant k, where k ∈ K;
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— P : set of EOL products;
— C : set of components;
— R : set of disassembly tasks;
— Rp : set of disassembly tasks of product p, where p ∈ P ;
— Br : set of immediate successors of task r, where r ∈ R;
— T : set of time periods, and T = {0, 1, 2, ..., |T |};
— S : set of scenarios;
— ρs : the probability of scenario s, where s ∈ S;
— hkk′ : binary parameter, equal to 1 if dkk′ ≥ dmin, 0 otherwise, where dkk′ denotes the arc

value between candidate disassembly plants k and k′, dmin represents the smallest segregation
arc value requirement between every pair of opened disassembly plants, and k, k′ ∈ K , k ̸= k′;

— Vj : inventory capacity of EOL products in collection center j, where j ∈ J ;
— ιPp : inventory capacity needed for one EOL product p, where p ∈ P ;
— Uk : inventory capacity of components in disassembly plant k, where k ∈ K;
— ιCc : inventory capacity needed for one component c, where c ∈ C;
— Ek : production capacity of disassembly plant k, where k ∈ K;
— ωp : production capacity needed for dismantling one EOL product p, where p ∈ P ;
— Oipts : supply volume of EOL product p at supply point i during period t under scenario s,

where i ∈ I , p ∈ P , t ∈ T , s ∈ S;
—Dlcts : demand for component c at remanufacturing plant l during period t under scenario

s, where l ∈ L, c ∈ C , t ∈ T , s ∈ S;
— θip : percentage of EOL product p at supply point i worth to be disassembled, where i ∈ I ,

p ∈ P ;
— δcp : number of component c obtained from one EOL product p, where c ∈ C , p ∈ P ;
— ptr : task processing time of task r, which is stochastic, where r ∈ R;
— pdr : mean processing time of task r, where r ∈ R;
— E2

r : standard deviation of processing time of task r, where r ∈ R;
— br : upper bound parameter of processing time of task r, where r ∈ R;
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— CTk : cycle time of disassembly plant k, where k ∈ K;
— α : a given probability (risk level);
— em : CO2 emission of machinem in the planning horizon T , wherem ∈M ;
— amr : binary parameter, equal to 1 if task r can be accomplished bymachinem, 0 otherwise,

wherem ∈M , r ∈ R;
— cSk : setup cost of a disassembly plant at location k, where k ∈ K;
— cPm : procurement cost for machinem, wherem ∈M ;
— cWk : cost to open a workstation in location k, where k ∈ K;
— cCp : cost to preprocess one unit EOL product p in collection centers, where p ∈ P ;
— cDp : cost to disassemble one unit EOL product p, where p ∈ P ;
— cS−C

ijp : transportation cost of one unit EOL product p from supplier i to collection center j,
where i ∈ I , j ∈ J , p ∈ P ;

— cC−D
jkp : transportation cost of one unit EOL product p from collection center j to disassembly

plant k, where j ∈ J , k ∈ K , p ∈ P ;
— cD−R

klc : transportation cost of one unit component c from disassembly plant k to remanu-
facturing plant l, where k ∈ K , l ∈ L, c ∈ C;

— cIPp : inventory cost of one unit EOL product p in each time period, where p ∈ P ;
— cICc : inventory cost of one unit component c in each time period, where c ∈ C;
— σR

c : revenue of fulfilled demand of one component c ∈ C in each time period;
In the two-stage stochastic programming (Birge and Louveaux, 2011), the first-stage decisions

aremade before the random events. The second-stage decisions aremade according to the first-
stage decisions after the realization of each random event, and the results of the second-stage
will also affect the first-stage decision through the recourse cost. Thus, we formulate our problem
as a two-stage stochastic programming model. In particular, the first-stage problem determines
the locations of disassembly plants, machines procurement, assignments of machines and tasks,
and open workstations. The second-stage problem decides the transportation of EOL products
and components, and the inventory levels of EOL products and components under each scenario,
conforming to the first-stage decisions. The decision variables are defined as follows.
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First-stage decision variables:

— xk : binary variable, equal to 1 if a disassembly plant is set up at location k, 0 otherwise,
where k ∈ K;

— ykmw : binary variable, equal to 1 if machine m is procured and assigned to workstation w
in disassembly plant k, 0 otherwise, where k ∈ K ,m ∈M , w ∈ Wk;

— zkw : binary variable, equal to 1 if workstation w is opened and used in disassembly plant
k, 0 otherwise, where k ∈ K , w ∈ Wk;

— vkp : binary variable, equal to 1 if product p is dismantled in disassembly plant k, 0 otherwise,
where k ∈ K , p ∈ P ;

— ukmwr : binary variable, equal to 1 if task r is assigned to machine m on workstation w in
disassembly plant k, 0 otherwise, where k ∈ K ,m ∈M , w ∈ Wk, r ∈ R;

Second-stage decision variables:

— qS−C
ijpts : the quantity of EOL product p transported from supply point i to collection center j

during period t under scenario s, where i ∈ I , j ∈ J , p ∈ P , t ∈ T , s ∈ S;
— qC−D

jkpts : the quantity of EOL product p transported from collection center j to disassembly
plant k during period t under scenario s, where j ∈ J , k ∈ K , p ∈ P , t ∈ T , s ∈ S;

— qD−R
klcts : the quantity of component c transported from disassembly plant k to remanufac-

turing plant l during period t under scenario s, where k ∈ K , l ∈ L, c ∈ C , t ∈ T , s ∈ S;
— τ ICjpts : the inventory of EOL product p at collection center j during period t under scenario

s, where j ∈ J , p ∈ P , t ∈ T , s ∈ S;
— τ IDkcts : the inventory of component c at disassembly plant k during period t under scenario

s, where k ∈ K , c ∈ C , t ∈ T , s ∈ S;
Let ξs ∈ R denote the objective value of the second-stage problem under scenario s, then

model P1 is formulated as follows:

P1: max F1 =
∑
k∈K

(
−cSkxk −

∑
m∈M

∑
w∈Wk

cPmykmw −
∑
w∈Wk

cWk zkw

)
+
∑
s∈S

ρsξs (5.1)
min F2 =

∑
k∈K

∑
m∈M

∑
w∈Wk

emykmw (5.2)
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The first-stage problem:
s.t. xk + xk′ ≤ 1 + hkk′ , ∀k, k′ ∈ K|k < k′ (5.3)

vkp ≤ xk, ∀k ∈ K, p ∈ P (5.4)∑
m∈M

∑
w∈Wk

ukmwr = vkp, ∀k ∈ K, p ∈ P, r ∈ Rp (5.5)
ukmwr ≤ amrykmw, ∀k ∈ K,m ∈M,w ∈ Wk, r ∈ R (5.6)∑
k∈K

∑
w∈Wk

ykmw ≤ 1, ∀m ∈M (5.7)
zkw ≤ xk, ∀k ∈ K,w ∈ Wk (5.8)
ukmwr ≤ zkw, ∀k ∈ K,m ∈M,w ∈ Wk, r ∈ R (5.9)
zkw ≤ zk(w−1), ∀k ∈ K,w ∈ Wk\{1} (5.10)∑
m∈M

∑
w∈Wk

wukmwr ≤
∑
m∈M

∑
w∈Wk

wukmwr′ , ∀k ∈ K, r ∈ R, r′ ∈ Br (5.11)

Pr

{∑
m∈M

∑
r∈R

ptrukmwr ≤ CTk, ∀w ∈ Wk

}
≥ 1− α, ∀k ∈ K (5.12)

xk, ykmw, zkw, vkp, ukmwr ∈ {0, 1}, ∀k ∈ K,m ∈M,w ∈ Wk, p ∈ P, r ∈ R (5.13)
The second-stage problem (for each scenario s ∈ S):
ξs = max

∑
k∈K

∑
l∈L

∑
c∈C

∑
t∈T

σR
c q

D−R
klcts −

∑
i∈I

∑
j∈J

∑
p∈P

∑
t∈T

(cS−C
ijp + cCp )q

S−C
ijpts −

∑
j∈J

∑
p∈P

∑
t∈T

cIPp τ ICjpts

−
∑
j∈J

∑
k∈K

∑
p∈P

∑
t∈T

(cC−D
jkp + cDp )q

C−D
jkpts −

∑
k∈K

∑
l∈L

∑
c∈C

∑
t∈T

cD−R
klc qD−R

klcts −
∑
k∈K

∑
c∈C

∑
t∈T

cICc τ IDkcts (5.14)
∑
j∈J

qS−C
ijpts ≤ θipOipts, ∀i ∈ I, p ∈ P, t ∈ T (5.15)

∑
p∈P

ιPp τ
IC
jpts ≤ Vj, ∀j ∈ J, t ∈ T (5.16)

τ ICjpts = τ ICjp(t−1)s +
∑
i∈I

qS−C
ijpts −

∑
k∈K

qC−D
jkpts , ∀j ∈ J, p ∈ P, t ∈ T (5.17)

τ ICjp0s = 0, ∀j ∈ J, p ∈ P (5.18)∑
p∈P

∑
j∈J

ωpq
C−D
jkpts ≤ Ek, ∀k ∈ K, t ∈ T (5.19)
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∑
j∈J

ωpq
C−D
jkpts ≤ Ekvkp, ∀k ∈ K, p ∈ P, t ∈ T (5.20)

∑
c∈C

ιCc τ
ID
kcts ≤ Ukxk, ∀k ∈ K, t ∈ T (5.21)

τ IDkcts = τ IDkc(t−1)s +
∑
j∈J

∑
p∈P

δcpq
C−D
jkpts −

∑
l∈L

qD−R
klcts , ∀k ∈ K, c ∈ C, t ∈ T (5.22)

τ IDkc0s = 0, ∀k ∈ K, c ∈ C (5.23)∑
k∈K

qD−R
klcts ≤ Dlcts, ∀l ∈ L, c ∈ C, t ∈ T (5.24)

qS−C
ijpts , q

C−D
jkpts , q

D−R
klcts , τ

IC
jpts, τ

ID
kcts ≥ 0, ∀i ∈ I, j ∈ J, k ∈ K, l ∈ L, p ∈ P, c ∈ C, t ∈ T (5.25)

Objective F1 maximizes the expected profit, which is calculated by subtracting the total cost
from the total revenue of satisfying component demand. The total cost consists of the first-stage
cost, i.e., the costs to set up disassembly plants, procure machines and open workstations, and
the expected second-stage cost, including the costs to preprocess and disassemble EOL products,
transport EOL products and components, store EOL products and components. Objective F2

minimizes the total CO2 emissions of machines in all disassembly plants.
The constraints from (5.3) to (5.13) constitute the first-stage problem. Constraints (5.3) re-

strict that disassembly plants cannot be set up at the two candidate locations simultaneously if
the distance between them is smaller than the smallest segregation requirement. Constraints
(5.4) represent that only the open disassembly plants can dismantle EOL products. Constraints
(5.5) guarantee that all the tasks of one EOL product should be assigned when the product is
dismantled, and each task can only be assigned to one machine in one workstation. Constraints
(5.6) ensure that tasks can only be assigned to the procured machines that are eligible. Con-
straints (5.7) indicate that each machine can be assigned to at most one workstation in one dis-
assembly plant. Constraints (5.8) restrict that workstations can only open within the established
disassembly plants. Constraints (5.9) indicate that the tasks can only be assigned to the opened
workstations. Constraints (5.10) ensure that workstations are opened in ascending order of their
indexes. Constraints (5.11) respect task precedence relationships. Constraints (5.12) ensure that
the probability of the processing times of all workstations not exceeding the cycle time is equal
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to or larger than 1−α at all open disassembly plants. Constraints (5.13) define the ranges of the
first-stage decision variables.

The constraints from (5.14) to (5.25) form the second-stage problem. Constraint (5.14) defines
the objective function of the second-stage problem, which is the revenue of satisfying component
demand minus the costs to preprocess and disassemble EOL products, transport EOL products
and components, and store EOL products and components. Constraints (5.15) ensure that the
transported volumes of EOL products from different supply points to collection centers do not
exceed the supply volumes that are worth disassembling at all supply points. Constraints (5.16)
respect the EOL product inventory capacities of collection centers. Constraints (5.17) ensure the
EOL products flow conservations of collection centers. Constraints (5.18) regulate the initial in-
ventory of EOL products at collection centers. Constraints (5.19) ensure that the total amount
of EOL products dismantled in each disassembly plant is smaller than or equal to its production
capacity. Constraints (5.20) indicate that each kind of EOL product should respect the production
capacity of disassembly plants. Constraints (5.21) respect the components inventory capacities of
disassembly plants. Constraints (5.22) ensure the components flow conservations of disassem-
bly plants. Constraints (5.23) regulate the initial components inventory at disassembly plants.
Constraints (5.24) ensure that the total supply of components does not exceed the demand of
remanufacturing plants. Constraints (5.25) define the domains of the second-stage decision vari-
ables.

Model P1 is nonlinear because of joint chance constraints (5.12). Therefore, it can not be di-
rectly solved by calling commercial solvers. Hence, model P1 is firstly linearized and transformed
into a distribution-free model in the following.
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5.1.3 Approximated linear distribution-free model

Similar to Chapter 4, the joint chance constraints (5.12) can be conservatively transformed into
the following ones:

∑
m∈M

∑
r∈R

(pdr + νr)ukmwr ≤ CTk, ∀k ∈ K, w ∈ Wk (5.26)

Thus, model P1 can be approximated into the following linear distribution-free model (P2):

P2: max F1 =
∑
k∈K

(
−cSkxk −

∑
m∈M

∑
w∈Wk

cPmykmw −
∑
w∈Wk

cWk zkw

)
+
∑
s∈S

ρsξs

min F2 =
∑
k∈K

∑
m∈M

∑
w∈Wk

emykmw

s.t. (5.3)− (5.11), (5.13)− (5.25), (5.26)

To solve the bi-objective model P2, an exact ε-constrained based method is devised in the
following.

5.2 The ε-constrained Based Method

In this section, we first describe the framework of the ε-constrained method, and then propose
an improved Benders decomposition (IBD) to exactly solve the transformed single objective prob-
lems.

5.2.1 The ε-constrained method framework

The basic idea of ε-constrained method is to transform the bi-objective problem into a set of
single-objective problems by setting one objective function as the ε-constraint, and then iter-
atively solve the single-objective problems by varying the value of ε (Ehrgott and Gandibleux,
2002).

In this study, to resolve the single objective problems, the first objective is set as the principal
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objective, and the second objective is transformed into the ε-constraint. Accordingly, we can
obtain the single-objective mixed-integer linear programming model P3(εn) at the n-th iteration:

P3(εn) : max F1 =
∑
k∈K

(
−cSkxk −

∑
m∈M

∑
w∈Wk

cPmykmw −
∑
w∈Wk

cWk zkw

)
+
∑
s∈S

ρsξs

s.t. (5.3)− (5.11), (5.13)− (5.25), (5.26)∑
k∈K

∑
m∈M

∑
w∈Wk

emykmw ≤ εn (5.27)

where εn = εn−1−∆, εn−1 is the CO2 emission at (n−1)-th iteration, and∆ denotes the step size.
To determine the interval of εn, the following single objective problems PI

F1
,PN

F1
,PI

F2
,PN

F2
are

are formed as follows:

PI
F1

: F I
1 = maxF1

s.t. (5.3)− (5.11), (5.13)− (5.25), (5.26)
PN

F1
: FN

1 = maxF1

s.t. (5.3)− (5.11), (5.13)− (5.25), (5.26)
F2 = F I

2

PI
F2

: F I
2 = minF2

s.t. (5.3)− (5.11), (5.13)− (5.25), (5.26)
PN

F2
: FN

2 = minF2

s.t. (5.3)− (5.11), (5.13)− (5.25), (5.26)
F1 = F I

1

By solving the four models by calling the IBD approach that is detailed in Subsection 5.2.2, the
interval of εn is formed by the optimal values F I

2 and FN
2 of problems PI

F2
and PN

F2
. Furthermore,

two Pareto points are found as (F I
1 , F

N
2 ) and (FN

1 , F
I
2 ). Note that the step size is set as 1, i.e.,

∆ = 1 (the smallest unit of CO2 emission). Then, the single-objective model P3(εn) is solved by
calling IBD. Figure 5.2 summarizes the framework of the ε-constrained based method.

5.2.2 Improved Benders decomposition

Benders decomposition (BD) proposed by Benders (1962) is an iterative method and has been
widely studied in the past few decades. In the BD procedure, at each iteration, the complex vari-
ables (usually integer variables) and corresponding constraints form amaster problem (MP) (Rah-
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Set interval of ɛn as [F2
I,F2

N], ∆=1;

Initialize n=0, ɛn =F2
N

Call IBD to solve model P3(ɛn) to find F1
n;

Calculate F2
n by equation (5.2)

ɛn≤F2
I

Set n=n+1, ɛn =ɛn-∆ 

Delete dominated points, output Pareto front
Yes

No

Call IBD to solve models PI
F1, PI

F2, PN
F1,PN

F2;
Obtain  Pareto points (F1

I,F2
N), (F1

N,F2
I); Set in

Ex
Calc

Delete dom

Exactly solve m
Obtain  

Figure 5.2: The framework of ε-constrained based method
maniani et al., 2017), which is exactly solved to obtain an upper bound (UB) (for a maximization
problem). With the solution of MP, the remaining constraints and variables form a sub-problem
(SP) and corresponding dual problem (DSP). Then, the DSP is exactly solved to update the lower
bound (LB) that corresponds to a feasible solution for a maximization problem. The newly ob-
tained solutions from DSP and generated optimal cuts are used to form a new MP for the next
iteration. The process continues until the termination criteria are met. The obtained optimal
solution is output.

Compared with the classical BD, the proposed improved Benders decomposition (IBD) in-
cludes four accelerate strategies: 1) at each iteration, IBD proposes several valid inequalities,
while BD has no valid inequalities; 2) the MP of IBD contains a dynamic updated subset of sce-
narios, whereas the MP of BD is often a deterministic problem; 3) the IBD generates optimal
cuts based on subsets of scenarios, but BD generates one optimal cut for each scenario; 4) IBD
proposes additional optimal cuts compared to the traditional BD.

Figure 5.3 depicts the framework of IBD. Firstly, we decompose the sets of scenarios into SI
n

and SII
n , and construct valid inequalities based on problem properties of model P3(εn). With the

first-stage of model P3(εn), SI
n and valid inequalities, MPn is formed and exactly solved to update

UB. Then, SPn is formed based on the second-stage of model P3(εn), solution of MPn, and SII
n .

Then, the corresponding DSPn is constructed and exactly solved to update LB. Next, scenarios
of SII

n are divided into |G| groups based on the non-increasing order of components demand.
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Based on the optimal solution of DSPn, an optimal cut is formed for each group. If UB is larger
than LB, an auxiliary problem (APn) is formed based on DSPn, and exactly solved to generate
additional optimal cuts. Set n = n + 1, then SI

n and SII
n are updated based on the scenarios in

which the demand is not satisfied, and valid inequalities are updated based on the LB. MPn is
updated with the obtained optimal, and additional optimal cuts, SI

n, and valid inequalities. The
process repeats until UB is smaller than or equal to LB. Then, the solution of LB is output as an
optimal solution.

Generate set Sn
I and Sn

II based on scenar
And construct valid inequalities  

Form initial MPn based on the first-stage of mod
and valid inequalities

Exactly solve MPn to update UB 

Form SPn based on the second-stage of model 
Sn

II, and form correspoding DSPn;

Exactly solve DSPn to update LB;
And generate optimal cuts

UB≤LB

Output optimal solution

Yes

NoDecompose the set of scenarios into Sn
I and Sn

II;
And construct valid inequalities  

Initialize n=1, UB=+∞, LB=−∞;

Form initial MPn based on the first-stage of model P3(ɛn), Sn
I 

and valid inequalities

Exactly solve MPn to update UB 

Form SPn based on the second-stage of model P3(ɛn), solution 
of MPn, and Sn

II, and form corresponding DSPn;

Form APn based on DSPn; 
Exactly solve APn to generate additional optimal cuts

Divide Sn
II into |G| groups based on the demand;

And generate optimal cuts

Update MPn based on obtained optimal and additional 
optimal cuts, Sn

I, and valid inequalities

UB≤LB

Output optimal solution
Yes

No

n=n+1, update sets Sn
I and Sn

II based on not satisfied 
demand, update valid inequalities based on LB;

Exactly solve DSPn to update LB;

Figure 5.3: The framework of improved Benders decomposition
In the following, we detail the formulations of MP, SP and DSP, valid inequalities construction,

SI
n and SII

n formation, scenario grouping related to SII
n and the additional optimal cuts.

The master problem

At the n−th iteration (n ≥ 1), MPn is formed with the first stage of model P3(εn), SI
n, two valid in-

equalities, and obtained optimal and additional optimal cuts. Accordingly, MPn can be presented
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as follows:

MPn : max F1 =
∑
k∈K

(
−cSkxk −

∑
m∈M

∑
w∈Wk

cPmykmw −
∑
w∈Wk

cWk zkw

)
+
∑
s∈SI

n

ρsξs +
∑
g∈G

ξg

s.t. (5.3)− (5.11), (5.13), (5.26)− (5.27)
ξs ≤ ξmax

s , ∀s ∈ S (5.28)∑
k∈K

(
cSkxk +

∑
m∈M

∑
w∈Wk

cPmykmw +
∑
w∈Wk

cWk zkw

)
≤
∑
s∈S

ρsξ
max
s − LBn (5.29)

ξg ≤
∑
s∈Sg

ρs

(∑
i∈I

∑
p∈P

∑
t∈T

θipOiptsψ̃
15
ipts +

∑
j∈J

∑
t∈T

Vjψ̃
16
jts +

∑
k∈K

∑
t∈T

Ekψ̃
19
kts +

∑
k∈K

∑
p∈P

∑
t∈T

Ekψ̃
45
kptsvkp

+
∑
k∈K

∑
t∈T

Ukψ̃
46
ktsxk +

∑
l∈L

∑
c∈C

∑
t∈T

Dlctsψ̃
24
lcts

)
, ∀g ∈ G (5.30)

ξg ≤
∑
s∈Sg

ρs

(∑
i∈I

∑
p∈P

∑
t∈T

θipOiptsψ̃
15∗
ipts +

∑
j∈J

∑
t∈T

Vjψ̃
16∗
jts +

∑
k∈K

∑
t∈T

Ekψ̃
19∗
kts +

∑
k∈K

∑
p∈P

∑
t∈T

Ekψ̃
45∗
kptsvkp

+
∑
k∈K

∑
t∈T

Ukψ̃
46∗
kts xk +

∑
l∈L

∑
c∈C

∑
t∈T

Dlctsψ̃
24∗
lcts

)
, ∀g ∈ G (5.31)

ξs =
∑
k∈K

∑
l∈L

∑
c∈C

∑
t∈T

σR
c q

D−R
klcts −

∑
i∈I

∑
j∈J

∑
p∈P

∑
t∈T

(cS−C
ijp + cCp )q

S−C
ijpts −

∑
j∈J

∑
p∈P

∑
t∈T

cIPp τ ICjpts

−
∑
j∈J

∑
k∈K

∑
p∈P

∑
t∈T

(cC−D
jkp + cDp )q

C−D
jkpts −

∑
k∈K

∑
l∈L

∑
c∈C

∑
t∈T

cD−R
klc qD−R

klcts −
∑
k∈K

∑
c∈C

∑
t∈T

cICc τ IDkcts, ∀s ∈ SI
n

(5.32)∑
j∈J

qS−C
ijpts ≤ θipOipts, ∀s ∈ SI

n, i ∈ I, p ∈ P, t ∈ T (5.33)
∑
p∈P

ιPp τ
IC
jpts ≤ Vj, ∀s ∈ SI

n, j ∈ J, t ∈ T (5.34)
τ ICjpts = τ ICjp(t−1)s +

∑
i∈I

θipq
S−C
ijpts −

∑
k∈K

qC−D
jkpts , ∀s ∈ SI

n, j ∈ J, p ∈ P, t ∈ T (5.35)
τ ICjp0s = 0, ∀s ∈ SI

n, j ∈ J, p ∈ P (5.36)∑
j∈J

∑
p∈P

ωpq
C−D
jkpts ≤ Ek, ∀s ∈ SI

n, k ∈ K, t ∈ T (5.37)
∑
j∈J

ωpq
C−D
jkpts ≤ Ekvkp, ∀s ∈ SI

n, k ∈ K, p ∈ P, t ∈ T (5.38)
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∑
c∈C

ιCc τ
ID
kcts ≤ Ukxk, ∀s ∈ SI

n, k ∈ K, t ∈ T (5.39)
τ IDkcts = τ IDkc(t−1)s +

∑
j∈J

∑
p∈P

δcpq
C−D
jkpts −

∑
l∈L

qD−R
klcts , ∀s ∈ SI

n, k ∈ K, c ∈ C, t ∈ T (5.40)
τ IDkc0s = 0, ∀s ∈ SI

n, k ∈ K, c ∈ C (5.41)∑
k∈K

qD−R
klcts ≤ Dlcts, ∀s ∈ SI

n, l ∈ L, c ∈ C, t ∈ T (5.42)
qS−C
ijpts , q

C−D
jkpts , q

D−R
klcts , τ

IC
jpts, τ

ID
kcts ≥ 0, ∀s ∈ SI

n, i ∈ I, j ∈ J, k ∈ K, l ∈ L, p ∈ P, c ∈ C, t ∈ T

(5.43)
ξs, ξg ∈ R, ∀s ∈ S, s ∈ G (5.44)

where constraints (5.28) and (5.29) are valid inequalities, and constraints (5.30) and (5.31) are
optimal and additional optimal cuts that will detailed later.

At the (n+1)−th iteration, constraint (5.29), SI
n+1 and SII

n+1 will be updated, and new gener-
ated optimal and additional optimal cuts (constraints (5.30) and (5.31)) will be added to MPn to
form MPn+1. Note that the initial MP, i.e., MP1 does not contain constraints (5.30) and (5.31).
By exactly solving MPn, we can obtain an UBn, and the corresponding solutions are denoted by
(x̃nk , ỹ

n
kmw, z̃

n
kw, ṽ

n
kp, ũ

n
kmwr).

The sub-problem

As presented above, the SP decides the transportation and inventory levels of EOL products and
components, which can be solved individually under each scenario. In model P3(εn), constraints
(5.20) and (5.21) connecting MP and SP. Moreover, the two decision variables (xnk , vnkp) are fixed
when solving SP at the n-th iteration, which are denoted by x̃nk and ṽnkp, respectively. Then, for
each scenario s ∈ SII

n , the SP at n-th iteration is presented as follows:

SPs
n : max

∑
k∈K

∑
l∈L

∑
c∈C

∑
t∈T

σR
c q

D−R
klcts −

∑
i∈I

∑
j∈J

∑
p∈P

∑
t∈T

(cS−C
ijp + cCp )q

S−C
ijpts

−
∑
j∈J

∑
k∈K

∑
p∈P

∑
t∈T

(cC−D
jkp + cDp )q

C−D
jkpts −

∑
k∈K

∑
l∈L

∑
c∈C

∑
t∈T

cD−R
klc qD−R

klcts
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−
∑
j∈J

∑
p∈P

∑
t∈T

cIPp τ ICjpts −
∑
k∈K

∑
c∈C

∑
t∈T

cICc τ IDkcts

s.t. (5.15)− (5.19), (5.22)− (5.25)∑
j∈J

ωpq
C−D
jkpts ≤ Ekṽ

n
kp, ∀k ∈ K, p ∈ P, t ∈ T (5.45)

∑
c∈C

ιCc τ
ID
kcts ≤ Ukx̃

n
k , ∀k ∈ K, t ∈ T (5.46)

In order to generate optimal cuts, the DSPs
n can be solved instead of directly solving SPs

n.

The corresponding dual sub-problem

Since the SPs
n belongs to continuous linear programming, according to the linear programming

duality (Tyndall, 1965), all constraints of SPs
n correspond to variables of DSPs

n, and all variables of
SPs

n correspond to constraints of DSPs
n.

To formulate the DSP, we first introduce the dual variables. Let ψ15
ipts, ψ16

jts, ψ17
jpts, ψ18

jps, ψ19
kts, ψ22

kcts,
ψ23
kcs, ψ24

lcts, ψ45
kpts and ψ46

kts denote the dual variables of constraints (5.15)-(5.19), (5.22)-(5.24) and
(5.45)-(5.46), where s ∈ SII

n . Then, we construct dual constraints corresponding qS−C
ijpts , q

C−D
jkpts , q

D−R
klcts ,

τ ICjpts, τ
ID
kcts. Thus, for each scenario s ∈ SII

n , the DSP at n-th iteration can be written as follows:

DSPs
n : min

∑
i∈I

∑
p∈P

∑
t∈T

θipOiptsψ
15
ipts +

∑
j∈J

∑
t∈T

Vjψ
16
jts +

∑
k∈K

∑
t∈T

Ekψ
19
kts

+
∑
k∈K

∑
p∈P

∑
t∈T

Ekṽ
n
kpψ

45
kpts +

∑
k∈K

∑
t∈T

Ukx̃
n
kψ

46
kts +

∑
l∈L

∑
c∈C

∑
t∈T

Dlctsψ
24
lcts (5.47)

s.t. ψ15
ipts − ψ17

jpts ≥ −cS−C
ijp − cCp , ∀i ∈ I, j ∈ j, p ∈ P, t ∈ T (5.48)

ψ17
jpts + ωpψ

19
kts + ωpψ

45
kpts −

∑
c∈C

δcpψ
22
kcts ≥ −cC−D

jkp − cDp , ∀j ∈ J, k ∈ K, p ∈ P, t ∈ T (5.49)
ψ22
kcts + ψ24

lcts ≥ −cD−R
klc + σR

c , ∀k ∈ K, l ∈ L, c ∈ C, t ∈ T (5.50)
ιPp ψ

16
jts + ψ17

jpts − ψ17
jp(t+1) ≥ −cIPp , ∀j ∈ J, p ∈ P, t ∈ T \ {0, |T |} (5.51)

ιPp ψ
16
jts + ψ18

jps − ψ17
jp(t+1) ≥ −cIPp , ∀j ∈ J, p ∈ P, t = 0 (5.52)

ιPp ψ
16
jts + ψ17

jpts ≥ −cIPp , ∀j ∈ J, p ∈ P, t = |T | (5.53)
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ιCc ψ
46
kts + ψ22

kcts − ψ22
kc(t+1) ≥ −cICc , ∀k ∈ K, c ∈ C, t ∈ T \ {0, |T |} (5.54)

ιCc ψ
46
kts + ψ23

kcs − ψ22
kc(t+1) ≥ −cICc , ∀k ∈ K, c ∈ C, t = 0 (5.55)

ιCc ψ
46
kts + ψ22

kcts ≥ −cICc , ∀k ∈ K, c ∈ C, t = |T | (5.56)
ψ15
ipts, ψ

16
jts, ψ

19
kts, ψ

24
lcts, ψ

45
kpts, ψ

46
kts ≥ 0 (5.57)

ψ17
jpts, ψ

18
jps, ψ

22
kcts, ψ

23
kcs ∈ R (5.58)

Since ourmodel possesses complete recourse (i.e., all the SPs
n are feasible and all the DSPs

n are
bounded), only optimal cuts are generated (Birge and Louveaux, 2011). Denote the solution of
DSPs

n as ψ̃15
ipts, ψ̃16

jts, ψ̃17
jpts, ψ̃18

jps, ψ̃19
kts, ψ̃22

kcts, ψ̃23
kcs, ψ̃24

lcts, ψ̃45
kpts and ψ̃46

kts. Then, the optimal function value
of the second-stage problem in the next iteration cannot exceed that of the current iteration.
Therefore, the following optimality cuts can be obtained and used to form MPn+1:

ξs ≤
∑
i∈I

∑
p∈P

∑
t∈T

θipOiptsψ̃
15
ipts +

∑
j∈J

∑
t∈T

Vjψ̃
16
jts +

∑
k∈K

∑
t∈T

Ekψ̃
19
kts +

∑
k∈K

∑
p∈P

∑
t∈T

Ekψ̃
45
kptsvkp

+
∑
k∈K

∑
t∈T

Ukψ̃
46
ktsxk +

∑
l∈L

∑
c∈C

∑
t∈T

Dlctsψ̃
24
lcts, ∀s ∈ S (5.59)

Valid inequalities

According to model P3(εn), the objective value of second-stage problem ξs can vary from −∞

to +∞ (see page 80). The first valid inequality ((5.28)) attempts to narrow the range of ξs, which
might accelerate the convergence speed of the algorithm.

Note that only xk and vkp associate the first-stage and second-stage problems. Therefore,
we assume that all disassembly plants are open and every disassembly plant can handle all EOL
products, i.e., xk = 1 and vkp = 1 for all k ∈ K , p ∈ P . Then, we can obtain the corresponding
optimal objective value ξmax

s of the second-stage problem, where s ∈ S. Naturally, the value of ξs
in an optimal solution of model P3(εn) can not exceed ξmax

s , where s ∈ S. Then, the proposition
is presented as follows.
Proposition 5. Let ξmax

s denote the optimal objective value of second-stage problem with xk = 1 and
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vkp = 1 for all k ∈ K , p ∈ P under scenario s, then the following inequality:

ξs ≤ ξmax
s , ∀s ∈ S

is a valid inequality for P3(εn).

Denote LB as the function value of the best solution of P3 found in all (n − 1)-th iterations.
We hope the function objective value is not smaller than LB. Thus we have the following valid
inequality, i.e., ∑

k∈K
(−cSkxk −

∑
m∈M

∑
w∈Wk

cPmykmw −
∑

w∈Wk

cWk zkw) +
∑
s∈S

ρsξs ≥ LB. This inequality can
be equivalently transformed to the following one: ∑

k∈K
(cSkxk +

∑
m∈M

∑
w∈Wk

cPmykmw +
∑

w∈Wk

cWk zkw) ≤∑
s∈S

ρsξs − LB. As ξs ≤ ξmax
s , ∀s ∈ S is true, and ρs ≥ 0, ∀s ∈ S, we also have ∑

s∈S
ρsξs ≤

∑
ρsξ

max
s .

Thus, we have the second valid inequality ((5.29)):
Proposition 6. The following inequality:

∑
k∈K

(
cSkxk +

∑
m∈M

∑
w∈Wk

cPmykmw +
∑
w∈Wk

cWk zkw

)
≤
∑
s∈S

ρsξ
max
s − LBn

is a valid inequality for P3(εn+1).

The formation of SI
n and SII

n

To improve the performance of BD, Crainic et al. (2016, 2021) decompose the set of scenarios
into two sub-sets SI

n and SII
n at the beginning of BD to participate in the formations of MP and

SP. In the study. we propose a new strategy to dynamically form SI
n and SII

n at each iteration of
IBD.

The strategy consists of the first iteration (n = 1), SI
1 is formedby the scenariowith the greatest

demand in the set of scenario S, and SII
1 is formed by the rest of scenarios of S. At n-th iteration,

based on the solution of DSPn−1, the set of scenarios Sn with non-satisfied demands is formed,
SI
n is updated by adding the scenario with the greatest demand in Sn, i. e. SI

n = SI
n−1

⋃
sm, where

sm is the scenario with the biggest demand in Sn, and SII
n is formed by the rest of scenarios of

Sn.
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Scenario grouping and cut generation

At the n-th (n > 1) iteration, MPn is formed based on obtained optimal and additional optimal
cuts, SI

n, and valid inequalities. In the traditional BD, |SII
n | cuts are used to form MPn. If |SII

n | is
large, the formed MPn is huge and difficult to be solved. In this chapter, the |SII

n | is decomposed
into G groups. As G < |SII

n |, the formed MPn is relatively small and can be easily solved.
Before decomposing SII

n , sort the scenarios with a non-increasing order of component de-
mands. Given the parameter G, the first ⌈|SII

n |/G⌉ scenarios are assigned to group 1, and the
⌈(g−1)|SII

n |/G+1⌉ to ⌈g|SII
n |/G⌉scenarios are assigned to group g, where ⌈x⌉ denotes the small-

est integer that is larger than or equal to x. Accordingly, the auxiliary variables ξs of set SII
n need

to be updated as ξg. Then, the optimality cut (5.59) can be rewritten as follows (i.e. (5.30)):

ξg ≤
∑
s∈Sg

ρs

(∑
i∈I

∑
p∈P

∑
t∈T

θipOiptsψ̃
15
ipts +

∑
j∈J

∑
t∈T

Vjψ̃
16
jts +

∑
k∈K

∑
t∈T

Ekψ̃
19
kts +

∑
k∈K

∑
p∈P

∑
t∈T

Ekψ̃
45
kptsvkp

+
∑
k∈K

∑
t∈T

Ukψ̃
46
ktsxk +

∑
l∈L

∑
c∈C

∑
t∈T

Dlctsψ̃
24
lcts

)
, ∀g ∈ G

Additional optimal cut

When the DSP has multiple optimal solutions, each solution can generate a cut. To this end, we
need to generate the strongest cut not dominated by other cuts (Magnanti and Wong, 1981). To
generate the additional optimal cut, we first form an auxiliary model AMn based onMP and solve
AMn to get a core point. Then, we form another auxiliary model APs

n based on the information of
core point and DSP, and solve APs

n to obtain the additional cut.
We adopt a similar way of Adulyasak et al. (2015) to form AMn. Let ô denote a small positive

number, and two auxiliary variables are introduced, i.e., âxk and âvkp. The AMn can be presented
as:

AMn : max
∑
k∈K

âxk +
∑
k∈K

∑
p∈P

âvkp (5.60)
s.t. (5.3)− (5.11), (5.13), (5.26)− (5.29), (5.33)− (5.43)
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xk − ôâxk ≥ 0, ∀k ∈ K (5.61)
xk + ôâxk ≤ 1, ∀k ∈ K (5.62)
vkp − ôâvkp ≥ 0, ∀k ∈ K, p ∈ P (5.63)
vkp + ôâvkp ≥ 1, ∀k ∈ K, p ∈ P (5.64)
âxk, âvkp ∈ {0, 1}, ∀k ∈ K, p ∈ P (5.65)

where Constraints (5.33)-(5.43) only contain one scenario with maximal demand. In addition, this
problem is not solved optimally. A feasible solution is enough to get the core point. Therefore, it
is easy to solve this problem within one second.

Furthermore, the value of the core point is dynamically updated via x0k = (1− λ)x0k + λx̃nk and
v0kp = (1− λ)v0kp + λṽnkp, where x̃nk and ṽnkp are the current solution of MPn, and usually λ takes the
value of 0.5 (de Sá et al., 2013).

With the obtained core point (x0k, v0kp) and the information of DSPs
n, for s ∈ SII

n , the following
APs

n can be formed:

APs
n : min

∑
i∈I

∑
p∈P

∑
t∈T

θipOiptsψ
15
ipts +

∑
j∈J

∑
t∈T

Vjψ
16
jts +

∑
k∈K

∑
t∈T

Ekψ
19
kts

+
∑
k∈K

∑
p∈P

∑
t∈T

Ekv
0
kpψ

45
kpts +

∑
k∈K

∑
t∈T

Ukx
0
kψ

46
kts +

∑
l∈L

∑
c∈C

∑
t∈T

Dlctsψ
24
lcts (5.66)

s.t. (5.48)− (5.58)∑
i∈I

∑
p∈P

∑
t∈T

θipOiptsψ
15
ipts +

∑
j∈J

∑
t∈T

Vjψ
16
jts +

∑
k∈K

∑
t∈T

Ekψ
19
kts

+
∑
k∈K

∑
p∈P

∑
t∈T

Ekṽ
n
kpψ

45
kpts +

∑
k∈K

∑
t∈T

Ukx̃
n
kψ

46
kts +

∑
l∈L

∑
c∈C

∑
t∈T

Dlctsψ
24
lcts = DSP s∗

n (5.67)

where DSPs∗
n represents the optimal objective value of DSPs

n. Constraints (5.48)-(5.58) are dual
constraints, and Constraint (5.67) forces the solution of APs

n is still optimal for DSPs
n.

By exactly solving APs
n, we can obtain the optimal solution that is denoted as ψ̃15∗

ipts, ψ̃16∗
jts , ψ̃17∗

jpts,
ψ̃18∗
jps , ψ̃19∗

kts , ψ̃22∗
kcts, ψ̃23∗

kcs , ψ̃24∗
lcts, ψ̃45∗

kpts and ψ̃46∗
kts . Then, the following additional optimal cut ((5.31)) can
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be obtained and used to form MPn+1:

ξg ≤
∑
s∈Sg

ρs

(∑
i∈I

∑
p∈P

∑
t∈T

θipOiptsψ̃
15∗
ipts +

∑
j∈J

∑
t∈T

Vjψ̃
16∗
jts +

∑
k∈K

∑
t∈T

Ekψ̃
19∗
kts +

∑
k∈K

∑
p∈P

∑
t∈T

Ekψ̃
45∗
kptsvkp

+
∑
k∈K

∑
t∈T

Ukψ̃
46∗
kts xk +

∑
l∈L

∑
c∈C

∑
t∈T

Dlctsψ̃
24∗
lcts

)
, ∀g ∈ G

5.3 Numerical Experiments

This section conducts numerical experiments, including one case study and randomly generated
instances to demonstrate the usage of our proposedmodel and the efficiency of proposedmeth-
ods. All the experiments are conducted on a personal laptop with Core I5 and 3.20 GHz CPU with
12 GB RAM. The program is coded using C++ programming language in Microsoft Visual Studio
2019, and all the models are solved by ILOG CPLEX 22.10 solver with the default setting.

5.3.1 Case study

In this part, a case based on Alumur et al. (2012) is used to illustrate the studied problem. The RSC
network comprises 40 cities in Germany, including 26 suppliers, 6 collection centers, 5 candidates
of disassembly plants, 3 remanufacturing plants, and the locations of these facilities are shown
in Figure 5.4. In this instance, two kinds of EOL products (washing machines and tumble dryers)
are considered, and each of them has 4 kinds of most profitable components. Specifically, a
washing machine includes one frame (steel), one motor, two ABS parts and one washing tube,
and a tumble dryer contains one frame (steel), one motor, two ABS parts, and one air blower.
Since Alumur et al. (2012) do not study the disassembly line for EOL products, we generate the
disassembly task precedence schemes referring to Koc et al. (2009), which are depicted in Figure
5.5.

The distances between different facilities are obtained using the highway transportation net-
work data from Google Maps, and the transportation costs per kilometer per unit product and
component are taken as 0.005 and 0.003 EUR, respectively. The costs to preprocess and disas-
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Figure 5.4: The facility locations of the case study
semble one EOL product are 1 and 2 EUR, respectively. The inventory costs of one EOL product
and component are 1 and 0.2 EUR, respectively. The revenues of one unit of frame, motor, ABS
parts, washing tube and air blower are 17.5, 5.5, 1.4, 1.4 and 2.1 EUR, respectively (Alumur et al.,
2012). The mean task processing times are randomly generated in [10, 50], the risk level α, E[Z2

r ]

and br are set as 0.05, 0.05 and 0.2, respectively, and the cycle time is set as 90 (He et al., 2021).
A three-year planning horizon is considered.

The amounts of EOL washing machines and tumble dryers are estimated based on the pop-
ulation of cities in line with Alumur et al. (2012). Specifically, one person generates 19 kilograms
of electronic waste per year, and 27.7% of them are considered large household appliances, and
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30% and 10% are considered washing machines and tumble dryers. The average weights of a
washing machine and a tumble dryer are assumed to be 60 kg and 45 kg, and 20% of them can
be collected. The demands for components are randomly generated based on the total supply of
EOL products (Alumur et al., 2012). The capacity of EOL products at the collection center, capacity
of components and production capacity at disassembly plants are randomly generated from the
interval [5000, 10000]. The inventory capacities needed for one EOL product and one component,
and the production capacity needed for one EOL product are randomly generated from the in-
terval [5, 30]. The costs to set up a disassembly plant, procure a machine and open a workstation
are randomly generated from the intervals [190000, 210000], [1000, 5000], and [1000, 2000] respec-
tively (Haase and Müller, 2014). The CO2 emissions of machines are randomly generated from
the interval [2000, 5000].

The obtainedPareto front is reported in Figure 5.6. We can see that there are 7non-dominated
points, where the total excepted profit increases from 0 to 6.97E+05 EUR, and the corresponding
CO2 emission varies from 0 to 1.56E+04 Kg. For example, point A has the largest profit and the
highest CO2 emission. This is because all the disassembly plants purchase low-tech machines
with high CO2 emissions but with a lower procurement price. In contrast, point D has a profit
and CO2 emission of 0, indicating that no disassembly plants have been set up. Furthermore,
the profit of point B is much higher than that of point C. This is because point B set up more
disassembly plants that can meet the demand for components.
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Considering the solution of Pareto point A, two disassembly plants are set up and located

in Aachen and Erfurt (see Figure 5.7), where EOL tumble dryers are dismantled in Aachen, and
EOL washing machines are dismantled in Erfurt. The transportation flows of EOL products and
components (in period 1) are illustrated in Figure 5.7, where the EOL tumble dryers are trans-
ported from collection centers Duisburg and Bonn to Aachen, the EOL washing machines are
transported from collection centers Leipzig and Hannover to Erfurt. The components in Aachen
are shipped to remanufacturing plants in Mainz and Dortmund, and the components in Erfurt
are shipped to the remanufacturing plant in Magdeburg. We can find that most EOL products
and components are shipped between facilities that are close to each other, which can reduce
transportation costs.

In the disassembly plant located in Aachen, machines 5, 6 and 7 are procured, and two work-
stations are opened. In Erfurt, machines 0, 1 and 2 are procured, and two workstations are
opened. The disassembly line configurations are depicted in Figure 5.8.

Furthermore, we compare the traditional top-down decision-making process with our joint
decision-making process (integrated model). Specifically, in the traditional top-down decision-
making process, the locations of disassembly plants and the procurement of disassembly equip-
ment are first decided, then the disassembly line balancing, transportation and inventory levels
are determined. Table 5.1 reports the detailed costs of twodecision processes under Pareto point
A. Compared to the top-down decision-making, the joint decision-making spends a larger cost to
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Figure 5.8: The line configurations of opened disassembly plants
set up disassembly plants, while smaller costs to open workstations and transport EOL products
and components, and the profit increases from 6.81E+05 EUR to 6.97E+05 EUR. This is because
the joint decision-making needs fewer workstations, and the locations of disassembly plants are
different, leading to lower transportation costs. Thus, we have the following managerial insight.
Managerial Insight 1. The joint decision-making process coordinating different levels of decisions

can improve the profitability of the whole RSC.
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Table 5.1: The detail costs of top-down and joint decision-making processes
Cost Revenue Net profitDisassembly plants Machines Workstations Transportation Prepossess and Disassembly InventoryTop-down decision 4.00E+05 1.67E+04 5.00E+03 2.25E+05 1.62E+05 2.21E+02 1.49E+06 6.81E+05Joint decision 4.20E+05 1.67E+04 2.50E+03 1.91E+05 1.62E+05 2.21E+02 1.49E+06 6.97E+05

5.3.2 Experiments on randomly generated instances

In this part, the proposed IBD approach is tested on randomly generated instances, and com-
pared with the sample average approximation (SAA) method, which is widely used to solve the
scenario-based stochastic programmingmodel (Long et al., 2012) and has been used to solve the
integrated SC and ALB problem (Hamta et al., 2015).

Instances generation

There are no standard benchmark instances available, so we randomly generate instances based
on previous studies. According to the random instances reported by Yolmeh and Saif (2021),
where the maximal number of components, customers, manufacturers and periods are set as
{10, 25, 20, 4}, we set the maximal numbers of supply points, collection centers, disassembly
plants and remanufacturing plants as follows: |I| = 25, |J | = 20, |K| = 10, |L| = 8, and the
maximal numbers of machines, workstations, tasks, components, products and periods are set
as |M | = 20, |Wk| = 12, |R| = 32, |C| = 10, |P | = 4, |T | = 4. The product information is adopted
from Kalayci and Gupta (2013b). The generated instances are illustrated in Table 5.2.

The number of scenarios is an important parameter for our problem, where a larger number
of scenarios may improve the solution accuracy but require much more computational time. To
this end, we test 20 problem combinations under two numbers of scenarios, i.e., S = 10 and
S = 100, respectively, where the maximal number of scenarios is set as 100 according to Haase
and Müller (2014). Furthermore, each combination contains five randomly generated instances
and the average results are reported.

The locations of supply points, collection centers, disassembly plants and remanufacturing
plants are randomly generated in a square with a side length of 100 units, and the Euclidean
distances are used to calculate the shipping costs (Haase and Müller, 2014). The supply of EOL
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Table 5.2: The parameters of generated instances
Combinations Supply Collection Disassembly Remanufacturing Periods Products Tasks Components machinespoints (|I|) centers (|J |) plants (|K|) plants (|L|) (|T |) (|P |) (|R|) (|C|) (|M |)1 10 5 4 2 2 2 16 5 102 10 5 4 2 2 3 24 5 153 10 5 4 2 3 2 16 5 104 10 5 4 3 2 2 16 6 105 10 5 4 3 2 3 24 6 156 15 10 6 3 3 2 16 6 107 15 10 6 4 2 2 16 7 108 15 10 6 4 2 3 24 7 159 15 10 6 4 3 2 16 7 1010 15 10 6 5 2 2 16 7 1011 20 15 8 5 2 3 24 8 1512 20 15 8 5 3 2 16 8 1013 20 15 8 6 2 2 16 8 1014 20 15 8 6 2 3 24 8 1515 20 15 8 6 3 2 16 9 1016 25 20 10 7 2 2 16 9 1017 25 20 10 7 2 3 24 9 1518 25 20 10 7 3 3 24 9 1519 25 20 10 8 4 3 24 10 1520 25 20 10 8 3 4 32 10 20

products anddemand for components are generated from the uniformdistributionsU(500, 3000)
and U(5000, 30000), respecting the real supply and demand of the case study. Other parameters
are set in line with those of the case study. Moreover, the numbers of components obtained
from one EOL product are randomly generated in [1, 5] (He et al., 2022). Table 5.3 summarizes
the input parameters.

Table 5.3: Input parameters of random instances
Parameters Value Parameters Value

Vj U(5000, 10000) cWk U(1000, 2000)
ιPp U(5, 30) cCp 1

Uk U(5000, 10000) cDp 2

ιCc U(5, 30) cIPp 1

Ek U(5000, 10000) cICc 0.2
ωp U(5, 30) σR

c u(5, 20)
Oipts U(500, 3000) δcp [1, 5]
Dlcts U(5000, 30000) ptr [10, 50]
cSk U(190000, 210000) CTk 90
cPm U(1000, 5000) α 0.05
em U(2000, 5000) (E[Z2

r ], br) (0.05, 0.2)
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Computational results

Table 5.4 reports the experimental results of 20 different problem combinations under scenario
|S| = 10, where NSAA

P and N IBD
P represent the average numbers of Pareto points found by SAA

and IBD, respectively. TSAA and TIBD denote the average computational times of SAA and IBD,
respectively. NSAA

opt and N IBD
opt represent the number of instances in each combination where all

the Pareto points are found by SAA and IBD in 36000 seconds, respectively. Moreover, in terms of
computational times, the improvements of IBD over SAA are calculated by (TSAA−TIBD/TSAA)×

100% and reported in Column 8.
Table 5.4: Experimental results under scenario number |S| = 10

Combinations SAA IBD Improvements
NSAA

P TSAA(s) NSAA
opt N IBD

P TIBD(s) N IBD
opt1 3.4 3.0 5 3.4 5.5 5 -81.7%2 4.4 6.6 5 4.4 17.7 5 -166.6%3 6.0 11.5 5 6.0 23.8 5 -106.9%4 6.0 8.9 5 6.0 19.6 5 -119.3%5 4.6 10.9 5 4.6 47.7 5 -338.3%6 6.0 33.9 5 6.0 60.8 5 -79.6%7 6.0 19.9 5 6.0 49.3 5 -148.0%8 7.6 910.4 5 7.6 1189.9 5 -30.7%9 6.4 41.7 5 6.4 75.8 5 -81.6%10 6.0 30.5 5 6.0 66.1 5 -116.9%11 9.8 1118.7 5 9.8 1362.7 5 -21.8%12 7.6 234.9 5 7.6 257.1 5 -9.4%13 6.0 106.9 5 6.0 102.9 5 3.8%14 9.6 1757.9 5 9.6 1625.4 5 7.5%15 9.4 426.8 5 9.4 272.8 5 36.1%16 6.0 220.6 5 6.0 184.7 5 16.3%17 9.4 2158.5 5 9.4 1991.1 5 7.8%18 9.9 4155.1 5 9.9 2662.7 5 35.9%19 9.0 12851.2 5 9.0 8410.4 5 34.6%20 8.0 28770.0 3 10.6 19143.9 5 -

Average 7.0 2643.9 4.8 7.1 1878.5 5 28.9%

From Table 5.4, it can be observed that IBD successfully obtains all the Pareto points for all
problem combinations. On the other hand, SAA finds all the Pareto points except for problem
combination 20, where 3 out of 5 instances are found. The computational times of SAA vary
from 3.0 to 28770.0 seconds, and the average value is 2643.9 seconds. For IBD, the computational
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times vary from 5.5 to 19143.9 seconds, and the average value is 1878.5 seconds. In particular, IBD
outperforms SAA in terms of computational time for problem combinations 14 to 20, while for
problem combinations 1 to 13, IBD needs more computational time than SAA. This is probably
because it is easy to solve the small-scale instances directly, while IBD needs to iterate many
times, resulting in more computational times.

The experimental results of 20 different problem combinations under scenario |S| = 100

are reported in Table 5.5. It can be found that the computational times of SAA sharply increase
with an average value of 11658.5 seconds. In contrast, the average computational time of IBD
increases from 1878.5 to 4462.8 seconds. Compared to SAA, IBD can save about 61.7% compu-
tational times on average. For problem combinations 38, 39 and 40, SAA only finds Pareto points
3 out of 5, 1 out of 5 and 0 out of 5 instances, respectively, while IBD can find all Pareto points.

Table 5.5: Experimental results under scenario number |S| = 100

Combinations SAA IBD Improvements
NSAA

P TSAA(s) NSAA
opt N IBD

P TIBD(s) N IBD
opt21 3.2 61.5 5 3.2 34.8 5 43.4%22 5.2 358.8 5 5.2 77.1 5 78.5%23 5.0 422.8 5 5.0 80.3 5 81.0%24 6.0 293.5 5 6.0 115.4 5 60.7%25 4.6 327.2 5 4.6 145.6 5 55.5%26 6.6 2178.8 5 6.6 322.6 5 85.2%27 5.8 838.2 5 5.8 287.7 5 65.7%28 9.0 10092.1 5 9.0 1910.7 5 81.1%29 9.0 4550.9 5 9.0 696.7 5 84.7%30 6.0 1593.9 5 6.0 288.3 5 81.9%31 7.8 15490.3 5 7.8 2781.1 5 82.0%32 8.0 13268.5 5 8.0 2264.4 5 82.9%33 7.4 5951.7 5 7.4 647.9 5 89.1%34 6.0 13528.6 5 6.0 3634.1 5 73.1%35 6.8 20407.1 5 6.8 2201.0 5 89.2%36 8.0 14660.2 5 8.0 2325.3 5 84.1%37 8.2 26530.6 5 8.2 7325.0 5 72.4%38 6.6 31572.2 3 8.0 9163.9 5 -39 3.8 35042.7 1 9.2 22249.3 5 -40 0.4 36000.0 0 10.0 32704.0 5 -

Average 6.2 11658.5 4.5 7.0 4462.8 5 61.7%

In summary, the proposed IBD approach can effectively solve our problem, find all the optimal
Pareto points, and reduce over 55% computational times compared to SAA.
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5.3.3 Sensitivity analysis

In this part, the sensitivity analysis is applied to the studied problem. Since we need to set up the
disassembly plants, the effect of the number of candidate locations for disassembly plants is first
explored. We test 10 instances by increasing the number of candidate locations for disassembly
plants from 2 to 20, and other parameters remain unchanged. The results are shown in Figure
5.9, in which the computational time increases with the number of candidate locations for disas-
sembly plants. The number of Pareto points and objective values have no strict relationship with
the number of candidate locations for disassembly plants.
Managerial Insight 2. The number of candidate locations for disassembly plants directly influences

the solution time needed for the decision-maker.
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Figure 5.9: Sensitivity analysis of the number of candidate locations for disassembly plants
In addition, the impact of component demand is analyzed. To this end, we maintain the sup-

plies of EOL products unchanged and gradually increase the component demand. Specifically,
we use the demand ratio, i.e., the demand divided by the supply, to reflect the relative change
of the component demand over the EOL product supply (Ramezanian and Khalesi, 2021). Figure
5.10 illustrates the trend of the expected profit (consider the Pareto point with maximum profit)
with different component demand ratios. We observe that the expected profit increases with the
ratio when the demand ratio is smaller than 1. In contrast, when the demand ratio is not smaller
than 1, the profit no longer increases. This is attributed to the fact that the available amount
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of EOL products to be dismantled has reached its limit, and some of the demands are unmet.
Therefore, it can be summarized by the following managerial insight.
Managerial Insight 3. The profit of the RSC increases with the rise of component demand until the

component demand is larger than the supply of EOL products.
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Figure 5.10: Sensitivity analysis of component demands

Furthermore, we investigate the impact of the number of EOL product types becausewe study
the multi-product problem. As the type of EOL product increases, the corresponding numbers
of tasks and machines are increased. The type of EOL product |P | increases from 1 to 4, and the
obtained Pareto fronts are depicted in Figure 5.11. We can see that there are 3 Pareto points
under |P | = 1, 7 Pareto points under |P | = 2, 9 Pareto points under |P | = 3, and 13 Pareto points
under |P | = 4. It implies that there are more alternative solutions when the types of EOL product
increase. On the other hand, the corresponding computational times increase from 1.4 to 893.1
seconds. Hence, we have the following managerial insight.
Managerial Insight 4. Themore types of EOL products are dismantled, themore alternative solutions

for the decision-maker, and the longer solution time needed.
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Figure 5.11: Sensitivity analysis of EOL products
5.4 Conclusions

This chapter studies an integrated multi-product RSC design and DLBP with stochastic supply of
EOL products, demand for components and task processing times. The problem is formulated by
a two-stage stochastic programmingmodel and then transformed into a distribution-freemodel.
ε-constrained method is used to convert the bi-objective problem into a set of single-objective
problems, and an IBD approach is devised to solve the single-objective problems efficiently. Com-
putational results of randomly generated instances demonstrate the efficiency of our proposed
IBD approach. Moreover, sensitivity analyses are conducted and some managerial insights are
discussed.

Within a given period, the production capacity is highly dependent on the cycle time. While,
the cycle time of each disassembly plant is predetermined in this chapter, which means that
the maximal production capacity of the disassembly plant is fixed. To increase the flexibility of
the RSC, we extend the previous study by additionally considering the cycle time as a decision
variable.
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Chapter 6

Conclusions and Perspectives
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6.1 Thesis Conclusions

This thesis studies three novel stochastic disassembly line balancing related problems. Firstly,
we research a new single product DLBP with partial information of task processing time, and
construct a new distribution-free formulation and a second-order cone program approximation-
based formulation for it. Considering that the traditional single-product disassembly line may be
inappropriate and uneconomical to handle these increasing EOL product variants, we then study
a novel multi-product DLBP, where identical parts of EOL products and uncertainty task times
are simultaneously considered, and propose a lifted cut-and-solve method to solve the problem.
Finally, a multi-product disassembly line balancing related RSC design problem is investigated,
where strategic and tactical decisions are jointly considered, and an improved Benders decom-
position is designed for it.

In Chapter 3, we study a single product DLBP with uncertain task processing time, where
only the mean, lower and upper bounds of task processing times are known. The objective is
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to minimize the disassembly cost. For the studied problem, a joint chance-constrained model is
proposed. Then, a new distribution-free formulation is constructed based on problem property
analysis. Successively, a second-order cone program approximation-based formulation is devel-
oped. Last, experimental results on benchmark instances and randomly generated instances
demonstrate the effectiveness and efficiency of the proposed formulation.

In Chapter 4, we address a stochastic multi-product DLBP, where identical parts of EOL prod-
ucts and uncertainty task times are considered together. The objective is to minimize the dis-
assembly cost. For this problem, a new joint chance-constrained model is formulated. Based
on the problem analysis, the joint chance-constrained model is approximately transformed into
a distribution-free model. Then, several valid inequalities are provided and an exact lifted cut-
and-solve method is designed to solve the problem efficiently. Numerical experiments on an
illustrative example, 10 instances based on realistic products and 480 randomly generated in-
stances are conducted to evaluate the performances of the proposed model, valid inequalities
and solution method.

In Chapter 5, we investigate a novel multi-product disassembly line balancing related RSC de-
sign problem, where EOL products supply, components demand and task processing times are
uncertain. The objectives are to maximize the expected net profit and minimize CO2 emissions,
simultaneously. For the problem, a bi-objective nonlinear two-stage stochastic programming
model is formulated. In particular, the first-stage problem determines the locations of disassem-
bly plants, machines procurement, assignments of machines and tasks, and open workstations.
The second-stage problem decides the transportation of EOL products and components, and in-
ventory levels of EOL products and components. Subsequently, the nonlinear model is approx-
imately transformed into a linear distribution-free model based on problem properties. Then,
an exact ε-constrained based method is proposed, and an improved Benders decomposition is
developed to solve the transformed single objective problems in the ε-constrained method. Nu-
merical experiments, including one case study and 200 randomly generated instances, are con-
ducted to evaluate the performance of the proposed methods. Furthermore, sensitivity analysis
is made to draw managerial insights.
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6.2 Future Research Directions

For stochastic disassembly line balancing related problems, many interesting research directions
remain to be investigated. They are summarized as follows:

1) Considering the disruptions of the disassembly line and RSC. This thesis studies the
stochastic DLBP and disassembly line balancing related RSC design, where the task pro-
cessing times, products supply and components demand are assumed to be uncertain.
However, there may exist some extraordinary events that will disrupt the disassembly line
and RSC, which has an unpredictable scaling impact. Such as cutting electricity will interrupt
the disassembly line, and natural disasters may cause interruptions in RSC. Therefore, we
can study amore resilient disassembly line and RSC, where the stochastic disruption events
are considered.
2) Considering developing an integrated disassembly chain for multiple products. Chap-
ters 3 and 4 of this thesis investigate DLBP, which belongs to the tactical level decision, and
Chapter 5 studies disassembly line balancing related RSC design, which considers strategic
and tactical decisions together. However, operational-level decisions, such as vehicle rout-
ing problems (including collecting EOL products and distributing components), also affect
the whole performance of the disassembly chain. How to coordinate activities between
different partners of the chain remains a challenge. Therefore, in future studies, we can
investigate a disassembly chain that integrates strategic, tactical, and operational levels of
decisions.
3) Social and ethical considerations need to receive more attention. This thesis focuses on
economic and environmental objectives. However, there are many other objectives, for in-
stance, fair labor practices, gender equality, and human rights, that can be coordinated into
the joint RSC and disassembly line design problem. Therefore, we can design a disassembly
line with economic, environmental, social and ethical objectives.
4) Extend the application of the proposeddistribution-freemodel. This thesis studies stochas-
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tic optimizationproblems, where only partial informationof uncertain parameters is known.
Basedondifferent informationof uncertain parameters, we approximately transformstochas-
ticmodels into linear distribution-freemodels for better resolution. Hence, it is encouraging
to extend such approximated transformation methods to solve other stochastic problems
with known partial information.
5) Developingmore efficient solutionmethods to solve studied problems. In Chapters 4 and
5, we devise two different exact algorithms to solve our studied problems. Due to the NP-
hardness nature of the studied problems, it is still time-consuming when the problem scale
is large. Therefore, more advanced methods, such as meta-heuristics can be developed.
Moreover, design problem-specific heuristicsmay be another promising direction to reduce
computational times.
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Résumé:Le désassemblage des produits en fin de
vie (EOL) dans la remanufacturation a attiré une
attention considérable ces dernières années en rai-
son de ses avantages en matière d’économie de
ressources non renouvelables, de protection de
l’environnement et de promotion de la croissance
économique. Dans la littérature existante, 1) la
plupart des problèmes stochastiques d’équilibrage
de la ligne de désassemblage supposent que les
distributions de probabilité des paramètres incer-
tains soient connues ; 2) la majorité des problèmes
d’équilibrage de la ligne de désassemblage se con-
centrent sur un seul produit ; 3) peu de travaux
portent sur les problèmes de conception de la
chaîne logistique inversée (RSC) liés à l’équilibrage
de la ligne de désassemblage. En réalité, plusieurs
RSC liées au désassemblage de produits EOL ex-
istent dans les industries de la remanufacturation,
telles que l’automobile, les téléphones mobiles, etc.
Pour combler ces lacunes dans la littérature, trois
nouveaux problèmes liés à l’équilibrage de la ligne
de désassemblage sont étudiés dans cette thèse.

Tout d’abord, une DLBP à produit unique
avec des informations partielles sur les temps de
traitement des tâches est étudiée, où seules la
moyenne, la borne inférieure et la borne supérieure
des temps de traitement des tâches sont connues.
L’objectif est de minimiser le coût de désassem-
blage. Pour le problème étudié, un modèle conjoint
à contraintes de probabilités est proposé. Ensuite,
une nouvelle formulation sans distribution et une
formulation basée sur une approximation de pro-
gramme de cônes de second ordre sont construites
en fonction des propriétés du problème. Les résul-
tats expérimentaux sur 7 instances de référence et
sur 81 instances générées aléatoirement montrent
l’efficacité de l’approche proposée.

Deuxièmement, une nouve DLBP stochastique
multi-produits avec un temps de traitement de

tâche incertain est abordée, où seules la moyenne,
l’écart type et la limite supérieure des temps de
tâche sont disponibles. L’objectif est de minimiser
le coût de désassemblage. Pour le problème, un
modèle conjoint à contraintes de probabilités est
formulé. Ensuite, sur la base de l’analyse du prob-
lème, le modèle conjoint à contraintes de probabil-
ités est approximativement transformé en un mod-
èle sans distribution. Ensuite, plusieurs inégalités
valides et une méthode exacte de coupe et de réso-
lution sont conçues pour résoudre efficacement le
problème. Les résultats des expériences sur un ex-
emple illustratif et sur 490 instances générées aléa-
toirement démontrent les bonnes performances du
modèle proposé, des inégalités valides et de la
méthode de résolution.

Enfin, un nouveau problème de concep-
tion de la RSC lié à l’équilibrage de la ligne
de désassemblage multi-produits est étudié, où
l’approvisionnement en produits EOL, la demande
en composants et les temps de traitement des
tâches sont supposés incertains. Les objectifs sont
de maximiser le profit attendu et de minimiser
simultanément les émissions de CO2. Pour le
problème, un modèle bi-objectif de programma-
tion stochastique à deux étapes et non linéaire
est formulé, et approximativement transformé en
un modèle sans distribution linéaire en fonction
des propriétés du problème. Ensuite, une méth-
ode basée sur des contraintes ε-construites est pro-
posée, dans laquelle une décomposition de Benders
améliorée est conçue pour résoudre les problèmes
transformés à objectif unique. Des expériences
numériques comprenant une étude de cas et sur
200 instances générées aléatoirement sont menées
pour évaluer les performances des méthodes pro-
posées. De plus, une analyse de sensibilité est réal-
isée pour tirer des enseignements en matière de
gestion.



Title: Stochastic and multi-criteria optimization for remanufacturing industry
Keywords: disassembly line balancing, reverse supply chain, stochastic optimization, multi-objective
optimization, cut-and-solve, Benders decomposition

Abstract: End-of-Life (EOL) products disassem-
bly in remanufacturing has received extensive at-
tention in recent years owing to their advantages
in saving non-renewable resources, protecting the
environment and promoting economic growth. In
the existing literature, 1) most of stochastic disas-
sembly line balancing problems assume that the
probability distributions of uncertain parameters
are known; 2) majority of disassembly line bal-
ancing problems focus on single product; 3) few
works study the disassembly line balancing related
reverse supply chain (RSC) design problems. In
reality, multiple EOL products disassembly related
RSC exist in remanufacturing industries, such as
automobile, mobile phone, etc. To bring these re-
search gaps, three new disassembly line balancing
related problems are investigated in this thesis.

Firstly, a single product disassembly line bal-
ancing problem (DLBP) with partial information
of task processing times is studied, where only the
mean, lower and upper bounds of task process-
ing times are known. The objective is to minimize
the disassembly cost. For the studied problem, a
joint chance-constrained model is proposed. Then,
a new distribution-free formulation and a second-
order cone program approximation-based formula-
tion are constructed based on problem properties.
Experimental results on 7 benchmark instances and
81 randomly generated instances show the effec-
tiveness and efficiency of the proposed approach.

Secondly, a new stochastic multi-product
DLBP with uncertain task processing time is ad-

dressed, where only the mean, standard deviation
and upper bound of task times are available. The
objective is to minimize the disassembly cost. For
the problem, a joint chance-constrained model is
formulated. Then, based on problem analysis, the
joint chance-constrained model is approximately
transformed into a distribution-free model. Sub-
sequently, several valid inequalities and an exact
lifted cut-and-solve method are designed to effi-
ciently solve the problem. Experiments results on
an illustrative example and 490 randomly gener-
ated instances demonstrate the good performances
of the proposed model, valid inequalities and solu-
tion method.

Finally, a novel multi-product disassembly line
balancing related RSC design problem is investi-
gated, where EOL products supply, components
demand and task processing times are assumed to
be uncertain. The objectives are to maximize the
expected profit and minimize CO2 emissions, si-
multaneously. For the problem, a bi-objective non-
linear two-stage stochastic programming model is
formulated and approximately transformed to a lin-
ear distribution-free model based on problem prop-
erties. Then, an exact ε-constrained based method
is proposed, in which an improved Benders decom-
position is designed to solve the transformed single
objective problems. Numerical experiments includ-
ing one case study and 200 randomly generated in-
stances are conducted to evaluate the performance
of proposed methods. Moreover, sensitivity analy-
sis is made to draw managerial insights.
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