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‘‘Nothing in life is to be feared,
it is only to be understood.

Now is the time to understand more,
so that we may fear less.’’

–Maria Sk lodowska Curie





Abstract

We consider two-fluid problems involving immiscible Stokes fluids in contact and with sur-
face tension at their interface. We develop, analyze, and compare two approaches for space
discretization, the Hybrid High-Order (HHO) and the Hybridizable Discontinuous Galerkin
(HDG) methods, both combined with a geometrically unfitted approach to handle fluid inter-
faces. Both methods do not place discrete unknowns on the interface, and for both methods,
we observe optimal error decay and condition number growth. The first part of the Thesis
deals with the unfitted HHO solver, where the interface is described by a level-set function and
discretized using isoparametric finite elements. We use the methodology to study the equilib-
rium problem with a shear flow imposed at infinity, and we investigate the relationship between
the eccentricity of the ellipse-shaped interface at equilibrium and the ratio of shear to surface
tension force. Then, we explore settings where the shape of the interface is unknown. We devise
a fixed-point iterative procedure that alternates a transport step for the level-set function with
the unfitted HHO solver with frozen interface. In the second part of the Thesis, the unfitted
HDG solver is combined with a NURBS description of the interface and of the external bound-
ary, enabling a seamless transition from CAD geometries. We use this solver to study one- and
two-fluid Stokes problems with applications in microfluidics related to microfluidic mixers and
to emulsion flows in porous media. Both applications employ a polynomial-adaptivity error
estimator, delivering results with at least two significant digits. Finally, in the third part of the
Thesis, the HDG and HHO methods are compared for one- and two-fluid Stokes problems. In
the simplest setting, we prove that the HHO and HDG methods can differ only in the choice
of the approximation spaces and of the stabilization operator.

Keywords: Hybrid discretization methods, Unfitted meshes, Stokes flows, Immiscible incompressible fluids,
Surface tension, Level-set methods, NURBS
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Résumé

On considère des écoulements de deux fluides de Stokes immiscibles séparés par une interface
avec tension surfacique. On développe, analyse et compare deux approches pour la discrétisation
spatiale, la méthode hybride d’ordre élevé (HHO) et celle de Galerkin discontinue hybridisable
(HDG), toutes deux combinées avec des maillages immergés ne tenant pas compte de la position
de l’interface. Les deux méthodes ne placent pas d’inconnue discrète sur l’interface, et on
observe une décroissance optimale de l’erreur et une croissance optimale du conditionnement
du système linéaire. La première partie de la thèse traite du solveur HHO avec une interface
décrite par une fonction de niveau et approchée par des éléments finis isoparamétriques. On
utilise la méthode pour étudier le problème d’équilibre avec un cisaillement imposé à l’infini,
en particulier la dépendance de l’eccentricité de l’interface (qui est de forme elliptique) avec le
rapport entre forces de cisaillement et tension de surface. On explore ensuite des situations où
la forme de l’interface est inconnue. On met au point une méthode itérative de point fixe qui
alterne entre une étape de transport de la fonction de niveau pour l’interface et le solveur de
Stokes sur maillage immergé. Dans la deuxième partie de la thèse, le solveur HDG est combiné
avec une description de l’interface et de la frontière extérieure par des splines (NURBS), ce
qui simplifie grandement le traitement de données de type CAD. Le solveur HDG est utilisé
pour des écoulements à un et deux fluides dans des applications en micro-fluidique, comme
l’écoulement dans un micro-mélangeur et l’émulsions en milieu poreux. Dans les deux cas,
on utilise un estimateur d’erreur permettant d’adapter le degré polynomial, et d’obtenir une
précision à deux chiffres significatifs. Dans la troisième partie de la thèse, les méthodes HHO
et HDG sont comparées pour des problèmes de Stokes à un et deux fluides. Dans les cas les
plus simples, on montre que HHO et HDG peuvent seulement différer dans le choix des espaces
discrets locaux et la forme de la stabilisation.

Mots-clés: Méthodes de discrétisation hybrides, Maillages immergés, Écoulements de Stokes, Fluides im-
miscibles et incompressibles, Tension surfacique, Fonction de niveau, NURBS
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Resumen

Consideramos problemas de dos fluidos de Stokes inmiscibles separados por una interfaz
con tensión superficial. Desarrollamos, analizamos y comparamos dos enfoques para la dis-
cretización espacial, el método h́ıbrido de alto orden (HHO) y el método Galerkin discontinuo
hybridizable (HDG), ambos combinados con mallas inmersas que no tienen en cuenta la posición
de la interfaz. Ambos métodos no colocan incógnitas discretas en la interfaz y observamos una
disminución óptima del error y un crecimiento óptimo de la condición del sistema lineal. La
primera parte de la tesis se centra en el solucionador HHO, con una interfaz descrita por una
función de nivel y aproximada mediante elementos finitos isoparamétricos. Utilizamos este
método para estudiar el problema del equilibrio con un cizallamiento impuesto en el infinito,
especialmente la dependencia de la excentricidad de la interfaz (que tiene forma eĺıptica) con la
relación entre las fuerzas de cizallamiento y la tensión superficial. Luego, exploramos situaciones
en las que la forma de la interfaz es desconocida. Desarrollamos un procedimiento iterativo de
punto fijo que alterna entre un paso de transporte de la función de nivel para la interfaz y el solu-
cionador de Stokes en una malla inmersas. En la segunda parte de la tesis, el solucionador HDG
se combina con una descripción de la interfaz y el ĺımite exterior mediante splines (NURBS),
lo que simplifica el manejo de datos de tipo CAD. Utilizamos este solucionador HDG para
resolver problemas de flujo de uno y dos fluidos en aplicaciones de microfluidos, como el flujo
en un mezclador microflúıdico y emulsiones en medios porosos. En ambos casos, empleamos un
estimador de error que permite adaptar el grado polinómico y obtener resultados con al menos
dos d́ıgitos significativos. En la tercera parte de la tesis, comparamos los métodos HHO y HDG
para problemas de Stokes de uno y dos fluidos. En los casos más simples, demostramos que
HHO y HDG solo pueden diferir en la elección de los espacios discretos locales y la forma de la
estabilización.

Palabras clave: Métodos de discretización h́ıbrida, Mallas inmersas, Flujos de Stokes, Fluidos inmiscibles e
incompresibles, Tensión superficial, Función de nivel, NURBS
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0.2 Écoulements de Stokes avec deux fluides incompressibles et immiscibles . . . . . . . . xx
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et dG-FEM hybrides (à droite) en utilisant des approximations polynomiales du
second ordre pour les inconnues des maille et de face. . . . . . . . . . . . . . . . .xxiv
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Résumé étendu

0.1 Motivations
De nos jours, les simulations haute-fidélité des problèmes de dynamique des fluides sont de
plus en plus fréquemment utilisées, ce qui engendrent une demande croissante en méthodes
de calcul précises. Néanmoins, ces simulations posent des défis considérables, notamment
dans des problèmes impliquant des géométries complexes ou évolutions comme pour la micro-
fluidique [10], [61], [120], les réservoirs de pétrole [102], les écoulements souterrains [109], les
réservoirs de stockage d’énergie [88], et la séquestration géologique du carbone [104]. Un défi
particulièrement est celui de la résolution précise de problèmes multi-fluides, où des fluides im-
miscibles interagissent entre aux, voir figure 1. Dans de telles configurations, l’interface entre
les fluides peut être sujette à des déformations, des ruptures et des changements de forme com-
plexes, nécessitant des méthodes numériques robustes capables de capturer avec précision ces
phénomènes dynamiques.

Figure 1: Instantané de trois micro-gouttelettes, se déplaçant de gauche à droite, contenant un colorant
de couleur sombre (image inspirée de [60])

Cette thèse se concentre sur des problèmes d’écoulements de deux fluides de Stokes immis-
cibles séparés par une interface avec tension surfacique. Nous ne considérons que des problèmes
stationnaires où chaque fluide est régi par les équations de Stokes stationnaires et incompress-
ibles. L’utilisation des équations de Stokes plutôt que des équations de Navier-Stokes est
raisonnable en raison des petites échelles de longueur et donc du nombre de Reynolds modéré
impliqué dans le problème. Une autre difficulté est que la position de l’interface est fait en
général partie des inconnues du problème. Pour simplifier, nous nous concentrons uniquement
sur le cas de deux fluides et sur les écoulements bidimensionnels. Il convient de noter que dans
la microfluidique, telle que les dispositifs de laboratoire sur puce, les problèmes bidimensionnels
ne sont souvent pas très éloignés de la réalité, notamment lorsque l’épaisseur du domaine est
très faible.

Cette thèse vise à explorer et à comparer la méthode de Galerkin discontinue hybridisable
(HDG) et la méthode hybride d’ordre élevé (HHO), combinées avec des maillages immergés ne
tenant pas compte de la position de l’interface. Dans la section 0.2, nous présentons les équations
du modèle et décrivons diverses techniques pour représenter l’interface entre les deux fluides ou
la frontière extérieure du domaine de calcul. Dans la section 0.3, nous motivons l’utilisation de
méthodes de discrétisation hybrides, comme HDG et HHO. Dans la section 0.4, nous motivons
l’utilisation de maillages immergés. Finalement, dans la section 0.5, nous exposons le plan de
la thèse et ses objectifs.
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0.2 Écoulements de Stokes avec deux fluides
incompressibles et immiscibles

Considérons deux fluides tels qu’une goutte d’un fluide, indexé par 1, soit immergée dans un
fluide externe, indexé par 2. Soit Ω ⊂ Rd, d := 2, le domaine de calcul occupé par les deux
fluides, de telle sorte que chaque fluide i réside dans Ωi (ouvert, borné, connexe, de frontière
lipschitzienne), avec Ω := Ω1 ∪ Ω2. La variété Υ := ∂Ω1 ∩ ∂Ω2 représente l’interface entre
les deux fluides. Pour simplifier, nous supposons que Υ ne touche pas la frontière ∂Ω de Ω,
de sorte que l’index 1 fait référence au sous-domaine intérieur Ω1, avec ∂Ω1 = Υ, et l’index
2 fait référence au sous-domaine extérieur Ω2, avec ∂Ω2 = ∂Ω ∪ Υ, voir la figure 2. Nous
supposons que l’interface Υ est orientable, et que sa normale unitaire nΥ et sa courbure HΥ
peuvent être définies partout sur Υ. Par convention, nΥ pointe de Ω1 vers Ω2, c’est-à-dire
que Υ est orientée dans le sens antihoraire. Sur la frontière extérieure ∂Ω, des conditions de

Ω1

Ω2

Υ ΩnΥ

∂ΩN

∂ΩDnΩ

Figure 2: Domaine de calcul Ω, sous-domaines Ωi, i ∈ {1, 2}, interface Υ (en bleu), frontière extérieure
de Dirichlet ∂ΩD (en orange), frontière extérieure de Neumann ∂ΩN (en rouge), normale unitaire nΥ
orientant Υ, et normale unitaire sortante à Ω, nnnΩ.

Dirichlet et de Neumann sont prescrites sur ∂ΩD et ∂ΩN respectivement, avec ∂ΩD ∪∂ΩN = ∂Ω
et ∂ΩD ∩ ∂ΩN = ∅. Nous imposons la vitesse ggg ∈ H1/2(∂ΩD; Rd) sur la frontière de Dirichlet,
et la traction t ∈ L2(∂ΩN; Rd) sur la frontière de Neumann. De plus, nous imposons la force
volumique fff i ∈ L2(Ωi; Rd) dans le sous-domaine Ωi, i ∈ {1, 2}.
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0.2.1 Équations du modèle
Nous recherchons les champs de vitesse et de pression (uuui, pi) ∈ H1(Ωi; Rd)×L2(Ωi), i ∈ {1, 2},
tels que

−∇ · σσσi = fff i dans Ωi, i ∈ {1, 2}, (1a)
∇ · uuui = 0 dans Ωi, i ∈ {1, 2}, (1b)

uuu2 = ggg sur ∂ΩD (1c)
σσσ2nΩ = ttt sur ∂ΩN, (1d)

JuuuK = 000, JσσσKnΥ = γHΥnΥ sur Υ, (1e)

où le tenseur des contraintes de Cauchy pour chaque fluide est

σσσi := 2µi∇suuui − piId, ∇suuui := 1
2(∇uuui + ∇uuuT

i ), (2)

µi est la viscosité du fluide i, nnnΩ est la normale extérieure unitaire à Ω, et Id est le tenseur
identité. De plus, pour une grandeur générique ⊙ définie sur Ω1 ∪ Ω2, pouvant être scalaire,
vectorielle ou tensorielle, nous posons

J⊙K := (⊙|Ω1)|Υ − (⊙|Ω2)|Υ (3)

pour désigner le saut composante par composante à travers Υ. Les conditions (1e) imposent
la continuité de la vitesse et l’équilibre des forces à travers l’interface en tenant compte de la
tension superficielle, qui est modélisée selon la loi de Laplace, avec γ la tension superficielle. On
notera que la composante tangentielle de la contrainte normale est toujours continue à travers
Υ.

Une alternative à la formulation de Cauchy pour le tenseur des contraintes est la formulation
en gradient complet. Dans ce cas, nous recherchons les champs de vitesse et de pression (uuui, pi) ∈
H1(Ωi; Rd) × L2(Ωi), i ∈ {1, 2}, résolvant (1), mais avec (2) remplacée par

σσσ′
i := µi∇ui − piId. (4)

Bien que σσσi et σσσ′
i aient la même divergence à l’intérieur de Ωi en raison de (1b), l’utilisation de

σσσ′
i entrâıne des conditions différentes à l’interface et de Neumann, car (1d) et (1e) deviennent

maintenant

σσσ′
2nΩ =

Ä
µ2∇uuu2 − p2Id

ä
nΩ = ttt sur ∂ΩN, (5a)

JuuuK = 000, Jσσσ′KnΥ = Jµ∇uuu− pIdKnΥ = γHΥnΥ sur Υ, (5b)

Remark 0.1 (Unicité). Lorsque ∂ΩN = ∅, le problème ci-dessus est soluble à une constante ad-
ditive globale près sur la pression, qui peut être fixée en imposant une condition supplémentaire
sur la pression. Par exemple, nous pouvons imposer∑

i∈{1,2}

∫
Ωi

pi = 0. (6)
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Remark 0.2 (Unités). Pour simplifier, nous pouvons supposer que les équations sont exprimées
sous forme adimensionnelle. Sinon, les unités sont les suivantes: [m · s−1] pour uuu, [Pa] pour p,
[Pa · s] pour µ, [m−1] pour HΥ et [Pa ·m] pour γ.

0.2.2 Description de l’interface et de la frontière extérieure
Dans cette section, nous expliquons brièvement comment l’interface Υ et la frontière extérieure
∂Ω peuvent être décrites mathématiquement. Il convient de noter que la frontière ∂Ω est
toujours connue a priori, mais ce n’est pas nécessairement le cas pour l’interface Υ.

0.2.2.1 Description par fonction de niveau

Une possibilité pour décrire l’interface est de supposer qu’une fonction de niveau est disponible.
Cette fonction peut être connue a priori, comme pour une interface fixe, ou résulter d’une
approximation, comme pour une interface inconnue. Une fonction de niveau ϕ : Ω → R décrit
implicitement une courbe générique Υ ⊂ Ω en tant que son ensemble de niveau zéro, c’est-à-dire

Υ := {xxx ∈ Ω : ϕ(xxx) = 0}. (7)

En supposant que ϕ est de classe C2 dans Ω, on peut alors définir un champ de vecteurs unitaires
et un champ de courbure dans Ω comme suit:

nnnϕ = ∇ϕ
∥∇ϕ∥ℓ2

, Hϕ = −∇ ·nnnϕ = − ∆ϕ
∥∇ϕ∥ℓ2

+ 1
∥∇ϕ∥3

ℓ2
D2ϕ(∇ϕ,∇ϕ), (8)

où | · |ℓ2 désigne la norme euclidienne dans Rd et D2ϕ(·, ·) est la forme quadratique associée à
la hessienne de ϕ. Le vecteur normal unitaire et la courbure sur Υ sont alors donnés par

nnnΥ := nnnϕ|Υ, HΥ := Hϕ|Υ. (9)

De plus, la connaissance de la fonction de niveau permet une détermination simple du domaine
Ωi, i ∈ {1, 2}, en évaluant le signe de ϕ(x) pour tout x ∈ Ω.

0.2.2.2 Interface et frontière extérieure en CAO

Lorsqu’une géométrie CAO est disponible, l’approche naturelle considère des courbes NURBS
(Non-uniform rational B-spline) pour décrire précisément l’interface et la frontière extérieure.
Pour simplifier, considérons une interface Υ décrite par une courbe NURBS CCC(λ) : λ → Υ, au
moins de classe C1, avec λ ∈ [λa, λb] comme domaine paramétrique. Le vecteur tangent tCCC(λ)
à Υ s’obtient en calculant la dérivée première par rapport à λ, ce qui donne

tΥ(λ) = tCCC(λ) = dCCC(λ)
dλ .

Le vecteur normal unitaire et la courbure sur Υ sont alors donnés par

nΥ = nCCC =
dtCCC(λ)

dλ∥∥∥ dtCCC(λ)
dλ

∥∥∥
ℓ2

, HΥ = HCCC =
∥∥∥∥dtCCC(λ)

dλ

∥∥∥∥
ℓ2
. (10)
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Il convient de noter que la connaissance de l’interface NURBS ne permet pas une détermination
directe du domaine Ωi, i ∈ {1, 2}. En outre, l’orientation de Υ est implicitement spécifiée par
la carte CCC(λ).

0.3 Méthodes de discretisation hybrides pour les
problèmes elliptiques

Les méthodes d’ordre élevé ont émergé récemment comme méthode concurrente aux méthodes
classiques en termes d’efficacité computationnelle et de qualité des résultats [82], [127].

Les méthodes classiques de discrétisation des équations aux dérivées partielles (EDP), telles
que celles rencontrées en dynamique des fluides numérique, sont les méthodes de volume fi-
nis (FVM) [56] et des éléments finis de type Galerkin continu (cG-FEM) [17], [51]–[53]. Les
méthodes FVM sont obtenues en appliquant un bilan de flux dans chaque maille. Cependant,
les méthodes FVM utilisent des approximations constantes par morceaux, ce qui entrâıne des
limitations dans la représentation précise des variations spatiales. En revanche, les méthodes
cG-FEM sont basées sur une formulation variationnelle et approchent la solution à l’aide de
polynômes par morceaux qui sont continus aux interfaces entre les mailles. Cette deuxième
approche permet des approximations d’ordre élevé, mais elle souffre de problèmes de stabilité
pour les écoulements dominés par la convection, et elle nécessite des espaces de discrétisation
compatibles (stabilité inf-sup) pour la vitesse et la pression (bien que de nombreuses techniques
de stabilisation existent, voir, par exemple, [53, Chap. 62-63]). De plus, les méthodes cG-FEM
reposent sur des maillages conformes, ce qui peut être limitant pour des problèmes avec des
géométries complexes.

Une approche différente est offerte par les méthodes d’élément finis de type Galerkin dis-
continu (dG-FEM) [45], [80]. Les méthodes dG-FEM utilisent des polynômes par morceaux qui
peuvent entre discontinus entre les mailles. En outre, ces méthodes imposent un bilan de flux
aux interfaces du maillage, dans l’esprit des FVM. Les méthodes dG-FEM présentent également
l’avantage d’être robustes par rapport à la convection grâce aux flux numériques et offrent une
flexibilité dans le choix des discrétisations de la vitesse et de la pression grâce à des stabilisations
appropriées. L’inconvénient principal des méthodes dG-FEM réside dans l’augmentation con-
sidérable du nombre de degrés de liberté (DDL) sur un maillage donné. De plus, les méthodes
dG-FEM, tout comme les cG-FEM, peuvent être sensibles aux maillages fortement déformés.
Une approche pour mâıtriser les coûts computationnels, tout en préservant l’ordre élevé de
l’approximation, est le concept d’hybridation, introduit pour la première fois dans le cadre des
méthodes mixtes [6], [57].

Les méthodes de discrétisation hybrides ont gagné en popularité durant cette dernière
décennie, comme en témoignent les nombreux minisymposia consacrés à ces techniques lors
de conférences internationales, telles qu’ICOSAHOM (Londres, 2018), FEF (Chicago, 2019) et
WCCM-ECCOMAS (Paris, 2020). L’idée clé de l’hybridation est d’introduire des inconnues
supplémentaires sur le squelette du maillage, c’est-a-dire sur l’ensemble des faces ou arêtes
partagées par les mailles. Ces inconnues supplémentaires, appelées inconnues hybrides, perme-
ttent de réduire les DDL couplés globalement à ceux placés sur le squelette du maillage, tandis
que les inconnues attachées aux mailles ne sont que localement couplées. Ainsi, les inconnues
situées dans chaque maille peuvent être éliminées localement par une technique de complément
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Schur appelée condensation statique [74]. La figure 3 montre les inconnues de vitesse pour les
méthodes cG-FEM, dG-FEM et dG-FEM hybrides. Dans le contexte des écoulements incom-
pressibles, un autre avantage des dG-FEM et des dG-FEM hybrides est la possibilité d’utiliser
une approximation de même ordre pour la vitesse et la pression. Dans les méthodes dG-FEM,
cela est réalisé en ajoutant un terme de pénalité sur les sauts de pression, alors que cette pénalité
n’est pas nécessaire dans les méthodes dG-FEM hybrides.

(a) Inconnues de vitesse pour
les méthodes cG-FEM.

(b) Inconnues de vitesse pour les
méthodes dG-FEM.

(c) Inconnues de vitesse pour les
méthodes dG-FEM hybrides.

Figure 3: Inconnues de vitesse pour les méthodes cG-FEM (à gauche), dG-FEM (au centre) et dG-FEM
hybrides (à droite) en utilisant des approximations polynomiales du second ordre pour les inconnues
des maille et de face. Chaque cercle plein représente une inconnue à valeurs dans Rd, les cercles bleus
représentent les inconnues locales, et les cercles rouges les inconnues globales. Le nombre d’inconnues
globales est de 21 pour les méthodes cG-FEM, de 32 pour les méthodes dG-FEM, et de 12 pour les
méthodes dG-FEM hybrides.

La formulation mixte-duale des méthodes HDG a été introduite sous sa forme actuelle il
y a environ une décennie dans [35]. L’application aux problèmes d’écoulement a été étudiée
dans [36], [91], [100], [101], et plus récemment, des avancées ont été accomplies dans les stratégies
d’adaptation du degré [65], le couplage avec la description NURBS de la géométrie du do-
maine [117], et de nouvelles formulations superconvergentes [62]. Un livre a été consacré aux
méthodes HDG [49]. De plus, les méthodes hybrides d’ordre élevé (HHO) ont été introduites
dans [44] pour l’élasticité linéaire sans verrouillage et dans [41] pour la diffusion linéaire. Ces
méthodes ont été appliquées avec succès aux écoulements de Stokes incompressibles dans [3],
[46], aux écoulements de Navier-Stokes dans [15], [47], et aux écoulements viscoplastiques
dans [28]. Deux livres ont été consacrés aux méthodes HHO [31], [42].

Comme le montre [33], les méthodes HHO peuvent s’intégrer dans le cadre des méthodes
HDG, car on peut reformuler les équations HHO sous forme d’équations de bilan local avec
des flux numériques équilibrés. De plus, les méthodes HDG et HHO sont étroitement liées aux
méthodes des éléments virtuels non conformes (ncVEM) et aux méthodes de Galerkin faible
(weak Galerkin, WG), comme le montrent [31]–[33], [43], [48]. Les méthodes HDG et HHO
sont formulées au moyen d’opérateurs de reconstruction locaux et de stabilisation. L’opérateur
de reconstruction dans HHO agitant sur la variable primaire et sa trace; il correspond à la
variable mixte (ou duale) dans HDG. Il convient de noter que, en rendant explicite l’opérateur
de reconstruction, les méthodes HHO peuvent être formulées à l’aide de la formulation primale
du problème, tandis que les méthodes HDG reposent sur l’introduction d’une variable duale
locale (appelée flux), par exemple, L := −∇u. En résumé, les méthodes HHO, HDG (et
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ncVEM et WG) diffèrent uniquement par le choix des inconnues discrètes pour les inconnues
de maille, de face et pour le flux, ainsi que par la conception de la stabilisation utilisée pour
définir la trace du flux numérique.

Les atouts des méthodes HDG et HHO comprennent sont les suivantes: (i) la capacité à
obtenir aisément des discrétisations de degré élevé, (ii) la flexibilité pour utiliser des maillages
généraux avec des mailles polyédriques (avec des faces planes), (iii) la conservation locale au
niveau des mailles au moyen de flux équilibrés, (iv) la réduction des coûts de calcul par rapport
à dG-FEM grâce au couplage global des inconnues du squelette uniquement, (v) la possibilité
d’obtenir une superconvergence en norme L2 sur la variable primaire grâce à un post-traitement
local reposant sur les informations contenues dans la variable hybride.

Pour les problèmes impliquant des interfaces ou des frontières extérieures courbes, une pos-
sibilité de préserver la précision tout en utilisant des méthodes de discrétisation classiques con-
siste à recourir à des maillages courbes d’ordre élevé. Les exemples proposés dans la littérature
comprennent [111], [128]. En particulier, la technique des NURBS permet une représentation
précise de la géométrie [83], [115], [116] et permet une transition simple des descriptions CAO
à des descriptions computationnelles dans un large éventail d’applications de l’ingénierie.

Cependant, la convergence optimale des méthodes HDG et HHO n’est assurée sur le plan
théorique que lors de l’utilisation des mailles avec des faces planes. Une manière de gérer les
interfaces et les frontières courbes dans les méthodes HDG et HHO est alors d’utiliser des mail-
lages immergés ne tenant pas compte de la position de l’interface. Une autre motivation pour
utiliser des maillages immergés est que dans des problèmes réalistes où la position de l’interface
est inconnue, le suivi des interfaces nécessite des mises à jour du maillage qui peuvent entrâıner
de grandes déformations conduisant à des mailles fortement déformées. De plus, la génération
de maillages adaptés aux frontières et aux interfaces peut être extrêmement chronophage.

0.4 Maillages immergés
Au cours de la dernière décennie, d’importants progrès ont été réalisés pour dissocier la descrip-
tion de la géométrie du maillage computationnel. Les méthodes qui ne tiennent pas compte de
la position de l’interface appartiennent à cet ensemble d’approches où le maillage ne s’adapte
pas à la géométrie. La formulation variationnelle doit alors être modifiée car l’interface ou la
frontière du domaine de calcul qui peuvent couper certaines mailles.

incorporer les contraintes sur l’interface et la frontière dans le calcul. Diverses techniques
ont été développées, comme la méthode des domaines fictifs ou de pénalité de volume [5], [66]–
[68] pour les domaines à frontière courbe. Les conditions à la frontière extérieure sont alors
imposées par multiplicateurs de Lagrange ou par des termes de pénalité. Le défi de choisir un
paramètre de pénalité approprié est un inconvénient de ces méthodes.

Pour pallier cette limitation, une méthode avec maillages immergés a été élaborée dans [75],
[76], en s’appuyant sur le concept de la méthode des éléments finis introduite dans [9]. Pour
traiter les conditions d’interface, l’idée clé de la méthode est de doubler les inconnues dans
les mailles coupés par l’interface, enrichissant ainsi l’espace d’approximation et obtenant une
représentation plus précise de la solution à proximité de l’interface. De plus, la définition
des fonctions de base reste indépendante de la forme de la maille coupée, et aucun degré de
liberté supplémentaire n’est introduit sur l’interface (ou la frontière). Cette méthode peut être
combinée avec la méthode de Nitsche [103], ou les multiplicateurs de Lagrange [11], [19], [24]

xxv



pour prescrire des conditions d’interface et de frontière.
Un inconvénient bien connu des méthodes de maillages immergés est la présence de coupes

quasi-singuliers dans le maillage, créant des mailles avec une petite partie de leur volume
à l’intérieur du domaine de calcul ou à l’intérieur de l’un des deux sous-domaines. Cette
situation conduit souvent à des systèmes linéaires mal conditionnés, qui, à leur tour, af-
fectent négativement la précision des calculs. Pour résoudre ce problème, des solutions pos-
sibles sont la préconditionnement [92], la pénalité fantôme [18], [25], [26], [97], la méthode
de frontière déplacée [94], [95], ou l’agglomération de mailles [78], [87]. En particulier, les
méthodes d’agglomération combinent les mailles voisines en effaçant les inconnues associées
mal coupée à la maille, et en générant une nouvelle maille bien coupée par agglomération. Une
procédure d’agglomération limitant l’agglomération aux voisins les plus proches est présentée
dans [20]. Une alternative un peu plus souple aux procédures d’agglomération est la méthode
d’extension [8], [99]. Cette méthode ne génère pas un nouvel espace d’approximation, mais
utilise plutôt les inconnues de la maille bien coupée sélectionnée par la procédure d’agglomération
et extrapole les fonctions de base dans la maille mal coupée. Dans le contexte de la cG-FEM,
nous renvoyons le lecteur à [21].

Les approches d’agglomération de mailles et d’extension conviennent particulièrement aux
méthodes HDG et HHO en raison de la capacité de ces méthodes à gérer des maillages non
conformes. De tels développements ont commencé assez récemment, en 2018, et ont conduit
à des résultats prometteurs pour des problèmes elliptiques [20], d’élasticité [38], et pour des
écoulements de Stokes incompressibles immiscibles séparés par une interface fixe [22], [73]. La
figure 4 présente un exemple d’agglomération de maille dans le cas d’un problème d’interface
(rangée supérieure) et d’un problème de frontière courbe (rangée inférieure).
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Γ Γ

(a) Inconnues de vitesse près de l’interface pour le maillage d’origine (à gauche) et le maillage ag-
gloméré (à droite).

∂Ω ∂Ω

(b) Inconnues de vitesse près de la frontière extérieure pour le maillage d’origine (à gauche) et le
maillage aggloméré (à droite).

Figure 4: Inconnues de vitesse pour les méthodes de Galerkin discontinu hybrides utilisant des approxi-
mations polynomiales d’ordre zéro dans les mailles et les faces. Rangée supérieure: problème d’interface;
rangée inférieure: problème de avec frontière courbe; colonne de gauche: avant agglomération; colonne
de droite: après agglomération. Chaque cercle plein représente une inconnue à valeurs dans Rd, les
cercles bleus représentent les inconnues des mailles bien coupées, les cercles oranges représentent les
inconnues des mailles mal coupées, et les cercles rouges représentent les inconnues hybrides globales.
On notera le doublement des inconnues dans les mailles et les faces coupées par l’interface Υ.

0.5 Aperçu de la thèse et objectifs
Cette thèse contribue à la modélisation et à la simulation numérique des problèmes multi-
fluides en explorant le potentiel des méthodes de Galerkin discontinu hybrides (HDG et HHO)
pour les écoulements de Stokes avec deux fluides incompressibles et immiscibles. De plus, cette
thèse étude l’utilisation des techniques de maillages immergés pour garantir des calculs précis
et fiables dans le cas d’interfaces ou de frontières courbes.

Dans le chapitre 2, nous développons des méthodes HHO dans le cadre des maillages im-
mergés pour le problème de Stokes avec deux fluides incompressibles et immiscibles en utilisant
une méthode de fonction de niveau et une représentation polynomiale par morceaux et continue
de l’interface. Dans le chapitre 3, nous étudions numériquement divers problèmes avec une in-
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terface connue puis inconnue. Nous commençons par examiner l’équilibre pour un écoulement
de cisaillement pur. Dans ce cas, la forme de l’interface est connue (elle est elliptique) [39], [125].
Ensuite, nous proposons un solveur de point fixe couplant le solveur HHO avec une méthode
de fonction de niveau pour traiter les problèmes d’interface inconnue. Nous présentons des
résultats numériques pour divers cas tests à fin de mettre en avant les capacités de la méthode
dans la simulation d’interfaces complexes. Les résultats contenus aux chapitres 2 et 3 sont
publiés dans [108].

Dans le chapitre 4, nous nous concentrons sur les méthodes HDG et leur utilisation pour
résoudre des problèmes de Stokes avec deux fluides incompressibles et immiscibles avec des
maillages immergés. Nous développons un schéma de discrétisation HDG efficace et précis dans
lequel les interfaces et les frontières, définies en CAO, sont exactement décrites au moyen de
courbes NURBS. De plus, nous présentons une stratégie d’extension d’éléments pour améliorer
les performances du solveur HDG. Le chapitre 5 se penche, quant à lui, sur l’étude de la
micro-fluidique en utilisant des méthodes HDG. Nous analysons la conditionnement et le com-
portement des erreurs, et étudions l’efficacité et la précision de l’approche. Nous présentons
deux cas tests dans des domaines géométriques complexes. Dans le premier, nous étudions le
problème de Stokes à un fluide dans un mélangeur micro-fluidique; dans le second, nous étudions
un écoulement d’émulsion dans un milieu poreux. Nous utilisons une adaptation polynomiale
basée sur un estimateur a posteriori pour obtenir des résultats avec au moins deux chiffres
significatifs.

Enfin, le chapitre 6 clarifie le lien entre les méthodes HHO et HDG pour le problème de
Stokes dans le cas mono-fluide puis bi-fluide.

xxviii



Chapter 1

Introduction

1.1 Motivations
Nowadays, high-fidelity simulations of fluid dynamics problems have gained increasing impor-
tance, resulting in a growing demand for accurate computational methods. Nonetheless, such
simulations present considerable challenges, especially in problems that involve complex or
evolving geometries such as microfluidics [10], [61], [120], petroleum reservoirs [102], ground-
water flows [109], energy storage reservoirs [88], and geologic carbon sequestration [104]. One
particularly challenging aspect is the accurate resolution of multi-fluid problems, where immisci-
ble fluids interact while exhibiting distinct flow characteristics, see Figure 1.1. In such problems,
the fluid interface can be subject to deformations, breakups, and complex shape changes, neces-
sitating robust numerical methods capable of accurately capturing these dynamic phenomena.

Figure 1.1: Snapshot of three microdroplets, moving from left to right, containing dark-colored dye
(image inspired by [60]).

This Thesis focuses on the so-called Stokes interface problem, which involves immiscible
fluids in contact and with surface tension effects at their interface. We only consider steady
problems where each fluid is governed by the steady, incompressible Stokes equations. Using the
Stokes rather than the Navier–Stokes equations is, in the present context, reasonable owing to
the small length scales, and therefore Reynolds number, involved in the problem. Furthermore,
the interface position is, in some cases, known a priori, but is, in general, part of the unknowns
of the problem. For the sake of simplicity, we focus on the case of two fluids only and on
two-dimensional flows. It is worth noting that in microfluidics, such as lab-on-a-chip devices,
two-dimensional problems are often not far from reality, especially when the thickness of the
domain is very small.

1



2 Introduction

This Thesis aims at exploring and comparing the Hybridizable Discontinuous Galerkin
(HDG) method and the Hybrid High-Order (HHO) method, combined with a geometrically
unfitted approach, for solving the Stokes interface problem. In Section 1.2, we present the gov-
erning equations and discuss some techniques to represent the interface between the two fluids
or the possibly curved boundary of the computational domain. Both the Cauchy stress and the
full gradient formulations will be considered. In Section 1.3, we motivate the use of hybridized
discretization methods, namely HDG and HHO. In Section 1.4, we discuss the use of unfitted
meshes. In this Thesis, we use boldface notation for Rd-valued fields and Rd×d-valued tensors
and for functional spaces composed of such fields and tensors.

1.2 Stokes interface problem
Let us consider two fluids such that one drop of a fluid, indexed by 1, is immersed into an
external fluid, indexed by 2. Let Ω ⊂ Rd, d := 2, be the computational domain occupied
by the two fluids so that each fluid i resides in Ωi (connected, bounded, open Lipschitz set)
and Ω := Ω1 ∪ Ω2. The manifold Υ := ∂Ω1 ∩ ∂Ω2 is the interface between the two fluids. For
simplicity, we assume that Υ does not touch the boundary ∂Ω of Ω, so that the index 1 refers to
the interior subdomain Ω1, with ∂Ω1 = Υ, and the index 2 refers to the exterior subdomain Ω2,
with ∂Ω2 = ∂Ω ∪ Υ, see Figure 1.2. The interface Υ is assumed to be orientable, and such that
its unit normal nΥ, and its curvature, HΥ, can be defined everywhere on Υ. By convention,
nΥ points from Ω1 to Ω2, i.e., Υ is oriented counter-clockwise. On the external boundary ∂Ω,

Ω1

Ω2

Υ ΩnΥ

∂ΩN

∂ΩDnΩ

Figure 1.2: Computational domain Ω, subdomains Ωi, i ∈ {1, 2}, interface Υ (blue), Dirichlet boundary
∂ΩD (orange), Neumann boundary ∂ΩN (red), unit normal nΥ orienting Υ, and outward unit normal
to Ω, nnnΩ.

Dirichlet and Neumann boundary conditions are prescribed on ∂ΩD and ∂ΩN, respectively, with
∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅. We impose the velocity ggg ∈ H1/2(∂ΩD; Rd) on the
Dirichlet boundary, and the traction t ∈ L2(∂ΩN; Rd) on the Neumann boundary. Additionally,
we impose the body force fff i ∈ L2(Ωi; Rd) in the subdomain Ωi, i ∈ {1, 2}.



1.2 Stokes interface problem 3

1.2.1 Governing equations
In the Cauchy stress formulation of the Stokes interface problem, we seek the velocity and
pressure fields (uuui, pi) ∈ H1(Ωi; Rd) × L2(Ωi), i ∈ {1, 2}, such that

−∇ · σσσi = fff i in Ωi, i ∈ {1, 2}, (1.1a)
∇ · uuui = 0 in Ωi, i ∈ {1, 2}, (1.1b)

uuu2 = ggg on ∂ΩD (1.1c)
σσσ2nΩ = ttt on ∂ΩN, (1.1d)

JuuuK = 000, JσσσKnΥ = γHΥnΥ on Υ, (1.1e)

where the total stress tensor for each fluid is

σσσi := 2µi∇suuui − piId, ∇suuui := 1
2(∇uuui + ∇uuuT

i ), (1.2)

µi is the viscosity of the fluid i, nnnΩ is the outward unit normal to Ω, and Id is the identity
tensor. Moreover, for a generic quantity ⊙ defined on Ω1 ∪ Ω2, which can be scalar-, vector- or
tensor-valued,

J⊙K := (⊙|Ω1)|Υ − (⊙|Ω2)|Υ (1.3)

denotes the component-wise jump across Υ. The conditions (1.1e) enforce the continuity of
the velocity and the equilibrium of forces across the interface. The latter accounts for surface
tension which is modeled according to Laplace’s law with γ the surface tension. Notice that
the tangential component of shear stress is continuous across Υ.

In the so-called full gradient formulation of the Stokes interface problem, we seek the velocity
and pressure fields (uuui, pi) ∈ H1(Ωi; Rd) × L2(Ωi), i ∈ {1, 2}, solving (1.1), but with (1.2)
replaced by

σσσ′
i := µi∇ui − piId. (1.4)

Although σσσi and σσσ′
i have the same divergence inside Ωi owing to (1.1b), the use of σσσ′

i results in
different interface and Neumann conditions, since (1.1d) and (1.1e) now become

σσσ′
2nΩ =

Ä
µ2∇uuu2 − p2Id

ä
nΩ = ttt on ∂ΩN, (1.5a)

JuuuK = 000, Jσσσ′KnΥ = Jµ∇uuu− pIdKnΥ = γHΥnΥ on Υ, (1.5b)

Remark 1.1 (Uniqueness). When ∂ΩN = ∅, the Stokes interface problem is solvable up to a
global additive constant on the pressure, which can be fixed by requiring an additional condition
on the pressure. To fix the ideas, we impose∑

i∈{1,2}

∫
Ωi

pi = 0. (1.6)

Remark 1.2 (Units). For simplicity, we assume that the equations are written in non-dimensional
form. Otherwise, the units are [m ·s−1] for uuu, [Pa] for p, [Pa ·s] for µ, [m−1] for HΥ and [Pa ·m]
for γ.



4 Introduction

1.2.2 Interface and boundary description
In this section, we briefly outline how the interface Υ and the boundary ∂Ω can be described
mathematically. Notice that ∂Ω is always known a priori, but this is not necessarily the case
for the interface Υ.

1.2.2.1 Level-set description

A fairly general possibility to describe the interface is to assume that a level-set function is
available. This function can be known a priori, as for a fixed interface, or result from an
approximation, as for an unknown interface (see Section 1.2.2.2 for further insight). A level-set
function ϕ : Ω → R implicitly describes a generic curve Υ ⊂ Ω as its zero level-set, i.e.,

Υ := {xxx ∈ Ω : ϕ(xxx) = 0}. (1.7)

Assuming that ϕ is of class C2 in Ω, one can then define a unit normal field and a curvature
field in Ω as follows:

nnnϕ = ∇ϕ
∥∇ϕ∥ℓ2

, Hϕ = −∇ ·nnnϕ = − ∆ϕ
∥∇ϕ∥ℓ2

+ 1
∥∇ϕ∥3

ℓ2
D2ϕ(∇ϕ,∇ϕ), (1.8)

where ∥ · ∥ℓ2 denotes the Euclidean norm in Rd and D2ϕ(·, ·) is the quadratic form associated
with the Hessian of ϕ. The unit normal and the curvature on Υ are then

nnnΥ := nnnϕ|Υ, HΥ := Hϕ|Υ. (1.9)

Moreover, the knowledge of the level-set function enables a straightforward determination of
the domain Ωi, i ∈ {1, 2}, by evaluating the sign of ϕ(x), for any x ∈ Ω.

1.2.2.2 Unknown interface: level-set transport problem

Level-set methods naturally handle unsteady problems with moving interfaces [107], [113], [122].
As such, they can be used in the present context of finding an unknown interface in a steady
problem by introducing a fictitious time t ∈ [0, T ], with T > 0, and performing a fixed point
iterative method. We extend the definition (1.7) to unsteady curves Υ : Ω × [0, T ] → R, as
follows:

Υ(t) := {xxx× t ∈ Ω × [0, T ] : ϕ(xxx, t) = 0}, (1.10)

and evolve the level-set function in time according to the following transport problem:

∂tϕ+ ∇ · (uuuϕ) = 0 in Ω × (0, T ), (1.11a)
ϕ(xxx, t) = ϕin(xxx) on ∂Ωin × (0, T ), (1.11b)
ϕ(xxx, 0) = ϕ0(xxx) in Ω, (1.11c)

where uuu : Ω → Rd is the velocity field moving the interface, ∂Ωin := {xxx ∈ ∂Ω : uuu · nnnΩ < 0}
denotes the inflow boundary, and ϕ0 is the initial level-set, typically defined as a signed distance
function. Whenever u results from the Stokes interface problem (1.1), one can expect that u ·n
approaches zero as the interface approaches its equilibrium position. This naturally leads to a
fixed-point procedure that is discussed in more detail in Chapter 3.



1.3 Hybrid discretization methods for elliptic problems 5

It is useful to keep in mind that level-set methods also come with certain disadvantages.
Firstly, level-set functions can become degenerate, resulting in the formation of sharp edges or
in the loss of mass. To address these issues, researchers have proposed various methods, such as
reinitialization [122], [123], or the incorporation of artificial viscosity [40], [72]. Secondly, level-
set methods may incur significant computational costs, particularly when dealing with rapidly
moving interfaces. Indeed, the continuous updates required for tracking interface evolution can
lead to an increased computational overhead, potentially impacting the efficiency of the method.
Despite these drawbacks, level-set methods continue to be a widely used tool in various fields
of computational mechanics for simulating evolving interfaces, owing to their inherent ability
to handle topological changes and to provide a versatile framework for interface tracking.

1.2.2.3 CAD interface and boundary

When a CAD geometry is available, the natural approach is to consider Non-uniform rational
B-spline (NURBS) curves to exactly describe the interface and the boundary. For simplicity,
let us consider an interface Υ described by one NURBS curve CCC(λ) : λ → Υ, of class at least
C1, with λ ∈ [λa, λb] its parametric domain (see Section 1.4.2.2 for more details). One can then
define the tangent tCCC(λ) to Υ by computing the first derivative with respect to λ, i.e.,

tΥ(λ) = tCCC(λ) = dCCC(λ)
dλ .

Then, the unit normal and the curvature on Υ are evaluated as follows:

nΥ = nCCC =
dtCCC(λ)

dλ∥∥∥ dtCCC (λ)
dλ

∥∥∥
ℓ2

, HΥ = HCCC =
∥∥∥∥dtCCC(λ)

dλ

∥∥∥∥
ℓ2
. (1.12)

Notice that the knowledge of the NURBS interface does not allow for a straightforward deter-
mination of the domain Ωi, i ∈ {1, 2}. A possible strategy is presented in Chapter 4. Notice
also that with the present approach, the orientation of Υ is implicitly specified by the map
CCC(λ).

1.3 Hybrid discretization methods for elliptic problems
In recent years, high-order methods have emerged as a competing solution over conventional
low-order methods in terms of computational efficiency and quality of the results [82], [127].

Classical methods to discretize partial differential equations (PDEs), such as those encoun-
tered in computational fluid dynamics are finite volume methods (FVM) [56] and continuous
Galerkin finite element methods (cG-FEM) [17], [51]–[53]. FVM are derived by applying a
flux balance in each mesh cell. However, FVM employ piecewise constant approximations,
which can lead to limitations in accurately representing spatial variations. On the other hand,
cG-FEM are based upon a variational formulation of the underlying PDE, and approximate
the solution using cell-wise polynomials which are continuous across the mesh interfaces. This
latter approach enables high-order polynomial approximations, but suffers from stability issues
for convection-dominated flows, lacks of a local conservation property at the cell level (a con-
servation property is available at the level of macro-cells sharing a given mesh vertex), and
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requires compatible (inf-sup stable) discretizations spaces for the velocity and the pressure (no-
tice though that many stabilization techniques exist, see, e.g., [53, Chaps. 62-63] for a review).
Additionally, cG-FEM rely on conforming meshes, which can be limiting for problems with
complex geometries.

A different approach is offered by discontinuous Galerkin finite element methods (dG-
FEM) [45], [80]. dG-FEM employ high-order cell-wise discontinuous polynomials to approx-
imate the solution and enforce a flux balance at the mesh interfaces in the spirit of FVM.
dG-FEM offer the advantage of robustness with respect to convection-dominance owing to
numerical fluxes and flexibility in the choice of velocity/pressure discretizations owing to ap-
propriate stabilizations. The main disadvantage of dG-FEM is the considerable increment of
globally coupled degrees of freedom (DoFs) required to compute, on a given mesh, the approx-
imate solution. Moreover, dG-FEM, as well as cG-FEM, can be sensitive to highly distorted
meshes. One approach to tame the computational burden, while preserving the high order of
approximation, is the concept of hybridization, first introduced for mixed methods in [57], see
also [6].

Hybridized discretization methods have gained significant popularity in recent years, as
reflected by the numerous minisymposia dedicated to these techniques in international confer-
ences, e.g., ICOSAHOM (London, 2018), FEF (Chicago, 2019) and WCCM-ECCOMAS (Paris,
2020). The key idea of hybridization is to introduce additional unknowns on the mesh skele-
ton, which is the set of faces or edges shared by the mesh cells. These additional unknowns,
called hybrid unknowns, allow one to reduce the globally coupled DoFs to those placed on the
mesh skeleton, whereas the cell unknowns become only locally coupled. Thus, the unknowns
located in each mesh cell can be locally eliminated by a Schur complement technique called
static condensation [74]. Figure 1.3 displays the velocity unknowns for cG-FEM, dG-FEM, and
hybridized dG-FEM. In the context of incompressible flows, another advantage of dG-FEM and
hybridized dG-FEM is the possibility of using equal-order approximation for the velocity and
the pressure. In dG-FEM, this is achieved by adding a penalty term on the pressure jumps,
whereas this penalty is not needed in hybridized dG-FEM.

(a) Velocity unknowns for
cG-FEM.

(b) Velocity unknowns for dG-
FEM.

(c) Velocity unknowns for hy-
bridized dG-FEM.

Figure 1.3: Discrete velocity unknowns for cG-FEM (left), dG-FEM (center) and hybridized dG-FEM
(right) using second-order polynomial approximations for both the cell and the hybrid unknowns. Each
bullet represents one Rd-valued unknown, blue bullets represent local unknowns, red bullets global
unknowns. The number of global unknowns is 21 for cG-FEM, 32 for dG-FEM, and 12 for hybridized
dG-FEM.
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The mixed-dual formulation of Hybridizable discontinuous Galerkin (HDG) methods has
been introduced in its present-day form about a decade ago in [35]. The application to flow
problems was studied in [36], [91], [100], [101] and, more recently, advances involving degree-
adaptive strategies [65], coupling with NURBS description of the geometry of the domain [117]
and novel superconvergent formulations [62] have been explored. One book has been devoted
to HDG methods [49]. Furthermore, Hybrid High-Order (HHO) methods have been introduced
in [44] for locking-free linear elasticity and in [41] for linear diffusion. They have been success-
fully applied to incompressible Stokes flows in [3], [46], Navier-Stokes flows in [15], [47], and
viscoplastic flows in [28]. Two books have been devoted to HHO methods [31], [42].

As shown in [33], HHO methods are embedded into the broad framework of HDG methods
since one can reformulate the HHO equations as local balance equations with equilibrated
numerical fluxes. In addition, HDG and HHO are closely related to nonconforming virtual
element methods (ncVEM) and to weak Galerkin methods (WG) as shown in [31]–[33], [43],
[48]. HDG and HHO methods are formulated by means of local reconstruction and stabilization
operators. The reconstruction operator in HHO acting on the primal variable and its trace
corresponds to the HDG mixed (or dual) variable. Notice that, by making the reconstruction
operator explicit, HHO methods can be formulated using the primal formulation of the problem,
whereas HDG methods hinge on the introduction of a local dual variable (called flux), e.g.,
L := −∇u. In summary, HHO, HDG (and ncVEM and WG) methods differ only in the choice
of the discrete unknowns for the cell unknown, the flux, and the trace variable, and in the
design of the stabilization used to define the numerical flux trace. In Chapter 6, we will further
investigate the links between HDG and HHO.

Attractive features of HDG and HHO methods include (i) the capability of efficiently de-
vising high-order (and non-uniform) degree discretizations, (ii) the flexibility in using general
meshes with polyhedral mesh cells (with planar faces) and non-matching interfaces, (iii) the
local conservation at the mesh cell level by means of equilibrated fluxes, (iv) the reduced com-
putational costs with respect to dG-FEM owing to the global coupling of the skeleton unknowns
only, and (v) the possibility of achieving L2-superconvergence on the primal variable by a local
postprocessing hinging on the local information contained in the hybrid variable.

For problems involving curved interfaces or a curved boundary, one possibility to preserve
accuracy while using classical discretization methods is to resort to high-order curved mesh
generation schemes, examples proposed in the literature include [111], [128]. In particular,
the Non-uniform rational B-spline (NURBS) technique allows for an accurate geometry repre-
sentation [83], [115], [116] and enables a seamless transition from geometric to computational
descriptions in a wide range of engineering applications that rely on computer-aided design
(CAD) geometries. In this case, the use of NURBS allows for an exact description of the
interface or boundary.

Nonetheless, HDG and HHO methods are proven to be optimally convergent only when
using mesh cells with planar faces. A way to handle curved interfaces and boundaries in
HDG and HHO methods is therefore to use geometrically unfitted meshes. Another motivation
for using geometrically unfitted meshes is that tracking interfaces in realistic problems where
the position of the interface is unknown necessitates mesh updates that may result in large
deformations leading to highly distorted mesh cells. In such cases, unstable discretizations may
arise, jeopardizing accuracy and reliability. Additionally, the generation of boundary-fitted
and interface-fitted meshes in the context of iteration (fixed-point) problems can be extremely
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time-consuming, since a new mesh is needed at each iteration.

1.4 Unfitted meshes
In this section, we provide a short literature review on unfitted mesh techniques and we discuss
some approaches to discretize the curved interface or boundary.

1.4.1 Literature review
Over the past decade, much progress has been achieved to decouple the geometry description
from the computational mesh. Geometrically unfitted methods belong to such approaches where
the mesh is not tailored to fit the geometry, and the variational formulation is modified to incor-
porate constraints on the interface and the boundary into the computation. Various techniques
have been developed, as reviewed, e.g., in the proceedings of the 2016 UCL Workshop on the
subject [14]. One of the earliest methods is the fictitious domain or volume penalty method [5],
[66]–[68]. This method employs larger computational domains with simplified shapes that ex-
tend beyond the physical domain. Boundary conditions are enforced using techniques such
as Lagrange multipliers or penalty terms. The challenge of selecting an appropriate penalty
parameter is a significant drawback of these methods.

To address this limitation, an unfitted method was devised in [75], [76], building upon the
concept of the unfitted finite element method introduced in [9]. To handle interface conditions,
the key idea of the method is the doubling of the unknowns in the mesh cells cut by the
interface, thus enriching the approximation space and achieving a more precise representation
of the solution in the vicinity of the interface. Moreover, the definition of the basis functions
remains independent of the cut cell shape, and no additional DoFs are introduced on the
interface (or the boundary). The method can be combined with Nitsche’s method [103], or
Lagrange multipliers [11], [19], [24] to prescribe boundary and interface conditions.

A well-known drawback in unfitted methods is the presence of unfavorable cuts in the mesh,
resulting in mesh cells with a small portion of their volume within the computational domain
or within one of the two computational domains. This situation often leads to ill-conditioned
linear systems, which, in turn, adversely affect the accuracy of the computations. To address
this issue, possible solutions are preconditioning [92], weakly consistent penalty (so-called ghost
penalty) [18], [25], [26], [97], the shifted boundary method [94], [95], or cell agglomeration [78],
[87]. In particular, cell-agglomeration methods address the issue of cut cells by combining
neighboring cells, erasing the unknowns associated with the ill-cut cell, and generating a new
unique well-cut, larger cell. A cell-agglomeration procedure limiting the agglomeration to the
nearest neighbors is presented in [20]. Loose alternatives to cell-agglomeration procedures are
element extension and element aggregation methods [8], [99]. Element extension methods do not
generate a new approximation space for the agglomerated mesh cell, but utilize the unknowns
from the well-cut cell selected by the cell-agglomeration procedure and extrapolate the basis
functions into the ill-cut cell. On the other hand, element aggregation methods are suitable to
cG-FEM since they are tailored to preserve mesh conformity. In the context of cG-FEM, we
refer the reader to [21] for a review.

Interestingly, the cell-agglomeration and the element extension approaches are particularly
suitable for HDG and HHO methods owing to the capability of these methods to handle gen-
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eral nonconforming meshes with hanging nodes. The extension to hybridized discretization
methods has started quite recently, in 2018, delivering promising results for elliptic interface
problems [20], elasticity problems [38] and for immiscible incompressible Stokes flows separated
by an interface [22], [73]. Figure 1.4 displays an example of cell agglomeration in the case of an
interface problem (top row) and a curved boundary problem (bottom row).

Γ Γ

(a) Discrete velocity unknowns near the interface for the original (left) and agglomerated (right)
mesh.

∂Ω ∂Ω

(b) Discrete velocity unknowns near the external boundary for the original (left) and agglomerated
(right) mesh.

Figure 1.4: Discrete velocity unknowns for hybridized discontinuous Galerkin methods using zero-order
polynomial approximations for the cell and the hybrid unknowns. Top row: interface problem; bottom
row: curved boundary problem; left column: before agglomeration; right column: after agglomeration.
Each bullet represents one Rd-valued unknown, blue bullets represent local cell unknowns from well-cut
cells, orange bullets local cell unknowns from ill-cut cells, and red bullets global hybrid unknowns.
Notice the doubling of the unknowns in the mesh cells and faces cut by the interface Υ.

1.4.2 Geometric discretization
An accurate geometric description of the interface and the boundary is essential to preserve the
high-order convergence of HHO and HDG methods. In this context, we explore in this Thesis
two geometric descriptions: one based on C0-piecewise polynomials and one based on Non-
uniform rational B-splines (NURBS). The former is simpler and hinges on classical techniques
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used in the context of isoparametric FEM. The drawback is that the discrete interface is only
C0, which may impact the accuracy owing to the presence of kinks in the discrete interface at
each mesh interface. The NURBS-based description improves on this by allowing for a smoother
discrete interface. However, difficulties emerge in the handling of evolving geometries.

1.4.2.1 C0-piecewise polynomial representation

In this representation, the interface Υ (or the boundary ∂Ω) is approximately represented by
a collection of arcs, each arc being generated from the reference interval Î := [0, 1] by using
a geometric mapping whose components are polynomial-valued. The approach we consider is
as follows (see Section 2.3.3 for more details). For every cut cell T ∈ T Υ (the collection of all
the cut cells), Υ is approximated by a collection of 2n arcs, where n ≥ 0 is a user-specified
parameter. These arcs are denoted by ΥT,j , j ∈ {1:2n}. To build each arc ΥT,j , we consider
(l + 1) equidistributed interpolation nodes {xxxT,jm }m∈{0:l} ⊂ Υ. The integer l is a user-specified
parameter such that l ≥ k + 1, where k is the degree of the hybrid unknowns. This lower
bound is coherent with the consistency analysis of elliptic problems on curved domains, where
the geometry error is at least one order higher than the approximation error in the H1-norm
(which is of order (k + 1) for the HHO method).

Considering the Lagrange basis of order l, {ψ̂m}m∈{0:l}, defined on the reference interval Î
using equidistributed nodes, the arc ΥT,j is defined as

ΥT,j := rrrT,j(Î) where rrrT,j(ŝ) :=
∑

m∈{0:l}

xxxT,jm ψ̂m(ŝ), ∀ŝ ∈ Î . (1.13)

Finally, the fully discrete interface is defined as follows:

Υn,l :=
⋃

T∈T Υ

⋃
j∈{1:2n}

ΥT,j . (1.14)

We notice that the fully discrete interface has only C0-regularity.

1.4.2.2 NURBS representation

NURBS methods are well established for fitted finite element methods, such as the NURBS-
enhanced Finite Element Method (NEFEM) [115], [116], [118], and have also recently been
integrated into unfitted finite element methods, [90], [96], [99].

A NURBS curve of degree q is a piecewise rational function defined as follows:

CCC(λ) =

Ä∑ncp
i=0 νiBBBiC

q
i (λ)
äÄ∑ncp

i=0 νiC
q
i (λ)
ä , ∀λ ∈ [λa, λb], (1.15)

whereBBBi and νi are the i-th control point and control weight, respectively, ncp +1 is the number
of control points, and Ci,q(λ) is the i-th B-spline basis function of degree q. The B-spline basis
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functions are defined recursively in the parametric space [λa, λb] as:

C0
i (λ) :=

®
1 if λ ∈ [λi, λi+1),
0 elsewhere,

Cki (λ) := λ− λi
λi+k − λi

Ck−1
i (λ) + λi+k+1 − λ

λi+k+1 − λi+1
Ck−1
i+1 (λ),

(1.16)

for all k ∈ {1, . . . , q}. Moreover, Λ = {λ0, · · · , λnk} = {λa, · · · , λb} is the knot vector of
dimension nk + 1, with {λi} the knots or breakpoints. The amount of control points and knots
is related as nk = ncp + q + 1. Notice that the curve definition using NURBS changes at each
breakpoint, allowing for flexible and smooth representations.

An interface or a boundary is said to be of NURBS-type when it is composed of a finite
number nc of NURBS curves, such that

nc⋃
j=1

CCCj([λja, λ
j
b]). (1.17)

NURBS curves allow for a seamless description of complex realistic geometries without the
introduction of geometrical error whenever the physical boundary is indeed described using
NURBS as is the case in CAD. One drawback to keep in mind is the dependence on the control
points and thus the difficulty in describing evolving interfaces.

1.5 Overview and objectives
This Thesis contributes to the field of multi-fluid problems by exploring the potential of HDG
and HHO methods in high-fidelity simulations of the Stokes interface problem. Additionally,
the Thesis seeks to address the complexities of curved interfaces through the utilization of
geometrically unfitted mesh techniques, ensuring accurate and reliable computations. The two
methods employ a different notation summarized in Table 1.1.

In Chapter 2, we devise HHO methods in the unfitted framework for the Stokes interface
problem using a level-set method and a C0-piecewise polynomial representation of the interface.
In Chapter 3, we study numerically various Stokes interface problems with known and unknown
interfaces. We first investigate the equilibrium with a pure shear flow in which case the shape of
the interface is known to be elliptic [39], [125]. Then, we propose a fixed-point solver coupling the
HHO solver with a level-set method to handle unknown interface problems. Numerical results
for various scenarios of unknown interface problems are presented to showcase the capabilities
of HHO in simulating complex interfaces. The contents of Chapters 2 and 3 are published
in [108].

In Chapter 4, we shift our focus to HDG methods and their utilization in solving interface
problems with unfitted meshes. We develop an efficient and accurate HDG discretization scheme
where the interfaces and the boundaries, defined in CAD, are exactly described by means of
NURBS curves. Additionally, we present an element extension strategy to further improve on
the performance of the HDG solver. Chapter 5 delves into the study of microfluidics using HDG
methods. We analyze the conditioning and error behavior and showcase the efficiency and ac-
curacy of the approach through numerical results for immersed Stokes problems. Furthermore,
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Table 1.1: Notations HHO vs. HDG.

HHO HDG
Dimension d nsd
Boundaries ∂ΩD, ∂ΩN ΓD, ΓN
Dirichlet condition ggg uuuD
Source term fff sss
Spaces H1, L2 H1, L2

Spatial discretizations Pkd′(S; Rd) Pk(S) for elements, P̂k(S) for faces
Gradient ∇ ∇
Fluid index i subscript superscript
Normals nΥ, nΩ ni

Mesh cells mesh T ∈ T elements Ωe, e ∈ {1:nel}
Skeleton F (Fo the inner) Γ inner skeleton
Face (∂T ), F ∂Ωe → Γf
L2-inner product on faces (·, ·) ⟨·, ·⟩
Local cell velocity unknowns vT ve
Global face velocity unknowns v∂T v̂
Jumps J⊙K = ⊙1 − ⊙2 J⊙nK = ⊙1n1 + ⊙2n2

we present two main test cases within complex geometrical domains. In the first one, we study
the one-fluid Stokes problem in a microfluidic mixer; in the second one, we study the emulsion
flow in a porous medium. We employ a polynomial-adaptivity error estimator to achieve results
with at least two significant digits.

Finally, Chapter 6 establishes a bridge between HHO and HDG methods for Stokes interface
problems. By employing static condensation, the HHO discretization is reformulated in the
form of a global transmission problem and local equilibrium conditions. This chapter includes
a theoretical comparison between HHO and HDG methods, shedding further light on their
respective features.
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Hybrid High-Order methods
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Chapter 2

Unfitted HHO solver

2.1 Introduction
In this work, we study the equilibrium of two immiscible, incompressible Stokes fluids separated
by a single interface where surface tension effects are present [16], [110], [124]. The interface,
whose shape is part of the unknowns of the problem, splits the computational domain into two
subdomains, and each subdomain is occupied by a fluid governed by the steady, incompressible
Stokes equations. At the interface, the fluid velocities are continuous, the normal velocity
vanishes, and the jump of the normal component of the total stress is proportional to the
curvature of the interface (Laplace’s law). The present model, albeit simplified, has relevant
applications in microfluidics, where the surface tension dominates the emulsion process [60].
Over the last decades, microfluidics has gained growing importance in domains such as medicine,
biology and chemistry [1], [81].

Solving the above problem computationally is quite challenging because the shape of the
interface is unknown. A natural approach is to resort to a fixed-point iterative procedure where
each iteration is decomposed into two substeps. In the first substep, the shape of the interface is
kept fixed, and a so-called Stokes interface problem is solved, whereby the interface conditions
enforce only the continuity of the fluid velocities and the jump of the normal stresses, but
the normal velocity at the interface may be nonzero. In the second substep, the flow field of
both fluids is kept fixed, and the interface is evolved using a level-set scheme. In this context,
using an unfitted method in the first substep is quite attractive since it allows one to use the
same background mesh for all the iterations of the fixed-point procedure. The main goal of
the present chapter is to develop an unfitted hybrid high-order (HHO) method coupled with a
level-set scheme to solve the above interface problem.

HHO methods on fitted meshes have been introduced in [44] for locking-free linear elastic-
ity and in [41] for linear diffusion, and they are closely related to hybridizable discontinuous
Galerkin, nonconforming virtual element, and weak Galerkin methods [33]. When applied to
incompressible Stokes flows, the HHO method employs hybrid unknowns (face- and cell-based)
for the velocity and only cell-based unknowns for the pressure [3], [46]. The method is inf-sup
stable, locally conservative, supports polytopal meshes, and is computationally efficient owing
to its compact stencil and to the possibility of a local elimination of the cell velocity unknowns
by a static condensation procedure. Unfitted HHO methods for elliptic interface problems with

15
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known interface have been derived in [20], [23] using two key ideas. First, one doubles the (cell
and face) unknowns in every cut cell without introducing any face unknown at the interface, and
the jump conditions at the interface are enforced by means of a consistent penalty technique in
the spirit of [76]. Second, a local cell-agglomeration procedure is used to counter the adverse
effects of ill-cut cells (see also [87], [119] for cell-agglomeration procedures in the discontinuous
Galerkin context). These ideas were extended in [22] to the Stokes interface problem, still
assuming a known interface.

In the paper, we extend [20] in three directions, while using the same cell-agglomeration
procedure. First, we consider surface tension effects. This, in particular, requires to approx-
imate the curvature of the interface at all the integration points along the interface. Second,
the quadratures in the cut cells used in [22] are based on a subpartition of the cut cell using
affine triangles, whereas we introduce here a more effective approach based on an isoparametric
description of the interface. Third, this work devises, for the first time, a coupling between
the unfitted HHO method and a level-set scheme to track the interface. While HHO methods
offer various assets (high-order, support of polyhedral meshes, computational efficiency, local
conservation), we observe that several other methods are available in the literature to approx-
imate the Stokes interface problem; see, e.g., [12], [27], [30], [77], [85], [112] for finite element
and [2], [79], [119] for discontinuous Galerkin discretizations. We also notice that considering
the Stokes equations is reasonable in view of microfluidics applications. One can also consider
the Navier–Stokes equations, for which HHO methods on fitted meshes were constructed, e.g.,
in [15].

Our computational study covers two main test cases, which are both two-dimensional. The
first one is devoted to the equilibrium between a pure shear flow (enforced far away from the
interface, no body forces) and surface tension effects. In this case, the equilibrium interface is
known to be an ellipse (the area of the ellipse still remains a free parameter in the problem),
and, fixing the viscosity ratio of both fluids, the ellipse eccentricity depends upon the ratio of
the prescribed shear to surface tension (also called capillary number) [39], [69], [124]. When the
capillary number is zero (no prescribed shear, flow at rest), the ellipse eccentricity is zero, that
is, the ellipse becomes a circle. In the present Thesis, we investigate numerically the dependence
of the ellipse eccentricity on the capillary number. A linear relationship is expected, as predicted
theoretically in [124]. Our contribution is to quantify the slope of this relationship as a function
of the viscosity ratio of both fluids. Since the shape of the equilibrium interface is known in
this first test case, we do not need to invoke the above fixed-point iterative procedure. In
practice, we pose the Stokes interface problem on a finite computational box surrounding the
elliptic equilibrium interface, and verify numerically that the expected equilibrium is fairly well
attained even on moderately large computational domains.

The second test case involves the more challenging setting where the boundary conditions
(and possibly the body forces) are more complex, so that the equilibrium interface has no longer
an elliptic shape. The shape of the interface then becomes an unknown of the problem that is
determined by the above fixed-point iterative procedure. Notice that we do not perform here a
convergence analysis of this fixed-point procedure; this is a difficult problem left for future work.
We merely observe that the procedure is consistent since, assuming convergence, the interface
becomes stationary so that the normal flow velocity at the interface is zero. The position of
the interface is classically described by means of a level-set function. To transport the level-set
function, possible approaches are finite volume [105], [106], [121], discontinuous Galerkin [13],
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and continuous finite element methods [72]; herein, we use the latter. One important challenge
encountered in flow problems dominated by surface tension resides in the approximation of
the curvature at the interface. To reduce oscillations, possible strategies are the use of coarser
meshes for the level-set discretization (but possibly increasing the so-called mass loss effects),
or the smoothing of the normal and the curvature by means of a global projection in the whole
computational domain [106] (but possibly affecting the approximation quality). We propose
here a somewhat alternative strategy, where we construct a parametric interface of arbitrary
order from the level-set function, and then we project the normal and the curvature derived
from the level-set function locally on this parametric interface.

The paper is organized as follows. Section 2.2 is devoted to the presentation of the model
problem. Section 2.3 describes the unfitted HHO solver for the Stokes interface problem. Section
3.1 presents the results when the shape of the interface is elliptic, whereas Sections 3.2 and
3.3 deal respectively with the methodology and the results when the shape of the interface
is unknown. As mentioned above, this chapter is restricted to the two-dimensional setting.
The main obstacle to a three-dimensional extension is the handling of the mesh cells cut by
the interface, the representation of the latter within the cut cells, and the cell-agglomeration
procedure. While these steps are feasible, they represent at the time of writing a further,
non-trivial implementation effort.

2.2 Model problem

Let Ωi ⊂ Rd, d = 2, be two domains (connected, bounded, open Lipschitz sets) with Ωi occupied
by the fluid indexed by i ∈ {1, 2}. The interface is Γ := ∂Ω1 ∩ ∂Ω2, and the computational
domain Ω is Ω := Ω1 ∪ Ω2. For simplicity, we assume that Ω is a polygon/polyhedron so that it
can be meshed exactly. Moreover, we assume that the interface Γ is closed and does not touch
the boundary ∂Ω of Ω. By convention, the index 1 refers to the interior subdomain Ω1 such
that ∂Ω1 = Γ, and the index 2 refers to the exterior subdomain Ω2 such that ∂Ω2 = ∂Ω ∪ Γ,
see Figure 2.1. The interface Γ is assumed to be orientable, and such that a unit normal, nnnΓ,
can be defined everywhere on Γ. Since d = 2, the interface Γ is a one-dimensional manifold.
By convention, nnnΓ points from Ω1 to Ω2, i.e., Γ is oriented counter-clockwise.

We consider two immiscible, incompressible fluids separated by the interface Γ. In the
so-called Stokes interface problem, the interface Γ is prescribed, and we seek the velocity and
pressure fields (uuui, pi) ∈ H1(Ωi; Rd) × L2(Ωi), i ∈ {1, 2}, such that

−∇ · σσσi = fff i in Ωi, i ∈ {1, 2}, (2.1a)
∇ · uuui = 0 in Ωi, i ∈ {1, 2}, (2.1b)

uuu2 = ggg on ∂Ω, (2.1c)
JuuuK = 000, JσσσKnnnΓ = gggN on Γ, (2.1d)

where the total stress tensor for each fluid is

σσσi := 2µi∇suuui − piIII, ∇suuui := 1
2(∇uuui + ∇uuuT

i ), (2.2)

µi is the viscosity of the fluid i and III the identity tensor. Moreover, JvK := (v|Ω1)|Γ − (v|Ω2)|Γ
denotes the jump of a piecewise smooth function v across Γ (the jump is defined component-
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Ω1

Ω2

Γ

Ω
nnnΓ

Figure 2.1: Computational domain Ω, subdomains Ωi, i ∈ {1, 2}, interface Γ, and unit normal nnnΓ.

wise for a vector- or tensor-valued field, and its sign is consistent with the orientation of the
unit normal nnnΓ). To model the surface tension according to Laplace’s law, we set

gggN = γHΓnnnΓ, (2.3)

where γ is the surface tension and HΓ the curvature on the interface.
The problem data are the body forces fff i ∈ L2(Ωi; Rd), i ∈ {1, 2}, and the Dirichlet boundary

condition ggg ∈ H
1
2 (∂Ω; Rd). The Stokes interface problem is well-posed if∫

∂Ω
ggg ·nnnΩ = 0 (2.4)

(implied by the incompressibility condition), with nnnΩ the unit outward normal to Ω and if one
requires

∑
i∈{1,2}

∫
Ωi
pi = 0, thereby fixing the global additive constant on the pressure.

In the more general interface equilibrium problem, the interface Γ is part of the unknowns
of the problem. In this setting, the Stokes interface problem is completed by requiring that
the normal velocity at the interface is zero, and this condition essentially prescribes the shape
of the interface. Thus, in the interface equilibrium problem, we seek the velocity and pressure
fields (uuui, pi) ∈ H1(Ωi; Rd) × L2(Ωi), i ∈ {1, 2}, and the interface Γ such that

(2.1) holds true + uuu ·nnnΓ = 0 on Γ, (2.5)

where uuu := uuu1 = uuu2 on Γ by (2.1d). Notice that equilibrium requires a zero normal velocity
at the interface, whereas no conditions are imposed on the tangential velocity since it does not
affect the shape of the interface.

It is convenient to describe the interface Γ as being the zero level-set of a function ϕ : Ω → R,
i.e.,

Γ := {xxx ∈ Ω : ϕ(xxx) = 0}, (2.6)

and by convention, we assume that Ω1 = {xxx ∈ Ω : ϕ(xxx) < 0} and Ω2 = {xxx ∈ Ω : ϕ(xxx) > 0}.
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Assuming that ϕ is of class C2 in a neighborhood of Γ, we set

nnnϕ = ∇ϕ
∥∇ϕ∥ℓ2

, Hϕ = −∇ ·nnnϕ = − ∆ϕ
∥∇ϕ∥ℓ2

+ 1
∥∇ϕ∥3

ℓ2
D2ϕ(∇ϕ,∇ϕ), (2.7)

where ∥ · ∥ℓ2 denotes the Euclidean norm in Rd and D2ϕ(·, ·) is the quadratic form associated
with the Hessian of ϕ, and then obtain the unit normal and the curvature of Γ by setting

nnnΓ := nnnϕ|Γ, HΓ := Hϕ|Γ. (2.8)

Notice that the curvature is negative everywhere on Γ if the set Ω1 is convex.

2.3 Unfitted HHO solver with fixed interface

This section briefly describes the unfitted HHO solver for the Stokes interface problem (2.1).
The interface Γ is kept fixed in this section.

2.3.1 Unfitted meshes
We consider a mesh T belonging to a shape-regular mesh sequence such that each mesh covers
Ω exactly. We denote by T a generic mesh cell having diameter hT and unit outward normal
nnnT . The mesh faces are collected in the set F , which is split as F = Fo ∪ F∂ , where Fo (resp.
F∂) is the collection of the mesh internal faces (resp. boundary faces). For all T ∈ T , the faces
composing the boundary of T are collected in the set F∂T := {F ∈ F : F ⊂ ∂T}.

Since the mesh is unfitted, the interface Γ can cut arbitrarily through some of the mesh
cells. Thus, we partition T into T = T 1 ∪ T 2 ∪ T Γ with

T i := {T ∈ T : T ⊂ Ωi} , i ∈ {1, 2}, T Γ :=
{
T ∈ T : T ∩ Γ ̸= ∅

}
, (2.9)

and we introduce the notation

T i := T ∩ Ωi, (∂T )i := ∂T ∩ (Ωi ∪ ∂Ω), i ∈ {1, 2}, TΓ := T ∩ Γ, (2.10)

so that ∂T i = (∂T )i∪TΓ. See Figure 2.2 for an example. The mesh cells belonging to the set T Γ

are called cut cells, and those belonging to the set T 1 ∪ T 2 are called uncut cells. Consistently
with the cell notation, we define F i := F ∩ Ωi and F(∂T )i :=

{
F i : F ∈ F∂T

}
. For simplicity,

we assume that the interface does not intersect a vertex of a mesh cell and that |∂T ∩ Γ| = 0
for all T ∈ T Γ. These pathological situations, which can in principle be handled by specific
geometrical coding procedures, were not encountered in our simulations.
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T Γ

T 2

T 1

(∂T )2

(∂T )1

F 2

F 1

F

Figure 2.2: Decomposition of a cut cell T ∈ T Γ and of its boundary ∂T .

2.3.2 HHO discretization
Let S be a subset of Ω of dimension d′ ∈ {d−1, d} (typically, S can be a mesh cell, a mesh face,
or a collection thereof). For all l ∈ N, we define Pld′(S) to be the space composed of d′-variate
polynomials of total degree at most l restricted to S. Similarly, we use the notation Pld′(S; Rd)
and Pld′(S; Rd×d

sym) for the space composed of d′-variate Rd-valued and Rd×d
sym -valued polynomials of

total degree at most l restricted to S, respectively, where Rd×d
sym denotes the space of symmetric

matrices of order d. Moreover, (·, ·)S and ∥ · ∥S denote, respectively, the L2(S)-inner product
and the associated norm with d′-dimensional Lebesgue measure.

To discretize (2.1), we introduce a local HHO(k) space of order k ≥ 0 for every mesh cell
T ∈ T . If the mesh cell T ∈ T is not cut by the interface Γ, the discrete velocity unknowns in
T are a vector-valued polynomial of degree (k+ 1) in the cell T and a vector-valued polynomial
of degree k on each face F ∈ F∂T , whereas the discrete pressure is a polynomial of order k in
the cell T . Thus, the local HHO unknowns for the velocity and the pressure are

v̂vvT := (vvvT , vvv∂T ) ∈ “UUUkT := Pk+1
d (T ; Rd) × Pkd−1(F∂T ; Rd), (2.11a)

pT ∈ P kT := Pkd(T ), (2.11b)

with Pkd−1(F∂T ; Rd) := ×F∈F∂T
Pkd−1(F ; Rd). If, instead, the mesh cell T ∈ T is cut by the

interface Γ, the idea is to double the unknowns in the cut cell and on its cut faces without
attaching any unknowns to the interface. The local HHO unknowns for the velocity and the
pressure are then

v̂vvT := (vvvT 1 , vvvT 2 , vvv(∂T )1 , vvv(∂T )2) ∈ “UUUkT , (2.12a)
pT := (pT 1 , pT 2) ∈ P kT := Pkd(T 1) × Pkd(T 2), (2.12b)

with “UUUkT := Pk+1
d (T 1; Rd) × Pk+1

d (T 2; Rd) × Pkd−1(F(∂T )1 ; Rd) × Pkd−1(F(∂T )2 ; Rd), (2.13)

and Pkd−1(F(∂T )i ; Rd) := ×F∈F(∂T )i
Pkd−1(F ; Rd) for all i ∈ {1, 2}. See Figure 2.3 for a rep-

resentation of the discrete velocity unknowns in a cut and an uncut cell of hexagonal shape.
To handle uncut and cut cells in a single formalism, we set for every uncut cell T ∈ T i with
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T 2

T 1

(∂T )2

(∂T )1

Γ T i

(∂T )i

Figure 2.3: Discrete velocity unknowns (k = 0) for a cut (left) and uncut (right) cell of hexagonal
shape. Notice the doubling of the cell unknowns in the cut cell and of the face unknowns on the cut
faces. Conventionally, each bullet represents one R2-valued degree of freedom.

i ∈ {1, 2},
T i := T, T ı := ∅, (∂T )ı := ∅, TΓ := ∅, (2.14)

where ı := 3 − i (so that 1 := 2 and 2 := 1). We use a similar convention for the mesh faces.
Inspired by [20], [22], we define, for every mesh cell T ∈ T and all i ∈ {1, 2}, the symmetric

gradient reconstruction operators EEEkT i : “UUUkT → Pkd(T i; Rd×d
sym), i ∈ {1, 2}, such that for all v̂vvT ∈“UUUkT ,

(EEEkT i(v̂vvT ),qqq)T i := (∇svvvT i ,qqq)T i + (vvv(∂T )i − vvvT i ,qqqnnnT )(∂T )i − αi(JvvvT K,qqqnnnΓ)TΓ , (2.15)

for all qqq ∈ Pkd(T i; Rd×d
sym). In the same spirit as in [20] for elliptic problems, robustness with

respect to the contrast in the viscosity coefficients can be obtained defining

αi := µı
µi + µı

, (2.16)

so that α1 = α2 = 0.5 if µ1 = µ2, whereas α1 ≈ 0, α2 ≈ 1 if µ1 ≫ µ2 and vice versa if
µ2 ≫ µ1. Similarly, the divergence reconstruction operator Dk

T i : “UUUkT → Pkd(T i) is such that,
for all v̂vvT ∈ “UUUkT ,

Dk
T i(v̂vvT ) := trace(EEEkT i(v̂vvT )). (2.17)

Then, the local HHO bilinear and linear forms are defined as follows: For all (v̂vvT , rT ), (ŵwwT , qT ) ∈“UUUkT × P kT ,

AT ((v̂vvT , rT ), (ŵwwT , qT )) := aT (v̂vvT , ŵwwT ) − bT (ŵwwT , rT ) + bT (v̂vvT , qT ), (2.18a)

lT (ŵwwT ) :=
∑

i∈{1,2}

{
(fff,wwwT i)T i + αı(gggN ,wwwT i)TΓ

}
, (2.18b)
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with the bilinear forms

aT (v̂vvT , ŵwwT ) :=
∑

i∈{1,2}

2µi(EEEkT i(v̂vvT ),EEEkT i(ŵwwT ))T i + sΓ
T (v̂vvT , ŵwwT ) + s1,2

T (v̂vvT , ŵwwT ), (2.19a)

bT (ŵwwT , rT ) :=
∑

i∈{1,2}

(rT i , Dk
T i(ŵwwT ))T i , (2.19b)

and the following stabilization bilinear forms:

sΓ
T (v̂vvT , ŵwwT ) := µ#h

−1
T (JvvvT K, JwwwT K)TΓ , µ# := min(µ1, µ2), (2.20a)

s1,2
T (v̂vvT , ŵwwT ) :=

∑
i∈{1,2}

µih
−1
T (Πk

(∂T )i(vvvT i) − vvv(∂T )i ,Πk
(∂T )i(wwwT i) −www(∂T )i)(∂T )i . (2.20b)

The operator Πk
(∂T )i denotes the L2-orthogonal projection onto Pkd−1(F(∂T )i ; Rd). Notice that

an additional stabilization (with a small enough parameter) is considered in [22] for theoretical
reasons, but the numerical results therein indicate that this stabilization can be omitted. We
do not consider it in this work.

Passing to the global setting, we define for all i ∈ {1, 2},

UUUk+1
T i := ×

T∈T
Pk+1
d (T i; Rd), UUUkFi := ×

F∈F
Pkd−1(F i; Rd), (2.21a)

P kT i := ×
T∈T

Pkd(T i). (2.21b)

We define the following spaces for the global HHO unknowns:“UUUkT := UUUk+1
T 1 ×UUUk+1

T 2 ×UUUkF1 ×UUUkF2 , P kT := P kT 1 × P kT 2 . (2.22)

For all v̂vvT ∈ “UUUkT , we write v̂vvT = (vvvT 1 , vvvT 2 , vvvF1 , vvvF2) and for all qT ∈ P kT , we write qT =
(qT 1 , qT 2). Moreover, for all T ∈ T , we denote by

v̂vvT := (vvvT 1 , vvvT 2 , vvv(∂T )1 , vvv(∂T )2) ∈ “UUUkT , qT = (qT 1 , qT 2) ∈ P kT , (2.23)

the local components of v̂vvT and qT , respectively, attached to the mesh cell T and its faces. We
denote by “UUUkT 0 the subspace of “UUUkT where all the velocity components attached to the boundary
faces composing ∂Ω are null and by P kT ∗ the subspace of P kT composed of functions with zero
average over Ω. Finally, defining the global bilinear and linear forms

AT ((v̂vvT , rT ), (ŵwwT , qT )) :=
∑
T∈T

AT ((v̂vvT , rT ), (ŵwwT , qT )), (2.24a)

LT (ŵwwT ) :=
∑
T∈T

lT (ŵwwT ), (2.24b)

the discrete problem amounts to seeking (ûuuT , pT ) ∈ “UUUkT 0 × P kT ∗ such that

AT ((ûuuT , pT ), (ŵwwT , qT )) = LT (ŵwwT ), ∀(ŵwwT , qT ) ∈ “UUUkT 0 × P kT ∗. (2.25)

The error analysis for the discrete problem (2.25) is performed in [22] by establishing inf-sup
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stability, consistency, and approximation properties. (Therein, the parameters αi are such that
αi = 0 if µi ≤ µı, but the adaptation of the analysis to the parameters αi prescribed as in (2.16)
is straightforward.) A key tool for the analysis is to ensure, by means of the cell agglomeration
procedure described in [20, Section 4.3], that any cut cell T ∈ T Γ satisfies mini∈{1,2} |T i| ≥ ϱ|T |
for a given user-parameter ϱ ∈ (0, 1

2 ) (hereafter, we use ϱ := 0.3 consistently with [20]). Then,
assuming that (uuui, pi) ∈ Hk+2(Ωi; Rd) × Hk+1(Ωi), i ∈ {1, 2}, [22, Theorem 12] states that
there is a constant C, independent of the mesh-size h := maxT∈T hT and of the fluid viscosities
µi, i ∈ {1, 2}, such that∑

T∈T

∑
i∈{1,2}

µi∥∇s(uuui − uuuT i)∥2
T i + µ−1

i ∥pi − pT i∥2
T i


1
2

≤ Chk+1

 ∑
i∈{1,2}

µi|uuui|2Hk+2(Ωi;Rd) + µ−1
i ∥pi∥2

Hk+1(Ωi)


1
2

.

(2.26)

2.3.3 Interface discretization and quadratures in the cut cells
An important novelty of the present Thesis with respect to [20], [22] is that the interface Γ is no
longer considered to be analytically known. Instead, it is known here only through a discrete
approximation ϕT of the level-set function ϕ introduced in (2.6). Thus, we set

ΓT := {xxx ∈ Ω : ϕT (xxx) = 0}. (2.27)

The construction of the discrete approximation ϕT is discussed in Section 3.2.
In practice, the interface ΓT is approximately represented by a collection of arcs, each arc

being generated from the reference interval Î := [0, 1] by using a geometric mapping whose com-
ponents are polynomial-valued. Specifically, for every cut cell T ∈ T Γ, ΓT ∩ T is approximated
by a collection of 2n arcs, where n ≥ 0 is a user-specified parameter. These arcs are denoted
by ΥT,j , j ∈ {1:2n}. To build each arc ΥT,j , we consider (l + 1) equidistributed interpolation
nodes {xxxT,jm }m∈{0:l} ⊂ ΓT . The construction of these nodes is discussed below. The integer l
is a user-specified parameter such that l ≥ k + 1, where k is the degree of the face unknowns
in the HHO method. This lower bound is coherent with the consistency analysis of elliptic
problems on curved domains, where the geometry error is at least one order higher than the
approximation error in the H1-norm (which is of order (k + 1) for the HHO method).

Considering the Lagrange basis of order l, {ψ̂m}m∈{0:l}, defined on the reference interval Î
using equidistributed nodes, the arc ΥT,j is defined as

ΥT,j := rrrT,j(Î) where rrrT,j(ŝ) :=
∑

m∈{0:l}

xxxT,jm ψ̂m(ŝ), ∀ŝ ∈ Î . (2.28)

Finally, the fully discrete interface is defined as follows:

Γn,lT :=
⋃

T∈T Γ

⋃
j∈{1:2n}

ΥT,j . (2.29)

We notice that the fully discrete interface has only C0-regularity. An interesting perspective,
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left to future work, is to study whether a smooth discrete interface, e.g., built using splines to
achieve C1-regularity, can have a sizable effect in improving solution accuracy.

To construct the interpolation nodes {xxxT,jm }m∈{0:l} for all T ∈ T Γ and all j ∈ {1:2n}, we
assume for simplicity that the interface Γ intersects ∂T at two points only and that these points
are located on two distinct edges of T . Let us denote by aaa0 and aaa2nl the two intersection points,
ordered according to the orientation of Γ (see Figure 2.1). We proceed as follows (see Figure
2.4):

1. Construction of the points {aaajl}j∈{0:2n}, all lying on ΓT . If n = 0, there is nothing to do.
Otherwise, n ≥ 1 and the points {aaajl}j∈{0:2n} are constructed recursively. Let m ∈ {1:n}
and assume that the points {aaak2n−m+1l}k∈{0:2m−1} are available (all on ΓT ). Then we
construct the points {aaa(2k+1)2n−ml}k∈{0:2m−1−1} as follows. For all k ∈ {0:2m−1}, we
let xxxk be the midpoint of the segment [aaak2n−m+1l, aaa(k+1)2n−m+1l] := {(1 − θ)aaak2n−m+1l +
θaaa(k+1)2n−m+1l, θ ∈ [0, 1]}, and Lk be the line passing through xxxk and orthogonal to
this segment. We define aaa(2k+1)2n−ml to be the closest point in Lk to xxxk such that
ϕT (aaa(2k+1)2n−ml) = 0, i.e., aaa(2k+1)2n−ml ∈ ΓT . This point is found by dichotomy.

2. For all j ∈ {0:2n − 1}, we now construct the points {aaajl+m}m∈{1:l−1} as follows. We
consider the segment [aaajl, aaa(j+1)l] := {(1−θ)aaajl+θaaa(j+1)l, θ ∈ [0, 1]}. For all m ∈ {1:l−1},
we set xxxm := (1−θm)aaajl+θmaaa(j+1)l with θm := m/l, we let Lm be the line passing through
xxxm and orthogonal to this segment, and we define aaajl+m to be the closest point in Lm to
xxxm such that ϕT (aaajl+m) = 0, i.e., aaajl+m ∈ ΓT . This point is found by dichotomy.

3. We have now built the collection of points {aaaj}j∈{0:2nl}, all in ΓT . Finally, we set

xxxT,jm := aaa(j−1)l+m, j ∈ {1:2n}, m ∈ {0:l}. (2.30)

Notice that xxxT,jl = xxxT,j+1
0 by construction, ensuring the matching of the endpoint of each

arc with the starting point of the next arc.

To realize the unfitted HHO method, high-order quadratures need to be performed along
the fully discrete interface Γn,lT and in the cut cells (for the uncut cells, the procedure is straight-
forward). One-dimensional quadratures along Γn,lT are straightforward to implement by using
the above geometric mappings. Moreover, to implement quadratures in the cut cells, we de-
compose T i, i ∈ {1, 2}, into curved subtriangles which are mapped into a reference triangle
where quadratures based on Dunavant points are performed. The construction of geometric
nonaffine mappings based on sets of geometric nodes is described, e.g., in [51, §8.1]. The whole
procedure in a cut cell is illustrated in Figure 2.5. We refer the reader to [58], [59], [114] for
further insight. We emphasize that substantial computational savings are achieved compared
to [22] where quadratures are realized using a very large number of flat triangles (n ≫ 1, l = 1).
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xxx1xxx3

xT,0
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xT,0
2xT,1
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xT,1
1

xT,1
0 =xT,0
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Figure 2.4: Example of a square cut cell T ∈ T Γ with interface (blue line) and interface points (red
bullets) {xxxT,j

m }m∈{0:l}, j ∈ {1:2n}. The interface discretization parameters are (l = 2, n = 0). The
construction of the points aaam and xxxm, for all m ∈ {0:2nl}, is shown. The arrow indicates the interface
orientation.

(a) The interface cuts two adjacent
faces of T and leaves one vertex in
T i.

(b) The interface cuts two adjacent
faces of T and leaves three vertices
in T i.

(c) The interface cuts two opposite
faces of T .

Figure 2.5: Example of cut cells T ∈ T Γ and of their decomposition into curved subtriangles. The
subtriangulation is performed by connecting the interface points {xxxT,j

m }m∈{0:2}, j ∈ {1:2n} to a specific
point (orange bullet, a vertex or an edge midpoint according to the cut configuration). The interface
discretization parameters are (l = 2, n = 1). The blue bullets, plus the orange bullet, are the physical
points used for defining the mapping from the reference triangle into the physical one (quadratic
mapping in the present example). Moreover, the red bullets represent the mapped integration Dunavant
points for the second-order quadrature.





Chapter 3

HHO for immiscible Stokes fluids

3.1 Equilibrium with a pure shear flow

In this section, the interface is kept fixed, i.e., we solve the Stokes interface problem (2.1).
Specifically we study the shear-surface tension equilibrium problem in the absence of body
forces, i.e., fff i := 000, i ∈ {1, 2}. Let the box Ω := (−a, a)2, a > 0, be the computational domain.
We consider the following non-homogeneous Dirichlet condition enforcing a pure shear flow on
∂Ω:

ggg := uuuε|∂Ω where uuuε(x, y) := ε(x,−y)T, (3.1)

with the shear parameter ε > 0. In the limit a → ∞, the interface is elliptic of radii 0 < R1 ≤
R2 [39], [124]. It is convenient to define the Taylor deformation parameter

D := R2 −R1

R1 +R2
. (3.2)

We also define the capillary number

Ca := µ2
εL∗

γ
, (3.3)

where the shear parameter ε is prescribed by (3.1) and, consistently with Taylor’s study dealing
with the deformation of an initial circular droplet, the reference length scale L∗ is defined as

L∗ := 2R∗ with R∗ :=

 
|Ω1|
π

=
√
R1R2. (3.4)

Putting everything together, the capillary number reads

Ca := 2µ2
ε
√
R1R2

γ
. (3.5)

Notice that one needs to prescribe one additional length scale to uniquely solve the problem; for
instance, one can prescribe the reference length scale L∗ or the radius of the inner subdomain
R1.

27
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In the limit case where ε = 0 (i.e., null shear), the equilibrium interface has a circular form,
i.e., D = 0 meaning that R1 = R2. Whenever ε > 0, the equilibrium interface has an elliptic
shape: the shear flow stretches the interface along the x-axis and compresses it along the y-axis.
Figure 3.1 shows the streamlines of the equilibrium velocity field with shear ε = 0.59 and radii
R1 = 1/6 and R2 = 1/3 (so that D = 1/3 and R∗ = 1/(3

√
2)).

-2 -1 0 1 2
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2

(a) Streamlines in the domain Ω = (−2, 2)2.
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(b) Zoom in (−0.6, 0.6)2.

Figure 3.1: Streamlines of the velocity field uuu obtained by solving (2.5) with γ = 1, µ1 = µ2 = 1 in the
domain Ω = (−2, 2)2, employing the unfitted HHO discretization with polynomial order k = 1. The
shear parameter is ε = 0.59. The domain is discretized by a mesh composed of 128 × 128 square cells.
The ellipse has radii R1 = 1/6, R2 = 1/3.

Our goal is to study numerically the capillary number Ca leading to equilibrium. In the
first part of our study, we fix µ1 = µ2 = 1, and we fix an elliptic interface having radii R1
and R2, thus prescribing the value of the Taylor deformation parameter D. We want to find
numerically the ratio meq := εeq

γeq
leading to equilibrium. Owing to the linearity of the Stokes

interface problem (2.1), the velocity field uuu(ε, γ) depends linearly on ε and γ, so that we have

uuu(ε, γ) = uuu(ε, 0) + uuu(0, γ), (3.6)

where uuu(ε, 0) depends linearly on ε and uuu(0, γ) depends linearly on γ. Notice in passing that
uuu(ε, 0) differs from uuuε when the viscosities of the two fluids are not equal. The key observation is
that, since the equilibrium of the interface is achieved when the normal velocity at the interface
is null, we must have

uuu(εeq, 0) ·nnnΓ

uuu(0, γeq) ·nnnΓ
= −1 a.e. on Γ, (3.7)

up to the few points on Γ where both numerator and denominator vanish. Therefore, the value
of meq can be found by computing the two reference velocity fields uuu(0, γ = 1) and uuu(ε = 1, 0).
These two reference velocity fields are such that their normal component at the interface are
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linearly correlated, i.e., we have

uuu(0, γ = 1) ·nnnΓ

uuu(ε = 1, 0) ·nnnΓ
= −meq a.e. on Γ. (3.8)

By determining the value of meq, one readily deduces from (3.3) the value of the capillary
number Ca associated with the prescribed value of the Taylor deformation parameter D.

0.0 0.5 1.0 1.5

-0.2

-0.1

0.0

0.1

0.2

0.3

(a) uuu(ε = 1, 0) ·nnnΓ (blue) and uuu(0, γ = 1) ·nnnΓ (red)
along the interface.

(b) uuu(0, γ = 1) · nnnΓ w.r.t. uuu(ε = 1, 0) · nnnΓ.

Figure 3.2: Figure 3.2a: normal velocities along the interface; the dashed vertical lines in the background
represent the intersections between the interface and the cell faces, whereas the solid lines represent the
intersections between the interface and the erased inner faces of the agglomerated cells. Figure 3.2b:
uuu(0, γ = 1) · nnnΓ versus uuu(ε = 1, 0) · nnnΓ (blue bullets); the green line represents the linear regression
curve with slope −meq ≈ 0.590. Elliptic interface with D = 1/3 and µ1 = µ2 = 1. The velocity fields
uuu(ε = 1, 0) and uuu(0, γ = 1) are computed in the domain Ω = (−2, 2)2 discretized by a mesh composed
of 128 × 128 square cells. We employ the unfitted HHO discretization with polynomial order k = 1.

Let us exemplify the procedure for the elliptic interface with radii R1 = 1/6 and R2 = 1/3
(so that D = 1/3 and R∗ = 1/(3

√
2)). Recall that µ1 = µ2 = 1. The computational domain

is set to Ω = (−2, 2)2 and is initially discretized by 128 × 128 square cells. After using the
cell-agglomeration procedure from [20], the mesh is composed of 16352 (instead of 16384) cells.
We set the interface discretization parameters to (l = 4, n = 0). Figure 3.2a shows the normal
velocities uuu(ε = 1, 0)·nnnΓ and uuu(0, γ = 1)·nnnΓ along the interface Γ. Interestingly, the contribution
of the jump of the viscous stress tensor tends to vanish at the interface, so that the pressure jump
absorbs all the surface tension force. As Figure 3.2b shows, the linear correlation between both
normal components is rather well established numerically. The slope of the linear regression
curve is −meq ≈ −0.590. Therefore, in the case D = 1/3, µ1 = µ2 = 1, γ = 1, we conclude
that the equilibrium is obtained for εeq = −meq, i.e.,

Ca = 2εeq
√
R1R2 ≈ 0.278. (3.9)

For this value, the peak normal flow velocity computed numerically at the interface is 1 × 10−2

(which can be considered to be reasonably close to zero). Figure 3.3 displays the normal
velocity and the curvature along the interface for three meshes composed of 32×32, 64×64 and
128 × 128 square cells. Notice that peaks on normal velocities coincide with maximal curvature
in absolute value. Using mesh refinement, the maximal normal velocity at the interface is
reduced to 7 × 10−2, 3 × 10−2 and 1 × 10−2, respectively. Moreover, the three meshes lead
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to the values εeq ∈ {0.654, 0.581, 0.590} and Ca ∈ {0.308, 0.274, 0.278}, indicating satisfactory
convergence on the finest mesh. Notice that the interface discretization parameters (l, n) have
a marginal influence on the accuracy of the numerical predictions. The only differences were
observed for (l = 1, n = 1) giving Ca = 0.280 and (l = 1, n = 2) giving Ca = 0.279. All the
other choices for (l, n) ∈ {1:6} × {1:4} give the same value for Ca as above. Figure 3.4 displays
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(a) Mesh 32 × 32.
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(b) Mesh 64 × 64.
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(c) Mesh 128 × 128.

Figure 3.3: Normal velocity (blue, top row) and curvature (red, bottom row) along the interface. Shear-
surface tension equilibrium with elliptic interface for D = 1/3, µ1 = µ2 = 1, Ca ∈ {0.308, 0.274, 0.278}
using meshes composed of 32 × 32, 64 × 64 and 128 × 128 square cells, respectively (i.e., ε ∈
{0.654, 0.581, 0.590}, γ = 1, R1 = 1/6 and R2 = 1/3) in the domain (−2, 2)2. We employ the un-
fitted HHO discretization with polynomial order k = 1.

isocontours for the two velocity components of the equilibrium flow.

(a) Velocity u1. (b) Velocity u2.

Figure 3.4: Shear-surface tension equilibrium with elliptic interface: isovalues of the velocity compo-
nents uuu = (u1, u2) for D = 1/3, µ1 = µ2 = 1, Ca = 0.28 (i.e., ε = 0.59, γ = 1, R1 = 1/6 and R2 = 1/3)
in the domain Ω = (−2, 2)2 discretized by a mesh composed of 128 × 128 square cells. We employ the
unfitted HHO discretization with polynomial order k = 1.
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A relevant numerical parameter is the size of the computational domain which has to be large
enough so as not to affect the shear-surface tension equilibrium. To evaluate quantitatively the
possible influence of this size on our results, we consider two additional computational domains,
Ωm := (−1, 1)2 and ΩM := (−3, 3)2, still for D = 1/3 and µ1 = µ2 = 1. The mesh-size is the
same for the three computational domains: this means using a mesh composed of 64 × 64
(resp., 128 × 128 and 192 × 192) square cells for Ωm (resp., Ω and ΩM ). The predicted values
of Ca are 0.246, 0.278 and 0.284 on Ωm, Ω and ΩM , respectively. We notice, as expected, that
the difference between the predicted capillary numbers decreases by increasing the size of the
computational domain owing to the minor influence of the external boundary.

It is interesting to study how the ratio D/Ca depends on the viscosity ratio

λ := µ1

µ2
. (3.10)

The results are summarized in Figure 3.5. In Figure 3.5a, we present the results obtained for
D = 0.33 on the three computational domains considered above to verify that our predictions
are essentially independent of the size of Ω as long as (−2, 2)2 ⊆ Ω. In Figure 3.5b, we

0.1 0.3 1 3 10

1.0

1.1

1.2

1.3

1.4

1.5

(a) D = 0.33.

0.1 0.3 1 3 10

1.0

1.1

1.2

1.3

1.4

1.5

(b) 0.01 ≤ D ≤ 0.33.
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(c) Ratio D/Ca for λ ∈ {0.1, 0.3, 1, 3, 10}.

Figure 3.5: Figures 3.5a and 3.5b display the ratio D/Ca (Taylor deformation parameter over capillary
number) as a function of the viscosity ratio λ. Figure 3.5a: D = 0.33 and computational domains
(−a, a)2 with a ∈ {1, 2, 3}. Figure 3.5b: D ∈ {0.01, 0.11, 0.20, 0.27, 0.31, 0.33} and computational
domain (−2, 2)2; the blue crosses refer to the estimate from [124] derived under the assumption of small
deformations. Figure 3.5c displays D as a function of Ca; λ ∈ {0.1, 0.3, 1, 3, 10} and computational
domain (−2, 2)2. We employ the unfitted HHO discretization with polynomial order k = 1.

fix Ω = (−2, 2)2 and we consider various values for the Taylor deformation parameter, D ∈
{0.01, 0.11, 0.20, 0.27, 0.31, 0.33}. Our results for small D are in reasonable agreement with the
estimate from [124] which is indeed derived under the assumption of small deformations, i.e.,
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when the shape of the interface only slightly departs from a circle. This estimate states that

D ≈ Ca 19λ+ 16
16λ+ 16 . (3.11)

The discrepancy between our simulations and (3.11) can be attributed to the fact that (3.11)
appears to be derived from some analytical expressions for the velocity and pressure derived
in a fully 3D (spherical) setting. Finally, in Figure 3.5c, we plot D as a function of Ca for the
above values of λ; the results are in good agreement with those reported in [124].

3.2 Fixed-point solver for unknown interface problems
This section describes the various ingredients composing the fixed-point solver used to solve
numerically shear-surface tension equilibrium problems with unknown interface.

3.2.1 Fixed-point scheme
The mesh T is fixed during the whole iterative process and is therefore unfitted to the interface.
For simplicity, we consider that the computational domain is a square and that the mesh is
composed of square cells. The level-set function is discretized in the continuous finite element
space

Qc
q(T ) := {vT ∈ C0(Ω) : vT |T ∈ Qq,d, ∀T ∈ T }, (3.12)

where Qq,d denotes the space composed of d-variate polynomials of order at most q ≥ 1 in
each spatial variable. In our computations, we take q := k + 1, and we work with the Bezier–
Bernstein basis functions, which present the advantage of taking values in [0, 1] (see, e.g., [89,
Chap. 2] and [4]). We define the initial discrete interface as

Γ0
T :=

¶
xxx ∈ Ω : Φ0

T (xxx) = 0
©
, (3.13)

where Φ0
T := IT (ϕ(t = 0, ·)) is obtained with the Lagrange interpolation operator IT onto

Qc
q(T ).

At each iteration of the fixed-point scheme, we first solve, for a given interface, the velocity
field (HHO solver, Section 2.3). Then we transport for some (fictitious) time the interface
driven by the obtained velocity field. Specifically, at the iteration step m ≥ 0 of the fixed-point
scheme, the following two substeps are performed:

1. Given the discrete interface ΓmT (kept fixed in this substep), we solve the HHO unfitted
Stokes problem (2.1). Using the cell-agglomeration procedure from [20] produces a mesh
T m avoiding bad cuts (the superscript refers to ΓmT ), on which we seek approximations
ûuu
m
T ∈ “UUUkT and p̂mT ∈ P kT of the velocity and pressure fields (uuumi , pmi ) ∈ H1(Ωi; Rd)×L2(Ωi),
i ∈ {1, 2}, such that

−∇ · σσσmi = fff i in Ωmi , i ∈ {1, 2}, (3.14a)
∇ · uuumi = 0 in Ωmi , i ∈ {1, 2}, (3.14b)

uuum2 = ggg on ∂Ω, (3.14c)
JuuumK = 000, JσσσmKnnnmΓ = γHm

Γ nnn
m
Γ on ΓmT . (3.14d)
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More details on the calculation of the normal, nnnmΓ , and the curvature, Hm
Γ , on the interface

ΓmT are given in Section 3.2.2.

2. Let △tm = tm+1 − tm be the fictitious time step such that the fixed-point iteration m is
linked with the fictitious discrete time node tm+1 :=

∑
j∈{0:m} △tj . We solve

∂tΦ̃mT + ∇ · f̃ffm = 0 in Ω × (0,△tm), (3.15a)

Φ̃mT (xxx, t) = Φ0
T (xxx) on ∂Ωin × (0,△tm), (3.15b)

Φ̃mT (xxx, 0) = ΦmT (xxx) in Ω, (3.15c)

where
f̃ffm(xxx, t) := uuum,cT (xxx)Φ̃mT (xxx, t). (3.16)

The inflow boundary ∂Ωin := {xxx ∈ ∂Ω : uuum,cT ·nnnΩ < 0} is assumed to be independent of m
(for simplicity). Moreover, uuum,cT ∈ Qc

q(T ; Rd) is a post-processed velocity field obtained by
averaging at the interpolation nodes the values of the cell components of the HHO velocity
field ûuumT obtained in the first substep. The averaging is made using weights corresponding
to the cell volumes. The problem (3.15) is solved numerically using continuous finite
elements (of degree q) and a first-order graph viscosity ensuring a discrete maximum
principle on the level-set function; we refer the reader to [70]–[72] for further insight.
Finally, we update the level-set function by setting Φm+1

T := Φ̃mT (△tm) and evaluate
Γm+1

T from Φm+1
T by setting

Γm+1
T :=

¶
xxx ∈ Ω : Φm+1

T (xxx) = 0
©
. (3.17)

Notice that the space discretization of (3.15) uses the original mesh T of Ω (without any
agglomeration) and that we have Φ̃mT ∈ Qc

q(T ).
The above iterative scheme is stopped when the normal velocity at the interface is sufficiently
small. It is not easy to give a quantitative tolerance a priori, but all the simulations reported
in Section 3.3 achieve a reduction of the normal velocity at the interface by one to two orders
of magnitude. A difficulty is that pushing the iterations too far generally results in some
oscillations of the normal velocity, a phenomenon that can be attributed to the loss of mass
and the resulting inaccuracy of the transport velocity when updating the interface.
Remark 3.1 (Fictitious time step). The time step used for the time discretization of the problem
(3.15) is set to dtm := △tm/‹Nm, where ‹Nm > 0 is a prescribed value so that dtm is small enough
and

△tm ≤ min(c1△tγ , c2△tmCFL). (3.18)

Here, △tγ := µ♯

γ h is considered to avoid that the interface moves too much during a fictitious
time step. Moreover, △tmCFL results from the CFL condition ensuring a discrete maximum
principle (see [70]–[72]). Finally, c1, c2 are user-dependent parameters. Hereafter, we set ‹Nm ∈
[10, 100], c1 := 2 and c2 := 0.05, which typically leads to dtm ≤ 10−2.

3.2.2 Normal and curvature for unknown interface
A well-known issue in problems driven by surface tension is the approximation of the normal
and curvature on the interface [55], [106]. Indeed, although the level-set formulation has the
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advantage to provide analytic expressions for these quantities (see (2.7)), oscillations can ap-
pear (especially for the curvature) when discrete approximations of the level-set function are
considered.

Let nnnϕm
T

be the normal derived consistently with (2.7) from ΦmT ∈ Qc
q(T ), i.e.,

nnnϕm
T

= ∇ΦmT
∥∇ΦmT ∥ℓ2

. (3.19)

At this stage, nnnϕm
T

is a piecewise discontinuous field, so that its divergence is not well-defined;
it can, however, be evaluated inside each mesh cell. A classical workaround is to smooth nnnϕm

T

by using, for each component of ∇ΦmT , the global L2-orthogonal projection Πq
T : L2(Ω) →

Qc
q(T ) (a more local projection on patches can be considered to alleviate the costs). The

resulting normal vector field being continuous and piecewise smooth, its divergence is well-
defined. Unfortunately, setting

nnnc
ϕm

T
:= Πq

T (∇ΦmT )
∥Πq

T (∇ΦmT )∥ℓ2
, Hc

ϕm
T

:= −∇ ·nnnc
ϕm

T
,

nnnm,cΓ := nnnc
ϕm

T
|Γm

T
, Hm,c

Γ := Hc
ϕm

T
|Γm

T
,

(3.20)

does not counter spurious oscillations. Additional smoothing is performed by means of a global
L2-orthogonal projection onto a suitable space of functions defined on the interface and that are
continuous and piecewise polynomials. Recalling that the interface ΓmT is actually discretized
by the parameters (l, n) (see (2.29)), we have

ΓmT =
⋃

T∈T Γm

⋃
j∈{1:2n}

ΥT,j , ΥT,j := rrrT,j(Î), (3.21)

where Î := [0, 1] and rrrT,j is the geometric mapping defined by means of suitable interpolation
nodes as in (2.28). Then, we introduce the space composed of continuous, piecewise polynomials
of order l′ ∈ {1:l} over the interface, P c

l′(ΓmT ), such that

P c
l′(ΓmT ) :=

¶
v ∈ C0 (ΓmT ) : v|ΥT,j ◦ rrrT,j ∈ Pl

′
(Î), ∀T ∈ T Γm

, ∀j ∈ {1:2n}
©
. (3.22)

Let ΠΓ
l′ : L2(ΓmT ) → P c

l′(ΓmT ) be the L2-orthogonal projection onto P c
l′(ΓmT ). Then, we set

nnnm,∗Γ := ΠΓ
l−1(nnnm,cΓ ), Hm,∗

Γ := ΠΓ
1 (Hm,c

Γ ), (3.23)

where ΠΓ
l−1 is applied component-wise for the normal vector. As above, more local projections

on patches can be considered to alleviate the costs, although we observe that the projections
in (3.23) are on a one-dimensional manifold, and are therefore relatively cheap. Notice also
that, for the curvature, we always pick a piecewise affine representation to temper oscillations.
Hereafter, we employ the definitions (3.23) to determine the normal and curvature on the
interface.
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3.3 Numerical results for unknown interface problems
In this section, we present our results for the equilibrium problem with unknown interface.
First, we shortly discuss a couple of verification test cases. Then, we solve the equilibrium
problem when the forcing flow at the far field is not of pure shear type. In all the figures
presented in this section, the interface is obtained and plotted as a cloud of points which are
all zeroes of the discrete level-set function ΦmT ; we consider the 2nl sampling points per mesh
cell constructed as described in Section 2.3.3.

3.3.1 Verification test cases
In this section, we briefly present two verification test cases. Let us first consider an initial
flower-like interface described by the level-set function

ϕ0(x, y) := x2 + y2 −R2 + c cos(mθ), (3.24)

with θ := arctan
Ä
y
x

ä
if x ≥ 0, θ := π+arctan

Ä
y
x

ä
if x < 0, R := 1/3, m := 4 and c := 0.04. We

set fff i := 000, µi := 1 (for i ∈ {1, 2}), ggg := 000, and γ := 1, and there is no shear flow prescribed at
the boundary. Hence, the interface is determined only by the surface tension force γHm,∗

Γ nnnm,∗Γ ,
and the equilibrium shape is a circle. Since there is no shear flow prescribed at the boundary,
we can consider a computational domain with a somewhat small size, namely Ω := (−0.5, 0.5)2.

Starting from the flower-like interface, a few samples of the computed interface at some
selected iterations of the fixed-point iterative procedure are illustrated in Figure 3.6. In this
fashion, the time step is controlled by △tmCFL for the first iterations, when the velocity field is
strong owing to the high curvature produced by the flower-like interface, whereas the time step
is controlled by △tγ in the later iterations, when the velocity field is weaker so that larger time
steps can be employed. Typical time steps are of the order of 10−3 for the first iterations and
10−1 for the later iterations.

Figure 3.7 displays some error indicators for various mesh-sizes (i.e., h = 1/16, 1/32, 1/64)
as a function of the pseudo-time resulting from the fixed-point iterative scheme. We consider
the curvature and the normal velocity at the interface (measured either in the ℓ∞- or L1-norms,
the former meaning that the maximum is computed by sampling over the nodes discretizing
the interface), and the normalized error on the inner area Ωm1 defined as

diff(Am) := |Ωm1 | − |Ω0
1|

|Ω0
1|

. (3.25)

Notice that diff(Am) should vanish in the absence of discretization errors. This quantity is
useful to study area loss, a phenomenon typical of the level-set approach. Reference quantities
are calculated by using the fact that the circular equilibrium interface conserves the inner area
of the initial interface. In all cases, the results reported in Figure 3.7 illustrate well how mesh
refinement improves solution accuracy. We notice a somewhat unexpected result in Figure 3.7d,
where the coarsest mesh leads to a slightly better ℓ∞-velocity error. We believe that this can be
attributed to some compensation of errors, keeping in mind that all the errors are anyway very
small (less than 10−7). We also notice that this behavior is observed only in the special case
where no shear flow is prescribed. In all the other cases studied in this section, mesh refinement
always improves solution accuracy (see, e.g., Figure 3.11d).
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(a) Iteration m = 20, tm ≈ 0.13.
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(b) Iteration m = 40, tm ≈ 0.33.
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(c) Iteration m = 80, tm ≈ 1.13.
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(d) Iteration m = 180, tm ≈ 7.30.

Figure 3.6: First verification test case. In each panel, the red bullets represent the initial interface, and
the blue ones the interface at iteration m of the fixed-point procedure. The HHO polynomial order is
k = 1, and we employ q = 2 for the level-set approximation. The mesh is composed of 32 × 32 square
cells. The interface discretization parameters are (l = 2, n = 0).

In Figure 3.8, we show a few samples of the interface curvature at some selected iterations
of the fixed-point iterative procedure. Since the equilibrium interface is circular, we expect that
the curvature tends to a constant value equal to H∗ = −3 (the reciprocal of the circle radius
at equilibrium). Consistently, we find numerically that the curvature tends towards a constant
value, that is slightly larger than the expected one owing to a slight loss of area.

In the second verification test case, we consider an initial circular interface described by the
level-set function

ϕ0(x, y) := x2 + y2 −R2
∗, (3.26)

with R∗ := 1/3, and we set fff i := 000, µi := 1 (for i ∈ {1, 2}), and γ := 1. In contrast to
the previous test case, we now consider the non-homogeneous Dirichlet boundary condition
(3.1) enforcing a pure shear flow at the far field. The computational domain is set to Ω :=
(−1, 1)2. This size is a bit smaller than the size identified in Section 3.1 to achieve results
independent of the size of the domain (namely, Ω := (−2, 2)2). The present size is chosen to
reduce computational costs, keeping in mind that the numerical errors induced by the fixed-
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Figure 3.7: First verification test case: error indicators. The HHO polynomial order is k = 1, and
we employ q = 2 for the level-set approximation. The meshes are composed of 16 × 16 (brown line),
32 × 32 (yellow line) and 64 × 64 (blue line) square cells. The interface discretization parameters are
(l = 2, n = 0). The number of fixed-point iterations is 100 for the case of the mesh composed of 16×16
square cells, and 180 for the case of meshes composed of 32 × 32 and 64 × 64 square cells.

point iterative scheme and the geometric representation of the interface will dominate over the
influence of the size of the domain (this has been verified numerically by comparing with some
calculations on Ω = (−2, 2)2).

As above, we control the intensity of the shear by fixing the value of the capillary number to
Ca = µ2εL∗/γ. Starting from the circular interface, the fixed-point iterative scheme described
in Section 3.2.1 converges toward an elliptic equilibrium interface. We repeat the study for
different values of the capillary number Ca ∈ {0.007, 0.07, 0.27}, corresponding to the values
ε ∈ {0.01, 0.1, 0.4}. Some samples of the interface during the fixed-point scheme are illustrated
in Figure 3.9 for Ca = 0.27.

Figure 3.10 reports some of the above error indicators for Ca ∈ {0.007, 0.07, 0.27}. In Figure
3.10a, we observe that the convergence of the fixed-point procedure degrades when increasing
the capillary number Ca. However, at a fixed capillary number Ca, convergence in space remains
clearly visible in Figure 3.11. In Figure 3.10c, we report the normalized Taylor deformation
parameter D/D∗. Here, D is estimated by assuming that the interface is always elliptic with
axes parallel to the Cartesian axes (notice that the shear flow does not rotate the interface),
and D∗ corresponds to the value obtained using the steady calculations reported in Figure 3.5c.
The agreement is satisfactory owing to the geometric errors, with relative errors of the order of
20%.
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(a) Shifted curvature Hm,∗
Γ − H∗ at it-

erations m = 40 (blue, red, pink) and
m = 80 (yellow, black, brown).
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(b) Shifted curvature Hm,∗
Γ − H∗ at it-

erations m = 80 (blue, red, pink) and
m = 100 (yellow, black, brown).
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(c) Shifted curvature Hm,∗
Γ − H∗ at it-

erations m = 100 (blue, red, pink) and
m = 140 (yellow, black, brown).
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Figure 3.8: First verification test case. Shifted curvature Hm,∗
Γ − H∗ (see (3.23)) as a function of

the curvilinear abscissa along the interface at iteration m ∈ {40, 80, 100, 140, 200} of the fixed-point
procedure. For all the cut cells T ∈ T Γm

, the blue (or yellow) bullets represent the values at the points
inside T , the red (or black) bullets the values at the points on the boundary of T , and the pink (or
brown) bullets the values at the points on the boundary of the agglomerated cells inside T . The HHO
polynomial order is k = 1, and we employ q = 2 for the level-set approximation. The mesh is composed
of 32 × 32 square cells. The interface discretization parameters are (l = 2, n = 0).
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(a) Iteration m = 200, tm ≈ 0.4.
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(b) Iteration m = 400, tm ≈ 0.8.
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(c) Iteration m = 600, tm ≈ 1.2.
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(d) Iteration m = 800, tm ≈ 1.6.

Figure 3.9: Second verification test case: Ca = 0.27 (i.e., ε = 0.4, γ = 1, µ2 = 1, R∗ = 1/3). In each
panel, the red bullets represent the initial interface, and the blue ones the interface at iteration m of
the fixed-point procedure. The HHO polynomial order is k = 1, and we employ q = 2 for the level-set
approximation. The mesh is composed of 64 × 64 square cells. The interface discretization parameters
are (l = 2, n = 0).
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Figure 3.10: Second verification test case: error indicators (inner area, normal velocity at the interface,
and Taylor deformation parameter) for Ca ∈ {0.007, 0.07, 0.27} (i.e., ε ∈ {0.01, 0.1, 40}, γ = 1, µ2 = 1,
R∗ = 1/3), corresponding respectively to the yellow, brown, and green bullets. In Figures 3.10a and
3.10b, we additionally report the errors for ε = 0 (blue bullets). The HHO polynomial order is k = 1,
and we employ q = 2 for the level-set approximation. The meshes are composed of 64 × 64 square cells.
The interface discretization parameters are (l = 2, n = 0). The number of fixed-point iterations is 210,
260, 1900, and 3900 for the cases Ca = 0, Ca = 0.007, Ca = 0.07, and Ca = 0.27, respectively.
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Figure 3.11: Second verification test case: error indicators for Ca = 0.007 (i.e., ε = 0.01, γ = 1, µ2 = 1,
R∗ = 1/3) for various levels of mesh refinement. The HHO polynomial order is k = 1, and we employ
q = 2 for the level-set approximation. The meshes are composed of 16×16 (brown line), 32×32 (yellow
line) and 64 × 64 (blue line) square cells. The interface discretization parameters are (l = 2, n = 0).
The number of fixed-point iterations is 21, 34, and 66 for 16 × 16, 32 × 32, and 64 × 64 square cells,
respectively.
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3.3.2 Test cases with unknown interface
Let us consider the initial circular interface described by the level-set function defined in (3.26)
with R∗ := 1/3, fff i := 000, µi := 1 for i ∈ {1, 2} (and thus the viscosity contrast is λ = µ1/µ2 :=
1), and γ := 1. As in the previous section, we set Ω := (−1, 1)2. We now consider the following
perturbation of the non-homogeneous Dirichlet boundary condition (3.1):

ggg := uuuε|∂Ω, uuuε(x, y) := ε
Ä
(x,−y)T + 0.5(sin(πy), sin(πx))T

ä
, (3.27)

with ε > 0. We estimate the shear parameter as

ε∗ = max
xxx∈Ω

max
i,j

|(∇suuuε)ij(xxx)| = ε
π

2 , (3.28)

so that the capillary number is now evaluated as follows:

Ca = 1
2µ

επL∗

γ
, (3.29)

with L∗ := 2R∗ and µ := µ1 = µ2. In Figure 3.12a, we illustrate the velocity field (3.27) without
the interface (i.e., γ = 0), whereas in Figure 3.12b the presence of the interface is taken into
account for the case Ca = 0.27 (ε = 0.26, γ = 1, µ2 = 1, R∗ = 1/3). The interface evolution is
illustrated in Figure 3.13 for the same value of the capillary number.
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(a) Streamlines for the perturbed velocity field
(3.27).
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(b) Interface at iteration m = 3000, t ≈ 3, for the
perturbed shear flow with Ca = 0.27.

Figure 3.12: Streamlines for the test case with unknown interface. Figure 3.12a illustrates the velocity
field (3.27) without the interface (i.e., γ = 0), Figure 3.12b includes the presence of the interface with
Ca = 0.27 (i.e., ε = 0.26, γ = 1, µ2 = 1, R∗ = 1/3). The HHO polynomial order is k = 1, and we
employ q = 2 for the level-set approximation. The mesh is composed of 128 × 128 square cells. The
interface discretization parameters are (l = 2, n = 0).

In Figure 3.14, we fix ε = 0.26 (γ = 1, µ2 = 1, R∗ = 1/3) and we study the convergence in
space of the fixed-point procedure. Consistently with the previous results on the verification
test cases, the proposed methodology reduces the l∞-norm of the normal velocity by a factor
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(a) Iteration m = 500, tm ≈ 0.5.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(b) Iteration m = 1000, tm ≈ 1.0.
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(c) Iteration m = 3000, tm ≈ 3.0.
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(d) Iteration m = 4000, tm ≈ 4.0.

Figure 3.13: Interface evolution for the test case with unknown interface with Ca = 0.27 (i.e., ε = 0.26,
γ = 1, µ2 = 1, R∗ = 1/3). In each panel, the red bullets represent the initial interface, and the blue
ones the interface at iteration m of the fixed-point procedure. The HHO polynomial order is k = 1,
and we employ q = 2 for the level-set approximation. The mesh is composed of 128 × 128 square cells.
The interface discretization parameters are (l = 2, n = 0).

of 10. We notice that a more pronounced error reduction can be reached on finer meshes.
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Figure 3.14: Error indicators for Ca = 0.27 (i.e., ε = 0.26, γ = 1, µ2 = 1, R∗ = 1/3) for various
levels of mesh refinement. The HHO polynomial order is k = 1, and we employ q = 2 for the level-set
approximation. The meshes are composed of 32 × 32 (brown line), 64 × 64 (yellow line) and 128 × 128
(blue line) square cells. The interface discretization parameters are (l = 2, n = 0). The number of
fixed-point iterations is 21, 2400, and 5100 for 32 × 32, 64 × 64, and 128 × 128 square cells, respectively.

3.3.3 Conclusions
The conclusion of the results on the verification test cases is that the convergence of the fixed-
point procedure is in general satisfactory. However, some difficulties are encountered if one
insists in reducing the normal velocity at the interface by more than an order of magnitude.
This difficulty can possibly be alleviated by improving on the area loss, which, in turn, may be
partly caused by the lack of divergence-free property of the post-processed velocity field used
in substep 2 of the fixed-point iterative procedure. These points will be investigated in future
work. Finally, in the case of an unknown interface, mesh refinement is again crucial to achieve
a significant error reduction on the normal velocity, and thus approach a steady-state solution.
Moreover, simulations become more challenging as the capillary number is increased. Indeed,
higher curvatures contribute to the presence of sharp gradients, which demand finer spatial and
temporal discretizations to accurately represent the associated flow patterns. It is also worth
noting that as the capillary number is increased, the loss of area becomes more pronounced,
inducing a larger error on the velocity approximation.
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Chapter 4

Unfitted HDG solver

4.1 Introduction
At the microscale, fluid behavior is primarily governed by surface tension, energy dissipation,
and fluidic resistance [10], [61], [120]. These microfluidics systems, typically ranging from
100 nanometers to 500 micrometers, are characterized by low Reynolds number, indicatives
of Stokes flows. Such simulations present considerable challenges, especially in problems that
involve complex or evolving geometries. One particularly challenging aspect is the high-fidelity
resolution to multi-fluid problems, where immiscible fluids interact while exhibiting distinct flow
characteristics. In this chapter, we focus on such problems, and we develop a high-order method
based on a Hybridizable Discontinuous Galerkin (HDG) method, coupled with the NURBS-
enhanced finite element method (NEFEM), and adopting a geometrically unfitted approach.
We denote it as the unfitted HDG-NEFEM method.

HDG methods have been introduced in the present day form a decade ago in [35], and vastly
applied to flow problems [36], [91], [100], [101]. HDG methods offer several attractive features,
including degree-adaptive strategies [65] and L2-superconvergence on the primal variable by
local postprocessing [62]. Moreover, the formulation is computationally efficient, with respect
to discontinuous Galerkin methods, owing to the global coupling of the skeleton unknowns by
means of the static condensation procedure [50].

HDG-NEFEM methods have been introduced in [115], [116] and rely on the use of Non-
uniform rational B-spline (NURBS) [83] for the geometry representation of interfaces and
boundaries. This approach enables a seamless transition from computer-aided design (CAD)
geometries to computation descriptions, preserving the optimality of HDG methods.

Geometrically unfitted methods refer to approaches where the mesh does not fit the geom-
etry, and the variational formulation is modified to incorporate constraints on interfaces and
boundaries into the computation. Unfitted meshes are particularly suitable for complex geome-
tries or time-evolving interfaces, where the mesh may result extremely distorted and unsuitable
for computation. The extension of unfitted methods to hybridized discretization methods is
relatively recent, with applications to immiscible incompressible Stokes interface problems [22],
[73], [108].

The unfitted approach adopted in the current HDG-NEFEM method builds upon the
work presented in [75], [76] enforcing Dirichlet boundary conditions by means of Nitsche’s
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method [103]. To handle interface conditions, the key idea of the method is the doubling of the
unknowns in the mesh elements cut by the interface, thus enriching the approximation space
and achieving a more precise representation of the solution in the vicinity of the interface. Ad-
ditionally, the method avoids the introduction of additional degrees of freedom (DoFs) either
on the interface or along the boundary.

A well-known drawback in unfitted methods is the presence of unfavorable cuts in the mesh,
resulting in mesh elements with a small portion of their volume within the computational
domain. This situation often leads to ill-conditioned linear systems, which, in turn, adversely
affect the accuracy of the computations. To address this issue, the unfitted HDG-NEFEM
method employs an element extension strategy based on [99]. This approach addresses the
issue of cut elements by combining neighboring elements, erasing the unknowns associated
with the ill-cut element, and extrapolating the well-cut element basis functions into the ill-cut
element.

The structure of this chapter is as follows. Section 4.2 introduces the model problem.
Section 4.3 is devoted to the presentation of the unfitted HDG-NEFEM solver for the Stokes
interface problem. Section 4.4 describes the employed strategies to handle unfitted domains.
Section 4.5 presents two strategies, degree adaptivity, Subsection 4.5.1, and element extension,
Subsection 4.5.2, to ensure robustness and accuracy.

4.2 Problem statement
Let Ω ⊂ Rnsd be an open bounded domain with boundary ∂Ω and nsd := 2 the number of
spatial dimensions. The boundary ∂Ω is composed of two disjoint parts, the Dirichlet portion
ΓD, where the value uuuD ∈ [H 1

2 (ΓD)]nsd of the velocity is imposed, and the Neumann portion
ΓN, where a pseudo-traction t ∈ [L2(ΓN)]nsd is applied. Formally, ∂Ω = ΓD ∪ ΓN such that
ΓD ∩ ΓN = ∅.
Suppose now that Ω is split by a fixed interface Υ in two disjoint subdomains occupied each by
an immiscible incompressible Stokes fluid. That is, Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅, and Υ = Ω1 ∩Ω2.
Note that the boundary of each fluid is ∂Ωi = ΓiD ∪ ΓiN ∪ Υ with ΓiD ∩ Υ = ∅, and ΓiN ∩ Υ = ∅,
for i ∈ {1, 2}. Moreover, we define the domain Ω̂ as Ω̂ = Ω1 ∪ Ω2, similarly with Γ̂D = Γ1

D ∪ Γ2
D,

and Γ̂N = Γ1
N ∪ Γ2

N. The interface Υ and the boundary ∂Ω are represented using NURBS and
are composed by nΥ and n∂Ω NURBS curves, respectively. That is,

Υ :=
⋃

j∈{1:nΥ}

CCCjΥ([0, 1]), ∂Ω :=
⋃

j∈{1:n∂Ω}

CCCj∂Ω([0, 1]), (4.1)

where CCCj(λ) : λ → CCCj(λ) is a generic NURBS curve [83] defined in the parametric domain
λ ∈ [0, 1].

The problem aims to find the unknown velocity and pressure fields, (u, p) ∈ [H1(Ω̂)]nsd ×
L2(Ω), whose restrictions to each subdomain Ωi are (u, p)|Ωi = (ui, pi) ∈ [H1(Ωi)]nsd × L2(Ωi),
i ∈ {1, 2}. Thus,

[H1(Ω̂)]nsd :=
¶
v ∈ [L2(Ω)]nsd | v|Ωi ∈ [H1(Ωi)]nsd , ∀i ∈ {1, 2}

©
.

Finally, the strong form of the problem can be written as find (u, p) ∈ [H1(Ω̂)]nsd × L2(Ω) such
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that 

−∇ · (µ∇u− pInsd) = s in Ω̂,
∇ · u = 0 in Ω̂,

u = uuuD on Γ̂D,Ä
µ∇u− pInsd

ä
n = t on Γ̂N, u1 = u2Ä

µ1∇u1−p1Insd

ä
n1+
Ä
µ2∇u2−p2Insd

ä
n2 = γ(∇·n1)n1+∇γ

on Υ,

(4.2)

where µ = µi > 0 on Ωi, i ∈ {1, 2}, is the piecewise dynamic viscosity of each fluid, assumed
constant in Ωi, s ∈ [L2(Ω)]nsd is the volumetric source term, ni is the outward unit normal
vector to the corresponding domain Ωi, and γ is the surface tension coefficient. Note that in
most cases, the surface tension, γ, is assumed constant, thus, ∇γ = 0, and, consequently, the
interface shear stress is continuous. Finally, the last two equations impose the continuity of
velocity and equilibrium of forces along the interface Υ.
Remark 4.1 (One-fluid problem). When Υ = ∅, the interface conditions disappear, and we solve
the one-fluid problem in the domain Ω1 ≡ Ω.
Remark 4.2 (Uniqueness). When Γ̂N = ∅, the Stokes interface problem is solvable up to a global
additive constant on the pressure, which we fix by imposing∫

Ω̂
p dΩ̂ =

∫
Ω̂
prefdΩ̂,

where pref is the analytical pressure typically equal to zero in physically meaningful problems.
Remark 4.3 (Multi-fluid interface problem). Formulation (4.2) can be readily extended to ad-
dress multi-fluid problems, where Ω is partitioned into a generic number of connected, open,
bounded sets, each occupied by an immiscible, incompressible Stokes fluid.

4.3 Computational setting
Let Ωo be a shape-regular polyhedral domain containing Ω, i.e., Ω ⊆ Ωo. Then, we consider
a shape-regular mesh composed of nel disjoint (open) subdomains Ωe such that Ωo is exactly
covered, i.e.,

Ωo :=
⋃

e∈{1:nel}

Ωe.

The boundaries ∂Ωe of the mesh element Ωe define the internal skeleton, Γ:

Γ :=
[ ⋃
e∈{1:nel}

∂Ωe
]

\ (Γ̂D ∪ Γ̂N).

We denote by Γf a generic internal face of Γ, and by nfc the total number of internal faces, i.e.,
Γ =

⋃
f∈{1:nfc} Γf . It is important to recall that the interface, Υ, and the external boundary,

Γ̂D and Γ̂N, do not need to align with the mesh. Moreover, for all e ∈ {1:nel}, we define Ωie the
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region of Ωe that belongs to the fluid indexed by i, i.e.,

Ωie := Ωe ∩ Ωi, ∀i ∈ {1, 2}.

Similarly, we define ∂Ωie := ∂Ωe ∩ (Ωi \ Υ) as the portion of the boundary ∂Ωe belonging to
fluid i. Finally, let Γi := Γ ∩ (Ωi \ Υ) and Γif := Γf ∩ (Ωi \ Υ) be the portions of the inner
skeleton Γ and of a face Γf inside Ωi, respectively, for all f ∈ {1:nfc} and all i ∈ {1, 2}.

On this broken domain, the problem defined in (4.2) can be written as follows:

for all e ∈ {1:nel} and all i ∈ {1, 2}



Lie +
√
µi∇uie = 0 in Ωie,

∇ · (
√
µiLie) + ∇pie = s in Ωie,

∇ · uie = 0 in Ωie,
uie = uuuD on Ωe ∩ ΓiD,Ä√

µiLie + pieInsd

ä
nie = −t on Ωe ∩ ΓiN,

(4.3a)

for all e ∈ {1:nel}


u1 = u2Ä√

µ1L1
e+p1Insd

ä
n1
e

+
Ä√

µ2L2
e+p2Insd

ä
n2
e = −γ(∇·n1

e)n1
e−∇γ

on Υ ∩ Ωe, (4.3b)

for all e ∈ {1:nel} and all i ∈ {1, 2}

 Jui ⊗ niK = 0

J(
√
µiLi + piInsd)niK = 0

on Γ ∩ Ωie, (4.3c)

where L := −√
µ∇u is the mixed variable so that Lie = −

√
µi∇uie is its restriction to Ωie, for all

e ∈ {1:nel} and all i ∈ {1, 2}. The interface conditions stated in (4.3b) are reformulated element-
wisely in (4.2), ensuring the enforcement of the desired continuity conditions. The equations
in (4.3a) and (4.3c) are, respectively, the usual local equations and the so-called transmission
conditions common in HDG. The latter imposes, respectively, continuity of velocity and normal
flux across the skeleton of the mesh. Consistently with HDG methods, we introduce the face-
based variable ûi, the so-called hybrid velocity, to represent the trace of the solution on each
face of Γi so that the local problem (4.3a) is completed by adding

uie = ûi on Γi ∩ Ωe,

for all e ∈ {1:nel}.
The jump J⊙K operator has been introduced following the definition by [98], such that, along

each portion of Γ (Υ) it sums the values of a generic quantity ⊙ from the left and from the
right, say Ωl and Ωr (Ωle and Ωre), namely

J⊙K = ⊙l + ⊙r.

Note that the above definition of the jump operator always involves the outward unit normal to
a surface, say J⊙nK. Thus, for instance, at the edge between elements Ωl and Ωr, this definition
implies J⊙nK = ⊙lnl + ⊙rnr where nl and nr are the outward unit normals to ∂Ωl and ∂Ωr,
respectively. Moreover, recall that nl = −nr.
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To simplify the presentation, we consider three types of elements: (i) the standard HDG
elements not cut by Υ or ∂Ω, i.e., Υ ∩ Ωe = ∅ and ∂Ω ∩ Ωe = ∅, (ii) the immersed boundary
elements cut by ∂Ω but not by Υ, i.e., Υ ∩ Ωe = ∅ and ∂Ω ∩ Ωe ̸= ∅, and (iii) the interface
elements cut by Υ but not by ∂Ω, i.e., Υ ∩ Ωe ̸= ∅ and ∂Ω ∩ Ωe = ∅. Moreover, we suppose
that the interface splits each element (at most) into two different regions. We refer to Figure
4.1 to illustrate such possible configurations. Finally, note that all the defined elements, (i),
(ii), and (iii), also encompass the case in which the external boundary is aligned with the mesh
skeleton, which means ∂Ωe ∩ ∂Ω ̸= ∅.

Ω1

Ω2

Υ
Ωo

∂Ω

n1

n2

n2

Figure 4.1: Domain Ωo partitioned into 6 × 6 square elements. The external boundary ∂Ω and the
interface Υ are not aligned with the mesh skeleton. The elements in red represent standard HDG
elements contained in Ω1 and Ω2, the element in orange represents an immersed boundary element, cut
by ∂Ω, and the element in green represents an interface element, cut by Υ.

The HDG discretization employs element- and face-based unknowns to discretize (4.3). In
the standard HDG elements, we use the standard HDG approximation, employing polynomial
basis functions of order k ≥ 0 for both element- and face-based unknowns. In the immersed
boundary elements, the same approximation space is used for element-based unknowns and for
the face-based unknowns located on faces Γf ⊂ Γ. Notably, the unknowns lying on faces Γf
outside the domain Ω are removed from the problem. In the interface elements, the element-
based unknowns are duplicated, as are the face-based unknowns for the faces intersected by the
interface. Faces that remain uncut maintain the standard number of unknowns, as illustrated in
Figure 4.2. Note that while the basis functions are defined across the entire element, Ωe, or face,
Γf , independently on the cut, the quadrature domain is restricted to Ωie or Γif , as detailed in
Section 4.4. Moreover, we define the face-based unknowns only in the interior mesh skeleton Γ,
without introducing additional DoFs along the fluid interface or the external boundaries Γ̂D and
Γ̂N. When Γ̂N fits the mesh, we resort to the standard HDG formulation (see for example [117])
with face-based unknowns defined on Γ ∪ Γ̂N.

Henceforth, we consider rectangular domains Ωo, partitioned in rectangular-shaped elements
Ωe. In this specific context, we use Lagrange basis functions, denoted as Pk

La (commonly used
in fitted HDG methods [64]), for element-based unknowns. Owing to the rectangular shape of
Ωe, Pk

La is a two-dimensional tensor basis, thus respecting the M-decomposition assumption,
as outlined in [34], [37]. For the face-based unknowns, we compare two possible bases: the
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Lagrange basis, P̂k
La, and the Legendre basis, P̂k

Le. In Section 5.1, we will conduct a comparative
analysis of both bases, showcasing the superior performance of Legendre face-based unknowns
in terms of mitigating the conditioning of the global problem.

(a) Standard HDG element.

∂Ω

(b) Immersed boundary element.

Υ

(c) Interface element.

Figure 4.2: Element- and face-based unknowns used for the different types of cut elements. Figure
(4.2a) represents a standard HDG element, Figure (4.2b) represents an immersed boundary element,
and Figure (4.2c) represents an interface element. Blue bullets represent element-based unknowns, red
bullets face-based unknowns, green crosses the doubled element-based unknowns employed in interface
elements, and yellow crosses the doubled face-based unknowns employed in interface cut faces.

In what follows, we use the standard HDG notation (·, ·)S and ⟨·, ·⟩S to denote the L2-
product in a generic nsd- and (nsd − 1)-dimensional subset S ⊂ Ω, respectively.

4.3.1 Local problems
HDG defines, element-by-element, the so-called local problems. Consistently with the possible
types of elements, three main cases are identified.

For the standard HDG elements, the standard local HDG problem is recovered in each fluid i
equals either 1 or 2. Then, given the prescribed velocity uuuD on ΓD, the pseudo-traction t on ΓN,
and the hybrid velocity ûi on Γi ∩ Ωe, we seek (Li,ui, pi) ∈ [H(div; Ωie)]nsd×nsd × [H1(Ωie)]nsd ×
H1(Ωie) solving (4.3a). The problem is well-posed. We recall the standard numerical trace of
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the diffusive flux, defined in [35], [64], such that

(√µLie+pieInsd

∧

)ne := (
√
µiLie+pieInsd)ne +

τ(uie − uuuD), on Γ̂D ∩ ∂Ωie,
τ(uie − ûi), on Γ ∩ ∂Ωie,

with τ a stabilization parameter. Consistently with [63], we set τ := cµ/ℓ where µ :=
max(µ1, µ2), ℓ is a characteristic length of the domain, and c is a scaling factor which henceforth
is set equal to 3. We refer to [63] for more details.

4.3.1.1 Immersed boundary elements

For immersed boundary elements, we introduce a Nitsche’s penalty term [103] to weakly impose
the Dirichlet boundary conditions when Γ̂D cuts Ωe, namely, the weak formulation of (4.3a) is
as follows: for all e ∈ {1:nel}, such that Ωe ∩ Υ = ∅ and Ωe ∩ ∂Ω ̸= ∅, given uuuD on ΓD, t on ΓN,
ûi on Γ ∩ ∂Ωie, find (Lie,uie, pie) ∈ [H(div; Ωie)]nsd×nsd × [H1(Ωie)]nsd × H1(Ωie) that satisfy

−
Ä
G,Lie

ä
Ωi

e

+
Ä
∇·(√µG),uie

ä
Ωi

e

− ⟨Gne,
√
µuie⟩Ωe∩Γi

N

= ⟨Gne,
√
µuuuD⟩Ωe∩Γi

D
+ ⟨Gne,

√
µ ûi⟩∂Ωi

e\(Γi
D∪Γi

N),Ä
w,∇·(√µLie)

ä
Ωi

e

+
Ä
w,∇pie

ä
Ωi

e

−
¨
w, (√µLie+pieInsd)ne

∂
Ωe∩Γi

N
+ τNh

−1
e ⟨w,uie⟩Ωe∩Γi

D

+
¨
w, (√µLie+pieInsd

∧

)ne−(√µLie+pieInsd)ne
∂
∂Ωi

e\Γi
N

=
Ä
w, s
ä

Ωi
e

+
¨
w, t
∂

Ωe∩Γi
N

+ τNh
−1
e ⟨w,uuuD⟩Ωe∩Γi

D
,Ä

∇q,uie
ä

Ωi
e

− ⟨q,uie · ne⟩Ωe∩Γi
N

= ⟨q,uuuD · ne⟩Ωe∩Γi
D

+ ⟨q, ûi · ne⟩∂Ωi
e\(Γi

D∪Γi
N),

for all (G,w, q) ∈ [H(div; Ωie)]nsd×nsd × [H1(Ωie)]nsd × H1(Ωie), where i is either 1 or 2. When
Ωe ∩ Γ̂N = ∅, the problem is closed by adding the pressure condition,

1
|Ωie|

(1, pie)Ωi
e

= ρe,

with ρe an independent global variable representing the mean value of the pressure in Ωe.
Moreover, the Nitsche’s consistent penalty constant, τN, must be large enough. In our problems
τN := 10 proved to be sufficient. We note that, as expected, our results are not sensitive to the
choice of τN.

4.3.1.2 Interface elements

For the interface elements, occupied by both immiscible fluids and such that Ωe ∩ ∂Ω = ∅,
the interface conditions couple the element-based variables of Ω1

e and Ω2
e so that the local

problem is as follows: for all e ∈ {1:nel}, such that Ωe ∩ Υ ̸= ∅ and Ωe ∩ ∂Ω = ∅, given uuuD
on ΓD, t on ΓN, û1 on Γ ∩ ∂Ω1

e, and û2 on Γ ∩ ∂Ω2
e (i.e., û on Γ ∩ ∂Ωe), find (Le,ue, pe) ∈
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[H(div; Ωe ∩ Ω̂)]nsd×nsd × [H1(Ωe ∩ Ω̂)]nsd × H1(Ωe ∩ Ω̂) that satisfy
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w,∇·(√µLe)
ä

Ωe

+
Ä
w,∇pe

ä
Ωe
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w, (√µLe+peInsd
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)ne−(√µLe+peInsd)ne
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∂Ωe\Γ̂N

−
¨
w, (√µLe+peInsd)ne

∂
∂Ωe∩Γ̂N

−
¨
{w}, γ(∇·nie)nie+∇γ+J(√µLe+peInsd)neK

∂
Υ∩Ωe

=
Ä
w, s
ä

Ωe

+ ⟨w, t⟩∂Ωe∩Γ̂N
,Ä

∇q,ue
ä

Ωe

− ⟨q,ue · ne⟩∂Ωe∩Γ̂N

− ⟨JqneK, {ue}⟩Υ∩Ωe − ⟨{q},
=0︷ ︸︸ ︷

Jue · neK⟩Υ∩Ωe

= ⟨q,uuuD · ne⟩∂Ωe∩Γ̂D
+ ⟨q, û · ne⟩∂Ωe\(Γ̂D∪Γ̂N),

for all (G,w, q) ∈ [H(div; Ωe ∩ Ω̂)]nsd×nsd × [H1(Ωe ∩ Ω̂)]nsd × H1(Ωe ∩ Ω̂), where the interface
conditions (4.3b) have been imposed such that symmetry is preserved. Moreover, the mean {⊙}
operator has been introduced following the definition by [98], such that, along each portion of
the interface Υ, it sums the weighted values from Ω1

e and Ω2
e, namely

{⊙} = 1
2(⊙|Ω1

e
+ ⊙|Ω2

e
), (4.4)

see for instance [75]. Also, the following three identities have been used:∑
i∈{1:2}

⟨Gnie,
√
µi ui⟩Υ =

∫
Υ

√
µ1u1

iG
1
ijn

1
j +

√
µ2u2

iG
2
ijn

2
j dΥ

=
∫

Υ

(
Ju⊗ neK : {√

µG} + {u} · J
√
µGneK

)
dΥ

= ⟨Ju⊗ neK, {
√
µG}⟩Υ + ⟨{u}, J√µGneK⟩Υ,∑

i∈{1:2}

⟨wi, (
√
µiLie+pieInsd)nie⟩Υ = ⟨Jw ⊗ neK, {

√
µLe+peInsd}⟩Υ+⟨{w}, J(√µLe+peInsd)neK⟩Υ,

∑
i∈{1:2}

⟨qi,ui · nie⟩Υ = ⟨JqneK, {u}⟩Υ + ⟨{q}, Ju · neK⟩Υ.
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Rearranging terms, the local weak problem becomes:
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¨
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−⟨q,ue · ne⟩∂Ωe∩Γ̂N
−⟨JqneK, {ue}⟩Υ∩Ωe

= ⟨q,uuuD · ne⟩∂Ωe∩Γ̂D
+⟨q, û · ne⟩∂Ωe\(Γ̂D∪Γ̂N),

(4.5)

which induces a symmetric problem. As before, when ∂Ωe ∩ Γ̂N = ∅, the problem is closed by
adding the pressure condition,

1
|Ωe|

∑
i∈{1:2}

(pie, 1)Ωe∩Ωi = ρe.

Remark 4.4 (Viscosity-robust mean operator). The mean operator defined in (4.4) is not robust
with respect to high-contrast viscosity coefficients (see [22], [77]). When µ1 and µ2 are such
that µ1 ≪ µ2, or vice versa, we propose the weighted mean

{⊙} = ω1
e ⊙ |Ω1

e
+ ω2

e ⊙ |Ω2
e
,

where the weights are defined as

ω1
e := µ2

e

µ1
e + µ2

e

, ω2
e := µ1

e

µ1
e + µ2

e

.

Remark 4.5 (General cut elements). Suppose an element Ωe is cut into a variable number of
regions. The local problems for immersed boundary and interface elements can be generalized
by doubling the unknowns in each region occupied by a fluid and coupling the regions sharing
an interface.

4.3.2 Global problem
In the previous section, for each element Ωe, e ∈ {1:nel}, and all the fluids i ∈ {1, 2}, the
local variables (Lie,uie, pie) are expressed in terms of the global unknowns (ûi, ρe). The global
problem is represented by the transmission conditions (4.3c). By definition, ûi is uniquely
defined on each face of Γ thus condition Jui ⊗niK = 0 is automatically satisfied. In addition to
the transmission conditions, for all e ∈ {1:nel} such that Ωe∩ Γ̂N = ∅, we consider the following
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compatibility condition,∑
i∈{1:2}

¶
⟨ûi · ne, 1⟩∂Ωi

e\Γ̂D
+ ⟨uuuD · ne, 1⟩∂Ωi

e∩Γ̂D

©
= 0,

derived from the divergence-free condition, where we have used the equality ⟨urnre−ulnle, 1⟩Υ∩Ωe
=

0. The weak formulation is as follows: given uuuD on ΓD, t on ΓN, (Lie,uie, pie) ∈ [H(div; Ωe ∩ Ω̂)]nsd×nsd×
[H1(Ωe ∩ Ω̂)]nsd × H1(Ωe ∩ Ω̂), for all i ∈ {1, 2}, find (ûi, ρe) ∈ [H 1

2 (Γ ∩ ∂Ωie)]nsd × Rnsd that
satisfy ∑

e∈{1:nel}

∑
i∈{1:2}

¶
⟨ŵ, (

√
µiLie + pieInsd)ne⟩∂Ωi

e\(Γ̂D∪Γ̂N)

+⟨ŵ, τuie⟩∂Ωi
e\(Γ̂D∪Γ̂N) − ⟨ŵ, τ ûi⟩∂Ωi

e\(Γ̂D∪Γ̂N)

©
= 0,

(4.6)

for all ŵ ∈ [L2(Γ ∩ ∂Ωie)]nsd , and∑
i∈{1:2}

¶
⟨ûi · ne, 1⟩∂Ωi

e\Γ̂D
+ ⟨uuuD · ne, 1⟩∂Ωi

e∩Γ̂D

©
= 0,

for all e ∈ {1:nel} such that Ωe ∩ Γ̂N = ∅. Note that the global problem is not directly affected
by interface terms. Remind that when Γ̂N = ∅, the additional pressure condition, presented in
Remark 4.2, is required.

4.4 Domain definition and quadratures in the interface
elements

The knowledge of the NURBS interface (4.1) does not allow for a straightforward determination
of the computational domain Ωi, i ∈ {1, 2}. Let us assume that the external boundary ∂Ω is
aligned with the mesh so that we can focus only on the interface Υ. Moreover, let us assume
that the interface Υ is closed, orientable, and does not touch the boundary ∂Ω so that we denote
by Ω1 the interior subdomain and by Ω2 the exterior subdomain. The same procedure can be
generalized for unfitted ∂Ω. The following method takes inspiration from the work presented
in [99].

To exactly define Ωi, the idea is to decompose the problem element-wise by identifying
for each element the regions Ωie, such that Ωi =

⋃
e∈{1:nel} Ωie, for all i ∈ {1, 2}. Thus, we

proceed by locating the intersection points between the internal skeleton Γ and Υ so that Υe

is the portion of Υ inside an element Ωe, i.e., Υe := Υ ∩ Ωe. Note that by definition, Υe is
a continuous curve; otherwise, Ωe would be split into more than two regions. Moreover, note
that Υe can be composed of several NURBS curves, that is

Υe :=
⋃
j∈Je

Υj
e := CCCjΥ([λj1, λ

j
2]), (4.7)

with Je the set of coefficients j of the NURBS curves CCCjΥ inside Ωe, and λj1 and λj2 the extremes
of CCCjΥ in Ωe such that Υj

e = CCCjΥ([λj1, λ
j
2]). Owing to the assumption of orientability, Υe is a
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directed curve. Then, a left and a right side of Υe exist, and depending on the orientation of
Υe, we determine the fluid index i of the adjacent regions. For instance, when Υ is clockwise
oriented, the right regions belong to Ω1, the left to Ω2, and vice versa when Υ is counter-
clockwise oriented. We schematize the procedure in Figure 4.3a. The assignment of materials
to the remaining uncut elements is determined iteratively, starting with the elements for which
materials have already been defined and subsequently extending to elements that share faces,
inheriting the material of the shared face.

Ωe
Ω1
e

Ω2
e

(a) Construction of regions Ωi
e, for all i ∈ {1, 2}.

Ωe
T 1,1
e

T 1,3
e

T 1,2
e

T 2,1
e

T 2,3
e

T 2,2
e

T 2,4
e

(b) Quadrature triangulation of regions Ωi
e, for

all i ∈ {1, 2}.

Figure 4.3: Example of a square element Ωe cut by the interface Υ into two regions. The interface is
composed of two NURBS curves distinguished by the green bullet. Left figure: Decomposition of Ωe

in the regions Ω1
e and Ω2

e. Right figure: Decomposition of Ωi
e in quadrature triangles, for all i ∈ {1, 2}.

The red bullets represent the intersection points between Υ and ∂Ωe, and the blue bullets represent
the vertices of the element and of the quadrature triangles lying on the mesh skeleton.

Specific numerical techniques are used to integrate along cut faces, along NURBS curves, and
in cut elements, whereas uncut faces and uncut elements employ the standard HDG quadrature.

The quadrature along cut faces does not present particular complications by mapping the
Gauss–Legendre nodes onto the face region.

The quadrature along NURBS curves is treated element-wise. We define the quadrature
along the portion of interface Υe as∫

Υe

fdl =
∑
j∈Je

∫ λj
2

λj
1

f(CCCjΥ(λ))∥JCCCj
Υ

(λ)∥dλ,

with ∥JCCCj
Υ

∥ the norm of the differential of the NURBS curve CCCjΥ which describes Υj
e, and f a

generic scalar function defined along Υe. The integrals are approximated using the 1D Gauss–
Legendre quadrature defined in the parametric space [λj1, λ

j
2] and mapped along CCCjΥ. The same

procedure is realized for unfitted external boundaries.
The quadrature within a generic region Ωie involves multiple steps. Firstly, the region Ωie

undergoes a partitioning process, guided by Lee’s visibility algorithm [86], which is essential to
ensure the accuracy of the quadrature, as emphasized in [118] for fitted triangular meshes. It
is noteworthy that Lee’s algorithm necessitates polygonal regions. Thus, we approximate Ωie
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linearly by introducing a sufficient number of points along Υe to describe the curve accurately
(e.g., the number of points proportional to the inverse of the curvature of Υe). Once the
visibility subregions are determined, we partition each subregion into triangles reconstructing
the initial region Ωie,

Ωie =
⋃

l∈{1:ni
tri,e}

T i,le ,

with nitri,e the total number of triangles composing Ωie. The procedure is detailed in Appendix
5.A. The triangulation consists of two types of triangles: affine and curved. The curved triangles
are constructed with, at maximum, one curved side described by at most one NURBS curve.
Note that the exact NURBS curve description is used instead of linear approximations, which
serves solely for visibility checks. Then, given f a generic scalar function defined in Ωie, we
calculate the quadrature in Ωie as the sum of the quadrature in each triangle,∫

Ωi
e

f(x, y)dxdy =
∑

l∈{1:ni
tri,e}

∫
T i,l

e

f(x, y)dxdy.

When T i,le is affine, we employ the standard Gauss–Legendre quadrature, when T i,le is curved,
as detailed in [115], we constructed the Gauss–Legendre quadrature in the special tensor space
R := [λj1, λ

j
2] × [0, 1] so that is mapped into T i,le by means of the affine mapping ψ,

ψ(λ, θ) = CCCj(λ)(1 − θ) + θxxx3, ∀λ ∈ [λj1, λ
j
2], ∀θ ∈ [0, 1],

with x3 the triangle vertex that does not lie on the NURBS curve. Then,∫
T i,l

e

f(x, y)dxdy = |Jψψψ|
∫
R

f(ψ(λ, θ))dλdθ,

with |Jψ| the Jacobian of ψ, which is constant owing to the linearity of ψ.
The algorithm of the aforementioned method and the generalization for elements divided

into more than two regions are detailed in Appendix 5.B.

4.5 Computational details for high-fidelity simulations
In this section, we present a local, element-wise postprocessing technique that enables a super-
convergent velocity approximation. We employ this approach to formulate a degree-adaptive
strategy. Additionally, we outline an element extension method to ensure robustness with re-
spect to badly cut elements, which are elements cut by the interface or boundary such that
only a small portion of the volume lies within the computational domain.

4.5.1 Degree adaptivity
Following [37], for all i ∈ {1, 2}, we introduce the discrete functional space

Vh⋆ (Ω̂) :=
¶
v ∈ L2(Ω̂) | v|Ωi

e
∈ Pk+1(Ωie), ∀e ∈ {1:nel}

©
, (4.8)
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composed of polynomial functions of order at most (k + 1). Then, the accuracy of the velocity
field approximation can be enhanced by solving an additional, computationally efficient element-
wise problem. For all e ∈ {1:nel} and all i ∈ {1, 2}, find the superconvergent velocity field
u⋆ ∈ [Vh⋆ (Ω̂)]nsd such that−∇ · (µi∇ui⋆,e) = ∇ · (

√
µiLie) in Ωie,

µi∇ui⋆,e · ne = −
√
µiLie · ne on ∂Ωie ∪ (Υ ∩ Ωe),

(4.9)

and such that the mean superconvergent velocity satisfies

(ui⋆,e, 1)Ωe∩Ωi = (uie, 1)Ωi
e
. (4.10)

Hence, the standard HDG weak formulation is recovered in each fluid, namely

(∇wi
⋆, µ

i∇ui⋆,e)Ωi
e

= −(∇wi
⋆,
√
µiLie)Ωi

e
,

(ui⋆,e, 1)Ωi
e

= (uie, 1)Ωi
e
,

(4.11)

for all e ∈ {1:nel} and all i ∈ {1, 2}.
Consistently with [117], we employ the following element-wise measure of the error, that is

Ee := max
i∈{1,2}

1
∥ui⋆,e∥2

Ä
(ui⋆,e − uie,ui⋆,e − uie)Ωi

e

ä1/2
, for e ∈ {1:nel}, (4.12)

where ∥ ⊙ ∥2 denotes the L2-norm of a scalar-, vector-, or tensor- valued function defined in S.
By following the strategy depicted in [117], given an arbitrary desired accuracy ε, we ensure

the error to be lower than such accuracy by locally adapting the degree of approximation. We
solve iteratively problem (4.2) by increasing/decreasing, for each element Ωe, the local degree
of approximation of

δke =
⌈ log(ε/Ee)

log(he)

⌉
, (4.13)

with ⌈·⌉ the ceiling function. The procedure ends when δke = 0, for all e ∈ {1:nel}.

4.5.2 Element extension
It is well-known that unfitted methods suffer in the presence of elements cut by the interface
or boundary such that the portion of the computational volume is small with respect to the
volume of the whole element. We define the parameter

αie := |Ωie|
|Ωe|

, ∀e ∈ {1:nel}, ∀i ∈ {1, 2}, (4.14)

as the ratio between the volume of the computational region Ωie and the volume of whole element
Ωe in the domain. We denote by α := mine,i αie the smallest cut. An element is said badly cut
when αie < αmin, with αmin a user-specified variable set to αmin := 0.3, consistently with the
literature, e.g. [20], [22].

To address badly cut elements, we use an element extension method inspired by [99]. The
idea is to join badly cut elements with a neighbor element to eliminate the bad cut. Given a
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badly cut element, the method erases the element-based unknowns of such element and extends
the quadrature of the selected neighbor element onto the badly cut element. Additionally, the
extended element inherits the face-based unknowns of the badly cut element. If a face is shared
between the two elements, its face-based unknowns are erased, e.g., see Figure 4.4. For each

Figure 4.4: Illustration of the element extension strategy for an element badly cut by the external
boundary. Left figure: initial configuration with badly cut region (red) and well-cut region (green)
selected for the expansion. Right figure: the result of the element extension. The two elements are
joined in one unique element where the computational region is highlighted in green. The blue bullets
represent the element-based unknowns, and the red bullets represent the face-based unknowns of the
resulting element extension.

badly cut element, we assess potential extensions based on three factors: (i) the combined
area, (ii) the Euclidean distance between element centers, and (iii) the number of previously
extended elements connected to it. The element with the highest combined score of these factors
is extended onto the badly cut element. In two-fluid problems, we apply a stronger penalty to
discourage multiple extensions per element owing to inter-region coupling, thus minimizing the
local problem size.



Chapter 5

HDG for microfluid dynamics
problems

In this chapter, we test the unfitted HDG-NEFEM method for different one- and two-fluid
problems. In Section 5.1, we validate the method, and we obtain optimal error decay and
condition number growth. Moreover, we study the effects of badly cut faces and badly cut cells.
Then, in Sections 5.2 and 5.3, we solve two verification test cases for one- and two-fluid problems,
respectively. In the former, the external boundary, and in the latter, the interface does not fit
the mesh. Finally, in Sections 5.4 and 5.5, we solve two physical meaningful problems where
the external boundary and the interface assume more complex configurations.

5.1 Numerical validation
Hybrid methods pose unknowns on both elements and faces. Thus, the unfitted mesh approach
can generate, as well as the classical badly cut elements, badly cut faces. Following the HDG
decomposition into local and global problems, we consider a one-fluid problem, and we analyze
the effects of bad cuts on the error and on the conditioning of local and global matrices. The
condition number is computed using the Euclidean norm, and we name κloc and κglob, the
conditioning of the HDG local and global matrices, respectively. Consistently with the element
ratio αie defined in (4.14), we define for each face Γf ⊂ Γ,

βif := |Γf ∩ ∂Ωi|
|Γf |

, f ∈ {1:nfc}, i ∈ {1, 2}, (5.1)

the ratio between the area of the computational face Γif and the area of the whole face Γf . We
denote by β := minf,i βif the smallest cut.

Let us consider the one-fluid case problem with only Dirichlet boundary conditions, such
that Ω1 := Ω, Ω2 := ∅, ΓD := ∂Ω, ΓN := ∅. Additionally, we set µ := 1,

s := ∇p− ∇ · (µ∇u),

61
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and uuuD := uref , where the exact analytical solutions are

uref :=
Ç
x2(1 − x)2(2y − 6y2 + 4y3)

−y2(1 − y)2(2x− 6x2 + 4x3)

å
, pref := x(1 − x). (5.2)

5.1.1 Badly cut faces
Let us consider the M-shaped domain Ω in Figure 5.1 using the mesh composed of 4 × 4 square
elements partitioning exactly the square Ωo = (0, 1)2. The M-shaped domain is defined such
that all the elements and faces are well-cut, but the top vertical face of length ε. We study the
influence of the badly cut face on the global conditioning for various ε ∈ {0.005, 0.05, 0.1, 0.15}
so that we obtain β ∈ {2%, 20%, 40%, 60%} of the whole face while maintaining well-cut cells
with α > 50%. Figure 5.2 displays a comparison between Lagrange (using Fekete nodes) and
Legendre face basis functions in the reference face Γ̂ := [−1, 1]. Lagrange basis functions
belong to the category of nodal bases, which means that they are composed of polynomial
functions, denoted as {bj(x)}j∈{0:k}, satisfying bj(xi) = δij , with {xi}i∈{0:k} a set of nodes,
k the degree of approximation, and δij the Kronecker symbol. Consequently, a polynomial
function centered at xi (i.e., bj(xi) = 1) is equal to 0 at all nodes except xi. When we integrate
a Lagrange interpolating function over Γ̂, we observe that as the polynomial order k increases,
the contribution of each polynomial function to the quadrature becomes concentrated in the
vicinity of its center. As a result, when a node on a cut face is cut out of the computational
domain, the polynomial function centered at such node provides small contributions, which
tend towards zero as we increase the polynomial order k of the basis. This phenomenon can
lead to ill-conditioning. On the contrary, this phenomenon is less pronounced for modal basis
functions, such as Legendre bases, where the contribution of each polynomial function is more
evenly distributed throughout the entire domain. In our view, this distinction is the primary
reason for the enhanced robustness exhibited by Legendre face basis functions when confronted
with badly cut faces.

Figure 5.3 shows the global condition number κglob solving problem (5.2) comparing La-
grange and Legendre face basis functions for different polynomial orders k ∈ {1:4}. We use 2D
Lagrange tensor basis functions, Pk

La, with Fekete nodes for the element-based unknowns. Note
that this choice leads to optimal conditioning of standard HDG (uncut) elements. Using Leg-
endre face basis functions, κglob appears independent of β. In Section 5.2, we prove numerically
that the global condition number κglob grows like O(h−2) for h → 0 achieving the optimal rate
for second-order elliptic differential operators. Henceforth, we set the Legendre polynomials as
default face basis functions.
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Figure 5.1: M-shaped domain with ε = 0.15 (β = 60% of the whole face). The domain is a rectangle
(0.25, 0.75) × (0.25, 1) where the top side has been divided into two segments connected in the point
(0.5, 0.75 + ε). The mesh is composed of 4 × 4 square elements partitioning exactly the square Ωo =
(0, 1)2.

(a) 1D Lagrange basis functions P̂4
La. (b) 1D Legendre basis functions P̂4

Le.

Figure 5.2: Example of nodal (Lagrange with Fekete nodes) and modal (Legendre) face basis functions
in the reference face Γ̂ = [−1, 1] of order k = 4.
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Figure 5.3: M-shaped domain with ε ∈ {0.15, 0.1, 0.05, 0.005} (β ∈ {0.60, 0.40, 0.20, 0.02}). Comparison
of log10(κglob) with respect to β using Legendre P̂k

Le (continuous lines) and Lagrange P̂k
La (dotted lines)

face basis functions. The basis orders are k = 1 (blue lines), k = 2 (red lines), k = 3 (yellow lines), and
k = 4 (purple lines). The mesh is composed of 4 × 4 square elements.
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5.1.2 Badly cut cells
Let us check the influence of the badly cut cells on the HDG local formulation. To counter the
adverse effects of the badly cut cells, we use the element extension strategy, presented in Section
4.5.2. We consider the smoothed square domain Ω in Figure 5.4, using the mesh composed of
4 × 4 square elements exactly partitioning the square Ωo = (0, 1)2. In this configuration, all the
faces are well-cut, β > 60%, and the elements at the corners are badly-cut, α = 6%. Note that
the well-cut elements have an element ratio equal to 60%).

(a) Smoothed square domain. (b) The element extension agglomeration procedure.

Figure 5.4: Smoothed square domain. The domain is a square (0.1, 0.9)2 where the angles have been
substituted with an arc of circumference of radius 0.15. The mesh is composed of 4×4 square elements
partitioning exactly the square Ωo = (0, 1)2.

Figures 5.5a and 5.5b display the local conditioning κloc for the HDG formulation without
and with element extension. Consistently, Figure 5.5c and 5.5d display the element-wise L2-
velocity error. We employ the Lagrange basis P4

La and Legendre basis P̂4
Le for the element- and

face-based unknowns, respectively. We notice that element extension improves numerical error
by countering the effects of the badly cut cells, even though it is insufficient to mitigate local
conditioning. Indeed, extrapolation has some drawbacks on the local condition number of the
extended element: comparing Figures 5.5a and 5.5b, one can notice that the 6% extrapolation
worsens κloc of about 2 orders of magnitude compared to its initial value. Different basis
functions, such as the tensor Legendre basis, have been investigated as alternatives. We observed
an enhancement in the local conditioning, but not significant enough to opt for such Legendre
basis.
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(a) Conditioning log10(κloc) without robustness
strategies.

(b) Conditioning log10(κloc) applying the element
extension strategy.

(c) Error ∥u−uref∥2 without robustness strategies. (d) Error ∥u−uref∥2 applying the element extension
strategy.

Figure 5.5: Smoothed square domain. Comparison on the local condition number log10(κloc) (top row)
and of the element L2-velocity error (bottom row) without (left) and with (right) element extension.
The mesh is composed of 4 × 4 square elements.

5.2 Taylor–Couette with immersed boundary
In this section, we utilize the tools designed for addressing badly cut cells and faces, employing
the element extension strategy and Legendre basis functions. The primary objective is to vali-
date the optimality of the unfitted HDG-NEFEM method for one-fluid problem. Additionally,
we implement the degree-adaptive strategy, as introduced in Section 4.5.1, to further enhance
the computational approach.

Let us consider the 2D Taylor–Couette flow problem. The domain consists of two coaxial
circles, centered in xc := (0.5, 0.5) of radii R1 := 1/6, R2 := 1/3, rotating with different angular
velocities ω1 := 0, ω2 := 1. The domain is immersed onto a mesh composed of Nx ×Ny square
elements, exactly matching Ωo := (0, 1)2. Moreover, we impose µ := 1, s := 0, and uuuD = uref
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on the whole boundary ΓD = ∂Ω such that the analytical solution is

uref =

Ö
−Ay −By/(x2 + y2)

Ax+Bx/(x2 + y2)

è
, pref = 1, (5.3)

with
A = ω2R

2
2 − ω1R

2
1

R2
2 −R2

1
, B = (ω1ω2)R2

2R
2
1

R2
2 −R2

1
.

Figure 5.6 displays the element extension strategy using a mesh composed of 8 × 8 square
elements. In Figures 5.7 and 5.8, we show the module of the approximated solution and its
error, respectively, for k = 4 and using a mesh composed of 8 × 8 square elements.

(a) Taylor–Couette domain. (b) The element extension agglomeration procedure.

Figure 5.6: Taylor–Couette domain, zoom in (0.125, 0.875)2. Example of the element extension strategy
applied to a mesh composed of 8 × 8 square elements partitioning exactly the square Ωo = (0, 1)2.

Figures 5.9 and 5.10 display the convergence for each variable of the HDG formulation. Note
that optimal convergence hk+1 is achieved, and by means of the local postprocess, we obtain
hk+2 superconvergence for u⋆.

Figure 5.11 displays the maximum local and global condition numbers as a function of the
polynomial approximation order k. We observe linear growth rate O(k). Figure 5.12 displays
the global condition number κglob as a function of the mesh-size h. The expected growth rate
of O(h−2) is achieved.

Finally, in Figure 5.13, we apply the degree adaptation to ensure 4 significant digits.
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Figure 5.7: Taylor–Couette domain, zoom in (0.125, 0.875)2. Absolute value of the approximated
velocity for k = 4. The mesh is composed of 8 × 8 square elements. The element extension strategy is
applied.

(a) Absolute value of the error of the approximated
velocity, log10(∥u(xxx) − uref(xxx)∥).

(b) Absolute value of the error of the approximated
pressure log10(|p(xxx) − pref(xxx)|).

Figure 5.8: Taylor–Couette domain, zoom in (0.125, 0.875)2. Absolute value of the velocity and pressure
errors for k = 4. The mesh is composed of 8 × 8 square elements. The element extension strategy is
applied.
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Figure 5.9: Taylor–Couette domain. The L2-error of the mixed variable (continuous lines) and pressure
(dashed lines) using element extension. The meshes are composed of 2 × 2, 4 × 4, 8 × 8, 16 × 16, and
32 × 32 square elements. The basis orders are k = 1 (blue lines), k = 2 (red lines), k = 3 (yellow lines),
and k = 4 (purple lines).

(a) L2(u − uref) error of the velocity varying the
mesh-size h.

(b) L2(u⋆ − uref) error of the superconvergent ve-
locity varying the mesh-size h.

Figure 5.10: Taylor–Couette domain. In Figure 5.10a, the L2-velocity error, and in Figure 5.10b, L2-
superconvergent velocity error using element extension. The meshes are composed of 2×2, 4×4, 8×8,
16 × 16, and 32 × 32 square elements. The basis orders are k = 1 (blue lines), k = 2 (red lines), k = 3
(yellow lines), and k = 4 (purple lines).



70 HDG for microfluid dynamics problems

(a) maxh(κglob) with respect to the polynomial or-
der k of the HDG approximation.

(b) maxh(κloc) with respect to the polynomial order
k of the HDG approximation.

Figure 5.11: Taylor–Couette domain. In Figure 5.11a, the maximum value of the global condition
number as a function of the polynomial order k for the meshes composed of 2 × 2, 4 × 4, 8 × 8, 16 × 16,
and 32 × 32 square elements. Similarly, in Figure 5.11b, the local condition number. The element
extension strategy is applied.

Figure 5.12: Taylor–Couette domain. Global condition number as a function of the mesh-size h for the
basis orders k = 1 (blue lines), k = 2 (red lines), k = 3 (yellow lines), and k = 4 (purple lines). The
element extension strategy is applied. The meshes are composed of 2 × 2, 4 × 4, 8 × 8, 16 × 16, and
32 × 32.
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(a) Degree-adaptive approximation space. (b) The element extension agglomeration pro-
cedure.

Figure 5.13: Taylor–Couette domain, zoom in (0.125, 0.875)2. Degree-adaptive approximation space
ensuring 4 significant digits. The mesh is composed of 8 × 8 square elements.
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5.3 Circular bubble at equilibrium

We consider a two-fluid interface problem with a circular bubble of radius R := 1/3 centered in
xc := (0.5, 0.5) (domain Ω1) having viscosity µ1 := 10 immersed into an external fluid (domain
Ω2) confined into the box Ω := (0, 1)2 with viscosity µ2 := 1. Moreover, we set sss := 000, uuuD := 000,
γ := 1. Under these assumptions, it is known that the problem is at equilibrium, and its
analytical solution is

uref = 000,

pref =

πRγ − γ

R
, if r < R,

πRγ, elsewhere.

Figure 5.14 displays the mesh domain Ωo = (0, 1)2 exactly discretized by the mesh composed
of 8 × 8 square elements using element extension. Employing a linear HDG approximation, we
achieve machine error, as shown in Figure 5.15, for all the variables: the L2-velocity error is
∼ 10−12, the L2-pressure error ∼ 10−9, and L2-mixed variable error ∼ 10−10.

(a) Equilibrium bubble domain. (b) The element extension agglomeration procedure.

Figure 5.14: Equilibrium bubble. The mesh is composed of 8 × 8 square elements partitioning exactly
the square Ωo = (0, 1)2. The element extension strategy is applied.
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(a) Absolute value of the error of the approximated
velocity, log10(∥u(xxx) − uref(xxx)∥).

(b) Absolute value of the error of the approximated
pressure, log10(|p(xxx) − pref(xxx)|).

Figure 5.15: Equilibrium bubble. The mesh is composed of 8 × 8 square elements. The basis order is
k = 1.

5.4 Passive microfluidic mixer with immersed boundary
Let us consider the one-fluid microchannel inspired by the realistic design of a passive microflu-
idic mixer [126], see Figure 5.16. The flow enters from the top, where we set Dirichlet boundary
conditions uuuD = (0,−1), and exits from the bottom, where we set zero Neumann boundary
conditions. No-slip boundary conditions are imposed on the remaining boundaries and on the
inner circular obstacles. These inclusions are represented by 8 circles of different radii used to
create additional structures to deviate the flow and summarized in Table 5.1. Moreover, we set

Table 5.1: Mixer: circular inclusions data (ordered from left to right).

Radii (Ri) Centers (xci ) Radii (Ri) Centers (xci )
x1
c := (0.410, 0.438) R1 := 0.034 x2

c := (0.460, 0.452) R2 := 0.012
x3
c := (0.482, 0.477) R3 := 0.012 x4

c := (0.500, 0.510) R4 := 0.020
x5
c := (0.500, 0.560) R5 := 0.025 x6

c := (0.545, 0.560) R6 := 0.015
x7
c := (0.573, 0.585) R7 := 0.020 x8

c := (0.630, 0.580) R8 := 0.030

µ := 1, s := 0. The domain is immersed onto a mesh composed of 10 × 32 square elements,
exactly matching the rectangle Ωo := (0.34375, 0.65625) × (0, 1).

In Figure 5.17, we show the approximated solution using the degree-adaptive approximation
space as depicted in Figure 5.18b, ensuring a precision of 2 significant digits. Figure 5.18a
displays the employed element extension strategy. The velocity field undergoes significant
modifications in regions proximate to the circular inclusions, as outlined in [126] to enhance
the mixing process. Additionally, we accurately capture the pressure drop between the inlet
and outlet locations. Our approach employs degree adaptation, where high-order polynomials,
reaching up to order 6, are selectively used in regions near the circular inclusions owing to the
more complex flow behavior. In contrast, a first-order polynomial approximation is employed
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elsewhere. This strategy effectively delivers accurate and efficient solutions, even on relatively
coarse meshes, as exemplified in this study.

(a) Computational do-
main.

(b) Unfitted mesh.

Figure 5.16: Mixer. The inlet boundary (in blue) and the outlet boundary (in red). The channel
(without the inclusions) is symmetric with respect to the axis x = 0.5. The mesh is composed of
10 × 32 square elements partitioning exactly the rectangle Ωo = (0.34375, 0.65625) × (0, 1).
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(a) Absolute value of the ap-
proximated velocity.

(b) Approximated
streamlines.

(c) Approximated pressure p.

Figure 5.17: Microchannel domain. The employed degree-adaptive approximation space is displayed in
Figure 5.18b and ensures 2 significant digits. The mesh is composed of 10 × 32 square elements. The
element extension strategy is applied.

(a) The element ex-
tension agglomeration
procedure.

(b) Degree-adaptive ap-
proximation space to
ensure 2 significant digits.

Figure 5.18: Mixer. The mesh is composed of 10 × 32 square elements. Degree-adaptive approximation
space ensuring 2 significant digits. The element extension strategy is applied.
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5.5 Emulsion flows in a porous medium

Consider the emulsion flow problem within porous media, as described in [7], [84], [93], where
the gravitational force influences the fluids, leading to a downward flow. In this context, we
have two fluids in contact: a dispersed phase (referred to as fluid 1, e.g., oil bubbles) immersed
within a continuous fluid phase (fluid 2, e.g., water) that permeates through the pores of a
homogeneous porous medium. Figure 5.19 illustrates a periodic microscopic unit cell of this
porous medium. The solid matrix is represented by a circular region centered at xc := (0.5, 0.5)
with a radius of R := 0.25231 and is assumed to be rigid and impermeable. Material 2 is
subdivided into 28 bubbles, as detailed in Table 5.2, each defined by closed NURBS curves.
This material exhibits a porosity of approximately 0.8, and the flow is such that the saturation
of material 2 remains at 80%. Regarding the boundary conditions, no-slip boundary conditions
uuuD := 0 are set on the porous material and periodic boundary conditions on the external
square box. It is worth noting that the hybrid variable û naturally incorporates the periodic
boundary conditions. Indeed, û enables the coupling of each pair of external faces associated,
which exhibit periodicity, treating them as a unified inner face while eliminating the unknowns
related to one of the two original periodic faces. Additional problem data includes the surface
tension of γ := 2.4 · 105, viscosities of µ1 := 40 and µ2 := 4, such that the viscosity ratio is
µ1/µ2 = 10, and a body force term sss := (0,−613.125). These values are the adimensionalization
of the physically meaningful data from [7], [84], [93].

Figure 5.21 displays the degree-adaptive approximation space ensuring 2 significant digits.
Figure 5.20 illustrates the velocity and pressure approximations using such degree-adaptive
approach. The approximated velocity field is in accordance with the results in [93]. Moreover,
the pressure jump between fluids 1 and 2 is consistent with the surface tension condition at the
interface, which depends on the curvature of the dispersed bubble phase. Indeed, we observe
that the pressure jump increases proportionally to the inverse of the radius of the circular
bubbles.

Table 5.2: Porous media emulsion: circular bubbles data.

Bubble Index (i) Radii (Ri) Centers (xci )
1-4 0.03 (0.156, 0.156), (0.156, 0.844), (0.844, 0.844), (0.844, 0.156)
5-8 0.026 (0.5, 0.1), (0.1, 0.5), (0.5, 0.9), (0.9, 0.5)
9-12 0.026 (0.7, 0.11), (0.3, 0.11), (0.11, 0.3), (0.11, 0.7)
13-16 0.026 (0.3, 0.89), (0.7, 0.89), (0.89, 0.7), (0.89, 0.3)
17-20 0.022 (0.75, 0.25), (0.25, 0.25), (0.25, 0.75), (0.75, 0.75)
21-24 0.015 (0.59, 0.16), (0.41, 0.16), (0.16, 0.41), (0.16, 0.59)
25-28 0.015 (0.41, 0.84), (0.59, 0.84), (0.84, 0.41), (0.84, 0.59)
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(a) Computational domain. (b) Unfitted mesh.

Figure 5.19: Porous media emulsion. The no-slip boundary conditions are set on the boundary of the
brown circular pore, periodic boundary conditions on the external boundary of the box (0, 1)2, and
interface boundary conditions between the continuous fluid phase (white) and the bubbles (blue). The
mesh is composed of 32 × 32 square elements partitioning exactly the square Ωo = (0, 1)2.
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(a) Absolute value of the approximated velocity. (b) Approximated streamlines.

(c) Approximated pressure p.

Figure 5.20: Porous media emulsion. Figure 5.21b displays the degree-adaptive approximation space.
The mesh is composed of 32 × 32 square elements. The element extension strategy is applied.
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(a) The element extension agglomeration procedure. (b) Degree-adaptive approximation space ensuring 2
significant digits.

Figure 5.21: Porous media emulsion. The mesh is composed of 32 × 32 square elements. Degree-
adaptive approximation space ensuring 2 significant digits. The element extension strategy is applied.
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5.6 Conclusions
In this chapter, we have extended the degree-adaptive approach, combining the advantages of
the HDG-NEFEM formulation with unfitted schemes. The proposed methodology ensures an
exact geometric discretization by the combination of the unfitted framework with the NURBS
representation of boundaries and interfaces. Additionally, the proposed element-wise error
estimator enhances the computational efficiency while ensuring the accuracy of the results.
Notably, we avoided introducing additional DoFs along interfaces and boundaries.

Our investigations revealed that the unfitted HDG-NEFEM method exhibits optimal error
decay and condition number growth when applied to one-fluid problems. While similar con-
vergence results are expected for two-fluid problems, this point will be investigated in future
work.

Furthermore, this Thesis opens up new areas for future research. Interesting directions are
moving interfaces, unsteady flows, and more complex governing equations like the Navier-Stokes
equations.
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5.A Quadrature triangulation

Given a cut element Ωe, for each region Ωie, the procedure is as follows:

1. The region Ωie is linearly approximated as a polygon defined by the vertices of Ωe lying
in Ωie, the extremes of Υj

e, with j ∈ {1:nΥ}, and a large enough number of points along
Υj
e such that Υj

e is well described (e.g., the number of points proportional to the inverse
of the curvature of Υe).

2. Given an initial point x0 within Ωie (e.g., a vertex or the barycenter of a face belonging
to ∂Ωie), Lee’s visibility algorithm [86] defines the subregions of Ωie visible from x0, i.e.,
the polygon composed of the points such that the segment connecting to x0 does not cut
Υe.

3. The NURBS description of Υe is restored, and each subregion is divided into triangles
with at maximum one curved side described by at most one NURBS curve.
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(a) Cut element Ωe divided into
two regions Ω1

e and Ω2
e.

(b) Interface polynomial approxi-
mation of the interface and iden-
tification of the visibility polygon
from the chosen initial point (or-
ange bullet).

(c) First visible region. Identifica-
tion of other visibility polygons.

(d) Resulting triangulation of a re-
gion Ωi

e.

Figure 5.22: Triangulation procedure for a region Ωi
e, i ∈ {1, 2}. In Figure 5.22a, a generic cut element

Ωe is cut by the interface Υe. The two yellow bullets represent the intersection points Υ ∩ ∂Ωe. The
interface Υe is composed of two NURBS curves, separated by the red bullet, and is sampled by 6 blue
bullets. In Figure 5.22b, the interface Υe is approximated by segments. Using Lee’s visibility algorithm,
we check the visibility polygon of the orange bullet. In Figure 5.22c, the points visible from the orange
bullet form the first visible subregion. We repeat the procedure until Ωi

e is completely partitioned in
visible subregions. In Figure 5.22d, the triangulation is finalized, and each subregion is subdivided into
quadrature triangles. Note that the quadrature triangles use the exact description of Υe.

5.B Domain definition
The knowledge of a NURBS interface dividing Ω into two subdomains does not enable a straight-
forward determination of the subdomains Ωi, i ∈ {1, 2}. We assume that the interface Υ is
closed, orientable, and does not touch the boundary ∂Ω so that we denote by Ω1 the interior
subdomain and by Ω2 the exterior subdomain. Moreover, we assume the external boundary ∂Ω
aligned with the mesh interface so that to focus only on the interface Υ, see Figure 5.23. The
same procedure can be generalized for unfitted ∂Ω.

To determine Ωi and the local regions Ωie, for all e ∈ {1:nel} and all fluid i ∈ {1, 2}, we
inspired from the work [99], and we proceed as follows:
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Ω1

Ω2

Υ

Ω

n1

n2

Figure 5.23: Computational domain Ω, divided into the subdomains Ω1 and Ω2, with fitted external
boundary ∂Ω. The interface Υ is clockwise oriented and is composed of 5 NURBS curves (separated by
red bullets). The outward unit normal to Ωi is denoted by ni, for all i ∈ {1, 2}. The mesh is composed
of 7 × 7 square elements.

1. Construction of the points {xjk}k∈{1:nj} for each NURBS curveCCCjΥ, j ∈ {1:nΥ}, composing
Υ. Given nj large enough (e.g., nj := 100), the points xjk are set equispaced in the
parametric NURBS domain [0, 1], such that

xjk = CCCjΥ(λjk), λjk = k/nj , k ∈ {0:nj}.

2. For all k ∈ {0:nj} and all j ∈ {1:nΥ}, we find the mesh element Ωe to which xjk belongs,
i.e., xjk ∈ Ωe. These elements are called cut elements. Parallelization or optimized
sequential algorithms, which search for cut elements only in the neighborhood of already
defined cut elements, can be used to fasten the research of such cut elements.

3. For each cut element Ωe and all k ∈ {1:nj − 1}, we search for neighbor points xjm of xjk,
with m ∈ {k − 1:k + 1}, that lie outside Ωe. When a point xjm is outside Ωe, owing to
the continuity of CCCj , we find the intersection point between Υ and ∂Ωe, xje,n = CCCjΥ(λjn) ∈
CCCjΥ([λjk−1, λ

j
k+1]) by employing a dichotomy algorithm. We denote by nje the number of

intersections Ωe ∩ Υ, xje,n, with n ∈ {1:nje}, and by Je the set of coefficients j of the
NURBS curves CCCjΥ inside Ωe, i.e.,

Je := {j ∈ {1:nΥ} | CCCjΥ ∩ Ωe ̸= ∅}.

Notice that we assumed interface elements to be divided at maximum into two regions,
i.e., nje := 2. This hypothesis is relaxed in Remark 5.1 for elements divided into multiple
regions.

4. Check on the cut elements. Given a cut element Ωi, for all the intersection points in Ωi,
xji,n, with j ∈ {1:nΥ} and n ∈ {1, 2}, it has to exist a corresponding intersection point
xjk,n, lying in a neighbor element Ωk sharing one face, such that xji,n = xjk,n. If this
condition is not satisfied, a local refinement is performed to look for missing cut elements.
We assume that the interface does not intersect an element through a vertex.
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5. For each cut element Ωe, the intersection points xje,n, with n ∈ {1, 2}, are ordered accord-
ing to the orientation of Υ (first in, last out). We denote by Υe the portion of Υ inside
Ωe, Υe = Υ ∩ Ωe, such that Υe is a continuous curve defined as

Υe :=
⋃
j∈Je

Υj
e := CCCjΥ([λj1, λ

j
2]), (5.4)

with λj1 and λj2 the extremes of CCCjΥ in Ωe such that Υj
e = CCCjΥ([λj1, λ

j
2]).

6. For each cut element Ωe, the two regions, Ω1
e and Ω2

e, are constructed connecting the
mesh vertices and the ordered intersection points, as schematized by Figure 5.24a. The
algorithm starts from the first intersection point and follows two possible paths: (i) always
taking the first edge to the right (first region), or (ii) always taking the first edge to the
left (second region). A superscript i denotes each region according to its fluid type, Ωie,
that is defined according to its position with respect to Υ (left or right side) and the
orientation of Υ (counter-clockwise or clockwise oriented). When Υ is clockwise oriented,
the right regions belong to Ω1, the left to Ω2, and vice versa when Υ is counter-clockwise
oriented.

Ωe
Ω1
e

Ω2
e

(a) Construction of regions Ωi
e, for all i ∈ {1, 2}.

Ωe
T 1,1
e

T 1,3
e

T 1,2
e

T 2,1
e

T 2,3
e

T 2,2
e

T 2,4
e

(b) Quadrature triangulation of regions Ωi
e, for all

i ∈ {1, 2}.

Figure 5.24: Example of a square element Ωe cut by the interface Υ into two regions. The interface is
composed of two NURBS curves, Υj

e and Υk
e , distinguished by the green bullet. Left figure: Decom-

position of Ωe in the regions Ω1
e and Ω2

e. Right figure: Decomposition of Ωi
e in quadrature triangles of

regions Ωi
e, for all i ∈ {1, 2}. The red bullets represent the intersection points xj

e,1 and xk
e,2, the blue

bullets represent the vertices of the element and of the quadrature triangles lying on the mesh skeleton.

Remark 5.1 (Interface elements cut in more than two regions). Let us investigate the general-
ization to the case with a generic number of intersection points nje splitting Ωe into nje/2 + 1
disjoint regions. Then, Υe is composed of nje − 1 disjoint curves Υe,n, i.e.,

Υe :=
⋃

n∈{1:nj
e−1}

Υe,n,
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so that each curve Υe,n is continuous and can be composed of different NURBS curves CCCjΥ, i.e.,

Υe,n =
∑

j∈Je,n

Υj
e,n := Υe,n ∩CCCjΥ(λ), ∀λ ∈ [0, 1].

with
Je,n := {j ∈ {1:nΥ} | CCCjΥ ∩ Υe,n ̸= ∅}.

Then, the different regions are identified by repeating step 6 for all the oriented edges. The
generalization of the quadrature is straightforward.
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Chapter 6

Bridging HHO and HDG for one-
and two-fluid Stokes problems

In this chapter, we compare the HHO and HDG formulations to discretize the one-fluid and the
two-fluid Stokes problems, using the so-called full gradient formulation. We consider meshes
fitted to the external boundary and unfitted to the fluid interface. At the interface, surface
tension effects are considered.

The chapter is structured as follows: In Section 6.1, we consider the one-fluid Stokes problem
and we prove that the HHO and HDG methods can differ only in the choice of the approximation
spaces and of the stabilization operator. In Section 6.2, we consider the two-fluid Stokes problem
and we compare the unfitted HHO formulation, presented in Chapter 2, with the unfitted HDG
formulation, presented in Chapter 4. We show that the unfitted formulations can additionally
differ in the choice of the penalty method.

6.1 One-fluid Stokes problem
In this section, we compare the HHO and HDG formulations to discretize the one-fluid Stokes
problem posed in a domain with a simple shape so that a fitted mesh can be used. We prove
that the HHO and HDG methods can differ only in the choice of the approximation spaces
and of the stabilization operator. For the reader’s convenience and the self-completeness of
this chapter, some definitions and statements from the previous chapters are re-iterated in this
chapter.

6.1.1 Model problem
Let Ω ⊂ Rnsd , nsd ∈ {2, 3}, be the computational domain (connected, bounded, open Lipschitz
set) occupied by a single incompressible Stokes fluid. On the boundary ∂Ω of Ω, Dirichlet and
Neumann boundary conditions are prescribed, on the (relatively open) subsets ΓD and ΓN,
respectively, with ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. We impose the velocity uuuD ∈ H1/2(ΓD; Rnsd)
on the Dirichlet boundary, and the pseudo-traction ttt ∈ L2(ΓN; Rnsd) on the Neumann boundary.
Additionally, we impose the body force fff ∈ L2(Ω; Rnsd) in the domain. For simplicity, we assume

89
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that Ω is a polyhedron so that it can be meshed exactly.
We consider the so-called full gradient formulation of the Stokes problem such that we seek

the velocity and pressure fields (uuu, p) ∈ H1(Ω; Rnsd) × L2(Ω) that satisfy

−∇ · (µ∇u− pInsd) = fff in Ω, (6.1a)
∇ · uuu = 0 in Ω, (6.1b)

uuu = uuuD on ΓD, (6.1c)
(µ∇u− pInsd)nΩ = ttt on ΓN, (6.1d)

where µ is the viscosity, nΩ is the unit outward normal to Ω, and Insd is the identity tensor
of dimension nsd. We assume that µ is piecewise constant on a polyhedral partition of Ω. We
assume that the interface between ΓD and ΓN is Lipschitz, so that there is a bounded extension
operator H1/2(ΓD; Rnsd) → H1/2(∂Ω; Rnsd). Moreover, we assume that the equations are written
in non-dimensional form. When ΓN = ∅, the Stokes problem is solvable only if∫

∂Ω
uuuD · nΩ = 0 (6.2)

and, in this case, up to a global additive constant on the pressure, which we fix by imposing∫
Ω
p = 0. (6.3)

Moreover, when ΓD = ∅, we assume the compatibility condition∫
Ω
fff +

∫
∂Ω
ttt = 0. (6.4)

6.1.2 Discrete setting
We consider a shape-regular mesh composed of nel disjoint (open) subdomains Ωe such that Ω
is exactly covered, i.e.,

Ω =
⋃

e∈{1:nel}

Ωe. (6.5)

Here and in what follows, we employ the shorthand notation {m:n} := {m, . . . , n} = {p ∈
N, m ≤ p ≤ n} for integer numbers m ≤ n. We denote by he the diameter of a generic mesh
cell Ωe and by ne its unit outward normal. We assume that the mesh is fitted to the partition
on which µ is piecewise constant and to the partition of ∂Ω related to the prescribed boundary
conditions.

The collection of mesh faces, Γ, is called mesh skeleton and is defined as

Γ :=
⋃

e∈{1:nel}

∂Ωe =
⋃

f∈{1:nfc}

Γf , (6.6)

where ∂Ωe is the boundary of Ωe for all e ∈ {1:nel}, Γf is a generic mesh face belonging to
Γ, and nfc is the total number of mesh faces. The set Γ is partitioned as Γ = Γ◦ ∪ Γ∂ , where
Γ◦ := Γ \ ∂Ω is the collection of mesh interfaces and Γ∂ is the collection of mesh boundary
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faces. The faces in Γ◦ compose the internal skeleton. These faces are conventionally numbered
from 1 to n◦

fc.
To avoid distracting technicalities, HHO and HDG methods are first compared in the case

of homogeneous Dirichlet boundary conditions, i.e., we set ΓN = ∅, ΓD = ∂Ω and uuuD = 0.
The treatment of more general boundary conditions is done in Section 6.1.6. To solve problem
(6.1), HHO methods utilize a primal formulation and approximate the triple (u, p, û), formed
by velocity, pressure, and velocity trace on the mesh skeleton. In contrast, HDG methods
approximate a quadruple by introducing an extra dual variable, L, inspired from the mixed
formulation and which represents the gradient of the velocity scaled by −√

µ. Notice that the
assumption of piecewise constant viscosity is fundamental to preserve the polynomial nature of
the HDG dual variable L = −√

µ∇u. A simple alternative is to define L as −∇u.
Henceforth, to distinguish between the HHO and HDG notation, we employ the superscript

HHO to denote HHO-related quantities and the superscript HDG to denote HDG-related quan-
tities. Both HHO and HDG methods consider the following approximation spaces:

L := {G := (Ge)e∈{1:nel} ∈ L2(Ω; Rnsd×nsd); Ge ∈ Le, ∀e ∈ {1:nel}}, (6.7a)

U := {v := (ve)e∈{1:nel} ∈ L2(Ω; Rnsd); ve ∈ Ue, ∀e ∈ {1:nel}}, (6.7b)

P := {q := (qe)e∈{1:nel} ∈ L2(Ω; R); qe ∈ Pe, ∀e ∈ {1:nel}}, (6.7c)

Û := {v̂ := (v̂f )f∈{1:nfc} ∈ L2(Γ; Rnsd); v̂f ∈ Ûf , ∀f ∈ {1:nfc}}, (6.7d)

where Le, Ue, Pe, Ûf are finite-dimensional spaces composed of polynomials from Ωe to Rnsd×nsd ,
from Ωe to Rnsd , from Ωe to R, and from Γf to Rnsd , respectively. Letting k ≥ 0 be the polynomial
degree, the prototypical example we consider henceforth is

Le := Pk(Ωe; Rnsd×nsd), Pe := Pk(Ωe; R), Ûf := Pk(Γf ; Rnsd), (6.8)

and

Ue :=
{

Pk(Ωe; Rnsd), equal-order setting,
Pk+1(Ωe; Rnsd), mixed-order setting.

(6.9)

For all e ∈ {1:nel}, we denote by v̂e the collection of (v̂f )Γf ⊂∂Ωe , so that

v̂e := (v̂f )Γf ⊂∂Ωe ∈ Ûe := ×
Γf ⊂∂Ωe

Ûf . (6.10)

In both HHO and HDG methods, the difference of the trace of ve on ∂Ωe and v̂e plays an
important role. We write

Û
∗
e := {ve|∂Ωe

− v̂e; ∀ve ∈ Ue, ∀v̂e ∈ Ûe}. (6.11)

Recalling (6.9), there are two situations: (i) the equal-order case where the polynomials com-
posing Ue and Ûf are of the same order, in which case we have Û

∗
e = Ûe; (ii) the mixed-order

case where the polynomials composing Ue are one order higher than those composing Ûe, in
which case Ûe ⊊ Û

∗
e. Notice that, in the mixed-order case, a projection of ve onto the space of
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polynomials of degree k is needed before computing the trace. Then, it is convenient to define
the L2-orthogonal projections Πe : L2(Ωe; Rnsd) → Ue and Π̂e : L2(∂Ωe; Rnsd) → Ûe.

Different strategies can be used to impose the homogeneous version of the Dirichlet boundary
condition (6.1c). For simplicity, we resort here to the strong imposition by employing the space

Û0 := {v̂ ∈ Û ; v̂ = 0 on ∂Ω}. (6.12)

Other possibilities, common in the context of dG-FEM, are the weak imposition of the Dirichlet
boundary conditions by means of Nitsche’s method [29] or the use of Lagrange multipliers.

We denote by (·, ·)S the L2-inner product in a generic nsd-dimensional subset S ⊂ Ω (e.g.,
mesh cell) defined as

(u, v)S :=
∫
S

uv, (u,v)S :=
∫
S

u · v, (G,L)S :=
∫
S

G :L, (6.13)

for scalar-, vector-, and tensor-valued functions, respectively. Analogously, we denote by ⟨·, ·⟩S
the corresponding L2-product in a generic (nsd −1)-dimensional subset S ⊂ Ω (e.g., mesh face).

We define two jump operators across a smooth (nsd − 1)-dimensional manifold Σ ⊂ Ω
(typically, a mesh face or a physical interface). The manifold Σ separates two subsets Ωl and
Ωr of Ω, with unit outward normal nl and nr, respectively. In the HHO notation, Σ is oriented
by the unit normal nΣ which conventionally points from Ωl to Ωr. Thus,

nΣ = nl = −nr. (6.14)

Then, for a generic piecewise smooth function χ that can be scalar-, vector- or tensor-valued,
we set

JχKHHO
Σ := (χ|Ωl

)|Σ − (χ|Ωr
)|Σ. (6.15)

We notice that Ωl and Ωr do not play symmetric roles, but the advantage of the definition (6.15)
is that JχKHHO

Σ is of the same nature as χ. In the HDG notation, Ωl and Ωr play symmetric
roles, but the jump operator acts on quantities that depend on the outward normal. Specifically,
we set

JqnKHDG
Σ = qlnl + qrnr = (ql − qr)nl = JqKHHO

Σ nΣ, (6.16a)
Jv · nKHDG

Σ = vl · nl + vr · nr = (vl − vr) · nl = JvKHHO
Σ · nΣ, (6.16b)

Jv ⊗ nKHDG
Σ = vl ⊗ nl + vr ⊗ nr = (vl − vr) ⊗ nl = JvKHHO

Σ ⊗ nΣ, (6.16c)
JGnKHDG

Σ = Glnl +Grnr = (Gl −Gr)nl = JGKHHO
Σ nΣ, (6.16d)

with q, v, and G being a scalar-, vector-, and tensor-valued piecewise smooth functions defined
in Ωl and Ωr, respectively.
Remark 6.1 (Pressure mean value). Owing to the prescribed Dirichlet boundary conditions on
the entire boundary ∂Ω, the discrete pressure is actually sought in the global space

P0 := {q ∈ P;
∫

Ω
q = 0}.

The corresponding local spaces denoted by P0
e , for all e ∈ {1:nel}. One can also work with
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discrete pressures in P and enforce the condition
∫

Ω p = 0 in the resulting global space by
means of a Lagrange multiplier.

6.1.3 HDG formulation
In this section, we present the HDG formulation of the Stokes problem (6.1) considering only
homogeneous Dirichlet boundary conditions, i.e., ΓN = ∅, ΓD = ∂Ω, and uuuD = 0.

6.1.3.1 Global formulation

It is convenient to define the HDG viscous stress tensor such that

ΦHDG
e := √

µeL
HDG
e + pHDG

e Insd, ∀e ∈ {1:nel}. (6.17)

To discretize problem (6.1), HDG methods seek the quadruple (LHDG,uHDG, pHDG, ûHDG) ∈
L × U × P0 × Û0 such that the following holds true:

−(Ge,L
HDG
e )Ωe + (∇·(√µeGe),uHDG

e )Ωe − ⟨√µeGe ne, û
HDG
e ⟩∂Ωe = 0,

−(∇we,ΦHDG
e )Ωe

+ ⟨we,Φ
∧HDG
e ne⟩∂Ωe

= (we, fff)Ωe
,

(∇qe,u
HDG
e )Ωe

− ⟨qe, ûHDG
e · ne⟩∂Ωe

= 0,

⟨ŵf , JΦ
∧HDG

nKHDG
Γf

⟩Γf
= 0,

(6.18a)

(6.18b)

(6.18c)

(6.18d)

for all (Ge,we, qe) ∈ Le×Ue×P0
e and all e ∈ {1:nel}, and for all ŵf ∈ Ûf and all f ∈ {1:n◦

fc}.
The numerical trace Φ

∧HDG
is defined such that, for all e ∈ {1:nel},

Φ
∧HDG
e ne := ΦHDG

e ne + sHDG
e (uHDG

e |∂Ωe − ûHDG
e ), (6.19)

where sHDG
e : Û

∗
e → Ûe is a linear stabilization operator which is generally taken to be of the

form

sHDG
e (δ̂) := τHDG

e

δ̂, equal-order setting,
Π̂e(δ̂), mixed-order setting,

(6.20)

for all δ̂ ∈ Û
∗
e, with a positive weight τHDG

e > 0. Notice that (6.18b) can be rewritten as

(we,∇·ΦHDG
e )Ωe

+
¨
we, s

HDG
e (uHDG

e |∂Ωe
− ûHDG

e )
∂
∂Ωe

= (we, fff)Ωe
. (6.21)

In problem (6.18), the equation (6.18a) is the discrete counterpart of the relation LHDG =
−√

µ∇uHDG, the equation (6.18b) that of the momentum balance (6.1a), and the equation
(6.18c) that of the divergence condition (6.1b). Moreover, the equation (6.18d) is the transmis-
sion condition which weakly enforces the continuity of the normal component of the numerical
flux across the faces composing the internal skeleton. Notice that, by definition, ûHDG is
uniquely defined on each face of Γ◦ and vanishes on each face of Γ∂ .
Proposition 1 (Algebraic formulation). The algebraic formulation of problem (6.18) is
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
AHDG
LL AHDG

Lu 0 AHDG
Lû

AHDG
uL AHDG

uu AHDG
up AHDG

uû

0 AHDG
pu 0 AHDG

pû

AHDG
ûL AHDG

ûu AHDG
ûp AHDG

ûû




LHDG

uHDG

pHDG

ûHDG

 =


0
Fu
0
0

 , (6.22)

and the matrix is symmetric, i.e., AHDG
uL = (AHDG

Lu )T, AHDG
up = (AHDG

pu )T, AHDG
ûL = (AHDG

Lû )T,
AHDG
ûu = (AHDG

uû )T, and AHDG
ûp = (AHDG

pû )T.

6.1.3.2 Static condensation

Static condensation is a procedure that allows one to eliminate locally (in every mesh cell) the
discrete unknowns Le and ue, as well as pe up to one constant. Thus, the only globally coupled
unknowns are the skeleton unknowns ûf and one constant pressure per mesh cell. To handle
the pressure decomposition, we write

P0 = P0
0 ⊕ P0

⊥ , (6.23)

where

P0
0 :={q ∈ P0; q|Ωe ∈ P0(Ωe; R), ∀e ∈ {1:nel}}, (6.24a)

P0
⊥ :={q ∈ P0; (q, 1)Ωe

= 0, ∀e ∈ {1:nel}}, (6.24b)

and we write P0
0,e and P0

⊥,e for the corresponding local spaces. Consistently, for all q ∈ P0, we
write q = q0 + q⊥ and qe = q0,e + q⊥,e, for all e ∈ {1:nel}.
Proposition 2 (Local and global problems). The quadruple (LHDG,uHDG, pHDG, ûHDG) ∈ L ×
U × P0 × Û0 solves the HDG problem (6.18) if and only if:

(i) The local variables (LHDG,uHDG, pHDG
⊥ ) ∈ L×U ×P0

⊥ solve the following local problems
as a function of the global variables (ûHDG, pHDG

0 ) ∈ Û0 × P0
0 :

−(Ge,L
HDG
e )Ωe + (∇·(√µeGe),uHDG

e )Ωe
= ⟨√µeGe ne, û

HDG
e ⟩∂Ωe

, (6.25a)

(we,∇·ΦHDG
⊥,e )Ωe

+
¨
we, s

HDG
e (uHDG

e |∂Ωe
)
∂
∂Ωe

= (we, fff)Ωe
+
¨
we, s

HDG
e (ûHDG

e )
∂
∂Ωe

,

(6.25b)

(∇qe,u
HDG
e )Ωe = ⟨qe, ûHDG

e · ne⟩∂Ωe , (6.25c)

for all (Ge,we, qe) ∈ Le × Ue × P0
⊥,e and all e ∈ {1:nel}, where

ΦHDG
⊥,e := √

µeL
HDG
e + pHDG

⊥,e Insd = ΦHDG
e − pHDG

0,e Insd ; (6.26)

(ii) The global variables (ûHDG, pHDG
0 ) ∈ Û0 × P0

0 solve the following global problems:

⟨ŵf , JpHDG
0 n− sHDG(ûHDG)KHDG

Γf
⟩Γf

= −⟨ŵf , JΦHDG
⊥ n+ sHDG(uHDG)KHDG

Γf
⟩Γf

, (6.27a)

⟨1, ûHDG
e · ne⟩∂Ωe = 0, (6.27b)
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where (6.27a) holds for all ŵf ∈ Ûf and all f ∈ {1:n◦
fc}, (6.27b) holds for all e ∈ {1:nel}, and

the local variables (LHDG,uHDG, pHDG
⊥ ) ∈ L × U × P0

⊥ result from (6.25).

6.1.4 HHO formulation
In this section, we present the HHO formulation of the Stokes problem (6.1) considering only
homogeneous Dirichlet boundary conditions, i.e., ΓN = ∅, ΓD = ∂Ω, and uuuD = 0. For a
generic pair (v, v̂) ∈ U × Û0, we introduce the HHO notation v := (v, v̂) ∈ U := U × Û0.
Correspondingly, for the local space, we define Ue := Ue × Ûe, for all e ∈ {1:nel}.

6.1.4.1 Global formulation

To discretize problem (6.1), HHO methods seek the triple (uHHO, pHHO, ûHHO) ∈ U × P0 × Û0
such that the following holds true:

aHHO(w,uHHO) − bHHO(w, pHHO) = F (w), (6.28a)
bHHO(uHHO, q) = 0, (6.28b)

for all (w, q, ŵ) ∈ U × P0 × Û0. The global problems are assembled cellwise as

aHHO(w,v) :=
∑

e∈{1:nel}

aHHO
e (we,ve), (6.29a)

bHHO(v, q) :=
∑

e∈{1:nel}

bHHO
e (ve, qe), (6.29b)

F (w) :=
∑

e∈{1:nel}

(we, fff)Ωe , (6.29c)

where the local bilinear forms are

aHHO
e (we,ve) := µe

Ä
LHHO
e (we),LHHO

e (ve)
ä

Ωe

+τHHO
e

¨
sssHHO
e (we|∂Ωe

− ŵe), sssHHO
e (ve|∂Ωe

− v̂e)
∂
∂Ωe

, (6.30a)

bHHO
e (ve, qe) := (DHHO

e (ve), qe)Ωe
, (6.30b)

for all e ∈ {1:nel}, with a positive weight τHHO
e > 0 (typically, τHHO

e := µeh
−1
e ). The following

operators have been used: The gradient reconstruction operator LHHO
e : Ue → Le such that

(G,LHHO
e (ve))Ωe

:= (G,∇ve)Ωe
+ ⟨Gne, v̂e − ve|∂Ωe

⟩∂Ωe
, (6.31)

for all ve ∈ Ue, and all G ∈ Le, the divergence reconstruction operator such that

DHHO
e (ve) := Insd :LHHO

e (ve), (6.32)

and the stabilization operator sHHO
e : Û

∗
e → Ûe such that

sHHO
e (δ̂) :=

Π̂e

Ä
δ̂ +
Ä
(Insd − Πe)RRRHHO

e (000, δ̂)
ä
|∂Ωe

ä
, equal-order setting,

Π̂e(δ̂), mixed-order setting,
(6.33)
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for all δ̂ ∈ Û
∗
e. In the equal-order setting, the stabilization operator involves the local recon-

struction operator RHHO
e : Ue → U+

e := Pk+1(Ωe; Rnsd) such that

(∇w,∇RHHO
e (ve))Ωe

:= (∇w,∇ve)Ωe + ⟨∇wne, v̂e − ve|∂Ωe⟩∂Ωe , (6.34)

for all ve ∈ Ue and all w ∈ U+
e . Finally, it is convenient to define the HHO viscous stress

tensor such that

ΦHHO
e := −µeLHHO

e (uHHO
e ) + pHHO

e Insd , ∀e ∈ {1:nel}. (6.35)

Proposition 3 (Algebraic formulation). The algebraic formulation of problem (6.28) is
AHHO
uu AHHO

up AHHO
uû

AHHO
pu 0 AHHO

pû

AHHO
ûu AHHO

ûp AHHO
ûû


 u

HHO

pHHO

ûHHO

 =

Fu0
0

 , (6.36)

and the matrix is symmetric, i.e., AHHO
up = (AHHO

pu )T, AHHO
ûu = (AHHO

uû )T, and AHHO
ûp =

(AHHO
pû )T. The vector Fu on the right-hand side of (6.36) is the same as in (6.22).

6.1.4.2 Static condensation

Recall the decomposition (6.23) of the pressure space, i.e., P0 = P0
0 ⊕ P0

⊥ . Notice that
bHHO
e ((we,0), pHHO

0,e ) = (LHHO(we,0), pHHO
0,e Insd)Ωe = 0 for all we ∈ Ue and all e ∈ {1:nel},

as a consequence of (6.31) after integration by parts.
Proposition 4 (Local and global problems). The triple (uHHO, pHHO, ûHHO) ∈ U × P0 × Û0
solves the HHO problem (6.28) if and only if:

(i) The local variables (uHHO, pHHO
⊥ ) ∈ U × P0

⊥ solve the following local problems as a
function of the global variables (ûHHO, pHHO

0 ) ∈ Û0 × P0
0 :

aHHO
e ((we,0), (uHHO

e ,0)) − bHHO
e ((we,0), pHHO

⊥,e ) = (we, fff)Ωe
− aHHO

e ((we,0), (0, ûHHO
e )),

(6.37a)
bHHO
e ((uHHO

e ,0), qe) = −bHHO
e ((0, ûHHO

e ), qe), (6.37b)

for all (we, qe) ∈ Ue × P0
⊥,e and all e ∈ {1:nel};

(ii) The global variables (ûHHO, pHHO
0 ) ∈ Û0 × P0

0 solve the following global problems:

aHHO((0, ŵ), (0, ûHHO)) − bHHO((0, ŵ), pHHO
0 )

= −aHHO((0, ŵ), (uHHO,0)) + bHHO((0, ŵ), pHHO
⊥ ), (6.38a)

bHHO
e ((0, ûHHO

e ), 1) = 0, (6.38b)

where (6.38a) holds for all ŵ ∈ Û0, (6.38b) holds for all e ∈ {1:nel}, and the local variables
(uHHO, pHHO

⊥ ) ∈ U × P0
⊥ result from (6.37).
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6.1.5 Bridging HHO and HDG
Within the above setting, HDG and HHO methods depend on the choice of the local spaces
Le, Ue, Pe, Ûf , and of the stabilization operators sHDG

e and sHHO
e , respectively. Recall that in

the equal-order case for HHO, we have Û
∗
e = Ûe, so that sHHO

e : Ûe → Ûe. We then define the
adjoint operator with respect to the L2(∂Ωe; Rnsd)-inner product by setting¨

(sHHO
e )∗(δ̂

∗
), δ̂
∂
∂Ωe

:=
¨
δ̂

∗
, sHHO
e (δ̂)

∂
∂Ωe

, ∀δ̂, δ̂
∗

∈ Ûe. (6.39)

Proposition 5 (From HHO to HDG). Define the local polynomial spaces

Le = Pk(Ωe; Rnsd×nsd), Ue = Pℓ(Ωe; Rnsd;R), Pe = Pk(Ωe), Ûf = Pk(Γf ; Rnsd), (6.40)

with either ℓ = k (equal-order) or ℓ = k+ 1 (mixed-order). If the triple (uHHO, pHHO, ûHHO) ∈
U ×P0 × Û0 solves the HHO problem (6.28) with the stabilization operator (6.33), then setting

ZHHO
e := −√

µeL
HHO
e (uHHO

e ), (6.41)

for all e ∈ {1:nel}, the quadruple (ZHHO,uHHO, pHHO, ûHHO) ∈ L × U × P0 × Û0 solves the
HDG problem (6.18) with the stabilization operator

sHDG
e (δ̂) = τHHO

e


Ä
(sHHO
e )∗ ◦ sHHO

e

ä
(δ̂), equal-order setting,

Π̂e(δ̂), mixed-order setting,
(6.42)

for all δ̂ ∈ Û
∗
e, and with the numerical flux trace such that

Φ
∧HDG
e ne := ΦHHO

e ne + sHDG
e (uHHO

e |∂Ωe
− ûHHO

e ), (6.43)

for all e ∈ {1:nel}, where ΦHHO
e := √

µeZ
HHO
e + pHHO

e Insd.
Proposition 6 (From HDG to HHO). Define the local polynomial spaces as in (6.40). If the
quadruple (LHDG,uHDG, pHDG, ûHDG) ∈ L×U ×P0 × Û0 solves the HDG problem (6.18) with
the stabilization operator (6.20), then

LHDG
e = −√

µeL
HHO
e (uHHO

e ), ∀e ∈ {1:nel}, (6.44)

with the operator LHHO
e defined in (6.31), and the triple (uHDG, pHDG, ûHDG) ∈ U × P0 × Û0

solves the HHO problem (6.28) with the weight τHHO
e = τHDG

e and stabilization operator

sHHO
e (δ̂) =

δ̂, equal-order setting,
Π̂e(δ̂), mixed-order setting,

(6.45)

for all δ̂ ∈ Û
∗
e.

Proof. We only prove Proposition 5 since the proof of Proposition 6 is similar. Moreover, we
only detail the equal-order setting. Assume that the triple (uHHO, pHHO, ûHHO) ∈ U ×P0 × Û0
solves the HHO problem (6.28). Let ZHHO

e be defined by (6.41) for all e ∈ {1:nel}. We need
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to prove that the quadruple (ZHHO,uHHO, pHHO, ûHHO) ∈ L × U × P0 × Û0 satisfies (6.18).
Notice that ZHHO ∈ L since µ is piecewise constant.

(i) Since µe is constant, we infer that for all e ∈ {1:nel} and all Ge ∈ Le,

(Ge,Z
HHO
e )Ωe = −√

µe
Ä
Ge,L

HHO
e (uHHO

e )
ä

Ωe

= −√
µe
¶

(Ge,∇uHHO
e )Ωe

+ ⟨Gene, û
HHO
e − uHHO

e |∂Ωe
⟩∂Ωe

©
= (∇·(√µeGe),uHHO

e )Ωe − ⟨√µeGene, û
HHO
e ⟩∂Ωe .

Hence, (6.18a) holds.
(ii) We notice that

ΦHHO
e = √

µeZ
HHO
e + pHHO

e Insd

= −µeLHHO
e (uHHO

e ) + pHHO
e Insd , ∀e ∈ {1:nel}.

Hence, for all e ∈ {1:nel} and all we ∈ Ue,

−(∇we,ΦHHO
e )Ωe

= µe
Ä
∇we,L

HHO
e (uHHO

e )
ä

Ωe

− (∇we, p
HHO
e Insd)Ωe

= − ⟨we,ΦHHO
e ne⟩∂Ωe +

¨
τHHO
e sHHO

e (we|∂Ωe), sHHO
e (uHHO

e |∂Ωe − ûHHO
e )

∂
∂Ωe

+ aHHO
e ((we,0),uHHO

e ) − bHHO
e ((we,0), pHHO

e )

= −
¨
we,ΦHHO

e ne + τHHO
e

Ä
(sHHO
e )∗ ◦ sHHO

e

ä
(uHHO

e |∂Ωe − ûHHO
e )

∂
∂Ωe

+ (we, fff)Ωe

= − ⟨we,Φ
∧HHO
e ne⟩∂Ωe

+ (we, fff)Ωe
,

where we used (6.37a) tested with (we,0). Hence, (6.18b) holds.
(iii) For all e ∈ {1:nel} and all qe ∈ P0

e , we have

(∇qe,u
HHO
e )Ωe

= −bHHO
e (uHHO

e , qe) + ⟨qe, ûHHO
e · ne⟩∂Ωe

= ⟨qe, ûHHO
e · ne⟩∂Ωe

,

where we used (6.37b) tested qe. Hence, (6.18c) holds.
(iv) Let f ∈ {1:n◦

fc} and ŵf ∈ Ûf . We test (6.28a) with w := (0, w̃f ) where w̃f :=
(δff ′ŵf )f ′∈{1:n◦

fc} ∈ Û0, and δff ′ is the Kronecker symbol. Thus, the only nonzero component
of w̃f is attached to the face Γf . We obtain

0 = aHHO((0, w̃f ),uHHO) − bHHO((0, w̃f ), pHHO)

=
∑

e∈{1:nel}
Γf ⊂∂Ωe

¶
aHHO
e ((0, w̃e),uHHO

e ) − bHHO
e ((0, w̃e), pHHO

e )
©
.

We have

αe := aHHO
e ((0, w̃e),uHHO

e )

= µe⟨ŵf ,L
HHO
e (uHHO

e )ne⟩Γf
−
¨
ŵf ,
Ä
(sHHO
e )∗ ◦ sHHO

e

ä
(uHHO

e |∂Ωe
− ûHHO

e )
∂

Γf

,
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and
βe := bHHO

e ((0, w̃e), pHHO
e )

= ⟨ŵf , p
HHO
e ne⟩Γf

.

Hence, recalling the definition (6.43) of the numerical flux trace, we obtain

αe − βe = −Φ
∧HDG
e ne.

We infer that
⟨ŵf , JΦ

∧HDG
nKHDG

Γf
⟩Γf

= 0.

Hence, (6.18d) holds and the proof is complete.

Proposition 7 (Algebraic comparison). Following the choices in Proposition 5, the algebraic
HHO formulation in (6.36) can be restated to align with the HDG algebraic formulation (6.22)
by writing 

AHHO
LL LHHO = −(AHHO

Lu uHHO +AHHO
Lû ûHHO),

AHHO
uu AHHO

up AHHO
uû

AHHO
pu 0 AHHO

pû

AHHO
ûu AHHO

ûp AHHO
ûû


 u

HHO

pHHO

ûHHO

 =

Fu0
0

 ,
(6.46a)

(6.46b)

where (6.46a) is the algebraic counterpart of (6.31) (so that AHHO
LL is block-diagonal) and

(6.46b) is nothing but (6.36).
Remark 6.2 (Equal-order stabilization). The HHO stabilization operator defined in equation
(6.33) relies on the reconstruction operator. This means that, for any point x ∈ Γf , the value
of sHHO

e (δ̂)(x) depends on the values taken by δ̂ over the whole boundary ∂Ωe. In contrast,
the HDG stabilization operator acts pointwise. In other words, sHDG

e (δ̂)(x) depends solely on
the value of δ̂(x). This distinction leads to HHO methods providing optimal error estimates
for all polynomial orders k ≥ 0 and for general polyhedral meshes. For HDG methods using
classical pointwise stabilization, optimality can be achieved on meshes with specific cell shapes
(simplices, quads, hexs, etc.) for k ≥ 1.

6.1.6 More general boundary conditions
Let us now consider the Stokes problem defined in (6.1) with Neumann and non-homogeneous
Dirichlet boundary conditions, i.e., ΓN ̸= ∅, where a generic pseudo-traction ttt ∈ L2(ΓN; Rnsd) is
applied, and ΓD ̸= ∅, where a generic velocity uuuD ∈ H1/2(ΓD; Rnsd) is imposed.

It is convenient to define the L2-orthogonal projection Π̂f : L2(Γf ; Rnsd) → Ûf , for all
f ∈ {1:nfc}. With obvious notation, the mesh skeleton is decomposed as Γ = Γ◦ ∪ΓN ∪ΓD, and
we enumerate conventionally the faces in Γ◦ ∪ ΓN from 1 to n◦N

fc . Moreover, for all Γf ⊂ ΓN , we
define the subscript ef as the unique index e ∈ {1:nel} so that Γf ⊂ ∂Ωe. Additionally, we set

ÛD = {v̂ ∈ Û ; v̂f = Π̂f (uuuD|Γf
), ∀Γf ⊂ ΓD}, (6.47)

and we replace (6.12) by
Û0 = {v̂ ∈ Û ; v̂f = 0, ∀Γf ⊂ ΓD}. (6.48)
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To discretize problem (6.1), HDG methods seek the quadruple (LHDG,uHDG, pHDG, ûHDG) ∈
L × U × P × ÛD such that the following holds true:

− (Ge,L
HDG
e )Ωe

+ (∇·(√µeGe),uHDG
e )Ωe

− ⟨√µeGe ne, û
HDG
e ⟩∂Ωe

= 0,

− (∇we,ΦHDG
e )Ωe + ⟨we,Φ

∧HDG
e ne⟩∂Ωe = (we, fff)Ωe ,

(∇qe,u
HDG
e )Ωe − ⟨qe, ûHDG

e · ne⟩∂Ωe = 0,⟨ŵf , JΦ
∧HDG

nKHDG
Γf

⟩Γf
= 0, if Γf ⊂ Γ◦,

⟨ŵf ,Φ
∧HDG
ef

nef
⟩Γf

= −⟨ŵf , ttt⟩Γf
, if Γf ⊂ ΓN,

(6.49a)

(6.49b)
(6.49c)

(6.49d)

for all (Ge,we, qe) ∈ Le× Ue× Pe and all e ∈ {1:nel}, and for all ŵf ∈ Ûf and all f ∈ {1:n◦N
fc }.

The numerical trace Φ
∧HDG

is defined such that, for all e ∈ {1:nel},

Φ
∧HDG
e ne := ΦHDG

e ne + sHDG
e (uHDG

e |∂Ωe
− ûHDG

e ), (6.50)

with ΦHDG
e defined in (6.17), and sHDG

e defined in (6.20).
To discretize problem (6.1), HHO methods seek the triple (uHHO, pHHO, ûHHO) ∈ U×P×ÛD

such that the following holds true:

aHHO(w,uHHO) − bHHO(w, pHHO) = F (w), (6.51a)
bHHO(uHHO, q) = 0, (6.51b)

for all (w, q, ŵ) ∈ U ×P ×Û0, where we have used the HHO notation v := (v, v̂) ∈ U := U ×Û0
or U := U ×ÛD depending on the context. The global problems are assembled cellwise by using
the following expressions:

aHHO(w,v) :=
∑

e∈{1:nel}

aHHO
e (we,ve), (6.52a)

bHHO(v, q) :=
∑

e∈{1:nel}

bHHO
e (ve, qe), (6.52b)

F (w) :=
∑

e∈{1:nel}

(we, fff)Ωe
+

∑
Γf ⊂ΓN

⟨ŵf , ttt⟩Γf
, (6.52c)

and the local bilinear forms and operators are defined as in (6.30).

6.2 Two-fluid Stokes problem
In this section, we compare the HHO and HDG formulations to discretize the two-fluid Stokes
problem with surface tension at their interface, posed in a domain with a simple shape so that
a fitted mesh can be used at the domain boundary. The mesh is unfitted with respect to the
interface between the two fluids. Compared to the one-fluid case addressed in Section 6.1, we
show that the unfitted HHO and HDG methods can additionally differ in the choice of the
penalty method.
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6.2.1 Model problem
As in Section 6.1, the computational domain Ω ⊂ Rnsd , nsd ∈ {2, 3}, is a polyhedron. The
two fluid setting is the same as in Chapters 2 and 4, namely the domain Ω is occupied by two
immiscible, incompressible Stokes fluids separated by a single interface. Let Ωi ⊂ Ω the domain
occupied by the fluid indexed by i ∈ {1, 2} such that Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅. The
interface is Υ := ∂Ω1 ∩ ∂Ω2. We assume that Υ is closed and does not touch the boundary ∂Ω
of Ω. By convention, the index 1 refers to the interior subdomain Ω1 such that ∂Ω1 = Υ, and
the index 2 refers to the exterior subdomain Ω2 such that ∂Ω2 = ∂Ω ∪ Υ. The interface Υ is
assumed to be orientable, and such that a unit normal, nΥ, can be defined everywhere on Υ.
By convection, nΥ points from Ω1 to Ω2. Moreover, for all i ∈ {1, 2}, we define ni the unit
outward normal to the domain Ωi. On the boundary ∂Ω of Ω, we assume for simplicity that
homogeneous Dirichlet boundary conditions are prescribed. Additionally, we impose the body
force fff ∈ L2(Ω; Rnsd) in the domain Ω and the surface force gΥ ∈ L2(Υ; Rnsd) at the interface Υ
(resulting, e.g., from Laplace’s law for surface tension).

As in Section 6.1, we consider the so-called full gradient formulation of the Stokes interface
problem (the Cauchy stress formulation was considered in Chapter 2) such that, given the
interface Υ, we seek the velocity and pressure fields (uuui, pi) ∈ H1(Ωi; Rnsd) × L2(Ωi), i ∈ {1, 2},
that satisfy

−∇ · (µi∇ui − piInsd) = fff i in Ωi, (6.53a)
∇ · ui = 0 in Ωi, (6.53b)
u2 = 0 on ∂Ω, (6.53c)

JuKHHO
Υ = 0, Jµi∇ui − piInsdK

HHO
Υ nΥ = gΥ on Υ, (6.53d)

where fff i := fff |Ωi ∈ L2(Ωi; Rnsd) denotes the restriction of fff to Ωi, and µi is the viscosity of the
fluid i. Moreover, J⊙KHHO

Υ is the HHO jump operator defined in (6.15). The Stokes interface
problem is uniquely solvable up to a global additive constant on the pressure, which we fix by
imposing ∑

i∈{1:2}

∫
Ωi

pi = 0. (6.54)

6.2.2 Discrete setting
We consider a shape-regular mesh composed of nel disjoint (open) subdomains Ωe such that Ω
is exactly covered, i.e.,

Ω =
⋃

e∈{1:nel}

Ωe. (6.55)

Since the mesh is unfitted, the interface Υ can cut arbitrarily through some of the mesh
cells. Thus, for all e ∈ {1:nel}, we define Ωie and ∂Ωie the portion of Ωe and ∂Ωe that belongs
to the fluid indexed by i, that is,

Ωie := Ωe ∩ Ωi, ∂Ωie := ∂Ωe ∩ (Ωi \ Υ), ∀i ∈ {1, 2}. (6.56)

Notice that ∂Ωie is contained in the boundary of Ωie but differs from it if the cell Ωe is cut by
the interface Υ. Similarly, for all i ∈ {1, 2}, we set Γi := Γ ∩ (Ωi \ Υ), and Γif := Γf ∩ (Ωi \ Υ),
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for all f ∈ {1:n◦
fc}. In general, the interface intersects every face at most at one point so that

Γi = Γ ∩ Ωi and Γif = Γf ∩ Ωi. Moreover, let Υe := Υ ∩ Ωe be the portion of Υ inside Ωe. In
what follows, we assume that the mesh is such that µi|Ωi

e
is constant for all i ∈ {1, 2} and all

e ∈ {1:nel}.
Consistently with the one-fluid case, both HHO and HDG methods consider the following

approximation spaces in each subdomain: For all i ∈ {1, 2},

Li := {Gi := (Gi
e)e∈{1:nel} ∈ L2(Ωi; Rnsd×nsd); Gi

e ∈ Li
e, ∀e ∈ {1:nel}}, (6.57a)

U i := {vi := (vie)e∈{1:nel} ∈ L2(Ωi; Rnsd); vie ∈ U i
e, ∀e ∈ {1:nel}}, (6.57b)

Pi := {qi := (qie)e∈{1:nel} ∈ L2(Ωi; R); qie ∈ Pi
e , ∀e ∈ {1:nel}}, (6.57c)

Û
i := {v̂i := (v̂if )f∈{1:nfc} ∈ L2(Γi; Rnsd); v̂if ∈ Û

i

f , ∀f ∈ {1:nfc}}, (6.57d)

where Li
e, U i

e, Pi
e , Û

i

f are finite-dimensional spaces composed of polynomials from Ωie to Rnsd×nsd ,
from Ωie to Rnsd , from Ωie to R, and from Γif to Rnsd , respectively. Letting k ≥ 0 be the polynomial
degree, the prototypical example we consider henceforth is

Li
e := Pk(Ωie; Rnsd×nsd), Pi

e := Pk(Ωie; R), Û
i

f := Pk(Γif ; Rnsd), (6.58)

and

U i
e :=

{
Pk(Ωie; Rnsd), equal-order setting,
Pk+1(Ωie; Rnsd), mixed-order setting.

(6.59)

Notice that there is no discrete unknown attached to the interface Υ. We denote by v̂ie the
collection of (v̂if )Γi

f
⊂∂Ωi

e
, so that

v̂ie := (v̂if )Γi
f

⊂∂Ωi
e

∈ Û
i

e := ×
Γi

f
⊂∂Ωi

e

Û
i

f , (6.60)

and we write
Û

∗,i
e := {vie|∂Ωi

e
− v̂ie; ∀vie ∈ U i

e, ∀v̂ie ∈ Û
i

e}. (6.61)

To handle uncut and cut cells in a single formalism, we set

Le := Li
e, Ue := U i

e, Pe := Pi
e , Ûf := Û

i

f , (6.62)

for every uncut cell Ωe inside Ωi, and every uncut face Γf inside Ωi, with i ∈ {1, 2}, and

Le := L1
e × L2

e, Ue := U1
e × U2

e, Pe := P1
e × P2

e , Ûf := Û
1
f × Û

2
f , (6.63)

for every cut cell Ωe and every cut face Γf . The same notation is adopted for the variables,
e.g., for a generic cut cell Ωe, we write

ve = (ve,1,ve,2), ve,i ∈ U i
e, ∀i ∈ {1, 2}. (6.64)
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For brevity, we only consider the strong enforcement of the homogeneous Dirichlet boundary
condition, and we set

Û0 = Û
1

× Û
2
0, Û

2
0 := {v̂2 ∈ Û

2; v̂2 = 0 on ∂Ω}. (6.65)

Finally, it is convenient to introduce the average operator at any portion of interface Υe.
For a generic piecewise smooth function χ that can be scalar-, vector, or tensor-valued, the
average operator is defined as

{χ}Υe = 1
2
Ä
(χ|Ω1

e
)|Υe + (χ|Ω2

e
)|Υe

ä
. (6.66)

Remark 6.3 (Viscosity-robust average operator). The average operator defined in (6.66) does
not ensure robust error estimates for high-contrast viscosity coefficients (see [22], [54]). When
µ1 and µ2 are such that µ1 ≪ µ2, or vice versa, it is preferable to use the weighted average

{χ}Υe
= α1

e(χ|Ω1
e
)|Υe

+ α2
e(χ|Ω2

e
)|Υe

,

where the weights depend on the viscosity ratio as follows:

α1
e := µ2

e

µ1
e + µ2

e

, α2
e := µ1

e

µ1
e + µ2

e

,

consistently with the HHO method presented in Chapter 2.
Remark 6.4 (Pressure mean value). Owing to the prescribed Dirichlet boundary conditions on
the entire boundary ∂Ω, the discrete pressure is actually sought in the global space

P0 := {q ∈ P;
∑

i∈{1:2}

∫
Ωi

qi = 0}.

The corresponding local spaces are denoted by P0
e , for all e ∈ {1:nel}.

6.2.3 HDG formulation
In this section, we present the HDG formulation of the Stokes problem (6.53).

6.2.3.1 Global formulation

It is convenient to define the HDG viscous stress tensor such that

ΦHDG
e,i :=

»
µieL

HDG
e,i + pHDG

e,i Insd, ∀e ∈ {1:nel}, ∀i ∈ {1, 2}. (6.67)
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To discretize problem (6.53), HDG methods seek the quadruple (LHDG,uHDG, pHDG, ûHDG) ∈
L × U × P0 × Û0 such that the following holds true:

− (Ge,L
HDG
e )Ωe + (∇·(√µeGe),uHDG

e )Ωe − ⟨√µeGe ne, û
HDG
e ⟩∂Ωe

− ⟨J√µeGenKHDG
Υe

, {uHDG
e }Υe

⟩Υe
= 0, (6.68a)

− (∇we,ΦHDG
e )Ωe + ⟨we,Φ

∧HDG
e ne⟩∂Ωe + ⟨Jwe ⊗ nKHDG

Υe
, {ΦHDG

e }Υe⟩Υe

+ τHDG
Υe

⟨JweKHHO
Υe

, JueKHHO
Υe

⟩Υe = (we, fff)Ωe + ⟨{we}Υe , gΥ⟩Υe , (6.68b)

(∇qe,u
HDG
e )Ωe

− ⟨qe, ûHDG
e · ne⟩∂Ωe

− ⟨JqenKHDG
Υe

, {uHDG
e }Υe

⟩Υe
= 0, (6.68c)

⟨ŵf , JΦ
∧HDG

nKHDG
Γf

⟩Γf
= 0, (6.68d)

for all (Ge,we, qe) ∈ Le×Ue×P0
e and all e ∈ {1:nel}, and for all ŵf ∈ Ûf and all f ∈ {1:n◦

fc}.
The numerical trace Φ

∧HDG
is defined such that, for all e ∈ {1:nel} and all i ∈ {1, 2},

Φ
∧HDG
e,i ne := ΦHDG

e,i ne + sHDG
e,i (uHDG

e,i |∂Ωi
e

− ûHDG
e,i ), (6.69)

where sHDG
e,i : Û

∗,i
e → Û

i

e is a linear stabilization operator which is generally taken to be of the
form

sHDG
e,i (δ̂) := τHDG

e,i

δ̂, equal-order setting,
Π̂i
e(δ̂), mixed-order setting,

(6.70)

for all δ̂ ∈ Û
∗,i
e , with a positive weight τHDG

e,i > 0. It is important to notice that the unfitted
HDG method presented in Chapter 4 and that we are discussing here does not employ any
penalty term on the jumps across the interface, i.e., we set

τHDG
Υe

:= 0. (6.71)

The penalty term in (6.68b) has been introduced only for comparison reasons with the HHO
formulation. Finally, we notice that (6.68b) can be rewritten as

(we,∇·ΦHDG
e )Ωe

+
¨
we, s

HDG
e (uHDG

e |∂Ωe
− ûHDG

e )
∂
∂Ωe

− ⟨{we}Υe
, JΦHDG

e nKHDG
Υe

⟩Υe

+ τHDG
Υe

⟨JweKHHO
Υe

, JueKHHO
Υe

⟩Υe
= (we, fff)Ωe

+ ⟨{we}Υe
, gΥ⟩Υe

.
(6.72)

6.2.3.2 Static condensation

Static condensation is a procedure that allows one to eliminate locally (in every mesh cell) the
discrete unknowns Le and ue, as well as pe up to one constant. Thus, the only globally coupled
unknowns are the skeleton unknowns ûf and one constant pressure per mesh cell. To handle
the pressure decomposition, we write, as before,

P0 = P0
0 ⊕ P0

⊥ , (6.73)

and, for all q ∈ P0, we write q = q0 + q⊥ and qe = q0,e + q⊥,e, for all e ∈ {1:nel}.
Proposition 8 (Local and global problems). The quadruple (LHDG,uHDG, pHDG, ûHDG) ∈ L ×
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U × P0 × Û0 solves the HDG problem (6.68) if and only if:
(i) The local variables (LHDG,uHDG, pHDG

⊥ ) ∈ L×U ×P0
⊥ solve the following local problems

as a function of the global variables (ûHDG, pHDG
0 ) ∈ Û0 × P0

0 :

−(Ge,L
HDG
e )Ωe

+ (∇·(√µeGe),uHDG
e )Ωe

− ⟨J√µeGenKHDG
Υe

, {uHDG
e }Υe

⟩Υe

= ⟨√µeGe ne, û
HDG
e ⟩∂Ωe

, (6.74a)

(we,∇·ΦHDG
⊥,e )Ωe

+
¨
we, s

HDG
e (uHDG

e |∂Ωe
)
∂
∂Ωe

− ⟨{we}Υe
, JΦHDG

⊥,e nKHDG
Υe

⟩Υe

+ τHDG
Υe

⟨JweKHHO
Υe

, JueKHHO
Υe

⟩Υe
= (we, fff)Ωe

+ ⟨{we}Υe
, gΥ⟩Υe

+
¨
we, s

HDG
e (ûHDG

e )
∂
∂Ωe

,

(6.74b)

(∇qe,u
HDG
e )Ωe

− ⟨JqenKHDG
Υe

, {uHDG
e }Υe

⟩Υe
= ⟨qe, ûHDG

e · ne⟩∂Ωe
, (6.74c)

for all (Ge,we, qe) ∈ Le × Ue × P0
⊥,e and all e ∈ {1:nel}, where

ΦHDG
⊥,e := √

µeL
HDG
e + pHDG

⊥,e Insd = ΦHDG
e − pHDG

0,e Insd ; (6.75)

(ii) The global variables (ûHDG, pHDG
0 ) ∈ Û0 ×P0

0 solve the following global problems where
the local variables (LHDG,uHDG, pHDG

⊥ ) ∈ L × U × P0
⊥ result from (6.74):

⟨ŵf , JpHDG
0 n− sHDG(ûHDG)nKHDG

Γf
⟩Γf

= −⟨ŵf , JΦHDG
⊥ n+ sHDG(uHDG)nKHDG

Γf
⟩Γf

, (6.76a)

⟨1, ûHDG
e · ne⟩∂Ωe = 0, (6.76b)

where (6.76a) holds for all ŵf ∈ Ûf and all f ∈ {1:n◦
fc}, and (6.76b) holds for all e ∈ {1:nel}.

6.2.4 HHO formulation
In this section, we present the HHO formulation of the Stokes problem (6.53). For a generic
pair (v, v̂) ∈ U × Û0, we use as before the HHO notation v := (v, v̂) ∈ U := U × Û0.
Correspondingly, for the local space, we define U i

e := U i
e × Û

i

e, and Ue := Ue × Ûe, for all
e ∈ {1:nel} and all i ∈ {1, 2}. Recall that the unfitted HHO method is devised only in the
mixed-order setting, since optimal error estimates are proven only in this case.

6.2.4.1 Global formulation

To discretize problem (6.53), HHO methods seek the triple (uHHO, pHHO, ûHHO) ∈ U ×P0 × Û0
such that the following holds true:

aHHO(w,uHHO) − bHHO(w, pHHO) = F (w), (6.77a)
bHHO(uHHO, q) = 0, (6.77b)
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for all (w, q, ŵ) ∈ U × P0 × Û0. The global problems are assembled cellwise as

aHHO(w,v) :=
∑

e∈{1:nel}

aHHO
e (we,ve), (6.78a)

bHHO(v, q) :=
∑

e∈{1:nel}

bHHO
e (ve, qe), (6.78b)

F (w) :=
∑

e∈{1:nel}

¶
(we, fff)Ωe + ⟨{w}Υe , gΥ⟩Υe

©
, (6.78c)

where the local bilinear forms are

aHHO
e (we,ve) :=

∑
i∈{1:2}

{
µie
Ä
LHHO
e,i (we),LHHO

e,i (ve)
ä

Ωi
e

+ τHHO
e,i

¨
sssHHO
e,i (we,i|∂Ωi

e
− ŵe,i), sssHHO

e,i (ve,i|∂Ωi
e

− v̂e,i)
∂
∂Ωi

e

}
+ τHHO

Υe
⟨JweKHHO

Υe
, JueKHHO

Υe
⟩Υe , (6.79a)

bHHO
e (ve, qe) :=

∑
i∈{1:2}

(DHHO
e,i (ve), qe,i)Ωi

e
, (6.79b)

for all e ∈ {1:nel}, with positive weights τHHO
Υe

> 0 and τHHO
e,i > 0 (typically, τHHO

Υe
:=

min(µ1
e, µ

2
e)h−1

e and τHHO
e,i := µieh

−1
e ). The following operators have been used for all i ∈ {1, 2}:

The gradient reconstruction operator LHHO
e,i : Ue → Li

e such that

(G,LHHO
e,i (ve))Ωi

e
:= (G,∇ve,i)Ωi

e
+ ⟨Gne, v̂e,i − ve,i|∂Ωi

e
⟩∂Ωi

e
− 1

2 ⟨GnΥ, JveKHHO
Υe

⟩Υe , (6.80)

for all ve ∈ Ue, and all G ∈ Li
e, the divergence reconstruction operator such that

DHHO
e,i (ve) := Insd :LHHO

e,i (ve), (6.81)

and the stabilization operator sHHO
e,i : Û

∗,i
e → Û

i

e such that

sHHO
e,i (δ̂) := Π̂i

e(δ̂), (6.82)

for all δ̂ ∈ Û
∗,i
e . We notice that when the gradient reconstruction operator (6.80) is evaluated

in an entire cut cell, we have∑
i∈{1:2}

(G,LHHO
e,i (ve))Ωi

e
:= (G,∇ve)Ωe

+ ⟨Gne, v̂e − ve|∂Ωe
⟩∂Ωe

− ⟨{G}Υe
nΥ, JveKHHO

Υe
⟩Υe

,

(6.83)
for all G ∈ Le = L1

e × L2
e. Finally, it is convenient to define the HHO viscous stress tensor

such that

ΦHHO
e,i := −µieL

HHO
e,i (uHHO

e ) + pHHO
e,i Insd , ∀e ∈ {1:nel}, ∀i ∈ {1, 2}. (6.84)
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6.2.4.2 Static condensation

Recall the decomposition (6.73) of the pressure space, i.e., P0 = P0
0 ⊕ P0

⊥ . Notice that

bHHO
e ((we,0), pHHO

0,e ) = (LHHO(we,0), pHHO
0,e Insd)Ωe

= −⟨{pHHO
0,e }Υe

nΥ, JweKHHO
Υe

⟩Υe
, (6.85)

for all we ∈ Ue and all e ∈ {1:nel}, as a consequence of (6.80) after integration by parts. In
particular, (6.85) gives

bHHO
e ((uHHO

e ,0), 1) = ⟨1, JuHHO
e KHHO

Υe
nΥ⟩Υe

. (6.86)

Proposition 9 (Local and global problems). The triple (uHHO, pHHO, ûHHO) ∈ U × P0 × Û0
solves the HHO problem (6.77) if and only if:

(i) The local variables (uHHO, pHHO
⊥ ) ∈ U × P0

⊥ solve the following local problems as a
function of the global variables (ûHHO, pHHO

0 ) ∈ Û0 × P0
0 :

aHHO
e ((we,0), (uHHO

e ,0)) − bHHO
e ((we,0), pHHO

⊥,e ) + ⟨{pHHO
0,e }Υe

nΥ, JweKHHO
Υe

⟩Υe

= (we, fff)Ωe
+ ⟨{we}Υe

, gΥ⟩Υe
− aHHO

e ((we,0), (0, ûHHO
e )), (6.87a)

bHHO
e ((uHHO

e ,0), qe) = −bHHO
e ((0, ûHHO

e ), qe), (6.87b)

for all (we, qe) ∈ Ue × P0
⊥,e and all e ∈ {1:nel};

(ii) The global variables (ûHHO, pHHO
0 ) ∈ Û0 ×P0

0 solve the following global problems where
the local variables (uHHO, pHHO

⊥ ) ∈ U × P0
⊥ result from (6.87):

aHHO((0, ŵ), (0, ûHHO)) − bHHO((0, ŵ), pHHO
0 )

= −aHHO((0, ŵ), (uHHO,0)) + bHHO((0, ŵ), pHHO
⊥ ), (6.88a)

bHHO
e ((0, ûHHO

e ), 1) = ⟨1, JuHHO
e KHHO

Υe
nΥ⟩Υe , (6.88b)

where (6.88a) holds for all ŵ ∈ Û0 and (6.88b) holds for all e ∈ {1:nel}.

6.2.5 Bridging HHO and HDG

Within the above setting, HDG and HHO methods depend on the choice of the local spaces Li
e,

U i
e, Pi

e , Û
i

f , of the stabilization operators sHDG
e,i and sHHO

e,i acting on ∂Ωie, and of the penalty
terms τHDG

Υe
and τHHO

Υe
acting on Υe. Recall that the unfitted HHO method is devised only in

the mixed-order setting; thus, we focus only on this case in the next proposition.
Proposition 10 (From HHO to HDG). Define the local polynomial spaces

Li
e = Pk(Ωie; Rnsd×nsd), U i

e = Pk+1(Ωie; Rnsd;R), Pi
e = Pk(Ωie), Û

i

f = Pk(Γif ; Rnsd). (6.89)

If the triple (uHHO, pHHO, ûHHO) ∈ U × P0 × Û0 solves the HHO problem (6.77) with the
stabilization operator (6.82), then setting

ZHHO
e,i := −

»
µieL

HHO
e,i (uHHO

e ), (6.90)

for all e ∈ {1:nel} and all i ∈ {1, 2}, the quadruple (ZHHO,uHHO, pHHO, ûHHO) ∈ L×U ×P0 ×
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Û0 solves the HDG problem (6.68) with the stabilization operator

sHDG
e,i (δ̂) = τHHO

e,i Π̂i
e(δ̂), (6.91)

for all δ̂ ∈ Û
∗,i
e on the internal faces, with the penalty weight

τHDG
Υe

= τHHO
Υe

, (6.92)

at the interface, and with the numerical flux trace such that

Φ
∧HDG
e,i ne := ΦHHO

e,i ne + sHDG
e,i (uHHO

e,i |∂Ωi
e

− ûHHO
e,i ), (6.93)

for all e ∈ {1:nel} and all i ∈ {1, 2}, where ΦHHO
e,i :=

√
µieZ

HHO
e,i + pHHO

e,i Insd.
Proposition 11 (From HDG to HHO). Define the local polynomial spaces

Li
e = Pk(Ωie; Rnsd×nsd), U i

e = Pℓ(Ωie; Rnsd;R), Pi
e = Pk(Ωie), Û

i

f = Pk(Γf ;i Rnsd), (6.94)

with either ℓ = k (equal-order) or ℓ = k + 1 (mixed-order).
If the quadruple (LHDG,uHDG, pHDG, ûHDG) ∈ L×U ×P0 ×Û0 solves the HDG problem (6.68)
with ℓ = k + 1 and with the stabilization operator (6.70), then

LHDG
e,i = −

»
µieL

HHO
e,i (uHHO

e ), ∀e ∈ {1:nel}, ∀i ∈ {1, 2}, (6.95)

with the operator LHHO
e,i defined in (6.80), and the triple (uHDG, pHDG, ûHDG) ∈ U × P0 × Û0

solves the HHO problem (6.77) with the weight τHHO
e,i = τHDG

e,i , and stabilization operator

sHHO
e,i (δ̂) = Π̂i

e(δ̂), (6.96)

for all δ̂ ∈ Û
∗,i
e at the internal faces, and the penalty weight

τHHO
Υe

= 0 (6.97)

at the interface.

Proof. We only prove Proposition 10 since the proof of Proposition 11 is similar. Moreover, we
only detail the effects of the interface terms, and we rely on the proof of Proposition 5 for the one-
fluid case for more details. We need to prove that the quadruple (ZHHO,uHHO, pHHO, ûHHO) ∈
L × U × P0 × Û0 satisfies (6.68). We proceed as for the one-fluid case.
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(i) For all e ∈ {1:nel} and all Ge,i ∈ Li
e, i ∈ {1, 2}, we have

(Ge,Z
HHO
e )Ωe =

∑
i∈{1:2}

(Ge,i,Z
HHO
e,i )Ωi

e

= −
∑

i∈{1:2}

Ä»
µieG

i
e,L

HHO
e,i (uHHO

e )
ä

Ωi
e

= − (√µeGe,∇uHHO
e )Ωe

− ⟨√µeGene, û
HHO
e − uHHO

e |∂Ωe
⟩∂Ωe

+ ⟨{√
µeGe}ΥenΥ, JuHHO

e KHHO
Υe

⟩Υe

= (∇·(√µeGe),uHHO
e )Ωe

− ⟨√µeGene, û
HHO
e ⟩∂Ωe

− ⟨J√µeGenKHDG
Υe

, {uHHO
e }Υe

⟩Υe
,

where we used (6.16), and the identity∑
i∈{1:2}

⟨
»
µieGe,in

i,uHHO
e,i ⟩Υe

= ⟨J√µeGenKHDG
Υe

, {uHHO
e }Υe

⟩Υe
+⟨{√

µeGe}Υe
, JuHHO

e ⊗nKHDG
Υe

⟩Υe
.

Hence, (6.68a) holds.
(ii) For all e ∈ {1:nel} and all we,i ∈ U i

e, i ∈ {1, 2}, we have

−(∇we,ΦHHO
e )Ωe = −

∑
i∈{1:2}

(∇we,i,ΦHHO
e,i )Ωi

e

=
∑

i∈{1:2}

µie
Ä
∇we,i,L

HHO
e,i (uHHO

e )
ä

Ωi
e

− (∇we,i, p
HHO
e,i Insd)Ωi

e

= − ⟨we,ΦHHO
e ne⟩∂Ωe

+
¨
τHHO
e sHHO

e (we|∂Ωe
), sHHO

e (uHHO
e |∂Ωe

− ûHHO
e )

∂
∂Ωe

− τHHO
Υe

⟨JweKHHO
Υe

, JuHHO
e KHHO

Υe
⟩Υe

− ⟨JweKHHO
Υe

, {ΦHHO
e }Υe

nΥ⟩Υe

+ aHHO
e ((we,0),uHHO

e ) − bHHO
e ((we,0), pHHO

e )

= − ⟨we,Φ
∧HHO
e ne⟩∂Ωe

− sHHO
Υe

(we,u
HHO
e )

− ⟨Jwe ⊗ nKHDG
Υe

, {ΦHHO
e }Υe⟩Υe + (we, fff)Ωe + ⟨{we}Υe , gΥ⟩Υe ,

where we used (6.16) and we denote by

sHHO
Υe

(w,v) := τHHO
Υe

⟨JweKHHO
Υe

, JveKHHO
Υe

⟩Υe
,

the HHO penalty term. Hence, (6.68b) holds, if one sets τHDG
Υe

= τHHO
Υe

.
(iii) For all e ∈ {1:nel} and all qe,i ∈ P0

e , i ∈ {1, 2}, we have

(∇qe,u
HHO
e )Ωe

=
∑

i∈{1:2}

(∇qe,i,u
HHO
e,i )Ωi

e

= − bHHO
e (uHHO

e , qe) + ⟨qe, ûHHO
e · ne⟩∂Ωe

+ ⟨JqKHHO
Υe

nΥ, {uHHO
e }Υe

⟩Υe

= ⟨qe, ûHHO
e · ne⟩∂Ωe

+ ⟨JqnKHDG
Υe

, {uHHO
e }Υe

⟩Υe
,

where we used (6.16), and the identity∑
i∈{1:2}

⟨qe,i,uHHO
e,i ni⟩Υe = ⟨{q}Υe , Ju

HHO
e ⊗ nKHDG

Υe
⟩Υe + ⟨JqnKHDG

Υe
, {uHHO

e }Υe⟩Υe .
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Hence, (6.68c) holds.
(iv) Since the interface terms depend only on the cell variable, the proof of this point is

identical to the one-fluid case. Hence, (6.68d) holds, and the proof is complete.

Remark 6.5 (Interface stabilization). HHO methods offer optimal error estimates when em-
ploying the mixed-order setting, as demonstrated in [23]. The presence of the penalty term on
the interface plays a relevant role in the proof. In contrast, the analysis of unfitted methods
without a penalty term on the interface remains an open question left to future work.



Chapter 7

Conclusions and perspectives

This Thesis focused on solving the Stokes interface problem using the Hybrid High-Order (HHO)
method and the Hybridizable Discontinuous Galerkin (HDG) method. Both approaches rely
on geometrically unfitted techniques to handle fluid interfaces and curved external boundaries.

In the first part of the Thesis, we explored the unfitted HHO method coupled with a level-set
scheme discretized using isoparametric elements. In particular, we investigated numerically the
equilibrium between shear flows at infinity and surface tension. In the second part of the Thesis,
we developed an unfitted HDG method coupled with a NURBS-enhanced finite element method
(HDG-NEFEM) for the exact description of CAD geometries. In particular, we investigated
numerically model problems related to microfluidics. Finally, in the third part of the Thesis, we
compared the two methodologies in some simplified settings to highlight the close links between
the two approaches.

The main achievements can be summarized as follows:

• The unfitted HHO solver was used to explore two main test cases. In the first one, we
solved the equilibrium problem between a pure shear flow (enforced far away from the
interface) and surface tension effects. In this case, the equilibrium interface is known
to be an ellipse, and the relationship between shear and surface tension is expected to
be linear. We investigated numerically the dependence of the ellipse eccentricity on the
capillary number (quantifying the ratio of shear to surface tension force). In the second
test case, we solved equilibrium problems with more complex boundary conditions, leading
to unknown shapes for the equilibrium interface. We introduced a fixed-point iterative
procedure to determine the equilibrium interface, and we were able to reduce the normal
velocity at the interface by one to two orders of magnitude.

• The unfitted HDG-NEFEM solver was used to explore two main test cases. In the first
one, we solved the one-fluid Stokes problem, and we observed robustness with respect to
badly cut cells and optimal error estimates. In the second one, we solved the two-fluid
Stokes problem within complex geometrical domains, where CAD representations allow
for a seamless description without introducing geometrical errors. We employed a degree-
adaptivity procedure to achieve results with at least two significant digits. Moreover,
we investigated the conditioning of the resulting linear system and studied how a careful
choice of the basis functions leads to moderate values.
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• We proved that for the one-fluid Stokes problem, the HHO and HDG methods can differ
only in the choice of the approximation spaces and of the stabilization operator. Moreover,
for the two-fluid Stokes problem, the unfitted HHO and HDG methods can additionally
differ in the choice of the penalty method.

Several perspectives for future work can be highlighted concerning either applications or
methodological improvements.

Applications

A natural perspective is to embrace more challenging applications in fluid dynamics, in particu-
lar, unsteady flows and more complex governing equations, such as the Navier-Stokes equations.
A further important step is to extend our approach to three dimensions. While the theoret-
ical foundations for this extension are available, it poses numerical challenges, particularly in
handling unfitted interfaces.

Moreover, the unfitted HHO and HDG-NEFEM methods can have important applications
owing to their capacity to handle complex (and possibly moving) geometries within high-fidelity
simulations. Future applications can include: (i) nonlinear rheology problems, such as Bingham
fluids, with applications to mineral liquid foams for building insulation; (ii) multi-fluid flows
for oil and gas reservoir modeling and for chemical engineering processes; (iii) fluid dynamics
in complex geometrical domains, with applications to medicine (biomedical flows, blood flows
in arteries and vessels, and drug delivery), to renewable energy (wind and tidal farms), and to
optimal object design (optimizing the hydro- or hemo-dynamics, e.g., for stents in arteries).

Methodology

In view of improving the numerical methodologies and consolidating their mathematical for-
mulations, we identify the following research directions:

• As mentioned above, developing the geometric tools for an efficient implementation of the
unfitted mesh procedures in 3D is an important target.

• Studying mathematically the convergence of the fixed-point iterative procedure and in-
vestigating more systematically the role played by the various numerical procedures in
the convergence process. For instance, the coupling of the unfitted HHO method with the
level-set scheme can be improved by employing in the level-set scheme a post-processed
velocity field that preserves the divergence-free condition. This modification can play an
important role in mitigating the issue of area loss, thereby improving the accuracy and
stability of simulations. The role of other procedures, such as the finite element solver to
transport the level-set and the numerical approximation of the curvature, also deserves
further attention.

• Our research suggests ideas on how to alleviate the local conditioning of the unfitted HDG-
NEFEM method. Alternative basis functions or different element-extension techniques
can be considered to reduce the sensitivity to cut cells. Such improvements can enhance
the overall robustness of the HDG method in addressing a more comprehensive range of
complex fluid dynamics problems. These investigations are relevant to the unfitted HHO
method as well.
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• Tackling moving interfaces remains an unexplored frontier within the unfitted HDG-
NEFEM method. Future research could focus on extending the capabilities of this method
to effectively handle dynamic interfaces, opening new avenues for applications in fluid dy-
namics simulations.
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[13] E. Bezchlebová, V. Doleǰśı, and M. Feistauer, “Discontinuous Galerkin method for the
solution of a transport level-set problem,” Comput. Math. Appl., vol. 72, no. 3, pp. 455–
480, 2016.

[14] S. P. Bordas, E. Burman, M. G. Larson, and M. A. Olshanskii, Geometrically unfitted fi-
nite element methods and applications: Proceedings of the UCL workshop 2016. Springer,
2018, vol. 121.

[15] L. Botti, D. A. Di Pietro, and J. Droniou, “A hybrid high-order method for the incom-
pressible Navier-Stokes equations based on Temam’s device,” J. Comput. Phys., vol. 376,
pp. 786–816, 2019.

[16] J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface
tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, 1992.

[17] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods
(Texts in Applied Mathematics). Springer, 2008, vol. 15.
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[56] R. Eymard, T. Gallouët, and R. Herbin, “Finite volume methods,” in Handbook of nu-
merical analysis, Vol. VII, ser. Handb. Numer. Anal., VII, North-Holland, Amsterdam,
2000, pp. 713–1020.

[57] B. Fraeijs de Veubeke, “Displacement and equilibrium models in the finite element
method,” in Stress Analysis, John Wiley & Sons, 1965.
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