
HAL Id: tel-04420933
https://hal.science/tel-04420933

Submitted on 12 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring deep neural network differentiable
architecture design

Alexandre Heuillet

To cite this version:
Alexandre Heuillet. Exploring deep neural network differentiable architecture design. Artificial Intel-
ligence [cs.AI]. Université Paris-Saclay, 2023. English. �NNT : 2023UPASG069�. �tel-04420933�

https://hal.science/tel-04420933
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

023
UPA

SG0
69

Exploring Deep Neural NetworkDifferentiable Architecture Design
Optimisation Automatique des Architectures de
Réseaux de Neurones Profonds via un Objectif

Différentiable

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦580 Sciences et Technologies de l’Information et de laCommunication (STIC)Spécialité de doctorat: InformatiqueGraduate School : Informatique et Sciences du Numérique. Référent : Universitéd’Évry Val d’Essonne
Thèse préparée dans l’unité de recherche IBISC (Université Paris-Saclay, Univ Evry),sous la direction de Hedi TABIA, professeur et la co-direction de Hichem ARIOUI, Maîtrede conférences HDR.

Thèse soutenue à Paris-Saclay, le 4 décembre 2023, par

Alexandre HEUILLET

Composition du jury
Membres du jury avec voix délibérative
Blaise HANCZAR PrésidentProfesseur des universités, Université Paris-Saclay
Florence D’ALECHE-BUC Rapporteure & ExaminatriceProfesseure des universités, Télécom Paris
Raul SANTOS-RODRIGUEZ Rapporteur & ExaminateurProfesseur, University of Bristol
David PICARD ExaminateurDirecteur de recherche, Ecole des Ponts ParisTech

Titre: Optimisation Automatique des Architectures de Réseaux de Neurones Profonds via unObjectif Différentiable
Mots clés: Apprentissage automatique, Apprentissage profond, Recherche d’architecture neu-ronale, Réseaux convolutifs, Intelligence Artificielle
Résumé: L’intelligence artificielle (IA) a gagnéen popularité ces dernières années, principale-ment en raison de ses applications réussiesdans divers domaines tels que l’analyse dedonnées textuelles, la vision par ordinateuret le traitement audio. La résurgence destechniques d’apprentissage profond a joué unrôle central dans ce succès. L’article révolu-tionnaire de Krizhevsky et al., AlexNet, a ré-duit l’écart entre les performances humaineset celles des machines dans les tâches declassification d’images. Des articles ultérieurstels que Xception et ResNet ont encore ren-forcé l’apprentissage profond en tant que tech-nique de pointe, ouvrant de nouveaux hori-zons pour la communauté de l’IA. Le succèsde l’apprentissage profond réside dans sonarchitecture, conçue manuellement avec desconnaissances d’experts et une validation em-pirique. Cependant, ces architectures n’ont pasla certitude d’être la solution optimale. Pour ré-soudre ce problème, des articles récents ont in-

troduit le concept de Recherche d’ArchitectureNeuronale (NAS), permettant l’automatisationde la conception des architectures profondes.Cependant, lamajorités des approches initialesse sont concentrées sur de grandes architec-tures avec des objectifs spécifiques (par exem-ple, l’apprentissage supervisé) et ont utilisé destechniques d’optimisation coûteuses en calcultelles que l’apprentissage par renforcement etles algorithmes génétiques. Dans cette thèse,nous approfondissons cette idée en explorantla conception automatique d’architectures pro-fondes, avec une emphase particulière surles méthodes NAS différentiables (DNAS), quireprésentent la tendance actuelle en raisonde leur efficacité computationnelle. Bien quenotre principal objectif soit les réseaux convo-lutifs (CNNs), nous explorons également les Vi-sion Transformers (ViTs) dans le but de con-cevoir des architectures rentables adaptéesaux applications en temps réel.

Cette thèse est basée sur les publications suivantes:
• Alexandre Heuillet, Hedi Tabia, Hichem Arioui, and Kamal Youcef-Toumi. “D-DARTS: DistributedDifferentiable Architecture Search”. Pattern Recognition Letters, 2023.
• Alexandre Heuillet, Ahmad Nasser, Hichem Arioui, and Hedi Tabia. “Efficient Automation ofNeural Network Design: A Survey on Differentiable Neural Architecture Search”. arXiv preprint
arXiv:2304.05405, 2023. Soumis à ACM Computing Surveys.

• Alexandre Heuillet, Hedi Tabia, and Hichem Arioui. “NASiam: Efficient Representation Learningusing Neural Architecture Search for Siamese Networks”. INNS DLIA 2023, IJCNN 2023, Procedia
Computer Science, Elsevier.

• Alexandre Heuillet, Hedi Tabia, and Hichem Arioui. “Automated Siamese Network Design forImage Similarity Computation”. International Conference on Content-Based Multimedia Indexing,2023.
• Alexandre Heuillet, Haozhe Sun, Isabelle Guyon, Felix Mohr, and Hedi Tabia. “DARIO: Differen-tiable vision transformer pruning with low-cost proxies”. Soumis à IEEE Journal of Selected Topics
in Signal Processing, 2023.

Title: Exploring Deep Neural Network Differentiable Architecture Design
Keywords: Machine Learning, Deep Learning, Neural Architecture Search, Convolutional NeuralNetworks, Artificial Intelligence
Abstract: Artificial Intelligence (AI) has gainedsignificant popularity in recent years, primar-ily due to its successful applications in variousdomains, including textual data analysis, com-puter vision, and audio processing. The resur-gence of deep learning techniques has playeda central role in this success. The groundbreak-ing paper by Krizhevsky et al., AlexNet, nar-rowed the gap between human and machineperformance in image classification tasks. Sub-sequent papers such as Xception and ResNethave further solidified deep learning as a lead-ing technique, opening new horizons for theAI community. The success of deep learninglies in its architecture, which is manually de-signed with expert knowledge and empiricalvalidation. However, these architectures lackthe certainty of an optimal solution. To address

this issue, recent papers introduced the con-cept of Neural Architecture Search (NAS), en-abling the learning of deep architectures. How-ever, most initial approaches focused on largearchitectures with specific targets (e.g., super-vised learning) and relied on computationallyexpensive optimization techniques such as re-inforcement learning and evolutionary algo-rithms. In this thesis, we further investigate thisidea by exploring automatic deep architecturedesign, with a particular emphasis on differen-tiable NAS (DNAS), which represents the cur-rent trend in NAS due to its computational effi-ciency. While our primary focus is on Convolu-tional Neural Networks (CNNs), we also exploreVision Transformers (ViTs) with the goal of de-signing cost-effective architectures suitable forreal-time applications.
This thesis is based on the following publications:
• Alexandre Heuillet, Hedi Tabia, Hichem Arioui, and Kamal Youcef-Toumi. “D-DARTS: DistributedDifferentiable Architecture Search”. Pattern Recognition Letters, 2023.
• Alexandre Heuillet, Ahmad Nasser, Hichem Arioui, and Hedi Tabia. “Efficient Automation ofNeural Network Design: A Survey on Differentiable Neural Architecture Search”. arXiv preprint
arXiv:2304.05405, 2023. Submitted to ACM Computing Surveys.

• Alexandre Heuillet, Hedi Tabia, and Hichem Arioui. NASiam: “Efficient Representation Learningusing Neural Architecture Search for Siamese Networks”. INNS DLIA 2023, IJCNN 2023, Procedia
Computer Science, Elsevier.

• Alexandre Heuillet, Hedi Tabia, and Hichem Arioui. “Automated Siamese Network Design forImage Similarity Computation”. International Conference on Content-Based Multimedia Indexing,2023.
• Alexandre Heuillet, Haozhe Sun, Isabelle Guyon, Felix Mohr, and Hedi Tabia. “DARIO: Differen-tiable vision transformer pruning with low-cost proxies”. Submitted to IEEE Journal of Selected
Topics in Signal Processing, 2023.

3

4

Remerciements

En premier lieu, je tiens à remercier mes encadrants Hedi Tabia et Hichem Arioui pour leurs
conseils avisés, nos discussions passionnantes ainsi que leur bienveillance et leur soutien lors des
épreuves difficiles que j’ai pu traverser pendant cette thèse. Ils ont toujours eu confiance en moi et
su me remonter le moral.

Il m’est également nécessaire de remercier Blaise Hanczar, Florence d’Alché-Buc, David Picard et
Raùl Santos-Rodriguez pour avoir accepté de faire partie de mon jury et leur bienveillance lors de la
soutenance.

Je tiens égalemement à remercier Isabelle Guyon, Haozhe Sun et Felix Mohr pour la collaboration
fructueuse que nous avons pu avoir cette année et nos disucussions toujours enrichissantes.

Merci à Pierre-Yves Oudeyer, directeur de l’équipe Flowers de l’INRIA, pour m’avoir donné le goût
de la recherche en intelligence artificielle lors d’une présentation de son ouvrage "Aux sources de la
parole" à la librairie Mollat.

Merci à Natalia Diaz-Rodriguez et à mon ami Fabien Couthouis pour m’avoir accompagné dans
mes premiers pas (difficiles) dans le monde de la recherche.

Milles merci aussi à Kamal Youcef-Toumi et tous mes amis duMIT MRL et de MIT VISTA (Jun, Marc,
Malek, Abhishek, Aadi, Xiaotong, Jiajie, Fangzhou, Steven, Tony, Mayar, Ishfaaq, Yanis, Jonas, Paul,
Daniel, Katarina, Henrique, et Amaury) pour leur accueil chaleureux et les excellents moments que
nous avons partagé ensemble.

Merci également à mes amis Hugo, Hugues et Rémi pour nos parties de jeu du soir qui m’ont été
essentielles pour décompresser (EaW forever!).

Merci aussi à tous mes amis doctorants et post-docs d’IBISC (Quentin, Martin, Obaïda, Hicham,
Victoria, Tina, Alice, Rodolfo, Sana, Lara, Ahmed, Mohammed) pour tous nos repas, échanges et dis-
cussions.

Enfin, je tiens à remercier mes parents pour leur soutien constant, surtout lors des épreuves dif-
ficiles que j’ai pu traverser pendant ces trois années, et tout particulièrement mon père pour m’avoir
transmis sa passion pour l’informatique.

5

6

Synthèse en français

Durant la dernière décennie , l’Intelligence Artificielle (IA) a réalisé d’importants progrès. En effet,
l’IA joue désormais un rôle de plus en plus important dans divers aspects de la société, notamment les
transports publics, la sécurité, l’éducation et les soins de santé. Ces progrès remarquables peuvent
être largement attribués à l’adoption généralisée de l’apprentissage profond [105, 88], une famille
de réseaux de neurones artificiels capables d’apprendre efficacement des modèles en tirant parti de
vastes quantités de données. Toutefois, nombre de ces modèles sont conçus de manière empirique,
avec des améliorations basées sur l’intuition, telles que l’approfondissement de l’architecture [101] ou
l’incorporation de connexions résiduelles [69]. Par conséquent, leurs architectures restent quelque
peu "génériques", sans l’assurance d’une solution optimale.

Pour répondre à cette préoccupation, la recherche d’architecture neuronale (NAS) [231, 232, 117] a
connu un développement rapide au cours des dernières années. NAS vise à surmonter l’approche par
essais et erreurs et à fournir un moyen plus formel pour concevoir les architectures d’apprentissage
profond. Ainsi, la dépendance à l’égard de l’ingénieriemanuelle des caractéristiques et du développe-
ment de modèles a progressivement diminué, ce qui a donné lieu à de nouveaux défis, notamment
l’efficacité de la mémoire, la transférabilité entre les ensembles de données et l’efficacité de calcul.
Par conséquent, les chercheurs s’efforcent d’intégrer diverses approches issues de la littérature afin
d’améliorer lesméthodesNAS. En particulier, la différentiabilité de l’espace des paramètres, qui utilise
des optimiseurs performants pour la formation de modèles d’apprentissage profond, est considérée
comme l’une des voies d’exploration les plus prometteuses.

Ces dernières années, une catégorie spécifique de méthodes NAS a fait l’objet d’une attention
particulière : Les approches NAS différentiables (DNAS). Ces approches représentent la tendance
actuelle en matière de NAS en raison de leur efficacité, de leurs performances élevées et de leur
faible coût de calcul. Cependant, malgré leur utilisation répandue, elles ne sont pas exemptes de
défauts et de limitations (voir le chapitre 3).

Par conséquent, cette thèse vise à améliorer les DNAS afin de surmonter certaines de leurs lim-
ites et d’explorer l’application des DNAS à de multiples domaines et paradigmes d’apprentissage.
Dans le chapitre 3, nous avons dressé l’état-de-l’art du DNAS et avons analysé les forces et faiblesses
des différentes méthodes proposées. Par conséquent, le chapitre 4 se concentre sur l’amélioration
d’une méthode DNAS souffrant d’une des limitation identifiée au chapitre précédent. Puis, dans le
chapitre 5 nous avons choisi d’aborder un nouveau paradigme d’apprentissage (apprentissage auto-
supervisé). Enfin, dans le chapitre 6, nous avon exploré diverses applications des méthodes DNAS à
des cas d’utilisation concrets (contrôle d’un moteur électrique et compression d’un modèle ViT). Lors
de nos expériences, nous avons ciblé différentes tâches de vision par ordinateur (par exemple, la
classification d’images, la recherche d’images et la reconnaissance d’objets).

7

8

Contents

Contents 9

List of Figures 13

List of Tables 15

Acronyms 17

1 Introduction 19

2 Preliminaries 21
2.1 Artificial Neural Networks and Deep Learning . 21
2.2 Convolutional Neural Networks . 22
2.3 Vision Transformers . 23
2.4 Datasets Employed . 25

2.4.1 CIFAR-10 and CIFAR-100 . 25
2.4.2 ImageNet-1k . 25
2.4.3 Cityscapes . 26
2.4.4 MS-COCO . 26
2.4.5 INRIA Holidays . 27
2.4.6 Meta-Album . 28

2.5 Evaluation Criteria . 29
2.5.1 Image Classification . 29
2.5.2 Object Detection and Instance Segmentation . 29
2.5.3 Content-Based Image Retrieval . 30

2.6 Neural Architecture Search . 30
2.6.1 Reinforcement Learning . 31
2.6.2 Evolutionary Algorithms . 32
2.6.3 Gradient Descent and Differentiable NAS . 32

2.7 DARTS: Differentiable ARchiTecture Search . 33
3 Literature survey of state-of-the-art Differentiable Neural Architecture Search 37

3.1 DARTS and the challenges of Differentiable NAS . 37
3.2 Literature Review of Differentiable NAS . 40

3.2.1 Gradient Approximation Inconsistencies and Optimization Gap 40
3.2.2 Over-representation of skip connections in DARTS 51
3.2.3 Computational Efficiency and Latency Reduction 57
3.2.4 Search Space Restrictions . 62

3.3 Applications . 65
3.4 Discussion and Conclusion . 66

9

4 Improving DARTS: Distributed Differentiable Neural Architecture Search 71
4.1 Proposed Approach . 71

4.1.1 Delegating Search to Cell-Level Subnets . 71
4.1.2 Adding a New Cell-Specific Loss . 73
4.1.3 Building Larger Networks from a Few Highly Specialized Cells 74
4.1.4 Encoding Handcrafted Architectures in DARTS (DARTOpti) 75
4.1.5 Implementing a Metric to Quantify the Distance Between Architectures 76

4.2 Experiments . 78
4.2.1 Experimental Settings . 78
4.2.2 Analysis of the Ablation Loss LAB . 78
4.2.3 Memory Efficiency . 80
4.2.4 Leveraging the Architectural Distance Metric . 81
4.2.5 Searching Architectures on CIFAR . 83
4.2.6 Searching and Transferring to ImageNet . 84
4.2.7 Detecting objects on MS-COCO and Instance Segmentation on Cityscapes 85
4.2.8 Statistics on the Search Space . 85

4.3 Discussion and Conclusion . 87
5 Tackling Self-Supervised Learning: Efficient Representation Learning usingNeural Archi-

tecture Search for Siamese Networks 93
5.1 Proposed Approach . 94

5.1.1 Searching for an Encoder/Predictor Pair . 94
5.1.2 Crafting a Contrastive Learning-Specific Search Space 95
5.1.3 Adapting the Siamese contrastive learning framework to perform content-based

image retrieval . 97
5.2 Experiments . 97

5.2.1 Experimental Settings . 97
5.2.2 Ablation Study on the Importance of Pooling Layers 98
5.2.3 Incidence of Data Augmentations on the NAS process 98
5.2.4 Preliminary Results on CIFAR . 100
5.2.5 Results on ImageNet . 100
5.2.6 Content-based image search evaluation on Holidays 101
5.2.7 Object Detection and Instance Segmentation Results on COCO 102
5.2.8 Analysis of the composition of NAS-discovered architectures 103

5.3 Discussion and Conclusion . 105
6 Applications of Differentiable NAS 109

6.1 Exploring Differentiable NAS for Cost-Effective Vision Transformers: Differentiable Vi-
sion Transformer Pruning with Low-Cost Proxies . 109
6.1.1 Proposed Approach . 111
6.1.2 Experiments . 117
6.1.3 Discussion and Conclusion . 127

10

6.2 Torque Control of a Permanent Magnet SynchronousMotor using Differentiable Neural
Architecture Search . 128
6.2.1 Preliminaries . 129
6.2.2 Proposed Approach . 130
6.2.3 Experiments . 132
6.2.4 Discussion and Conclusion . 133

7 Conclusion and Future Directions 135

Bibliography 139

Appendices

Appendix A ColorNAS 161
A.1 Introduction . 161
A.2 Proposed Approach . 163
A.3 Experiments . 166
A.4 Conclusion . 168

11

12

List of Figures

2.1 Layout of a single layer perception. 22
2.2 Typical Convolutional Neural Network architecture . 23
2.3 Overview of the original Vision Transformer architecture 24
2.4 Example images from CIFAR-10 . 25
2.5 Example images from ImageNet . 26
2.6 Example annotated image from Cityscapes . 27
2.7 Example annotated images from MS-COCO . 27
2.8 Example images from INRIA Holidays . 28
2.9 Sample images from Meta-Album . 29
2.10 Typical layout of a Neural Architecture Search framework 31
2.11 Overview of the search strategy of DARTS . 34
3.1 Taxonomy of the reviewed Differentiable Neural Architecture Search literature 38
3.2 Evolution of the number of skip connections w.r.t. the number of search epochs 39
3.3 Layout of the P-DARTS search process . 43
3.4 The landscape of validation accuracy w.r.t. the architectural parameters α of DARTS ,

SDARTS-RS and SDARTS-ADV . 44
3.5 Bar chart comparing the value of α w.r.t. the discretization accuracy at convergence for

each operation of 3 randomly selected edges from a pretrained DARTS model 47
3.6 Layout of the β-DARTS search process in comparison with DARTS and DARTS- 48
3.7 Layout of the DOTS search process featuring both the operational and topological sub-

processes . 49
3.8 Comparison between the search processes of DARTS, P-DARTS, EnTranNAS, and CDARTS 51
3.9 Stacked area plot of the number of dominant operations of DARTS and FairDARTS when

searching on ImageNet . 52
3.10 Illustration of the early stopping process in DARTS+ . 53
3.11 Layout of the PC-DARTS search process . 58
3.12 Layout of the HardCoRe-NAS search process . 62
3.13 Layout of the FBNetV5 search process . 64
4.1 Layout of the search process used in D-DARTS . 72
4.2 Overall description of the process used in DARTOpti . 75
4.3 Line plot of the minimal global loss obtained by searching for a model on CIFAR-100

w.r.t. the sensitivity weight wabl used for the ablation loss LAB 79
4.4 Line plot showing the percentage of dominant operations obtained in the final architec-

ture α while searching on CIFAR-100 w.r.t. the sensitivity weight w01 used for L01 80
4.5 Line plot showing the best validation top-1 accuracy while searching on CIFAR-10 w.r.t.

the current epoch . 81
13

4.6 Line plot of the distance metric between the original ResNet18 architecture and the one
being optimized by DARTOpti on CIFAR10 according to the current epoch 82

4.7 Line plot of the validation accuracy reached at each epoch on CIFAR-10 while optimizing
ResNet18 with DARTOpti. 83

4.8 Heatmap representing the distances between the different architectures obtained from
ResNet on CIFAR datasets. 88

5.1 Layout of the NASiam architecture . 96
5.2 Plot of the negative cosine contrastive loss while pretraining two NASiam models on

CIFAR-10 . 99
5.3 Plot of the negative cosine contrastive loss while pretraining two NASiam models on

CIFAR-10 . 100
5.4 Plot of the negative cosine contrastive loss when pretraining SimSiam and NASiam for

800 epochs on CIFAR-10 . 102
5.5 Composition of encoder/predictor pair architectures . 104
5.6 Plot of the negative cosine similarity loss while pretraining NASiam with ResNet18 using

architectures searched either with ResNet18 or ResNet50 as backbone 105
6.1 Flowchart of the DARIO pruning process . 110
6.2 Illustration of DARIO’s meta-architecture for a N -block ViT modelM 112
6.3 Sample images from ICDAR-micro . 117
6.4 Absolute value of Spearman correlation coefficients on ICDAR-micro 118
6.5 Absolute value of Pearson correlation coefficients . 120
6.6 Comparison between the learning curves of MAE-ViT-base for different pruning granu-

larities . 121
6.7 Comparison between the learning curves of MobileViT-small for different pruning gran-

ularities . 122
6.8 Results of running the random search and our proposed differentiable search when

pruning MAE-ViT-base . 123
6.9 Comparisonbetween theplot of the learning curve of our proposeddifferentiable search

process and the random search . 123
6.10 Evolution of classification accuracy and inference speed of the pruned models in func-

tion of the threshold . 124
6.11 Resulting search parameters α associated with each block in MAE-ViT-base (left) and

MobileViT-small (right) . 125
6.12 Box plot of accuracy improvement over the 40Meta-Albumdatasets onboth pre-trained

models . 126
6.13 Training and inference throughput . 126
6.14 Comparison between the baseline architecture and the DNAS-optimized one 132
6.15 Comparison between the flux linkages prediction plots of the baseline architecture and

the optimized architecture . 133
A.1 Layout of the ColorNAS search process with an RGB image as input 164

14

List of Tables

3.1 Summary of the literature we reviewed in this survey . 41
3.2 Summary of Differentiable NAS works according to their field of application 66
4.1 Benchmark scores obtained for each of the 12 operations in DARTOpti search space So 77
4.2 Results of training for 600 epochs two DARTOpti models optimized from ResNet18 on

CIFAR-10 with different numbers of search epochs . 84
4.3 Comparison of models on CIFAR-10 . 85
4.4 Comparison of models on CIFAR-100 . 86
4.5 Comparison of models on ImageNet . 86
4.6 Comparison of backbone models for RetinaNet on MS-COCO 87
4.7 Comparison of backbone models for Mask R-CNN on Cityscapes 87
5.1 Results on CIFAR-10 linear classification of two NASiam models using search space S

and S′ respectively . 98
5.2 Results on CIFAR-10 linear classification of two NASiam models using either SimSiam

data augmentation policy or no data augmentation . 99
5.3 Results of pre-training for 800 epochs on CIFAR-10 and CIFAR-100 linear classification

with SGD . 101
5.4 Results of training for 100 epochs on ImageNet linear classification with SGD 101
5.5 Results of content-based image retrieval on the INRIA Holidays dataset 102
5.6 Comparison of backbone models for MaskRCNN on COCO using a 1x schedule and

ResNet50 as the baseline CNN . 103
6.1 List of candidate performance proxies . 114
6.2 Correlation between proxy value and classification accuracy on MAE-ViT-base 119
6.3 Correlation between proxy value and classification accuracy on MobileViT-small 119
A.1 Comparison of models trained on CIFAR-10 and CIFAR-100 168

15

16

Acronyms

AI Artificial Intelligence. 19, 30
ANN Artificial Neural Network. 21
AutoML Automated Machine Learning. 20, 136
CNN Convolutional Neural Network. 20–22, 30, 35, 93, 135
CS Computer Science. 19
CV Computer Vision. 25, 26, 109, 128
DARTS Differentiable ARchiTecture Search. 21, 33, 37, 71
DL Deep Learning. 19, 21, 30
DNAS Differentiable Neural Architecture Search. 7, 20, 31, 32, 37
EA Evolutionary Algorithms. 31, 32
MLP Multi-Layer Perceptron. 20, 21, 35, 93, 128, 129
NAS Neural Architecture Search. 7, 20, 21, 30, 71
NLP Natural Language Processing. 23
PMSM Permanent Magnet Synchronous Motor. 20, 109, 128
RL Reinforcement Learning. 31
SGD Stochastic Gradient Descent. 21
SSL Self-Supervised Learning. 20, 89, 93
ViT Vision Transformers. 20, 21, 23, 35, 109, 135
XAI Explainable Artificial Intelligence. 33, 136

17

18

1 - Introduction

This is only a foretaste of what isto come, and only the shadow ofwhat is going to be. We have tohave some experience with themachine before we really know itscapabilities. It may take yearsbefore we settle down to the newpossibilities, but I do not see whyit should not enter any one of thefields normally covered by thehuman intellect, and eventuallycompete on equal terms.
Dr. Alan M. Turing (1912-1954)

Since the early days of Computer Science (CS), visionaries like Alan Turing
and John von Neumann have pondered the prospect of creating an "artifi-
cial brain" capable of exhibiting creativity and initiative beyond mere number
crunching. In the face of rapid technological advancements, some of these
pioneers, like Herbert Simon, were optimistic, envisioning that this dream
would materialize within a few decades [167]. However, von Neumann ex-
pressed skepticism as early as 1956, highlighting the fundamental distinction
between biological systems and electronic computers that would pose signif-
icant challenges [186]. History has proven him right, as achieving human-level
intelligence has proven to be more complex than initially believed. In par-
ticular, properly defining what intelligence is challenging as experts typically
agree that there are multiple forms of intelligence (e.g., emotional, logical, or
social) [28, 103]. Hence, it is difficult to measure the degree of intelligence of
autonomous systems as passing a task-specific evaluation such as the Turing
test [181] does not guarantee a form of “general” intelligence. Nevertheless,
Artificial Intelligence (AI) has made considerable strides.

As a matter of fact, AI is increasingly playing a pivotal role in various as-
pects of society, encompassing public transportation, security, education, and
healthcare. This remarkable progress can largely be attributed to thewidespread
adoption of Deep Learning (DL) [105, 88], a family of artificial neural networks
capable of effectively learning patterns by leveraging vast amounts of data.
However,many of thesemodels are designed empirically, with enhancements
based on intuition, such as deepening the architecture [101] or incorporating
residual connections [69]. Consequently, their architectures remain some-

19

what "generic", lacking the assurance of an optimal solution.
To address this concern, Neural Architecture Search (NAS) [231, 232, 117]

has witnessed rapid development in recent years. NAS aims to overcome the
trial-and-error approach and provide a systematic, more formal means to ad-
vance the design of deep learning architectures. Furthermore, the automatic
discovery ofmore efficient architectures holds particular relevance in the con-
text of the ecological transition (i.e., Green Deep Learning [204]). The reliance
onmanual feature engineering andmodel development has gradually dimin-
ished, giving rise to new challenges, including memory efficiency, transfer-
ability between datasets, and computational efficiency. Consequently, re-
searchers are striving to integrate various approaches from the literature to
enhanceNASmethodologies. Notably, parameter space differentiability, which
employs state-of-the-art optimizers for training deep learning models, is re-
garded as one of the most promising avenues of exploration. Furthermore,
NAS is part of the global Automated Machine Learning (AutoML) effort to re-
move the human factor from the ML pipeline.

In recent years, a specific category of NAS methods has gained significant
attention: Differentiable NAS (DNAS). These approaches represent the cur-
rent trend in NAS due to their efficiency, high performance, and low compu-
tational cost. However, despite their widespread use, they are not exempt
from defects and limitations (see Chapter 3).

Therefore, this thesis aims to improve DNAS to overcome some of its limi-
tations andexploreDNASapplication tomultiple fields and learning paradigms.
We devised several original DNAS methods for different types of deep neu-
ral networks such as Multi-Layer Perceptrons (MLPs), Convolutional Neural
Networks (CNNs), and Vision Transformers (ViTs). We also targeted different
computer vision tasks (e.g., image classification, image retrieval, and object
recognition).

This thesis is organized as follows: In Chapter 2, we first provide some
preliminary reminders about DL and NAS. Then, in Chapter 3, we conducted
a comprehensive survey of DNAS works, accompanied by a novel taxonomy
wherewe identified challenges that DNASmust address. In Chapter 4, we pro-
posed a new DNAS method to overcome one of those challenges. In Chapter
5, we applied DNAS to a new learning paradigm: Self-Supervised Learning
(SSL). In Chapter 6, we explored two DNAS applications: pruning ViT models
with low-cost proxies in a fewminutes and using DNAS-designed networks to
perform torque control of Permanent Magnet Synchronous Motors (PMSM).
Finally, Chapter 7 brings a conclusion to this thesis.

20

2 - Preliminaries

In this chapter, we provide some useful reminders about Artificial Neural
Networks (ANNs), Deep Learning (DL), Convolutional Neural Networks (CNNs),
Vision Transformers (ViTs), and Neural Architecture Search (NAS). We also
present Differentiable ARchiTecture Search (DARTS), the prevailing DNAS ap-
proach, in detail in Section 2.7.

2.1 . Artificial Neural Networks and Deep Learning

McCulloch and Pitts first formulated the first mathematical model of a bi-
ological neuron in 1943 [131]. Subsequently, Rosenblatt proposed the Percep-
tron [160] (see Fig. 2.1), a neural network algorithm leveraging McCulloch-Pitts
neurons to learn patterns. Following this success, Deep Learning was created
in 1965 when Ivaknenko and Lapa introduced the Multi-Layer Perceptron [88]
(MLP), a network consisting of 3 layers of Perceptrons (the middle layer being
dubbed "hidden layer"). With Rosenblatt’s extreme machine learning model
[159], this was the first exploration of how the depth of an ANN could benefit
the learning performance. The question of how to design these DL architec-
tures quickly arose.

In the following decades, many improvements were proposed, such as
training with stochastic gradient descent (SGD) [4] and the backpropagation
algorithm (also known as automatic differentiation) [114, 162]. These two tech-
niques combined allow for the efficient training of ANNs with SGD computing
corrective values for each learnable parameter according to a differentiable
objective function and backpropagation applying these corrections by lever-
aging the chain rule of Leibniz.

In the past decade, Deep Learning (DL) has gained tremendous popu-
larity since the breakthrough of Krizhevsky et al. with AlexNet [101] in the
early 2010s that proved that deepening architectures could lead to significant
performance gain for image classification on the challenging ImageNet large-
scale dataset. This regain in interest can also be explained by the availability
of high-quality training datasets (e.g., ImageNet [163]) and a drastic increase
in computational resources, notably with the introduction of modern Graph-
ics Processing Units (GPUs) by the US company Nvidia with combined 2D/3D
acceleration, programmable shaders, floating point support and large quan-
tities of onboard memory. GPUs are able to perform matrix multiplication,
paramount in DL, way faster than CPUs.

AlexNet is a Convolutional Neural Network (CNN), a category of deep neu-
ral networks that was proposed several decades prior.

21

i1

i2

in

o+

× W1

× W2

× Wn

... f

Perceptron

Figure 2.1: Layout of a single layer perception. (Source: wikimedia.org)

2.2 . Convolutional Neural Networks

In the early 1990s, LeCun et al. [106, 104] introduced Convolutional Neural
Networks (CNNs)with backpropagation to performpattern recognition. CNNs
becamewidely used due to their innate ability to efficiently extractmeaningful
features from images. The basic concept behind these models is to perform
a sequence of convolutions over multidimensional inputs. More specifically,
a k × k filter F is applied over a n × n input x in order to produce a feature
map M that is fed to the next layer. k is denoted as the kernel (or filter) size
and defines the output size |M | of the feature map as follows:

|M | = n− k + 2P

S
+ 1 (2.1)

where P is the amount of padding added to the border of M , and S is the
stride which is the number of pixels over which the filter is translated at a
time when sliding over the input. Hence, the objective of CNN optimization
is to learn the weights W that define the multiple filters composing the con-
volution operations. This kind of network also relies on pooling layers (e.g.,
average pooling) to reduce feature dimensionality and normalization layers
(e.g., batch normalization [87]) to perform regularization. Each layer is fol-
lowed by an activation function (most commonly ReLU [56]). A classifier head
(fully-connected layer) is placed at the end of the CNN to transform the ag-

22

gregated feature maps into logits. The layout of a typical CNN is illustrated in
Fig. 2.2.

Figure 2.2: Typical Convolutional Neural Network architecture. (Source:wikimedia.org).
AlexNet [101] in 2012 demonstrated the relevance of using deep CNNs to

perform image classification. Since then, numerous improvements and new
CNNarchitectureswere introduced, such as VGG-16 [168] (large depth), ResNet
[69] (residual connections), or Xception [29] (depthwise separable convolu-
tion). However, most of these changes were driven by empiricism. To bring
more formality to the field of DL architecture design and accelerate research,
it is essential to look towards Neural Architecture Search (see Section 2.6).

However, a novel category of DL models is now gradually replacing CNNs:
Vision Transformers.

2.3 . Vision Transformers

Vision Transformers (ViTs) were introduced by Dosovitskiy et al. [46] in
2020 and have had a tremendous impact on the computer vision field since.
ViTs are based on transformers [165, 185], a DL family of models that are now
ubiquitous in Natural Language Processing (NLP) [40, 19, 98, 129].

Transformers followanencoder/decoder scheme. The encoder comprises
a series of encoding layers that sequentially process the input (i.e., a sequence
of words). Similarly, the decoder consists of decoding layers that operate on
the output of the encoder. Each encoder layer generates encodings that cap-
ture the interrelationships between different parts of the input. These en-
codings are then passed on as inputs to the subsequent encoder layer. In
contrast, each decoder layer performs the reverse process. It utilizes the col-
lective contextual information from all the encodings to generate an output
sequence. In summary, the encoding layers in the encoder progressively an-
alyze the input, while the decoding layers in the decoder leverage the con-
textual information from the encodings to produce the desired output se-
quence. To accomplish this, both the encoder and decoder rely on a self-

23

attention mechanism. This attention mechanism allows transformers to get
information about each point (“token”) in the sequence by assigning a rel-
evance weight to each previous state. It is denoted “self-attention” as this
mechanism does not use RNNs to process data recurrently but simply com-
putes attention on all the tokens simultaneously in a decomposable, highly-
parallelizable way [149].

ViTswork in a similarwayby considering an image as a sequence of patches
(e.g., 16 × 16 pixels in the original ViT article [46]) and computing relation-
ships between pairs of patches using the self-attention mechanism. Working
on patches aims to reduce computational cost compared to directly compar-
ing pairs of pixels (elementary units of images). This way, ViTs benefit from
the powerful ability of transformers to learnmeaningful representations from
enormous amounts of data. The ViT architecture is described in Fig. 2.3.

Transformer Encoder

MLP
Head

Vision Transformer (ViT)

*

Linear Projection of Flattened Patches
* Extra learnable

 [c l ass] embedding

1 2 3 4 5 6 7 8 90Patch + Position
Embedding

Class
Bird
Ball
Car
...

Embedded
Patches

Multi-Head
Attention

Norm

MLP

Norm

+L x

+

Transformer Encoder

Figure 2.3: Overview of the original Vision Transformer architecture from
Dosovitskiy et al. [46].

Since the publication of the original ViT article in 2021 [46], numerous vari-
ants have been proposed. For instance, Swim Transformers [118] designed
a hierarchical transformer architecture with shifted windows that reached
state-of-the-art scores in object recognition tasks. Furthermore, DeiT [179,
178] proposed a ViT architecture that can be trained using a teacher-student
strategy, specifically through distillation from a CNN teacher. Finally, some
works, such as MobileViT [133, 134] combined ViTs with convolutional layers
in order to increase their computational efficiency andmake themdeployable
on low-end devices such as mobile phones.

2.4 . Datasets Employed

24

As this thesis focuses on Computer Vision (CV) applications, we employed
popular image datasets to perform tasks such as image recognition (CIFAR-10,
CIFAR-100 [100], ImageNet-1K [163], Meta-Album [183]), object detection/instance
segmentation (Cityscapes [35], MS-COCO [113]), and content-based image re-
trieval (INRIA Holidays [92]). These datasets reflect the wide diversity of tasks
in CV, ranging from small, toy-like, datasets used to quickly validate a proto-
type up to very large and challenging collections.

2.4.1 . CIFAR-10 and CIFAR-100
CIFAR-10 [100] comprises 60000 tiny (i.e. 32x32) labeled images in 10 classes

with 6000 images per class. CIFAR-100 has a similar composition but com-
prises 100 classes with 600 images per class. These toy-like image classifica-
tion datasets are useful to quickly get preliminary results when prototyping,
but they do not represent real-world scenarios. Hence, it is often necessary
to perform additional experiments on large-scale datasets.

Figure 2.4: Example images from CIFAR-10 [46]. Images from all 10 classesare featured. Figure reproduced from [33]

2.4.2 . ImageNet-1k
ImageNet-1k, also called ILSVRC2012 (or simply ImageNet), [163] is a large-

scale image classification dataset comprising 1,431,167 images of various sizes
25

(usually resized to 224×224when training) sorted into 1000 classes. ImageNet
proved to be one of themost challenging CV ever introduced and is still nowa-
days considered as the primary benchmark for image classificationmore than
10 years after its inception. Newer iterations of ImageNet have cataloged up to
14 million images. ImageNet is a challenging dataset and has been the refer-
ence benchmark for image classification for more than a decade [176]. How-
ever, it is often relevant to also evaluate CV models on other downstream
tasks such as object detection or semantic segmentation.

Figure 2.5: Example images from ImageNet [163]. This illustration featuressome of ImageNet’s fine-grained classes (e.g., dog breeds). Figure reproducedfrom [163].

2.4.3 . Cityscapes
Cityscapes [35] is a dataset composedof 5000human-labeledhigh-resolution

images of urban scenes taken from 50 different cities. It features annotations
for semantic segmentation, instance segmentation, and panoptic segmenta-
tion. This dataset has been widely used for conducting experiments on neu-
ral network models aiming to visually understand urban street scenes (e.g.,
autonomous vehicles, delivery drones). Figure 2.6 features a an example an-
notated image from Cityscapes.

2.4.4 . MS-COCO
Microsoft Common Objects in Context (MS-COCO) [113] is a highly popular

object detection and instance segmentation dataset comprising over 200,000
26

Figure 2.6: Example annotated image from Cityscapes [35]. Footage takenin Zurich (Switzerland).
labeled images with 91 object categories and 1.5 million object instances. Sim-
ilar to ImageNet (see Section 2.4.2), it is a challenging dataset that has been
one of the standard benchmarks for conducting object detection experiments
for nearly a decade.

Figure 2.7: Example annotated images from MS-COCO [35]. Figure repro-duced from [141].

2.4.5 . INRIA Holidays
INRIAHolidays [92] is an image retrieval dataset containing 1491 high-resolution

images categorized into 500 image groups. Each group is composed of images
that bear similar traits and should be returned by an image search model
when submitting one image from the group as a query. The dataset includes
a wide variety of images featuring diverse transformations (e.g., weather ef-
fects, illumination, rotations, or blurring). Holidays also includes a set of pre-
computed image descriptors that can be leveraged by image retrieval algo-
rithms. Figure 2.8 features example images from Holidays.

2.4.6 . Meta-Album

27

Figure 2.8: Example images from INRIA Holidays [92]. Figure reproducedfrom [86].

Meta-Album [183] is a meta-dataset of 40 image classification datasets.
Each dataset is composed of 128 × 128 images, as featured in Figure 2.9.
Datasets in Meta-Album come from various domains such as ecology, manu-
facturing, textures, object classification, and character recognition, and cover
a variety of scales: microscopic, macroscopic (human scale), and distant (re-
mote sensing). Compared to other meta-datasets, it has, by far, the largest
number of domains and datasets, collected in different conditions. Hence it
provides a challenging benchmark because of its diversity. Meta-Album pro-
vides 3 different versions to be used for different amounts of computational
resources, which makes it accessible for benchmarking with moderate com-
puting resources. Its micro version allows imitating the low-resource scenar-
ios, where there are only a few training examples per class, across different
domains. We chose the micro version for our experiments because the low-
resource scenarios are common in real-world applications, it allows bench-
marking models’ performance with limited data. More importantly, Meta-
Album contains datasets that are not typically used in transfer learning or
meta-learning benchmarks (e.g., ImageNet) which is typically used to pre-train
backbone networks, which avoids giving an unfair advantage tomethods that
were developed using such commonly used datasets.

28

Figure 2.9: Sample images fromMeta-Album. Reproduced from Ullah et al.[183].
2.5 . Evaluation Criteria

Most of our experiments (with the exception of Chapters 5 and 6) were
conducted using a supervised learning paradigm, and thus rely on the Cross-
Entropy loss LCE when training:

LCE(x, y) = −
1

N

N∑
n=1

C∑
c=1

log
exp(xn,c)∑C
i=1 exp(xn,i)

yn,c, (2.2)
where x and y are batched probability distributions of size N and C is the
number of classes.

When evaluating performance once the training process is completed, we
relied on different metrics depending on the task at hand.

2.5.1 . Image Classification
For image classification, we used the top-1 accuracy expressing the per-

centage of correctly classified images (according to the class associated with
the highest value in the output probability distribution) in the validation set:

top-1 = number of samples correctly classified
total number of samples . (2.3)

In addition, it is usual (for large-scale datasets) to employ the top-5 accuracy.
This metric is similar to the top-1 accuracy except that the 5 best values of the
output probabilities are taken into account. If the label is among the classes
associated with those 5 values, the sample is considered correctly labeled.

2.5.2 . Object Detection and Instance Segmentation
When performing object detection and instance segmentation, we consid-

ered the Average Precision (AP), the mean Average Precision (APm), and its
variants the small object mean Average Precision (APs) and the large object
mean Average Precision (APl). The precision is simply defined as follows:

Precision =
TP

TP + FP
, (2.4)

29

where TP represents the number of true positives among the predictions
while FP is the number of false positives. AP also considers the recall simi-
larly defined as:

Recall = TP

TP + FN
, (2.5)

where FN stands for the number of false negatives among the predictions. A
prediction is considered a true positive if the Intersection over Union (IoU) (in
[0, 1]) between the segmentation mask or bounding box is superior or equal
to a cut-off value (1 by default). Hence, AP corresponds to the area under the
precision-recall curve for a specific class :

AP =

∫
p(r)dr, (2.6)

where p stands for the precision and r stands for the recall. APm is defined as
the mean AP over all classes. APs is the mean AP over small object classes.
Similarly, APl is the mean AP over larger object classes. Furthermore, it is
possible to derive additional metrics from APm by adjusting the IoU cut-off
value: AP75 (0.75 cut-off value) and AP50 (0.5 cut-off value).

2.5.3 . Content-Based Image Retrieval
In a similar manner to object detection and instance segmentation tasks

(see Section 2.5.2), we usedmean Average Precision (APm) to evaluatemodels
on content-based image retrieval tasks. In addition, we also considered the
mean query time (in seconds) to get an estimate of the inference speed.

2.6 . Neural Architecture Search

Neural Architecture Search (NAS) aims to automatize the design of novel
neural network architectures (e.g., CNNs and Transformers), a field tradition-
ally lackingmathematical formalization and heavily relying on empiricism and
intuition. The development of NAS is paramount to accelerate the discovery
of ever more efficient architectures that would be able to conform to low-
carbon, sustainable computing objectives (e.g., green DL, frugal AI) and be
deployable on low-power embedded systems.

A typical NAS method comprises three essential components, regardless
of the employed methodology, as illustrated in Figure 2.10. Firstly, there is a
search space that encompasses all possible sets of hyperparameters for the
architecture. Typically, this space is discrete, focusing on categorical choices
of operations that form the architecture. However, it can be made continu-
ous by applying a projection function (e.g., softmax) [117] or by incorporating
continuous hyperparameters such as the learning rate. While theoretically
infinite, in practice, the search space is constrained to finite bounds to re-
duce computational costs and prevent excessively deep, dense, or large ar-

30

chitectures. Secondly, a search strategy, also known as a search algorithm or
optimizer, is responsible for exploring the search space and sampling candi-
date architectures. This strategy considers the performance feedback from
previously sampled candidates. Lastly, an evaluation strategy assesses each
selected candidate architecture identified by the search strategy. The objec-
tive of this strategy is to estimate themodel’s performance ideally without the
need for full training, thereby minimizing computational costs.

Search Space
 Search Algorithm

Performance feedback for

Performance
Evaluation Strategy

Figure 2.10: Typical layout of a Neural Architecture Search framework.

In the following subsections, the different trends of Neural Architecture
Search will be defined: Reinforcement Learning (RL), Evolutionary Algorithms
(EA), and Differentiable NAS (DNAS).

2.6.1 . Reinforcement Learning
Zoph et al. [231] utilized Reinforcement Learning (RL) to drive the archi-

tecture search process, marking one of the pioneering ML-based NAS meth-
ods. The RL controller, also known as the agent, iteratively selects new sets
of hyperparameters based on the previously evaluated ones. Each set of hy-
perparameters undergoes full training on a given dataset, and the resulting
evaluation score serves as a reward for the RL controller. To accelerate the
search process, the authors incorporated parallelism and asynchronous pa-
rameter updates.

Subsequently, Zoph et al. [232] introduced the notion of cell-based hyper-
parameter tuning, wherein only the internal architecture of a building block
(referred to as a "cell") is optimized, rather than the complete neural network.
Consequently, the final model consists of a series of stacked cells. This ap-
proach, called NASNet, aimed to enhance model transferability and reduce
the search space. As discussed later, this structural concept has since been
adopted by other NAS approaches. However, NASNet introduced new chal-
lenges regarding the disparity between the evolving cell structure and the ac-
tual multi-cell model used for evaluation. Furthermore, the computational
cost of RL-based NAS methods is often ludicrous (e.g., around 2000 GPU days
for Zoph et al. [231, 232]) due to the slow convergence speed of Reinforcement
Learning algorithms.

2.6.2 . Evolutionary Algorithms

31

Evolutionary Algorithms (EA) have emerged as a viable approach for NAS.
The application of EA to NAS is straightforward, as hyperparameter sets can
be considered as "genotypes" that define an architecture. In EA, a Darwinian
process gradually enhances an initial population of randomly initialized ar-
chitectures across multiple generations. Each new generation is derived by
recombining (crossover) the genes of the best individuals in the current pop-
ulation to produce "children". Recent studies have incorporated evolutionary
strategies such as guided evolution [119], reinforced evolution [26], and regu-
larized EA [158]. These NAS methods were among the early implementations;
however, they suffer from high computational costs, particularly when deal-
ing with large search spaces, as they employ blind exploration during the ini-
tial iterations. Consequently, the overall computational time, often exceeding
3000 GPU days for architectures like AmoebaNet [158], becomes impractical.
Additionally, most works in the literature are specific to particular cases, lim-
iting the practicality of transferability compared to later gradient-based ap-
proaches.

2.6.3 . Gradient Descent and Differentiable NAS

Gradient descent is a powerful technique that has been known since the
early 19th century, pioneered by the French mathematician Augustin-Louis
Cauchy [107]. Its practical implementation dates back to the early days of
computer science when Haskell Curry explored it in the 1940s [37]. Over time,
gradient descent gained significant attention and eventually revolutionized
machine learning with the introduction of the gradient backpropagation al-
gorithm, as described by Linnainmaa [114] and Rumelhart et al. [162]. Hyper-
parameter optimization methods based on gradients have also been studied
extensively since the early 1990s [6, 18]. These early works addressed control
challenges in machine learning and employed gradient descent to automat-
ically select and adjust the activation functions in artificial neural networks.
This process can be likened to assigning weights to neurons, which directly
impacts the shape of the model’s output.

In recent years, a novel approach called Differentiable NAS (DNAS) has
emerged, combining gradient descent with NAS techniques, as initially pro-
posed by Bender et al. [9]. DNAS formulates the hyperparameter tuning
problem as a continuous optimization task by treating the search space as
a smooth manifold. Similar to model training, DNAS leverages gradient infor-
mation to find the optimal set of hyperparameters. This approach enables the
use of a supernetwork that instantiates all candidate architectures in mem-
ory, eliminating the need for independent evaluation of each candidate to
obtain performance feedback. As a result, DNAS requires fewer computa-
tional resources compared to other approaches like evolutionary strategies
or reinforcement learning to reach the optimal solution. The introduction of

32

Differentiable ARchitecTure Search (DARTS) by Liu et al. [117] marked a signifi-
cantmilestone in enabling the relaxation of the discrete search space through
a cell-based paradigm. DARTS quickly gained popularity due to its computa-
tional efficiency, contributing to the democratization of NAS. It is worth noting
that DNAS and other ML-based NAS methods discussed earlier are generally
considered black-box approaches. However, the field of ML explainability,
known as eXplainable Artificial Intelligence (XAI), is starting to emerge [125,
74].

2.7 . DARTS: Differentiable ARchiTecture Search

DARTS, introduced by Liu et al. [117], presents a novel approach to imple-
menting Differentiable NAS (DNAS) using a cell-based framework. Unlike the
majority of evolutionary-based NAS approaches [201, 26, 119, 158] and other
DNASmethods such as FBNet [197, 187, 198], DARTS defines amodular search
space consisting of building blocks referred to as "cells." This modular ap-
proach shares similarities with certain RL-based works [231, 232]. The cells in
DARTS can be classified into two types: normal cells, which form the major-
ity of the architecture, and reduction cells, which perform dimension reduc-
tion. Each cell represents a directed acyclic graph with N nodes, where each
node corresponds to an intermediary data representation, such as a feature
map. The nodes are interconnected by edges, and each edge ei,j connectingnode i to node j is the sum of the outputs from |Oi,j | = K operations. Here,
Oi,j = {o1i,j , ..., oKi,j} represents the set of all possible operations for edge ei,j .Consequently, each node receives a combination of operation outputs from
all preceding nodes.

For the search of CNN cells, the DARTS search space comprisesK = 7 op-
erations: skip_connect,max_pool_3x3, avg_pool_3x3, sep_conv_3x3, sep_conv_5x5,
dil_conv_3x3, and dil_conv_5x5.

Therefore, the search strategy employedbyDARTS involves gradually prun-
ing incoming edges from each cell node until only a maximum of 2 edges
remain (refer to Fig 2.11). For this purpose, each operation o ∈ Oi,j in the
mixed output of an edge ei,j is associated with a specific weight αk

i,j ∈ αi,j =

{α1
i,j , ..., α

K
i,j}, where αi,j ∈ α. To transform the categorical choice of oper-

ations for edge ei,j into a continuous form (i.e., a probability distribution),
DARTS applies the softmax operation σSM to αi,j . This relaxation allows for
a continuous representation of the selection probabilities for the operations.
Thus, the mixed output oi,j of ei,j is defined as

oi,j(x) =

K∑
k=1

exp(αk
i,j)∑K

k′=1 exp(α
k′
i,j)

oki,j(x) =
K∑
k=1

σSM (αk
i,j)o

k
i,j(x), (2.7)

where x is the input feature and αk
i,j ∈ αi,j is the weight associated with op-
33

Figure 2.11: Overview of the search strategy of DARTS. Figure from Liu et al.[117].

eration oki,j ∈ Oi,j .The architectural parameters α are trained using gradient descent tomin-
imize the validation lossLval, while a supernet (also referred to as a proxy net-work) is trained to minimize the training loss Ltrain. The supernet consists ofa compact set (e.g., 8) of stacked search cells and serves as a representation
of all potential architectures. This way, DARTS solves a bi-level optimization
problem formulated as

min
α
Lval(w∗(α), α),

s.t.w∗(α) = argmin
w
Ltrain(w,α),

(2.8)

where w denotes the supernet weights. The gradient of the architectural pa-
rameters α is thus computed as follows:

∆αLval =
∂Lval
∂α

+
∂Lval
∂w

∂w∗(α)

∂α
, (2.9)

where w∗(α) = argminwLtrain(w,α) (i.e., the optimal value of w obtained by
minimizing the training loss Ltrain). Finally, after the completion of the search
phase, the internal structure of each cell type is discretized to form the fi-
nal model by selecting edges using a softmax operation. Stacking repetitive
sequences of the two cell types makes it straightforward to derive a final ar-
chitecture of any desired size.

This way, the search process of DARTS does not require fully training each
candidate architecture. Instead, it utilizes the supernet as an approximator to
obtain performance feedback by considering the current weights w as equiv-
alent to the optimal weightsw∗. As a result, DARTS exhibits significantly faster
execution compared to RL-based or EA-based approaches.

34

Hence, Differentiable NAS possesses significant advantages compared to
other NAS paradigms. In this thesis, we aim to improve DNAS (e.g., by ad-
dressing the limitations of DARTS) and explore new domains of application.
Specifically, we devised several original DNAS methods for different types of
deep neural networks such as Multi-Layer Perceptrons (MLPs, see Chapter 5),
Convolutional Neural Networks (CNNs, see Chapter 4), and Vision Transform-
ers (ViTs, see Chapter 6). We also targeted different computer vision tasks
(e.g., image classification, image retrieval, and object recognition).

DNAS and DARTS are discussed in depth in Chapter 3, where we con-
ducted a literature survey on recent DNAS methods, highlighted the current
challenges posed by DNAS, and identified the emerging trends to overcome
those challenges.

35

36

3 - Literature survey of state-of-the-art Differ-
entiable Neural Architecture Search

The objective of this chapter is to provide a comprehensive discussion and
analysis of recent advancements in Differentiable NAS (DNAS) using a novel
taxonomy. DNAS methods can be broadly categorized into two classes: (a)
derivatives of DARTS [117], which constitute themajority (63%) of the reviewed
works, and (b) other DNAS studies. The works in category (a) assume that
DARTS, being one of the most popular DNAS methods, has a solid founda-
tion but can be further enhanced to overcome its limitations (as discussed in
Section 2.7). The substantial number of works falling into category (a) can be
attributed to the enduring popularity of DARTS over the past few years. De-
spite being an older method (published in 2019), DARTS continues to inspire
new publications up to 2023 [190, 95], thus passing the test of time. On the
other hand, category (b) encompasses studies that propose novel DNAS al-
gorithms and search spaces. In many instances [197, 15, 187], these studies
argue that the limitations of DARTS are inherent to its design and advocate
for a fresh start.

However, this classification approach is simplistic and does not provide
a comprehensive understanding of the DNAS field. Therefore, in this chap-
ter, we introduce a novel taxonomy that categorizes methods based on the
specific challenges they address rather than merely falling into categories
(a) or (b). We have identified four distinct challenges: (I) Bridging the op-
timization gap between the proxy used during the search process and the
final models while addressing gradient approximation issues, (II) Address-
ing the over-representation of non-parametric operations (e.g., skip connec-
tions), (III) Enhancing computational efficiency and reducing latency during in-
ference, and (IV) Overcoming the inherent limitations imposed by the search
space in DNAS. These challenges are elaborated in detail in Section 3.1.

The rest of the chapter is organized as follows: Section 3.2 presents a lit-
erature review of 30 recent DNAS works. Section 3.3 features an analysis of
the type of tasks DNAS can be applied to. Finally, Section 3.4 gives insights on
the future trends developing in the DNAS field and concludes this chapter.

3.1 . DARTS and the challenges of Differentiable NAS

In Section 2.7, wepresented theDifferentiable ARchiTecture Search (DARTS)
family, which is currently the prevailing DNAS approach.

However, DARTS suffers from major limitations and introduces new chal-
lenges. Firstly, as discussed in several articles (Heuillet et al. [76], Chu et al.

37

Differentiable
Neural Archi-
tecture Search

Search Space
Restrictions

DenseNAS[53] U-DARTS[82]

ProxylessNAS[15] FBNet[187]
FBNetV2[198] FBNetV5[198]

Computational Efficiency
and Latency Reduction

PC-DARTS[205]
DOTS[64] FP-DARTS[190]

ProxylessNAS[15] FBNet[197]
FBNetV2 [187] VIM-NAS [191]

HardCoRe-NAS[144] RADARS[207]

Over-representation
of skip connections FairDARTS[32] P-DARTS[23]

DARTS+[111] R-DARTS[217]
DARTS-[31] PR-DARTS[229]

DARTS+PT[189] NoisyDARTS[30]
β-DARTS[210] CDARTS[212]

E2NAS[222]

Gradient Approximation
Inconsistencies and
Optimization Gap FairDARTS[32] P-DARTS[23]

S-DARTS[22] iDARTS[223]
DARTS+PT[189] β-

DARTS[210] DOTS[64]
CDARTS[212] DARTS-AER[95]

ProxylessNAS[15] UNAS[184]
EnTranNAS[209] E2NAS[222]

OFA[16] BigNAS[214]

Figure 3.1: Taxonomy of the reviewed Differentiable Neural Architecture
Search literature. References in orange, and light blue correspond toDARTS-based, and non-DARTS-based approaches respectively.

[31, 32], and Ye et al. [210]), gradient approximationmethods inherently result
in inconsistencies during the optimization process (I), impacting the archi-
tectural parameters. Additionally, due to the limited convergence ability of the
softmax function (which is itself a smooth approximation of the argmax func-
tion), the final probability distribution is dominated by values that are very
close to each other. Consequently, the standard deviation of the distribution
is low compared to the mean, making the discretization process more chal-
lenging. For example, distinguishing between operation o1 with a probabilityof po1 = 0.92 and operation o2 with a probability of po2 = 0.91 is non-trivial.
Therefore, it is important to note the significant disparity between the proxy
network (smaller, with mixed outputs on edges) used during the search pro-
cess and the final discretized model (larger, with a maximum of 2 operations

38

per edge). Chen et al. [23] have also emphasized that this gap arises when
transferring the model to a different dataset than the one used during the
search phase.

Secondly, DARTS tends to overly represent skip connections (II) within
the discovered architectures. This issue is closely connected to the first lim-
itation since, as argued by Chu et al. [32], the softmax operation amplifies
the exclusive competition among different operations. In other words, if one
operation is favored, it comes at the expense of others. Edges that incorpo-
rate at least one skip connection resemble residual blocks [69] and provide a
rapid performance boost by accelerating forward and backward operations,
which causes other operations to be suppressed by the softmax function. Fur-
thermore, skip connections are weight-free operations and lack the ability to
effectively learn data representations. Consequently, there is a global degra-
dation in performance as skip connections are selected even in edges where
they are not the most suitable operation. Figure 3.2 provides an illustration
of the phenomenon of excessive representation of skip connections.

0 50
Epochs

0

1

2

3

4

5

6

N
o
.

o
f

S
k
ip

s

DARTS k =1

reduction

normal

0 50
Epochs

0

1

2

3

4

5

6

N
o
.

o
f

S
k
ip

s

DARTS k =2

reduction

normal

0 50
Epochs

0

1

2

3

4

5

6

N
o
.

o
f

S
k
ip

s

DARTS k =3

reduction

normal

0 50
Epochs

0

1

2

3

4

5

6
N

o
.

o
f

S
k
ip

s

DARTS k =4

reduction

normal

Figure 3.2: Evolution of the number of skip connectionsw.r.t. the number
of search epochs. Figure from Chu et al. [32]

Thirdly, DARTS presents another challenge in terms of efficiently explor-
ing the search space (III), which refers to limiting the computational resources
required by the search algorithm. Equation 2.7 demonstrates that a supernet
must instantiate every potential path connecting each pair of nodes, storing
them inmemory. While this limitation is manageable when using toy or proxy
datasets like CIFAR-10 and CIFAR-100 [100], it becomes especially problematic
when dealing with large-scale datasets such as ImageNet [39] or MS-COCO
[113]. Fortunately, modern Nvidia GPUs (starting from the Volta architecture)
allow leveraging Tensor Cores, which are specialized hardware formatrixmul-
tiplication, through Automatic Mixed Precision (AMP) [139]. By utilizing the
IEEE half-precision format (FP16) [85] when single-precision (FP32) is unnec-
essary, the computation speed is accelerated, and the memory footprint is
reduced. However, it is essential to note that using lower precision can intro-
duce numerical instability (e.g., gradient overflow). Therefore, it is crucial for
researchers to prioritize the design of efficient Differentiable Neural Architec-
ture Search (DNAS) approaches rather than relying solely on AMP techniques.

39

Lastly, DARTS faces a significant limitation in the form of a highly re-
stricted search space (IV). By only considering two building blocks, the op-
timization problem becomes considerably simpler. However, empirical ev-
idence has demonstrated that modern high-performing CNN architectures,
such as ResNets [69], ResNext [202], or EfficientNetV2 [174], consist of more
than just two different blocks. Therefore, increasing the diversity of discover-
able architectures is a key challenge that DARTS-based methods must over-
come. Figure 3.1 presents a visual representation of our proposed taxonomic
tree, summarizing the different works reviewed and their corresponding clas-
sification in DNAS.

In Section 3.2, we present a thorough review of some of the most influ-
ential Differentiable Neural Architecture Search (DNAS) methods, including
DARTS derivatives and other approaches. We analyzed how these methods
addressed the four challenges we identified (I, II, III, and IV).

3.2 . Literature Review of Differentiable NAS

In this section, we conducted a comprehensive review of recent literature
on Differentiable Neural Architecture Search (DNAS), with a specific focus on
one of its most extensively studied subcategories: DARTS [117] and its deriva-
tives. We examined a total of 30 approaches, each of which is discussed in
the following subsections based on the specific challenge (as outlined in Sec-
tion 2.7) it aims to address. Our proposed taxonomy, presented in Fig. 3.1,
serves as the basis for categorizing these approaches. It is worth noting that
some approaches arementioned inmultiple subsections as they tackle multi-
ple challenges within the field of DNAS. To provide an overview of our review,
we present a summary table in Table 3.1.

3.2.1 . Gradient Approximation Inconsistencies and Optimization
Gap

FairDARTS [32] tackled DARTS’ gradient-related issues by replacing soft-
max for the categorical choice of operations by the sigmoid operation σ. This
change is motivated by the fact that, contrary to softmax, σ does not create
exclusive competition between the different operations (i.e., the weights as-
sociated with operations can independently increase or decrease). This im-
proves fairness in the operation selection and thus results in better gradient
approximations (see Section 3.2.1).In addition, FairDARTS introduced a novel
loss function dubbed zero-one loss and denoted L01. This loss function aims
to push the sigmoid values of the architectural weights (i.e., σ(α)) towards 0
or 1 to minimize the discretization gap. Its gradient magnitude is adequately
designed to let the αweights fluctuate but still pull them towards 0 or 1 if they

40

Table 3.1: Summary of the literature we reviewed in this survey.We included DARTS [117] for comparison purposes. The search cost isexpressed with the GPU used by the authors of the original article. †denotes models searched on CIFAR-10 or CIFAR-100 [100].
Title Type Challengestackled Top 1 accuracyon ImageNet (%) Search cost(GPU days) Search space

DARTS [117] N.A. N.A. 73.1 4 dartsProxylessNAS [15] other (I, III, IV) 75.1 8.3 MobileNet-likeP-DARTS† [23] DARTS-based (I, II) 75.3 0.3 dartsFBNet [197] other (III, IV) 74.9 9 MobileNet-likePC-DARTS [205] DARTS-based (III) 75.8 3.8 dartsDARTS+ [111] DARTS-based (II) 76.1 6.8 MobileNet-likePR-DARTS† [229] DARTS-based (II) 75.9 0.17 dartsOFA [16] other (I, III) 80.0 1.7 MobileNet-likeBigNAS [214] other (I, III) 80.9 1.6 MobileNet-likeFBNetV2 [187] other (III, IV) 77.2 25 customR-DARTS† [217] DARTS-based (II) - 1.6 customS-DARTS† [22] DARTS-based (I) 74.8 1.3 dartsFairDARTS [32] DARTS-based (I, II) 75.6 3 MobileNet-likeDenseNAS [53] DARTS-based (IV) 75.3 2.7 MobileNet-likeUNAS [184] other (I) 75.5 4.3 MobileNet-likeiDARTS† [220] DARTS-based (I) 75.7 - dartsFBNetV5 [198] other (IV) 81.7 >100 customNoisyDARTS [30] DARTS-based (II) 76.1 12 MobileNet-likeDARTS- [31] DARTS-based (II) 76.2 4.5 MobileNet-likeVIM-NAS [191] other (III) 76.2 0.26 dartsDOTS [64] DARTS-based (I, III) 76.0 1.3 dartsDARTS+PT† [189] DARTS-based (I, II) 74.5 0.8 dartsHardCoRe-NAS [144] other (III) 77.9 16.7 customEnTranNAS [209] other (I) 75.7 1.9 dartsRADARS [207] other III 73.8 3.1 MobileNet-like
beta-DARTS [210] DARTS-based (I, II) 76.1 0.4 dartsCDARTS [212] DARTS-based (I, II) 76.3 1.7 dartsDARTS-AER [95] DARTS-based (I) 76.0 N.D. dartsFP-DARTS [190] DARTS-based (III) 76.3 2.4 dartsU-DARTS [82] DARTS-based (IV) 73.8 N.D. darts

stray away from 0.5. L01 is designed as follows:

L01(α) = −
1

N

N∑
i

(σ(αi)− 0.5)2, (3.1)

where N is the number of nodes in a cell. L01 is differentiable and thus can
be backpropagated to help optimize the architectural weights α. This loss is
combined with Lval to form the total loss

LF (w∗, α) = Lval(w∗(α), α) + w01L01 (3.2)
where w01 is an hyperparameter weighting L01.

41

ProxylessNAS [15] also sought to close the optimization gap but strayed
away from what had been set up by DARTS. The authors proposed to search
directly on the target large-scale dataset (e.g., ImageNet [39]) instead of trans-
ferring from a small-scale proxy dataset (e.g., CIFAR-10) as done by DARTS and
most of its derivatives. To achieve this, they designed a search space that is no
longer composed of repetitive building blocks but instead comprises an en-
tire architecture and includes additional candidate operations. However, this
comes at the cost of a greatly increased memory consumption as, if we recall
Eq. 2.7, every output feature vector associated with every path in the mixed
output of every cell edge must be instantiated and stored in GPU memory.
To alleviate this issue, ProxylessNAS replaced DARTS’ real-value architectural
weightsαwith binary gates g that output one-hot vectors according to a prob-
ability distribution {p1, ..., pK}:

g = binarize(p1, ..., pK) =


[1, 0, ..., 0] with probability p1

...
[0, 0, ..., 1] with probability pK

(3.3)

Thus, Eq. 2.7 is modified as follows:

oBinary
i,j (x) =

K∑
k=1

gki,jo
k
i,j(x) =


o1i,j(x) with probability p1

...
oKi,j(x) with probability pK

(3.4)

This mechanism allows entire paths to be binarized and instantiates only one
path at a time in memory during the search phase. Thus, it reduces memory
consumption to the same level as a regular model. ProxylessNAS successfully
overperformsDARTS by 2%on ImageNet. Nevertheless, these positive results
come with a drastically increased search cost from 1.5 GPU days (DARTS) to
8.3 GPU days.

Another work, entitled Progressive DARTS (P-DARTS) [23], focused on re-
ducing the optimization gap between the search and final architectures by
improving the proxy model used during search. More precisely, the authors
gradually increased the proxy network depth during search (e.g., from 5 cells
to 20 cells) in contrastwith the original DARTS that uses a fixed 8-cell proxy net-
work that is later derived into a 20-cell final model. Furthermore, the number
of candidate operations is progressively reduced according to their perfor-
mance score. This search space approximationmethod alleviates the compu-
tational efficiency issues encountered when increasing the depth of the proxy
network. This process, resumed in Fig. 3.3, improved performance by around
0.5 % on CIFAR-10/CIFAR-100 [100] and reduced the search cost from 1.5 GPU
days to 0.3 GPU day compared to DARTS.

SmoothDARTS (SDARTS) was designed by Chen et al. [22] as a way to sta-
bilize the bi-level optimization in DARTS (see Eq. 2.8). Similarly to the authors

42

Eval. Net.
DARTS

5
Cells

11
Cells

17
Cells

20
CellsCell

Arch.

Search Net.
P-DARTS

2.50%
on C10

8
Cells

Cell
Architecture

20
Cells
2.76%
on C10

Figure 3.3: Layout of the P-DARTS search process. Figure from Chen et al.[23].
of R-DARTS [217] (discussed in Section 3.2.2), they argued that the optimization
gap between the proxy model and the final discretized architecture is highly
correlated (inversely proportional) to the spectral norm of the Hessian matrix
of the validation loss∆2

αLval. Hence, they proposed to smooth the validation
landscape of DARTS by computingmin

α
Lval(w∗(α), α) usingw∗(α) obtained ei-

ther through random smoothing (SDARTS-RS) or through adversarial training
(SDARTS-ADV). SDARTS-RS reformulates Eq. 2.8 as

w∗(α) = argmin
w

Eδ U[−ϵ,ϵ]
Ltrain(w,α+ δ), (3.5)

where δ is a perturbation sampled from the uniform distribution U[−ϵ,ϵ] be-tween −ϵ and ϵ. The idea behind this is to minimize Lval(α) under a small
randomized perturbation ϵ. Similarly, SDARTS-ADV is formulated as follows:

w∗(α) = argmin
w

max
||δ||<ϵ

Ltrain(w,α+ δ). (3.6)
Here, Chen et al. strove to increase adversarial robustness by minimizing the
worst-case loss under a certain perturbation (computedusing amultistep Pro-
jected Gradient Descent). They theoretically and empirically demonstrated
that both SDARTS-RS and SDARTS-ADV improve the stability and generability
of DARTS (e.g., SDARTS-ADV overperforms DARTS by +1.1 % top 1 accuracy on
ImageNet). However, both methods have downsides: SDARTS-ADV increases
computational cost sharply, but SDARTS-RS is less accurate. Fig. 3.4 provides
an illustration of the smoothing at work in SDARTS.

BigNAS [214] is an original approach where the authors proposed to palli-
ate the optimization gap by directly reusing the weights of the supernet/one-
shot model to evaluate the performance of the final architecture. This con-
trastswith previousworks [117, 15, 16] that either retrained thenetworkweights
or preprocessed them somehow. To achieve this, BigNAS performs single-
stage training using adapted versions of existing training methods such as

43

(a) DARTS (b) SDARTS-RS

(c) SDARTS-ADV

Figure 3.4: The landscape of validation accuracy w.r.t. the architectural
parameters α of DARTS [117], SDARTS-RS and SDARTS-ADV. Figure fromChen et al. [22].

inplace distillation [213], the sandwich rule [213], exponential learning rate de-
cay scheduling, or dropout-based regularization [174]. These modifications
aim to stabilize training and enable BigNAS to efficiently train both large and
small candidate architecture within its supernet. Furthermore, the authors
proposed a coarse-to-fine architectural selection scheme where a skeleton
architecture is first selected according to specific sets of requirements (e.g., in-
put resolution, network depth, or kernel size). Then, these sets are fine-tuned
with randommutations to obtain an optimal architecture. BigNAS reaches up
to 80.9 % top-1 accuracy on ImageNet [39] for its largest model (9.5 M param-
eters, 1 GFLOPS), thus overperforming previous approaches.

Vahdat et al. [184] proposed to combineDNASandReinforcement Learning-
based NAS in a unified framework, denoted UNAS, that would bring out the
strengths of both approaches. This way, UNAS can search for both differen-
tiable and non-differentiable objectives. In particular, they combine a cor-
rected variant of the classical REINFORCE RL algorithm [194] with a Gumbel-
Softmax [91] sampled DNAS algorithm to jointly search for either a differen-
tiable or a non-differentiable objective. Hence, the gradient of a differentiable

44

loss Ld can be computed as
∆αLd = REINFORCE(Ld, cd(α)) + C(cd(α)) + gumbel_softmax(α, cd(α))

= Epϕ(α)

[
(Ld(α)− cd(α))

∂logpϕ(α)
∂ϕ

]
− Epϕ(α)

[
∂cd(α)

∂ϕ

]
+

∂Epϕ(α) [cd(α)]

∂ϕ
,

(3.7)
where cd is a control variate defined as cd(α) = E∖ϕ(ζ|α) [Ld(ζ)] used to lowerthe high variance of REINFORCE where ζ is a smooth architecture sampled
from a conditional Gumbel-Softmax distribution rϕ(ζ|α). In addition, UNAS
can help bridge the optimization gap by introducing a novel objective function
Lgen to avoid architectural overfitting by taking into account the gap between
Ltrain and Lval in the optimization process. Lgen is defined as follows:

Lgen(α,w) = Ltrain(α,w) + λ|Lval(α,w)− Ltrain| (3.8)
whereαdenotes the architectural parameters,w represents the networkweights,
and λ is a coefficient weighting the generalization gap. UNAS overperforms
previousDNASworks onCIFAR-10/100 and ImageNetwhilemaintaining a search
cost comparable to DARTS (4 GPU days).

In addition to the optimization gap issue, Zhang et al. [222] observed that
a catastrophic forgetting problem (multi-model forgetting [10]) occurs in the
supernet’s weights training, leading to a deterioration of the optimization pro-
cess for all the candidate architectures derived from the supernet. To palliate
these issues, they introduced E2NAS (Exploration Enhancing Neural Architec-
ture Searchwith Architecture Complementation), a novel DNAS approach that
leverages a VGAE (Variational Graph AutoEncoder) to create an injection be-
tween the final discrete architectures and the continuous search space. More
precisely, an asynchronous message-passing scheme encodes the architec-
ture into an injective space by encoding the final outputC of the network into
a continuous representation z (i.e., a latent space). Hence, the hidden state
hv of node v is defined as

hv = U(wv, h
in
v) with hinv = G(hu : u→ v), (3.9)

where U is a function updating the hidden state hinv obtained by aggregating
all its predecessors with function G. Since both G andU are injective, the VGAE
maps C to z injectively. From then, E2NAS performs differentiable architec-
ture search on the latent continuous space. In addition, a new complementa-
tion loss Lc is introduced to tackle the catastrophic forgetting problem. This
loss works in conjunction with a replay buffer that contains the last architec-
ture αi−1 along with another complementary architecture αc

i . Ltrain in Eq. 2.8is replaced with Lc defined for weights wi = w∗(αi) and wc
i = w∗(αc

i) at step
i as

Lc(wi) = (1− ϵ)LCE + ϵ(LCE(w
c
i) + LCE(wi−1)) + ηR(wi), (3.10)
45

where LCE is the Cross-Entropy loss,R is a l2 regularization term, ϵ is a value
that balances between optimizing the current architecture (exploitation) or
preventing other alternatives from vanishing (exploration). E2NAS success-
fully overperformed previous works on the three datasets available in NAS-
Bench-201 [45] (e.g., a +29.45 % top 1 accuracy improvement on ImageNet-16-
120).

Zhang et al. [223] proposed iDARTS, a solution that reformulates the op-
timization process of DARTS with a Neumann-approximation of the Implicit
Theorem Function (IFT) [121]. Concretely, the architectural parameter gradi-
ents∆αLval (see Eq. 2.9) are calculated as follows:

∆αLval =
∂Lval
∂α

− ∂Lval
∂w

[
∂2Ltrain
∂w2

]−1
∂2Ltrain
∂α∂w

, (3.11)
where Lval is the validation loss, Ltrain is the training loss, and w are the net-
work weights. However, it is computationally intensive to compute the in-
verse of the Hessian matrix ∂2Ltrain

∂w∂w in Eq. 3.11. Hence, to alleviate this bur-
den, the authors approximated this inverse matrix using a Neumann series
[121]. This Neumann approximation is computed in a stochastic setting where
minibatches are used instead of the whole dataset. Thus, the stochastic ap-
proximation of the gradients described in Eq. 3.11 is formulated as follows:

∆αL̂ival(wj(α), α) =
∂Lival
∂α

− γ
∂Lival
∂w

K∑
k=0

[
I −

∂2Ljtrain
∂w2

]k
∂2Ljtrain
∂α∂w

, (3.12)
where i and j are minibatches randomly sampled from the training and vali-
dation datasets respectively, γ is the learning rate,K is the number of terms
of the Neumann series used for approximation, and I is the identity matrix.
This reformulation of the architectural gradient computation performs mul-
tiple optimization steps before updating α, hence making w(α) closer to its
optimal value w∗(α). The authors empirically showed that iDARTS improves
performance over standard DARTS by 2.6 % on ImageNet [39].

Wang et al. [189] argued that the optimization gap in DARTS is linked to
the architecture selection process, as the α weight values associated with an
operationmight not always reflect this operation’s strength. They defined the
discretization accuracy at convergence of an operation as the supernet accu-
racy after discretizing to this operation and fine-tuning the remaining network
until it converges again. Hence, Fig. 3.5 showcases empirical evidence that the
discretization accuracy at convergence of an operation does not necessarily
match its α weight value. In fact, some operations with a small α value can
reach a high discretization accuracy, further reinforcing the critical aspect of
the underlying architecture selection problem.

To alleviate this issue, the authors proposed a perturbation-based archi-
tecture selection (PT) where each operation of each edge of the architecture

46

Figure 3.5: Bar chart comparing the value of αw.r.t. the discretization ac-
curacy at convergence for each operation of 3 randomly selected edges
from a pretrained DARTS model. Figure from Wang et al. [189].
is masked in turn. Then, the operation that leads to the highest drop in per-
formance whenmasked is considered to be themost important on that edge.
This process is not too invasive as it only masks one operation at a time, thus
making the supernet accuracy close to the one of the unmodified supernet.
Finally, the authors showed that training a DARTS supernet normally and then
using PT to discretize the architecture (a process denoted DARTS+PT) signif-
icantly improves performance (e.g., +0.4 % top 1 accuracy on CIFAR-10 com-
pared to DARTS).

In the continuation of DARTS- (discussed in Section 3.2.2), β-DARTS [210]
introduced a novel and very simple regularization method called Beta-Decay
inspired from L2 regularization that involves imposition restrictions on the
architectural parameters to reduce optimization discrepancies. This regular-
ization occurs on the α parameters after the softmax activation and consists
of a straightforward loss function LBeta:

LBeta(α) = log(
K∑
k=1

exp(αk)), (3.13)
where K is the total number of candidate operations. LBeta is differentiableand added to the validation loss Lval pondered by a parameter denoted λ.
Thus, Eq. 2.8 is modified as follows:

min
α

(Lval(w∗(α), α) + λLBeta(α)). (3.14)
According to the theoretical analysis provided by the authors, LBeta improves

47

generalization and increases robustness. Ultimately, β-DARTS reached com-
petitive scores on both small-scale (CIFAR-10/100) and large-scale (ImageNet)
datasets while searching only on CIFAR-10 and CIFAR-100. The search process
of β-DARTS is resumed in Fig. 3.6.

(b) DARTS-

+

Auxiliary

Skip

𝛽𝑠𝑘𝑖𝑝
𝑑𝑒𝑐𝑎𝑦

0

SkipAvgP MaxP SepC DilC

𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝜷𝟓

+

Skip

(a) DARTS and 𝜷-DARTS

+

AvgP MaxP SepC DilC

𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝜷𝟓
𝜷𝒌 =

𝒆𝒙𝒑 𝜶𝒌

σ
𝒌′=𝟏
𝓞

𝒆𝒙𝒑 𝜶𝒌′

DARTS and DARTS-:

𝜷-DARTS:

Regularize 𝜶

Regularize 𝜷

Figure 3.6: Layout of the β-DARTS search process in comparison with
DARTS [117] and DARTS- [31]. Figure from Ye et al. [210]

Gu et al. [64] argued that the ranking of operations in DARTS edges is not
representative of the final model performance as it does not take correctly
into account operations that are related to topology (e.g., skip connections),
hence there is an optimization gap between the proxy model and the final
model. To solve this issue, they proposed the novel concept of decoupling
the operation and topology search that are performed simultaneously in the
original DARTS. This solution, named DOTS, divides the search process into
two stages. First, during the topology search stage, the topology search space
E is continuously relaxed into topology weights that are associated with pair-
wise combinations of edges. For instance, considering node xj , Exj is definedas follows:

Exj = {⟨ei1,j , ei2,j⟩|0 < i1 < i2 < j}. (3.15)
Moreover, for each edge ei,j , weights of combinations containing this edge
are aggregated into γi,j weights to reduce the search cost. γi,j is defined by
the following equation:

γi,j =
∑

c∈Ei,j ,ei,j∈c

exp(βc
xj
/Tβ)

N(c)
∑

c′∈Exj
exp(βc′

xj
/Tβ)

, (3.16)

whereN(c) is the number of edges in edge combination c, and βc
xj
represents

the weight associated with c. Eq. 3.16 uses an architectural annealing scheme
with temperature Tβ as previous works [147, 203] found that this mechanism
helps to bridge the optimization gap when searching. In the second phase,
DOTS performs an operation search to select the single optimal operation for

48

each edge according to architectural weights α (similarly to DARTS). However,
this strategy could drop some topology-oriented operations before the topol-
ogy search, thus altering the optimization process. To prevent this, DOTS in-
troduced a group strategy where the operation search spaceO is divided into
p subspaces on which the search process is performed independently. Once
the search process is over, the best operation from each subspace is selected
andmerged into a new operation search space. The authors showed that this
group strategy effectively preserves topology-related and topology-agnostic
operations. DOTS successfully overperformed DARTS top 1 accuracy scores
by +0.63 % on CIFAR-10 and by +2.7 % on ImageNet. The global process of
DOTS is summarized in Fig. 3.7.

x1 x2

x3

x4

x5

x6

x3

x6

x
7 x1 x2

x3

x4

x5

x6

x
7

x5

1 2
3

4

1 2 3 4

12 13 14 23 24 34
Operation Search Topology Search

Figure 3.7: Layout of the DOTS search process featuring both the opera-
tional and topological subprocesses. Figure from Gu et al. [64]

Yang et al. [209] introduced EnTranNAS as a different solution to the op-
timization gap problem. EnTranNAS comprises Engine-cells (standard DARTS-
like differentiable cells) and Transit-cells (transits the derived/discretized ar-
chitecture). It only searches for a single cell, as the author argues it is suf-
ficient to perform DNAS. Contrary to DARTS, the architecture discretization
process in EnTranNAS is no longer part of post-processing but rather done
at the end of each search iteration. Hence, the Transit-cells serve to host
the currently derived architecture and transmit it to later cells. EnTranNAS
includes the target (derived) architecture in the search process, resulting in
higher confidence when selecting operations. In addition, the authors intro-
duced a feature-sharing strategy to improve search efficiency, assuming that
the same operation from node i to node j > i always shares the same fea-
tures in a single cell. Thus, Eq. 2.7 is modified as follows

oi,j(x) =


∑

i<j

∑K
k=1

exp(αk
i,j/τ)∑K

k′=1 exp(α
k′
i,j/τ)

oki,j(x) = pki,jo
k
i,j(x), in Engine-cells,∑

(i,k)∈Sj
oki,j(x), in Transit-cells, (3.17)

where τ is a temperature parameter that acts as a regularization factor for
the differentiable process in the Engine-cells. This strategy helps to balance
optimization between parametric and non-parametric operations. It reduces
the computational cost by only computing feature maps of each operation
only once per cell (from node i to ulterior nodes j > i). However, EnTranNAS

49

does not completely eliminate the optimization gap. Hence the authors also
proposed a novel topology-search-oriented architecture derivation method
dubbedEnTranNAS-DST. Concretely, they introduced an additional set of train-
able parameters {βj}nj=2 for each intermediary node j and implemented thresh-
olds tj = sigmoid(βj) to perform operation pruning on those nodes as

qki,j = ReLU(pki,j

maxi<j,1≤k≤K{pki,j}
− tj). (3.18)

If there is k s.t. qki,j ̸= 0, qki,j is further normalized by

q̂ki,j =
qki,j∑
k q

k
i,j

. (3.19)

EnTranNAS-DST node output is thus obtained simply by replacing pki,j with
q̂ki,j in Eq. 3.17. The authors experimentally showed that EnTranNAS overper-
forms most prior works on both CIFAR-10 (+0.28 % top 1 accuracy vs. DARTS)
and ImageNet (+2.9 % top 1 accuracy compared to DARTS).

CDARTS [212] proposed to address the optimization gap issue by imple-
menting a cyclic feedbackmechanismbetween the search and evaluation net-
works analogous to a teacher-studentmodel. The search network (composed
of 8 cells) provides an intermediate architecture to the evaluation network
(composed of 20 cells) and, in return, gets performance feedback. Hence, the
search strategy takes into account the performance of the final discretized
(and larger) architecture. Furthermore, the two networks are jointly trained
and unified into a single architecture. The joint optimization problem is de-
fined as:

min
α
Lval(w∗

E , w
∗
S , α) s.t.


w∗
E = argmin

wE

Lval(wE , α),

w∗
S = argmin

wS

Ltrain(wS , α),
(3.20)

where wS and wE are the weights of the search and evaluation networks re-
spectively. CDARTS’ search process comprises two stages. Firstly, the sep-
arate learning stage during which both networks are trained individually on
the input dataset. α weights are initialized with random values, whereas the
cell architectures of the evaluated are initialized from the top-k discretization
α of the learned α. Secondly, the joint optimization stage where the search
algorithm leverages performance feedback from the evaluation network to
update α defined as follows:

α∗, w∗
E = argmin

α,wE

LSval(w∗
S , α) + LEval(wE , α) + λLS,Eval (w

∗
S , α, wE , α), (3.21)

50

where LS,Eval denotes the knowledge transfer procedure between the search
and evaluation networks, dubbed introspective distillation and formulated as:

LS,Eval (w
∗
S , α, wE , α) =

T 2

N

N∑
i=1

p(wE , α)log(p(wE , α)

q(w∗
S , α)

) (3.22)

where N is the number of training samples, T is a temperature coefficient,
and p and q are the output feature logits of the evaluation and search net-
works respectively (computed using a softmax). CDARTS overperforms previ-
ous methods on DARTS search space (e.g., + 3% top 1 accuracy improvement
compared to DARTS) while keeping the computational cost reasonable (1.7
GPU days). The main concept behind CDARTS is showcased in Fig. 3.8.

(a) DARTS

(d) CDARTS
A Unified Architecture

(b) PDARTS

Arch.

Search Net.

20

cells

8

cells

Arch.
20

cells

8

cells

Arch.

Search Net.

Eval. Net.

8

cells

11

cells
20

cells

8

cells

11

cells
20

cells

Eval. Net.

Search Net.

Eval. Net.

8

cells

20

cells

Arch.

Feedback

20

cells
Arch.

Search Net.

Eval. Net.

(c) EnTranNAS

2

Engine

Cells

2

Engine

Cells

6

Transit

Cells

6

Transit

Cells

Arch.

Figure 3.8: Comparison between the search processes of DARTS [117], P-
DARTS [23], EnTranNAS [209], and CDARTS [212]. Figure from Yu et al. [212]

3.2.2 . Over-representation of skip connections in DARTS
As already discussed in Section 3.2.1, FairDARTS [32] replaced softmaxwith

the sigmoid operation σ to ensure fair competition between the different op-
erations (i.e., the weights associated with operations can independently in-
crease or decrease). This means that a high prominence of skip connections
will not suppress the other operations that can thus overperform and replace
them. Empirically, this results in a lessened presence of skip connections in the
final architectures as shown in Fig. 3.9.

In a different manner, the authors of P-DARTS [23] managed to restrict
the number of skip connections by introducing an operation-level dropout [171]
to regularize the search space. More accurately, the dropout mechanism is
placed after every skip connection to block the path and entice the search al-
gorithm to explore other operations. In addition, the dropout rate is gradually
decayed to prevent the skip connections from being completely suppressed
(i.e., skip connections are heavily penalized at the start of the search process

51

0 20

Epochs

0

5

10

15

20

N
o.

of
D

om
in

a
n
t

O
p

s

DARTS

E3K3

E3K5

E3K7

E6K3

E6K5

E6K7

Skip

0 20

Epochs

0

10

20

30

N
o.

of
D

om
in

a
n
t

O
p

s

Fair DARTS

E3K3

E3K5

E3K7

E6K3

E6K5

E6K7

Skip

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Layer

E3K3

E3K5

E3K7

E6K3

E6K5

E6K7

Skip

DARTS softmax(α)

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Layer

E3K3

E3K5

E3K7

E6K3

E6K5

E6K7

Skip

Fair DARTS sigmoid(α)

0.2

0.4

0.6

0.8

Figure 3.9: Stacked area plot of the number of dominant operations of
DARTS and FairDARTS when searching on ImageNet. Figure from Chu etal. [32]

and then treated equally with the other operations at the end). Additional
details on P-DARTS can be found in Section 3.2.1.

Liang et al. [111] argued that the over-representation of skip connections re-
sults from an overfitting phenomenon in the optimization process of DARTS.
To alleviate this issue, they proposed DARTS+, an early-stopping procedure
that ends the search phase if the following criteria are met:

1. Two or more skip connections are present in the normal cell architecture.
2. The ranking of architecture parametersα for learnable operations becomes

stable for a determined number of epochs (e.g., 10 epochs).

The authors showed that using either of these criteria led to performance im-
provements over previous baselines (e.g., + 0.7 % top 1 accuracy compared
to DARTS when using Criterion 1). Furthermore, they provided empirical evi-
dence that Criterion 1 is easier to use and implement but yields less accurate
results than Criterion 2. This simple early stopping procedure was dubbed
DARTS+ and is illustrated by Fig. 3.10.

Zela et al. [217] also focused on robustifying DARTS as they found out
that performance collapses in many cases with high dominance of unparam-
eterized (i.e., skip/pooling) operations. Hence, they proposed DARTS-ES, a
novel method that performs early stopping according to the eigenvalues of
the Hessian matrix of the validation loss ∆2

αLval w.r.t. the α weights. More
precisely, they showed that large eigenvalues often lead to degenerate ar-
chitectures and tracked these values to stop the search process before the
performance collapses. Furthermore, they implemented two different reg-
ularization methods. The first one uses a combination of well-known data
augmentations techniques (Cutout [42], and ScheduledDropPath [232]). The
second one increases L2 regularization by choosing among several factors

52

Skip-connect

Sep-conv-3x3

Sep-conv-5x5

0

1

2

3

Early-Stopping

0

1

2

3

Final Architecture

0

1

2

3

0

1

2

3

0

1

2

3

Search

converges

Internal

state

One-shot

Hyper-

Network

Search Procedure

(a) Illustration on early stopping in DARTS (b) Selected architectures at different search epochs on CIFAR100

(b.1) Initial state

(b.2) Searching with early stopping

(b.3) Searching while convergence

Figure 3.10: Illustration of the early stopping process in DARTS+. Figurefrom Liang et al. [111]

(e.g., 1, 3, 9, 27, 81). Both techniques successfully increased robustness, espe-
cially when combined with DARTS-ES, an approach dubbed R-DARTS. The au-
thors tested their approach on several computer vision datasets (CIFAR10/100
[100], SVHN [145]) and under different search spaces. R-DARTS improved top
1 accuracy on CIFAR-10 up to +3.64 % compared to DARTS.

As a non-DARTS approach, E2NAS [222] (first presented in Section 3.2.1)
also addressed the over-representation of non-parametric operations in their
own way. They tackled the rich-get-richer problem, in which the optimizer is
biased towards architectures with high performance in their early stage. They
added a measure of the novelty into the gradient to avoid being stuck in local
minima, hence computing architectural weights αθ update as

αi+1
θ ← αi

θ − (1− γ)∇αi
θ
Lval(αi

θ, w∗)− γ∇αi
θ
N(αi

θ, A), (3.23)

where N(αi
θ, A) is a measure of architecture αi

θ from the history of architec-
tures A. This enhancement led to a higher probability of sampling novel ar-
chitectures rather than well-trained architectures from previous iterations.

DARTS- [31] tackled the global performance collapse induced by skip con-
nections by adding an auxiliary skip connection to the classic mixed output of
operations (see Eq. 2.7). The authors asserted that previous works based on
analyzing the Hessian matrix eigenvalues (e.g., R-DARTS [217]) were imperfect
as those methods tend to reject good architectures if they do not meet some
arbitrary threshold. This auxiliary operation is pondered by β, a coefficient in-
dependent from architectural weights that is progressively decayed to 0 dur-
ing the search phase. Moreover, the authors introduced βskip, a parameter
that denotes the importance of skip connections inside of the mixed output of

53

operations. Thus Eq. 2.7 is modified as follows:

oi,j(x) = (β + βskip
i,j)x+

∑
o∈O\{skip}

exp(αo
i,j)∑

o′∈O\{skip} exp(α
o′
i,j)

oi,j(x). (3.24)

Fig. 3.6 (b) illustrates this mechanism. The authors showed that DARTS- can
significantly improve robustness and stabilization during the search process,
with +0.5% improvement on CIFAR-10 [100], and +4.5%on ImageNet [39] com-
pared to standard DARTS. DARTS- also uses fewer computational resources
than previous approaches such as R-DARTS [217]. In addition to standard
DARTS, this approach is able to improve the performance of other derivatives
such as P-DARTS [23] or PC-DARTS [205].

Path-RegularizedDifferential Network Architecture Search (PR-DARTS) [229]
was the first method to propose a theoretical in-depth analysis of why the
over-representation of skip connections phenomena happens and how it is
connected to performance collapse. This differs from prior works [32, 23, 111]
that mainly observed this issue and empirically tested their own solutions.
In particular, the authors introduced a convergence theorem demonstrating
that the number of skip connections heavily influences the supernet’s conver-
gence rate (i.e., the more skip connections, the faster the supernet converges).
This is linked to skip connections faster decaying the validation loss Lval, andthus leading DARTS search algorithm to increase α weights associated with
skip connections at the cost of decreasing all other weights. To palliate this is-
sue, they replaced architectural weights with stochastic binary gates, denoted
gki,j for the kth operation between nodes i and j. At each iteration, gki,j is sam-
pled from a Bernoulli distribution to compute the output of each node. Thus,
Eq. 2.7 is modified as follows:

oi,j =
K∑
k=1

gki,jo
k
i,j(x). (3.25)

However, leaving the gates unregularized could bias the operation selection
in cells sinceDARTSwill increase theweights of all operations to achieve faster
convergence. Furthermore, increasing the value of any operationweight could
reduce or maintain the loss Lval. The authors resolve these issues by using agroup-structured sparsity regularization on the gates via rescaling and impos-
ing thresholds: gki,j = min(1,max(0, a+(b−a))gki,j)with a < 0 and b > 1, and
gki,j is an approximation of gki,j using the Gumbel reparametrization trick. This
regularization is expressed by two loss functions targeting skip and non-skip

54

connections respectively:
Lskip(α) =ζ

h−1∑
l=1

l−1∑
s=0

σ(αskip
s,l − τ log

(
−a
b

)
),

Lnon−skip(α) =
ζ

r − 1

h−1∑
l=1

l−1∑
s=0

K∑
k=1

σ(αk
s,l − τ log

(
−a
b

)
),

(3.26)

where σ denotes the sigmoid function, h is the path depth, ζ = 2
h(h−1) and τ

is a temperature hyperparameter. In addition, they introduced path regular-
ization to reduce the unfair competition between deep and shallow cells (i.e.,
a cell containing a large amount of intermediary skip connections) as follows:

Lpath(α) =
h−1∏
l=1

∑
k∈Op

σ(αk
l,l+1 − τ log

(
−a
b

)
), (3.27)

where Op denotes the parameterized operations. Hence, Eq. 2.8 is modified
as follows:

min
α
Lval(w∗(α), α) + λ1Lskip(α) + λ2Lnon−skip(α)− λ3Lpath(α),

s.t. w∗(α) = argmin
w
Ltrain(w,α),

(3.28)

where λ1, λ2 and λ3 are constants. All of these improvementsmake PR-DARTS
search for performance-orientednetworks rather than fast-convergence-oriented
ones. Empirical results show that PR-DARTS overperformed DARTS and ear-
lier variants on image classification datasets (ImageNet, CIFAR-10) by a large
margin.

The authorsDARTS+PT [189] (presented in Section 3.2.1) showed that their
proposedperturbation-based architecture selectionmethodprevents skip con-
nections frombecoming dominant. Froma theoretical aspect, they refer to Gr-
eff et al. [61], who proved that ResNet [69] layers are robust to reordering as
their outputs correspond to the same estimated optimal feature map values.
As the presence of skip connectionsmakesDARTS’ supernet resembles ResNet,
this may explain why DARTS layers are also robust to reordering. Thus, this
fact indicates that edges in a cell all try to estimate the same optimal feature
mapsm∗. Wang et al. [189] used this finding to define the estimated optimal
feature maps m̄e for input xe of edge e:

m̄e(xe) =
exp(αconv)

exp(αconv) + exp(αskip)
oe(xe) +

exp(αskip)

exp(αconv) + exp(αskip)
xe

with αconv ∝ (xe −m∗), αskip ∝ (oe(xe)−m∗)

,

(3.29)
where αconv and αskip are architectural parameters, and oe is the mixed out-
put of operations associated with edge e. It can be deduced from Eq. 3.29 that

55

the better the supernet is optimized, the closer xe will get tom∗ (since the goal
of the training phase is to make edges estimate m∗). Consequently, this will
widen the (αskip − αconv) gap and ultimately this will lead to αskip > αconv.However, Wang et al. showed that this only becomes problematic if the ar-
chitecture selection process relies on α. On the contrary, DARTS+PT does not
suffer from this issue, although it retains the same search algorithmasDARTS.

Another work dubbed NoisyDARTS [30] addressed this problem in an
original way. The authors proposed to inject unbiased random noise during
training to prevent the optimizer from increasing architectural weights asso-
ciated with skip connections (αskip) toomuch. They argued that adding noise is
an efficient way to improve generalization by smoothing the loss landscape,
as pointed out by a prior study [199]. In practice, NoisyDARTS adds Gaussian
noise to the input of skip connections. Thus, Eq. 2.7 can be rewritten as

oi,j(x) =
K−1∑
k=1

softmax(αk
i,j)o

k
i,j(x) + softmax(αskipi,j)o

skip
i,j (x+ x̃), (3.30)

where x̃ ∼ N (µ, σ2) is a random noise sampled from a Gaussian distribution
parameterized by mean µ and variance σ2 (µ = 0 and σ = 0.2 when search-
ing on ImageNet). Despite its simplicity, NoisyDARTS managed to suppress
skip connections and consistently overperformed prior DARTS derivatives on
CIFAR-10 [100], ImageNet [39], and NAS-Bench-201 [45] (e.g., +9.7 % top 1 accu-
racy on ImageNet compared to DARTS).

Ye et al. (β-DARTS) [210] continued the work initiated by DARTS- [31] with
the introduction of the Beta-Decay regularizationmethod (presented in detail
in Section 3.2.1). In addition to reducing the optimization gap problem, they ar-
gued that the Beta-Decay mechanism also alleviates the over-representation
of skip connections issue and ensures fair competition between the opera-
tions. More accurately, the authors provide a theoretical explanation with
the following equation:

ϕ ∝
h−2∑
i=0

[(θconvi,h−1β
conv
i,h−1)

2
i−1∏
t=0

(θskipi,h−1β
skip
i,h−1)], (3.31)

where h is the number of layers in the supernet, ϕ represents the architec-
tural weight gradients, θ represents the influence of the Beta Decay regular-
ization, and βk = exp(αk)∑

k′∈O exp(αk′
= softmax(αk). By taking into account that θvaries antagonistically to β (as it is a regularization function), Eq. 3.31 shows

us that the convergence of networks relies more on βconv than on βskip. Con-sequently, thismeans that Beta-Decay helps to reduce the prominence of skip
connections.

CDARTS [212] straightforwardly addressed the over-representation issue.
They simply added a L1 regularization factor to the architectural weights of

56

non-parametric operations Onp = skip_connect,max_pool_3x3, avg_pool_3x3
as:

Lreg = λ
∑

o∈Onp

|αo|, (3.32)
where λ is a hyperparameter that balances the value of Lreg. The authors
showed that this method successfully prevented the operations in Onp frombecoming dominant.

3.2.3 . Computational Efficiency and Latency Reduction
Chen et al. [23] defined the problem of NAS in the wild as being able to

search for an architecture on a proxy dataset (e.g., CIFAR-10 [100]) to limit
computational cost and successfully transfer to another, more challenging
dataset (e.g., ImageNet [39]). Most DARTS derivatives followed this paradigm,
contrary to most non-DARTS approaches such as ProxylessNAS [15].

As discussed above (see Section 3.2.1 for additional details), Proxyless-
NAS searches directly on the target dataset (e.g., ImageNet [39]) rather than
a proxy dataset (e.g., CIFAR-10). It also enforces latency constraints on specific
hardware (e.g., mobile phones, GPU, or CPU). Hence, it is a multi-objective
NAS method, but one of the objectives (latency) is not differentiable. Instead,
latency is measured in real-time on GPU/CPU and is predicted from a lookup
table on mobile settings. ProxylessNAS successfully constrained mobile la-
tency to a similar level to MobileNetV2 [164] and improved top 1 accuracy by
2.6 % on ImageNet.

With PC-DARTS (Partially-Connected DARTS), Xu et al. [205] sought to im-
prove computational efficiency without compromising performance. To this
end, they perform architecture search in only a subset of randomly sampled
channels while bypassing the rest. This concept is based on the assumption
that computation on this subset is an adequate approximation of the effective
computation on all the channels. Considering edge ei,j , partial channel con-nection involves defining a channel sampling mask Si,j which nullifies (i.e.,
assigns a weight value of 0) all channels except selected ones in the mixed
output oi,j , thus modifying Eq. 2.7 as follows:

oPC
i,j (x) =

K∑
k=1

exp(αk
i,j)∑K

k′=1 exp(αk′
i,j)

oki,j(Si,jx) + (1− Si,j)x. (3.33)
This process has the advantage of reducing thememory overhead byK times,
with 1

K being the channel selection ratio. Subsequently, it helps reduce the
search cost on CIFAR-10 from 1 GPU day (DARTS) to only 0.1 GPU day, and PC-
DARTS achieves a better top 1 accuracy on ImageNet than ProxylessNAS (75.8
% vs. 75.1 %) with half the search cost. However, partial channel connection
induces an inconsistency in the selection of operations across the different
sampled channels. To palliate this issue, the authors introduced an additional

57

set of learning parameters βi,j that are shared throughout the search processto act as an edge normalization mechanism. The PC-DARTS approach is sum-
marized in Fig 3.11.

3x3 sep

5x5 sep

Identity

… …

+

+

+

Concat
Sample0

1

2

3
+𝑞1,3

Partial Channel
Connection

Partial Channel
Connection

Partial Channel
Connection

Partial Channel Connection

Edge Normalization

𝑝𝑜1

𝐱0

𝐱1

𝐱2

𝑓0,3
PC(𝐱0; 𝐒0,3)

𝑓1,3
PC(𝐱1; 𝐒1,3)

𝑓2,3
PC(𝐱2; 𝐒2,3) 𝐱3

PC

𝐱0

𝐒0,3

𝑓0,3
PC(𝐱0; 𝐒0,3)

𝑝𝑜 =
exp{𝛼𝑖,𝑗

𝑜 }

σ𝑜′∈𝒪 exp{𝛼𝑖,𝑗
𝑜′}

𝑞𝑖,𝑗 =
exp{𝛽𝑖,𝑗}

σ𝑖′<𝑗 exp{𝛽𝑖′,𝑗}

𝑝𝑜2

𝑝𝑜8

0

1

2

3

Figure 3.11: Layout of the PC-DARTS search process. Figure from Xu et al.[205]
Cai et al. proposed Once-for-All (OFA) [16] as a solution for decoupling

the training and search phases with the objective of drastically reducing the
computational cost of DNAS. In particular, they trained a single large super-
net whose configuration (e.g., kernel size, depth, or width) can be altered and
directly deployed without further training. OFA follows two stages: (1) a train-
ing phase where the different subnetworks that compose the supernet are
optimized to improve their accuracy (2) a hardware-aware NAS phase (model
specialization stage) where sub-networks are sampled to train accuracy and
latency predictors. This enables OFA to target specific hardware and laten-
cies. However, since simultaneously optimizing the parameters of the very
large (1019) number of subnetworks is prohibitively expensive, the authors
introduced a novel training process during which the OFA network is progres-
sively fine-tuned to train subnetworks of increasingly smaller size. This is akin
to a pruning process performed over different modalities (i.e., input resolu-
tion, width, depth, and kernel size). Overall, OFA only requires 4.2k GPU hours
for end-to-end training (3 times lower than DARTS [117]) to overperform all
previous approaches on ImageNet in the mobile setting (i.e., less than 600M
FLOPS).

Although it was not their primary objective, the authors of DOTS [64] were
able to reduce computational cost to only 0.26 GPU day when searching on
CIFAR-10 and 1.3 GPU days when searching on ImageNet. This is due to the de-
coupling between the topology search and operation search that greatly re-
duces the number of candidate operations on each edge (and thus the search
space size), making both processes converge fast.

Wu et al. [197] proposed FBNet as a DNAS framework aimed at improv-
ing latency and computational efficiency, especially targeted at low-power

58

hardware such as mobile phones. Firstly, FBNet browses a search space A
different than DARTS’ that is not organized around cell building blocks but
rather around layers. The macro-architecture (i.e., the pre-processing/post-
processing layers, the number of intermediate layers, and their input shapes)
is fixed, whereas independent architectures (from a selection of "blocks") are
searched for each layer. This leads to a greater diversity of candidate architec-
tures than in DARTS’ search space. In addition, FBNet combines the standard
Cross-Entropy loss LCE with a hardware-aware latency loss LLAT defined as
follows:

LLAT = αlog
(∑

i

LAT (bal)

)β

, (3.34)
where LAT (bal) denotes the latency of block a of the l-th layer, and α and β

are coefficients weighting LLAT . The latency values are retrieved from a la-
tency lookup table (similarly to ProxylessNAS [15]), as measuring latency from
mobile processors in real time is prohibitively expensive. In addition, using
a lookup table makes LLAT differentiable. Finally, the authors devised a dif-
ferentiable NAS algorithm where the search space is modeled by a stochastic
supernet. Thus, only one candidate block is sampled at a time independently
for each layer from a probability distribution obtained through a softmax in-
stead of a weighted mixed output of operation as featured in DARTS (see Eq.
2.7). Consequently, the output xl of layer l is a masked output defined as:

xl =
∑
i

ml,ibl,i(xl−1), (3.35)
where ml,i is a mask that equals to 1 if block bl,i is sampled or 0 otherwise.
Therefore, the probability of sampling an architecture a ∈ A is described by
the following equation:

PΘ(a) =
∏
l

PΘl
(bl = bal,i), (3.36)

whereΘ is composed of all the parameters that determine the sampling prob-
abilities of blocks for each layer. Furthermore, the authors resorted to the
Gumbel-Softmax [91] function to relax the discretemasksml into a continuousdistribution and thus make the whole search process differentiable w.r.t. the
sampling parametersΘ. The authors empirically showed that FBNet reached
a higher top 1 accuracy (e.g., +1.8 % for FBNet-C) on ImageNet than DARTS for
a 33 % lower search cost. FBNet-A also reached a latency as low as 19.8 ms
when targeting a Samsung Galaxy S8.

However, FBNet is not free from limitations, and hence Wan et al. [187]
designed an updated method dubbed FBNetV2. Their primary concern was
palliating the small search space size issue in FBNet andDARTS. Consequently,
they introduced a greatly enlarged search space (see Section 3.2.4). To keep

59

their method computationally efficient, the authors proposed DMaskingNAS.
This NAS algorithm uses weight-sharing approximations to efficiently search
over additional hyperparameters, such as the number of filters and the in-
put dimensions. They kept the layer-wise DNAS paradigm described in FBNet
but used a channel-masking mechanism parameterized through a Gumbel-
Softmax function. Thus the output y of a block b can be computed as follows:

y = b(x) ◦
k∑

i=1

gi1i, (3.37)
where gi denotes Gumbel weights and 1i is a mask vector whose first i values
are 1s with the rest being 0s. This way, each block’s channel number can be
searched without significant additional computational cost. Furthermore, FB-
NetV2 searches for different input resolutions by performing resolution sub-
sampling from the original input (i.e., extracting smaller input feature maps
using the nearest neighbors method). Once the output feature map has been
computed, it is upsampled into a larger fixed-size one to preserve dimensional
consistency. FBNetV2maintains a computational cost similar to FBNet despite
searching on a search space up to 1014 times larger.

VIM-NAS (Variational InformationMaximizationNeural Architecture Search)
[191] observed that each cell edge is considered independent in the global ar-
chitecture of previous DNAS methods. In contrast, the authors introduced a
novel way of formulating the NAS problem by assuming that the architectural
distribution A is a latent representation of specific data points from dataset
D such as there is a distribution pϕ(D,A) = p(D)pϕ(A|D) parameterized by
ϕ. More specifically, VIM-NAS strives to maximize the mutual information
Iϕ(D,A) between A and D as

max
ϕ

Iϕ(D,A) = Epϕ(D,A[logpϕ(D|A)]. (3.38)
Thus, the objective L(ϕ, θ,D) of the DNAS process can be formulated as

max
θ,ϕ
L(ϕ, θ,D) =

∑
d∈D

Epϕ(D,A[logqθ(D,A], (3.39)
where logqθ(D,A) is a supernet approximation of logpϕ(D|A). In practice,
pϕ(D|A) is reformulated to the Gaussian noise N (µθ, 1) where µϕ is param-
eterized by the convolutional network ϕ. This makes VIM-NAS very fast as it
can converge in only a single epoch in DARTS’ search space (i.e., a 0.007 GPU
day search cost) while providing a top-1 accuracy improvement of +0.55 % on
CIFAR-10 [100] and +2.04 % on ImageNet [39] compared to DARTS.

Methods such as FBNet [197] or ProxylessNAS [15] sought to impose hard-
ware and latency constraints softly by formulating an objective functionwhich
is a trade-off between accuracy and computational resources. In contrast,

60

HardCoRe-NAS (HardConstraineddiffeRentiableNAS) [144] searches for high-
accuracy architectures that strictly respect a hard latency constraint. The au-
thors reformulated the classic bilevel optimization problem of DNAS (see Eq.
2.8) as

min
ζ∈S

Ex,y Dval;ζ̂ Pζ(S)[LCE(x, y|w∗, ζ̂)] s.t. LAT(ζ) ≤ T

w∗ = argmin
w

Ex,y Dtrain;ζ̂ Pζ(S)[LCE(x, y|w, ζ̂)],
(3.40)

where S is a fully differentiable block-based search space parameterized by
ζ = (α, β), Dtrain andDval are the train and validation datasets’ distributions,
Pζ(S) is a probability measure over S, and LAT(α, β) is the estimated latency
of the model. S is composed of a micro A (i.e., block internal architecture
c ∈ C) and macro (i.e., connections between blocks at every stage s ∈ S) B
search spaces parameterized by α ∈ A and β ∈ B respectively. Thus, the
overall expected latency LAT(α, β) is computed by summing over the latency
tsb,c for every possible configuration c ∈ C of every block b, over all possible
depths d, and over all the stages:

LAT(α, β) = S∑
s=1

d∑
b′=1

b′∑
b=1

∑
c∈C

αs
b,c · tsb,c · βs

b′ . (3.41)
HardCoRe-NAS uses LAT to build a constrained search space SLAT = {ζ|ζ ∈
Pζ(S), LAT(ζ) ≤ T}. Similarly to DARTS, S is relaxed to be continuous by
searching for ζ ∈ SLAT . The search process of HardCoRe-NAS is visually sum-
marized in Fig 3.12. The authors experimentally showed that HardCoRe-NAS
managed to constrain latency to the same level or lower than previous meth-
ods while overperforming them on ImageNet [39] (e.g., -9 ms latency reduc-
tion and +1.6 % top 1 accuracy improvement compared to FBNet on an Nvidia
P100 GPU).

Similarly to UNAS [184], RADARS [207] (Reinforcement Learning Aided Dif-
ferentiable Architecture Search) leverages Reinforcement Learning to help the
differentiable search process. However, RADARS focuses on reducing com-
putational and memory costs, whilst UNAS is performance-oriented. The RL
algorithm prunes the search space through iterative exploration/exploitation
phases. It identifies promising subsets of operations for each laver andprunes
the search space of the other operations (exploration phase). Differentiable
NAS is then performed on this reduced search space instead of the entire
search space (exploitation phase). The authors bounded the GPU memory
usage to a maximum of 12 Go (Nvidia RTX 2080ti). They showed that RADARS
could reach competitive scores for restricted memory (11 Go) and time (3.08
GPU days) on ImageNet despite using a large MobileNet-like search space.

Finally, FP-DARTS (Fast-Parallel-DARTS) [190] proposed to decompose
DARTS’ search space into two sub-spaces comprising 4 operations each. These

61

3x
3

Co
nv

3x
3

DW
S

St
ag

e
1

St
ag

e
2

St
ag

e
3

St
ag

e
4

St
ag

e
5

1x
1

Co
nv

Av
gP

oo
l +

 F
C

Bl
oc

k
1

Bl
oc

k
2

Bl
oc

k
3

bl
oc

k
4

𝛽"# 𝛽$# 𝛽##

𝛽%#
1x

1
Co

nv
 (e

r=
6)

er
=3

er
=2

𝜶𝟐,𝒆𝒓+𝟔𝟑

𝜶𝟐,𝒆𝒓+𝟑𝟑

𝜶𝟐,𝒆𝒓+𝟐𝟑

3x
3

DW
S

5x
5

DW
S

𝜶𝟐,𝒌+𝟓𝟑

𝜶𝟐,𝒌+𝟑𝟑

SE

𝜶𝟐,𝒔𝒆+𝒐𝒇𝒇𝟑

𝜶𝟐,𝒔𝒆+𝒐𝒏𝟑 1x
1

Co
nv

Fixed

Macro Search

Micro Search

Figure 3.12: Layout of the HardCoRe-NAS search process. Figure from Nay-man et al. [144]

two spaces are browsed in parallel to discover two subnetworks that jointly
form a global supernet by addition. Furthermore, the authors introduced a
binary gate to control whether a path in one of the two sub-spaces partici-
pates to the supernet training. This parallelization process aims to reduce the
search cost drastically. FP-DARTS reaches competitive results on ImageNet
(76.3 %).

3.2.4 . Search Space Restrictions
Bypassing the search space restrictions of DNAS (especially concerning

DARTS) is one of the main goals pursued by researchers in the field. For
instance, ProxylessNAS [15] step out of the cell-based paradigm to instead
search directly for an entire architecture. However, as discussed in Section
3.2.1, this led to an exponential increase in computational resources that the
authors alleviated by using a binarizationmechanism to only instantiate a sin-
gle path in memory at a given time.

U-DARTS (Uniform-DARTS) [82] proposed to unify the search and evalu-
ation spaces into a single one. This space is also expanded to include search-
able connections between the different cells (by opposition to the sequential
connections featured in DARTS). In addition, U-DARTS uses a random sam-
pling scheme to reduce computational overhead. Finally, a regularizationmethod
is also employed tomitigate the skip-connection overrepresentation issue (see
Section 3.2.2). U-DARTS is able to reach competitive results on CIFAR-10 (i.e.,
97.41 % top-1 accuracy with 3.3 M parameters).

The authors ofDenseNAS [53] introduced adensely-connectedblock-based
search space that allows them to search for block widths and the number
of blocks per layer. They designed routing blocks with gradually increasing

62

widths, and each block output linked tomultiple other blocks, covering a large
spectrum of block widths and block numbers per layer. Each routing block
comprises several shape-alignment layers and several basic layers, which are
mixed outputs of the different candidate operations. The basic layers are re-
laxed into continuous operations using softmax, similarly to DARTS (see Eq.
2.7). In the same way, the routing block output is a mixed output of all the
possible paths leading to the next routing block and relaxed using a softmax.
Furthermore, DenseNAS features a chained cost estimation algorithm that
aims to restrict the computational cost and latency of the final architecture.
The cost of each basic layer operation is retrieved from a lookup table and is
used to estimate the cost of the whole architecture as follows:

costl =
∑
o∈O

wl
ocost

l
o (3.42)

˜cost
i
= costib +

i+m∑
j=i+1

pi,j(cost
i,j
align + costjb), (3.43)

wherewl
o is the softmaxweight of operation o in basic layer l, pi,j is the softmaxweight of the path from routine blockBi to routine blockBj , m is the number

of subsequent blocks, and costi,jalign is the cost of the shape-alignment layer in
block Bj with input from block Bi. This cost is then integrated into the loss
function

L(w,α, β) = LCE + λlogT (˜cost
1
). (3.44)

DenseNAS overperformed previous methods on ImageNet (+2.8 % top 1 accu-
racy compared to DARTS) while being able to constrain the number of FLOPS
and the latency.

The authors of FBNetV2 [187] (first presented in Section 3.2.3) pointed
out that the main issue in previous DNAS works (DARTS [117] and FBNet [197]
primarily) is related to their severely restricted search space. Therefore, they
crafted a novel search space encompassing two new hyperparameters (i.e.,
the number of channels and the input resolution). This novel search space
comprises 1035 candidate architectures and is 1014 times larger than FBNet’s.
By leveraging this expanded search space, FBNetV2 overperforms FBNet on
ImageNet significantly (e.g., +1.9 % top 1 accuracy for FBNetV2-F4 compared
to FBNet-B).

Building upon what has been laid by previous FBNet works [197, 187, 38],
FBNetV5 [198] is an interesting work as it did not simply seek to lift search
space restrictions but more specifically focused on a less-explored subject:
improving the transferability of DNAS architectures between different com-
puter vision tasks. The authors addressed this challenge by combining a dif-
ferentiable NAS process with FBNetV3, a NAS approach that stepped out of
DNAS and instead proposed its own novel paradigm where architectures and

63

training hyperparameters ("recipe") arematched to reachoptimal performance.
More precisely, they created a supernet trained on amultitask dataset (gener-
ated from ImageNet [39]) to disentangle the search process from the training
pipeline of the target. FBNetV5 performs topology search to find the optimal
backbone architecture for each task (i.e., semantic segmentation, object de-
tection, and image classification). This is done simultaneously for all tasks.
Furthermore, the authors designed a search algorithm that produces archi-
tectures for each task at a constant computational agnostic to the number of
tasks. At the task level, they leverage a DNAS process following [197] where
they browsed a block-based search space A = {0, 1}B comprising B blocks.
An architecture a ∈ A is hence a set of binary masks ab sampled indepen-
dently from a Bernoulli distribution. When searching on multiple tasks, the
DNAS problem is relaxed as follows:

minπ1,...,πT ,w

T∑
t=1

Eat pπt
{↕t(at, w)}, (3.45)

where at are architectures sampled from task-specific distributions pπt , lt are
task-specific losses, T is the number of tasks, and w denotes the supernet
weights. In addition, to restrict computational cost, the authors adopt the
RL algorithm REINFORCE [194] and importance sampling [67] to reduce the
number of forward and backward passes of the search algorithm from T to
1. Fig. 3.13 summarizes the search process of FBNetV5. FBNetV5 successfully
overperforms all previous NAS methods on datasets (ImageNet [39], COCO
[113], and ADE20k [228]) corresponding to the three tasks this method focused
on.

DET

Head

SEG

Head

CLS

Head

Border
collie

Path 0

(H/4, W/4)

Stage 1 Stage 2 Stage s

Fusion 1

Fusion 2

Fusion s-1

Fusion s

Stage 0

...

...

...

...

Selected

Block

Skipped

Block

Back propagation

REINFORCE

Estimation

Path 1

(H/8, W/8)

Path 2

(H/16, W/16)

Path 3

(H/32, W/32)

...

...

...

...

Input

(H, W)

...

...

...

...

CLS Arch. Prob.

...

...

...

...

SEG Arch. Prob.

...

...

...

...

DET Arch. Prob.

Importance Sampling
H

W

SEG
DET
CLS

CLS LossCLS

DET LossDET

SEG LossSEG

...

...

...

...
CLS Arch.

...

...

...

...
SEG Arch.

...

...

...

...
DET Arch.

Existing Training
Pipelines

Search (Train Supernet) Train Searched Arch.

Sampling

Figure 3.13: Layout of the FBNetV5 search process. Figure from Wu et al[198].

3.3 . Applications

64

It is important to note that the majority of significant DNAS works, such as
DARTS [117], ProxylessNAS [15], and FBNet [197], primarily focus on enhanc-
ing Convolutional Neural Network (CNN) architectures for computer vision
tasks. Consequently, these works predominantly evaluate their approaches
using image classification datasets, such as CIFAR-10/100 [100] and ImageNet
[39], as well as object detection and semantic segmentation datasets like MS-
COCO [113], Pascal-VOC [51], and Cityscapes [35]. Nonetheless, several studies
have explored DNAS in various other application domains. In addition to the
major approaches discussed in the following paragraphs and Section 3.2, we
have also included less prominent works that specifically focus on particular
applications of DNAS. Table 3.2 provides a summary of these approaches.

Remote Sensing: Several applications have been developed to address
image-oriented tasks in remote sensing, including radar image analysis [44,
224] and scene classification [152]. For example, Zhang et al. [224] employed
a DARTS-based method to search for optimized AutoDL detector CNN back-
bones for sonar image and maritime radar image analysis.

Natural Language Processing: DARTS [117] and its variants, such as β-
DARTS [210], have been utilized to search for Recurrent Neural Network (RNN)
[162] architectures for Natural Language Processing (NLP) tasks, such as lan-
guagemodeling ondatasets like the Penn Tree Bank [128] andWikiText-2 [136].
Additionally, in the same domain, AdaBERT [19] employed Differentiable NAS
to compress large language models like BERT [98] into smaller task-specific
models.

Medical Applications: Severalworks have proposedDNAS-based approaches
for analyzing medical data, including MRIs [108, 122] and volumetric images
[230, 215, 83]. As most DNAS approaches primarily target CNNs and com-
puter vision tasks, their application tomedical imaging is straightforward. For
example, Guo et al. [65] developed a DNAS approach to modulate the com-
position of CNNs used for organ-at-risk segmentation in patients treated for
head and neck cancer.

Reinforcement Learning: RL-DARTS [138] utilized DARTS to search for
backbone architectures for on-policy andoff-policyDeepReinforcement Learn-
ing algorithms. They demonstrated that Differentiable NAS with DARTS is ef-
fective for both discrete action and continuous control environments. In the
Procgen [34] environment, RL-DARTS achieved a 250 % improvement in per-
formance over the baseline IMPALA-CNN [50].

Audio Processing: Several studies have focused on speech recognition,
aiming to discover novel convolutional neural network architectures special-
ized in audio pattern extraction [227, 80, 43]. For instance, Hu et al. [80] em-
ployed aDARTS-based search strategy to discover TimeDelay Neural Network
(TDNN) architectures optimized for automatic speech recognition.

HardwareOptimization:Matching architectureswith hardware has been
65

Table 3.2: Summary of Differentiable NAS works according to their
field of application. Some articles are referenced under multiple cat-egories.
Field Subfield References

ComputerVision

Image Classification [117, 187, 197, 198, 32, 223, 111, 76, 31, 205, 23, 22]Object Detection [130, 110]Video Processing [155]Semantic Segmentation [230, 115, 52]Image Super-Resolution [81, 192, 200]Image Denoising [60, 219]Pose Estimation [225]Image Generation [57]Facial Recognition [109]RemoteSensing Radar Image Analysis [44, 224]Scene Classification [152]Natural LanguageProcessing Language Modeling [117, 210, 94]Keyword Spotting [142]Medical Applications Medical Image Analysis [108, 230, 65, 122, 83, 193, 215]Reinforcement Learning Deep Reinforcement Learning Backbone [138]Audio Processing Speech Recognition [227, 80, 43]HardwareOptimization Embedded Systems and Latency Reduction [120, 15, 93, 214, 197, 207, 99, 126, 144, 216, 16, 153, 221]Predictive Maintenance [220]

amajor focus in DNAS. Multiple works, including ProxylessNAS [15] (discussed
in detail in Section 3.2.3), have aimed to optimize computational cost and la-
tency on various platforms, such as GPUs [15, 197, 207], CPUs [15], and em-
bedded systems [15, 99, 120]. Ensuring the real-world deployment of Deep
Learning is paramount, as consumer-grade devices are not as powerful as
high-end or data-center GPUs/TPUs typically used by researchers.

3.4 . Discussion and Conclusion

In Section 3.2, we reviewed 30 recent DNAS approaches that targeted 4
different challenges (presented in Section 2.7). More than half (62 %) of these
approaches are based on DARTS [117] due to the high popularity this method
enjoyed from the moment it was first published (2019) until now, with novel
DARTS-based methods still being proposed in 2022 [210, 212]. Each reviewed
DNAS method addressed at least one of the four challenges we identified in
Section 2.7.

One noteworthy fact (clearly shown in Fig.3.1) is that there is a clear par-
tition between DARTS-based and non-DARTS-based works when considering
the challenges they tackled. The vast majority (81 %) of DARTS-based meth-
ods addressed either challenge I (gradient approximation discrepancies) or
challenge II (over-representations of skip connections) while the rest mostly
targeted challenge III (computational efficiency and latency reduction) and
challenge IV (search space restrictions). This can be explained as I and II are
DARTS’ most prominent issues and thus constitute the main leads to pursue
any follow-upwork. On the other hand, non-DARTS-based DNAS saw those is-
sues are inherent to DARTS and proposed a change of paradigm that allowed

66

them to focus on other, more global, problems (i.e., III and IV). Let us dive into
the main conclusions of each category.

(I) A large subset of methods [189, 32, 64, 209, 212, 15] agreed that the fi-
nal discretized architecture is dissimilar to the proxy model used during the
search process, thus resulting in the optimization gap. However, these works
differ in their proposed solutions to that analysis. Some replaced the dis-
cretization process to yieldmodels that better fit the proxy network, while oth-
ers designed a novel search process when the proxy network is more closely
tied to the final model (or even a proxyless search process [15]). These DNAS
works yielded improved results that show the relevance of their respective
contributions. However, these improvements are often marginal (i.e., less
than 1 % top 1 accuracy improvement on ImageNet [39] compared to previous
state-of-the-art), and there is no general consensus among all recent articles
on how to reduce the optimization gap. Thus, this may indicate that, despite
efforts to provide mathematical background, we still lack a formal model that
would bring an optimal solution to this problem. The DNAS optimization gap
is not closed yet.

(II) One interesting fact to note is that nearly every paper that addresses
the skip connection issue provides an analysis of why DARTS fails and draws
similar conclusions: the non-parametric operations have an unfair advantage
as they accelerate gradient descent in the early stage by forming structures
akin to residual blocks [69]. Eventually, this unfair competition suppresses
parametric operations and leads to architectural “overfitting”. Furthermore,
most of the reviewed works (e.g., [32, 210, 23]) proposed to add regulariza-
tion on the search space to prevent this phenomenon. This regularization
is generally applied either before (α weights) or after (β weights) the soft-
max relaxation. This proved relevant as adding regularization prevented skip
connections from becoming dominant and improved performance. This out-
come is logical as a search spacemixing parametric and non-parametric oper-
ations is inherently unbalanced, and regularization is a well-explored solution
to overfitting and rebalancing ill-formed problems [11, 177]. Finally, as an al-
ternative solution, other works [111, 217] devised early-stopping mechanisms
to stop the search process before the architecture overfits. However, these
approaches are based on arbitrary or empirical criteria that are less formal
than regularization-based approaches, hence explaining the popularity of the
latter.

(III) Some approaches [205, 207, 191] managed to reduce the search cost
drastically (up to 43 times for VIM-NAS [191]) compared to DARTS. This made it
possible to launch the search process on low-end, consumer-gradeGPUs (and
even CPUs in some cases). Hence, it contributed tomaking DNAS a very acces-
sible process to automate neural network design. However, other methods
[187, 15, 144] chose to trade computational cost for reduced latency at infer-

67

ence, hence helping Deep Learning to deploy on low-resource devices, such
as mobile phones. They did so by adding the inference latency as a differ-
entiable objective so that raw performance is no longer the only goal of the
search process. To save computational resources, the latency values for a
specific platform are often retrieved from a latency lookup table.

(IV) As previously stated, the fact that most DNAS methods that address
search space restrictions are not DARTS-based highlights that it is an issue
more closely associated with DARTS. Thus, thosemethods had to craft search
algorithms and/or search spaces that deeply diverge from DARTS. Most no-
tably, all approaches in that area abandoned the cell-based building block
paradigm as it is one of the main elements that restrict the search space.
For instance, the FBNet family [197, 187, 38, 198] relied on a novel MobileNet-
like search space that is block-based rather than cell-based. ProxylessNAS
[15], and DenseNAS [53] also leveraged a similar search space. Finally, the
low number of studies tackling the search restrictions (i.e., 6) means that re-
searchers mostly focused on other issues judged more urgent. In addition,
using a larger search space leads to a drastic increase in computational cost,
hence making it necessary to design mechanisms to save resources. This
might explain why proposing a novel method addressing this issue is difficult.
Nevertheless, it is still paramount to find ways to address this issue.

Overall, over the past few years, all of these works contributed to making
DNAS more and more viable, with the ability to discover architectures that
can now far surpass the performance of handcrafted ones (e.g., CDARTS [212]
reaches 78.2 % top 1 accuracy on ImageNet [39] vs. 74.7 % for MobileNetV2
[164]). In addition, the computational cost (i.e., the number of FLOPs) and the
latency can be restrained to deploy models on embedded platforms such as
mobile phones [15, 197, 144]. This makes DNAS (and Deep Learning by ex-
tension) easier to deploy to solve real-world tasks and accessible to a wider
audience. Thus, one could argue that DNAS is now amaturing field, with some
methods being included inmajor AutoML libraries such asMicrosoft NNI [140]
and NASLib [161].

As discussed in Section 3.3, DNAS has already been applied to a wide
range of applications (mainly related to computer vision). In the near future,
with DNAS becoming more and more robust, we can expect it to be applied
to an ever-increasing number of fields. For instance, works on transformers
improvements [27] and self-supervised learning [75] have already started to
emerge. Other already explored fields, such as Generative Adversarial Net-
works (GANs) design [57], could be further expanded to other applications,
such as face generation [97].

Nevertheless, DNAS still suffers from limitations as none of the proposed
methods could solve all four identified challenges simultaneously. Hence, no
DNAS method could impose itself as a novel standard. This may substantially

68

explain how DARTS withstood the test of time and remains popular despite
its age. This also indicates that DNAS has room for improvement and has not
reached its full potential yet.

Hence, based on this taxonomy, a novel method called D-DARTS is intro-
duced in Chapter 4 to address challenge (IV), as we observed that only a lim-
ited number of studies have focused on tackling this particular issue. Further-
more, we endeavored to extend the application of DNAS to novel fields, such
as self-supervised learning, as discussed in Chapter 5, and novel architectures
like Vision Transformers (ViTs), as explored in Chapter 6.

69

70

4 - ImprovingDARTS:DistributedDifferentiable
Neural Architecture Search

As discussed in Chapter 3, the most popular approach in Neural Archi-
tecture Search (NAS) is currently Differentiable ARchitecTure Search (DARTS)
[117]. Its key advantage lies in significantly reducing the search cost compared
to earlier approaches [231, 232], thanks to its 2-cell search space. However,
the limitation of searching for only two types of cells significantly restricts the
search space and hampers the diversity of candidate architectures (i.e., chal-
lenge (IV), see Chapter 3). To address this issue, we propose a novel approach
that directly searches for a complete network with individualized cells, greatly
increasing the size of the search space. This network delegates the search pro-
cess to the cell level in a distributed manner. Moreover, to further optimize
the super network architecture, we leverage Game Theory and introduce a
novel loss function based on the concept of Shapley value [166]. Additionally,
the new distributed supernet structure allows us to directly encode existing
architectures as architectural weights within the search space. Thus, we also
propose implementing and optimizing state-of-the-art handcrafted architec-
tures (e.g., ResNet50 [69] or Xception [29]). Finally, we introduce a novelmetric
for computing distances between architectures in the search space, which can
be considered as a manifold. We refer to this method as Distributed Differ-
entiable ARchiTecture Search (D-DARTS). We demonstrate that D-DARTS can
reach competitive results on multiple computer vision datasets.

This chapter is structured as follows: In Section 4.1, we detail the proposed
method. Section 4.2 presents the results of a set of experiments conducted
on popular computer vision datasets. Finally, Section 4.3 discusses the results
of the experimental study and brings a conclusion to this chapter while giving
some insights on promising directions for future work.

4.1 . Proposed Approach

In this section, we present the main contributions of D-DARTS: a novel
distributed DNAS approach with a Shapley-value-based loss and a method to
optimize existing handcrafted architectures using DNAS.

4.1.1 . Delegating Search to Cell-Level Subnets
Our method’s key idea is to increase architectural diversity by delegat-

ing the search process to subnets nested in each cell. Each subnet is itself
a full neural network with its own optimizer, criterion, scheduler, input, hid-
den, and output layers, as shown in Fig. 4.1. This way, each cell that composes

71

the global supernet is individualized. Thus, instead of searching for building
blocks as DARTS [117] do, we increase the number of searched cells to an arbi-
trary n and directly seek for a full n-layer convolutional neural network where
each cell is highly specialized (contrary to generic building blocks). Thus, we
trade the weight-sharing process introduced in DARTS for greater flexibility
and creativity. Nonetheless, cells still belong either to the normal or reduction
class, depending on their position in the network.

Search for
parameters

Cell n
αn

Cell 1
α1

Input

Ground Truth

Loss

Criterion
(LCE)

Directly connected to derive

Output Search for
parameters

Model Optimizer
(SGD with

momentum + Cosine
Annealing scheduler)

Partial Network Training

Architecture
Optimizer 1

(Adam)

Search for
parameters

Architecture
Optimizer n

(Adam)

LossCriterion 1
(L1T)

LossCriterion n
(LnT)

.

.

.

.

.

.

Ground Truth Dataset

Output

Network
(Supernet)

Search Algorithm
(Architect)

Hyperparameters
Ground TruthOutput

Ground TruthOutput

Figure 4.1: Layout of the search process used in D-DARTS. Each cell i isindependent with its own optimizer, scheduler, and criterion (our proposedablation lossLT). Each cell searches for its architectural parameters αi, whichmakes the entire search process distributed. The searched cells are directlyconnected to each other to build a supernet trained to validate their perfor-mance.
As explained in Section 2.7 of Chapter 4, DARTS only searches for two types

of cells and stacks themmultiple times to form a network as deep as needed.
This weight-sharing process has the advantage of reducing search space to
a limited set of parameters (i.e., αnormal and αreduce), thus saving time and
hardware resources. However, this approach limits both the search space size
and the originality of the derived architectures as all the underlying structure
is human-designed. In particular, the search space size s(K,L) of a single
cell with K primitive operations to select from (within a maximum of 2 from
different incoming edges) and L steps (i.e., nodes standing for intermediary
data representations) can be computed as follows:

s(K,L) =

L∏
i=1

(i+ 1)i

2
K2. (4.1)

Following Eq. (4.1), using DARTS default parameters (K = 7 and L = 4), the
72

search space of a single cell comprises around 109 possible configurations.
Thus, as both normal and reduction cells share the same K and L, the total
search space size of DARTS is around 1018 possibilities. This number is com-
parable to other differentiable NAS works [15, 187], but far lower than those
of Reinforcement Learning based NAS methods [231, 232] that describe archi-
tecture topologies using sequential layer-wise operations, which are also far
less efficient. Our approach, dubbed D-DARTS, effectively expands the search
space by a factor of 10(n−2)∗9 (according to Eq. (4.1)) where n is the total num-
ber of searched cells. Thus, the total size of D-DARTS search space reaches
around 1072 when considering n = 8. In Section 4.2, we show that smaller
(e.g., 4 or 8 layers) D-DARTS architectures can achieve similar or higher per-
formance than larger (e.g., 14 or 20 layers) architectures on popular datasets.

4.1.2 . Adding a New Cell-Specific Loss
In addition to the new network structure introduced in Section 4.1.1, we

have designed a novel cell-specific loss function dubbed "ablation loss" (de-
noted as LAB). As the number of searched cells increased, we faced a greater
learning challengewith a substantial number of additional parameters to con-
sider. Consequently, the global loss functions used in DARTS [117] and Fair-
DARTS [32] cannot accurately assess the performance of each cell, but instead
only consider the global performance of the supernet. In contrast, our new
loss function is specific to each cell and acts as an additive loss, building upon
the global loss function LF introduced in FairDARTS (see Eq. 3.2), which has
demonstrated significant improvements over the original one [117].

The main concept behind this ablation loss function is to conduct a lim-
ited ablation study on the cell level. Ablation studies have long been crucial in
validating the effectiveness of neural network architectures [137]. By calculat-
ing the difference in the supernet loss LCE (i.e., the cross-entropy loss) with
and without each individual cell activated, we can obtain a measure of their
respective contributions, which we refer to as their "marginal contributions,"
denoted as MC = {M1

C , ...,M
n
C} for an n-cell network. This method draws

inspiration from Shapley values [166], a game theory technique widely used
in Explainable Artificial Intelligence (XAI) to assess the contributions of model
features to the final output [124, 74]. Thus, cell Ci marginal contribution M i

Cis computed as follows:
M i

C = L(C)
CE − L

(C\{Ci})
CE , (4.2)

where C is the set containing all cells such as C = {C1, ..., Cn}. Once we
obtained all the marginal contributions MC , we apply the following formula
to compute the ablation loss LiAB of cell Ci:

LiAB =

{
M i

C−mean(MC)

mean(MC) ifmean(MC) ̸= 0,

0 else. (4.3)

73

LiAB expresses how important the marginal contribution of cell i is w.r.t.
the mean of all the marginal contributions. Finally, LiAB is then added to Fair-
DARTS global loss LF (see Eq.(3.2)) to form the total loss LiT , weighted by thehyperparameter wAB :

LiT = LF + wABLiAB. (4.4)
Finally, when expanding Eq. (4.4), we obtain:

LiT = LCE + w0−1L0−1 + wABLiAB, (4.5)
whereL01 is the Zero-One loss introduced in FairDARTS [32] (see Eq. (3.1)) and
w0−1 is an hyperparameter weighting L0−1.In Section 4.2, we show that LiT can warm start the search process and
substantially increase performance. However, it also increases GPU mem-
ory usage, as shown in Section 4.2.2. Combined with the cell individualization
process introduced in Section 4.1.1, LiAB constitutes the core of the D-DARTS
approach as described in Algorithm 1.

4.1.3 . Building Larger Networks from a Few Highly Specialized
Cells

As presented in Section 4.1.1, we adopt a different approach to Neural Ar-
chitecture Search (NAS) by directly searching for a "full" network consisting
of multiple individual cells, as opposed to searching for building block cells
as done in DARTS [117]. However, this method has a downside: searching for
many cells requires a significant amount of memory, as each cell must have
its own optimizer, criterion, and parameters. Hence, finding a way to use a
larger number of cells without additional search time can be advantageous,
especially when dealing with highly complex datasets like ImageNet [163]. To
address this, we have developed a novel algorithm that derives larger archi-
tectures from an already searched smaller one, drawing inspiration from the
approach used in DARTS [117].

The key idea behind this concept is to retain the global layout of the smaller
architecture, with the reduction cells positioned at 1/3 and 2/3 of the net-
work, similar to DARTS and FairDARTS [32]. We then replicate the searched
structure of normal cells in the intervals between the reduction cells until we
achieve the desired number of cells. This enables us to obtain a larger ar-
chitecture without launching a new search, thus avoiding any overhead. The
process is summarized in Algorithm 2.

In Section 4.2, we show that doubling the number of layers this way can
result in a 1% increase of top1 accuracy when evaluating on CIFAR-100 [100].
However, the gain is more limited (around 0.15 %) for simpler datasets such
as CIFAR-10 [100], where the base model already performs very well.

4.1.4 . Encoding Handcrafted Architectures in DARTS (DARTOpti)

74

Existing Architecture

Deserialization Serialization

Improved Architecture

Cell 1 Cell n...

Optimizer
1

Optimizer
n

Network

D-DARTS Search Process

Dataset Criterion

Figure 4.2: Overall description of the process used in DARTOpti.

Unlike the original DARTS [117] or one of its derivatives [23, 210, 64], D-
DARTS individualizes each cell and allows for the encoding of large hand-
crafted architectures [29, 69], which typically contain multiple types of layers
(e.g., 13 for Xception [29]). The primary motivation behind this is to utilize ex-
isting architectures as initial points for the optimization process. Since these
handcrafted architectures have been carefully optimized, they can be con-
sidered local minima of the search space. This process involves several key
procedures, which are as follows:

(i) The architecture is manually encoded as a D-DARTS-compatible geno-
type (i.e., a data structure that describes each cell design, the location of re-
duction cells in the architecture, and the maximum number of steps in a cell).
When searching from or training this architecture, the corresponding geno-
type is automatically loaded and deserialized into α weights (see Section 2.7),
which can be optimized by the search process of D-DARTS.

(ii) A weight-sharing mechanism is introduced to reduce the search cost
and redundancy in cells, especiallywhen starting fromarchitectureswithmany
layers. Every identical cell in the baseline architecture will share the same
weights. For instance, Xception [29] consists of 13 cells, but only 5 of those
cells are different. Therefore, in this case, the number of optimizers will be
reduced from 13 to 5.

(iii) The supernet is warm-started for 5 epochs before the actual search
starts. This allows the performance of the baseline architecture to be as-
sessed and taken into account by the search algorithm.

(iv) 5 new operations are added to the original search space S of DARTS: (1)
conv_3x1_1x3, (2) conv_7x1_1x7, (3) simple_conv_1x1, (4) simple_conv_3x3,
and (5) bottleneck_1x3x1. This brings the total number of operations to 12,
unlocking new possibilities at the cost of further increasing the already large
search space of D-DARTS. This new search space is denoted So.

This process, known as DARTOpti, is visually summarized in Figure 4.2.
We demonstrate in Section 4.2 that it can successfully optimize handcrafted
architectures and achieve competitive results on ImageNet [101].

75

4.1.5 . Implementing a Metric to Quantify the Distance Between
Architectures

In this section, we propose ametricM that effectively asserts the distance
between two architectures that belong to the search space So. This was mo-
tivated by the need to quantify how much DARTOpti (see Section 4.1.4) im-
proved handcrafted architectures. Anothermotivation forM is the possibility
of drawing statistics on So such as the average distance between starting andfinal architectures, themaximumdistance between starting andfinal architec-
tures, or finding if the amelioration of performance in the final architectures
is correlated to the number of changes made to the original ones.

The metric M is defined as follows. We follow a hierarchical approach.
First, we need to compare (i) architectural operations with each other, then
(ii) cell edges, (iii) cells, and finally (iv) architectures.

(i) A way to compare operations is needed, as they are the most elemen-
tary components of a genotype. Naturally, we cannot consider all operations
as having an equal value. They are all different, with some seeming to share
more similarities. For instance, one would think that sep_conv_3x3 has more
in common with the other convolution operations than with the pooling op-
erations. To that end, we established an experimental protocol that would
allow us to assign a performance score to each operation, assuming that sim-
ilar operations would also obtain similar scores. In particular, each of the 12
operations in So (see Subsection 4.1.4) was benchmarked for each edge of
each cell of a small 3-cell proxy network based on ResNet18 [69] architecture
(i.e., residual blocks). This way, the proxy network is similar to an existing CNN
architecture. All edge operations were disabled except for the benchmarked
one. We recorded themaximum top-1 accuracy reached by the proxy network
among 4 training runs of 10 epochs each (to counteract the stochasticity of
the gradient descent algorithm) on CIFAR-10 [100]. Training the proxy network
took 1 GPU day on a single Nvidia RTX A6000 with a batch size of 256. Final
scores for each operationwere obtained by taking themedian value observed
across all edges of all cells. Results are presented in Table 4.1. They conform
to expectations with analogous operations obtaining comparable scores (e.g.,
dil_conv_3x3 and dil_conv_5x5 are only 0.03 % apart).

(ii) The distance between two edges, each encoded as a binary vector, can
be computed using the Hamming distance [66]. This widely used function
measures the distance between vectors by evaluating the minimum number
of changes needed to translate one vector into the other according to given
weights. These weights correspond to the operation score values featured in
Table 4.1. The Hamming distance is described in Algorithm 3.

(iii) TheHausdorffdistance [68] is utilized to evaluate the distance between
cells. It is described in the following equation:

dH(X,Y) = max{supx∈Xd(x, Y), supy∈Y d(X, y)}, (4.6)
76

Table 4.1: Benchmark scores obtained for each of the 12 operations
in DARTOpti search space So. Standard deviation across all cell edgesis reported for each operation.

Operation Score (in %)
conv_3x1_1x3 82.76± 1.82
conv_7x1_1x7 82.72± 1.14
max_pool_3x3 82.96± 2.19
avg_pool_3x3 82.51± 2.13
skip_connect 82.15± 2.33

simple_conv_1x1 82.27± 1.99
simple_conv_3x3 83.12± 2.21
sep_conv_3x3 83.19± 0.89
sep_conv_5x5 84.87± 0.73
dil_conv_3x3 82.96± 1.56
dil_conv_5x5 82.99± 1.24

bottleneck_1x3x1 83.06± 0.77

whereX and Y are two subsets of So (i.e., cells in this case), and d is a distance
metric able to quantify the distance between points of the subsets. Here, d
corresponds to the Hamming distance. The Hausdorff distancemeasures the
closeness of every point in one set to those in the other set. Thus, it better
considers structural similarity, which is paramount for comparing topologies.
However, since the Hausdorff distance of Eq. (4.6) is directive, we need to
enforce symmetry in order to create a metricMH :

MH(X,Y) = max(dH(X,Y), dH(Y,X)). (4.7)
(iv) We can compare two different architecturesA andB by evaluating the

average distance between their pairwise cells with the architectural distance
metricM :

M(A,B) =
n∑

i=0

MH(CA
i , C

B
i)

n
, (4.8)

where n is the number of cells in both architectures. In fact, since every cell
is individual and linearly linked to the others, it is not relevant to compare
cells that are not in the same position in both architectures. Moreover, asM
is a composition of metrics (Hausdorff, Hamming), it is a metric itself and so
satisfies the basic properties of metric functions:

• Identity of indiscernibles: M(X,Y) = 0⇔ X = Y

• Symmetry: M(X,Y) = M(Y,X)

• Triangle inequality: M(X,Y) ≤M(X,Z) +M(Y,Z)

77

In Subsection 4.2.4, we show that, in addition to simply comparing two archi-
tectures, M can also be used to find the optimal number of epochs for the
search process, thus actively reducing search cost.

4.2 . Experiments

In this section, we present the results of image classification and object de-
tection experiments we conducted on various datasets including CIFAR-10 and
CIFAR-100 [100], ImageNet [163], MS-COCO [113], and Cityscapes [35]. These
datasets are well-known and widely used in the computer vision and pattern
recognition community.

4.2.1 . Experimental Settings
All experiments were conducted using Nvidia GeForce RTX 3090 and Tesla

V100 GPUs. Wemostly used the same data processing, hyperparameters, and
training tricks as FairDARTS [32] and DARTS [117]. We searched for 8-cell net-
works and usedAlgorithm2 to derive 14-cell networks. We set the batch size to
128 when searching on CIFAR-10/100 and to 96 when searching on ImageNet.
When starting from an existing architecture, the number of initial channels is
increased to 64 when training to match the designs of the baseline architec-
tures. However, this resulted in DARTOpti architectures having a significantly
larger number of parameters than D-DARTS architectures (see Tables 4.3, 4.4
and 5.4). Hence, we reduced the number of channels to 32 while searching
to save memory. Naturally, we searched for networks whose number of cells
matches the number of different layers in the original architecture (e.g., 4 in
ResNet50 [69]). Finally, we selected the architectural operations using Fair-
DARTS edge (i.e., 2 operations maximum per edge) or sparse (i.e., 1 operation
maximum per edge) method with a threshold of 0.85. We chose w01 = 8

and wabl = 0.5 for the hyperparameters of total loss LT (see Eq. (4.4)) as dis-
cussed in Section 4.2.2. The parsing method of DARTS is referred to as darts
in Table 4.3 and Table 5.4.

4.2.2 . Analysis of the Ablation Loss LAB

Hyperparameter Choice

In this experiment, we made the hyperparameter weights wabl and w01 fromEq. (4.4) vary in order to choose their optimal valuew.r.t. the global loss. Thus,
in Fig. 4.3 we made wabl vary from 0 to 2 while keeping L01 deactivated (i.e.,
w01 = 0) in order to analyze its impact. We can observe that an optimal value
seems to be attained aroundwabl = 0.5, with the global lossmainly increasing
when wabl reaches higher or lower values.Moreover, we varied the value of w01 while searching on CIFAR-100, with
wabl = 0.5 fixed, and reported the number of dominant operations (i.e., oper-

78

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Ablation Loss Weight

1.30

1.31

1.32

1.33

1.34

1.35

1.36

1.37

M
in

 G
lo

b
a
l
Lo

ss
 (

a
ft

e
r

5
0

 e
p
o
ch

s)

LAB

Figure 4.3: Line plot of the minimal global loss obtained by searching
for a model on CIFAR-100 [100] w.r.t. the sensitivity weight wabl used for
the ablation loss LAB . We searched for 50 epochs and deactivated L01 (i.e.,
w01 = 0) to prevent interference from occurring.

ations with σ(α) > 0.9). This experiment was conducted to select a relevant
value forw01 since the one used in FairDARTS [32] (w01 = 10) is no longer valid
as we altered the search process. Fig. 4.4 shows that the proportion of domi-
nant operations steadily increases from w01 = 0 to w01 = 5 where it reaches
a plateau and stabilizes. It is worth noting that for w01 = 5 and higher, nearly
all sigmoid values σ(α) are either greater than 0.9 or inferior to 0.1. Finally, we
chosew01 = 7 as it offers both a high number of dominant operations and an
equilibrium between operations with σ(α) > 0.9 and those with σ(α) < 0.1.
Ablation Study

We conducted an ablation study on our proposed ablation lossLT of Eq. (4.4).Specifically, we compared the performance of architectures with similar char-
acteristics searched either with LT or LF (see Eq. (3.2)). Tables 4.3 and 4.4
show that LT -searched architectures (DD-1, DD-3, DD-4, DD-5) outperform
their LF -searched counterparts by an average of 0.6 % across all datasets,
confirming the advantage procured by this new loss function. Concretely,
when considering the 14-cell edge parsedmodels evaluated on CIFAR-10, DD-3
reached a top-1 accuracy of 97.58 %, thus outperforming LF -searched DD-2
by 0.48 %. Moreover, it is worth noting that LT -searched DD-1 (8-cell model)
reached a similar score as DD-2 (around 97.1 %), despite featuring significantly
fewer parameters (1.7M vs. 3.3M).

79

0 2 4 6 8
w01

0

20

40

60

80

100

Nu
m

be
r o

f o
pe

ra
tio

ns
 (i

n
%

)

() > 0.9
() < 0.1

both

Figure 4.4: Line plot showing the percentage of dominant operations ob-
tained in the final architecture αwhile searching on CIFAR-100 w.r.t. the
sensitivity weight w01 used for L01. We can see that the proportion of bothtypes of operations stabilizes after w01 = 5 and reaches an equilibrium at
w01 = 7.

Another important observation is that LT seems to provide a larger in-
crease in performance for CIFAR-100. For example, the gain in performance
is around 1 % between the 8-cell versions of DD-6 and DD-4. However, when
considering models that leveraged Algorithm 2 to increase their number of
cells (e.g., DD-4 and DD-6), the performance gain is limited (e.g., around 0.1

% on CIFAR-100). This could be due to Algorithm 2 that may have a leveling
effect by disturbing the cell sequence and increasing the number of model
parameters.
Convergence Speed

We conducted an experiment on our D-DARTS method’s search process con-
vergence speed compared to previous baselines [117, 32]. Fig. 4.5 shows a plot
of the best validation top-1 accuracy w.r.t. the number of epochs. One can
notice that D-DARTS converges way faster than the other baselines. D-DARTS
outperforms both DARTS and FairDARTS respectively by 9% and 14%.

4.2.3 . Memory Efficiency
When searching using LT (see Eq. (4.4)), additional tensors need to be

storedonGPUmemory due to the computations required to obtain themarginal
contribution of each cell. As a result, the memory usage with LT is higher

80

0 10 20 30 40 50
Epochs

50

60

70

80

90
Be

st
 T

op
-1

 V
al

id
at

io
n

Ac
cu

ra
cy

 (i
n

%
)

D-DARTS
DARTS
FairDARTS

Figure 4.5: Line plot showing the best validation top-1 accuracy while
searching on CIFAR-10[100] w.r.t. the current epoch. D-DARTS clearly out-performs both DARTS and FairDARTS by a large margin.

compared to an LF -based search. In fact, a LT -based search may increase
memory consumption by up to 100%. For example, when searching with an
Nvidia RTX 3090 GPU on CIFAR-100 [100] with a batch size of 72, the mem-
ory usage increases from 11100MB with LF to 21911MB of memory with LT .Consequently, this can be identified as an issue of our method: we have to
find means to reduce memory consumption to be able to search for deeper
networks and make our method available to lower-end GPUs.

To address this, we decided to use an optimization technique: Automatic
Mixed Precision (AMP). AMP automatically converts tensors to half-precision
(16-bit floats) when full precision (32-bit floats) is not required. This functional-
ity is directly available in PyTorch starting from version 1.5. Enabling AMP sig-
nificantly reducedmemory consumption to 13,000 MB when using LT . There-fore, AMP offers more flexibility to D-DARTS, allowing it to run on GPUs with
less video memory and increase the batch size to achieve better memory uti-
lization.

4.2.4 . Leveraging the Architectural Distance Metric
The architectural distance metricM (given by Eq. (4.8)) allowed us to gain

insightful information on the model and search process. First, we plottedM

associated with the current epoch w.r.t. the original architecture while run-
ning the optimization process. This way, we obtained plots such as Fig. 4.6,
featuringM computed for ResNet18 [69] optimized on CIFAR-10 [100], and Fig.

81

4.7, presenting the validation accuracy reached by the same model during
search. In Fig. 4.6, we can see that M quickly rises between epochs 5 and
15, then stabilizes. This would indicate that the hyperparameter of 50 search
epochs (also used by DARTS [117]) is way too large and could be reduced.

0 10 20 30 40 50
Epoch

0.00

0.02

0.04

0.06

0.08

Di
st

an
ce

 M
et

ric

Figure 4.6: Line plot of the distancemetric between the original ResNet18
[69] architecture and the one being optimized by DARTOpti on CIFAR10
[100] according to the current epoch. The distance quickly rises to around0.084 DU (distance units) at epoch 15 and then stabilizes. This indicates thatno additional major changes are applied to the architecture after this point.

This intuition is further confirmed by the fact that this model quickly con-
verged to a very high top-1 accuracy (90 %) around the same epoch (15) that
the distance metric reached a plateau (see Fig. 4.7). After epoch 20, the vali-
dation accuracy slowly converges toward 100 %. This is most likely due to the
optimization of network weights rather than architectural modifications since
M remains stable.

Following the facts presented above, we launched a new optimization of
ResNet18 on CIFAR10 with the number of epochs reduced from 50 to 15. We
trained the models obtained from the 50-epoch and 15-epoch optimizations
for 600 epochs. As shown in Table 4.2, the performance level is marginally de-
graded, while still being a considerable improvement over the original ResNet18
implementation (93.75%, see Table 4.3). However, the search cost diminished
significantly from 0.3 GPU-day to 0.1 GPU-day. This highlights the usefulness
of our novel distance metricM .

Furthermore, based on this analysis, we designed and implemented a
mechanism that automatically terminates the search process if the distance

82

0 10 20 30 40 50
Epoch

40

50

60

70

80

90

100

Va
lid

at
io

n
ac

cu
ra

cy
(%

)

Figure 4.7: Line plot of the validation accuracy reached at each epoch on
CIFAR-10 [100] while optimizing ResNet18 [69] with DARTOpti. The accu-racy rapidly reaches a high value (around 90%) at epoch 15 and then smoothlyprogresses towards 100 %.

metric remains stable for 5 consecutive epochs, starting from epoch 10 (con-
sidering the 5 pretraining epochs). Empirically, we noticed that this mecha-
nism was triggered more often when searching on CIFAR-10 than on CIFAR-
100 and never on ImageNet. The reason behind this is that ImageNet is more
challenging, and the model makes better use of the 50 pre-allocated search
epochs, resulting in a less stable distance metric during the search process.

4.2.5 . Searching Architectures on CIFAR

On CIFAR-10/100 [100], we searched for several 8-layer models arbitrarily
dubbedDD-1, DD-2, DD-3, DD-4, DD-5 andDD-6. Thesemodels were searched
using varying hyperparameters such as using loss LT or LF , or using the
sparse or threshold parsing method (presented in Section 4.2.1). We used Al-
gorithm 2 to increase the depth to 14 layers to test how smaller architectures
compete with larger ones. All results are presented in Tables 4.3 and 4.4.
Overall, D-DARTS models reach competitive results in both datasets. The
smaller ones, such as DD-1 or DD-5, can match the performance of previ-
ous baselines despite possessing fewer parameters (e.g., 1.7M against 2.8M
for the smallest model of [32]), although the largest achieve better results
(e.g., 84.15% top-1 accuracy for DD-4 on CIFAR-100). Moreover, Algorithm 2
effectively provides a performance gain in both datasets (e.g., around 0.3%

for DD-4 when using 14 cells instead of 8), thus asserting its usefulness. This
83

Table 4.2: Results of training for 600 epochs two DARTOpti mod-
els optimized from ResNet18 [69] on CIFAR-10 [100] with differ-
ent numbers of search epochs. Drastically reducing the number ofsearch epochs according to themetricM only marginally degrades theperformance.

StartingArchitecture SearchEpochs TrainEpochs ValidationTop-1 (%) Search Cost(GPU-days)
ResNet18 50 600 97.39 0.3ResNet18 15 600 96.93 0.1

impact is more important on CIFAR-100 (around 2%). Hence, deeper archi-
tectures might be less relevant on simpler datasets such as CIFAR-10, where
sparsemodels already achieve very high top-1 scores (greater or equal to 97%),
thanwithmore challenging datasets like CIFAR-100 or ImageNet [163]. We also
compared the performance of models using FairDARTS [32] loss function LFwith ones using our new ablation-based loss function LT to assert its effec-
tiveness (see Section 4.2.2 for details).

4.2.6 . Searching and Transferring to ImageNet

To test our approaches on amore challenging dataset, we transferred our
best models searched on CIFAR-100 [100] to ImageNet [163]. We also searched
directly on ImageNet using the same training tricks and hyperparameters as
the authors of DARTS [117]. Table 4.5 shows that model DD-7 (searched di-
rectly on ImageNet) reached a top-1 accuracy of 75.5 %, outperforming PC-
DARTS [205] and P-DARTS [23] by 0.6 %. It is important to note that all of these
approaches (and ours) useDARTS search spaceS while FairDARTS [32] uses its
own custom search space (mainly composed of inverted bottlenecks) as they
argue that S is too limited for ImageNet. Nevertheless, DD-7 still reached a
near-identical score as FairDARTS-D despite using this simpler search space.
In addition, the DARTOpti versions of ResNet18 and ResNet50 reached a com-
petitive top-1 accuracy of respectively 77.0 % and 76.3 %. They critically im-
prove on the original architectures, increasing top-1 accuracy by an average
of 5.1 %. Notably, DO-2-ResNet50 achieves the same score as FBNetV2 [187]
while requiring nearly a hundred times less search cost (i.e., 0.3 GPU days ver-
sus 25 GPU days) and not even having been searched directly on ImageNet
but instead transferred from CIFAR-100. Finally, a notable gap (around 0.5 %)
between DD-4 (transferred from CIFAR-100) and DD-7 shows that searching
directly on ImageNet significantly impacts performance.

4.2.7 . Detecting objects onMS-COCO and Instance Segmentation

84

Table 4.3: Comparison of models on CIFAR-10 [100]. Each reportedTop-1 accuracy is the best of 4 independent runs. For previous base-lines, results are the official numbers from their respective articles. Thesearch cost is expressed in GPU days. All models have been searchedon CIFAR-10 except for ⋄ which have been searched on CIFAR-100.
Models Params(M) Loss Top-1(%) Layers Cost

DARTS[117] 3.3 LCE 97.00 20 1.5PC-DARTS[205] 3.6 LCE 97.43 20 3.8P-DARTS[23] 3.4 LCE 97.50 20 0.3FairDARTS-a[32] 2.8 LF 97.46 20 0.4C-DARTS[212] 3.9 LCE 97.52 20 0.3U-DARTS[82] 3.3 LCE 97.41 20 N.D.DOTS[64] 3.5 LCE 97.51 20 0.3DARTS-[31] 3.5 LCE 97.41 20 0.4
β-DARTS[210] 3.75 LCE 97.47 20 0.4

Ours
DD-1 1.7 LT 97.02 8 0.5DD-2 3.3 LF 97.10 8 0.5DD-3 6.55 LT 97.58 14 0.5DD-4⋄ 3.9 LT 97.48 8 0.5DD-4⋄ 7.6 LT 97.75 14 0.5

on Cityscapes
We transferred our best model trained on ImageNet (DO-2-ResNet18) to

MS-COCO [113] in order to test our approach on tasks other than image classi-
fication. Weused ourmodel as the backbone of RetinaNet [112] and fine-tuned
for 12 epochs, similarly to FairDARTS [32]. Table 4.6 shows that our approach
reached a box AP score of 34.2% hence outperformingDARTS- [31], FairDARTS
[32] and the original ResNet18 [69]. We also performed instance segmentation
onCityscapes [35], a dataset that focuses on semantic understanding of street
scenes. We used DO-2-ResNet18 as the backbone of Mask R-CNN [70] and
compared it against other baselines (DARTS, FairDARTS, ResNet18). Table 4.7
features results similar to MS-COCO, with D-DARTS outperforming previous
approaches. This way, the performance advantage of D-DARTS is confirmed
when transferring to computer vision tasks other than image classification.

4.2.8 . Statistics on the Search Space
Themetric described in Subsection 4.1.5 allows us to quantify the distance

between architectures and thus can also be employed to draw statistics on the
metric space. This way, we can determine the average amount of changes
made by DARTOpti to the initial architectures.

85

Table 4.4: Comparison of models on CIFAR-100 [100]. Each reportedTop-1 accuracy is the best of 4 independent runs. For previous base-lines, results are the official numbers from their respective articles. Thesearch cost is expressed in GPU days. All models have been searchedon CIFAR-100 except for ⋄ which have been searched on CIFAR-10.
Models Params(M) Loss Top-1(%) Layers Cost

DARTS[117] 3.3 LCE 82.34 20 1.5P-DARTS[23] 3.6 LCE 84.08 20 0.3FairDARTS[32] 3.5 LF 83.80 20 0.4DOTS[64] 4.1 LCE 83.52 20 0.3DARTS-[31]⋄ 3.4 LCE 82.49 20 0.4
β-DARTS[210]⋄ 3.83 LCE 83.48 20 0.4

Ours
DD-1⋄ 1.7 LT 81.10 8 0.5DD-4 3.9 LT 83.86 8 0.5DD-4 7.6 LT 84.15 14 0.5DD-5 1.7 LT 81.92 8 0.5DD-6 3.3 LF 82.90 8 0.5DD-6 6.1 LF 84.06 14 0.5

Table 4.5: Comparison of models on ImageNet [163]. For previousbaselines, the results are the official numbers from their respective ar-ticles. The search cost is expressed inGPUdays. †: Our implementationin search space So, results might vary from the official one.
Models Params(M) +×(M) ParsingMethod Loss Top-1(%) Layers Cost SearchSpace SearchedOn

FBNetV2-L1[187] 8.49 326 N.A. N.A. 77.0 N.A. 25 custom ImageNetDARTS[117] 4.7 574 darts LCE 73.3 14 4 S CIFAR-100PC-DARTS[205] 5.3 586 darts LCE 75.8 14 3.8 S ImageNetP-DARTS[23] 5.1 577 darts LCE 75.9 14 0.3 S ImageNetFairDARTS-D[32] 4.3 440 sparse LF 75.6 20 3 custom ImageNetDOTS[64] 5.3 596 sparse LCE 76.0 20 1.3 S ImageNetDARTS-[31] 4.9 467 sparse LCE 76.2 20 4.5 S ImageNetC-DARTS[212] 6.1 701 darts LCE 76.3 14 1.7 S ImageNetU-DARTS[82] 4.9 N.D. darts LCE 73.78 14 N.D. S ImageNet
β-DARTS[210] 5.4 597 sparse LCE 75.8 20 0.4 S CIFAR-100ResNet18[69]† 14.17 2720 N.A. N.A. 69.2 4 N.A. N.A. N.A.ResNet50[69]† 24.36 4715 N.A. N.A. 73.9 4 N.A. N.A. N.A.Xception[29]† 14.7 31865 N.A. N.A. 74.1 13 N.A. N.A. N.A.
Ours

DD-4 7.6 617 sparse LT 75.0 14 0.5 S CIFAR-100DD-7 6.4 828 edge LT 75.5 8 3 S ImageNetDO-2-ResNet18 53.4 8619 sparse LT 77.0 4 0.3 So CIFAR-100DO-2-ResNet50 73.23 10029 sparse LT 76.3 4 0.3 So CIFAR-100

Fig. 4.8 shows the distribution of changes between ResNet-based archi-
86

Table 4.6: Comparison of backbone models for RetinaNet [112] on
MS-COCO [113]. Compared to previous works, DARTOpti consistentlyobtains better values for nearly all metrics.

Models AP (%) AP50 (%) AP75(%) APs(%) APm(%) APl(%)
FairDARTS[32] 31.9 51.9 33.0 17.4 35.3 43.0DARTS-[31] 32.5 52.8 34.1 18.0 36.1 43.4ResNet18[69] 31.7 49.6 33.4 16.2 34.2 43.0
DO-2-ResNet18 (Ours) 34.2 52.1 36.6 19.1 38.3 45.3

Table 4.7: Comparison of backbonemodels for Mask R-CNN [70] on
Cityscapes [35]. Compared to previous works, DARTOpti consistentlyobtains better values for nearly all metrics.

Models AP (%) AP50(%) AP75(%) APs(%) APm(%) APl(%)
FairDARTS[32] 41.1 69.3 N.A. 18.9 42.4 61.8DARTS-[31] 41.7 70.4 N.A. 19.5 43.4 62.3ResNet18[69] 40.9 66.2 N.A. 17.6 41.1 61.8
DO-2-ResNet18 (Ours) 44.0 69.6 N.A. 20.2 46.0 65.1

tectures. For instance, the distance between ResNet18C10 and ResNet50C10 is
around 0.17 distance unit. The distances between architectures are relatively
uniform, with the greatest difference (0.2 distance units) observed between
ResNet18C100 and ResNet50C10. This finding is logical since they evolved from
two different initial architectures (ResNet18 and ResNet50) and were trained
on two different datasets (CIFAR10 and CIFAR100). Additionally, ResNet18 and
ResNet50 are very close to each other as they both only consist of a few op-
erations per cell (compared to DARTOpti architectures), and these operations
are very similar, mainly comprising skip-connections and 3× 3 convolutions.

These observations indicate that both the starting architecture and the
dataset used during the search process have an impact on the composition
of the final architecture.

4.3 . Discussion and Conclusion

In this chapter, we tackled challenge (IV) by proposing a novel paradigm
for DARTS [117] with individualized cells that significantly increases the size
of its search space. To accompany this approach, we also proposed a novel
cell-level loss LT , an algorithm that is able to automatically derive deeper ar-
chitectures, and a distance metric M that is able to assess the closeness of
two architectures in search space S.

87

ResNet18

ResNet50

ResNet18C10

ResNet18C100

ResNet50C10

ResNet50C100

ResNet18

ResNet50

ResNet18C10

ResNet18C100

ResNet50C10

ResNet50C100

0

0.05

0.1

0.15

0.2

sum of distance

arch1

ar
ch

2

Figure 4.8: Heatmap representing the distances between the different
architectures obtained from ResNet [69] on CIFAR [100] datasets. Weused the edge parsing method. The models using different starting points(ResNet18/ResNet50) and searched on different datasets (C10/C100) are logi-cally the farthest apart from each other.

However, in Section 4.2, we showed that our proposed concepts perform
well but are not exempt from limitations. Increasing the search space size to
such an extent (e.g., 1072 with 8 cells) makes the optimization process signif-
icantly more challenging. Nevertheless, as shown in Fig. 4.5, D-DARTS out-
performs both DARTS and FairDARTS during the search phase, indicating that
expanding the search space provides benefits that outweigh the optimization
difficulty. To further address this optimization challenge, future work could
explore enhancing cell optimizers.

Moreover, we show that despite using a data-dependent search process,
following the practice of all previous DARTS-based works [117, 32, 31, 210], that
should decrease robustness w.r.t. other datasets, our D-DARTS models still
demonstrate generalizability to other tasks. In fact, transfer learning experi-
ments show thatmodels searched on the small CIFAR-100 dataset still achieve
competitive performance on the large-scale ImageNet dataset (see Table 4.5).

Furthermore, we proved that D-DARTS could be adapted into DARTOpti
to successfully optimize top-performing handcrafted architectures such as
ResNet50 [69], resulting in a significant gain in performance (i.e., a 3.9 % av-
erage increase in top-1 accuracy across all datasets). However, this approach
also has limitations, as the optimization process becomes more challenging

88

for architectures with many cells (e.g., Xception [29] with 13 cells). This leads
to an increased search cost and limited performance gains, as the standard
50 search epochs may not be enough for architectures of that size.

Finally, by combining the sparse parsing method with our distributed de-
sign, we were able to discover unprecedentedly small architectures (around
1.7 million parameters for the tiniest) that still yield competitive results. Addi-
tionally, when using the edge parsing method, we can search for larger mod-
els that achieve state-of-the-art results. This demonstrates the flexibility and
utility of our approach.

However, as seen in Chapter 3, most DNAS works focus on improving
CNNs and tackling image classification or object recognition tasks in the clas-
sic supervised learning paradigm. In the next chapter, we show that DNAS
can be adapted to improve other types of neural networks architectures (e.g.,
Multi-Layer Perceptrons) in other learning paradigms such as Self-Supervised
Learning (SSL).

89

Algorithm 1 Algorithm describing the differentiable neural architec-ture search process of D-DARTS
Require: List: C , list of cells each containing architectural weights α
Require: List: O, list of operation
Require: List: Dt, train dataset
Require: List: Dv , validation dataset
Require: Object: model, supernet
Require: Object: opt, supernet optimizer
Require: List: search_opts, list containing the search optimizers of each indi-vidual cells
Require: Integer: E, number of epochs
Require: Float: w0−1, weight for L0−1 in LT
Require: Float: wAB , weight for LAB in LT
Require: Float: σt, sigmoid threshold for architecture derivation
for e in [0, E[do
for (x, t) inDt do

xv, tv ← next_batch(Dv)
pv ← model(xv)
LCE ← cross_entropy(pv, tv)
MC ← empty_list()
for Ci in C do

Ci.deactivate()
pv ← model(xv)
L(C \ {Ci})CE ← cross_entropy(pv, tv)
Ci.activate()
M i

C ← LCE − L(C \ {Ci})CE

end for
for o in search_opts do
LiAB ←

M i
C−MC

MC

LiT ← LCE + wABLiAB + w0−1Li0−1

o.optimization_step(LiT , Ci.weights)
end for
p← model(x)
LCE ← cross_entropy(p, t)
opt.optimization_step(LCE ,model.weights)

end for
end for
A← empty_list()
for Ci in C do

Cf ← empty_list()
n← |Ci|
for i in [0, n[do

op← argmax(σ(C.weights[i])))
if op ≥ σt then

append(O.find(op), Cf)
end if

end for
append(Cf , A)

end for
return A

90

Algorithm 2 Algorithm describing the larger architecture derivationprocess for D-DARTS
Require: List: C , list of searched cells
Require: Integer: n, desired number of cells
Ensure: List: Cf , list of cells that compose the derived architecture
1: Cf ← empty_list()
2: m← euclidean_division(|C|, 3)
3: m2← euclidean_division(2× |C|, 3)
4: for i in [0, n] do
5: if n > |C| then
6: if i < euclidean_division(n, 3) then
7: c← modulo(i,m)
8: else if i = euclidean_division(n, 3) then
9: c← m
10: else if i > euclidean_division(n, 3) and i < euclidean_division(2 ×

n, 3) then
11: c← modulo(i,m2− 1−m) +m+ 1
12: else if i = euclidean_division(2× n, 3) then
13: c← m2
14: else
15: c← modulo(i, |C| − 1−m2) +m2 + 1
16: end if
17: else
18: c← i
19: end if
20: append(c, Cf)21: end for

Algorithm 3 Algorithm describing the Hamming distance
Require: List: U , first vector to compare
Require: List: V , second vector to compare
Require: List: W , weights associated with vector indices
1: n← |U |
2: dist← empty_list()
3: for i in [0, n] do
4: if U [i]! = V [i] then
5: dist[i]←W [i]
6: else
7: dist[i]← 0
8: end if
9: end for
10: return mean(dist)

91

92

5 - Tackling Self-Supervised Learning: Efficient
Representation Learning using Neural Ar-
chitecture Search for Siamese Networks

Self-Supervised Learning (SSL) has experienced rapid growth in the past
few years. SSL aims to make DL models learn strong representations from
unlabeled data. This is especially useful when considering that manual data
labeling is often a costly and laborious process. One of the most common
approaches to self-supervised visual representation learning is Siamese net-
works [14]. Siamese networks consist of two weight-sharing branches (re-
ferred to as "twins") applied to two or more inputs. The output feature vec-
tors of the two branches are compared to compute a loss (e.g., a “contrastive”
loss). In the case of SSL, the inputs are usually different augmentations of
the same image, with the objective of maximizing the similarity between the
output feature vectors of the two branches of the Siamese networks [20, 24,
25].

This chapter explores the application of differentiable NAS to discover en-
coder (projector) and predictor architectures (i.e., Multi-Layer Perceptrons)
that enable backbone Convolutional Neural Networks (CNNs) to efficiently
learn strong representations from unlabeled data in a contrastive SSL con-
text. To the extent of our knowledge, this is the first time that NAS has been
applied to enhance the architecture of Siamese networks (excluding the back-
bone). We improved the design of several Siamese network frameworks such
as SimSiam [24], SimCLR [20], or MoCo [25] by using an encoder-predictor
pair discovered by a meta-learner inspired by DARTS [117]. We dubbed our
approach NASiam (“Neural Architecture Search for Siamese Networks”). Our
experiments demonstrate that NASiamachieves competitive results on small-
scale (CIFAR-10, CIFAR-100 [100], INRIAHolidays [92]) and large-scale (ImageNet
[163]) datasets.

Section 5.1 highlights our following contributions: A novel way to design
encoder/predictor pairs for Siamese networks using DNAS and a novel search
space specifically designed for the Multi-Layer Perceptron (MLP) heads of en-
coder/predictor pairs. We also present how NASiam can be adapted to per-
form content-based image retrieval, a task where Siamese networks present
an advantage due to their innate ability to assess the similarity between two
inputs. The remainder of the chapter is structured as follows: Section 5.2
presents the results of various computer vision experiments, and 5.3 provides
a discussion on the composition of the discovered encoder/predictor pair ar-
chitectures and brings a conclusion to our work while offering some insights
for future work.

93

5.1 . Proposed Approach

The proposedNASiamapproach focuses on searching for theMLP compo-
nents of the encoder/predictor pair and involves creating an original search
space specifically designed for contrastive learning with Siamese networks.
Additionally, we adapted NASiam to be applicable to content-based image re-
trieval.

5.1.1 . Searching for an Encoder/Predictor Pair
First, we focused on SimSiam [24] as a simple baseline to build our ap-

proach upon. SimSiam uses a Siamese architecture consisting of an encoder
f and a predictor h. The encoder f is composed of a baseline CNN (e.g.,
ResNet50 [69]) and of a projector head, which is a three-layer MLP duplicated
on twin branches that take different augmentations of the same image as in-
put. A two-layer MLP h is then added on top of one of the branches to act as
the predictor head. The discrepancy between the output feature vectors of
the two branches is computed using the following contrastive loss:

LC =
1

2
(D(p1, stopgrad(z2)) +D(p2, stopgrad(z1)), (5.1)

where z1 = f(x1), z2 = f(x2), p1 = h(z1), p2 = h(z2) for input images x1 and
x2, stopgrad is a mechanism that stops gradient backpropagation (i.e., the
argument inside stopgrad is detached from the gradient computation), and
D is the negative cosine similarity defined as follows:

D(p, z) = − p

||p||2
.

z

||z||2
, (5.2)

where ||.||2 is the l2 norm.
In our proposed approach, we retainedmost of the global structure of the

baseline Siamese framework. However, we used aDNASmethod to search for
an encoder projector head architecture up to n layers and a predictor archi-
tecture up to m layers. Specifically, we considered a set O = {o1, ..., oK} ofcandidate operations. We searched for two cells (see Section 2.7), denotedCeand Cp, for the encoder and decoder respectively. Unlike DARTS [117], each
cell is structured as a linear sequence of layers where each layer is a mixed
output of |O| = K operations. Each operation o in each layer i is weighted
by a parameter αo

i . The sets of architectural parameters for Ce and Cp aredenoted αe and αp respectively. Similarly to Eq. 2.7, operation values in each
layer are discretized as follows:

oi(x) =

K∑
k=1

σSM (αk
i)ok(x), (5.3)

where oi is the mixed operation of layer i, αk
i is the architectural weight as-signed to ok ∈ O for layer i, and σSM denotes the softmax operation. The

94

supernet encompassing f and h is trained on a portion of a dataset while Ceand Cp are simultaneously searched on another portion of the same dataset.
Therefore, NASiam aims to solve a bi-level optimization problem formulated
as follows:

min
αe,αp

Lval(w∗(αe, αp), αe, αp),

s.t.w∗(αe, αp) = argmin
w
Ltrain(w,αe, αp),

(5.4)

wherew denotes the weights of the supernet, Ltrain(w,αe, αp) = L(w,αe, αp)is the training loss, and Lval(w∗, αe, αp) = L(w∗, αe, αp) is the validation loss.Once the search phase was completed, we selected the best-performing
operation for each layer i of each cell, based on the discretizedweightsαe and
αp, to form the encoder/predictor architecture genotype G. The entire DNAS
process is detailed in Algorithm 4.

Our approach, dubbed NASiam (Neural Architecture Search for Siamese
Networks), is summarized in Fig. 5.1. In addition to SimSiam, we experimented
with NASiam on other Siamese frameworks such as SimCLR[20] and MoCo V2
[25]. However, those frameworks do not rely on a predictor. Hence, in those
cases, we only performed NAS for theMLP projector head of the encoder (i.e.,
only searching for cell Ce).In Section 5.2, we demonstrate that NASiam can consistently improve the
performanceof popular siamese frameworks (SimSiam, SimCLR, andMoCoV2)
in both small-scale (CIFAR-10 and CIFAR-100 [100]) and large-scale (ImageNet
[163]) image classification datasets, as well as for content-based image re-
trieval on INRIA Holidays [92].

5.1.2 . Crafting a Contrastive Learning-Specific Search Space
In order to support our NASiam approach (see Section 5.1.1), an original

search space S has been created. This search space is specifically designed
for MLPs.

The design of search space S is important for the success of the NASiam
approach, as it defines the set of possible solutions that the algorithm can
consider. The originality of the search space lies in the fact that it is tailored
for MLPs, meaning that it takes into account the specific characteristics and
constraints of this type of network. By crafting an original search space for
MLPs, the NASiam approach can effectively find the optimal components for
the encoder/predictor pair in a Siamese neural network for contrastive learn-
ing.

In our work, S comprises the following 7 operation blocks: (1) linear +
batch_norm + ReLU, (2) linear + batch_norm + Hardswish, (3) linear + batch_norm
+ SiLU, (4) linear + batch_norm + ELU, (5) max_pool_3x3 (1-dimensional) +
batch_norm, (6) avg_pool_3x3 (1-dimensional) + batch_norm, and (7) Identity
(skip connection).

95

Data
Augmentation

Encoder

Meta-Learner
(Differentiable NAS)

(αe,αp)

Predictor

Cell Cp

Contrastive
loss

x

x1

x2

Gradient

Cell Ce

Baseline CNN

Baseline FC

Figure 5.1: Layout of the NASiam architecture. Siamese network en-coder/predictor (projection MLPs) architectures are searched using differen-tiableNASwrapped around a Siamese framework such as SimSiam [20], whichis the baseline used in the present figure. First, an input image x is augmentedto produce two variations x1 and x2. Each of these two inputs is then fedinto one of the two branches of the Siamese network. While both x1 and x2go through an encoder equipped with an MLP projection head, x2 is furtherprocessed by an MLP predictor. Finally, a negative cosine contrastive loss iscomputed and backpropagated to minimize the similarity between the twobranches’ output feature maps. Both the encoder and the decoder containcells (i.e.,Ce andCp, respectively) that are designed using a differentiable NASapproach. Architectural parameters for Ce and Cp are denoted αe and αp re-spectively.

Therefore, the search space S includes several types of fully connected
layers, each with a unique activation function. The activation function deter-
mines the output of a neuron in the neural network given its input. Different
activation functions can lead to different network behaviors, positively or neg-
atively impacting performance. Note that the inclusion of various activation
functions in the search space is motivated by the desire to increase diver-
sity among the candidate architectures and explore alternatives to the classic
ReLU function (e.g., Hardswish [79], or SiLU [73]). To that end, it is also possi-
ble to mix different activation functions according to the type of network (i.e.,
projector or predictor) and the location of the activation function inside that
network. In contrast, previous baselines [20, 24, 25] only relied on a single ac-
tivation (ReLU) for both networks regardless of their respective architectures.

While unconventional, including pooling layers in the search space is help-
ful as we show in Section 5.2 that they can help prevent collapsing. Moreover,
the authors of SimSiam [24] indicated that an insufficient or excessive number
of Batch Normalization (BN) layers could cause the model to underperform
severely or become unstable. They empirically demonstrate that the optimal
setting for SimSiam is to place BNs after every layer except for the predictor’s
output layer. Hence, we follow this assertion by adding BNs after every linear
and pooling operation except for the predictor’s final layer. Finally, we also

96

included the identity operation in the search space so that the search algo-
rithm can modulate the number of layers in the architecture. This way, we
can indicate amaximum number of layers n, and the search process can craft
an architecture of sizem < n by “skipping” layers.

5.1.3 . Adapting the Siamese contrastive learning framework to
perform content-based image retrieval

To evaluate our approach on a content-based image retrieval task (see
Section 5.2), we replaced the contrastive loss LC used for pretraining the
model (see Eq. 5.1) with the simple cosine similarity function CS defined as
follows:

CS(x1, x2) =
x1 · x2

max(||x1||2 · ||x1||2, ϵ)
, (5.5)

where · represents the dot product between two vectors, ||.||2 is the ℓ2 norm,
and ϵ is a small positive number (e.g., 10−8) to avoid division by zero.

This switch is motivated by the fact that we no longer perform contrastive
learning and hence do not need a contrastive loss anymore. Furthermore, co-
sine similarity is a standardmetric often encountered in content-based image
retrieval literature[182, 188].

When performing the evaluation task, we computed the cosine similarity
between the output feature vectors of every query image. We selected only
the images whose similarity value was above a threshold τ we arbitrarily set
and ranked them accordingly.

5.2 . Experiments

In this section, we conducted experiments to validate the effectiveness
of the proposed NASiam approach. First, we conducted image classification
experiments on small-scale (CIFAR-10, CIFAR-100) and large-scale (ImageNet)
datasets [163]. Furthermore, we conducted content-based image retrieval ex-
periments on INRIA Holidays [92]. Finally, we conducted object detection and
instance segmentation experiments on the MS COCO dataset [113]. These ex-
periments allowed us to assess the performance of NASiam on various com-
puter vision datasets and compare it to other state-of-the-art approaches.

Alongside the main experiments, we conducted ablation studies to fur-
ther validate the effectiveness of the NASiammethod. These studies focused
on evaluating the importance of pooling layers and the impact of data aug-
mentation on the performance of NASiam.

5.2.1 . Experimental Settings
We used Nvidia RTX 3090 and Tesla V100 GPUs to conduct our experi-

ments. We searched for predictor/encoder pairs for 100 epochs on CIFAR-10,
and CIFAR-100 [100] using the SGD optimizer with lr = 0.06, wd = 5e− 4, and a

97

batch size of 512. We set a maximum of 6 layers for the encoder. For baseline
Siamese frameworks relying on a predictor, we searched for a 4-layer predic-
tor architecture. The whole search process with these settings takes around
2.3 hours on a singleGPU.Wedid not search on the full ImageNet [163] dataset
as it is prohibitively expensive (i.e., it takes around 12 days on a single GPU). In-
stead, we transferred our best CIFAR-searched architecture to ImageNet. We
kept the same settings for the pre-training and linear classification phases as
SimSiam [24].

5.2.2 . Ablation Study on the Importance of Pooling Layers
We conducted an ablation study on the importance of including pooling

layers in our novel space searchS (see Section 5.1.2). To this end, we simply re-
moved max_pool_3x3 and avg_pool_3x3 from S to form S′. When comparing
the results in Table 5.1, we can observe that when searching on S′ rather than
S, the validation top-1 accuracy of NASiam drops significantly (by around 3 %).
Moreover, when analyzing the genotypes searched on CIFAR-10 and CIFAR-100
using S, it appears that the predictor architectures always contain pooling lay-
ers (making up to 40 % of the total architecture). Additionally, Fig. 5.2 shows
that the contrastive learning model achieved better similarity and faster con-
vergence when searched on S rather than S′. Thus, these findings highlight
the critical role of pooling layers in ensuring high performance and preventing
collapse, especially concerning the encoder architecture.
Table 5.1: Results on CIFAR-10 linear classification of two NASiam
models using search space S and S ′ respectively. Bothmodels werepre-trained for 100 epochs. The baseline framework is SimSiam with aResNet18 backbone.
Search Space Search Epochs Pre-Train Epochs Validation Top-1 (%) Validation Top-5
S 50 100 66.6 91.3
S ′ 50 100 63.7 86.1

5.2.3 . Incidence of Data Augmentations on the NAS process
In self-supervised learning, data augmentations are paramount to pre-

vent the model from overfitting and the contrastive loss (see Eq. 5.1) from
saturating to -1. In contrast, DNAS methods [117, 32, 76] scarcely employ data
augmentation as they only train the supernet for a small number of epochs
(e.g., 50). Thus, a legitimate question is how the strong data augmentation
policy used in SSL frameworks can interferewith the differentiable search pro-
cess. we conducted a search for two different SimSiam [24] models: one with
the data augmentation policy activated and the other without it, on CIFAR-10.
Then, we compared the resulting architectures.

98

0 20 40 60 80 100
Epochs

0.8

0.6

0.4

0.2

0.0

Lo
ss

With pooling
Without pooling

Figure 5.2: Plot of the negative cosine contrastive loss while pretraining
two NASiam models on CIFAR-10. The baseline framework is SimSiam witha ResNet18 backbone. The twomodels are searched on search spaces S (blueline) and S′ (red line) respectively. The model searched on S achieves bettersimilarity, thus making the relevance of pooling layers clear.

Table 5.2 shows that deactivating the data augmentation policy leads to
a degenerated architecture with a dominance of skip connections (50 % of
the architecture) associated with performance collapse. Furthermore, Fig. 5.3
shows that, during the search phase, the similarity loss converges significantly
faster towards -1, thus presenting a collapsing behavior. This observation cor-
relates with the architectural collapse described in numerous DNAS studies
[32, 217, 210]. This collapsing behavior is akin to overfitting for NAS and is
caused by the high prominence of skip connections due to their unfair advan-
tage compared to parametric operations. Thus, data augmentations clearly
positively impact the differentiable search process and should not be deacti-
vated, unlike in supervised learning.
Table 5.2: Results on CIFAR-10 linear classification of two NASiam
models using either SimSiamdata augmentation policy or no data
augmentation. Both models were pre-trained for 800 epochs. Thebaseline framework is SimSiam with a ResNet18 backbone.

DataAugmentations Search Epochs Pre-Train Epochs Validation Top-1 (%) % of Skip Connections
Yes 100 800 91.2 20No 100 800 10.0 50

99

0 20 40 60 80 100
Epochs

0.90

0.85

0.80

0.75

0.70

Lo
ss

With data augmentations
Without data augmentations

Figure 5.3: Plot of the negative cosine contrastive loss while pretraining
two NASiam models on CIFAR-10. The baseline framework is SimSiam witha ResNet18 backbone. The two models are searched with and without dataaugmentation respectively.

5.2.4 . Preliminary Results on CIFAR
To quickly assess the behavior of our novel approach NASiam, we first

conducted preliminary experiments on small-scale CIFAR datasets [100]. We
searched NASiam architectures for 100 epochs on CIFAR-10 and CIFAR-100 us-
ing the CIFAR version of ResNet18 [69] as the encoder backbone. Then, we
performed unsupervised pretraining for 800 epochs with a cosine anneal-
ing schedule before training a linear classifier using frozen features for 100
epochs. In these settings, NASiam overperforms SimSiam by 1.4 % and 0.4 %
on CIFAR-10 and CIFAR-100 respectively (see Table 5.3). In addition, Fig. 5.4
shows that NASiam can achieve better similarity than SimSiam without satu-
rating the contrastive loss to −1 (i.e., avoiding a “collapsing” behavior). Fur-
thermore, results were also positive when using alternative Siamese frame-
works, with NASiam overperforming both MoCo V2 [25] and SimCLR [20].

5.2.5 . Results on ImageNet
We conducted image classification experiments on ImageNet [163] as a

standardpractice to evaluate theperformanceof our novel approachon large-
scale datasets. As stated in Section 5.2.1, we transferred our best CIFAR archi-
tecture instead of searching directly on ImageNet to save computational re-
sources. Then, we performed unsupervised pretraining on ImageNet for 100
epochs before training a linear classifier with frozen features for 100 epochs.
The results are presented in detail in Table 5.4. As with CIFAR (see 5.2.4), the
results of the experiments on ImageNet showed that the NASiam consistently
outperforms the baseline frameworks in terms of linear classification results.

100

Table 5.3: Results of pre-training for 800 epochs on CIFAR-10 and
CIFAR-100 linear classification with SGD. The backbone is the CI-FAR version of ResNet18. †: Result obtained by running the official im-plementation with the hyperparameters suggested by the authors forCIFAR-10.

Model Batch Size Pre-Train Epochs Train Epochs C10 ValidationTop-1 (%) C100 ValidationTop-1 (%)
MoCo V2 [25]† 256 800 100 89.8 62.9SimCLR [20]† 256 800 100 91.1 63.6SimSiam [24]† 256 800 100 89.5 63.7
Ours NASiam (SimSiam) 256 800 100 91.2 64.1NASiam (MoCo V2) 256 800 100 90.4 65.0NASiam (SimCLR) 256 800 100 92.1 68.9

This indicates that NASiam is a useful and effective approach for improving
the performance of Siamese networks in image classification tasks.
Table 5.4: Results of training for 100 epochs on ImageNet linear
classificationwith SGD. The backbone is ResNet50. Models were pre-trained for 100 epochs on ImageNet. †: Score obtained by the authorsof SimSiam by using an improved version of the model.

Model Batch Size Pre-Train Epochs Train Epochs Validation Top-1 (%)
MoCo V2 [25]† 256 100 100 67.4BYOL [63]† 4096 100 100 66.5SimCLR [20]† 4096 100 100 66.5SimSiam [24] 256 100 100 67.1
Ours NASiam (SimSiam) 256 100 100 67.4NASiam (MoCo V2) 256 100 100 67.4NASiam (SimCLR) 4096 100 100 67.2

5.2.6 . Content-based image search evaluation on Holidays
We evaluated our approach on content-based image retrieval using the

Holidays dataset [92]. We used SimCLR as the backbone Siamese framework
and adapted it according to what is presented in Section 5.1.3. The results
are reported in Table 5.5. The proposed method outperforms the baseline
SimCLR method by around 5 % APm, hence validating the relevance of ourapproach. Another noticeable fact is that using a deeper projector head does
not affect the query time, which remains around 1 minute.

Furthermore, the proposed method also surpasses the performance of
Jegou et al.’s method [92]. It is worth noting that this previous work uses
a highly sophisticated method for matching descriptors, which involves de-
riving a more precise representation using a suboptimal approach based on

101

0 100 200 300 400 500 600 700 800
Epochs

0.9

0.8

0.7

0.6

0.5

Lo
ss

SimSiam
NASiam

Figure 5.4: Plot of the negative cosine contrastive loss when pretrain-
ing SimSiam and NASiam for 800 epochs on CIFAR-10. NASiam convergesfaster without collapsing and achieves better similarity than SimSiam.

Hamming embedding andweak geometric consistency constraints. This tech-
nique could also be investigated to further enhance the performance of the
proposed method. However, in this study, we only demonstrated the poten-
tial of our searched Siamese network without any postprocessing (e.g., fine-
tuning or computing descriptors).

Model APm (%) Query Time (s) Inference Timeper Image (ms)
Jegou et al.[92] 75.07 N.D. N.D.SimCLR[20] 70.1 73 6.3

Ours 75.4 73 6.9
Table 5.5: Results of content-based image retrieval on the INRIA
Holidays dataset[92]. SimSiam performs better than both SimCLRand the baseline method of Jegou et al. [92] that uses precomputeddescriptors.

5.2.7 . Object Detection and Instance Segmentation Results on
COCO

To further evaluate theperformanceof theNASiammethod, we conducted
additional experiments onObject Detection and Instance Segmentation using
the Microsoft Common Objects in Context (MS COCO) dataset [113]. The re-
sults of these experiments, reported in Table 5.6, provide additional insight

102

into the performance and effectiveness of the NASiammethod for these tasks
and allow for a comparison to other state-of-the-art methods. Table 5.6 dis-
plays the results of transferring our NASiam models pretrained on ImageNet
[163] to MS COCO. These results show that NASiam consistently outperforms
handcrafted SSL architectures in both object detection and instance segmen-
tation tasks. Combined with the evaluation on content-based image retrieval
in Section 5.2.6, this demonstrates the ability of NASiam to generalize to com-
puter vision tasks beyond image classification and suggests that it is a promis-
ing approach for improving the performance of Siamese networks in a variety
of computer vision tasks.
Table 5.6: Comparison of backbone models for MaskRCNN [70] on
COCO [113] using a 1x schedule and ResNet50 [69] as the baseline
CNN. All models are pretrained for 200 epochs on ImageNet, finetunedfor 12 epochs on COCO 2017 train set, and evaluated on COCO 2017 valset.

Models AP50 (%) AP (%) AP75 (%) APmask
50 (%) APmask (%) APmask

75 (%)
ImageNet supervised 58.2 38.2 41.2 54.7 33.3 35.2SimCLR 57.7 37.9 40.9 54.6 33.3 35.3SimSiam 57.5 37.9 40.9 54.2 33.2 35.2MoCo V2 58.8 39.2 42.5 55.5 34.3 36.6BYOL 57.8 37.9 40.9 54.3 33.2 35.0
NASiam (SimSiam) 58.6 39.0 42.1 55.2 34.1 36.3

5.2.8 . Analysis of the compositionofNAS-discoveredarchitectures
Some facts are noteworthy when comparing encoder/predictor architec-

tures discovered on CIFAR-10 by our novel NASiam approach (see Section 5.1.1)
with those of SimSiam [24].

First, in Fig. 5.5, we can see that both ResNet50-based andResNet18-based
[100] NASiam architectures are significantly deeper than the original SimSiam
architecture. Furthermore, a remarkable fact is that the standard ReLU acti-
vation function is in minority in the discovered architectures (and even com-
pletely absent from the ResNet50-based one). Instead, a mix of different ac-
tivation functions is preferred, with SiLU and Hardswish having a high promi-
nence. Thus, this may indicate that ReLU, despite its popularity, is not the
optimal activation function for performing contrastive learning. In addition,
the optimizer always selected at least one AvgPool3x3+BN layer to be part of
the predictor architecture, hence validating the relevance of including pooling
layers in the search space (as already highlighted in Section 5.2.2).

Furthermore, when comparing bothNAS-discovered architectures, we can
observe that the ResNet50-based one possesses a deeper encoder than the
ResNet18-based architecture (i.e., 6 vs. 4 layers), with additional Linear+BN+Swish

103

and Linear+BN+SiLU blocks. However, the two predictor architectures retain
the same depth and a similar composition. This is coherent with the recom-
mendations of the authors of SimSiam [24], where they selected a shallower
architecture when training on CIFAR-10 with ResNet18 rather than ResNet50.
One hypothesis to explain this discrepancy in architectural sparsity is that
ResNet18, being a shallower model than ResNet50, has a less powerful in-
nate ability to extract representations and hence produces less complex fea-
ture maps that would not require a deep projector to be analyzed. Using a
deeper architecture could even lead to adverse effects. To confirm this hy-
pothesis, we tried to fit a ResNet18-based model on CIFAR-10 with the deeper
encoder/predictor pair discovered for ResNet50. Fig. 5.6 clearly shows that
this architectural setting quickly led to a collapsing behavior, with the con-
trastive loss rapidly saturating to -1 as soon as epoch 350 and ahigher variance
than the ResNet18-searched architecture. Hence, this validates the ability of
our NASiam approach to discover backbone-specific architectures.

Encoder

Linear+BN+ReLU

Linear

Predictor

Linear+BN+ReLU

Backbone FC

BatchNorm

Encoder

Linear+BN+Swish

AvgPool3x3+BN

Linear+BN+Swish

Predictor

Linear+BN+Swish

Backbone FC

BatchNorm

Encoder Predictor

Linear+BN+Swish

AvgPool3x3+BN

LinearLinear

Linear+BN+ReLU

Backbone FC

BatchNorm

X2

X3

Linear+BN+SiLU

Linear+BN+SiLU X2

Linear+BN+SiLU

Linear+BN+ELU

Linear+BN+ReLU

Linear+BN+SiLU

X2

X2

Figure 5.5: Composition of encoder/predictor pair architectures. (Top)SimSiam model. (Bottom left) NASiam model searched for 100 epochs onCIFAR-10 using SimSiam as the baseline framework with ResNet18 as the back-bone CNN. (Bottom right) NASiammodel searched for 100 epochs on CIFAR-10 using SimSiam as the baseline framework with ResNet50 as the backboneCNN. ResNet18-searched and ResNet50-searched architectures are clearly dif-ferent, with ResNet50 needing a deeper encoder.

5.3 . Discussion and Conclusion

104

0 100 200 300 400 500 600 700 800
Epochs

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Lo
ss

ResNet18 arch
ResNet50 arch

Figure 5.6: Plot of the negative cosine similarity loss while pretrain-
ing NASiam with ResNet18 using architectures searched either with
ResNet18 or ResNet50 as backbone. The ResNet50-searched architec-ture quickly collapses towards -1 and has high variance while the ResNet18-searched one converges as expected.

This chapter presented NASiam, a novel approach for contrastive learn-
ing with Siamese networks that searches for efficient encoder/predictor pairs
using differentiable neural architecture search (see Section 5.1.1).

NASiam is a universal approach that can improve theperformanceofmany
existing Siamese frameworkswhilemaintaining their original structure. There-
fore, it can be easily integrated with existing Siamese networks without the
need for major modifications. Furthermore, the NASiammethod is computa-
tionally efficient, as it requires only a few GPU hours to run. This makes it a
practical and accessible solution for enhancing the performance of Siamese
networks in a variety of applications.

Section 5.2 showed that NASiam discovers encoder/predictor pair archi-
tectures that efficiently learn robust representations and overperform pre-
vious baselines in small-scale and large-scale image classification datasets.
These empirical results support our intuition that the encoder and predictor
architectural designs play a decisive role in representation learning.

However, NASiam is not exempt from limitations. Most notably, the per-
formance gain is somewhat limited, especially for ImageNet (see Table 5.4).
This indicates that there is still room for improvement on large-scale datasets,
perhaps by expanding the search space. Additionally, NASiam could be com-
bined with more typical DNAS methods (such as DARTS [117]) to jointly search
for the MLP predictor/projector heads and the CNN backbone. These ideas
could be explored in future work.

105

Nevertheless, we hope this work will pave the way to further improve-
ments in MLP-headed Siamese networks.

106

Algorithm 4 Algorithm describing the differentiable neural architec-ture search process of NASiam
Require: Object: Ce, encoder cell containing architectural weights
Require: Object: Cp, predictor cell containing architectural weights
Require: List: O, list of operations
Require: List: Dt, train dataset
Require: List: Dv , validation dataset
Require: Object: model, backbone CNN model
Require: Object: opt, model optimizer
Require: Object: search_opt, search optimizer
Require: Integer: E, number of epochs
for e in [0, E[do
for (x1, x2) inDv do

(x1, x2)← model(x1, x2)
(z1, z2)← Ce(x1, x2)
(p1, p2)← Cp(x1, x2)
stop_grad(z1, z2)
loss← −0.5(cosine_similarity(p1, z2)+cosine_similarity(p2, z1))

search_opt.optimization_step(loss, Ce.weights, Cp.weights)
end for
for (x1, x2) inDt do

(x1, x2)← model(x1, x2)
(z1, z2)← Ce(x1, x2)
(p1, p2)← Cp(x1, x2)stop_grad(z1, z2)
loss← −0.5(cosine_similarity(p1, z2) + cosine_similarity(p2, z1))
opt.optimization_step(loss, Ce.weights, Cp.weights)

end for
end for
A← empty_list()
for C in {Ce, Cp} do

Cf ← empty_list()
n← |C|
for i in [0, n[do

op← argmax(C.weights[i])
append(op, Cf)

end for
append(Cf , A)

end for
return A

107

108

6 - Applications of Differentiable NAS

In previous chapters, we focused on Computer Vision (CV) as the prevail-
ing trend in DNAS literature revolves around this field and CNN architectures
more specifically (see Chapter 3). However, DNAS methods are based on
mathematical concepts that are generic enough to be applied to other fields
and to a wide variety of neural network architectures.

Therefore, in this chapter, we broaden our horizons to explore the practi-
cal utility of DNAS in two real-world scenarios: (I) pruning Vision Transformers
(ViT) models with low-cost proxies in a few minutes to increase the inference
throughput (see Section 6.1) and (II) using DNAS-designed networks to per-
form torque control of Permanent Magnet Synchronous Motors (PMSM) (see
Section 6.2).

6.1 . ExploringDifferentiableNAS for Cost-EffectiveVisionTrans-
formers: Differentiable Vision Transformer Pruning with
Low-Cost Proxies

As recalled in Chapter 2, Vision Transformers (ViTs) [46] are becoming
prominent in many Computer Vision fields of application such as image clas-
sification, object detection, or image segmentation.

However, amajor issue of ViTs is that they often comport a very large num-
ber of parameters (e.g., around 630million parameters for ViT-H [46]) making
them especially hard to train and conferring a high inference latency. Con-
sequently, it is necessary to find ways to reduce the computational require-
ments of ViTs and decrease their inference latency to make them deployable
on embedded devices such as mobile phones. Using less computational re-
sources will also save energy and thus engage in the ecological transition (i.e.,
Green Deep Learning [102, 59]). Pruning a ViT is one way of achieving this
goal. Pruning a neural network consists in reducing its size by removing re-
dundant or unuseful parts. Hence, our objective is to substantially decrease
the inference latency while preserving comparable performance.

As seen in Chapters 2 and 3, DNAS aims to find the optimal architecture
within a defined search space according to an objective function (usually a
performance metric). DNAS usually starts from a blank slate but it is possible
to use an existing architecture as the initial state (as seen in Chapter 5). Hence,
by constraining the search algorithm to only removing existing connections
and not adding new operations, it is possible to turn DNAS into a pruning
method, as shown in this chapter.

In Section 6.1.1, we present an approach that performs efficient ViT prun-
109

ing within a few minutes on a single GPU. This way, we aim to promote frugal
and low-cost Deep Learning. We dubbed our method DARIO (DifferentiAble
vision transformer pRunIng with low-cost prOxies). DARIO employs a differ-
entiable and data-agnostic search process that leverages low-cost proxies.
These proxies enable the estimation of classification performance for pruned
ViTs using a single forward and backward pass on a mini-batch of dummy
data. By combining the differentiable search process with low-cost proxies,
DARIO can effectively accelerate inference speed (up to 69 % faster) while
maintaining comparable classification performance and fine-tuning speed.

The main logic behind DARIO is summarized in Fig. 6.1.

Block

(I)

Block

(II)

Loss Function

Block

(III)

Loss Function
Block

(IV)

Proxy FunctionBackpropagation

Backpropagation

Block

(V)

Proxy Function

Figure 6.1: Flowchart of the DARIO pruning process. This example fea-tures a small toy-like neural network composed of only a single block thatundergoes the five steps of the DARIO data-agnostic pruning process: (I)Meta-architecture parameters α are assigned to each path linking neuronstogether, thus forming a gating mechanism. A tensor of ones is fed as inputto the neural network. (II) A loss function RSF [175] is computed from theoutputH of the network. (III)RSF is backpropagated to update the networkparameters θ to˜̃. (IV) The performance proxy function Svar is computed from
˜̃. (V) Svar is backpropagated to update α to α̃ and the network parameters arereset to their original values θ. These steps are repeated until convergence of
Svar. Yellow nodes represent neurons, the red cylinder represents the inputdata, and the green rectangles stand for output-related data (e.g., output vec-tor, loss value, proxy value).

The rest of this section is organized as follows: Section 6.1.2 presents the
results of the experiments we conducted to validate our DARIO method, and
Section 6.1.3 discusses the limitations of our method and gives insights for
future work.

6.1.1 . Proposed Approach

110

In this section, we explain the design of our DARIO approach for pruning
pre-trained vision transformers. We detail the four key concepts upon which
DARIO is based: Search space: Meta-architecture spanning several levels of
granularity, with continuous gating parameters; Action mechanism: Itera-
tive, differentiable pruning using gradient descent in the gating parameters;
Reward mechanism: Low-cost classification performance proxy; Informa-
tion: Data agnostic (the input is a tensor fully composed of ones).
Meta-architecture and levels of granularity of pruning

Our goal is to create a search space that is both easily navigable and highly
configurable. To achieve this, we draw inspiration from the efficiency of Dif-
ferentiable NAS methods [117, 210] when exploring large search spaces.

In our proposed DARIOmethod, a crucial aspect is the inclusion of ameta-
architectural space that spans multiple levels of granularity. We focus on
model pruning for vision transformer (ViT) models [46] in this study. The fun-
damental building blocks of ViT models are the multi-head attention blocks.
Typically, ViTs consist of a sequence of thesemulti-head attention blocks, each
comprising amulti-head attention layer, two fully-connected layers (MLP), nor-
malization layers, and skip-connections. The ability to prune at various levels
of granularity is essential, as the topology constraints of the parts being re-
moved can vary depending on the context.

As a result, our exploration of vision transformer pruning involves two lev-
els of granularity: (1) attention-head and (2) block. Pruning at the block level
entails removing entire multi-head attention blocks at once, made feasible by
the presence of skip-connections within each multi-head attention block [69,
46, 172] in the pre-trained ViT models. In contrast, attention-head-wise prun-
ing involves removing specific headswithin amulti-head attention block, mak-
ing it a more fine-grained approach compared to block-wise pruning. More-
over, we also investigate bi-granularity pruning, where pruning is performed
at both levels. This means that certain blocks are entirely pruned, while some
heads are pruned within the remaining blocks. The choice of pruning granu-
larity is discussed in Section 4.2.

In our approach, these levels of granularitymodulate ameta-architecture,
also referred to as the "supernet", which encompasses the original pre-trained
ViT modelM . Specifically, the modelM is decomposed into nmodules
{m1,m2, ...,mn}, where eachmodule may represent either an attention head
within a block or an entire block in the model, depending on the desired level
of pruning granularity. The supernet is parameterized by meta-architectural
parameters α = {α1, ..., αn}, enabling continuous exploration of the search
space. The meta-architectural parameters αA for attention heads and αB for
blocks allow for flexible pruning by gating the output features Hm of each
modulem ∈M . This approach relaxes the categorical choice of modules and

111

enables "soft" model pruning of the supernet, providing greater flexibility in
the pruning process.

At the block level, gating is performed as follows:
H̃m = σ(αB

m)Hm + (1− σ(αB
m))Hm−1, (6.1)

where H̃m represents the gated value ofHm. At the attention-head gran-ularity, it is performed as:
H̃m = (σ(αA

m)Am) · Vm, (6.2)
where Am is the attention probability matrix of block m, Vm is the trans-

posed value matrix, and σ represents the sigmoid function defined as:
σ(x) =

1

1 + exp(−x)
. (6.3)

We deliberately opted against pruning at the individual parameter level
to preserve the meta-architectural vision we presented earlier. Implement-
ing gating on every parameter in our model would have been impractical and
computationally intensive, leading to a significant increase in computational
complexity. Furthermore, the potential gains in terms of inference speed
would have been limited, as pruning a few parameters from a layer has a
relativelyminor impact compared to removing entire layers. Considering indi-
vidual parameters would have also resulted in a large cardinality for α, equal
to the total number of parameters in the model M , which could have hin-
dered the effectiveness and interpretability of our approach. Thus, by focus-
ing on attention-head and block-level pruning, we strike a balance between
computational efficiency and model performance while maintaining the flex-
ibility and interpretability of the meta-architectural framework.

Figure 6.2 illustrates the gatingmechanisms for block and attention-head-
level granularities.

...

A
tte

nt
io

n
H

ea
ds

Li
ne

ar
an

d
N

or
m

 N-modules of the ViT model M

Li
ne

ar
an

d
N

or
m

Li
ne

ar
an

d
N

or
m

A
tte

nt
io

n
H

ea
ds

Figure 6.2: Illustration of DARIO’s meta-architecture for a N -block ViT
model M . The gating mechanisms for both block-level and attention-head-level granularities are represented and can be independently deactivated.

112

Performance proxies

Our goal is to find pruned models that exhibit both strong generalization ca-
pabilities and high performance. Therefore, our DARIO pruning approach
cannot directly rely on a groundtruth-based, data-specific loss as its objec-
tive function, as doing so would limit the resulting pruned model to a narrow,
task-specific context. Instead, the objective function of the pruning process
must be a generic data-agnostic performance estimation function, which we
refer to as a "proxy". By using such a proxy function, we ensure that the prun-
ing process remains independent of any specific dataset and can efficiently
search for models that excel across various tasks and domains.

DARIO leverages proxies to evaluate the potential of a given pre-trained
model M ∈ M in achieving high accuracy. A performance proxy is formally
defined as a function denoted S : M 7→ R, whereM represents the space
encompassing all potential neural networks that can be obtained by pruning
a pre-trained neural network. We consider proxies that adhere to specific
constraints:
Data-agnostic: Our aim is to achieve data-agnostic pruning, meaning that
the proxies should solely depend on the neural network M and not on any
specific data.
Low-cost: Efficiency is vital in our approach to promote resource-efficient
Deep Learning. All candidate proxies only require a single forward pass and
backward pass over a single minibatch of dummy data.
Scale invariant: The proxies must be normalized to account for model size
variations. While larger models may exhibit stronger classification perfor-
mance, we want the proxies to indicate performance per unit, avoidingmodel
size as a confounding factor.
Differentiable: The proxies need to be differentiable so that they can serve
as the objective function for the differentiable search process (see Section
6.1.1). By ensuring differentiability, we enable efficient optimization during
the neural architecture search process.

In line with Abdelfattah et al. [1], we adapt importance scores originally
designed for finer granularity (i.e., individual parameters) to serve as per-
formance proxies for entire models. Their empirical experiments demon-
strate that synflow [175] (denoted Ss) performs well in maintaining rank con-
sistency between randomly initialized models and their classification perfor-
mance post-training. To meet the predefined constraints, synflow requires
normalization, resulting in the normalized version Sns. Additionally, we con-
sider Ln norms (SL0 , SL1 , SL2) as potential performance proxies, adapting
magnitude-based pruning scores. Moreover, we propose a new variance-
based proxy, denoted as Svar, and develop several composite proxies for eval-
uation. In total, we assess 9 candidate proxies, as listed in Table 6.1. For com-
parison purposes, we also include Ss.

113

Table 6.1: List of candidate performance proxies. With the exceptionof synflow, all proxies satisfy the 4 constraints: data-agnosticism, scale-invariance, low-cost, and differentiability. ⊙ stands for the Hadamardproduct. Svar is our proposed proxy used in DARIO (see Section 6.1.2).
Proxy name Proxy definition
L0 norm SL0(θ̃) = 1

T

∑T
t ||θ̃t||0

L1 norm SL1(θ̃) = 1
T

∑T
t ||θ̃t||1

L2 norm SL2(θ̃) = 1
T

∑T
t ||θ̃t||2synflow Ss(θ̃) =∑N

n (
∂Ha

∂|θ| ⊙ |θ̃
a|)n

normalized synflow Sns(θ̃) = 1
N

∑N
n (

∂Ha

∂|θ| ⊙ |θ̃
a|)n

parameter variance Svar(θ̃) = 1
N−1

∑N
n (θ̃n − θ)2

L0 + parameter variance SL0+var(θ̃) = SL0(θ̃)− c1Svar(θ̃)
L1 + parameter variance SL1+var(θ̃) = SL1(θ̃)− c2Svar(θ̃)
L0 + L1 SL0+L1(θ̃) = SL0(θ̃) + c3SL0(θ̃)

Table 6.1 presents the definitions of various terms used in the calculation
of the candidate proxies. Here, T represents the total number of parame-
ter tensors in the neural network, and N is the total number of parameters
(scalars) in the network. The symbol θ = 1

N

∑N
n θ̃n denotes the average pa-

rameter value. Additionally, c1, c2, and c3 are empirical coefficients used to
scale both terms consistently in the composite proxies. The termHa is similar
to H , but the forward pass is computed after transforming all model param-
eters θ into their absolute values θa. The inclusion of the (N − 1) term in the
parameter variance proxy accounts for Bessel’s correction.

The composite proxies, namely SL0+var, SL1+var, and SL0+L1 , are obtained
by weighted sums of other proxies. Through empirical testing in Section 6.1.2,
we found that the variance-based proxy Svar yielded the most promising re-
sults.

The rationale behindSvar lies in its ability tomeasure theparameter spread
within a model. Networks with more uniform parameter sets are often in-
dicative of better performance. Specifically, a high spread in parameters may
suggest that a model has captured the residual variation specific to a dataset,
leading to potential overfitting [5, 211].
Differentiable search algorithm

Our primary objective is to enhance the efficiency of a pre-trained ViT model
M by reducing its inference latency and computational demands while main-
taining its performance across various tasks, as discussed in Section 6.1.1. Ad-
ditionally, we aim to eliminate irrelevant or detrimental components present

114

in ViTs. To achieve this, we propose DARIO, an approach that optimizes the
meta-architectural parametersαof the pre-trainedmodelM basedonaproxy
function S. By modulating the components of the model according to this
performance-based objective function, we can effectively prune the model
while preserving its generalization capability andpotentially improving ormain-
taining its performance. Hence, DARIO aims to optimize the values of the gat-
ing parameters α to solve the following optimization problem:

min
α
S(θ̃(α)), (6.4)

where S is a proxy function we assumed to be negatively correlated to the
model performance and hence to be minimized. Hence, Eq. 6.4 indicates
that we must evaluate the impact of α on θ̃, which represents the updated
parameters θ based on the values of α.

DARIO employs a gradient-based procedure inspired by the Synaptic Flow
loss (RSF) introduced by Tanaka et al. [175]. By using RSF , we can update θ

in a data-agnostic manner. It is defined as follows:
RSF = 1

T (
n∏

m=1

|θ[m]|)1, (6.5)
where |θ[m]| is a matrix containing the absolute values of the pre-trained pa-
rameters of block m with θ denoting the full set of pre-trained parameters.
The underlying concept of the RSF loss is that it encompasses all potential
paths from each input element to each output value, where the path value is
obtained by multiplying the parameter values along that path. To compute
RSF , following the approach of Tanaka et al. [175] and Abdelfattah et al. [1],
we perform a forward pass using a singleminibatch x of dummy uniform data
(i.e., tensors containing ones), and then compute a backward pass using the
sum of the outputs H of the model M . This process allows us to obtain the
gradients ofRSF with respect to θ (i.e., to perform the outer and inner prod-
ucts with respect to x).

From this point, it becomes possible to update the gating parameters α
by backpropagating the gradient of an objective function S computed over
θ, using the different paths obtained through RSF . For example, synflow by
Tanaka et al. [175] considers the gradients ofRSF with respect to θ to estimate
the trainability of parameters, aiming to find a good network initialization by
pruning the less trainable parameters. In contrast, our objective is to assess
the impact of themeta-architectural configuration (parameterized byα) of the
model on the objective function S. To that end, in addition to the backward
pass, we also perform a single optimization step to update θ into θ̃ in order to
obtain a value differentiable w.r.t. α:

θ̃(α) = θ − γ
∂RSF

∂θ
= θ − γ

∂
∑

H(α)

∂θ
, (6.6)

115

where γ is the step size for the gradient descent. This way, we are able to
backpropagate the value of S(θ̃) to update the α parameters.

While DARIO shares similarities with DARTS [117] (see Chapter 2), it dis-
tinguishes itself by adopting a single-level optimization approach. In DARTS,
both the architectural parameters α and the model parameters θ are jointly
searched, forming a bi-level optimization problem. However, DARIO focuses
solely on optimizing α and leaves θ unchanged, resulting in a simpler single-
level optimization. As a result, the supernet is reinitialized at each step to
revert θ̃ to its original value.

To enhance the efficiency of the search process, we incorporate a warm
start phase involving several iterations of random search. This phase helps
identify a set of α parameters that best optimize the objective function S ,
serving as the starting point for the pruning process. After completing the
search, we obtain the final pruned model by removing modules associated
with α values below a certain threshold. The determination of this threshold
is discussed in Section 6.1.2.

All the proxies introduced in Section 6.1.1 are differentiable with respect to
α since they are functions of the classification features H (see Equation 6.6),
which are themselves dependent on the search parameters α. The pseudo-
codeof the differentiable searchprocess is provided in Algorithm5. Wedemon-
strate the advantages of our proposed differentiable search algorithm over
random search in Section 6.1.2.
Algorithm5Pseudo-codedescribing the differentiable search atworksin DARIO.
Input: proxy S , pre-trained model M , cardinality of the meta-architecturalparameters l, search learning rate λ, model learning rate γ, number of warmstart iterations k, number of search iterations n
Output: α
1: for k iterations do
2: α← warm_start(l){Warm start α by keeping the best of k random samples }
3: end for
4: for n iterations do
5: x← create_batch_ones()
6: o←M(α, x){M(α, x) means that the model is gated by α; this step contains oneforward pass and one backward pass of one minibatch x of data.}
7: θ ← get_parameters(M)
8: θ̃ ← θ − γ ∂o

∂θ9: s← S(α, θ̃(α))
10: α← α− λ ∂s

∂α11: end for

116

6.1.2 . Experiments
This section presents the experimental results validating our DARIO ap-

proach. We start by comparing various classification performance proxies
(Section 6.1.1) to identify the most effective proxy for estimating classification
performance (Section 6.1.2). Next, we investigate different pruning granulari-
ties (Section 6.1.1) in Section 6.1.2. Additionally, we evaluate the effectiveness
of the differentiable search process (Section 6.1.1) by comparing it to random
search in Section 6.1.2. Finally, we assess the performance of pruned mod-
els achieved using the optimal proxy and granularity through classification
experiments conducted on various image datasets (Section 6.1.2).
Experimental settings

To assess the effectiveness of DARIO, we conducted experiments using two
pre-trained ViT models: MAE-ViT-base [71] and MobileViT-small [132]. These
models represent large and small state-of-the-art ViT architectures, respec-
tively. Weevaluated the classificationperformancepreservation of the pruned
models using the Meta-Album micro meta-dataset [183], which provides a di-
verse set of datasets from various domains (see Section 2.4.6 of Chapter 2).
We compared the accuracy of the prunedmodels with that of the original pre-
trained models. To avoid overfitting on Meta-Album, we conducted all inter-
mediate experiments (e.g., Section 6.1.2) on a separate dataset called ICDAR-
micro, following the approach of Sun et al. [172]. ICDAR-micro is derived from
an OCR dataset containing images with alphanumeric characters in natural
scenes [123]. It shares a similar train-test split and has an equal number of
examples per class as Meta-Album micro. Our implementation is based on
PyTorch, and all experiments were performed using Nvidia Tesla V100 and
RTX 4090 GPUs.

Figure 6.3: Sample images from ICDAR-micro.

Comparing classification performance proxies

In this section, we compared the classification performanceproxies presented
in Table 6.1 of Section 6.1.1 to identify the most suitable one for the differen-

117

tiable search process (as discussed in Section 6.1.1).
Our goal was to find proxies that effectively estimate the performance of

prunedmodels. To achieve this, we needed to assess the correlation between
the proxy values and the ground-truth classification accuracy of fine-tuned
pruned models using the ICDAR-micro dataset. Following Abdelfattah et al.
[1], we employed the Spearman correlation coefficient (Spearman’s ρ) [170]
as the metric to select the most reliable proxy. Additionally, we reported the
Pearson correlation coefficient (Pearson’s ρ) [151].

For eachpre-trainedmodel p ∈ {MAE-ViT-base,MobileViT-small}, a search
spaceMp was defined, encompassing all possible models obtained by prun-
ing a given pre-trained model. We considered two pre-trained models: MAE-
ViT-basewith 12multi-head attentionblocks (each containing 12 attentionheads),
leading to |MMAE-ViT-base| = 212×12 > 2×1043 possible models, andMobileViT-
small with 9 multi-head attention blocks (each containing 4 attention heads),
leading to |MMobileViT-small| = 29×4 > 6 × 1010 possible models. We used the
attention-head granularity (as described in Section 6.1.1) to define the search
spaces, which also encompassed all models attainable through block-wise
pruning (i.e., an entire block is pruned when all attention heads within that
block are pruned).

To compute the correlations, we randomly sampled 100models from each
associated search spaceMp. Each sampled model was then fine-tuned to
obtain its ground-truth classification accuracy. Both Spearman and Pearson
correlation coefficients were computed over the 100 sampled models. The
results of the Spearman correlation experiment are shown in Figure 6.4, and
the results of the Pearson correlation experiment can be found in Figure 6.5.
Tabular results are available in Table 6.2 and Table 6.3.

0.0 0.1 0.2 0.3 0.4 0.5
Absolute value of Spearman's

normalized synflow

synflow

L2 norm

L0 + parameter variance

L0 norm

L0 + L1

L1 + parameter variance

L1 norm

parameter variance

pr
ox

y

MAE-ViT-base

0.00 0.05 0.10 0.15 0.20
Absolute value of Spearman's

L0 norm

L0 + L1

L1 norm

L2 norm

L1 + parameter variance

L0 + parameter variance

normalized synflow

parameter variance
MobileViT-small

Figure 6.4: Absolute value of Spearman correlation coefficients on ICDAR-
micro. The 95% confidence intervals are computedwith 12 independent runs.The parameter variance proxy consistently has the highest absolute valueacross both pre-trained models.

To select the best proxy, we considered two criteria: (1) a high absolute
value of the Spearman correlation coefficient, and (2) consistent signs of the
Spearman correlation coefficient across different pre-trained models. Our

118

Table 6.2: Correlation between proxy value and classification accu-
racy on MAE-ViT-base. proxies with “+” represent composite proxies.The 95% confidence intervals are computed with 12 independent runs.The parameter variance proxy consistently has the highest correlation(ρ) absolute value for both Pearson and Spearman.

Proxy Spearman’s ρ Pearson’s ρ
Parameter variance −0.48± 0.04 −0.48± 0.04Normalized synflow 0.27± 0.06 0.28± 0.05synflow 0.29± 0.06 0.29± 0.05
L2 norm 0.45± 0.04 0.46± 0.03
L0 norm + parameter variance 0.45± 0.04 0.46± 0.03
L0 norm + L1 norm 0.46± 0.04 0.47± 0.03
L0 norm 0.46± 0.04 0.46± 0.03
L1 norm + parameter variance 0.46± 0.04 0.47± 0.03
L1 norm 0.46± 0.04 0.47± 0.04

Table 6.3: Correlation betweenproxy value and classification accu-
racy on MobileViT-small. proxies with “+” represent composite prox-ies. The 95% confidence intervals are computed with 12 independentruns. The parameter variance proxy consistently has the highest cor-relation (ρ) absolute value for both Pearson and Spearman.

Proxy Spearman’s ρ Pearson’s ρ
Parameter variance −0.18± 0.04 −0.12± 0.04
L1 norm −0.07± 0.06 −0.08± 0.06
L0 norm + L1 norm −0.06± 0.05 −0.07± 0.06
L0 norm −0.05± 0.05 −0.06± 0.05Normalized synflow −0.05± 0.08 −0.05± 0.06
L2 norm −0.04± 0.06 −0.05± 0.06
L1 norm + parameter variance 0.15± 0.04 0.10± 0.04
L0 norm + parameter variance 0.16± 0.04 0.10± 0.04

119

0.0 0.1 0.2 0.3 0.4 0.5
Absolute value of Pearson's

normalized synflow

synflow

L2 norm

L0 + parameter variance

L0 norm

L1 + parameter variance

L0 + L1

L1 norm

parameter variance
pr

ox
y

MAE-ViT-base

0.00 0.05 0.10 0.15 0.20
Absolute value of Pearson's

L0 norm

L0 + L1

L1 norm

L2 norm

L0 + parameter variance

L1 + parameter variance

parameter variance

normalized synflow
MobileViT-small

Figure 6.5: Absolute value of Pearson correlation coefficients. The 95%confidence intervals are computed with 12 independent runs. The parametervariance proxy consistently has the highest absolute value across both pre-trained models.

newly proposed parameter variance proxy met both criteria, showing con-
sistent signs across different pre-trained models (as shown in Table 6.2 and
Table 6.3). Additionally, the parameter variance proxy consistently exhibited
the highest absolute values of correlation coefficients for both Spearman and
Pearson correlations across different pre-trained models (as depicted in Fig-
ure 6.4 and Figure 6.5). As a result, we decided to utilize the parameter vari-
ance proxy for the differentiable search process in the subsequent sections.
Given that this proxy function exhibits a negative correlation with classifica-
tion accuracy, we minimize it during the search process to discover models
with high classification performance.

Comparing pruning granularities

We conducted a comparison of the three granularities introduced in Section
6.1.1 (i.e., full, attention head, and bi-granularity). The learning curves obtained
while minimizing the parameter variance proxy for these granularities can be
found in Figure 6.6 and Figure 6.7.

All three granularities yielded positive outcomes by achieving lower values
compared to the original model (represented by the blue line). However, the
block granularity emerged as the predominant choice for both models. When
pruning MAE-ViT-base, the average parameter variance proxy value obtained
with the block granularity (5.6545× 10−3) is lower than that of the other gran-
ularities (5.6557 × 10−3 for the attention head granularity and 5.6547 × 10−3

for the bi-granularity). A similar predominance was observed when pruning
MobileViT-small. Moreover, block-wise pruning also offers a more significant
inference speedup (see Section 6.1.2). As a result, we conducted all subse-
quent experiments using the block granularity.

120

0 100 200 300 400 500
Number of iterations

0.005654

0.005655

0.005656

0.005657

Lo
ss

 v
al

ue
 (p

ar
am

et
er

 v
ar

ia
nc

e)

pruned model
original model

0 100 200 300 400 500
Number of iterations

0.0056540

0.0056545

0.0056550

0.0056555

0.0056560

0.0056565

0.0056570

0.0056575

0.0056580

Lo
ss

 v
al

ue
 (p

ar
am

et
er

 v
ar

ia
nc

e)

pruned model
original model

0 100 200 300 400 500
Number of iterations

0.0056540

0.0056545

0.0056550

0.0056555

0.0056560

0.0056565

0.0056570

Lo
ss

 v
al

ue
 (p

ar
am

et
er

 v
ar

ia
nc

e)

pruned model
original model

Figure 6.6: Comparison between the learning curves for block (left), at-
tention head (bottom), and bi-granularity (right) when pruning MAE-ViT-
base [71]. We used our proposed parameter variance proxy (Svar) and aver-aged over 5 independent runs. It can be noted that the block granularity isleading as it converges towards a minimum of 5.6545 × 10−6 compared to
5.6547× 10−6 for the bi-level granularity, and 5.6557× 10−6 for the attention-head granularity (which does not seem to provide any significant gains).

121

0 100 200 300 400 500
Number of iterations

7.5

8.0

8.5

9.0

9.5

Lo
ss

 v
al

ue
 (p

ar
am

et
er

 v
ar

ia
nc

e)

1e 6+5.01e 2

pruned model
original model

0 100 200 300 400 500
Number of iterations

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Lo
ss

 v
al

ue
 (p

ar
am

et
er

 v
ar

ia
nc

e)

1e 6+5.01e 2

pruned model
original model

0 100 200 300 400 500
Number of iterations

8.6

8.8

9.0

9.2

9.4

9.6

Lo
ss

 v
al

ue
 (p

ar
am

et
er

 v
ar

ia
nc

e)

1e 6+5.01e 2

pruned model
original model

Figure 6.7: Comparison between the learning curves for block (left), at-
tention head (bottom), and bi-granularity (right)whenpruningMobileViT-
small[132]. We used our proposed parameter variance proxy (Svar) and aver-aged over 5 independent runs. It can be noted that the attention-head gran-ularity performs poorly, reaching a higher loss value (around 5.01088× 10−2)than the other granularities. The bi-granularity reaches the lowest loss value(5.01067× 10−2) but suffers from higher variance than the block granularity.

122

5.653 × 10 3 5.655 × 10 3 5.657 × 10 3

Parameter variance proxy value

Differentiable search

Random search

Figure 6.8: Results of running the randomsearchandour proposeddiffer-
entiable search when pruningMAE-ViT-base [71] at the block granularity
with the parameter variance proxy for 5 runs of 500 iterations. The errorbars represent the 95 % confidence intervals.

0 100 200 300 400 500
Number of iterations

0.005654

0.005655

0.005656

0.005657

Lo
ss

 v
al

ue
 (p

ar
am

et
er

 v
ar

ia
nc

e)

pruned model
original model

0 100 200 300 400 500
Number of iterations

0.005654

0.005655

0.005656

0.005657

0.005658
Lo

ss
 v

al
ue

 (p
ar

am
et

er
 v

ar
ia

nc
e)

pruned model
original model

Figure 6.9: Comparison between the plot of the learning curve of our pro-
posed differentiable search process (left) and the random search (right).We pruned MAE-ViT-base[71] at the block granularity using our proposed pa-rameter variance proxy (Svar) and averaged over 5 independent runs. Theblue line represents the proxy value of the original (i.e., unpruned) model. Itcan be noted that the learning curve of the differentiable search smoothlyconverges.

Comparing iterative searchprocesses: differentiable searchvs ran-
dom search

To evaluate the effectiveness of our proposed differentiable search process
(Section 6.1.1), we compared its results with those obtained through a random
search. In the random search, the architectural parameters α were randomly
sampled from a normal distributionN (0, 1). The baselinemodel used for this
comparison was MAE-ViT-base [71], and the search process was conducted
over the block granularity.

Figure 6.8 shows that the differentiable process allows reaching a lower
(better) parameter variance proxy value. The learning curves of both search
processes are presented in Figure 6.9. It should be noted that, although the
difference between values is small, it is not negligible as these proxy values

123

cannot be directly interpreted and instead represent a ranking betweenmod-
els. These results confirm the advantage of our proposed differentiable ap-
proach.
Choice of threshold

0.05 0.25 0.45 0.65 0.85
30%

40%

50%

60%

70%

80%

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

MAE-ViT-base
MobileViT-small

0.05 0.25 0.45 0.65 0.85
threshold

2000

4000

6000

8000

In
fe

re
nc

e
th

ro
ug

hp
ut

(e

xa
m

pl
es

/s
ec

on
d)

MAE-ViT-base
MobileViT-small

Figure 6.10: Evolution of classification accuracy and inference speed of
the pruned models in function of the threshold. The thresholding is per-formed on α parameters shown in Figure 6.11 (block-wise pruning). The infer-ence speed is measured by the number of examples per second. The classifi-cation accuracies are from the validation dataset ICDAR-micro. The last blockis fine-tuned together with the classification head. Error bars are 95 % confi-dence intervals.

Within the framework of DARIO, the pruned models emerge through the
application of a binary thresholding operation to the α parameters, which are
generated during the differentiable search process (outlined in Section 6.1.1).
The effects of manipulating the pruning threshold are graphically depicted in
Figure 6.10. It is worth noting that elevating the threshold engenders swifter
inference times by facilitating the removal of more parameters. Regarding
classification accuracy, distinct trends surface forMAE-ViT-base andMobileViT-
small. Specifically, as the threshold escalates, MAE-ViT-base experiences a
diminishing classification performance, particularly beyond the threshold of
0.65. Conversely, the classification performance of MobileViT-small demon-
strates an intriguing pattern, with some instances showcasing improved ac-
curacy as the threshold increases, reaching a pinnacle at 0.65. As a result, we

124

judiciously opted for the threshold value of 0.65 for the conclusive evaluation
conducted on Meta-Album, as expounded upon in Section 6.1.2.
Image classification experiments

Weevaluated theperformanceof our prunedmodels onMeta-Albumdatasets.
The pruning process involves thresholding the obtained search parameters
α (see Figure 6.11), which allows us to control the trade-off between classifi-
cation accuracy and training/inference speed. Through experiments on the
validation dataset ICDAR-micro, we chose 0.65 as the threshold for both MAE-
ViT-base and MobileViT-small (see Figure 6.11 and 6.1.2).

1 2 3 4 5 6 7 8 9 10 11 12
Blocks in MAE-ViT-base

0.0

0.2

0.4

0.6

0.8

1.0

 p
ar

am
et

er
 v

al
ue

1 2 3 4 5 6 7 8 9
Blocks in MobileViT-small

0.0

0.2

0.4

0.6

0.8

1.0
chosen threshold = 0.65

Figure 6.11: Resulting search parameters α associated with each block
in MAE-ViT-base (left) and MobileViT-small (right). There are 12 multi-head attention blocks in MAE-ViT-base and 9 multi-head attention blocks inMobileViT-small. The orange line represents the threshold chosen empirically(0.65). Blocks with α values lower than the threshold are pruned and repre-sented in red, while blocks with higher α values are kept and represented inblue. We pruned 6 out of the 12 multi-head attention blocks of MAE-ViT-base,reducing the number of parameters from 85.8 to 43.3 million. Similarly, forMobileViT-small, we pruned 7 out of the 9 multi-head attention blocks, reduc-ing the number of parameters from 5.0 to 2.5 million.

Block-wise pruning leads to a drastically decreased training time, which
allows us to train an additional block (i.e., the last one) along with the classi-
fication head when fine-tuning. Hence, we fine-tuned the last block together
with the classification head for pruned models.

Figure 6.12 presents an overview of the classification performance of the
pruned models in comparison to their unpruned counterparts. The classi-
fication performance of the pruned models varies across different datasets
due to the diverse nature of the Meta-Album datasets [183]. On average, the
pruned MAE-ViT-base achieves slightly lower classification accuracy than its
unpruned counterpart, while the pruned MobileViT demonstrates compara-
ble classification accuracy.

Regarding training and inference efficiency, Figure 6.13 illustrates the re-
sults. The pruned MAE-ViT-base model shows a 69% improvement in infer-

125

MAE-ViT-base MobileViT-small
40%

20%

0%

20%

ac
cu

ra
cy

 im
pr

ov
em

en
t

median
mean

Figure 6.12: Box plot of accuracy improvement over the 40 Meta-Album
datasets on both pre-trained models. The vertical axis shows the increasein test accuracy from the unpruned pre-trained model to the pruned model(higher is better). DARIO-pruned models consistently reach similar or betterperformance compared to their unpruned counterparts.

MAE-ViT-base0

2000

4000

6000

8000

In
fe

re
nc

e
th

ro
ug

hp
ut

(e
xa

m
pl

es
 /

se
co

nd
)

Unpruned
Pruned

MobileViT-small0

1000

2000

3000

4000

5000

6000

In
fe

re
nc

e
th

ro
ug

hp
ut

(e
xa

m
pl

es
 /

se
co

nd
)

Unpruned
Pruned

MAE-ViT-base0

25

50

75

100

125

Tr
ai

ni
ng

 th
ro

ug
hp

ut
(e

xa
m

pl
es

 /
se

co
nd

)

Unpruned
Pruned

MobileViT-small0

50

100

150

Tr
ai

ni
ng

 th
ro

ug
hp

ut
(e

xa
m

pl
es

 /
se

co
nd

)

Unpruned
Pruned

Figure 6.13: Training and inference throughput. The vertical axis shows thethroughput of training and inference. Throughput ismeasured by the numberof processed examples per second, thus the higher the throughput is, themore efficient the model is. The 95% confidence intervals are computed withrepeated runs. DARIO-pruned models consistently achieve better inferencethroughput compared to their unpruned counterparts.

126

ence speed compared to its unpruned counterpart, while the prunedMobileViT-
small model achieves a 58% improvement in inference speed. In terms of
training speed, the prunedMAE-ViT-base is 25% faster than its unpruned coun-
terpart, while the pruned MobileViT-small requires a similar training time.

6.1.3 . Discussion and Conclusion
We introduce DARIO, a data-agnostic pruning method designed specifi-

cally for pre-trained Vision Transformers (ViTs). A significant advantage of
DARIO is its data-agnostic nature, requiring only a single application per pre-
trained model, making it an efficient and fast-pruning solution. By utilizing
DARIO, significant gains in inference speed (up to 69%) can be achieved, while
still maintaining or even improving classification performance and fine-tuning
time.

DARIO focuses on the pruning of entiremulti-head attention blocks, which
leads to more substantial speed improvements for two main reasons. Firstly,
attention-head-wise pruning leaves adjacent structureswithin eachmulti-head
attention block intact, such as fully-connected and normalization layers [46].
Secondly, modern hardware allows parallelized computations within a layer,
while computations between layers and blocks are inherently sequential, lim-
iting the benefits of parallel computing [172].

In our experiments (Section 6.1.2), we observed that models pruned us-
ing DARIO can even exhibit performance improvements, as seen in the case
of MobileViT-small (+16% top-1 accuracy). This indicates that even in small
state-of-the-art ViTmodels, there is redundancy and potential for further run-
time efficiency enhancements. These findings underscore the significance of
DARIO and align with previous research like the Lottery Ticket Hypothesis [54,
127].

Furthermore, while our focus in this chapter has been on computer vision
applications with ViTs, it is important to note that DARIO is a universal ap-
proach that can also be applied to transformer models in Natural Language
Processing (NLP) tasks.

As the size of deep learning models, especially transformers, has grown
significantly in recent years, from millions (e.g., ELMo [156]) to billions (e.g.,
Megatron-Turing NLG [169]) of parameters, there is a growing demand to ex-
plore methods for reducing their size and inference latency. DARIO shows
promise as a pruning approach for these large models, creating smaller ver-
sions that can be directly deployed on resource-constrained devices like mo-
bile phones. By democratizing access to these models, DARIO contributes to
accessibility while also supporting ecological efforts by preserving computa-
tional resources.

However, DNAS is not restricted to computer vision applications. In the
next section, we show that DNAS can be successfully applied to discover new

127

Multi-Layer Perceptron (MLP) designs and activation functions for control the-
ory applications.

6.2 . Torque Control of a Permanent Magnet Synchronous Mo-
tor using Differentiable Neural Architecture Search

In addition to classical Computer Vision (CV) tasks such as image classi-
fication and object detection (as seen in Chapters 4 and 5), DNAS can also
be applied to new domains, especially those that recently started to leverage
Deep Learning, such as automation and control theory [218, 62]. These fields
employ neural networks but existing works lack analysis of the composition
of their architectures, aside from empirical validation. They do not have any
certainty about the optimality of the architectures they selected. Hence, DNAS
comes into play as a way of discovering better, task-specific, neural network
architectures.

PermanentMagnet SynchronousMotors (PMSMs) [157] represent a cutting-
edge advancement in electric motor technology. These motors are designed
for efficiency and precision, making them highly valuable in various industrial
and commercial applications. What sets PMSMs apart is the synchronization
between the rotor’s magnetic field and the stator’s rotating magnetic field, fa-
cilitated by permanent magnets embedded in the rotor. This synchronization
results in minimal energy loss, reduced heat generation, and smoother op-
eration compared to traditional asynchronous motors. PMSMs offer rapid
response times and precise control over speed and torque, making them
well-suited for applications requiring high performance and reliability, such
as electric vehicles, robotics, industrial automation, and renewable energy
systems. With their high efficiency, low maintenance requirements, and eco-
logical attributes, PermanentMagnet SynchronousMotors have reshaped the
landscape of modern engineering and contributed to the transition towards
a more sustainable future.

In opposition to the traditional PID-based controllers, someneural-network-
based controllers for PMSMs were recently proposed with promising results
[206, 58, 150]. However,most of theseworks use “generic” architectureswhose
composition is never discussed.

In this chapter, we focused on designing a task-specific DNAS-based con-
troller for PMSMs that is able to estimate its torque. We presented our ap-
proach in Section 6.2.2. The rest of this section is organized as follows: Section
6.2.1 presents the governing equations of PMSMs. Section 6.2.3 features the
results of our experiments, and Section 6.2.4 discusses the limitations of our
results and brings a conclusion to our work.

6.2.1 . Preliminaries

128

The governing equations for PMSMs in the d− q axis are given by:
λ̇q = −Riq − ωeλd + vq, (6.7)
λ̇d = −Rid + ωeλq + vd, (6.8)

where vd, vq are the d, q axis voltages, iq, id are the d, q axis stator currents,
λd, λq are the d, q axis stator flux linkages, R is the stator resistance and ωeis the electromagnetic velocity. Furthermore, the electromagnetic torque de-
veloped and the velocity ω dynamics can be related as:

τe =
3

2
P (λdiq − λqid), (6.9)

ω̇ = τe − τL − bω, (6.10)
where τL is some load torque, P is the number of pole pairs and b is the
coefficient of viscous damping. In order to design controllers, one must first
express these equations in terms of the d, q axis currents. It can be readily
seen that once expressed in terms of the currents, the equivalent expressions
for Eqs. (6.7), (6.8) will form the current loops and Eqs. (6.9), (6.10) would
form the velocity control loops. This separation can be justified as the current
response is much faster than the mechanical torque response.

In order to express Eqs. (6.7), (6.8) in terms of the currents, one must
substitute the corresponding constitutive laws. Assuming linear inductance,
we have

λq =Lqiq,

λd =Ldid + λf ,
(6.11)

where Lq, Ld are the inductances and λf is the rotor flux linkage. However,this may not always be the case.
Our objective is to find a couple of functions (f1, f2) that are able to ap-

proximate the flux controlled by the current in each axis respectively:
λq =f1(Iq),

λd =f2(Id),
(6.12)

By substituting these nonlinear constitutive laws, weobtain the following equa-
tions:

İd =

(
∂f2
∂Id

)−1

(−RId + ωeλq + vd), (6.13)
İq =

(
∂f1
∂Iq

)−1

(−RIq − ωeλd + vq). (6.14)
In Section 6.2.2, we show that we can approximate the (f1, f2) pair using aMulti-Layer Perceptron (MLP) neural network whose architecture is designed

with DNAS. As the electromagnetic flux (i.e., the ground truth) cannot be di-
rectly measured, the partial differential equations 6.13 and 6.14 can be used
to compute an approximation of the flux.

129

6.2.2 . Proposed Approach
We divided our approach into two differentiable steps: (i) Firstly, search-

ing for the optimal number of layers and (ii) Secondly, searching for the op-
timal activation function for the network structure found in step (i). This sep-
aration is motivated by preventing the numerical instability (i.e., the training
loss becoming NaN) that would result from combining these two approaches
into a single one.

We also had to design a surrogate criterion for training our neural network
as the ground truth was not directly available.

Searching for the optimal number of layers

In this initial phase, we designed a compact search space denoted as S, en-
compassing solely two operations:

• Linear (fully-connected) + ReLU

• Identity

Here, ReLU served as a temporary representation, reserved for the forthcom-
ing activation function uncovered through the process outlined in Section
6.2.2.

Thedifferentiable exploration process closely follows theprinciples ofDARTS
[117] (detailed in Section 2.7 of Chapter 2). However, in contrast to themultiple
cells with interconnected operations of DARTS, our objective involved identi-
fying a solitary cell, comprising a linear sequence incorporating a maximum
of N operations drawn from S. This cell interposed itself between the input
and output fully-connected layers, thus determining the depth of our neural
network. The formulation encompassed the creation of a collection of 2×N

architectural parameters, collectively labeled as αL. Each individual parame-
ter within αN corresponded to a specific candidate operation, denoted as oLi ,in each respective layer L.

Remarkably, pursuing a single epoch sufficed to unveil a network depth
that consistently delivered commendable performance levels. We detail the
architecture of this network in Section 6.2.3.

Jacobian-based surrogate criterion

As presented in Section 6.2.1, it is not possible to directly obtain the electro-
magnetic flux values (λq, λd). However, it is possible to compute approxima-
tions by using Eqs. 6.13 and 6.14 as we have access to the ground truth values
of İd and İq.

130

Hence, we designed the following Jacobian-based surrogate criterionC to
enable training:

C = MSE(J−1
M (−RI + ωeM + v), (İd, İq)), (6.15)

where MSE is the mean squared error, M is the model output vector such
as M = (λ̃q, λ̃d) ≈ (λq, λd), R is the resistance value, I is the current vector
such as I = (Id, Iq), v is the voltage vector such as v = (vd, vq), and JM is the
Jacobian matrix ofM w.r.t. I , such as:

JM =

∂λ̃q

∂Iq
∂λ̃d
∂Iq

∂λ̃q

∂Id
∂λ̃d
∂Id

 . (6.16)

Hence, minimizing C enforces the constraint thatM ≈ (λq, λd).
Searching for the optimal activation function

In this second phase, we commenced by working from the network architec-
ture unveiled in Section 6.2.2, and subsequently eliminated the provisional
ReLU placeholder. Building upon this foundation, we then embarked on a dif-
ferentiable process to discern the optimal activation function A∗ that best
suits this specific architectural configuration.

We define an activation functionA ∈ SA as the amalgamation of a binary
functionB and twounary functions (U1,U2), giving rise toA(x) = B(U1(x),U2(x)).Consequently, the core objective of this NAS endeavor rests in the identifica-
tion of A∗(x) = B∗(U∗

1 (x),U∗
2 (x)). The search space SA comprises the follow-

ing binary primitives:
• add(x, y) = x+ y

• prod(x, y) = x× y

• sub(x, y) = x− y

• max(x, y)

• min(x, y)

• mask(x, y) = x

SA also comprises the following unary functions:
• max(x, 0)

• min(x, 0)

• ex

131

• tanh(x)

• x (identity)
• |x|
• sin(x)

• cos(x)

• 1

• x2

Consequently, we formulated a set of |B| + 2 × |U | parameters, desig-
nated as αA. Within a cell framework, these parameters undergo a softmax
transformation, serving as weighted inputs for the mixed output of all unary
and binary functions (see Eq. 2.7 and Section 2.7). This cell is integrated after
each fully-connected layer, taking the place of the ReLU activation. Notably,
since a solitary cell was employed, our exploration focused on determining a
singular, global activation function for the entire network.

Drawing a parallel to Section 6.2.2 (and similarly to the optimization pro-
cess of DARTS described in Section 2.7), we applied stochastic gradient de-
scent over 20 epochs to optimize αA and consequently ascertain the optimal
A∗.

6.2.3 . Experiments

Linear layer
(32 neurons) activation

Linear layer
(32 neurons)

Input Output
 activation

Linear layer
(32 neurons)

X2

Figure 6.14: Comparison between the baseline architecture (top) and the
DNAS-optimized one (bottom). The DNAS-designed architecture is deeperthan the original one and the activation function is also different and morecomplex.

In Fig. 6.14, we compared the original architecture with the one we ob-
tained using differentiable NAS. The baseline architecture is a simple Multi-
Layer Perceptron with only a single hidden layer and a standard Tanh activa-
tion. Our optimized architecture is deeper with two additional hidden layers
and a totally different activation function A∗(x) = exp(x) +max(x, 0).

This newly-discovered architecture greatly overperforms the baseline ar-
chitecture as shown in Fig. 6.15 where we can note that we get a much closer
fit for the target flux linkages (λd, λq).

132

Figure 6.15: Comparison between the flux linkages prediction plots of the
baseline architecture (top) and the optimized architecture (bottom). TheDNAS-based architecture fits the objective way closer than the baseline archi-tecture.

6.2.4 . Discussion and Conclusion
We were able to leverage DNAS to design novel MLP architectures that

perform significantly better than the baseline architecture. We evaluated our
approach on simulation (with dummy data) but it still needs to be validated
in a real-world scenario (i.e., using a physical motor). Our approach is also
generic enough to be applied to other use cases and control theory problems
where it could advantageously replace PID-based controllers.

133

134

7 - Conclusion and Future Directions

This thesis focused on exploring Differentiable Neural Architecture Search
and its application to computer vision tasks. In Chapter 3, we saw that DNAS
rapidly imposed itself as the prevailing subfield of NAS, with DARTS [117] be-
coming the most popular method by far. This high popularity led researchers
to produce dozens of follow-up articles trying to tackle the four challenges
we identified. However, none could overcome all challenges simultaneously,
and no subsequent DNAS method could become the new standard in lieu of
DARTS.

Nevertheless, in Chapters 4 to 6, we demonstrate that DNAS still has room
for improvement and can be successfully applied to a wide range of topics,
such as image classification, object recognition, pruning, content-based image
retrieval, and self-supervised learning. DNAS-discovered architectures now
consistently outperform handcrafted architectures, such as ResNets [69] or
Xception [29].

However, it should be noted that not all of our efforts were successful.
DNAS is a challenging research field, and some of our intuitions did not pro-
duce satisfactory results. For instance, we included in Appendix A an un-
published article that summarizes our efforts to create a biomimetic DNAS
method we dubbed “ColorNAS”. We explored color vision theory and high-
lighted that humans possessing a fourth type of photoreceptor (i.e., tetra-
chromats) can perceive a weirder color gamut than standard trichromat sub-
jects. In addition, recent color vision research shows that the human brain
processes the stimuli from each type of photoreceptor using separate neural
pipelines and recomposes the final “mental” image bymerging the processed
signals. From there, we made the assumption that we could roughly assimi-
late the color spectrum perceived by each type of photoreceptor to a channel.
Following this intuition, we designed an approach that would construct an en-
semble model composed of DNAS-designed subnetworks that would each be
responsible for processing a single channel. Unfortunately, despite promis-
ing initial results on CIFAR-10, we could not generalize these results to the
more challenging CIFAR-100. Nonetheless, this failure indicates that pursu-
ing biomimetic designs is not always advisable and highlights the disparities
between computer vision and biological optical vision.

Furthermore, a drastic change is currently underway in the computer vi-
sion field with the gradual replacement of Convolutional Neural Networks
(CNNs) with Vision Transformers (ViTs). ViTs perform significantly better than
CNNs, especially when the task at hand involves learning from a very large
dataset (e.g., DeiT III [178] outperforms ResNet-50 by around 6 % in top-1 ac-
curacy on ImageNet [163]). However, ViTs are often challenging to train and

135

suffer from high inference latency due to their large size. Therefore, as shown
in Chapter 6, DNAS (and NAS in general) can be useful for performing auto-
matic pruning on ViTs or discovering new highly-optimized architectures ca-
pable of addressing these issues.

Additionally, Explainable AI (XAI) is paramount to ensure the deployment
of Deep Learning in everyday tasks. In the case of automated decisionmaking
(e.g., judicial case analysis or autonomous driving), people affected by those
decisions would have trouble accepting them unless the model is able to pro-
vide argumentation [7]. Furthermore, somegovernmental entities such as the
European Union plan to require by law that AI models deployed on the mar-
ket should be explainable [47]. Concerning NAS, only a few approaches have
been proposed to directly search for explainable CNNmodels. However, most
of the existing studies leverage evolutionary-based [17, 3] or one-shot proba-
bilistic NAS [116, 143]. To the extent of our knowledge, none targeted DNAS
specifically. Nonetheless, one method dubbed SNAS (Saliency-Aware NAS)
[78] is noteworthy as it is post-hoc (i.e., agnostic of the backbone) and can
compute saliency maps for a wide range of NAS algorithms, including DNAS
methods such as DARTS [117]. Thus, Explainable NAS (XNAS) is still an emerg-
ing field, and we predict that it will expand greatly in the near future when
DNAS methods overcome all their current challenges.

Moreover, DNAS, along with NAS and general and the whole Automated
Machine Learning (AutoML) ecosystem, could play a key role in solving the
alignment problem [146, 195], which arises when an autonomous systemdoes
not match the specific requirements or goal of a given task (it is thus “mis-
aligned”). In the case of a neural network, this leads to suboptimal perfor-
mance and global inefficiency. DNAS addresses this issue by efficiently ex-
ploring a vast space of architectural configurations and identifying network
structures that are better suited for the task’s objective function. This way,
it is possible to find an architecture that can help constrain the neural net-
work to its objective, preventing possible deviations. Hence, its flexibility and
adaptability make DNAS a powerful tool to address the alignment problem
and enhance the capabilities of neural networks in diverse tasks.

In addition to the alignment problem, DNAS is also very relevant in the cur-
rent context of ecological transition. The excellent pattern recognition perfor-
mance of deep neural networks comes at the price of a high carbon footprint
that raises concerns about their sustainability [102, 59]. Consequently, it is
necessary to find ways to reduce their computational cost and lower their en-
ergy consumption. DNAS can be a useful tool to contribute to that goal by
designing efficient sparse architectures (i.e., that do not comport any super-
fluous operations). Ideally, those architectures would retain the performance
level of larger architectures despite having a low number of FLOPs, similar to
whatwe achieved in Chapter 6. It is noteworthy to state that someapproaches

136

went further than this and already tried to assess the carbon footprint of NAS
itself [226].

Finally, novel trends have recently appeared in the NAS landscape, with
promising non-DNAS approaches such as zero-shot (or low-cost) NAS [135,
21, 2]. These works focused on methods able to perform NAS very efficiently
(e.g., just using a few minutes of computational time), thus comparing favor-
ably with DNAS which still requires several GPU hours. We also witnessed the
revival of previously explored concepts such as Reinforcement Learning or
Evolutionary Algorithms [38]. Consequently, we can expect that, in the near
future, DNAS will benefit from knowledge/experience transfer in NAS meth-
ods that could combine the strengths of several approaches.

137

138

Bibliography

[1] MohamedSAbdelfattah et al. “Zero-Cost Proxies for Lightweight{NAS}”. In: International Conference on Learning Representations.2021.
[2] MohamedSAbdelfattah et al. “Zero-Cost Proxies for LightweightNAS”. In: International Conference on Learning Representations.2021.
[3] AndreaAgiollo, Giovanni Ciatto, andAndreaOmicini. “Shallow2Deep:Restraining Neural Networks Opacity Through Neural Architec-ture Search”. In: InternationalWorkshop on Explainable, Transpar-

ent Autonomous Agents and Multi-Agent Systems. Springer. 2021,pp. 63–82.
[4] Shunichi Amari. “A theory of adaptive pattern classifiers”. In:

IEEE Transactions on Electronic Computers 3 (1967), pp. 299–307.
[5] D Anderson and K Burnham. “Model selection and multi-modelinference”. In: Second. NY: Springer-Verlag 63.2020 (2004), p. 10.
[6] M Arai. “Adaptive control of a neural network with a variablefunction of a unit and its application”. In: Trans. Inst. Electron,

Inform. Commun. Engng 74 (1991), pp. 551–559.
[7] AlejandroBarredoArrieta et al. “Explainable Artificial Intelligence(XAI): Concepts, taxonomies, opportunities and challenges to-ward responsible AI”. In: Information fusion 58 (2020), pp. 82–115.
[8] Werner G. K. Backhaus et al. Color Vision: Perspectives from Dif-

ferent Disciplines. Walter de Gruyter, 1998.
[9] Gabriel Bender et al. “Understanding and simplifying one-shotarchitecture search”. In: International conference onmachine learn-

ing. PMLR. 2018, pp. 550–559.
[10] Yassine Benyahia et al. “Overcomingmulti-model forgetting”. In:

International Conference onMachine Learning. PMLR. 2019, pp. 594–603.
[11] Christopher M Bishop and Nasser M Nasrabadi. Pattern recog-

nition and machine learning. Vol. 4. 4. Springer, 2006.
[12] Leo Breiman. “Arcing classifier (with discussion and a rejoinderby the author)”. In: The annals of statistics 26.3 (1998), pp. 801–849.

139

[13] Leo Breiman. “Random forests”. In:Machine learning 45.1 (2001),pp. 5–32.
[14] JaneBromley et al. “Signature verificationusing a" siamese" timedelay neural network”. In: Advances in neural information pro-

cessing systems 6 (1993).
[15] Han Cai, Ligeng Zhu, and Song Han. “ProxylessNAS: Direct Neu-ral Architecture Search on Target Task and Hardware”. In: Inter-

national Conference on Learning Representations. 2019.
[16] Han Cai et al. “Once for All: Train One Network and Specialize itfor Efficient Deployment”. In: International Conference on Learn-

ing Representations. 2020.
[17] Zachariah J Carmichael, Timothy Y Moon, and Samson A Jacobs.

Explainable Neural Architecture Search (XNAS). Tech. rep. LawrenceLivermore National Lab.(LLNL), Livermore, CA (United States),2021.
[18] Chyi-TsongChenandWei-Der Chang. “A feedforwardneural net-work with function shape autotuning”. In: Neural networks 9.4(1996), pp. 627–641.
[19] Daoyuan Chen et al. “AdaBERT: task-adaptive BERT compres-sion with differentiable neural architecture search”. In: Proceed-

ings of the Twenty-Ninth International Conference on International
Joint Conferences on Artificial Intelligence. 2021, pp. 2463–2469.

[20] Ting Chen et al. “A simple framework for contrastive learning ofvisual representations”. In: International conference on machine
learning. PMLR. 2020, pp. 1597–1607.

[21] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. “Neural Ar-chitecture Search on ImageNet in Four GPU Hours: A Theoreti-cally Inspired Perspective”. In: International Conference on Learn-
ing Representations (ICLR). 2021.

[22] Xiangning Chen and Cho-Jui Hsieh. “Stabilizing differentiable ar-chitecture search via perturbation-based regularization”. In: In-
ternational conference onmachine learning. PMLR. 2020, pp. 1554–1565.

[23] Xin Chen et al. “Progressive differentiable architecture search:Bridging the depth gap between search and evaluation”. In: Pro-
ceedings of the IEEE/CVF international conference on computer vi-
sion. 2019, pp. 1294–1303.

140

[24] Xinlei Chen and Kaiming He. “Exploring simple siamese repre-sentation learning”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2021, pp. 15750–15758.

[25] Xinlei Chen et al. “Improvedbaselineswithmomentumcontrastivelearning”. In: arXiv preprint arXiv:2003.04297 (2020).
[26] Yukang Chen et al. “Renas: Reinforced evolutionary neural ar-chitecture search”. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2019, pp. 4787–4796.
[27] Krishna Teja Chitty-Venkata et al. “Neural architecture searchfor transformers: A survey”. In: IEEE Access 10 (2022), pp. 108374–108412.
[28] François Chollet. “On themeasure of intelligence”. In: arXiv preprint

arXiv:1911.01547 (2019).
[29] François Chollet. “Xception: Deep learning with depthwise sep-arable convolutions”. In: Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition. 2017, pp. 1251–1258.
[30] Xiangxiang Chu and Bo Zhang. “Noisy Differentiable Architec-ture Search”. In: British Machine Vision Conference. 2021.
[31] Xiangxiang Chu et al. “DARTS-: Robustly Stepping out of Perfor-mance CollapseWithout Indicators”. In: International Conference

on Learning Representations. 2021.
[32] Xiangxiang Chu et al. “Fair darts: Eliminating unfair advantagesin differentiable architecture search”. In: European conference on

computer vision. Springer. 2020, pp. 465–480.
[33] CIFAR-10 and CIFAR-100 datasets. https://www.cs.toronto.edu/

~kriz/cifar.html. Accessed: 2023-09-06.
[34] Karl Cobbe et al. “Leveraging procedural generation to bench-mark reinforcement learning”. In: International conference onma-

chine learning. PMLR. 2020, pp. 2048–2056.
[35] Marius Cordts et al. “The Cityscapes Dataset for Semantic UrbanScene Understanding”. In: Proc. of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR). 2016.
[36] Ekin Dogus Cubuk et al. “AutoAugment: Learning AugmentationPolicies from Data”. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition ().
[37] Haskell B Curry. “Themethod of steepest descent for non-linearminimization problems”. In:Quarterly of Applied Mathematics 2.3(1944), pp. 258–261.

141

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

[38] Xiaoliang Dai et al. “FBNetV3: Joint architecture-recipe searchusing predictor pretraining”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 2021, pp. 16276–16285.

[39] JiaDeng et al. “Imagenet: A large-scale hierarchical imagedatabase”.In: 2009 IEEE conference on computer vision and pattern recogni-
tion. Ieee. 2009, pp. 248–255.

[40] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional trans-formers for languageunderstanding”. In: arXiv preprint arXiv:1810.04805(2018).
[41] Terrance DeVries and GrahamW Taylor. “Improved Regulariza-tion of Convolutional Neural Networks with Cutout”. In: arXiv

preprint arXiv:1708.04552 (2017).
[42] Terrance DeVries and Graham W Taylor. “Improved regulariza-tion of convolutional neural networkswith cutout”. In: arXiv preprint

arXiv:1708.04552 (2017).
[43] Shaojin Ding et al. “Autospeech: Neural architecture search forspeaker recognition”. In: arXiv preprint arXiv:2005.03215 (2020).
[44] Hongwei Dong et al. “Automatic design of CNNs via differen-tiable neural architecture search for PolSAR image classifica-tion”. In: IEEE Transactions on Geoscience and Remote Sensing 58.9(2020), pp. 6362–6375.
[45] Xuanyi Dong and Yi Yang. “NAS-Bench-201: Extending the Scopeof Reproducible Neural Architecture Search”. In: International

Conference on Learning Representations (ICLR). 2020. url: https:
//openreview.net/forum?id=HJxyZkBKDr.

[46] Alexey Dosovitskiy et al. “An Image is Worth 16x16Words: Trans-formers for Image Recognition at Scale”. In: International Confer-
ence on Learning Representations. 2021. url: https://openreview.
net/forum?id=YicbFdNTTy.

[47] Martin Ebers. “Regulating Explainable AI in the European Union.AnOverviewof the Current Legal Framework (s)”. In: AnOverview
of the Current Legal Framework (s)(August 9, 2021). Liane Colonna/Stanley
Greenstein (eds.), Nordic Yearbook of Law and Informatics (2020).

[48] Thomas Ebrey and Yiannis Koutalos. “Vertebrate Photorecep-tors”. In: Progress in Retinal and Eye Research 20.1 (2001), pp. 49–94. issn: 1350-9462.
[49] Bradley Efron. “Bootstrap methods: another look at the jack-knife”. In: Breakthroughs in statistics. Springer, 1992, pp. 569–593.

142

https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

[50] Lasse Espeholt et al. “Impala: Scalable distributed deep-rl withimportance weighted actor-learner architectures”. In: Interna-
tional conference onmachine learning. PMLR. 2018, pp. 1407–1416.

[51] Mark Everinghamand JohnWinn. “ThePASCAL visual object classeschallenge 2012 (VOC2012) development kit”. In: Pattern Anal. Stat.
Model. Comput. Learn., Tech. Rep 2007 (2012), pp. 1–45.

[52] Zhenkun Fan et al. “Self-attention neural architecture searchfor semantic image segmentation”. In: Knowledge-Based Systems239 (2022), p. 107968.
[53] Jiemin Fang et al. “Densely connected search space for moreflexible neural architecture search”. In: Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition. 2020, pp. 10628–10637.
[54] Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hy-pothesis: Finding Sparse, Trainable Neural Networks”. In: Inter-

national Conference on Learning Representations. 2019.
[55] Yoav Freund, Robert Schapire, and Naoki Abe. “A short intro-duction to boosting”. In: Journal-Japanese Society For Artificial In-

telligence 14.771-780 (1999), p. 1612.
[56] Kunihiko Fukushima. “Visual feature extraction by a multilay-ered network of analog threshold elements”. In: IEEE Transac-

tions on Systems Science and Cybernetics 5.4 (1969), pp. 322–333.
[57] Chen Gao et al. “Adversarialnas: Adversarial neural architecturesearch for gans”. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2020, pp. 5680–5689.
[58] Jian Gao et al. “A Practical Analytical Expression and Estimationfor Average Torque of High Saturation Permanent Magnet Syn-chronous Motor for Special Vehicles”. In: IEEE Transactions on

Vehicular Technology 72.1 (2022), pp. 357–366.
[59] StefanosGeorgiou et al. “Green ai: Dodeep learning frameworkshave different costs?” In: Proceedings of the 44th International

Conference on Software Engineering. 2022, pp. 1082–1094.
[60] YuanbiaoGouet al. “Clearer:Multi-scale neural architecture searchfor image restoration”. In: Advances in Neural Information Pro-

cessing Systems 33 (2020), pp. 17129–17140.
[61] KlausGreff, RupeshK Srivastava, and Jürgen Schmidhuber. “High-way andResidual Networks learnUnrolled Iterative Estimation”.In: International Conference on Learning Representation. 2017.

143

[62] Sorin Grigorescu et al. “A survey of deep learning techniquesfor autonomous driving”. In: Journal of Field Robotics 37.3 (2020),pp. 362–386.
[63] Jean-Bastien Grill et al. “Bootstrap your own latent-a new ap-proach to self-supervised learning”. In: Advances in Neural Infor-

mation Processing Systems 33 (2020), pp. 21271–21284.
[64] Yu-Chao Gu et al. “Dots: Decoupling operation and topology indifferentiable architecture search”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 2021, pp. 12311–12320.
[65] Dazhou Guo et al. “Organ at risk segmentation for head andneck cancer using stratified learning and neural architecturesearch”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2020, pp. 4223–4232.
[66] RichardWHamming. “Error detecting anderror correcting codes”.In: The Bell system technical journal 29.2 (1950), pp. 147–160.
[67] WKeithHastings. “MonteCarlo samplingmethods usingMarkovchains and their applications”. In: (1970).
[68] Felix Hausdorff. Grundzüge der Mengenlehre. Leipzig: Veit, 1914.
[69] KaimingHe et al. “Deep residual learning for image recognition”.In: Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition. 2016, pp. 770–778.
[70] Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE inter-

national conference on computer vision. 2017, pp. 2961–2969.
[71] Kaiming He et al. “Masked Autoencoders Are Scalable VisionLearners”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2022, pp. 16000–16009.
[72] Hermann vonHelmholtz. Treatise on Physiological Optics. CourierCorporation, 1909. isbn: 978-0486174709.
[73] Dan Hendrycks and Kevin Gimpel. “Gaussian error linear units(gelus)”. In: arXiv preprint arXiv:1606.08415 (2016).
[74] AlexandreHeuillet, FabienCouthouis, andNataliaDiaz-Rodriguez.“Explainability in deep reinforcement learning”. In: Knowledge-

Based Systems 214 (2021), p. 106685.
[75] Alexandre Heuillet, Hedi Tabia, and Hichem Arioui. NASiam: Effi-

cient Representation Learning using Neural Architecture Search for
Siamese Networks. 2023. url: https://openreview.net/forum?
id=apZRm_0VClK.

144

https://openreview.net/forum?id=apZRm_0VClK
https://openreview.net/forum?id=apZRm_0VClK

[76] Alexandre Heuillet et al. “D-DARTS: Distributed DifferentiableArchitecture Search”. In: arXiv preprint arXiv:2108.09306 (2021).
[77] Sung-JinHong andOh-Kyong Kwon. “An RGB to RGBYColor Con-version Algorithm for Liquid Crystal Display Using RGW Pixelwith Two-Field Sequential Driving Method”. In: Journal of the Op-

tical Society of Korea 6.6 (Dec. 2014).
[78] Ramtin Hosseini and Pengtao Xie. “Saliency-Aware Neural Ar-chitecture Search”. In: Advances in Neural Information Processing

Systems. 2022.
[79] Andrew Howard et al. “Searching for mobilenetv3”. In: Proceed-

ings of the IEEE/CVF international conference on computer vision.2019, pp. 1314–1324.
[80] ShoukangHuet al. “Neural architecture search for LF-MMI trainedtime delay neural networks”. In: IEEE/ACM Transactions on Audio,

Speech, and Language Processing 30 (2022), pp. 1093–1107.
[81] Han Huang et al. “Lightweight image super-resolution with hier-archical and differentiable neural architecture search”. In: arXiv

preprint arXiv:2105.03939 (2021).
[82] Lan Huang et al. “U-DARTS: Uniform-space differentiable archi-tecture search”. In: Information Sciences 628 (2023), pp. 339–349.
[83] Ziyan Huang, Zehua Wang, Lixu Gu, et al. “AdwU-Net: AdaptiveDepth andWidth U-Net for Medical Image Segmentation by Dif-ferentiable Neural Architecture Search”. In:Medical Imaging with

Deep Learning. 2021.
[84] David H Hubel and Torsten NWiesel. “Receptive fields and func-tional architecture of monkey striate cortex”. In: The Journal of

physiology 195.1 (1968), pp. 215–243.
[85] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-

2019 (Revision of IEEE 754-2008) (2019), pp. 1–84. doi: 10.1109/
IEEESTD.2019.8766229.

[86] INRIA Holidays Dataset. https://lear.inrialpes.fr/~jegou/
data.php. Accessed: 2023-09-07.

[87] Sergey Ioffe and Christian Szegedy. “Batch normalization: Ac-celerating deep network training by reducing internal covari-ate shift”. In: International conference on machine learning. pmlr.2015, pp. 448–456.
[88] A.G. Ivakhnenko andV.G. Lapa.Cybernetic Predicting Devices. Jprsreport. CCM InformationCorporation, 1973. url: https://books.

google.fr/books?id=FhwVNQAACAAJ.
145

https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://lear.inrialpes.fr/~jegou/data.php
https://lear.inrialpes.fr/~jegou/data.php
https://books.google.fr/books?id=FhwVNQAACAAJ
https://books.google.fr/books?id=FhwVNQAACAAJ

[89] Gerald H. Jacobs. “The evolution of vertebrate color vision”. In:
Advances in experimentalmedicine and biology 739 (2012), pp. 156–172.

[90] K. A. Jameson, S.M.Highnote, and L.M.Wasserman. “Richer colorexperience in observerswithmultiple photopigment opsin genes”.In: Psychonomic Bulletin & Review 8 (2001), pp. 244–261.
[91] Eric Jang, ShixiangGu, andBenPoole. “Categorical Reparametriza-tionwithGumble-Softmax”. In: International Conference on Learn-

ing Representations. 2017.
[92] Herve Jegou, Matthijs Douze, and Cordelia Schmid. “HammingEmbedding and Weak Geometric Consistency for Large ScaleImage Search”. In: Proceedings of the 10th European Conference

on Computer Vision: Part I. 2008, pp. 304–317.
[93] Qian Jiang et al. “EH-DNAS: End-to-End Hardware-aware Differ-entiableNeural Architecture Search”. In: arXiv preprint arXiv:2111.12299(2021).
[94] Yufan Jiang et al. “Improved differentiable architecture searchfor language modeling and named entity recognition”. In: Pro-

ceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). 2019, pp. 3585–3590.

[95] Kun Jing, Luoyu Chen, and Jungang Xu. “An architecture entropyregularizer for differentiable neural architecture search”. In:Neu-
ral Networks 158 (2023), pp. 111–120.

[96] Gabriele Jordan et al. “The dimensionality of color vision in car-riers of anomalous trichromacy”. In: Journal of Vision 10.8 (July2010), pp. 12–12. issn: 1534-7362.
[97] Amina Kammoun et al. “Generative Adversarial Networks forface generation: A survey”. In: ACMComputing Surveys 55.5 (2022),pp. 1–37.
[98] JacobDevlinMing-Wei ChangKenton and LeeKristina Toutanova.“Bert: Pre-training of deep bidirectional transformers for lan-guageunderstanding”. In: Proceedings of naacL-HLT. 2019, pp. 4171–4186.
[99] SunghoonKimet al. “MDARTS:Multi-objective differentiable neu-ral architecture search”. In: 2021 Design, Automation & Test in Eu-

rope Conference & Exhibition (DATE). IEEE. 2021, pp. 1344–1349.
[100] Alex Krizhevsky, GeoffreyHinton, et al. “Learningmultiple layersof features from tiny images”. In: (2009).

146

[101] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-geNet ClassificationwithDeep Convolutional Neural Networks”.In: Advances in Neural Information Processing Systems 25 (2012).
[102] C-C Jay Kuo and Azad M Madni. “Green learning: Introduction,examples and outlook”. In: Journal of Visual Communication and

Image Representation (2022), p. 103685.
[103] Yann LeCun. “A path towards autonomousmachine intelligenceversion 0.9. 2, 2022-06-27”. In: (2022).
[104] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks forimages, speech, and time series”. In: The handbook of brain the-

ory and neural networks 3361.10 (1995), p. 1995.
[105] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learn-ing”. In: nature 521.7553 (2015), pp. 436–444.
[106] Yann LeCun et al. “Backpropagation applied to handwritten zipcode recognition”. In: Neural computation 1.4 (1989), pp. 541–551.
[107] Claude Lemaréchal. “Cauchy and the gradient method”. In: Doc

Math Extra 251.254 (2012), p. 10.
[108] Qing Li, Xia Wu, and Tianming Liu. “Differentiable neural archi-tecture search for optimal spatial/temporal brain function net-work decomposition”. In:Medical Image Analysis 69 (2021), p. 101974.
[109] Shiqian Li et al. “Auto-FERNet: A facial expression recognitionnetwork with architecture search”. In: IEEE Transactions on Net-

work Science and Engineering 8.3 (2021), pp. 2213–2222.
[110] Zhiheng Li et al. “Differentiable neural architecture search forsar image ship object detection”. In: IET International Radar Con-

ference (IET IRC 2020). Vol. 2020. IET. 2020, pp. 950–954.
[111] Hanwen Liang et al. “Darts+: Improved differentiable architec-ture searchwith early stopping”. In: arXiv preprint arXiv:1909.06035(2019).
[112] Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: Pro-

ceedings of the IEEE international conference on computer vision.2017, pp. 2980–2988.
[113] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”.In: European conference on computer vision. Springer. 2014, pp. 740–755.
[114] Seppo Linnainmaa. “The representation of the cumulative round-ing error of an algorithmas a Taylor expansionof the local round-ing errors”. PhD thesis.Master’s Thesis (in Finnish), Univ. Helsinki,1970.

147

[115] Chenxi Liu et al. “Auto-deeplab: Hierarchical neural architecturesearch for semantic image segmentation”. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition.2019, pp. 82–92.

[116] Chia-Hsiang Liu et al. “FOX-NAS: Fast, On-device and ExplainableNeural Architecture Search”. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. 2021, pp. 789–797.

[117] Hanxiao Liu, Karen Simonyan, and Yiming Yang. “DARTS: Dif-ferentiable Architecture Search”. In: International Conference on
Learning Representations. 2019.

[118] Ze Liu et al. “Swin transformer: Hierarchical vision transformerusing shifted windows”. In: Proceedings of the IEEE/CVF interna-
tional conference on computer vision. 2021, pp. 10012–10022.

[119] Vasco Lopes et al. “Guided Evolution for Neural ArchitectureSearch”. In: arXiv preprint arXiv:2110.15232 (2021).
[120] JavierGarcia Lopez, Antonio Agudo, and FrancescMoreno-Noguer.“E-DNAS: Differentiable neural architecture search for embed-ded systems”. In: 2020 25th International Conference on Pattern

Recognition (ICPR). IEEE. 2021, pp. 4704–4711.
[121] Jonathan Lorraine, Paul Vicol, and David Duvenaud. “Optimizingmillions of hyperparameters by implicit differentiation”. In: In-

ternational Conference on Artificial Intelligence and Statistics. PMLR.2020, pp. 1540–1552.
[122] Qing Lu et al. “RT-DNAS: Real-Time Constrained DifferentiableNeural Architecture Search for 3D Cardiac Cine MRI Segmen-tation”. In: International Conference on Medical Image Computing

and Computer-Assisted Intervention. Springer. 2022, pp. 602–612.
[123] S.M. Lucas et al. “ICDAR 2003 Robust Reading Competitions”.In: Seventh International Conference on Document Analysis and

Recognition, 2003. Proceedings. 2003, pp. 682–687. doi: 10.1109/
ICDAR.2003.1227749.

[124] Scott M Lundberg and Su-In Lee. “A Unified Approach to Inter-preting Model Predictions”. In: Proceedings of the International
Conference onNeural Information Processing Systems. 2017, pp. 4768–4777.

[125] Scott M Lundberg and Su-In Lee. “A unified approach to inter-preting model predictions”. In: Advances in neural information
processing systems 30 (2017).

148

https://doi.org/10.1109/ICDAR.2003.1227749
https://doi.org/10.1109/ICDAR.2003.1227749

[126] Xiangzhong Luo et al. “Lightnas: On lightweight and scalableneural architecture search for embedded platforms”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2022).

[127] Eran Malach et al. “Proving the Lottery Ticket Hypothesis: Prun-ing Is All You Need”. In: Proceedings of the 37th International Con-
ference on Machine Learning. PMLR, Nov. 2020, pp. 6682–6691.(Visited on 06/02/2023).

[128] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice San-torini. “Building a Large Annotated Corpus of English: The PennTreebank”. In: Comput. Linguist. 19.2 (June 1993), pp. 313–330.issn: 0891-2017.
[129] LouisMartin et al. “CamemBERT: a Tasty French LanguageModel”.In: Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics. 2020, pp. 7203–7219.
[130] SeyedMojtabaMarvasti-Zadeh et al. “CHASE: Robust Visual Track-ing via Cell-Level Differentiable Neural Architecture Search”. In:

British Machine Vision Conference. 2021.
[131] Warren S McCulloch and Walter Pitts. “A logical calculus of theideas immanent in nervous activity”. In: The bulletin of mathe-

matical biophysics 5 (1943), pp. 115–133.
[132] SachinMehta andMohammadRastegari. “MobileViT: Light-weight,General-Purpose, and Mobile-Friendly Vision Transformer”. In:

International Conference on Learning Representations. 2022.
[133] SachinMehta andMohammadRastegari. “MobileViT: Light-weight,General-purpose, and Mobile-friendly Vision Transformer”. In:

International Conference on Learning Representations. 2021.
[134] SachinMehta andMohammadRastegari. “Separable self-attentionformobile vision transformers”. In: arXiv preprint arXiv:2206.02680(2022).
[135] Joe Mellor et al. “Neural architecture search without training”.In: International Conference onMachine Learning. PMLR. 2021, pp. 7588–7598.
[136] StephenMerity et al. “Pointer SentinelMixtureModels”. In: Inter-

national Conference on Learning Representations. 2017. url: https:
//openreview.net/forum?id=Byj72udxe.

149

https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe

[137] R Meyes et al. “Ablation studies to uncover structure of learnedrepresentations in artificial neural networks”. In: Proceedings on
the International Conference on Artificial Intelligence. The SteeringCommittee of The World Congress in Computer Science, Com-puter . . . 2019, pp. 185–191.

[138] Yingjie Miao et al. “RL-DARTS: differentiable architecture searchfor reinforcement learning”. In: arXiv preprint arXiv:2106.02229(2021).
[139] Paulius Micikevicius et al. “Mixed Precision Training”. In: Interna-

tional Conference on Learning Representations. 2018.
[140] Microsoft. Neural Network Intelligence. Version 2.0. Jan. 2021. url:

https://github.com/microsoft/nni.
[141] Microsoft Common Objects in Context. https://cocodataset.

org/#home. Accessed: 2023-09-06.
[142] Tong Mo et al. “Neural Architecture Search for Keyword Spot-ting”. In: Proc. Interspeech 2020 (2020), pp. 1982–1986.
[143] Niv Nayman et al. “BINAS: Bilinear Interpretable Neural Archi-tecture Search”. In: arXiv preprint arXiv:2110.12399 (2021).
[144] Niv Nayman et al. “HardCoRe-NAS: hard constrained differen-tiable neural architecture search”. In: International Conference

on Machine Learning. PMLR. 2021, pp. 7979–7990.
[145] Yuval Netzer et al. “Reading digits in natural images with unsu-pervised feature learning”. In: (2011).
[146] Richard Ngo. “The alignment problem from a deep learning per-spective”. In: arXiv preprint arXiv:2209.00626 (2022).
[147] Asaf Noy et al. “Asap: Architecture search, anneal and prune”.In: International Conference on Artificial Intelligence and Statistics.PMLR. 2020, pp. 493–503.
[148] David Opitz and Richard Maclin. “Popular ensemble methods:An empirical study”. In: Journal of artificial intelligence research 11(1999), pp. 169–198.
[149] Ankur Parikh et al. “A Decomposable Attention Model for Natu-ral Language Inference”. In: Proceedings of the 2016 Conference on

EmpiricalMethods inNatural Language Processing. 2016, pp. 2249–2255.
[150] Abhishek Patkar andAnuradhaMAnnaswamy. “An adaptive con-troller for a class of nonlinear plants based on neural networksand convex parameterization”. In: 2020 59th IEEE Conference on

Decision and Control (CDC). IEEE. 2020, pp. 126–131.
150

https://github.com/microsoft/nni
https://cocodataset.org/#home
https://cocodataset.org/#home

[151] Karl Pearson. “Note on Regression and Inheritance in the Caseof Two Parents”. In: Proceedings of the Royal Society of London
Series I 58 (Jan. 1895), pp. 240–242.

[152] Cheng Peng et al. “Efficient convolutional neural architecturesearch for remote sensing image scene classification”. In: IEEE
Transactions onGeoscience and Remote Sensing 59.7 (2020), pp. 6092–6105.

[153] Cheng Peng et al. “ReCNAS: Resource-ConstrainedNeural Archi-tecture Search Based on Differentiable Annealing and DynamicPruning”. In: IEEE Transactions on Neural Networks and Learning
Systems (2022).

[154] Junran Peng et al. “Efficient neural architecture transformationsearch in channel-level for object detection”. In: Advances in Neu-
ral Information Processing Systems 32 (2019).

[155] Wei Peng, XiaopengHong, andGuoying Zhao. “Video action recog-nition via neural architecture searching”. In: 2019 IEEE Interna-
tional Conference on Image Processing (ICIP). IEEE. 2019, pp. 11–15.

[156] Matthew E. Peters et al. “Deep contextualized word representa-tions”. In: Proceedings of the NAACL. 2018.
[157] Pragasen Pillay and Ramu Krishnan. “Modeling, simulation, andanalysis of permanent-magnet motor drives. I. The permanent-magnet synchronous motor drive”. In: IEEE Transactions on in-

dustry applications 25.2 (1989), pp. 265–273.
[158] Esteban Real et al. “Regularized evolution for image classifier ar-chitecture search”. In: Proceedings of the aaai conference on arti-

ficial intelligence. Vol. 33. 01. 2019, pp. 4780–4789.
[159] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the

Theory of Brain Mechanisms. Cornell Aeronautical Laboratory.Report no. VG-1196-G-8. SpartanBooks, 1962. url: https://books.
google.fr/books?id=7FhRAAAAMAAJ.

[160] Frank Rosenblatt. “The perceptron: a probabilistic model for in-formation storage and organization in the brain.” In: Psycholog-
ical review 65 6 (1958), pp. 386–408.

[161] Michael Ruchte et al. NASLib: A Modular and Flexible Neural Ar-
chitecture Search Library. https://github.com/automl/NASLib.2020.

[162] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.“Learning representations by back-propagating errors”. In: na-
ture 323.6088 (1986), pp. 533–536.

151

https://books.google.fr/books?id=7FhRAAAAMAAJ
https://books.google.fr/books?id=7FhRAAAAMAAJ
https://github.com/automl/NASLib

[163] Olga Russakovsky et al. “ImageNet Large Scale Visual Recogni-tion Challenge”. In: International Journal of Computer Vision (IJCV)115.3 (2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y.
[164] Mark Sandler et al. “Mobilenetv2: Inverted residuals and linearbottlenecks”. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. 2018, pp. 4510–4520.
[165] Jürgen Schmidhuber. “Learning to control fast-weight memo-ries: An alternative to dynamic recurrent networks”. In: Neural

Computation 4.1 (1992), pp. 131–139.
[166] Lloyd S Shapley. “A value for n-person games”. In: Classics in

game theory 69 (1997).
[167] Herbert A Simon. “The new science of management decision.”In: (1960).
[168] Karen Simonyan and Andrew Zisserman. “Very deep convolu-tional networks for large-scale image recognition”. In: arXiv preprint

arXiv:1409.1556 (2014).
[169] Shaden Smith et al. “Using deepspeed and megatron to trainmegatron-turing nlg 530b, a large-scale generative languagemodel”.In: arXiv preprint arXiv:2201.11990 (2022).
[170] C. Spearman. “The Proof and Measurement of Association be-tween Two Things”. In: The American Journal of Psychology 15.1(1904), pp. 72–101. issn: 00029556. url: http://www.jstor.org/

stable/1412159 (visited on 05/23/2023).
[171] Nitish Srivastava et al. “Dropout: a simple way to prevent neuralnetworks from overfitting”. In: The journal of machine learning

research 15.1 (2014), pp. 1929–1958.
[172] Haozhe Sun et al. “RRR-Net: Reusing, Reducing, and Recycling aDeep Backbone Network”. In: 2023 International Joint Conference

on Neural Networks (IJCNN). IEEE, 2023, pp. 1–9.
[173] Gunnar Svaetichin. “Spectral response curves fromsingle cones”.In: Acta physiologica Scandinavica. Supplementum 39.154 (1956),pp. 17–46.
[174] Mingxing Tan and Quoc Le. “Efficientnetv2: Smaller models andfaster training”. In: International Conference onMachine Learning.PMLR. 2021, pp. 10096–10106.
[175] Hidenori Tanaka et al. “Pruning Neural Networks without AnyData by Iteratively Conserving Synaptic Flow”. In: Advances in

neural information processing systems 33 (2020), pp. 6377–6389.

152

https://doi.org/10.1007/s11263-015-0816-y
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159

[176] The data that transformed AI research—and possibly the world.
https://qz.com/1034972/the- data- that- changed- the-
direction-of-ai-research-and-possibly-the-world. Ac-cessed: 2023-09-06.

[177] Robert Tibshirani. “Regression shrinkage and selection via thelasso”. In: Journal of the Royal Statistical Society: Series B (Method-
ological) 58.1 (1996), pp. 267–288.

[178] Hugo Touvron, Matthieu Cord, and Hervé Jégou. “Deit iii: Re-venge of the vit”. In: European Conference on Computer Vision.Springer. 2022, pp. 516–533.
[179] Hugo Touvron et al. “Training data-efficient image transformers& distillation through attention”. In: International conference on

machine learning. PMLR. 2021, pp. 10347–10357.
[180] Martin J. Tovée. An introduction to the visual system. CambridgeUniversity Press, 2008.
[181] Alan M. Turing. The imitation game. 1950.
[182] Maria Tzelepi and Anastasios Tefas. “Deep convolutional learn-ing for content based image retrieval”. In: Neurocomputing 275(2018), pp. 2467–2478.
[183] Ihsan Ullah et al. “Meta-Album: Multi-domain Meta-Dataset forFew-Shot ImageClassification”. In: Thirty-Sixth Conference onNeu-

ral Information Processing SystemsDatasets andBenchmarks Track.2022.
[184] Arash Vahdat et al. “UNAS: Differentiable Architecture SearchMeets Reinforcement Learning”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR).June 2020.
[185] Ashish Vaswani et al. “Attention is all you need”. In: Advances in

neural information processing systems 30 (2017).
[186] J. VonNeumann, P.M. Churchland, andP.S. Churchland. The Com-

puter and the Brain. The Silliman Memorial Lectures Series. YaleUniversity Press, 2000. isbn: 9780300084733. url: https://books.
google.fr/books?id=Q30MqJjRv1gC.

[187] AlvinWanet al. “Fbnetv2: Differentiable neural architecture searchfor spatial and channel dimensions”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 12965–12974.

153

https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world
https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world
https://books.google.fr/books?id=Q30MqJjRv1gC
https://books.google.fr/books?id=Q30MqJjRv1gC

[188] Ji Wan et al. “Deep learning for content-based image retrieval: Acomprehensive study”. In: Proceedings of the 22nd ACM interna-
tional conference on Multimedia. 2014, pp. 157–166.

[189] Ruochen Wang et al. “Rethinking Architecture Selection in Dif-ferentiable NAS”. In: International Conference on Learning Repre-
sentation. 2021.

[190] WennaWang et al. “FP-DARTS: Fast parallel differentiable neuralarchitecture search for image classification”. In: Pattern Recogni-
tion 136 (2023), p. 109193.

[191] Yaoming Wang et al. “Learning latent architectural distributionin differentiable neural architecture search via variational in-formation maximization”. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. 2021, pp. 12312–12321.

[192] Yu Weng, Zehua Chen, and Tianbao Zhou. “Improved differen-tiable neural architecture search for single image super-resolution”.In: Peer-to-Peer Networking and Applications 14.3 (2021), pp. 1806–1815.
[193] YuWeng et al. “Nas-unet: Neural architecture search formedicalimage segmentation”. In: IEEE Access 7 (2019), pp. 44247–44257.
[194] Ronald JWilliams. “Simple statistical gradient-following algorithmsfor connectionist reinforcement learning”. In: Machine learning8.3 (1992), pp. 229–256.
[195] YotamWolf et al. “Fundamental limitations of alignment in largelanguage models”. In: arXiv preprint arXiv:2304.11082 (2023).
[196] David H. Wolpert. “Stacked generalization”. In: Neural Networks5.2 (1992), pp. 241–259. issn: 0893-6080.
[197] Bichen Wu et al. “Fbnet: Hardware-aware efficient convnet de-sign via differentiable neural architecture search”. In: Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 10734–10742.

[198] Bichen Wu et al. “Fbnetv5: Neural architecture search for multi-ple tasks in one run”. In: arXiv preprint arXiv:2111.10007 (2021).
[199] DongxianWu, YisenWang, and Shu-tao Xia. “Revisiting loss land-scape for adversarial robustness”. In: arXiv preprint arXiv:2004.05884(2020).
[200] Yan Wu et al. “Trilevel neural architecture search for efficientsingle image super-resolution”. In: arXiv preprint arXiv:2101.06658(2021).

154

[201] Gerard Jacques van Wyk and Anna Sergeevna Bosman. “Evo-lutionary neural architecture search for image restoration”. In:
International Joint Conference on Neural Networks (IJCNN). IEEE.2019, pp. 1–8.

[202] Saining Xie et al. “Aggregated residual transformations for deepneural networks”. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2017, pp. 1492–1500.

[203] Sirui Xie et al. “SNAS: stochastic neural architecture search”. In:
arXiv preprint arXiv:1812.09926 (2018).

[204] Jingjing Xu et al. “A survey on green deep learning”. In: arXiv
preprint arXiv:2111.05193 (2021).

[205] Yuhui Xu et al. “PC-DARTS: Partial Channel Connections forMemory-Efficient Architecture Search”. In: International Conference on Learn-
ing Representations. 2020.

[206] Yu-Bai Yan et al. “Torque estimation and control of PMSMbasedon deep learning”. In: 2019 22nd International Conference on Elec-
trical Machines and Systems (ICEMS). IEEE. 2019, pp. 1–6.

[207] Zheyu Yan et al. “RADARS:Memory Efficient Reinforcement Learn-ing Aided Differentiable Neural Architecture Search”. In: 2022
27th Asia and South Pacific Design Automation Conference (ASP-
DAC). IEEE. 2022, pp. 128–133.

[208] Tien-Ju Yang, Yi-Lun Liao, and Vivienne Sze. “Netadaptv2: Effi-cient neural architecture search with fast super-network train-ing and architecture optimization”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 2402–2411.

[209] Yibo Yang et al. “Towards improving the consistency, efficiency,and flexibility of differentiable neural architecture search”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021, pp. 6667–6676.

[210] Peng Ye et al. “beta-DARTS: Beta-Decay Regularization for Dif-ferentiable Architecture Search”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, pp. 10874–10883.

[211] Xue Ying. “An overview of overfitting and its solutions”. In: Jour-
nal of physics: Conference series. Vol. 1168. IOP Publishing. 2019,p. 022022.

155

[212] Hongyuan Yu et al. “Cyclic differentiable architecture search”.In: IEEE Transactions on Pattern Analysis and Machine Intelligence(2022).
[213] Jiahui Yu and Thomas SHuang. “Universally slimmable networksand improved training techniques”. In: Proceedings of the IEEE/CVF

international conference on computer vision. 2019, pp. 1803–1811.
[214] Jiahui Yu et al. “Bignas: Scaling up neural architecture searchwith big single-stage models”. In: Computer Vision–ECCV 2020:

16th European Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part VII 16. Springer. 2020, pp. 702–717.

[215] Qihang Yu et al. “C2fnas: Coarse-to-fineneural architecture searchfor 3dmedical image segmentation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 4126–4135.

[216] Ahmet Caner Yüzügüler, NikolaosDimitriadis, andPascal Frossard.“U-Boost NAS: Utilization-Boosted Differentiable Neural Archi-tecture Search”. In: arXiv preprint arXiv:2203.12412 (2022).
[217] Arber Zela et al. “Understanding and RobustifyingDifferentiableArchitecture Search”. In: International Conference on Learning Rep-

resentations. 2020.
[218] Hanfeng Zhai and Timothy Sands. “Comparison of Deep Learn-ing and Deterministic Algorithms for Control Modeling”. In: Sen-

sors 22.17 (2022), p. 6362.
[219] Haokui Zhang et al. “Memory-efficient hierarchical neural ar-chitecture search for image denoising”. In: Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition.2020, pp. 3657–3666.
[220] Kaiyu Zhang et al. “Differentiable neural architecture search aug-mented with pruning andmulti-objective optimization for time-efficient intelligent fault diagnosis of machinery”. In:Mechanical

Systems and Signal Processing 158 (2021), p. 107773.
[221] Li Lyna Zhang et al. “Fast hardware-aware neural architecturesearch”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops. 2020, pp. 692–693.
[222] Miao Zhang et al. “Differentiable neural architecture search inequivalent space with exploration enhancement”. In: Advances

in Neural Information Processing Systems 33 (2020), pp. 13341–13351.

156

[223] Miao Zhang et al. “idarts: Differentiable architecture searchwithstochastic implicit gradients”. In: International Conference onMa-
chine Learning. PMLR. 2021, pp. 12557–12566.

[224] Peng Zhang et al. “Self-trained target detection of radar andsonar images using automatic deep learning”. In: IEEE Transac-
tions on Geoscience and Remote Sensing 60 (2021), pp. 1–14.

[225] Wenqiang Zhang et al. “Efficientpose: Efficient human pose es-timation with neural architecture search”. In: Computational Vi-
sual Media 7.3 (2021), pp. 335–347.

[226] Yiyang Zhao and Tian Guo. “Carbon-Efficient Neural Architec-ture Search”. In: arXiv preprint arXiv:2307.04131 (2023).
[227] HuahuanZheng, KeyuAn, and ZhijianOu. “Efficient neural archi-tecture search for end-to-end speech recognition via straight-through gradients”. In: 2021 IEEE Spoken Language TechnologyWork-

shop (SLT). IEEE. 2021, pp. 60–67.
[228] Bolei Zhou et al. “Scene parsing through ade20k dataset”. In:

Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 633–641.

[229] Pan Zhou et al. “Theory-inspired path-regularized differentialnetwork architecture search”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 8296–8307.

[230] Zhuotun Zhu et al. “V-NAS: Neural architecture search for volu-metric medical image segmentation”. In: 2019 International con-
ference on 3d vision (3DV). IEEE. 2019, pp. 240–248.

[231] Barret Zoph and Quoc Le. “Neural Architecture Search with Re-inforcement Learning”. In: International Conference on Learning
Representations. 2017.

[232] Barret Zoph et al. “Learning transferable architectures for scal-able image recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, pp. 8697–8710.

157

158

Appendices

159

A - ColorNAS

A.1 . Introduction

Color vision is an important aspect of visual perception and is widespread
among animals, including humans. It plays a crucial role in allowing organ-
isms to accurately interpret and analyze their visual environment. Biologists
andneuroscientists have long emphasized the importance of color vision in vi-
sual perception, and it remains a widely researched area in the field of vision
science [89, 90, 96]. Color information helps us recognize objects, perceive
depth and surface orientation, andmake decisions based on our visual input.

The computer vision community is focused on developing algorithms and
models that can analyze and interpret visual information like humans. Nowa-
days, Convolutional Neural Networks (CNNs) are the most efficient approach
to achieving complex computer vision tasks such as object recognition or se-
mantic segmentation. Although CNNs have proven to be very efficient, they
handle color information differently from the human visual system. In partic-
ular, CNNs deal with all the initial channels simultaneously with a single set of
operations (i.e., an architecture). Thus, channel differentiation will only occur
when assigning weights to feature maps during the training phase. Nonethe-
less, the channel processing pipeline remains architecturally identical for each
initial channel. On the other hand, in the human brain, biological evidence
[180] suggests that channel differentiation occurs as soon as the spectral stim-
uli are received by the photoreceptor cells and turned into electrical signals.
Different biological neural networks process these signals before the visual
cortex recomposes the final image. Consequently, we wondered if imple-
menting channel differentiation at the architecture level (i.e., a biomimetic
channel processing pipeline) could improve the performance of CNNs. This
way, we introduced ColorNAS, a novel way of processing colors by searching
for convolutional neural networks (CNNs) specific to each input image chan-
nel with differentiable Neural Architecture Search (NAS). The cooperation be-
tween the different CNNs is achieved through Ensemble Learning.

We structured our paper as follows: Section A.1.1 features a short survey
on related work, Section A.1.2 recalls important concepts about color vision
and discusses its biological implementation in human brains, Section A.2 de-
scribes the ColorNAS approach, Section A.3 showcases the results of ablation
studies and image classification experiments conducted onpopular computer
vision datasets, and Section A.4 finally brings a conclusion to this paper while
pointing out some future work directions.

A.1.1 . Related Work

161

This paper focuses on the implementation of a color-aware CNN model
using NAS. In this section, we review the most significant methods involved.
Neural Architecture Search NAS is a subfield of deep learning that focuses
on automating the design of neural network architectures usingmeta-learning
techniques. This has made it possible to design and optimize neural network
architectures in a more systematic and efficient manner, moving the field of
deep learning architecture design towards formal methods. A large number
of NASmethods have been developed. Early approaches used Reinforcement
Learning (RL) [231, 232], but their search cost was prohibitively expensive (i.e.,
hundreds or thousands of GPU days). However, an alternative NAS family is
currently trending: differentiable (or gradient-based) methods such as Differ-
entiable ARchiTecture Search (DARTS) [117] in which architectures are repre-
sented as sets of parameters. These parameters are optimized during the
search phase by a gradient descent algorithm.
Channel-Wise Neural Architecture Search The focus in channel-wise NAS,
is on searching for the optimal number of channels and the optimal oper-
ations to be applied to each channel, rather than searching for the overall
architecture of the network. Only a handful of NAS studies attempted to ex-
periment on channels. FBNetV2 [187] employs amaskingmechanism to reuse
featuremaps (DMaskingNAS) to reduce computational andmemory costs dur-
ing the search process. This freed memory allowed the authors to search for
the ideal input resolution and number of channels at each architecture layer.
PC-DARTS [205] samples a subset of channels at each cell edge and bypass
the rest in a shortcut. However, this mechanism causes an inconsistency in
the edge selection process that the authors alleviate through edge normal-
ization. NetAdaptV2 [208] monitors the number of filters in each layer. If one
is removed, an input channel is bypassed to maintain the same number of
output channels. This mechanism was dubbed Channel-level Bypass Connec-
tions (CBCs). Therefore, CBCs allowed the authors to merge layer width and
depth into a single dimension, thus reducing the computational cost of the
search process. [154] divides channels into subgroups at the block level and
assigns an architectural parameter to each group. This allows them to im-
prove on existing architecture designs focusing on object detection.
Ensemble Learning Ensemble Learning aims to combine the predictions of
multiple individually trained classifiers (e.g., multi-layer perceptrons, convolu-
tional neural networks, or decision trees) in order to improve predictive per-
formance [148]. In the past decades, many different Ensemble methods have
been proposed. Bootstrap Aggregating (Bagging) [49] consists in generating
n uniform samples (called bootstrap sets) from the dataset with replacement.
In fact, sampling with replacement makes each bootstrap set independent
from the others. Then, nmodels are fitted each with a specific bootstrap set,

162

and their predictions are combined in a single final output. Random Forests
[13] are a common example of a Bagging model. Boosting [12] is based on se-
quentially building multiple model instances and training each new instance
with feedback on the previous model’s mistakes. The most common Boost-
ing algorithm is Adaboost [55]. [196] introduced Stacked Generalization as an
advanced Ensemble method. In this case, a learning algorithm (i.e., a meta-
learner) is trained to combine the predictions of several other predictivemod-
els. Hence, the Ensemble process is not explicitly described by an algorithm
but rather learned through interaction with the sub-models. In many cases,
themeta-learner is a fully-connected neural network. This is the approach we
adopted for ColorNAS, as described in Section 4.1.

A.1.2 . Preliminaries: Color Vision
Humans and convolutional neural networks [104] (CNNs) process images

in different ways. CNNs (e.g., ResNets [69]) obtain feature maps from RGB
images by applying convolution operations in order to extract patterns. This
process is loosely inspired by how visual cortex neurons react to specific stim-
uli and interact together [84].

On the other hand, humans perceive color using three different types of
photoreceptor cells (called "cones") that each reacts to specific wavelengths
of light (i.e., red, green, and blue) [48, 173]. These photoreceptor cells trans-
mit the color information to the visual cortex through the optical nerve us-
ing a process called visual phototransduction [48] (i.e., the biological conver-
sion of photons into electrical signals). This capacity to perceive color through
three different channels is called trichromacy [72]. Besides, recent research
showed that some humans possess an additional type of photoreceptor cell,
thus leading to tetrachromacy [8].

Thus, both CNNs and humans can be considered trichromats. However,
this similarity ends here as humans process each channel through separate
neuronal mechanisms and then compare the resulting signals to recompose
the final image [180], contrary to CNNs, which process all channels through
identical operations. This fact led us to question whether biomimicking brain
color vision mechanisms could improve the image-processing capacities of
CNNs. Hence, we introduce a novel way to process channels through dis-
tributed cooperation between different CNNs and present its implementation
in Section A.2.1.

A.2 . Proposed Approach

This section presents our proposed approach for achieving channel-aware
NAS with cooperating networks. First, we describe the implementation of this
mechanism in a differentiable NAS framework. Then, we detail the different

163

Architecture
Optimizer
(Adam)

Normal Cell
α1

normal

Reduction Cell
α1

reduce

CNN1

Architecture
Optimizer
(Adam)

Normal Cell
α1

normal

Reduction Cell
α1

reduce

CNN2

Architecture
Optimizer
(Adam)

Normal Cell
α1

normal

Reduction Cell
α1

reduce

CNN3

Meta-Learner
(MLP)

Final
Predictions

Neural Architecture Search Stacked Generalization

Feature
Maps

Feature
Maps

Feature
Maps

Figure A.1: Layout of the ColorNAS search process with an RGB image as in-put. Each channel is fed to an independent CNN built using differentiable NAS(DARTS [117]). The output featuremaps of all CNNs are then concatenated andfed to a multi-layer perceptron acting as a meta-learner.

color models we implemented.
A.2.1 . Distributed Cooperation between Networks

Inspired by the biological process of color vision exposed in Section A.1.2,
we propose a novel mechanism to achieve better channel processing through
distributed cooperation between several CNNs whose architectures are ob-
tained using differentiable NAS. More precisely, the input image is split along
the channel dimension. Each channel is fed to an independent CNN whose
operations are specifically searched for this channel. Then, the outputs (i.e.,
feature maps) of all CNNs are concatenated to create a single tensor, simi-
larly to the way the different color signals are combined in the visual cortex.
Finally, this unified output is passed to a meta-learner (i.e., a multi-layer per-
ceptron) to obtain a final prediction. This combination process is inspired by a
widespread Ensemble Learning approach called Stacked Generalization [196].
Hence, instead of searching for a single CNN, we search for a specific, highly
specialized architecture to process each channel. The fundamental intuition
behind our method is that color channels are of paramount importance for
analyzing an image correctly, especially for complex tasks such as object de-
tection or semantic segmentation. In addition, this concept is backed by bio-
logical evidence of differentiation in channel processing in the human brain
(see Section A.1.2). Fig. A.1 summarizes our approach, dubbed ColorNAS.

We used β-DARTS [210], an evolution of the popular NAS method DARTS
[117], as the differentiable NAS backbone of our approach. This choice is mo-
tivated by the computational and memory efficiency of DARTS. Furthermore,
β-DARTS alleviates some of DARTS’ most important limitations with the imple-

164

mentation of an additional beta-decay loss. This way, each CNN i is fitted with
two different sets of architectural weights: αinormal and αireduction. These twosets respectively define normal cells (i.e., making up most of the architecture)
and reduction cells (i.e., performing dimension reduction). Consequently, the
search process of ColorNAS involves a total of 2|C| sets of architectural pa-
rameters, where C represents the channels of the input image.

In addition to standard RGB images, we implemented alternative color
models such as RGBY [77] to test whether ColorNAS could leverage these
models to boost performance (see Section A.2.2). We also added an RGB to RB
conversion algorithm to verify our hypothesis that all color channels are crit-
ical for computer vision tasks. Hence, the removal of a color channel should
negatively impact performance.

A.2.2 . Colors Models
We used several color models to experiment on the distributed cooper-

ation mechanism presented in Section A.2.1. To this end, we implemented
algorithms that convert images from the RGB (Red, Green, and Blue) additive
color model, the standard model of digital pictures, to another color model.
These are motivated by the fact that the datasets used in the experiments
(i.e., CIFAR-10 and CIFAR-100 [100]) only provide RGB images. Besides, it is un-
common to find computer vision datasets where images are encoded in an
alternative color model. Thus, the more straightforward approach is to con-
vert existing RGB images before feeding them to our ColorNAS approach.

Firstly, we implemented the RB (Red andBlue) colormodel by simply delet-
ing the green channel to simulate dichromacy to perform an ablation study
on color channels (see Section A.3.2). This conversion mechanism is detailed
in Algorithm 6.
Algorithm 6 Algorithm describing the RGB to RB color model conver-sion.
Require: Matrix: I , the RGB image to convert with shape (3,H,W)
Ensure: Matrix: If , the output RB image with shape (2,H,W)
1: If ← I
2: delete_channel_from_index(If , 1)3:
4: return If

Secondly, we implemented the RGBY (Red, Green, Blue, and Yellow) color
model in order to assess the performance impact of adding a fourth channel.
In particular, several color vision studies [90, 96] showed that tetrachromat
humans (i.e., subjects presenting a mutation adding a fourth type of photore-
ceptor cell to their retina) experience an enhanced perception of the world.
Hence, tetrachromats can discriminate spectral stimuli that are oblivious to

165

trichromats. This biological fact motivated us to feed a fourth channel (i.e.,
yellow) to our approach to see whether it leads to a performance boost. To
this end, we employed the RGB to RGBY algorithm introduced by Hong et al.
[77] and featured in Algorithm 7. However, this algorithm computes the yel-
low channel by interpolation from the red and green channels. Thus, we hy-
pothesize that this artificial channel is not equivalent to one computed from
a raw image file or directly obtained from a 4-channel image sensor.
Algorithm 7 Algorithm describing the RGB to RGBY color model con-version described by Hong et al. [77].
Require: Matrix: I , the RGB image to convert with shape (3,H,W)
Ensure: Matrix: If , the output RGBY image with shape (4,H,W)
1: If ← I
2: R← I[0]
3: G← I[1]
4: If [0]← R−minimum(R,G)
5: If [1]← G−minimum(R,G)
6: If [3]← If [0] + If [1]7:
8: return If

A.3 . Experiments

This section showcases the results of several image classification and ob-
ject detection experiments conducted on popular computer vision datasets.
We also conducted an ablation study on our proposed ColorNAS approach.

A.3.1 . Experimental Settings
All experiments were conducted on CIFAR-10 and CIFAR-100 [100] com-

puter vision datasets using Nvidia RTX 3090 and A6000 GPUs. We mostly
used the same hyperparameters as β-DARTS [210] when searching and train-
ing. However, we did not use the CIFAR auxiliary tower of DARTS [117]. We
also used AutoAugment [36], and Cutout [41] when training. We searched for
8-cell networks for 50 epochs on CIFAR datasets and ImageNet. We trained
8-cell networks for 600 epochs on CIFAR datasets and 300 epochs on Ima-
geNet. Finally, we parsed architectures from architectural weights (αnormal,
αreduction) by selecting the two best incoming operations per node, similar to
DARTS. Operations were selected using a threshold of 0.7.

A.3.2 . Ablation Study
We conducted an ablation study on the channel-wise distributed cooper-

ation ColorNAS approach we presented in Section 4.1. Our goal was to as-
166

sess ColorNAS’ performance impact compared to a standard NAS-obtained
CNN. To this end, we searched and trained a standard version of FairDARTS
[32] on CIFAR-10 and CIFAR-100 [100] using the same hyperparameters as Col-
orNAS (see Section A.3.1). In Table A.1, we can see that the ColorNAS RGB
model obtained 98.1% accuracy, surpassing the standard 8-cell FairDARTS ap-
proach by 1.6%. However, when evaluating on CIFAR-100, our RGB approach
under-performed the standard FairdDARTS model by 1.3%. One possible ex-
planation for this discrepancy in performance achievements is that the meta-
learner in our ColorNAS architecture can correctly classify between the 10
classes of CIFAR-10 but fails to find a good projection onto the larger class
distribution of CIFAR-100 (i.e., 100 classes thus a 10x increase factor compared
to CIFAR-10). Our suspicion is motivated by the fact that the meta-learner is
an essential part of the ensembling process and is responsible for combining
the predictions of the different sub-models.

Furthermore, we wanted to highlight the critical role of colors in Deep
Learning Computer Vision, as several studies have already pointed out in bi-
ological vision [90, 89]. To this end, we implemented the RB color model pre-
sented in Section 4.1 to assess the impact on the performance of removing a
color channel. In Table A.1, we can notice that the RG color is severely under-
performing compared to the RGB color model (92.7% vs. 98.1% top-1 accuracy
on CIFAR-10, and 76.2 vs. 77.6 top-1 accuracy on CIFAR-100). Thus, this validates
our hypothesis that colors are critical to achieving computer vision tasks.

A.3.3 . Searching and Evaluating on CIFAR

We searched and evaluated on CIFAR-10 [100] our ColorNAS approach (see
Section A.2.1) using all the different color models presented in Section A.2.2
(i.e., RB, RGB, and RGBY). All architectures were searched using 8-cell proxy
networks. We also searched and evaluated a standard 8-cell FairDARTSmodel
to conduct an ablation study on ColorNAS (see Section A.3.2).

Notably, the RGB model (3 8-layer networks) outperformed the standard
FairDARTS approach (a single 8-layer network) by 1.6% while the number of
parameters more than doubles but remains modest at 2.9M. The search cost
also modestly increases from 0.25 GPU-day to 0.5 GPU-day. In addition, the
RBmodel matches our expectations as removing the green channel degrades
performance to 92.7%, underperforming the RGB model by 5.4%. However,
the RGBY model did not achieve to outperform the standard FairDARTS ap-
proach and only reached a similar level of performance at 96.4%.

In addition to CIFAR-10, we also evaluated ColorNAS on CIFAR-100 [100] our
ColorNAS approach. Unfortunately, all models failed to reach the same level
of performance as the standard approaches. In particular, our RGB model
only reached 81.0% top-1 accuracy, thus underperforming DARTS by 1.3%.

All experimental results are presented in Table A.1.
167

Table A.1: Comparison of models trained on CIFAR-10 and CIFAR-
100 [100]. Each reported Top-1 accuracy is the best of 4 independentruns. For previous baselines, results are the official numbers from theirrespective articles with the search cost expressed with the GPU usedby the authors.

Models Params(M)
C10Top-1(%)

C100Top-1(%) Layers Search Cost(GPU-days)
DARTS[117] 3.3 97.0 82.3 20 0.4FairDARTS[32] 1.3 96.5 83.8 8 0.25FairDARTS-b[32] 3.9 97.5 78.9 20 0.25PC-DARTS[205] 3.6 97.4 83.1 20 0.1P-DARTS[23] 3.4 97.5 84.1 20 0.3DARTS-[31] 3.5 97.4 82.5 20 0.4
β-DARTS[210] 3.8 97.5 83.5 20 0.4
Ours RGB 2.9 98.1 81.0 8 0.5RGBY 3.2 96.4 76.9 8 1RB 1.7 92.7 76.2 8 0.25

A.4 . Conclusion

This paper explored a novel way to better consider the specificity of color
channels when searching for convolutional neural network architectures. In
Section A.3, we showed that despite positive initial results on CIFAR-10, our
ColorNAS approach failed to scale appropriately to the larger CIFAR-100 dataset.
Furthermore, we highlighted the paramount importance of color channels
through the ablation study presented in SectionA.3.2. Additionally, wedemon-
strated that RGB is still the best color space for image classification compared
to other alternatives (namely RB and RGBY). Our goal was not to reach the
highest competitive scores in image classification but to point out that a viable
alternative to classical CNN channel processing exists. Future work should
then focus on improving ColorNAS scaling abilities, especially itsmeta-learner.

168

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Preliminaries
	Artificial Neural Networks and Deep Learning
	Convolutional Neural Networks
	Vision Transformers
	Datasets Employed
	Evaluation Criteria
	Neural Architecture Search
	DARTS: Differentiable ARchiTecture Search

	Literature survey of state-of-the-art Differentiable Neural Architecture Search
	DARTS and the challenges of Differentiable NAS
	Literature Review of Differentiable NAS
	Applications
	Discussion and Conclusion

	Improving DARTS: Distributed Differentiable Neural Architecture Search
	Proposed Approach
	Experiments
	Discussion and Conclusion

	Tackling Self-Supervised Learning: Efficient Representation Learning using Neural Architecture Search for Siamese Networks
	Proposed Approach
	Experiments
	Discussion and Conclusion

	Applications of Differentiable NAS
	Exploring Differentiable NAS for Cost-Effective Vision Transformers: Differentiable Vision Transformer Pruning with Low-Cost Proxies
	Torque Control of a Permanent Magnet Synchronous Motor using Differentiable Neural Architecture Search

	Conclusion and Future Directions
	Bibliography
	Appendix ColorNAS
	Introduction
	Proposed Approach
	Experiments
	Conclusion

