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Abstract

Genetic cis-regulation in humans is effected through chromatin regulators, such
as histone marks and Transcriptional Regulators (TRs), binding on regions called
Cis-Regulatory Elements. Those regulators seldom act alone, forming complexes
to perform their functions. For example, while Transcription Factors are regulatory
proteins that bind directly to DNA, they are themselves bound by co-factors. The
goal of these interacting systems is to regulate gene expression by influencing the
activity of the RNA Pol II, which transcribes DNA to messenger RNA. The develop-
ment of Next Generation Sequencing provides experimental methods to study this
regulation, which includes ChIP-seq and other assays. Their main goal is to quantify
both chromatin accessibility and protein binding. However, these methods present
challenges and sources of noise, where noise is defined as any result differing from
the biological reality being quantified. They also suffer from reproducibility problems,
hence complicating fair comparison among results. Both these biases are difficult
to correct. Besides combinations of regulators themselves, the recent explosion of
available data volume, as well as variety of sources, collated in databases such as
ENCODE or ReMap gives opportunities for integrating different data views.

While combinations of biological regulators are important to genomic cis-regulation,
they are seldom operated for biological insight. Existing approaches suffer from either
the precision of the data integration, or the clarity of usage. The goal of this thesis is to
leverage such combinations through the use of machine learning methods, which are
very effective at learning regularities in the data: in other words, learning combina-
tions. We propose to represent the regions where regulators bind as lists of intervals,
converted into matrix and tensor representations. As a result, the approaches of this
thesis are generalizable to any lists of intervals. Early work presented in this thesis
discusses the prediction of cis-regulatory region status and the detection of alterna-
tive promoters in T-ALL leukemia. We propose a new method, based on Cramer’s
V-score, to robustly identify meaningful alternative promoters in based on promoter
expression, discarding low-level noise.

Then, we focus on anomaly detection. ChIP-seq and other experimental assays can
suffer from errors and false positives, poor quality control, and several other biases.
Those are very difficult to correct, as annotated supervised data is rarely available,
and even so it would require a tedious error-by-error approach. Furthermore, the
indiscriminate use of larger volumes of data increases the probability of erroneous
observations. Instead, we perform unsupervised anomaly detection under the as-
sumption that noise peaks will not respect the usual combinations between sources (ie.
combinations between regulators and/or usual dataset combinations). We propose
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the atyPeak method which exploits not only combinations of TRs, but also combi-
nations of redundant experiments from the ReMap database. We propose to use a
specifically designed multi-view convolutional autoencoder to perform a “Goldilocks”
compression. Here, the model is tasked to learn sources (TR, datasets) as part of a
groups of correlating sources and not alone. As a result, ChIP-Seq peaks are rebuild as
part of a correlation group and rare noisy patterns are not even learned. We identify
peaks which have fewer known collaborators present in their vicinity than what would
be average for their sources. In terms of methodology, we developed approaches to
evaluate autoencoders based on their respect of existing correlations. We also propose
a new normalization method based on correcting for the average cardinality of the
aforementioned correlation groups. It can be applied to any black box model, and is
useful to interpret autoencoders when performing anomaly detection. Our cleaned
data improves Cis-Regulatory Element detection.

Finally, on a more fundamental level, the enrichment of given combinations of
elements (meaninghow much more often they are found compared to expected by
chance) needs to be precisely quantified. We propose the OLOGRAM-MODL approach,
demonstrating a Monte Carlo based method to fit a novel Negative Binomial model
on the number of base pairs on which a given combinations of elements is observed.
This allows us to return much more precise p-values compared to existing approaches.
We extend this model to combinations of any k ≥ 2 elements. We also propose a suited
itemset mining algorithm to identify interesting combinations of regulators, based
on which itemsets best rebuild the original data. This algorithm leverages dictionary
learning for its robustness to noise. Additionally, we demonstrate that the problem is
submodular and that a greedy algorithm can find itemsets of interest. This tool was
implemented as a part of the gtftk toolset for ease of access.

Keywords: epigenomic regulators, combinations, machine learning, Cis-Regulatory
Elements, autoencoders, statistical modeling, Monte Carlo

Résumé

La régulation cis-génomique chez l’homme est effectuée par des régulateurs de
la chromatine, tels que les marques d’histones et les régulateurs de transcription
(TR), qui se lient à des éléments cis-régulateurs (CRE). Ils fonctionnent rarement
seuls, mais plutôt en complexes. Par exemple, les facteurs de transcription (TFs) se
lient à l’ADN et sont eux-mêmes liés par des cofacteurs. Leur objectif est de réguler
l’activité de l’ARN Pol II. Le développement du séquençage de nouvelle génération
(NGS) fournit des méthodes pour étudier cette régulation, incluant le ChIP-seq, afin
de quantifier l’accessibilité de la chromatine et la liaison des protéines. Mais ces
méthodes présentent des sources de bruit (résultats différents de la réalité), et des
problèmes de reproductibilité, ce qui complique la comparaison des résultats. De
plus, la récente explosion de la variété et du volume de données disponibles, dans des
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bases de données telles que ENCODE ou ReMap, permet l’intégration de différentes
vues de données.

Les combinaisons de régulateurs biologiques sont importantes mais sont rarement
exploitées. Les approches existantes manquent de précision ou de clarté. Le but de
cette thèse est de tirer parti de ces combinaisons en utilisant des méthodes d’ap-
prentissage automatique, qui sont efficaces pour apprendre les régularités dans les
données : donc, les combinaisons. Nous représentons les régions d’intérêt sous forme
de listes d’intervalles, converties en représentations matricielles et tensorielles. De
fait, nos approches sont généralisables à toute liste d’intervalles. Les premiers travaux
présentés dans cette thèse portent sur la prédiction du statut des CRE et la détec-
tion robuste de promoteurs alternatifs dans la leucémie T-ALL en fonction de leur
expression, éliminant le bruit de faible niveau.

Ensuite, nous abordons la détection d’anomalies non supervisée. Le ChIP-seq (et
autres) peut souffrir d’erreurs et de faux positifs, d’un contrôle de qualité médiocre et
de plusieurs autres biais. Ceux-ci sont difficiles à corriger, car les données annotées et
supervisées sont rarement disponibles, et cela demanderait malgré tout une approche
erreur-par-erreur fastidieuse. En outre, les grands volumes de données augmentent la
probabilité d’erreurs. Au lieu de cela, nous supposons que le bruit ne respectera pas les
combinaisons usuelles entre les sources (TR et/ou jeux de données). Nous proposons
atyPeak, qui exploite les combinaisons de TR et d’expériences redondantes de ReMap.
Nous utilisons un auto-encodeur convolutionnel multi-vues pour une compression
"de juste milieu", en apprenant et reconstruisant les sources comme parties d’un
groupe de sources corrélées et non pas seules, éliminant les motifs rares (bruit). Nous
marquons les pics qui ont moins de collaborateurs à proximité que la moyenne de
leur source. Nous proposons aussi des approches pour évaluer les auto-encodeurs
selon de leur respect des corrélations de données, et une méthode de normalisation
basée sur la cardinalité des groupes. Elles peuvent être appliquées à l’interprétation
d’autres modèles. Nos données nettoyées améliorent la détection des CRE.

Enfin, l’enrichissement de combinaisons d’éléments (fréquence par rapport à ce qui
est attendu au hasard) doit être quantifié avec précision. Nous proposons OLOGRAM-
MODL, une méthode Monte Carlo ajustant un modèle binomial négatif sur le nombre
de paires de bases où une combinaison est observée. Cela renvoie des p-valeurs plus
précises par rapport aux approches existantes. Nous l’étendons aux combinaisons de
>2 éléments et proposons un algorithme d’extraction d’itemsets pour identifier les
combinaisons intéressantes de régulateurs, qui reconstruisent le mieux les données
d’origine. Nous utilisons l’apprentissage par dictionnaire pour sa robustesse au bruit.
Nous montrons que le problème est sous-modulaire et qu’un algorithme glouton peut
trouver ces ensembles intéressants. Il a été implémenté dans le jeu d’outils gtftk.
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Let us begin this manuscript with the background information necessary to the
comprehension of the research presented in this thesis. First, the biological context
and actors of the genetic cis-regulation in humans are introduced (Section 1.1, p. 14)
with a focus on those regulators which act in combinations. Then the experimental
approaches used to characterize these regulators (Section 1.2, p. 31) and the challenges
posed by the most recent ones are presented. The explosion of data volume and variety
is discussed, but also the opportunities for integrating different data views that such
an explosion now permits (Section 1.3, p. 39). Finally, the mathematical modelisation
that will be used to characterize combinations of regulators throughout this thesis
is presented, as well as background on the machine learning problems to which this
work is relevant (Section 1.4, p. 52).

1.1. Human genetic cis-regulation

The expression "human genome" designates all the genetic material of a given
human individual. As with all eukaryotes, it is stocked in the nucleus of all their
nucleated cells (Figure 1.1), with the exception of the mitochrondrial chromosome.
It is packaged inside the nucleus in a macromolecular structure called chromatin,
constituted of desoxyribonucleic acid (DNA) combined with ribonucleic acid (RNA)
and proteins. Its structure, as well as the impact of various DNA-binding proteins in
regulating gene expression are presented in this section.

In humans, most cells contain the same genome, excepting processes such meiosis,
somatic mutations and genomic rearrangements (e.g. mature B or T cells). However,
cells differentiate to fulfill very different biological functions. Indeed, although all cells
share a genome, their genomic expression patterns are very different. This implies
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the existence of mechanisms capable of regulating the expression of all the different
genes in the genome, resulting in different phenotypes.

The existence of such mechanisms has been postulated by Waddington in 1942,
creating the science of epigenetics (Dupont, Armant, and Brenner 2009). While "epi-
genetics" originally designated heritable genetic modifications on anything but the
DNA sequence, the term has now come to encompass many chromatin modification
that affect gene expression independently of DNA sequence. Most current research
supports the idea that the paramount epigenetic regulation mechanisms are mod-
ifications on histones and DNA, which we present here. Another part is due to the
action of non-coding RNA on regulation (Frías-Lasserre and Villagra 2017), which is
not studied here.

Figure 1.1. – Structure of a classical eukaryotic cell.

1.1.1. Regulatory proteins

1.1.1.1. Chromatin

. Figure 1.1 - Koswac / English Wikipedia / CC BY-SA 3.0

. Figure 1.2 - The Cell Cycle. Principles of Control. David O Morgan, 2007

. Figure 1.3 - Richard Wheeler (Zephyris) / English Wikipedia / CC BY-SA 3.0
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Figure 1.2. – Elementary structure and compaction levels of the nucleosomes.

Figure 1.3. – Compaction levels of the chromatin. From left to right, lower to higher
order. The top scale gives the structure name and the part of the cell or expression
cycle in which the chromatin is found in this particular compaction level.
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The main molecular components of chromatin are called histones, which are one of
the main classes of DNA binding proteins (D. E. Olins and A. L. Olins 2003). The core
canonical histones are H2A, H2B, H3 and H4. They form octamers around which DNA
will bind, with each octamer having 147 bp of DNA wrapped around it. All together,
this DNA-histone association consitutes a nucleosome. Histones of the H1 class
bind the nucleosome together and regulate the chromatin’s compaction level. Those
nucleosomes are then packaged in a "beads-on-a-string" chromatin fiber (Figure 1.2).
While this fiber is the elementary packaging structure of DNA in the cell, it is also a
part of higher order structures of chromatin (Figure 1.3). It is combined with scaffold
proteins, forming domains that interact with each other (Topologically Associated
Domains), and ultimately the chromosomes themselves.

As far as genomic regulation is concerned, one of chromatin’s major characteristics
is its accessibility level. It varies depending on the cell, or the current stage of the
transcription cycle. Open chromatin has a low density of nucleosomes and is called
euchromatin, whose low compaction means the DNA can be accessed, recognized by
DNA-binding proteins, and its genes transcribed for whatever use is required by the
cell. This is contrast to high density chromatin, or heterochromatin.

Figure 1.4. – Main chromatin epigenetic modifications.

The regulation of the compaction level is mostly done through various epigenetic,
post-traductional mechanisms presented in this section. Figure 1.4 presents the main
types of chromatin modifications encountered in humans, which we now discuss.

Histone modifications The main regulator of chromatin accessibility are post-
traductional histone modifications of the N-terminal extremity of histones (Figure
1.5), notably on the lysines (K). Acetylation and methylation are generally considered
as having opposed roles, although exceptions exist. This constitutes what is colloqui-
ally called the "histone code". A selection of representative histone marks with their
effectors and their impact on gene transcription is presented in Table 1.1.

A general review of this code, of the impact of histone modifications on the chro-
matin and the means by which they are effected can be found in Bannister and

. Figure 1.4 - Dulac 2010

. Figure 1.5 - http://cnx.org/contents/GFy_h8cu@10.53:rZudN6XP@2/Introduction
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Figure 1.5. – DNA accessibility depending on histone modifications.

Kouzarides 2011. In most - but not all - cases, acetylation is associated to an increase
in transcriptional activity, and vice-versa for methylation. These modifications are
carried out by proteins histone acetyl transferases (HAT) such as EP300 (Ogryzko,
Schiltz, Russanova, et al. 1996), or histone methytransferases and deacetylases for the
corresponding modifications. They are complemented by pioneer factors whose role
is to open the chromatin and then recruit further Transcriptional Regulators, such as
what FOXA1 does for ESR1 (Ross-Innes, Stark, Teschendorff, et al. 2012).

As a consequence, the presence of certain histone marks correlates with the function
of the genomic region on which it is bound. For example, the presence of H3K4me3
and H3K9ac characterizes active promoters (Liang, J. C. Y. Lin, V. Wei, et al. 2004).
H3K27ac is associated to active enhancers (broadly speaking, as opposed to poised
enhancers) (Creyghton, A. W. Cheng, Welstead, et al. 2010) and H3K36me3 is present in
the gene bodies of actively transcribed genes (Teissandier and Bourc’his 2017). These
associations are not absolute however, and those marks can be found on regions with
other roles.

Histone variants There also exist histone variants differing from the canonical ones
presented above by a few amino acids. In eukaryotes, centromers are defined by
the presence of H3’s centromeric variant (cenH3), although its function does not
seem to differ from the canonical histone. In contrast, H2A possesses numerous
studied variants (Bönisch and Hake 2012). The most common are H2A.X, implicated
in DNA repair and H2A.Z contributing to transcriptional regulation. One may also
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Histone residual Modification Modeling factor Effect on transcription

H3K4 me3 SET7 Activation
H3K4 me1 ALL-1 Activation
H3K9 me3 SUV39H1 Repression
H3K14 ac TAF1, EP300 Activation
H3K27 ac EP300 Activation
H1K26 me Ezh2 Repression
H3K27 me3 PRC2 Repression
H3K36 me3 SETD2 Activation

Table 1.1. – Selected list of histone modifications, including all those deemed neces-
sary for a reference epigenome as of "Reference Epigenome Standards". In
the code, ac and me respectively designate acetylation or methylation. The
afferent number designates the number of functional groups, for example
me3 stands for trimethylation.

cite MacroH2A and H2A.B which contribute to X chromosome inactivation in female
mammals, or the H2L family implicated in spermatogenesis.

DNA modifications The most studied DNA modification is the methylation of some
of the cytosins in a CpG pair (ie. cytosines followed by a guanine). In humans, 70%
of such cytosins are methylated, a modification effected by DNA methyltransferases.
Regions of at least 200bp enriched in such CpG dinucleotides are named CpG islands.
They are frequent in the upstream of promoter regions. The methylation of the
cytosins in those islands is generally associated to an absence of transcription in
humans (Baubec and Schübeler 2014), and is also observed in enhancers (Bae, J. Y.
Kim, and Choi 2016).

1.1.1.2. Transcriptional complex

Transcription is the process by which a gene is expressed, producing premessenger
RNA (pre-mRNA). During transcription, the RNA polymerase II (RNA Pol II) will bind
on the DNA, open it, and transcribe the sense 1 strand into the pre-mRNA (Figure 1.6).
Transcription begins by recruiting the Pol II in the Pre-Initiation-Complex (PIC), itself
composed of Transcriptional Regulators. This recruitment can occur on the TATA-
box region for those human promoters which possess it, or on the rare analog BRE
recognition element. Otherwise, it happens on a region for which there is currently no
known strong consensus properties.

1. Also called "coding" strand, but this can be a misnomer since it can be non-coding RNA or UTR
regions.

. Figure 1.6 - Hahn 2004 and ©2012 Pearson Education
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Figure 1.6. – Transcription process. The top figure presents the early recruitment of
the PolII and the Pre-Initiation-Complex, which transitions into transcription.
Initiation factors can remain in 5’ as a scaffold complex. The bottom part of the
figure presents the general timeline of transcription itself, where the coding region
of the gene is transcribed into RNA until a termination signal is encountered.
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RNA Pol II is the polymerase used in the transcription of all premessenger RNA,
as well many small nuclear RNA and micro RNA. There also exist Pol I and Pol III,
which are mostly responsible for the transcription of ribosomal RNA and transfer RNA
respectively. Transcription initiation is characterized by the successive recruitment of
the factors, or sub-units, composing the PIC. First, TFIID fixates on the BRE. Then, if it
finds its binding sites, TFIIA comes stabilize the fixation of TFIID. This is followed by
the recruitment of TFIIB, then TFIIF which recruits the Pol II itself. Finally, TFIIE and
TFIIH have a protein kinase activity on the Pol II, which activates it.

The RNA Pol II itself is a complex protein of 550 Kilodaltons. In humans, it contains
12 sub-units numbered RPB1 to RPB12. Most noteworthy among them is RBP1,
the largest, which forms along with RBP9 the groove into which DNA is transcribed.
Furthermore, RPB2 maintains the contact between the chromatin and the RNA being
synthesized.

The result of the transcription process is a molecule called a premessenger RNA. It
is then matured, meaning the exons are removed, a polyA tail in its 3’ end is added and
methylated coif is added in 5’. Alternative splicing, meaning the removing of different
exons, can result in different messenger RNA starting from the same premessenger
RNA. These modifications will mostly serve to regulate the RNA molecule’s post-
transcriptional lifetime, and subsequent expression level. It is then exported in the
cytoplasm for transcription into a protein.

The existence of the PIC as a complex of several factors is our first clue that the
transcription process, and by extension gene expression, is regulated by more than
a single actor and that combinations of regulators will be a crucial problem. This
intuition is then solidified through the fact that the elements presented above are not
the only constituents of the transcription initiation complex: there are also Transcrip-
tional Regulators, whose binding is far less predictable and depends on other factors
discussed below.

Transcriptional Regulators Transcriptional Regulators (TRs) are factors, usually
proteins, that come to bind the transcription complex and influence its activity. This
fuller complex is what will influence (facilitate, but sometimes hinder) the priming of
RNA Pol II on the promoter and subsequent transcriptions. In humans, thousands of
different regulators are known (Lambert, Jolma, Campitelli, et al. 2018).

TRs that can directly bind to DNA on regulatory regions are called Transcription
Factors. They bind to the genome on sites known as Transcription Factor Binding Sites
(TFBS) of around 6-12 basepairs. These are degenerate sequences and can vary for the
same TF across the genome (Figure 1.7), hence a consensus binding motif is generally
given with probabilities based on the sequences observed for experimentally verified
bindings. Their mechanisms of action are discussed in Section 1.1.2.3 (p. 24).

As such, TFBS can appear or disappear due to mutations on the genome and gen-
eral genomic plasticity (transposons, etc.), and as a result regulation modalities can

. Figure 1.7 - Ambrosini, Vorontsov, Penzar, et al. 2020
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Figure 1.7. – Example of Position-Weight-Matrix calculation for a given Transcription
Factor Binding Site (TFBS). The binding sites of TFs can be rather degenerate,
so the consensus motif is calculated by averaging across binding sites verified
experimentally.

vary between individuals. Furthermore, certain TRs such as YY1 can either act as
transcriptional activators or repressors depending on the conditions (Verheul, Hijfte,
Perenthaler, et al. 2020).

1.1.2. Genomic functional elements

In this section, we explore and distinguish two classes of genomic functional ele-
ments:

— Genes, which are transcribed into RNA.
— Cis-Regulatory Elements (CREs), where the aforementioned Transcription Factors

fixate.
The "Cis" epithet in CRE means they regulate genes on the same DNA molecule.

This differs from trans-regulatory elements, which is another word for genes coding
for Transcriptional Regulators that may fixate on another DNA molecule.

1.1.2.1. Genes

In the broadest possible sense, a gene is a nucleotide sequence coding for a molecule
which has a function. In most cases, this molecule will be a messenger RNA produced
through the transcription mechanisms outlined above. However, a gene may also
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code for a RNA that is functional on its own. Furthermore, some genes have suffered
mutations perturbing the coding of a functional protein and are called pseudogenes.

During transcription, the gene sequence on the template strand of DNA is read by
the RNA polymerase in the 3’ to 5’ direction (or "reverse" direction). This results in
the synthesis of a RNA which is a copy of the complementary transcribed strand from
the 5’ to 3’ direction ("forward" direction). Directions are named after the position of
the carbon atom on the ribose sugar which remains free (meaning it is not attached
to another nucleotide) at the extremity of the DNA molecule. When discussing the
position of genomic elements, "upstream" means towards 5’, and "downstream"
means towards 3’.

Genes are be present in either the (+) or (-) strand of DNA in relatively equal propor-
tions, where in humans by convention the (+) strand is the one whose 5’ extremity is
closest to the centromer. 10 % of genes are overlapping with another gene. For more
information on genes in general, see Kellis, Wold, Snyder, et al. 2014.

As seen in Figure 1.8, a gene contains several components. At each extremity of the
transcribed sequence are UnTranslated Elements (5’ UTR and 3’ UTR) which mainly
serve to regulate the expression of the subsequent RNA. The remaineder forms the
Open Reading Frame, which contains both introns and exons. Introns can be removed
from the RNA in a process known as splicing. A gene can code for several transcripts
through the use of alternative promoters or alternative splicing of its exons.

Figure 1.8. – General structure of an eukayorotic gene and associated promoter.

1.1.2.2. Promoters

Promoters are defined as the region on which the transcriptional initiation complex
binds and RNA Pol II is recruited (Smale and Kadonaga 2003). Their structure is also
presented in Figure 1.8. From 5’ to 3’, their conventional structure is as follows:

— A GC box followed by a CAAT box. These are proximal promoter elements, in
opposition to the following core promoter. They fixate Transcription Factors.

— The TFIIB recognition element, followed by a TATA box. They play a role in
transcription initiation as presented above.

. Figure 1.8 - ©Pearsson Education 2012
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— The initiator is a degenerate region containing Transcription Start Site (TSS) or
"+1" nucleotide, which as the name implies is the first transcribed nucleotide.

— The Motif Ten Element and the Downstream Promoter Element.
It should be noted that those elements are not constants. For example, the TATA box

is only present in 24 % of human promoters (C. Yang, Bolotin, Jiang, et al. 2007) and
can replaced by an analogue. There is strong degeneracy in the consensus sequences
presented, much like there was for the TF Binding Sites in general.

This variability results in a sliding scale of promoter strength, from strong to weak.
Strong promoters need little if any additional activation from other regulators to
produce a strong active transcription, and are often present in front of constitutive
genes. On the other hand, whether weak promoters are activated depends on their
regulatory environment. Due to these discrepancies, a promoter is conventionally
defined in bioinformatics as the region present for several kilobases upstream of a TSS
(Shin, T. Liu, Manrai, et al. 2009).

Alternative promoters Each gene does not code for a single transcript. Alternative
promoter usage, along with alternative splicing, is a source of transcript diversity. The
two often work in tandem (Pal, Gupta, H. Kim, et al. 2011). In the human genome,
between 30 and 50 percent of protein-coding genes possess multiple promoters whose
differential activity creates transcriptomic diversity. And even inside a given promoter,
the FANTOM-5 project has shown that most mammalian promoters are made of
narrowly-separated TSS with cell-specific expression profiles (FANTOM Consortium
and the RIKEN PMI and CLST (DGT), Forrest, Kawaji, et al. 2014a). Although the
molecular mechanism of promoter selection remains unclear, it has been suggested
that this regulation could come from promoter methylation status (Cheong, Yamada,
Yamashita, et al. 2006).

There is a considerable difference in promoter usage between many cell types, de-
velopment stages. However, it can also have deleterious consequences for the cell: this
can cause developmental disorders (Pal, Gupta, H. Kim, et al. 2011), and promoters
may play a role in the malignant transformation of cells and affect oncogenes. How-
ever, the role of alternative promoters remains unexplored in many cancer types as
H3K4me3 profiles or CAGE-Tag are not readily available (Demircioğlu, Kindermans,
Nandi, et al. 2018).

1.1.2.3. Enhancers and modulators

Enhancers are genomic cis-regulators upon which Transcription Factors can bind
for the purpose of increasing the transcription level of a nearby gene. They tend to
be short DNA regions with a length varying generally between 50 and 1500 bp (base
pairs), but sometimes more (super-enhancers). Their range of action, upstream or
downstream, can vary considerably from around 2 kilo bp to 2 million bp.

The currently accepted model to explain the effects of enhancer regions involves
forming a DNA loop with the involved Transcriptional Regulators and the promoter
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of the influenced gene (Figure 1.9). As we discussed before and as can be seen in the
figure, the TRs involved can act by biding directly to the enhancer, to the transcription
complex, or can bind to proteins in this larger regulatory complex which includes
mediator TRs. See Kolovos, Knoch, Grosveld, et al. 2012 for more details on this DNA
loop model.

Figure 1.9. – General mechanism of cis-regulation. This involves the fixation of various
Transcriptional Regulators on target Cis-Regulatory Elements, contributing to the
formation of a DNA loop with the promoter of the gene to be regulated, and the
formation of a larger cis-regulatory complex.

However, the activity level of enhancers is not constant between cell lines, nor is
it constant in time or development stage (Long, Prescott, and Wysocka 2016). This
is also true for the level of TF binding in general. Enhancers (nor silencers) have
no consensus sequence or elements, which makes their de novo prediction a hard
problem (Kleftogiannis, Kalnis, and Bajic 2016).

. Figure 1.9 - Figure 7-44 Molecular Biology of the Cell 5/e, ©Garland Science 2008
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Silencers and overlap with other functions Silencers are the negative pendant
of enhancers. They share most of their properties as presented here, with the differ-
ence that the TFs that they bind repress transcription instead of enhancing it (Della
Rosa and Spivakov 2020). An enhancer can become a silencer later and vice versa
(Kuwahara, Saito, Ogawa, et al. 2001 depending on the conditions.

Furthermore, some enhancers are transcribed, producing short eRNA that will
not be matured. Their function is disputed (De Santa, Barozzi, Mietton, et al. 2010).
Certain promoters can have an enhancer function for neighboring genes (L. T. M. Dao,
Galindo-Albarrán, Castro-Mondragon, et al. 2017). Parenthetically, enhancers and
silencers can be found spatially regrouped in Transcription factories to then influence
several genes. (Rieder, Trajanoski, and McNally 2012)

Based on those facts, we can see that enhancers and promoters and cis-regulatory
regions in general have many common points, and that the boundary between classes
of CRE is nebulous.

1.1.2.4. Other elements

The list of CREs also includes insulators, which are barriers between the genomic
domains situated in its upstream and its downstream. Other CREs tend not influence
genes from which they are separated by an insulator. The mechanism is the formation
of a DNA loop, physically blocking the interactions. The mechanism of TAD (Topo-
logically Associated Domain, Figure 1.10) formation is not completely understood,
but is is believed that it involves flanking a group of genes with two insulators. Loci
(ie. genes, CRE, TRs) inside the TAD tend to interact much more than with outside
the TAD. (Pombo and Dillon 2015), while genes situated inside a given TAD tend to
share regulation and be active in the same context. It should be noted that TADs can
be nested inside of other TADs to form regions of even more preferential interactions.
In terms of the regulatory proteins involved, at least 2/3 of insulators bind CTCF.

There are also several other types of genomic functional elements that we should
mention.

— Replication originals are the genomic locations where the replication complex
originally fixates. There are between 30k and 100k of them in humans. They can
form structures known as G-quadruplexes (Cayrou, Ballester, Peiffer, et al. 2015).

— Centromers are the region of contacts between the two chromatids of each
chromosome. In humans, they are several Mbp long and full of repeated regions.

— Telomers are the extremity of each chromosomes, also forming G-quadruplexes.
At each replication, roughly 50 bp are trimmed due to imperfections in the
replication process. This trimming can be reversed by the telomerase enzyme,
but only partially. The reason why this trimming is only partially reversed is
unknown. A clue might be found in the fact that telomerase hyperactivity is
known to play a role in cancer cell formation (Jafri, Ansari, Alqahtani, et al. 2016).

. Figure 1.10 - Adapted from Angg!ng - English Wikipedia and from Beagan and Phillips-Cremins
2020
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Figure 1.10. – Topologically Associated Domains (TADs) are flanked by insulators
(top). Loci tend to interact preferentially with loci situated in the same TAD. This
is visible when looking at interaction maps (bottom).

— Transposons are DNA sequences that can duplicate and move across the genome.
Their role is currently poorly understood, with some speculating that they are
plasticity and mutation factors in the genome (Bourque, Burns, Gehring, et al.
2018).

1.1.3. Combinations of epigenetic regulators

The whole is greater than the sum of
its parts.

Aristotle

Having discuss the impact of individual regulators, we now discuss examples where
n ≥ 2 regulators act in cooperation to produce a different impact on the regulation. Of
course, on a more abstract level it could be argues that since histone marks regulate
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the chromatin state so that Transcriptional Regulator can be bound, this is in and
of itself a type of n-wise cooperation between histones and TRs. I fully agree with
this analysis, and this aspect is explored further later. Here, we focus specifically on
molecular level cooperation.

1.1.3.1. Histone marks combinations

We discussed how the individual presence of certain histone marks correlated with
the function of the genomic region on which they are bound, but this is also true
for combinations of histone marks. Indeed, combinations of histone modifications
can have antagonistic or synergistic effects (Strahl and Allis 2000) through cross-talk 2

(Barski, Cuddapah, Cui, et al. 2007).
This is illustrated by the fact that the presence or absence of certain combinations at

a given locus is a good estimator of the state of the afferent chromatin (active enhancer,
active promoter, etc.), better than individual marks. This is at the heart of ChromHMM
(Ernst and Kellis 2012, Figure 1.11) which uses a Hidden Markov Model to partition
chromatin in any desired number of states dependent on the combinations of histone
marks observed. Each state is often found to be associated to a specific cis-regulatory
region status (active promoter, inactive enhancer, etc.).

Figure 1.11. – Example model of segmentation of ChromHMM through histone status,
based on melanoma tumor samples.

2. In this case, "cross-talk" is synonymous with reciprocal influence.
. Figure 1.11 - Terranova, M. Tang, Orouji, et al. 2018
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This is further amplified by the phenomena of bivalent chromatin, defined seg-
ments of DNA with the presence of both an activator and a regulator at the same
time. For example, a combination of H3K27me3 and H3K4me3 is associated with
low-expression promoters.(Vastenhouw and Schier 2012). This illustrates how com-
binations of histones can have a different roles than the individual histones they are
made of.

1.1.3.2. Transcriptional Regulator complexes

Most, if not all, Transcriptional Regulators do not influence genomic transcription
all by their lonesome. Some of them possess activation domains upon which other
Regulators, known as cofactors, can bind to them once they themselves are bound on
the genome. This is exemplified by the Transcription Preinitiation Complex. This is
also illustrated by all the regulatory complexes, in a broader sense, that we discussed
when presenting the functions of enhancers.

Such complexes can perform a variety of functions, from remodeling the chromatin
to stimulating the transcription itself. The modalities by which this is done are pre-
sented in Figure 1.12. Their operating range, as discussed, is around several thousand
base pairs. In a broader sense, this cooperation can be temporally staggered such as
with pionner factors fixating first to open the chromatin and which may or may not
disassociate later, but the temporality aspect is beyond our scope. We mostly focus
on complexes obtained by co-localization of TFs at any point in time, as provided
by the snapshot given by the experimental data. Indeed, in most cases an observed
colocalization of TRs is the result of a cooperation between them (Biggar and Crabtree
2001).

The impact of TR cooperation can be linear, with more factors resulting in a higher
activation (Giorgetti, Siggers, Tiana, et al. 2010) or it can behave as an on-off switch
for transcription (Chopra and Levine 2009). In any case, such combinations are
responsible for the proper functioning of the regulatory regions described above.

Several relevant examples can be given. A classical one is the cooperation between
CTCF and RAD21 to form the cohesin loop delimiting the TADs presented above
(Stedman, Kang, S. Lin, et al. 2008). In an example that does not necessitate direct
protein-protein interaction, FOXA1 is a pioneer factor permitting the later fixation of
ESR1 (Ross-Innes, Stark, Teschendorff, et al. 2012), while FOXA1 is itself a downstream
target of GATA3 (Kouros-Mehr, Slorach, Sternlicht, et al. 2006).

Some Transcriptional Regulators are known as master regulators, as they recruit
and/or influence the activity of many other TRs across many different sites of the
genome (The ENCODE Consortium 2012, J. Yang, Mani, Donaher, et al. 2004).

. Figure 1.12 - Spitz and Furlong 2012
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Figure 1.12. – Mechanisms of cooperation between Transcriptional Regulators. Pos-
sible modality of cooperation include: (a) cooperation for the recruitment of a
cofactor, as in the case of EP300, and is the most common form of collabora-
tion; (b) remodeling of the chromatin to facilitate the fixation of other factors, as
pioneer factors do; (c) forcing chromatin decompaction by preventing nucleo-
some positioning; (d) inducing chromatin conformation changes to facilitiate the
binding of other TFs.
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1.2. Regulatory assays as data sources

In this section, we present the main genomic assays currently used to study the
human cis-regulation mechanisms presented above. These assays allow for the lo-
calization of various regions of interest, such as epigenomic features and TF binding
regions. Understanding them helps inform our decision about how to best represent
this data for our analysis, as discussed in Section 1.4 (p. 52).

1.2.1. Gene sequencing

DNA, RNA, or more generally nucleotide sequencing is the process of determining
the complete and precise succession of nucleotides in a given nucleid acid molecule.
The first comprehensive method was designed by Frederick Sanger in 1977. However,
but modern sequencing methods can sequence entire genomes in a matter of hours,
for minimal cost.

From a practical standpoint, sequencing involves purifying DNA, performing library
preparation, and processing the DNA with a sequencer. This unprecedented access to
DNA sequences has become indispensable in biological research. The availability of
comparatively cheap DNA sequencing combined with the rise of bioinformatics meth-
ods to treat such volumes of data has led DNA sequencing to become a cornerstone
of modern biological research, being used in various applications such as, of course,
determining the sequences of genes to identify mutations, but also in transcriptomic
studies, phylogenetic studies, etc. The general principle of RNA-Seq is presented in
Figure 1.13, but the steps starting from "High-througput sequencing" are universal.

The output of this process is called “reads”: the sequencer does not work on the
entire DNA molecule at once, it produces short reads from the given sequence, which
then have to be assembled to rebuild the complete original molecule. The length of
such reads depends on the technology:

— “short-read” technologies (Illumina, ...) produced reads of around 26bp a decade
ago, and modern ones produce reads hundreds of bases long. They work on
sonicated DNA fragments.

— “long-read” technologies, on the other hand, are capable of producing reads
of up to several kilobases (Nanopore, ...), usually by sequencing a single DNA
molecule. These however often contain many errors, including insertions and
deletions.

Techniques Ever since the Sanger method, many sequencing methods have been
successively developed including pyrosequencing (454), semiconductor ionz (Ion
Torrent) and ligation (SOLiD) that can today be considered obsolete compared to
sequencing by synthesis (Illumina). In broad strokes, sequencing by synthesis consists
of the following. After clonal amplification, a primer attaches to the forward string,

. Figure 1.13 - Thomas Shafee / English Wikipedia / CC BY-SA 3.0
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Figure 1.13. – Principle of RNA-Seq. The in vivo part corresponds the the transcription
processes described previiously. In the in vitro part, the RNA or more generally the
sequence is fragmented and passed to a sequencer. After the reads are produced
comes the in silico part where the reads are aligned on a reference genome and
studied for whatever purpose.

and a polymerase adds a fluorescently tagged dNTP nucleotide. Only one base is
added per round, as the fluorophore is blocking. Each of the four possible nucleotides
has a characteristic emission which is recorded by a computer. Then the fluorophore
is washed away and the cycle is repeated.

While currently reigning supreme, it is expected that sequencing by synthesis will
be brought to coexist with certain new specialized technologies for specific problems,
such as the aforementioned single-molecule long reads (SMRT) approaches which
have the advantage of not requiring an amplification step. A review of modern NGS
(Next Generation Sequencing) methods has been performed by Besser, Carleton,
Gerner-Smidt, et al. 2018. To summarize their conclusions, Illumina sequencing-by-
synthesis approaches produce short reads of about 50 to 200 bp on average. This
includes methods such as MiniSeq or MiSeq. More sophisticated Illumina methods
such as NextSeq or NovaSeq have much larger throughput in terms of sequencing
speed and are more precise, but have a steeper cost. In contrast, single molecule
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seuqencing produces reads of up to 60-100kb (resp. Pacific Biosciences and Oxford
Nanopore), but are very slow and have a high error rate.

Subsequent bioinformatic analysis Recall that the "reads" are short DNA sequences
corresponding to the experimental fragments. As such, to be exploitable they must be
mapped on a reference genome using an aligner, the most popular of which is Bowtie.
For a recent review on aligners, see Schbath, Martin, Zytnicki, et al. 2012.

There are different approaches to sequencing that will require different protocols.
A step that is usually constant is the need to run the reads through quality control
such as FastQC and remove the primers/adapters for the approaches that use them.
Sequencing can be single or paired end, meaning the DNA fragments were sequenced
from either one extremity or both which can result in two shifted peaks in the signal
depending on fragment length.

Whether the sequenced molecules were a cell’s messenger RNA or genomic frag-
ments from an experiment such as ChIP-Seq will, in turn, change the interpretation
as we show below. For RNA-Seq, there is a quantification step where the sequenced
transcripts must be assigned to their gene of origin using tools such as Cufflinks or
KALYPSO. This quantification allows for an estimation of the expression level of a gene,
but also the detection of new genes and alternate transcripts. If the experimental goal
was instead to assemble a genome by sequencing it, overlapping reads need to be
assembled in larger structures known as contigs.

For the sake of brevity, we focus on the pipelines for methods which are relevant to
the identification of CRE and TR binding sites. This usually involves some flavor of
peak detection in the sequencing signal, as explained later.

Single cell and bulk sequencing Traditionally, sequencing is done in "bulk", which
means mixing genetic material from many cells of the biological sample. However,
recent new approaches allow for the isolation of single cells, and amplification of the
resulting small amounts of genetic material when the approach requires it. This allows
for more precise analysis by taking, for example, a snapshot of a single cell in a tissue,
or comparing transcriptomic profiles between cells at different differentiation stages
in embryology.

However, the isolation of single cells remains experimentally challenging. On the in

silico side, the small amount of genetic material results in a smaller amount of reads,
so drop-out becomes a challenge. This is a situation where the data captures only a
small fraction of the transcriptome of each cell combined in the stochasticity of gene
expression resulting in certains genes or position of interest having zero corresponding
reads (Qiu 2020).

Bulk sequencing remains less expensive, and is still relevant when the goal is to
perform a global, cell-line wide profiling. These considerations aside, the treatments
of single cell sequencing data is similar to bulk data in both the experimental and
bioinformatic aspects.
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1.2.2. Experimental methods for cis-regulatory annotation

This class of methods mostly concerns the detection of binding sites of chromatin
regulatory factors such as Transcriptional Regulators and histones, as well as quantify-
ing chromatin openness which is characteristic of actively transcribed regions.

1.2.2.1. ChIP-Seq

The most widely used approach in that regard is ChIP-Sequencing or ChIP-Seq. This
approach combines chromatin immunoprecipitation (ChIP) with DNA sequencing to
identify the binding sites of DNA-associated proteins.

The first step is enforcing a cross-linking between the protein to be studied and the
genomic DNA. This is followed by chromatin fragmentation into fragments of, usually,
about 500 bp. The third step is immunoprecipitation of the crosslinked DNA-protein
complexes using an antibody against the protein of interest followed by incubation
and precipitation. The penultimate step consists of DNA recovery, purification, and
the addition of oligonucleotide adaptator to the stretches of DNA that were bound by
the protein. This permits their parallel sequencing using the techniques discussed
above. The final in silico step is to align the sequenced DNA fragments to a reference
genome so as to identify the sites on said genome where the protein of interest is
bound, for the specific biological context of the cell used in the experiment.

It should be noted that a ChIP-Seq experiment can and will also be used to identify
the binding sites of cofactors, namely those Transcriptional Regulators which do not
directly bind DNA, and will not distinguish between them. In the immortal words of
the Apple II Reference Manual, "it’s not a bug, it’s a feature" as it allows us to estimate
the binding sites of any other chromatin protein of interest.

Chromatin immunoprecipitation may instead be combined with PCR or another
immunoprecipitation such as with ChIP-ChIP, the ancestor of the ChIP-Seq.

Peak calling After sequencing, one obtains a ChIP-Seq signal as a time-series (where
"time" is the genomic position) corresponding to the number of reads (after normal-
ization, usually RPKM 3) present at each position on the genome for this experiment.

The goal is now to identify peaks in the signal. The basic assumption behind a ChIP-
Seq experiment is that each such peak will correspond to a genomic region where the
protein of interest (for this particular ChIP-Seq experiment) is indeed bound on the
genome (or more accurately, as a chromatin complex) for the studied cell or cell line
at this point in time.

The algorithmic means of peak calling vary depending on the tool, but they usually
have in common that the true binding event is assumed to be located between the

. Figure 1.14 - Adapted from Park 2009
3. Reads Per Kilobase and per Million. A more robust normalization is used by methods such

as DESeq, where one normalizes against the geometric mean per sample. This is applicable to all
sequencing experiments.
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Figure 1.14. – ChIP-Seq process. This method involves cross-linking the protein
of interest with the genome and sequencing the DNA fragments on which this
complex is bound, to identify the binding sites of the protein of interest in this
context.

peaks between the sense and antisense reads (Figure 1.15). Broadly speaking, this
binding event is located either by shifting the fragments by half the length of the
sonication fragment, finding the midpoint between sense and antisense peaks, or
using a probabilistic method of the repartition of the reads depending on the true
binding event (Mahony and Pugh 2015).

Once this process is complete, the mathematical object obtained is a list of genomic
intervals corresponding to the putative regions on which the protein of interest is
bound on the genome.

1.2.2.2. Other chromatin assays

However, ChIP-Seq is not the only method capable of assaying chromatin openness.
Recently, other methods have been proposed and are presented in Figure 1.16. They
follow the same general pattern of chromatin fragmentation, amplification of the
desired regions, and sequencing followed by genome mapping. What differs is the

. Figure 1.15 - Bardet, Steinmann, Bafna, et al. 2013
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Figure 1.15. – Principle of ChIP-Seq peak calling.

criterion and thus the method used to select the region of interest. See Meyer and
X. S. Liu 2014 for a recent review.

— In MNAse-Seq, chromatin is digested by a MNAse. The resulting fragments are
all regions that were still bound by a nucleosome. Open chromatin regions area
all regions where the signal was low.

— DNAse-Seq shows sites that are hypersensitive to DNAse I, which are open
chromatin regions.

— FAIRE-Seq uses formaldehyde cross-linking to permanently bind nucleosomes
to DNA. DNA that was not bound is then sequences, revealing open chromatin
areas.

— ATAC-Seq works by marking open chromatin with hyperactive mutant Tn5 Trans-
posase, inserting sequencing adapters into open regions of the genome.

— DAP-Seq works by hybridizing native DNA with special TFs that were tagged in

vitro.
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A major difference is that ChIP-Seq (thanks to the antibody) and DAP-seq are spe-
cific, while the others are not. But in the end, we get lists of regions.

Figure 1.16. – Comparison of open chromatin assays. Most methods presented here
are non-specific and instead assay chromatin openness. A description of each
can be found in the afferent main text of the manuscript.

. Figure 1.16 - Meyer and X. S. Liu 2014
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1.2.3. Other genomic assays

Another possibility to evaluate the function of a candidate Cis-Regulatory region is
to use reporter assays. This generally consists of slotting the DNA sequence to be eval-
uated into a reporter genetic construct and evaluating the impact of the sequence on
transcription. An example of this is the STARR-Seq approach for enhancer evaluation
(Figure 1.17), which consists of slotting a candidate enhancer downstream of a strong
promoter and quantifying how much it will amplify its own transcription (through
sequencing). This was extended with Cap-STARR-Seq (Vanhille, Griffon, Maqbool,
et al. 2015) with the capture of regions of interest.

Another possibility is adding a reporter gene that codes for a fluorescent protein
downsteam of the promoter. The influence of the candidate regulatory region on
transcription is proportional to the observed fluorescence. However, it should be
noted that reporter assays may not properly quantity a region’s role since the candidate
regulatory region is isolated from its wider biological context. It could be missing
required activators, or not be supposed to be activated as a general rule.

Figure 1.17. – Principle of STARR-Seq. The candidate regulatory region to be evaluated
is transfected onto a clone library. The approach consists of evaluating its ability
to stimulate (or repress) its own transcription in this construct.

Another assay that we should mention is chromatin contact assay through Hi-C
approaches (Oluwadare, Highsmith, and J. Cheng 2019). It involves cross-linking close
chromatin strands and sequencing the paired DNA sequences. Those paired DNA
regions were regions that, in vivo, interact with each other.

For a more general review of enhancer assays, see Santiago-Algarra, L. T. Dao, Pradel,
et al. 2017.

1.2.3.1. Purely in silico approaches

It is also possible to predict Cis-Regulatory Elements based only on their sequence
through various purely in silico approaches. This includes analyzing their sequences

. Figure 1.17 - Muerdter, Boryń, and Arnold 2015
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for known motifs, seeking homology with other known regulatory sequences in other
species, or through chromosomal conformation. This is defined as an ab initio ap-
proach (literally "from nothing"), referring to the absence of any experimental assay.
An example of tool suite to perform such analyzes is RSAT (Nguyen, Contreras-Moreira,
Castro-Mondragon, et al. 2018).

This, however, is notoriously unreliable. For example, in practice only a fraction of
predicted Transcription Factor Binding Sites translate to actual binding sites when
experimental confirmation is sought out (Kaplan, X.-Y. Li, Sabo, et al. 2011). Indeed,
as we discussed previously, CREs only possess weak consensus elements. Trying to
infer them by analyzing which common patterns were a set of pre-selected CRE is very
vulnerable to bias, where such an approach will identify CREs sharing characteristics
with the training set. This set can be very narrowly focused or more generally of poor
quality. As such, experimental approaches are usually preferred.

1.3. Big data in bioinformatics

Localizing various regions of interest (epigenomic features, TF binding regions, etc.)
through the approaches presented in the previous section is now easier than ever,
thanks to their decreasing cost. This has resulted in a wealth of experimental data
from the broader scientific community, as well as from large consortia. As a result,
bioinformatics has entered what is commonly called the big data era.

However, before proceeding, let us first define "big data". Recent attempts to
ground the term based on a meta-analysis of academic articles (De Mauro, Greco, and
Grimaldi 2016) use it to designate "data of such a high volume and variety that they
necessitate different technologies and analytical methods to extract value from it". As
far as I understand them, the only commonality in all these definitions is that the data
was, at any one point in time, not saved as a spreadsheet.

That term is often abused by people who have somehow come under the delusion
that useful information is correlated to weight, a notion of which the existence of
Henry VIII ought to disabuse us. It is, to my mind, a symptom of the widespread
misuse of the term that a meta-analysis of the literature would still amount to such a
vague consensus. Hence, in this thesis, I wish to offer a different definition. I would
point out that it is trivial to generate terabytes upon terabytes of white noise containing
no meaningful information. Hence, volume is clearly not sufficient. As for variety, a
similar argument can be made that generating different types of white noise will not
increase the information quantity.

Indeed, an important but often forgotten assumption is that there should be mean-

ingfuldata in the data: what actually matters is the information content (Shannon
entropy). As such I would propose that "big data" be defined as data whose informa-
tion content is so high that many higher-order underlying rules between its variables
are present. This definition is expanded upon in later sections.

Similarly when it comes to variety, to me big data designates a large number of
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datasets with links between each other. This is related to the broader field of multi-view
learning. In this manuscript in particular, "variety" can mean different datasets are
available covering many Transcriptional Regulators, or regions of interest in general.
But it may also mean those datasets are corroborations for a given regulator, are assays
for two regulators that are usually correlated, etc. or any combination of the previous
propositions.

Figure 1.18. – In the ENCODE database, the cumulative number of assays has mas-
sively increased over the last decade, with a large variety as well.

In this section, we briefly discuss the material challenges posed by the sheer volume
of biological data, however the potential use of big data for corroboration is more of
interest. It is undeniable that more bioinformatical data is available than ever before,
and is being created and stored faster and faster (Figure 1.18).

This is taxing in terms of computing power required to store and process this data,
but also exerts an intellectual pressure on the flesh-and-blood humans performing the
analysis (Muir, S. Li, Lou, et al. 2016). This also results in more complicated pipelines,
containing a large number of varied methods requiring different processing workflows,
if only because technological advancements results in the continuous introduction
of new methods. Indeed, as of writing there are at least 534 known protocols for
ChIP-Seq alone (Clément, Emeric, J, et al. 2018). Furthermore, leveraging the potential

. Figure 1.18 - Snyder, Gingeras, Moore, et al. 2020
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cross-correlation between different datasets also has a cost since one is now expected
to compare and re-analyse their data with other available data from different sources,
but also of different types.

1.3.1. Genomic databases

In the last decades, there have been initiatives dedicated to making the aforemen-
tioned bioinformatical data accessible to the wider public. Since the cost of performing
large scale assays for a variety of regulators can remain high, consortia have formed to
absorb these costs ever since the Human Genome Project. The end goal is to centralize
data and help the scientific community study genomic regulation. In this section, we
present some of these efforts.

1.3.1.1. Sequence and genome archiving

The International Nucleotide Sequence Database Collaboration is an initiative
between the European Bioinformatics Institute (EBI, European Union), the National

Center for Biotechnology Information (NCBI, USA) and the DNA Data Band of Japan

(DDBJ, Japan) aiming to offer an archive of the raw data and metadata from high-
throughput genomic sequencing experiments, accessible through archives such as
SRA.

The genome assemblies themselves are handled by the Genome Reference Consor-
tium. The current assembly of the human genome, GRCh38, was released in December
2013 and has since seen patches for the correction of assembly errors (short read prob-
lems) and the addition of alternative haplotypes.

1.3.1.2. Cis-regulatory element annotation

ENCODE Consortium As of writing, the most prominent consortium regrouping
data for Cis-Regulatory Element annotation is ENCODE (Encyclopedia of DNA ele-

ments). It was created in 2003, with the stated aim of regrouping and reprocessing data
by subjecting them to a normalized quality control protocol to help study genomic
regulation. Their goal is to form a comprehensive encyclopedia of TF Binding Sites,
histone marks, and more generally study the chromatin markers we presented in
section 1.1.

The project was made of 4 phases, the first of which (pilot phase) ran up to 2007
to identify the most promising methods. Indeed, ENCODE was responsible for the
development of many bioinformatical tools and methods (among others: Shen, Myers,
Hughes, et al. 2016; M. Teng, Love, Davis, et al. 2016; Q. Li, Brown, H. Huang, et al.
2011).

In terms of output, the ENCODE catalogue ENCODE gives a list of 1.3M putative
CRE for 600 cell types (as presented in ther main paper The ENCODE Consortium
2012) based on their centralized data. One could also mention GENCODE, which
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is a sub-project to identify and classify all genes. Its annotations mostly come from
Ensembl, another sub-project.

The key point is that the data, which mostly consists of the sources (ChIP-Seq, etc.)
described above, is available online 4.

FANTOM The FANTOM (Functional Annotation of the Mammalian Genome) project
focuses on the study of the transcriptome. In its third phase, FANTOM developed the
CAGE method (Takahashi, Kato, Murata, et al. 2012) to study transcription initiation
and promoters, by focusing on the 5’ extremity of the mature mRNA.

The most recent phases of the project focus on the study of alternative promoters
(5) and long non-coding RNA (6). It recently produced the largest collection to date
of annotated promoters and TSS in human and mice (FANTOM Consortium and the
RIKEN PMI and CLST (DGT), Forrest, Kawaji, et al. 2014b).

International Epigenome Consortium ENCODE is not the only group focusing
on epigenomic annotation. In 2010, the International Epigenome Consortium was
created to regroup those, including for example the BLUEPRINT project (European
Union). Their goal is to produce reference epigenome for a variety of species, by
regrouping RNA-Seq and chromatin assays (ChIP-Seq, DNAse-seq, etc.) for a variety
of key chromatin markers, such as histone marks (Kundaje, Meuleman, Ernst, et al.
2015).

ReMap Faced with this abundance of data, other efforts have sprung to standardize
it. One may cite ReMap (Chèneby, Ménétrier, Mestdagh, et al. 2020), which endeavors
to identify and characterize regulatory regions from a large-scale integrative analysis
of DNA-binding protein experiments. The 2018 human update was used in certain
projects in this manuscript as part of a collaboration with Jeanne Chèneby. It is made
of uniformly annotated and processed 3,180 ChIP-seq experiments, including some
biological replicas, in a variety of cell types and tissues. This data also contributed
to the JASPAR project, which aims to identify consensus binding sites for many Tran-
scription Factors and gives across the genome the sites matching those consensus
motifs, along with the score of the match Fornes, Castro-Mondragon, Khan, et al. 2020.

ReMap’s initial curation and uniformized reprocessing workflow provide sufficient
quantity and quality to use the approaches proposed in this manuscript.

1.3.1.3. Others

Other initiatives can be mentioned here. For the publication of a scientific paper,
data should be made accessible. Archivage of experimental data for microarray and
NGS is proposed by GEO Omnibus (NCBI) and ArrayExpress (EBI). The raw sequencing

4. It is available as UCSC Genome Browser tracks - https://genome.ucsc.edu/
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data can be stored at SRA and ENA. Unfortunately, unlike projects such as ENCODE,
annotation and processing is not uniform.

Speaking of uniformity, Gene Ontology (GO) developed a nomenclature applicable
to all eukaryotes to describe gene functions, as an acyclic graph, an approach also
used by KEGG.

1.3.2. Integrative analysis of multiple data views

Quis custodiet ipsos custodes?
Who watches the watchers?

Juvenal

The availability of such volume and variety of data lends itself to integrative analy-
sis, by combining informations provided by different datasets. This can means two
different things. Firstly, leveraging the existences of replicates and experimental con-
firmations, which is the impetus behind ReMap for example. Such a meta-analysis
of datasets is emerging, notably in ChIP-Seq (D. Chikina and G. Troyanskaya 2012).
Secondly, it can also mean exploiting the relations between the regulators assayed by
different assays.

Multi-omics The second philosophy is at the root of the field of multi-omics. A
general review can be found at Subramanian, Verma, S. Kumar, et al. 2020. In a general
sense, this designates leveraging different kings of assays (transcriptome, epigenome,
methybolome, etc.) to get a more complete picture of a biological situation. This
is related to the field of multi-view learning, if we consider each assay to be a view.
This entails combining information of different natures, such as the facts "presence of
EP300 at this position" with "histone acetylation at this position" or "this or that gene
is expressed". More specifically, a general review of multi-view learning in biology
can be found at Y. Li, Wu, and Ngom 2016. This is also an active area of fundamental
research (for example, see Cao, H. Zhou, G. Li, et al. 2016, modeling interactions
between views as a tensor that will be factorized). In this thesis, "combinations" can
also be extended to this particular kind, between datasets of different natures. We
present such examples.

Many multi-omics approach use Machine Learning methods as we present in sec-
tion 1.4.2 (p. 57). In particular, matrix factorization methods as presented in section
4.4.2.1 (p. 165) are very popular. This often entails custom factorisations of the matrix
representing each dataset, with an joint optimisation objective seeking to both ex-
plain the original dataset as well as another one, to find commonalities. Other fusion
approaches are detailed in section 1.4.1.2 (p. 54).

One can also cite network-based methods, studying the networks formed by dif-
ferent data views. Bayesian methods are also used. Finally, multiple kernel learning
is very popular, which is very reminiscent of middle fusion approaches, in that the
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objective is to learn a combination of kernel functions, based on the different views
(S. Huang, Chaudhary, and Garmire 2017).

1.3.3. Noise

Nullius in verba.
Take nobody’s word for it.

Horace

"Noise" is not just a derogatory term older more respectable generations can use
to deride whatever the musical genre du jour is. It has precise implications. The
Oxford dictionary defines noise in experimental sciences as "any random fluctuations
of data that hinders perception of a signal". Noise can be white noise, but the term
is sometimes used to refer to any biais in the data, and this second prong is also
important to us. Here, we define noise as this:

Definition 1. Consider a logical proposition X about a biological reality, and consider

our experimental observation X̂ of that reality. Noise is any factor that causes X̂ 6= X .

This definition is rather sweeping, rejoining the conventional definition of anomaly

(more on that later, in Section 1.4.3, p. 60). I chose to include under this umbrella
term of noise all concerns such as experimental bias and general inaccuracies of the
experimental methods.

The biological assays described in Section 1.2 (p. 31), like many experimental
methods, have sources of noise. In this section we describe several sources of noise
and methods to deal with them, but we should keep in mind that they all tend to
the same end result: incorrect observation of the biological reality. Some of these
problems can be uniformly random (white noise), other such as a bias due to the
experimenters themselves can be more systematic. This is why, in this thesis, we focus
on whether the usual combinations are respected. More details in Section 1.4.3.

In this section, we list some sources of noise in no particular order. What is impor-
tant is that there is variety and not necessarily order to this noise, and correcting each
specifically would require a different kind of supervision and/or model for each. We
explore unsupervised ways to correct it in this manuscript. This prefigures the use of
autoencoders and matrix factorizations in the approaches presented in this thesis, as
they are known to be resistant to noise.

Mathematical modeling of noise Noise can also be modeled mathematically. This
is usually expressed through a relation such as D = X +N , where D is the observed
data, X is the noiseless data, and N is a random variable with certain characteristics
representing the noise. For example, a popular choice for N is the use of a Gaussian
noise, meaning the values that the noise can take on are Gaussian-distributed.

However, there exist a multitude of other models. In fact, pretty much any kind of
random variable can be used in a noise modeling such as this. It is relevant when

44



certain characteristics of the noise are known, so the model can be as close as possible
to the real noise: indeed, the noise then becomes an element of the system’s modeli-
sation. In statistics and regressions, the noise is sometimes equated to the fraction
of the variance in the target Y that cannot be explained by the known variables X . In
effect, it becomes a catch-all for effects of unknown causes.

Indeed, when generating artificial CRE representations (see section 3.4.1) we have
modeled false positive peaks as an addition to the noiseless data, using random
variables to detemine their characteristics such as their position. The RV used do not
respect the usual correlation between sources, by design, as the real noise would.

In this thesis, since our goal was often to remove noise in an unsupervised manner
by more broadly removing elements that do not respect the usual combinations,
no specific modeling of the noise was used. That being said, those modelings are
nevertheless related to the weak matrix factorizations we used (see section 4.4.2.1),
where an error term is permitted, resulting in an approximate reconstruction of the
original matrix. This error term is often equated to this N random variable.

1.3.3.1. Noise in ChIP-Seq

Let us begin with ChIP-Seq. There are many potential sources of noise (as defined
above) in such experiments, presented here in no particular order.

The main source of noise in ChIP-Seq is immunoprecipitation quality. Antibodies
can be insufficiently specific (Kidder, G. Hu, and Zhao 2011) and non-specifically
bind to other proteins. Furthermore, antibodies may have different affinities for target
proteins, creating a bias in intensity between assay for different regulators. The second
main source of noise comes from the library preparation and other sequencing biases,
mostly in the form of uneven genomic sonication. These result in an abundance of
spurious sites J. Xu, Kudron, Victorsen, et al. 2019.

Furthermore, the human genome possesses blacklisted regions, known to cause
problems in many genomic assays by being often the site of an artifactual unwanted
signal, which can be due to their high frequency of repeated short sequences or
anomalous antibody fixation (Amemiya, Kundaje, and Boyle 2019). Note that there
are very few of them in the latest human genome (hg38) assembly.

Inadequate experimental controls (such as the absence of background, see next
paragraph) can complicate peak calling, along with other factors (Wilbanks and Fac-
ciotti 2010). False positives can be introduced for biological reasons, such as on active
promoters (Jain, Baldi, Zabel, et al. 2015) and highly expressed loci (Teytelman, Thur-
tle, Rine, et al. 2013). This is compounded by all errors that can arise in the sequencing
itself (read quality).

Besides errors, anomalous peaks can be caused by other biological and technical
specificities (eg. different protein fixation kinetics), systematic experimentator biases,
mutations creating new TFBS, TRs having rare secondary roles, etc. To top it all off,
the peak caller itself is a source of error peak callers (False Discovery Rate of 1-5 % or
more, Chitpin, Awdeh, and Perkins 2018).
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Finally, ChIP-seq peaks tend to be much larger than the actual binding site of the
Transcriptional Regulator, which is only a few base pairs long. This can be partially
alleviated by trying to find the peak summit, which is assumed to correspond to the
binding event itself.

Fighting noise So, how can this propensity for noise be countered? We specifically
discuss anomaly detection later, but let us present here the methods used by ENCODE
to counter this bias, as presented in Landt, Marinov, Kundaje, et al. 2012.

Firstly, ChIP-Seq peak calling is usually done against a background. This can take
two forms. The first is to compare the experimental signal to another run done with a
non-specific antibody like IgG, which is called a mock IP 5. This should correct both
library and sequencing biases as well as biases due to antibody fixations. Another
possibility is to simply sequence against an input DNA made by sequencing Whole
Cell Extracts (see below), which theoretically should correct only the library and
sequencing biases. However in practice, IgG and input DNA perform similarly 6, and
today input DNA is used almost exclusively (J. Xu, Kudron, Victorsen, et al. 2019).

Tangentially, the background can be done with other antibodies than IgG to get
the difference in fixation relative to them; and one may even use another ChIP-Seq
experiment’s signal as background, but this is considered a very unreliable expedient
at best. Of course, even such a control is not foolproof and errors may still remain.
Regardless, the majority of ChIP-Seq experiments publicly available have not used
any kind of intput, which means those errors were not corrected 7.

At the experimental level, the proportion of mapped reads (how many of the reads
were sucessfully mapped to the genome) is important, as a low proportion could
indicate sequencing errors. Conversely, the number of regions mapped by unique
reads should remain low 8. Keep in mind that short reads can map on several genomic
regions due to random chance. Alongside FASTQC sequencing quality metrics, these
metrics give information about the quality of the sequencing and of the experiment
in general. This is further assayed by cross-correlation between strands through the
Normalized Strand Cross-correlation coefficient (NSC) and Relative Strand Cross-
correlation coefficient (RSC) ensuring the data on both DNA strands matches the
other.

Then, for the peak themselves, the total Fraction of Reads in Peaks (FRiP) is com-
puted. For a sufficiently specific antibody, one would expect that most read be found
inside of enriched regions designated as peaks (Landt, Marinov, Kundaje, et al. 2012).
Furthermore, it is expected that peaks called in two experimental replica will be very

5. This stands for "mock ImmunoPrecipitation".
6. With an ever-so-slight advantage for IgG controls, which means that in an ideal world both would

be performed.
7. Is this realization as horrifying for you as it was for me?
8. If a region is mapped by only one read, it is possible it was not part of the DNA sample that was

sequenced but instead that there was a read mapped here by mistake (likely because the read contains
an error). This is much less likely if many reads indeed do map there.

46



similar: the Irreproducible Discovery Rate measures the consistency between peaks
called for two replica of the bio condition.

Having presented the best-practice methods used by ENCODE, a pattern emerges.
I would emphasize that ENCODE indeed recommends cross-validation in a combi-

nation of datasets to weed out this noise, instead of a tedious, error-by-error specific
correction that might introduce new bias. This philosophy is at the heart of this thesis
manuscript.

1.3.3.2. Noise in other approaches

There are also noise sources in other approaches, and some that are common to
many NGS approaches (ChIP-seq included), such as the ones related to sequencing.

Genomic assays may not always represent biological reality. A detected binding
site for a Transcription Factor on a given region does not necessarily mean it is a
Cis-Regulatory Element: this may be due to biases inherent in the approach, or
could simply be a binding site that is not used due to other regulatory mechanisms
superseding it (Cawley, Bekiranov, Ng, et al. 2004) 9. A solution to this problem is to
use more precise/specific experimental assays to determine if the region is truly active.
This is part of the missions of ENCODE and FANTOM.

The sequencing itself can be a source of noise. When aligning reads to the genome,
low complexity regions complicate mapping and can have many reads falsely assigned
to them (H. Li 2014), Relatedly, the PCR itself introduces biases for certain regions (Aird,
Ross, W.-S. Chen, et al. 2011); broadly speaking, loci with extreme base compositions
(CG-rich mostly but also AT-rich to a degree) can are often under-represented. This
can be alleviated through adaptations of the PCR protocol, although such factors (tem-
perature, ...) can introduce their own biases in turn. Finally, deletions, insertions and
other mutations on the molecule being sequenced compared to the reference genome,
as well as simply errors in the sequenced reads, can result in spurious mapping.

The biases of the previous paragraph can be identified through a control experi-
ment, by sequencing a cell’s full raw DNA 10. This is especially valued in ChIP-Seq
experiments (Whole Cell Extract control, aka. input DNA, as discussed above), and is
also applicable to all sequencing experiments but is not considered very necessary.

When it comes to other assays, FAIRE-Seq is known for high background noise and
is less sensitive as a result (Tsompana and Buck 2014). DNAse-Seq requires more
genetic material and needs rigorous calibrating of conditions and fragments (H. H. He,
Meyer, S. S. Hu, et al. 2014. DAP-seq has a very high failure rate (Bartlett, O’Malley,
S.-s. C. Huang, et al. 2017). Finally, as discussed, the in silico methods of predicting
region activity based on sequences have high false positives.

9. This is less likely if known collaborators of that regulator are present.
10. Or the full whatever-it-is that you are sequencing.
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1.3.4. Data analysis pipelines and workflows

The use of such volumes of data has also brought more prosaic concerns about the
resources needed to process them and reach reproducible results.

1.3.4.1. Computing resources management

The most obvious consequence of processing large amounts of data is the corre-
sponding need for more computing resources. As such, today a large scale bioinfor-
matic analysis will usually not be run on a single computer, but on supercalculators 11.
This is known as High Performance Computing. Although they, as would be expected,
have larger memory and computing power, there is more to a supercomputer than this.
They usually run on a different, parallelizable architecture which requires a different
approach to be fully exploited.

In broad strokes, a supercalculator is generally implemented as a cluster of comput-
ers, each called a node. Each node is itself composed of several CPU cores and a RAM
pool. A key notion is that intra-node communication, between cores, is relatively easy
thanks to a shared RAM pool, and most algorithms nowadays leverage this.

Communication between nodes however, is another can of worms entirely, as they
do not share a RAM pool. There are protocols allowing synchronization between
nodes (or cores, or threads), such as the Message Passing Interface 12. The general
principle is to send messages that the threads can then interpret autonomously in their
code, without accessing the other threads or their memory spaces. In the majority
of cases however, the nodes will run independent tasks. For example, Keras permits
GPU parallelization in deep learning 13, but this is done by averaging the gradients
computed by each node afterwards. This example shows how node parallelization is
possible only when the task can be split in independent chunks.

This has two consequences:
— Tasks are usually broken into atomic units that can be run on nodes indepen-

dently, without knowledge about the others beyond their completion status.
— A master node is required to process and distribute those tasks.
I would note that communication between cores of a same node poses similar

computing challenges on the programming level, despite their shared RAM pool.
Indeed, simultaneous access of the same memory address by different cores is a
common source of errors, necessitating thread-safety and synchronization protocols
not unlike those used to synchronize operations across different nodes.

As a supercomputer is generally a shared resource, they are equipped with soft-
ware managing the task distribution called a job scheduler. Common ones includes

11. Here, I use "supercalculator" in the broadest possible sense of "a computer more powerful than a
general-use computer or laptop".

12. It can be hybridized with other protocols, for example using OpenMP for parallelism within a
(multi-core) node while MPI is used for parallelism between nodes.

13. Each GPU is analogous to a node, since it has its own core and especially its own RAM pool that it
does not share with other GPUs.
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TORQUE (qsub) and SLURM. When submitted, a computing task (ie. a job) is added to
a queue, and allocated computing resources when they are available. How to allocate
the resources to the users is an administrator decision, but is commonly handled
through a karma system tracking resource usage and good behavior for each user.

Other large scale solutions include Apache Spark. Based on the HADOOP file system,
it is an API designed to apply operations to datasets scattered across different comput-
ing nodes as if it was on a single computer, with the Core API providing dispatching
functionality for operations such as map, filter and reduce, as well as scheduling for
task distribution. Other parts of the API provide algorithmitic and Machine Learning
functionalities.

Algorithmic scaling Any given algorithm, such as one might conceivably run on a
supercomputer, has a time complexity. The commonly considered one is the worst-
case complexity, giving the maximum number of elementary operations performed
by the algorithm as a function of the size of the input data (in bits). One commonly
focuses on the asymptotic behavior of the complexity, expressed using a big O notation.
For example, a complexity of O(n) means the time cost of the algorithm scales linearly
with the size of the input. As the behavior is asymptotic, an algorithm that always
adds 2 elementary steps for each bit on input data has the same complexity that
one that adds 5: in both cases, the number of steps is linear with the input data size.
However, an algorithm that takes 9 steps for an input of size 3 but 36 steps for an input
of size 6 has a quadratic O(n2) scaling. For example, a merge sort (common sorting
algorithm based on merging sorted subgroups) has a time complexity of O(n logn)
and a memory complexity of O(n) while the naive inversion sort has a time complexity
of O(n2).

The point of this complex 14 exercise is that, once you know the scaling behavior
of your algorithm and have verified its results using a small testing dataset, the only
problems that can arise with larger data are implementation-bound (file systems, etc.).
This is key in several approaches presented in this manuscript.

1.3.4.2. Modularity of the pipelines

To parallelize these independent tasks and handle their synchronization, meaning
each task should only be run once its input is available, worfklow managers have been
developed such as Snakemake or Nextflow. The former was used in the demonstration
workflows of approaches presented in this thesis.

Snakemake allows easy parallelization of independent tasks, and is easy to modu-
larize. It is based on the creation of a graph of elementary rules, each having input
files and output files. The manager generates a task for each rule, starting from the
desired final output files and rewinding back up the graph up to the required input
files. When a file is missing, Snakemake will try to see if it has a rule to create it, and

14. Pun intended.
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will then go to this rule’s requirements. The process stops once Snakemake finds an
already existing file, otherwise an error is returned.

As a result, elemental operations (ie. alignment of reads on a genome) can be
repeated easily for different tasks, and can be made adaptable as elementary building
blocks through the use of wildcards.

Snakemake supports parallelization of jobs by dispatching them to different nodes.
Since it checks whether a desired file already exists, it is useful for start-and-stop where
if a step ends with an error the workflow can pick up where it left off, and when one
file is deleted only the steps required to recreate it will be run.

I would note that, as algorithms, the individual approaches developed in my thesis
are not parallelizable in and of themselves. However, we have implemented demon-
strations as Snakemake pipelines. As such, we show how data parallelization (running
the approaches for different datasets in parallel) can be performed by the workflow
manager through the Command Line Interface of the approaches. They are, further-
more, parallelized by threads and can be run on all cores of a node.

1.3.4.3. Reproducibility

In recent decades the scientific community has begun to realize, to its great dismay,
that there is something rotten in our kingdom. Namely, that we are facing a repro-
ducibility crisis. This phenomenon, present in most scientific domains, designates the
increasing number of publications presenting experimental results that cannot be re-
produced (Baker 2016). To combat this, new research paradigms have been developed
and proposed. The end goal is to ensure that methods are reproducible, meaning that
given the exact same input data, anyone can obtain the exact same results (Goodman,
Fanelli, and Ioannidis 2016). This is done by providing sufficient information about all
the procedures used. This is not the same thing as independent verification, where a
completely new experiment is used to verify a proposed phenomena.

Practically speaking, such reproducibility of methods is much easier to implement
with procedures that are strictly determinisitic. This is the case in computer science,
but biological experiments have many more uncertainties due to both their inherent
noise and the impossibility to perfectly control all input variables in the real world.
While experimental science must strive to reduce such uncertainties so results can be
reproduced, bioinformatics does not have this excuse. By making the same input data
available, anyone must be able to reach the exact same results as the ones presented
by the researcher. Anything else can only be described as a gross miscarriage of the
scientific method.

With the philosophical question settled, the practical one becomes, "How can
we facilitate reproducibility?". Modular pipelines as presented above are part of
the answer. Other recommendations include sharing the full code of one’s pipeline,
using versioning tools such as Git. The latter is also good practice in collaborative
development. It is also important that the environment of execution be reproducible.
It should be possible to easily use the exact same versions of the tools used in an
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analysis. This can be achieved through the use of Conda environments, which is a
package manager that ostensibly help solve versioning and dependency problems,
but as a consequence facilitates reproducibility. Another possibility is the use of
virtualization, such as the self-contained Docker images.

On a related note, I would add that the practice of using unit tests when developing
a tool is also relevant to this goal. Unit tests as small, proof-of-concept tests for the
elementary procedures of an approach where the expected result is known and can
be verified. They are supplemented by functional tests, which test entire slices of
functionality at a higher level. While it does not directly impact reproductibility, it
impact the robustness of a tool and ensures future development do not accidentally
reach incorrect results.

More to the point of this thesis, this lack of reproducibility is also a considerable
source of noise as discussed earlier, and of interpretability problems in general.

1.3.4.4. Interoperability

Related to the issue of reproducibility is the issue of interoperability. For both the
input data and the output resulting data, it is important that anyone may be able to
access and interpret it without difficulty. This has been standardized through the FAIR
principles. A given data element is compliant with FAIR principles if it is Findable,
Accessible, Interoperable and Reusable.

In practice, this means several things. It should be easily accessible from a shared
resource. The metadata describing it unambigouous with standardized identifiers (eg.
the gene CTCF has the unique Ensembl ID of ENSG00000102974,). It should also be
complete with all necessary details about how data was created and by whom. The
formatting of the metadata should be standardized (RDF 15 is recommended by the
W3C).

Data formats Storing all this data required the introduction, early on, of standard-
ized data formats. This was a crucial step towards interoperatbility, and allowed data
sharing. Our goal here is not to give an exhaustive inventory of data formats used in
bioinformatics, nor to discuss the data compression methods that allow to store more
information in less space. but instead to discuss the aspects of the data they focus on.

Raw genomic sequence is usually stored as a FASTA file, which is simply a text file
with identifiers. Sequencing reads will be provided as a FASTQC file incomporating
quality information from the sequencing about its confidence in the inputted base
pairs. The alignment of reads on a reference genome is given as a SAM file, which
contains information about the confidence and qualiy of the alignment (gaps).

Treated genomic signal, such as given by the number of reads mapping to each
position on the genome, is usually provided as a Wiggle (WIG) file, representing the
value of the signal on contiguous intervals. One notes the use of language reserved

15. Resource Description Framework. Usually implemented as XML, it consists in a collection of
statements framed with an object, a subject and a predicate.
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for time-series in this description. Parenthetically, VCF files represent variations on
a genomic positions such as polymorphisms (including but not limited to Single
Nucleotide Polymorphisms).

Speaking of genomic positions, the position of genomic features is mainly given
as a BED file. It is a tabulated file with one line per feature and with the columns
representing feature attributes. The three mandatory columns represent respectively
a feature’s chromosome, start position, and end position. Which is sufficient to define

an interval on the genome. The other columns give respectively a name, a custom
score, and which strand the feature is found on, if applicable. An extension of the BED
format is the GFF/GTF (General Feature File) format, which incorporates additional
columns for storing various attributes. BEDtools (Quinlan and Hall 2010) is commonly
used tool-suite for the manipulation of those files.

Such genomic features can be anything. Positions of ChIP-Seq peaks, promoters of
certain genes of interest determined by some arcane method, etc. And here lies the
crucial fact: many different types of relevant genetic information can be stored as lists
of intervals and therefore are suitable for study using the methods presented in this
thesis.

1.4. Formal modelisation

In the previous sections, we have presented human genetic cis-regulation and
the methods used to study it. A partial conclusion to this is that recent assays have
provided the community with a veritable wealth of exploitable data. The fact that
this data has been collated in databases means the combinations between different
datasets, but also the biologically meaningful combinations between different regula-
tors, can now be exploited. However, such high quantities of data are for now mostly
unsupervised.

In this section, we present the mathematical modelisation used to represent them,
with some generalities about Machine Learning. Then we discuss the problems, in a
mathematical sense, that the approaches in this thesis are designed to tackle.

1.4.1. Mathematical representation of biological regions

As has been discussed in the Introduction, the regulatory elements of interest
fixate on given position on the genome, resulting in the definition of Cis-Regulatory
Elements. The end product of many experimental genomic assays, such as ChIP-Seq,
will give a list of positions on the genomes corresponding to the putative binding sites
of transcriptional regulators, or more generally epigenomic regulators and chromatin
elements.

The position of such elements, as well as the regions they define, can then be
represented as a list on intervals along the entire genome. Conversely, this means
the methods presented in this manuscript can be applied to any data that can be
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represented as a list of intervals. For example, "promoters of overexpressed genes in
the condition ABC" also fit that definition.

Interval sets In mathematics, the most common meaning of an interval is as a set
of real numbers containing all real numbers lying between its boundaries, for example
[0;1] = {x ∈R|0 ≤ x ≤ 1}. However, intervals can be defined on any partial ordered
set (poset). A poset is a set associated with a binary relation allowing to position one
element before another in the set. This relation need not be applicable to any two
elements (hence the partially ordered moniker), which is indeed the case for a family
tree. It must, however, be reflexive, antisymmetric, and transitive.

In the context of this manuscript, we use the common generalization of ordered sets
to discrete sets of time positions. As a result, intervals are defined as sets of contiguous
time positions. This brings us to the definition of time series, which is a series of data
point indexed in time order. The value of a time series y at the time t is denoted y(t ).
The analogy is that here, time is the the position along the genome, with each step
being one nucleotide. We introduce the following notation:

Definition 2. Let Ai be a genomic region, that is a position interval on the genome

(eg. Ai = [100;200]chr 1 = "chromosome 1, base pairs 100 to 200"). Then, the set A =

{Ai }i∈[1..n] is defined as a finite set of individual genomic regions.

1.4.1.1. Matrix representations

As we are interested in studying the combinations of regions encountered along the
genome, having discussed the notion of intervals, we now introduce the combinations
thereof. If the intervals represent the binding of a given regulator (or any other element,
see above) at a given position, then if two regulators A and B are present at the same
position, the sets containing all their binding sites should overlap at this point:

Definition 3. A combination γ= {A+B +C } is defined whenever genomic regions from

the interval sets A, B and C embed a common genomic position. Combinations can be

defined on any n ≥ 2 sets.

Definition 4. The number of sets in a combination γ is its cardinality, noted card(γ) =
n.

For example, consider the presence, at a given position on the genome, of regions
in the sets A and B , but not C . This means this position can be represented as the
following vector:

x =
(

1 1 0
)

By concatenating vectors of this type, we can produce a matrix such as:
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X =











1 1 0
1 1 0
0 1 0
0 0 1











Where each line represents a genomic position, giving the sets which have an open
region at said position with one set per column.

Representations of this kind are essential in itemset mining: indeed, this representa-
tion is simply equivalent to a matrix representation of a list of transactions, with one
transaction per line and one element per column. We can easily see how factoring this
matrix would allow us to extract relevant itemsets. This is explained in section 4.4.2.1
(p. 165).

Furthermore, each line does not necessarily represent only one basepair or genomic
position. It can instead represent a set of contiguous base pairs with the same configu-
ration of regions (binning) or intervals between critical events (opening or closing of a
region in a set). See the OLOGRAM-MODL paper for more, especially the Figure 1.

1.4.1.2. Tensor representation

The matrix representation we described shows how adding a new dimension to the
classical time dimension, resulting is a two-dimensional object, allows one to consider
combinations. This could be extended to compare combinations between datasets
of a different nature. For example, combinations between different Transcriptional
Regulators, but also between biological replicates for the same regulator. However,
simply concatenating the column vectors for these datasets would give them equal
billing and belie the fact that biological replicates are more closely associated with
each other than with the other regulators.

In broad strokes, multi-view integration in machine learning and elsewhere is
divided into three possible approaches. The first is early fusion, where the different
views are simply concatenated into a larger object to be processed. There is also
late fusion, where the views are processed independently by models, and the final
result is calculated based on the individual verdicts. Finally, the most challenging
but most relevant is middle, fusion where latent space representation of the views
are considered, not the views themselves. These representations can be internal to
the ML models and be fed to another model, used in a vote, etc. The bottom line is
that, in multi-view learning, one has to either adapt the data structure, or produce
a different representation through a model and feed the results to a different model.
More specifically, for multi-omics integration in bioinformatics, see section 1.3.2 (p.
43).

As a consequence, we also consider tensor-based representations, with three or
more axes 16. Conceptually, this is obtained by stacking several matrices (or tensors)

16. "Axes" is the plural of "axis", not of "axe". To all my lumberjack and Frankish readers, I apologize.
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of the same dimensions along a new axis to form an n-dimensional object.
The particular representation used in this thesis (for the atyPeak project, see figure

1.19) has three axes: genomic position, Transcriptional Regulator, and dataset ID of
the experiment. However, any relevant axis can be used, for example by combining
different types of assays for the same position on the third axis, or comparing Tran-
scriptional Regulator positions on cell lines instead of on different datasets. Of course,
as in multi-view learning, there should be some sort of relation between the axes to
justify their use. The matrix representations are the 2D analogue of this, considering
only a projection of this on two axes.

Figure 1.19. – Tensor representation of CRMs, which are candidate regulatory regions.
We consider three axes: genomic position, Transcriptional Regulator, and dataset
ID of the experiment. A value of 1 means there is a peak with these characteristics
at this position, 0 otherwise.

Background and definition Stricto sensu, a tensor is defined as a multilinear appli-
cation on a vector space V . It is an object which, given k vectors and h linear forms of
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V , returns a single scalar. An example of tensor is a constraint tensor of all the forces
applied to a physical object. In this thesis however, we use a more classical definition
of a tensor as used in statistics and machine learning (Bi, X. Tang, Yuan, et al. 2021).
They are seen as a generalization of scalars (of dimension 0), vectors (dimension 1)
and matrices (dimension 2) to n-dimensional arrays.

Usage Stacking different, but comparable, kinds of information as tensors is prece-
dented in bioinformatics. For example, comparing the distribution of fish commu-
nities across time and space (Frelat, Lindegren, Denker, et al. 2017). However, as of
writing, this representation is still much less common than matrices or graphs. it is
still rarely used compare to matrices or graphs. Our approach inscribes itself in this
continuity.

Of course, a representation by itself is meaningless. A representation is to be chosen
because it highlights characteristics that we want to exploit. In return, it is necessary
to use approaches and algorithms that leverage the representation’s strength while
acknowledging its peculiarities. More specifically, one must not believe all axes to be of
an equivalent nature (unlike, say, longitude and latitude for geographical coordinates).
Furthermore, for some axes (like an axis listing datasets ID) ordering along the axis is
unimportant. This is discussed further in section (3.3, p. 95). Parenthetically, another
possible meaning of a third axis is to represent different timestamps (or, as is more
commonly done, stages of cellular development) since TF fixation is not constant in
time.

Such approaches can be tensor decompositions. For example, the Tucker de-
composition consists of decomposing a 3rd-order (3 dimensional) tensor T as T =

G ×1 X ×2 Y ×3 Z where G is a core tensor and the remaining terms are matrices. It is
a generalization of Singular Value Decomposition (and can be generalized to higher
orders) and is used to generalize Principal Component Analysis. Another example
of decomposition is the CP decomposition, written as T =

∑k
i ai ⊗bi ⊗ ci where ai ,

bi , and ci are k trios of vectors. From these examples, we can see that tensor de-
composition, unlike matrix decomposition, usually results in a decomposition into
components of smaller order (dimension).

There is further precedent for the use of the aforementioned decomposition meth-
ods on tensor representations, such as in studying single cell RNA-Seq data (Taguchi
and Turki 2019) and more specifically for multi-view applications by integrating dif-
ferent genomic and epigenomic datasets (Fang 2019). However, since the tensor as a
mathematical object is at the heart of all Deep Learning approaches, and the latter are
much more common, in practice tensor manipulation is more the purview of neural
networks methods 17.

17. Of course, the tensors involved can themselves be decomposed and studied using the aforemen-
tioned methods.
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1.4.2. Generalities on Machine Learning

In this thesis, we are interested in leveraging the relations between combinations of
elements. This means we want to learn underlying properties in the data for a variety
of biologically relevant tasks. Having defined a mathematical representations of the
combinations, we now introduce the methods that can leverage these representations
and that required the data to be formatted as matrices and tensors: Machine Learning

(ML) methods.
Machine Learning is defined as the study of computer algorithms that improve

through experience, as opposed to manual modifications or explicit instructions
by a scientist. As a broad generalization, machine learning consists of building a
mathematical model with predetermined structure based on sample training data. It
is used to make predictions about other data that was heretofore unseen by the model,
with the goal of limiting the errors made on those predictions. Machine learning has a
wide range of applications, from predictive business analytics to computer vision and
email filtering.

The term machine learning was coined in 1959 by Arthur Samuel. Machine learning
is sometimes seen as a subset of the field of artificial intelligence, and grew out of
the quest for universal A.I. It also grew out of the field of statistics, and the case
is made to regroup statistical and ML as a broader "data science" scientific field.
Similarly, data mining employs much of the same methods as machine learning, but is
characterized as discovering unknown properties in the data as opposed to prediction
and is related to unsupervised learning. Perhaps a more interesting fundamental
link is with optimization: many learning problems are formulated as minimization of
some loss function on a training set of examples, where the loss function expresses
the difference between the real properties of the data and the properties predicted by
the ML model.

Parenthetically, people tend to conflate big data and machine learning due to the
fact that, in ML, the more meaningful data there is to learn upon, the better the
learning. In this part, we present generalities about the classification and purpose of
machine learning approaches. In the interest of clarity, functional details about the
methods used are only introduced when germane to the scientific problematic being
treated.

1.4.2.1. Mathematical foundations

Let us begin by presenting some common notations. For each example in the data,
let x be the input variables containing the information about this example (x is usually
a vector). Let y be the output variable(s). (xi , yi ) constitutes the i -th example. The
goal of most ML models is to learn a hypothesis function hθ to estimate the output
variables when given the input variables, where θ is the vector of parameters of the
model, so that hθ(x) = ŷ . In practice, this means we seek to minimize a loss 18 function

18. The loss function is sometimes improperly referred to as the "cost function".
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J(θ) = f (hθ(x), y) based on the difference between hθ(x) and y , which is often the
Mean Squared Error. A common addition is regularization, adding a smoothing term λ

to the loss that depends on the model parameters, so that J (θ) = f (hθ(x), y)+λ∗ g (θ).
This is usually used to keep

∑

θ small.
In many cases, finding θ∗ = argminθ J(θ) is done by gradient descent. This is not

always the case however, and we show at least one example of a different minimization
algorithm in this thesis. Gradient descent is a method where, at each learning step,
each element of the parameter vector θ is updated as θ j := θ j +α ∂

∂θ j
J (θ). The choice of

the learning rate α is important, as a too high α will let the algorithm jump out of local
minima, while a too low α will get stuck in them. Some approaches dynamically adjust
the learning rate (Kingma and Ba 2014). There are variants, like batch gradient descent
where J (Θ) is not calculated on all x but only a subset each time (this particular variant
is used in deep learning). Gradient descent is effective for convex or partially convex
cost functions.

1.4.2.2. Classification of Machine Learning approaches

Machine learning approaches can be divided into four main classes. First and most
common is supervised learning, where the training data contains inputs x and desired
outputs y . This includes mainstays like classifications and regression. Tangentially,
semi-supervised learning is a case where some of the aformentioned examples are
missing labels. In unsupervised learning however, the examples have no labels. This
family of approaches mostly concerns itself with trying to find a structure in the input
data, such as with clustering algorithm. Finally reinforcement learning uses dynamic
programming methods and does not require explicitly labeled input data, instead
seeking to explore the space of solutions and reinforces the weights of solutions
producing a desired outcome during exploration.

Here is a short list of the most common Machine Learning models. Some of them
are relevant for several of the aforementioned approches. The models used in this
thesis will be introduced in more detail when required.

— Regression methods, such as linear or polynomial regressions where the hypoth-
esis function is a linear or polynomial combination of the xi . Logistic regression
also exists.

— Decision trees are tree structures using successive thresholds on the input fea-
tures xi to sort the examples into boxes of high purity (composed as much as
possible of a single class).

— Support Vector Machines (SVM) look for a separating hyperplan between two
predefined classes of examples, by mapping the input into a high dimensional
feature space. This relies on calculating distance analogs between the examples
using a kernel function to produce a Gram matrix of distances. As a result, the
representation space has been transformed in a larger dimensional space where
a linear classifier can be used: this is known as the kernel trick.

— Neural networks are an assembly of logistical regressions capable of learning
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complex non-linear hypothesis functions. See section 3.1 for a much more
exhaustive presentation.

— Matrix factorization separate the data matrix into a product of other matrices
whose components are significant in some way. See section 4.4.2.1 for more
details.

— Bayesian methods, where the probability of observed events is modulated using
a prior probability distribution that can be iteratively updated.

— Genetic algorithms are a metaheuristic inspired by the process of natural selec-
tion where parameter vectors θ giving high-quality solutions are hybridized in
an attempt to create even better solutions.

— Ensemblist methods consist of regrouping several predictors among those pre-
sented here. For instance, Random Forest methods consists of using several
decision trees trained on different random subsets of the data, followed by a
majority vote. Another example of ensemblist method is boosting: during the
training, one trains subsequent models where hard examples for the previous
model are given more weighting. The final result is a weighted vote.

Which approach to use depends on the problematic to be solved. Do we want
information about the features? Do we want to predict the status of an unknown
example (for example, a cancer patient)? For a general review of machine learning
algorithms and more details on the approaches presented here, see Dhall, Kaur, and
Juneja 2020 19.

1.4.2.3. Evaluation of ML models

In practice, the data is often divided into two sets: a larger training set on which
the model is trained, and a testing set never seen before by the model. This ensures
the model has no opportunity to learn the latter "by heart" and its performance can
be accurately assessed on it, a process known as cross-validation. A model is said to
be overfitting (ie. high variance) when J(train) is low and J(test) is high, meaning it
learned the test data too well and does not generalize. Conversely an underfitting
model (ie. high biais) has both high J(train) and J(test), meaning the model is in-
adapted to the data. This is generally due to the model not having enough entropic
capcity.

Binary classification models can be further evaluated by computing their precision
P =

T P
T P+F P

and their recall R =
T P

T P+F N
, where T P designates for each category in the

output the number of True Positives, F P of False Positives and F N of False Negatives.

Toolsets The most widespread toolsets implementing Machine Learning approaches,
and the ones that were used in this thesis, are the SciKit-Learn Python library (Pe-
dregosa, Varoquaux, Gramfort, et al. 2011) and the Keras Python library for deep

19. More specifically, an astute reader will be mostly interested in their References section. If that was
also your first reflex, do let me know. I am always proud to have such insightful and attractive readers.
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learning (keras-team/keras 2015) using the Tensorflow backend (Abadi, Barham, Jian-
min Chen, et al. 2016).

1.4.3. Anomaly detection

Anomaly detection (also known as outlier detection) is the problem of the iden-
tification of rare items, events or observations which raise suspicions by differing
significantly from the majority of the data (Chandola, Banerjee, and V. Kumar 2009).
In other words, anomaly detection seeks to identify elements in the data that do not
conform to the usual patterns between examples. An anomaly can be a point anomaly,
where a single point deviates from the rest of the data. It can also be a sequential or
contextual anomaly, meaning a data point is not anomalous by itself, but based on
its neighborhood. This is more relevant in time series and ordered data. For recent
reviews of anomaly detection, see X. Xu, H. Liu, and Yao 2019 for a general review
(with a focus on high dimensional data) and Akoglu, Tong, and Koutra 2015 for graph
data.

This is relevant for our purposes, as the noise we presented in section 1.3.3 (p. 44)
will likely not conform to the usual patterns observed in non-noisy (correct) observa-
tions. For example, as is relevant in the work being presented, finding a sub-unit of a
regulatory complex without the other associated elements would be suspicious. This
means this noise can be characterized as an anomaly with the definition given here,
and detected with such approaches.

1.4.3.1. Usual methods

Broadly speaking, anomaly detection can be done using a supervised or an unsuper-
vised approach. Supervision tends to make the training easier and improve detection
of the sought type of anomaly. However, it also tends to bias the model towards the
particular kind of anomaly found in the training set and will conversely not generalize
to other anomalies. Unsupervised methods do not introduce such bias as they rely
on the intrinsic characteristic of the data under the assumption that anomalous data
points will have differing characteristics, regardless of the source of the anomaly. How-
ever, they rely on the assumption that normal instances are far more frequent than
abnormal ones. This is true in most cases, but not all. Regardless, when considering
genomic assays data labeled training sets of anomalous data are seldom available, as
discussed previously. This means we must usually resort to unsupervised detection.

Classification-based methods often feature known Machine Learning classification
methods (DNN, SVM, etc., see above). On the other hand, clustering-based methods
will instead seek to form data clusters, with the assumption that anomalous points
(1) do not below to a cluster, or (2) will be far from their cluster’s centroid, or (3)
anomalies will belong to smaller or sparser clusters. Finally, statistical approaches
seek to fit a model to the underlying data, with the assumption that anomalies will
have a low value on the probability density function. It should be noted that most
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anomaly detection algorithms return a real value known as an anomaly score. This
permits custom thresholding later, to split the input space into normal and abnormal

elements.

1.4.3.2. Compression

Compression methods can also be used to perform anomaly detection. Compress-
ing data means creating a smaller (in bit size) version of it that can be used to later
rebuild the original data. In lossless compression, the rebuilding is exact. In lossy
compression however, an error tolerance is added so that the rebuilt data may only be
an approximate match for the original, up to the error term.

When performing a lossy compression, noise and other non-information are the
first elements to be lost. However, fine-grained details will be lost, under the same as-
sumption that they are too rare to constitute a meanigful pattern. A more intereesting
consequence of this is that anomalies, by definition, tend to be lost on compression.
This can be done with an autoencoder Ponomarenko, Lukin, Zriakhov, et al. 2005,
and we show an example of this in this manuscript. More details are presented in the
Methods section of the atyPeak paper. But any compression method is suitable.

1.4.4. Frequent itemset mining

Frequent itemset mining (also known as association rule mining) was popularized
by Agrawal, Imieliński, and Swami 1993. It consists of identifying combinations 20 of
elements that are often found together. See Luna, Fournier-Viger, and Ventura 2019 for
a recent review. The iconic problem of the field is to find regularities in the shopping
behavior of customers in a shop, but it can be generalized to any co-occurences
between occurences drawn from sets of elements.

More formally, let I be a set of items. An itemset is a subset of I . D is a transactional
database, whose individual elements are transactions. Each transaction is a subset
of I . In each transaction, some of the possible elements of I are purchased. Our
goal is to find frequent patterns of items (ie. itemsets) purchased/retrieved together.
For the problems presented in this thesis, a transaction corresponds to a genomic
position, and the items are the various genomic regulators and chromatin elements
that are bound in this position. Biologically speaking, since those regulators work in
combinations, there is a need of a framework to work on and study those combinations
and identify combinations of interest.

Let P be one such frequent itemset, or association rule. A rule is defined as an
implication of the form X ⇒ Y where X ,Y ⊆ I . The corresponding itemset to this rule
is X ∪Y , with X the antecedent and Y the consequent. Transaction databases are
usually represented using the same matrix representation we introduced in section

20. Drinking game: take a shot every time you read the word "combination" in my thesis. If you make
it to the end of my manuscript alive, feel free to email me so I may send you my heartfelt congratulations.
Then proceed to sign yourself up in your friendly neighborhood Alcoholics Anonymous meeting.
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1.4.1 (p. 52), where D is also be represented as a matrix X ∈R
m×k where m is the

number of transactions and k is the number of sets.
For instance, consider the database D containing the following transactions 21:

Customer Shopping cart

Charles cheese, wine
Louis wine, bread

Lothaire cheese, wine, olives

It can be represented as the following matrix, where each line is a transaction and
the columns represent respectively cheese, bread, wine and olives:

D =





1 0 1 0
0 1 1 0
1 0 1 1





Some additional metrics can be defined. The support of an itemset P in the database
D is an indication of how frequent it is:

support(P,D) = |{t |t ∈ D ∧P ⊆ t }|

In the above example, support for P = {cheese,wine} is 2
3 since it appears in two out

of three transactions. Conversely, the confidence of a given association rule X ⇒ Y is
simply support(X∪Y )

support(X ) . Related to association rules, we introduce for the purposes of this
thesis the following definition of parent combinations:

Definition 5. A combination γ1 may include all the sets of a combination γ2, plus some

others: γ2 is the parent and γ1 is the child of the relationship, denoted by γ2 ¹ γ1.

Indeed, combinations are analogous to itemsets, and a child combination is analo-
gous to a subset of an itemset. Note that this subset is is an itemset itself.

It is obvious at a glance that for #I = k (meaning the itemset I contains k items) the
set of all its possible subsets is simply the power set over I , which has 2k −1 members.
To limit this exponential complexity, itemset miners limit the returned rules by a
minimum support threshold. Efficient search is possible thanks to the downward-
closure property, which simply asserts that for a frequent itemset, all its subsets are
also frequent. As a result a frequent itemset must have at least one frequent parent,
and it is not necessary to work on the children of non-frequent itemsets.

1.4.4.1. Algorithms

The classical algorithms used in frequent itemset mining include the following:

21. Based on their purchases, can you guess which part of the Holy Roman Empire each client
inherited?
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— Apriori itself, considered the progenitor for the entire field (Agrawal, Mannila,
Srikant, et al. 1996). Its general principle is to perform a breadth-first search.
This consists of counting the occurences of all 1-wise itemsets, then moving on
to evaluate the 2-wise candidates, etc. and spotting once the itemset considered
is no longer frequent. Thanks to the downward closure property, we know the
children of a non-frequent itemset cannot be frequent. Although it is now of a
venerable age 22, it is still being worked on today. Its complexity scaling is rela-
tively poor, but the answers it gives are both correct and exhaustive. Subsequent
algorithms are based on its principle.

— FP-Growth is an improved version of apriori. While the principle remains broadly
the same, the database is instead sorted into a tree of frequent patterns, for
efficient query and browsing. To do so, the transactions in the database are
arranged into a trie 23. Each node of the trie is an item, the children of each
nodes are the associated items in each transaction (Han 2004).

— ECLAT on the other hand used a depth-first seach algorithm (Zaki 2000). This
makes it good for parallel execution.

— Closed itemset miners seek to directly extract closed itemsets. An itemset X is
closed if it is frequent and has no children Y ¹ X with the same support. For
example, LCM (Linear time Closed itemset Miner) is based on prefix-preserving
closure extension, meaning itemsets are ordered in a search tree and they jump
from closed itemset to closed itemset only (Uno, Kiyomi, and Arimura 2004).

— Approximate itemset mining, where the itemsets I ′ can be written as I +e, where
I is an itemset and e a vector of slack variables, to help fight noise. In such
a scenario, "ABD" might still be counted when looking for "ABC", depending
on the permissivity. These methods are used in noisy datasets, to introduce a
tolerance to noise. For example, the KRIMP method (Vreeken, Leeuwen, and
Siebes 2011) is based on compression (to be more specific, a given itemset is
selected depending on how it helps rebuild all itemsets).

— There exist others methods, such as ASSOC or OPUS, and with itemset mining
being an important topic in e-commerce, research is ongoing.

It should be noted that the time gains for FP-Growth and ECLAT are, for usual cases,
only of about an order of magnitude compared to Apriori (Garg and D. Kumar 2013).

Furthermore, there exists a link between closed itemset mining and approximate
itemset mining: since closed itemset mining is vulnerable to noise, approximate
itemset mining is often used as part of a solution to find closed itemsets (Junbo Chen,
B. Zhou, X. Wang, et al. 2009).

22. Granted, it does not hold a candle to Euclid’s algorithm, but still. It is, in fact, merely five months
older than I am. Positively ancient and decrepit. Get off my lawn, you damn youngsters.

23. This is not a misspelling of "tree". It actually means "digital tree", or "prefix tree".
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1.4.5. State of the art

Up until now, we have presented the context and background necessary to under-
stand the results presented in this thesis. As to the question of direct precedents, the
state of the art is accessible to the reader in the Introductions (and Methods) sections
of the papers attached to this thesis, as well as in the commentary in the following
chapters. For the reader’s convenience, we summarize those here.

The significance of the overlap between genomic overlaps has garnered some in-
terest before with several approaches (Simovski, Kanduri, Gundersen, et al. 2018),
with Bedtools Fisher being the most popular. For overlaps between n > 2 sets, some
work has been done (Aszódi 2012) but the models used are often inadapted, or only
empirical, requiring large amounts of shuffles to get any sort of precision.

Combinations of epigenetic regulators have been studies in CRE before (L. Teng, B.
He, Gao, et al. 2014) and even used to predict their status (Vandel, Cassan, Lebre, et al.
2017). Some of these approaches use matrix factorization methods (Giannopoulou
and Elemento 2013). However, they tend to be focused on pairwise interactions
and/or on combinations of individual discriminant regulators (some regulators that
are correlated to the relevant ones can be lost in the analysis). Relatedly, some work on
itemset selection based on certain criterions of interest has been performed, such as
selecting the itemsets that best explain the query region sets, but their interpretation
is rather opaque (Bryner, Criscione, Leith, et al. 2017). As for the statistical model, the
modeling is often inadapted, using abstractions such as reducing regions to single
points. Finally, the tools proposed are often either difficult to interpret or difficult to
understand and use, sometimes both.

There is a precedent for the denoising of ChIP-Seq data based on combinations
between different views, but it is supervised (Koh, Pierson, and Kundaje 2017), making
it harder to apply in the general case. On the other hand, snsupervised anomaly
detection has some precedents, but they usually refer to data that has a different
structure. Indeed, a recent approach for denoising without access to clean data uses
the L2 loss Lehtinen, Munkberg, Hasselgren, et al. 2018 but is about images. As for
the more widespread approaches like the ENCODE IDR, they are little better than a
simple pairwise correlation between datasets.

1.5. Partial conclusion

At this point, we have discussed how genetic regulation in humans and other eukary-
otes relies on a complex apparatus of regulatory elements. These elements do not exist
in a vacuum but have complex interactions with each other. For example, bivalent
histones result in an intermediary chromatin state, and transcriptional activators may
be composed of several sub-units such as FOS and JUN. It follows that the study of
such combinations is of paramount importance. Such interactions mostly consist of
forming complexes. As a result, they are found co-localized on the genome. As a re-
sult, approaches studying local correlations between sets of elements are particularly
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adapted to work on this problem. Many different types of relevant genetic information
can be stored as lists of intervals and therefore are suitable for study using the methods
presented in this thesis.

Quis, quid, ubi, quibus auxiliis, cur,
quomodo, quando ?
Who, what, where, with what means,

why, how, when?

Quintilien

In the following sections, the details of my work on those aspects is presented. I
sought to present the impetus and purpose behind each work, and provide a commen-
tary on why the methods developed were necessary. These explanations are given, for
lack of a better word, mostly in layman’s terms. My goal is to provide a exegesis of the
work presented in the articles, present my line of thinking, and explain why I did what
I did. The technical details and mathematical aspects are presented in the articles
for the benefit of the scientific community. When that is necessary, I also include
background information on the methods used.

To summarize, the quid and the quomodo are mostly in the attached articles, but
the cur, quando and quibus auxilis are in this thesis.
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2. Early work on specific

Cis-Regulatory Elements
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2.1. Combinations of regulators for CRE status

prediction

In the context of this thesis, my early work focused on leveraging the combinations
of epigenomic regulators to predict the status of Cis-Regulatory Elements, meaning
whether they are active enhancers, inactive enhancers, active promoters, etc. This led
to exploratory work which allowed me to develop the approaches presented in the
following chapters. Here however, I would like to make a short aparté to discuss some
other insights gained in the process.

2.1.1. Background

The prediction of Cis Regulatory Element status is a hard problem. Features that
can be informative include the binding of the epigenomic regulators presented in
the Introduction (Y. Li, C.-Y. Chen, Kaye, et al. 2015). A general review focused on
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the challenges in this domain has been performed by Kleftogiannis, Kalnis, and Bajic
2016.

Machine Learning methods, including deep learning, have been used to try to solve
this problem (S. G. Kim, Harwani, Grama, et al. 2016). The reported accuracy of these
methods vary, from 0.7 (Siwo, Rider, Tan, et al. 2016) to > 0.95 (Quang and Xie 2015).
However, it has been found that there is little overlap between the predictions made
by many different methods (at least for enhancers), which casts them all into doubt
(Benton, Talipineni, Kostka, et al. 2018). Other potential sources of error include
completely separating enhancers and promoters when predicting for certain models
(Y. Li, Shi, and Wasserman 2016), while we now know there can be some overlap
between the two (e-promoters).

Decision trees I privileged decision trees for this problem, as they provide im-
mediate visual interpretability. Decision trees are predictive models that go from
observations about a variable’s value (xi , in the branches) to placing the samples in
groups of maximum purity in terms of class or target value (y).

Their classical construction algorithm is called CART: at each step, the algorithm
looks to the data and seeks a criterion. A criterion is defined as a condition on the
input features, for example height > 170cm. At each step, the criterion that will be
selected is the criterion which, when applied, will result in a division of the input
space in two groups of maximal purity. Purity is usually defined as a low Gini impurity.
An alternative is to instead use the criterion that would result in maximal information
gain. The cycle then repeats until the end conditions are met (number of nodes
reached, or fully pure groups). Tangentially, such decision trees also come in boosted

and Random Forest variants, but this costs them their ease of interpretability.
It is important to note that decision trees can be non-informative, but their classifi-

cation of the input data is never wrong for the training data: the criteria selected are
indeed those that best divide the data, and the composition of the nodes is always
precisely given.

As for their limitations, they tend to use simple criteria. As such, non-linear or spa-
tially complex decision boundaries (ie. spheres) can be difficult to learn. Furthermore,
as is relevant below, a visual representation focusing on the criteria only does not show
the features that could also be important, but were not selected as they are correlated
to another feature that itself was selected. This is problematic for us if we look for
combinations of regulators as it would show only one of the two.

Furthermore, decision trees are quite unstable, because they will still consider very
small differences in the variables to be discriminant. This means that the decision
rules can change heavily when new examples are introduced in the training set.

2.1.2. Results

Decision trees were applied to data from Salvatore Spicuglia’s team for two different
problems. We sought to find a link between the combinations of Transcription Factors
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(and histone marks) present on certain CRE, and the enhancer activity of that CRE.
Training was supersived, with the enhancer activity value used in the supervision
assayed through Cap-STARR-Seq in both cases (see section 1.2.3, p. 38).

2.1.2.1. Lymphoid enhancers activity

The first problematic concerns the prediction of enhancer activity in lymphoid cells,
using TF and histone marks ChIP-Seq data. This study is performed on the p5424
cell line 1: their genotype is R AG(−/−)×P53(−/−), and as a result their phenotype
resembles that of Double Positive developing lymphocytes 2.

The enhancer activity is discretized with the following thresholds applied to the
log

(

Fold Change
)

of Cap-STARR-Seq: 1,5 and 3. This results in highly imbalanced
classes, with roughly 4000 Inactive, 2000 Weak and 400 Strong enhancers. This is
solved by weighting by abundance in the loss function.

When processing the full data to find statistical associations (we do not concern
ourselves with prediction yet), we find that the ETS1 and HEB transcription factors
play determinant roles in the activity of enhancers (Figure 2.1).

As for prediction, we get an AUC 3 of 0.7 roughly for decision trees (depending on
random seed), with similar values with Random Forest methods. Other tries using
AdaBoost regressions confirm the data is noisy with only poor predictive power. This
is similar to the AUC of 0.68 found when using TFcoop (this analysis was run by the
authors of TFcoop themselves as a courtesy).

2.1.2.2. E-promoters

We also considered E-promoter prediction (promoters that exhibit significant en-
hancer activity, see section 1.1.2.3, p. 26, and L. T. M. Dao, Galindo-Albarrán, Castro-
Mondragon, et al. 2017) in K562 cells. Here, we work on ChiP-Seq coverage data for all
TFs. The two classes we try to distinguish between are (1) a control set of promoters
and (2) a set of E-promoters with equivalent promoter activity (promoter activity
quantified by RNA-Seq). Enhancer activity is also quantified by Cap-STARR-Seq.

In stark contrast, when processing the full data (not separating into training and test-
ing set), E-promoters show an onion-layered decision tree structure. The enrichment
for the two classes in the node enrichment is often good, unlike lymphoid enhancers.

To find Transcription Factors that are correlated to discriminant ones, but may not
have been found to be discriminant themselves, I developed the following procedure:
for each node in the decision tree (not just leaves), compute its enrichment in each
class, then compute the average values of the features for each sample that was
attributed to this node. The most interesting finding from this analysis was a mutual

1. The histone ChIP-Seq data was done on Double Positive cells, however.
2. The classical T-cell development path is: Double Negative → Double Negative pre-TCR → Double

Positive with TCR α/β→ Single Positive, either CD4+ or CD8+.
3. Area under the curve of Sensitivity (False Positive Rate) as a function of specificity (True Positive

Rate). Since there is no output score, here we have simply AUC =
1−F PR

T PR
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Figure 2.1. – Decision tree for lymphoid enhancers.
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exclusivity between YY1 and FOS/JUN (heterodimer AP1). This was invisible in the
previous analysis by S. Spicuglia team, which did not focus on combinations. Accents
exist to amend those profiles, notably with the presence or absence of MYC.

Figure 2.2. – Decision tree for E-promoters. The top figure gives a simplified decision
tree on the entire data. In the bottom figure, each line gives a ChIP-Seq signal for
either YY1, JUN, or MYC, while each column is a node of the decision tree, sorted
by enrichment for E-promoters. Enrichment starts at 50% at the left extremity of
the red triangle and goes up to 97%.
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2.2. Alternative promoters in T-ALL leukemias

Another project I tackled during my thesis was the study of the usage of alternative
promoters (see section 1.1.2.2, p. 24, for more background) in T-ALL leukemias. While
the link to my thesis problematic of studying combinations of regulators may seem
remote, it can be seen as a precursor to such studies. Indeed, the project involved the
identification of Cis-Regulatory Elements, the study of ChIP-seq data, and comparison
between different conditions (combinations of datasets). For me, it sensibilized me to
the problematics I studied later.

Here, we focus on the study of Acute Lymphoid Leukemias (T-ALL). Those leukemias
are characterized by a proliferation of immature thymocytes and high white blood
cell counts, and represent roughly 15% and 25% of all acute lymphoblastic leukemias
diagnoses in children and adults respectively. Outside of cancer, alternative promoters
have indeed been shown to play a role in T-cell development (Chiang, Ku, Cui, et al.
2018). This is relevant since T-ALL leukemias can manifest in any of these cellular
development stages.

In this study, we use H3K4me3 ChIP-Seq data from T-ALL patients to perform a
genome-wide study of promoter activity in all human genes. We show that alternative
promoter usage is widespread in such leukemias. We also identify a set of previously
unknown candidate oncogenes with alternative transcript isoforms due to differential
TSS usage.

H3K4me3 ChIP-seq data was compiled from samples of three different conditions :
11 T-ALL patients, 5 immortalized cell lines (Loucy, CCRF, SilALL, RPMI, Jurkat) and 5
healthy thymocytes cell lines (CD34, EC, SP4, SP8, LC). This data has been generated
in the TAGC and in the Necker hospital in Paris. The bioinformatic processing was
performed by Denis Puthier.

2.2.1. Methods developed

We retrieve TSS coordinates from the hg38 genomic annotation, and intersect them
with our H3K4me3 peaks. Intersecting peaks are considered to be marks of potential
promoters, and conversely peaks that do not overlap with at least one known RefSeq
TSS in at least one of the studied samples (all conditions) are discarded. Their activity
is quantified using their H3K4me3 ChIP-seq coverage as a proxy for transcription
activity, computed by summing the number of mapped reads for each base pair of the
peak.

For each gene, a contingency table of the H3K4me3 peak coverage is generated from
the data; each line represents a different promoter for the gene, and each column the
sample. From this contingency table, we can compute Cramer’s V-score (see Figure
2.4). This score is not interpreted using a p-value, but using a threshold (Cohen 1988).
For degrees of freedom equal to and higher than 2, V > 0.35 is a strong association
and V > 0.21 a medium one. We use the V score instead of Fisher’s hypergeometric-
based exact test or instead of the Chi-Squared tests due to the very large values (in the
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millions) of the peak coverage used in the contingency tables (McDonald 2009). We
make a distinction between the global and local approaches. In the global approach,
peak coverage is averaged across all samples of a given condition (cell lines, healthy
thymic cells, leukemic cells). In the local approach, the V score is computed for every
possible pairs of samples, without grouping by condition.

Upon examination of the unfiltered best candidates, we have found that the V score
is vulnerable to noise and will find spurious correlations if the coverage values are
too low (see below in section 2.2.2.2). To reduce the number of false positives, we
filter the genes based on the density of each of their H3K4me3 peaks (peak coverage
divided by peak length): in the global approach, we require each gene to have at least
two TSS where the mean peak density across all samples is higher than the median
(roughly equal to σ) of densities. In the local approach, we require at least one sample
to be higher than the median, instead of the mean of all samples, so as not to discard
singular promoter apparition events. As a result, this V-score approach that is more
robust to noise (due to thresholds) and large values than a classical Chi-Squared test.

2.2.2. Genome-wide results

2.2.2.1. Transcriptomic diversity

Out of 73704 registered H3K4me3 peaks, only 20% are associated with at least one
TSS. Conversely, only 44% of all known TSS are associated with at least one peak. We
remove the transcripts and peaks without such associations from the analysis. TSSs
sharing the same H3K4me3 peak are merged, as we estimate those to be due to a
defect 4 in RNA Pol II fixation; such very close TSSs are assumed to be regulated by the
same promoter (Frith, Valen, Krogh, et al. 2008). This measure is further supported by
CAGE analysis results showing that alternative promoters containing closely-packed
tend to use a single, “major” TSS, unlike the more distant “true” alternative promoters
(Carninci, Sandelin, Lenhard, et al. 2006). We define a “TSS cluster” as one TSS merged
with all the others sharing the same H3K4me3 peak, with the 5’-foremost TSS being
kept.

We find that, in our samples, only 1920 genes have more than one TSS that do not
belong to the same cluster (ie. promoter, meaning that they do not share a H3K4me3
peak), or roughly 15%. This is significantly lower than the 40% figure commonly
reported in the literature, but is likely due to the close proximity between the studied
samples: as they are all thymoid lymphocytes, or derived thereof, it stands to reason
that their (alternative) promoter usage patterns would be globally similar.

We observe than most genes have a single digit number of TSS, but there is consider-
able variance as some genes have dozens of TSS. Having more transcripts than TSS is
very common, underlying the role of alternative splicing further down the line. We also
studied the distances between the TSS of each gene (Figure 2.3): when considering

4. "Defect" in this context is not necessarily to be understood as an error in the negative sense, it
also covers the intrinsinc incertitude in the beginning of the transcription by PolII.
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the distance between transcript start sites (ie. TSS but without merging alternative
isoforms due to splicing) we see a trimodal distribution. However, much of the third
mode is due to transcripts with far-away TSS that do not intersect with any H3K4me3
peaks. There appears to be no particular bias in distance regarding which transcripts’
start site share a peak with other genes’ transcripts. Finally, the first two modes are
composed of TSS that share a H3K4me3 peak between themselves, confirming our
suggestion that they are RNA Pol II fixation defaults and/or variations and not differ-
ent promoters unto themselves. This data contributed to our decision to equate one
promoter to one peak of H3K4me3 and merge all TSS that share a H3K4me3 peak.

Figure 2.3. – Distribution of inter-TSS (splicing isoforms not merged) distances in a
gene. "All" means all TSS. "Intersecting" means we removed TSS that intersect no
H3K4me3 peak. "Filtered" means we removed TSS sharing a peak with another
gene’s TSS, plus all the previous steps. "Merged" means we merged TSS with
the same peak, plus all the previous steps (this corresponds to the inter-peak
distance). The y axis is in log scale, which must be kept in mind when comparing
the areas under the curves.

2.2.2.2. Alternative promoter usage

We used our V-score as described, to determine whether the condition impact the
H3K4me3 signal.
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Figure 2.4. – V-score principle. The presence of an H3K4me3 peak is used as a proxy for
a promoter’s activity. A contigency table (top right) is generated from the number
of reads found in each peak. It can be relative to the maximum values (as depicted
in the figure) or contain the actual values (the values ni j ). The actual values are
used to compute the V-score (see formula) for this contingency table. Each line of
the contigency table can represent one cell sample (local approach) or all samples
of a condition merged together (global approach).

The V-score is computed, and appears to correctly follow a Chi2 distribution. But,
before filtering, we have reason to believe this contains many false positives (see
below). There is a correlation between the two comparisons involving immortalized
cell lines, which again suggests the samples of this condition have a unique alternative
promoter profiles for most genes consistently different to the other cell lines and as
such appears different in both comparisons.

In Figure 2.5, we can see that peaks with low total coverage (in terms of total base-
pairs covered by ChIP-Seq reads) tend to have a higher global V-score. As a result, we
discarded all peaks with a too low density (see Methods in section 2.2.1). Coinciden-
tally, σ corresponded roughly to the median value of peak coverage. By reducing the
number of false positives, this filter also allow us to be somewhat more lenient and
put the V threshold at 0.2 - which is still a statistically significant value, as otherwise
we would discard many too many genes.
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Figure 2.5. – Global V-score (T-ALL vs normal cells) as a function of total peak cover-
age. We suspect many false positive for high V-scores might be due to low peak
coverage.

Our final filter has those two conditions (V score above 0.2, mean peak density in at
least two TSS above σ), we add a third condition that there is at least one significant
ANOVA ratio when calculated on the coverage table between the two conditions. For
each pair of conditions (“Cell Line vs Normal”, “T-ALL vs Normal”, “Cell Line vs T-ALL”),
we retrieve the genes that fulfill all three conditions of our filter. This results in a low
number of candidate genes: in “T-ALL vs Normal”, only 27 genes match.

However, there are more candidates in the local approach, where we perform a
finer-grained analysis by comparing the samples themselves. For each gene, we call
“maximum local V” the maximum V-score observed between any two samples. Of the
232 genes with sufficient peak coverage, 206 have their maximum local V score above
0.2 which means that most (89 %) of the genes that satisfy the peak coverage density
condition also have at least one significant local alternative promoter usage. Unlike in
the global approach, however, those can be isolated examples from certain samples
and not condition-wide changes, as we see in the case study. Finally, we perform a
manual selection of 8 candidates deemed most promising: ANKRD28, AT2C1, BCL9,
MACF1, PEX5L, SSBP4, MAST1, and NRXN2.

We also perform a hierarchical clustering based on the local approach (Figure
2.6). We use the local V score as a metric to quantify distances between samples, by
summing all the V scores across all genes into a single matrix and using it as a distance
matrix. We do not use the peak coverage filtering condition, since the V score is used
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Figure 2.6. – Patient clustering based on local V-score (alternative promoter usage
for all genes). Healthy samples are in green, "cell lines" in yellow, leukemic
samples in red. On the graphs, AU p-values (red) are “Approximately Unbiased”
p-values computer by multiple bootstrap resampling, while BP (green) is the raw
“Bootstrap Probability”. Hierarchical clustering is used and 10 bootstraps were
performed.

as a distance here, not as a filter. As a result, we find that the immortalized cell lines are
mostly grouped together, but they can be very different between themselves as can be
seen via the scale of the cladogram on the left. T3C, T15, T16 and TALL1 are grouped
together. Indeed, observing the mapped ChIP-Seq peaks in a genome browser often
reveals that they have their own unique profile. The healthy samples are grouped
together, but the leukemic samples from two distinct clusters, one of which is closer
to the healthy samples than to the other leukemic samples.

2.2.3. Case study of ATP2C1

The most promising candidate gene was found to be ATP2C1. ATP2C1 (SPCA2) is an
ATPase localized in cellular membranes. Its role is to transport the C a2+ and Mn2+

ions. It is known to play a role in the regulation of the cell cycle in cancer cell. Changes
in ROS (Reactive Oxygen Species) production, caused by increased cell density and
hypoxia (auto)regulate the expression of SPCA2, which in turn is involved in potential
removal of ROS. Another direct effect of SPCA2 on the physiology of HCT116 cells is
the increase in their proliferation, possibly through the minimization of exposure to
high cytosolic Mn2+ . In conclusion, the function of ATP2C1, regulated by hypoxia
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and cell density, has been previously linked to generation of ROS and regulation of
cancer cell survival. (Cialfi, Le Pera, De Blasio, et al. 2016, Jenkins, Papkovsky, and
Dmitriev 2016). This existing oncogenic link piqued our interest, and we show T-ALL
leukemias may also be influenced by ATP2C1.

As seen in Figure 2.7, we indeed find a 5’ promoter that seems to be more used in
leukemic cells than healthy cells when looking manually. We now perform a closer
analysis. The usage of this alternative 5’ promoter has been validated in a newer
"Solid" RNA-seq dataset, as presented in Figure 2.8. This analysis was not performed
by me. We found that the transcripts upregulated in leukemic cells are the ones
corresponding to the alternative promoter (namely NM-001188180, NM-001188182,
and NM-001188183). However, these counts correspond only to a Cufflinks estimate 5.

Finally, we sought to determine the cellular mechanisms regulating both transcripts’
promoters. Both transcripts share the same exons, and the resulting protein is as-
sumed to be the same, differing only in the regulation. JASPAR TF binding motifs for
each are presented in Figure 2.9. We find that the promoter for the long transcript
is bound by several stress response factors (ATF, AP1, STAT1/2, IRF, Nfkb, Stat5) as
well as several hematopoietic factors with potential oncogenic roles (Tal1, Bcl11a,
CEBPB, GATA, Runx3). As such we hypothesize that the long is involved in stress
response and potentially regulated by oncogenic factors. It might be involved in cell
survival and escape from cell cycle control for oncogenic cells. Conversely, the short
transcript is regulated by factors such as PHF8 (histone demethylase of H3K9me2/3
and H3K27me2/3, involved in cell cycle progression by being required to control G1-S
transition) and the E2F family of TFs (plays a crucial role in the control of the cell cycle,
E2F6 may silence expression via the recruitment of a chromatin remodeling complex
containing histone H3-K9 methyltransferase activity) and ELF1 (a member of the ETS
family, is lymphoid specific). So, we hypothesize that the short transcript is regulated
through cell cycle and potentially involved in cell cycle control.

2.2.3.1. Ongoing research

This latest stage of research of ATP2C1 is not being performed by me, but by José
David Abad Flores, a PhD student in Salvatore Spicuglia’s team, as well as other collab-
orators.

A CRISP-Cas9 deactivation of ATP2C1 was done by inserting a NeoR construct inside
the second exon. It was observed that this impeded their growth, compared to the
wild type. It was also observed that the 5’ most promoter (long transcript) is is the only
one than can be induced by PMA-ionomcine. Further research is ongoing.

5. D. Puthier proposed grouping the transcripts by first exon to facilitate transcript inference.
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Figure 2.7. – ATP2C1 gene - (A) IGV view of mapped H3K4me3 peak coverage and
RNA-seq coverage. (B) Matrix of local V scores. (C) Relative promoter usage per
sample.
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2.3. Articles

The attached paper entitled "Characterizing transcription factor combinatorics
in cis-regulatory regions with supervised classification and sparse encoding" was
presented at JOBIM 2018 in Marseille.

The paper pertaining to the alternative promoters is currently being written.
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Introduction

Transcription factors (TFs) are a class of regulatory proteins that bind to DNA on

regions called cis-regulatory elements (CRE), so as to influence the transcription of a target

gene. It is now understood that TFs work in combination, by competing and/or collaborating

and forming complexes (Chaudhari et al., 2018). TF binding can be studied in silico through

the prediction of Transcription Factor Binding Sites (TFBS) using Position-Weight Matrices

(PWM, Mysickova et al, 2012). However only a fraction of predicted TFBS translate to actual

binding sites. Another possibility is to use  ChIP-Seq experiments (Chikina et al., 2012).

The combinatorics of  TFs (their  combined interactions)  are often studied through

statistics. Most works attempt to find co-occurring TFs pairs, i.e. pairs of TFs whose binding

sites are often found in a closer proximity than would be expected by chance (Zhu et al.,

2005). Other methods include unsupervised mining of association rules (Teng et al., 2014),

finding  TFs  with  correlated  nucleosome occupancy  (Lai  et  al.,  2014),  pointwise  mutual

information (Meckbach et al., 2015), and hypergeometric probability of occurrences (Terada

et al., 2013). But as a whole, existing approaches actually seek TFs associations regardless

of the type of CRE), and tend to study pairwise associations instead of n-wise combinations.

TF combinatorics are also of interest to CRE detection (Kleftogiannis et al, 2016),

sometimes when combined with histone marks; for example, a software tool called TFcoop

predicts  a  region’s  cis-regulatory  activity  using  a  suite  of  PWM  matrices’  scores  ( ie.

nucleotide composition) for the region as variables in a Lasso regression (Vandel et al. ,

2015). While these methods focus on CRE detection and annotation, they often consider

each TF (and/or chromatin mark) as an individual variable, rank them by importance, without

considering the combinatorics of TFs.
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Our objective is  then twofold.  First,  we focus on to detecting TFs that  are found

associated to one each other. Second, we wish to uncover combinations of TFs that are

characteristic of a class of CRE as opposed to other classes. We showcase our approach for

different meanings of what a “class” is : whether the different classes are different natures of

CRE (enhancers vs promoters), or are of same nature but with different activities (active vs

inactive enhancers). We propose a machine learning approach where an example is one cis-

regulatory element, each characterized by a vector of features with each feature being the

fixation level of one known TF as determined by ChIP-Seq.

Methods

We use three datasets focusing on three different kinds of biological problems in the

K562  cell  line,  respectively  :  TFs  combinations  characterizing  active  enhancers,  TFs

combinations  characterizing promoters that  also exhibit  enhancer  activity,  and a general

application on all types of cis-regulatory regions using public data from ENCODE.

1. The first dataset was generated in our laboratory as part of the study of TF-based

regulatory networks in developing primary thymocytes, using the p5424 cell line model.

In this work, CRE were selected by computing the overlap between DHS (DNAse-I

Hypersensitivity Sites) and ChIP-Seq peaks for 6 specific TFs. These regions were

then  assessed  for  enhancer  activity  using  CapSTARR-Seq  (Vanhille  et  al.,  2015).

Regions  were  then  classified  in  three  categories  proportional  to  tagged  activity  ;

unsupervised  clustering  using  k-means  was  performed  according  to  TFs  fixation,

proportional to mean ChIP-Seq signals around the region’s center (± 1kb for TFs, ±

5kb for histones).

2. The second dataset is based on a systematic CapSTARR-Seq analysis of E-promoters

(Dao et al., 2017). E-promoters are promoters that also exhibit distal enhancer activity.

For every human promoter, enhancer activity was assayed and a vector of TF fixation

was quantified by the same method as above.

3. The  third  dataset  is  created  using  publicly  available  data  (ENCODE  Consortium,

2012), with ChromHMM prediction of genomic regions combined with ENCODE/HAIB

ChIP-Seq TF peaks in the K562 cell line. We considered a bin for each region of 4kb

around  its  center.  For  each  region,  we  built  a  vector  where  each  component

corresponds to a score for a given TF ; that score is equal to the proportion of the bin

covered by a peak for the given TF multiplied by the score of the peak. Scores are

then L2-normalized.

To highlight  class-specific  profiles,  we  use  decision  trees  as  a  clustering  tool.  A

decision tree (Chen et al., 2007)  is a model that aims at grouping samples in various nodes

based  on  several  input  variables.  Each  leaf  represents  a  “cluster”  which  is  as  pure  as

possible (only composed of a single class whenever possible given the sample) given the

values of the input variables represented by the path from the root to the leaf. The decision

tree is used to perform a complex, combinated partitioning of the dataset. Unlike regular k-

means clustering,  this  approach is  supervised,  allowing us to find class-specific profiles.

Furthermore, different paths (with vastly different average profiles) can lead to nodes that

are pure in the same class, highlighting diversity. Node splitting is performed by entropy and

classes are rebalanced through oversampling. Since the decision paths only show variables

81



that best discriminate between the classes, TFs correlated to a discriminative one will not be

visible on the decision path, so we compute  the average TF profiles across all the samples

in each given node/cluster, allowing us to use a “discriminative” decision tree as a clustering

tool. For each node, class enrichment is computed using the hypergeometric law. 

This  first  approach is  compared to a sparse encoding of  all  the regions’ vectors

computed via dictionary encoding : this approach rests upon the assumption that a matrix

(here, our concatenated vectors) can be approximated by a sparse linear combination of

special  vectors  called  “atoms”  or  “words”,  and seeks  to  find  TFs combinations  that  are

common across the entire dataset of studied CRE. Each line (or column) of the query matrix

will be expressed as a combination of a single word in the dictionary, and a multiplicative

coefficient (Li et al., 2012) Then, for each word in the dictionary, we analyse its usage and

associated coefficients by class.

Results

On the first dataset, using our supervised classification method, we highlight complex

interplay  between  different  proportional  fixations  of  Ets1  and  Heb  resulting  in  different

enhancer  activations.  We  also  highlight  the  possibility  of  active  enhancers  lacking  the

H3K27ac histone mark, challenging the conventional view about its ubiquity (Creyghton et

al., 2010). Dictionary analysis was used to study TFs combinations by class, meanwhile it

analyses the k-means clusters previously computed. We show that there is a strong diversity

of profiles per class, and that  k-means clustering conceals this diversity; indeed  k-means

clusters enriched in Strong enhancers were found to have a similar, rather composite word

usage profile.

Concerning E-promoters, given that they are usually active promoters, we compare

them to  a  control  set  of  promoters  with  equivalent  activity  :  otherwise,  we  would  have

separated active and inactive promoters, not promoters and E-promoters. The decision tree

structure is found to be onion-layered, with small, particularly class-enriched groups “peeling

off”  from the bulk  at  each step.  Previous analysis  by et  Dao al.  (2017) showcased TFs

enrichment for E-promoters, but only for each individual TF. In our work focusing on TFs

combinations, we find that although many E-promoters have an EP300 and JUN-rich profile,

a distinct subset is enriched in YY1 instead. There exists minor variations on these profiles

that we dubbed “accents”.

We are currently working on the ENCODE dataset. Unsupervised k-means clustering

results in very impure clusters that do not exhibit different profiles, mostly grouping together

regions  with  respectively  high  and  low  total  TF  fixation,  although  active  promoters  and

insulators tend to regroup into a cluster  of  their  own. It  should be noted that  there is a

considerable number of regions for each class completely lacking in TF peaks; those regions

are removed from the analysis. Further analysis is pending.
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Conclusions

Our work allows us to highlight the diversity of TFs combinations profiles found within

and between classes of cis-regulatory elements. It is a heuristics-based method, which can

identify TFs tuples of arbitrary length. We discover both new and complex TFs combinations,

but also reveal those to be characteristic of the CRE class they are found in. We are now

looking  to  apply  our  method  to  the  dataset  compiled  by  (Muerder  et  al.,  2018)  which

presents a whole-genome STARR-Seq, in order to experimentally evaluate enhancer activity

across the human genome, as opposed to prediction by ChromHMM.

Our next endeavor will focus on the identification of Cis-Regulatory-Modules (CRM)

using a deep learning approach.  Previous work (DanQ,  Quang et  al.,  2015)  used deep

learning  with  convolutional   filters  (CF)  to  classify  genomic  regions  as  enhancer  or

promoters, and found out that the CFs spontaneously learned correspond to many known

TFBSs. We shall  use a similar approach based on the distribution of ChIP-Seq TF peaks,

considering for each position in the genome the presence of absence of a TF peak instead

of its nucleotide (like DanQ). Then we shall analyze the filters learned by our model. A Long

Short Term Memory layer should allow us to integrate positional dependencies.
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Figure 2.8. – The long transcript (alternative) is not expressed in thymocytes. However,
16/42 of T-ALL express both transcripts and 2/41 express only the long transcript.
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Figure 2.9. – JASPAR TF binding motifs for ATP2C1 promoters. The left is the promoter
for the long transcript, the right for the short transcript.
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anomaly detection with atyPeak
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This section presents the atyPeak project. Here, I endeavored to perform anomaly
detection in genomic catalogues using unsupervised multi-view autoencoders. We be-
gin with a short presentation of the underlying mechanisms of Deep Neural Networks,
and the impetus behind this research. We then present the new techniques developed
as part of the afferent paper, and their possible extensions.

3.1. Principle of Deep Neural Networks

Deep Neural Networks (DNNs) are powerful non-linear parametric systems in ma-
chine learning. In broad strokes, they can be envisioned as an assembly of logistic
regressions, whose output is fed to subsequent other regressions. They were first
proposed in the 1940s. Their stated ambition was universal learning, ie. using a single
underlying principle to represent any mathematical function. As such, they were
meant to mimic the only other known universal learner: the human brain.

87



Backpropagation was invented in 1986 (Rumelhart, Hinton, and Williams 1986),
although it has predecessors dating back to the 1970s (Werbos). This allowed the net-
works to learn by adapting their weights. But they remained little more than curiosities
until the 1990s, where advances in computing power made large scale application of
DNNs possible. It is remarkable that most of the advanced architectures presented in
this chapter are less than ten years old. For a review from a historical perspective, see
Schmidhuber 2015. For a general review of deep learning techniques with a focus on
their application on large genomic datasets, see Eraslan, Avsec, Gagneur, et al. 2019.

3.1.1. Basics

An individual neuron in an neural network is a logistic unit, which outputs a result

depending on its inputs. Let us introduce some notations: a
j

i
is the activation of

the neuron i in the layer j and Θ
j is the matrix of weights 1 controlling the function

mapping from the layer j to the layer j +1. The function used to calculate the result
is called the activation function, with the most common ones being the sigmoid
function where hθ(x) = 1

1+e−(θ′∗X ) and the Rectified Linear Unit (ReLU) function where

hθ(x) = max(0,θ′∗X ).

Layers of neurons Neurons will typically be regrouped in layers, with the input
layer dedicated to representing the input data, followed by hidden layers, and finally
an output layer. The general structure is presented in Figure 3.1. The principle is
always the same: each neuron takes its input from the layer before it and passes them
to the subsequent layer after computing activation depending on its learned weights.

The output layer will always output real numbers as values, but their signification
differs depending on the problem being considered. For example, in a classifier
network using a classical one-hot encoding, each output neuron is associated to a
class and its output is the model’s certainty that the given example belongs to this
class. In another situation, the output layer could also be a tensor representing, say,
an image that we want the network to rebuild based on its inputs. The possibilities are
endless.

Propagation Forward propagation is the process by which the network calculates
its output, based on the given input. The values of the activations for each layer are
computed by applying the activation function g to the result of a matrix multiplication:

z
(n)

=Θ
(n−1)

∗a
(n−1)

a
(n)

= g (z
(n))

1. A frequent alternative notation for Θ j is W
j .

. Figure 3.1 - Adapted from Sheehan and Song 2016, license Creative Commons Attribution 4.0
International.
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Figure 3.1. – General structure of a Deep Neural Network. The output of each layer is
fed to the subsequent layers, constituting an assembly of regression. There can be
as many hidden layers as desired.

Back propagation, conversely, is the process by which neural networks learn and
adjust their weights. Without going into much details, as this is not the scope of
this thesis, backpropagation involves adjusting the coefficients of Θ one layer at a
time, from the last to the first. Let δl

j
be the error of node j in layer l , so that for

the final output layer, δm is the difference between desired output and actual output
(δm = a

(m) − y). For the next-to-last layer, it will be the difference between the true
activation and the desired activation. During a step of back-propagation, coefficients
are adjusted via gradient descent to get closer to the desired activation. The process
is then repeated for the layer before, and the layer before, etc. until the input layer is
reached.

The gradient descent used can be customised, such as using Adam for sparse data.
The choice of loss function is important, and the classical Mean Squared Error is not
always the best choice.

3.1.2. Representation learning

In representation learning, a model learns representations of the input data (typ-
ically by transforming it) that makes it easier to perform a task like classification or
prediction. For a general review (on which this section is based), see Bengio, Courville,
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and Vincent 2014. A good representation should be smooth (small changes in x lead to
small changes in the representation) and integrate information from a as-high-order-
as-possible combination of the underlying features.

These conditions are generally satisfied by DNNs. Broadly speaking, Neural Net-
works perform representation learning as a natural consequence of the hypothesis
function they learn during training. Indeed, each layer of the network performs its
own embedding of the original data, based on a somewhat complicated non-linear
transformation, into a new space. In the particular case of autoencoders (see sec-
tion 3.1.3), we impose constraints on at least certain layers, namely that the space
must be of lower dimension, making autoencoders suited for compression. This
idea that a lower-dimension embedding can be an accurate representation of the
higher-dimension inputs is also at the heart of the manifold hypothesis 2.

One of the challenges in representation learning is the difficulty of establishing a
target for learning, since the ultimate objective is typically improving the classification
of another predictor, or another far-removed objective. This is relevant in our case,
since our ultimate objective is also different (see section 3.5.1, p. 101, for an exploration
of this).

Ultimately, representations such as word2vec or the representations outputted
by the recent BERT and GPT-2 models have been succesfully used in NLP (Natural
Language Processing) tasks beyond their original encoder.

3.1.3. Specialized Neural Networks

Convolutional filters Convolutional Neural Networks (CNNs) are DNNs making use
of convolutional filters in their layers. Convolutional filters can be seen as particular
neurons whose input is based on a restricted section of the previous layer, where the
stride of that restriction is the filter size. As such, each individual filter will learn a
small, local combination of elements. The subsequent last dimension in convolutional
layers’ tensors is the number of filters in said layer. See Figure 3.2 for more details.

A convolutional product serves to highlight how much a given region of the image
“matches” the filter. The purpose of such networks is to learn local combinations of
elements across the dimensions covered by the filter. Convolutional layers are usually
followed by pooling 3 layers, aimed at reducing the dimension of the previous layers.
This is usually done by making local averages.

2. For example, if considering black and white images of size 64x64, only a fraction of the 24096
possible images would be naturally occurring images. This would manifest in complex correlations
between the pixels, with some leeway due to noise. This means a lower-dimensional manifold is
sufficient to describe the space of naturally occurring images.

. Figure 3.2 - Top is adapted from "Deep learning for complete beginners", Cambridge Cod-
ing Academy, https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution. Bottom is
adapted from Aphex34, English Wikipedia.

3. Sometimes also called subsampling layers, since they effectively reduce the dimensionality by
mashing local elements together.

90

https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution


Figure 3.2. – Convolutional Neural Networks. The top part presents the operation
of convolution. The representation of an input tensor, as seen through a con-
volutional filter, gives the closeness of the match between the local pattern and
the convolutional filter. The bottom part presents the usual structure of a convo-
lutional network, several convolutional layers interspersed with pooling layers,
followed by layers to treat the information.

There also exist graph convolutions, which follow the same general principle except
that they consider a node’s neighbors in the graphs (nodes with connecting edges)
instead of its spatial neighbors.

Autoencoders Autoencoders are a specific type of architecture for neural networks.
Their goal is to learn a compressed representation (ie. an encoding) of the input data
with a lower size (in bits). Following this compression, the model learns to rebuild
the original input data based on the encoded dimension 4. It seeks to minimize the
difference between the input and the rebuilding, hence the name. This compression
entails discarding signal noise, as was discussed in section 1.4.3.2. See Figure 3.3 for
their general structure.

Variants to this basic model exist. For example, denoising autoencoders will instead
be trained to rebuild a clean image from a "salted" version of the image, obtained by
adding noise to the clean image. This is not relevant for our particular usage because,
as we explain later, we did not have access to clean data in the first place. Another

4. The encoded dimension is sometimes referred to as a latent, or hidden mathematical space.
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popular variant is the variational autoencoder, where the encoded dimension instead
represents the moments/parameters of assumed underlying random variables.

Autoencoders can be used to learn useful representations (by extracting the encoded
dimension), as generative models, etc. As such, they have been used in a wide variety
of tasks, from facial recognition to natural language processing. Since the encoded
dimension is usually smaller than the input tensor, a lynchpin application of theirs is
dimensionality reduction.

Figure 3.3. – Structure of an autoencoder. Its goal is to learn an encoded representation
sufficient to closely rebuild the original input. In this figure, z is the encoded
dimension, X the input tensor and X

′′′ its reconstruction by the autoencoder.

Advanced elementary structures such as convolutional filters, LSTM and whatnot
(see later) can be used with autoencoders, since an autoencoder is an architecture
type, not a building block per se. For more information about autoencoders (and
convolutional networks) and their applications to similar problems, please see the
relevant Methods section of the attached atyPeak paper.

Other advanced architectures The family of Deep Learning models is very vast,
however, and rapidly evolving. The list of architectures is endless, and keeps growing. 5

Some structures allow the model to focus on specific parts of the previous tensors.
For instance, LSTM (Long Short Term Memory) cells are used for language processing

. Figure 3.3 - Adapted from Chervinskii, English Wikipedia
5. If you are interested in learning more about existing architectures and components, I would rec-

ommend visiting https://www.asimovinstitute.org/neural-network-zoo/ which, as of writ-
ing, does an excellent job of presenting the various members of the Deep Learning family.
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and are part of the family of Reccurent Neural Networks, characterized by intra-layer
connections. In terms of architecture, they are used in a distributed manner where
each cell considers the value of its input (previous layer) tensor for one time stamp 6

at a time. They are themselves made of smaller Neural Networks. However, each
LSTM cell also has access to the output of the previous cell in the chain. They further
introduce forget gates to discard this previous information, which helps with the
exploding and vanishing gradients problem. More recently, attention mechanisms
have been proposed, where each neuron is granted access to another intermediary
layer consisting of the outputs of the previous layer (or previous states for NLP models)
multiplied with a learnable mask of attention weights, to help the neurons focus only
on relevant parts of a sequences. More modern NLP models like the Transformer use
attention exclusively.

This notion of custom connections has been used in other architectures such as the
U-net. This is a model that consists of two branches, a contractant branch followed by
an expansive branch. While the layers in the contractant branch have only access to
the outputs of the previous layers in their branchs, the layers in the expansive branch
also have access to the output of certain layers in the contractant branch, allowing
them to access some informations from the first steps of the processing.

Models can also be combined, such as with Generative Adversarial Networks, where
two models are in competition: a generator network is trying to generate examples to
fool a discriminator network, tasked with determining whether an example is from
the real data or was generated by a network. The goal is that this competition will help
both models learn well, but necessitates that each has a reasonable baseline efficiency.

More recently, capsule networks have been proposed for image processing where
certain neurons are connected with multiple weights (a vector) instead of just one
weight (a scalar). In other words, they are grouped in capsule cells returning an activity
vector. As a result, they can transfer more information, such as transferring a feature’s
color, deformation, etc. along with simply its nature.

Finally, we ought to mention that regularisation (for both activity, and kernel values
when relevant) can be applied, and that more generally the loss can and should be
customized to impose any penalty of the activities one might desire, for example by
enforcing sparsity in encoded dimensions for an autoencoder.

Information flow between parts of a Deep Learning model From what can be
learned from this short panorama of Deep Learning methods, I would like to put a
particular emphasis on the notion of information flow. In deep learning, different
inputs can be combined and split as one might desire. The key notion is that con-
nections between layers in general allow for information flow between parts of the
model, which will process the information it was given with each successive layer. This
is especially relevant when using DNNs in multi-view application. Indeed, I would

6. As with our tensor representation, the "time" axis can be a spatial position axis. It just means
there is one axis designated as the position axis for a timeseries-like data.
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argue that modern new DNN architectures are built by combining those pre-existing
structure in a new manner to create a structure with a tailored flow of information, as
exemplified by the creation of LSTM, U-nets, attention, etc.

3.2. Impetus

The impetus behind this project was the realization that collating an ever-increasing
number of experiments, each of which have a certain probability to contain errors at
each given position, brings an ever-increasing number of total errors. By extrapolating
this argument, we can suppose that an exhaustive collating and compiling of the
cyclopean amounts of data available would be a nightmarish undertaking, necessity
rigorous reprocessing. Fortunately, we shall wonder no more: Jeanne Chèneby did
exactly that, and realized that indeed the ReMap catalogue now covers significant
proportions of the genome with at least one ChIP-Seq peak, notwithstanding the
filtering methods she applied. For instance, ReMap 2020 covers 34% of the genome
with 5 peaks or more and 65% of the genome with one peak or more. This realization
spurred a collaboration between me , Jeanne Chèneby 7, and Benoît Ballester.

To paraphrase J. Chèneby, this is not surprising since ReMap integrates very hetereo-
geneous data with different protocols, proteins of interest, biotypes, etc. Furthermore,
ChIP-seq experiments produce errors, as we copiously explained in section 1.3.3.1
(p. 1.3.3.1). Since there are so many experiments integrated, there is a high likeli-
hood at any given position on the genome that at least one anomalous peak will be
present. In vanilla ReMap, this is alleviated by rigorous quality controls, and through
the sheer number of integrated experiences which permits a sort of majority vote
increasing confidence in regions with a large number of peaks. Indeed, to paraphrase
her, ReMap’s root goal was to identify Cis-Regulatory Elements through ChIP-Seq data.
Only CREs containing peaks with large number of peaks, presumably from multiple
independent experiments, would be considered true CRE.

But is it possible to go one step further in this reasoning and take it to the level
of each individual peak? Since epigenomic marks tend to work in collaboration
(another point we have emphasized ad nauseam in section 1.1.3) we expect that
ChIP-Seq peaks from regulators that are known to collaborate biologically would be
correlated. Similarly, we may observe that two different datasets tend to be correlated.
In either case, lonely peaks would be suspicious 8.

Relatedly, ReMap already incorporates such a notion of strength in numbers, as
the non-redundant peaks are supported by many fixation events from experiments
in different laboratories. But since the integrated data can be very heterogeneous
(different protocols 9, ...) this is harder to apply. This is why we sought to leverage

7. She was, at the time, a PhD student in the TAGC lab; but has since graduated and moved on to
greener pastures (of data)

8. In this context, completely different experiments can be seen as biological replicates if they target
the same epigenomic regulator.

9. For the most recent versions ChIP-exo and DAP-seq is used. This data was not used in atyPeak,
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the combinations between sources, since in this case the heterogeneity of the data
is a non-factor: the approach would simply learn that "A and B correlate" or "C and
D do not correlate", regardless of the nature of A, B, C or D, and does not imply they
represent exactly the same event at all times.

Using the methods championed by ENCODE (presented in section 1.3.3.1) would
amount to classical statistics, such as the Pearson correlation. This, however, lack
resolution as those methods generally only considers pairwise correlations instead
of n-wise, and compare entire datasets instead of individual peaks. Furthermore, we
lack any sort of supervision or database of "clean" peaks to compare against or train a
model with. This is akin to the more general case of database curation, where manual
review or labelling of the data is usually very expensive or downright impossible. The
only resource we can leverage to perform curation are the aforementioned combi-
nations, which lands us square in the domain of unsupervised anomaly detection

(see section 1.4.3, you know the drill by now). Due to the massive amounts of data in-
volved, and the complex correlations to be learned in the data, Deep Learning seemed
appropriate.

Additional details about the problem impetus and the reasons behind our choice of
approach can be found in the introduction of the atyPeak paper.

3.3. Adapting network architecture to the research

question

To do so, I elected to use an autoencoder to perform a lossy compression of candidate
CRMs 10. The idea would be that the model would learn sources (TR, dataset pairs) as
groups of correlating sources and not as individual ones, losing details in the process.
The details lost would be the peaks that do not respect the usual correlations between
sources, which are likely to be anomalies.

I would invite the reader to see the attached atyPeak paper for additional details.

General architecture As atyPeak is designed to perform a compression, we use
comparatively small and simple models that do not require large amounts of CPU
resources. This is in accord with my personal philosophy when it comes to Machine
Learning, which is to start small and work upwards in terms of complexity. I find that
gigantic models are often overfitting their data, and are tantamount to brute force
approaches, with the corresponding lack of interpretability. As such, the autoencoder
used has only one layer of convolution per dimension (see below) and only a few deep
layers. For more on how to choose the dimensions of the layers, see section 3.5.1 (p.
101).

but this notion of different protocols can be extended to them too, and still used by atyPeak, as we
explain later.

10. A CRM, or Cis-Regulatory Module, is a region on the genome that contains at least one candidate
CRE, Cis-Regulatory Element, which is a local element.
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3.3.1. Transverse successive convolutions

The tensor representations we used, as presented in section 1.4.1.2 (p. 55, have 3
axes: genomic position, ID of the dataset of origin, and name of the Transcriptional
Regulator considered (or more generally regulator ID). See Figure 1.19, at 55. We did
not process the entire genome: instead, each tensor given to the model represents a
candidate CRM, among the 65K with the most peaks across all cell lines.

Today, most of the literature on Deep Learning is focused on images, and multimedia
in general. Hence, even the approaches recently developed such as capsule networks
fit the constraints of analyzing an image represented as a matrix (with the values
corresponding to RGB colors). In an image, however, the spatial dimensions (X and Y)
have an ordered meaning and proximity of two items in the matrix is important. In
the tensor representation we propose, there is only an ordering in the X axis (genomic
position), unlike the Y and Z axes. Instead, datasets and TRs are sorted alphabetically,
and as such there is no greater association between two datasets that are neighbors in
the tensors that there is between the first and the last.

However, we did use some structures that are originally designed for image process-
ing, such as convolutional filters. To resolve this paradox, I used fully transverse filters
for the Y and Z dimensions. As a result, the filters consider the tensor in its entirety for
those dimensions, negating any proximity influence. For the X dimension however,
where there is an importance to the ordering, the filters are short (dozens of base
pairs) as is usual. Instead of using 3D filters, I used successive convolutions for the two
different axes, convolving across the Y and then the Z axis. This was done to alleviate
training problems observed with the larger 3D filters, but it also serves to establish
a hierarchy by first learning combinations of datasets, and subsequently learning
combinations of TRs on latent variables representing combinations of datasets, in this
order. This can be linked to a middle fusion approach.

Squishing While the tensor representation cover windows of 3200 base pairs, I
downscale the tensor by a factor 10 along the X axis (“squishing”) since the data has
low granularity along that axis: the peaks are long, so we can afford to have a resolution
of 10bp only without losing much information.

This also helped by diminishing the computing costs, since the convolutional filters
could be made 10 times shorter. Beyond simply speed, the longer filters often failed to
converge, a problem which disappeared with the use of shorter filters and is potentially
linked to the sparsity of the tensors (see below).

3.3.2. Crumbing and countering sparsity

A sparse tensor is defined as a tensor where most of the elements are equal to
zero. Exactly how many varies depending on the definition. Sparsity in the data is a
challenge in Machine Learning. Note that having sparse data is not the same thing as
having a sparse model. In the latter case, it means the vector of parameters and/or

96



internal vectors/tensors representations are sparse 11.
Sparsity can also be due to missing or incomplete data 12, a different but related

problem. Sparsity can also mean that you have few representative examples for each
class. Finally, as is the case here, the data representations itself might be sparse.

Fundamental consequences of sparsity The cornerstone of fitting Machine Learn-
ing is efficient computing of a function’s gradients. But in practice, sparse data tends
to be stores in very large matrices, and the zeros of those matrices are non informative.
This necessitates the development of different methods to efficiently compute the
gradients of sparse data 13. Furthermore, the curse of dimensionality 14 is an even
more pronounced problem.

More generally, sparsity dilutes the informative variables. When a model is trained
on sparse data, the proportional information content is lower and results in a model
that is much less stable, meaning that small variations in the next training examples
will have a high impact on the learned parameters.

Model behavior on sparse data LASSO (Tibshirani 1996) and other regularizations
are seen as effective at dealing with sparse data, since the regularisation will discard
the useless zero variables. Indeed, in a logistic regression with regularisation, the
resulting vector of weights θ will be sparse.

When the sparsity is due to missing data (like an user forgetting to enter data), some
algorithms will handle it natively, while others require probabilistic imputation to
resemble dense data (Alasalmi, Koskimäki, Suutala, et al. 2015). For example, Naive
Bayes simply ignores missing data, since it works by inferring Bayesian rules (X. Li,
Ling, and H. Wang 2016). However, algorithms such as decision trees of SVM will use
probabilistic imputation to fill missing values, usually through mean mode imputa-
tion (Josse, Prost, Scornet, et al. 2020). The convergence behavior of classification
algorithms with sparsity was explored by X. Li 2017.

More general data augmentation techniques to fill the missing data have also been
proposed, such as the use of SMOTE, or Generative Adversarial Networks to create new
data. Another possibility for sparse data in general is to use feature hashing or matrix
factorization methods to obtain a dense representation of the sparse matrices/tensors.

Sparse data in deep learning More specifically, Deep Learning models have diffi-
culties with sparse data. For large tensor-processing architectures such as CNN (or
RNN), the model relies on spatial attributes of the data to learn. If the data is highly

11. Unlike sparsity in the data, sparsity in the model is often sought out and considered beneficial.
12. We could argue that this is also relevant here for the ReMap data to some degree. Some datasets

may be missing information, depending on how we group them (ie. if an experiment for this TF had
been carried by this laboratory, it would have shown a peak.

13. We suffered partly from this and alleviated it using squishing, see section 3.3.1.
14. When the data is so large and has so many variables compared to the number of samples that

there exist many spurious rules translating the variables to the class of the samples.
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sparse, the network may learn the zeroes as the commonality. Coincidentally, the
use of encoder-decoder (ie. autoencoder) models combined with a sparse training
strategy where the density is adjusted during training has been found effective at
countering this 15 (Jaritz, Charette, Wirbel, et al. 2018).

More generally, in deep learning the activation function that we wish to approximate
should be as smooth as possible over its domain 16, with soft gradients. When the
data is sparse, not only do we not have enough points to fit on, but we are more likely
to miss minima and maxima because the gradient descent never brought us there.
Another related problem comes from the fact that our tensor representations can
indeed have a step-wise behavior, alternating between a continuous line of zeroes and
a continuous line of ones 17 and that values at the same position in different tensors
are also binary/form a step difference and do not vary smoothly either.

Crumbing When working on atyPeak, the sparsity problems did not manifest at first
on the dense artificial data, but the real representations are clearly sprase, since at any
given position only a fraction of all possible TRs will be present, and not all datasets
contain peaks for all TRs.

Empirically, I observed that using the fully sparse data would often result in the
model being unable to learn even a partially correct result, and only rebuilding com-
pletely empty tensors. This is not surprising, as autoencoders focus on rebuilding
the average observations. If most of the data is zero, gradient descent is hard and
the necessary improvements are seen as too marginal to be conserved in the next
iterations. I used the Adam gradient descent, which aims to permit working on sparse
data by using smaller, adaptive learning rates Kingma and Ba 2014. However, Adam
alone was insufficient.

As a consequence, I developed and used a method I called crumbing 18. This consists
of adding, for each non-zero value x in the original tensor representation, a small
x

10 value at all positions along the Y or the Z axis, forming a cross pattern centered
on the original value. See details in Methods. These values do not represent new
data, their purpose is to prevent the model from learning only zeroes and direct its
attention towards the regions of interest. It is properly accounted for when calculating
the anomaly score, where we divide by the total value in the crumbed tensor.

I observed that this seemed to solved the learning difficulties of the model. Quanti-
fying the exact effect of crumbing as a function of sparsity in the original data would
be an interesting perspective. For similar sparsity reasons, I used a large batch size (48
samples per batch minimum) to smooth the gradients and avoid the batch effect 19,

15. This density tweaking is reminescent of the crumbing we implemented (see below) where the
density is increased at selected positions on the tensor.

16. The set of inputs we wish to approximate it over
17. As opposed to a smoother evolution along the time axis, such as

(

2 3 4 4 5
)

.
18. "Crumbing" as in "leaving a trail of bread crumbs".
19. Where the model skews exaggeratedly its coefficients depending on what it saw in the latest batch,

never converging to the true average
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which as we explained is a problem with sparse data.

3.4. Anomaly based on the absence of known

collaborators

The end result of our approach is that each peak gets a score from 0 to 1000. This
score represents whether its gregariousness is lower than average. Broadly speaking,
this meant that if the sources A, B and C are correlated, the model will not learn them
individually but instead learn an "{A,B ,C }" brush for the entire combination γ. Recall
that a source refers to a (dataset, TR) pair. For example, (ENS12345, CTCF) is a source
designating the peaks for CTCF in the dataset ENS12345. Going back to our example,
if at a given position there is only a peak for one of these three sources, the entire ABC
group will be rebuilt with a value of 1

3 for each source. In this case, the added B and C
peaks are called phantoms.

The score given to each peak corresponds to the reconstruction error in the final
tensor. If we did not apply the normalizations presented below in section 3.5 (p.
100), a score of 1000 would mean all collaborators are present. So, we normalize
by considering how many of those collaborators are present on average. If, say, A is
correlated with B and C but on an average CRE there are only 2 of the 3 present, then
an {A,B} situation gets a score of 1000, and is seen as perfectly normal. Conversely,
this means that the peaks which get a low score, and as such as seen as anomalous,
are peaks whose correlation group (at their position) is less complete than it is on an
average CRM. More details are presented in section 3.5.2 (p. 102).

Limitations There are some limitations in the nature of the correlation groups that
can be find. For instance, overlapping groups are possible (ie. learning an ABC group
and BCD group sharing B and C) but hard to reach in practice, as we explain in the
paper. Furthermore, sources that are usually rather lonely (not particularly correlating
to other sources) tend to be learned as their own groups. This can be a problem,
because there is a possibility the model may instead see those lonely sources as the
anomalies we want to remove. This can be alleviated by using a weighted loss: we
show in the paper that sources with a higher weight in the loss will be focused on and
learned as more precise groups 20. The proposed normalizations (section 3.5) also
help with the problems presented in this paragraph.

In any case, generally any judgment made by atyPeak is made in probabilistic

terms. Without supervision, we cannot say with certainty which is indeed due to noise
or to any particular source of anomaly. Instead, we rank the peaks by plausibility,
depending on how many known collaborators they have, giving them a score. The
score threshold to be used, and even what it means for a peak to be anomalous, will
change depending on the user’s needs (see section 3.6).

20. The recommended usage is to increase the weight of the rarer sources.
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However, I would argue all the limitations presented here are inherent to any unsu-
pervised approach, and that we cannot do better without supervision.

3.4.1. Artificial data for approach confirmation

To validate this approach, I used artificial tensors representing artificial CREs. De-
tails about the generation of those tensors can be found in the Methods of the paper.
Their usefulness stems from the fact that the correlation groups formed by the artificial
sources are perfectly known and precisely controlled. Indeed, we know exactly that
the source A correlates with B and C, but not D and E and F, for example. As a result,
we know that if the model produces phantoms for D when A is present, it is an error.
Noise that does not respect the usual correlation is then randomly generated and
added.

All phenomena described here, such as group completeness being the main fac-
tor determining the score, overlapping groups, independence of score from group
abundance, etc. were first assessed using artificial data. This is paramount, as we lack
ground truth for the biological data and as a result cannot calibrate our approach.
Furthermore, having demonstrated our model on artificial data allows us to go further
and say that the atyPeak approach is applicable to all problems that can be modeled
in a similar manner. The necessity to use artificial data to validate bioinformatic
approaches is starting to be emphasized in the literature (Daber, Sukhadia, and Mor-
rissette 2013).

3.5. Proposed normalization techniques for

black-box models

The normalization techniques presented here were a necessity as we used the au-
toencoder model for anomaly detection, which necessitates a degree of interpretability,
and is a departure from their usual applications (compression).

I would point out that those techniques do not attempt to understand the inner
workings of the model. Indeed, they work by creating an input tensor with certain
characteristics and studying the output returned by the model, compared to this
input tensor. I believe this is a strength, and makes them applicable not only to all
DNNs but more generally to all black box models (where the inner workings are poorly
understood, be it in ML or otherwise) and to all models making a compression to a
lower dimensionality space with hidden variables.

Background on the interpretability of ANNs Interpretability of DNNs is an active
area of research. They are commonly considered black box models, meaning we have
little to no control or readability on their inner workings, and must rely on tuning
the parameters during training until the output resembles the desired output. The
standard interpretation method consists of picking a layer and generating, for each
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neuron of the layer, an artificial input example that would maximally activate this
neuron using gradient ascent 21. Some examples of this approach are presented in the
paper. This is also applicable to more exotic components like LSTMs. Another method
is to directly look at the learned weights, but this is only informative on simple models
or when looking at the weights of special layers (such as attention layers).

3.5.1. Q-score for model evaluation

Hyperparameter choice is a significant problem in DNN design. In this context,
hyperparameter designates variables such as the number of layers, the number of
neurons or filters in each layer, etc. As a result, the field of meta-learning has emerged,
applying machine learning algorithms to the metadata and hyperparameters for ML
experiments. The basic principle is to consider the hyperparameters as the arguments
of a function to be optimized, which outputs a quality score depending on them.
However, this requires formulating a relevant score function.

Classically, when working on images, the criterion is often the rebuilding quality 22

(Ordway-West, Parveen, and Henslee 2018). Here, however, approaching a lossless
compression is not the objective. We instead have what I would call a Goldilocks
objective of compressing "just right": we want to lose the details which do not match
regularities in the data, because they correspond to the anomalous peaks we want to
flag, while while maintaining a reasonably accurate compression.

So, we need a different meta-learning objective. To that end, I introduced the Q-
score (short for Quality score) which focuses on conservation of correlations. For two
sources A and B, the presence of A at a given position should affect the score of B
if and only if A correlates with B. This is a logical proposition: the Q-score simply
evaluates for all A,B pairs if it is true. If it is false, it assigns a penalty based on the
relative abundance of A and B. A more precise formula is given in the paper. The
goal is to reach a model with small penalties, so as to properly learn the correlations
present in the data. But the correlating sources should be learned as groups, instead
of over-learning the sources as individual components.

The current formulation of the Q-score is as a sum of binary terms, and as a result
does not have a continuous derivative. A continuous version was being considered and
has not been completed due to lack of time. This makes an analytical optimization
complicated and forced me to resort to a manual grid search. Relatedly, a lack of
available computing resources forced me to make it coarser than I would have liked,
with a bigger emphasis on manually tuning the parameters and instead confirming
my choices with the Q-score.

21. Just like gradient descent, but we maximize a function instead of minimizing it.
22. aka. the reconstruction error
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3.5.2. Normalization of correlation groups

This normalization stems from the following realization: an autoencoder will tend

towards learning the average. This is touched upon in section 3.4 (p. 99). This means
that, in practice, the value of certain sources will tend towards an average if they have
been learned as part of a very large group, a group which is usually at least partially
incomplete in the real data.

Making it more concrete: if A has been learned as part of the {A,B ,C } combina-
tion/group, the value given to a peak of A in the rebuilt tensor will be equal to 1 if and
only if A, B , and C are all present. In practice, this is very rare, which means the rebuilt
value of A will peak at, say, 2

3 if on average two out of the three are present at a given
position 23. The goal of the normalization is to counter this.

It should be noted that it is not merely a matter of cardinality. This must be pondered
by the weight given to the source in the learned group: while we have given simple
examples, groups are learned as something resembling {0.2× A,0.5×B ,0.7×C }, due
to factors explained below and presented in the paper, but the general gist is the
same. Furthermore, overlapping groups must be accounted for: if we have the groups
α = {A,B ,C } and β = {C ,D,E }, then C receives contributions from α and β and this
must be pondered.

The detailed normalization procedure is presented in the paper. It is done source
by source, and returns a different coefficient for each. It basic principle is to prepare
an input tensor containing a peak only for the considered source, and look at the
phantoms added in the rebuilt tensor. Broadly speaking, it consists of three steps,
corresponding to three different biases:

1. Intra-group bias, where different sources within the same correlation group
are biased due to relative abundance differences within the group, or a bias
in learning (usually, a too high learning rate). This is corrected through the
difference between the sum of the original and rebuilt tensors.

2. Inter-group bias as described in the previous paragraph. Recall that the rebuilt
value of a peak (value in the rebuilt tensor) is proportional to how complete its
correlation group. Since the groups have different sizes, our goal is instead that
peaks get the same score when their group’s completeness relative to its average
completeness it the same. This is corrected through a Monte Carlo approach
by iterating over a subset of all CRM representation and calculating the mean
occupancy (ie. completeness) for this source’s group. Its group is estimated
simply by looking at all the phantoms added in the rebuilt tensor.

3. Overlapping group bias, where if a source belong to several groups, phantoms
from them can accumulate and will not be seen at step 2. This is corrected simi-
latly to the inter-group biais, but we evaluate instead how much all the sources
that are not present in the correlation group can contribute to the phantoms, in
the average case.

23. Actually,
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The principle of estimating the correlation group a source belong to by looking
at the phantoms added in the rebuilt tensor is important for interpretability, since
it means the correlations groups can be deduced. However, due to the overlapping
groups problem and more generally the complex non-linearity of the model, it is
recommended to consider this heuristically. Meaning, a source B may not appear as a
phantom for the source A, but A may appear as a phantom for B , so all sources should
be considered, like we do in the steps 2 and 3.

Finally, I believe the normalization techniques presented here would be useful to
any problem leveraging autoencoders for anomaly detection based on the respect of
combinations, and more generally useful to any autoencoder black-box approach.

3.6. Biological interest

Confirmation of biological meaningfulness To confirm the relevance of our ap-
proach, the results of atyPeak were cross-referenced with known biological correla-
tions.

The first confirmation presented in the paper involves comparing the scores given to
peaks for certain TFs when biologically known correlators are present. This is the same
elementary procedure as the Q-score. We show further evidence of unidirectional
influence with the case of CTCF: factors which are always found with CTCF will get a
worse score when CTCF is absent, but conversely CTCF can be found independently
so its score is not as affected by the absence of other factors.

We performed an additional confirmation through a comparison with the ReMap
2020 update (the 2018 update was used when training atyPeak). There are two relevant
observations: first, peaks with a bad score in atyPeak 2018 tend to be less confirmed
in 2020, meaning the number of peaks for the same TF in ReMap 2020 tends to be
lower. This effect is marginal, but very real, as peaks that had a abysmal score (s < 250)
will very rarely be replicated in ReMap 2020. However, for peaks with a higher score,
this replication coefficient can vary 24. Second, when considering CRMs as a whole
and not peaks, we find that CRMs with low average score will instead be confirmed
more in ReMap 2020; our interpretation is that this does not mean that the CRMs were
full of erronerous peaks, but rather that there should have been peaks present for the
missing correlating TFs that have been added in the 2020 update.

Relevance for biological studies In conclusion, the atyPeak approach is of interest
to the identification of Cis-Regulatory Elements. This requires high-confidence esti-
mation of the Transcriptional Regulator Binding Sites. Through atyPeak, it is possible
to at the very least flag those sites that are considered suspicious, resulting in an

24. We must remember that not all experiments have been replicated a constant k times in the new
datasets integrated in ReMap 2020. By which I mean it is very possible that a peak got a good score but
the corresponding TR was not replicated many times when totalling all the new datasets, leading to a
lower replication number.
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increased confidence in the CRE estimated through high-quality (as ascertained by
atyPeak) peaks.

CREs with high-scoring peaks are assumed to be correctly characterized. Unfortu-
nately, a low average score may be due to either the presence of anomalous data, or
conversely the lack of peaks for a correlating source that was supposed to be present,
and we cannot determine which without supervision.

For the peaks themselves, the take-home message is that our method signals peaks

that have less correlating sources present than they usually do. Those anomalous peaks
can be errors that one wished to remove, but they could also be specifically sought
out, for example as potential oncogenic mutations. The usual correlation groups used
to make this determinantion are learned by the model itself, and our normalization
helps correct for the variety of possible groups.

In conclusion, atyPeak is an unsupervised side-channel approach, in that it allows
us to bypass the need to perform a supervised curation for each and all type of noise.
Indeed, the lack of supervision was an interesting challenge.

3.7. Perspectives and extension of the approach

Multi-omics As discussed when presenting our tensor representations in section
1.4.1.2, this approach can be applied to any data that can be represented in a similar
tensor. While the X axis should still represent a genomic position, the Y and Z axes do
not necessarily need to represent "dataset/experimenter ID" and "TRs". It is possible
to extend this to any multi-omics approach. For instance, at one step in the project we
considered merging all peaks for all datasets for a given TRs, and instead comparing
the bidnings across different cell lines, so that the axes would be respectively "TRs
(merged)" and "cell line".

Non-binary data The approach was first developed to work on binary data, where
a 1 signals the presence of a peak and the 0 an absence. This facilitates interpretation
and the calibration of the normalizations presented above: if the only possible values
in the original tensor were 0 and 1, the meaning of a value of 0.5 is immediately
apparent.

However, my original idea was to have a value of 1 only at the peak center, and
decrease it according to a Gaussian law over the distance. This part of the the reason
why the anomaly score formula includes a division by the value at each position in
the original tensor 25, the other part being crumbing. Such non-binary data could
be used now that the techniques have been calibrated, but it would complexify the
interpretation.

Narrower peaks As discussed in section 1.3.3.1, the true binding site for each Tran-
scription Factor is likely only a few base pairs long. However, ChIP-seq peaks are much

25. If the only possible values in the original tensor are 0 and 1, such a division would be redundant.
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longer than this. This apparent drawback is actually leveraged by atyPeak: since the
model only used convolutional filters, a value of 1 for the margins of the ChIP-Seq
peak can be instead taken to mean that there is a TF binding in the vicinity. This idea
of over-extending beyond the biological event is related to an idea presented later,
where one simply extends (ie. slopping) the regions of interest and quantifies the
statistical enrichment depending on the slop (see section 4.4.5).

If we were to use methods such as ChIP-exo, where the peak is centered on the
(short) true TFBS, it would become necessary to add a temporal integration layer to
atyPeak, as is explained in the paper. But I do not believe this calls into question the
fundamentals of the approach: the goal would merely be to allow the model to access
again this "in the vicinity" information discussed in the previous paragraph.

I believe the most promising way to do so would be to add bidirectional LSTMs
after the first convolutional layer but before the middle (encoded dimension) layer. Or
perhaps to use convolutional filters with a larger step on the X (position) axis.

Performance Performance-wise, the current biggest bottleneck of the approach
does not come from the autoencoder itself, which is relatively straighforward. The
biggest performance cost comes from reading the BED files giving the ChIP-Seq peaks
positions and transforming them into tensors, as ascertained by microbenchmarks I
performed.

To alleviate this, I split the original BED file (which clocked in at 4 GB) across multiple
smaller BED files, adding an index to determine which one contained each candidate
CRM. As a result, file access is handled by the operating system and spares us from
having to browse the entire file each time we query a CRM.

Indeed, this was necessary because there is no way to directly access a given line
in a text file. One must instead read it from the start and count the "\n" characters
encountered which means indexing the single large file would not have worked.

3.8. Article

atyPeak is, as of writing, submitted to the BMC Bioinformatics journal upon editorial
recommendation. It has been previously presented at ISCB 2019 in Basel.
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Abstract:  

Accurate  identification  of  Transcriptional  Regulator  binding  locations  is
essential for analysis of genomic regions, including Cis Regulatory Elements. The
customary NGS approaches,  predominantly  ChIP-Seq,  can be obscured by  data
anomalies  and biases which are  difficult  to  detect  without  supervision.  Here,  we
develop a method to leverage the usual combinations between many experimental
series  to  mark  such  atypical  peaks.  We  use  deep  learning  to  perform  a  lossy
compression of the genomic regions’ representations with multiview convolutions.
    Using  artificial  data,  we show that  our  method correctly  identifies  groups of
correlating series and evaluates CRE according to group completeness. It is then
applied to the ReMap database’s large volume of curated ChIP-seq data. We show
that peaks lacking known biological correlators are singled out and less confirmed in
real  data.  We propose  normalization  approaches useful  in  interpreting  black-box
models.  Our  approach  can  be  extended  to  other  similar  problems,  and  can  be
interpreted to identify correlation groups. It is implemented in an open-source tool
called atyPeak.

Introduction
The  decreasing  cost  of  gene  sequencing  and  other  genomic  assays  localizing

various regions of interest (epigenomic features, TF binding regions) has resulted in a wealth
of experimental data from the broader scientific community as well as from large consortia
(eg. ENCODE1). This data has been collated in warehouses such as the GEO database2 or
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ArrayExpress3 to  facilitate  inference  and  functional  annotation  of  genomic  regions.  This
includes Cis Regulatory Modules (CRMs), which regulate gene expression through binding
Transcriptional  Regulators (TRs), including Transcription Factors (TFs) binding directly to
DNA, and co-factors binding to other TRs forming a regulator complex. Localized clusters of
TR bindings form Cis-Regulatory Elements (CREs). In this paper, we focus on improving
CREs detection and characterization through better identification of TR binding locations. 

While TF binding sites (TFBS) may be predicted based on DNA sequence, statistical
precision  is  low4 and  the  use  of  experimental  data,  such  as  ChIP-seq5 that  combines
chromatin immunoprecipitation with massively parallel DNA sequencing, is preferred6. ChIP-
seq can detect both TFs and co-factors binding regions. Each region is associated to a peak
in the signal, wider than the region. However, such large scale NGS  approaches are known
to contain errors and biases resulting in artifactual or anomalous elements. Low complexity
regions complicate mapping7,  and ChIP-seq presents several known difficulties8 including
immunoprecipitation  quality9,  inadequate  controls  and  other  factors  complicating  peak
calling10.  False  positives  can  be  introduced  for  biological  reasons11,12 and  through  peak
callers (FDR of 1-5 % or more13). Besires errors, anomalous peaks can be caused by other
biological  and  technical  specificities  (eg.  different  protein  fixation  kinetics),  systematic
experimentator biases, mutations creating new TFBS, TRs having rare secondary roles, etc.

Such problems are difficult  to correct  a posteriori.  In some cases, human manual
curation  is  possible  to  label  artifacts  that  can be subsequently  used to train  supervised
machine learning models,  some of  which also leverage deep learning and combinations
between series14.  But this is seldom available. There is currently no systematic detection
method or database of known false-positive regions, besides the ENCODE blacklist15. To
mitigate this, one can enforce quality criteria at each step, from sequencing (read quality,
existence of replicates) to mapping (proportion of mapped reads, low number of regions
mapped by unique reads) to peak calling (IDR). The IDR16 measures consistency between
peaks called for two replicas of the same biological condition. However, it is only pairwise,
singles out entire series and not individual peaks, and if one of the two replicas considered
has poor quality both replicas will get a low score. It also cannot be applied to corroborate
data from two different protocols or conditions (eg. different laboratories or TRs). 

While quality criteria can be computed for every step of the data processing, which
ENCODE does, large amounts of data nevertheless increase the risk of at least one false
positive being present and would be detrimental to CRE analysis. Here, we seek to work at a
higher  scale  and  use  correlations  between  processed  data.  As  supervised  curation  is
unavailable, the question is whether we could use another property of the data to identify
inconsistent  elements.  Since  TRs  most  often  act  in  combination  through  complexe
formation6,  it  follows  that  biologically  significant  CREs  would  likely  be  clusters  of  TRs.
Similarly,  different  experimental  series should have patterns of  corroboration (e.g.  where
series A says there is a peak, series B says so as well). Here, we define a dataset as one
ChIP-seq experimental series for a given TR (in a given cell  line, those can be technical
replicates  or  different  experiments).  For  example,  RAD21 is  significantly  associated with
CTCF in insulator regions17. As such, RAD21 and CTCF form a correlation group and finding
CTCF  alone  would  be  suspicious.  Such  combinatorics  are  indeed  considered  of  major
interest to CREs detection18 and meta-analysis of datasets is emerging19. As such, we turn to
the more general problem of anomaly detection, meaning to identify elements that do not
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conform to the expected normal patterns20, as a substitute for curation. In this study we focus
on detecting anomalous or atypical peaks, where atypical is defined as not respecting the
typical TR and/or dataset combinations learned from the data.  Removing anomalous peaks
will, in turn, fulfill our objective of improving CRE quality. As CREs have high peak density,
anomaly detection methods can be used.

We  consider  the  ReMap21 database,  whose  initial  curation  and  uniformized
reprocessing workflow provide sufficient  quantity  and quality  to  use the outlier  detection
approaches  we propose.  Given the  volume of  data  and  the  potential  complexity  of  the
combinations, Deep Neural Networks (DNN) models are a natural solution and have been
used before on genomic data22. They are able to learn complex distributions, not achieved
by  methods  such  as  PCA,  by  using  multiple  layers  of  increasingly-abstracted
representations.  Specifically,  autoencoders  are  known  to  be  effective  in  unsupervised
anomaly detection. They also allow us to work at the level of individual loci. Furthemore, this
is  also a multiview problem23 as each TR can be thought  of  as one view composed of
several datasets. Thus, our approach integrates correlations between datasets and/or TRs,
leveraging another strength of NNs.

To  remove  atypical  peaks,  we  propose  atyPeak,  a  stacked  convolutional
autoencoder, and supply processed data files for selected TFs and cell lines from ReMap.
Since  no  gold  standard  dataset  exists  to  perform  cross-validation  we  demonstrate  our
approach with artificial data to ensure robustness of our model24. Our approach is applicable
to any series of intervals, not only ChIP-seq regions. It also offers some interpretability and
can be used to extract and interpret the aforementioned correlation groups, as identification
of clusters of TRs is of great interest25.
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Results

Representation and processing of Cis Regulatory Modules
To apply our method, each CRM is first converted to a 3D tensor representation of

the  peaks  it  contains,  where  the  X,Y,Z  axes  represent  respectively  genomic  position,
datasets of origin, and TR of interest (Figure 1A). We then use a convolutional autoencoder
to  perform a lossy  compression.  The  representations  are  viewed  by  the model  through
convolutional filters. They focus first on the correlations between datasets and then between
TRs, in a stacked multiview approach (Figure 1B). This produces an encoded representation
of the CRM, passed to a decoder attempting to reconstruct the original. In the end, each
peak is given an anomaly score corresponding to its difference in value in the original and
rebuilt representations. 

Our  approach  can be  applied  to  any  type  of  sets-of-intervals  data  from multiple
sources in the same format, not only omics. In subsequent figure legends, “deep dimension”
is the number of neurons in each Dense layer, while the “filters number” is the number of
kernels in each Convolutional layer. LR stands for learning rate.

Validation using artificially generated data
Without  gold-standard  data  and  in  the  absence  of  precedent  readily  available

comparable  methods,  we generate artificial  data designed to approximate real  CRMs to
confirm the model’s  ability  to  correctly  discover  correlation  groups  of  sources (a  peak’s
source is its {TR, dataset} pair). Our goal is to simulate biological complexes of TRs, each
one being a correlation group. To generate artificial regions, we stack a random number of
peaks around a given position. The sources of those peaks belong to one of two (or more)
predefined sets of sources representing correlation groups (Suppl Fig 1). The choice of set is
made once per CRM. As a result, peaks from each set will significantly correlate only with
other  members of  the same set,  forming a correlation group.  We also add to the CRM
random noise representing atypical peaks not respecting existing correlation groups. 

We tested our model’s ability to learn which predefined correlation group each peak
belongs  to,  as  opposed  to  the individual  peak itself.  Indeed,  when  peaks  from a given
correlation group are present, the model rebuilds the entire group in the neighborhood of the
peaks and not the individual peaks (Figure 2A, 2 groups). A peak’s value in the rebuilding
depends on how many sources from its group are present. The more complete the group is,
the higher the value (although fully complete groups are unlikely to occur in the actual data).
Peaks added to the rebuilt tensor by the model are called phantoms (Figure 2). Biologically,
this means that the model will identify common TRs and/or dataset combinations. Each peak
will  get  a score proportional  to the number of  correlators present  in  its vicinity,  and the
missing correlators will be added as phantoms.

Stability to different group characteristics
Our model is still effective with more complex and realistic artificial data models. For
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instance, the number of binding sites across TRs differ but we show that the model is not
biased  by  differences  in  abundances  between  correlation  groups  (Suppl  Fig  3A).
Furthermore, biological correlation groups are not mutually exclusive (eg. for the TRs A, B
and C, there can be both an “ABC” and an “AB” group) and the model is also capable of
learning such groups (Suppl Fig 4B and 11) although this is not always reliable and comes
with  caveats  and  precautions  described  in  Methods.  Generally,  phantom  peaks  from
overlapping groups will be generally present but less pronounced than they should be.

It  is  possible  to  extract  the  correlation  groups learned by the model  to  mine for
biologically relevant combinations of sources. It can be done by interpreting the encoded
dimension (Suppl Fig 6), or instead by identifying the correlators of a given source by looking
at which phantoms peaks are added when it is present (Figure 2, and Suppl Fig 11 in real
data).

Scalability and the information budget
Any compression is characterized by its aggressiveness: one that is not aggressive

enough can afford to learn details (for us, the noise we want to remove) but a too aggressive
compression might lose too much information. In our method, this depends on the relative
information  budget,  which  is  the  ratio  between  the  data’s  information  and  the  model’s
entropic capacity. Biologically, this means the budget to be used depends on the size of the
database: the number of sources considered and the number of relevant correlation groups
in the data. For example, in Figure 2B the model with a too large budget learns too precise,
smaller, non-significant correlation groups but the phantom peaks added are still not from
sources outside the correlation group. 

To rigorously choose the information budget, we propose to verify that the model
correctly  learns  pairwise  correlations.  We design  and propose a  quality  score  (Q-score)
which is also used on real data. In Figure 3, we demonstrate scaling budget upwards to
accommodate richer data with 8 correlation groups. The model tends to focus on the most
frequent sources when learning the groups, which can often result  in grouping the least
sources together in background groups and ignoring the very rarest ones. These differences
in  focus  can  be  alleviated  (Suppl  Fig  4A),  but  mean that  a  correlation  group  does  not
necessarily represent a single or complete biological complex, which should be remembered
when interpreting them. 

Systematization on many observations
In Supplementary Figure 1, we show that the observations made above hold true

when considering a larger number of  artificial  CRMs. The presence of  a peak results in
phantoms peaks from the same correlation group of sources, but not from the other groups.
Noise peaks, lacking their usual correlators, get rebuilt with a lower value. Models with a too
large budget will learn smaller non-significant groups.

The learned group themselves can be subject to certain biases, such as giving higher
values to comparatively more abundant elements within a group, the fact that all correlation
groups do not have the same average completeness, and contributions to the rebuilt values
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from several overlapping groups. We performed normalization to counter such biases, by
evaluating the score given by the model in controlled artificial CRMs when only peaks from
the  considered  source  are  present,  and  normalizing  by  TR in  the end.  Non-normalized
results are also available, but the score must then be interpreted relative to the average
score for its source. More details about the experiments conducted on artificial data and the
conclusions drawn are available in Methods.

Application to real biological data
Having evaluated our model on artificial data, we processed  biological data from the

ReMap project. We used selected CRMs for the Jurkat, Hela, K562, MCF7, CD34 and ESC
cell lines. This data was sparser than the artificial datasets, as not every dataset contained
every TR. This necessitated “crumbing” (Suppl. Fig. 9) and adapting the information budget.
Parameters are detailed in Supplementary Table 2 and were chosen thanks to the Q-score.
We covered a variety of cell line profiles, ranging from Jurkat’s sparse genomic binding data
with many datasets concerning only one TR, to high-dimensionality examples such as K562
proving our model’s scalability potential. 

Figure  4  shows  two  representative  examples  of  CRMs in  HeLa  along  with  their
rebuilding by the model. The difference in rebuilding shows that the model does not always
rebuild the average CRM and has learned different correlation groups. In Figure 4A, BRD4
has a low score as the model was expecting more correlators (cf. the estimated correlation
groups presented in Suppl Fig 11), unlike AFF4 and ELL2. Conversely, in Figure 4B the
BRD4 peak was expected and is added as a phantom.

In HeLa, we observed 3-4 different correlation groups learned by the model, in line
with what is likely biologically significant. In practice more groups are learned as overlaps of
groups: this is visible in HeLa with AFF4 and ELL2 still benefiting from the presence of other
sources (Suppl Fig 8), and BRD4 or SFMBT1 being part of several correlation groups (Suppl
Fig 11). Across most cell lines, the model usually needs to learn over only a few thousands
of  CRMs  until  the  loss  begins  to  stabilize.  This  suggests  that  most  CRMs,  among  the
selected ones,  have similar  configurations,  which is  confirmed by the fact  that  averages
calculated over different sets of 10K random CRMs will be very similar. Early stopping was
often needed to prevent overfitting in cell lines with less sources such as CD34, and HeLa to
a lesser extent.

The final  score is  normalized so that  a peak in  the average configuration  for  its
source in terms of presence of known correlators will get a score of 750/1000. We provide
both normalized and raw scores, at the user’s convenience.

To confirm the predictions of our model, we use the ReMap 2020 update44 (Suppl.
Fig.  14).  Presumably,  atypical  TR fixations  as identified  by the approach would  be less
emphasized considering the larger amounts of data processed in this update. We find that
the CRMs with the highest update ratio (number of peaks in 2020 divided by 2018) were the
ones with lower atypeak scores, suggesting that they were incompletely characterized in
2018 and needed more data. They could also be high-noise regions, although this is unlikely
as  they  were among the richest  CRMs in  2018.  Supervised  data  would  be required  to
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determine the correct hypothesis.
At the individual peak level however, we consider the update ratio for peaks of the

same TR within the same CRM, which would confirm the binding of this TR here by drawing
from other data. While peaks at any score can have any update ratio as ReMap2020 does
not simply replicate all previous experiments a given constant number of times, we find that
peaks with a higher update ratio and thus more robust confirmations seldom had a score
under 250 in atyPeak.

Confirmation of the biological meaningfulness of identified correlations
We also use pairs of Transcriptional Regulators for a second confirmation. These

pairs are known to co-occur on the genome, either via their high Jaccard indexes (example
in Suppl.  Fig. 12) or from the literature such as GABPα with ERG in Jurkat26, ELL2 with
AFF4 in HeLa27, or SFMBT with RCOR1 also in HeLa28. 

For each interesting pair A,B of TRs, we consider the distribution of the scores given
by our model for A when B is also present in the same CRM, and when it is not. We provide
some  examples  in  Figure  6  with  high  and  poor  correlations.  We  observe  that,  as  we
demonstrated earlier, the score given to a peak of a given TR is increased when another TR
that correlates with this one is present, and vice-versa for the non-correlating ones. This
means that, when properly calibrated, atyPeak learned on its own significant correlations. 

Singleton  peaks  tend  to  have  a  lower  score  compared  to  peaks  found  in  richer
CRMs. This is expected, since CRMs are regions with multiple cooperating TFs, singleton
peaks are generally suspicious. This is not simply linear (Figure 6B), which further illustrates
that the model learns biologically meaningful correlation groups and not simply that richer
CRMs are better.

Some interpretation of the model is possible on real data as well  (Suppl Fig 10).
When  performing  combination  mining  (Suppl  Fig  11)  the  learned  groups  match  the
expectations about correlating TRs discussed for Figure 6, such as AFF2 and ELL4 being
present in the same group. BRD4 and others are learned together as a more “background”
group. SFMBT1 and RCOR1 were learned alone with low phantoms from other sources,
although it is justified by their relatively low Jaccard index with the other TRs (Suppl Fig 8),
since  as  we  established  overlapping  groups  are  hard  to  learn.  In  general,  careful
interpretation  of  the  learned  groups  is  necessary  for  cell  lines  having  high  frequency
imbalances such as Jurkat, or high dimensions such as K562 or MCF7.

Availability of data and code
The  source  code  and  data  are  available  at  <https://github.com/qferre/atypeak>.

Treated data files with scores for the considered ReMap peaks are available as a UCSC
session at <http://genome-euro.ucsc.edu/s/qferre/atyPeak_hg38> (Figure 5), or as BED files
with diagnostic data at <https://github.com/qferre/atypeak-files> and on the ReMap website
at <http://remap.univ-amu.fr/> [Tab not currently available, under construction].
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Discussion
We designed an anomaly detection method to identify regulatory peaks that are not

part of a cluster of regulatory elements. Our method finds outliers which do not respect the
usual  sources (TRs and/or experimental  series)  combinations.  Peaks get  a higher score
when more of their correlators are present, forming a richer cluster. This allows for CRE
detection taking TR composition into account. Crucially, our unsupervised approach does
not  require  an  a  priori set  of  known  anomalous  experimental  peaks,  which  is  seldom
available and could bias a model towards the particular kind of anomalies it represents. 

atyPeak learns  usual  source  combinations  patterns,  while  the  noise  (anomalous
peaks as defined in Introduction) is discarded. By focusing on combinations instead of a
particular type of anomaly, we de facto indiscriminately correct most of the errors discussed
previously. The combinations learned by the model will be based on what is typical in the
regions provided in training (for example, our selection contains many gene promoters). We
do not fixate on a single type of error, nor do we emit a definitive judgement on peak quality,
as it is impossible without supervision. This is made possible by using high-quality ReMap
data; indeed, unsupervised anomaly detection presupposes a low proportion of anomalies. 

We have validated our approach using artificial data designed to model correlating
elements and a noise of atypical peaks. The model autonomously learns multiple  n-wise
correlation groups of sources in both artificial in real biological data. As the underlying task is
compression we use comparatively small, simple networks which nevertheless perform well.
Hence, our method can be readily used on a laptop from training to application. 

Usage
Our approach estimates how “typical”,  with respect  to source combinations,  each

peak is when compared to all the CRMs in a single given cell line, since we currently work
within one cell line at a time. As the model is unsupervised, anomaly score thresholds are at
the user’s discretion depending on their needs. For example, a large scale analysis might
exclude  lowest  scoring peaks (ie.  assumed False Discovery  Rate).  However,  a  focused
study of a single or selected experimental  series may rely on low-scoring peaks as they
might be caused by certain events of interest (mutations, etc.). It is also possible to use high-
scoring  atyPeak  peaks  to  detect  candidate  regulatory  regions  of  interest  and  use  that
selection as a filter when looking at other genomic data. A low average score for a given
CRM also suggests it might be incompletely characterized and missing information about
other peaks, instead of noise.

Scaling the information budget is crucial to learn the appropriate correlation groups,
and databases with more experiments will require larger models. To do so, we propose a Q-
score based on whether known correlations influence the rebuilding. We introduce a group-
based normalization to correct rebuilding biases and introduce interpretability. We believe
these contributions could be applied to other latent variable models, and more generally to
any black-box model with arbitrary complex correlations. Both are first steps and warrant
further research.

While  we provide scores for  selected  ReMap data,  our  model  can be reused to
denoise any kind of region database with multi-view sources such as in the ReMap data
format (where peaks are independant between cell lines and each have a TR and a source
dataset, cf. documentation). 
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Our hierarchical multi-view approach is a type of intermediate fusion, where a first
latent space is learned based on one type of combination, followed by learning combinations
of it across another dimension. The full tensor represents the CRM; the latent learning by the
convolutional kernels is focused on local combinations analogous to CREs (local clusters).
By looking at the added phantoms, it  is also possible to interpret the learned correlation
groups to find combinations of corroborating experimental series, and regulatory clusters of
collaborating TRs.

Generalization
ChIP-seq protocols,  and subsequent  quality,  can vary wildly.  Since our  approach

learns how experiments are corroborated by others,  such differences in  quality  are self-
correcting. Hence, we do not require unified protocols like large consortia (ENCODE) would,
and can work with heterogeneous data from multiple provenances. That being said, having
more and larger genomic datasets for each Transcriptional Regulator will help.

While our study focuses on ChIP-seq data, our approach can be generalized to any
type of data consisting of a series of peaks, or more generally corroborating time-series
intervals from multiple datasets. In genomics, this includes ChIP-exo, ATAC-seq, as planned
for  future  ReMap  releases,  or  even  otherwise  determined  regions  like  promoters  of
overexpressed  genes  in  a  certain  condition.  But  it  could  also  be used,  for  example,  to
compare weather forecasting models. 

The  atyPeak  approach  could  also  be  applied  to  many  multi-omics  problems  by
changing the meaning of the dimensions,  ie. integrating different assays for different cell
lines instead of different datasets for different TRs. More generally, we propose to leverage
typical combinations between sources to perform anomaly detection by representing multi-
view data as K-dimensional tensors (for K views) and using structures designed to consider
those combinations. 

To our knowledge, our approach shows the first use of a large-scale meta-analysis of
ChIP-seq datasets to corroborate them with each other, using deep learning methods to
integrate them in complex combinations. This allowed us to identify and eliminate atypical
peaks that do not respect such combinations, resulting in higher-quality data available for
genomic analysis. 
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Methods

Materials

Data sources
In this study, data is provided by ReMap 201821. ReMap endeavors to identify and

characterize  regulatory  regions  from  a  large-scale  integrative  analysis  of  DNA-binding
protein experiments.  The 2018 human update uniformly annotated and processed 3,180
ChIP-seq experiments,  including  some biological  replicas,  creating  a catalogue from the
analysis  of 35.5 million peaks (after  merging)  for  485 TRs in a variety of  cell  types and
tissues. The regions of interest or Cis-Regulatory Modules (CRM) selected for this study are
defined as a region binding at least two different regulatory proteins in all the cell lines and
tissues of ReMap, in order to mitigate variation coming from non-standardized sources. A
CRM can contains  from two to a few thousand peaks,  in  one (or  more)  Cis-Regulatory
Elements(s). In ReMap, this adds up to 1.6 million CRM; however current estimates point to
in the order of magnitude of a few hundred thousands biologically significant ones only.

Data selection
We used as a query a subset of the aforementioned CRMs, keeping those with at

least  100 peaks across all  cell  lines  for  65,535 CRMs in total,  to focus on the densest
genomic regions. We processed only a subset of representative cell lines and selected only
certain relevant TRs, to reduce the sparsity of the resulting tensor representations. The list of
selected sources is present in Supplementary Table 1. Our goal was to consider TRs with
high  biological  significance,  comparable  abundances,  and  interesting  combinations.  In
practice, for each cell line, we get the TRs with the most experiments, but if a selected TR
has a known collaborator further down the line, said collaborator may take the place of a
previously selected but isolated TR (eg. MYC/MAX).

Autoencoder model
Artificial neural networks (ANNs) are assemblies of neurons, which are logistic units

outputting a result dependent on a linear combination of its inputs. In a network, the output
of one layer of neurons is fed to the next layer. The weights of each neuron are learned by
backpropagation. More specifically,  an autoencoder is an ANN whose goal is to learn for
each  provided  example  a  compressed representation  sufficient  to  rebuild  it  in  the  most
efficient  manner,  which  entails  discarding  signal  noise29.  Applications  of  autoencoders
include  dimensionality  reduction,  anomaly  detection,  information  retrieval  and  image
processing. 

Here  we  performed  a  lossy  compression  of  our  CRM  representations,  ie.
transforming  them  into  shorter  vectors  capable  of  returning  similar  information.  When
performing a lossy compression, noise and other non-information are the first elements to be
lost,  but  so  are  fine-grained  details.  More interestingly,  anomalies  (in  our  case  atypical
peaks) are lost because no regularity involving them is found. Compressing also introduces
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artifacts, which for us are phantom peaks it was expecting to see. 

As any compression algorithm implicitly maps the compressed vector into a feature
space,  and  learning  such  mappings  based  on  certain  criteria  (ie.  minimized  loss)  is  a
quintessential machine learning task, there is a close connection between machine learning
and compression. Deep (convolutional) autoencoders are particularly suited to it30 and can
be tailored efficiently to variations of the problem such as group anomaly detection31. The
rebuilt  image  is  not  a  cleaned  image,  but  a  compressed  one,  unlike  in  denoising
autoencoders32, but those cannot be used here since we have no ground truth, ie. no a priori

information on which peak is good or not.

Existing  anomaly  detection  approaches solve slightly  different  problems and ours
(anomaly detection based on sources/dimension combinations) is not directly comparable.
The closest  existing  parent  is  the detection  of  anomalous vertices in  a dynamic graph33

giving  precedent  to  our  approach  of  giving  a  score  to  each  vertex  at  each  time  step
depending on their behavior. Here we use an autoencoder to learn such a score, for which
the use of graph convolution is precedented34 although instead of edges we have multi-view
bags of items. Another related approach is multivariate time series anomaly detection, but
here we seek to label anomalous features, not anomalous points.

Data representation
Each putative  CRM is  represented as a 3D tensor  .  This  tensor  of  peak

presence contains a representation of ChIP-seq peaks falling into this region:  the  
dimensions  are  respectively  the  nucleotide  position,  the  experiment/series  ID,  and  the
Transcription Factor involved in the ChIP-seq.  Each cell line is analysed separately. The
value at each position of the tensor is 1 if there is a peak, 0 otherwise. CRM longer than
3200 bp are truncated, and those shorter are padded with zeros (3.2kbp was the 9th decile
of length).

We then downscale the tensor by a factor 10 along the X axis (“squishing”) since the
data  has  low  granularity  along  that  axis  to  allow  the  use  of  smaller,  easier  to  train
convolutional kernels. Also, to counteract lower rebuilt values at the margins of the tensor in
CNNs, we add a padding of meaningless zeroes at the beginning and end of the X axis
instead. Its length is twice the convolutional kernels’ length on each side. In real biological
data only, to help the model learn in spite of the sparsity, we also add crumbing (Suppl. Fig.
9) where for each tensor element where there is a nonzero value of , we add  in each
position in the same Y or Z axis as a hint. Crumbing is cumulative.

Model architecture
The structure of the model is detailed in Figure 1B. Our model has two parts: an

encoder creating a latent representation and a decoder retrieving the original tensor. As with
all autoencoders, the model is trained to try to rebuild the original CRM representation as its
output. The full  model parameters are available on GitHub. Our model was implemented
using Keras 2.335, with Tensorflow 1.15 and NumPy 1.18.136.

Convolutional encoding

The CRM representations are viewed through sliding convolutional filters, to focus on
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correlations between the TRs and datasets. A convolutional filter gets as input a slice of a
matrix and outputs a weighted sum of its elements, with the weights forming the filter proper.
The  first  layers  are  two  successive  convolutions  with  two  different  types  of  kernels
( combinations of datasets, then combinations of TRs).

Let  be the number of TRs in the cell line,  the number of datasets and  the size

of the convolutional kernels. As a result, the kernel shapes are   for

the first, and  in the second where  is the number of filters in the previous layer.
As there is no ordering to the datasets or TR, we perform a depthwise convolution and read
the entire dimension at once. Default  is 20. We use only one layer per dimension. We use
few kernels, lower than the later Dense layer size, creating a bottleneck37, but larger Dense
layers still improves rebuilding (Figure 3). 

The combinations are learned over a short window across the region given by the
variety  and  stride  of  the  convolutional  kernels. Convolution  filters  have  a  kernel
regularisation  of  2.5E-3  by  default  and  Dense  layers  (see  below)  have  low  Dropout
regularisation (10%), except for the encoded layer which has none so it can specialize. We
observed that a stacked approach of one dimension at a time can lessen training problems
associated with large number of dimensions.

Convolutional  filters  are  known to  be useful  in  finding  combinations  of  elements
across dimensions, including in biological sequences38. Multi-view integration is traditionally
done by using different  strides for  the filters,  or  by processing each view followed by a
feature fusion23. In contrast, as our dimensions are incomparable, we express a hierarchy
between our two dimensions by integrating datasets combinations first, learning a first latent
space which is  then passed to another convolutional  layer,  which learned its own latent
space based on TR combinations (across another dimension) of the values of the first latent
space.

Integrative layers and decoding

The convolutional layers are followed by 4 regular (Dense) integrative layers, to learn
complex combinations.  On each layer,  only  the last  dimension (filters)  provides weights,
resulting in Time-Distributed layers with no communication along the X dimension. The ReLu
activation function is used. 

We obtain an encoded dimension in the fourth Dense layer. For the decoding, we
consider each element of the non-human-readable encoded dimension as a latent variable.
A  first  layer  of  convolutional  filters  reads  the  entire  dimension  once  to  produce  a  first
decoding, and a second and final layer has one filter per source (TR-dataset pair). This is
done because unlike classical images, there is no order to the features. The final layers
perform a reshaping of the result back to the original tensor shape.

There is no communication along the X axis, unlike NLP models such as Transformer
or LSTMs, as we focus on local combinations. However, along the other axis of the encoded
dimension, the encoding layer has access to the state of all other learned neurons making
this partly reminiscent  of a transposed attention mechanism39.  Custom time-based layers
and constraints could be added here. This is not necessary to work with large, overlapping
ChIP-seq peaks, but might be needed to integrate the ReMap 2020 new ChIP-exo and DAB-
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seq data.

As  such,  even though the full  tensor  represents  the CRM;  the latent  learning  is
focused on local combinations analogous to CREs (local clusters) in a window the size of the
convolutional kernels. 

  

Loss used

The loss used when training the model is the Mean Squared Error, or L2 loss. Hence,
when the model adds phantoms from the same correlation group, it must lower the value of
the  original  peaks.  This  forces  compromise  compared  to  a  L1  loss,  since

 .  Using  L2  loss  on  an  autoencoder  has  been
previously shown to be effective to perform denoising even when no cleaned images, only
corrupted/noisy versions, are available40.

The best results were obtained with the Adam (“Adaptive learning rate for sparse
data”) optimizer41, which is effective on problems featuring large data and very noisy and/or
sparse gradients. It adapts the learning rate based on gradient moments. Our base Learning
Rate for the Adam optimizer is 1E-4, which is 0.1x its default. We keep the model with the
lowest loss of all the epochs during the training process. Training is stopped when losses
stops diminishing with a patience of 5 and a minimum delta of 2.5E-4 (chosen empirically) to
consider  it  to have diminished significantly.  Batch size is 48 CRMs with 10 batches per
epoch in artificial, 48 in real data. We can also use a weighted loss by apply weighting to the
loss for each dataset or TR separately. 

Anomaly score
Finally, each peak gets an anomaly score based on the autoencoder reconstruction

error. The better the peak according to the model, the higher the score. Such an approach
has precedent in signal processing42. 

We define an anomaly score to compare a tensor  to its rebuilding by a model noted .
We have  the anomaly score tensor defined as :

Dividing by the original score accounts for the potential crumbing. The score of each
peak is the maximum value in   across all nucleotides of the peak. This is necessary to
correct cases where near vicinity peaks will  get high score only on the parts where they
overlap and  because peaks smaller than the convolutional filter’s length will  get a lower
rebuilt score as a result. Peaks can sometimes be divided between two (or more) of our
3200-bp windows, getting one score for each rebuilt matrix: we merge them by giving them a
score that is the mean of each.
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Normalization of correlation group biases
This normalization aims to correct bias in rebuilding based on the learned correlation

groups. We calculate a weight for each source (meaning each {dataset, TR} pair), based on
the following steps, to be applied to all anomaly scores computed for this source.

 designates the 2D matrix of the mean across the X axis (region size) of the

3D tensor , and  its maximum.  designates the value of the matrix M for the

current source.  is the tensor obtained as output when passing as input the  tensor to
a trained atyPeak model. We note  a “full CRM” which is a 3D tensor representation where
all possible sources with abundance higher than zero are present along its length with a

value  of  1.  Let  .  The  correlation  group  of  a  source  can  be  estimated  (see
Interpretability) by preparing a CRM containing only a peak for the given source along its

entire length denoted . We get such a request mask as . 

The first step corrects for intra-group biais in rebuilding, due to learning bias (usually
too high learning rate) or abundance differences within the group. There, the sum of the

rebuilt CRM will be biased too. We get the first weight .

For  inter-group  bias,  recall  that  the  rebuilt  value  of  a  peak  (value  in  )  is
proportional  to  how complete  its  correlation  group is.  But  group have different  sizes,  cf
background group and different groups. Our goal is that peaks gets the same score where
their group’s current completeness relative to its average completeness is the same. We

define  occupancy  for  a  CRM  for  the  current  source  as   where

 and   is the matrix of intra group weights for all  sources. These are
pointwise multiplication, not matrix products. We use a Monte Carlo approach by iterating

over a portion of all CRMs and calculating the mean of all their occupancies , excluding
zeroes to get only the correlators when the source is actually present, and self-correct for

relative  loneliness.  The  final  second  weight   where   is  the  occupancy
calculated of .

Thirdly,  if  a  source  is  in  several  groups,  phantoms  from  several  groups  can
accumulate and will not be seen at step 2. We evaluate how much the sources that are not
in the request will  contribute.  We calculate the mean and max negative occupancies ( )
exactly  as  above,  except  we  use  a  negative  mask   instead  of  request  ,  where

. We ponder by the average presence of these other peaks to

get 

The final weight is  . To prevent overcorrection of sources that were
not learned by the model, all   are capped at 10. For now, having a CRE with more peaks
than average results in higher rebuilt values, as we consider that for CREs in particular more
TRs mark denser/better CREs. This assumption could be changed here by penalizing values
above the corrected average quality.

The  final  step  consists  of  centering  and  reducing/normalizing  the  scores  by  TR,
under the assumption that no TR is inherently of a better quality than the others. Having
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more correlators (ie. data less sparse for the same dimension, more datasets per TRs) is a
benefit.   For  each  peak,  if  their  score  at  this  step  is   their  final  score  is

,  where   and   are respectively  the mean and standard
deviation of scores observed for this source’s TR at the previous step. Note that scores are
usually not normally distributed. 

We center around 750 to use a larger part of the score scale for cases where the
local cluster (CRE) is less complete than average, which are the cases we want to mark. If
you choose to use a non-normalized score, compare each score to the median score for its
source. This normalization is a step in the right direction that independently moves score
averages for different TRs closer (Suppl Fig 13) but warrants further research.

Training and interpreting the model
We provide scripts to directly process a BED file in ReMap format with diagnostic

figures and usage instructions in the Readme.

Impact of data characteristics/scaling on required information budget
As we discussed in Results, the information budget determines the aggressivity of

the compression. It depends on the relative information budget. It is the ratio between the
quantity of information to be learned in the data (itself a function of the number of TR and/or
dataset  combinations)  and the model’s  entropic  capacity  (how much information can be
stored in the compressed representation). Adequate hyperparameter tuning is a widespread
problem in deep learning as a higher information budget will predictably increase the model’s
Vapnik–Chervonenkis dimension and make it more prone to overfitting. 

In our case, the entropic capacity is mostly increased by increasing the dimension of
all Dense layers and the number of convolutional filters on one side (more is higher). But
also by diminishing the learning rate (LR) on the other which was often necessary to reach
lower losses, even with all other parameters constant. We saw in Figure 3 that to achieve
the  same  aggressivity,  the  required  entropic  capacity  scales  up  with  the  quantity  of
information in the data. Figure 2B, on the contrary, is an example of overprecision. Larger
dimensions (more datasets and/or TRs in the database) require a higher information budget,
even with no additional information (Suppl Fig 3B). However,  Lower Learning Rates are
more of a necessary condition than larger models to reach higher precisions with higher
dimensions (Suppl Fig 3C). Learning larger correlation groups (composed of more sources)
is also harder. 

The most frequent sources are learned in more precise groups, while the rarer ones
appear often grouped together in more “background” groups. All groups, but especially the
latter, are not expected to be fully complete (meaning all the sources are present) in the real
data. More generally, sources that are comparatively too rate (empirically  difference) may⅕

be completely disregarded by the model as they are seen as systematic noise. All  those
tendencies  are  more  visible  in  high-dimensionality  examples  or  those  with  higher
imbalances,  and  can  be  alleviated  by  using  a  weighted  loss:  Suppl  Fig  4A shows that
dimensions with a higher weight will be focused on and get more precise groups.
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We also show in Suppl Fig 4B that  the model  is capable of  learning overlapping

groups (where the groups are “G1” and “G1+G2” instead of “G1” and “G2” like in Suppl Fig
1) However, it required learning adjustments with higher weighting on the rarest dimensions
to  direct  the  learning,  and  more  importantly  early  stopping.  With  a  variety  of  other
parameters, peaks in G2 produce only marginal phantoms for G1, or we get too precise or
non-homogeneous groups (Suppl Fig 4C). Note that G1 will often not produce phantoms of
G2 (although it should and does sometimes happen, like in HeLa) so be careful to look at the
estimated  groups  for  all  sources  when  interpreting  the  model.  Relatedly,  even  in  non-
overlapping groups the watermark (ie. the lonely control peak we added at the same position
to most of the CRM that does not particularly correlate with other groups, see Artificial data)
does not create phantoms anywhere else. However, watermark phantoms are produced by
peaks from (certain sources in) the G1 and G2 groups. The rarer of those two groups often
erroneously  produces  stronger  phantoms,  a  tendency  reduced  when this  rarer  group  is
weighted more. 

Loss and training
Due to the high dimensionality and sparsity of our data, we used lower Learning

Rates (Suppl Table 2) and large batches to counter overfitting and batch effects. We also
used early stopping in most cases, in most cases stopping even before a loss low plateau is
reached to prevent the model from adding bias in a futile attempt to improve.

With different random seeds, we observed over several runs small but real deviations
in scores and estimated correlation groups. As with most machine learning approaches, we
recommend averaging over several runs (2-3) for both these applications.

Training  the  model  takes  around  10-30  minutes  per  cell  line  for  smaller  models
(HeLa) and 1-5 hours for larger ones (K562 and MCF7). However, reading and processing
the source BED files is a large part of this time and the approach is not CPU bound. Times
given on an i7-7820HQ and on an SSD drive. GPU use did not significantly improve running
times. Production of the resulting BED file after training is also time consuming (around 12
hours for K562 but 40 minutes for HeLa), so it is advised to check some rebuilt matrices
before proceeding. 

Interpretability
To interpret the latent variables in the encoded dimension (Figure 1, Suppl. Figs. 6

and 10), we use a gradient ascent method to build an hypothetical CRM tensor that would
maximally activate each individual row in the encoded dimension layer43.

We seek  .  We add some blur  at  regular
intervals on the Y and Z axis during gradient ascent for more natural looking results. By
default  we use a learning rate of  1,  50 steps in  gradient  ascent,  and the blur  standard

deviation  is   applied  every  5  steps.  For  each  latent
variable of the encoded dimension the gradient is calculated across the entire length. As the
Dense layers are not connected across the X axis, we are considering local combinations.
Since  this  is  not  the  next-to-last  layer,  the  final  result  will  be  a  complex  non-linear
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combination of those variables. This should instead be seen as a highlight of the model’s
focus during learning.

Another  type  of  interpretability  is  based  on  the  same  procedure  used  in  the
normalization (Suppl Fig 11). We create a CRM representation  that is empty except for

one peak for a given source along all  its length. By looking at  , we see what
phantoms are added by the model, and deduce these are part of the same correlation group
as the source we are considering. Due to the peculiarities mentioned above when learning
overlapping groups, look at all the sources’ estimated groups, as a source A may impact the
score of B without B appearing in A’s estimated group. Passing  does not always result in
values of 1 due to complex nonlinearity, but it is a good approximation. 

Note that a learned correlation group of “ABCDE” does not necessarily mean ABCDE
are always found together, as seen in artificial data where the model learned the entire G1
and G2 group, which almost never found complete in the artificial  CRMs. As such, rarer
sources can be grouped in more background groups without necessarily being a complex.
For both interpretabilities, negative weights are likely due to sum averaging and should not
be focused on. Indeed, the rebuilt tensor is not simply the sum of the estimated correlation
groups for the sources present.

Q-score quantifies the quality of the reconstruction
To rigorously choose the information budget, we propose to verify that the model

correctly learns generated pairwise correlations. On one hand, if two dimensions (datasets
or TF) correlate, finding them both together in the region of interest should result in a higher
score for them than when they are found alone; on the other hand if they do not correlate,
this should have no impact. To estimate this we design a Q-score, which is lower in better
models.

The Q-score is defined as  
where,

Here   is a set of all  TRs and all  datasets (so all  possible Y and Z dimensions,
excluding the X dimensions of peak position) and the brackets are Iverson brackets denoting
indicator variables. Note that we only compare TRs with other TRs and datasets with other
datasets, because a dataset and a TR are not mutually exclusive and issues can arise when
considering a dimension that is only present as noise when another is present. For the same
reason, we consider only positive correlation coefficients later.

 asserts whether the Pearson correlation coefficient between the two considered
dimensions is higher than the mean correlation coefficient.  It  is  calculated on the tensor
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representations of the CRMs at the nucleotide level.

For  and , we take 10K CRM tensor representations  and their rebuilding .

For each of them, we record the values for the  dimensions of interest (averaged across
X axis). We compare the average rebuilt value of A in different scenarios: For  , when a
peak of  was present in , does presence of  in the same CRM result in a higher rebuilt
value for  ? And for , when  was absent, does the presence of  result in higher phantom
values than when   is absent ? To perform these comparisons, we use a Welch test to
determine whether the means are different. We use a Bonferroni correction by using a p-

value of . We then weight the result by the relative abundance of the dimensions

 and . We do not normalize the scores with the procedure discussed before because we
compare a source with its own values.

Artificial data
We use artificial regions to confirm the model can discover correlation groups. They

are  meant  to  approximate  real  genomic  CRMs,  hence  the  generation  process  and
parameters are based on true data. 

We define a probabilistic  model  to generate the artificial  data.  The output  of  this
model is an ensemble  of peaks, whose characteristics are: their start and end, the IDs of
the  TF  they  represent  and  the  experiment  they  belong  to.  Hence  we  have

 which is then converted into a 3D tensor
representation, as explained in Data representation. The generation itself consists of three
steps detailed below. Each step is run once per generated artificial CRM. Unless specified
otherwise, all  random variables used are Poisson R.V. of  . See Suppl Fig 1 for an
illustration of the dimensions.

First, we place a control peak called a watermark along all the length of the CRM for
the 1st TF in the 1st dataset, representing ubiquitous TRs. It will be very frequent but not
particularly correlated with other sources and so form its own correlation group. It has a
customizable probability (default 75%) of appearing, to prevent the model from learning it
and only it when it is too frequent.

Second,  we  want  to  place  a  stack  of  correlating  peaks  from  different  TRs  and
datasets, at roughly the same positions. The stack will  belong to one of two or more TR
"correlation groups". The groups are made by splitting the set of all in TRs in two, or more, or
by  making  groups  of  4.  Group  choosing  probabilities  are  equal  by  default  but  can  be
weighted.

 Only one such group is picked per generated artificial CRM. We then pick a common
center for the peaks, uniformly randomly across the region. Now, we pick   datasets
without replacement among all predetermined reliable datasets (by default, the last half of
them).  In  these  datasets  we  will  place   peaks.  For  each  peak  to  be  added,  we
randomly select  TRs from the current correlation group with replacement. ,  and 
are random variables. For each TR selected, separately move the center by a distance 
(uniform R.V. between -200 and +200), take a peak length randomly of  (  is a log-normal
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RV of  ,  ) and finally,  write the exact same peak among all  the datasets
selected previously. Note that since artificial data draws peaks at random, there is a larger
number  of  possible  combinations  than  there  is  usually  in  real  data  of  the  same
dimensionality. 

Third,  noise  peaks  are  placed  uniformly  randomly  from all  datasets  and  TRs  to
represent  false  positives  and  atypical  peaks,  which  by  nature  do  not  respect  existing

correlation groups. To represent false negatives, each peak has a probability   of
being removed at this tep. Then, we randomly position  peaks (  is a R.V.) by drawing
randomly their characteristics like previously. Noise cannot be placed in the watermark.
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Figure 1A : Workflow and model description. Once candidate regions (ReMap-identified CRMs) are set, we build tensors of peak presence 
representing them. The X axis represents the position along the genome, while the Y and Z axis are dataset and TR identifiers respectively. The 
tensor has a value of 1 is a peak for this TF in this dataset (ie. for this source) is present, 0 otherwise.

The atyPeak model will lossily compress this representation. This will result in losing anomalies and other finer details, by learning correlation groups 
for the rebuilding instead of individual peaks. At the end, each peak is given an anomaly score corresponding to the mean autoencoder 
reconstruction error, the difference between the original (grey) and rebuilt (red) representation. Scores are then added to the original BED file.

Full source code and documentation are available at <https://github.com/qferre/atypeak>
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Figure 1B : Model structure. During the encoding, the CRM are viewed by the model through convolutional filters to focus on the correlations 
between datasets and then between TRs. We use two type of filters (combinations of datasets, then combinations of TRs) successively in a stacked 
multiview approach. After the subsequent Dense layers, we obtain a smaller encoded representation. This encoded representation is fed to a 
convolutional decoder with several layers, trying to rebuild the original CRM representation. 

In subsequent figure legends, “deep dimension” is the number of neurons in each Dense layer, while the “filters number” is the number of kernels in 
each Convolutional layer, and LR is the learning rate of the Adam optimizer. More details about the structure are available in Methods.
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Figure 2 : The atyPeak model learns correlation groups. In each case, the tensor at top is the original representation and the bottom one is what is 
rebuilt by the model. The model was trained on artificial data. There were 2 predefined correlation groups covering different subsets of dimensions 
(G1 and G2) defined in Suppl Fig 2. The thin colored lines are only here as a visual aid.

In (A), when the model rebuilds the CRM representation, it rebuilds the entire correlation group when peaks from the group are present. This results 
in adding the other members that were not originally present as “phantom” peaks. In this case, it is the G1 group. In (B) however, we used a model 
with a less aggressive compression (too high information budget) and the rebuilding is too precise, learning smaller, non-significant groups instead of 
the entire G1 or G2 groups.

Model parameters in A were a deep dimension of 32, 16 filters and a Learning Rate (LR) of 1E-3. B used 48 filters, 256 deep dimension, a LR of 
1E-4. Note that for B, that increased precision is not achieved with higher deep dim but default LR - we needed a lower LR. 48 epochs for all or early 
stopping (for A). Groups were equiprobable.
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Figure 3 : Scaling of the information budget with the data. We used artificial data of dimension 8x16, but the TRs are subdivided into 8 groups 
instead of 2 like in Suppl. Fig. 2 (ie. there the TR 0 and 1 are a group, then 2 and 3 are another group, etc. up to 14 and 15. The groups are visually 
reminded on the figure as one grey box per group). At data generation, the stack is placed in one of the 8 groups. All 8 groups are equiprobable. The 
model parameters were 24 convolutional filters and a LR of 1E-4. The number of neurons in the Dense layers changes during the grid search.

With lower deep dimensions (and so a lower information budget), the model is unable to learn separately the 8 existing correlation groups (B left) 
and will instead learn fewer and larger groups. A larger budget was needed to learn the 8 groups (B right). This highlights how the information budget 
must be adapted to the quantity of information in the data for a satisfactory result. Note that for this larger data, hundreds of neurons are required, 
compare to smaller models for the smaller data of Figure 2. To help choose the budget, we propose a Q-score to quantify the quality of the rebuilding 
depending on the budget. This score assesses how well the model learns each existing pairwise correlations. More details about the Q-score of the 
models involved in this figure is presented in Suppl Fig 5.
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Figure 4  : Two different examples of real CRMs rebuilt in HeLa. All figures give the mean across X axis (region size) of the tensors. The model’s 
parameters are detailed in Supplementary Table 1. As with the other figures, the blue heatmap represents the original representation of the CRM, 
with the green heatmap giving the rebuilding by the model. The average of all HeLa CRMs is provided for comparison.

The model has visibly learned different correlation groups, and not just rebuilt the average CRM. We can see, notably for BRD4, that an incomplete 
group results in lower scores, and that phantoms are added to complete the learned groups. Some learned groups are extracted and presented in 
Suppl Fig 11 for comparison.
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Figure 5 : Example of visualisation of atyPeak results in the UCSC genome browser. The results presented here are for the HeLa cell line for ReMap 
2018. A darker peak indicates a higher atyPeak score. The annotated BED data files with the corresponding atyPeak scores are available at 
<https://github.com/qferre/atypeak-files> or as a UCSC browser session at <http://genome-euro.ucsc.edu/s/qferre/atyPeak_hg38>. 

We can see on this figure an example of rich CRE with many peaks, and a poorer CRE where many correlators for those TRs are missing which 
predictably has a lower score. As detailed previously, our approach estimates how “typical” each peak is, with respect to the usual combinations 
between sources (TRs and/or datasets) for a given cell line. As the model is unsupervised, anomaly score thresholds are at the user’s discretion. For 
example, a large scale analysis might exclude the lowest scoring peaks, but a focused study of a single or selected experimental series may 
specifically seek low-scoring peaks that might be caused by certain events of interest (mutations, etc.). It is also possible to use high-scoring peaks 
to detect CREs of interest and use that selection as a filter when looking at other genomic data, like we show here with ReMap 2020.
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Figure 6A : Confirmation of the biological meaningfulness of identified correlations. Scores are considered after applying all normalizations described in 
Methods. We consider pairs of TFs. For each pair {A,B} we give the score of peaks from A when B is present too in the same CRM (blue) or when B is 
absent (red). This is the same elementary operation as the Q-score, except we do not average across the X axis but take the actual peak value.

Most examples presented are of TRs with high correlation, such as GABPA and ERG in Jurkat which have many common binding sites, ELL2 and AFF4 in 
Hela, or RCOR1 and SFMBT1 in Hela which are both repressors. When TFs correlate, our model will have learned that and assign higher scores to peaks 
for a TF when one of its correlators is present. We also provide some counter-examples: CTCF and GABPA in Jurkat have a R coefficient of 0.2 which is 
high for CTCF but low for GABPA (GABPA is often seen with CTCF, but CTCF has other partners than GABPA) and as such the impact on the score is 
also unidirectional. Finally the pairs framed in red such as CTCF and RUNX in Jurkat or RCOR1 and ZNF143 in HeLa have a low correlation coefficient. 
For them, the presence of one TR of the pair has little to no impact on the score of the other.

For cases such as AFF4 and ELL2 in HeLa which have one major correlator (namely, each other), the distributions of all scores (blue and red merged) is 
rather bimodal, as the presence of the other acts as a binary switch.
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Figure 6B : For each processed CRM, average (left) and maximum (right) score of the peaks present in it, depending on the total number of peaks 
in the CRM. Number of peaks given axis in log2 scale.

As Transcriptional Regulators tend to work in complexes, it makes sense that richer CRMs would be on average of better quality. However, the 
relation is not strictly linear: CRMs with supernumerary peaks likely contain noise, which is reflected here in a lower average score.
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Supplementary Figure 1 : Systematisation of artificial data analysis in 10 thousand CRM. For both (A) and (B) we use a model with deep dimension of 32, 
16 convolutional filters, and LR of 1E-3. We compare a situation where such a model is too precise in (B) where the artificial data dimensions are 6x4“ with 
a situation in (A) where such a model is adequate.The left plot gives the distribution of rebuilt (max across) values of peaks depending on their type: 
respectively noise in reliable (R) datasets, noise in unreliable (UR) datasets, phantoms (peaks added that were not present in original matrix) and stack 
(peaks that were in the stack of added peaks). See Suppl Fig 2 for details. The color gives the correlation group of the peak (belonged to the same group 
as the group where the stack of peaks was placed for this CRM, or different). “Brothers” is the total number of peaks in same line or same column 
(summed). In both cases, the stack of peaks (and watermark) are correctly rebuilt, and phantoms of a high value are added in the same correlation group 
as the stack, but not in the other group. The correct rebuilding of the watermark shows lonely peaks can still be learned when frequent. When noise is 
added in the (R) datasets, it will not be part of a stack hence its usual correlators will not have been added : lacking its correlators, it it atypical by our 
definition and gets a lower value due to this, not just because it is lonely. Noise in (UR) is discarded by the model due to its rarity. Noise scores are higher in 
B as the groups have less members, and a single noisy source represents a larger proportion of the total group learned than in A.

A

B

Peak type

Number of peaks in the same dataset or TR

R
eb

ui
lt 

va
lu

e
R

eb
ui

lt 
va

lu
e

Peak type Number of peaks in the same dataset or TR

Correlation
 group

Correlation
 group

139



Supplementary Figure 2 : Example of an artificially generated region representation and relevant groups, in 8x8 dimension. The small colored lines 
are only visual aids.

The X axis (bottom left) is the position along the region, the Y axis (bottom right) is the dataset number and the Z axis (right) is the Transcriptional 
Regulator number. Datasets are split in half between “Reliable” (R) which will contain both the stack of true peaks and noise, and “Unreliable” (UR) 
which will contain only noise. TFs are split in the G1 and G2 groups. They can optionally be split in more than two groups.

We first place a stack of peaks around a common position. These peaks will belong to either the G1 or G2 group. As a result, sources within the G1 
or G2 group will correlate with each other, but will not significantly correlate with sources from outside their group. We then add noise uniformly 
randomly that can belong to any dataset and TR, representing anomalies. Finally a control watermark peak is added with, usually, 75% probability, 
representing ubiquitous TRs. All values in the tensor are 1, denoting presence. More details are available in Methods.
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Supplementary Table 1 : List of datasets and Transcriptional Regulators from ReMap 2018 used in this study. Datasets IDs are grouped by prefix in 
the table: for example, “GSE52924” and “GSE54344” are grouped as “GSE: 52924, 54344”.  For the cell lines, if variants are present in the ReMap 
data, they are not kept. For example, CD34 does not include CD34_condition1.

Cell line TRs Datasets

Jurkat brd4, cdk7, ctcf, erg, fancl, gabpa, gata3, 
med1, myb, myc, runx, runx1, tal1, tal1_scl, 
tcf12, tcf3, znf335

GSE: 17954, 25000, 29180, 42575, 45864, 49091, 50622, 59657, 68976, 
76181, 83116, 83777

HeLa aff4, brd4, e2f1, ell2, gabpa, hcfc1, myc, nr2c2, 
phf8, rcor1, sfmbt1, yy1, znf143

GSE: 20303, 22478, 31417, 39263, 40632, 44672, 45441, 46237, 51633

K562 atf1, cebpb, ctcf, ep300, fos, fosl1, gata1, 
gata2, irf1, jun, junb, jund, max, myc, nrf1, 
rad21, rest, spi1, stat1, yy1

GSE: 70482, 70764, 74999
ENCSR000: AKO, AQB, ATM, BGW, BKM, BKU, BKV
BLP, BMH, BMV, BMW, BPJ, BRQ, DJX, DJY, DKA, DKB, DLZ, DMA, DNZ, 
DWE, EFS, EFT, EFV, EGE, EGH, EGJ, EGK, EGM, EGN, EGS, EGT, EGU, 
EGY, EHE, EHJ, EHK, EWF, EWG, EWM, EZT, EZU, EZV, EZW, EZX, FAD, 
FAE, FAG, FAH, FAI, FAU, FAV, FAZ
ENCSR: 091GVJ, 137ZMQ, 159OCC, 239ZLZ, 494TDU, 795IYP, 837EYC, 
854MCV, 998AJK

MCF7 ahr, ar, brd4, ctcf, ep300, esr1, foxa1, foxm1, 
gata3, hsf1, jun, jund, max, med1, myc, ncoa1, 
ncoa2, ncoa3, rad21

GSE: 35109, 38901, 40129, 40762, 41561, 41820, 45822, 45852, 48930, 
51274, 54855, 55921, 59530, 60270, 68355, 68356, 70764, 71276, 72082, 
72249, 80808
ENCSR000 : AHD, BST, BSU, BTQ, BTR, BUJ, BUL, DMJ, DML, DMM, 
DMO, DMP, DMQ, DMR, DMS, DMV, DWH, EWS, EWV
ENCSR062HDL, ENCSR176EXN
ERP000: 209, 380, 783, 901
ERP001226, ERP002305

CD34 gata1, gfi1b, kmt2a, mllt3, myc, notch1, runx1, 
tal1

GSE: 52924, 54344, 63010, 64862, 85488

ESC brd4, ctcf, ep300, ezh2, lef1, myc, nanog, 
nipbl, pdx1, pgr, pou5f1, smad3, sox2

GSE: 13084, 17917, 18292, 20650, 29422, 33281, 58685, 64758, 69479, 
69539, 75297
ENCSR264RJX
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Supplementary Figure 3 A and B : Learning biases and budgets.

(A) Using artificial data with group selection odds for G1 and G2 set at ⅔ and ⅓ instead of equal. The values given in rebuilding are still only 
dependant on group completeness, the difference in abundance between the two groups does not influence the result. The model had 16 filters, 
deep dimension of 32 and LR of 1E-4.

(B) Using two equiprobable non overlapping groups, as per Supplementary Figure 2. The only difference between “padding” and “No padding” is that 
a padding of 12 lines (TFs) of zeroes were added to the matrices passed to the model. The model had 96 filters, 256 deep dimension, LR of 1E-4. 
This shows that even where there is no new information (in the left, the two groups G1 and G2 are still in the two top-rightmost 4x4 blocks), the 
precision is lower for the same model when the data dimensions are larger.
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Supplementary Figure 3C : Model trained with artificial data, with 4 correlation groups, 64 filters and 600 deep dimension. The correlation groups 
predefined at data generation are reminded by the dotted lines.

In spite of the very large information budget of the model, a LR of 1E-4 was not enough to reach an over-precise learning. Overprecision was 
achieved only with a much lower LR of 1E-5, which demonstrates that to reach increased precision (less aggressive compressions) lower LRs are 
more of a necessary condition than large deep dimensions.
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Suppl Figure 4A : Usage of a weighted loss. We use a model with 24 filters, deep dimension of 64 and a LR of 1E-4. We use artificial data with the 
same generation process as usual, as detailed in Suppl Figure 2. However, we assign a weight of 10 in the loss to all UR datasets (0 to 4 included), 
which means that when computing the loss errors on these dimensions count 10x as much.

Similar models without weighting would entirely discard peaks from suich UR datasets (Figure 2), but now they are now learned with high precision, 
almost individually, while the precision is not as great for the non-weighted sources. This highlights the role of weighting in directing the learning 
towards specific sources and on the process of learning in general.
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Suppl Figure 4BC : Overlapping groups. For this figure, when generating the data the two possible groups to choose from when placing the stack 
were not “G1” and “G2” but “G1” and “G1+G2 = all TRs”. This means the second groups overlaps with the first, and in fact contains all its sources 
plus its own exclusives. Both groups had 50% odds of being selected.

Such overlapping groups are hard to learn and needs careful parametrization, as we explain in Methods. This requires use of 2x weighting for the 
sources of G2, and early stopping at 16 epochs. In B, the overlapping groups are learned properly and we see that G2 produces phantoms for G1. 
The model used had 16 filters and 32 deep dimension and a LR of 1E-4.

C is an example of difficulties that can be encountered. Done with a model of 24 filters, 64 deep dimension, a higher LR of 1E-3 and crucially, no 
weighting. The sources of G2 still produce some phantoms for the sources in G1, but those are much fainter, and the rebuilt groups are not 
homogeneous. Note that a lower LR of 1E-4 for this LR resulted in increased precision as would be expected, with more precise groups for G1 and 
no overlapping phantoms.
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Supplementary Figure 5 : Q-score matrices giving the contributions for each pairs of dimensions for two models from Figure 3. Lower is better.(A) 
corresponds to the model with 8 Deep dimension and (B) to the model with 256 deep dimensions. The numbers of both the X and Y axis have the 
same significance : 0-7 represent datasets 0 to 7, and 8-23 represent the TRs 0 to 15.

The Q-score assesses, for each couple of dimensions (datasets with datasets and TRs with TRs) if the presence of one results in a higher score 
when present for the other, or in higher phantoms. The better model has lower Q-score, as the 8 groups were learned properly.

The Q-score is currently a work in progress but is informative as to the larger trends ot learning. More details are presented in Methods.

A

B
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Suppl Figure 6 : Example of interpretability in artificial data. 

(A) The bottom figure presents an example of artificial tensor on the bottom, and the top heatmap gives the squared activation of encoded dimension 
when this representation is passed to the model. The parameters used are the same as FIgure 2A.

(B) gives several  ur-examples (average across X axis) of CRMs that would maximally activate one row in the encoded dimension (rows in top left). 
The focus is mostly on the correlation groups as a whole. This is useful as a focus map to see where the model focuses its learning, but the final 
rebuilt tensor is not simply a linear combination of those, as evidenced by the fact that some ur-examples focus on both correlation groups. Some 
dimensions are never used, and redundancies were observed. Note that watermark is visible in those ur-examples only when it is not added 100% of 
the time (and therefore is a variable and not a constant).

A B
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Supplementary Table 2 : Parameters used when processing real ReMap data. This provides a baseline based on the dimensions of the data for our 
cell lines. Dimensions provided are for comparison purposes, to provide a baseline. Other parameters (regularisation, etc.) have the same value for 
all cell lines, given in the Methods section in the paper.

The nonzero sources gives the number of sources encountered often enough (at least one in several thousand CRMs depending on cell line) that a 
normalization coefficient was computed for them. 

Cell line CD34 Jurkat MCF7 K562 ESC HeLa

Learning rate 1E-3 1E-4 5E-5 5E-5 1E-4 1E-4

Early stopping 0.003 No No No No No

Number of convolutional 
filters

16 32 64 128 32 32

Dense deep dimension 64 256 1024 2048 256 256

Number of nonzero 
sources 
(TF +dataset pairs)

7 22 128 71 17 15
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Suppl Figure 8 : Demonstration of overlapping groups learning by the model. (A) gives a true HeLa CRM and its rebuilding, and (B) is the same 
CRM after removing all peaks excepted for those belonging AFF4 and ELL2. Even though they are a group almost by themselves (Suppl Fig 11), 
removing all other peaks results in AFF4 and ELL2 having a lower score in the rebuilding of A than B as BRD4 and others also contribute to their 
group, even though they are learned in another group. This confirms overlapping groups are possible in real data, but subject to caveats describes in 
Methods.

Figures give the maximum across the X axis. Parameters are given in Suppl. Table 2.
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Suppl Fig 9 : Crumbing. On the figure, values from low to high and red to blue. Thin lines are a visual aid.

Crumbing is added to real data matrices to fight sparsity. For each nonzero value in the original CRM representation at position [x,y,z], 1/10th of this 
value is added to all positions at [x,:,z] and [x,y,:], meaning for all datasets sharing the same TR and all TRs sharing the same dataset, forming a “+” 
pattern.

This is necessary because on very sparse data, such as the real data tends to be, the model can easily fall in the learning trap of rebuilding a 
completely empty tensor.
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Suppl Figure 10 : Analysis of a trained HeLa model.

(A) presents some ur-examples (maximally activating CRMs for each element of the encoded dimension) summed across the X axis, calculated on a 
trained HeLa model. (B) is HeLa correlation matrix between all dimensions like in the Q-score, (C) is the Q-score contributions

We observed that using a higher deep dimension can still help reach a lower loss, even with redundancies in the ur-examples, including on real data.

A B

C
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Suppl Figure 11 : Estimating the correlation groups certain sources belong to. This is done in the HeLa cell line, with the legend indicating 
respectively the Transcriptional Regulator and dataset concerned. As detailed in Methods, for each given source we create an empty CRM 
representation with a peak along its length for this source only, and pass it to the trained model.. The result, shown above, is the sum across the X 
axis of the rebuilt tensor.

The cross ‘+’ pattern is due to crumbing, one needs to be mindful of it when interpreting. Note that several sources (BRD4, SFMBT1) are present in 
more than one group.

AFF4 in GSE40632 SFMBT1 in GSE45441 PHF8 in GSE22478

152



Supplementary Figure 12 : Jaccard index A \cap B/A \cup B  for HeLa Transcriptional Regulators. Based on the CRM representations we created 
for this data. Those are provided for comparison purpose and interpretation of the extracted correlations learned by the model in HeLa.
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Suppl Fig 13 : Mean score per TR in HeLa before and after applying the normalization detailed in “Normalization of correlation group biases” in 
Methods, but before centering and reducing it based on the mean score for each TR. In summary, this normalization corrects biases due to average 
completeness differences between groups.

After applying this part of our normalization, the means tend to be closer between the different TRs, correcting the various biases we detailed. For 
example, sources learned as part of larger groups like BRD4 (see groups in Suppl Fig 11) get a needed boost to their score.
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Suppl Fig 14 : Comparison between ReMap 2018, ReMap 2020 and predictions made by atyPeak.

(A) For each CRM (random subselection of 10,000), number of peaks in either update and mean atyPeak score in 2018. Low scoring CRMs tend to 
have less peaks, and have proportionally more peaks added in 2020.

(B) For each peak (random subselection of 5,000), number of peaks in 2020 for the same TF in the same CRM divided by the number in 2018, 
potentially from any number of databases. Restricted to peaks in CRM with average score of at least 500 to prevent bias described in subfigure A. 
Log scale is used for the score to emphasize the low-scoring peaks. We see that peaks with a score of under 250 are more rarely confirmed in 2020.
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4. Statistical enrichment and

combination selection with

OLOGRAM-MODL

Sommaire

4.1 Impetus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.2 The pygtftk toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.3 Determining the statistical enrichment of combinations using OLOGRAM158

4.3.1 Statistical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.3.2 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.3.2.1 Computing power . . . . . . . . . . . . . . . . . . . . . . 161
4.3.3 Intersection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.4 Higher-order combinations and itemset mining with OLOGRAM-MODL 164
4.4.1 Extending OLOGRAM to higher-order combinations . . . . . . . 164
4.4.2 MODL itemset mining algorithm . . . . . . . . . . . . . . . . . . . 165

4.4.2.1 Matrix factorizations . . . . . . . . . . . . . . . . . . . . . 165
4.4.2.2 Submodularity and greedy algorithms . . . . . . . . . . 167
4.4.2.3 Combining factorizations and itemset mining . . . . . . 168

4.4.3 Conclusion and biological interest . . . . . . . . . . . . . . . . . . 169
4.4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.4.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.4.5.1 Applicability to closely related problems . . . . . . . . . 172
4.4.5.2 Extensions of the approach . . . . . . . . . . . . . . . . . 173

4.5 Modelisation of Cap-STARR-Seq data . . . . . . . . . . . . . . . . . . . . 175
4.6 Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.1. Impetus

In the previous chapter, I presented atyPeak, which leverages combinations of Tran-
scriptional Regulators and datasets to perform an anomaly detection task. Here, we
seek to solve a more fundamental problem: considering a combination 1 of genomic

1. A precise definition of combination in this context is given in section 1.4.1, p. 52.
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intervals, does it occur more frequently than would be expected by chance? These ge-
nomic position intervals will often correspond to estimated Transcriptional Regulator
Binding Sites, but may also represent chromatin accessibility, genic on non-genic
elements, etc.

This is treated as a fundamental problem in the sense that we do not, at this stage,
make any assumptions as to why a combination is found enriched, or what the conse-
quences of such an enrichment might be. Our only concern is rigorously assessing the
statistical significance of an enrichment. Indeed, insofar as genomic regulators 2 are
concerned co-localisation is usually a sign of functional association, but the precise
interpretation will depend on the context, especially if the genomic intervals consid-
ered do not represent regulatory proteins binding sites, but something else entirely
(see section 4.4.5 below, p. 172).

There is a need of a rigorous statistical framework to answer that question. However,
we have found the current approaches to be lacking, for reasons that were broached
in section 1.4.5 (p. 64) and expanded upon below, as well as in the attached papers.
In this section, we present the OLOGRAM and OLOGRAM-MODL projects, which
sought to address those questions.

4.2. The pygtftk toolset

As we discussed in section 1.3.4.4, there are several conventional file formats to
represent genomic regions, chief among them BED and GTF. Most of the existing
tools dedicated to manipulating GTF files will, at their core, convert them into an-
other format, usually exclusive to them, before further processing. For instance, the
R/Bioconductor library rtracklayer (Lawrence, Gentleman, and Carey 2009) converts
them into a GRanges object, while gffutils uses a SQLite database. This is tailored to
their specific applications, but is computationally intensive and lacks flexibility.

By contrast, pygtftk (see the attached paper) is a toolset designed to be used as a
CLI (Command Line Interface) to manipulate genomic annotations, centered around
GTF files. It offers efficient annotation and manipulation of the GTF files themselves,
and is capable of layering complex commands through command line piping to effect
complex requests. For example, splitting a GTF file into several BED files according to
the type of genomic feature, and passing to OLOGRAM for enrichment analysis. More
examples are presented in the documentation of the tool.

To summarize, the pygtftk toolset offers a uniformized workflow to process genomic
regions in the GTF format, and eventually the BED format. As a result, it was a
natural fit as a platform to implement a tool that would analyze combinations of those
regions, and as a result would need sanitized input in the conventional file formats for
genomic regions. The tool is available on bioconda and merely requires the user to
run the command conda install -c bioconda pygtftk in a Conda environment
to install it.

2. And more generally, genomic elements.
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Development practices On a more personal note, this project was an excellent
opportunity to practice some of the good practices in software development outlined
in section 1.3.4. I worked in collaboration with Denis Puthier, Guillaume Charbonnier,
Nori Sadouni and Fabrice Lopez on implementing my approach on this toolkit.

Res, non verba
Actions speak louder than words

Titus Livius

GitHub versioning was instrumental, because both the approach and toolset were
gradually improved over the course of my thesis. For instance, I began implementing
the approach to multiple overlaps (OLOGRAM-MODL) in code while the standard
2-wise approach was still in the reviewers’ hands. Additionally, other improvements
and extensions to pygtftk itself were developed by my collaborators during that time.
This necessitated a robust system of branching to ensure only stable features were put
in the hands of the users.

Relatedly, continuous integration (using Travis) and functional testing were also
important. By designing small scale testing scenarios where the expected output of
the approach is known with precision, we can ensure that no further update to the
tools or the toolkit breaks something that was previously working. And when an error
is found, this allowed me to quickly find which parts of the code could have been its
source, by exculpating the ones where the functional tests signaled there was no error.

Finally, on a more human level, I discovered just how important it was to talk to
your collaborators, and have robust pipelines to share the workload and specify who
exactly is going to work on what, within which delays. For the tool itself, after the initial
implementation of the approach, we entered cycles of feedback. These consisted of:
me releasing a new version, collecting the experiences, feedback, suggestions and
bug reports of my collaborators, releasing new versions, and so on so forth until we
reached an acceptable state. In particular, this helped me fight "tunnel vision" when
it comes to user experience, and showed me where my explanations on the inner
working of my approach were severely lacking 3.

4.3. Determining the statistical enrichment of

combinations using OLOGRAM

This study started focused on the problem of 2-wise combinations of regulators
(ie. overlap of regulator A with regulator B). For a given combination γ of regulators,
consider the following null hypothesis 4:

3. Hopefully, they are now only moderately lacking.
4. Which is also valid for n-wise combinations, when card(γ) > 2.
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Definition 6. The null hypothesis (H0) for a combination γ is that it is observed in the

real data no more than by chance, if the regions of its constituent sets were placed at

random on the genome.

On the problem of statistical significance between two sets of genomic regions,
several approaches have been proposed (Simovski, Kanduri, Gundersen, et al. 2018).
Their main difference lies in the statistical model used to reject the null hypothesis.
More details are provided in the introductions of the attached papers, but I would
highlight a few key differences of the OLOGRAM approach here, compared to those
previous approaches.

4.3.1. Statistical modeling

The underlying mathematical problem in OLOGRAM is to determine the signifi-
cance of the intersections between many regions sets. However, those sets’ constituent
regions have varying lengths and inter-region distances. This makes an analytical
determination of the expected number of overlaps highly non-trivial.

Definition 7. For a combination γ, let S(γ) be the number of base pairs on which it is

observed.

To reject (H0), one must show that the observed value of S(γ) is statistically signif-
icant and not the product of random chance 5. The obvious solution, used by most
previous algorithms, is to rely on an empirical p-value. With no assumptions made
about the nature of the underlying distribution of S, it is sampled n times by per-
forming n shuffles in which (H0) is enforced as true. This is followed by counting the
number of nucleotides for which γ is observed in those shuffles. As a result, the p-
value for the observed value of S in our real data is equal to its frequency in the shuffles.
However, this is very computer-intensive, and imprecise due to poor sampling: the
p-value given can never be more lower than the n−1 where n is the number of shuffles,
and the estimate will have a considerable standard deviation. Other approaches use a
binomial test or a hypergeometric test. But in order to do so, they usually make overtly
optimistic assumptions, such as reducing all regions to their center points (length of 1
base pair) which we show in the paper can skew the results towards rejecting (H0).

Furthermore, when generating the samples (or simply modeling) according to the
null hypothesis (H0), these approaches often assume that the regions in the sets should
be placed uniformly randomly on the genome. In contrast, keeping the distribution of
inter-region distances, as is done in OLOGRAM, better conserved the structure of the
genome; for example, regions that tend to be grouped in clusters where the clusters
themselves are more distant (short repeats, etc.) will remain thusly distributed in
the shuffles. However, This also makes the mathematical problem highly non-trivial
and complicated an eventual analytic solution (the one precedent for this, Genomic

5. Or not explainable by the other priors, in a Bayesian setting.
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HyperBrowser, used empirical p-values, and as it does not use a CLI but a graphical
web interface instead is incompatible with our reproducible research paradigm).

In contrast, in the OLOGRAM paper we prove the following:

Proposition 1. S(γ) follows a Negative Binomial distribution when card(γ) = 2 and

when using a shuffling conserving region and inter-region lengths.

In OLOGRAM-MODL (see below) we extend the proof to n ∈N
+. While we have

proven that S follows a Negative Binomial laws, the parameters of said law are difficult
to calculate analytically, as the region sets contain regions of different lengths and
inter-region distances. This difficulty will be further increased when considering
overlaps of multiple independent sets in OLOGRAM-MODL.

However, we must consider this: is a full analytical solution really needed? Since
we now know that S indeed follows a law, if we can estimate accurately its mean and
variance, there is no need to perform trillions of shuffles to get the required precision,
since rare observations can be judged in the light of the Negative Binomial law we
have just fitted. Indeed, µ and σ can be estimated fairly accurately through shuffles,
which will be a much less computing intensive task, with a good precision since it is
much easier 6 to estimate the moments of a distribution than to estimate its tails. This
is the principle behind Monte Carlo methods, as we discuss later.

Wider applicability The mathematics of the proof presented are inspired by those
of the Chinese restaurant process (M. Zhou and Carin 2015). If N is the number of
intersections and the length of the intersection i is Li nucleotides, where L follows a
Log-normal law, then S =

∑N
i Li follows a Negative Binomial law. Details of the proofs

are presented in the papers.
This proof has wider implications, as it is relevant for any intersections of time

intervals. I would propose that any intersection of time intervals following the same
properties (no overlaps of regions within the sets 7, lengths of intervals follows a
logarithmic distribution, no correlation between interval sets) can be modeled using
a Negative Binomial distribution.

Indeed, we found that a few hundred shuffles (see Supplementary Material of both
OLOGRAM papers) are usually sufficient to accurately estimate µ and σ. This has
important implications for Monte Carlo simulations of such intersections, and can be
a large time saver.

4.3.2. Monte Carlo methods

Monte Carlo experiments are a broad class of computational algorithms that rely on
repeated random sampling to obtain numerical results. They are an important asset

6. By which I mean it requires much fewer samples.
7. I have an intuitite belief that the proof can be extended to drop this assumption, but I have not

rigorously proven it yet.
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in statistical analysis (Kroese, Brereton, Taimre, et al. 2014). They aim to compute
some quantity Q by finding a random variable V with can be easily sampled for which
the expectation is Q. The general principle is that a good estimation of the desired
quantity Q is achieved by averaging many samples of V . The approaches vary in their
execution, but they usually consist of the following steps:

— Define an input generator.
— Generate inputs randomly n times from a probability distribution.
— Perform a computation on those generated inputs.
— Collect the results.
The main use case of Monte Carlo methods is when an analytical solution would

be too complicated to calculate, or when an exact solution would require too much
computing power. This is the case here: our goal is perform a relatively small num-
ber of shuffles to accurately estimate, for each combination γ, the parameters of
its underlying Negative Binomial distribution. The quantity to be estimated is the
moment (first then second) of the Negative Binomial distribution of S(γ) under (H0).
The easily-sampled random variable is simply the observed moment of S(γ) in each
individual shuffle.

Relatedly, Monte Carlo methods have been extended in the form of Markov Chain
Monte Carlo (MCMC) methods where the goal is to build a Markov chain that has V

as its equilibrium distribution. This is used when V is hard to sample directly, as one
can sample V by recording states from the chain. Examples include the Metropolis
algorithm 8, or Gibbs sampling for multivariate sampling when the multivariate prob-
ability density is not known, but the conditional distributions are. Tangentially, the
use of randomness is a common metaheuristic used in approaches such as simulated
annealing.

Simple example Let us consider a simple illustrative example. Assume we wish
to compute an approximation of the value of π. Let M be a point of coordinates
(x, y) where x and y are both drawn from a uniform continuous random distribution
U (0,1). Let D be the disk of center (0,0) and radius r = 1. We have M ∈ D ⇔ x2+y2 ≤ 1

which is easy to calculate. Since the relevant disk quarter has a surface of πr 2

4 , we have
P (M ∈ D) = π

4 . As such, when creating many samples M and taking the ratio of the
number of points that fall inside the disk divided by the number of samples, we get a
good approximation of π

4 when the number of samples is large.

4.3.2.1. Computing power

When the nature of the underlying probability distribution has been analytically
determined, as is the case here, Monte Carlo methods offer another advantage: pre-

8. In Metropolis, the Markov chain is generated by random walk followed by accepting or rejecting
the sample x with a certain probability dependant on f (x), where f is a function proportional to the
density of V whose values can be calculated easily. This algorithm can only be used if a relevant f is
known.
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cision. The most obvious downside of empirical p-values is that their precision is
limited by the number of samplings. We have observed that for longer and/or rarer
combinations, p-values are often lower than 10−10. To put that into perspective, the
best previously available empirical precision was 10−5 by performing 10,000 shuffles,
which took several hours on the distant server used by the tool.

How many shuffles and how much time it would take to reach the precision of 10−320

offered by OLOGRAM is left as an exercise to the reader 9. Of course, the usefulness
of the p-value depends on the quality of the Monte Carlo approximation, but we
show that only a few hundred shuffles are usually good enough to offer a robust
approximation. More details are presented in the OLOGRAM paper.

4.3.3. Intersection algorithm

To compute the values of S(γ) in all of the shuffles in an efficient manner, I used a
sweep line algorithm (Shamos and Hoey 1976) instead of a more classical interval tree.
See Figure 1 of the OLOGRAM-MODL paper for more details. In a sweep line, we move
from critical point to critical point (the beginning or end of a genomic interval in any
set) along the genome, and remember the states of all sets (did we find a beginning or
an ending at the last critical point). By contrast, in interval trees all regions of a set
are inserted a large tree for query later, where each node of the tree contains a center
point, intervals that overlap it, and pointed to two other nodes containing all intervals
completely to the left (resp. right) of the center point.

To simplify, let us consider two sets A and B containing respectively n and m

sets between which we seek to query all intersections. A sweep line algorithm, with
a complexity of O(n +m) is more efficient when querying the intersections of an
entire set of intervals against entire other sets, as a tree-based structure would have a
query complexity O(n logm). Both necessitate sorting the intervals for their creation,
which has a complexity of O(n logn) 10 so this does not give an advantage to either.
This difficulty is compounded with more than two sets, since the complexity of the
sweep line algorithm will be a sum of linear complexities, not a product of log-linear
complexities like the interval trees.

However, if querying the intersection of a single element of A against the entire
set B , this observation is reversed as the complexities become respectively O(n) and
O(logn). This illustrates that no single algorithm is the be-all-end-all in any situation.
The approach we designed calls for the computation of the intersection of entire
shuffled sets and once, with those shuffles being them discarded. Thus, a sweep line
is more efficient.

9. Here is a hint: with current hardware, it is much greater than the estimated time until the heat
death of the universe. Better get started on that solar system-sized particle collider and create a new
one. Thus, I think a very reasonable and level-headed conclusion is that by proving the nature of the
underlying distribution, we have saved mankind billions of trillions of years of computing power.

10. Let B = n +m. The complexity is O(B logB) for the sweep line (which is still log-linear), but that
disadvantage will be compensated since you will need to create two trees anyways.
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4.3.4. Implementation

We just discussed the scaling of algorithms. This is all well and good, but their actual
implementation on a computer brought more down-to earth considerations. If an
algorithm step takes 1000x as much time for the same input size, its scaling is still
linear, but in practice it will not be preferred.

While Python is a very simple language and delightful to code with, it suffers from
performance problems. In this project, I have written the most performance-critical
parts of OLOGRAM in C: for example, shuffling is written in C, and the intersection
algorithm used to compute the overlaps in each shuffle is also in C (C++ actually). The
C language however brings additional complexities such as manual memory man-
agement, strong typing, and a more complicated syntax. Thankfully, the ubiquitous
NumPy array managing library stores all its arrays as C arrays allowing easy passing
between the two languages, but the implementation still required clever use of Cython.
This also required rigorous memory management to prevent Python and C code from
simultaneously accessing the same RAM positions.

The end result is, to my mind, more robust than the sum of its parts 11. The in-
terface, command line interpretation and file pre-processing parts are all written in
Python. This code is easy to maintain and can be shared with collaborators, as most
bioinformaticians are more well-versed in Python than in C. As such, OLGORAM can
be extended even without knowledge of C. The additional burden of C complexity
in incurred only when absolutely necessary, reducing the likelihood of bugs. In the
end, since the performance-critical parts are in C, we reach computing times that are
only marginally worse than pure C, with a fraction of the maintenance complexity.
Tangentially, this more efficient implementation reduces the total computing cost,
and thus the ecological footprint of the algorithm.

Multiprocessing by batch was added, where the number of shuffles to be performed
(and the intersections to be computed on them) will be split into several minibatches,
and split among the available computing cores. However OLOGRAM, and a fortiori
MODL, can cost a lost of RAM (gigabytes) and CPU time (hours). This is mostly
dependant on the number of shuffles to be performed, and on the sizes of the files. To
sidestep this, see the perspectives presented below.

User experience To ensure that the tool is easy to use and that the results can
be iterated upon, OLOGRAM returns its moment estimations, p-values and general
results as a TSV (Tabulation Separated Values) file, which is an easily parsable text file.
As such, it is very easy to draw custom figures based on those results. We also propose
utilities to merge different runs into a comparative heatmap, as well as easily-readable
enrichment graphs. This carries over to OLGORAM-MODL.

11. "More than the sum of its parts." Where have I read this before?
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4.4. Higher-order combinations and itemset mining

with OLOGRAM-MODL

The classical OLOGRAM only considers pairwise enrichments, with combinations of
order 2. Indeed, many existing methods (Bedtools Fisher, LOLA, ...) consider pairwise
combinations only. Anecdotally, it is telling that in the ENCODE general paper (The
ENCODE Consortium 2012) they considered only pairwise correlations (see the Figure
4 of that paper).

However, Transcriptional Regulators and epigenomic regulators do not simply work
in correlated pairs, then tend to work in n-wise complexes. Some work has been done
on this (see Introduction of the OLGORAM-MODL and 1.4.5) but for various reasons
this was not satisfactory. This has mostly to to with byzantine complexity or inadapted
modeling. Since the OLOGRAM approach corrected several biases observed in overlap
computing approaches, I wondered if those insights could be extended to higher order
combinations of regulators.

4.4.1. Extending OLOGRAM to higher-order combinations

A key insight was the realization that for combinations γ of order card(γ) ≥ 2, S(γ)
still followed a Negative Binomial distribution. Examples can be found in the Supple-
mentary Material of the OLGORAM-MODL paper. At first, this was only an empirical
observation. But it clued me in that, indeed, our proposed OLOGRAM Negative
Binomial modeling would be relevant for multiple overlaps (ie. higher-order combina-
tions).

Eventually, I extended the proof to those combinations. The details are in the paper,
but the gist of it is as follows: let I be a random variable so that I (x, y) = 1 if and
only if the regions x and y intersect. If we accept that I (Ai ,B j ) is a Bernoulli ran-
dom variable, then I (Ai ,B j ,Ck ) = I (Ai ,B j )∗ I (B j ,Ck )∗ I (Ai ,Ck ) can be approximated
also by a Bernoulli R.V. of unknown p. This lands us back in the proof used in the
original OLOGRAM paper, so that S(γ) follows a Negative Binomial. However, if p

is unknown an analytical solution cannot be computed for this Negative Binomial.
But the Monte Carlo method we have devised relishes such a challenge, and returns
accurate estimations.

Tree-based representation Another improvement was the use of a tree-based rep-
resentation of the combinations (see Supplementary Figures) along with their enrich-
ment statistics. This is not a novelty per se, as this structure is commonly used in
itemset mining. It improves the visibility by highlighting master regulators: combina-
tions containing them will tend to have many enriched children combinations. This
also helps identify closed itemsets by showing, for each combination γ, how much of
its S(γ) is accounted for by its parents.
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4.4.2. MODL itemset mining algorithm

However, with k sets of regions, the number of potential combinations to be dis-
played can reach 2k . To focus the user output on the most interesting ones, we de-
signed an itemset mining algorithm. It ties to the biological problematic in that it is de-
signed to find complexes of regulators, and as such find the itemsets that best describe

the data, instead of simply the most frequent. For example, the itemsets γ1 = {A,B}
and γ2 = {C ,D} are sufficient to describe the three transactions (AB ,C D, ABC D) 12.

The details of the algorithm are presented in the paper. Here, I present some
additional background information and impetus. In practice, this MODL algorithm
is applied on the matrix of intersections in the true data, not in the shuffles. I would
also like to point out that this is separate from the Negative Binomial modeling we
introduce. In the tool, the MODL algorithm is only used to select the combinations for
which enrichment will be calculated and displayed to the user, but does not affect the
calculation of the enrichment itself.

This algorithm leverages matrix factorizations to extract itemsets, and submod-
ular optimisation to select them. We begin by presenting the principles of these
approaches.

4.4.2.1. Matrix factorizations

Let us now intuitively explain how itemsets can be found in the factors of a matrix
decomposition. Consider a decomposition of an input matrix X with k latent factors:

Xm×n ≈ Um×k ×Vk×n

Each of the k columns of U corresponds to a row in V through the matrix product.
Each of those rows of V is an itemset. Here is a practical example of this form of
decomposition, with each itemset of interest highlighted in a different color:















1 1 1 0 0 1
1 1 1 0 0 1
1 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0















=















1 0 1
1 0 1
1 0 0
0 1 0
0 1 0















×





1 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1





A matrix decomposition of X of the form X̃ = UV is strong (ie. exact) if X = X̃ .
Conversely it is weak if X ≈ X̃ , for which another notation is X = X̃ + ǫm×n through
the addition of an error term. Weak decompositions are of interest and will be used,
since the addition of an error terms help them be resistant to noise. This is the same
principle of lossy compression that was leveraged in atyPeak. There are, however, other
types of matrix decomposition with different constraints. I present some common
decompositions here to provide some context for the reader.

12. This is a simplified version of the problematic, but it captures the gist. See the paper for more.
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The QR decomposition of the form X =QR , where Q is an orthogonal matrix (mean-
ing QT Q = I ) and R an upper triangular matrix, is often used to solve the linear least
squares problem (least squares approximation of linear functions to data). The LU de-
composition on the other hand decomposes X = LU , where L and U are respectively
lower and upper triangular matrices, and is often used to solve systems of linear equa-
tions. A more efficient alternative to LU in certain cases is the Cholesly Decomposition
of A = LL∗ 13.

One must also mention the singular value decomposition, or SVD. It is a decom-
position of the form Xm×n = Um×m ×Σm×n ×V∗

n×n where U and V are both unitary
matrices and Σ is a diagonal matrix. In this decomposition, the diagonal values of Σ are
the singular values of X, with the columns of U and V being the left and right singular
vectors of X. SVD is at the core of Principal Component Analysis. To find the principal
components of a data matrix Xn×p with n samples and p variables, one must get the
eigenvectors of the covariance matrix C between the p variables. 14 While there are
similarities, PCA and SVD are not designed for itemset mining but for dimensionality
reduction.

Finally, custom matrix decompositions can be written for different objectives. To
give some examples, Canonical Correlation Analysis is an analog of PCA aimed at
finding pairs of correlating components between two (or more) matrices, and can be
though of as a PCA applied to the covariance matrix between the features of those
two matrices, as opposed to the covariance of the features of X with themselves. The
Partial Least Squares regression between two data matrices X and Y inherits from
both PCA and regression and seeks to decompose X = T P T +E and Y = UQT +F

into a product of matrices where the columns are components of interest so that the
covariance between U and T is maximal. In the latter two cases, the optimisation
objective is different so that the components obtained can give a different insight: in
this case, covariance between variables in two matrices instead of merely rebuilding a
single matrix.

All the decompositions presented in this part are often performed using Gaussian
elimination, or various iterative algorithms designed to improve gradually and con-
verge on the solution, often producing one component/vector of the factorization at
each iteration (Gram-Schmidt, PLS, ...). The QR decomposition is usually performed
using the Gram-Schmidt algorithm, by subtracting from each column vectors its own
projection onto the subspace defined by the previous column vectors. Computing the
SVD of a matrix X is a hard problem in general, but is usually done by first reducing
X to a bidiagonal matrix B using Householder reflections, and then using the QR
algorithm on B to compute it (perform a QR decomposition, multiply the factors

13. L∗ is the conjugate transpose of L. The Cholesky Decomposition is only applicable when A is a
Hermitian symmetric positive-definitive matrix.

14. Since C =
X T X
n−1 , by replacing X with its decomposition X =UΣV ∗ in the previous equation, one

gets C =V S2

n−1 V ∗ meaning that columns of V are the principal directions/axes and columns of U S are
principal components ("scores"). Alternatively, one may instead perform an SVD decomposition of C

as C =UCΣC V ∗
C in which case the principal components of X are the columns of UC .

166



in the reverse order, and iterate). More generally, most matrix factorizations can be
reasonably well approximated using gradient descent (Ho, Van Dooren, and Blondel
2011) and some use it as a first resort, such as the Dictionary Learning presented
below.

Dictionary learning In OLOGRAM-MODL, the input matrix X that will be factorized
has one row per overlap and one column per set in the real, non-shuffled data. The
specific matrix factorization used in OLOGRAM-MODL to extract itemsets, as pre-
sented in the original exemple of this part, is called dictionary learning (Mairal, Bach,
Ponce, et al. 2009). This is a matrix factorization problem with sparsity that entails
solving:

(U∗,V∗) = argmin
U,V

1

2
‖X−UV‖2

2 +α‖U‖1

subject to ‖Vi‖2 = 1 for all 0 ≤ i ≤ natoms

Note that in the previous equation only, U∗ designates an optimization objective and
not a conjugate transpose. A dictionary V is composed of atoms (rows of V ), which are
used to rebuild richer words (rows of X , combinations). The sparsity constraint α will
reduce the number of words that are allowed to be used to rebuild each combination,
which will in turn result in longer words. Dictionary Learning is often used in image
denoising.

4.4.2.2. Submodularity and greedy algorithms

Submodular set functions 15 are functions who have the property that the incre-
mental difference in their value upon adding new elements to the input set decreases
when the size of the input set increases. Formally, a set function f is submodular if:

∀X ,Y ⊆Ω with X ⊆ Y and every x ∈Ω\ Y , we have

f (X ∪ {x})− f (X ) ≥ f (Y ∪ {x})− f (Y )

Submodular set functions can be seen as the set function analogue of convex func-
tions 16, and as such they share many of the same intuitions. Many problems in
function approximation, game theory, and machine learning can be written as sub-
modular functions, and use their heuristics. For instance, feature selection 17 is often
submodular, and in any case it is indeed submodular for Naive Bayes classifiers (K.

15. A set function is simply a function whose input is a set.
16. Intuitively, a real-valued function is called convex if the line segment between any two points on

the graph of the function lies above the graph between the two points.
17. Here, broadly defined the selection of a subset of relevant features (variables, predictors) that

best approximate or are most relevant for a given result
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Wei, Iyer, and Bilmes 2015). Tangentially, this will mean that the insights of the MODL
algorithm that we will present can be applied to other submodular problems.

Submodular maximisation is an NP-hard problem, but greedy algorithms will pro-
vide a solution with a factor of 1− 1

e
, which is the best possible approximation (Feige

1998), as is explained in the OLOGRAM-MODL paper. A greedy algorithm is defined
as an algorithm that makes the locally optimal choice at each iteration.

Here is an intuitive explanation: consider a hiker climbing a mountain. If the
weather is clear, the summit is visible and the hiker can clearly see if they are indeed
moving towards it. Now, assume a deep fog has set, so that the hiker can only see
twenty meters in front of them. How to reach the summit? If our hiker uses a greedy
strategy, they will simply look around and move to the most elevated position that
they can see, and repeat the process until they reach a locally maximal... sorry, a
local summit. With this approach, will they reach the global summit eventually? Yes,
provided the mountain is concave 18 Since submodular set functions are analogous to
convex functions, one can intuit how this greedy heuristic can be translated to them.

Another example of problem well-approximated by greedy algorithm is the set
covering problem. Given a universe of elements {1,2, ...,n} and a collection S of m

sets containing elements from this universe, the set cover problem is to identify the
smallest (in terms of number of members) sub-selection C of S so that the union of
C equals the universe. Here is an intuitive analog: how can one place 5G relays so
that all of the population is covered, using the smallest possible number of relays? 19

While the set covering problem is NP-hard, a good approximation can be obtained by
a greedy algorithm.

4.4.2.3. Combining factorizations and itemset mining

The essence of the MODL algorithm is this: we prepare a list of candidate itemsets
(aka. words), down from all possible 2k . The candidates are found by performing
Dictionary Learning of the matrix X of true interesctions, with one line per overlap
and one column per set of regions. The factorizations are performed with steadily
increasing sparsity parameters 20 to get progressively longer itemsets, and repeated
with different random seeds to ensure a good diversity.

Once this preselection is done, we have a set Λ of candidates itemsets. Based on a
proof by Krause and Cevher 2010 we show that getting the best possible dictionary V

by selecting among those candidates is a submodular problem. Hence we can solve 21

it using a greedy algorithm: starting with an empty dictionary, we iteratively add to V

18. If f is concave on a given interval, − f is convex on that same interval. Minimizing a convex
function and maximizing a concave one are equivalent problems.

19. Each element of the universe is one member of the population, each set of S is a set containing
the inhabitants that would be covered by placing a tower at a given location.

20. In this entire chapter, α designates a sparsity controlling parameter; this follows the conventional
notation. However, this α should not be confused with the learning rate in gradient descent, that is also
usually noted α.

21. Or more rigorously, find the best approximation of it.
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the words that best improve the reconstruction of I . This is the basic principle. Other
technical considerations such as the choice of α for this reconstruction or the use of
a L1 loss to discourage compromises words that contain more itemsets with a lower
value are presented in the paper.

I believe that an interesting insight is to compare our approach with some other
itemset mining algorithms, as presented in section 1.4.4.1 (p. 62). Indeed, the KRIMP
algorithm similarly selects itemsets based on how well each itemset helps rebuild the
larger set of all itemsets, much like we select itemsets that best rebuild the original data.
Furthermore, closed itemset mining is vulnerable to noise, which is a concern here,
and we use a weak matrix decomposition to perform approximate itemset mining to
counter that problem; doing so is seen as a promising avenue in the presence of noise.

4.4.3. Conclusion and biological interest

Complementarity of the statistical and ML approaches In conclusion, the
OLOGRAM-MODL approach shows an example of mutual cooperation between our
statistical Negative Binomial model and the Machine Learning algorithm used to se-
lect itemsets. These two parts are run independently, but complement each other. The
itemset mining algorithm, in turn, is only used to restrict the number of combinations
to be evaluated and, more importantly, displayed. In any case, the enrichment of
any combination of regions γ is quantified through the Negative Binomial model we
propose. This has the considerable advantage of being very straightforward. For the
average bioinformatician and biologist, the p-value returned by the model has an
immediate significance, as opposed to more arcane coefficients in a linear regression
or other selection approach, which can only be appreciated when compared against
each other.

Biological interest This approach allows one to find relevant enriched combina-
tions of regulators that might previously have been neglected. In the OLOGRAM-
MODL paper, the illustrative biological example we used is that of FOXA1 in the MCF7
breast cancer cell line. As is standard, most of the literature on FOXA1 focused on
pairwise interactions with other Transcriptional Regulators. For instance, it is known
to act as a pioneer factor to the regulator ERα (aka. ESR1, Ross-Innes, Stark, Teschen-
dorff, et al. 2012), and is known to be downstream target of the regulator GATA3 in
breast cells (Kouros-Mehr, Slorach, Sternlicht, et al. 2006).

We show that FOXA1 is instead part of a more complex regulatory network. Instead
of speaking of FOXA1 only as a pioneer to ESR1, it would be more correct to say it is
part of a regulatory complex to which FOXA1 also belongs, which can include EP300 in
certain cases. We also show that FOXA1 is associated to active enhancers, a point that
is to my knowledge seldom acknowledged in the literature. I hope that this example
can demonstrate that considering n-wise combinations can help highlight regulatory

complexes and perhaps functional associations with other genomic elements, beyond
a simple pairwise analysis.
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OLOGRAM and OLGORAM-MODL were also used as part of a collaboration with
Nori Sadouni to determine the enrichment of combinations of Transcription Factor
Binding Sites in candidate silencers sites in mice. In this project, ChIP-Seq data was
unavailable, so we had to find another ersatz to estimate the Transcription Factor
Binding Sites. We settled on the use of JASPAR motifs, using only those with a score of
at least 500 to reduce the amount of false positives, and expanding them to cover the
entire candidate silencer in which they were present 22.

4.4.4. Limitations

We discuss several limitations to this approach in the OLOGRAM and OLOGRAM-
MODL paper.

General limits The most apparent limitation of the OLOGRAM approach concerns
the higher-order combinations. The longer a combination is (meaning, the more
constituent sets it has), the higher its enrichment will usually be regardless. This is
not an error: under (H0), it is perfectly logical that it would be less frequent for five
independent sets of regions to be open at the same position than it would be for
only two. However, this makes comparison between combinations of different orders
more complicated. As such, I would recommend mostly focusing on combinations of
shorter and/or of the same order.

Furthermore, for very rare and/or very high order combinations, only a few hundred
shuffles may be insufficient to encounter them on the genome. Indeed, let us consider
three sets covering each 1% of the genome. A quick back-of-the-envelope approxi-
mation shows that the likelihood that those tree sets will all cover a given nucleotide
is (10−2)3 = 10−6, one in a million odds. Which mean we would expect to encounter
this combination only for around one shuffle when performing a million of them,
while the usual procedure calls only fore hundreds of shuffles. Hence, I recommend
restricting the shuffling only to a sub-section of the genome that is of interest. For
example, as is done in the papers, shuffling TFBS not across the entire genome but
only across open chromatin sites, as estimated through DNAse I Hypersensitivity Sites.
This increases the relative coverage of the sets and results in higher odds, that are also
more biologically relevant.

When not using the MODL itemset mining algorithm, there are up to 2k possible
combinations, where k is the number of sets. In practice however, the true maximal
number of combinations displayed is simply the number that were indeed encoun-
tered in the data, which is much lower than 2k but can still easily amount to thousands.
Some form of selection of the combinations, be it with MODL or with a custom se-
lection, is mandated. This is made easier by returning a TSV file which can be easily
parsed.

22. Otherwise, there would we no overlap between the TFBS, as two proteins cannot physically
occupy the same space. This slopping imitates the wider peaks found in ChIP-seq data and allows us to
consider close TFs as overlapping.
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Also, processing very large files and/or too many of them has a severe computing
cost. In our tests presented in the papers, on a laptop, the time scale is of the order of
minutes to hours to process a dozen files (sets) containing several tens of thousands
of regions. Storing all the shuffles in memory can consume several gigabytes of RAM
during the processing (this can be alleviated by some parallelization). This number
of files and regions constitutes a very usual scale for genomic assays. As such, the
time cost remains in a range that I believe is reasonable for most use cases it is likely
to encounter. This is of course faster when using a supercomputer, as was the case
for some applications, but developing a tool that could still reasonably be run on
a common computer was an important goal of mine. However, dealing with truly
enormous files containing millions of regions, or using dozens of sets, can drive the
time and memory cost upwards.

MODL itself The MODL itemset mining algorithm has several further limitations.
The key one lies in the choice of the number of words to be returned. Indeed, the
number of words queried during the dictionary learning steps depends on it. Using
a too large number of words will not be informative, while using a too low number
of words may result in words representing potential correlation groups, meaning the
matrix factorization may learn the word

(

1 1 1
)

to represent both
(

1 1 1
)

and
(

1 1 1
)

. This is partially alleviated by the subsequent selection performed in step 2
by the greedy algorithm, which considers the best candidates among those available
and can tolerate a handful or irrelevant words in the candidates.

Some other choices of parameters, such as the sparsity controlling parameter to
be used in Dictionary Learning (αD L) and the one used during the second step of
submodular selection for the candidate reconstructions (αR ) can also impact the
found words. Indeed, I had observed that a poor choice of α (either too low or too
high) could result in convergence errors, making the results unusable, or in selected
words that were not closed itemsets and focused on improving the rebuilding of the
most frequent combinations rather than consider the other combinations.

Relatedly, to prevent a focus on the most frequent combinations in general, it was
necessary to implement a procedure I called smothering. The MODL algorithm works
on a smothered version of the input matrix of intersections X , where:

Definition 8. Let the abundance of a row x in a matrix X be the number of rows in X

which are exactly equal to it, noted aX (x). Then the smothered version of the matrix

X is the matrix ψ(X ). For each unique row x of X , aψ(X )(x) =
√

aX (x)
ν

, where ν is the

highest of either min(aX ) or the abundance threshold τ. Row order is unimportant.

As a result, the most frequent combinations are de-emphasized during the itemset
mining search.

To conclude, I view the MODL algorithm as a separate part of the approach, needing
more development and more rigorous evaluation of the impact of its different param-
eters. Although it is, of course, fully functional at present. This "work-in-progress"
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status made it even more important to ensure that OLOGRAM could be run on higher-
order combinations even without MODL, and that MODL was independent from the
statistical framework itself.

4.4.5. Perspectives

In this section, I would like to discuss some perspectives and potential applications
for the OLOGRAM-MODL approach. Several of them were planned for the papers’
submissions but had to be cut due to the depressing fact that there are only seven
days in a week. However, the implementation of many of these applications is either
very straightforward or already prepared in the code.

4.4.5.1. Applicability to closely related problems

The perspectives presented in this subsection are merely a matter of applicability:
OLOGRAM-MODL already fully supports them.

Distance between the features Currently, the OLOGRAM approach only registers
overlaps between intervals in different sets. We do not consider closeness, meaning
whether elements are found closer to each other than would be expected by chance.
However, a workaround can be applied by slopping the regions in the intervals; this
means extending the intervals in 5’ and 3’ by a given length. For example, if there is
a significant enrichment found when extending the regions in the sets A and B by
2000 base pairs, it would suggest that the genomic features described by the sets A
and B indeed tend to be closer than 2kbp, even if they do not overlap. Relatedly, the
statistical enrichments could be compared for different slop values to find the optimal
distance.

Regions of a different nature and multi-omics The examples presented in the
papers concern only Transcriptional Regulator Binding Sites, as estimated through
ChIP-Seq. However, as has been emphasized ad nauseam in section 1.4.1, this ap-
proach can be used with any data that can be represented as a set of intervals. Indeed,
this is true for the genomic assays we presented in section 1.2 and many more that
were not presented, such as DNA methylation status assays.

I believe it would be very appropriate to use OLOGRAM-MODL to assess the func-
tional enrichment between regions of a different nature, perhaps even as part of of a
multi-omics approach by assessing the statistical significance of overlaps between,
say, a histone mark of interest with Transcriptional Regulators of interest.

Another possiblity that I find most intriguing would be to use certain genomic
regions as proxies for objects of interest. For instance, the set of promoters for the
overexpressed genes in cancer patients for a given condition could be a set, and
OLOGRAM-MODL would quantify the enrichment between those promoters and
various epigenomic marks of interest. To refine the analysis, the enrichment for each
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combination γ could even be compared to the enrichment of γ observed for all genes.
This would help determine the regulatory processes involved in the condition.

Contacts between genomic elements To integrate contacts between genomic
regions and study the structure of the genome, it is possible to use a set the list of
genomic intervals with which a region of interest is in contact. For example, let us
assume an analysis with 2000 genomic regions of interest. Now, we consider a BED file
containing the positions with which the genomic region n°1429 was found in contact
with the genome using a HiC experiment.

It is possible to use OLOGRAM-MODL to evaluate the statistical enrichment of
the contacts of region n°1429 with other types of elements in the genome, and even
combinations of contacts for several regions 23.

Extension of MODL to other problems The MODL itemset selection algorithm
can be applied to any submodular problem of which, as previously discussed, there are
many that are interesting. One such perspective that I find promising would be to use
it to select itemsets that are the best predictors of a condition of interest, as opposed
to merely the ones that best rebuild the original data. Several algorithms for such a
supervised selection have been proposed (see introduction of OLOGRAM-MODL) and
I believe my approach could help, assuming the underlying problem can be framed as
a submodular selection.

In order to allow such uses, I made the MODL algorithm accessible through a Python
API separately from the OLOGRAM-MODL tool itself, and custom error functions can
be specified even as of today, making this a possible near term application.

Parallelization This is more of an implementation problem. We have implemented
demonstrations as Snakemake pipelines and data parallelization is very easy for
different files. OLOGRAM is parallelized by threads so you can run one minibatch by
thread. I recently developed a plugin that permits some further parallelization, by
merging different runs so that each run works as a batch of batches.

4.4.5.2. Extensions of the approach

The perspectives presented here would require minor adjustements, some of which
have been partially prepared.

Lebesgue integration of signal values This conversion would allow OLOGRAM-
MODL to work on timeseries as a signal with values in R

+, as opposed to the simple
binary signal of "present" or "absent".

23. Although technically possible, this should not be used for all 2000 regions at once, but for a more
reasonable amount.
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To do so, we need to allow intervals to overlap within a set. This has been partially
prepared in the code already, this imply entails keeping negative inter-region distances.
For example, the distance between the intervals [100;200]chr 1 and [150;250]chr 1 is
the distance between the end of the beginning of the second one and the end of the
first one 150−200 =−50. Then we can approximate the signal through vertical signal
binning, in a process analogous to a Lebesgue integration. For example, if binning
with a resolution of 20, a signal of 100 would be represented by 5 stacked intervals.

Having several intervals open at any given time for the set would be represented as
a value higher than 1 in the intersection matrix X . The sweep line algorithm is already
designed to count the number of currently open regions at any given critical point,
and not simply to register either "open" or "not open".

This perspective is one of the reasons why I used Dictionary Learning 24, which
works using real-values matrices, as opposed to binary matrix factorizations.

Time based A more distant perspective would be to integrate a time-based compo-
nent in the approach by concatenating several lines into a single line. For example,
consider three sets A, B and C. If the combination {A,B} occurs at the position t −1
and the combination {B ,C } occurs at the position t , the representative vector at the
position t would be xt =

(

1 1 0 0 1 1
)

, with the first three columns giving the
status of the sets at t −1 and the next three at t . This could be extended to t −2, etc.

I think this would be interesting as it would hearken back to the original roots of
Dictionary Learning as an image denoising tool, which worked by learning the usual
successions of pixels in an image over short distances on the X axis (say, 5 pixels).

Non-independent sets OLOGRAM-MODL’s frameworks also supports the future
implementation of custom shuffles, where a shuffling random seed could be shared
between sets. This, in turn, could be interpreted by the shuffling function to perform
shuffles with additional weight to certain regions, and would have the end result of
representing a correlation between those two sets.

This could also be used to pass any message to the shuffling function to modify the
shuffle being performed. Integrating such correlations between sets would make an
analytical solution even more elusive and justify the need for a Monte Carlo approach
even further. However, it would likely require an adaptation of our mathematical proof.
Since we already assume sums of dependent Bernouilli variables Ia,b to represent
intersections between the regions a and b as the regions do not overlap within the sets,
I believe it would be possible to integrate an additional dependence while retaining a
Negative Binomial distribution, but this needs to be rigorously proven.

24. If interpreting the words found by Dictionary Learning, one must be careful as they would only
show the proportions between features, not absolute values. This is easily fixable by adding a control
column in X with a value of always 1, and normalize the words so they have a value of 1 in that column.
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4.5. Modelisation of Cap-STARR-Seq data

The use of a Negative Binomial model was also extended to other problematics.
In the Appendices (section A, p. 238), we present a more work-in-progress project,
for silencer Cap-STARR-Seq data. This section is mostly based on work by Dominic
Van Essen and Nori Sadouni. I present there some insights that I contributed to the
modeling of Cap-STARR-Seq data. This is a very annex part of my thesis project, and
readers uninterested in the particulars of Cap-STARR-Seq should feel free to skip it.

4.6. Articles

— F. Lopez, G. Charbonnier, Y. Kermezli, et al. “Explore, edit and leverage genomic
annotations using Python GTF toolkit”. In: Bioinformatics (Mar. 12, 2019).
DOI: 10.1093/bioinformatics/btz116. URL: https://academic.oup.

com/bioinformatics/advance-article/doi/10.1093/bioinformatics/

btz116/5320559

— Q. Ferré, G. Charbonnier, N. Sadouni, et al. “OLOGRAM: determining signif-
icance of total overlap length between genomic regions sets”. In: Bioinfor-

matics 36.6 (Mar. 1, 2020), pp. 1920–1922. ISSN: 1367-4803. DOI: 10.1093/

bioinformatics/btz810. URL: https://academic.oup.com/bioinformatics/

article/36/6/1920/5613178 (visited on 08/27/2020)
In the text, the formulation "the OLOGRAM MODL paper" refers to the included

paper "Monte Carlo based mining of enriched n-wise combinations of genomic fea-
tures with dictionary learning". This paper is, as of writing, under review at the
Bioinformatics journal.
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Abstract

Motivation: While Python has become very popular in bioinformatics, a limited number of libraries exist

for fast manipulation of gene coordinates in Ensembl GTF format.

Results: We have developed the GTF toolkit Python package (pygtftk), which aims at providing easy and

powerful manipulation of gene coordinates in GTF format. For optimal performances, the core engine of

pygtftk is a C dynamic library (libgtftk) while the Python API provides usability and readability for developing

scripts. Based on this Python package, we have developed the gtftk command line interface that contains

57 sub-commands (v0.9.10) to ease handling of GTF files. These commands may be used to (i ) perform

basic tasks (e.g. selections, insertions, updates or deletions of features/keys), (ii ) select genes/transcripts

based on various criteria (e.g. size, exon number, TSS location, intron length, GO terms) or (iii ) carry out

more advanced operations such as coverage analyses of genomic features using bigWig files to create

faceted read-coverage diagrams. In conclusion, the pygtftk package greatly simplifies the annotation of

GTF files with external information while providing advance tools to perform gene analyses.

Availability: pygtftk and gtftk have been tested on Linux and MacOSX and are available from

https://github.com/dputhier/pygtftk under the MIT license. The libgtftk dynamic library written in C is

available from https://github.com/dputhier/libgtftk

Contact: denis.puthier@univ-amu.fr

1 Introduction

Several formats exist to store genomic features. The standard BED format

stores basic information (chromosome, start, end, name, score and strand)

related to generic genomic features (BED6) or composite genomic features

(BED12). The GTF/GFF2 format (thereafter referred as GTF) can describe

more exhaustively defined genomic features (genes, transcripts, exons...)

by taking advantage of the ‘attributes’ column which contains a set of

keys/values to store various kinds of annotations. Some composition

relationships are implicitly declared in the GTF file making it possible

to describe, for instance, the exons of the transcripts corresponding to a

gene. This relationship is more explicit in the GFF3 format that can be

viewed as a directed acyclic graph with nodes corresponding to features

(gene, transcript, exon...) and edges corresponding to part-of relationships.

Only few libraries are specifically dedicated to GTFs and most of them

propose very focused tasks. The GenomeTools suite is a collection of

bioinformatic tools based on the libgenometools C library that handle GTF

and GFF3 formats (Gremme et al., 2013). However, this library extends

well beyond these annotation formats and the developing framework

may appear rather complicated for naive developers as it requires deep

knowledge of C programming language. Regarding R/Bioconductor, the

rtracklayer provides fast access to the GTF/GFF by providing the user with

a GRanges object (Lawrence et al., 2009).

While the Python language has gained lot of popularity among

bioinformaticians, only a handful of tools are available for manipulating

GTF files. The gffutils package can parse and store GTF/GFF files into

SQLite databases. The creation of a subsequent hierarchical models of

genomic features while highly useful can be relatively time consuming.

We developed the pygtftk package with the objective to provide a fast and

readable way to load and manipulate GTF files within Python scripts. This

package comes with the gtftk command line interface (CLI) that provide

various operations to write workflows based on GTF files.

© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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Fig. 1. Use case for the pygtftk package. These few lines of codes are used to extract the

promoter region ([-1000, 1000] around the TSS) of LincRNAs, with the conditions that the

transcripts have size greater than 200nt, at least two exons and a coding potential (assessed

by CPAT and joined from an external file) below 0.2. (Wang et al., 2013)

2 Implementation

2.1 The core libgtftk C library

The core of the package is written in C and exposed through a dynamic

library called libgtftk. The GTF format is represented without hierarchical

relationships to maximize performances. More complex operations are

carried out by the libgtftk Python client.

2.2 The pygtftk Python package

The GTF class of pygtftk comes with a large number of methods.

Most of these methods return a new GTF object so that they can be

chained intuitively. This object can also produce two additional objects

from the gtftk library including: a TAB object (representation of a

matrix) and a FASTA object (representation of a FASTA file). The

GTF object is integrated within the scientific Python ecosystem and

can produce pybedtools.BedTool objects, Bio.SeqRecord generators or a

pandas.DataFrame (Quinlan, 2014; Cock et al., 2009; McKinney, 2010).

A typical use case is proposed in Figure 1 where the transcription start site

(TSS) coordinates of lincRNAs are extracted with the conditions that (i)

the transcript size is above 200nt, (ii) the number of exons is greater than

2 (iii) and the coding potential (imported from a separated file) is lower

than 0.2. The TSSs are then obtained using the get_tss() method returning

a pybedtools.BedTool object that can be used to extend coordinates by

1000 nucleotides in the 5’ and 3’ directions. Regarding performances,

the human genome annotation in GTF format from Ensembl release 92

(∼ 2.7.106 lines) is loaded in about 30 seconds while the creation of a

hierarchical model using gffutils takes about 11 minutes (performed on

Intel(R) Xeon(R) CPU E5-2640 v3, 2.60GHz). In addition, the search

engine is also highly optimized since it takes 0.6 seconds to select all

lincRNAs from the human genome.

2.3 The gtftk command-line interface

The pygtftk package provides a gtftk CLI with 57 subcommands. These

subcommands can be used to: (i) download GTF files, (ii) edit them,

(iii) mine the GTF files in various ways (e.g. select transcripts by

genomic/exonic/intronic size, number of exons, associated GO term...),

(iv) annotate the GTF files (e.g. flagging divergent/convergent/overlapping

transcripts...), (v) convert them to other formats or (vi) perform epigenomic

analyses by producing faceted coverage diagrams through the plotnine

Python package (i.e. the recently developed Python port of ggplot2).

3 Conclusion

The pygtftk package and the associated gtftk CLI provides a new way to

easily handle gene coordinates with Python. They are regularly updated

and users familiar with Python and/or command-line programs should

quickly get comfortable and productive with (py)gtftk. As the GTF/GFF

format is now also used for storing regulatory features and variants, this

paves the way for future developments of (py)gtftk that could be an

interesting framework for the integration of heterogeneous genomic data

(Zerbino et al., 2018; Reese et al., 2010).
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Abstract

Motivation: Various bioinformatics analyses provide sets of genomic coordinates of interest. Whether

two such sets possess a functional relation is a frequent question. This is often determined by interpreting

the statistical significance of their overlaps. However, only few existing methods consider the lengths of

the overlap, and they do not provide a resolutive p-value.

Results: Here, we introduce OLOGRAM, which performs overlap statistics between sets of genomic

regions described in BEDs or GTF. It uses Monte Carlo simulation, taking into account both the distributions

of region and inter-region lengths, to fit a negative binomial model of the total overlap length. Exclusion of

user-defined genomic areas during the shuffling is supported.

Availability: This tool is available through the command line interface of the pygtftk toolkit. It has been

tested on Linux and OSX and is available on Bioconda and from https://github.com/dputhier/pygtftk under

the GNU GPL license.

Contact: denis.puthier@univ-amu.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Current genomic analysis methods can localize a variety of sets of genomic

regions, such as epigenomic features, resulting in a BED file giving

their coordinates. To determine whether two such sets have a functional

relationship, a typical approach is to look for significant co-localization

by assessing the statistical significance of the amount of overlap between

them (Haiminen et al., 2008).

A comprehensive review of such methods is available through the

Coloc-stats web interface (Simovski et al., 2018), showing the biggest

difference between them to be their null model. Many, such as GREAT

(McLean et al., 2010) or CEAS (Ji et al., 2006) use a binomial test

considering only the intersections of the peak centers with the query

regions, while BEDTOOLS fisher (Quinlan and Hall, 2010) uses the

number of intersecting "bins" (whose size depends on the input regions)

to compute a hypergeometric test.

Generating an empirical null distribution by random shuffling of the

regions within the sets is another possibility. For example, pybedtools

incorporates a wrapper for this (Dale et al., 2011) which was also used to

tackle the N-fold overlap problem (Aszódi, 2012). For a more realistic null

model, conservation of inter-segment length during the shuffling was first

proposed by the Genomic HyperBrowser (Sandve et al., 2010). However,

the p-value they provide is only empirical and limited in its resolution by

shuffling depth, itself limited by computation time.

Here we propose a new method, implemented in a tool named

OLOGRAM (OverLap Of Genomic Regions Analysis using Monte Carlo),

to conveniently assess the significance of overlaps by fitting a Negative

Binomial model on overlap statistics of interest via a Monte Carlo method.

© The Author 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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2 Methods

2.1 Permutation and intersection computation

Let A and B be two sets of genomic regions with no overlaps within

A nor B. For each subset EA,k (resp. EB,k) of A (resp. B) only for

chromosome k, let L(EA,k) and I(EA,k) be respectively the lists of

regions’ sizes and inter-regions distances (from end to start).

A shuffle is generated by performing independent random

permutations of L(EA,k) and I(EA,k) for all chromosomes separately,

and separately for A and B. This method differs from the classical

BEDTOOLS shuffle which sets regions at random positions. The Genome

HyperBrowser showed the relevance of this idea.

Our approach can also exclude regions from the shuffle by shuffling

across a shorter, concatenated "sub-genome" generated by removing the

excluded regions from both sets. This allows to compute enrichment

relative to the genome minus excluded regions. For example, one can

remove low mappability regions, or consider only accessible (i.e. DNAse

I HyperSensitive) regions.

The tool then computes the regions’ intersections between the ith

shuffle of A and the ith of B, for all shuffles. This is done in RAM

with a custom sweep-line (Shamos and Hoey, 1976) algorithm of O(n)

complexity to avoid disk I/O overhead. As intersections are only computed

once per shuffle, the use of other algorithms such as Interval Trees with

O(n log(n)) complexity is not justified.

2.2 Discussion of statistical modeling

The null hypothesis (H0) is that the regions ofA are located independently

of B. As such, we do not expect them to overlap more than expected by

chance, if the regions were independently randomly placed on the genome.

Here, we propose a new statistical framework to model this problem.

Under (H0), for all regions Ai of A and Bj of B, consider the Bernoulli

random variables Ii,j = 1Ai∩Bj 6=∅.

They have very small probabilitiespi,j (region sizes are typically small

relative to chromosome size), that differ (each region has a different length,

hence different intersection probability), and are dependent (the regions

do not overlap).

Let N be the number of intersections and S the total number of

overlapping nucleotides. Then N =
∑

i,j Ii,j is a sum of dependant

Bernoulli r.v. and can be modeled with a beta-binomial (Yu and Zelterman,

2008), itself modeled with a Negative Binomial. Unlike with BEDTOOLS

shuffle, the dependency of the Ii,j makes Poisson modeling unadapted.

Then consider S =
∑

i,j Λi,j where Λi,j is the length of the

intersection betweenAi andBj . This sum hasN nonzero terms, making it

a Compound Negative Binomial. Furthermore, empirically Λi,j will often

follow a logarithmic distribution, so S can be approximated via a negative

binomial (Omair et al., 2018).

The assumptions taken here are confirmed in practice by a fitting test.

Consequently, we reckon our model is plausible with N and S following

negative binomial distributions of under (H0) unknown parameters,

approximated via this Monte Carlo approach. As such, we use them as

test statistics: the p-value associated to their value in the true data is used

to accept or reject the alternative hypothesis (H1) that the regions of the

query tend to overlap the reference.

3 Implementation

Our method is implemented as a plugin to pygtftk (Lopez et al., 2019)

and can be passed a GTF/BED stream or file (examples in documentation

and Supplementary Data). Most of the code is written in Python 3, with

performance-critical operations written in C++ and/or Cython (Behnel

et al., 2011). To preserve RAM, the total number of shuffles to be computed

is divided into batches.

The tool will compute the overlap between the supplied BED region

file and (i) any desired GTF feature, or (ii) features derived from GTF

file attributes (e.g "gene_biotype"), or (iii) additional regions supplied as

BEDs. It will output overlap statistics and the associated p-values.

The computing cost scales with the total number of lines in the

reference and query files. A typical pairwise enrichment analysis of 10k

regions against 10k takes 62 seconds on an 2,5 GHz Intel Core i7 processor.

200k against 200k takes 11 minutes.

3.1 Results

Suppl. Table 1 presents the applicability conditions and functionalities of

various tools and approaches including GREAT, CEAS, Bedtools Fisher,

Genomic HyperBrowser and LOLA (Sheffield and Bock, 2016).

An example of OLOGRAM output is available in Suppl. Fig. 1. We

showcase interactions with pygtftk in Suppl. Fig. 2, and the importance of

considering both S and N in Suppl. Fig. 3.

Using biological and artificial testing data, we found both S and

N indeed follow a negative binomial distribution; this is shown in

particular in Suppl. Fig. 4 with the example of S on artificial data.

A small total number of shuffles results in a noisy distribution, but

whose two first moments (expectation, variance) remain similar than

with a larger number of shuffles, making them sufficient to estimate the

underlying distributions. We believe 200 shuffles (default parameter) to

be an acceptable compromise between computing cost and precision of

evaluation in most cases.

Fitting a distribution (as opposed to an empirical p-value) allows for

better assessment of extreme overlaps presumably not encountered while

shuffling. To confirm the goodness of fit, a fitting quality is given as 1−V

where V is Cramér’s V score (Cramér, 1946) for the contingency table of

observed vs. expected histogram bins. It works best when the individual

probability of intersection is not too small, meaning the query and reference

regions are not too small and/or scarce compared to each other.

We compare our tool to other existing approaches in Suppl. Table

2, showing that OLOGRAM can provide meaningful insights by being

resolutive at low p-values. Discussion of those results can be found in

Suppl. Note 1. The full code to reproduce the analyses presented is

available at : https://github.com/dputhier/ologram_supp_mat, showcasing

Snakemake integration.

4 Conclusion

We have implemented a method which allows to consider the information

found in the number of overlapping base pairs, with a shuffling paradigm

that conserves inter-region length, used to fit a negative binomial model.

New features are being developed, including support for multiple overlaps

between n ≥ 2 sets.
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Supplementary Figure 1

Example of  OLOGRAM results, calculating the significance of intersections between :
A – H3K4me3 vs ChromHMM states
B – EP300 vs ChromHMM states

As expected, EP300 is mostly enriched in enhancer-associated states, and H3K4me3 in 
promoter-associated ones.

The EP300 peaks and H3K4me3 peaks come from ENCODE datasets, respectively 
ENCFF433PKW and ENCFF616DLO, in the K562 cell line. The ChromHMM states used 
are available as the wgEncodeEH000790 dataset, lifted over from hg19 to hg38.

Shuffled True

A

Shuffled True

B
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Supplementary Figure 2

Example of analysis result using OLOGRAM and providing as input a GTF treated by 
pygtftk. Here, exons have been numbered for each gene from 5’ to 3’. Results are ordered 
from most depleted group to the most enriched.

We calculate the significance of intersections between H3K4me3 peaks and GTF-defined 
numbered exons. The peaks are much more present in the first exons, likely due to the 
broadness of H3K4me3 peaks.

This uses the same datasets as in Supplementary Figure 1. The GTF used is the Ensembl 
human GTF (hg38, release 92).

12-363 7-11 4-6 3 1-2

Exon numbers (from 5’ to 3’)
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Supplementary Figure 3

Further example of OLOGRAM result. Computing the significance of intersections between 
H3K4me3 peaks and the regions defined in the hg38 Ensembl GTF. The H3K4me3 peaks 
used are the same as in Suppl. Fig. 1, and the GTF the same as in Suppl. Fig. 2.

We compare the results for S (total number of overlapping base pairs) and N (number of 
intersections) for a subset of GTF elements. For example, the peaks appear to be 
significantly enriched in introns based on N, but for S that it is not the case ; and vice-versa 
for intergenic regions. 

Hence S is an important statistic to consider : in this particular example it may mean that 
the overlaps of peaks and introns are frequent but short. Note that here, an "intersection" 
means having at least one nucleotide in common.

Shuffled True Shuffled True
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Supplementary Figure 4

Evolution of OLOGRAM estimation precision for the S statistic (number of overlapping base 
pairs) under (H0) based on the number of shuffles. For this figure, both query and 
reference datasets are artificial data (10 000 regions of length 1000 in an artificial genome).

(A) For the S statistic, evolution of empirical mean and variance for different tries as a 
function of the number of shuffles in each try.

(B) Example of empirical distribution of S with corresponding Negative Binomial distribution 
of same mean and variance for 100 and 5000 shuffles.

The precision of the estimation of the mean and variance increases with the number of 
shuffles. We also see that the S statistic tends towards a Negative Binomial distribution 
when the number of shuffles is large enough, and that the moments of this distribution 
(expectancy, variance) can still be estimated with acceptable precision using relatively few 
shuffles.

A B
Mean of S

Variance of Sx 1e8

Empirical distribution of S

100 shuffles

5000 shuffles
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Supplementary Note 1 
 
In Supplementary Table 1, we tried to clarify the pros and cons of various tools including                
OLOGRAM, GREAT, CEAS, Bedtools Fisher, Genomic HyperBrowser and LOLA. This table           
shows that the tools and results are not easily comparable, as their conditions of applicability               
and underlying assumptions are different. We tried anyways to offer some insight by performing              
such a comparison with a set of representative datasets in Supplementary Table 2. 

We used the well-known H3K4me3 epigenetic marks with results previously obtained in            
K562 cell line (ENCODE project ID ENCFF616DLO) and checked its overlaps with several genic              
elements including promoters, exons (number 1 to 2, 3, 4 to 6, 7 to 11, 12 to 363)  and introns.  

From what we know about H3K4me3, this epigenetic mark is highly enriched in             
promoters and is also known to overlap the first exon. Depending on whether the H3K4me3               
signal is broad and on the size of the most 5' exonic and intronic regions, overlaps may also be                   
encountered in more 3' exons/introns relative to the TSS. However, as we are moving away from                
the promoter in 3' direction the enrichment in H3K4me3, overlaps are expected to decrease and               
ultimately become a depletion as the H3K4me3 (concentrated in promoters) should be less             
frequent in these regions than expected by chance. 

We report the significance of enrichment/depletion of H3K4me3 overlaps observed          
using representative tools in various genomic regions. CEAS was not included, as it does not               
currently offer an annotation for hg38. GREAT was not included as it works by design on                
defined regulatory regions. However both CEAS and GREAT may be considered as solutions             
that use internally the binomial test for computing their p-values. As a comparison, we thus               
computed p-values from the binomial tests both using the number of intersecting peaks or their               
corresponding midpoints as statistic. 

OLOGRAM reported the expected results, with a very highly significant enrichment in            
promoters and first/second exons (p<1e320 being the lower limit), a very significant enrichment             
in third exons, a moderate enrichment in Exon 4 and 6 while, starting from exons 7 to 11,                  
H3K4me3 become increasingly depleted.  

Interestingly, the same trends (enrichment then depletion) were reported by          
HyperGenomic Browser that uses the same kind of null model as OLOGRAM (Monte-Carlo             
simulation preserving both segment and intersegment length), but with empirical p-value           
computa​tion instead of model fitting ​. However, when used with moderate resolution the p-value             
was floored to 0.003984, while it was floored to 9.999e-05 (1/10001) when run with the               
parameter 'Fixed 10 000 samples'. We assume that this “0.003984” value was due to the fact                
that hyperBrowser uses 250 permutations by default (0.003984 ≈ 1/251). Moreover the time             
needed for computation was about 5 hours for a typical run with 'Fixed 10 000 samples', while                 
OLOGRAM took about 2 minutes to return a far more resolutive p-value.  

Bedtools reported very strong enrichment in promoters, introns, exons 1 to 2 and exon 3               
with p-values equal to zero. Similarly, a very highly significant enrichment was observed in              
exons 4 to 6. Exons 7 to 11 were reported not to be significantly depleted while exons 11 to 363                    
were reported to be significantly depleted. This result is completely in accordance with the              
known limitations of Bedtools Fisher. This aspect is covered in details in the Bedtools Fisher               
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documentation (​https://bedtools.readthedocs.io/en/latest/content/tools/fisher.html ​) that   
highlight a strong tendency of Bedtools Fisher to produce lower p-values as compared to              
Monte-Carlo methods at the cost of potentially producing false positives. As such the Bedtools              
authors recommend validating low p-values from fisher using simulation. In this regard,            
Bedtools Fisher should be more considered as a fast screening solution producing results to be               
double-checked with more precise solutions such as OLOGRAM. 

 
A binomial test computed from the number of overlapping H3K4me3 midpoints           

reported a very high enrichment in promoters and exons 1 to 2, together with a high enrichment                 
in exon 3 and exons exons 4 to 6. While no depletion was observed in exon 7 to 11 a moderate                     
depletion was observed in exon 11 to 363. Introns were found to be depleted in midpoints of                 
H3K4me3 in contrast to OLOGRAM that reports an enrichment through a very highly             
significant N value (see supplementary figure 3) and a significant value of S. This underlines               
that focusing on peak centers using a binomial test or full peaks overlaps through S or N                 
statistics, as proposed by OLOGRAM, may lead to seeming discrepancies. However, these            
results are easy to reconcile and here the results may be interpreted as: 'While H3K4me3 peaks                
centers are depleted in introns, short overlaps of H3K4me3 with introns are more frequently              
observed than expected by chance'.  

Finally, a binomial test taking into account overlaps counts with full peaks leads to false               
positive as underlined by very highly significant p-values observed even with random regions. 

We think that this benchmark underlines that OLOGRAM results are very meaningful            
and complementary to approaches relying on binomial tests. It also clearly underlines the limits              
of using Monte-Carlo approaches without model fitting.  

All the code required for reproducing the results from supplementary figures 1, 2, 3 and               
supplementary table 1 and 2 is available as a Snakefile workflow in a dedicated GitHub               
repository:  ​https://github.com/dputhier/ologram_supp_mat ​. 
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Monte Carlo based mining of enriched1

n-wise combinations of genomic features2

with dictionary learning3
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ABSTRACT7

Most epigenetic marks, such as Transcriptional Regulators or histone marks, are biological objects known

to work together in n-wise complexes. A suitable way to infer such functional association between them

is to study the overlaps of the corresponding genomic regions. However, the problem of the statistical

significance of n-wise overlaps of genomic features is seldom tackled, which prevent rigorous studies of

n-wise interactions.

8

9

10

11

12

We introduce OLOGRAM-MODL, which considers overlaps between n≥ 2 sets of genomic regions, and

computes their statistical mutual enrichment by Monte Carlo fitting of a Negative Binomial distribution,

resulting in more resolutive p-values. An optional machine learning method is proposed to find complexes

of interest, using a new itemset mining algorithm based on dictionary learning which is resistant to noise

inherent to biological assays. The overall approach is implemented through an easy-to-use CLI interface

for workflow integration, and a visual tree-based representation of the results suited for explicability. The

viability of the method is experimentally studied using both artificial and biological data.

13

14

15

16

17

18

19

This tool is available through the command line interface of the pygtftk toolkit on Bioconda and from

https://github.com/dputhier/pygtftk.

20

21

Contact: denis.puthier@univ-amu.fr, Cecile.Capponi@lis-lab.fr22

Keywords: genomic regions, combinations, overlap, machine learning, statistical modeling, itemset

mining, Monte Carlo

23

24

1 INTRODUCTION25

Modern genomic analysis methods can localize many different types of genomic features, such as histone26

modifications, Transcriptional Regulator binding sites, or gene promoters. As such, a fundamental27

question arises: do those sets of features have a functional association? A typical approach is to represent28

such features as regions, or intervals (hence, as BED files 1) and look for significant co-localization29

through the statistical significance of the amount of overlap between them, against (H0) of overlapping30

no more than by chance. Indeed, co-localization is often associated to functional association in genomic31

elements (Biggar and Crabtree, 2001).32

Pairwise overlaps between two sets can be analyzed with methods such as GeometriCorr, BEDTOOLS33

fisher (Quinlan and Hall, 2010), GREAT, Genomic HyperBrowser (Sandve et al., 2010), mostly available34

in the coloc-stats interface (Simovski et al., 2018). Those methods are usually based on shuffles or on35

a statistical model. Challenges in such approaches have been summarized in a recent review (Kanduri36

et al., 2019). Recently, Ferré et al., 2020 proposed another type of method involving Monte Carlo fitting37

of a Negative Binomial distribution while keeping inter-region distances, proven to be more resolutive38

than previous approaches. However, considering only pairwise overlaps cannot reveal higher order39

associations between a query interval set and multiple reference sets simultaneously. Indeed, most40

chromatin components such as Transcriptional Regulators or histones are known to work in combinations41

and form complexes (Lambert et al., 2018) when binding to the genome. As such, a method is required in42

order to rigorously evaluate those combinations. Pairwise overlaps are sometimes used to build association43

1See https://genome.ucsc.edu/FAQ/FAQformat.html#format1
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networks (Meckbach et al., 2015) but this can be misleading, as an association of a regulator A with B44

and of B with C does not necessarily mean A and C will be found in the same complex in real conditions.45

However, the problem of the significativity of multiple overlaps is rarely tackled. Some existing46

approaches include MULTOVL (Aszódi, 2012) which uses empirical p-values determined from shuffling47

the region sets to determine the statistical enrichment of higher-order associations. Furthermore, simply48

evaluating the enrichment of all n-wise combinations of k sets returns up to 2k possibilities, which can49

be hard to parse. To filter those, other current approaches such as TFCoop (Vandel et al., 2018) look for50

combinations of factors that best explain another, but use linear regressions which does not show the51

diversity of existing complexes, instead giving a weight to each set.52

Itemset mining, which groups many methods aimed at identifying patterns between sets (Luna et al.,53

2019, i.e. when an element of set A is present, sets B and C are often present as well) has also been used54

for to identify interesting combinations of genomic regions (Teng et al., 2014). For instance, GINOM55

selects n-wise itemsets that best explain the query region set (Bryner et al., 2017). A more distant parallel56

can also be drawn to ChromHMM (Ernst and Kellis, 2012) which however divides the genome in mutually57

exclusive states without hierarchizing combinations. Although itemset mining is mostly performed with58

tree based algorithms (Chee et al., 2019) such as APRIORI (Agrawal and Srikant, 1994), some advances are59

made with non-negative matrix factorization, including inferring TF (Transcription Factors) combinations60

(Giannopoulou and Elemento, 2013), and with dictionary learning (Mansha et al., 2018).61

Another reason to use itemset mining to identify combinations of interest is the presence of noise. For62

example in ChIP-seq, which is a technique used to locate binding sites of proteins on the genome, there63

are known difficulties resulting in false positive peaks, either for biological or technical reasons (Marinov64

et al., 2014). This may complicate analysis leading to spurious results. Some methods seek to correct65

the noise, sometimes also leveraging combinations between sets (Koh et al., 2017). In particular, matrix66

factorization methods are quite effective although costful on such noisy data (Mairal et al., 2009).67

However, using itemset mining to find combinations of interest based on a criterion and assessing68

their enrichment are two different approaches, which are worthwhile to now be combined. This paper69

proposes a method named OLOGRAM-MODL to leverage both, by calculating the significance of70

mined combinations of overlaps of interest 2. Before discussion and conclusion, section 3 analyses the71

approach both on artificial and biological data through several types of experiments.72

2 MATERIALS AND METHODS73

As an extension of OLOGRAM (Ferré et al., 2020), OLOGRAM-MODL2 can now process overlaps74

between n≥ 2 sets and compute statistically relevant p-values for each combination. The optional MODL75

algorithm is proposed to find interesting combinations using dictionary learning.76

Definition 1. Let Ai be a genomic region, that is a position interval on the genome (eg. Ai[1001;2001] =77

”chromosome 1, base pairs 100 to 200”). Then, the set A = {A1,A2, ...} is defined as a finite set of78

individual genomic regions.79

Definition 2. A combination γ = {A+B+C} is defined whenever genomic regions from A, B and C80

embed a common genomic position. Combinations can be defined on any n≥ 2 sets.81

Definition 3. For a given combination γ , S(γ) is the total number of base pairs on which this combination82

is observed.83

2.1 OLOGRAM enrichment analysis84

For each combination γ , the objective is to determine whether it is observed in the real data at a higher85

frequency than it would be under (H0) of no association between its constituent sets.86

Definition 4. Let γ be a combination. Its enrichment is m(γ) = log2(
Sobs(γ)
Sexp(γ)

) where Sobs(γ) is the S87

statistic in real data, and Sexp(γ) is the expected value of S(γ) under (H0).88

OLOGRAM’s original principle is to determine the statistical significance of the overlap between two89

region sets by shuffling them independently many times, while conserving region and inter-region lengths.90

Exclusion by concatenation for restricting the shuffling to certain regions of the genome is possible. The91

2OverLap Of Genomic Regions Analysis using Monte Carlo - Multiple Overlap combinations with Dictionary Learning
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Figure 1. Multiple overlap algorithm implemented in OLOGRAM-MODL, belonging to the sweep line

family. It takes as input n≥ 2 sets from BED files.

It registers critical points (regions’ beginnings and ends) and remembers how many such points of each

type have been previously encountered. For each observed overlap, the algorithm returns a vector giving

the number of regions from each set that are open at this position. The output is the intersection matrix X

consists of all such vectors with nonzero sum, with one line per intersection and one column per region

set. Due to the partitioning of intersections, the total number of base pairs will be the statistic of interest.

key contribution was fitting a Negative Binomial model to pairwise S instead of using empirical p-values.92

As such, OLOGRAM has already been shown to be much more resolutive in terms of p-value compared93

to state-of-the-art tools. OLOGRAM-MODL generalizes it to overlaps between potentially more than two94

sets of genomic regions.95

First, the real overlaps are computed and stored in a relevant matrix (section 2.1.1) from which96

candidate combinations can, optionally, be easily extracted. Then overlaps are also computed on shuffles97

(section 2.1.2) and used to statistically model the enrichment of the combinations (section 2.1.4).98

2.1.1 Multiple intersection algorithm99

An algorithm based on the sweep line principle (Shamos and Hoey, 1976) has been designed (Figure 1),100

which takes as inputs many sets of regions and returns a matrix representation of their overlaps. Although101

this algorithm has a time complexity of O(N logN) where N is the total number of regions in all sets at102

initialization3, querying overlaps has a complexity of O(∑ni) where ni is the number of regions in the ith103

set. It contrasts with interval trees (used in BEDTOOLS fisher) whose complexity is O(logn) per queried104

region, simplified to O(n2 logn1) for the full overlaps between just two sets.105

2.1.2 Computing the combination enrichment106

For each combination γ , the number of times and base pairs in which is it encountered in the shuffles is107

used to fit a Negative Binomial model, and give the p-value for the number of actual observed occurrences108

happening by chance. By default, the approach computes the enrichment of all combinations observed in109

the real data. To select among those, the MODL algorithm (see section 2.2) is useful. The user can also110

provide a custom selection. Only combinations containing the specified query region are considered.111

2.1.3 Parent combinations and inexact counting112

Definition 5. A combination γ1 may include all the sets of a combination γ2, plus some others: γ2 is the113

parent and γ1 is the child of the relationship, denoted by γ2 � γ1.114

Definition 6. Unlike in an exact counting, in a transitive (i.e. inexact) counting of a combination γ , any115

observation of the children of γ is counted as an unduplicated observation of γ .116

For example, A+B is a parent of A+B+C or A+B+D, but not of B+C. In a transitive counting,117

A+B represents all combinations of type A+B+∆ where ∆ is any set of regions other than A and B, and118

is labeled as such. Counting is transitive by default, as this allows easier study of cases where multiple119

regulators can have a combined effect and not be mutually exclusive. An exact counting will instead120

3It requires sorting the critical points through a merge sort (Merrett, 1983)
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show cases when, for example, A+B+C is the only existing complex and the A+B combination is not121

enriched.122

2.1.4 Statistical model discussion123

Consider the regions sets A, B, C of a combination A+B+C. Under (H0) of no association between the124

sets, consider the Bernoulli random variables (r.v.) IAi,B j ,Ck
= 1Ai∩B j∩Ck 6=∅.125

Proposition 1. For any combination γ , if (H0) is true then S(γ) can be modeled with a Negative Binomial126

distribution.127

Proof sketch. Consider the regions sets A, B, C of a combination A+B+C. Under (H0), consider the128

Bernoulli r.v. IAi,B j ,Ck
= 1Ai∩B j∩Ck 6=∅. They can be broken as a product of pairwise IAi,B j

∗ IAi,Ck
∗ IB j ,C j

.129

Those are dependant Bernoulli r.v. for two reasons. First, the locations of the regions are permuted in the130

shuffles, so if Ai and B j overlap in a shuffle the likelihood of Ai also overlapping with a different region131

Bk of the set B is greatly reduced, since the regions are merged. Second, let us now consider several sets132

so if Ai overlaps B j and B j overlaps Ck, it is likely than Ai also overlaps Ck.133

Let us express this in terms of conditional probabilities: P(IAi,B j ,Ck
) = P(IAi,B j

= 1) ∗P(IAi,Ck
=134

1|IAi,B j
= 1) ∗P(IB j ,C j

= 1|IAi,B j
= IAi,Ck

= 1). If one approximates each term as the result of another135

Bernoulli variable of unknown but fixed probability p, one can approximate their products IAi,B j ,Ck
136

themselves as dependant Bernoulli r.v. of unknown p. While calculating the p themselves requires the137

expression of the correlations between the variables, they can be instead estimated via a Monte Carlo138

approach. Indeed, Ferré et al., 2020 shows that dependent Bernoulli r.v. can be modeled with a Negative139

Binomial distribution, which is also true for S(γ) = ∑ I ∗ΛI where ΛI is the length of each intersection, if140

Λ is assumed to follow a log-normal distribution.141

142

The distributions are fitted by the method of moments. In practice, this proposed modeling is confirmed143

by a fitting deal on the shuffled data (cf. section 3.1 for an example). In most cases, 100-200 shuffles144

is enough for a correct fit (Ferré et al., 2020), but if the shuffling is too restricted by either stringent145

exclusions or the use of small regions then those assumptions may no longer hold. Using a statistical146

model instead of empirical p-values is crucial for combinations containing a large number of sets, for147

which the likelihood of observing high values of S(γ) in the shuffles will be low.148

2.2 MODL itemset mining algorithm149

The optional MODL (Multiple Overlap Dictionary Learning) algorithm for itemset mining is introduced150

(Algorithm 1). In OLOGRAM-MODL, it can be used to pre-select combinations of sets which are of151

interest, hence fairly reducing afterwards the total number of enrichment computations and making the152

results easier to interpret. Users who wish to study all combinations encountered in the real data can skip153

this section.154

MODL takes as input a transactions matrix with one column per set and one line per observation. In155

step 1, MODL performs various reconstructions with dictionary learning with various sparsity constraints156

to get a set of candidate atoms. In step 2, a greedy algorithm builds the final selection by getting the best157

encoding candidates using the maximization of a local function with regularization. In the following,158

let k be the number of sets in the matrix X ∈R
m×k of m observations, and q the queried final number of159

itemsets is a parameter of MODL.160

2.2.1 Dictionary learning for biological combination extraction161

In the OLOGRAM-MODL approach, the input matrix of MODL is the matrix of overlap flags provided162

by the algorithm in Figure 1, with one row per overlap and one column per set in the real, non-shuffled163

data. However, any matrix matching this format can be used.164

Figure 2 indicates the principle of dictionary learning (Mairal et al., 2009) as used by MODL, which165

is a factorization matrix problem with sparsity that entails solving:166

(U∗,V ∗) = argmin
U,V

1

2
‖X−UV‖2

2 +α‖U‖1

subject to ‖Vi‖2 = 1 for all 0≤ i≤ natoms
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Algorithm 1: Multiple Overlap Dictionary Learning (MODL) algorithm for combination mining

Data: X ∈N
m×k the matrix of m overlap flags with k sets, and q the queried number of atoms

// Pre-processing in section 2.2.2

1 X ← ψ(X), Λ← /0

2 α ← 1
k
, i← 0

// Step 1 presented in section 2.2.3

3 while ∑U 6= 0 do

4 U,V ← DictionaryLearning (X , α , natoms = 2∗q) with LASSO-Coordinate Descent,

LARS if fails to converge.

5 foreach v ∈V do

6 Binarize v

7 Λ[v]← Λ[v]+U [v]

8 end

9 i← i+1

10 α ← α + i
k

11 end

12 Keep highest 3∗q atoms of Λ sorted by total usage. Remove those longer than desired.

// Step 2 presented in section 2.2.4

13 V1← /0, Λ1 = Λ

14 foreach t ∈ [1..T ] do

15 ∆← /0

16 foreach λ ∈ Λt do

17 Sλ ,t ←Vt ∪{λ}
18 Uλ ,t ← SparseEncode (X , Sλ ,t , α = 1

k
) with LASSO-LARS

19 ∆(λ )←‖X−Uλ ,tSλ ,t‖1 +
1
k ∑Uλ ,t

20 end

// Get best candidate at this iteration

21 λ ∗t = argminλ∈Λt
∆(λ )

22 Vt+1←Vt ∪{λ ∗t }
23 Λt+1← Λt \{λ ∗t }
24 end

Result: Learned dictionary of interesting combinations VT

5/14193



Figure 2. Principle of itemset mining via dictionary learning. The goal of dictionary learning is to

learn U and V from X under certain constraints, minimizing the reconstruction error.

It can be clearly seen how the atoms (rows) of the learned dictionary V can be mined for frequent itemsets

in the data, giving sets that are often present together.

It shows that relevant itemsets can be extracted from the atoms of the dictionary V . Here, an itemset167

corresponds to a combination as defined above. As a matrix factorization based algorithm, MODL is168

less vulnerable to noise than usual tree-based approaches. As such, the learned atoms can be buildings169

blocks referring to parts of a complex, like in the third line of figure 2 instead of minor variations of the170

combinations (cf. section 3.1).171

A dictionary V is composed of atoms (rows of V ), which are used to rebuild richer words (rows of X ,172

combinations). Here, atoms represent biologically relevant sub-complexes. Adding redundant atoms (i.e.173

(11) if (01) and (10) are already present) if they improve the rebuilding can be warranted to represent the174

entire complex.175

Definition 7. The usage of an atom Vj in rebuilding a given word X̂i = UiV is Ui, j. Its total usage is176

∑
m
i Ui, j.177

2.2.2 Pre-processing178

Since MODL’s goal is to best reconstruct the input matrix, its cost scales with matrix size, and it179

emphasizes combinations found in the most frequent observations. To mitigate this, a compressed version180

of the input matrix X is processed instead, called a smothered matrix.181

Definition 8. The abundance of a row x in a matrix X is the number of rows in X which are exactly equal182

to it, noted aX (x).183

Definition 9. The smothered version of the matrix X is the matrix ψ(X). For each unique row x of X,184

aψ(X)(x) =

√

aX (x)
ν , where ν is the highest of either min(aX ) or the abundance threshold τ . Row order is185

unimportant.186

After smothering, X is reduced to one elementary repetition of itself to save computing time. The187

default abundance threshold is τ = 1e−4, combinations rarer than this are ignored. The use of the square188

root of the abundances gives more weight to the rarest combinations, instead of simply focusing on an189

even better reconstruction of frequent combinations.190

2.2.3 Library creation through sparse dictionary learning191

After the previous pre-processing, the first step of MODL itself is to compute a library of candidate atoms.192

This is done by performing several successive factorizations on ψ(X) as explained in section 2.2.1. The193

reconstructions are repeated with different sparsity constraints α to get candidate atoms of various lengths.194

At each iteration, α is increased by i/k where i is the iteration number. Longer atoms are learned because195

a higher α allows less atoms to be used. As too low values can hinder convergence, α begins at 1/k.196

Using increasing steps avoids lingering at high α , where results can be redundant. This step stops once α197

is so high that the total usage of all atoms is zero.198

The reconstructions are repeated on a 3-fold cross-sampling (rotating 2/3 of data) to increase result199

variety, as random initialization can result in different reconstructions. Coordinate descent with LASSO is200

used for the fitting with 200 iterations, where negative atoms are disallowed to allow later interpretation.201

The more widespread Least-angle regression (LARS) fitting algorithm is known to select wrong features202
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when the features are correlated (Efron et al., 2004) and as such is is only used as a fallback if LASSO203

fails to converge.204

A higher number of atoms in the learned dictionary would result in more precise reconstructions, but205

lessen the need to learn itemsets instead of individual components or simply unique rows (i.e. words).206

Conversely, fewer atoms will result in compromises. Although this is the point of the approach and207

grants resistance to noise (both false positive and negatives), too much compromise can result in learning208

potential correlation groups such as using an atom A+B+C to reconstruct the words {A}, {B+C} and209

{C}. As a trade-off between having variety and the effects just mentioned, the number of atoms in the210

learned dictionary is by default 2q.211

After each factorization, each atom v is binarized and saved along with its total usage. In binarization,212

as ∑v2 = 1 for each atom v, the cutoff for whether a feature is considered to be used or not in a atom213

is v2
i > 1/n2. Finally, once all reconstructions are done, a library Λ of candidate atoms is obtained. In214

order to save time, only the top 3∗q atoms ordered by their summed usage across all reconstructions are215

kept before passing Λ to the next step. This will also discard leftover atoms with low usage. An optional216

filtering by atom length is possible.217

2.2.4 Greedy algorithm for combination selection218

Now, the final q combinations constituting the final dictionary VT will be selected by iteratively adding219

the atoms maximizing the fidelity f of the rebuilding:220

VT = argmax
S

f (S) , where f (S) =−‖X−US‖1 +α ∑U

At each iteration, the best atom λ ∗ of the library Λ is greedily added to the dictionary Vt , which is221

initially empty. For that purpose, at each step t, a two-stages optimization process is performed which222

first computes all the sparse approximations for all remaining candidates Uλ ,t of X using the current223

dictionary S =Vt ∪{λ}, and which then chooses the λ ∗ that minimizes the difference d1 between X and224

its approximation Uλ ,tSt , where:225

d1(X , X̃) = ‖X− X̃‖1 +α ∑U

Unlike in step 1 where U∗,V ∗ were optimized conjointly, here the sparse coder will find U∗ for a given226

Vt . The sparsity controller α tends to emphasize the longest atoms: this impact is reduced by projecting227

each λ ∈ S on the surface of the 1-unit ball (‖λ‖2 = 1). To ensure no two atoms have the exact same228

dot product with a given word, a small jitter of
√

i

104 is added to each value of the i-th atom. S is sorted in229

lexicographic order.230

As the set of atoms usually has some degree of degeneracy (similar atoms), the sparse coder used is231

LASSO-LARS. Coordinate Descent does not handle it well, but LARS tends to drop correlated regressors,232

which is a strength here. In any case, the process does not compare the usage of each atom, only the233

quality of the reconstruction.234

The sparsity controlling parameter α on both the coder’s LASSO and the d1 error is nonzero, in order235

to encourage adding (11) to the dictionary even if (01) and (10) are already present, as that would bring236

an improvement by using only one atom. Manually computing the Manhattan error in the evaluation237

instead of Euclidian penalizes rebuilding both (01) and (10) as ( 1
2

1
2
).238

A relatively high α = 1√
k

(capped at 0.5) is used by default, but can be changed. This helps239

convergence and emphasizes using as few words as possible to get closed itemsets, instead of focusing on240

improving the rebuilding of frequent combinations.241

In case of a tie, the first atom is selected. This is a greedy algorithm, in that it makes the locally optimal242

choice at each iteration. The raised solution is optimal if the optimization problem is the maximization of243

a submodular function (diminishing returns when adding new elements). A set function f is submodular244

if:245

∀X ,Y ⊆Ω with X ⊆ Y and every x ∈Ω\Y , we have

f (X ∪{x})− f (X)≥ f (Y ∪{x})− f (Y )

Then the use of a greedy algorithm to maximize f will produce a solution within a factor of 1−1/e,246

which is the best possible approximation (Feige, 1998).247

7/14195



Proposition 2. The problem of finding S∗ = argmaxS f (S) admits a good submodular approximation.248

Proof sketch. Consider the gain made by adding λ so a set S, and consider S′ a set of atoms such that249

S⊆ S′. Assuming the sparse encoder optimizes correctly, the encoding cannot be made worse by adding250

more atoms to choose from in the dictionary: if useless, they will simply be ignored. So f (S)≤ f (S′),251

and f is monotonous.252

Furthermore, adding redundant atoms does not improve the reconstruction further, resulting in253

diminishing returns: for each row (i.e. word) x ∈ X to be rebuilt, the solution found is a linear combination254

of the atoms in the dictionary. Adding a new atom λ to this dictionary will only improve the reconstruction255

depending on the coefficient given to the new atom, which is turn depends on how much error the previous256

dictionary made on this word x that the new atom was brought to correct. Indeed, the improvement that a257

candidate λ can bring is bounded by the difference in the projections of x on the subspaces defined by Vt258

and by Vt ∪λ (Krause and Cevher, 2010). This is even more true due to α which penalizes the use of too259

many atoms to rebuild x.260

2.3 Implementation and availability of the method261

As an update of OLOGRAM, the code is written in Python 3, with some performance-critical tasks in262

Cython and C++. To preserve RAM, the shuffles are divided into batches. Optimizations result in major263

speedups. This allows working on larger cases, totalling hundreds of thousands of regions with enough264

patience. However in such cases the RAM cost will be high and scale with the number of shuffles, since265

OLOGRAM remember all intersections to compute the statistics. To alleviate this, separate runs can266

be merged by treating each as a superbatch. The demonstration example takes about an hour on an267

i7-7820HQ.268

For the MODL subroutines of dictionary learning and sparse coding, the Scikit-Learn implementation269

is used (Pedregosa et al., 2011). OLOGRAM-MODL is accessible through the command line interface270

of pygtftk (Lopez et al., 2019) which is available on Bioconda, and at https://github.com/271

dputhier/pygtftk/ along with the documentation containing more information on the approach.272

The integration with the pygtftk suite of tools allows easy use in bioinformatics pipelines, and easier273

extension.274

The tool will output one set of statistics per combination of sets of interest. An ologram modl treeify275

plugin creates visual representations of the results of a multiple overlap analysis, used to generate figure276

3. The resulting tsv file can be manually filtered before producing the representation. The MODL277

algorithm can also be used as a standalone combination mining algorithm through the API by importing278

the pygtftk.stats.intersect.dict learning.Modl class.279

2.4 Data280

Three different types of data are used in this study, using both artificial data with known ground truth and281

real biological data. Full data is available in Supplementary Material repository https://github.282

com/qferre/ologram-modl_supp_mat.283

1. Noisy matrices: an artificial overlap matrix whose unique rows are representation of A + B,284

A+B+C+D or E +F . This equates to row vectors of respectively (110000),(111100),(000011).285

A NOT is then applied to each element (turning a 0 into 1, and 1 into 0) with a probability pN to286

represent noise.287

2. Artificial BEDs of regions: a query set of 1,000 artificial genomic regions of length 200,000 has288

been generated and compares against (a) a third of the query, (b) a copy of said third, (c) a different289

third of the query that does not overlap with the first, and (d) a negative control of other random290

peaks.291

3. Real data: selected binding regions from ReMap 2018 data (Chèneby et al., 2018) for the tran-292

scription factors FOXA1, BRD4, EP300, ESR1, GATA3, JUN, MAX, MED1 and MYC in the hg38293

human genome assembly for the MCF7 breast cancer cell line.294
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3 RESULTS295

The complete workflow, with Supplementary Data, is available as a Snakemake and can be used296

as a starting point for a different analysis. It is available at https://github.com/qferre/297

ologram-modl_supp_mat.298

The first goal of the experiments below is to validate the contribution of this paper on both enrichment299

evaluation and itemset mining, using artificial data for which the ground truth is known and the results300

can be compared to. The second important issue is to ensure that the algorithm is not only able to deal301

with true biological data but also is a fair way to discover relevant complex of genomics regions and get302

novel insights.303

3.1 Artificial data304

3.1.1 OLOGRAM itself305

The BEDs of artificial regions are used in this section, with an inexact counting. OLOGRAM correctly306

identifies the associations between sets: as a general rule, sets that have strong overlap with each other are307

seen as enriched, and vice-versa. Notably, the query was found enriched with its subsets but not with the308

negative control, and the combination of non-overlapping thirds is seen as depleted. Detailed results are309

presented in Suppl. Fig. 1.310

As longer combinations will be more enriched for statistical reasons, enrichment should be compared311

between combinations of similar order. Similarly, if a set C is depleted with the query A but always312

present with B, and the combination A+B is enriched, the combination A+B+C will be enriched: what313

matters is what is the difference in enrichment from adding C. For the studied combinations, the S statistic314

(number of overlapping base pairs) indeed follows a Negative Binomial distribution, which confirms the315

assumptions of the statistical model. Full histograms are presented in Suppl. Fig. 2.316

3.1.2 MODL and comparison with apriori317

MODL is compared to the apriori algorithm using the artificial overlap matrices. apriori remains a318

reference in itemset mining and it still being worked on today (Raj et al., 2020). Both algorithms’319

usefulness in identifying the underlying combinations used when generating the data (see section 2.4)320

is compared. The criterion is the ranking given to each correct combination. Ranking in MODL is321

determined by the step at which the combination was selected, and the ranking in apriori is determined322

through ordering all found rules by support.323

The top three combinations found by MODL are indeed the three complexes defined when generating324

the data: A+B, A+B+C+D and E +F . However, their ranking is lower for apriori, because if the rule325

A+B+C is true the rules A+B and A+B+C are equally true. While this particular pitfall can be avoided326

by using a closed itemset miner eliminating redundant rules, this is vulnerable to noise and approximate327

itemset miners, such as MODL purports to do, are proposed as a solution (Chen et al., 2009). The two328

approaches have different goals, with MODL mining for complexes and apriori for association rules. In329

biology, the first goal would be preferred to identify full regulatory complexes. These findings hold with330

and without using noise in the matrices. With 12% noise, MODL still returns the correct combinations.331

However, smothering increases the sensibility to noise by emphasizing rarer combinations: its use is a332

compromise between denoising and not ignoring the rarest combinations. Detailed results are presented333

in Suppl. Fig 3.334

Furthermore, when compared to apriori and by extension other itemset miners, MODL has a bias335

towards the most abundant combinations in the data, instead of those with highest support. It also tends to336

return longer combinations, some of which are too broad potential correlation groups (cf. section 2.2.3)337

such as (110011) here. This loss of granularity is a known necessary drawback of Approximate Itemset338

Mining approaches (Chen et al., 2009). As MODL is designed to mine for complexes, the candidates339

that were not selected will often represent over-fitted combinations that may be due to noise patterns,340

instead of representing shorter association rules. The normalization of the atoms by their squared sum341

helps correct this problem (cf. section 2.2.4).342

MODL admittedly has a high computation cost due to the large number of factorizations performed:343

it scales in O(k) with the number of sets and O(q2) in the number of queried combinations (atoms), but in344

most use cases the time cost remains reasonable, a few minutes at most. The abundance threshold τ (cf.345

section 2.2.2) helps reducing the time cost. The use of τ , along with the number of desired combinations346

q, is analogous to the minimum support used in apriori and other itemset miners to limit the exponential347
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Figure 3. Example of the structure of the output graph that pictures combination enrichment for FOXA1

in MCF7, with a zoom on a relevant part. For each combination, the number of base pairs over which it is

found in real data (S) is presented, followed by the log2 of the fold change and corresponding p-value

according to a Negative Binomial model. Color gradient is based on the fold change. The combinations

displayed here were manually selected, and the full tree of all combinations and the selection by MODL

are available in Supplementary Data.

complexity of the problem. Details of MODL scaling are presented in Suppl. Fig. 4.348

When comparing the scaling of the elementary operation of MODL (one instance of dictionary349

learning) with apriori, dictionary learning scales linearily with the number of sets and the number of350

queried atoms, while apriori scales exponentially with the number of sets and as such exponentially with351

lower minimum support. Time costs are of the same order of magnitude. These insights can be extended352

to other algorithms such as FP-Growth and ECLAT which have similar time costs (Garg and Kumar,353

2013). Details in Suppl. Fig. 5.354

3.2 Transcription Factors combinations in MCF7355

The combinations of Transcriptional Regulators (TRs) associated with the transcriptional activator FOXA1356

are studied here in the MCF7 breast cancer cell line. FOXA1 is a transcriptional activator, known to357

interact with chromatin as a pioneer factor. In many types of breast cancer, such as MCF7, it is also358

known to act as a pioneer factor to the regulator ERα (aka. ESR1, Ross-Innes et al., 2012). Conversely,359

it is a downstram target of the regulator GATA3 in breast cells (Kouros-Mehr et al., 2006). As the360

regions considered (TR binding sites) cover a small proportion of the genome, to ensure the longer361

combinations still have a statistically reasonable chance of occurring under (H0) the shuffling is restricted362

to a subgenome of interest. This subgenome is made of estimated pseudo-Cis-Regulatory-Modules,363

defined as the merged regions for all considered TRs.364

A manual illustrative selection of combinations is presented in Figure 3 as a directed acyclic graph.365

The expected correlators of ESR1 and GATA3 are indeed found enriched, confirming the relevance of the366

approach. MAX and MYC are also found more enriched together than separately, as could be expected367

since they are known to be associated (Laskowski and Knoepfler, 2013). The graph representation368

highlights the importance of EP300, and JUN to a lesser extent: ESR and GATA3 without either only369

have moderate enrichment, and same-length combinations containing ESR1 and GATA3 but without370

either EP300 or JUN have lower fold changes. This suggests that they are all an important part of a371

FOXA1 regulatory complex. Indeed, when looking at the total number of basepairs (S), FOXA1 + EP300372

+ ESR1 + GATA3 covers 2M base pairs out of the 6M of FOXA1 + ESR1 + GATA3. Conversely, this373

means that of all the 2M base pairs on which EP300 intersects with GATA3, almost all are with ESR1374

and GATA3. Furthermore, FOXA1 + ESR1 + GATA3 + MAX covers 3.5M base pairs out of the 4M of375

FOXA1+GATA3+MAX. The full tree is presented in Suppl. Fig 6.376

MODL (with k = 8 and q = 20) selected relevant shorter combinations before resorting to noisy377

patterns, although they are not the most enriched. The full selection is presented Suppl. Fig. 7. EP300378

and JUN are less prominent in the selection as they are rarer than other TRs, but indeed found as part of379

their regulatory complexes (large proportion of their total S). Conversely, the frequent MAX and MYC380

are more represented. It tends to select closed itemsets (for instance, EP300 was not selected alone) but381
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this is admittedly not always true. The selection shown in Figure 3 was based in half on the selection by382

MODL, with additions selected to illustrate our point.383

This highlights the regulatory complexes ESR1 and others regulators are a part of. Surprisingly, rather384

than saying ESR1 is associated to FOXA1, it would be more correct to say it is part of a regulatory complex385

to which FOXA1 also belongs. EP300 appears necessary in some cases. Considering only pairwise386

overlaps would have blinded us to that fact. This suggests that FOXA1 is associated to enhancer regions387

activated by histone acetylation, from the presence of EP300 (Ogryzko et al., 1996) and BRD4 (Lee et al.,388

2017). High activity of those enhancers is further confirmed by the presence of known transcriptional389

activators, such as MYC and MAX and especially ESR1. This deserves further study as such associations390

are, to our knowledge, not explored in the literature. This illustrates how OLOGRAM-MODL can be391

applied meaningfully to certain biological problems.392

4 DISCUSSION393

The OLOGRAM-MODL approach consists of two steps. First, mining for itemsets of open regions in the394

matrix of true overlaps. This is optional, and used to reduce the number of combinations to be studied.395

The second step is to compute the enrichment of all relevant combinations with the OLOGRAM approach,396

by determining whether this combination occurs in the real data across more base pairs that would be397

expected by chance.398

By using inexact combinations, it is possible to emphasize necessary elements in regulatory clusters.399

This is shown in Results (section 3) and emphasized by the graphical representation, showing which400

additions to any combination actually increase its enrichment. Necessary regulators introduced by child401

combinations will account for most of the S(γ) of the parents (downward closure). The algorithm is402

expected to be useful in studying Cis-Regulatory Elements as n-wise clusters of regulators, and moving403

away from only considering pairwise associations.404

However, with a large number of sets (k ≥ 5), or with regions covering a small proportion of the405

genome such as Transcriptional Regulator binding sites, longer combinations will have small expected406

overlaps. It is recommend to restrict the shuffling to a smaller sub-genome of interest, for example only407

to enhancers or promoters, or to the merged regions of all candidate sets (maybe identified by running408

a first pairwise analysis). Even so, combinations with more sets are often more enriched since all sets409

are supposed independent. Relatedly, it is recommended to ignore combinations found on such a small410

number of basepairs that they are unlikely to be biologically significant, even if highly enriched.411

The MODL itemset mining algorithm can be used to focus on elementary combinations of interest. It412

leverages matrix factorization techniques for their robustness to noise, which is a widespread problem413

in biological assays (cf. Introduction). This entails learning compromise combinations, but this is not414

always desirable and the queried number of sets should be kept close to the actual expected number. Note415

that no matter which combinations are identified by MODL, the enrichment results do not change. While416

MODL is time consuming due to performing numerous factorizations, its time cost remains reasonable in417

most use cases. MODL can be used to pre-select combinations, using its results as a starting point to filter418

combinations in a larger analysis based on the biological problematic (eg. all combinations containing the419

particular regulator that you are studying, or the most frequent ones).420

The integration with the pygtftk toolkit facilitates complex queries in bioinformatic worfklows. As421

a command line tool whose dependencies can be handled by conda, it is convenient to run on clusters422

with reproducible workflow managers such as Snakemake. This is also true of the plugins that produce423

the graphical representations. Thanks to the use of a Monte Carlo approach and to C++ optimization,424

OLOGRAM-MODL can even be run on a laptop, as demonstrated.425

4.1 Perspectives426

OLOGRAM-MODL is applicable to any problem that can be reduced to quantifying the significance427

of overlaps between n sets of position intervals. Besides epigenetic marks binding sites, associations428

between sets of regions such as ”promoters of housekeeping genes” or ”Binding sites for the regulator429

X in the experimental condition Y” can also be integrated. As such, this approach can also be extended430

to multi-omics problems. Since the overlaps are considered in terms of S (overlapping base pairs), it431

is also possible to do a proximity analysis by extending the regions by different values and comparing432

the significance of enrichment of each (ologram merge stats). This is necessary when working on433
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small TF motifs instead of ChIP-Seq. Our approach would be useful to find common occupancies of434

chromatin-binding proteins (Partridge et al., 2020).435

The MODL algorithm can be applied to any submodular problem, as the API supports custom error436

functions, and customization of parameters such as smothering and α . For example, since variable selec-437

tion in Naive Bayes classifiers is indeed submodular (Wei et al., 2015), MODL could select combinations438

that help such a classifier predict active enhancers. MODL is a first contribution open to further research.439

In order to solve its poor scaling with the number of queried atoms, it would be possible in step 2 to not440

test all candidates but only the children of the already present nodes assuming that if an atom A is better441

than an atom B, then its best parent is better than the best parent of B, proceeding until an optimum is442

reached.443

It would be interesting to extend OLOGRAM-MODL to intra-set overlaps, which could be used to444

model a signal through quasi-Lebesgue integration by converting it into blocks of reads into overlapping445

regions. Concatenating flags on successive lines could be a way to include temporality. The implementa-446

tion includes notes to facilitate such improvements, and others such as integrating custom shuffles for the447

user, or remembering regions IDs when shuffling. Indeed, as for pygtftk itself, OLOGRAM-MODL was448

designed to be evolutive and collaborative.449

5 CONCLUSION450

The major contribution of this work is the design and implementation of an algorithm that both mines451

and evaluates the enrichment for combinations of more than two sets of genomic regions, which is452

relevant because genomic regulators tend to work as complexes. OLOGRAM-MODL was designed to453

leverage itemset mining together with a statistical model analysis, and get the strengths of both. A novel454

optional itemset mining algorithm designed to denoise and mine for clusters, not simply association455

rules, is proposed. Then, a statistical framework evaluates the enrichment of the combinations using a456

Negative Binomial model, which is more resolutive than empirical p-values. It returns a parsable graphical457

representation which helps the identification of master regulators, by supporting inexact combinations.458

Finally, the approach is validated on artificial data, and shown to be useful in identifying previously459

neglected regulators associated to FOXA1. This method is implemented as an easy-to-use tool for the460

scientific community in the pygtftk suite, which makes it easy to use in bioinformatic pipelines.461
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Supplementary Figure 1B : Alternative representation of the results in Suppl. 

Fig. 1A.  The histograms give the number of overlapping base pairs (S) for each 

combination in the true data (blue) and expected, and in the shuffles (grey). Error 

bars indicate standard deviation. The p-value is indicated in the labels.

The command line used to run this example was:

 `gtftk ologram -z -c hg38 -p query.bed --more-bed {params.peaks} --more-bed-

multiple-overlap`

where {params.peaks} is a whitespace separated list of BED files.

The combinations are inexact, meaning that an overlap of [Query + neg_control + 

third] will still count as [Query + neg_control + …].
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Supplementary Figure 3 : Comparison of itemsets found by MODL and apriori when run on an artificial matrix. The itemsets used when generating the 

matrix are represented in green. Uniform noise of 0.12 was also applied.

For MODL, we queried 3 atoms, as this corresponds to the number of complexes used when generating the data. The first three atoms returned by MODL 

correspond to the itemsets defined when generating the data, with the remaining candidates corresponding to noise patterns or compromises. 

When ordering by support in apriori however, the rank of the true itemsets is much lower.
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Supplementary Figure 6 : Full tree representation of enriched combinations for FOXA1 in MCF7. No filtering, manual or MODL, was applied. 

In the MCF7 breast cancer cell line, we study enrichment of combinations of transcription factors for FOXA1. We restrict the shuffling to pseudo-CRM 

made by merging of all query peaks, meaning all binding sites for all TF studied. We see the expected GATA3 and ESR1, but this representation 

highlights that adding JUN and EP300 increases enrichment, suggesting they are part of the complex.
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...

S = 130908
p-val = 1.104e-312
log2(FC) = 2.60981

foxa1 + brd4 + ep300 + 
esr1 + max + 

...

S = 144431
p-val = 1e-320

log2(FC) = 3.40495

foxa1 + brd4 + ep300 + 
gata3 + myc + 

...

S = 129595
p-val = 7.806e-207
log2(FC) = 3.24487

foxa1 + brd4 + ep300 + 
gata3 + max + 

...

S = 143544
p-val = 1e-320

log2(FC) = 3.99690

foxa1 + brd4 + ep300 + 
max + myc + 

...

S = 132095
p-val = 1e-320

log2(FC) = 3.03393

foxa1 + brd4 + ep300 + 
esr1 + gata3 + 

jun + ...

S = 17034
p-val = 2.164e-85

log2(FC) = 6.13750

foxa1 + brd4 + ep300 + 
esr1 + gata3 + 

myc + ...

S = 126541
p-val = 1e-320

log2(FC) = 4.40791

foxa1 + brd4 + ep300 + 
esr1 + gata3 + 

max + ...

S = 140109
p-val = 1e-320

log2(FC) = 5.17042

foxa1 + brd4 + ep300 + 
esr1 + jun + 

myc + ...

S = 15467
p-val = 2.384e-49

log2(FC) = 5.11026

foxa1 + brd4 + ep300 + 
esr1 + max + 

myc + ...

S = 128427
p-val = 1e-320

log2(FC) = 4.20441

foxa1 + brd4 + ep300 + 
esr1 + gata3 + 

jun + myc + 
...

S = 15197
p-val = 4.116e-66

log2(FC) = 7.04676

foxa1 + brd4 + ep300 + 
esr1 + gata3 + 

jun + max + 
...

S = 16703
p-val = 1.369e-81

log2(FC) = 7.67203

foxa1 + brd4 + ep300 + 
esr1 + gata3 + 
max + myc + 

...

S = 124297
p-val = 1e-320

log2(FC) = 6.00846

foxa1 + brd4 + ep300 + 
esr1 + gata3 + 
max + med1 + 

...

S = 1416
p-val = 9.481e-10

log2(FC) = 9.43904

foxa1 + brd4 + ep300 + 
esr1 + gata3 + 

jun + max + 
myc + ...

S = 14998
p-val = 2.147e-80

log2(FC) = 8.50162

foxa1 + brd4 + ep300 + 
esr1 + gata3 + 

jun + max + 
med1 + myc + 

...

S = 337
p-val = nan

log2(FC) = 8.39660

foxa1 + brd4 + ep300 + 
esr1 + gata3 + 
max + med1 + 

myc + ...

S = 1405
p-val = nan

log2(FC) = 10.45635

foxa1 + brd4 + ep300 + 
esr1 + jun + 
max + myc + 

...

S = 15261
p-val = 1.585e-80

log2(FC) = 6.63980

foxa1 + brd4 + ep300 + 
gata3 + max + 

myc + ...

S = 127319
p-val = 1e-320

log2(FC) = 4.83102

foxa1 + brd4 + ep300 + 
gata3 + jun + 

max + ...

S = 17845
p-val = 3.075e-81

log2(FC) = 6.70808

foxa1 + brd4 + ep300 + 
gata3 + jun + 
max + myc + 

...

S = 15902
p-val = 3.659e-90

log2(FC) = 7.58014

foxa1 + brd4 + esr1 + 
gata3 + jun + 

...

S = 37364
p-val = 2.069e-75

log2(FC) = 2.96279

foxa1 + brd4 + esr1 + 
gata3 + max + 

...

S = 624363
p-val = 1e-320

log2(FC) = 2.90907

foxa1 + brd4 + esr1 + 
gata3 + myc + 

...

S = 599225
p-val = 1e-320

log2(FC) = 2.21459

foxa1 + brd4 + esr1 + 
jun + myc + 

...

S = 44197
p-val = 4.663e-64

log2(FC) = 2.36724

foxa1 + brd4 + esr1 + 
jun + max + 

...

S = 46498
p-val = 3.668e-106
log2(FC) = 3.10084

foxa1 + brd4 + esr1 + 
max + myc + 

...

S = 1184147
p-val = 1e-320

log2(FC) = 2.97022

foxa1 + brd4 + esr1 + 
gata3 + jun + 

myc + ...

S = 33534
p-val = 1.057e-78

log2(FC) = 3.80068

foxa1 + brd4 + esr1 + 
gata3 + jun + 

max + ...

S = 36276
p-val = 1.348e-177
log2(FC) = 4.56670

foxa1 + brd4 + esr1 + 
gata3 + max + 

myc + ...

S = 580567
p-val = 1e-320

log2(FC) = 3.75957

foxa1 + brd4 + esr1 + 
gata3 + jun + 
max + myc + 

...

S = 33033
p-val = 2.559e-128
log2(FC) = 5.43972

foxa1 + brd4 + esr1 + 
gata3 + jun + 
max + med1 + 

myc + ...

S = 474
p-val = nan

log2(FC) = 8.88874

foxa1 + brd4 + esr1 + 
gata3 + max + 
med1 + myc + 

...

S = 1878
p-val = 4.585e-35

log2(FC) = 10.84641

foxa1 + brd4 + esr1 + 
jun + max + 

myc + ...

S = 43147
p-val = 3.021e-125
log2(FC) = 3.96140

foxa1 + brd4 + esr1 + 
max + med1 + 

myc + ...

S = 1880
p-val = 4.414e-16

log2(FC) = 7.23497

foxa1 + brd4 + gata3 + 
jun + myc + 

...

S = 39256
p-val = 5.006e-61

log2(FC) = 2.83992

foxa1 + brd4 + gata3 + 
jun + max + 

...

S = 42476
p-val = 4.381e-104
log2(FC) = 3.61087

foxa1 + brd4 + gata3 + 
max + myc + 

...

S = 681483
p-val = 1e-320

log2(FC) = 2.79489

foxa1 + brd4 + gata3 + 
jun + max + 

myc + ...

S = 38427
p-val = 3.768e-97

log2(FC) = 4.44348

foxa1 + brd4 + jun + 
max + myc + 

...

S = 51641
p-val = 2.758e-122
log2(FC) = 2.99226

foxa1 + ep300 + esr1 + 
gata3 + ...

S = 1993195
p-val = 1e-320

log2(FC) = 4.27937

foxa1 + ep300 + esr1 + 
jun + ...

S = 236857
p-val = 1e-320

log2(FC) = 5.16314

foxa1 + ep300 + esr1 + 
myc + ...

S = 957490
p-val = 1e-320

log2(FC) = 2.40613

foxa1 + ep300 + esr1 + 
max + ...

S = 1413194
p-val = 1e-320

log2(FC) = 3.62843

foxa1 + ep300 + gata3 + 
myc + ...

S = 955761
p-val = 1e-320

log2(FC) = 2.98992

foxa1 + ep300 + gata3 + 
max + ...

S = 1415034
p-val = 1e-320

log2(FC) = 4.18226

foxa1 + ep300 + gata3 + 
jun + ...

S = 241366
p-val = 1e-320

log2(FC) = 5.80168

foxa1 + ep300 + jun + 
max + ...

S = 201802
p-val = 1e-320

log2(FC) = 5.40942

foxa1 + ep300 + max + 
myc + ...

S = 911837
p-val = 1e-320

log2(FC) = 2.73915

foxa1 + ep300 + jun + 
myc + ...

S = 131046
p-val = 2.379e-213
log2(FC) = 4.08305

foxa1 + ep300 + esr1 + 
gata3 + jun + 

...

S = 235377
p-val = 1e-320

log2(FC) = 6.95140

foxa1 + ep300 + esr1 + 
gata3 + myc + 

...

S = 942962
p-val = 1e-320

log2(FC) = 4.17611

foxa1 + ep300 + esr1 + 
gata3 + max + 

...

S = 1397960
p-val = 1e-320

log2(FC) = 5.35549

foxa1 + ep300 + esr1 + 
jun + max + 

...

S = 196173
p-val = 1e-320

log2(FC) = 6.52992

foxa1 + ep300 + esr1 + 
jun + myc + 

...

S = 126521
p-val = 1e-320

log2(FC) = 5.19105

foxa1 + ep300 + esr1 + 
max + myc + 

...

S = 896912
p-val = 1e-320

log2(FC) = 3.93064

foxa1 + ep300 + esr1 + 
gata3 + jun + 

myc + ...

S = 125671
p-val = 1e-320

log2(FC) = 6.97293

foxa1 + ep300 + esr1 + 
gata3 + jun + 

max + ...

S = 195090
p-val = 1e-320

log2(FC) = 8.28681

foxa1 + ep300 + esr1 + 
gata3 + max + 

myc + ...

S = 884900
p-val = 1e-320

log2(FC) = 5.69113

foxa1 + ep300 + esr1 + 
gata3 + jun + 
max + myc + 

...

S = 122384
p-val = 1e-320

log2(FC) = 8.57095

foxa1 + ep300 + esr1 + 
gata3 + jun + 
max + med1 + 

myc + ...

S = 761
p-val = nan

log2(FC) = 9.57175

foxa1 + ep300 + esr1 + 
gata3 + max + 
med1 + myc + 

...

S = 2123
p-val = 5.261e-20

log2(FC) = 9.83776

foxa1 + ep300 + esr1 + 
jun + max + 

myc + ...

S = 123140
p-val = 1e-320

log2(FC) = 6.79284

foxa1 + ep300 + gata3 + 
jun + myc + 

...

S = 130004
p-val = 1e-320

log2(FC) = 5.86291

foxa1 + ep300 + gata3 + 
max + myc + 

...

S = 897241
p-val = 1e-320

log2(FC) = 4.49755

foxa1 + ep300 + gata3 + 
jun + max + 

...

S = 200531
p-val = 1e-320

log2(FC) = 7.13824

foxa1 + ep300 + gata3 + 
jun + max + 

myc + ...

S = 126613
p-val = 1e-320

log2(FC) = 7.42490

foxa1 + ep300 + jun + 
max + myc + 

...

S = 127543
p-val = 1e-320

log2(FC) = 5.69802

foxa1 + esr1 + gata3 + 
jun + ...

S = 424634
p-val = 1e-320

log2(FC) = 3.41802

foxa1 + esr1 + gata3 + 
max + ...

S = 3496717
p-val = 1e-320

log2(FC) = 2.33509

foxa1 + esr1 + gata3 + 
med1 + ...

S = 6065
p-val = 2.637e-16

log2(FC) = 4.31126

foxa1 + esr1 + gata3 + 
myc + ...

S = 2642928
p-val = 1e-320

log2(FC) = 1.27290

foxa1 + esr1 + jun + 
max + ...

S = 355846
p-val = 1e-320

log2(FC) = 2.98916

foxa1 + esr1 + jun + 
myc + ...

S = 245894
p-val = 1.312e-298
log2(FC) = 1.75649

foxa1 + esr1 + max + 
myc + ...

S = 3958547
p-val = 1e-320

log2(FC) = 1.64649

foxa1 + esr1 + med1 + 
myc + ...

S = 4439
p-val = 1.435e-07

log2(FC) = 2.70735

foxa1 + esr1 + gata3 + 
jun + max + 

...

S = 316665
p-val = 1e-320

log2(FC) = 4.60263

foxa1 + esr1 + gata3 + 
jun + myc + 

...

S = 210443
p-val = 1e-320

log2(FC) = 3.36721

foxa1 + esr1 + gata3 + 
max + myc + 

...

S = 2385351
p-val = 1e-320

log2(FC) = 2.73782

foxa1 + esr1 + gata3 + 
max + med1 + 

...

S = 3089
p-val = 4.094e-08

log2(FC) = 4.87401

foxa1 + esr1 + gata3 + 
med1 + myc + 

...

S = 4286
p-val = 3.854e-14

log2(FC) = 4.62413

foxa1 + esr1 + gata3 + 
jun + max + 

myc + ...

S = 201156
p-val = 1e-320

log2(FC) = 4.94490

foxa1 + esr1 + gata3 + 
jun + max + 

med1 + myc + 
...

S = 1033
p-val = nan

log2(FC) = 10.01262

foxa1 + esr1 + gata3 + 
max + med1 + 

myc + ...

S = 3014
p-val = 6.5e-12

log2(FC) = 5.75993

foxa1 + esr1 + jun + 
max + myc + 

...

S = 233768
p-val = 1e-320

log2(FC) = 3.32898

foxa1 + gata3 + jun + 
myc + ...

S = 236352
p-val = 1e-320

log2(FC) = 2.32873

foxa1 + gata3 + jun + 
max + ...

S = 350330
p-val = 1e-320

log2(FC) = 3.56518

foxa1 + gata3 + max + 
myc + ...

S = 2808666
p-val = 1e-320

log2(FC) = 1.76316

foxa1 + gata3 + jun + 
max + myc + 

...

S = 225677
p-val = 1e-320

log2(FC) = 3.89066

foxa1 + jun + max + 
myc + ...

S = 277279
p-val = 1e-320

log2(FC) = 2.36867
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5. Discussion

The central philosophy of the work presented in this thesis was based on the realiza-
tion that genomic cis-regulation is effected by combinations of genomic cis-regulators.
However, as we demonstrated throughout this manuscript, there was (and still re-
mains) much to be done to leverage this fact to obtain useful insights into biological
problems.

In this context, I sought to use those combinations as a resource. When sources
(TRs, datasets) are correlating and forming a combination, this gives us an insight in
the genomic function effected at the position where those source are found, since in
biology colocalization is often a marker of functional association. It also increases
the confidence that the observation of a regulator is correct, if its collaborators are
also found at the same position, which is relevant for anomaly detection. The correct
identification of those combinations is also an important itemset mining problem.

This is especially important now that we have entered the "big data" era. These two
insights about combinations of regulators can also be extended to designate combina-
tions of datasets to perform integrative analysis, using the multiplicity of datasets, and
more generally data views, to strengthen the confidence of the observations. Indeed,
the cyclopean amounts of data available vary in quality and may suffer from many
different sources of error, which is compounded by the large amounts of data used.
This is at the heart of the multi-testing corrections implemented in statistics. However,
as the amounts of data continue to grow, supervised verification is still a tall order, as
the experimental noise sources are very difficult to correct and annotated supervised
data is rarely available. Even so, it would require a tedious error-by-error approach.

5.1. Summary of contributions

The contributions of this thesis are twofold. While my early work presented in
chapter 2 dealt with supervised data, I eventually switched focus to the problem
of leveraging combinations without supervision to help decide which sources of
combinations thereof are relevant.

Unsupervised anomaly detection in genomic catalogues Using the combina-
tions as a resource to perform curation is important and is indeed the gist of anomaly
detection. Since the availability of many independent, and in some cases redundant,
ChIP-Seq experiments is the entire impetus behind the ReMap project, this made
collaboration a natural fit.
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We showed in chapter 3 that combinations can be leveraged to curate databases
of genomic region assays in an unsupervised manner. The general principle behind
this anomaly detection approach is that confidence in an observation is strengthened
when sources correlated with it are present. I used a specifically designed multi-view
convolutional autoencoder to perform a “Goldilocks” compression. Here, the model
is tasked to learn sources (TR, datasets) as part of a groups of correlating sources, and
not alone. We identify peaks which have fewer known collaborators present in their
vicinity than what would be average for their sources.

This exemplifies the need for cross-disciplinary collaboration. The project was born
out of discussion with J. Chèneby who realized that her database of Cis-Regulatory
Elements (ReMap) contained more than thrice as many inferred CREs as the human
genome is estimated to contain. We further noticed that existing methods were rather
rudimentary: for example the Irreducible Discover Rate used by ENCODE amounts
to a simple pairwise comparison at the scale of an entire dataset. Due to the many
potential sources of error, it became necessary to design an approach that would
correct them indiscriminately.

Convolutional filters were used because their dedicated purpose is to learn combi-
nations of elements. However, convolutional networks are usually designed for images.
Bending them into working on a more general tensor representation was an interesting
challenge. Furthermore, the notion of a “Goldilocks” compression is counter intuitive,
since compression methods are usually designed to rebuild with maximum fidelity.
Here, we wanted just enough fidelity to learn groups, but not the noise. This led to
another challenge: the development of methods to permit interpretation the results
and select the information budget of the model. In the end, I developed approaches to
evaluate auto-encoders based on their respect of existing correlations. I also proposed
a new normalization method based on correcting for the average cardinality of the
aforementioned correlation groups. It can be applied to any black box model, and is
useful to interpret autoencoders when performing anomaly detection.

Our cleaned data improves Cis-Regulatory Element detection. As a result, it is now
possible to assign confidence to ChIP-seq datasets in an unsupervised manner. This
data also helps identify true Cis Regulatory Elements, by focusing on the ones where
regulator complexes are present and complete.

Combination mining and statistical enrichment When it comes to the combina-
tions γ themselves, The enrichment of combinations of regulators (and more generally
whether two or n sets of genomic regions intersect more than by chance) is one of the
most fundamental problem in bioinformatics.

We use a Monte Carlo based method to fit a novel Negative Binomial model on
the number of base pairs on which a given combinations of elements is observed.
This returns p-values that are orders of magnitude more precise compared to existing
approaches, and is even valid for multiple combinations (ie. order n ≥ 2). It is my
belief that a rigorous model for this problem was long overdue. Another benefit is that
it is comparatively simple, and as such immediately understandable for biologists and
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more generally for people without a deep mathematical background.
I tried to get the best of two different worlds for OLOGRAM-MODL. After proposing

this Negative Binomial model, I asked myself how to extract the most meaningful
combinations out of the possible 2k , for k sets, so as not to overwhelm the user. Matrix
factorization methods are more rarely used in itemset mining compared to tree-based
methods (ie. apriori). I though this was a shame: since biological assays are known to
present significant noise, these methods with their known resistance to noise became
a natural fit, dictionary learning in particular. Finally, this approach was combined
with a custom greedy algorithm to identify interesting combinations of regulators,
based on which itemsets best rebuild the original data in a noise resistant manner, by
proving that the combination selection problem is submodular.

5.1.1. What have the combinations ever done for us ?

To summarize, for this paradigm of combinations as a resource, we show they
can be leveraged to perform anomaly detection in bioinformatical data (atyPeak) in
chapter 3. We also show they can be mined with algorithms tailored to find complexes
(MODL) and their enrichment precisely quantified (Monte Carlo) in chapter 4. In this,
we tie back into anomaly detection and itemset mining.

Work impact Combinations of regulators are seldom studied, even in the recent
literature. I believe providing an easy-to-use and easy-to-understand statistical model
(OLOGRAM) will help rekindle that. Furthermore, the statistical models and algo-
rithms proposed in my research can be reused on any data structured as a list of
genomic intervals, perhaps even to study correlations in non-biological data. For aty-
Peak, I hope it can sensibilize people to the problem of database curation, and more
specifically unsupervised curation, since the lack of curated references is a widespread
problem in many databases. Again, this need not be restricted to biological data.
Furthermore, the normalization methods I developed should be of interest to anyone
using black box model to perform unsupervised anomaly detection, but also itemset
mining.

In summary, the contributions of this thesis can be approached from different
angles, depending on your domains of interest:

— For biologists, we provide data assorted of a new confidence metric (atyPeak).
This permits identification of anomalous binding events 1 and facilitates the
identification of Cis-Regulatory Elements of interest. This data can also be used
to robustly identify the complexes of regulatory elements (OLOGRAM) since we
harped on about how crucial they are.

— We raise new questions on the usage of alternative promoters for ATP2C1, and
on the regulatory complexes of which FOXA1 is a part of.

1. As discussed, those may be errors but also rare real events or simply marks of missing data. It is
impossible to tell which without supervision.
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— For bioinformaticians, we provide a tool that can be used to clean databases of
genomic elements, and perform a rigorous statistical study of the enrichment of
combinations of regulators.

— For mathematicians and machine learning specialists, we provide new tools and
algorithms to find itemsets and select them, as well as study their enrichment.
We further provide tools for anomaly detection using autoencoders, and the in-
terpretation of such models. Those insights can be extended beyond a biological
context.

Perspectives and generalization During my thesis, my goal was to leverage such
combinations through the use of machine learning methods, which are very effective
at learning regularities in the data: in other words, learning combinations. I elected to
represent the regions where regulators bind as lists of intervals, converted into matrix
and tensor representations. As a result, the approaches I developed during my thesis
are generalizable to any data represented as lists of intervals, as long as it matches
the format given in section 1.4. Those approaches are contributions to the broader
domains of anomaly detection and itemset mining, but also statistical modeling and
DNN interpretation in general.

5.2. Methodological notes

I would like to conclude this manuscript on a more philosophical and, dare I say,
epistemological note, by offering a perspective over what I learned as a scientist and a
critique of certain current misconceptions.

It is my belief that even the most outwardly simple problems (for example, the
statistical enrichment of combinations) can have very interesting research questions
behind them. This idea of tackling problems that are ostensibly simple, but in reality
far from solved, using algorithms tailored to the problems themselves is at the heart of
my research philosophy. Indeed, during my PhD, I designed and taught a machine
learning class to Masters students. My goal was to impart them this philosophy, by
teaching them enough about the mathematical foundations of the methods so that
they would understand why and how to apply them to biological problems. I would
also recommend the use of simple models in front-end combined with, perhaps, a
more complex back-end, for ease of interpretation.

Furthermore, the current zeitgeist 2 seems to be rooted in the consensus that Ma-
chine Learning methods will soon solve every problem forever. And that we will soon
live in an utopia with self-driving robot butlers, cyborg kittens for everyone and gold-
plated sapient toothbrushes. I would offer a different perspective. I do not believe
Machine Learning to be a silver bullet: the models must be designed and calibrated
for their specific applications, and while very interesting data analysis can be done,
the models cannot, for example, magically generate clean data when there was none

2. Literally, "spirit of the times", in the same vein as Jung’s "collective unconscious".
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to be trained on in the first place. Indeed, the atyPeak project took me the better part
of two years to perform what is on paper a fairly straight forwards anomaly detection
task. During my thesis, I also worked on metrics and model evaluation to help tailor
the model to the biological problematic (Q-score for atyPeak, custom loss for MODL).
I believe it is important to use such scores to ensure the Machine Learning model
remains close to the reality it is ostensibly modeling.

I also find that the field also suffers from inflated expectations. I cannot count the
number of times somebody asked me out-of-the-blue how they could apply Deep
Learning to their – yet unspecified – data. My answer was always the same: “what is
the problematic you want to tackle?”. When Deep Learning is warranted, like atyPeak,
it was a fascinating dive. When it is not? Well, I believe approaches should only be as
complex as they are need to be if they are to remain interpretable. None of this should
be taken as a criticism of the field itself! I am an ardent supporter of the integration of
Machine Learning in bioinformatics and beyond. I am simply weary, and wary, of the
hype.

What I enjoyed the most during my thesis was the opportunity to bridge the gap
across two disciplines which, at first glance, may seem to be alien to one another. I
noticed that the fields of machine learning and applied statistics had many solutions
to offer to biological problems, and working at the interface of those fields was an
exciting opportunity to discover and apply new methods. Working on the pygtftk

toolset led me to discover proper development practices.
This work helped keep me grounded, by constantly applying the developed models

to real biological data, which pointed to several biological scenarios that required the
model to be adjusted (such as non-exclusive correlation groups and large imbalances
in dataset frequencies). I believe it is important to always keep in mind that reality is
noisy and does not always follow our nice, simple models.

As parting words, I would like to say that I am very grateful for the confidence placed
in me by my advisors during the completion of my thesis. They trusted me when I
suggested avenues of research that I thought would be interesting, and allowed me to
pursue them.
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A. Modelisation of Cap-STARR-Seq data

Problem The goal of Cap-STARR-Seq is to estimate the enhancer activity of a region.
More details about the procedure are presented in section 1.2.3. In the following, let
"clone" designate one fragment (after sonication) of the genome. As sonication is
random, there will be several clones for each genomic region of interest. For each
clone, two values are obtained experimentally: the input (aka. "library") value, given
by the RNA-Seq intensity of simply sequencing the Cap-STARR-Seq vector, and a
"cDNA" value given by the same sequencing in the case where the vector was put
inside a transfected cell.

Simulated reads For each clone i , let Ii be the input value and Ci the cDNA value.
Activity was defined as ai =

Ci

Ii
. The likelihood of the activities is assessed relative

to a model where the null hypothesis is based on the number of reads observed in
input. But all possible input values are not present in the data, so simulated reads
are generated by N. Sadouni and D. Van Essen to fill in the gaps using the following
procedure: ∀i ∈ [1; l ] where l is the number of clones, two sets of simulated read
counts Ai and Bi were generated under the null hypothesis with a Poisson law of
Pois(λ= Ii ).

The likelihood of observing a given read counts value of k is given by the distribution
of the values of Bi for clones where Ai = k. My interpretation of this is that, if the
true λ is unknown, we want to express the probability mass function of one sample
in one set as a function of the value observed in another, knowing that for the same i

the values were generated by a Poisson law of the same (unknown) λ. Crucially, the
two samplings are independent. This is tantamount to estimating this, where λ is
unknown :

P (Bi =β|Ai =α) = PPois(λ)(β)

This does not depend on Ai since the samplings are are independent, but λ is
unknown. Indeed, our best estimator for λ is Ai , but this estimator has a variance of,
well, λ/n =λ since n = 1 (only one observation of α). Empirically, we observed that
this results in negative binomial distribution with a mean of µ= Ai , but a variance of
σ2 = 2× Ai .

Indeed, if we use a Gamma prior for the value of λ, this is a conjugate prior with
the Poisson distribution. As a result, it is possible to express this probability de-
pending on the parameters given in the prior. Those parameters can be estimated
from the observed read counts, on which λ is based. If we have the prior λ ,→

Gamma(λ;α,β) in a generalized three-parameter gamma distribution, then we have
P (λ|x) =Gamma(λ;α+ x,β+1) according to Bayes’ theorem after simplifying some
terms. Rigorous demonstration is pending.
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Signal-noise ratio Very low values might result in falsely significant ratio. For
example 2

1 =
2000
1000 but the former ratio may observed simply owing to variance in

the counting, but this is is unlikely for the latter ratio. This signal-noise problem is
reminescent of that which I encountered when working on ChIP-seq counts when
studying alternative promoters (see section 2.2.1).

This is mitigated by having several clones per region, but is still an issue. It is
compounded by the fact that we are studying candidate silencers, which means we
are looking at depletions compared to the already low input values. Empirically, we
have observed that the logarithms of the cDNA and input values follow an exponential
distribution, which we model as a Gamma distribution (of which it is a variant). As
a result, the signal-to-noise ratio of µ/σ has a confidence interval that depends on
the α parameter (Suparat Niwitpong 2019). With an exponential distribution, α is low,
and as such I believe we should discard all values below the standard deviation for
the counts σ to avoid false positives. This can be appreciated by drawing the Lorentz
curve: empirically the inflexion point is indeed around σ.

Hypothesis deciding It is assumed that the I (input counts) follow Negative Bino-
mial distributions, with a different distribution for each possible value of input. This
goes back to a very common postulate that RNA-seq counts data follows a Negative
Binomial distribution of mean equal to the "true" biological value. A criticism I raised
at this point is that I see a discrepancy in moving from a Poisson distribution to a
Negative Binomial in this modeling, as the counts were assumed to follow a Poisson
law before.

Finally, we want to decide for each clone if its activity is significantly different from
one. The likelihood ratio is defined by D. Van Essen as:

LR =
L (ai = aobs |N B)

L (ai = 1|N B)

In this modeling, the random variable of interest would be Y = ai ∗ X , where X

follows a Negative Binomial distribution based on the input value, and ai is the activity.
With the Negative Binomial distribution fixed, ai is the only parameter of the model. I
proposed to instead used a modeling where Y follows a Negative Binomial law with a
mean of µ= ai ∗E(X ) and variance of σ2 = a2

i
∗V (X ) to add more granularity.

This modeling works because a = aobserved is the Maximum Likelihood estimation
of the activity needed to observe this particular cDNA for this particular output. The
Chi-Squared test can then be used to assess the significance of this value, according to
Wilkes’ theorem.

My concern here was that this is only works if we have a discrete activity "cutoff"
and we seek to determine whether the activity ai is equal to the cutoff. A more general
test seeking to detemin whether the activity is lower than or equal to this cutoff
would violate Wilks’ theorem applicability conditions, as the parameters are not in
the interior of the parameter space. This does not negate the power of the likelihood
ratio under the Neyman-Pearson lemma, though. Furthermore, we need to verify that
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the likelihood are normal-distributed, otherwise Wilks’ theorem is unapplicable. I
suggested using the Lagrange multiplier test instead, or its variant with the Fisher
information. This could be done by using a numerical estimation of the infinite
integral.
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