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Abstract

The shift towards cloud computing has been largely promoted for its ability to decrease
the deployment time and to reduce the operation costs. In turn, this shift towards cloud
computing has promoted the development of new architectural styles to take advan-
tage of its capabilities. Microservice-oriented architecture (MSA) is one of the latest
style to have emerged. This architecture is organized around small services focused
on specific business features, running in independent processes, and communicating
through lightweight interfaces. These features, when paired with cloud computing
and modern DevOps techniques, allow for easily-deployable, autonomous, and scal-
able applications.

Eager to take advantage of it, enterprises are slowly migrating their existing ap-
plications towards the Cloud. However, their legacy applications are oftentimes ill-
adapted to the Cloud. In particular, legacy monolithic applications which are charac-
terized by their large codebase which is generally harder to maintain, deploy, and scale.
For these reasons, companies are eager to migrate their existing monoliths towards a
microservice-oriented architecture. Nonetheless, the process of rewriting an applica-
tion from scratch using the new architecture is undesirable, due to its costs and risks.
Furthermore, companies face the need to migrate their whole software suite which are
implemented in varying languages and frameworks. Therefore, not only do compa-
nies seek to automate the migration process but also repeat the process across multiple
applications. Consequently, the need for a semi-automated, generic, and increasingly
reusable migration process emerges.

In this thesis, we decompose the migration process into two research problems: (1)
the identification of the target microservice-oriented architecture, and (2) the transfor-
mation of the source code towards valid microservice candidates. Indeed, the chal-
lenge requires understanding the monolith to extract the target microservice architec-
ture. Secondly, once the target architecture is identified, the source code of the existing
application must be transformed to conform to the MSA.

Furthermore, we propose an approach for each research problem, as well as a
model-driven approach to guide the migration process from beginning to end. To
evaluate our approaches, we implemented two different tools: (1) Mono2Micro, which
implements our ad hoc transformation approach to migrate a JAVA-based application,
and (2) MDE-Mono2Micro, which implements both our identification approach and
our model-driven transformation approach into an end-to-end solution.





Résumé étendu

Les travaux présentés dans cette thèse sont le fruit de la collaboration entre le LIRMM1

(Laboratoire d’Informatique, de Robotique, de Microélectronique de Montpellier) et
la société Berger-Levrault2. Nous commençons donc par présenter le contexte scien-
tifique de cette thèse, puis le contexte industriel. Ensuite, nous présentons la motiva-
tion de cette thèse et les principaux problèmes de recherche. Enfin, nous soulignons
les principales contributions de cette thèse ainsi que sa structure.

Contexte Scientifique

Pour comprendre les raisons qui poussent les entreprises à vouloir moderniser leurs
systèmes existants, il faut introduire plusieurs concepts. C’est pourquoi, dans cette
section, nous présentons trois concepts différents : le cloud computing, le DevOps et
les microservices. En outre, nous présentons également les avantages qu’ils présentent
pour les entreprises qui les adoptent.

Cloud Computing

L’informatique en nuage, ou "cloud computing", est un modèle commercial permettant
l’accès à un réseau à la demande à un pool partagé de ressources informatiques con-
figurables (par exemple, réseaux, serveurs, stockage, applications et services) [MG11].
Ce pool de ressources peut être rapidement approvisionné et libéré avec un minimum
de gestion ou d’interaction avec le fournisseur de services [MG11]. Ce type de modèle
commercial s’oppose au serveur standard sur site, dans lequel un serveur physique
sur site est géré et entretenu individuellement par son utilisateur.

Devops

DevOps (Development et Operations) est un ensemble de pratiques et de philoso-
phie d’ingénierie logicielle qui utilise des équipes interfonctionnelles (développement,

1https://www.lirmm.fr/
2https://www.berger-levrault.com/fr/

https://www.lirmm.fr/
https://www.berger-levrault.com/fr/
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opérations, sécurité et assurance qualité) pour construire, tester et publier des logi-
ciels plus rapidement et de manière plus fiable grâce à l’automatisation [MB20a]. Es-
sentiellement, chaque phase de développement et d’exploitation est placée dans un
pipeline semi-automatisé initiant chaque phase l’une après l’autre. Au lieu de publier
un logiciel après un long cycle de développement (par exemple, 3 à 4 semaines), les
mises à jour peuvent être apportées quotidiennement à l’utilisateur final et les correc-
tions de bogues peuvent être déployées en quelques heures.

Microservices

Les microservices, et plus particulièrement l’architecture orientée microservices (MSA),
constituent la dernière tendance pour développer des applications sur le Cloud. Dans
la littérature, de multiples définitions ont été proposées : [LF14b, Ric22, DGL+17].
Selon eux, le style architectural microservice est une approche visant à développer une
application unique sous la forme d’un ensemble de small services, exécutés sur leurs
propres processus, qui communiquent via des mécanismes dites "légers" (par exemple,
gRPC, REST API, événements). Chaque microservice est construit autour de capacités
métiers spécifiques, est déployable indépendamment (via un déploiement automa-
tisé), autonome en termes de données, et peut être développé par de petites équipes
indépendantes. Enfin, du fait qu’il s’agit de projets indépendants, chaque microservice
peut être mis en œuvre à l’aide de différents langages, frameworks et technologies, ce
qui rend l’architecture orientée microservices agnostique aux technologies.

Figure 1: Une representation simplifiée d’une architecture à base de microservices.

Une représentation simple de l’architecture de microservices est présentée dans Fig-
ure ??, qui illustre l’architecture comme un groupe de modules faiblement couplés
communiquant via des mécanismes légers. En outre, dans cet exemple, nous illus-
trons la flexibilité de cette architecture, dans laquelle elle peut servir différentes appli-
cations frontales. Comme chaque microservice peut être déployé indépendamment,
il peut être mis à l’échelle de façon dynamique en fonction de la demande du ser-
vice [LF14b]. Associée à l’élasticité du cloud computing, l’évolutivité de l’architecture
permet d’optimiser les ressources utilisées. Étant donné que chaque microservice est
conçu pour être petit, le temps de démarrage est considérablement réduit par rapport
aux applications traditionnelles.
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En outre, l’architecture orientée microservices favorise les pratiques DevOps. En
effet, de par sa conception, chaque microservice peut être développé et déployé rapi-
dement et indépendamment les uns des autres. Ainsi, ils permettent l’intégration et
le déploiement continus de l’application dans son ensemble, et permettent une plus
grande rapidité d’exécution pour le développement de nouvelles fonctionnalités, et la
maintenance d’urgence [Ric22].

Contexte Industriel

Berger-Levrault3 est un éditeur de logiciels privé qui propose sa suite de solutions
logicielles à une grande variété de clients. Leurs clients se trouvent aussi bien dans
le secteur privé que dans le secteur public, et ils proposent plus de 150 produits dans
des secteurs très variés (par exemple, la santé, l’administration publique, l’éducation).
Ce large catalogue de logiciels s’explique facilement par la stratégie commerciale de
l’entreprise, qui consiste à acquérir des sociétés existantes. Rien qu’en 2021, Berger-
Levrault a acquis 2 sociétés différentes 4. Cependant, à chaque acquisition, Berger-
Levrault hérite des décisions architecturales et technologiques des autres. En d’autres
termes, cette stratégie a un coût : ils doivent maintenir une grande variété de logiciels
développés dans une multitude de langages et de frameworks avec des styles architec-
turaux différents.

D’une manière générale, alors que les organisations tentent de suivre les dernières
tendances architecturales et d’éviter d’accumuler une dette technique, on constate une
demande d’adaptation des systèmes existants au cloud computing, au DevOps et aux
microservices [MB20b]. Pour lutter contre cette dette technique, profiter des dernières
avancées architecturales et technologiques, et moderniser leurs systèmes existants,
Berger-Levrault a mis en place une équipe de recherche et développement en génie
logiciel (R & D). C’est dans ce cadre, que cette thèse a été entreprise.

En effet, Berger-Levrault comme toute autre entreprise souffre d’une dette tech-
nique. Des exemples de cette dette technique peuvent être reflétés par le temps de dé-
ploiement de certains produits. Un exemple d’application vieillissante est celle dévelop-
pée à Montpellier, qui nécessite une demi-journée pour réussir à déployer une mise
à jour. Comme nous l’avons vu dans la section précédente, ce long temps de dé-
ploiement affecte le retour que les développeurs peuvent recevoir du système. Avec
un temps de déploiement aussi long, l’entreprise est obligée de planifier à l’avance
chaque version et les développeurs sont incapables de mettre en œuvre des techniques
DevOps efficaces. Cela est dû au fait qu’un seul gros exécutable doit être redéployé à
chaque mise à jour. Nous appelons communément ces grands exécutables des mono-
lithes, et dans la section suivante, nous décrivons comment les applications mono-
lithiques, sont structurées, leurs avantages et leurs limites inhérentes.

3https://www.berger-levrault.com/fr/
4https://www.berger-levrault.com/newsroom/

https://www.berger-levrault.com/fr/
https://web.archive.org/web/20220323132127/https://www.berger-levrault.com/newsroom/
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Verrous et Motivation

Le modèle économique du cloud computing réduisant le coût d’accès aux ressources
informatiques, les entreprises sont impatientes de passer au cloud. En outre, les en-
treprises sont impatientes à l’idée d’adopter les techniques DevOps pour réduire leur
délai de mise sur le marché et améliorer le cycle de développement. Avec la popu-
larisation du cloud et de DevOps, le style architectural orienté microservices peut être
considéré comme la prochaine étape logique pour tirer parti du cloud computing.

Néanmoins, les entreprises qui maintiennent des applications d’entreprise dévelop-
pées avant l’aube des microservices et qui souhaitent tirer parti du cloud doivent mi-
grer leurs systèmes existants vers une architecture orientée microservices. Pour mieux
comprendre pourquoi cette migration est nécessaire, il est important de comprendre
l’architecture de ces anciens systèmes.

Les applications monolithiques et leurs limites

En général, les logiciels d’entreprise sont construits comme un système en trois par-
ties : une interface utilisateur côté client, une base de données et une application côté
serveur [LF14b, DGL+17]. L’application côté serveur est construite comme un exé-
cutable logique unique et est appelée le monolithe. [LF14b]. Ces monolithes sont
construits comme un système à un seul niveau avec plusieurs couches, à savoir : les
couches de présentation, de logique métier et d’accès aux données.

Dans les premières étapes du développement d’applications monolithiques, l’architecture
est simple et donc facile à développer, à tester et à déployer. Pendant la phase de
conception initiale, les développeurs peuvent facilement comprendre et interagir avec
l’ensemble de l’application. Cependant, à mesure que les applications monolithiques
grandissent et vieillissent, elles deviennent plus complexes et plus difficiles à main-
tenir [DGL+17]. Avec le temps, elles tendent vers le modèle Big Ball of Mud proposé
par [FY79], c’est-à-dire un code spaghetti structuré de manière désordonnée.

De plus, alors que les entreprises se tournent vers l’informatique en nuage, les
monolithes sont mal adaptés pour en tirer parti. En effet, la mise à l’échelle d’un
monolithe nécessite de multiplier l’ensemble du monolithe et de le placer derrière un
équilibreur de charge. Par conséquent, l’utilisation de ses ressources ne peut se faire
que par grands incréments, alors que dans une architecture orientée microservices,
chaque service individuel peut être dupliqué selon les besoins. Sachant que le mod-
èle économique du cloud computing repose sur un service mesuré, la surutilisation de
ses ressources a un coût plus élevé. Par conséquent, l’architecture monolithique est
fortement désavantagée par rapport à la MSA.

L’adoption des techniques DevOps nécessite de disposer d’un système qui peut être
rapidement construit, testé et déployé [EGHS16]. Cependant, les monolithes ont ten-
dance à être de grandes applications héritées, ce qui fait que de nombreux développeurs
s’engagent sur la même base de code. Cela conduit à des états de construction insta-
bles fréquents de l’application et augmente le temps entre les constructions stables qui
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Figure 2: (a) Illustration d’une application monolithique et (b) de l’architecture alternative
basée sur les microservices.

peuvent être testées et déployées. Ainsi, cela ralentit l’intégration du monolithe, et
le retour d’information rapide attendu par les développeurs dans une méthodologie
CI/CD n’est plus possible. A l’inverse, le découpage du monolithe en un ensemble
de microservices permet une mise en œuvre efficace des techniques DevOps en fa-
vorisant les petites applications qui peuvent être construites plus rapidement [BHJ16].
En effet, le temps d’intégration entre les builds étant diminué, un feedback rapide aux
développeurs devient possible.

Un autre aspect à considérer est le verrouillage technologique d’une application
monolithique. En effet, lors de la phase de conception du monolithe, une pile tech-
nologique est choisie pour l’implémenter. Plus tard, si une nouvelle technologie appa-
raît, son intégration dans le monolithe peut s’avérer difficile, voire impossible. Ce n’est
pas le cas avec un MSA, car les nouvelles fonctionnalités peuvent être développées
sous forme de microservices distincts utilisant la nouvelle technologie, les microser-
vices étant faiblement couplés et communiquant via des protocoles légers.

Pour ces raisons, des entreprises telles que Berger-Levrault estiment que les ap-
plications monolithiques ne sont pas adaptées au Cloud et aux pratiques DevOps.
De plus, ces entreprises s’intéressent à l’architecture orientée microservices pour sur-
monter les limitations des applications monolithiques. Elles souhaitent donc migrer
leurs applications monolithiques existantes vers une architecture orientée microser-
vices pour bénéficier de sa plus grande flexibilité.

Migration des applications monolithiques vers un MSA

Nous avons établi que les systèmes patrimoniaux organisés sous forme d’applications
monolithiques sont mal adaptés au modèle économique du cloud computing et aux
techniques DevOps. De plus, les entreprises sont désireuses de tirer profit du Cloud et
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Figure 3: Le flux de travail de la migration se divise en deux phases : la phase d’identification
et la phase de matérialisation.

des techniques DevOps, par l’adoption d’architectures orientées microservices. Elles
cherchent donc à réécrire ou à faire migrer leurs systèmes existants vers une architec-
ture orientée microservices.

L’une des options dont disposent les entreprises est de réécrire leurs systèmes à par-
tir de zéro. Cependant, la réécriture complète d’une application est considérée comme
une tâche risquée, coûteuse et longue, avec un risque élevé d’échec. Par conséquent,
une migration est généralement une option plus sûre, avec plusieurs exemples de réus-
site documentés [BDD+18, FM17, SSBG20, LML20].

L’objectif principal de cette thèse est de contribuer à la migration d’applications
monolithiques orientées objet vers une architecture orientée microservices. A cette
fin, le problème de la migration de l’architecture d’une application existante vers une
architecture orientée microservice se divise en deux problèmes de recherche différents
:

1. Ingénierie inverse, ou identification, de l’architecture orientée microservices à
partir de l’application monolithique : Pour réussir la migration d’une applica-
tion vers une AMS, nous devons d’abord identifier l’architecture cible. Pour ce
faire, nous pouvons analyser les artefacts du programme, afin de récupérer une
description de l’architecture orientée microservice.

2. Transformer le code existant pour matérialiser l’architecture orientée microser-
vice : Une fois l’architecture cible identifiée, il est possible de la matérialiser. Pour
ce faire, le code source existant du monolithe doit être refactorisé pour produire
des microservices valides.

Concrètement, nous divisons la migration en deux phases distinctes pour répondre
à chaque problème (voir Figure 3) : la phase d’identification et la phase de transforma-
tion.

La phase d’identification est celle où l’architecture orientée microservices est récupérée
à partir d’un monolithe orienté objet. Ce problème de recherche peut être réduit à un
problème de clustering dans lequel le monolithe est vu comme un ensemble de classes
qui doivent être partitionnées en un ensemble de clusters, chacun représentant un can-
didat possible de microservice [Ami18, SSB+20b]. L’objectif de la phase d’identification
est de proposer une décomposition qui favorise les microservices hautement cohésifs et
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faiblement couplés. De nombreuses approches ont été proposées [BGDR17, GKGZ16,
Ami18, NSRS19, SRS20, ZLD+20, JLC+21] pour aborder la première phase du pro-
cessus de migration en partitionnant l’implémentation OO d’une application mono-
lithique donnée en clusters de classes qui représentent les différents microservices.
Bien que les clusters résultants aident à comprendre le MSA cible, chaque cluster ne se
traduit pas nécessairement par un microservice valide. En particulier, comme chaque
classe est partitionnée en son propre microservice, les dépendances entre les classes
appartenant à différents microservices demeurent.

L’objectif de la phase de transformation de la migration est de refactoriser le code
source monolithique pour matérialiser des microservices exécutables conformes à la
MSA cible, tout en préservant la logique métier de l’application. Dans le cas d’applications
OO, la principale difficulté est de transformer les dépendances OO entre les clusters de
classes en dépendances MSA. Ces transformations doivent respecter les principes du
refactoring (c’est-à-dire préserver la logique métier) sans dégrader les performances.
Cependant, malgré l’importance de la deuxième phase de la migration, ce n’est que
récemment, en 2021, que des approches ont proposé de traiter ce problème : [AS20,
FSC+21].

Contributions

Dans cette thèse, nous présentons 3 contributions principales au problème de la migra-
tion d’une application monolithique vers une architecture orientée microservices. Pour
expliquer les contributions, nous complétons cette section avec Figure 4 pour placer
chaque contribution dans le workflow de migration. Dans la figure, nous proposons
en entrée le code source d’une application monolithique vers deux processus de mi-
gration différents. Le premier processus de migration est la migration ad hoc d’une
application monolithique orientée objet, tandis que le second processus est piloté par
le modèle.

En explorant l’état de l’art, nous avons observé que les approches ascendantes
(c’est-à-dire les approches qui utilisent le code source comme entrée principale) ne
prennent pas en compte l’architecture interne des applications monolithiques. En ef-
fet, les applications actuelles ne sont pas purement orientées objet et s’appuient sur un
framework qui tente d’abstraire les fonctionnalités génériques, laissant l’implémentation
de la logique métier à l’utilisateur. Ces frameworks s’appuient sur l’inversion du
contrôle5, qui modifie le flux de contrôle et la manière dont les classes écrites par
l’utilisateur interagissent entre elles. De plus, des frameworks tels que Spring6, les
frameworks basés sur Node.JS7, ou ASP.NET Core8 s’appuient tous sur une architec-
ture technique en couches pour promouvoir la séparation des préoccupations. Par con-
séquent, nous avons entrepris de proposer une approche pour répondre au problème
de recherche lié à l’identification d’un MSA en prenant en considération l’architecture

5https://en.wikipedia.org/wiki/Inversion_of_control
6https://spring.io/
7https://nodejs.org/en/
8https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-5.0

https://web.archive.org/web/20220203235359/https://en.wikipedia.org/wiki/Inversion_of_control
https://web.archive.org/web/20220105033104/https://spring.io/
https://web.archive.org/web/20220205130756/https://nodejs.org/en/
https://web.archive.org/web/20220314061444/https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-5.0
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en couches internes des applications monolithiques. C’est dans ce contexte que nous
présentons Contribution #1, en proposant une approche qui prend en considération
les frameworks qui sont inhérents à tout système moderne. De plus, nous tirons parti
de l’architecture en couches internes, que ces cadres favorisent, pour identifier des
candidats microservices de qualité. Dans ce contexte, nous proposons de récupérer
l’architecture interne du monolithe et de la représenter via notre propre métamodèle.
A partir de ce modèle extrait, nous identifions les microservices tout en préservant
l’architecture en couches au sein de chaque microservice.

Dans cette thèse, nous nous sommes également concentrés sur le problème de
recherche concernant la transformation du code source du monolithe vers un MSA.
Notre raisonnement était que la littérature se concentrait principalement sur le prob-
lème de recherche lié à l’identification d’un MSA et qu’il manquait des travaux sur la
matérialisation du code source du MSA. De plus, notre équipe avait déjà travaillé sur le
problème d’identification [SSB+20b]. En particulier, ils ont proposé une approche pour
identifier de manière semi-automatique les candidats microservices en regroupant un
ensemble de classes qui composent le monolithe. En plus du code source, des recom-
mandations d’experts ont été utilisées pour améliorer l’identification.

Par conséquent, notre deuxième contribution porte sur le remaniement du code
source monolithique orienté objet afin de matérialiser l’architecture orientée microser-
vices (voir Contribution #2 dans Figure 4). Dans cette contribution, nous présentons
une approche ad-hoc qui prend le code source d’un monolithe OO et le remanie pour
le rendre conforme à l’architecture cible identifiée. Elle s’appuie sur un processus au-
tomatisé pour analyser le code source du monolithe par rapport à l’architecture cible,
et identifier les différents points de refactoring requis. Ensuite, en fonction du type de
refactoring requis détecté, un pattern de transformation est appliqué. Enfin, chaque
candidat microservice est packagé et configuré dans son propre projet.

Enfin, Contribution #2, bien qu’applicable à tout langage orienté objet, était lim-
ité par sa mise en œuvre qui ne couvre que les systèmes basés sur Java. De plus,
d’autres approches proposées pour migrer les monolithes vers un MSA se limitent
également aux systèmes basés sur JAVA (par exemple, [FSC+21], [FFC21]), et ne pro-
posent pas d’approche générique. Dans ce contexte, nous présentons Contribution #
3, qui utilise des techniques d’ingénierie dirigée par les modèles pour proposer une
approche de migration générique et extensible, pouvant être réutilisée dans différents
contextes. Dans la première partie (Contribution # 3.1), nous intégrons l’approche
d’identification dans un workflow piloté par les modèles de bout en bout pour migrer
une application monolithique orientée objet. De plus, nous présentons également un
ensemble de métamodèles et de transformations de modèles (Contribution #3.2) pour
représenter l’architecture de microservices identifiée et générer le code source cible.
Dans ce flux de travail, nous utilisons spécifiquement les travaux présentés dans Con-
tribution #1, cependant, d’autres approches d’identification peuvent être appliquées.
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Figure 4: Les contributions proposées dans le workflow de la migration.
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The work presented in this thesis is the fruit of the collaboration between the LIRMM1

(Laboratory of Informatics, Robotics, Microelectronics of Montpellier) and the com-
pany Berger-Levrault2. Therefore, we first begin by introducing the scientific context
of this thesis, followed by the industrial context. Then, we present the motivation
behind this thesis and the main research problems. Finally, we highlight the main con-
tributions of this thesis as well as its structure.

1https://www.lirmm.fr/
2https://www.berger-levrault.com/fr/
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2 Chapter 1. Introduction

1.1 Scientific Context

To understand the motivation behind companies wanting to modernize their existing
systems, several concepts need to be introduced. Therefore, in this section we present
three different concepts: cloud computing, DevOps, and microservices. In addition,
we also present what advantages they present to companies that adopt them.

1.1.1 Cloud Computing

Cloud computing is the concept of enabling access to an on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) [Ray18, MG11]. These resources can be rapidly provisioned
and released with minimal management or interaction with the service provider [MG11].
These resources are made available based on the business model "pay-as-you-go",
where the usage of these resources are metered. In other words, the consumer pays
for the resources they use. This type of business model contrasts with the standard
on-premise server in which a physical, on-site server is managed and maintained in-
dividually by its user (see Figure 1.1). We divide cloud-computing into three types of
services: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS) [RCL09]. In Figure 1.1, we illustrate the differences between each
service and the traditional on-premise model.

Figure 1.1: Differences between each cloud-computing service model and the on-premise
model.

Concretely, Infrastructure as a Service (IaaS) involves providing the consumer with
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the capability to provision processing, storage, networks, and other fundamental com-
puting resources directly. The consumer is able to deploy and run arbitrary software,
which can include operating systems and applications [MG11]. Examples of IaaS in-
clude Amazon’s Elastic Compute Cloud3, Google Cloud Platform4, and Microsoft’s
Azure5.

Meanwhile, Platform as a Service (PaaS) is a service which provides to the con-
sumer the capability to deploy their own application onto the cloud infrastructure.
These consumer-created applications can be created using languages, libraries, and
tools supported by the provider [MG11]. In contrast with IaaS, the consumer does not
manage or control the underlying cloud infrastructure including network, servers, op-
erating systems, or storage. Instead, they can only control and manage the deployed
applications, its data, and the configuration settings for the application-hosting envi-
ronment.

Finally, Software as a Service (SaaS) is a service which provides to the consumer
with the capability to use the provider’s applications running on a cloud infrastructure.
These applications are typically made accessible to various devices through either a
light client interface, such as a web browser (e.g., web-based email such as Gmail) or
a dedicated smartphone or desktop application [MG11]. At this level, the consumer
does not manage or control the underlying cloud infrastructure, instead they can be
seen as a user of the software provided by a consumer of a PaaS/IaaS.

Essentially, the cloud computing model proposes an on-demand self-service in which
anyone can use to provision the required resources for their projects. These resources
are provided in an abstract way, facilitating their use. Furthermore, cloud systems
control and optimize resource use through automatic metering capabilities which al-
low for better transparency for both provider and consumer of the utilized service (i.e.,
cost flexibility) [MG11]. Also, these resources are set up to be quickly provisioned and
released, to scale up/down rapidly based on the demand of the consumers (i.e., high
elasticity) [MG11].

This contrasts with the upfront investment in an on-premise infrastructure, in which
companies are locked into and cannot easily scale based on their changing require-
ments [JAP13]. For these reasons, companies are eager to migrate toward the cloud
[JAP13]. Furthermore, when combined with efficient DevOps practice, it enables a
streamline from the development to the deployment of the software towards the Cloud.

1.1.2 DevOps

DevOps (Development and Operations) is a set of software engineering practices and
philosophy that utilizes cross-functional teams (development, operations, security, and
quality assurance) to build, test, and release software faster and more reliably through
automation [MB20a]. Essentially, each phase of development and operations is guided

3https://aws.amazon.com/fr/ec2/
4https://cloud.google.com/
5https://azure.microsoft.com/en-us/

https://aws.amazon.com/fr/ec2/
https://cloud.google.com/
https://azure.microsoft.com/en-us/
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by a semi-automated pipeline initiating each phase one after the other (see Figure 1.2).
Instead of releasing software after a long cycle of development (e.g., 3-4 weeks), up-
dates can be brought to the end user daily, and bug fixes can be deployed in hours.

Figure 1.2: DevOps Scheme.

Particularly, this can be achieved by adopting the CI/CD method. Continuous Inte-
gration (CI) requires the developer to commit the code several times in a day followed
by automatic build and test and immediate feedback to the developer whenever any
bug is encountered [AGC18]. While, Continuous Deployment (CD)6 is a key practice
for making software development process reliable and faster. The feedbacks from the
Production and Operations team are made available to the developer at frequent stages
facilitating improvement and automation [AGC18, Che18]. Together, they create a vir-
tuous circle, or positive feedback loop, by allowing developers to quickly react to effect
of their changes on the stability of the software after integration and the deployment.

1.1.3 Microservices

Figure 1.3: A simple illustration of a microservice-oriented architecture.

Microservices, and more particularly the microservice-oriented architecture (MSA),
is one of the latest trends to develop applications on the Cloud. In the literature, mul-
tiple definitions have been proposed [LF14b, Ric22, DGL+17]. According to them,
the microservice architectural style is an approach to developing a single applica-
tion as a set of small services, running on their own processes, which communicate

6CD can also stand for Continuous Delivery, but for simplicity’s sake we refer to deployment
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via lightweight mechanisms (e.g., gRPC, REST API, events). Each microservice is
built around specific business capabilities, is independently deployable (via auto-
mated deployment), data autonomous, and can be developed by small independent
teams. Finally, by virtue of being independent projects, each microservice can be im-
plemented using different languages, frameworks and technologies, thus making the
microservice-oriented architecture language-agnostic.

A simple representation of the microservice architecture is depicted in Figure 1.3,
which illustrates the architecture as a group of loosely-coupled modules communicat-
ing via lightweight mechanisms. Furthermore, in this example we show the flexibility
of this architecture, in which it can serve different frontend applications. Moreover,
each microservice is independently deployable, they can be independently scaled up-
/down dynamically based on the demand of the service [LF14b]. When paired with
cloud computing’s elasticity, the scalability of the architecture allows to optimize the
resources utilized. Since each microservice is made to be small, the start-up time is
considerably lower than traditional applications7.

Furthermore, the microservice-oriented architecture promotes DevOps practices.
Indeed, by virtue of its design, each microservice can be developed and deployed
quickly and independently of each other. Thus, they enable continuous integration
and deployment of the application as a whole, and allows for a greater turn around for
the development of new features, and emergency maintenance [Ric22].

1.2 Industrial Context

Berger-Levrault8 is a private software editor offering its suite of software solutions to
a wide variety of clients. Their customers can be found in both the private and the
public sector, and they offer more than 150 products in a wide variety sectors (e.g.,
health, public administration, education). This large catalog of software can be eas-
ily explained through the company’s business strategy of acquiring existing compa-
nies. In 2021 alone, Berger-Levrault has acquired 2 different companies 9. However,
with each acquisition, Berger-Levrault inherits the architectural and technological de-
cisions of others. In other words, this strategy comes with a cost: they must maintain a
wide-variety of software developed in a multitude of languages and frameworks with
different architectural styles.

In general, as organizations try to keep up with the latest architectural trends, as
well as avoid accumulating technical debt, there has been a demand to adapt legacy
systems to cloud computing, DevOps, and microservices [MB20b]. To combat this
technical debt, take advantage of the latest architectural and technological advances,
and modernize their existing systems, Berger-Levrault has set up a software engineer-
ing research and development (R&D) team. It is within this framework, that this thesis
was undertaken.

7See Section 1.3.1 on monolithic applications.
8https://www.berger-levrault.com/fr/
9https://www.berger-levrault.com/newsroom/

https://www.berger-levrault.com/fr/
https://web.archive.org/web/20220323132127/https://www.berger-levrault.com/newsroom/
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Indeed, Berger-Levrault like any other companies suffers from technical debt. Ex-
amples of this technical debt can be reflected by the time of deployment of certain prod-
ucts. An example of an aging application is one developed in Montpellier, SeditRH,
which proposes a solution for the management related to Human Resources (HR). Sed-
itRH is one of several products proposed by the team in Montpellier among Omaje
which we use to validate our approach in Chapter 5. The particularity with SeditRH is
that it is particularly large and requires half of a day to successfully deploy an update.
As we’ve seen in the previous section, this long time to deploy affects the feedback that
developers can receive from the system. With such long deployment time, the com-
pany is forced to plan ahead for each release and developers are unable to implement
effective DevOps techniques. This is due to having one large executable that must be
redeployed upon each update. We commonly refer these large executables as mono-
liths, and in the next section, we describe how monolithic application, are structured,
their advantages, and their inherent limitations.

1.3 Problems & Motivation

As the cloud computing business model lowers the cost of access to computing re-
sources, companies are eager to transition to the Cloud. Furthermore, companies are
eager about the idea of adopting DevOps techniques to lower their time-to-market and
improve the development cycle. With the popularization of the Cloud and DevOps, the
microservice-oriented architectural style can be considered the next logical step to take
advantage of cloud computing.

Nevertheless, companies that maintain enterprise applications developed before
the dawn of microservices and wish to take advantage of the Cloud must migrate their
existing systems towards a microservice-oriented architecture. To better understand,
why this migration is necessary, it is important to understand the architecture of these
legacy systems.

1.3.1 Monolithic applications and their limitations

In general, enterprise software are built as a 3-part system: a client-side user interface,
a database, and a server-side application [LF14b, DGL+17]. The server-side application
is built as a single logical executable and is referred to as the monolith [LF14b]. These
monoliths are built as a single-tiered system with multiple layers, namely: presenta-
tion, business logic, and data-access layers.

In the early stages of developing monolithic applications, the architecture is straight-
forward and therefore easy to develop, test, and deploy. During the initial conception
phase, developers can easily understand and interact with the entire application. How-
ever, as monolithic applications grow and age, they become more complex and harder
to maintain [DGL+17]. With time, they tend towards the Big Ball of Mud pattern pro-
posed by [FY79], which is to say a haphazardly structured spaghetti code.
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Furthermore, as companies shift to using cloud computing, monoliths are ill-adapted
to take advantage of it. Indeed, scaling a monolith requires multiplying the entire
monolith and placing it behind a load-balancer. As a consequence, its resource utiliza-
tion can only be made in large increments, whereas in a microservice-oriented archi-
tecture, each individual service can be duplicated as needed. Knowing that the cloud
computing business model rests upon a metered service [MG11], over-utilization of its
resources comes at a greater cost. Consequently, the monolithic architecture is greatly
disadvantaged when compared to the MSA.

Figure 1.4: (a) An illustration of a monolithic application, and (b) the alternative microservice-
based architecture.

The adoption of DevOps techniques requires having a system that can be quickly
built, tested, and deployed [EGHS16]. However, monoliths tend to be large legacy ap-
plications which results in many developers committing to the same code base. This
leads to frequent unstable build states of the application and increases the time be-
tween stable builds which can be tested, and deployed. Thus, this slows the integration
of the monolith, and the rapid feedback expected by developers in a CI/CD methodol-
ogy is no longer possible. In contrast, splitting the monolith into a set of microservices
enables effective implementation of DevOps techniques by promoting small applica-
tions which can be built more quickly [BHJ16]. Indeed, as the integration time between
builds is decreased, rapid feedback to the developers becomes possible.

Another aspect to consider is the technological lock-in of a monolithic application.
Indeed, during the conception phase of the monolith a technological stack is chosen to
implement it. Further down the line, if a new technology appears, integrating it into
the monolith may prove difficult or even impossible. This is not the case with an MSA,
as new features can be developed as a separate microservice using the new technology,
as microservices are loosely-coupled and communicate via lightweight protocols.

For these reasons, companies such as Berger-Levrault believe that monolithic ap-
plications are not adapted to the Cloud and to DevOps practices. Furthermore, these
companies are interested into microservice-oriented architecture to overcome the lim-
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Figure 1.5: The migration workflow divided into two phases : the identification and the mate-
rialization phase.

itations found with monolithic application. Therefore, they wish to migrate their ex-
isting monolithic applications towards a microservice-oriented architecture to benefit
from its greater flexibility.

1.3.2 Migrating monolithic applications toward an MSA

We have established that legacy systems organized as monolithic applications are ill-
adapted to cloud computing business model and DevOps techniques. Moreover, com-
panies are eager to take advantage of the Cloud and DevOps techniques, through the
adoption of microservice-oriented architectures. Therefore, companies seek to rewrite
or migrate legacy systems towards a microservice-oriented architecture.

One option companies have is to rewrite their systems from scratch. However,
the complete rewrite of an application is considered to be a risky, costly, and time-
consuming task with a high risk of failure [BLWG99a]. As a consequence, a migra-
tion is usually a safer option with several documented success stories [BDD+18, FM17,
SSBG20, LML20].

The main goal of this thesis is to contribute to the migration of monolithic object-
oriented applications towards a microservice-oriented architecture. To this end, the
problem of migrating the architecture of an existing application towards a microservice-
oriented one can be split into two different research problems:

1. Reverse engineering, and identifying, the microservice-oriented architecture
from the monolithic application: To successfully migrate an application towards
an MSA, we must first identify the target architecture. To do so, we can analyze
program artifacts, in order to recover a description of the microservice-oriented
architecture.

2. Transforming the existing code to materialize the microservice-oriented archi-
tecture: Once the target architecture has been identified, it can be materialized.
To do so, the existing source code of the monolith must be refactored to produce
valid microservices.

Concretely, the migration is divided into two distinct phases to address each prob-
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lem (see Figure 1.5): the identification and the transformation phase.

The identification phase is where the microservice-oriented architecture is recov-
ered from an object-oriented monolith. This research problem can be considered as
a clustering problem in which the monolith is seen as a set of classes which must be
partitioned into a set of clusters, each representing a possible microservice candidate
[Ami18, SSB+20b]. The goal of the identification phase is to propose a decomposition
that promotes highly-cohesive and loosely-coupled microservices. Many approaches
have been proposed [BGDR17, GKGZ16, Ami18, NSRS19, SRS20, ZLD+20, JLC+21] to
address the first phase of the migration process by partitioning the OO implementa-
tion of a given monolithic application into clusters of classes that represent the different
microservices. Although the resulting clusters help understand the target MSA, each
cluster does not necessarily translate into a properly-defined microservice. In partic-
ular, as each class is partitioned into its own microservice, any dependencies between
classes belonging to different microservices remains.

The goal of the transformation phase of the migration is to refactor the monolithic
source code to materialize run-able microservices that conform to the target MSA,
while preserving the business logic of the application. In the case of OO applications,
the main difficulty is to transform the OO dependencies between the clusters of classes
into MSA ones. These transformations must adhere to refactoring principles (i.e., pre-
serve the business-logic) without degrading the performance. However, despite the
importance of the second phase of the migration, only as recently as 2021 has there
been approaches that propose to address this issue [AS20, FSC+21].

1.4 Thesis contributions

In this thesis, we present 3 main contributions to the problem of migrating a monolithic
application towards a microservice-oriented architecture. We illustrate our contribu-
tions in Figure 1.6 to place each contribution within the migration workflow. In the
figure, we propose two different migration processes that takes as input the source
code of a monolithic application. The first migration process is the ad hoc migration of
object-oriented monolithic application, while the second process is the model-driven
one.

1.4.1 Leveraging the internal layered architecture to identify an MSA

The first problem that we address is that of the majority of bottom-up approaches (i.e.,
approaches that use the source code as their main input) fail to consider the internal
architecture of monolithic applications. Indeed, today’s applications are not purely
object-oriented and rely on a framework which attempts to abstract generic function-
alities, leaving the implementation of the business logic to the user. These frameworks
rely on the inversion of control10, which changes the flow of control and how user-

10https://en.wikipedia.org/wiki/Inversion_of_control

https://web.archive.org/web/20220203235359/https://en.wikipedia.org/wiki/Inversion_of_control
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written classes interact with each other. Furthermore, frameworks such as Spring11,
Node.JS-based frameworks12, or ASP.NET Core13 all rely on a technically-layered ar-
chitecture to promote a separation of concerns. Therefore, we set out to propose an
approach to address the research problem related to the identification of an MSA by
taking into consideration the internally-layered architecture of monolithic applications.
It is in this context that we present our first contribution (see Contribution #1 in Fig-
ure 1.6), by proposing an approach that takes into consideration the frameworks that
are inherent in any modern system. Furthermore, we leverage the internally-layered
architecture, which these frameworks promote, to identify quality microservice candi-
dates. In this context, we propose to recover the internal architecture of the monolith
and represent it via our own metamodel. From this extracted model, we identify mi-
croservices while preserving the layered architecture within each microservice.

1.4.2 Microservice materialization

In this thesis, we also focused on the research problem regarding the transformation of
the monolith’s source code towards an MSA. Our reasoning was that the literature fo-
cused mainly on the research problem related to identifying an MSA and there lacked
work in the materialization of the source code of the MSA. Moreover, our team had pre-
viously worked on the identification problem [SSB+20b]. Particularly, they proposed
an approach to semi-automatically identify microservice candidates by clustering a set
of classes which make up the monolith. In addition to the source code, expert recom-
mendations were used to improve the identification.

Therefore, our second contribution is towards refactoring monolithic object-oriented
source code to materialize the microservice-oriented architecture (see Contribution #2
in Figure 1.6). In this contribution, we present an ad-hoc approach that takes the source
code of an OO monolith and refactors it to conform to the identified target architecture.
It relies on an automated process to analyze the source code of the monolith with re-
gard to the target architecture, and identify the different required refactoring points.
Then, based on the type of required refactoring detected, a transformation pattern is
applied. Finally, each microservice candidate is packaged and configured into its own
project.

1.4.3 Model-driven migration approach

Finally, while the second contribution is applicable to any object-oriented language,
it was limited by it implementation which only covers Java-based systems. Further-
more, other approaches proposed to migrate monoliths towards an MSA also limit
themselves to JAVA-based systems (e.g., [FSC+21], [FFC21]), and do not propose a
generic approach. In this context, we present our third contribution (see Contribu-
tion # 3 in Figure 1.6), which uses model-driven engineering techniques to propose a

11https://spring.io/
12https://nodejs.org/en/
13https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-5.0

https://web.archive.org/web/20220105033104/https://spring.io/
https://web.archive.org/web/20220205130756/https://nodejs.org/en/
https://web.archive.org/web/20220314061444/https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-5.0
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generic, and extendable migration approach which can be reused in different contexts
(i.e., languages). In the first part (see Contribution # 3.1 in Figure 1.6), we integrate
the identification approach in an end-to-end model-driven process to migrate a mono-
lithic object-oriented application. Furthermore, we also present a set of metamodel and
model transformation rules as Contribution #3.2 to represent the identified microser-
vice architecture and generate the target source code. In this workflow, we specifically
use the approach proposed as our first contribution (Contribution #1), however, other
identification approaches can be integrated.

Figure 1.6: The proposed contributions within the migration workflow.
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1.5 Structure of the Thesis

We have organized this thesis as follows:

• Chapter 2 presents the state-of-the-art concerning the migration of a monolithic
application towards microservice-oriented architecture.

• Chapter 3 presents our contribution to identify a microservice-oriented architec-
ture by leveraging the internal architecture found in modern applications.

• Chapter 4 presents our contribution for materializing the identified architecture
from the source code of an object-oriented monolithic application.

• Chapter 5 presents our contribution for an end-to-end model-driven approach
for the migration towards a microservice-base architecture.

• Finally, in Chapter 6 we summarize and conclude on the contributions presented
in this thesis, and we provide several perspectives towards future works and
challenges.



II

State of the Art

Contents
2.1 Introduction to Software Migration . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Software reverse-engineering . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Software Transformation . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Taxonomy of Microservice Identification Approaches . . . . . . . . . 16

2.2.1 Input of Microservice Identification Approaches . . . . . . . . . 18

2.2.2 Process of Microservice Identification Approaches . . . . . . . . 21

2.2.3 Output of Microservice Identification Approaches . . . . . . . . 25

2.2.4 Summary of the Taxonomy . . . . . . . . . . . . . . . . . . . . . 26

2.3 Transformation towards an MSA . . . . . . . . . . . . . . . . . . . . . 28

2.4 Discussion and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

The goal of this chapter is to present the main concepts of the research domain
of software migration, as well as the related work to the contributions presented in
this thesis. In Section 2.1, we present the main concepts of software migration and its
two main steps: reverse-engineering (incl. restructuration) and source code transfor-
mation. In Section 2.2, we present the taxonomy related to the reverse-engineering,
or identification, of a microservice-oriented architecture. In Section 2.3, we present
the related work for transformation of monolithic applications towards the identified
architecture. In Section 2.4, we discuss the state-of-the-art of this thesis and the limi-
tations of the literature in relation to the goal of this thesis. Finally, we conclude this
chapter in Section 2.5.
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2.1 Introduction to Software Migration

A legacy software system corresponds to a system built upon an obsolete language,
platform, architecture, or a mix of all three. The system is still able to fulfill the needs
for which it was built. However, over time its maintenance has become increasingly
expensive and difficult [MB20b]. To palliate this effect, software evolution offers to
modernize legacy system through what is called software migration. Software migra-
tion facilitates the shift of legacy systems to new environments that allow them to be
more easily maintained and adapted to meet new business requirements without re-
developing it from scratch [BLWG99b].

Figure 2.1: The horseshoe model applied on architecture-driven software migration [SPL03].

Originally proposed in [KWC98], the Horseshoe Model is a visual metaphor to de-
scribe the "integration of code-level and architectural reengineering views of the world".
This model was later extended to describe the methodology of architecture-driven mi-
gration [SPL03]. Figure 2.1 illustrates the extended horseshoe model. The first step of
the migration process is the reverse-engineering of the high-level abstract representation
(i.e., base architecture) from the legacy source code. The step of reverse-engineering
goes through several steps of abstraction from the source code, to the code structure
representation (e.g., an AST1 of the source code), to an architectural representation. In
the next step, the base architecture is transformed using a set of transformation rules to
produce the desired architecture. Finally, during the forward engineering step, the de-
sired architecture is used to produce more concrete representations such as the target

1Abstract Syntax Tree
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source code. Generally, during the migration process we focus on the first two steps:
the reverse-engineering and the transformation, and include the code generation as
technical implementation of the transformation step.

2.1.1 Software reverse-engineering

The IEEE standard for software maintenance defines reverse-engineering as a pro-
cess of extracting software system (e.g., documentation) from the source code [IEE98].
Chikofsky and Cross describe reverse-engineering as a process to analyze a system
to (1) identify the system’s artifacts and their dependencies and (2) create representa-
tions of the system [CC90]. This representation can be a higher-level abstraction of the
system, or it can be a representation of the system in another form [CC90]. Reverse-
engineering has, among others, two subfields of interest: re-documentation and design
recovery [CC90].

Re-documentation is the process of creating or recovering the documentation about
a system. Tools for re-documentation include diagram generators, API documenta-
tion, etc. With these tools, the main goal is to visualize otherwise invisible relation-
ships within the system. Indeed, whether an initial documentation is created during
the conception of a system, as the system ages the documentation can drift until it no
longer represents it. Then, it becomes necessary to extract an updated view of the sys-
tem to increase its comprehension. One such design recovery approach is proposed in
[GCD+17] to recover the architecture of an existing microservice-oriented application.

Design recovery goes further by recreating design abstractions from a combination
of source code, design documentation, expert knowledge, and the system’s domain
[Big89]. This is also the initial step of the extended horseshoe model presented in
Figure 2.1. Indeed, to evolve a legacy system understanding and having an updated
representation is necessary.

2.1.2 Software Transformation

Reverse-engineering is a process of introspection, not a process of change or replica-
tion [BLWG99b]. In other words, it does not involve changing or creating a new sys-
tem based on the reserve-engineered system. The step in the migration process after
reserve-engineering is the restructuring, or transformation step. Software restructura-
tion, is the process of changing one representation form to another at the same relative
abstraction level, while preserving the functional and semantic behavior of the system
[CC90]. It can take place at any abstraction level such as the source code (i.e., source-to-
source transformation), or the architectural representation (i.e., model-to-model trans-
formation). This is not to be confused with reverse-engineering which involves creat-
ing a higher-level abstraction than the initial model, nor forward-engineering which
involves creating a more concrete representation of the model.

A model transformation can be defined as a set of transformation rules that specify
how to change a system’s model representation to a model in the target architecture
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[KWB03]. Furthermore, a transformation rule is a description of how entities of the
source model can be transformed into entities of the target model. The model being
transformed can be the source code itself, any abstract representation of the source
code, or a combination of both. Led by the reverse engineering effort, the transforma-
tion rules and patterns are applied to the initial source code representation, to produce
the target source code representation. Finally, the valid source code is generated from
these representations.

2.2 Taxonomy of Microservice Identification Approaches

To address the problem of identifying a microservice-oriented architecture from an
existing legacy system, a significant quantity of approaches have been proposed. This
section aims to extract, categorize, and discuss the goals and limitations of the different
papers that present a microservice identification approach (MIA).

The classification of identification approaches is not new endeavor. Indeed, the
migration of OO applications towards newer paradigms such as component-based ar-
chitecture or service-oriented architecture. Several works have been produced to cate-
gorize architecture identification approaches in the field of reverse-engineering. For in-
stance, [AS16] proposes a categorization for component identification approaches that
migrate object-oriented applications towards component-based ones. In this work, the
author presents a taxonomy based on 5 different categories: source, reverse engineer-
ing, transformation, target, and goal. Additionally, [Sha15] proposes a taxonomy for
component identification which focuses on 4 main categories: input, process, output,
and goal. More recently, [ASM+21] proposes a taxonomy on service identification ap-
proaches (SIA). Similarly to [Sha15], they focus on categorizing SIAs based on input,
process, and output. However, the authors of [ASM+21] also consider the usability
of the identification approaches. Finally, [Sel19] proposes a taxonomy of microservice
identification approaches that, like the other taxonomies focuses on the input, pro-
cess, and output of each approach. Additionally, they focus on the objective of the
approaches.

To summarize, these taxonomies mainly focus on categorizing the extracted ap-
proaches based on the input of the approach, the type of algorithm used (or process),
and the output produced by the approach. In the case of [Sha15] and [Sel19], they also
focus on the quality metrics used to guide the identification. Additionally, [ASM+21]
also take into consideration the usability of each approach. In the taxonomy presented
in this thesis, we focus on categorizing each MIA based on the following 3 dimensions:
input, process, and output. While we wanted to present a taxonomy on the migra-
tion of monolithic applications towards microservice-oriented architectures (like in the
work of [AS16]), none of the approaches we extracted from the literature proposed an
approach that covered both research problems of the migration process.

For this taxonomy, we extracted a total of 33 MIAs. Concretely, we categorize the
extracted MIAs using the taxonomy schema illustrated in Figure 2.2. We divide this
section into 3 parts, each covering a specific dimension, their different attributes, and
the categorization of each approach within the dimension. Additionally, we conclude
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Figure 2.2: Taxonomy of microservice identification approaches inspired by the works of
[SSB+20b], [Sha15], and [ASM+21].
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this section with a discussion on the result of the taxonomy.

2.2.1 Input of Microservice Identification Approaches

The required inputs by an identification approach are categorized into 3 distinct groups:
(1) executable model representations, (2) non-executable model representations, and
(3) domain artifacts. Approaches can use one or more different type of inputs based
on their requirements. Table 2.1 presents the extracted MIAs based on the inputs they
use.

2.2.1.1 Executable Model Representations

We distinguish three different sub-categories of executable model representations, source
code, database, and test cases.

Source Code: As a system ages, it tends to become the only reliable source of in-
formation available. This may be why it is the most used artifact from the extracted
MIAs, with more than 50% of approaches using it as the primary source of infor-
mation. The source code is used to extract dependencies between program artifacts
(e.g., classes, methods/functions, attributes, etc.) to better understand the system and
extract higher-level information. Oftentimes, MIAs partition program artifacts such
classes into a set of clusters based on these dependencies. For instance, [AM21] and
[KXK+21] both extract classes from the systems and partition them based on their co-
hesion.

Database: The database model representation includes the database schemas, stored
procedures and database contents. Approaches that require the database as a source
of information, use it group program artifacts based on the data they consume. This
practice stems from domain-driven design which focuses on modeling a system based
on the domain described by an expert [Eri03]. In [LTV16] the database schema is used,
along with the interfaces and business logic, to create a 3-set of entities to represent
the monolith. The 3-set is then partitioned to create a set of microservice candidates.
Similarly, in [DABPF18], the database is also used as an input to guide the decompo-
sition of the source code. Alternatively, the approach presented in [GBMM20] maps
the stored procedures of the database to the system requirements through a structured
process to discover the microservice candidates.

Test Cases: A test case is a description of the inputs, execution conditions, and ex-
pected outcomes that is run to meet a given software testing goal. Test cases are used
in the approaches presented in [JLZ+18] and [JLC+21]. In both MIAs, test cases are
used to run different features (e.g., account management) of the targeted application
to generate log traces. Through these log files, they are able to map the classes and
their dependencies. In [JLZ+18], they apply a clustering algorithm to group classes
into highly cohesive and loosely couple clusters that become microservice candidates.
Alternatively, in [JLC+21], they generate functional atoms by grouping highly-cohesive
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Approach Executable Model
Representation

Non-Exec. Model
Representation Domain Artifacts

[LTV16] source code, database
[ECA+16] source code
[GKGZ16] documentation,

expertise
[BGDR17] documentation

(OpenAPI)
[MCL17] source code VCS
[CLL18] DFD
[DABPF18] source code, database
[Ami18] BPMN
[JLZ+18] source code, test cases log traces
[KYHM18] source code
[AIE19] executable log traces
[BSG20] source code
[NSRS19] source code
[SOMS19] source code
[PFM19] source code
[ACC+21] source code documentation
[ERM20] log traces

[GBMM20] database
(stored procedures) documentation

[KXL+20],
[KXK+21] source code use cases, log

traces
[KZH+20] source code expertise (do-

main analysis)
[LO20] source code VCS
[SRS20] source code expertise
[SSB+20b] source code, database
[TS20] source code log traces
[ZLD+20] executable log traces
[MCF+20] source code log traces
[ADM20],
[AM21] source code documentation

(OpenAPI)
[JLC+21] source code, test cases log traces
[SQMC21] source code expertise (do-

main analysis)
[BCS21] source code
[DMF+20],
[DEF+21]

BPMN ontology

[ASS+21] source code, database
[ZSS+22] source code, database expertise

Table 2.1: Classification of the extracted MIAs based on their processes.
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classes, and then apply a search-based algorithm to group the atoms into a set of mi-
croservice candidates.

2.2.1.2 Non-executable Model Representations

We distinguish two different sub-categories of non-executable model representations,
model artifacts and runtime artifacts.

Model Artifacts: Model artifacts serve to abstract the structure and behavior of a
system. This can include business process models, dataflow diagrams, use cases, ac-
tivity diagrams, or store machine diagrams. Business process models (BPM) describe
a set of activities and tasks coordinated in a business environment to accomplish an
organizational goal [Ami18]. In the investigated approaches, two MIAs ([Ami18] &
[DEF+21]) use BPMs represented in BPMN (Business Process Model and Notation) to
perform a top-down2 decomposition of a monolith. Dataflow diagram is a type of
graphical representation of data flow through an information system. It is used in
[CLL18] to perform a top-down decomposition of the dataflow diagram to identify
design-time microservice candidates. The use case corresponds to a set of actions per-
formed by the system based on the interactions with an actor. This actor can be either
human or an external system. In the approach proposed by [KXL+20], the use case
are used to collect use-case-based execution traces on the application. We denote that
none of the extracted approaches use the following: activity diagrams, store machine
diagrams.

Runtime Artifacts: Runtime artifacts include any artifact that can be collected from
the execution of a system. We include two types of runtime artifacts, trace logs and
user-application interactions. Software tracing involves a specialized use of logging
to record information about a program’s execution. The output is commonly used for
debugging and diagnosis purposes. In the case of microservice identification, it can
be used to create a graph representation of program artifacts and their dependencies.
Specifically, the MIA presented in [JLZ+18] proposes to run test cases to generate traces
of the system. From those traces, they are able to build a dependency graph which is
partitioned using a clustering technique. Similarly, user-application interactions can be
collected and to study the relationship between the user and the system. In the MIAs
extracted for this taxonomy, none propose to use user-application interactions.

2.2.1.3 Domain Artifacts

We distinguish four different sub-categories of executable model representations, doc-
umentation, expert knowledge, ontology, and version control history.

Documentation: Software documentation includes any file that attempts to doc-
ument information on the system. It can include information about the system from
the point of view of the end user or the developer. When available, documentation

2Direction of an analysis which starts from high-level artifacts such as BPMs
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accompanies the source code of the system to assist the developer. One type of doc-
umentation that is often written is the specification of the API implemented by the
system, which is used by developers which wish to consume its API. This type of
documentation is the primary input used by the MIAs proposed in [BGDR17] and
[ADM20, AM21]. In [BGDR17], they propose to cluster the system’s API based on
their semantic similarity by analyzing the OpenAPI specification3. Similarly, the MIA
proposed in [ADM20, AM21] uses the OpenAPI specification to extract the operations
exposed by the monolith. [GBMM20] uses the system requirements defined in the sys-
tem’s documentation to identify features of interests which are then mapped to the
stored procedures of the system. Finally, [ACC+21] maps the documented features, to
a set of program artifacts (i.e., methods) which are organized into a dependency graph
to be decomposed using an evolutionary algorithm.

Ontology: An ontology can be defined as a structured set of terms and concepts
representing the meaning of a field of information. The ontology of a system is used in
[DMF+20, DEF+21] to establish the semantic dependency between the different activi-
ties of the BPM.

Version Control History: Version control system (VCS) is a type of system for man-
aging changes in a project. It has become essential for modern software development
as it allows for a large group of developers to collaborate on the same system while
minimizing the time spent by developers to coordinate different versions of their sys-
tem4. The changes brought to the system are recorded and attributed to specific de-
velopers by VCS tools. These records can be used to infer evolutionary coupling in-
formation [LO20]. This concept of evolutionary similarity is presented in [LO20], and
it proposes that program entities that are changed together are similar. Similarly, the
MIA proposed in [MCL17] uses version control history to group evolutionary similar
program entities.

Expert Knowledge: Experts can also be included in the microservice identification
process to include knowledge of the system that cannot be found in the documenta-
tion. It can also be used to supplement existing inputs, such is the case of [SSB+20b].
In their works, the authors propose a semi-automatic approach which can optionally
accept different type of inputs from the expert on the ideal microservice architecture
(e.g., the number of microservices, the center of gravity for each microservice). Sim-
ilarly, both [SQMC21] & [ACC+21] identifies a set of microservice candidates based
on the number of microservices provided by the expert. Furthermore, [SQMC21] also
optionally accepts a set of fine-tuning parameters to function.

2.2.2 Process of Microservice Identification Approaches

The process of a microservice identification approach can be decomposed into 4 cate-
gories: (1) the type of algorithm used, (2) its degree of automation, (3) the type of input
analysis used, and (4) the direction in which information is extracted from the input to
propose a microservice-oriented architecture.

3https://swagger.io/specification/
4https://en.wikipedia.org/wiki/Version_control

https://swagger.io/specification/
https://web.archive.org/web/20220203080740/https://en.wikipedia.org/wiki/Version_control


22 Chapter 2. State of the Art

2.2.2.1 Type of Algorithms

Algorithm MIA Total
Clustering [DMF+20], [CLL18], [BGDR17],

[GKGZ16], [BCS21], [ECA+16],
[KXL+20, KXK+21], [NSRS19], [SRS20],
[SSB+20b], [ZSS+22], [KZH+20],
[SQMC21], [JLZ+18], [MCF+20], [LO20],
[MCL17], [DMF+20, DEF+21], [AIE19],
[DABPF18, DABFP20], [KYHM18],
[ADM20, AM21]

22

Evolutionary Algorithm [SOMS19], [CGC+20, ACC+21], [Ami18],
[JLC+21], [ZLD+20]

5

Custom Heuristic [PFM19], [LTV16], [BSG20], [ERM20] 4
Formal Concept Analysis [ASS+21] 1
Guideline / Best Practices [GBMM20] 1

Table 2.2: Classification of the extracted MIAs based on their algorithm.

Each MIA uses an algorithm to process the input and produce a description of the
target microservice-oriented architecture. Table 2.2 presents the extracted MIAs based
on the type of algorithm they use. Concretely, we categorize the MIA algorithms into 4
distinct categories: clustering, evolutionary, formal concept analysis, custom heuristics, and
guidelines.

Clustering: Clustering algorithms consists in partitioning program artifacts into
clusters based on a set of criteria. These clusters are partitioned in a way to optimize the
cohesion between the elements within a cluster and reduce the coupling between the
elements that are not in the same cluster. One example of a clustering algorithm is the
hierarchical clustering, which is used in several approaches (e.g., [SSB+20b], [ZSS+22],
[AM21]). A total of 21 of the 32 MIAs use a clustering algorithm to identify an MSA.

Evolutionary: Evolutionary algorithms are a family of algorithms whose principle
is inspired by the theory of evolution to solve various problems. They are therefore
bio-inspired methods of calculation. The idea is to evolve a set of solutions to a given
problem, in order to find the best results. Several MIAs use a genetic algorithm, a
sub-set of evolutionary algorithms (e.g., [ZLD+20]). This type of algorithm uses the
notion of natural selection and applies it on a population of solutions to promote the
best solutions over an iterative process. A total of 5 of the 32 MIAs use a clustering
algorithm to identify an MSA.

Formal Concept Analysis: Formal concept analysis (FCA) is a general method of
unsupervised classification and clustering. From a description of data called formal
context (i.e., a set of relations between objects and their attributes), it forms concepts
(i.e., a gathering of objects that shared the same common set of attributes). The con-
cepts are then made into a hierarchy to produce a structure called a concept lattice
[GW99]. FCA is used in [ASS+21] to infer the relationship between the business ob-
jects (i.e., the domain entities of the application) and the entry point of the application
(i.e., the services).
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Custom Heuristics: Alternatively, some MIAs propose custom heuristics that do
not fall into the above categories. For instance, [LTV16] propose a 6-step methodology
to extract a set of microservice candidates. This methodology lays out how to map an
existing 3-part monolithic application into a triple which is decomposed using custom
decomposition strategies.

Guidelines: As the name implies, approaches which only offer a set of recommen-
dations, best practices, or recommendations to identify microservices. For instance, in
[GBMM20], the authors propose a decision model to recover the microservice architec-
ture.

2.2.2.2 Automation

Automation MIA Total
Automated [ECA+16], [BGDR17], [MCL17], [JLZ+18],

[DABPF18, DABFP20], [Ami18], [AIE19],
[NSRS19], [SOMS19], [LO20], [SRS20],
[ADM20], [ZLD+20], [BCS21], [AM21],
[JLC+21], [ASS+21]

17

Semi-automated [GKGZ16], [CLL18], [KYHM18], [PFM19],
[BSG20], [DMF+20, DEF+21], [KZH+20],
[MCF+20], [SSB+20b], [KXL+20, KXK+21],
[SQMC21], [CGC+20, ACC+21], [ZSS+22]

12

Manual [LTV16], [GBMM20], [TS20], [ERM20] 4
Table 2.3: Classification of the extracted MIAs based on their automation.

Each MIA process has a certain degree of automation. Concretely, we categorize
the MIA processes into 3 distinct categories: automated, semi-automated, and manual.
Table 2.3 presents the extracted MIAs based on those categories. An approach is con-
sidered to be automated when the process can be applied with little to no human in-
tervention. For instance, [NSRS19] proposes an automated approach to extract the call
graph from the monolith source code using java-callgraph tool, and using the python
library scipy to perform a hierarchical clustering. Approaches that require a greater
degree of human intervention are considered semi-automated. Approaches such as
[SQMC21] require experts to tag the existing source code before an automated analysis
can be performed. Finally, manual MIAs are either guidelines or custom heuristics that
need to be applied by experts.

2.2.2.3 Analysis Type

Each MIA uses an algorithm to process the input and produce a microservice-oriented
architecture. Table 2.4 presents the extracted MIAs based on the type analysis they use.
Concretely, we categorize the MIA algorithms into 5 distinct categories: static, dynamic,
hybrid, lexical, and domain.
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Analysis Type MIA Total
Static [ECA+16], [LTV16], [MCL17], [KYHM18],

[NSRS19], [SOMS19], [PFM19], [BSG20],
[LO20], [SRS20], [SSB+20b], [SQMC21],
[ZSS+22], [DABPF18, DABFP20],
[KZH+20], [CGC+20, ACC+21], [ASS+21]

17

Dynamic [JLZ+18], [AIE19], [ZLD+20], [ERM20],
[TS20], [KXL+20, KXK+21], [JLC+21]

7

Hybrid [MCF+20] 1
Lexical [BGDR17], [ADM20, AM21], [DABPF18,

DABFP20]
3

Domain [GKGZ16], [KMK16], [Ami18], [CLL18],
[GBMM20], [CGC+20, ACC+21], [DMF+20,
DEF+21]

7

Table 2.4: Classification of the extracted MIAs based on the type of analysis they perform.

Static: Static program analysis covers a variety of automated methods used to ob-
tain information about the behavior of a program during its execution without actually
running it. Its main advantage is that it does not require executing the code and can be
applied as long as the source code is available (e.g., [NSRS19], [SSB+20b]).

Dynamic: Dynamic program analysis covers the methods used to obtain informa-
tion about the behavior of a program by observing its execution. [JLZ+18] & [JLC+21]
both instrument the source code and run test cases to produce program traces (i.e., as-
sociation between an execution behavior and the code that implements this behavior).
From these traces, dynamic analysis can take place. Other approaches, establish use
cases to produce these traces [KXL+20, KXK+21].

Hybrid: Hybrid analysis combines both static and dynamic analysis. We chose to
differentiate between dynamic analysis and hybrid analysis as certain MIAs use dy-
namic analysis in coordination with a static analysis. For instance, [KZH+20] propose
to supplement static analysis with dynamic analysis to enrich the collected informa-
tion.

Lexical: Lexical analysis approaches take textual similarity into account when iden-
tifying microservices. [ADM20, AM21] & [CGC+20, ACC+21] analyze the API docu-
mentation of a system to decompose it using semantic analysis.

Domain: Domain analysis relates to approaches that use domain artifacts as a main
source of information. In particular, approaches such as [CLL18] use dataflow dia-
grams as the main input for their MIA.

2.2.2.4 Direction

MIAs can follow three different directions: bottom-up, top-down, and hybrid. Table 2.5
presents the extracted MIAs based on their direction.
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Direction MIA Total
Bottom-up [ECA+16], [LTV16], [MCL17], [JLZ+18],

[KYHM18], [DABPF18, DABFP20],
[NSRS19], [SOMS19], [PFM19],
[BSG20], [SRS20], [TS20], [ZLD+20],
[ERM20], [MCF+20], [LO20],
[SSB+20b], [ADM20, AM21], [JLC+21],
[CGC+20, ACC+21], [BCS21], [ZSS+22],
[AIE19], [ASS+21]
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Top-down [GKGZ16], [BGDR17], [Ami18], [CLL18],
[DMF+20, DEF+21]

5

Hybrid [GBMM20], [KXL+20, KXK+21],
[KZH+20], [SQMC21]

4

Table 2.5: Classification of the extracted MIAs based on the direction of their process.

Bottom-up: A bottom-up process starts with low-level artifacts (e.g., source code)
to maximize code reuse and minimize changes. From these low-level artifacts, it ex-
tracts an abstraction (e.g., the architecture), which is used to identify candidate ser-
vices. For instance, [LO20] proposes an approach which extracts the static coupling
between the classes of a monolith, as well as semantic, and evolutionary coupling to
create a weighted graph in which each node represents a class of the monolith. Each
coupling information is extracted from the classes and their relationship with one an-
other based on the static analysis, semantic similarity, and their changes over time.

Top-down: Alternatively, a top-down process starts with high-level artifacts (e.g.,
domain analysis) to extract a design of the target architecture. Unlike bottom-up ap-
proaches where low-level artifacts are used to extract higher-level artifacts, top-down
approaches do not consider low-level artifacts to identify microservices, and they only
propose a high-level decomposition of the existing system. One example of a top-
down approach is proposed in [DMF+20, DEF+21]. In [DMF+20, DEF+21], the authors
propose to analyze a business process model to then decompose it into a set of activ-
ities. Similarly, [Ami18] presents an approach to partition a business process model’s
activities based on their structural relations as well as the read and write operations
they perform the monolith’s data objects.

Hybrid: Finally, a hybrid process combines high-level artifacts with low-level ones
to perform a hybridization of both bottom-up and top-down approaches. This is often
done by mapping between low-level artifacts with high-level ones and decomposing
the high-level artifacts. In the case of [GBMM20], high-level artifacts (i.e., business re-
quirements) are used to guide the decomposition of stored procedures within a mono-
lithic application.

2.2.3 Output of Microservice Identification Approaches

The approaches extracted for this taxonomy can also be categorized by the type of
output they produce. Each MIA outputs vary in their distinction of what the finished
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MSA should look like. We propose the following categories to describe the type of out-
puts produced by the extracted MIAs: (1) design-time microservices, (2) unpackaged
microservices, (3) packaged microservices, and (4) black-box microservices. Table 2.6
presents the MIAs based on the outputs they produce.

Design-time microservices: A design-time microservice is considered design-time
when non-executable model representations are decomposed, in a top-down approach,
and further decomposition of the source code is necessary. Microservice-oriented ar-
chitecture identified by top-down MIAs often produce Design-time microservices due
to the direction of their process. Approaches such as [Ami18] and [DMF+20, DEF+21]
decompose BPMs but do not go to lower-level artifacts such as the source code. Sim-
ilarly, [AIE19] propose a decomposition of the API provided by the monolith, from
there they duplicate the monolith for each partition and route the appropriate API re-
quests to their microservices. Other MIAs, such as [BGDR17], [SRS20], partition the
domain of a system, yet do not address the business logic.

Un-materialized microservices: Un-materialized microservices are the most com-
mon output produced by the extracted MIAs. MIAs that produce un-materialized
microservices represent an MSA with a partition of the source code. The term un-
materialized is used to denote that while each identified microservice is mapped to a
set of program artifacts, they are not sufficient to produce a fully-functioning MSA
and further refactoring is required. For instance, [SOMS19],[SSB+20b], and [JLC+21]
produce a partition of classes of an object-oriented monolith that require additional
refactoring.

Materialized microservices: To produce a set of materialized microservices as an
output, it requires an MIA to refactor the internal code of the monolith to function as a
set of microservices communicating via a set of services. Only one approach ([LTV16])
produces materialized microservice, however their approach is entirely manual. Fur-
thermore, the authors only propose a methodology to materialize the identified archi-
tecture. For instance, in the final step of the approach, the authors prescribe to create
a gateway to act as an intermediate layer between the client and the monolith and to
progressively replace the services proposed by the monolith with those provided by
the identified microservice candidates. They also highlight that certain microservice
candidates require an additional effort but do not go into details on how to produce
them.

2.2.4 Summary of the Taxonomy

In this section, we summarize the obtained findings of this taxonomy. The findings are
organized based on the required inputs, the identification process, and the produced
output.
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Output Type MIA Total
Design-time
microservices

[GKGZ16], [Ami18], [CLL18], [AIE19],
[GBMM20], [DMF+20, DEF+21],
[SQMC21], [BGDR17], [SRS20]

9

Unmaterialized
microservices

[ECA+16], [MCL17], [JLZ+18], [KYHM18],
[DABPF18, DABFP20], [NSRS19],
[SOMS19], [PFM19], [BSG20], [TS20],
[ZLD+20], [ERM20], [MCF+20],
[LO20], [SSB+20b], [KXL+20, KXK+21],
[KZH+20], [ADM20, AM21], [JLC+21],
[CGC+20, ACC+21], [BCS21], [ZSS+22],
[ASS+21]

23

Materialized
microservices

[LTV16] 1

Table 2.6: Classification of the extracted MIAs based on the output they produce.

2.2.4.1 The required inputs of MIAs

More than two-thirds (72.7%) approaches rely on the source code as a required input.
In fact, 21.2% of approaches rely solely on the source code to perform the identification
of an MSA. The source code is often executed, along with test cases or use cases, to
generate log traces. Log traces are the second most used inputs with 21.2%, and used
to perform a dynamic analysis on the source code.

Data autonomy is a key microservice characteristic. Therefore, it makes sense that
the database is the second most used executable model with 18.2% of MIAs use the
database schema or the domain. We did not include domain analysis performed by
experts in this category, however we denote that 2 out of the 4 approaches that use
expert input, rely on domain analysis.

When it comes to domain artifacts, there are two main artifacts used by MIAs: doc-
umentation, and expertise. Expert knowledge is used by MIAs 12.1% of the time, while
documentation is used by 15.2% of MIAs. Version control history is used only twice
along with the source code to supplement the static analysis by providing coupling
weights between program artifacts based on whether they are modified at the same
time.

Finally, abstract model representation such as DFD, and BPMN are used by 9.1% of
approaches in top-down approaches to design the microservice candidates.

2.2.4.2 The process of MIAs

The identification process can be split into 4 categories: the algorithms, the automation,
the analysis type, and its direction.

In terms of algorithms, 66.7% of approaches use a clustering algorithm (e.g., hier-
archical clustering, Girvan–Newman). 15.2% of MIAs used an evolutionary algorithm,



28 Chapter 2. State of the Art

usually a genetic algorithm. Custom heuristics represent 12.1 % of approaches, and
only one approach presented a set of guidelines to decompose a monolithic applica-
tion.

Almost half of the approaches (51.5%) presented an automated process. Another
(36.4%) managed to automate part of their process. In several cases, the semi-automated
MIAs use expert inputs. Finally, 12.1% of approaches have not been automated or pro-
pose a set of guidelines or algorithms that are not easily automated.

Each MIA’s process involves analyzing the inputs to extract information to propose
microservice candidates. Most commonly, MIAs use either static or dynamic analysis
to perform their decomposition with 51.5% of approaches relying on a static analysis,
and 21.2% relying on a dynamic analysis. Additionally, 1 approach uses both static
and dynamic analysis. 21.2% of MIAs primarily analyze domain artifacts. Finally, sev-
eral approaches rely on the lexical analysis of the code or documentation to propose a
decomposition (9.1%), occasionally on top of static analysis (e.g., [DMF+20, DEF+21]).

In terms of direction, the vast majority of approaches propose a bottom-up process
(72.7%). Another 15.2% of MIAs use a top-down approach to propose design-time
microservices. Finally, only 12.1% of approaches use a hybrid of both directions.

2.2.4.3 The output produced by MIAs

In terms of output produced, MIAs can be categorized into three types of categories:
design-time microservices, un-materialized microservices, and materialized microser-
vices. The majority of approaches produce un-materialized microservices (69.7%), as
they are able to cluster program artifacts extracted from the source code but do not pro-
vide techniques to refactor the existing code to conform to the identified architecture.
Alternatively, other approaches propose design-time microservices which are not tied
to program artifacts. This type of output is generated by 27.3% of the extracted MIAs.
Finally, we also included the materialized microservice category that reflect the need to
materialize the identified microservice candidates into executable projects. Only one
approach ([LTV16]) seems to provide a guideline towards materializing microservice
candidates, however, this approach only provides a methodology to migrate a mono-
lith with very little details on how to materialize each microservice. This highlights the
lack of work done on transformation phase of the migration process.

2.3 Transformation towards an MSA

As we’ve seen in Section 2.1, the process of software migration can be decomposed into
two phases: the reverse-engineering and the transformation. In the previous section,
we covered the taxonomy of the reverse-engineering effort to recover a microservice-
oriented architecture from a monolithic oriented-one. Furthermore, in the discussion
we highlighted that most approaches produced un-materialized microservice candi-
dates that were not sufficient to produce a fully-functioning MSA and that further
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refactoring is required. Therefore, in this section we cover the existing works that focus
on transforming monolithic application towards a microservice-oriented architecture
to produce materialized microservices.

One of the first works that attempts to transform an existing monolith towards a
microservice-based architectural style is presented by Chris Richardson in his book
[Ric18b]. In this work, the author presents the Strangler Fig pattern which proposes to
iteratively identify and transform individual microservices from a monolith. To cre-
ate each new microservice, they propose a guideline to integrate the new microservice
into the existing system. The Strangler Fig pattern is used in a case study to success-
fully migrate a set of microservices from an existing system [LML20]. While the work
presented in [Ric18b] is thorough, the chapter that covers the transformation phase
focuses mainly on generic architectural transformation strategies to help with the mi-
gration effort. These strategies are helpful for designing a migration process, however
architects must interpret these strategies on their own on a case-by-case basis.

In [KH18], the authors propose a 5-step methodology to address the migration of
monolithic application towards a microservice-based architectural style. In their paper,
they assume a decomposition has already been proposed. From this decomposition,
they rely on a systematic process to identify dependencies between the partitions of the
monolith to define a set of external and internal service facades (i.e., interfaces). They
implement the service facades by adapting the existing system, so that the facades
serves an entry point to communicate with the system’s artifacts. Then, the clients
are modified to interact with the facade rather than directly with the system’s artifact.
The methodology presented in this work, presents a generic set of steps to assist in the
migration of a COBOL-based application. However, the authors do not propose a set
of transformation rules to facilitate the migration. Furthermore, the authors propose
an approach that is validated on a mainly procedure-based application. As a result,
this approach can guide architects to elaborate their own migration process but cannot
be used directly to migrate an OO application.

Alternatively, a set of transformation rules is proposed in [AS20] to transform the
execution flow of a monolith. In their work, the authors highlight the difficulty of re-
designing monoliths which employs transactions (see Definition 2.3.1). Indeed, when
a transaction is distributed across different microservices, it is difficult to redesign the
transaction to respect the ACID properties of a transaction. To preserve these proper-
ties and the behavior of the application, the authors of [AS20] propose an implementa-
tion of the SAGA design pattern introduced in [GMS87]. Particularly, they propose 3
basic transformation rules, and one additional composite transformation rule, to sup-
port the redesign of a functionality’s execution flow [AS20]. In this way, the authors
are able to avoid creating side effects related to loss of the ACID properties of certain
transactions. However, the approach focuses entirely on the preservation of the mono-
lith’s behavior in relation to transaction management, and no automation is proposed.
Therefore, applying this approach on an OO application is not enough to fully trans-
form the source code towards an MSA and further refactoring is required.
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Definition 2.3.1: Transactions and Transaction Management

A transaction is an action, such as a payment, that is implemented via a sequence
of access operations to modify the state of a database. Transaction management
mechanisms are implemented to ensure that this sequence of operation respects
the ACID properties of a transaction (i.e., that the sequence is atomic, consistent,
isolated and durable).

As we have seen in [KH18], transformation approaches often rely on defining fa-
cades between microservice candidates based on the dependencies between the system
artifacts of different microservices. However, the implementation of these facades can
have an impact on the comprehension of the code. To reduce this, [FSC+21] propose
to use aspect-oriented programming to make the refactoring transparent to the devel-
oper. Particularly, the authors use pointcuts to decouple the identified microservice to
replace method calls with service calls [FSC+21]. This approach has the advantage of
applying no code changes, and making it easily to enable/disable the added pointcuts
based on the developer’s wish to migrate. However, their approach is limited to refac-
toring method calls between classes of different microservices, and they do not take
into consideration other object-oriented dependencies.

Finally, [FFC21] propose a methodology to automatically (via their tool MicroRe-
act) transform a JAVA-based monolithic application into an MSA. Their methodology
creates a REST API for each method that is invoked by a class belonging to a differ-
ent microservice. The methodology also includes a database refactoring strategy by
applying design patterns (e.g., Move Foreign-Key Relationship to Code, Database Wrap-
ping Service) presented by [New19] to the object-relational mapping (ORM) entities.
This transformation approach is able to promote true data autonomy by assigning the
database access of a table to an individual microservice. However, as the authors high-
light, they did not consider the different OO-type dependencies between microservices
such as inheritance.

We also denote that in the case of [FSC+21] and [FFC21], these works were pub-
lished around the same period as the work presented in this thesis (see Chapter 4
[ZSS+21]).

2.4 Discussion and Motivation

From the state-of-the-art presented, we highlight three main points that motivate this
thesis:

1. In Section 2.2, we have presented a taxonomy on the existing microservice iden-
tification approaches. As a result, we observed that bottom-up approaches that
use the source code as the primary input (e.g., [JLZ+18],[SSB+20b],[AM21]) of-
ten view MIAs as a clustering problem. In other words, they view the mono-
lithic application as a set of program artifacts to be partitioned by promoting
highly-cohesive and loosely-coupled structural clusters (i.e., microservice candi-
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dates). However, these approaches omit to consider that enterprise applications
are built upon standardized frameworks which promote a layered architecture
[Ric18a]. As a result, they can fall into the trap of creating microservices that are
structurally cohesive but not functionally cohesive (e.g., Wrong Cuts Antipat-
tern) [TLP20]. Indeed, this antipattern proscribes for microservices to be split
based on technical layers (presentation, business, data layers). Instead, popu-
lar decomposition patterns prescribe that microservices should be split based on
business capabilities with a vertical integration of all layers within one small au-
tonomous application [Ric18a]. Therefore, by extracting the layered architecture
we can create more autonomous microservices.

2. Regarding the transformation phase of the migration process, we observed that
there were significantly fewer approaches that attempted to address this research
problem. Indeed, during the taxonomy of the identification approaches indi-
cated that the vast majority of approaches only produced a description of the
ideal MSA for an architect to implement. Of the approaches we presented in Sec-
tion 2.3, only 3 approaches presented a set of transformation rules to assist in the
migration of a monolith. Furthermore, only 2 of these approaches presented an
automated approach in the last year. In these two cases, the approaches trans-
form only few types of OO dependencies such as method invocation between
classes belonging to different microservice candidates, and the ORM entities.
However, when transforming an object-oriented monolith there are several OO
mechanisms that must be handled to create syntactic and semantically-valid mi-
croservices. For example, object-oriented mechanisms such as inheritance, and
exception handling still need to be handled.

3. Furthermore, these approaches remain limited by the language of the applica-
tion’s source code, obstructing its genericity and reusability across other lan-
guages and technologies. Indeed, in the case of [FSC+21], and [FFC21], both
approaches limit their approach to JAVA-based applications. In other words,
these approaches must be re-implemented when an application is implemented
in another language. Instead, this limitation could be overcomed by adopting
Model-Driven Engineering (MDE) techniques.

2.5 Conclusion

In this chapter, we presented the state-of-the-art on the modernization of existing sys-
tems and their architectures. Particularly, we focused on the migration of monolithic
applications towards a microservice-based architectural style. With the goal of pre-
senting the migration process, we divided it into a two-step process: (1) identification
of the MSA, and (2) the transformation of the existing system towards the identified ar-
chitecture. Furthermore, for each step we covered the existing work. In the case of the
identification step, we proposed a taxonomy to categorize and summarize 33 differ-
ent identification approaches in the following categories: input, process, and output.
Afterward, we presented the existing state-of-the-art concerning the materialization of
the MSA, in which we highlighted the limited work on the transformation phase.
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As we have seen in the previous section, there are 3 issues we highlight in this the-
sis. The first issue deals with the identification phase, in which we have observed that
most identification approaches fail to consider the monolith has an internal architec-
ture that can be extracted and used to provided quality microservice candidates. As of
a result, in Chapter 3 we present our approach that takes into consideration the layered
architecture to decompose the monolith into a set of microservice candidates. Further-
more, we motivate the experimentation to evaluate the impact that the extraction of
the monolith’s architecture has on the quality of the identified MSA.

The second issue we wish to address, is that of the transformation phase. As we
highlight in the previous section, few works have been proposed, until recently, to ad-
dress the issue of materializing the identified MSA. Therefore, we set out to address
this issue by proposing an ad hoc transformation approach to materialize the identi-
fied MSA while addressing the different types of OO dependencies between microser-
vice candidates that must be resolved to create valid microservices. In Chapter 4, we
present this approach.

Finally, the third issue we address is that of the limitations of an ad hoc transforma-
tion approach. While the presented approaches attempt to automate the refactoring
of any OO language, their implementation are limited by the language of the appli-
cation’s source code. Instead, we wish to propose a generic approach. Therefore,
in Chapter 5 we seek to overcome these limitations by adopting model-driven engi-
neering techniques. Furthermore, we also seek to present an end-to-end approach that
tackles both research problems by incorporating the approach presented in Chapter 3.
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3.1 Introduction

The main goal of this chapter is to propose an approach for recovering (i.e., identi-
fying) a microservice-oriented architecture from a monolithic application. This archi-
tecture can then be used to guide the refactoring effort of the monolithic application
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into a microservice-oriented one. In the state-of-the-art, we have presented several
approaches which propose to identify a microservice-oriented architecture. However,
these approaches omit to consider that enterprise applications are built upon standard-
ized frameworks which promote a layered architecture [Ric18a]. Approaches such as
[JLZ+18, SSB+20b, AM21] view microservice identification as clustering problem, in
which the monolithic application is viewed as a set of classes to be partitioned by
promoting highly-cohesive and loosely-coupled structural clusters (i.e., microservice
candidates).

However, today’s industrial applications are often built upon standardized frame-
work which rely on a technically-layered architecture to promote the separation of
concerns. Alternatively, microservice identification approaches that focus on identify-
ing microservices by promoting highly-cohesive and loosely-coupled structural clus-
ters often don’t consider that enterprise applications are built upon these standardized
frameworks. As a result, approaches that fail to consider these layered architectures
risk falling into the trap of creating microservices that are structurally cohesive but
split based on their technical layers instead of their business capabilities.

Indeed, according to experts, one of the most harmful antipatterns to consider dur-
ing the identification is the Wrong Cuts [TLP20]. This antipattern proscribes for mi-
croservices to be split based on technical layers (presentation, business, data layers)
[TLP20]. Instead, popular decomposition patterns prescribe that microservices should
be split based on business capabilities with a vertical integration of all layers within one
small autonomous application [Ric18a]. This verticality promotes functional and data
autonomy in microservices which are characteristics sought out by architects. Con-
sequently, the implementation of each microservice should be vertical or ’cross-layer’
(i.e., composed of the three layers). In turn, by extracting the layered architecture we
can promote vertical dependencies between the different layers to identify microser-
vices based on their business capabilities.

This chapter proposes a semi-automatic identification approach that leverages the
internally-layered architecture of legacy object-oriented applications. By doing so, it
aims to avoid these common pitfalls, and promote the design of quality microservices.
Our approach is divided into a two-step process. During the first step, we analyze the
source code information available to extract the layered architecture artifacts present
in the application. In the second step, we use the extracted artifacts to improve the
partition of the monolith’s classes into microservice candidates.

In the next section, we introduce the context of this chapter by presenting the typ-
ical 3-tier architecture with the web application JPetStore, as a motivating example to
highlight the difficulties with identifying its microservices. In Section 3.3, we explain
the global workflow of the proposed approach. In Section 3.4, we present the initial
reverse-engineering effort performed for the identification. From there, in Section 3.5,
we present how the output of the reverse-engineering effort is used to identify per-
tinent microservices. In Section 3.6, we use the proposed approach to answer two
research questions pertaining to the extraction of the internal architecture of the mono-
lithic application and its impact on the identification process. In Section 3.7, we con-
clude the chapter and highlight some possible future work.
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3.2 Motivating Example: JPetStore

Today’s industrial applications are often built upon standardized frameworks. By
definition, frameworks provide an abstraction of a software, by providing generic
non-business functionalities, that can be overloaded based on user-specific require-
ments [wik22]. Furthermore, these frameworks often rely on the Inversion of Control
(IoC) pattern and the Dependency Injection pattern (DI) to create loosely-coupled and
highly-cohesive applications. This allows companies to bypass the implementation of
infrastructural needs to focus on implementing the business-logic of their software.

Frameworks such as Spring1, Node.js-based frameworks2, or ASP.NET Core3 all
rely on a technically-layered architecture to promote a separation of concerns. These
layered architectures often take the form of a 3-layer architecture with a presentation,
business, and a data-access layer. Alternatively, the Model-View-Controller (MVC)
pattern also promotes a similar separation of concern between the three different ele-
ments of the pattern.

Figure 3.1: Layered Architecture of JPetStore.

To better illustrate the problems and solutions related to microservice identifica-
tion for object-oriented monolithic applications, we introduce JPetStore4. JPetStore is a
typical web application implementing a 3-layer architecture that acts as an online pet
commerce. In essence, JPetStore contains 4 main features (functionalities): account,
catalog, shopping cart, and order management. Structurally, it contains 24 classes, of
which 14 are reusable structural classes and 9 data entities.

Each class can be mapped to one of the three layers described in the typical 3-layer
1https://spring.io/
2https://nodejs.org/
3https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-5.0
4https://github.com/mybatis/jpetstore-6

https://spring.io/
https://nodejs.org/
https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-5.0
https://github.com/mybatis/jpetstore-6
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architecture: the presentation layer, the business layer, and the data layer. The pre-
sentation layer is the topmost level of the application. This layer is responsible for
displaying the information related to JPetStore’s features. The business layer acts as
an intermediary between the presentation layer and the data layer. This layer is re-
sponsible for performing the business logic of the application. Finally, the data layer
is responsible for applying the domain logic of the application as well as the data per-
sistence mechanisms. In the case of JPetStore, we map the 14 structural classes to the
three layers presented in Figure 3.1.

Figure 3.2: Proposed decomposition of JPetStore by [AM21].

Ideally, we want to recover a microservice for each feature and their underlying
implementation, in the goal of making them functionally independent. This implies
decomposing the application vertically to provide each microservice with a business
functionality, its underlying business logic, and data access. In Figure 3.2, we illus-
trate the risk of identifying microservices based on the technical layers (i.e., a wrong
cut) by showing a decomposition proposed in [AM21]. In this example, the authors
propose 4 microservice candidates. Two microservice candidates (MS1 & MS3) offer a
vertical decomposition while being business-oriented and containing some data auton-
omy. However, there is a horizontal slice that creates a microservice candidate (MS4)
which only contains data-access classes, and a microservice candidate (MS2) with the
business functionality. Horizontal slices are considered bad design as they increase
the number of inter-process communications (i.e., network calls) between the client’s
request and its response, thus increasing the response time.

In the next section, we present our approach which leverages the underlying archi-
tecture found in industrial monoliths to propose a decomposition that prioritizes the
identification of microservices based on their business capabilities first. We leverage
the architecture in two ways: (1) we use the presentation layer to drive the clustering
process from a usage perspective, (2) we use the data-access layer to ensure a level of
data autonomy for each microservice. With regard to the presentation layer, we use its
high-level business functions to guide the decomposition based on business capabili-
ties to avoid creating the Wrong Cuts antipattern. With regard to the data-access layer,
we are able to avoid dangerous antipatterns such as the Shared Persistence [TLP20]
which pertains to microservices that end up using the same data, thus reducing team
and service independence [TLP20].
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3.3 Proposed Approach: Process and Principles

Figure 3.3: The microservice architecture identification process.

The goal of our approach is to leverage well-established design patterns and an-
tipatterns to guide the process of identifying microservices. Similar to the metaphor
of the carrot and stick, we motivate the identification process through observed design
patterns while inhibiting it through bad decomposition patterns. Before explaining
this identification approach, it is necessary to cover some design patterns proposed to
design MSA [Ric18a, TLP20].

One such design pattern is the Decompose by Business Capabilities Pattern proposed
by [Ric18a]. Richardson proposes a strategy to decompose monoliths based on the
business capabilities (i.e., business-oriented functionalities) of the monolithic applica-
tion. For example, in the context of an e-commerce, it can include order management,
account management, and product management. It is important to note that a business
capability is often focused on a particular business objects (i.e., data entity) which can
also be used to guide the decomposition process [Ric18a].

Additionally, 2 of the 20 microservice antipatterns identified by [TLP20] can be as-
cribed to the migration’s identification phase. First, The Wrong Cuts antipattern ap-
pears when microservices are split based on technical layers (i.e., presentation, busi-
ness, data layer) instead of its business capabilities. According to [TLP20], this can
increase data-splitting complexity and lead to increased communication between mi-
croservices. Second, the Shared Persistence antipattern occurs when different microser-
vices access the same database. This antipattern creates a strong coupling between
microservices manipulating the same data, thus reducing both development team and
service independence [TLP20]. In general, this goes against one of microservices’ fun-
damental characteristics: data autonomy. It’s critical to grant data ownership to indi-
vidual microservices to avoid this antipattern. One method to achieve this is to assign
individual microservices to the business classes responsible for data access.

Our objective is to propose an approach which takes into consideration these de-
sign patterns and antipatterns. The process of our proposed identification approach is
illustrated in Figure 3.3, and can be described as a three-step process. The initial step (i)
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serves to recover the class artifacts from the object-oriented source code. Then, (ii) the
artifacts are categorized into the different layers of the architecture (i.e., presentation,
business, and data-access). This step also serves to extract the vertical dependencies be-
tween the different categorized artifacts. Finally, from the extracted internally-layered
architecture’s artifacts, (iii) the microservice candidates are identified through an auto-
matic clustering approach.

Concretely, we present our approach in two parts. First, we present the extraction
of the layered architecture and how it is represented. Second, we present the identifi-
cation process that takes into consideration the extracted artifacts, as well as the design
patterns and the antipatterns discussed previously. To assist in the identification pro-
cess, a quality metric is proposed.

3.4 Reverse-engineering the layered architecture

The initial step in identifying microservice candidates is to extract layered architecture
artifacts from the monolithic application’s existing source code. This step aims at an-
alyzing the object-oriented source code to extract OO artifacts. It involves identifying
the monolithic application’s structural elements (e.g., classes, methods, etc.) and the
relationships between them (e.g., method calls, class inheritance, etc.) by analyzing
the existing source code. Additionally, the project configurations may be analyzed to
extract additional information on the structure of the source code.

From these OO artifacts, the layered architecture can be revealed through reverse-
engineering techniques. In most modern frameworks, the OO artifacts are annotated
based on the technical function they serve. In the case of the Spring framework, an-
notations such as @RestController, @Service, and @Repository serve to label
the classes based on their responsibility. When appropriately labeled, the extraction
of a layered architecture can be automatically induced. However, in the case of appli-
cations which do not use such frameworks, a manual labeling process is required. In
either cases, to facilitate the labeling process and to represent the extracted layered ar-
chitecture of monolithic applications, we propose the Layered Architecture Metamodel
(LAMM). LAMM is illustrated in Figure 3.4, and can be divided into three viewpoints.

The first viewpoint (DI/IoC) is responsible for representing the decoupling mech-
anism found in most frameworks to promote business-oriented layer artifacts. The
entity LayerArtifact is extended by the three entities found in the Layered Architecture
viewpoint. It is implemented by a class entity represented by the OO artifacts, and can
be described by one or more interfaces. It is important to represent this mechanism
because in frameworks that use these patterns, the business-oriented code is mostly
found in these layer artifacts. By ignoring this mechanism, it becomes harder to differ-
entiate between the business and infrastructural code, and thus harder to adhere to the
Decompose by Business Capabilities Pattern.

The second viewpoint (Layered Architecture) is responsible for representing the
three layers present in the typical 3-Layer architecture: presentation, business-logic,
and data-access layer. The presentation layer contains the classes responsible for inter-
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acting with the user interface (UI), and it handles the requests generated by the user
(i.e., the Controller entity). The business-logic layer contains the classes responsible for
the business-oriented logic of the application (i.e, the Service entity). It is often de-
scribed as the service layer, and it acts as the middleman that between the presentation
layer and the data-access layer. Finally, the data-access layer is composed of the classes
responsible for the data persistence mechanism and the data-access that encapsulates
the persistence mechanism and exposes the data (i.e., the DAO entity). It is important
to represent each layer and their interdependencies to retain the vertical dependency.
By extracting the dependencies between the different layer artifacts we can minimize
vertical dependencies between different candidates. Thus, we can promote a vertical
decomposition of the monolith, and avoid creating Wrong Cuts.

The third viewpoint (Data Persistence) is responsible for representing the various
data types found in web applications. Particularly, we denote two types the Data Entity
and DTO (i.e, Data-Transfer Object) which specialize the DataType entity. Data Entities
represent the implementation of a data table, while the DTO represents a data structure
that can be easily serialized and transferred to the client. This layer serves to represent
use of data within the monolith. Later, we use these entities to measure the similarity
of data-usage between the different layer artifacts of the monolith. With this measure,
we can promote data autonomy for each microservice by clustering layer artifacts with
similar data-usage.

A semi-automatic process is applied to place the application’s classes into one of
these groups by mapping them to one of the LAMM entities. In the case of JPetStore,
the application uses an annotation-based framework which encourages the annotation
of controller, service, DAO, and data entity classes. 23 of the 24 classes in the project
are categorized into four distinct categories, see figure 3.5. The remaining class is an
abstract class (AbstractActionBean) inherited by all controller classes.

Once we have mapped the classes in the monolithic application into the appropri-
ate layer entity, we analyze the dependencies of the classes to map them to their layer
counterparts (e.g., if a Controller’s implementing class references a class implement-
ing a Service, then we can add a dependency between the Controller and the Service).
This results in an oriented graph that models the architecture found in Figure 3.1. By
mapping the classes of the monolith to the layered architecture, we can promote the
vertical, or inter-layer dependencies, over horizontal dependencies to promote a verti-
cal decomposition of the monolith. In doing so, we aim to avoid creating Wrong Cuts.
Furthermore, by taking into account the data entities during the decomposition we aim
to promote data autonomy for each microservice.

3.5 Identifying microservices using the extracted artifacts

After the reverse-engineering effort, we are left with a set of LayerArtifacts and DataTypes
that we can use to identify the microservice candidates of the monolithic application.
The identification problem is often reduced to a clustering problem in which a set of
artifacts (e.g., classes of a system) are partitioned into a set of clusters which represent
a set of microservice candidates. Multiple techniques exist which help partition a set of
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Figure 3.4: Layered Architecture Meta-model (LAMM) that represents the layered architecture
found in most frameworks.

Figure 3.5: Class categorization of JPetStore.

artifacts based on an objective function (e.g., hierarchical clustering, k-means, genetic
algorithms). In our case we use a hierarchical clustering algorithm to partition the ar-
tifacts extracted from the LAMM model instantiated during the reverse-engineering
step. To guide the hierarchical clustering we propose an objective function. This ob-
jective function focuses on two aspects of quality microservices : structural and data
autonomy. The first aspect serves to promote vertical microservice identifications.
While the second aspect serves to promote data autonomous microservice candidates.
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In the following sections, we present this objective function followed by the hierarchi-
cal clustering technique used in this approach.

3.5.1 Measuring the quality of microservice candidates

For the clustering algorithm to determine which clusters are good microservice can-
didates, it needs a quantifiable way to measure their quality. With this requirement
in mind, we present two similarity measures to guide the clustering (FStruct(MS) and
FData(MS)).

FStruct(MS) = intradependencies(MS)
nbPossibleDependencies(MS) (3.1)

The first similarity measure (FStruct(MS)) calculates the structural cohesion be-
tween the layer artifacts of a microservice candidate. Particularly, the intradependencies
function calculates the number of intra-relationships between layer artifacts of the mi-
croservice candidate MS (e.g., method calls, attribute access, inheritance). While the
denominator calculates the total possible incoming dependencies from the microser-
vices. Together, they produce a similarity which promotes structural cohesion by re-
warding clusters in which there are more internal relationships. Indeed, as the number
of intra-relationships between layer artifacts of the same microservice candidate, so
does its score.

FData(MS) =
∑

(Clk,Clm)∈MS fsimData(Clk, Clm)
|MS|×(|MS|−1)

2

(3.2)

fsimData(Clk, Clm) = |Datak ∩Datam|
|Datak ∪Datam|

(3.3)

The second similarity measure is described in Eq. 3.2 (FData(MS)). It calculates
the data cohesion between the layer artifacts of a microservice candidate. This is to
encourage clusters with layer artifacts that manipulate the same data, and therefore
promote clusters who are data autonomous. The numerator of the equation is the
sum of fsimData for each pair of layer artifact possible within the microservice. More
specifically, Eq. 3.3 measures the data cohesion between two layer artifacts based on
the data entities used by both layer artifacts. Eq. 3.3 returns a value close to 1 whenever
the two layer artifacts manipulate the same data entities. The sum of fsimData is divided
by the total number of layer artifact pairs to produce an average value.

To better explain this measure, we present Figure 3.6, which illustrates the data de-
pendency of two microservice candidates. In this example, MS2 contains the artifacts
related to the account management (i.e., AccountActionBean, AccountService, and Ac-
countMapper) and D1 corresponds to the Account DataType. Table 3.1 calculates the
score of fsimData(Clk, Clm) for each pair of classes from Figure 3.6. From this table, we
can calculate FData(MS2) = 2/3.
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Figure 3.6: Example of data dependency between LayeredArtifacts.

LA1 LA2 LA3 LA4 LA5 LA6 LA7 LA8 LA9

LA1 / 1/3 2/3 1/2 1/2 0 1/2 0 0
LA2 1/3 / 2/3 0 1/2 1/2 0 0 0
LA3 2/3 2/3 / 1/3 1/3 1/3 1/3 0 0
LA4 1/2 0 1/3 / 0 0 0 0 0
LA5 1/2 1/2 1/3 0 / 0 0 0 0
LA6 0 1/2 1/3 0 0 / 0 0 0
LA7 1/2 0 1/3 0 0 0 / 1/2 1/2
LA8 0 0 0 0 0 0 1/2 / 1
LA9 0 0 0 0 0 0 1/2 1 /

Table 3.1: Measurement of fsimData(Clk, Clm) between the Layered Artifacts of MS1 and MS2
from Figure 3.6.

When the first similarity measure is applied to the Layered Architecture Meta-
model, it ideally proposes a decomposition that favor vertical microservices focused
on business capabilities. This is done by using a model that highlights these verti-
cal dependencies between LayeredArtifacts instead of considering all structural de-
pendencies as equal. Furthermore, by favoring the vertical dependencies between the
business classes of the application, we limit the risk of creating Wrong Cuts.

When the second similarity measure is applied to a clustering algorithm, it ideally
proposes a decomposition that favors grouping classes that manipulate the same data.
Furthermore, by taking into consideration the data-access artifacts when partitioning
the monolith, we limit the risk of creating Shared Persistence between microservices
by creating data ownership.

FQuality(MS) = α× FStruct(MS) + β × FData(MS)
α + β

(3.4)
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We combine both similarity measures to propose a multi-objective function (see Eq.
3.4) by proposing two coefficients (i.e., α & β) to balance their impact on the clustering
process. In the next section, we use this function in the hierarchical clustering algo-
rithm.

3.5.2 Microservice Identification using clustering algorithms

The hierarchical clustering algorithm is a clustering technique which builds a hierar-
chy of clusters of elements passed as input [SSB+20a]. To determine this hierarchy
it uses an objective function to measure the quality of each cluster. In this chapter,
we propose an agglomerative, or bottom-up approach, which creates this hierarchy
of clusters starting from a set of clusters containing only one element. This hierarchy
is represented as a dendrogram (i.e., a binary tree), in which each node represents a
cluster (see Figure 3.7).

Figure 3.7: An example of a dendrogram for clustering a set of classes.

In Figure 3.7, we can see the hierarchy of the clusters as they are iteratively merged
in a bottom-up approach, with Cluster 7 being the last cluster. In the following sec-
tion, we present the algorithm we used to generate our dendrogram. Then, in 3.5.2.2,
we decompose the dendrogram to generate the final partition of set of microservice
candidates.

3.5.2.1 Generating the Dendrogram

The first step towards partition the set of LayeredArtifacts is to generate the dendro-
gram. To do so, we present Algorithm 1.

To begin, we initialize a set of artifacts Sartifacts extracted during the layered ar-
chitecture recovery (line 1), and an empty set SClusters which will contain the clusters
of artifacts created during the algorithm (line 2). Then, for each artifact belonging
to Sartifacts, a cluster is created in which the artifact is placed into, and the cluster is
added to SClusters (lines 3-5). Afterward, we iterate over the SClusters, finding the best
two pairs of clusters, that when merged, return the best score using FQuality(MS) (lines
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Algorithme 1: Hierarchical Clustering
Data: OO Source code code
Result: A dendrogram dendro

1 let Sartifacts be the set of artifacts extracted from code;
2 let SClusters be the set of clusters of artifacts;
3 for each artifact ∈ Sartifacts do
4 let artifact be a cluster;
5 add cluster to SClusters;
6 end
7 while size(SClusters) > 1 do
8 let (cluster1, cluster2) be the closest pair of clusters based on FQuality(MS);
9 let Newcluster ← merge(cluster1, cluster2);

10 remove cluster1 and cluster2 from SClusters;
11 add Newcluster to SClusters;
12 end
13 dendro← get(0, SClusters);
14 return dendro;

7-8). Once the best pair is identified, they are merged to create a cluster containing
the pair of clusters as children (line 9). Then the pair of clusters are removed from the
SClusters, and the new cluster is added to SClusters (lines 10-11). When two clusters are
merged, a new cluster is created which contains the two clusters as child entities. The
iteration ends when all clusters of SClusters have been merged into one cluster. The end
result is a binary tree (i.e., dendrogram) in which each node represents a cluster, and
which the leafs are the original clusters containing one artifact.

The dendrogram in Figure 3.8 is the result of Algorithm 1 applied to JPetStore. In
the next section, we use this dendrogram as input to propose a set of microservice
candidates.

3.5.2.2 Decomposing the dendrogram

Once the dendrogram is generated, it can be used to identify the microservice candi-
dates. In Algorithm 2, we propose an algorithm to decompose the dendrogram into
the ideal set of clusters which will represent the final microservice candidates. Indeed,
as the goal of Algorithm 1 is to group classes based on their functional similarity and
their data-usage, the goal of Algorithm 2 is to decompose the dendrogram so that only
the clusters with the strongest functional and data similarity remain.

The first step is to create an empty stack (StackClusters) which will contain clusters
to be decomposed, and we place the dendrogram inside (lines 1-2). Then, we initialize
msa as an empty set of clusters, which will contain the final microservice candidates
(line 3). We pop the first cluster from the stack, and fetch the children (child1, child2) of
that cluster (lines 5-6). If the average score of the fitness function applied on both child1
and child2 is higher than the score of the parent cluster, then we push both children to
the stack (lines 7-8). In Figure 3.8, the initial node with the score of 0.11 is lower than the
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Figure 3.8: JPetStore dendrogram generated by using Algorithm 1 and 2.

Algorithme 2: Identifying the microservice candidates
Data: A dendrogram dendro
Result: A set of clusters SClusters

1 let StackClusters be an empty stack of clusters;
2 push dendro to StackClusters;
3 let msa be an empty set of clusters;
4 while size(StackClusters) > 0 do
5 let cluster ← pop(StackClusters);
6 let child1, child2 ← getChildren(cluster) ;
7 if avg(FQuality(child1), FQuality(child2)) > FQuality(cluster) then
8 push child1, child2 to StackClusters;
9 else

10 add cluster to msa
11 end
12 end
13 return msa;

average of its child nodes (0.245), so its children are added to the stack. Otherwise, we
add the parent cluster to the final microservice candidate set (msa) (line 10). We iterate
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over the previous instructions until StackClusters is empty (lines 4-11). Intuitively, the
algorithm will iterate until it empties the stack or reaches the leaves of the dendrogram.
In the latter case, the leaves are automatically added to the msa set. The end result is
a set of clusters (or microservice candidates) which is a decomposition of the monolith
(line 13).

We apply this algorithm on the dendrogram generated for JPetStore. This results in
3 microservice candidates (MS1, MS2, MS3).
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3.6 Evaluation

3.6.1 Data Collection

We selected a set of monolithic applications of various sizes (small, medium, and large)
found in the literature. In Table 3.2, 4 different applications are presented, which are
commonly used in the literature.

Table 3.2: Applications used in the following experiments.

Application name No of classes Lines of Code (LOC)

FindSportMates5 21 4.061
JPetStore6 24 4.319
SpringBlog7 87 4.369
ProductionSSM8 226 31.368

3.6.2 Research Questions & Methodology

To validate our approach, we conducted a set of experiments with the goal of answer-
ing the following research questions:

• RQ1: Impact Study. What is the impact of the extraction of the layered architec-
ture on the identification of microservice candidates? While we propose to extract
layered architecture artifacts from the existing source code, it does not necessar-
ily contribute to the identification of the best microservice candidates. Indeed,
naive approaches using a clustering technique with an objective function may
be enough to recover microservice candidates close to the ground truth. With
this question, we want to measure the impact of recovering the layered architec-
ture of the monolithic application on the identification of a microservice-oriented
architecture when compared to a naive approach.

• RQ2: Qualitative Comparison Study. How does our approach compare to the
state of the art? The goal of RQ2 is to compare our approach in relation with
other approaches found in the literature. Particularly, we wish to highlight the
issues in identifying microservices pertaining to decomposing microservices as to
avoid the Wrong Cuts antipattern. Furthermore, we wish to motivate the benefits
of taking into consideration of the internal layer during the decomposition.

The results from our approach, the tools used for measuring our results, as well as
the implementation of our approach are available in our repository9.

5https://github.com/chihweil5/FindSportMates
6https://github.com/mybatis/jpetstore-6
7https://github.com/Raysmond/SpringBlog
8https://github.com/megagao/production_ssm
9https://gitlab.com/icsa2022paper22/LayeredIdentificationApproach2022

https://github.com/chihweil5/FindSportMates
https://github.com/mybatis/jpetstore-6
https://github.com/Raysmond/SpringBlog
https://github.com/megagao/production_ssm
https://gitlab.com/icsa2022paper22/LayeredIdentificationApproach2022
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3.6.2.1 RQ1 Methodology

We perform 3 different experiments to evaluate the impact of our proposed approach:

Figure 3.9: Identification process for each experiment regarding RQ1.

a) Experiment 1: Manual microservice identification. We perform a manual identifica-
tion of microservice candidates. For each monolithic application, we use the source
code as the primary artifacts for identifying microservice candidates. The identifi-
cation was performed by 1 researcher and 3 R&D engineers. They have 12, 4, 7, and
8 years of experience in software decomposition, particularly towards microservice
and component identification. We applied the pre-established identification pat-
tern proposed in [Ric18a], namely Decompose by Business Capabilities. This pattern
involves identifying business capabilities (and sub-capabilities) from the existing
application (e.g., user, product, and catalog management), and mapping them to
services. From there, the classes are placed into a service based on their relevance to
the business capability and dependence between each other. We used static analy-
sis to generate the dependency graph to help in the decision-making for classes that
overlap between two different services. In the case of FindSportMates, JPetStore,
and SpringBlog we followed this pattern. In the case of ProductionSSM, we were
able to reuse the manual identification proposed by [ZLD+20]. [ZLD+20]’s work,
they describe an identification strategy similar to the one we followed. Indeed, they
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first identify a set of end-user functionalities. Then, they manually partition the set
of classes belonging to the application into the different functionalities. Similarly, in
our process, they use a debugging method to find which classes are related. As they
did not consider java-interfaces in their partition, we supplemented their identifica-
tion by adding them based on which classes implemented them. This was to have
a global view of the application. All partitions are available in the aforementioned
repository.

b) Experiment 2: MSA identification without considering the layered architecture. In
this experiment, we identify microservices based on the hierarchical clustering pre-
sented in this paper. As input artifacts, we use the java-interfaces and classes of
each monolithic application. These artifacts are clustered according to Algorithm 1
& Algorithm 2 and the objective function of Eq. 3.4 presented in Section 3.5. The
results of this clustering algorithm are groups of java-interfaces/classes in which
each group represents a candidate microservice.

c) Experiment 3: MSA identification by considering the layered architecture. In this
experiment, we apply the proposed approach to its fullest. First, we apply the lay-
ered architecture recovery step (presented in Section 3.4) on each monolithic appli-
cation, in order to map each java-interface and class to a LayerArtifact entity. Then,
we apply the hierarchical clustering presented in Section 3.5 on the LayerArtifact
entities to produce groups of LayeredArtifact entities. Finally, for each group, we
replace the LayerArtifact entities with their implementation (i.e., java-interfaces and
classes). The partition resulting from this replacement is then used to evaluate the
impact of our approach.

All partitions are available on the provided repository, as well as the code used to
perform Experiment 2 & 3. We propose a comparative study between the results of
the proposed approach (Experiment 3) and the results obtained without considering
the layered architecture recovery (Experiment 2). By comparing both experiments, we
aim to highlight that the added layered architecture recovery has a positive impact on
the identification of a microservice architecture. To illustrate this study, we provide
Figure 3.9. To measure the impact of the layered architecture recovery, we measure the
similarity of each recovered architecture (Experiment 2 & 3) with regard to the pro-
posed ground-truth (Experiment 1). Inspired by the experimental method proposed
in [LCG+15], we use two different accuracy measures to evaluate the identification
approach. Particularly, we apply MoJoFM [WT04], and c2ccvg [LBG+15], proposed to
evaluate modularization techniques by measuring the similarity of a recovered archi-
tecture with regard to the proposed ground-truth. We then can compare the similarity
measures of Experiment 2 & 3 to see which performs better. We reason that by us-
ing two different metrics, if Experiment 3 consistently outperforms Experiment 2, we
reduce the bias of selecting a metric that favors one particular experiment.

The MoJoFM metric is used to evaluate different modularization techniques [WT04].
This metrics is commonly used in the literature to evaluate architecture recovery ap-
proaches [LCG+15, PIIL21]. During the evaluation, the identified microservice-oriented
architectures are compared with the ones prepared by experts. The MoJoFM is calcu-
lated by Eq. 3.5, where mno(A, B) is the minimum number of operations (e.g., move
or join) required to transform the architecture proposed by the approach (A) into the
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ground truth (B) [WT04]. In addition, max(mno(∀A, B) calculates the actual maximum
distance to partition B.

MoJoFM(M) = (1− mno(A, B)
max(mno(∀A, B)))× 100% (3.5)

The higher the value of MoJoFM, the more similar the identified architecture is to
the ground truth. Inversely, a lower score indicates that the identified architecture is
further from the ground truth.

The cluster-to-cluster coverage (c2ccvg) [LBG+15] is a metric used to measure the
degree of overlap of the implementation-level entities between two clusters, using the
following equation as a base:

c2c(ci, cj) = |entities(ci) ∩ entities(cj)|
max(|entities(ci), entities(cj)|)

× 100% (3.6)

Eq. 3.6 is used in Eq. 3.7 to evaluate the similarity between two clusters. More pre-
cisely, Eq. 3.7 calculates the best similarity for each cluster of the recovered architec-
ture with regard to the ground truth. It is then compared to a pre-determined overlap
threshold (thcvg) to count the cluster as covered. The authors of [LCG+15], define the
thresholds values of 50%, 33%, and 10%. The first value depicts C2Ccvg for thcvg = 50%
which is referred to as the majority match [LCG+15]. This threshold is used to measure
the clusters produced by the proposed approach which mostly resemble the clusters
proposed by the ground truth [LCG+15]. While, the remaining threshold highlight the
moderate (33%) and weak (10%) matches [LCG+15].

simC(A1, A2) = {ci|(ci ∈ A1, ∃cj ∈ A2) ∧ (c2c(ci, cj) > thcvg)} (3.7)

c2ccvg(A1, A2) = |simC(A1, A2)|
|A2.C|

× 100% (3.8)

The final count of the number of covered clusters is used in Eq. 3.8 (i.e., c2ccvg)
to calculate the total coverage of the recovered architecture with regard to the ground
truth architecture. The result of this metric is highly dependent on the threshold used.
The higher the threshold, the higher the extent to which the clusters produced by the
approaches mostly resemble the clusters in the ground truth.

We use these two metrics to compare the similarity score of Experiment 2 and Ex-
periment 3. If the results of Experiment 3 consistently outperform the results of Ex-
periment 2, then the intermediary step of recovering the layered architecture of the
monolith has a positive impact on the identification of microservices.
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3.6.2.2 RQ2 Methodology

To highlight the issues of identifying microservices without creating Wrong Cuts, we
have extracted the class partitions of JPetStore from different approaches to compare
them. First, we have recovered the partitions presented, as is, in [AM21, JLZ+18]. In
addition, we have contacted the first author of [SSB+20b] to apply their identification
approach on JPetStore. For the approach proposed by Selmadji et al., they reported
that their approach with the quality metric’s (FMicro(M)) coefficients calibrated to
α = 1 and β = 3 [SSB+20b]. Finally, we use the partition of the proposed approach
(Experiment 3) on JPetStore. We compare all these partitions with the expert partition
proposed in Experiment 1. We analyze each proposed architecture and compare them
with the expert architecture to highlight the common pitfalls of microservice identifi-
cation.

3.6.3 Results and Discussion

3.6.3.1 RQ1

Table 3.3 and 3.4 respectively show the results of MoJoFM and C2Ccvg to evaluate the
overall accuracy of the different experiments with regard to the ground truth. Exper-
iment 2 corresponds to the proposed identification approach without the use of the
layered architecture artifacts. On the other hand, Experiment 3 corresponds to the
proposed identification approach with the use of the layered architecture artifacts. In
both experiments, we applied the approach to the same set of applications presented
in Table 3.2. Generally, our results indicate that the use of the layered architecture arti-
facts improved the accuracy of the identification approach. According to the results of
MojoFM, the use of layered architecture artifacts increased the accuracy of the identi-
fication approach by at least 14% (in the case of SpringBlog). On average, Experiment
3 performed 23.98% better than Experiment 2.

Table 3.4 shows C2Ccvg for three different values of thcvg (i.e., 10%, 33%, and 50%)
for each application under both Experiment 2 & 3. The first value depicts C2Ccvg for
thcvg = 50% which is referred to as the majority match [LCG+15]. The scores in which
one experiment performed better than the other are in bold. We denote that generally,
the use of layered architecture artifacts increases the quality of the microservice ar-
chitecture. For FindSportMates, the use of layered artifacts was able to produce perfect
matches which explains the 100% majority matches. With JPetStore, we notice a drop
of matches once we reach 50% threshold. Indeed, in Experiment 2 the approach was

Table 3.3: MojoFM results (in %age).

Applications Experiment 2 Experiment 3
FindSportMates 70.0% 100.0% (↑ 30%)
JPetStore 55.0% 89.47% (↑ 34, 5%)
SpringBlog 58.06% 72.09% (↑ 14%)
ProductionSSM 57.73% 75.16% (↑ 17, 4%)
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unable to create pertinent microservice candidates. In the case of SpringBlog, the use
of layered artifacts produced better moderate and weak matches but failed to produce
strong matches. However, without the use of these artifacts, Experiment 2 produced
few majority matches (7.41%). This seems to indicate that the low performance is
due to the clustering technique. Indeed, we notice a similar drop in score with the
MoJoFM, which seems to support that hypothesis. With regard to the largest applica-
tion (ProductionSSM), we denote that the use of layered architecture artifacts greatly
outperformed by producing more than 55% of majority matches, while without these
artifacts, Experiment 2 produced 1.92% majority matches. In other words, the use of
the layered architecture produced 53% more majority matches. Furthermore, when
we increased the threshold to 66% Experiment 3 faced a small drop in the majority
matches for ProductionSSM and remained at 48% while Experiment 2 dropped to 0%.
This seems to indicate that the identified clusters of Experiment 3 are of even higher
quality.

Summary RQ 1
The overall conclusion from the results of these metrics (MoJoFM & C2Ccvg) is
that the use of the layered architecture artifacts does indeed increase the accuracy
of the proposed approach for all systems, in almost every case, independent of
the accuracy measure chosen.

Table 3.4: Results of C2Ccvg (in %age).

Applications Experiment 2 Experiment 3

FindSportMates
th10
th33
th50

100%
100%
25%

100%
100%
100% (↑ 75%)

JPetStore
th10
th33
th50

100%
30%
0%

100%
100% (↑ 70%)
66.66% (↑ 66, 6%)

SpringBlog
th10
th33
th50

77.78%
48.15%
7.41%

86.67% (↑ 8, 9%)
53.33% (↑ 5, 2%)
0.0% (↓ 7, 4%)

ProductionSSM
th10
th33
th50

90.38%
30.77%
1.92%

86.21% (↓ 4, 1%)
72.41% (↑ 41, 7%)
55.17% (↑ 53, 3%)

3.6.3.2 RQ2

Figures 3.13, 3.10, 3.11, 3.12, and 3.14 illustrate five different decomposition of the JPet-
Store application: one decomposition proposed by [AM21], another by [JLZ+18], and
one by [SSB+20b], the decomposition proposed by our approach, and a manual expert
decomposition. The manual expert decomposition proposes 3 different microservices
based on functionality and vertical decomposition. The first microservice is related
to order management, the second microservice provides account management, and
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the third microservice relates to the product catalog. The decomposition tries to pro-
mote functional autonomy by limiting the inter-dependency between a microservice
and the service layer of another microservice. This is the case except for the Account
Microservice (MS2) which uses CatalogService. Furthermore, this decomposition tries
to promote data autonomy by limiting the inter-dependency between a microservice
and the data-access layer of another microservice. The expert decomposition is able
to promote this except for the data-access related to the Item data-entity which is used
by Order Microservice (MS1) to generate an order of items. In both cases, the decom-
position limits the inter-microservice access to read-only features. For instance, the
Account Microservice consults CatalogService to read the user’s favorite category, and
the Order Microservice to read the items being bought.

Figure 3.10: Expert decomposition of JPetStore.

Figure 3.11: Decomposition of JPetStore proposed by [JLZ+18]
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Figure 3.12: Decomposition of JPetStore proposed by [SSB+20b]

Figure 3.13: Decomposition of JPetStore proposed by [AM21]

Regarding the decomposition proposed by Al-Debagy et al. [AM21], they propose
4 microservice candidates of which 2 offer a vertical decomposition (MS2 & MS3). The
other two microservice candidates show a horizontal decomposition along its techni-
cal layers. This is the typical example of a Wrong Cuts antipattern, where MS4 serves
a technical need (that of data-access) to two different microservices, which may lead
to increased network communication. The decomposition produced by Selmadji et al.
[SSB+20b], generates two microservices. While, they manage to avoid creating Wrong
Cuts, they were unable to differentiate between the account and the catalog service.
Regarding the decomposition of Jin et al. [JLZ+18], we observe a decomposition that
respects the vertical decomposition and is similar to the expert decomposition. How-
ever, the approach places CarActionBean in a different microservice candidate. This is
likely because of the dependency between the OrderActionBean and the CartActionBean.
However, this decomposition creates another vertical dependency between MS1 and
MS3. In contrast, our approach generated another decomposition that is similar to the
expert decomposition. However, it placed CartActionBean in its own microservice. This
is likely because our approach relies on data-oriented objective function as CartAction-
Bean uses data exclusive to its function (e.g. Cart, CartItem). Since these data types
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Figure 3.14: Decomposition of JPetStore of the proposed approach

were only used in this class it is likely that the approach opted to propose a separate
microservice candidate.

Both the proposed approach and Jin et al.’s approach recovered a similar architec-
ture to the expert decomposition while avoiding creating Wrong Cuts. However, Al-
Debagy et al.’s approach decomposes JPetStore along technical layers, which usually
results in highly-dependent microservices.

Summary RQ 2
In this experiment we set out to highlight the challenge of identification ap-
proaches which involves decomposing a monolith vertically as to avoid the
harmful Wrong Cuts antipattern. In the case of Al-Debagy et al.’s decomposi-
tion, we highlight that their approach was unable to avoid this antipattern by
creating microservices based on their technical layers. Furthermore, Selmadji et
al.’s decomposition failed to identify all 3 microservice candidates. This was not
the case for our approach. As a result, we conclude that our approach was able
to avoid these antipatterns and provide a higher quality decomposition.

3.6.4 Threats to Validity

3.6.4.1 Internal Validity

First, there is not necessarily a unique architecture for a system [GKMM13]. However,
we base our results on one ground-truth architecture. To reduce this threat, we used
two different metrics when comparing the ground truth with the identified architec-
tures which both indicate a positive impact for the proposed approach. In the future,
we intend to include other metrics to measure different aspects of the recovered archi-
tecture, such as system-level dependencies which is independent of the ground truth.
Secondly, to limit the bias related to constructing the ground truth for the Experiment
1, we have performed the experiment using 4 people with different profiles. By doing
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so, we limit the influence of an individual’s point of view. Furthermore, the approach
and its results were not presented or produced until after the manual identification. Fi-
nally, we use the expert decomposition of ProductionSSM proposed by the authors
of [ZLD+20]. In this instance, we are able to completely remove the bias by using the
expert decomposition of a team which is not involved in this experiment.

3.6.4.2 External Validity

Another threat to the validity of our experimentation is that we focused our selection
of experimental candidates to applications implemented in JAVA. While, JAVA is a
popular language in the industry, there are over languages that are not covered. We
attempt to mitigate this threat by selecting applications of varying size and from dif-
ferent studies. However, the current literature does not provide enough applications
with a recovered architecture. In future works, we would like to extend the number of
applications with a publicly available decomposition, and an evaluation framework to
facilitate the evaluation of other identification approaches.

3.7 Conclusion

In this chapter we have highlighted the importance of the internally-layered architec-
ture of the monolith when identifying microservices. However, most approaches do
not take into consideration the internal architecture of the application when making
their decomposition. Indeed, according to a study by Taibi et al. [TLP20], there are
several antipatterns (Wrong Cuts & Shared Data Persistence) that can be directly tied
to the identification phase. Particularly, during the evaluation of the comparison study,
we noted that approaches do fall into this trap.

In turn, we have proposed an approach which leverages the internally-layered
architecture of monolith to propose a microservice-oriented architecture that avoids
these antipatterns while also promoting good design patterns. In addition to the in-
ternal architecture, we also take into consideration the domain of the application to
promote data autonomy. Concretely, we were able to demonstrate that taking into
consideration the internal architecture of the monolithic application has a positive im-
pact on the identification process (RQ1) when compared to the same identification
process that did not take the architecture into consideration. Furthermore, we high-
lighted that there is a recurring antipattern found in several approaches that attempt
to identify microservice candidates based on the cohesion at the class-level (RQ2).

In a practical sense, we highlight two takeaways (1) that extracting the internal
architecture is essential towards understanding the monolith and making better mi-
croservice identification decisions, and (2) existing approaches that do not take this
into consideration risk falling into known antipatterns.

For the experimentation we have limited ourselves to object-oriented systems. How-
ever, we believe that this architectural design can be found in other types of systems.
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This validation can be extended by taken into consideration multiple languages as well
as different evaluation metrics. Otherwise, the proposed approach identifies a quality
microservice-oriented architecture that can be used to guide the migration effort of the
application. However, a refactoring of the monolithic source code is still required for
it conform to the identified architecture. In the next chapter, we address this issue by
proposing an approach to automate the transformation of the monolith’s source code.
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4.1 Introduction

In the previous chapter, we presented an approach that identifies a microservice ar-
chitecture from an existing monolithic application. After the target architecture is val-
idated by an expert, it must be materialized into a source code that will be hereafter
used by the development team. However, this materialization process requires that
developers re-write (i.e., transform) the existing source code to conform to the target
architecture. In an industrial context, this may require re-writing large applications
which could take months, or even years, to accomplish. Furthermore, while the de-
velopers are tasked with evolving the existing application they must also continue
fulfilling the clients’ needs. This makes long manual re-writes difficult. Therefore, the
materialization process must be automated to facilitate the migration.

During the identification process, an architecture description is generated to de-
scribe the decomposition of an OO application. These microservice identification ap-
proaches often propose an architecture description that describes each microservice as
a cluster of classes from the monolithic application (see Chapter 2). However, despite
their best efforts these approaches can only reduce OO dependencies between clus-
ters, and not completely eliminate them. As each identified cluster encapsulated into
their respective microservice project, these dependencies are no longer possible as they
reference classes defined in different projects. Indeed, the inter-cluster dependencies
prevent the proper encapsulation of the identified microservices and are defined as
microservice encapsulation violations that must be resolved.

Definition 4.1.1: microservice encapsulation violation

A microservice encapsulation violation is an object-oriented dependency be-
tween two clusters that is no longer possible after they have been encapsulated
into their microservices.

Indeed, as we shift from an OO paradigm to an MSA one, we need to replace these
OO-type dependencies between microservices into MSA-type dependencies. To do so,
in this chapter we propose a set of refactoring patterns to resolve these OO-type depen-
dencies into MS-type dependencies. More precisely, we aim to answer the following
questions:

1. What are the different types of encapsulation violations?

2. What are the refactoring patterns to resolve each type?

3. If they cannot be resolved directly, how can we reduce the violation into a resolv-
able violation?

In this chapter, we present our semi-automated approach towards materializing
the microservice-oriented architecture. This approach uses the target architecture gen-
erated by identification approaches such as the one presented in Chapter 3 and the
source code of the existing monolithic application to materialize the target source code.
In the next section, we highlight the challenges behind encapsulating the identified
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clusters of classes into separate microservice projects through a motivating example.
In Section 4.3, we present a 4-step Workflow of our approach for materializing the
MSA. Then, in Section 4.4, we focus on the first step by defining and detecting the dif-
ferent types of encapsulation violations. In Section 4.5, we focus on the second step
by presenting the transformation patterns for resolving the detected encapsulation vi-
olations. In Section 4.6, we apply our approach on a set of monolithic applications by
transforming their architecture into a microservice-oriented one and evaluate the qual-
ity of the resulting transformation, as well as their performance. Finally, in Section 4.7
we conclude this chapter with our observations and our perspectives.

4.2 Challenges towards materializing an MSA

To tackle the problems we face during the materialization phase of the migration pro-
cess, we use an illustrative example of a display screen management system (e.g., an
information panel in an airport). It is composed of the DisplayManager class that is re-
sponsible for handling the information to be displayed on the Screen class (see Fig 4.1).
It does so through a ContentProvider class that implements methods for stacking con-
tent such as incoming messages (i.e., Message instances) or the current time (i.e., Clock
instances). Finally, the Clock class uses an instance of the Timezone class to get the time
based on its GPS location.

Figure 4.1: Information Screen class diagram

During the identification phase of the migration clusters of classes are extracted
from the monolithic application. Each cluster forms the basis of a structurally and
behaviorally-valid microservice candidate. Existing approaches propose different clus-
tering techniques to maximize the quality of the identified microservice candidates.
However, as these clusters are encapsulated into their own microservice project, inter-
cluster dependencies are revealed. Indeed, despite efforts to extract independent mi-
croservices, identification approaches are unable to extract microservices without cre-
ating inter-cluster dependencies. In the case of Information Screen, every class is depen-
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dent on one or more classes to function. This makes it impossible to extract completely
independent clusters of classes.

Figure 4.2: The Transformation Process using the MonoToMicro tool.

In Figure 4.2, when Information Screen is partitioned into 5 microservice candidates,
there still exists inter-cluster OO-type dependencies that must be resolved before the
candidates can be fully encapsulated. Indeed, during the extraction process of Infor-
mation Screen, 4 different inter-cluster dependencies can be seen. In particular, the
association between the DisplayManager and ContentProvider, as well as the associa-
tion between TimeZone and Clock are no longer possible. Furthermore, the inheritance
properties between the parent class Content and the child classes Clock and Message are
also exposed. Other underlying dependencies that do not appear in the diagram can
also be found in the source code, such as Clock accessing an attribute of TimeZone or
ContentProvider throwing a stack overflow exception that must be handled by Display-
Manager.

However, before we can materialize the identified microservices, we must trans-
form these inter-cluster dependencies in the goal of healing the resulting encapsulation
violations. To do, we must first establish a systematic and automated way to detect and
transform each violation. Indeed, the first obstacle towards materializing an MSA is to
explicitly define the different encapsulation violations that are possible, and establish
detection rules to systematically reveal all encapsulation violations. After establishing
detecting the various encapsulation violations, the second obstacle involves defining
a set of transformation patterns to systematically resolve the different violations. In
the next section, we present the global workflow of our approach to solve these two
obstacles and properly package the materialized MSA.
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4.3 Global Workflow of Macro2Micro

Figure 4.3: The Transformation Process using the Macro2Micro tool.

To handle the challenges identified in the previous section, we propose a systematic
way of transforming a monolithic OO application into an MSA application through the
use of a set of transformation patterns. The purpose of this approach is to generate the
source code of the MSA by encapsulating the clusters discovered during the initial mi-
gration step. To do so, we define a process composed of four steps as presented in
Figure 4.3 which consist of: (1) detecting encapsulation violations, (2) healing encap-
sulation violations, (3) packaging microservices, and (4) deploying and containerizing
microservices.

4.3.1 Detecting Encapsulation Violations

Each recovered cluster of classes is encapsulated in its own microservice project to
materialize the recovered microservice candidates from the source of object-oriented
software. Upon encapsulation, OO dependencies between clusters are no longer per-
mitted as they cause encapsulation violations. Therefore, they must be transformed
into MS-type dependencies. However, before the transformation can take place these
encapsulation violations must be detected. To facilitate the detection of these encap-
sulation violations, a set of encapsulation violation rules are proposed to analyze the
monolith:

Definition 4.3.1: Microservice encapsulation detection rules

(Rule 1) Method Invocation: if a cluster’s method invokes a method belonging
to a class from another cluster then it is a method invocation violation.
(Rule 2) Attribute Access: if a cluster’s method accesses an attribute belonging
to a class from another cluster then it is an access violation.
(Rule 3) Instance Handling: if a cluster’s class contains a reference targeting a
class from another cluster then it is an instance violation.
(Rule 4) Inheritance: if a cluster’s class inherits a class belonging to another clus-
ter then it is an inheritance violation.
(Rule 5) Exception Handling: if a cluster’s method throws, catches or declares
an exception defined in another cluster then it is a thrown exception violation.
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However, to use these detection rules they must be formalized and applied system-
atically. To do so, in Section 4.4 we propose a formalization of these rules and apply
them on the AST1 representation of the OO source code. Initially, the target architecture
description is used to partition the AST nodes that represent the classes into clusters.
Then, each node is parsed for references towards class nodes belonging to another
cluster using the aforementioned detection rules. To facilitate the formalization of the
detection rules, a representative model of the references between class nodes are pro-
posed. Then, these detection rules are applied on each cluster. After all the violations
have been detected, they can be healed.

4.3.2 Healing Encapsulation Violations

The violations detected in the preceding step must be healed using transformation
rules in order to properly encapsulate microservices. These transformations must ei-
ther fully heal or reduce a violation to a solvable one. Indeed, later when we propose
our set of transformation patterns, some patterns end up creating more violations. To
this effect, we consider a transformation pattern only reduces a specific violation if it
creates another violation.

Previously, the detection of encapsulation violation covered method invocation, at-
tribute access, instance handling, inheritance, and exception handling. In Section 4.5,
we present a set of transformation rules to systematically heal the microservice encap-
sulation violations identified in the first step. Concerning the transformation patterns
that only reduce violations, we also present a transformation order to heal all violations
efficiently (see Section 4.5.6).

4.3.3 Packaging and Deployment of an MSA

Once the MSA source code has been healed, it must be packaged and made deploy-
able. In step (3), the violation-free microservices are packaged. To accomplish this, we
generate a project for each microservice, its file structure, and library dependencies.
Furthermore, the healed AST class nodes are printed into their respective microser-
vice projects. In step (4), the microservice-oriented architecture is made deployable
to the cloud by creating the necessary configuration files (e.g., dockerfiles) for each
microservice. Furthermore, a composition file is also created, which organizes all the
microservices when deployed together.

In this chapter, we concentrate on the first two steps of the transformation phase,
which comprise the major scientific roadblocks previously highlighted, and leave the
last two steps for the implementation as they comprise more technical roadblocks.
Next, we present a systematic approach towards detecting microservice encapsulation
violation.

1Abstract syntax tree
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4.4 Detecting Microservice Encapsulation Violations

4.4.1 Detection Process and Model

The first step towards materializing the identified MSA, is to detect the microservice
encapsulation violations that occur when we place each identified cluster into their
own microservice project. However, the task of detecting all violations can be difficult,
therefore it requires providing an automated and systematic way of detecting them. To
detect these violations, we apply a static analysis on the source code of the monolithic
application.

Concretely, we propose to parse and extract the source code’s abstract syntax tree
(AST) representation. Within the AST, there are nodes that represent the classes, at-
tributes, and methods. Furthermore, dependencies between classes are also parsed
and represented within the AST as references which are typed based on the type of
dependencies. We use these references to guide the detection of microservice encapsu-
lation violations.

To facilitate the detection of microservice encapsulation violations we need to for-
malize, or define, each violation. By formalizing these violations, we can also formal-
ize the rules to detect them. We propose an object-to-microservice mapping model that
maps the object-oriented elements from the generated AST to the identified microservice-
oriented architecture (see Figure 4.4).

Figure 4.4: Object-to-microservice model.
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This mapping model allows us to formally represent the different relationships be-
tween classes in addition to the clustering results during the identification phase (see
Chapter 3). In the mapping model, we define a Microservice Architecture as
being composed of one or more Clusters. In turn, a Cluster contains a set of
Classes. Furthermore, the associations between the different classes are represented.
For instance, we represent any class references between two classes with the entity
Reference. Inheritance between two classes are represented by the InheritanceDefinition
entity. In the case of attribute access and method invocation, they are both represented
by their respective entities. Finally, thrown exceptions are taken are formalized by the
association between the Exception entity and the Method entity.

4.4.2 Microservice Encapsulation Violation Detection Rules

From the model presented, we can now define a set of rules to detect specific viola-
tions. Particularly, we present 5 detection rules concerning the 5 type of encapsulation
violations presented previously.

The first rule (Rule 1: Method Invocation) towards detecting encapsulation viola-
tions relates the method invocation violation. Particularly, this violation defines that
a class invoking a method belonging to a class from another cluster should not be al-
lowed. The detection of this violation is formalized in Listing 4.1 to be applied on the
OO-to-Microservice model.

1 rule MethodInvocationViolation(c1: class):
2 when:
3 c1.methods.forAll(Method m1:
4 m1.candidates.forAll(Invocation invoc:
5 invoc.invokedMethod.class.cluster != c1.cluster))

Listing 4.1: Violation Detection Rule 1: Method Invocation Violation.

Secondly, if a cluster’s method accesses an attribute belonging to a class from an-
other cluster then it is considered an access violation. To formalize this definition, we
propose the following violation detection rule (Rule 2: Attribute Access):

1 rule AttributeAccessViolation(c1: class):
2 when:
3 c1.methods.forAll(Method m1:
4 m1.accesses.forAll(Access access:
5 access.attribute.class.cluster != c1.cluster))

Listing 4.2: Rule 2: Attribute Access Violation.

Thirdly, we consider the instance violation where one cluster’s class contains a ref-
erence targeting a class from another cluster. Particularly, we mean to detect the act
of instancing a class defined in another cluster. We use references to detect instances
being created and handled. To formalize this definition, we propose the following vio-
lation detection rule (Rule 3: Instance Handling):

1 rule InstanceReferenceViolation(c1: class):
2 when:
3 c1.references.forAll(Reference ref:
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4 ref.references.cluster != c1.cluster))

Listing 4.3: Rule 3: Instance Violation.

Another encapsulation violation that we have to consider is the inheritance be-
tween classes belonging to different clusters (Rule 4: Inheritance). The detection of
this violation is formalized in Listing 4.4, and applied on the Object-to-Microservice
model.

1 rule InheritanceViolation(c1: class):
2 when:
3 c1.inheritanceDefinition.superclass.cluster != c1.cluster

Listing 4.4: Violation Detection Rule 4: Inheritance Violation.

Finally, if a method throws or catches an exception defined in another cluster then
it is considered to be a exception throwing & handling violation (Rule 5: Thrown &
Caught Exceptions). We define the detection rule relating to exception throwing &
handling violations in Listing 4.5. Particularly, we detect that a method either throws
or catches an exception defined in another cluster.

1 rule ExceptionViolation(c1: class):
2 when:
3 c1.methods.forAll(Method m1:
4 m1.throws.definedBy.cluster != c1.cluster)
5

Listing 4.5: Violation Detection Rule 5: Thrown & Caught Exception Violation.

We apply the detection rules on the AST of the monolith to generate a set of encap-
sulation violations. From this set, we can proceed to heal each violation systematically.
Indeed, in the next section, we present a transformation pattern for each defined vio-
lations.

4.5 Healing Microservice Encapsulation Violations

After fragmenting the monolithic code into different microservices (e.g., clusters of
classes), some classes are instanced in one microservice and used (i.e., invoked, refer-
enced, accessed) in others. To remove these type of violations, it is necessary to provide
adequate answers to the following questions to properly heal all violations:

1. How do we invoke a method existing in a class belonging to another microser-
vice? (i.e., Rule 1)

2. How do we access attributes of objects belonging to another microservice? (i.e.,
Rule 2)

3. How do we create an instance of a class belonging to another microservice? When
a given instance is referenced in several microservices, how do we ensure the
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sharing of this instance while preserving the business logic of the application?
(i.e., Rule 3)

4. How can a class inherit from a class defined in another microservice? (i.e., Rule
4)

5. How can we handle exception thrown from another microservice? (i.e., Rule 5)

Particularly, as we move from an object-oriented paradigm to a microservice-oriented
one, the OO-type dependencies between microservices needs to be replaced by microservice-
type dependencies (i.e., web services). In the following subsections we provide a set of
transformation patterns to address the aforementioned questions and to transform the
encapsulation violations detected in the previous section.

4.5.1 Method Invocation

The first encapsulation violation we address is the one related to (Rule 1) method
invocation violation. Let’s present a case from the motivating example provided in
Section 3.2 where the class DisplayManager, placed in the microservice candidate 1
(MS1), invokes a method from the class ContentProvider which is placed in MS2 (see
Figure 4.5). Particularly in Listing 4.6, DisplayManager invokes the method pop() of
the class ContentProvider.

Figure 4.5: ContentProvider’s method pop() invoked by DisplayManager.

1 public class DisplayManager{
2 private ContentProvider contentProvider;
3 public DisplayManager(){}
4 public void manageContent(){
5 ...
6 contentProvider.pop();
7 ...
8 }
9 }

10 public class ContentProvider {
11 private Stack<Content> contents;
12 public ContentProvider(){...}
13 public ContentProvider getInstance(){return self;}
14 public Content pop(){
15 return contents.pop();
16 }
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17 }

Listing 4.6: An example of a method invocation between DisplayManager and ContentProvider.

To remove this encapsulation violation, the set of methods from the invoked class
(i.e., ContentProvider) are extracted into a set of required and provided interfaces that
are placed in MS1 and MS2 respectively (see Figure 4.6). Then, the outgoing method
calls from the invoker (e.g.,DisplayManager) are refactored to invoke the required in-
terface (i.e., IContentProvider). This transformation decouples the two classes while
providing a set of required and provided interfaces that will be used to establish for
future communication.

Figure 4.6: Decoupling method invocations between MS1 & MS2 through interface-based calls.

Nevertheless, after encapsulating the microservice, the invoked class (e.g., Content-
Provider) cannot be reached by the invoker (e.g., DisplayManager) via the required in-
terface. Indeed, as microservice communicate exclusively through lightweight mecha-
nism (e.g., RPC or messages), a technological layer must be implemented. Therefore,
the provided interfaces must be implemented, or exposed, as a web service in the mi-
croservice containing the invoked class (e.g., ContentProvider). In Figure 4.7, a WebSer-
vice class is generated to expose the methods of ContentProvider. To achieve this goal, a
method is created in the WebService for every public method of ContentProvider, to act as
a proxy to receive a request. The proxy method then calls the appropriate method and
returns its result. From the invoking microservice, a WebConsumer class is generated
to implement the required interface and handle the network calls to its corresponding
WebService class.

The transformation pattern for refactoring the set of required/provided interfaces
into a web service is the only pattern proposed in this chapter that completely resolves
an OO-type dependency into an MS-type one. Particularly, we differentiate transfor-
mation patterns that resolve encapsulation pattern with those that reduce them. In-
deed, in the following sections we propose transformation patterns that reduce (and
not resolve) a violation into another violation. In Section 4.5.6, we will discuss how by
chaining transformation patterns we are able to transform all OO-type dependencies
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Figure 4.7: Implementing the provided/required interfaces as a set of web service & web con-
sumer.

into MS-type ones. For now, let’s accept that the following violation reductions are
sufficient towards resolving them.

4.5.2 Attribute access

The attribute access violation (Rule 2) involves a cluster accessing the attribute of a
class belonging to another cluster. This violation can be reduced by creating getter/set-
ter methods, and limiting the access of the attribute to its class. Finally, the existing ac-
cesses within the internal code are refactored into the appropriate method invocation.

1 public class Clock extends Content{
2 public TimeZone timezone;
3

4 public Clock() {}
5 public String getContent() {
6 return "Current time is " + timezone.time;
7 }
8 }
9 public class TimeZone {

10 public int time;
11 public GpsLocation gpsLocation;
12

13 public TimeZone() {}
14 public TimeZone(int cod) {...}
15 }

Listing 4.7: An example of an attribute access between Clock and TimeZone.

In Listing 4.7, Clock directly accesses the attribute time of the class TimeZone. To
remove this particular violation, the attribute time is made private (see Listing 4.8).
Then, the method getTime() is created which accesses and returns the value of time.
Finally, the method getContent() from the class Clock is modified to invoke the
method getTime() instead.
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1 public class Clock extends Content{
2 public TimeZone timezone;
3

4 public Clock() {}
5 public String getContent() {
6 return "Current time is " + timezone.getTime();
7 }
8 }
9 public class TimeZone {

10 private int time;
11 public GpsLocation gpsLocation;
12

13 public TimeZone() {}
14 public TimeZone(int cod) {...}
15 public int getTime(){
16 return time;
17 }
18 }

Listing 4.8: Internal code refactoring to reduce the access attribute to a method invocation
violation.

However, this refactoring pattern leads to the creation of method invocation vio-
lations, which must also be resolved. For this, we can apply the method invocation
transformation pattern presented in the previous subsection to completely resolve this
violation.

4.5.3 Instance creation, handling, and sharing

We have addressed how an object’s methods are invoked and attribute are accessed,
however we have not addressed how classes can be instanced, handled and share
across multiple microservices. Indeed, when we move from a centralized to a decen-
tralized application, objects cannot be easily passed. In this subsection, we address the
questions surrounding the creation and sharing of instances of a class between multi-
ple microservices and how to recreate them in an MSA (Rule 3).

4.5.3.1 Instance creation

The first challenge involves recreating the instance creation that happens when a con-
structor method (e.g., ContentProvider’s) is called by a class (e.g., DisplayManager) be-
longing to another cluster. To resolve this violation, we must decouple the constructor
call. More specifically, we apply a Factory pattern to decouple the creation of instances
between classes belonging to different clusters. By applying a factory pattern, we cre-
ate a class containing a method that is responsible for creating and returning the ex-
pected object.

For instance, we replace the instantiation of ContentProvider by the class Display-
Manager with a class Factory acting as an object factory. For simplicity and ease of use,
the same provided/required interfaces used to decouple method invocations between
microservices also define these object factory methods. In Figure 4.8, this requires
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adding a factory method in the required/provided interface (i.e., method createCon-
tentProvider()), and implementing the corresponding methods in the WebConsumer &
WebService.

Figure 4.8: Decoupling class instantiation with the Factory Pattern.

In essence, this allows microservices to create objects through a web service. After
the constructor is called by the invoker, there needs to be a way for the invoker to
handle the object upon further use. However, since each microservice runs on its own
process [LF14b], it is not easy to pass an object from one process to another. Therefore,
the mechanism of passing objects through a method needs to be reproduced in the
context of two microservices communicating.

4.5.3.2 Instance handling

Since objects cannot be easily passed between two microservices, there needs to be a
way for microservices to manipulate classes defined and instanced within other mi-
croservices. To reproduce this mechanism, we propose a transformation pattern based
on the Proxy Pattern. Generally, the intent of the proxy pattern is to provide a surrogate
or placeholder for another object to control access to it [GHJV95].

Figure 4.9 illustrates the proxy pattern applied on the class ContentProvider to pro-
pose a surrogate (ContentProviderProxy) and handle all method invocations from Dis-
playManager. In this scenario, the proxy class acts to decouple the object referenced
in one microservice (i.e., MS1) which is defined in another microservice (i.e., MS2).
Therefore, a proxy class is created for any class referenced in one microservice and de-
fined in another. This proxy class will have the same public methods and the same
public constructors. However, the proxy class implementation is rewritten to use the
WebConsumer class to interact with the real class definition.

Furthermore, upon the instantiation of the proxy class, the real class’ instance is
created. To differentiate, between the proxy class and the real class, the instances of
the proxy class are called proxy instances, and instances of the real class are called
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concrete instances. However, after instantiating a proxy instance, there needs to be a
mechanism to link the proxy instance to the concrete instance. Indeed, a proxy instance
should reference its concrete instance. Therefore, we propose that a proxy instance
references its concrete instance via the same unique reference, and any operation on
a proxy instance is transferred to its concrete instance. Finally, whenever the concrete
instance is exchanged between microservices, the unique reference is passed instead of
the concrete instance.

Figure 4.9: Replacing access to an object with the Proxy Pattern.

Concretely, there needs to be a mechanism to keep the state of the concrete instance
between methods calls. Indeed, in the current implementation, shortly after the instan-
tiation, a garbage collector can destroy the concrete instance. Therefore, we implement
a class to store and manage all concrete instances created in a microservice. Whenever
a factory is called to create a concrete instance, it sends the object to a storage class
(e.g., the Database class in Figure 4.9) to preserve it. In turn, the storage class returns a
token for accessing the object at a later date. The factory method returns the token via
its web service implementation to the proxy instance which stores it for later method
invocations. Later, when a proxy-instance method is invoked, it transfers the request
along with its token to the appropriate web service method. The token adds the re-
quired context for the web service to load the concrete instance and invoke the correct
method. From there, the result of the method invocation is returned by the web service.

4.5.3.3 Instance sharing

The final aspect to consider, when transforming the instance handling violation, is
that complex objects may be passed as a parameter. However, as we shift from an
OO paradigm to a microservice-oriented one, only certain serializable objects can be
passed from one microservice to another. Indeed, while primitives or data classes can
be easily serialized, certain objects and their states cannot be serialized without losing
information. As microservice-type communication is limited to passing simple data
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types such as strings and integers, we need to transform this type of exchange between
microservices to be able to preserve the consistency of the application’s business logic.

Figure 4.10: Sequence diagram of instance sharing between three microservices.

For instance, a microservice may receive or send an object of a class which it does
not define. Furthermore, Whether the sender holds a proxy or a concrete instance, it
must be able to produce a token to represent it. In the case of the receiver, it must be
able to handle a token whether the receiver holds the concrete instance or not. With
this token mechanism, complex objects can be passed between microservices as tokens,
while the owner of the class manages the instances. A microservice is able to instantiate
the proxy instance whenever it receives a token. When a microservice receives a token,
it is able to create the appropriate proxy instance to access the concrete instance.

To illustrate the possible configurations the implementation handles, we propose an
example based on the Information Screen application. In such application, the Display-
Manager is able to invoke the manageContent() method of ContentProvider. In turn,
ContentProvider creates a Clock instance and returns it to the DisplayManager. From
there, the DisplayManager fetches the content of the Clock instance through its method
getContent().

However, during the migration DisplayManager, ContentProvider, and Clock are placed
in different microservices. Furthermore, the Clock instance is passed between MS1 and
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MS2, while being defined in MS3. Using the token system, several scenarios need to
be handled (for each scenario a number indicates where in Figure 4.10 this scenario
happens):

1. A microservice may receive an object of a class that does not belong to it (1 & 2).

2. A microservice may send an object of a class that belongs to it (1).

3. A microservice may receive an object of a class that belongs to it (3).

4. A microservice may send an object of a class that does not belong to it (2 & 3).

For each scenario, a token is passed between the microservices, but depending on
the scenario the token is handled differently (each scenario is labeled in Figure 4.10):

1. When a microservice receives an object of a class that does not belong to it, the
microservice creates the relevant proxy and stores the token within it (a).

2. When a microservice sends an object of a class that does not belong to it, the
microservice must extract the token from its proxy and send it (b).

3. When a microservice receives an object of a class that belongs to it, the microser-
vice uses the token to fetch it from its storage class (c).

4. When a microservice sends an object of a class that belongs to it, it must store the
object and send the token (d).

In conclusion, this approach enables the passing of complex objects between mi-
croservices, while the owner of the class handles the instances for other microservices.
Specifically, if a microservice does not define a class that is handles, then it uses the ap-
propriate proxy class and the token mechanism to interact with the concrete instance.

4.5.4 Inheritance Relationship

Whenever a class inherits from another class belonging to a different microservice, it is
considered an inheritance violation. To heal this encapsulation violation, inheritance
must be decomposed into its different mechanisms and then transformed as to pre-
serve all the mechanisms. This includes (a) the extension of the child class definition
through the parent class, (b) the method overriding mechanism, and (c) polymorphic
assignment. To do so, we propose a three-step transformation inspired from [AST+15]:
(i) Uncoupling the child/parent inheritance with a double proxy pattern, (ii) Recre-
ating method overriding via proxy inheritance, and (iii) recreating the polymorphic
assignment through interface inheritance. We apply this three-step transformation on
the inheritance between Content and Message presented in Figure 4.11.
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Figure 4.11: Inheritance relationship between Content and the child classes Message and Clock.

4.5.4.1 Child/Parent definition extension

The first mechanism that must be transformed is the extension of the definition of the
parent by the child. A child class has access to the parent’s attributes and methods. Fur-
thermore, it may override the parent’s methods. Finally, both child and parent method
definitions may access each other’s methods through the use of reference variables to
the parent object or itself.

In their paper, the authors propose a double delegate pattern to preserve the inheri-
tance between class placed in different components [AST+15]. As part of their solution,
whenever a child object is created, a parent object is also created as an attribute within
the child object. Furthermore, the child class is refactored to implement any parent
method that is not redefined in the child class. These redefined methods delegate any
invocation to the parent method through the stored parent object to recreate the access
to the parent class methods. Inversely, the parent object store the child object and acts
as a delegate to preserve the dynamic calling of overridden methods. This transforms
the inheritance encapsulation violation into a set of instance creation violations and a
method invocation violations which can be healed using the transformation patterns
proposed previously. In the case of an abstract parent class, [AST+15] also apply a
proxy pattern so that the proxy class inherits from the parent class, and it can be in-
stantiated by the child class.

This transformation pattern requires refactoring the internal code to add attributes
and modify the existing methods of both the parent and the child classes. All this
internal code refactoring requires informing the developer to use the delegate pattern
instead of the native inheritance implementation which can reduce readability and
thus increase the maintenance cost. Instead, we proposed a revised version that treats
inheritance as a service and which also minimizes the refactoring of the internal code.

Concretely, we propose a double-proxy pattern to reproduce the inheritance link be-
tween the child and parent classes without significantly refactoring the child/pattern
classes. Figure 4.12 illustrates the transformation of the inheritance link between the
child (e.g., Message) and the parent class (e.g., Content). First, a parent proxy class (e.g.,
ContentProxy) is created to implement the methods defined by the interface extracted
from the parent class (e.g., IContent). Then, the child class (e.g., Message) is refactored
to extend the parent proxy (e.g., ContentProxy). Finally, child proxy class (e.g., Mes-
sageProxy) is defined to extend the parent class, and acts as the child proxy for the
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Figure 4.12: Redefining the inheritance between Content and Message through a double-proxy
pattern.

parent class. In total, the refactoring of the internal code is limited to modifying which
class the child class extends (e.g., in our case Message now extends ContentProxy). Fur-
thermore, this transformation pattern can also be applied in the context of an abstract
parent class.

4.5.4.2 Recreating Method Overriding

Method overriding is an OO mechanism that allow a child class to rewrite the imple-
mentation of a method defined in its parent class. Concretely, the version of the method
that is executed is determined by the object that is used to invoke it. This mechanism
is recreated through the double-proxy pattern, by overriding the same methods of the
parent class with the proxy child. In turn, the overriding method calls the appropriate
method of the child class. However, this creates a set of instance creation & method
invocation violations that needs to be transformed. This is also the case regarding the
relationship from the child class to the parent class.

To do so, we add two web services (see Figure 4.13). Upon the creation of a child
object (e.g., Message), the parent proxy’s constructor (e.g., ContentProxy) is called to
consume the Parent web service. This has the effect of initializing the child proxy (e.g.,
MessageProxy) that inherits naturally from the parent class (e.g., Content). Whenever a
method defined by the parent class (e.g., Content) is invoked by the child object (e.g.,
Message), the parent object will be invoked via the parent web service. Furthermore,
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Figure 4.13: Inheritance as a service.

when the parent class (e.g., Content) references the instance, it will invoke the child
object through the child proxy (e.g., MessageProxy) object.

4.5.4.3 Recreating Polymorphic Assignment through Interface Inheritance

In a language supporting polymorphic assignment, a variable of a parent class can be
assigned an instance of a subclass type. However, as we transform the inheritance
we replace the assignment compatibility (i.e., subtyping). To recreate the polymorphic
mechanism, a child interface (e.g., IMessage) is defined to extend the parent interface
(e.g. IContent). The child class implements the child interface, allowing for the poly-
morphic assignment of the child objects (see Figure 4.14).

4.5.5 Resolving Exception Throwing & Catching Violations

The exception handling encapsulation violation involves create, throwing, and catch-
ing exception objects across microservices. To ensure a well-contained throwing &
handling of exceptions we propose a two-step transformation process: wrapping the
exception response and transforming the exception-handling source code.
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Figure 4.14: Polymorphic assignment can be recreated by applying an interface inheritance
between the Parent Interface and the Child Interface.

4.5.5.1 Wrapping the exception response

Normal methods have two different types of responses. They may return the normal
intended type response, or an exception response. However, Web service methods are
not intended to throw exception objects. When a method is exposed as a service, this
limitation must be circumvented by introducing a class that acts as a wrapper return
type which can hold either the normal response type, or an exception response type.
Every method’s return type is replaced by this wrapper class.

4.5.5.2 Transforming the exception-handling source code

To prepare the wrapper type, a web service operation surrounds the method invoca-
tion with a try and catch. When the method returns the normal response type, it safely
adds the value in a dictionary. When the method returns an exception response type, it
safely captures the exception object, stores it for later use, and adds its corresponding
access token to access the dictionary. Listing 4.9 illustrates an example of a web service
method wrapping the normal IContent response type, or catching either an EmptyCon-
tentStackException or a FullContentStackException object. Either way, the object is stored,
and its token is placed in a JSON node and returned.

1 public class ContentProviderWebService {
2 public JsonNode pop(int proxy_id){
3 JsonNode return_node = new JsonNode();
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4 IContentProvider contentprovider = InstanceDB.getContentProvider
(proxy_id);

5 try{
6 return_node.put("return", InstanceDB.addContent(

contentprovider.pop()));
7 } catch(EmptyContentStackException e){
8 return_node.put("EmptyContentStackException", InstanceDB.

addEmptyContentStackException(e));
9 }

10 return return_node
11 }
12 }

Listing 4.9: Surrounding the method which throws an error with a try and catch.

Upon receiving the response from the service, the proxy must check the response
with a series of if/else. If the wrapper contains the normal response then it returns
it. If, on the other hand, it contains one of the exception responses, then it extracts the
token corresponding to the exception response, associates it with a new proxy excep-
tion object, and finally throws the latter. Listing 4.10 illustrates how the JSON sent in
Listing 4.9 is handled. If the JSON contains a value designating any of the keys that
correspond to an exception type, then the corresponding exception proxy is created.
Otherwise, it is assumed that the normal response was stored in the return key of the
JSON.

1 public class ContentProviderProxy {
2 public IContent pop() throws EmptyContentStackExceptionImpl {
3 JsonNode return_node = getProxy().pop(contentprovider_id);
4 if(return_node.get("EmptyContentStackException" != null){
5 throw new EmptyContentStackExceptionImpl(return_node.get("

EmptyContentStackException"));
6 } else {
7 return new IContentImpl(return_node.get("return").asInt());
8 }
9 }

10 }

Listing 4.10: Surrounding the network call with an if/else statement to unwrap either the
normal response or the exception response.

4.5.6 Violation Resolution Order

For every type of encapsulation violation identified in this approach, transformation
rules have been proposed. However, some transformation rules produced additional
violations. Such is the case with the inheritance violation which creates additional
instance creation & method invocation violations. Therefore, to systematically resolve
all encapsulation violations in one iteration, we propose a violation resolution order
which is presented in Figure 4.15.

The order is as follows:

1. The attribute access violation is reduced as it adds public methods to its class that
may be further refactored by inheritance violation.
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Figure 4.15: The transformation order of each microservice encapsulation violation.

2. The thrown exceptions are reduced to instance violations.

3. The inheritance violations are reduced to an instance violation, so all instance
violations can be healed together.

4. The instance violations are reduced to method invocation violations.

5. The remaining method invocations violations are transformed into a set of web
services.

Once all violations have been resolved, we are left with a set of web services in each
microservice candidates. Finally, the source code of each microservice candidate can
be generated and packaged into their own project. In the next section, we discuss the
implementation of our approach to evaluate it on a set of applications.

4.6 Evaluation

The main goal of this evaluation is to determine whether our approach is able to prop-
erly encapsulate microservice candidates from the identified MSA. To evaluate our
approach we implemented a tool to apply our approach. Furthermore, we migrated to
various degrees a set of monolithic applications of various sizes.

4.6.1 Data Pre-processing: Microservice Identification

For this experiment, we extracted an initial list of 19 monolithic applications that were
used in nine different articles in the field of MSA recovery. From this initial list, we
selected 6 applications based on whether the source code was open-source and object-
oriented. The seventh application (Omaje), is a closed-source legacy application by
Berger-Levrault, an international software editor. This application was designed over
10 years ago by a team of 4 developers to handle the distribution of software licenses
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between Berger-Levrault and its clients. Metrics on the seven applications are avail-
able in Table 4.1.

Table 4.1: Applications on which the experiment was conducted.

Application name No of classes Lines of Code
(LOC)

FindSportMates2 21 4.061
JPetStore3 24 4.319
PetClinic4 44 2.691
SpringBlog5 87 4.369
IMS6 94 13.423
JForum7 373 60.919
Omaje 1.821 137.420

Furthermore, we must recover the microservice architecture to evaluate the trans-
formation approach. To do so, we use the semi-automatic approach proposed in [SSB+20b]
to recover an MSA as a cluster of classes, but other identification approaches can be
used. These clusters along with the source code of the applications are used as input
for our approach.

4.6.2 Research Questions and their Methodologies

We conduct an experiment with the goal of answering the following research questions
regarding our approach.

4.6.2.1 RQ1: Is our approach able to preserve the behavior of the migrated applica-
tion when materializing its microservice-oriented architecture?

Goal The goal of this research question is to evaluate the functional/behavioral cor-
rectness of the microservice architecture. In other words, we aim to demonstrate that
we are able to transform the source code of a monolithic application while preserving
its business logic.

Method To answer this RQ, we want measure the precision and recall of our ap-
proach based on the syntactic and semantic correctness of the transformed microser-
vices. It stands to reason that if the resulting MSA applications behaves in the same
way as the monolithic applications then the business logic was preserved.

2https://github.com/chihweil5/FindSportMates
3https://github.com/mybatis/jpetstore-6
4https://github.com/spring-petclinic/spring-framework-petclinic
5https://github.com/Raysmond/SpringBlog
6https://github.com/gtiwari333/java-inventory-management-system-swing-hibernate-nepal
7https://github.com/rafaelsteil/jforum2/

https://github.com/chihweil5/FindSportMates
https://github.com/mybatis/jpetstore-6
https://github.com/spring-petclinic/spring-framework-petclinic
https://github.com/Raysmond/SpringBlog
https://github.com/gtiwari333/java-inventory-management-system-swing-hibernate-nepal
https://github.com/rafaelsteil/jforum2/
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We consider that microservices have a correct syntax if there is no compilation er-
rors. To measure the semantic correctness, we rely on whether the transformed mi-
croservices produce the same results compared to the functionalities of the original the
monolithic applications at run-time. To do so, we identify a set of execution scenarios
that can be used in both applications. We compare the outputs of the monolithic ap-
plication with its microservice counterpart for each execution scenario. We consider
that the transformation has a semantic correctness when the outputs generated by the
monolith and the MSA are identical based on the same inputs.

When possible, the identification of execution scenarios is based on test cases de-
fined by the developers of the monolithic applications (e.g. JPetStore). When test cases
are not available, we identify a set of features and sub-features for each monolithic ap-
plication (e.g. FindSportmates, IMS). From these features, we establish a set of user sce-
narios that cover all features of each application. These user scenarios are performed
on the monolithic application and the results are saved. Then, these user scenarios
are performed on the MSA, and the results are compared with those of the monolithic
application.

Figure 4.16: The confusion matrix for evaluating the materialization of the MSA in comparison
with the monolith.

To calculate the precision of the materialization approach, we use the confusion ma-
trix presented in Figure 4.16. Particularly, the precision is calculated by taking the num-
ber of tests passed by both architectures and dividing by the number of the tests passed
by the MSA. Furthermore we calculate the recall by taking the number of tests passed
by both architectures and dividing it by the number of tests passed by the monolith.

Due to time constraints related to the application packaging that is highly depen-
dent on the technology of the monolith working with Spring, we study this research
question with the FindSportMates, JPetStore, and InventoryManagementSystem applica-
tions. For JPetStore, we ran the Selenium tests provided with the monolithic applica-
tion. For FindSportmates and Inventory Management System, we manually ran these user
scenarios.
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4.6.2.2 RQ2: What are the impacts of Mono2Micro on the performance?

Goal The overall goal of our approach is to migrate while preserving the semantic
behavior of an application. Moreover, an important aspect of the migration is that it
must preserve the semantic without degrading drastically the runtime performance
of the application. Therefore, the primary goal of this RQ is to evaluate whether the
performance impacts resulting from the migration of the monolithic application to mi-
croservices are negligible when compared to the original application.

Method To answer RQ2, we rely on the execution time of user requests. The execu-
tion time measures the delay between the time when the request is sent and the time
when the response is received by the user. We compare the execution time of both the
monolith and the MSA.

We establish a user scenario using Omaje to compare the performance of the mono-
lithic application with its microservice counterpart. For this evaluation, we chose
Omaje because its business logic is the most complex of all 7 applications. To evalu-
ate the performance, we simulate an increasing number of users connecting to both
the MSA and the monolith, using JMeter8 to simulate user load. As the number of user
increases, we increase the number of instances of the microservice for both the mono-
lith and the MSA. For the monolith, this involves duplicating the application. For the
MSA, this involves duplicating the microservices involved in the current scenario. We
consider that the refactoring results improve or maintain the quality and performance
of the original code if the execution time difference between both architectures is neg-
ligible for the average user while the resource utilization is optimized. For our test we
use a computer with an i7-6500U @ 2.5GHz and 16 GB of ram.

4.6.3 Results

Table 4.2: Data on the applications being transformed.

Application No.
MSs

No. data
classes

No.
violations

Findsportmates 3 2 9
JPetStore 4 9 21
PetClinic 3 7 26
SpringBlog 4 8 104
IMS 5 18 113
JForum 8 37 1031

8https://jmeter.apache.org/

https://jmeter.apache.org/
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Table 4.3: Type of violations caused by OO-type dependencies between microservices.

Application No.
Instances

No. Inheri-
tances

No.
Exceptions

Findsportmates 9 0 0
JPetStore 20 0 0
PetClinic 24 2 0
SpringBlog 95 7 2
IMS 110 3 0
JForum 1013 16 2

Table 4.4: Number of tests performed for each application and the resulting precision and recall
from these tests.

Application No. Test Precision Recall

Findsportmates 7 100% 100%
JPetStore 34 100% 100%
IMS 36 100% 100%

4.6.3.1 RQ1: Is our approach able to preserve the behavior of the migrated applica-
tion when materializing its microservice-oriented architecture?

Table 4.4 shows the results of RQ1. The results show that our approach has both 100%
precision, and 100% recall for FindSportMates, JPetStore and InventoryManagementSys-
tem in terms of syntactic and semantic correctness. Therefore, our approach is able to
preserve the business logic with a high precision.

The proposed transformation did not create a side-effect that was detected by failed
functional tests that otherwise passed for the monolith. Therefore, our approach is able
to preserve the business logic with a high recall. However, it should be noted that for
JPetStore the Selenide test "testOrder" failed for both the monolithic version and the
MSA version, as both checked the pricing notation using a period as a decimal separa-
tor while the testing was performed on a computer which defaults to using a comma
instead. Furthermore, while the results indicate a perfect precision/recall, it is impor-
tant to remember that these tests evaluate the functional aspect of the applications and
other types of tests (e.g., unit tests) should be performed to assure that no side-effect is
introduced during the refactoring.

4.6.3.2 RQ2: What are the impacts of Mono2Micro on the performance?

Figure 4.17 illustrates the number of users per scenario with the different architecture
configurations. We can see, there is a small gain in performance upon the introduction
of scaling for the microservice-oriented architecture.

The proposed transformations from Mono2Micro does not negatively affect the per-
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Figure 4.17: Average execution time of Omaje based on the number of users and the corre-
sponding architecture.

formance of the application. Our expectations were that by introducing additional net-
work calls the performance of the migrated application would be affected negatively.
However, in this scenario it was not the case. This was likely due to the paralleliza-
tion aspect of scaling the requested service. By adapting the number of instances of
microservices, the MSA was able to handle the increased requests and compensate for
the additional network layer. In fact, as the number of parallel requests increased, the
MSA performed better (on average) compared to its monolith counterpart.

4.6.4 Threats to Validity

Our study may be concerned by internal and external threats to validity. We discuss
below these two kinds of possible threats:

4.6.4.1 Internal Threat to Validity

The first threat to validity is that our transformation approach uses static analysis to
detect and transform the existing source code. Indeed, static analysis cannot detect
dynamic binding and polymorphism when identifying instance encapsulation viola-
tions. However, this can be avoided by taking into consideration the worst case by
creating an instance dependency for every subtype. Another risk is that static analysis,
unlike dynamic analysis, cannot detect unused source code. This results in detecting
more dependencies than necessary. However, this can be mitigated in well-maintained
applications. Another solution is to perform an hybrid analysis during the detection
step. However, dynamic analysis requires instrumenting and providing a thorough set
of test cases, which is not always available or feasible in a large industrial code-base.
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Also, we consider our approach to be adequate for source code that is not reliant on
a strong framework (e.g. Spring for JAVA). We do not consider, dependency injection
which is one of the properties of this type of framework. Finally, our approach does
not consider the reflexivity of certain languages, thus in our experiment we identified
and manually resolved these types of encapsulation violation.

4.6.4.2 External Threat to Validity

One external threat of validity we considered is the use of a specific architecture re-
covery approach (i.e., the approach presented in [SSB+20b]) to have an impact of the
transformation phase. Indeed, the number of identified dependencies and the overall
performance are highly dependent on the results of the architecture recovery phase.
However, our goal was not to analyze the impact of our transformation on the pro-
duced architecture, but whether we are able to migrate applications while preserving
the intended behavior (business-wise and performance-wise) of the application. An-
other threat we considered is that our monolithic applications are all implemented in
JAVA. However, the obtained results can be generalized for any OO language. We ar-
gue, just as most architecture recovery approaches, that generalization is possible since
all OO languages (e.g., C++, C#) are structured in terms of classes and their relation-
ships are realized through the same general mechanisms (e.g. method invocations,
field access, inheritance, etc.).

4.7 Conclusion

In this chapter, we focused on the materialization phase of the migration phase. We
have established that after identifying a microservice-oriented architecture, there are
several challenges towards materializing the MSA. Particularly, we have revealed en-
capsulating each microservice candidate into its own project exposes OO-type depen-
dencies. This requires refactoring of the source code to create semantically-valid mi-
croservices. In turn, we have proposed a semi-automated approach towards trans-
forming the existing OO source code to conform to the identified MSA. In the next
chapter, we address the limitations of the ad hoc transformation approach by propos-
ing a generic end-to-end migration approach.
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5.1 Introduction

In the previous chapter, we propose an ad-hoc approach to refactor object-oriented
code. While the approach attempts to automate the refactoring of any OO language, its
implementation is limited by the language of the application’s source code, obstruct-
ing its genericity and reusability across other languages and technologies. We seek
to overcome the limitations of the previous ad-hoc refactoring approach by adopting
Model-Driven Engineering (MDE) techniques.

Indeed, MDE has already been adopted for software modernization [FBB+07], and
has been recognized as an efficient, reliable, and flexible approach for software migra-
tion [Sch06]. An MDE-based approach enables the migration process to be indepen-
dent of the application’s source code by leveraging Platform-Independent Models
(PIMs) which can be reused across different migration efforts to represent monoliths
of different types. Once the generic model has been extracted from a monolith, the
same transformation process can be applied to then generate a microservice-oriented
architecture.

Furthermore, we wish to introduce an end-to-end approach that encompasses both
phases of the migration process. To this end, we integrate the identification as part
of the transformation process of the monolith. Concretely, the goal of this chapter is
to present a generic and reusable end-to-end migration approach. First, we use MDE
techniques to implement a generic and reusable approach. Second, we incorporate the
identification and transformation phase together in all-in-one solution.

In the next section, we introduce the global workflow of our approach, and describe
each of its steps. In Section 5.3, we present the metamodels used in our approach. In
Section 5.4, we present the transformations rules between the different models. In
Section 5.6, we apply our approach on a case study to evaluate its feasibility. Finally,
we present our conclusions and perspectives in Section 5.7.

5.2 The Global Migration Workflow

In this section, we introduce a broad overview of the different phases which consti-
tutes our global MDE-based migration workflow. In short, our workflow (see Figure
Figure 5.1) encompasses four important steps:

1. Extracting a generic model from the source application.

2. Identifying the application’s candidate MSA and incorporating it into an inter-
mediary pivot model.

3. Transforming the pivot model to obtain the target MSA model, consisting of mul-
tiple microservices and their associated entities.

4. Generating and packaging the target source code from the target MSA model to
make it deployable.
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Figure 5.1: The global MDE-based migration process with the models and metamodels used
therein.

This workflow follows the principles of the Horseshoe Model [KWC98] of extracting
an architectural representation of the monolith to perform the transformation towards
the desired architecture (i.e., MSA). We propose a workflow that is primarily PIM-
oriented instead of being Platform-Specific Model (PSM)-oriented, as is the case with
its ad-hoc counterparts. In other words, by relying on PIMs, we aim to increase the
genericity of the overall approach.

In our approach, we use 3 different platform-independent metamodels: OOMM,
M2M-Pivot-MM, and MMM. The OOMMmetamodel serves to represent the monolith through
a generic representation of its classes and their relationships. The M2M-Pivot-MM
metamodel serves as an intermediary representation between the source and the tar-
get model, in which higher-level abstraction of the source model is stored. Finally, the
MMM metal-model represents the target architecture and is used to generate its source
code. More details on each metamodel can be found in Section 5.3.

Transitioning from one source model to another target model requires a set of model
transformation rules, mapping one/many elements in the source to one/many ele-
ments in the target. These transformations occur at a domain-level, and are thus less
constrained by their applications’ technologies and platforms, rendering them con-
sequently more reusable for object-oriented applications in general. Once the target
model is complete, we can generate the corresponding code.
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In the following subsections, we describe each major step of this workflow.

5.2.1 Model Extraction

The first phase in the MDE-based migration process consists of extracting a generic
model (i.e., an OOMM model) to represent the monolith. Concretely, it consists in
parsing the project’s source code and extracting its model from its corresponding AST.
Depending on the project’s source code, a corresponding parser can be used to ex-
tract its AST. For instance, in the case of the implementation of our approach, we use
VerveineJ1 to extract the FAMIX model from JAVA source code. One advantage of
the model-driven approach is that we can reuse existing parsers to extract the source
model of a monolith.

Figure 5.2: Model extraction process.

After the extraction of the model, it can be exported or imported to and from the
disk based on a MIF (Model Interexchange Format), independently of its original
project (see Figure 5.2). An MIF designates any model interexchange format used to
represent abstract models, such as Moose interexchange format (MSE), a model in-
terexchange format used to represent FAMIX models. Concretely, this allows for a
greater flexibility when manipulating the models (e.g., adding versioning).

From the generic model we can more to the next step of identifying the microservice-
oriented architecture, and incorporating it into a higher-level abstract representation of
the monolith.
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Figure 5.3: The identification and incorporation step of the model-driven migration.

5.2.2 Candidate MSA Identification & Incorporation

The second phase in the MDE-based migration process consists of extracting the MSA
from the source model and incorporating it into a pivot model (see Figure 5.3). Con-
cretely, we divide this phase into two steps: (1) the identification of a candidate MSA,
and (2) its incorporation into a pivot model.

5.2.2.1 Candidate MSA Identification

Microservices identification is a software engineering task occurring at the architec-
tural level of a monolith and aims to apply reverse engineering techniques on its soft-
ware artifacts to identify the corresponding microservice candidates and their descrip-
tion within an MSA. The identification process is based on a set of patterns/strategies,
constraints, and quality attributes shaping and guiding its course [WLM+21].

In the context of this chapter, we focus on the identification of microservices based
on the source code of an object-oriented monolithic application. One common way to
achieve this is a graph-based approach that employs graph clustering and visualization
techniques to identify the candidate microservices from the monolith’s source code
[WLM+21]. In particular, we apply the approach proposed in Chapter 3 which extracts
the layered architecture before partitioning its artifacts using a clustering algorithm to
represent the candidate MSA as a set of LayerEntity clusters.

The initial step of reverse-engineering the layered architecture serves an important
task towards the overall migration process. In Chapter 3, we saw its impact on the
identification process. Furthermore, in the model-driven transformation it also serves
the function of structuring the internal architecture of each identified microservice.

1https://github.com/moosetechnology/VerveineJ

https://github.com/moosetechnology/VerveineJ
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Once the candidate MSA is obtained from the identification step, it will be for-
warded to the software architect for validation. Accordingly, the architect can also
interact with the candidate MSA to modify it. Otherwise, the identification process
ends, and the candidate MSA can be incorporated into the new model.

5.2.2.2 Candidate MSA Incorporation

The MSA identification process only provides an incomplete framework describing the
general outlines of the target MSA model in the form of a candidate MSA. Hence, to
further complete this process, we need to describe the candidate MSA by a properly
dedicated metamodel, followed by the application of the necessary transformations
on its model to actually reflect the identified MSA description. We incorporate the
candidate MSA yielded by the MSA identification process into an intermediary pivot
metamodel, namely the Monolithic-to-Microservices Pivot Metamodel (M2M-Pivot-
MM).

Moreover, our workflow deals with candidate MSAs extracted through identifica-
tion processes that use graph-based clustering algorithms. This yields MSA descrip-
tions with a specific interface that exposes the candidate MSAs’ class clusters and their
associated entities. This interface may vary from one identification approach to an-
other. As a result, our incorporation rules are conceptually dependent on this interface.

Nevertheless, we aim to make our approach as reusable and generic as possible to
reduce migration efforts. In other words, we wish to make these incorporation rules
independent of the MSA description’s interface. This proves necessary to implement
them once and reuse them across different workflows employing different identifica-
tion processes that yield MSA descriptions with different interfaces.

Consequently, the incorporation mechanism employs the Adapter design pattern.
Particularly, a candidate MSA adapter maps the API of a candidate MSA to the API
expected by the pivot metamodel (see Figure 5.4). In other words, the candidate MSA
adapter enforces any identified candidate MSA to implement its expected interface,
namely to provide means of access to the MSA, its candidate microservices, their busi-
ness, data, utility classes, and their provided and required interfaces.

Once the candidate MSA implements the adapter’s required interface, the adapter
maps every entity retrieved from the candidate MSA to its corresponding entity in the
pivot model.

5.2.3 Model Transformation

The third phase in the MDE-based migration process is the model transformation (see
Figure 5.5). It consists of transforming the pivot model, described by the M2M-Pivot-
MM, to obtain the target model, described by the Microservices Architecture Model-
Driven Migration Metamodel (MMM). An important aspect of the model transfor-
mation is that we limit our transformation rules to be applied to the model itself. Since,
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Figure 5.4: Adaptation of the identified candidate MSA and its incorporation into the pivot
model.

we only manipulate platform-independent models, we are able to ensure that each step
is applicable in any context as long as we are able to map the different platforms to a
common OOMM.

Figure 5.5: The model transformation phase of the global MDE-based migration process.
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For this transformation phase, we distinguish between two different types of model
transformations, each of which accomplishes a well-defined objective in the course of
the migration process: (1) the microservice encapsulation violations resolution and (2)
the Pivot2MMM conversion.

To understand the reasons behind the distinction between these two types of model
transformations, we have to start by examining their input, namely the pivot model.
As previously mentioned, the pivot model is obtained following the candidate MSA
identification and incorporation phases of the migration process. In particular, the
pivot model incorporates the identified candidate MSA, consisting of all candidate mi-
croservices, such that each candidate microservice is represented as a cluster of classes
obtained from the original source model.

The act of creating microservice candidates from a monolith’s set of classes is de-
fined as microservice encapsulation. In this context, each microservice is its own ap-
plication. Therefore, classes residing in one microservice should have their access re-
stricted from classes belonging to other microservices. In other words, a microservice
encapsulates its own set of classes. In Chapter 4 we defined a microservice encapsula-
tion violation as a class encapsulated by one microservice which depends upon a class
encapsulated by another microservice. These class-level dependencies include method
invocations, class instantiations, public attribute accesses, class inheritances, class im-
plementations of interfaces, among others. As such, we observe that class-level depen-
dencies still exist between classes belonging to different microservice candidates in the
pivot model (see Figure 5.6), despite the microservice identification step. Indeed, the
microservice identification task cannot completely eliminate said dependencies, but at
best may try to minimize them instead.

Figure 5.6: The class-level dependencies in the microservice candidate clusters of the pivot
model.

Nonetheless, a properly crafted MSA should be devoid of any such violations.
Thus, prior to the pivot model’s transformation into the target model, we need to iden-
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tify these violations in the pivot model and duly resolve them. Consequently, we de-
compose our model transformation phase into two steps accomplishing the following
objectives respectively: (1) identifying and resolving the microservice encapsulation
violations in the pivot model, and (2) converting the violation-free pivot model into
the target model.

5.2.3.1 Microservice Encapsulation Violations Resolution

The first step in the model transformation phase of the migration process consists of
identifying and resolving the microservice encapsulation violations in the pivot model.

The resolution mechanism for each identified encapsulation violation type is based
on transformation rules and patterns defined in Chapter 4. These patterns consist of
transforming the underlying OO-type dependencies for a given encapsulation viola-
tion type into corresponding MS-type dependencies.

For example, method invocation violations are healed by refactoring method invo-
cations between classes belonging to different microservices into interface-based calls
[ZSS+21]. Concretely, given a class A, encapsulated by a microservice MS1, that in-
vokes a method declared by a class B, encapsulated by a microservice MS2, an in-
terface IB is extracted from B and contains all its declared public methods. IB is
set as a required interface by MS1 and a provided interface by MS2. Afterwards,
all references to B in A are replaced with IB references. Moreover, given that mi-
croservices can only interact through Inter-Process Communication (IPC) protocols,
an additional technological layer must be added by defining a web service and a web
service consumer in the providing (MS2) and requiring (MS1) microservices, respec-
tively. As such, IB’s methods are implemented by the web service in MS2 and exposed
for consumption by other microservices, such that each implemented method acts as
an intermediary to receive a request, forward it to the real method, and return the in-
vocation result. In addition, IB’s methods are implemented in MS1 by the web service
consumer which prepares the network calls necessary to consume the corresponding
web service. Concretely, each created interface is represented in the Pivot model, and
during the generation phase the code corresponding to web service and web service
consumer is generated.

Once all violations have been identified and resolved, our pivot model becomes
violation-free. As a result, we can proceed to the second step of the model transforma-
tion phase, namely the Pivot2MMM conversion.

5.2.3.2 Pivot2MMM Conversion

The second step in the model transformation phase of the migration process consists
of converting the violation-free pivot model into the target MSA model. As previously
mentioned, the violation-free pivot model conforms to M2M-Pivot-MM, while the tar-
get model conforms to MMM. The conversion consists of mapping each element in the
pivot model to its corresponding element(s) in the target model. In particular, each ele-
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ment in the pivot model will have its own transformation entity, defining its mapping
mechanism. For example, every M2MPivot-Cluster entity in the Pivot model will be
mapped to a Microservice entity in MMM. Once all transformations have been ap-
plied to all pivot model elements, the violation-free pivot model would be completely
converted into its target model, and the transformation phase of the migration process
comes to an end.

5.2.4 Model Exportation

The fourth and last phase in the MDE-based migration process consists of generating
and packaging the project’s target code based on its corresponding target MSA model.
To generate the source code, we require both the target MSA model and the source code
of the monolith. Indeed, until now we have manipulated a representation of the source
code. However, since this approach aims to be reusable in different contexts we have
limited our transformations to its PIM. To generate the source code we need to move
from a platform-independent model to the platform itself. Therefore, we need to define
a generic but extendable exporter that can be extended for each different platform.

Before the generation however, the target model can be configured by an expert
to choose the desired artifacts to be generated. In a nutshell, configurations include
choosing the target framework technologies, project builders, dependency managers,
and other technologies relevant for microservices, such as the containerization technol-
ogy, circuit breakers, service discovery, API clients, or communication protocols. Once
the configuration complete, the model exporter takes over to generate the code.

5.3 Metamodels

Metamodels constitute a cornerstone in any MDE-based workflow, as they define the
semantics of the models they describe [Sch06]. Indeed, without metamodels, models
cannot be used as first class entities, and therefore cannot be subjected to model trans-
formations. Consequently, a clear definition of an MDE-based workflow must be ac-
companied by a vivid description of the metamodels it uses. Metamodels can be either
created from scratch or reused when they already exist. Metamodels that we intend
to create from scratch should be formalized properly, while grouping their elements
into different viewpoints. The usage of viewpoints allows us to visualize different as-
pects of a given metamodel, thus facilitating the comprehension of its structure and
its associated domain. In fact, each viewpoint describes its metamodel at a specific
level of abstraction, highlighting the necessary concepts required to make sense of its
encapsulated aspect.

In this section, we provide a detailed description for all metamodels used in our
MDE-based migration process. We start by introducing OOMM, our source metamodel.
Afterwards, we define M2M-Pivot-MM, our intermediary metamodel. Finally, we dis-
cuss MMM, our target metamodel. For each metamodel, we start by indicating the moti-
vation behind its conception, then describe its relevant viewpoints, and finally explicit
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the reasons underlying its integration into our workflow.

5.3.1 The OOMM metamodel

The goal of the OOMM metamodel is to be able to describe a set of object-oriented
systems developed in different languages. In particular, we denote the need to repre-
sent two types of entities: structural and behavioral. For the implementation of our
approach, we use the FAMIX metamodel as it contains the majority of structural and
behavioral entities we require. For reference, FAMIX denotes an extensible family of
language-independent metamodels for the representation of various facets of object-
oriented software systems [DTD01]. The viewpoint of FAMIX that is most relevant to
our approach is its core viewpoint (see Figure 5.7). This viewpoint defines the most
common structural entities (e.g., classes, methods, attributes) and behavioral entities (e.g.,
inheritance, invocations, accesses) used in object-oriented software design and implemen-
tation, and their relative relationships.

Figure 5.7: FAMIX’s core viewpoint (based on [DDT99]).

In the context of this approach, we chose FAMIX as the metamodel of our mono-
lith’s corresponding model. Indeed, FAMIX appears to be a decent candidate for MDE-
based workflows as illustrated by the research projects that had used it for MDE-based
analysis and re-engineering tasks [DDT99, TDD00, DLT00, DAB+12]. Furthermore,
FAMIX is generic enough and easily extensible to be used as a basic support for defin-
ing domain-specific metamodels. As such, we can extend it to define the other meta-
models used in our workflow. Finally, many importers exist already for the extraction
of FAMIX models, namely for Java, C# and C++ applications, and can be reused by our
approach for different source monoliths, thus increasing its reusability and genericity.
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5.3.2 The M2M-Pivot-MM metamodel

Monolithic-to-Microservices Pivot Metamodel (M2M-Pivot-MM) is an intermediary
minimalist metamodel that we introduce as an extension of FAMIX. It includes ab-
stractions of object-oriented entities, and intermediary entities, obtained following the
application of our identification approach which extracts the layered architecture of
the monolith.

Besides the entity inherited from the OOMM (i.e., classes), the core viewpoint of
the metamodel introduces the notion of clusters and the entities associated to them
(see Figure 5.8). A M2MMicroserviceArchitecture designates an identified candi-
date MSA, while a M2MPivotCluster designates a candidate microservice, belong-
ing to the identified candidate MSA. The cluster maintains both LayerArtifact and
UtilityClass entities. LayerArtifact classes encapsulate the business function-
alities of their containing cluster and are extracted from the identification approach
presented in Chapter 3. As for the UtilityClass entities, they represent the classes
of the monolith that are not categorized into either the Data Persistence nor the Lay-
ered Architecture. Concretely, UtilityClass entities represent classes in a cluster that
are responsible for orthogonal concerns such as logging and security. These concerns
remain in the microservices created, thus they are included in each microservice as
necessary. Any remaining entity referenced by the cluster and that doesn’t pertain to
any of the aforementioned categories is a utility class.

Definition 5.3.1: Bounded Context

In Domain-Driven Design (DDD), the context of an application relates to its un-
derlying domain. In the context of microservices, this domain is often divided
into different bounded contexts for each microservice. Furthermore, the interrela-
tionships between each context is made explicit [LF14a].

DataType entities define data models introduced by the containing cluster. In-
spired by the metamodel described in Chapter 3, we extend the notion of DataType
into two types. The first, DTO (Data-Transfer Object), is a data type that is used to trans-
fer data from one service to another. Oftentimes, in a monolithic paradigm, it used to
pass certain data to the back-and-forth between the frontend and the backend. The
second, DataEntity, is another data type that is used to represent the data stored
in databases. In this metamodel we chose to differentiate the two, as DataEntities
are more closely associated to the database, and it allows us to establish the bounded
context of each candidate microservice.

Additionally, a cluster requires or provides a specific set of interfaces through
which it can communicate with other clusters in their pertaining candidate MSA. Namely,
we define the M2MPivotRequiredInterface entity to represent the required inter-
faces, and the M2MPivotProvidedInterface entity for provided ones. Both en-
tities are tied to the LayerArtifact that it represents Initially, when this model is
initialized, neither interface entity is instantiated. It is during the model transforma-
tion phase (see Section 5.2.3.1), and more specifically the MS encapsulation violation
resolution step that any existing dependencies between clusters are resolved into a set
of required/provided interfaces.
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Figure 5.8: The M2M-Pivot Meta-Model.

The main reason behind using this metamodel is to describe an intermediary model
that can incorporate a candidate MSA. This step is crucial to facilitate the resolution of
the class-level dependencies causing microservice encapsulation violations. Indeed,
it is easier to resolve these violations in an intermediary model where object-oriented
entities and candidate MSA entities are combined, rather than resolving them in an
MSA-based model. Secondly, when we transition to the target MMM model, we want
focus on MSA-type dependencies.

Finally, we decided to define and implement the metamodel ourselves because, to
the best of our knowledge, there are no dedicated metamodels that exists to represent
a candidate MSA recovered from a monolithic object-oriented application. As such
we adopted a minimalist definition approach that could be reused and/or further ex-
tended for other similar use cases beyond the scope of this contribution.

5.3.3 The MMM metamodel

The primary goal of this chapter is to design and implement the necessary model
representation to facilitate the migration towards an MSA. As such, the metamodel
we adopted is based on the Microservices Architecture Model-Driven Development
Metamodel (MMDDM) proposed by [RSSZ18]. MMDDM has been deduced from
SOA modeling approaches, and is primarily interested in supporting concepts for ser-
vice design and operation modeling to support DevOps in Microservices-Architecture-
Model-Driven-Development (MSA-MDD). As such, it targets the development of an
MSA through a model-driven approach.

Concretely, MMDDM can be understood through three viewpoints: Data, Service
and Operation. The Data viewpoint encapsulates concepts that can be used by ser-
vice developers and domain experts to define domain-specific models for a microser-
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vice [RSSZ18]. As such, the viewpoint provides concepts designating data structures
for service interaction (i.e., the bounded context). The Service viewpoint is the core
viewpoint of MMDDM. It encapsulates concepts that can be used by service devel-
opers and domain experts to define microservices, interfaces, and contracts [RSSZ18].
Finally, the Operation viewpoint encapsulates concepts that can be used by service
developers and operators to specify microservices’ implementation and deployment
technologies [RSSZ18].

However, this metamodel focuses on model-driven development concepts which
do not necessarily align with our migration goal. In other words, we require a target
metamodel to support the concepts surrounding the migration towards MSA-based
applications. Therefore, we propose Microservices Architecture Model-Driven Mi-
gration Metamodel (MMM). It extends MMDDM in that it inherits many of its con-
cepts, but it additionally introduces new concepts concerned, for instance, with cap-
turing business logic and data model aspects from the source application, such as
business classes and data entities. Furthermore, it modifies some associations be-
tween some of its inherited concepts. For example, we specialize establish an ag-
gregation relationship between the specialized entities of ServiceContract (i.e.,
ProvidedServiceContract and RequiredServiceContract). Also, a single re-
lationship between ServiceContract and ServiceInterface.

Concretely, MMM can also be understood through three distinct viewpoints: Ser-
vice, Business, and Configuration/Operation.

5.3.3.1 The Service Viewpoint

The Service viewpoint (see Figure 5.9) is the core viewpoint of this metamodel. It en-
capsulates concepts that can be used to define the microservice architecture, its mi-
croservices, and their interactions.

Microservices interact through choreography which requires no central entity dic-
tating their interactions. Instead, interactions occur directly between them, where ser-
vice interfaces enable them to interact through operations, while service contracts
define the scope of operations they’re allowed to expose and/or consume.

Concretely, for a given microservice M , a service interface can be provided by a
service contract to expose a subset of M ’s operations that can be consumed by other
microservices. Alternatively, M might require the consumption of operations exposed
by service interfaces provided by other microservices through service contracts. In a
nutshell, M provides service interfaces that are required by other microservices and
requires service interfaces that are provided by other microservices. As such, a
MicroserviceM exposes at least one ServiceInterface composed of at least one
Operation. Each ServiceInterface requires/exposes one of M ’s LayerArtifact
entities and introduces at least one Operation.

Each Operation has a name, can have zero/more Parameter entities, and ref-
erences one of the exposed LayerArtifact’s methods. A Parameter has a type
that references a DataType, can be optional, and possibly has an alias. Furthermore, it
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Figure 5.9: MMM’s Service viewpoint based on [RSSZ18]).

must specify the direction of information exchange. In particular, for a given Operation,
a Parameter can be an input, an output, or both, as defined respectively by the enu-
merated values IN_ONLY, OUT_ONLY, and INOUT of the CommPattern enumeration
entity.

Moreover, a ServiceContract aggregates a set of ServiceInterface entities.
If the ServiceInterface entities are provided by a microservice, then the contract
entity is a ProvidedServiceContract. Alternatively, if they are required from
other microservices, then the ServiceContract is a RequiredServiceContract.
Furthermore, each provided service interface is associated to the collection of its con-
sumers. This is materialized by having a ProvidedServiceContract entity aggre-
gate the set of its consumers, namely the RequiredServiceContract entities.

5.3.3.2 The Business Viewpoint

The Business viewpoint (see Figure 5.10) focuses on the business-logic of the applica-
tion. As we represent a microservice-oriented application, this viewpoint encapsulates
concepts that describe the internal structure, the business-logic, and the bounded con-
text of each microservice.

Concretely, an MSA entity is composed of a set of Microservice entities, where
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Figure 5.10: MMM’s Business viewpoint.

each Microservice has a name and a type defined by the MicroserviceType enu-
meration entity. In particular, a Microservice either implements a business logic of
its encapsulating MSA (i.e., has a FUNCTIONAL type) or plays a supporting infrastruc-
tural role therein (i.e., has a INFRASTRUCTURAL type).

Moreover, a Microservice is associated to a MicroserviceNamespace entity,
and a MicroserviceBoundedContext entity. The MicroserviceNamespace is
where it maintains its structural components. A microservice’s structural components
are represented by LayerArtifact entities, where each entity uses a DataType en-
tity, either for data storage (DataEntity) or for data transportation purposes (DTO2).

All DataEntity entities introduced by a Microservice, and used by its as-
sociated MicroserviceNamespace, are maintained in its MicroserviceBounded
Context. Not pictured in Figure 5.10, the LayerArtifact is specialized by the three
entities presented in Figure 5.8: Controller, Service, and DAO.

5.3.3.3 The Configuration/Operation Viewpoint

The final viewpoint is the Configuration/Operation viewpoint (see Figure 5.11). It en-
capsulates concepts that can be used by experts to configure the generation of an MSA-
based application.

A central entity in this viewpoint is the TechnologyDescriptor (TD) entity,
which allows the modeling of service implementation, deployment, and communi-
cation technologies. Each technology can have a characteristic, described by a name/-
value pair.

Furthermore, endpoints specify an address, a communication protocol (e.g., REST
APIs, AMQP, . . . ), and message formats (e.g., XML, JSON, . . . ). An endpoint can be
associated with one/many protocols, while a protocol can use one/many message for-
mats. In addition, an endpoint can be associated with a microservice’s service contracts
or with individual operations.

2An implementation of the Data Transfer Object design pattern.
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Figure 5.11: MMM’s Operation viewpoint based on [RSSZ18]).

Moreover, to deploy a microservice, ServiceDeploymentArtifact entities are
used to bundle the microservice’s service contracts prior to their deployment. This
approach allows to selectively deploy specific service interfaces that are provided by
the microservice, but also to limit its interactions to microservices whose services are
required by the bundled service contracts. In addition, each artifact is associated to a
ServiceTD entity that specifies its implementation technology (e.g., Java used with
the Spring framework). A microservice can also have technological descriptors for
load balancing and fault mitigation associated to its deployable artifacts, if it performs
service-internal infrastructure functionalities.

MMM also focuses on container-based MSA deployment. As such, a deployable
microservice artifact is associated to a ContainerDT entity, describing its correspond-
ing deployment container. The container can specify the minimum/maximum number
of the deployed service’s instances.

Additionally, the actual technology implementation of a container is provided by
associating it to a ContainerTD. Consequently, a container’s operating environment
is described by its associated ContainerTD, in conjunction with one of the associated
deployable artifacts ServiceTD entities. This allows a container’s operating environ-
ment to be proactively modified by service operators, to designate any combination of
container and service implementation technologies. In particular, the operating envi-
ronment’s name points to a container image, designating the combination of specific
container and service implementation technologies. For example, deploying a Spring
microservice in a Docker container can employ the openjdk3 Docker image. Finally, to
allow deployable microservice artifacts to be discovered internally and/or externally,
their containers are associated with service discovery and/or API gateway entities.

3https://hub.docker.com/_/openjdk

https://hub.docker.com/_/openjdk
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5.4 Model Transformation Rules

The second cornerstone in any MDE-based workflow is the transformation engine, as it
analyzes aspects of a model and synthesizes an alternative model representation which
can provide more information about the initial system [Sch06]. Indeed, it is through
these transformations that we are able to navigate through the different metamodels
introduced in the previous section. Consequently, a clear definition of an MDE-based
workflow must be accompanied by a set of transformation rules that formalize the
transitions between the different models.

In this section, we define model transformations as either adaptations or conver-
sions. In other words, when transforming a model we can either alter an existing
model to redefine it to conform to the same metamodel, or we can convert it to con-
form to a new metamodel.

Additionally, all transformations are first class citizen entities and conform to a
common model-transformation-centric framework, which simplifies their definition
and allows them to be reused and integrated across different workflows.

This section provides a detailed description for all model transformations used in
the MDE-based migration process. We start by introducing the transformations be-
tween the OOMM model and the Pivot model generated during the extraction process
(see Section 5.4.1). Afterwards, we define and differentiate the transformation rules
between the Pivot model and the MMM model. Particularly, we differentiate the adap-
tations of the Pivot model (Section 5.4.2) that must be applied before the model can be
converted to the MMM model (see Section 5.4.3). For each model transformation, we
start by indicating the input entities, the desired output entities, and finally describe
the mapping rules.

5.4.1 Candidate MSA Incorporation Transformations

The initial phase of our MDE-based migration workflow is the model extraction. Dur-
ing this phase, the OOMM model is extracted from the monolithic OO source code.
This model serves as an initial representation of the state of the application.

After the model extraction phase, the MSA identification and incorporation phase
begins. Generally, the identification step results in a microservice architecture descrip-
tion which describes the partition of class entities from the monolithic application (e.g.,
[SSB+20b, LTV16, CLL18, GKGZ16, MCL17]). Each partition becomes a microservice
candidate that is used to generate a microservice. During the identification step, we
identify the candidate MSA with the approach from Chapter 3 using the OOMM model
as input.

Furthermore, the candidate MSA is represented as a set of LayerArtifact clus-
ters which needs to be incorporated into an intermediary pivot metamodel (M2M-
Pivot-MM). During the incorporation step, we use the extracted Layered Architec-
ture model and the microservice architecture description to generate the M2M-Pivot-
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MM model. We generate an instance of M2M-Pivot-MM (see Figure 5.6) with an in-
stance of M2MMicroserviceArchitecture to represent the identified microservice
architecture. Then, for each identified cluster a M2MPivotCluster is created. Each
LayerArtifact of an identified cluster is added to the M2MPivotCluster entity.

Any class entity referenced by a LayerArtifact that is not attributed as a DataType,
nor a LayerArtifact, is mapped to a UtilityClass. This is usually applied to
classes that serve infrastructural or cross-cutting concerns (e.g, logging, security) and
are not tied to the business-logic of the application. Once the identified MSA is incor-
porated into the pivot model, we can move to the model transformation phase.

5.4.2 Microservice Encapsulation Violations Resolution Adaptations

In section 5.2.3, we highlighted the difficulty of transitioning from an object-oriented
system to a microservice-oriented one. Particularly, we explained that during the mi-
croservice identification phase, most approaches partition classes in an attempt to re-
duce the inter-cluster dependencies but cannot completely eliminate them. Further-
more, in a microservice-oriented architecture, microservices can only communicate
through web services. Therefore, we must adapt these OO-type dependencies into
MS-type dependencies before we convert the Pivot Model into the MMM model (see
figure 5.5). We must propose and apply transformation rules defined in [ZSS+21] to
transform these OO-type dependencies into MS-type dependencies.

Concretely, it requires replacing the existing OO-type dependencies with a set of
required and provided interfaces. During this step, we identify the symbol dependen-
cies between the LayerArtifact entities belonging to different M2MPivotCluster
entities. These dependencies can be detected by analyzing the OOMM entities that are
tied to the LayerArtifact entities. For each identified dependency, a
M2MPivotRequiredInterface is instantiated in the M2MPivotCluster from which
the dependency originates. Also, a M2MPivotProvidedInterface is instantiated in
the M2MPivotCluster which contains the used LayerArtifact.

5.4.3 Pivot2MMM Conversion

Once all OO-type dependencies have been resolved, the pivot model can be converted
to an MMM model. Therefore, we propose a Pivot-to-MMM mapping model that maps
the pivot elements to a microservice-oriented model (see Figure 5.12).

The M2MMicroserviceArchitecture is mapped to its MMM equivalent. Each
M2PivotCluster is transformed into a Microservice entity with a namespace and
a bounded context. Additionally, any M2MUtilityClass is mapped to microservice’s
namespace.

The M2MPivotCluster’s M2MLayerArtifact entities are mapped to the mi-
croservice’s namespace. To establish the bounded context of each microservice, we
observe the DataType entities used by each LayerArtifact. From this dependency,



108 Chapter 5. Model-driven end-to-end migration approach

Figure 5.12: Model conversion rules between M2M-Pivot-MM and MMM

the M2MDataType entities used by the LayerArtifact are mapped to the microser-
vice’s bounded context.

Finally, for each M2MPivotCluster’s interface, a ServiceContract is defined
and linked with its respective interface. In other words, each provided interface is
mapped to a ProvidedServiceContract. In turn, this entity aggregates all the
RequiredServiceContract entities that consume the service. These mapping rules
cover the generation of both the business viewpoint and the service viewpoint. How-
ever, they do not cover the Configuration/Operation viewpoint. We leave this
viewpoint for the expert to complete as it contains the design choices pertaining to the
technologies used in the new architecture. Particularly, this allows the expert to con-
figure technologies relevant to microservices, such as the containerization technology
(e.g., Docker, Kubernetes) circuit breakers (e.g., resilience4j), service discovery (e.g.,
Consul or Zuul), or REST clients (e.g., Feign or RetroFit). The configurability of this
viewpoint is essential for the provision of a packaged microservice architecture that is
deployable based on the technologies known by the expert. Once the expert is done
configuring, the target MSA’s source code can be generated.

5.5 Target Code Generation

The final phase of the migration process is the target code generation of the identi-
fied architecture. Throughout this approach the main objective has been to propose
a generic and reusable approach towards the migration of any application. In turn,
we employed a set of platform-independent models to describe the source code, iden-
tify the target MSA, and transform the existing model to conform to a complete target
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model which is specific to the MSA paradigm. Since, we rely solely on PIMs we require
additional information to generate the code of the target architecture. Thus, along with
the MMM model we use the source code of the monolith to generate the MSA’s source
code.

To ensure that we provide a generic approach towards generating the MSA’s source
code we rely on several design patterns. In particular, we rely on the factory pattern
to generate the appropriate exporter based on an entity’s specification. For instance,
when exporting a microservice, we must know the implementation language to gen-
erate the proper project structure and to generate its namespace and bounded con-
text. Therefore, the factory method is called to determine the appropriate microservice
exporter based on its language implementation. Furthermore, when generating the
source code the visitor pattern is applied.

To initiate the export, we initialize the generic Microservice Architecture Exporter
and pass it the MSA entity of the MMM model. From there, the exporter calls the ap-
propriate microservice exporter using the previously-described factory method. The
microservice exporter initializes the project structure. Furthermore, it must ensure that
the packages of the newly generated projects properly import the necessary depen-
dencies. This is often done using the project builders and dependency managers (e.g.,
Maven, Gradle, etc.) used with the source monolith. In turn, the build management
exporter is used. In addition, the microservice exporter must generate an image de-
scription for each microservice in the target MSA model, describing the configuration
details necessary for the creation and deployment of its corresponding container. For
example, if the microservice is configured to deploy in a Docker4 container, then a cor-
responding Dockerfile must be created to describe its Docker image using the image
description generator extended for the Docker configuration.

To summarize, for every MMM entity a generic exporter is required. Furthermore,
for every configuration the exporter is extended. Once the MSA has been generated, it
up to the architects to configure, and integrate each microservice.

5.6 Validation of the model-driven migration approach

In this chapter, we proposed an end-to-end approach that facilitates the migration of a
monolithic application towards a microservice-oriented architecture. Throughout this
thesis our goal as been to facilitate the modernization of an application’s architecture
in an industrial setting. In this section, we validate our approach by migrating an
industrial application found at Berger-Levrault.

First, in Section 5.6.1, we present the application we wish to migrate, and describe
the workflow we adopted for the migration. In Section 5.6.2, we present the research
questions and evaluation methods. In Section 5.6.3, we present our results, and in
Section ?? we discuss our approach. Finally, we conclude our work on the end-to-end
approach to migrating monolithic applications.

4https://www.docker.com/

https://www.docker.com/
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5.6.1 Omaje : A case study

The goal of this case study is to evaluate our model-driven migration approach on
an industrial application. To do so, we apply our approach on Omaje, a Spring-based
application developed at Berger-Levrault. We first present Omaje in its monolithic
architecture, and then we present the migration results of Omaje. To assist in the ex-
planation of the migration, Figure 5.13 highlights the architecture of Omaje before, and
after, the migration. Furthermore, during the execution of both applications we use a
save of the database to simulate use with real data.

Figure 5.13: (left) Omaje as a monolith, and (right) the result of migrating Omaje towards an
MSA.

5.6.1.1 Omaje as a monolith

Omaje is a license management system used internally to track the license distribu-
tion of Berger-Levrault’s software. This application uses the same technology stack as
several other applications proposed by Berger-Levrault. Particularly, Omaje adheres
to the typical 3-tier application with a server-side application organized as a mono-
lith. The 3-tier architecture can be viewed on the left side of Figure 5.13. Structurally,
the application is organized around two projects: OmajeServer and OmajeGWT. Oma-
jeGWT contains the code for the web client. While OmajeServer contains the server-side
code which is compiled and packaged with OmajeGWT to form the monolithic web
application. Whenever a request is made by the web client the gateway of the client



5.6. Validation of the model-driven migration approach 111

receives the RPC request and invokes the corresponding method in OmajeServer. The
application is launched with its database of more than 50 tables with over 12 GB of real
production data.

For the sake of the migration we focus on the OmajeServer project, which contains
the server-side business logic. Concretely, the project contains 364 classes with a total of
37.7 KLOC. Using the Layered Architecture metamodel from Chapter 3, these classes
can be categorized into 45 controllers, 38 services, 40 data-access objects. Furthermore,
Omaje has 53 different data entities, and 33 data-transfer objects.

5.6.1.2 Omaje as an MSA

We automated our approach, MDE-Mono2Micro, using Moose, a platform for software
and data analysis [DLT00]. We applied the automated approach to identify and trans-
form the existing application into a set of microservices. The migration resulted in the
identification and subsequent materialization of 4 microservices to replace the existing
monolith (see Figure 5.13).

To finalize the migration, the developers must configure, test, and eventually man-
ually fix each identified microservice. This task can be considerable when migrating
large applications in one shot, which can impact the continued development of the ap-
plication. Therefore, to limit this impact, the integration of the generated microservices
was done incrementally. To do so, each microservice one configured, test, and manu-
ally fixed one by one. More information on the configuration of the microservices can
be found in the discussion section of this experiment.

5.6.2 Research questions & Methodology

RQ1 (Validity): Can MDE-Mono2Micro support the migration of a monolithic object-
oriented application to an MSA-based equivalent one?

The goal of this research question is to verify that the migration process is able to
preserve the behavior of the application. In other words, we seek to demonstrate that
MDE-Mono2Micro is capable of migrating a monolithic OO application to an MSA-
based equivalent, while preserving its business logic.

To answer this RQ, we applied a set of user scenarios. These scenarios are de-
scribed in the user manual provided by the development team, which resulted in a
total of 56 user scenarios that cover all the described scenarios. We apply these scenar-
ios on the web application twice, once with the monolithic backend and once with the
microservice-oriented one. We compare the results after the migration with the results
of the monolithic version to verify that the application produced the same results after
being migrated.

RQ2 (Runtime Performance): Does the migration impact the overall responsive-
ness of the application?
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The goal of this research question is to measure the impact of the changes to the
architecture of the backend on the response time between the moment the client sends
a request and the moment it receives a response. Indeed, as we migrate from a mono-
lithic architecture towards a distributed one, we replace method calls with network
calls. Furthermore, for each network call, the data passed must be serialized and dese-
rialized which can also increase the response time.

To evaluate this RQ, we execute a set of user scenarios that requires a communica-
tion between the frontend and the backend. Each scenario uses different types of data
(primitives, data entities, collections, etc.), of different sizes, and cycled references. We
ran the scenarios using Firefox Version 99.0.1 on a laptop with 16 Go RAM and the
Intel Core i7-6500u CPU. To limit the impact on the results, no other applications was
running on the computer. To measure the response time, we modified the web client
to measure the time spent waiting for the response from the server. Finally, each sce-
nario is run a 1,000 times to reduce the wrong sample size bias, and the distribution is
collected and presented as a box plot.

RQ3 (Build Performance): Does the migration impact the overall build time of
the application?

As we migrate from a monolithic architecture to a distributed one, we modify the
way the application is built. Furthermore, the build time of large applications can be
prohibitively long. Therefore, the goal of this research question is to evaluate the build
time of the application to see how it affects the development of Omaje. Indeed, as we
move towards a distributed architecture we increase the number of projects that must
be built.

To evaluate this RQ, we measure the time required to build the monolithic appli-
cation (OmajeServer + OmajeGWT), and the microservice-oriented architecture (Oma-
jeGWT + OmajeMS1 + OmajeMS2 + OmajeMS3 + OmajeMS4). To do so, we built each
project independently.

5.6.3 Validation Results

In this section we present the results to the previously stated research questions.

RQ1 (Validity): Can MDE-Mono2Micro support the migration of a monolithic
object-oriented application to an MSA-based equivalent?

To answer this RQ, we executed the user scenarios over the web client. The scenar-
ios are described in the user manual provided by the development team. In total, 56
user scenarios were performed. Throughout the process, we did not uncover any bugs
in the migrated Omaje application.
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Figure 5.14: Average execution time (in ms) of a scenario in both the monolith (red) and the
MSA (blue).

Summary RQ 1
To evaluate the business logic of the migrated application, we performed 56 dif-
ferent user scenarios. As each user scenario was run successfully on the migrated
application approach, we were able to conclude that migration of Omaje was per-
formed in a way as to preserve the business logic of the application.

RQ2 (Runtime Performance): Does the migration impact the overall responsive-
ness of the application?

To check the performance of the migrated application at runtime, we performed
several user scenarios to measure the responsiveness between the client and the server.
We performed each scenario with both the monolith and the MSA, and the results are
displayed in Figure 5.14.

For scenario 1, we automated the consulting of the clients based on the software li-
censes they use. We note a displacement of 150-200 ms for the first quartile, the median
and the third quartile between the monolith and the MSA. Overall, there is an increase
in response time after the migration towards the MSA. Scenario 2 involves a search of
the clients based on a set of filters. In this scenario, we did not experience the same
increase between the monolith and the microservice. In fact, the relative remains rela-
tively the same with an increase of 20 ms between the medians. Finally, in scenario 3
we automate the search of active users of Omaje. In this scenario we denote an increase
of 90-160 ms between the monolith’s response time and the MSA’s response time.

Overall, the migration does impact the overall responsiveness of the application.
This can be explained by the fact that we replace method calls in the monolith with
network calls in the microservice-oriented architecture. However, the increase in re-
sponse time remains imperceptible for the end-user.
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Summary RQ 2
The passage from a monolithic architecture to a distributed one does increase
the response time of the application. The increase can be considered negligible
from the viewpoint of the user experience, however the number of scenarios
does not cover enough of the application to determine that the application is not
negatively impacted, and we can only conclude that from these scenarios, the
features covered are not impacted.

RQ3 (Build Performance): Does the migration impact the overall build time of
the application?

To answer this RQ, we measured the compilation time to build each application. For
the monolithic application, this consists in building both OmajeServer and OmajeGWT.
To build the microservice-oriented architecture, this consists in building OmajeGWT
(which contains the client and routing to the other microservices), as well as the 4
microservices (i.e., MS1, MS2, MS3, MS4).

Table 5.1: Build time for the monolithic version of Omaje.

Omaje
GWT

Omaje
Server

Build
Time 6m50s 20.225s

Table 5.2: Build time for the microservice-oriented version of Omaje.

Omaje
GWT MS1 MS2 MS3 MS4

Build
Time 6m41s 16.244s 14.072s 12.620s 13.642s

Table 5.1 presents the compilation time of each project for the monolith, and Ta-
ble 5.2 presents the build time of each project for the MSA. As we can see, the build
time of the web client is unaffected by the migration of the monolith. For the server
build time, we move from having one server compilation of about 20 seconds to 4 dif-
ferent compilations that take the same range of build time. However, the migration
allowed for the decoupling of the OmajeServer project from the OmajeGWT project. In
other words, when a change is required in the backend, the developers no longer need
to compile the whole of the application. Instead, they can focus on compiling the mi-
croservice in question.
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Summary RQ 3
The build time of the Omaje application remains relatively the same with the
web client taking most of the time. However, by decoupling the frontend from
the backend, we are able to reduce the need to build the OmajeGWT when only
changes to the backend are required. This can save some considerable time dur-
ing the development of the application, which we were able to experience during
the configuration phase of the migration process, as it allowed to configure man-
ually each microservice without rebuilding the client between configurations.

5.6.4 Threats to validity

In this section, we discuss the threats to the validity of our case study using the defini-
tion proposed in [WRH+12]. Specifically, we present the construct validity, the internal
validity, and the external validity.

5.6.4.1 Construct Validity

The purpose of this study is to determine the ability of our approach to migrate a real-
world application, and its impact on the continued development of the application. In
this subsection, we evaluate whether the measures used really represent what we are
trying to investigate with the proposed research questions.

With regard to the end-users, we wanted to validate the application’s behavior and
usability. For the application’s behavior, we used the user scenarios proposed by the
user manual to determine whether the application still behaved as expected. This user
manual is available on the front page of the web application to help any new user to
navigate through its different features. Therefore, it is likely to cover the important
features of the application. However, we acknowledge that these user scenarios do not
necessarily cover all the application’s requirements. In terms of usability, we wanted to
validate that the migrated application remained responsive. For this we measured and
compared the response time of the migrated application with its monolithic version
in different scenarios. To measure the response time, we evaluate the execution time
with several user scenarios. However, since there are no functional tests, we have to
automate each scenario. Due to time constrictions, we limited the number of scenarios
that were used to evaluate the performance of the application. There is a likely risk
that we do not cover enough of the application to determine the responsiveness across
the application.

5.6.4.2 Internal Validity

The threats to the internal validity of this experiment include whether external factors
impacted the results. We cover the threats related to both RQ1 and RQ2:
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(RQ1) Validity For the different user scenarios we asked the practitioner who were
not involved with the migration to evaluate the behavior of the migrated application.
Thus, we consider the reported results unbiased.

(RQ2) Runtime Performance We measure the usability of the migrated application
by compare its responsiveness with the original application. During the migration we
did not seek to optimize the identification phase to produce performance-optimal mi-
croservice. Furthermore, results were computed using the internal tools available with
the web client technology, using the same computer, and without other applications
other than the web application and the server.

5.6.4.3 External Validity

In this experiment, we validated our approach by migrating an industrial application.
Since it is not open-source, we cannot share the results and this makes replication dif-
ficult. Furthermore, we limit our validation to one application, therefore we cannot
validate the approach’s genericity. However, our approach is designed to be language-
agnostic and was implemented using open-source technologies, therefore we are con-
fident that the proposed approach can be reused to a high degree in other cases.

5.7 Conclusion

In this chapter, we have proposed an MDE-based monolithic object-oriented to MSA
migration approach. This approach aims to be as generic as possible and extend-
able based on the migration context. To do so, we have proposed a set of platform-
independent models that can be reused throughout the migration process. Particularly,
this migration process consists of extracting the source application’s model, identifying
its candidate MSA and incorporating it into an intermediary pivot model. From this
pivot model, we identify and resolve the microservice encapsulation violations, and
convert the violation-free pivot model into the MMM model. Finally, we generate the
source code for the target platform using the monolith’s source code, and the MMM
model to guide the generation process.

We validated our approach by migrating an industrial application. The migration
was performed using the tool MDE-Mono2Micro. To evaluate the results of our migra-
tion, we performed three different experiments to evaluate the behavior, the usability,
and the build time of the microservice-oriented architecture. The findings of our exper-
iment conclude that the behavior, and the usability of the application is not affected by
the migration. Furthermore, the build time of the application does not have negative
consequences on the development of the application. Based on the evaluation of these
results, we conclude that the migration of Omaje was successful.
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This chapter provides an overview of the contributions proposed in this thesis. In
it, we also highlight the limitations of the proposed contributions, and identify future
research directions. Finally, we present our publications.

6.1 Summary of Contributions

The goal of this thesis is to contribute to the migration of monolithic applications to-
wards a microservice-oriented architecture. Throughout this thesis, we highlighted
two research problems:

1. Reverse engineering, and identifying, the microservice-oriented architecture:
the identification relies on analyzing program artifacts, in order to extract a de-
composition of the source code (e.g., clusters of classes) that will constitute the
MSA.

2. Transforming the existing code to materialize the microservice-oriented archi-
tecture: from the identified architecture, the existing source code of the monolith
must be refactored to produce valid microservices.

In this thesis, we proposed several contributions to address these two research
problems:
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• An identification approach which leverages the internal architecture of mono-
lithic applications to propose an MSA (Chapter 3): Our approach addresses the
first research problem by partitioning a set of classes of an object-oriented appli-
cation into a set of clusters, each cluster representing a microservice. Unlike most
existing approaches, our clustering strategy relies on an intermediate extraction
phase which seeks to extract information about the internal architecture of the
application. By identifying the structural components of the application, we can
propose a decomposition approach which takes into consideration common de-
composition antipatterns. We then apply a clustering algorithm on the structural
components to generate the microservice candidates.

• A semi-automated approach to materialize the identified architecture through a
set of transformation rules (Chapter 4): This contribution addresses the second
research problem by proposing a semi-automated systematic transformation ap-
proach towards materializing microservice candidates. This approach takes as in-
put an identified MSA description and the source code of the monolith. Using the
architecture description as a guide, we generate the microservice’s source code.
However, the act of separating the monolith’s source code into separate projects
reveals object-oriented dependencies between them that must be resolved. Thus,
we propose a set of transformation rule to resolve the different OO dependen-
cies into a set of required/provided interfaces. During the generation process,
these interfaces are implemented as web services to permit the communication
between the different microservices.

• An end-to-end migration approach driven by model engineering (Chapter 5):
our proposed approach combines both previous contributions to address both
research problems. The goal of this approach is to generalize both contributions
using model-driven engineering techniques. Particularly, this approach aims to
be generic enough to be applied to different languages, frameworks, and tech-
nologies. We propose several generic metamodels to represent the application
throughout the different phases of the migration. Each metamodel aims to be
generic to promote their reusability throughout the migration of different plat-
forms. This allows for a greater flexibility towards adapting the final result based
on the expert’s choices.

6.2 Limitations

We denote several limitations with the proposed approaches:

In the case of our contribution to the identification problem, we denote several
points. First, our approach is limited to the static analysis of the source code. Dur-
ing this thesis, we made the choice to limit the accepted input of our identification
approach to the source code of the application. Our reasoning was that the source
code was the most commonly available source of information. However, it is not the
only source of information that is available. In particular, we relied on static analysis
techniques to determine the dependencies between the classes of an application. This
means we are unable to address polymorphism and dynamic binding dependencies.
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However, during the extraction of the internal architecture we take into consideration
the dependency injection found in most popular frameworks (e.g., Spring). However,
another problem with static analysis is that it treats dead/unused code with the same
importance as used code. This may create some noise during the identification pro-
cess by promoting certain dependencies other others. Dynamic analysis addresses all
of these limitations by highlighting dependencies between classes based on their real
use. However, the challenge with dynamic analysis is that it requires collecting traces
during the use of the application which can be difficult to acquire.

Also, the proposed identification approach clusters the classes of an application
using the hierarchical clustering algorithm. While this can provide a near-optimal so-
lution, other clustering techniques exist that may provide more accurate solutions (e.g.,
graph neural networks, search-based techniques, evolutionary algorithms).

With regard to the approaches that address the transformation problem, we de-
note that our experimentation is limited to JAVA-based applications. While Java is a
popular object-oriented language, it is not the only OO language used to implement
monolith. However, the transformation approach we present attempts to generalize its
transformation to pure object-oriented mechanisms.

6.3 Future Directions

Several directions have been identified throughout this thesis that could not be ex-
plored due to constraints. We split these directions into two distinct categories.

The first category consists of directions that relate to the identification of microser-
vices. In particular, we have highlighted that our approach is limited to the static anal-
ysis of code. In future works, we would like to integrate a dynamic analysis on top
of the current static analysis. For instance, we could identify microservice through the
elaboration of a set of use cases. These use cases could be executed on an instrumented
version of the monolith to identify the classes used to serve these use cases.

Another challenge we encountered during our work identifying microservices is
the lack of an evaluation framework for identification approaches. While there are
more than 30 approaches presented in the literature, few approaches provide the full
data-set of their identification. Instead, they provide the quantified results, which
makes comparing approaches using other metrics difficult. Furthermore, there are few
approaches that offer to quantify their results to make comparison between approaches
possible. In a future work, we would like to expand the evaluation methodology pre-
sented in Chapter 3 to consider other types of evaluation metrics (e.g. the metrics
proposed in [LCG+15], and [JLC+21]) as well as include a quantitative comparison
between different approaches.

The second category involves the transformation problem. In the work proposed
in Chapter 4 and Chapter 5, we focused on the transformation of object-oriented appli-
cations. However, during the experimentation we limited ourselves to JAVA applica-
tions. In Chapter 4, our approach attempts to cover systems implemented in any OO
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language, however, there are several OO concepts (e.g., reflexivity, friends) that we did
not cover. In future works, we would like to address these OO concepts. Regarding
the model-driven migration approach, we aim to propose a generic approach. How-
ever, we limited our experiment to a single application. In future works, we would like
to extend our experimentation to see whether our approach is generic. In particular,
we would like to address this by migrating applications written in C#, and SmallTalk.
Furthermore, our tool MDE-Mono2Micro is implemented in Pharo using the Moose
platform for code analysis. However, Pharo is a language that few developers are
comfortable using. To overcome this limitation, we would like to develop a visual en-
vironment to enable developers/architect to make high-level decision regarding the
migration of their monolithic application. This visual environment is current focus of
an internship at Berger-Levrault.

Finally, from an industrial perspective, the case study presented Chapter 5 has re-
sulted in the successful migration of Omaje. In a future work, Berger-Levrault is in-
terested in applying this work in the context of two additional applications developed
using the same technological stack as Omaje.

6.4 Publications

This PhD thesis started in November 2018. During this period we have worked the
following research papers (in chronological order):

• Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde-Lilia Bouziane, Rahina Oumarou
Mahamane, Pascal Zaragoza, Christophe Dony. From Monolithic Architecture Style
to Microservice one Based on a Semi-Automatic Approach. ICSA 2020: 157-168.

• Pascal Zaragoza, Abdelhak-Djamel Seriai, Abderrahmane Seriai, Hinde-Lilia Bouziane,
Anas Shatnawi, Mustapha Derras. Refactoring Monolithic Object-Oriented Source
Code to Materialize Microservice-oriented Architecture. ICSOFT 2021: 78-89. (nominated
for best student paper)

• Pascal Zaragoza, Abdelhak-Djamel Seriai, Abderrahmane Seriai, Hinde-Lilia Bouziane,
Anas Shatnawi, Mustapha Derras. Materializing Microservice-Oriented Architecture
from Monolithic Object-Oriented Source Code. In: Software Technologies. ICSOFT
2022. Communications in Computer and Information Science. (invited to IC-
SOFT extension & accepted)

• Pascal Zaragoza, Abdelhak-Djamel Seriai, Abderrahmane Seriai, Anas Shatnawi,
Mustapha Derras: Leveraging the Layered Architecture for Microservice Recov-
ery. ICSA 2022: 135-145

• Pascal Zaragoza, Bachar Rima, Abdelhak-Djamel Seriai, Abderrahmane Seriai,
Mustapha Derras. Model-Driven Engineering Migration of an Object-Oriented Mono-
lithic Application to a Microservices Architecture. (to be submitted)
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