Renée El

Melhem Bât

Pascal Blaise

M Stéphane

ÉLECTROTECHNIQUE E E A Électronique

M Philippe Delachartre
email: philippe.delachartre@insa-lyon.fr

Bénédicte Lanza

Mme Sandrine
email: sandrine.charles@univ-lyon1.fr

Mme Sylvie

M Hamamache Kheddouci

M Stéphane Benayoun
email: stephane.benayoun@ec-lyon.fr

Stéphanie Cauvin

M Jocelyn Bonjour

M Bruno

Renault Benoit

Olivier Simonin

Jacques Saraydaryan

President Julie Dugdale

Philippe Mathieu

Rachid Alami

Navigation Among Movable Obstacles (NAMO) Extended to Social and Multi-Robot Constraints

Keywords:

As robots become ever more commonplace in human environments, taking care of ever more tasks such as cleaning, security or food service, their current limitations only become more apparent. One such limitation is of their navigation capability in the presence of obstacles: they always avoid them, and freeze in place when avoidance is impossible.

This is what brought about the creation of Navigation Among Movable Obstacles (NAMO) algorithms, expected to allow robots to manipulate obstacles as to facilitate their own movement. However, these algorithms were designed under the hypothesis of a single robot per environment, biasing NAMO algorithms into only optimizing the single robot's displacement cost -without any consideration for humans or other robots. While it is desirable to endow robots with the human capability of moving obstacles, they must however do so while respecting social norms and rules of humans.

We have thus extended the NAMO problem as to take into account these new social and multi-robots aspects. By relying on the concept of affordance spaces, we have developed a social occupation cost model allowing the evaluation of the impact of moved objects on the environment's navigability. We implemented (and improved) reference NAMO algorithms, in our open source simulation tool, and modified them so that they may plan compromises between robot displacement cost and social occupation cost of moved obstacles -resulting in improved navigability. We also developed an implicit coordination strategy allowing the concurrent execution of these same algorithms by multiple robots as is, without any explicit communication requirements, while preserving the no-collision guarantee; verifying the relevance of our social occupation cost model in the actual presence of other robots. As such, this work constitutes the first steps towards a Social and Multi-Robot NAMO.

I am grateful to my advisors, Olivier Simonin and Jacques Saraydaryan, for their unwavering support and guidance throughout the five years of this thesis. Their balanced input and continuous encouragements have definitely brought me further on my path as a scientist, and as a person. It is firstly thanks to them that I could pursue this thesis, and finally bring it to fruition, despite the many obstacles they have helped me push through.

I also thank my colleagues from the CITI Laboratory and Chroma Team, for all the good moments and discussions we shared together. You all have made this travel in the world of research that much more passionating. These thanks also extend to all INSA Lyon personnel that have accompanied me in the ten years I have spent on the Doua Campus.

I would also like

Introduction

I. 1 Motivation

Service robotics are steadily becoming more common within households, with almost 18.5 million new consumer service robots being sold in 2020 (+6% compared to 2019), with most notably autonomous cleaning robots representing more than 92% of these numbers (17.2 million units) [START_REF]World Robotics 2021[END_REF]. As robots become more commonplace, their current limits get more visible: one such limit is the matter of how robots deal with movable obstacles when navigating. By that, we mean any object that does not define the very layout of the environment and is thus meant to be frequently manipulated by humans: chairs, bags, boxes, or smaller clutter such as toys, plushes, etc. by opposition to walls, tables, shelves, and any other piece of heavy furniture that isn't fitted with wheels. Upon reading this, you may have immediately pictured a messy bedroom in your mind (more likely so if you have lively children at home), such as the one in Chapter I. Introduction

One can easily extrapolate this situation to any navigation scenario in other human environments such as offices, storage rooms, or even industrial environments such as workshops.

In any case, carefully moving the blocking objects aside and resuming navigation rather than failing whatever mission the robot is required to accomplish would be considered a better outcome. That is why even major robotics companies consider it to be one of the necessary next advancements for household robots [START_REF] Ackerman | With New Roomba j7, iRobot Wants to Understand Our Homes[END_REF].

Similar considerations are what led Stilman et al. [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF], in 2005, to the formulation of the Navigation Among Movable Obstacles (NAMO) problem: computing a single robot's collision-free plan from a start to a goal configuration, allowing the manipulation of movable obstacles to The robot autonomously identifies the surrounding objects, and determines that it needs to move the chair to reach its goal, and does so.

However, until now, to the best of our knowledge, has never been considered in NAMO problems the presence of more agents (i.e. humans and robots) than the robot executing the NAMO plan itself. That is the case although agents are the main reason clutter appears 1 ; and robotics applications imply ever more robots operating in a shared environment, even for home cleaning scenarios [START_REF] Ackerman | iRobot Completely Redesigns Its Floor Care Robots With New m6 and s9[END_REF]. As a consequence, existing NAMO approaches only optimize the displacement cost of the robot and thus tend to move obstacles to the closest available configuration that allows them to pass [START_REF] Benoit | Towards S-NAMO: Sociallyaware Navigation Among Movable Obstacles[END_REF]. This can result in disputable behavior like in Fig. I.3: the robot picks up a toy and releases it behind itself, as to free its path forward, but blocking the way again for any other agent that may come after -or even its future self! While it did help the robot achieve its required goal, robots should arguably execute NAMO plans without causing such trouble to humans or robots.

It is this lack of study of NAMO algorithms' effects in human environments or in the presence of other agents that primarily motivates our present work. The concrete observation of man environments meant to be shared, further affirm the need to explore the social and multiagent implications of NAMO.

FIGURE I.3: Virtual home scenario snapshots from our Robocup@Home 2021 competition participation. The robot had to execute a household task in each room, but small objects would hamper passage in-between, and were thought to be avoided. We however interpreted and solved this as a NAMO problem, whereas other teams would simply be blocked due to the difficulty of circumventing the objects without touching them involuntarily. Our performance was rewarded with a specific "Best Cleanup Award", in addition to our placing second in our league.

I. 2 Challenges

As we have just discussed, executing NAMO algorithms in human environments or in the presence of other agents presents non-trivial open challenges. Among these, we will not discuss sensing&action uncertainty nor kinodynamic physical interactions, as they have already been wellcovered in previous already cited literature [START_REF] Levihn | Autonomous environment manipulation to facilitate task completion[END_REF][START_REF] Scholz | Physics-based reinforcement learning for autonomous manipulation[END_REF]. It makes more sense to try and address the specific challenges brought by our new focus on human environments and agent plurality:

Social Acceptability One can not simply introduce robots in human living spaces expecting everything to work out from the get-go. Humans are social beings, relying on social norms and rules to interact with one another, be it directly or through their environment. It is a widelyrecognized fact that robots are expected to follow these same norms and rules, if they are to ever be welcomed in human spaces [START_REF] Rios-Martinez | From Proxemics Theory to Socially-Aware Navigation: A Survey[END_REF]. Finding, modeling and having robots follow them is in itself a huge field in robotics research [31] -and we will need to study how this applies to our NAMO context of navigating and manipulating obstacles, especially when it comes to their placement in the environment.

Coordination Multiple robots planning and concurrently executing plans in a shared environment requires coordination in order to guarantee the absence of collisions, as clearly stated in the overwhelming literature on the matter [START_REF] Verma | Multi-Robot Coordination Analysis, Taxonomy, Challenges and Future Scope[END_REF]. It opens a myriad of questions as to how robots may or not interact with one another: do they communicate ? How ? What information do they share, if at all ? Can they manipulate a same obstacle together ? How to predict the behavior of another robot if it cannot explicitly communicate what it wants to do ? ... We must thus study these implications in our NAMO context too.

Dimensionality

The most fundamental challenge of both NAMO and Multi-Robot coordination is the curse of dimensionality. To better understand what we mean by this, let us consider the complexity of planning for multiple agents (robots) among multiple movable obstacles. The full configuration space 2 for M robots and N obstacles respectively with d r and d o degrees of freedom is the product of each individual robot and obstacle's configuration space:

C r 1 × C r 2 × ... × C r M × C o 1 × C o 2 × ... × C o N ∈ R Md r +Nd o
In a discretized search space of resolution r for each dimension, this yields a number of configurations exponential in the number of obstacles and robots, asymptotically noted as O(r Md r +Nd o). In a simple square grid of side 10 cells, with just 2 robots and 2 obstacles able to move in both axes, this would already mean a hundred million configurations to search through, obviously making brute-force search unthinkable. To solve such problems, with the additional requirements of respecting social norms and rules, we will need to carefully consider computation optimization strategies and heuristics.

I. 3 Approach

By now, the very title of this thesis and the previous sections should have made rather clear which direction, or bias, we choose to study this problem of having multiple agents navigate in a shared human environment: we extend existing NAMO research so that it can operate in this new context. This comes with the main benefit of already partly addressing the aforementioned Dimensionality challenge, thanks to it being profusely addressed in the existing NAMO literature. This approach makes sense, since the application scenarios we are aiming for contain far more movable obstacles than robots.

We thus first explore said NAMO literature in most detail, in order to select relevant algorithms to serve as base for extensions that will address the Social Acceptability and Coordination challenges. They also serve as a baseline to compare against their extended versions in our experiments, through our open source ad-hoc NAMO simulation tool and datasets.

To specifically address the Social Acceptability challenge, we rely on the social navigation concept of Affordance Spaces [START_REF] Lindner | Affordances and Affordance Space: A Conceptual Framework for Application in Social Robotics[END_REF], and first propose a naive social model of "taboo zones", or forbidden affordance spaces. We then propose a second more general and scalable Social Occupation Cost model representing an affordance space of accessibility/navigability based on two heuristic hypotheses: avoiding narrow spaces, and not leaving objects in the middle of space.

We show how to modify existing NAMO algorithms to use these models to affect the placement of manipulated obstacles, as to help avoid non socially-acceptable environment modifications such as previously shown in Fig.

I.3.
To address the challenge of Coordination, we propose an implicit coordination algorithm to allow concurrent use of existing NAMO algorithms by multiple robots, while still guaranteeing the absence of collisions -without any explicit communication requirement, ensuring maximum robustness regarding the possibility of individual robot or communication failure.

We also show how our Social Occupation Cost model can help resolve deadlocks in this noexplicit communication allowed context -and also improve navigation for all robots in the environment.

I. 4 Thesis overview I. 4.1 Summary of Contributions

The contributions of this thesis are summarized as follows, in order of appearance:

• An extensive survey of NAMO literature -the first such survey, chronologically covering NAMO from its roots and inception, to its various extensions and applications.

• Improvements of existing reference NAMO Algorithms -namely [START_REF] Stilman | s incremental binary occupancy grid model[END_REF] [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF]19] and (Wu&Levihn, 2014)'s [START_REF] Wu | Navigation Among Movable Obstacles in unknown environments[END_REF][START_REF] Levihn | Navigation Among Movable Obstacles in unknown environments[END_REF][START_REF] Levihn | Efficient Opening Detection[END_REF][START_REF] Levihn | Locally optimal navigation among movable obstacles in unknown environments[END_REF] algorithms. We define a common formalism to serve this rewrite and provide a basis for our problem extensions.

• Open simulator and data -development of an open simulation tool with implementations of the aforementioned algorithms and their extensions discussed below, with open experiment input and output data.

• S-NAMO -the general Socially-aware NAMO problem, extending NAMO with social constraints, to also allow a robot to reason about its decisions' impact on the environment's accessibility for humans.

• Social Placement Cost Model -definition of a generic model of the accessibility/navigability affordance offered by free space in human environments, and as a corollary, of the disturbance to humans caused by movable obstacles. This low-requirement model solely relies on the analysis of the environment's binary occupancy grid of fixed obstacles.

• S-NAMO Algorithm -a focused variant of [START_REF] Stilman | s incremental binary occupancy grid model[END_REF]'s NAMO Algorithm towards the best compromise solution between robot displacement cost and social occupation cost discussed above.

• MR-NAMO -definition of the general Multi-Robot NAMO problem, generalizing the NAMO domain to also allow a robot to reason about other robots.

• C-NAMO -an implicit coordination strategy that can leverage existing NAMO algorithms as is, without requiring explicit communication between robots, to provide solutions to MR-NAMO problems, including deadlock situations.

I. 4.2 Document Outline

This thesis is structured as follows:

• Chapter II -State of the Art provides an in-depth survey of existing NAMO literature, as well as an overview of Social Navigation and Multi-Robot Coordination problems with a discussion of their relation to NAMO.

• Chapter III -Revising and simulating reference NAMO algorithms provides a common formalism for the two baseline NAMO algorithms of [START_REF] Stilman | s incremental binary occupancy grid model[END_REF] and (Wu&Levihn, 2014) we build upon in the following chapters, revisions of said algorithms, and a description of their implementation in our open simulator and data, as well as a presentation of this simulator we developed.

• Chapter IV -Socially-aware NAMO introduces the novel problem of Socially-Aware NAMO (S-NAMO), our new Social Placement Cost Model and S-NAMO algorithm that makes use of it, as well as experiments in increasingly complex environments to measure its impact on the environment's accessibility for humans.

• Chapter V -Multi-Robot NAMO introduces the new problem of Multi-Robot NAMO (MR-NAMO), and the local coordination approach we devised to solve MR-NAMO problems, including deadlocks. We conclude by measuring the synergy between our S-NAMO and MR-NAMO contributions in another set of experiments.

• Chapter VI -Conclusion provides a synthesis of this work and outlines research perspectives from there.

Chapter II

State of the Art

In this chapter, we first provide a chronological and detailed overview of the NAMO literature, as it is the core of our thesis work. From even before the definition of the actual NAMO problem, to its latest applications, we discuss how NAMO has been addressed and extended through the years, along with relevant applicable vocabulary. This extensive overview allows us to conclude as to the characteristics and limitations of the existing body of work, with the noteworthy conclusion that Social and Multi-Robot considerations have yet to be applied to the NAMO problem. As we present the NAMO literature, we also introduce the most-closely related problems to NAMO: Navigation Planning, Manipulation Planning, Rearrangement Planning, Assembly Planning, and the overarching domain of combined Task and Motion Planning.

In the second section, we provide an overview of existing Social and Multi-Robot extensions to these similar problems, and introduce relevant associated concepts. These concepts help us clarify our vision of the Social and Multi-Robot NAMO problem we address in this thesis, and shall be used in our own algorithmic extensions in the following chapters. The present chapter is meant to be read linearly, as one would a story: hence, for the sake of simplicity and understanding, the use of mathematical notations, formulas and abbreviations is voluntarily kept to a minimum.

II. 1 Navigation Among Movable Obstacles (NAMO):

II. 1.1 "Motion planning in the presence of movable obstacles"

In 1988, 17 years before Stilman coined the term of NAMO, Gordon Wilfong was the first to introduce the problem of "finding collision-free motions in a changeable workspace" [START_REF] Wilfong | Motion planning in the presence of movable obstacles[END_REF][START_REF]Motion planning in the presence of movable obstacles[END_REF] 1

-that is, to compute the motion of a robot to a goal position that is allowed to move obsta- the problem (without loss of generality), where the robot is considered as a square, all planar obstacles as rectangles of four sizes or "L-Shaped", parallel to the x-or y-axis, as illustrated in The same paper included a resolution algorithm for the specific case of the manipulation of a single convex polygonal movable obstacle blocking the way of a convex polygonal robot, in a world composed of not necessarily convex polygons. Robot motion was restricted to translations, and grasping the obstacle was assumed possible only when the robot entered in edge contact with the obstacle (in their words: "share a common wall") -common interaction hypotheses in subsequent papers, as we shall see in the next paragraphs. To the best of our knowledge, this algorithm has however not been implemented nor experimentally verified, as the author did not provide any resolved scenario with it, nor experimental results. This, with the algorithm's fundamental limitation to single-obstacle problems, explain why it cannot be considered as the first NAMO algorithm in the literature.

II. 1.2 The first NAMO planning algorithm

In 1991, Chen and Hwang introduced the first planner with the ability to manipulate multiple movable obstacles to reach a goal robot configuration [1,[START_REF] Chen | Practical path planning among movable obstacles[END_REF]. This planner was designed to work for a circular robot in an environment where obstacles are represented by unions of convex polygons (e.g. a concave L-shape obstacle such as B 1 or B 5 in Fig. II.1 would be represented by the union of two rectangles), and associated with a positive mass value, used to estimate the required work to move them. Both the robot and obstacles may be translated or rotated, and the robot is supposed to possess an invisible arm capable of moving any obstacle in any direction, on the condition that the robot gets in contact with the object first (Cf. Fig. II.3b). In contrast with the later NAMO literature, the planner accounts for movement transfer from the manipulated object to other objects, allowing the robot to "plow" through obstacles (i.e. using one obstacle to push others). [1]. Robot is black circle, goal is white circle with a "G", movable obstacles are polygons. In (A), the global planner path is shown as white circles. The local planner verification sequence is shown in (B) to (F). In (B), the robot first "slides" to the configuration neighboring the square and L-shaped obstacles, then "shoves aside" both obstacles in (C), to clear the path to the next configuration shown in (D), where they are "shoved aside" again in (E) so that the robot may "slide" to the goal in (F).

Their planner can be summarized as a search for a Path of Least Resistance (abb. PLR). A global planner randomly samples robot configurations in a grid decomposition of the space (circles in Fig.II.3a), then computes heuristic work underestimates of clearing obstacles from these configurations. The global planner then searches the graph of neighboring configurations using Dijkstra's algorithm to find a path of least cost, that may pass through obstacles. This path is verified by a local planner, that applies primitive operators to connect two neighboring configurations. These operators either "slide" the robot from a free configuration to another, or "shove aside" obstructing objects to clear the heuristic path (that is, use its invisible arm to move the objects) 2 .

(A) To clear the shortest path (dashed line) computed by the global planner, the robot "shoves aside" Object A right, blocking object B.

A different algorithm is needed to find the solution sequence: (A, left), (B, top) using a detour by the top (solid line).

(B) To clear the shortest path (curved arrow) computed by the global planner, the robot "shoves aside" Object 1 left, resulting in Object 4 blocking the path in reaction. A different algorithm is needed to find the solution sequence: (1, right), (4, bottom), (3, right), (2, top), (1, left).

FIGURE II.4: Unsolvable NAMO cases for Chen&Hwang's algorithm [1].

While this heuristic approach is effective on some examples like Fig. II.3, it suffers from a lack of backtracking -that is, the algorithm only considers a single path per reachable robot configuration. In Fig. II.4a, this prevents the computation of a detour around the top (solid line), 2 When failing to clear obstacles from a configuration after calling these operators a fixed maximum number of times, the configurations graph and the Dijkstra path search tree are dynamically updated to remove said configuration. The search is then resumed from the last valid configuration.

Chapter II. State of the Art 10 after first considering the shortest path (dashed line). This results in algorithmic incompleteness (no guarantee to find a solution if one exists), and the authors suggest that a symbolic task-level planner would be required to solve such cases. Finally, the local nature of obstacle manipulations to join neighboring robot configurations, and the hypothesis of movement transfer from the manipulated object to others, both limit the robot's planning capabilities to "plowing" paths. That is, paths where all obstacles are greedily pushed away from the robot as it moves forward, without proper consideration for the (positive or negative) effects it may have in distant portions of the environment (as illustrated in both Fig. II.4a and II.4b, where the robot's focus on the first accessible obstacle prevents it from considering the movement of other obstacles that should have been moved first).

II. 1.3 Task-level planning for LP1 NAMO Problems

The movable-obstacle problem gained renewed interest in 2004, with the publication of two new planners by Okada [START_REF] Okada | Environment manipulation planner for humanoid robots using task graph that generates action sequence[END_REF] and Stilman [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF][START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF]19], each with their own task-level hierarchization. Both were inspired by Alami et al.'s task-level decomposition strategy for manipulation planning [START_REF] Alami | A geometrical approach to planning manipulation tasks. The case of discrete placements and grasps[END_REF][START_REF] Alami | Two manipulation planning algorithms[END_REF], consisting in building a sequence of transit (navigation) and transfer (manipulation) paths, where the robot respectively navigates alone or while holding an obstacle, separated by rigid grasp and ungrasp operations. While seemingly actionable at least in simulation, as the figure shows, this approach is however not provably complete nor optimal. Also, it is very computationally inefficient, as it requires the computation of the full task graph -thus also the computation of all navigation and manipulation sequences, even for objects that are very unlikely to open a path to the goal.

In parallel, Stilman and Kuffner [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF][START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF]19] first introduced a formal definition for the now widely used term of Navigation Among Movable Obstacles (abb. NAMO). As for their tasklevel decomposition, they went with a somewhat opposite task graph structure, where edges are movable obstacles and nodes are components of the robot's free configuration space (syn. free [START_REF] Okada | Environment manipulation planner for humanoid robots using task graph that generates action sequence[END_REF]. On the left, the world model description, in the middle, the planner and its subcomponents, on the right, the planned motion sequence to solve the problem.

space components). Simply put, a free space component can be understood as an area where the robot may navigate from any point to another without having to manipulate any obstacle, as illustrated in Fig. II.6a. It is actually this task graph model that allowed them to devise a fundamental subclass of NAMO problems called Linear Problems (abb. LP), by analogy to rearrangement planning [24]. By their definition, a problem belongs to the LP class, if it can be decomposed into a sequence of independent sub-problems, that each consist in connecting two components of free space by moving one or more objects (such a sub-problem being called a "keyhole"). Here, "Independent" means that any action used in solving a keyhole does not interfere with the actions needed to solve any subsequent keyhole. Correspondingly, LP1 (also written L 1), refers to the class of problems for which disconnected components of free-space can be connected independently by moving a single obstacle, as is the case with the example of Fig.II.6 we will be discussing. Conversely, by definition, Non-linear NAMO problems (abb. NL) cannot be decomposed in a sequence of keyholes that can be solved independently 3 .

Stilman & Kuffner made use of this task-level decomposition to devise (but not implement) a theoretical resolution-optimal planning algorithm, and implement an efficient resolutioncomplete (but not optimal) algorithm, for this class of LP1 problems 4 . Stilman & Kuffner's Both Okada et al. [START_REF] Okada | Humanoid motion generation system on HRP2-JSK for daily life environment[END_REF] and Stilman & Kuffner [43,[START_REF]Planning and executing navigation among movable obstacles[END_REF]19] eventually bridged the gap to a real-world experiment with an HRP-2 humanoid robot , but where the robot only moves a single obstacle over a very short distance to minimize action uncertainty, and robot sensing capabilities are augmented with external sensors. While these experiments make them both actionable algorithms for solving real-world NAMO problems, the completeness guarantee and the capacity of Stilman & Kuffner's algorithm to larger scale environments of experimentally up to 90 obstacles, make it an overall better NAMO algorithm 6 . In any case, neither of these algorithms could solve the problems illustrated in [START_REF] Stilman | Planning among movable obstacles with artificial constraints[END_REF]. Read left to right for the planning process, right to left for execution. 6 Also, Okada et al.'s algorithm is very likely to be unable to solve any problem that is not in the LP1 class, because of its graph structure akin to that of Stilman & Kuffner's. We say "likely", as, to the best of our knowledge, there is no sufficient documentation nor reference implementation available to ascertain this with absolute certainty. 7 Assembly Planning can be considered a further constrained sub-problem of Rearrangement Planning, where one needs to consider the force of gravity and its impact on the assembled system's stability, and sometimes prespecified order constraints. This problem often assumes that unassembled parts can be removed to "infinity", to reduce the amount of constraints to be taken into account and allow solutions to be found [START_REF] Wilson | On Geometric Assembly Planning[END_REF]. These problems typically also ignore the constraints of the robot/manipulator.

The last obstacle to be manipulated is selected using a heuristic A * -based search similar to their previous algorithm [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF], with a euclidean cost estimate, and affecting an extra one-time cost when traversing an obstacle 8 . While ignoring all other obstacles, a navigation path to a valid grasping configuration is found by means of an A * search from the robot start configuration.

Then, a manipulation sequence is computed by means of a Best-First Search that displaces this last obstacle, until a navigation path from the final robot grasping configuration to the goal is found by means of an A * search (Cf. for this being, that while the algorithm does consider all obstacle orderings, it does not consider all possible final configurations for each obstacle. The authors however precise that the algorithm could be L k M-resolution-complete, under the condition that it were modified so that it backtracks not only over object orderings, but also over choices of grasps and manipulation paths (which would be a significant additional computational cost).

II. 1.5 Sampling-based NAMO planning in continuous configuration space

In the previously mentioned papers, the computational infeasibility of complete planning for the full NAMO domain has lead to either not providing completeness guarantees [START_REF] Chen | Practical path planning among movable obstacles[END_REF][START_REF] Okada | Environment manipulation planner for humanoid robots using task graph that generates action sequence[END_REF], or focusing efforts on sub-problem classes where algorithms based on graph search may guarantee resolution-completeness, within a reasonable amount of computation time [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF][START_REF] Stilman | Planning among movable obstacles with artificial constraints[END_REF]. That is why in 2006 Nieuwenhuisen et al. [START_REF] Nieuwenhuisen | An Effective Framework for Path Planning Amidst Movable Obstacles[END_REF][START_REF] Nieuwenhuisen | An effective framework for path planning amidst movable obstacles[END_REF][START_REF] Nieuwenhuisen | Path Planning in Changeable Environments[END_REF], and in 2009 Van den Berg et al. [START_REF] Van Den | Path Planning among Movable Obstacles: A Probabilistically Complete Approach[END_REF][START_REF] Van Den | Path Planning in Dynamic Environments[END_REF] explored probabilistic completeness -a weaker form of completeness that guarantees to find a solution if one exists, but under the condition that the allotted planning time is infinite.

The first algorithm proposed by Nieuwenhuisen et al. [START_REF] Nieuwenhuisen | An Effective Framework for Path Planning Amidst Movable Obstacles[END_REF] consisted in building what they called an "action tree", where nodes represent either "grasp" or "manipulate" actions and their associated resulting world state (Cf.) are equivalent to transfer/manipulation paths, and are computed using an RRT search (with a bounded number of node expansions). The children "manipulate" (triangle) nodes of a "grasp" (round) node each correspond to an individual node of the RRT manipulation search of the grasped obstacle. One could say that the RRT manipulation search tree is "flattened" into action tree nodes (e.g. in the second action tree of Fig.II.9, the triangles directly under circle 1 are each a node of the RRT launched from the world state in circle 1). Only leaf nodes are expanded and only once, according to a priority determined by a probability of success. This probability heuristically evolves as the planning process progresses, and as the probability of a node is updated, its siblings' probabilities are adjusted too, and back-propagated to parents. This process firstly depends on whether the obstacle is directly blocking the shortest path to the goal computed on the PRM while ignoring obstacles. It also depends on whether the obstacle is indirectly blocking another obstacle's movement, which is known during the RRT planing of "manipulate" actions. The euclidean distance to the goal also affects the probability associated with a node.

Notably, and similarly to Chen & Hwang algorithm's [1], re-grasps of a same obstacle are allowed, as illustrated in the third action tree of Fig.II.9, where a second grasp (gray circle) node of obstacle 1 is a descendant of another (red circle). Re-grasp allows the robot to better maneuver around the obstacle as it manipulates it. This brings us to the authors' statement that the planner is capable of solving LP problems. Please note the difference in writing here, as it does not refer to Stilman's component-based definition given previously, but to the original rearrangement planning problem class definition of Ben Shahar & Rivlin [24] (that also inspired Stilman). Here, this class refers to "the set of problems that can be solved by a sequence of manipulations" 9 . The authors conjecture that the planner is probabilistically complete (for the LP class) if robot motion constraints are holonomic [START_REF] Nieuwenhuisen | Path Planning in Changeable Environments[END_REF], but do not prove it, as quite a few following papers misleadingly conclude (e.g. [START_REF] Moghaddam | Planning Robot Navigation among Movable Obstacles (NAMO) through a Recursive Approach[END_REF][START_REF] Meng | Active Path Clearing Navigation through Environment Reconfiguration in Presence of Movable Obstacles[END_REF]). [START_REF] Nieuwenhuisen | An Effective Framework for Path Planning Amidst Movable Obstacles[END_REF]. From left to right, the vignettes depict the initial world state, then the alternating "grasp"/"manipulate" sequence for obstacles 1 then 2, before a direct navigation path to the goal can be found in the last vignette. Under each vignette is the "action tree", where round nodes are "grasp" nodes with the associated obstacle's number, and triangle nodes are "manipulate" nodes. The yellow squares represent the initial and goal states, and the red nodes are the selected nodes branch represented in the vignettes.

Actually, the subsequent paper of Van den Berg et al. [START_REF] Van Den | Path Planning among Movable Obstacles: A Probabilistically Complete Approach[END_REF] argues that the previously mentioned bounding of the search trees (necessary for proper backtracking over alternative obstacle grasps) is a cause for (probabilistic) incompleteness for Nieuwenhuisen's algorithm [START_REF] Nieuwenhuisen | An Effective Framework for Path Planning Amidst Movable Obstacles[END_REF] 10 . Consequently, they devised a new sampling-based algorithm and provided a proof of its probabilistic completeness for the entire NAMO domain. This proof actually only holds true if the NAMO domain is considered to be strictly restricted to Stilman's first definition, where the robot can only manipulate one obstacle at a time, and assuming any obstacle can be grabbed from any configuration where the robot touches its envelope 11 . However, they could only prove its applicability for simplified axis-aligned environments where the robot and obstacles are limited to translations

(Cf. Fig.II.10
). This limitation is due to their random tree-based algorithm requiring a custom memory-compact explicit representation of the robot's configuration space and free space components, that is to be computed and saved for every obstacle movement during planning.

While we shall not delve into the details of this custom representation, its main point is that it allows to decouple the computation of the obstacles' movements from the explicit computation of the corresponding robot movements. That is, their custom representation allows the algorithm to first compute all the obstacles' movements regardless of the robot's, and only then infers the robot's movements from the planned obstacles' movements. [START_REF] Stilman | Planning among movable obstacles with artificial constraints[END_REF], where the smaller obstacles must be moved first to allow the necessary manipulation of M 1 .

While this approach cleverly allows to address any of the previously described classes of problem mentioned before (such as the hard non-linear and non-monotone problem of [START_REF] Okada | Humanoid motion generation system on HRP2-JSK for daily life environment[END_REF][START_REF]Planning and executing navigation among movable obstacles[END_REF] relied on very precise and all-encompassing external sensors, human-made 3D models of the environment, in highly simplified experimental settings, to ensure that computed plans could actually be executed without failure. But for NAMO algorithms to be applicable in real-world settings, without prior knowledge of the environment, where the robot's main sources of information are its limited-view onboard sensors, these algorithms need to be able to use any partial information available to efficiently devise and update their plan. devoted their efforts into designing a more efficient, and locally-optimal planning algorithm over several publications [START_REF] Wu | Navigation Among Movable Obstacles in unknown environments[END_REF][START_REF] Levihn | Navigation Among Movable Obstacles in unknown environments[END_REF][START_REF] Levihn | Efficient Opening Detection[END_REF][START_REF] Levihn | Locally optimal navigation among movable obstacles in unknown environments[END_REF] from 2011 to 2014, in multiple simulated environments.

In contrast with Kakiuchi et al.'s algorithm that mindlessly pushes obstacles first to only then verify if a path to the goal appears, this new algorithm carefully selects and computes the full motion for both the robot and obstacle to be manipulated ahead of execution, similarly to the previous planners in the literature [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF][START_REF] Stilman | Planning among movable obstacles with artificial constraints[END_REF]. This new algorithm relies on four essential hypotheses:

1. the robot can only compute plans with a single continuous obstacle manipulation 12 ;

2. unobserved space is to be considered free until discovered otherwise;

3. all obstacles are movable until manipulating them fails;

4. the robot is the single autonomous agent evolving in the environment.

The planner uses graph-search algorithms (A * , D * Lite, Breadth-First Search) over a grid discretization of the space, to compute the optimal navigation-only plan that avoids all obstacles, and plans each involving the manipulation of a single obstacle. The planner compares all these plans to guarantee that it will always choose the best-cost plan at any time during execution with its currently available environment information, under the hypotheses above -hence local optimality. As it tries to execute its computed plan, the robot discovers new obstacles and updates its knowledge about their shape or movability. When this new information invalidates the currently executed plan (future collision or failed manipulation because the obstacle was not movable), it repeats the previously described planning process to replace the invalidated plan.

This process is illustrated in Fig. II.12a, where (Left) the robot executes a first plan trying to circumvent detected obstacles 1&2, but (Right) comes to face obstacle 3, and replans its course only to realize that avoiding it will be costlier than moving obstacle 1 -but eventually fails as it is a static obstacle, and finally replans to move obstacle 2 to reach its goal 13 .

The first version of Wu&Levihn's algorithm [START_REF] Wu | Navigation Among Movable Obstacles in unknown environments[END_REF] was actually not locally optimal, and it is the later publications of Levihn [START_REF] Levihn | Navigation Among Movable Obstacles in unknown environments[END_REF][START_REF] Levihn | Efficient Opening Detection[END_REF][START_REF] Levihn | Locally optimal navigation among movable obstacles in unknown environments[END_REF] that provided this guarantee, along with an extension to arbitrary-shaped obstacles, and a larger action space allowing obstacle manipulations in all axis-aligned directions instead of only single-direction pushes. These changes are reflected in Fig. II.12b, where the initial world state is overlaid with the path followed by the robot (i.e.

the result of multiple replannings) in the left figure; the right figure shows the world perception after it pulled a first green couch to the right 14 (the next two couches are moved down).

Importantly, one big contribution of this improved version is their efficient local opening detection algorithm [START_REF] Levihn | Efficient Opening Detection[END_REF] that can be used to reduce motion planner calls to verify the creation of a new path after manipulation (greatly improving computational efficiency) 15 . Still, the local optimality guarantee and computational efficiency of this algorithm come at the cost of problem resolution capability: while the algorithm is not a priori theoretically limited to a specific (A) NAMO problem solved by the first version of Wu&Levihn's algorithm [START_REF] Wu | Navigation Among Movable Obstacles in unknown environments[END_REF]. Robot in green, static obstacles in blue and black, movable obstacles in yellow, goal in red, explored space in gray, traversed path in black lines.

(B) NAMO problem solved by the final version of Wu&Levihn's algorithm [START_REF] Levihn | Navigation Among Movable Obstacles in unknown environments[END_REF][START_REF] Levihn | Efficient Opening Detection[END_REF][START_REF] Levihn | Locally optimal navigation among movable obstacles in unknown environments[END_REF]. Static obstacles in gray, movable obstacles in color, robot in gray and blue, goal as red cross, traversed path in red with yellow sections for manipulations.

(C) Hard L 2 problem for Wu&Levihn's algorithm. Please note that the brown sofa blocks the robot from seeing the green couch until the brown sofa is released.

FIGURE II.12: Example NAMO problem resolutions by Wu&Levihn's algorithm [START_REF] Levihn | Locally optimal navigation among movable obstacles in unknown environments[END_REF].

II. 1.7 NAMO planning under action and sensing uncertainty

Even while using only onboard sensors, the previously mentioned algorithms of Kakiuchi et al.

and Wu&Levihn [6,[START_REF] Levihn | Locally optimal navigation among movable obstacles in unknown environments[END_REF] still operated under a deterministic world and action model. That is, like the rest of the NAMO planners before them, they assumed that sensor data was perfectly accurate, and that their planned actions would unfold exactly as expected. Only if an action were to actually fail to yield the expected world state during execution, would the world model be updated to forbid said action before re-planning would occur.

In 2013, Levihn, Scholz and Stilman proposed a framework to deal with uncertainty in NAMO problems at the planning level [8,[START_REF] Levihn | Autonomous environment manipulation to facilitate task completion[END_REF], in order to bias decisions at plan time to choose policies (i.e. plans) that are likely to succeed. They cast the NAMO problem as a two-level hierarchy of Markov Decision Processes (abb. MDP), with a High Level MDP and a Low Level MDP. The High-Level MDP is built upon the adjacency graph of Stilman's first planner's paper [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF] we previously presented, where nodes are free space components and edges are abstract actions that "create an opening to neighboring free-space" by manipulating an adjacent obstacle (Cf. This structure only explicitly models action uncertainty, as perception uncertainty is incorporated through the use of object categories (e.g. "table", "table with locked wheel casters", . . .), each associated with a probabilistic action model. That is, uncertainty is represented by both a probability distribution for an object to belong to a category, and by a probability distribution of 2D object displacements indexed by action and object category 16 . The task-level algorithm for solving the high-level MDP is a combination of the standard Dijkstra graph search algorithm to create the adjacency graph, with the stochastic MAX-Q Value Iteration Algorithm [53],while the motion-level algorithm for solving the low-level MDP is a Monte Carlo Tree Search (abb. MCTS) [START_REF] Kearns | A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes[END_REF], that either terminates when an opening is achieved, or the pre-determined maximum search depth is reached. The algorithm alternates between computation of the high-level policy and low-level policies, using the reward values of the high-level). Levihn's work [9] mainly consisted in characterizing these two concepts for the NAMO problem, resulting in a planning-time efficient "selective replanning" strategy that allowed the algorithm to solve many NAMO problems of varying complexity, both in simulated and real-world environments 17 . The planner does however not offer guarantees of completeness or optimality, but is theoretically not limited to any previously defined specific class of NAMO problem.

II. 1.8 Kinodynamic NAMO planning

Almost all the algorithms presented until now did not consider obstacle kinodynamics at plan time, and were solely built on geometrical world models. These models relied on the significant hypothesis that the robot's contact with the object would completely constrain its movement, so that, for instance, when the robot translated 10 cm forward, the obstacle would too -thus facilitating the study of the problem. All algorithms but one, actually: in his first L 1 planner [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF], Stilman assumed a world model where obstacles were endowed with mass, moment of inertia and friction parameters. These parameters allowed obstacles to slip rotationally around the grasping point, as the robot would apply translational accelerations in any directions to its center of mass, allowing for complex movements. However, the difficulty for a real robot to sense and reason about the actual kinodynamic parameters of obstacles during execution easily explains why Stilman, and most of the following literature, fell back to a simpler world model.

Kinodynamic considerations were re-introduced in the NAMO problem by Levihn and

Scholz in 2013 [START_REF] Levihn | Planning with movable obstacles in continuous environments with uncertain dynamics[END_REF][START_REF] Levihn | Autonomous environment manipulation to facilitate task completion[END_REF], by extending their previously presented decision theoretic algorithm [8] to continuous configuration (state) and action (control) spaces. They kept the two-level hierarchical MDP problem decomposition, and the same task-level resolution algorithm, but to build the adjacency graph, they had to approximate the free space components in continuous space using Probabilistic Road-Maps (abb. PRM) [START_REF] Kavraki | Probabilistic roadmaps for path planning in high-dimensional configuration spaces[END_REF] (illustrated as grey graphs in Fig. II.15), as the configuration space was no longer discrete 18 . Also, instead of using vanilla Monte Carlo Tree Search over discrete push actions, they used a Monte-Carlo simulation of Kino-Dynamic Rapidly Exploring Random Trees (abb. KDRRT) [START_REF] Lavalle | Randomized Kinodynamic Planning[END_REF]. Instead of probability distributions over discrete push actions, they used probability distributions over obstacle kinodynamic parameters, such as mass, friction coefficient, position and orientation. That is, once an obstacle is selected for evaluation by the task-level routine, the Monte Carlo method is used to sample sets of kinodynamic parameters for this obstacle, and for each, a KDRRT search is run in a physics simulation, until an opening is created 19 , or a maximum number of search nodes is reached. The planning-time physics-based simulation also allowed rewards to be more clearly expressed as functions of execution time and energy. The final novelty of this new algorithm is that the probability distributions over the obstacles' dynamics parameters (mass, friction coefficient, etc.) are updated as the plan is executed 20 . In the implementation they make of the algorithm, this "learning" step is however limited to updates of rotational parameters in case of rotation-only events, as illustrated in Finally, in [11,[START_REF] Scholz | Physics-based reinforcement learning for autonomous manipulation[END_REF], Scholz proposed a last iteration on the same decision theoretic algorithm [8,[START_REF] Levihn | Planning with movable obstacles in continuous environments with uncertain dynamics[END_REF], that eventually allowed the algorithm to be used on a real robot, in an environment with complex object dynamics 21 , as shown in Fig. II.16. To do so, this final version of the algorithm introduced two improvements. Firstly, a whole-body manipulation controller providing an abstraction of the robot's body into a low-dimensional action space (5 dimensions: 2 for the grasp point on the object, 2 for the desired object velocity, and 1 for the duration of the action). Secondly, they introduced a heuristic model-dependent manipulation policy, which constrained the set of achievable velocities and grasp points as a function of object dynamics.

This heuristic model-dependent policy was based on anisotropic friction, a velocity constraint that allows separate friction coefficients in the x and y directions and an angular term. This is what allowed the authors to convincingly model the dynamics of the objects considered in their experiments: large objects such as chairs and tables, with or without wheel casters that may or not be blocked individually. While the algorithm allowed adaptive behavior for previously unmanageable NAMO cases, they recon that it was frequently faced with a number of points of failure, mainly due to the randomness of many of the subroutines that the PRM, the RRTs, the Markov Chain Monte Carlo (abb.MCMC) [START_REF] Neal | MCMC Using Hamiltonian Dynamics[END_REF] used instead of the Monte Carlo KDRRT previously used in [START_REF] Levihn | Planning with movable obstacles in continuous environments with uncertain dynamics[END_REF].

II. 1.9 NAMO research since 2014

Mike Stilman disappeared in 2014, and with him, the GOLEMS research team he led at Georgia Tech 22 , that spearheaded research about the NAMO problem, among other subjects. After the thesis defenses in 2015 of both his PhD students, Martin Levihn [START_REF] Levihn | Autonomous environment manipulation to facilitate task completion[END_REF] and Jonathan Scholz [START_REF] Scholz | Physics-based reinforcement learning for autonomous manipulation[END_REF], while the NAMO problem has continued to draw research interest, new algorithms rarely demonstrated new or superior theoretical properties, as we will present shortly. In a way, one could say that since then, research has shifted away from studying the NAMO problem itself, to using it more as a showcase context for other research.

A relevant first instance of this observation is the 2014 paper of Mueggler et al. [START_REF] Mueggler | Aerial-guided navigation of a ground robot among movable obstacles[END_REF], a demonstration of a guide quadcopter drone and ground manipulator robot, that needed to move small obstacles on a children's carpet to get to a goal configuration. The drone first scans the work area to find a ground target and map obstacle positions, then computes and sends the NAMO plan as high-level direction commands to the ground manipulator robot 23 (Cf. Fig.II.17). While they did link their experiment with the NAMO problem, they however admitted to dodging most of its inherent difficulty by only using one type of movable obstacle that could trivially be picked and placed without affecting the robot's 2D footprint. Thus, instead of using one of the previously described NAMO algorithms, they made an ad-hoc forward planning task-level algorithm derived from the A * graph search algorithm, and used Dijkstra's algorithm as motion-level planning on a grid, with a custom path-smoothing procedure. Their algorithm is inherently limited to L k M NAMO problems, as it only plans one manipulation for each blocking obstacle at most. Also, although it seeks to minimize the execution time, the algorithm is not complete nor optimal for any of the previously defined NAMO problem classes, mainly because, contrary to Stilman's L k M problem-solving algorithm [START_REF] Stilman | Planning among movable obstacles with artificial constraints[END_REF], it does not consider interactions between obstacle manipulations. Multi-Robot NAMO system [START_REF] Mueggler | Aerial-guided navigation of a ground robot among movable obstacles[END_REF].

In 2016, Castaman et al. also proposed a new NAMO algorithm [START_REF] Castaman | A Sampling-Based Tree Planner for Robot Navigation Among Movable Obstacles[END_REF][START_REF] Cstaman | A Sampling-Based Tree Planner for Navigation Among Movable Obstacles[END_REF] that did not build on any of the previous literature. Their algorithm is comparable in its approach to Chen & Hwang algorithm's [1], in that it used a global path planner that combined ideas from both the A * the KPIECE [START_REF] Şucan | Kinodynamic Motion Planning by Interior-Exterior Cell Exploration[END_REF] algorithms to produce an overall navigation plan, which was then locally modified by a custom manipulation planning routine in the places it intersected with movable obstacles. Incidentally, although it makes the algorithm's computational complexity independent of the number of obstacles, but also severely limits its resolution capabilities (as for Chen & Hwang's algorithm); it also makes it impossible to prove completeness or optimality for any of the previously mentioned NAMO problem classes.

The same year, Moghaddam & Masehian published [START_REF] Moghaddam | Planning Robot Navigation among Movable Obstacles (NAMO) through a Recursive Approach[END_REF] a NAMO algorithm that built a similar backward-planning task-level structure to Stilman's L k M problem-solving algorithm [START_REF] Stilman | Planning among movable obstacles with artificial constraints[END_REF], extending it to non-monotonous and non-linear problems (abb. NL, N M). They provide a theoretical proof for completeness, under the hypotheses that (1) the robot only is allowed translation movements, (2) all obstacles are convex polygons and are priorly known, (3) the robot can grasp the obstacle at any point on their edges, (4) obstacles can only be manipulated by the robot, (5) there are no kinodynamic constraints on either the robot or obstacles. This completeness only applies however to L k M problems, and NL or N M problems that can be solved under the condition that "once an object is planned for, further planning for the same object is prohibited unless the robot displaces it to its pre-planned configuration". Beyond the above cited hypotheses, the fundamental algorithmic choice that allows the algorithm to maintain computational efficiency despite its larger problem resolution capabilities, is the fact that robot movement are computed on a visibility graph (abb. VG) that highly restrains the solution space. Since 2014, it is still the only new NAMO algorithm with novel theoretically demonstrated properties. However, these hypotheses and algorithmic choice make the algorithm hardly applicable or extensible to real-world NAMO problems, hence the authors only verified it in simulations.

In 2017 and 2018, Sun & Meng published a new sampling-based NAMO algorithm to showcase their real-time semantic mapping pipeline [START_REF] Sun | Semantic mapping and semantics-boosted navigation with path creation on a mobile robot[END_REF][START_REF] Meng | Active Path Clearing Navigation through Environment Reconfiguration in Presence of Movable Obstacles[END_REF]. Their algorithm drew some inspiration from Wu & Levihn's [START_REF] Levihn | Locally optimal navigation among movable obstacles in unknown environments[END_REF] and Stilman's L k M algorithm [START_REF] Stilman | Planning among movable obstacles with artificial constraints[END_REF], but did not refer to the previous sampling-based NAMO literature cited above. Their backward-search task-level planner's structure, and their use of bounded RRT* [START_REF] Karaman | Sampling-based algorithms for optimal motion planning[END_REF] calls in it restrict the algorithm's solving capabilities to L k M problems, and preclude probabilistic completeness for this problem class. But the whole point Sun & Meng's approach was to experiment in real-world scenarios, with realworld sensor data, assuming the robot only knows static obstacles beforehand. Their semantic mapping framework allowed them to detect object types (e.g. chair, table, etc.) and geometry, and choose the most appropriate manipulation strategy for each -including appropriate grasping points: pick&place 24 for likely lightweight ones, or planar holonomic push/pull on the floor for others. Finally, they proposed a new local opening detection algorithm as an alternative to using a motion planner call to verify the existence of a path, but do not evaluate its computational efficiency, nor compare it to Wu & Levihn's [START_REF] Levihn | Efficient Opening Detection[END_REF].

Finally, in 2020 -at the time of our publications25 [START_REF] Benoit | Towards S-NAMO: Sociallyaware Navigation Among Movable Obstacles[END_REF][START_REF] Renault | Modeling a Social Placement Cost to Extend Navigation Among Movable Obstacles (NAMO) Algorithms[END_REF], the latest NAMO algorithm we could find was Wang et al.'s [START_REF] Wang | Affordance-based mobile robot navigation among movable obstacles[END_REF], based on the theory of affordances 26 and contact-implicit motion planning. All in all, their task-level planning routine is very similar to Kakiuchi et al.'s [6] (although they do not refer to it), with the same limited resolution capability and lack of completeness or optimality guarantees, but differs in two main ways. The first difference is that, while Kakiuchi's method only allows planar pushing/pulling, Wang et al. also allow for pick&place and planar pushing (same as Castaman et al. [START_REF] Castaman | A Sampling-Based Tree Planner for Robot Navigation Among Movable Obstacles[END_REF][START_REF] Cstaman | A Sampling-Based Tree Planner for Navigation Among Movable Obstacles[END_REF] and Sun et al. [START_REF] Sun | Semantic mapping and semantics-boosted navigation with path creation on a mobile robot[END_REF][START_REF] Meng | Active Path Clearing Navigation through Environment Reconfiguration in Presence of Movable Obstacles[END_REF]). [START_REF] Onol | Contact-Implicit Trajectory Optimization Based on a Variable Smooth Contact Model and Successive Convexification[END_REF], simulating the interaction in the MuJoCo physics simulator [START_REF] Todorov | MuJoCo: A physics engine for model-based control[END_REF], and using the Successive ConVeXification (SCVX) algorithm [START_REF] Mao | Successive Convexification of Non-Convex Optimal Control Problems with State Constraints[END_REF]. In contrast to this complex manipulation computation, navigation paths are simply computed using the A * algorithm on a grid decomposition of the space (assuming the map of static objects is known beforehand). They validated their algorithm with two real-world experiments.

II. 1.10 Conclusion

We synthesized the most relevant characteristics of the studied NAMO algorithms 27 in table II.1:

1. The first column reminds all relevant references associated with each algorithm.

2. The second column summarizes the various forms of prior knowledge that each algorithm requires as either Full, Partial or None. Most approaches require full prior knowledge of the environment, for some others a partial prior suffices (such as an occupancy grid of static obstacles), while only two algorithms rely solely on the robot's sensors:

(Wu&Levihn, 2014) and [START_REF] Kakiuchi | Working with movable obstacles using on-line environment perception reconstruction using active sensing and color range sensor[END_REF].

3. The third column synthesizes the different ways the NAMO algorithm is informed of the obstacles' movability: it is either Given as prior knowledge, Recognized through semantic segmentation of RGB(-D) sensors' data, or obtained through Manipulation attempts.

Unsurprisingly, most algorithms requiring full prior knowledge rely on being given that information, and most others rely on object recognition rather than only manipulation tentatives (likely because it is safer to move obstacles that appear movable than to move anything and everything). 6. The sixth column provides information about the cost(s) being optimized by each algorithm -something that has not been discussed much until now in the detailed descriptions of the algorithms. Among them, we find various estimates of the usual Distance, Time and Energy, but also more complex composite costs made from several of the previous ones for (Levihn, 2013-3) [START_REF] Wang | Affordance-based mobile robot navigation among movable obstacles[END_REF]. Three algorithms - [START_REF] Stilman | s incremental binary occupancy grid model[END_REF], (Stilman, 2008) and [START_REF] Kakiuchi | Working with movable obstacles using on-line environment perception reconstruction using active sensing and color range sensor[END_REF]) -first minimize the Number of Moved Obstacles before considering the previously mentioned costs. In order to handle uncertainty, the planning algorithms of Levihn & Scholz's works -(Levihn, 2013-1 to 3) and [START_REF] Scholz | Navigation Among Movable Obstacles with learned dynamic constraints[END_REF]) also optimize the Probability of Success of their plans. The exception among all NAMO algorithms is (Van den Berg, 2009), that does not optimize any cost -resulting in very inefficient plans in terms of distance, time, energy or number of moved obstacles, as previously discussed.

7. The seventh column specifies whether a NAMO algorithm plans in Discrete or Continuous configuration space -or both, in the cases of [START_REF] Okada | Environment manipulation planner for humanoid robots using task graph that generates action sequence[END_REF] and [START_REF] Wang | Affordance-based mobile robot navigation among movable obstacles[END_REF].

8. The eight column reminds the wide variety of existing algorithms used as subroutines of the NAMO algorithms: when abbreviated, the corresponding full names can be found in the Abbreviations glossary at the beginning of this thesis, or in the algorithms' descriptions above. Unsurprisingly, Random Tree-based algorithms are the most common, as they deal best with high-dimensional search spaces such as the ones found in NAMO problems. 9. The ninth column synthesizes the various assumptions made about the robot's object manipulation abilities. Most algorithms assume a fully-constraining Grasp of objects preventing any form of slipping, while some others constrain the robot's motion to solely Pushing the objects: [START_REF] Kakiuchi | Working with movable obstacles using on-line environment perception reconstruction using active sensing and color range sensor[END_REF], (Wu&Levihn, 2014), [START_REF] Castaman | A Sampling-Based Tree Planner for Robot Navigation Among Movable Obstacles[END_REF], (Sun&Meng, 2018) and [START_REF] Wang | Affordance-based mobile robot navigation among movable obstacles[END_REF]. Finally, some algorithms assume more complex models with specific Motion Primitives computed through kinodynamic physics simulations, that may allow more freedom to the object's motion 28 : [START_REF] Stilman | s incremental binary occupancy grid model[END_REF], (Levihn, 2013-2), [START_REF] Scholz | Navigation Among Movable Obstacles with learned dynamic constraints[END_REF]. Most NAMO planners assume that the robot may only grasp an obstacle once during a plan, and only [START_REF] Chen | Practical path planning among movable obstacles[END_REF], [START_REF] Nieuwenhuisen | An Effective Framework for Path Planning Amidst Movable Obstacles[END_REF], (Van den Berg, 2009) and [START_REF] Moghaddam | Planning Robot Navigation among Movable Obstacles (NAMO) through a Recursive Approach[END_REF]) allow for regrasp. Finally, only [START_REF] Chen | Practical path planning among movable obstacles[END_REF]) allows the robot to use an obstacle to move other obstacles, while all other NAMO planners assume this forbidden, likely for safety reasons. 10. Finally, the tenth column shows that most NAMO algorithms have only been experimented in simulations, but not in the real-world -which we shall comment more upon in the next paragraphs.

Beyond this summary, the first most relevant observation of this in-depth survey of NAMO algorithms is the complete lack of reference implementations of all these algorithms, and severe lack of associated data for experimental environments, their initial parameters or raw statistics. The current literature only provides human-readable illustrations and a select few heterogeneous aggregated statistics. The first consequence of this state of things is that studying and re-implementing any of these algorithms is a very arduous task. This likely mostly explains why, despite the existence of algorithms with relevant theoretical properties in the literature -such as [START_REF] Stilman | s incremental binary occupancy grid model[END_REF], (Stilman, 2008), (Van den Berg, 2009), (Wu&Levihn, 2014) -, no author ever experimentally compares their approach with previous work, although they sometimes draw some inspiration from these pre-existing algorithms. Another consequence of this difficult reproducibility, is that there is little to no verification of the claims made in the papers by other authors, leading, as we've discussed sooner, to sometimes misleading interpretations in the following literature. We try to address this reproducibility problematic in Chapter III.

The second relevant observation of this survey, is the complete lack of social or multiagent considerations (be it other robots, humans, or anything else) before our study. These algorithms never consider the consequences of the robot's choices, beyond its interest to reach its goal while minimizing its displacement cost (be it execution distance, time, or energy). At best, only Stilman et al. [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF] & Kakiuchi et al. [6] suggested in a single sentence each the idea of Chapter II. State of the Art 29 taking object fragility into account, but have not applied it. This is why in the following Section II. 2 and Chapters IV and V, we explore the idea of a Social and Multi-Robot NAMO problem.

The third relevant observation, is that despite most algorithms presented here having the capability to move several obstacles in a same experiment, almost all real-world experiments of NAMO algorithms to this day only ever required the movement of one obstacle to connect free space components. Among those presented, the algorithms that study problems requiring complex obstacle manipulation ordering requirements to be solved -such as (Stilman, 2008) [START_REF] Nieuwenhuisen | An Effective Framework for Path Planning Amidst Movable Obstacles[END_REF], (Van den Berg, 2009) and (Moghaddam2016) -have only ever been experimented in simulation. This is true except for (Levihn, 2013-3)'s BHPN-based planner, where a single real-world experiment consisted in the manipulation of two obstacles to reach the next component. After almost two decades of study of the NAMO problem, this either means that robot sensing and manipulation capabilities are still insufficiently accurate to confidently solve bigger real-world NAMO problems, or maybe that real-world NAMO problems rarely exceed the complexity of the L 1 problem class. Maybe, the real challenge today is to better solve and integrate the solutions to all other upstream difficulties regarding world sensing and modeling, so that the algorithms may be used in real-world applications in human environments. While this thesis could also have addressed this third observation, we chose to focus our efforts on addressing the two other observations in the two previous paragraphs.

Finally, some other theoretical challenges are left open, such as creating:

• an actually resolution-complete algorithm for L k M problems from (Stilman, 2008),

• a probabilistically complete algorithm for the full NAMO domain that is not restricted to the axis-aligned world model of (Van den Berg, 2009),

• or a better planner with actual theoretical guarantees that allows the manipulation of more than one obstacle at a time like in [START_REF] Chen | Practical path planning among movable obstacles[END_REF]).

II. 2.1 Socially-aware robot navigation, task and motion planning

The official webpage of The International Journal of Social Robotics defines Social Robotics

as "the study of robots that are able to interact and communicate among themselves, with humans, and with the environment, within the social and cultural structure attached to its role" [31]. This same page provides a long list of topics of interest to the field of Social Robotics, starting from "Affective and cognitive sciences for socially interactive robots", and ending with "Socially-aware robot navigation, task and motion planning".

Given the list of NAMO-related problems above, it is naturally the particular topic of Sociallyaware robot navigation, task and motion planning that is most closely related to our own topic of interest of NAMO. Let us first start by discussing Socially-aware robot navigation, specifically.

II. 2.1.1 Socially-aware robot navigation

Socially-aware robot navigation, is synonymously called Human-aware navigation or Social Navigation in the multiple surveys addressing it [14,[START_REF] Rios-Martinez | From Proxemics Theory to Socially-Aware Navigation: A Survey[END_REF][START_REF] Charalampous | Recent trends in social aware robot navigation: A survey[END_REF][START_REF] Chik | A Review of Social-Aware Navigation Frameworks for Service Robot in Dynamic Human Environments[END_REF][START_REF] Cheng | Autonomous Navigation by Mobile Robots in Human Environments: A Survey[END_REF][START_REF] Möller | A survey on human-aware robot navigation[END_REF][START_REF] Mavrogiannis | Core Challenges of Social Robot Navigation: A Survey[END_REF]. To the best of our knowledge, none of the papers cited in these surveys ever considered having the robot operate in modifiable environments with movable obstacles, and planning obstacle manipulations to create a path or improve the cost of an existing path. Although we could not find any traces of the NAMO problem in existing Social Navigation literature, said literature remains very relevant to our subject of study. Hence, in this section, we shall cherry-pick useful notions and definitions from the first (and most cited) two surveys [14,[START_REF] Rios-Martinez | From Proxemics Theory to Socially-Aware Navigation: A Survey[END_REF], that will eventually serve us in Chapter IV.

Social navigation has been loosely defined in a first survey by Kruse et al. as "the intersection between research on human-robot interaction (HRI) and robot motion planning" [14].

From this definition, the survey identified the three following three main challenges of social navigation:

• comfort: "the absence of annoyance and stress for humans in interaction with robots";

• naturalness: "the similarity between robots and humans in low level behavior patterns";

• sociability: "the adherence to explicit high-level cultural conventions".

Of course, the fundamental safety requirement of "classic" navigation (guarantee of no collision) remains. The three main challenges listed above can actually be understood as perceived safety: beyond guaranteeing the impossibility of harm to humans, social navigation introduces the idea that the robot must not feel threatening, hence the three aforementioned challenges.

In a second survey [START_REF] Rios-Martinez | From Proxemics Theory to Socially-Aware Navigation: A Survey[END_REF], Rios-Martinez et al. made the observation that "concerning the field of robot navigation, proxemics is the most investigated tool to improve the robot's sociality". to human-object interaction and (4) to human-robot interaction. Let us first present these four categories, so that we may discuss whether they raise questions specific to a Social Navigation Among Movable Obstacles context.

The term of

According to Rios Martinez et al., within the first category (1), personal spaces, is "the most popular proxemics model used in robotics", which they define as "the region around humans that they actively maintain into which others cannot intrude without causing discomfort" [START_REF] Rios-Martinez | From Proxemics Theory to Socially-Aware Navigation: A Survey[END_REF].

As illustrated in Fig. II.19a and II.19b, there are many formulations of these spaces, varying in shape, size, that may eventually change depending on a variety of parameters such as context, speed (either of the human or of other surrounding agents), nature of other agents, etc.

These spaces are human-centered, and are generally mainly derived from human position and orientation and social cues such as gaze direction and body posture.

(A) Real-world example of people respecting each other's personal space (blue discs) (B) A non-exhaustive illustration of different personal spaces definitions in the literature. From left to right, concentric circles, egg shape (bigger in the front), ellipse shape, smaller shape on the dominant side.

(C) Real-world situation of the Information Process Space (D) Real-world example of social spaces created by a group: the interaction area (O-space, white disc), and area of human placement(P-space, red ring) (E) Real-world example of an activity space. A human taking a picture creates a zone that should not be penetrated: the field of view between the camera and the object.

(F) Real-world example of an affordance space. The bus schedule offers a reading affordance to humans, creating a reading affordance space in front of it.

FIGURE II.19: Illustrations from Rios-Martinez et al.'s survey [START_REF] Rios-Martinez | From Proxemics Theory to Socially-Aware Navigation: A Survey[END_REF], depicting a variety of social space types and their variations.

The first social space category (1) also includes the notion of Information Process Spaces (abb. IPS), defined as "the space within which all objects are considered as potential obstacles when a pedestrian is planning future trajectories", illustrated in Fig. II.19c. Unless a robot wishes to engage interaction with a walking human, like for Personal space, it should avoid penetrating this zone so as not to affect the human's trajectory.

The second category of Social spaces for groups of interacting people (2) requires to first distinguish two types of interaction: focused and unfocused. Rios-Martinez et al. define Focused interaction as the situation "when individuals agree to sustain a single focus of cognitive and visual attention", while Unfocused interaction can be understood as the opposite situation of "an individual [simply] being in another's presence". A human, or a robot avoiding the previously presented Personal Space or Information Process Space of other humans while navigating is a perfect example of unfocused interaction, for instance. Focused interaction between humans, such as conversations, creates new social spaces, that grow beyond the addition of individual Personal Space, as illustrated in Fig. II.19d. Again, unless a robot wishes to engage in the focused interaction, it should avoid penetrating these zones so as not to bother implicated humans.

The third category of Social spaces for human-object interaction (3) is divided by Rios-Martinez et al. into two -in fact tightly related -categories: Activity and Affordance Spaces.

An Activity Space is defined as a space "linked to actions performed by agents" (illustrated in), following the previously mentioned Theory of Affordances of J.J. Gibson [START_REF] Gibson | The Ecological Approach to Visual Perception[END_REF]. In their words, an Affordance Space can be considered a potential Activity Space. Like Personal Spaces, Affordance and Activity Space can be defined with a variety of shapes, sizes depending mainly on the action(s) they are related to, but also the objects they are derived from, their type, geometry, possible states (e.g. on/off for a light switch).

While navigating through an Activity Space is to be avoided unless the robot needs to trigger a focused interaction with the human(s), an affordance space can generally be crossed without causing any disturbance -blocking it indefinitely would however not be socially accepted.

Finally, the last and fourth category of Social Spaces for human-robot interaction (4) can be synthesized with the observation that "it seems that the behavior of people sharing spaces with robots is not so different from the way they behave with other people" [START_REF] Rios-Martinez | From Proxemics Theory to Socially-Aware Navigation: A Survey[END_REF]. As humans expect social robots to behave like humans, one could consider that the social spaces presented until now also apply for robots.

Social Spaces are often represented using cost functions, that associate a value to all combinations of robot actions and action contexts, as shown in Kruse et al.'s survey [14]. Rather than strictly forbidding robot navigation in any part of the Social Spaces, using a cost function allows social navigation algorithms to ponder the movement cost of the robot against a cost of entering the Social Spaces. As a general rule, the more the robot's path penetrates into any social space, the higher the cost: this can be seen [START_REF] Lu | Social navigation layers -ROS Wiki[END_REF]. Layers can be combined through addition (bound with a maximum value). Now, how would these Social Spaces designed for "classic" navigation, apply to a hypothetical Social Navigation Among Movable Obstacles ? NAMO is still first and foremost a navigation problem, which main focus is going from a start to a goal configuration. As such, like for "classic" navigation, a social NAMO planner should seek to avoid computing robot motion paths that cross the various social spaces mentioned above, as to not disturb humans, unless some focused interaction with a human being is required.

As explained in the previous section, where NAMO actually differs from "classic" navigation is in the fact that it may displace obstacles in the environment: obstacles that will then occupy a new space indefinitely. If a robot momentarily passing through any of the previously mentioned social spaces is already considered to be a disturbance in an unfocused interaction context, an obstacle being indefinitely placed in the same social spaces is bound to be considered an even greater disturbance. Imagine talking to someone or watching the television, and a robot suddenly left some cardboard box or chair in between: surely, you would feel far more bothered than if it quickly passed and left. Similarly, in the same way robots are expected to go to specific zones in social spaces when engaging in focused interaction, one could expect that moved objects may need to be placed in specific spaces.

Personal Spaces, Information Process Spaces and Activity Spaces are all human-centered social spaces. That is, not only do they require the actual presence of human beings in the environment to exist, they are inherently spatially tied to the humans' position in space. As such, when humans move, these spaces will move along with them, and may eventually disappear when their associated activity is over. Affordance spaces do however not disappear, as long as the objects that generate them remain in the environment. Any time these spaces would be used by a human (thus temporarily becoming activity spaces), the disturbance caused by an obstacle left in an inappropriate affordance space by the robot would add on, over and over again -until it became so uncomfortable the human would bother to move the obstacle elsewhere.

According to all the surveys on social navigation we have cited here, experimenting and evaluating human-centered models is hard. For real-world experiments, finding human participants and setting up the lab and robot for meaningful experiments is extremely time-consuming and requires minute consideration of biases such as participants fatigue or adaptation to the experiment. For simulated experiments, the difficulty lies in properly simulating relevant human behaviors, which is already not a trivial endeavor when assuming "classic" navigation tasks only, even with existing tools such as PedSim [START_REF] Okal | Pedestrian Simulator[END_REF]: simulating a convincing social NAMO experiment with humans would require to simulate their capability to interact with obstacles too.

These two observations, with the conclusion in the previous section that the core difference between NAMO and adjacent problems lies in the choice of obstacles to move and their placement choice, motivate our study of a Social NAMO through the lens of affordance spaces in Chapter IV. We believe that the first -and most relevant -consideration towards a socially-aware NAMO is to ensure that even in the absence of humans at the time of NAMO plan execution, the robot should carefully select obstacle placements so as not to disturb humans when they will inevitably enter the space.

II. 2.1.2 Socially-aware robot task and motion planning

In contrast with the abundant Social Navigation literature, we could only find a few papers describing Social/Human-aware variations of the other problems related to NAMO (Manipulation Planning, Rearrangement Planning, Assembly Planning, and combined Task and Motion Planning). All of these papers only addressed situations of direct/focused human-robot interaction, making it all the more relevant to explore the unfocused interaction that is caused by the disturbance created by obstacle manipulations in NAMO.

More precisely, a lot of the socially-aware Manipulation Planning literature focuses on the specific task of computing and proper hand-over motion sequences [START_REF] Sisbot | Spatial reasoning for human robot interaction[END_REF][START_REF] Koay | Exploratory Study of a Robot Approaching a Person in the Context of Handing Over an Object[END_REF][START_REF] Sisbot | Synthesizing Robot Motions Adapted to Human Presence[END_REF][START_REF] Mainprice | Planning Safe and Legible Hand-over Motions for Human-Robot Interaction[END_REF][START_REF] Mainprice | Planning human-aware motions using a sampling-based costmap planner[END_REF][START_REF] Sisbot | A Human-Aware Manipulation Planner[END_REF][START_REF] Mainprice | Sharing effort in planning humanrobot handover tasks[END_REF][START_REF] Gharbi | Natural interaction for object hand-over[END_REF][START_REF] Waldhart | Planning handovers involving humans and robots in constrained environment[END_REF] -that is, the task where the robot must give a human a small object currently in its grasp (Cf. Fig. II.22a). The presented situations and solutions do not quite fit a NAMO setting, as NAMO is mainly concerned with obstacles that block the robot's way, and generally of sizes comparable to that of the robot, requiring the robot to carefully compute not only it's body's path, but the obstacle's too. Still, the model of the human interaction space may be useful to address the concern of collaborative manipulation of obstacles in a NAMO problem. The rest of the research focuses on collaborative manipulation in close proximity / a shared workspace (e.g. moving individual objects on a table without colliding/interfering with each other's action, Cf. Fig.II.22b), mainly through prediction of the human's actions [START_REF] Mainprice | Human-Robot Collaborative Manipulation Planning Using Early Prediction of Human Motion[END_REF][START_REF] Lasota | Analyzing the Effects of Human-Aware Motion Planning on Close-Proximity Human-Robot Collaboration[END_REF]. This last focus is shared with the socially-aware Assembly Planning literature [START_REF] Pellegrinelli | A probabilistic approach to workspace sharing for human-robot cooperation in assembly tasks[END_REF][START_REF] Pellegrinelli | Motion planning and scheduling for human and industrial-robot collaboration[END_REF][START_REF] Unhelkar | Human-Aware Robotic Assistant for Collaborative Assembly: Integrating Human Motion Prediction With Planning in Time[END_REF], and the socially-aware Combined Task/Motion Planning literature [START_REF] Alami | On human-aware task and motion planning abilities for a teammate robot[END_REF][START_REF] Faroni | A Layered Control Approach to Human-Aware Task and Motion Planning for Human-Robot Collaboration[END_REF]. Again the presented situations and algorithms do not fit a NAMO setting either as the workspace is fairly small, in contrast with the much larger environments considered in the NAMO literature. None of these works address the choice of obstacles to move and subsequent placement choice necessary in a NAMO problem.

(A) Example handover task from [START_REF] Sisbot | A Human-Aware Manipulation Planner[END_REF].

(B) Example collaborative assembly planning task from [START_REF] Pellegrinelli | A probabilistic approach to workspace sharing for human-robot cooperation in assembly tasks[END_REF].

II. 2.2 Multi-Robot coordination

In the same way that we needed to define, in the previous Section II. 2.1, specific vocabulary and terms related to Social Robotics and Socially-aware robot navigation, task and motion planning, we will need to summarize relevant vocabulary for Multi-Robot coordination.

Hence, Section II. 2.2.1 will introduce these necessary terms, which will help us discuss existing Multi-Robot works that somewhat resemble NAMO, and conclude as to how we will formulate the Multi-Robot NAMO problem studied in this thesis in Section II. 2.2.2. The reader already accustomed to the vocabulary may thus want to skip through the first section.

II. 2.2.1 Definitions

Let us start by clarifying an essential term that will be used throughout this section and thesis: we call a Multi-Robot System (abb. MRS), a group of several robots acting in a common environment, also called workspace. In their recent 2021 survey [START_REF] Verma | Multi-Robot Coordination Analysis, Taxonomy, Challenges and Future Scope[END_REF], Verma & Ranga (which we will refer to as "they" in this section) propose an up-to-date classification of such systems, derived from previous surveys in the literature and most recently published works, in order to situate existing MRS on a continuum between opposite terms. These terms are summarized in Fig.II.23, and clarified below (unless stated otherwise, quoted text comes from [START_REF] Verma | Multi-Robot Coordination Analysis, Taxonomy, Challenges and Future Scope[END_REF]). Before continuing further, we shall emphasize on the notion of continuum: a Multi-Robot System rarely only fits a single one of the opposing terms we are about to present. More often than not, according to the survey, actual systems in the literature are in an in-between, that may fit with one term in some aspects, while some other aspects may be qualified as the opposite. Still, many systems fit more with one term than with its opposite, and may be categorized as suchwhile still bearing in mind that all is not black or white. Coordinated/Non-Coordinated MRS: Multi-Robot Systems are generally Coordinated in that they aware of each other -through sensing, active communication, or by operating with a shared set of pre-determined rules [START_REF] Farinelli | Multirobot systems: a classification focused on coordination[END_REF]. This property is essential if the robots share common resources, such as space for navigation, in order to prevent conflicts: concurrent access to a same resource (e.g. in navigation: a collision, in NAMO: trying to manipulate a same obstacle).

Conversely, Non-Coordinated MRS are not aware of each other.

Homogeneous/Heterogeneous MRS: Verma & Ranga state that most MRS in the literature are Homogeneous: with the same hardware and software. However, they underline that interest in studying Heterogeneous MRS, with varying degrees of dissimilarity in either software, hardware, or both, is growing, as robotics grow more popular and an ever-increasing variety or robotics systems are released. Heterogeneity brings more versatility (increasing the diversity of executable tasks), but at the cost of higher coordination complexity and difficulty compared to homogeneous systems.

Cooperative/Competitive MRS: MRS exhibit collective behavior similar to that of human society, that can either be Competitive or Cooperative [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF]. Verma & Ranga define Cooperative behavior as "interaction among robots to execute a task along with increasing the system's overall utility", and inversely, Competitive behavior as "the case in which multiple robots compete among themselves in order to satisfy their own interest".

Communicating (Explicit/Implicit)/Non-Communicating MRS:

A Cooperative behavior implies Communication, that is, any way robots can exchange or sense some information about each other. In a Non-Communicating MRS, "there is no information available about another robot to any other one", making coordination only possible through a shared set of pre-determined rules (e.g. follow a line on the ground, always turn right, etc.). In Communicating MRS, the way information can be shared is either classified as Explicit (syn. Direct), that is, using "additional communication hardware, a dedicated device for signals that can be understood by other team members", or Implicit (syn. Indirect), that is when "robots obtain information about other member robots through the environment". This notion is comparable to how Social Robotics differentiate between Focused and Unfocused interaction, as discussed in Section II. 2.1.1.

Reactive/Deliberative MRS: Finally, MRS can be classified according to the way they deal with changes in the environment as they execute their tasks [START_REF] Iocchi | Reactivity and Deliberation: A Survey on Multi-Robot Systems[END_REF], similarly to the domain of navigation in unknown environments mentioned in Section II. 1.6. An MRS is called Deliberative "if robots can cope up with any change in the environment by some approach to restructure the overall team behaviors" -that is, reconsidering the global plan for all robots through explicit communication. Conversely, an MRS is called Reactive if "every single robot copes with the changes in the environment by giving a robust solution to re-organize its own task with the purpose of completing its initially given goal" -that is, locally adapting the individual robot's plan to deal with the change.

Preliminary conclusion: Unless robots were explicitly bound to strictly separate spaces, a Multi-Robot NAMO problem inherently needs to be coordinated to some degree as to preserve the fundamental NAMO guarantee of a lack of collisions. According to Verma & Ranga's survey, Coordination has been defined in multiple ways in the literature, sometimes as a synonym of Cooperation, and sometimes not. We shall retain the following definitions in this thesis: Coordination is "the mechanism used for cooperation" [START_REF] Verma | Multi-Robot Coordination Analysis, Taxonomy, Challenges and Future Scope[END_REF], and Cooperation is the action by which agents take into account the other agents' actions so that "there is an increase in the total utility Static/Dynamic Coordination: As mentioned previously, robots can be coordinated simply using pre-determined rules or conventions that will ensure no conflicts may occur during navigation (e.g. follow a line on the ground, respect automated signal lights, etc.): this type of coordination is referred to as static [START_REF] Yan | A Survey and Analysis of Multi-Robot Coordination[END_REF]. All other coordination strategies are classified as dynamic, as they are adapted on the fly during execution, depending on the system's state and the perception the robot has of it.

Weak/Strong Coordination: Coordination can also be broadly described as Strong (syn. Tight), "a method of coordination that is based on a coordination protocol" [START_REF] Iocchi | Reactivity and Deliberation: A Survey on Multi-Robot Systems[END_REF]. The more information and discussion/negotiation are needed to achieve the coordination strategy, the stronger the coordination. That is why Static coordination is conversely always qualified as Weak (syn. Loose), while Dynamic coordination strategies that require the robots to share more than their current state or goal, that is, up to their entire plan and/or decision process, are qualified as strong.

Implicit/Explicit Coordination: Coordination can also be classified in the same way as MRS on the basis of their means of communication. Implicit coordination uses perceptions of environmental changes, including observations of other robots (i.e. implicit communication), to create emergent behaviors that allow to avoid conflicts. Explicit coordination uses intentional communication (i.e. explicit communication) to achieve cooperation through a more or less democratic consensus. Implicit coordination is more robust to communication systems failure or unavailability, and scales better with growing number of robots in terms of computational requirements, but cannot guarantee optimality alone, and may fail in solving tightly constrained problems (e.g. many robots in comparatively little space) [START_REF] Verma | Multi-Robot Coordination Analysis, Taxonomy, Challenges and Future Scope[END_REF].

Centralized/Decentralized/Hybrid Coordination: The burden of coordination can be completely left to a single robot (the leader) which is referred to as Centralized, or shared among the robots, in a word, Decentralized. Some coordination processes can have both centralized and decentralized components, in which case they are referred to as Hybrid. Centralized coordination approaches can be either classified as Strongly Centralized, as they use a single pre-defined leader for the entire mission, or Weakly Centralized, where the leader may change during the mission based on some criteria (e.g. communication signal strength, available computational capability, etc.). Decentralized coordination approaches can be either classified as

Distributed, when all robots equally share the burden of coordination, or Hierarchical, that is, with local leaders, for example each commanding a team of robots. Any of these coordination behaviors can be achieved regardless of communication being implicit or explicit, but not necessarily in all coordination contexts, which is why they appear twice in Fig. II.24 to convey this idea. Weak coordination is more robust to communication failure/unavailability than strong coordination, as it does not rely on an unchanging single leader, although it is more computationally demanding and complex to implement [START_REF] Verma | Multi-Robot Coordination Analysis, Taxonomy, Challenges and Future Scope[END_REF].

II. 2.2.2 Multi-Robot works with movable obstacles

As previously presented in Section II. 1.9, Multi-Robot NAMO has not been studied yet, beyond the heterogeneous drone and manipulator robot system of Mueggler et al. [START_REF] Mueggler | Aerial-guided navigation of a ground robot among movable obstacles[END_REF]. While being a relevant use case, their system dodges the difficulty of a shared space, and the associated explicit and strongly centralized algorithm can not scale beyond the two robots, as it was never meant to deal with conflicts. Hence, in this section, similarly to Section II. 2.1, we shall present works that somewhat resemble NAMO, in multi-robot variations of the robotics problems closely related to NAMO (as a reminder: Navigation Planning, Manipulation Planning, Rearrangement Planning, Assembly Planning, and combined Task and Motion Planning).

Navigation Planning: Interestingly, multi-robot considerations, similarly to social ones, have been most studied for the Navigation Planning problem [START_REF] Verma | Multi-Robot Coordination Analysis, Taxonomy, Challenges and Future Scope[END_REF]. Most of the work on Multi Robot Navigation Planning can be found under the name of Multi-Agent Path Finding (abb. MAPF), extending the Piano Mover's problem of computing paths for each agent (i.e. robot) to their respective destinations, that can be concurrently executed while guaranteeing the absence of a collision [START_REF] Stern | Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks[END_REF][START_REF] Koenig | mapf.info[END_REF]. MAPF surveys [106][105] show that until 2019, the MAPF literature has been focused on static grid environments where the agents are generally cell-sized, but also most importantly, the only entities allowed to move: in MAPF, agents can not move obstacles.

The same surveys cite Conflict-Based Search (abb. CBS) [START_REF] Sharon | Conflict-based search for optimal multi-agent pathfinding[END_REF] as the now most popular algorithm to solve MAPF. It is only very recently, in a time period (2020-2022) coincidentally overlapping with that of the present thesis, that the MAPF literature started considering the possibility of movable obstacles, proposing extensions of CBS to this context [17,[START_REF] Vainshtain | Multi-agent terraforming: Efficient multi-agent path finding via environment manipulation[END_REF]. Bellusci et al.

[17] introduced Configurable MAPF (abb. C-MAPF), which consists in computing both an environment configuration that helps improve robot circulation and a solution to a MAPF problem in said environment configuration. The problem formulation does authorize robots to move the obstacles themselves as they execute their motion, but rather assumes that humans will arrange the environment following the solver's solution prior to having the robots navigate, so that they may circulate more efficiently (Cf. All other works we could find with multiple robots navigating in a shared plane to rearrange objects ([START_REF] Inoue | Rearrangement of multiple objects by a robot group having a multi-task function[END_REF][START_REF] Oyama | Rearrangement task of multiple robots using task assignment applicable to different environments[END_REF][START_REF]Task apportionment in a rearrangement problem of multiple mobile robots[END_REF]) were prior to Interestingly, the survey underlines the lack of real-world experimentations and validation, similar to our own conclusion about the NAMO domain (Section II. 1.10), and in contrast to existing conclusions on the Socially-aware robot navigation, task and motion planning domain [14,[START_REF] Rios-Martinez | From Proxemics Theory to Socially-Aware Navigation: A Survey[END_REF] Chapter III

Revising and simulating reference NAMO algorithms

From the previous state of the art, we have identified two relevant baseline algorithms upon which we will build social and multi-robot extensions to NAMO in the following chapters:

(Wu&Levihn, 2014) [START_REF] Levihn | Locally optimal navigation among movable obstacles in unknown environments[END_REF] and [START_REF] Stilman | s incremental binary occupancy grid model[END_REF]'s [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF] algorithms. In this chapter, we argue these choices and present an upgraded version of these algorithms. Indeed, we found limitations (e.g. action space restrictions, edge cases and sensing requirements) that we consequently addressed, while preserving the original theoretical properties, under a more coherent and generic formalization. All these improvements facilitate experimentation in the following chap-

III. 1 Our NAMO Problem Formalization

Before discussing our two chosen algorithms, let us first lay down some notations and vocabulary from both (Wu&Levihn, 2014) [START_REF] Levihn | Locally optimal navigation among movable obstacles in unknown environments[END_REF] and [START_REF] Stilman | s incremental binary occupancy grid model[END_REF]'s [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF] algorithms, as to create a common and coherent problem formulation for both. For this, we fuse the formalisms of Stilman's PhD thesis for Navigation Among Movable Obstacles [19], and of Levihn's Master thesis for Navigation Among Movable Obstacles in Unknown Environments [START_REF] Levihn | Navigation Among Movable Obstacles in unknown environments[END_REF].

III. 1.1 Workspace

The NAMO problem has been originally formulated by Stilman [19] as an instance of geometric motion planning [START_REF] Latombe | Robot Motion Planning[END_REF]. As such, the problem can be defined in a workspace W (syn. world, or environment), that is modeled as a 2D or 3D Euclidean space, containing a set of distinct entities

E =< E 1 , . . . ,
= F ∪ M).
While the robot may be articulated (as in Stilman's original definition and some of the implementations presented in our NAMO State of the Art in Section II. 1), and thus composed of several links (syn. rigid geometries), obstacles are represented using a single rigid geometry.

In the literature, such geometries are defined as polyhedrons (3D) or polygons (2D), but this is more a matter of implementation than definition. For the sake of simplicity, and without loss of generality, we assume that each entity E i ∈ E is a non-self-intersecting polygon in the rest of this thesis, as illustrated in Fig.

III.1.
The space occupied by an entity at a time t is written E t i ; more concretely, assuming any entity is an undeformable polygon, E t i designates its vertices' coordinates at time t, and the volume (i.e. the set of points) they encompass. Since the entities are assumed to be rigid bodies, an entity's state (syn. configuration) q t E i at time t can be reduced to its position and orientation; more concretely, for rigid polygons,

q t E i = (x t E i ∈ R, y t E i ∈ R, θ t E i ∈ [0, 2π]
). The NAMO problem consists in having the robot reach a final configuration (syn. goal configuration) q g R . This final configuration only constrains what the last robot state must be in terms of chronological order, but does not specify a specific time for it to be reached.

A world state (syn. world configuration) at time t may thus be defined as the set of entity configurations W t =< q t E 1 , ..., q t E e >. Actually, since only the robot and movable obstacles may have different configurations depending on time, we can further reduce a world state to W t =< q t R , q t M 1 , ..., q t M m >. The initial world state can be referred to as W t 0 . Similarly, we may refer to the state of all obstacles at time t as O t , all movables obstacles as M t , and all static obstacles as F t . We write W t /E i the state of the world without considering entity E i (this is particularly relevant to represent that intersections should be ignored with the obstacle M i selected for manipulation during some planning computations). Similarly, we write W t ∪E i the state of the world considering an extra entity E i .

We write as C W the abstract space of all possible configurations/states (also referred to as configuration space) of W t . The dimension of this abstract space is equal to the number of variables in W t , multiplied by the number of admissible values they may have; concretely, assuming rigid polygons with 3 degrees of freedom, assuming n admissible values sampled for each variable, that is n 3×(m+1) (the number of states grows exponentially with the number of obstacles). In Stilman's original NAMO problem formulation [19], it was assumed that not only geometric, but also kinematic and dynamic parameters of every entity were part of the world model, such as object mass, center of mass, moment of inertia, or friction parameters -as these parameters were directly available to the robot through their simulation tool. While this allows more physically realistic estimation of obstacle movement and energy consumption, it arguably greatly complexifies the model, making it that much harder to implement, write test scenarios and overall reliably experiment with. Also, in the real world, accessing such parameters for obstacles is non-trivial, even for human beings -hence we shall assume a purely geometric world model in this thesis, a choice shared by Wu&Levihn's model.

III. 1.2 Actions and Action spaces III. 1.2.1 Actions

Any state "changes", that is, transitions between world states, are expressed as actions (syn. operators) between time steps t and t + 1, written as A(t, t + 1) or A t for short. Actions describe continuous motion between these time steps: an action can thus be interpreted as following a path or trajectory τ(q t R , q t+1 R) 1 . Following this path implies covering a swept volume (eq. swept area in 2D) S(q t R , q t+1 R) =

t a ∈[t,t+1]
R t a , corresponding to all point in space that are occupied by the robot within t and t + 1. S(A t) can be used as an abstract notation of the swept volume for any action A t . NAMO distinguishes between two primitive (voluntarily abstract) operators/actions:

• Navigate, which refers to the contact-free transit paths of defined by Alami et al. [START_REF] Alami | A geometrical approach to planning manipulation tasks. The case of discrete placements and grasps[END_REF] we mentioned in Section II. 1.3. More precisely, the robot may be in sliding contact with obstacles, but its motion must not displace any obstacles:

Navigate : (W t , τ(q t R , q t+1 R)) → W t+1 , s.t. S(q t R , q t+1 R) ∩ O t = ∅
• Manipulate, which refers to the manipulation of an object O i , or its transfer [START_REF] Alami | A geometrical approach to planning manipulation tasks. The case of discrete placements and grasps[END_REF], again without collision of neither robot nor manipulated obstacle with other obstacles. Naturally, in addition to the robot's path τ(q t R , q t+1 R), the Manipulate operator also implies a path τ(q t M i , q t+1 M i), covering a swept volume S(q t M i , q t+1 M i) =

t a ∈[t,t+1]
M t a i . The operator is however not directly parameterized by the manipulated obstacle's path: instead it is parameterized by the initial contact (syn. grasp) G j ∈ G(M i), G(M i) being the set of relative transformation functions, mapping and constraining the obstacle's motion to the robot's, where grasping the obstacle is possible through contact. Distinct initial contacts or grasps G j yield distinct obstacle motion given the same robot trajectory τ(q t R , q t+1 R): The swept volume of the entire plan can be defined as the union of the swept volumes of its individual actions:

Manipulate : (W t , O i , G j , τ(q t R , q t+1 R)) → W t+1 , s.t. S(q t R , q t+1 R) ∩ O t = ∅ and S(q t M i , q t+1 M i) ∩ O t /M i = ∅
S(P) = t∈[t s ,t e]

S(A t)

A plan can only be valid as long as its swept volume S(P) does not intersect with other obstacles than the ones being manipulated. The set of all valid plans is written P(t). In this set, the subset of plans consisting purely of Navigate actions is noted P Nav (t).

III. 1.2.3 Manipulation Action Spaces

Stilman distinguished three main abstract action spaces, also called manipulation classes, for the Manipulate operator, derived from the robot grasping literature. Let us provide a summary of said manipulation classes, with a summary of their respective advantages and disadvantages, in order of increasing generality and decreasing reliability:

• Grasping (Constrained Contact): This refers to a rigid grasp of the object by the robot, fully constraining its degrees of freedom, creating a fixed transform relative to the robot's grasping link. This manipulation class has minimal modeling and computational requirements, and only requires an accurate geometric model to ensure reliable manipulation execution. However, this class lacks generalizability, as it typically requires the contact between the robot and the object to satisfy "form closure", in other words, that any robot's motion should not cause involuntary object release [START_REF] Mason | Mechanics of Robotic Manipulation[END_REF]. Depending on robot capabilities, some objects such as large boxes without handles may to be too difficult or impossible to grasp.

• Pushing (Constrained Motion): This refers to non-prehensile [START_REF] Mason | Mechanics of Robotic Manipulation[END_REF] manipulation, which can only partially constrain the object's degrees of freedom. By restricting the robot's motion instead of the obstacle's, it is possible to guarantee a fixed transform relative to the robot's pushing link and the obstacle, thanks to the static friction that prevents the objects from unexpectedly slipping [START_REF] Lynch | Stable Pushing: Mechanics, Controllability, and Planning[END_REF][START_REF] Erdmann | An Exploration of Nonprehensile Two-Palm Manipulation[END_REF]. While more general than grasping in terms of number of manipulable obstacles, it either requires extra modeling or additional hypotheses as to friction properties. Any deviation from the friction model may cause unreliable plan execution because of obstacle slip.

• Manipulation Primitives: Refers to the use of forward physics simulation to predict the transformation between robot and object motion, for both grasping/pushing and other modes of interaction that allow translational or rotational slip [START_REF] Morris | Robotic assembly by constraints[END_REF][START_REF] Morrow | Manipulation task primitives for composing robot skills[END_REF], with various degrees of constraint in both grasp and motion. This allows for non-fixed transforms relative to the robot, yielding motion solutions that the other two manipulation classes can not. This generality comes at the cost of even more modeling of dynamic properties of the obstacle (e.g. mass, center of mass, moment of inertia, . . .), which leaves even more space for unreliable plan execution caused by any errors in estimating these parameters.

In conclusion, the more constraint in contact or motion, the fewer parameters need to be modeled, and the more reliable the plan execution is, at the cost of generality. As stated earlier, the choice of a manipulation class, or combination thereof, depends on actual robot's capabilities and the actual environment being modeled. For instance, Stilman used Manipulation Primitives in their algorithm's implementation [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF], while Wu & Levihn first used Pushing then Grasping in their algorithm's implementations [START_REF] Wu | Navigation Among Movable Obstacles in unknown environments[END_REF][START_REF] Levihn | Locally optimal navigation among movable obstacles in unknown environments[END_REF]. We shall discuss our specific choice of implementation later in Section III. 3.2.

III. 1.3 Sensing

In Stilman's original NAMO problem formulation [19], it was assumed that the geometric, kinematic and dynamic parameters of every entity were known to the robot, without uncertainty in sensing or as to the effect of robot actions on these parameters, at any time. Basically, the robot was assumed to be omniscient, meaning there was no difference to be made between the robot's world model, and the actual world (real or simulated) -a very strong, though convenient assumption.

Wu&Levihn's problem formulation extended NAMO to Unknown Environments, and by doing so, created a need to differentiate between the actual world (syn. reference world) where actions are executed, which we shall refer to as W re f , and the world as perceived by the robot W R . In their formulation, it is assumed that the robot senses its environment in between each action execution, collecting partial information as to obstacles' geometry only, resulting in three possible types of incoherence between W re f and W R at any time t:

Chapter III. Revising and simulating reference NAMO algorithms

52

• The sets of static or movable obstacles F, M ⊂ W R are erroneous: the robot may have misclassified an obstacle as movable or static, by assuming its movability before interaction.

• The sets of obstacles O, F, M ⊂ W R are incomplete: in other words, the robot may have not detected all obstacles yet,

• The geometry model of an obstacle O t i ⊂ W R is incomplete: the obstacle may not have been fully observed yet.

This new formulation requires two extra hypotheses in order to handle these possible inconsistencies:

• Obstacles are assumed movable by default: Detected obstacles belong to M ⊂ W R unless a Manipulate operator has failed (eq. the resulting manipulated obstacle's state is not as expected). This allows to handle erroneous classification.

• Unknown space is free space: Space that has yet to be observed is assumed to be free.

This allows to handle both incompleteness of obstacle sets and geometry models.

Under these same sensing hypotheses, it is possible for Stilman's algorithm (or any other existing offline NAMO planning algorithm, for that matter) to be applied to unknown environments too, as long as its plans are recomputed when newly available data becomes available.

This may however be computationally costly, as Stilman's algorithm explores a much greater part of the search space, and also because the algorithm is not dynamic, in that it does not reuse previously computed plans to hasten new computations.

III. 1.4 Domain Restrictions

Stilman's and Wu&Levihn's formulations share some additional restrictions, beyond the elements that have been defined so far:

One obstacle at a time The robot may only manipulate a single obstacle at once, which may not interact with other obstacles during this process (in other words, a second or more obstacle(s) cannot be pushed through contact with the manipulated obstacle). This hypothesis shall be preserved, motivated by the previously made observation that our state of the art (Cf. Section II. 1) shows that the entire NAMO literature operates under this hypothesis (except for the "pre-NAMO" era paper of Chen&Hwang [START_REF] Chen | Practical path planning among movable obstacles[END_REF]).

Grasping configurations

The robot may only grasp the obstacle at specific sampled grasping points along the obstacle's edges, requiring the robot to be in specific grasping configurations to reach them. More precisely, Stilman's formalization assumed an even distribution of the grasping points (with an arbitrary spacing distance), and derived one robot grasping configuration for each at a radius distance from the grasping point (Cf. fit on the obstacle's sides at a fixed distance), making it less computationally costly. On the other hand, it correspondingly reduces the solution space, constraining the number of solvable problems (i.e. generality). This reduction however physically makes sense, as it is far easier to constrain an object's movement by grabbing it closest to its geometric center (which we as humans naturally do). In this thesis, we shall restrict grasping points similarly to Wu&Levihn, but to the center of all obstacle sides instead of only axis-aligned sides, as to not be restricted to an axis-aligned world model. In any case, our new algorithmic formulations for both algorithms allow for any method of computation of valid grasping configurations, as long as it yields a finite set of such configurations. Goal is always free Both Stilman's and Wu&Levihn's formulations (and subsequent algorithms) suppose that the robot goal configuration q g R must remain free of obstacles for the entire plan's duration. In the following section, we generalize their two algorithms to remove this constraint when a single movable obstacle M i intersects with q g R .

Action space restrictions Wu&Levihn's formulation only allowed axis-aligned translational manipulations of obstacles. In the following section, we show that this restriction is not actually a fundamental requirement of the problem definition, and can be dropped by generalizing the algorithm to a continuous world model instead of a grid-discretization of it.

III. 1.5 Cost & Optimality

As mentioned in Chapter II, Navigation Among Movable Obstacles being fundamentally a Navigation problem, it seeks to minimize the robot displacement cost associated with each action A t , of an estimation function C(A t) of distance, time or energy, depending on the implementation hypotheses as to the robot capabilities and the physical characteristics of obstacles. As such, we can write the cost of a plan P as the cumulated sum of each of its actions:

C(P) = ∑ t∈[t s ,t e] C(A t)
Chapter III. Revising and simulating reference NAMO algorithms

54

The exact computation method of this cost is mainly implementation-dependent, according to what the user wishes to optimize. Still, as we've noted in our state of the art (Cf. Section II.

1.10, it is relevant in NAMO to differentiate the cost of Navigate and Manipulate operators, generally through an approximation of energy (syn. work), to account for the additional difficulty of displacing an obstacle in addition to the robot's body.

On one hand, since Stilman's omniscient world and sensing model assumed knowledge of kinematic and dynamic parameters in addition to geometry, for every entity in the world, the work cost could be trivially accurately estimated as the product of Force and Traversed Distance for both the robot and the obstacle. On the other hand, since Wu&Levihn's world and sensing model did not offer kinodynamic data, they chose to operate with a simplified model of weighted distance similar to that of Chen&Hwang [START_REF] Chen | Practical path planning among movable obstacles[END_REF], assuming a constant force estimate for Navigate and Manipulate operators, respectively written C N and C M under the constraint that:

C M > C N ≥ 0
As Wu&Levihn's problem formulation also assumed uniform action cost as actions were limited to axis-aligned unit translations, assuming a number of n navigation actions and m manipulation actions, the plan cost could easily be computed as:

C(P) = n × C N + m × C M
Given that, as argumented in Section III. 1.3, we opted for the fully geometric world representation of Wu&Levihn, we also opted for their constant-force cost model, albeit generalized to allow rotations and non-uniform costs (for instance, to properly reflect the additional energy consumption of a diagonal movement in a square grid). In this generalized model, two additional constant moment estimates for Navigate and Manipulate actions are needed, respectively C θ N and C θ M , to weigh the angular distance due to rotational movement. Similarly, the force constants C N and C M are used to weigh the euclidean distance due to translational movement. These two products yield a generic energy cost estimate that can be added to obtain the actual action cost for Navigate and Manipulate actions respectively2 :

C(A N (t, t + 1)) = C N × (x t+1 R -x t R) 2 + (y t+1 R -y t R) 2 + C θ N × (θ t+1 R -θ t R) C(A M (t, t + 1)) = C M × (x t+1 R -x t R) 2 + (y t+1 R -y t R) 2 + C θ M × (θ t+1 R -θ t R)
We note as P * the plan with minimal cost:

P * = argmin P ∈P(t) (C(P))

III. 1.6 Space Components and Openings

III. 1.6.1 Space Components

In Section III. 1.1, we defined the configuration space C W as the abstract space of all possible configurations/states of the world W t . We write the slice (syn. subspace or space component) of all robot configurations C R (W t). This subspace can be further cut into more specific spaces that will extensively be used in the next sections:

• the space of all collision-free robot configurations:

C f ree R (W t) = {q R ∈ C R (W t)|R ∩ O t = ∅}
• the space of all accessible robot configurations, more precisely, all the collision-free robot configurations that can be reached from the current robot configuration using only Navigate actions:

C acc R (W t) = {q R ∈ C f ree R (W t)|∃τ(q t R , q R) s.t. S(q t R , q R) ∩ O t = ∅}
• the space of all colliding robot configurations with a movable obstacle M i , noted:

χ M i R = {q R ∈ C R (W t)|R ∩ M i ̸ = ∅}
• the space of all robot configurations that exclusively collide with a specific movable obstacle, noted:

exc χ M i R = {q R ∈ χ M i R (W t)|R ∩ O t /M i = ∅}
The space of all collision-free robot configurations, C f ree R (W t), can also be expressed as the union of all free space components, the disjoint sets of robot configurations where the robot may Navigate from any one configuration to another without ever having to use a Manipulate operator:

C f ree R (W t) = {C 1 , . . . C d } with C i = {q R ∈ C f ree R (W t)|∃τ(q 1 R , q 2 R) s.t. S(q 1 R , q 2 R) ∩ O t = ∅} III.

III. 1.7 NAMO Problems

Having properly formalized the context, we can formulate a generic definition of the NAMO problem:

General NAMO Problem: Given an initial workspace configuration W t 0 , the NAMO problem consists in computing, if it exists, a plan P for a manipulator robot R from its initial configuration q t 0 R to a goal configuration q g R , while being allowed to Manipulate movable obstacles M i ∈ M as necessary, guaranteeing the absence of any collisions between the robot R and manipulated obstacles with any other obstacles O i ∈ O.

Optimal NAMO Problem

The optimal NAMO problem further constrains the General NAMO Problem to computing the minimum-cost plan P * under the same otherwise stated constraints.

III. 2 Baseline NAMO Algorithms

In this section, we first present and illustrate the original algorithms' logic, then provide and explain our improved pseudocode formalization. The original pseudocode formalization of these algorithms is provided in Appendices B, C and D. Hence, if you wish to have a better understanding of the originals, we invite you to keep the Appendices pages at hand while reading this chapter for easier reference -this is however not necessary if you only wish to understand the algorithms themselves. Still, this section does assume a basic understanding of standard graph search algorithms (Breadth-First Search, Dijkstra and A *). Appendix A conveniently provides a reminder about these algorithms -and, more importantly, a pseudocode formalization that fits with the one used in this entire document. If you are unfamiliar with these algorithms, please do consult this appendix first before continuing.

III. 2.1 (Wu&Levihn, 2014)'s Algorithm

One of the original ambitions of our work as it started in 2018, was to execute NAMO (with our social & multi-robot extensions or not) on a humanoid Pepper robot, using only its onboard sensors, with only a map of static obstacles (like walls and such) as prior knowledge. Hence, our attention quickly turned to the corpus of work of Wu&Levihn [START_REF] Wu | Navigation Among Movable Obstacles in unknown environments[END_REF][START_REF] Levihn | Navigation Among Movable Obstacles in unknown environments[END_REF][START_REF] Levihn | Efficient Opening Detection[END_REF][START_REF] Levihn | Locally optimal navigation among movable obstacles in unknown environments[END_REF], as it met this requirement of limited prior environment knowledge (Cf. The other great advantage of this algorithm, is that one could arguably call it the "simplest" or "most straightforward" NAMO algorithm out there. Indeed, as it only generates plans where a single obstacle will be manipulated at most, it completely ignores the fundamental NAMO challenge of object manipulation ordering in order to focus on the object selection. By focusing on this single problem, the algorithm drastically reduces the search space, resulting in computationally-efficient planning in an environment that is discovered as the robot navigates.

It also makes it a very relevant entry point to understand more complex NAMO algorithms, like [START_REF] Stilman | s incremental binary occupancy grid model[END_REF]'s algorithm we will present in Section III. 2.2.

III. 2.1.1 Algorithm outline

In this section, we present the original structure of (Wu&Levihn, 2014)'s algorithm. Our improvements will be subsequently highlighted in the next section, facilitating their understanding since the algorithm will have been thoroughly presented by then.

(Wu&Levihn, 2014)'s algorithm computes and executes locally optimal plans P * from a robot start configuration q t R to a goal configuration q g R (Cf. Fig.III.3a). A plan is a sequence of discrete actions, that are either part of the robot's manipulation action space A M , or its navigation action space A N , depending on whether the robot is manipulating an obstacle or not. A function C maps each action to a positive displacement cost that approximates the real distance, time or energy expense, depending on the application. When used on a plan as C(P), the function is to be understood as the sum of the individual action costs -an optimal plan minimizes this cost function. • Trying to compute an optimal navigation path P * from its current configuration q t R to its goal configuration q g R , while avoiding all obstacles (Fig. III.4a),

R M 1 M 2 P* q R g O 1 O 2 M 3 (A) Perceived world W t 0 - O new = {M 1 , M 2 } O 1 O 2 M 3 M 1 M 2 P* (B) Perceived world W t 1 - O new = {O 1 , O 2 , M 3 } FIGURE III
• Then, iterating over movable obstacles, trying to compute a lower-cost three-step plan P * M i to replace P * consisting in the manipulation of a single obstacle M i (Fig. III.4b). We will refer to this process as "evaluating" obstacles. • Step 1: navigation/transit path P to_obstacle from current robot configuration q t R , to a configuration near the obstacle q manip R that allows interaction,

• Step 2: manipulation/transfer path P manip from the previous configuration q manip R to the configuration at which the robot leaves the obstacle q cur R so that it creates a new opening (Cf. Section III. 1.6.2),

• Step 3: navigation/transit path P to_goal from the previous configuration q cur R at which the robot leaves the obstacle, to the robot goal configuration q g R .

Chapter III. Revising and simulating reference NAMO algorithms 59 4 . When available, the underestimate in mList is always prioritized, as it is more informed. The plan search is exited early if the best underestimate for the currently considered obstacle exceeds the cost of the best plan computed so far C(P *) -hence why M 1 and M 2 are not evaluated. Otherwise, the plan search is stopped when all obstacles have been evaluated. This process is illustrated and explained step-by-step in Fig. III.7.

P to_obstacle P manip P to_goal O 1 O 2 M 3 M 1 M 2 q R manip q R g q R t q R cur FIGURE III
Obstacle manipulation planning So far, we have presented the high-level task planning routine and the obstacle selection routine, but we have yet to explain the three-step plan motionplanning routine itself (P to_obstacle , P manip , P to_goal). Once an obstacle is selected for evaluation by the task planner, the motion planning routine iterates over the valid grasp robot configu- attempt to compute, for this grasp robot configuration q manip R , the other two plan steps P manip & P to_goal . While P to_obstacle is computed by using a simple A * graph search over the robot's navigation action space A N , P manip & P to_goal are computed by means of a special breadth-first search we discuss below. This breadth-first search explores the robot's manipulation action space A M . Starting from the grasp robot configuration q manip R , actions A M ∈ A M are simulated to yield neighboring robot-obstacle configurations (q next R , q next M i) -this tuple constitute the search tree node (Fig. III.8c). Within this breadth-first search of the robot's manipulation action space, an A * search over the robot navigation action space A N is used to compute the third step P to_goal . If P to_goal exists, then a global opening to the goal exists (Cf. definition in Section III. 1.6.2), and the full three-step obstacle manipulation plan, P * M i , can be updated (Fig.III.8d). However, this costly A * search is not executed for every simulated action of the encompassing breadth-first search: a preemptive local opening detection subroutine (described further below) ensures this. Now is a good opportunity to remind the reader, that when the full three-step obstacle manipulation plan P * M i gets computed, the associated plan cost underestimate used by mList (of the obstacle choice evaluation routine) is updated too.

rations q manip R ∈ VALID-GRASPS(M i) (Cf.
O 1 O 2 M 3 M 1 M 2 P* q R g (A)
For reference: the optimal plan P * avoiding all obstacles, C(P *) = 16

P to_obstacle O 1 O 2 M 3 M 1 M 2 q R m anip q R g q R t (B)
The transit path P to_obstacle to the first grasp robot configuration

q manip R O 1 O 2 M 3 M 1 M 2 q R g q R t (C) Breadth-first search start: valid neighbors configurations of q manip R
are computed by iterating over actions

A M ∈ A M O 1 O 2 M 3 M 1 M 2 P * M 3
(D) New local opening detected: third plan step P to_goal is computed, providing a first full obstacle manipulation plan P *

M i O 1 O 2 M M 3 1 M 2 (E) Collision detected: search tree branch is cut O 1 O 2 M M 3 1 M 2 (F) C est > C(P * M i): search tree branch is cut and search is stopped, P * is set to P * M i as C(P * M i) < C(P *) FIGURE III.8:
Step by step manipulation planning for movable obstacle M 3 , computed at t 1 . Manipulation action space A M simplified to axis-aligned pushes for the sake of readability.

But before being added to the breadth-first search tree, neighboring configurations must meet several conditions: The most significant one -but also the most computationally intensive, hence executed last -is the collision check 5 between the next robot-obstacle state and the rest of the world representation W t /M i ,R . While this first condition is a fundamental constraint, the other two are computational performance improvements. The first verifies that the action does not reverse-traverse the search tree early, to avoid unnecessary costly collision checks.

The second is more specific to this algorithm, and verifies whether pursuing evaluation of the neighbor (and consequentially -its successors) can actually lead to a better plan. This is achieved by underestimating the cost of the third plan step P to_goal as the euclidean distance |q New Opening detection Computing the third plan step P to_goal is by far the most computationally expensive instruction in the neighbor configuration computation loop we previously described. In the worst case (no path/opening to the goal), a full accessible configuration space search needs to be conducted -requiring correspondingly many additional costly robot collision checks 6 . In order to avoid a majority of these worst-case scenarios, a local new opening detection search algorithm is used.

The local opening detection algorithm basically relies on the idea that when evaluating the movement of a single obstacle, it can only create a new opening in its own close vicinity. This "close vicinity" is defined as the area occupied by the movable obstacle's footprint inflated by the robot's diameter (not radius !). This area is computed for the initial state and final state after the manipulation action applied on obstacle M i , and respectively written as M * t i (Fig

III. 2.1.2 Generalization to larger action spaces, continuous environments & edge cases

As we implemented and tested the original algorithm described previously, we realized its limitations and ambiguities in formalization. Thus, we endeavored to completely rewrite the pseudocode formalization, while:

• generalizing the algorithm to larger action spaces with arbitrary positive action costs, and to continuous environments representations,

• properly addressing edge cases where the original formalization would either fail to find a solution, or enter an infinite loop,

• unifying notations in a coherent manner (e.g. multiple assignation operators ⇐, = or ← were unified to ← to avoid confusions).

Note for the reader

The full rewritten algorithms are given here for reference. In these algorithms, we will denote the relevant modifications discussed here with blue text. Thus, it is not necessary to read the full algorithms to understand the modifications discussed in this section.

Although they were completely rewritten because of the original formalization's8 ambiguities, the original logic textually described in the previous section III. 2.1.1 remains completely relevant, and has been fully preserved. Hence, page numbers to the appropriate textual explanations given in the previous section are provided in the algorithm's headers, should you wish to read them fully.

Solving infinite looping edge cases

This re-formalization of (Wu&Levihn, 2014)'s algorithm started by properly separating the online plan execution logic from the plan computation logic 9 . We respectively rewrote them as Algorithms 1 (EXECUTE) and 2 (PLAN). This separation actually allowed us to fix a first infinite loop that occurred in the original algorithm, in the edge case where no plan avoiding all obstacles and no plan manipulating any of the obstacles were found. This would trivially happen for example, if only static obstacles blocked access to the goal (Fig.

Result:

Success if goal reached, Failure otherwise.

1 EXECUTE(q t R , q g R) 2
mList, eList ← ∅, ∅ // variables used for obstacle selection in Alg.3 For reference, here are the details of the other changes in the Obstacle Choice routine (Alg.3):

3 P * ← ∅ 4 PLAN(P * , q s R , q g R) 5 while q t R ̸ = q g R do 6 O new ← O new ∪ GET-NEW-INFORMATION() // if
• The now recursive nature of the routine serves to properly integrate an originally misplaced condition relative to obstacle choice, that used to be in the calling function "OPTI-MIZED" (Appendix B, Alg.13, l.14), and causing an infinite loop when the condition was not verified. It is now expressed as lines 8 & 9 in Algorithm 3, properly ensuring that, when an obstacle M i is listed in both lists mList and eList, the entry in eList is skipped (as the heuristic cost is less accurate) and return the entry of mList, as intended.

• Once an obstacle M i has been evaluated and thus added or updated in mList, we also add it to a new separate list called evaluated (Alg.3, l.11-13, initialization in Alg.2, l.3). This

Chapter III. Revising and simulating reference NAMO algorithms 65 guarantees that the obstacle will not be evaluated twice in the evaluation loop (which could happen in the original formalization).

Algorithm 2: Task-level plan computation routine (PLAN) of our improved (Wu&Levihn, 2014) algorithm -Cf. logic description page 58. Static obstacles are implicitly removed from eList and mList.

Data: Current optimal plan P * , Robot current configuration q t R , Robot goal configuration q g R PLAN(P * , q t R , q g R)

eIndex, mIndex ← 0, 0

evaluated ← ∅ for M i ∈ O new do UPDATE(eList, M i) P * ← A * (W t , q t R , q g R) M i , C heur ← SELECT-OBSTACLE(eList, mList, eIndex, mIndex, evaluated) while C(P *) ≥ C heur and M i ̸ = NULL do P, C l (M i) = PLAN-FOR-OBSTACLE(M i , P * , q t R , q g R) UPDATE(mList, (M i , C l (M i))) if C(P * M i) < C(P *) then P * ← P * M i M i , C heur ← SELECT-OBSTACLE(eList,

World representation & Robot action space

The original algorithm formalization was designed under the following closely coupled hypotheses:

• world representation as a 2D binary occupancy square grid,

• the robot manipulation action space A M was restricted to axis-aligned cell-sized translations, with constant action costs As mentioned in the previous section III. 2.1.1 (page 59), the original obstacle manipulation planning routine used a customized breadth-first search algorithm 11 , but over a limited set of four axis-aligned, cell-sized translations. We generalized this search, by first rewriting it as a standard Dijkstra algorithm call (Alg.4, l.7). We parameterized the search with a method that computes the valid neighbor robot configurations from the current one by exploring a generic manipulation action space A M (Alg.4, l.11-12). The only constraint for this action space A M , is to yield a finite configuration space -that is, a finite graph 12 . All the customized logic from the original breadth-first search has been extracted and encapsulated in this function 13 . Using Dijkstra's algorithm allows actions to have arbitrary positive costs, which are more relevant than constant costs for a generic action space. As a side note, this rewrite also allowed us to properly formalize the iteration over grasping configurations (Alg.4, l.4).

C(A M) = C M ∈ R * + , ∀A M ∈ A M .
We also wrote the continuous geometry equivalent (Alg.5) to the efficient local opening detection algorithm 14 originally written for a discrete regular 2D binary occupancy grid. By doing so, we have generalized the original algorithm to continuous geometry spaces, where, among other possibilities, computing rotations can be done without geometrical information loss. In other words, rasterizing obstacles is no longer a necessity for the algorithm to be used.

Solving Obstacle-on-Goal problems

In [START_REF] Levihn | Navigation Among Movable Obstacles in unknown environments[END_REF], Levihn emitted the hypothesis that the algorithm only works under the assumption that the goal configuration is completely "free of obstacles". However, this was not further discussed leaving it to the reader to understand why the algorithm could not deal with situations as shown in Data: Obstacle to evaluate M i , current optimal plan P * , current robot configuration q t R , goal robot configuration q g R Result: Optimal manipulation plan for the evaluated obstacle P * M i , corresponding heuristic cost C l (M i) As a concluding remark, we underline our improvements constitute a generalization, and not just a different interpretation of the algorithm. This being because our formalization is also capable of planning under the same original constraints with equivalent computational requirements.

1 PLAN-FOR-OBSTACLE(M i , P * , q t R , q g R) 2 P * M i ← ∅ 3 C l (M i) ← ∞ 4 for q manip R ∈ VALID-GRASPS(M i) do 5 P to_obstacle ← A * (W t , q t R , q manip R) 6 if P to_obstacle = ∅ then skip 7 DIJKSTRA(q manip R , q g R , GET-NEIGHBORS-MANIP) 8 return P * M i , C l (M i) 9 GET-NEIGHBORS-MANIP(q cur R) 10 neighbors ← ∅ 11 for A M ∈ A M do 12 q next R , q next M i ← APPLY-ACTION((q cur R , q cur M i), A M) 13 if q next R ∈ closedList then skip 14 C(P manip) ← gScore[q cur R]+ C(A M) 15 C est ← C(P to_obstacle) + C(P manip) + |q g R -q next R | 16 if C est ≥ C(P * M i) or C est ≥ C(P *) then skip 17 if q next R ∩ W t /M i ,R ̸ = ∅ or q next M i ∩ W t /M i ,R ̸ = ∅ then skip 18 APPEND(neighbors, q next R) 19 if CHECK-NEW-OPENING(W t ∪R g /M i ,R , M cur i , M next i) then 20 P to_goal ← A * (W next , q next R , q g R) 21 if P to_goal ̸ = ∅ then 22 if C(P manip) + C(P to_goal) < C l (M i) then 23 C l (M i) ←
1 CHECK-NEW-OPENING(W t ∪R g /M i ,R , M t i , M t+1 i) 2 M * t i ← INFLATE-BY-ROBOT-CIRCUMSCRIBED-CIRCLE-DIAMETER(M t i) 3 M * t+1 i ← INFLATE-BY-ROBOT-INSCRIBED-CIRCLE-DIAMETER(M t+1 i) 4 BA t ← W t /M i ,R ∩ M * t i 5 BA t+1 ← W t /M i ,

III. 2.1.3 When more knowledge becomes an issue

As we have seen in the previous sections, (Wu&Levihn, 2014)'s algorithm can only generate plans manipulating at most a single obstacle (Cf. page 58). For instance, in the scenario illustrated in Fig.III.15a, the algorithm's task-level planner can not compute a plan that would contain the transfer paths necessary to manipulate the two movable obstacles. That is why the algorithm was designed by Wu&Levihn under the hypotheses that, as illustrated in Fig.III.15b:

• the robot can only acquire knowledge through its own limited sensing capabilities,

• all space not yet observed is free space,

• and obstacles are to be considered movable until manipulating them fails.

This way, the algorithm does not have to globally consider a NAMO problem, but can locally solve smaller one-obstacle problems, as it discovers them (Fig.

III.15c).

This approach however makes the algorithm's resolution capabilities extremely dependent on the robot's sensing capabilities, such as the field of view's size and shape. For instance, in the previous example, if the field of view's radius (Fig.III.15b) were big enough to cover both movable obstacles, the algorithm would not be able to solve the problem. With such an approach, more knowledge or better sensing capabilities do not necessarily lead to better results, and may even prevent the algorithm from finding a solution.

III. 2.2 (Stilman, 2005)'s Algorithm

As presented in Chapter II, Stilman proposed the first -and still the only -resolution complete algorithm for a class of problems called LP1 [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF]. As discussed in Chapter II, an LP1 problem is a NAMO problem that can be decomposed in 1-obstacle NAMO sub-problems (keyholes),

where the solution to each sub-problem does not interfere with the solution of the other subproblems. This means that a NAMO plan solving a Linear Problem of type 1 (LP1) may contain several obstacle manipulations.

In these terms, (Wu&Levihn, 2014)'s algorithm guarantees completeness and optimality for a subclass of LP1 problems, where the sequence of sub-problems is actually a single problem (one obstacle manipulation). Comparatively, we could say that (Stilman, 2005)'s algorithm thus (partially) drops optimality in exchange for completeness for the entire class of LP1 problemsthe reason why we chose to use it as a base in the next chapters.

III. 2.2.1 Algorithm outline

In this section, we present the original structure of (Stilman, 2005)'s algorithm, as we did with (Wu&Levihn, 2014)'s algorithm. Again, our improvements will be subsequently highlighted in the next section.

Task-level planner [START_REF] Stilman | s incremental binary occupancy grid model[END_REF]'s algorithm was designed as an offline planning algorithm. Hence, it does not provide a plan execution routine, but only a task-level planner and its obstacle selection and motion planning subroutines. Thus, [START_REF] Stilman | s incremental binary occupancy grid model[END_REF]'s algorithm can be used as is only under the assumption of omniscient knowledge about the environment (obstacles' geometry, type and position are known with no uncertainty) 16 . The task-level planner either yields:

• a transit path to the goal q g R if one exists (by means of an A * star search over the navigation action space),

• or a sequence of alternating transit and transfer paths until a transit path to the goal q g R can be computed (illustrated by Fig.

III.18).

As such, in contrast with (Wu&Levihn, 2014)'s algorithm, [START_REF] Stilman | s incremental binary occupancy grid model[END_REF])'s algorithm will not even try to find a plan moving obstacles if a direct transit path to the goal exists. This is the main reason why it can not be proven to be displacement-cost optimal.), by each time moving a single obstacle (here, the Table 1 then the Couch). Since the algorithm was proven complete in the resolution of LP1 problems [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF]19], failure to find a plan would mean the problem was of a harder class than LP1 -or that no solution exists.

Structurally, the task-level planner is formulated as a recursive forward best-first search of the best tuple (obstacle to move M F , component to fuse with C F) -e.g. [START_REF] Vainshtain | Multi-agent terraforming: Efficient multi-agent path finding via environment manipulation[END_REF]. Once the pair is selected by using the obstacle selection routine (described a bit further below), a transfer path P manip is computed, by searching over the robot's manipulation action space A M until an opening is created -similarly to (Wu&Levihn, 2014)'s algorithm. If so, then the obstacle selection and manipulation planning sequence is recursively executed until a transit path P to_goal to the goal q g R is reached or deemed unreachable. As the recursive loop backtracks after reaching the goal, the intermediate transit path to the selected obstacle P to_obstacle is computed, and both paths are added to the overall plan. This process results in the final sequence of alternating transit/transfer paths leading to the goal: the NAMO plan.

(M F = Table 1, C F = C 2) in Fig.III.
Obstacle selection Stilman's obstacle selection routine inspired many of the subsequent works (in particular, but not only [START_REF] Stilman | Planning among movable obstacles with artificial constraints[END_REF][START_REF] Nieuwenhuisen | An Effective Framework for Path Planning Amidst Movable Obstacles[END_REF][START_REF] Moghaddam | Planning Robot Navigation among Movable Obstacles (NAMO) through a Recursive Approach[END_REF]) and is a core element of the algorithm. This routine selects the next obstacle to move/component to fuse with (M F , C F) pair, by using a relaxed-constraint path planner (A * variant) that is allowed to plan through obstacles. This planner returns the first 1. Free space to free space: from a collision-free robot configuration to another (formally:

q cur R , q next R ∈ C f ree R);
2. Free space to obstacle space: from a collision-free robot configuration to a robot configuration that intersects exclusively with a single movable obstacle M i (formally:

q cur R ∈ C f ree R and q next R ∈ exc χ M i R);
3. Obstacle space to obstacle space: from a robot configuration that intersects with a single movable obstacle M i to a robot configuration that intersects with the same single movable obstacle M i (formally:

q cur R , q next R ∈ exc χ M i R);
4. Obstacle space to free space: from a robot configuration that intersects with a single movable obstacle M i to a collision-free robot configuration (formally:

q cur R ∈ exc χ M i R and q next R ∈ C f ree R).
In Fig. III.19b, we can see how the search tree is cut short as it tries to traverse M 2 after M 1 , as it would violate transition 3 (obstacle space to obstacle space). That is why the tree is extended to pass through M 3 , eventually reaching the goal in component C 3 . However, there is not enough room around M 3 to manipulate it successfully to connect C 3 with C 1 : the manipulation planner fails to move M 3 resulting in a second call of the obstacle selection routine in Fig. III.19c. In order for this second call and any subsequent ones to not indefinitely return the same obstacle/component pair (M F , C F), a list of these pairs is kept track of in the task-level planner (see 17 for a detailed explanation). 17 The obstacle selection routine then uses this list to forbid transitions from an obstacle to free space (4.) when the following conditions are met:

• the traversed obstacle M i is the first one to be traversed (formally:

M F = M i ̸ = 0),
• and no other component than the initial one has been traversed yet (formally: C F = 0), • and the neighbor robot configuration belongs to a component C i so that the pair (M i , C i) is not in the list of evaluated pairs,

• and C i has not previously been fused by the task planner.

Chapter III. Revising and simulating reference NAMO algorithms 74 This is why during the second call to the obstacle selection routine, the search tree is cut short after traversing M 3 , resulting in the tree being grown through M 4 and M 5 , eventually leading to a solution to the problem showcased in III. 19). The search is stopped as soon as an opening is created -that is, when an A * call over the robot's navigation action space A N returns a valid path P to_C F , from the currently evaluated configuration q cur R , to an arbitrary configuration q C F R in the component to fuse with (C F). The search prioritizes configurations in the free space component the robot comes from C acc R , as to avoid interfering with a future obstacle manipulation in the target component C F (hence why the robot pulls the obstacles back in Fig III .18c).

M 4 M 5 M 3 M 1 M 2 O 2 O 1 C 1 C 3 C 2 (

III. 2.2.2 Generalization to larger action spaces & edge cases

Like we did for (Wu&Levihn, 2014)'s algorithm, we similarly completely rewrote the pseudocode formalization of (Stilman, 2005)'s algorithm in a more generic fashion. This was done with the same goals of generalizing the algorithm to larger action spaces with arbitrary positive action costs, properly addressing the obstacle-on-goal edge case where the original formalization would fail to find a solution, and unifying notations in a coherent manner with those of (Wu&Levihn, 2014)'s algorithm. Additionally, we also improved overall computational performance, by applying the local new opening detection algorithm previously described (Section III. 2.2.2, Alg.5).

Note for the reader Again, as for (Wu&Levihn, 2014)'s algorithm, The full rewritten algorithms are given here for reference. In these algorithms, we will denote the relevant modifications discussed here with blue text. Thus, it is not necessary to read the full algorithms to understand the modifications discussed in this section. Although they were completely rewritten because of the original formalization's 18 ambiguities, the original logic textually described in the previous section III. 2.2.1 remains completely relevant, and has been fully preserved. Hence, page numbers to the appropriate textual explanations given in the previous section are provided in the algorithm's headers, should you wish to read them fully.

Computing the free space components How the nodes (free space components) of the tasklevel search tree illustrated in Fig.III.18d 19 are determined is actually not addressed by Stilman.

However, as presented in the previous section III. 2.2.1, knowing which free space component C i contains a given robot configuration is essential, as this is how obstacles are selected for manipulation evaluation. In the absence of specification, we can only suppose that free space components are initialized before the task-level planning routine is executed. We consequently wrote Algorithm 6, which first executes a recursive Breadth-First Search over the robot navigation action space A N , that creates a search tree for each free space component C i and each space component where the robot would intersect with a single movable obstacle χ M j R 20 . Only then is the task-level planner (Alg.7) executed.). In this extra logic, we removed a condition that returned a NIL value in the original formalization for both the following cases: 18 Original formalization available in Appendix C. 19 This search tree is named Free Components Tree abb. FCT by Stilman in his thesis [19]. 20 As each search tree only covers its associated free space component or movable obstacle, the overall computational cost is equivalent to that of a regular Breadth-First Search over the robot navigation action space A N , under the same assumption of being allowed to traverse a single obstacle at once. In other words, each tree is basically just a branch of the regular Breadth-First Search. 21 The original obstacle selection routine is available in Appendix B, Alg.17.

Solving Obstacle-on-Goal problems

Algorithm 6: Top-level plan computation routine (PLAN) of our improved (Stilman, 2005) algorithm

Data: Current world state W t , goal configuration q g R Result: A valid NAMO Plan P or empty plan

∅ 1 PLAN(W t , q g R) 2 if R g ∩ W t /R,M ̸ = ∅ or (q g R / ∈ C f ree R and q g R / ∈ exc χ M j R) then return ∅ 3 i, C t i R ← 0, {C i : NULL} 4 C t 0 R [C i] ← GET-CLOSED-SET(BREADTH-FS(W t , GET-NEIGHBORS-CC))} 5 return SELECT-CONNECT(W t , [C 0], q g R , C t 0 R) 6 GET-NEIGHBORS-CC(q cur R) 7 neighbors ← ∅ 8 for A N ∈ A N do 9 q next R ← APPLY-ACTION(q cur R , A N) if q next R ∈ closedList or q next R ∩ W t /R,M then skip if q cur R , q next R ∈ C f ree R or q cur R , q next R ∈ exc χ M j R then APPEND(neighbors, q next R) else if q cur R ∈ C f ree R and q next R ∈ exc χ M j
R and χ

M j R / ∈ C t 0 R then C t 0 R [χ M j R] ← NULL C t 0 R [χ M j R] ← GET-CLOSED-SET(BREADTH-FS(W t , GET-NEIGHBORS-CC))} else if q cur R ∈ exc χ M j R and q next R ∈ C f ree R and C i / ∈ C t 0 R then i, C t 0 R [C i] ← i + 1, NULL C t 0 R [C i] ← GET-CLOSED-
SELECT-CONNECT(W t , FusedComponents, q g R , C t 0 R) 2 EvaluatedPairs ← ∅ 3 if P to_goal ← A * (W t , q t R , q g R) ̸ = ∅ then return (P to_goal) 4 while M F , C F ← RCH(W t , EvaluatedPairs, FusedComponents, q g R , C t 0 R) ̸ = (0, 0) do 5 W t+2 , P manip ← MANIP-SEARCH(W t , M F , C F , C t 0 R) 6 if P manip ̸ = ∅ then 7 FuturePlan ← SELECT-CONNECT(W t+2 , FusedComponents + [C F], q g R , C t 0 R) 8 if FuturePlan ̸ = ∅ then 9 P to_obstacle ← A * (W t , q t R , P manip [0]) return (P to_obstacle + P manip + FuturePlan) EvaluatedPairs append (M F , C F) return ∅
• when a single obstacle M F intersects with the goal configuration q g R (as in Fig.III.14a), now the function returns a (M F , 0) tuple,

• when more than one movable obstacle intersects with the goal configuration q g R , or when the goal is unreachable, now the function returns a (0, 0) tuple, so that planning failure only occurs in this case -(Alg.7, l.4) 22 .

Algorithm 8: Obstacle selection routine (RCH) of our improved [START_REF] Stilman | s incremental binary occupancy grid model[END_REF]

g R , C t 0 R) 2 MC ← {q t R : (0, 0)} 3 q cur R ← A * (q t R , q g R , GET-NEIGHBORS-RCH) 4 if q cur R = q g R then return MC[q cur R] 5 else return (0, 0) 6 GET-NEIGHBORS-RCH(q cur R) 7 neighbors ← ∅ 8 M F , C F ← MC[q cur R] 9 for A N ∈ A N do 10 q next R ← APPLY-ACTION((q cur R), A N) 11 if q next R ∈ closedList then skip 12 if S(q cur R , q next R) ∩ W t /R,M or (q next R / ∈ C f ree R and q next R / ∈ exc χ M i R) then skip 13 if (C F ̸ = 0) then MC[q next R] ← (M F , C F) 14 else if (M F ̸ = 0 and q next R exc χ M F R) then MC[q next R] ← (M F , 0) 15 else if (M F ̸ = 0 and q next R ∈ C i s.t. C i / ∈ FusedComponents and (M F , C i) / ∈ EvaluatedPairs) then 16 MC[q next R] ← (M F , C i) 17 else if (M F = 0 and q next R ∈ C f ree R) then MC[q next R] ← (0, 0) 18 else if (M F = 0 and q next R ∈ exc χ M i R) then MC[q next R] ← (M i , 0) 19 if q next R ∈ MC then APPEND(neighbors, q next R) 20 return neighbors
Formalizing MANIP-SEARCH The main source of ambiguity of (Stilman, 2005)'s original work was the absence of a pseudocode formalization of the obstacle manipulation planning routine "MANIP-SEARCH". From the various textual observations, we formalized it as true to the original descriptions as possible, in Appendix C (Alg.18). The version provided in this section has been improved similarly to (Wu&Levihn, 2014)'s algorithm to use a Dijkstra search 22 The manipulation search procedure has correspondingly been adapted (Alg.9, l. [19][20] to manage this goalover-obstacle case, by having the exit condition be the reachability of the robot goal configuration q g R instead of a random robot configuration in C F , since in this case C F = 0 (Alg.9, l.2) instead of a Breadth-First Search 23 , allowing for actions to have any positive cost instead of a constant cost. Also, we incorporated the local new opening detection algorithm from (Wu&Levihn, 2014)'s algorithm (Cf. page 62). Now the A * search to verify if a global opening has been created is only executed if a new local opening is found (Alg.9, l.18). Algorithm 9: Obstacle manipulation planning routine (MANIP-SEARCH) of our improved [START_REF] Stilman | s incremental binary occupancy grid model[END_REF]

MANIP-SEARCH(W t , O F , C F , C t 0 R) 2 τ M ← DIJKSTRA((∅, ∅), GET-NEIGHBORS, EXIT-CONDITION) 3 W t+2 ← COPY-AND-UPDATE(W t , τ M) 4 return W t+2 , τ M 5 GET-NEIGHBORS((q manip R , q cur R)) 6 neighbors ← ∅ 7 if (q manip R , q cur R) = (∅, ∅) then 8 for q manip R ∈ VALID-GRASPS(M i) do 9 APPEND(neighbors, (q manip R , q manip R
))

10 return neighbors

11 for A M ∈ A M do 12 R next , M next i ← APPLY-ACTION((R cur , M cur i), A M) 13 if q next R ∈ closedList then skip 14 if S(A M) ∩ W t /M i ,R ̸ = ∅ then skip 15 APPEND(neighbors, q next R) 16 return neighbors 17 EXIT-CONDITION(q cur R) 18 if CHECK-NEW-OPENING(W t ∪R g /M i ,R , M i , A M) then 19 q C F R ← q g R 20 if q g R / ∈ C F and C F ̸ = 0 then q C F R ← RANDOM-FREE-CONFIGURATION(W t , C F) 21 P to_C F ← A * (q cur R , q C F R) 22 if P to_C F ̸ = ∅ then return True 23 return

False

In this section, we have presented both of our revised algorithms. Let us now present the new simulation tool we have written to implement and experiment with NAMO algorithms, and build upon them in the next chapters.

III. 3 A new NAMO simulator

Now that we have introduced NAMO in Chapter II, and more specifically, the algorithms we build upon, their requirements, and the improvements we have added over them in the previous sections, it is now time to discuss their execution context. As mentioned at the beginning of this chapter, while the NAMO literature is rather well-endowed in terms of algorithms, no simulation tooling (e.g. source code or binaries) nor data (e.g. computer-readable environment description, parameters values, or raw unaggregated performance metrics) are ever provided.

We had to derive our open implementations and datasets from the pseudocode when available, textual observations, images and occasional video footage. The required efforts encouraged us to design our simulator in accordance to three main principles: interoperability, reproducibility and flexibility. As a first step in this direction, we have made this simulator (and associated data) we will discuss in this section freely available at:

https://gitlab.inria.fr/brenault/s-namo-sim Our state of the art in Chapter II revealed that NAMO is first and foremost treated as a 2D motion planning problem; although, the world's physical models used in NAMO literature still vary wildly from one approach to another. From various grid definitions to continuous geometries, and with different modeling approaches for robot-to-obstacle motion dynamics, the need for a custom-tailored and flexible simulation tool naturally arose, in order to be able to experiment with even just the two algorithms described in this chapter. Each loop consists in first informing all the behaviors (i.e. robots) of the reference simulated world state (and the behavior updates its perceived world knowledge according to its sensing parameters). Then all behaviors are asked for their next discrete action. Finally, the main simulator loop updates its simulated world model according to its constraints (e.g. refusing to apply a robot manipulation action if the obstacle is not actually movable for the robot), guaranteeing the world state to remain valid.

III. 3.1 Overview of the simulator

Until all behaviors return that they have finished executing all their goals, the main simulation loop collects and saves raw execution data (e.g. actions, their results, changes to the reference world state, ...). Once the loop is exited, the main simulation module hands the raw execution data to the statistics module, that generates relevant statistics either relative to the overall world state or to each robot. These statistics are exported to a file, as well as the final world state in another file (that may be reused as an input world model for another simulation) through the data export interface.

Both statistics file and world state file can be visualized as is, using external visualization tools (e.g. any Web Browser, Inkscape, the system's default image viewer, any text editor...).

The statistics file can also be handed over to the Results Aggregation and Graphing Module (in purple), that will, as its name suggests, summarize the data into paper-printable LaTeX As a final general comment on the simulator's architecture, it should be mentioned that it was fully written using the Python programming language. This choice was motivated by the widespread use of the language both in the robotics community 24 and the general public 25 which facilitates both its reuse by third-parties and our use of high-quality community libraries.

The code was written as to accommodate both Python 2 and 3, ROS1 and ROS2, in order to make it usable on both legacy and new systems 26 .

Now that an overview of the simulator's architecture has been given, the following sub-

III. 3.2 World representations

Let us first clarify what we mean by "world representation": it is first and foremost a data structure storing physical (in our case, essentially geometrical) and semantic information about the environment's state. This data structure is constrained by a set of rules (functions) that define valid states and transitions between these states.

The simulator was designed to allow flexibility as to the world representation used either as the reference simulated world W re f or the individual perceived world associated with each behavior < W R 1 , . . . , W R i >. This flexibility allows for trade-offs between computational performance and expressivity 27 of the experiments.

Baseline Data Structure

In all the scenarios presented in the figures that appeared until now, and in all the experiments described in the following chapters, both the reference simulated world W re f model and the individual perceived world associated with each behavior 24 Largely due to it being officially supported by the de facto standard Robot Operating System. 25 Python is the most popular programming language since the last quarter of 2021 according to the TIOBE index [START_REF] Jansen | TIOBE Index[END_REF] and second quarter of 2018 according to the PYPL index [START_REF] Carbonnelle | PYPL PopularitY of Programming Language index[END_REF]. 26 Despite the official deprecation of Python 2 since January 1, [START_REF] Foundation | Sunsetting Python 2[END_REF], legacy systems such as the many robots available in our lab (e.g. Pepper, Turtlebots 2, ...) are still tightly bound to Python 2 / ROS 1 because of a lack of constructor-backed support. 27 By expressivity, we mean the ease of creation of new scenarios/problems that are relevant to our subjects of study in the following chapters. We implemented Navigate as two distinct operators:

• Translations of any direction and any norm:

T (W t , R i , x o f f set , y o f f set) = W t+1 with translation vector x o f f set , y o f f set ∈ R 2
• Rotations of any angle around the robot's geometric centroid (x t R i , y t R i):

R(W t , R i , θ o f f set) = W t+1 with rotation angle θ ∈ [-2π, 2π]
Actual actions A N ∈ A N are instantiated Translate and Rotate operators with fixed translation and rotation parameter values. These values must be chosen so that the action space yields a finite robot configuration space, so that the underlying graph search algorithms (A * , Dijkstra) may keep their completeness and optimality properties. In all experiments so far and in the next chapters, we use two discrete action spaces that yield navigation movements on a 2D square grid (of resolution r = 0.1m), including diagonal movement:

• One supposes the robot has an omnidirectional drive robot base:

A omni N =                ∀T with (x o f f set , y o f f set) ∈ {(0, r), (0, -r), (r, 0), (-r, 0), (√ 2r, √ 2r), (- √ 2r, √ 2r), (- √ 2r, - √ 2r, (√ 2r, - √ 2r)} ∀R with θ o f f set ∈ { π 4 , -π 4 }
• The other supposes a differential drive robot base:

A di f f N =                            ∀T with (x o f f set , y o f f set) ∈                {(r, 0), (-r, 0)} if θ t R ∈ {0, π} {(0, r), (0, -r)} if θ t R ∈ { π 2 , -π 2 } {(√ 2r, √ 2r), (- √ 2r, - √ 2r)} if θ t R ∈ { π 4 , -3π 4 } {(- √ 2r, √ 2r), (√ 2r, - √ 2r)} if θ t R ∈ { -π 4 , 3π 4 } ∀R with θ o f f set ∈ { π 4 , -π 4 }
Manipulation Action Space A M & Operators In Section III. 1.2.3, we reminded the three main manipulation action space classes used in NAMO: Grasping, Pushing and Manipulation Primitives. We only implemented the Grasping class manipulation action space for the primitive Manipulate NAMO operator. More specifically, we defined our action space A M with four generic operators:

• A Grasp operator that fully constrains the obstacle's movement (i.e. robot and obstacle "become one", and all translations and rotations are applied at the center of the robot), by creating a static transform between the grabbing robot R i and a single grabbed obstacle M j at the grasping point G k (Cf.

Grasp(W t , R i , M j , G k) = W t+1
• A Release operator that removes the static transform between the grabbing robot R i and its grabbed obstacle M j at the grasping point G k (only valid if the transform exists in W t , of course):

Release(W t , R i , M j , G k) = W t+1
• Similarly to the navigation action space A N , Translations of any direction and any norm:

T (W t , R i , M j , G k , x o f f set , y o f f set) = W t+1 with x o f f set , y o f f set ∈ R 2
• And again, similarly to the navigation action space A N , Rotations of any angle around the robot's geometric centroid (x t R , y t R):

R(W t , R i , M j , G k , θ o f f set) = W t+1 with θ ∈ [-2π, 2π]
In all the experiments so far and in the next chapters, the parameterized translation and rotation operators are slightly different for the manipulation action spaces A omni M and A

di f f M , as they assume 60 • rather than 45 • rotations -this is done to reduce the manipulation search space to accelerate computations, while maintaining good maneuverability. Also, in order to allow the robot to start planning when grasping an obstacle (which is useful if its plan is interrupted while manipulating), the Release operator is added to the navigation action space A N . We chose to only implement a Grasping class action space for two main reasons: • the static transform created by the grasp between the robot and the obstacle's motions makes it easy to guarantee that the robot action space will yield a finite configuration space for both the robot and the obstacle. As explained before, having a finite (robot, obstacle) configuration space guarantees a finite manipulation search graph for the algorithms used for motion planning (A * , Dijkstra), which is a requirement for them to keep their completeness and optimality properties.

The original implementation of [START_REF] Stilman | s incremental binary occupancy grid model[END_REF])'s algorithm [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF] actually used Manipulation Primitives based on forward-simulation of obstacle dynamics through force application upon a single grasp point on the obstacle. In this original action space, while the robot was constrained to translational accelerations during manipulation, the obstacle could rotate around the grasp point. This rotational slip made it possible to solve cases such as the one in Fig. III.24. However, this model required additional physical data for each movable obstacle (center of mass, mass, moment of inertia and viscous friction parameters), which was not actually provided and disputably acquirable by a robot in a real world environment. As this model also did not yield a finite configuration space that would preserve the completeness of the algorithm, we chose not to implement it. FIGURE III.24: A large, constrained object requiring manipulation motions that consider dynamics (copied from [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF]). Red cross is the goal, blue circle and arrow are the grasping point and the force vector.

On the other hand the first implementation of (Wu&Levihn, 2014)'s algorithm used a Pushing class action space where the robot's motions were limited to axis-aligned translations in the direction of the pushed obstacle. The later improved implementations of this algorithm [START_REF] Levihn | Navigation Among Movable Obstacles in unknown environments[END_REF][START_REF] Levihn | Locally optimal navigation among movable obstacles in unknown environments[END_REF] however dropped this action space in favor of a Grasping action space still limited to axis-aligned translations, but that already allowed the resolution of a much wider array of problems. This comforts our own choice to only study a Grasping class action space.

Continuous Collision Detection

In order to keep the simulation's and the robots' world representations valid as they compute and execute plans, these operators must be valid noncolliding actions. As specified in Section III. 1.2.1, these operators describe a continuous contactfree motion of the object. Then, for these operators to be valid, no other entity may intersect with the swept area S(q t R , q t+1 R) of the robot's shape as it translates or rotates between times t and t + 1:

S(q t R , q t+1 R) ∩ W t /R = ∅
Efficiently computing this swept area for polygons is non-trivial, especially in the case of rotations, as the vertices' curved trajectories create a non-polygonal area (Cf. As efficient as this continuous collision detection strategy may be, it would still be computationally expensive to use it at every planned or executed movement, for both the robot and obstacle geometries. Also, checking for intersections with every other entity in the environment, regardless of their proximity to the action would remain too expensive. Hence, we use two data structures representing the world's geometry, in order to minimize the number of full continuous collision checks using Foisy's method:

• Incremental Binary Occupancy Grid We implemented a grid model that Stilman created for his algorithm [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF], in order to accelerate robot collision detection in particular. This model consists first in creating an integer 2D matrix -or planar grid -originally filled with zeros. Then all the world's entities polygonal perimeters are rasterized, after being inflated by the robot's circumscribed circle's radius, and each cell of the rasterized polygons is incremented by one in the grid (Cf. non-zero, then use Foisy's method to complete the check. This drastically accelerates all searches, and in particular, searches over the navigation action space A N .

• AABBTree As to avoid checking for intersections with every single other entity in the world, we applied a common technique used in state-of-the-art physics libraries: an Axis-Aligned Bounding Boxes Tree [START_REF] Hart | Generation of statistically representative microstructures with direct grain geometry control[END_REF]. It basically consists in simplifying and grouping the world's geometries as axis-aligned rectangles in a tree structure. Leaves are actual entities' bounding boxes, and branch nodes are encompassing bounding boxes that do not overlap within the same tree depth. This allows to quickly assess which entities are close enough from the swept area geometry we want to check for intersection with, and require a collision check with the actual entity's geometry instead of its bounding box.

(A) All in all, collision detection is assured with these three complementary data structures for efficient and precise collision detection: polygonal overestimates of swept areas, the AABBTree and the incremental binary occupancy grid.

1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 (B)

III. 3.3 Main simulation module

As stated in the previous chapters, and in the very title of this thesis work, one of the end goals As shown in Chapter II, existing NAMO algorithms are only designed to compute valid actions (that is, discrete physical movements) to execute for a single robot. Hence, when it comes to executing the individual actions produced by each robot's behavior in each simulation loop, a problem arises: how do we execute these multiple actions? For the sake of reproducibility and ease of implementation & debugging, we chose to build our simulation loop so that: • all robots are synchronized with the simulator's clock: that is, at each simulation time step t, each robot is informed of the reference world state W t and asked to compute and execute a discrete action for this time step 29 .

• actions are applied following Jacques Ferber's influence-reaction model [START_REF] Ferber | LES SYSTEMES MULTI-AGENTS. Vers une intelligence collective[END_REF]: that is, the simulator considers these actions returned by each robot's algorithm to be influences (i.e. action attempts) instead of unquestionable orders. These influences need to be integrated by the reference simulated world representation, according to its internal constraints, into a reaction that will synthesize the actual change to be applied to transition the world state from W t to W t+1 . Basically, if two robots were to try to exert two incompatible influences (e.g. manipulate the same obstacle at the same time), the reaction would prevent the execution for both and inform the two robots of the failure -while executing all other compatible influences. This way, the world model can be kept consistent, while allowing multiple actions to happen simultaneously, and guaranteeing an outcome that remains independent of the order in which robot computes its action first.

This simulation loop is illustrated in Fig. III.28. It should be noted that in the same way that influences are computed for all robot behaviors (Think), before integrating them all at once in the reference simulated world (Act) following the pre-named influence-reaction model, we apply the same concept for sensing (Sense). This leaves room to implement the sharing and integration of the robots' perceived worlds, in a way that guarantees consistency at the planning (Think) stage.

III. 4 Conclusion

Having presented our formalism in Section III. 1, the algorithms we will base our subsequent work on in Section III. We also discussed in our Social Navigation exploration how these constraints are often expressed through the notion of social spaces. We then underlined how all these social spaces are only temporary, and only exist in the actual presence of humans at the time of plan computation and execution, at the exception of affordance spaces, that are generated by the potential activity offered by objects. In Social Navigation, adapting the robot's path planning only matters in the actual presence of humans in the environment. However, in a NAMO problem, since moved obstacles stay in place after they are manipulated, it is essential to find and apply social constraints (i.e. social spaces) that exist even in the absence of humans. Otherwise, as illustrated in the above scenario, humans will eventually be disturbed when they appear in the environment.

That is why, in this chapter, we focus on expressing social constraints for S-NAMO based on the concept of affordance spaces.

In the following sections, we first present a naive local and binary affordance space model and discuss its application to (Wu&Levihn, 2014)'s algorithm. We then explore more complex affordance space and constraints models from the literature that could be applied to S-NAMO.

IV. 2 A first naive, local and binary constraint model

Our first approach to modeling a constraint based on the idea of affordance spaces was a naive, binary and local model of taboo zones, that we introduced in our first published paper in the 2019 Robocup Symposium [START_REF] Benoit | Towards S-NAMO: Sociallyaware Navigation Among Movable Obstacles[END_REF]; that is, a set of user-drawn polygonal areas T, representing areas of interest to humans (e.g. display space, carpet, corridor, crossing, . . .). When planning, the robot is required to ensure that the final state M g i of any manipulated obstacle M i during the execution of plan P does not intersect with any of the taboo zones, formally: While this simple approach is indeed capable of yielding some useful results, as we have just seen, it however showcases some non-negligible drawbacks:

∀M i ∈ P, M g i ∩ T = ∅
• Manually inputted data: As previously stated, the method currently needs manual user input to draw taboo zones in relevant spaces, which simply does not scale. The whole point of a robotics algorithm is to have the robot autonomously take decisions for itself using its own sensing datathus it should determine affordance spaces by itself;

• Solution Space Destruction: By completely forbidding the robot from placing obstacles in the taboo zones, the problem's search space is artificially reduced (with the positive side effect of reducing computations), but so is the solution space. In a human environment, there could be many objects creating relevant affordance spaces around them: modelling

Chapter IV. Socially-aware NAMO 93 them all as taboo zones may very well cover the entire space with forbidden areas, making it simply impossible to solve NAMO problems at all. Also, each space may not be as important as the other to respect: affordance spaces should be represented in a way that allows to prioritize not invading some area over some less important area.

IV. 3 Object placement & affordance spaces in the literature

As we have just concluded in the previous section, a finer, more generalizable and scalable constraint model is needed for Social NAMO problems. Rather than diving head-first in the specification of a new and more complex model, let us take the time to review existing work.

As mentioned in Section II. 2.1.1, Lindner & Eschenbach were the first roboticists to formalize the concept of Affordance Space in [START_REF] Lindner | Towards a Formalization of Social Spaces for Socially Aware Robots[END_REF], completing this formalization in later work [START_REF]Affordance-Based Activity Placement in Human-Robot Shared Environments[END_REF][START_REF] Lindner | Affordances and Affordance Space: A Conceptual Framework for Application in Social Robotics[END_REF][START_REF] Lindner | A conceptual model of personal space for human-aware robot activity placement[END_REF]20]. As a reminder, affordance spaces are defined as spaces related to a potential activity provided by the environment -in resonance with the concept of Activity Space, spaces associated with actions being performed by agents. Lindner & Eschenbach further decomposed affordance spaces (syn. "Affordance Regions") into sub-spaces (smaller "regions") as illustrated in Fig. IV.3. An object (here a picture on a wall) that provides an affordance to potential agents is called an affordant: the space occupied by the object is thus called the Affordant Region, while the space occupied by the potential agent(s) is called Potential Agent Region.

The space between these two regions that connects them and allows for the potential interaction to exist is called Potential Transactional Region. Together, the potential agent region and the potential transactional region are called the Potential Core Region.

(A) (B) FIGURE IV.3: Figures from [20] illustrating their affordance space decomposition. (A) A picture with a viewability affordance, generating two affordance spaces: an unused one (dotted lines), and one being used (dashed lines) by a human (orange circle), i.e. an activity space. (B) Taxonomy of an affordance space's components. "P" indicates parthood while "C" indicates connection. If a region is part of another region, then these regions are also connected.

The geometry of these regions depends mainly on the afforded activity type, the spatial structure of the affordant object(s), and the abilities of the agent(s). That is why, while Lindner & Eschenbach did provide a solid theoretical foundation in their aforementioned works, notably in terms of taxonomy, they impart very few examples of actual affordance space geometries.

In [START_REF]Affordance-Based Activity Placement in Human-Robot Shared Environments[END_REF], Lindner & Eschenbach presented a lab experiment with a PR2 robot, where its task was to find and navigate to a socially best placement for recharging in a room (Cf.). This overall model addresses to some extent both drawbacks discussed in the previous section: affordance space instances are generated from pre-programmed models rather than manually drawn, and social reasons allow ranking between different possible choices instead of absolutely forbidding space invasion. However, the affordance space models themselves are manually programmed, and are not trivially generalizable. Also, regardless of the amount of overlap, the social adequacy is deemed to be the same: the ranking of social adequacy is not proportional to the penetrated area. Rather than inferring affordance space instances from the objects layout and manually programmed affordance models, Limosani et al. [22] learned their affordance map from longterm real-world human activity observation, using only an onboard 2D laser scanner. Said affordance map consists in a grid where each cell is associated with a probability of human presence, as illustrated in knowledge cannot be generalized to new environments; given how time-costly it is to generate it (70 days of cumulated observation time over a span of 4 months in their experiment), this is a significant drawback. Indeed, in a real world setting, the robot may not have the opportunity to observe that long, because of other tasks' timing requirements or privacy concerns.

Rather than using real-world activity observation data to map affordance spaces, Jiang et al. learned affordance spaces through the analysis of manually-designed 3D environments and real-world 3D point clouds datasets [START_REF] Jiang | Learning object arrangements in 3d scenes using human context[END_REF][START_REF] Jiang | Hallucinating Humans for Learning Robotic Placement of Objects[END_REF][START_REF] Jiang | Hallucinated humans as the hidden context for labeling 3d scenes[END_REF][START_REF] Jiang | Infinite latent conditional random fields for modeling environments through humans[END_REF]23] without actual humans in said environments. To do so, they have the robot "hallucinate humans", that is, randomly sampling simulated humans in the environment so that they could "interact" with existing objects in the Coincidentally, one of the three main use cases of their model is to find the best placement for a given object in an existing environment, a variation of the rearrangement planning problem. Thus, the authors also show how ideal placements of objects can be determined with a similar process of sampling imaginary humans in the test environment, then sampling relevant placements of the object from the learned affordant region models relatively to these hallucinated humans (Cf. While Jiang et al. observe, even in their latest state of the art (2016, [23]), that the problem of computing relevant object placements has been barely addressed in the robotics literature, it is a core subject in the field of indoor scene synthesis -as shown in one of the latest surveys of the domain [START_REF] Zhang | A Survey of 3D Indoor Scene Synthesis[END_REF]. In order to generate realistic indoor environments, synthesis algorithms similarly need implicit or explicit rules to help decide of meaningful object placements. For example, the reference work of Yu et al. [START_REF] Yu | Make it home: automatic optimization of furniture arrangement[END_REF] derived a set of rules from expert knowledge found in the interior design literature [START_REF] Mitton | Residential Interior Design: A Guide to Planning Spaces[END_REF][START_REF] Ching | Interior Design Illustrated[END_REF], and learned sensible parameter values from automated analysis of a set of human-designed environments. More recently, the popular work of Qi et al. [START_REF] Qi | Human-centric indoor scene synthesis using stochastic grammar[END_REF], yielded consistently more accurate and realistic results than Yu et al.'s stateof-the art. They achieved this notably by borrowing Jiang et al.'s human-centric affordance modeling, and using a much larger human-designed indoor scene dataset as learning material.

Conclusion:

The works we have discussed until now, and the wider indoor environment synthesis literature -that we shall not delve into here, certainly provide very relevant models for object placement constraints and space affordances, that could be used to guide our Social NAMO algorithms. However, they all rely on the hypothesis that extensive and trustworthy semantic knowledge about the environment is readily available, or that it is possible to observe real-world human activity long enough in the environment to derive affordance space knowledge. However, acquiring such semantic knowledge in situ is no easy task for a robot, as the active work in semantic mapping capabilities shows [START_REF] Charalampous | Recent trends in social aware robot navigation: A survey[END_REF]. Also, all these affordance space models we could find are inherently local: the spaces they generate only cover

Chapter IV. Socially-aware NAMO 97 limited regions of the environment (as can be clearly seen in Fig.

IV.4b, IV.5c and IV.7c). For environments with a low number of semantically identifiable objects, or when the robot fails to detect such objects, it would become impossible to reliably leverage such models to guide the robot in choosing good placements for manipulated obstacles in NAMO problems. Finally, we must insist that in NAMO, the main robot purpose remains navigation, that is, to reach the goal while optimizing the robot's displacement cost. To reach such compromise, the robot needs to be able to evaluate the social relevance of manipulating the obstacle to any configuration that helps with the robot's navigation -not just to find the best placement for the moved obstacle. All these reasons bring us to the conclusion that a less object semantics-dependent, more global model of social adequacy for obstacle placement is needed.

IV. 4 The Social Placement Choice NAMO Problem

Our exploration of the Social Navigation literature (Cf. Section II. 2.1.1) reminded that a common way to approach social space modeling is through the use of costmaps -grids where each cell is associated with a cost of entering it. The higher the cost, the higher the disturbance to humans. According to the surveys we have discussed, while this approach may oversimplify the problem, it allows for simple search, representation, and combination of many types of social considerations. Hence, we choose to formulate our Social Placement Choice NAMO problem using a global costmap that covers the entire environment.

For this, let us first define notations and structures of the problem, in the continuity of those given in Section III. 1:

• a discrete representation (syn. raster) G(W t) of workspace W t as a 2D binary occupancy square grid, without loss of generality. Cells are addressed by tuples of coordinates (x, y) ∈ N 2 .

• another 2D grid G SC built from G(W t) (thus sharing the same dimensions, position, orientation and resolution), where each cell is associated with a social occupation cost SC(x, y) ∈ R + .

We write Cells(E t i) the cells occupied by any entity E i at time t. The social occupation cost SC(M t i) is written as the sum SC(x, y) of each cell occupied by a movable obstacle M i at time t:

SC(M t i) = ∑ ∀(x,y)∈Cells(M t i) SC(x, y) (IV.1)
Finally, we define the total social occupation cost of the NAMO plan P as the sum of the social occupation cost of all manipulated obstacles in their final configuration M g i :

SC(P) = ∑ ∀M i ∈P SC(M g i) (IV.2)
With this formalization, we can now fully define the problem we shall address in this chapter as a multi-objective optimization problem:

The Social Placement Choice NAMO Problem (abb. SPC): Given an initial workspace configuration W t 0 , the Social Placement Choice NAMO problem consists in computing, if it exists, a plan P for a manipulator robot R from its initial configuration q t 0 R to a goal configuration q g R , while being allowed to Manipulate movable obstacles M i ∈ M as necessary, guaranteeing the absence of any collisions between the robot R and manipulated obstacles with any other obstacles O i ∈ O, while minimizing both the resulting displacement cost4 C(P) and total social occupation cost SC(P) caused by the final configurations M g i of obstacles it moves.

IV. 5 The Social Occupation Cost Model

As we concluded in Section IV. 3, it is no trivial matter to acquire enough semantic knowledge about objects in the environment, their affordances and associated affordance spaces, to inform every cell in our social cost grid. Fortunately, we have found a very relevant insight in the field of interior design, that is well-summarized in the following quote: "Providing adequate space for movement is essential and requires careful consideration of ergonomics, scale, and organizational flow" Mitton and Nystuen, 2016 [START_REF] Mitton | Residential Interior Design: A Guide to Planning Spaces[END_REF] That is, the layout of human space is very much deliberate: as such, any free space in a human environment has, in and of itself, a strong semantic meaning we can use of accessibility and circulation. Free floor space, by offering an affordance of Navigability/Accessibility arguably generates an affordance space that spans its entirety. That is, in the terms of Lindner & Eschenbach [START_REF] Lindner | Towards a Formalization of Social Spaces for Socially Aware Robots[END_REF], the entire free floor space is at the same time an affordant region, potential agent region and transactional region.

Incidentally, binary occupancy grids of fixed obstacles are common prerequisites of widelyused navigation frameworks like the ROS Navigation Stack [START_REF] Lu | Layered costmaps for context-sensitive navigation[END_REF], and most importantly, not only do they model the occupied space of fixed obstacles, they also do in fact model free space.

Building such grids from real world observation is a straightforward and arguably mastered field, and they can even alternatively be obtained through fire evacuation maps almost systematically available in modern buildings [START_REF] Mielle | SLAM auto-complete: Completing a robot map using an emergency map[END_REF].

IV. 5.1 Heuristic hypotheses

Following our argumentation above, let us assume that all free space in human environments can be considered as passageways that are designed to offer space for a certain number of people to walk abreast, which we will call space allowance (which holds especially true in public buildings [START_REF] Interior | Arrete du 25 juin 1980 portant approbation des dispositions generales du reglement de securite contre les risques d'incendie et de panique dans les etablissements recevant du public (ERP)[END_REF]). Since we only assume to have the binary occupancy grid of static obstacles as prior knowledge, our focus can only be the preservation of the environment's original topology and space allowances. human-sized grid decomposition highlights the impact of different object placement choices on the space allowance. When empty, the top corridor allows a minimum space allowance of 2 humans walking abreast (eq. 2 human units), while the bottom room allows for 4 people.

As illustrated in the left-most figure of closest to the wall (3 over 4 human units). Furthermore, in the "middle-of-the-room" case, the room is in fact split into two passageways, each only allowing a single human to pass abreast, instead of the initial 4, so the actual loss of initial space allowance could be considered to be of 75% in this case. Clearly, out of all options, leaving the obstacle in the largest space, and as far away from the middle of space as possible, appears to be the best choice to preserve the initial space allowance.

Thus, we propose the following two heuristic hypotheses:

1. AVOID-MIDDLE: The original free space allowance must be the least divided: thus, the cells in the "middle of the space" must have the highest local costs;

2. AVOID-NARROW: The narrower a passageway, the higher the relative loss of space allowance that can be caused by an object: thus, narrow spaces must have higher costs than wide spaces.

In the remainder of this Section IV. 5, we shall translate these hypotheses into mathematical operations, that will allow us to build a coherent social occupation costmap from the binary occupancy grid of fixed obstacles G(F).

IV. 5.2 Computation steps overview

The algorithm we create to translate the above heuristic hypotheses can be summarized with the following four steps (which we shall delve further into in the following subsections):

Chapter IV. Socially-aware NAMO

IV. 5.3 Skeleton & Space Allowance

Determining the skeleton of a binary occupancy grid and the minimal distance to obstacle cells are well-known problems in the literature, and can respectively be done using skeletonization [START_REF] Saha | Skeletonization: Theory, Methods and Applications[END_REF] and distance transform [START_REF] Fabbri | 2D Euclidean Distance Transform Algorithms: A Comparative Survey[END_REF] algorithms.

Given the tremendous amount of choice of skeletonization algorithms in the literature, we focused our choice on three of the most popular: Zhang-Suen [START_REF] Zhang | A Fast Parallel Algorithm for Thinning Digital Patterns[END_REF], Guo-Hall [START_REF] Guo | Parallel thinning with two-subiteration algorithms[END_REF] and Medial-Axis [START_REF] Blum | A Transformation for Extracting New Descriptors of Shape[END_REF]. We ended up choosing the Guo-Hall algorithm, because, it has a very good contour noise immunity, and does not produce end-of-edge artifacts like Zhang-Suen. To express the original space allowance of passageways (i.e. their "broadness"/"narrowness"), we must measure the minimum euclidean distance from fixed obstacles (in contrast to taxicab or chessboard distance), since passageways do not necessarily follow perfect diagonals or straight lines in the grid. We thus use the Euclidean Distance Transform [START_REF] Fabbri | 2D Euclidean Distance Transform Algorithms: A Comparative Survey[END_REF] on the binary occupancy grid of fixed obstacles, resulting in a costmap where each cell contains the euclidean distance to the nearest obstacle (in meters), as illustrated in Fig. IV.9A.Bottom. The minimum distance value d min (x, y) in a cell belonging to the skeleton SK(G(F)) corresponds to half the space allowance associated with this cell. For example, the left-most cell in the corridor has a minimum distance of 0.45 m from the closest wall, offering a space allowance of 0.9 m (i.e. an entity/group of entities 0.9 m wide could stand in this cell).

IV. 5.4 From Space Allowance to Social Occupation Cost

To transform the previously computed minimum distance d min (x, y) in each skeleton cell (x, y) ∈ SK(G(F)) into a meaningful social cost that expresses the AVOID-NARROW rule, we must use real-world measurements that define what is narrow or wide for humans. Basically, we want the cost to be maximal for any space allowance that is below a reference human diameter d h , that is, any minimum distance value d min (x, y) below a reference human radius r h = d h 2 , then decrease as the space allowance increases. To find a convincing d h value, we turn to anthropometrics, and use the DINED database, the largest freely accessible resource of human body measurements [START_REF] Johan | DINED -anthropometric database[END_REF]. We derive the value of d h from standing breadth over the elbows, which is the widest measurement in a standing posture with arms at rest (Cf. Then, to determine a relevant decrease profile, we turn to a commonly used law-defined measurement in French construction [START_REF] Interior | Arrete du 25 juin 1980 portant approbation des dispositions generales du reglement de securite contre les risques d'incendie et de panique dans les etablissements recevant du public (ERP)[END_REF]: "UP" or "Unités de Passage" (litt. "Passage Units").

UPs describe the minimal space allowance between obstacles/walls for the passageway to allow proper emergency evacuation for n persons: 1UP = 0.90m (meant to comply with standard wheelchair width), 2UP = 1.40m, and for three and beyond nUP = n * 0.60m (Cf. Fig.

IV.11b).

An indoor passageway is rarely more than 5UP = 3m large because the same law recommends increasing the number of passageways rather than create ones that are more than 5UPs large: therefore, we choose to keep the social cost constant beyond 5UP. For the sake of keeping social occupation cost values comparable, we reduce the interval of acceptable values to [0, 1]. The cost values associated with each UP between 1 and 5 can be adjusted depending on the relative importance users give to preserving space allowance.

f prop : W → R[0, 1] f prop (x, y) =    f conv (x, y) if (x, y) ∈ SK λ • min(Neighbors(x, y)) if (x, y) / ∈ SK (IV.4)
The process and resulting costmap are illustrated in Figure IV.12. As expected, the middle of space is populated by ridges created by local social occupation cost maxima, and the narrowest spaces are associated with the highest costs, encouraging placement choices outside the corridor and away from the room's center, especially in front of the opening.

IV. 6 Integrating the social occupation cost to NAMO Algorithms

IV. 6.1 Relevant algorithms for this integration

As stated at the end of our problem definition in Section IV. 4, minimizing both the displacement cost of existing NAMO algorithms and our social occupation cost is a typical multiobjective optimization problem. Such a problem is generally solved using the concept of Pareto optimality, and more precisely by finding the Pareto front. By definition, finding the Pareto Front of our problem would require computing the set of all valid plans P pareto for which there is no action to be added that could decrease the robot displacement cost C(P), without increasing the total social occupation cost SC(P). Then, we would need to select one plan to execute among the ones in the Pareto front P pareto : to do so, we would have to favor either the robot displacement cost C(P) or the total social occupation cost SC(P).

As the above definition suggests, computing the Pareto front P pareto would require the computation of all valid NAMO plans -although, the literature we have summarized in our NAMO state of the art in Section II. 1 clearly states that such an exploration is unrealistic for all NAMO problems. Even when considering only a subset of NAMO problems, as [START_REF] Stilman | s incremental binary occupancy grid model[END_REF] and (Wu&Levihn, 2014)'s algorithms do, systematically computing the corresponding subset of all valid NAMO plans is still difficult, and should only ever happen when the problem is in itself difficult for the algorithms -certainly not every time the algorithm is called.

In the case of (Wu&Levihn, 2014)'s algorithm, trying to replace the displacement cost optimality by a Pareto optimality would require dropping two search space reduction strategies: the entire obstacle selection routine (Cf. Section III. 2.1.1 and Alg. 3) and the obstacle manipulation planning bound (Cf. Section III. 2.1.1 and Alg. 4, l.24). As these two strategies rely on the property that individual action's displacement cost positively accumulate, they would simply not apply in this multi-objective optimization setting. Both cited functions would need to be rewritten so that all obstacles would be evaluated, and all valid plans would be computed for each obstacle. The problem is that, according to Levihn [START_REF] Levihn | Navigation Among Movable Obstacles in unknown environments[END_REF], these two strategies are each individually responsible for an 80 to ∼98% reduction in computational requirements of the algorithm. Thus, even if it is possible to adapt (Wu&Levihn, 2014)'s algorithm while keeping its optimality property, it would simply cripple the algorithm's computational efficiency.

On the other hand, (Stilman, 2005)'s algorithm already surrendered optimality, to rather guarantee completeness for solving L 1 problems in reasonable time [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF], which they achieved through their obstacle choice heuristic (Cf. Section III. 2.2.1 and Alg. 8). If there is no need to maintain an optimality proof, then there is no need to compute all valid plans, to find the Pareto front and picking "the" best plan. Rather, we can focus on formulating a useful heuristic to find a good compromise. This heuristic will thus be applicable to any other NAMO algorithm that does not require an optimality proof, which is the case for most of the literature, according to our NAMO literature survey in Section II. 1. This is why we shall base all our experiments until the end of this thesis upon [START_REF] Stilman | s incremental binary occupancy grid model[END_REF])'s algorithm.

IV. 6.2 A heuristic compromise cost

We thus propose to compute and use a heuristic compromise cost CC(x, y) in the transfer planner (syn. obstacle manipulation planner) of NAMO algorithms, for the set of potentially reachable cells to move the selected obstacle at. We do that with the following process, illustrated in 1. Temporarily remove the selected obstacle M i from the robot's binary occupancy grid.

2. Inflate the grid by the inscribed circle radius of M i . This operation allows to find a subset of potentially acceptable cells for M i .

3. Compute a goal-less Dijkstra search from M i 's center cell. The set of potentially reachable cells for moving M i is thus obtained, with an underestimate of the distance d M i (x, y) to reach them 5 1. it can be used to bound the action space exploration, modifying the search exit condition, so the search is stopped early when a solution leaves the evaluated obstacle's center in 5 The goal cells are filtered out of this set afterwards so that the robot can't put the obstacle on it. 2. before starting the search, it can be used to select the obstacle cell with the least combined cost as target cell, and focus the search towards it. Even if the cell may not be reachable, the previously discussed bound allows exit if a cell with a close-enough compromise cost is reached.

These two modifications preserve the algorithm's completeness, as they do not prevent the search to explore all reachable transfer configurations if none of the top n percent best CC cost cells can be reached. Thus, any problem that can be solved by the baseline algorithm is guaranteed to be solvable by the modified social version -which is significant to make a fair comparison between the two.

We applied both modifications to our [START_REF] Stilman | s incremental binary occupancy grid model[END_REF] improved algorithm presented in Section III. 2.2.2, using an A * search instead of the Dijkstra search to focus on the best compromise cell for the S-NAMO variant 6 (Cf. Alg.9, l.2).

IV. 7 Experiments

Now that we have defined a social cost model that does not demand complex semantic knowledge, found a way to combine it with existing NAMO Algorithms' transfer planners, and chosen a relevant NAMO algorithm as a baseline to compare against, let us experimentally explore its effects. All experiments were run on an Intel Core i7-8850H CPU @2.60GHz with 16 GB of RAM.

IV. 7.1 Simulation parameters

Before going any further, let us first define the algorithm's parameters values for the experiments: these are summarized in Table IV • The grid resolution of 0.1 m we have adopted is a common choice in the NAMO literature, as it can represent details of many objects in human environments while not needlessly multiplying the number of cells and thus computational requirements;

• The decay factor λ is mainly tied to the grid resolution choice, and has been decided upon so that the decrease profile was not too steep in the 4 environments. The chosen value of 0.97 can reasonably be expected to generalize well with other human indoor environments, supposing the same grid resolution. The finer the resolution, the lower the decay factor value should be to get a similar social costmap;

• For the Compromise Cost weights w M i , w goal and w SC , we started out with a 50/50 distribution between social and distance-related weights (that is, w M i + w goal = w SC). We quickly favored the obstacle movement distance estimate over the distance-to-goal estimate (more precisely, w M i = 10 and w goal = 2), as obstacle transfers are inherently costlier than navigation. In the end, we chose to slightly favor social cost further (w SC = 15 > w M i + w goal), as we wanted our algorithm to slightly favor socially-relevant choices over displacement-minimizing ones.

• The compromise cost search bound n is set to 1% of the selected best compromise cost.

We have found this to be a good compromise between bringing the obstacle close enough to the selected cell, while not wasting further computational time trying to reach the one specific chosen cell.

IV. 7.2 Evaluation criteria

We now need criteria for measuring both the displacement cost efficiency and social acceptability of solutions. For displacement cost efficiency, as in all of NAMO literature, we use the total euclidean distance for transfer and transit paths, respectively L transit and L trans f er (L transit + L trans f er = L total) -rather than using the algorithm's specific displacement cost definition.

As for social acceptability, we define the following criteria:

• Total Social Occupation Cost ST : Derived from our model, it is the sum of SC for all movable obstacles at time t. It represents the global space accessibility disturbance for humans within a single criterion.

ST(W t) = ∑ ∀M i ∈M SC(M t i) (IV.6)
• Number of components Nc : In the grid representation of W t inflated by the reference human radius r h defined in Section IV. 5, it is the number of interconnected sets of cells C i h (W t) that make up the global set of accessible cells for humans C acc h (W t), as illustrated in Fig.IV.14. Free space components are as much of an essential topological characteristic of space for humans, as they are for robots: disconnecting (i.e. adding) space components for humans can arguably be considered the worst navigability/accessibility affordance violation -hence why it is essential to measure it. • Space fragmentation percentage f rag : In the same grid as before, it relates the size of the biggest free space component C max h (W t) to the total size of free space C acc h (W t). It allows to measure the accessible proportion of space for a human if it were present in the biggest free space component, relativizing the previous criterion of number of components. For example, if an environment were only 5% fragmented, but had dozens of very small free space components, it would arguably remain very much navigable for a human without having to resort to manipulation. Conversely, if the same environment were to be split into three equal components, resulting in a ∼ 33% fragmentation, the likelihood of the human having to resort to manipulation to navigate the environment between any two points would conceivably be higher.

Nc(W t) = |{C i h (W t)}| (IV.
f rag(W t) = 1 - |C max h (W t)| |C acc h (W t)| (IV.8)
A plan improves social acceptability by lowering any of these criteria between W t start and W t end , t end being the time at which the robot has executed all its actions. Finally, we also provide the total planning time T planning to represent the computational cost of each plan; this value is averaged (and provided with standard deviation), as it may vary across multiple runs of a same experiment.

IV. 7.3 Results

IV. 7.3.1 Short-term experiments

We first evaluated our approach with four short-term scenarios of increasing complexity, each shown in a line of Fig.IV.15. "Short-term" refers to the low number of successively executed goals in these scenarios (mainly 1 per scenario), comparatively to our second set of experiments in the following Section IV. 7.3.2 (100 per scenario). These "short" and "long"-term designations are thus not used as strictly opposite terms, but designate a spectrum, where one-goal scenarios are however definitely considered short-term. Since, the current NAMO literature only covers short-term, one-goal scenarios, it makes sense to first study such scenarios.

In It must be reminded for proper understanding that the free space components represented in the last three columns are computed using the reference human radius r h , and not the (smaller) robot radius. Thus, even if the robot successfully connected two components to pass, the components may still be disconnected for humans, as can be seen in the 6th column for). In the 3rd and 4th columns, only the final state after these multiple goals is shown.

In scenario [C], the same phenomenon observed in [B] occurs: the NAMO approach blocks another intersection branch while the S-NAMO approach drives the obstacle to the environment's periphery. This reinforces the evidence that a better obstacle placement from a social point of view comes at the price of an increase in traversed distance -here, a 31% overall increase, with a 4 times longer transfer distance. But more importantly, this scenario shows that, out of the three criteria we propose to evaluate social acceptability, only the one based on our social cost computation ST allows us to differentiate the quality of solutions that produce almost the same change in number of components (4 → 3) and space fragmentation (∼45% → ∼28%).

Finally, Scenario [D] shows that our approach is capable of growing up to scale in big realistic environments. Indeed, despite the environment size and complex topology, corridors around the middle obstacle and tight passages between desks in the surroundings, the offices' passageways are properly detected as less appropriate for obstacle placement than the wider areas like office corners, the entry hall on the left and the big intersection on the right. The results in Table IV.2 show that despite this increase in complexity compared to the other scenarios, our approach still succeeds in achieving more socially acceptable solutions than the baseline approach 7 , for a similar computational cost.

Preliminary Conclusion:

This last scenario, together with the results of scenario [B], go to show that while our approach may incur higher displacement costs (which was to be expected), it does not necessarily increase computational costs. These experiment tend to show that using our social cost model seems to systematically yield better results social-wise, not only from the perspective of our own model-dependent criterion (ST), but also with independent topology and geometry-based criteria (Nc and f rag).

IV. 7.3.2 Long-term experiments

We observed in our previous experiments, notably in the "Crossing" [B] scenario, that our social cost model could not only achieve better social adequacy, but could also positively affect other evaluation criteria such as computation time in longer-term experiments. In scenario [B],

if the robot were asked to repeat several times the four-goal sequence of the scenario, at some point, the NAMO baseline would inevitably become costlier in terms of traversed distance than the S-NAMO alternative, because of the repetitive additional transfer actions between the intersection's branches. Rather than studying further this simple scenario, let us explore whether S-NAMO can positively affect non-social evaluation criteria in the more complex environment of "Intersections" [C].

To do so, we executed 200 experiments in this environment, randomizing the start robot configuration and a sequence of 100 goals each time, but not randomizing the position of movable obstacles, since they need to be put in relevant places (keyholes) to create actual NAMO problems. We again compare the NAMO baseline with our S-NAMO approach: an example of such an experiment is shown in The second conclusion derives from the first one: a more accessible space for humans is also a more accessible space for the robot 8 . Improvements to the environment's state are also reflected by a reduction of the total path length (Cf. Experimental results on scenarios of increasing complexity have shown the scaling and generalization capabilities of our method. The same results tend to show that in the shortterm, improving social adequacy of obstacle placement comes at the cost of increased robot movement, but that in the longer term, the displacement cost may become lower especially in initially cluttered environments, by tidying them up. It is to be noted that, to the best of our knowledge, we are the first to explore long-term NAMO experiments. In our experiments, the computation time of socially-aware obstacle transfers was systematically higher than that of non-aware ones, mainly due to the cost of exploring more robot-obstacle configurations.

We however attribute this mainly to the choice of A * as transfer planning algorithm, which does not focus the search too much for the sake of completeness and optimality. In future experiments, algorithms such as Jump Point Search [START_REF] Harabor | Online graph pruning for pathfinding on grid maps[END_REF] or RRT* [START_REF] Karaman | Sampling-based algorithms for optimal motion planning[END_REF] could be used to focus this search more towards the selected best compromise cost cell, likely resulting in reduced transfer planning computation time.

Our model could certainly still be improved, notably in regard to its parametrization. As with any parameterized model of human preference, finding good -or best-parameter values for our social cost model that hold relevance beyond the eye of the experimenter would require feedback from a large and diverse-enough group of humans -which we did not have access to in the context of this work. In the future, it may be relevant to set up a social experiment where humans could rank social costmaps and corresponding S-NAMO robot plans with a larger dataset of indoor environments.

Finally, our adoption of a costmap-based social constraint model leaves the door open to straightforwardly integrating local object semantics-based affordance space models such as those of Jiang et al. [23], or human observation-based ones such as the one of Limosani et al. [22], that we both mentioned in Section IV. 3. This would also require tuning weighting parameters to integrate the different costs into one, but the resulting model would certainly yield even more meaningful and relevant obstacle choice placements.

Chapter V

Multi-Robot NAMO

In addition to the conclusion of our state of the art in Chapter II that social concerns had never been addressed in the NAMO literature, we also remarked that actual Multi-Robot NAMO had never been addressed either: that is, having several robots share the same space, concurrently navigating while moving obstacles out of their way without colliding. In the previous chapter, we developed a social model for robots to make NAMO plans that take into account the potential navigation needs of all agents (in other words, the accessibility affordance for humans and other robots), even if they are not within the environment at the moment of plan

V. 1 MR-NAMO Problem definition

We build the General MR-NAMO problem in the continuity of the General NAMO problem definition given in Section III. 1. As the name indicates, the purpose of the following section V.

1.1 is to express a definition that is as general as possible; the subsequent section V. 1.2 presents the additional hypotheses we use to constrain the scope of problems covered by this definition as to facilitate implementation and experimentation in the rest of the chapter.

V. 1.1 General MR-NAMO problem

Instead of a single robot, we define R =< R to the sets of obstacles perceived to be either fixed or movable by robot R i .

Each robot R i has its own action space A R i , that may or may not include Manipulate opera- tors: in the general case we aim to model here, not all robots possess a manipulation capability. This heterogeneity of capabilities means that categorization of obstacles as movable or fixed may not necessarily be the same for each robot. As such, in the reference world W re f , the sets of movable and static obstacles must be written as subsets specific to each robot: F re f ,R i and M re f ,R i . These notations respectively refer to the sets of obstacles that are actually fixed or movable for robot R i .

We explained in Section II. 2.2.1 that a coordination problem's main concern is to prevent conflicts -that is, incompatible concurrent access to a same resource. The fundamental conflict type of Multi-Robot coordination problems is of Space conflict -in other words, physical collisions. In our formalism, such a conflict occurs if, at a time t within the time of execution of both plans (written as [min(P R i , P R j), max(P R i , P R j)]), the swept area S of a robot's action A R i (t, t + 1) intersects either with the swept area of another robot's action, or with the space occupied by any obstacle ∈ O t that is not manipulated by current said action (written as

M k ∈ A R i (t, t + 1)): ∃R i , R j ∈ R, ∃t ∈ [min(P R i , P R j), max(P R i , P R j)], S(A R i (t, t + 1)) ∩ S(A R j (t, t + 1)) ̸ = ∅ or S(A R i (t, t + 1)) ∩ O t /M k ∈A R i (t,t+1) ̸ = ∅ or S(A R j (t, t + 1)) ∩ O t /M k ∈A R j (t,t+1) ̸ = ∅ (V.1)
In a multi-robot setting, multiple robots may manipulate a same obstacle at the same or at a different time, which can result in another type of conflict beyond Space Conflicts, that we call Movable Obstacle Conflict. In our formalism, such a conflict occurs if:

• at the same time t, two robots R i and R j want to Manipulate a same obstacle M k (at respecting grasps G n , G m) and have it follow different expected trajectories τ(q t M k ,R i , q t+1 M k ,R i) and τ(q t M k ,R j , q t+1 M k ,R j):

∃R i , R j ∈ R, ∃t ∈ [min(P R i , P R j), max(P R i , P R j)] s.t. A R i (t, t + 1) = Manipulate R i (W t , M k , G m , τ(q t R i , q t+1 R i)) and A R j (t, t + 1) = Manipulate R j (W t , M k , G n , τ(q t R j , q t+1 R j)) and τ(q t M k ,R i , q t+1 M k ,R i) ̸ = τ(q t M k ,R j , q t+1 M k ,R j) (V.2)
• a robot R i wants to Manipulate an obstacle M k at expected configuration q t M k ,R i , but another robot's plan would result in the obstacle being in a different configuration q t M k :

∃R i ∈ R, ∃t ∈ P R i s.t. A R i (t, t + 1) = Manipulate R i (W t , M k , G i , τ(q t R i , q t+1 R i)) and q t M k ̸ = q t M k ,R i (V.3)
This being said, and with the inspiration of the MAPF problem definition given in Section II. 2.2.2, we can now formulate our problem:

General MR-NAMO Problem: Given an initial workspace configuration W t 0 with a set of robots R =< R 1 , ..., R r >, the MR-NAMO problem consists in computing, if they exist, for each robot R i with an action space A R i that may or not allow manipulation of movable obstacles M i ∈ M re f ,R i , a plan P R i from its initial configuration q t 0 R i to a goal configuration q g R i , that can be concurrently executed while guaranteeing the absence of conflicts between the robots, their manipulated obstacles, and any other obstacles O k ∈ O.

V. 1.2 Additional hypotheses for our study

In order to explore MR-NAMO for the first time, we need hypotheses that will allow us to sufficiently simplify the problem as to make it possible to experiment within reasonable research time. We ended our state of the art in Section II. 2.2.2 with an argumentation as to how and why we should simplify the General MR-NAMO problem formulated above; let us now formalize this argumentation here:

Homogeneous & Omniscient Multi-Robot System: We shall assume all robots share the same action space A (that necessarily includes at least one Manipulate operator) and sensing capabilities -meaning that fixed (F) and movable obstacles (M) will be the same for all manipulator robots. Since we want to experiment with our social cost model again, we will be experimenting using [START_REF] Stilman | s incremental binary occupancy grid model[END_REF]'s algorithm for the same reasons described in Section IV. 6.1. As such, all robots will operate under the same assumption of omniscient perception that [START_REF] Stilman | s incremental binary occupancy grid model[END_REF]'s algorithm does, for the sake of simplicity:

∀R i ∈ R, W R i = W re f and A R i = A ∀R i ∈ R, F re f ,R i = F re f = F and M re f ,R i = M re f = M
Implicit Communicating Multi-Robot System: We will also assume that only implicit (syn. Indirect) communication is allowed between the robots -that is, they can only obtain information about each other through environment observation and cannot directly send signals to one another. As discussed in Section II. 2.2.2, we consider that the first approach to Multi-Robot NAMO should ensure maximum robustness regarding the possibility of individual robot or communication failure. Consequently, the NAMO coordination strategy we propose in this chapter will thus need to be fully implicit.

One-to-one robot-obstacle relationship:

We assume that movable obstacles may not be concurrently manipulated. At any given time t, an obstacle may only be manipulated by a single robot, in the same way that a robot may only manipulate one obstacle at once, which simplifies Equation V.2 by removing its last line:

∃R i , R j ∈ R, ∃t ∈ [min(P R i , P R j), max(P R i , P R j)] s.t. A R i (t, t + 1) = Manipulate R i (W t , M k , G m , τ(q t R i , q t+1 R i)) and A R j (t, t + 1) = Manipulate R j (W t , M k , G n , τ(q t R j , q t+1 R j)) (V.4)
This hypothesis strengthens the "One obstacle at a time" hypothesis of the NAMO literature, discussed in Section III. 1.4. As explained in Section II. 2.2.2, this hypothesis allows us to temporarily dodge the non-negligible difficulty of the Multi-Agent Object-Pushing Problem, notably making physics simulation simpler since we don't have to compute interactions on a same obstacle.

Synchronized discrete-time clocks:

We assume time is discretized into simulation steps (as we have done until now), that are synchronized across robots (akin to a shared clock). Planning time is assumed to always fit within a simulation step, so that regardless of actual computation time, determinism of solutions is not affected.

It is to be underlined that the hypotheses of "Synchronized discrete-time clocks" and "Robot

Omniscience" are compatible with that of a fully "Implicit Communicating Multi-Robot System". Actually, the omniscient hypothesis could be relaxed if we were to use (Wu&Levihn, 2014)'s algorithm instead of (Stilman, 2005)'s algorithm, so long as the robot sensing capabilities allowed it a field of view wide enough capable of guaranteeing absence of collisions.

(Wu&Levihn, 2014)'s algorithm would also require a slight modification to its execution routine to trigger replanning not only when an obstacle intersects with the current plan, but also anytime an opening is observed, as to keep the local optimality guarantee. In any case, now that our problem has been properly defined, let us now present our resolution proposition in the next section.

V. 2 Implicit Coordination in MR-NAMO V. 2.1 Potential conflict detection

According to the problem definition in the previous section, a solution cannot allow conflicts.

Thus, our algorithm must provide a means of detecting them; only then can robot adjust its plan as to avoid them. As stated in the same definition, conflicts can be straightforwarldy detected by comparing the plans of each robot that is part of the Multi-Robot System, and listing any action verifying any of the Equations V.1, V.3 or V.4. However, comparing plans would require explicit communication for the robots to share their plans [START_REF] Ferber | Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence[END_REF] -which we do not allow.

As such, our robots may only predict Potential Conflicts, by comparing their remaining actions with the observed world state W t R i . Our problem definition requires that potential conflict detection is to guarantee that it cannot fail to identify a situation as a potential conflict that will turn into an actual conflict (i.e. detection false negative). Identifying a situation as a potential conflict although it will not turn into an actual conflict (i.e. detection false positive) is however compatible with the problem definition. Still, potential conflict detection should minimize false positives, as they may imply subsequent planning, and thus computational overhead. That is why, in the following lines, we further differentiate our two main conflicts types, into 6 subtypes (abstractly synthesized in Fig. V.2 and discussed further in the following paragraphs) as to devise relevant detection strategies for each, that both guarantee absence of false negatives and reasonably limit false positives. Detecting potential conflicts consists in iterating over the remaining actions of the robot's plan after the current time t, and estimating whether executing each action at its planned time is likely to generate an actual conflict. Our hypothesis of "Synchronized discrete-time clocks" implies that it is first and foremost imperative to ensure that no conflict may happen between Chapter V. Multi-Robot NAMO 122 the current time t and the next time step t + 1. This is why we first define the following two potential conflict subtypes: Simultaneous Space Access (abb. SSA) potential conflicts: the situations where two or more robots (or their eventual currently manipulated obstacles) could collide (i.e. try to access the same space) in between the current and next time step [t, t + 1], potentially verifying equation V.1. Without access to the other robots' plans, each robot R i would need to compute the potential swept area for all possible actions for each other robot in their action space A R j within [t, t + 1], written as S(A R j (t, t + 1)). Computing the exact potential swept area is feasible under our "Homogeneous & Omniscient Multi-Robot System" hypothesis, since all robots share the same action space A. However, we don't want our approach to be strongly tied to this hypothesis, nor spend the computation time it would require to simulate all possible actions for all other robots, at each time step. That is why we opt for a circular overestimate of S(A R j (t, t + 1)), as illustrated in Fig. V.3, accounting for any rotation or translation of each robot R j that may occur within [t, t + 1]. To guarantee this, the circle's radius must be at least equal to the radius of the circle circumscribing the robot R j 's polygon, plus the maximum translation expected in A. If the robot R J is currently manipulating an obstacle M k , the radius of the circle circumscribing the robot R j 's polygon and M k 's polygon is used instead (Cf. Stolen Object potential conflicts (abb. SO): situations where a movable obstacle M k that was planned for movement by a robot R i has been transferred (Stolen) -but is not being transferredby another robot R j before R i (Cf. Fig.V.7), potentially verifying equation V.2. Detection could be achieved simply by checking the grab status and whether the current movable obstacle configuration q t M k differs from the expected start configuration for the planned transfer path of robot R i .

Since a movable obstacle cannot move by itself, these three subtypes of potential conflicts are very unlikely to solve themselves without the robot R i taking appropriate action. Thus, the robot should detect these potential conflicts beyond the very short horizon of the next action to be executed within [t, t + 1], up until the current plan's end time t end , similarly to (Wu&Levihn, 2014)'s execution routine (Alg.1). This discussion about the detection horizon brings us to our last subtype of potential conflict: Robot-Robot potential conflicts (abb. R-R): situations where, in between [t, t + h], h > 1 being a given time horizon, the plan of one robot R i geometrically intersects with another robot R j or their eventual currently manipulated obstacle (Cf. V.1. They can be understood as an extension of Simultaneous Space Access potential conflicts beyond the next time step t + 1, allowing the robot to react sooner than at the last step. It would be however be counter-productive to have the robot react every time another robot temporarily crosses its plan so far away that by the time the robot gets there, the other one is already long gone -hence the introduction of the check horizon h. The smaller h, the less often the robot needs to react to other robot's movements, but the later it can react thus uselessly augmenting the robot displacement cost to the goal. There as many potential conflicts to a robot's plan P in a world state W t as there are intersections with the collision geometries we just presented. Even a single action's swept area may intersect with multiple other entities, generating a potential conflict detection for each. The whole point of detecting these potential conflicts is to allow the robot to take a decision as to what to do in these crucial moments, in order to prevent these potential conflicts FIGURE V.9: Implicit coordination strategy decision graph for potential conflict resolution, equivalent to Algorithm 10, C-NAMO.

V. 2.2.1 Postponement

Upon potential conflict detection, the robot only has two options: updating the plan (Alg. 10, l.10) or waiting in hope that the potential conflicts disappear on their own (Alg. 10, l.9). The latter consists in starting a timer for a random duration uniformly selected within a reasonable interval [t min , t max] (Alg. 10, l.27). This timer is preempted (and thus, reset) if the potential conflicts disappear (Alg. 10, l.8), otherwise, a re-planning is triggered once the timer is over (Alg. 10, l.28 -the timer is also reset upon the IS-TIMER-OVER function returning True). It is to be noted that, as the formal writing suggests in Alg. 10, the timer is plan-dependent: once the plan is updated, the timer is reset too.

The randomness allows to break the symmetry in potential conflicts like Simultaneous Space Access (Cf. That is why we immediately re-plan whenever they are detected (Alg. 10, l.9). One could expect we would do the same for Stealing Object conflicts, but it actually makes more sense to not immediately re-plan, but rather wait so that re-planning occurs once the obstacle has been cleared by another robot.

Finally, in order to guarantee that the algorithm terminates, the number of calls to the NAMO-PLAN function is limited to a ceiling value n try by the TRIES-LEFT function (Alg. 10, l.12, 17). This value is chosen as to balance experiment time and experiment resolution capability: ideally the robot needs sufficient tries to solve the given problem within the time available to the experimenter.

V. 2.2.2 NAMO planning in a dynamic environment

Existing NAMO planners assume that there can only be two types of entities in the environment beyond the single robot manipulator: movable and static obstacles. Hence, when using such planners as-is in a dynamic environment with other agents such as robots (i.e. dynamic obstacles), one needs to decide how to identify these new entities as per the NAMO classification. Since we made the hypothesis that a robot cannot be manipulated by another as a movable obstacle, we are left with only two choices: either ignore dynamic obstacles when using an existing NAMO planner, or classify them as static obstacles.

On the one hand, always ignoring dynamic obstacles all the time would lead to the robot desperately trying to compute the same plan going through another robot's footprint over and over again, ignoring other obvious but slightly more convoluted possibilities that may lead to the goal (Cf. Chapter V. Multi-Robot NAMO In order to try to avoid most of these situations without having to fundamentally change the NAMO planner used in the coordination strategy, we have the robot do both. Upon REPLAN (Alg. 10, l.11-25), a NAMO plan is first computed by ignoring all dynamic obstacles (Alg. 10, l. [START_REF] Rios-Martinez | From Proxemics Theory to Socially-Aware Navigation: A Survey[END_REF][14]. If no plan is found, we assume then that the goal must fail because the NAMO problem is just too complex for the NAMO planner. If we detect potential conflicts with this first plan (Alg. 10, l.15-16), we try to recompute a plan by considering the conflicting dynamic obstacles as static obstacles (Alg. 10, l. [START_REF] Vainshtain | Multi-agent terraforming: Efficient multi-agent path finding via environment manipulation[END_REF][19]. If no valid plan is then found, the plan that ignored dynamic obstacles is postponed (Alg. 10, l.24), in the hope that the conflicts resolve themselves while the robot waits.

(A) Initial state W t (B) The ideal solution FIGURE V.12: Example deadlock situation where the two robots face each other while occupying their respective goals, never succeeding in computing a plan as they both systematically consider each other to be static obstacles.

V. 2.3.2 Evading potential deadlocks

Once a potential deadlock has been detected by a robot, it must decide whether to move or not, and if so, where to, in order to try and resolve the situation. As explicit communications are forbidden in our problem, the robot could for example randomly decide to move or not, just as it could try to reach a random pose in the environment or try to drive backward in a straight line, and rinse and repeat until maybe the deadlock gets resolved. That would of course be woefully naive and inefficient, both in terms of displacement and computational costs, if at all useful.

But when you think about it, in a deadlock situation, the robot itself is a (dynamic) obstacle in the other involved robot(s)' view; and deciding whether to give way and how best to do so, does sound a lot like a social navigation problem. Then, in the same way our Social Occupation Cost model highlights relevant positions for movable obstacles that improve space accessibility, it could help robots decide if and where to go to in these situations. The broad steps of this procedure are as follows:

1. Potential deadlocks are detected as exposed in the previous section;

2. If a potential deadlock is detected, the robot computes an "evasion plan" for itself; the destination of which being the configuration with least combined social and distance cost;

3. To decide whether to use this evasion plan:

(a) The robot also computes the "potential evasion plans" of the other robots involved in the deadlock;

(b) If the robot's evasion configuration social occupation cost is the highest among all the computed evasion plans (i.e. most unlikely to solve the deadlock), the robot postpones its current plan (waiting for the others to move), otherwise, it executes its own evasion plan. This way, only one robot should wait while the others evade.

This process, which we will further discuss and illustrate in the following lines, is integrated into the previously discussed coordination strategy, as shown in We choose to assume that robots will drop their transferred obstacle before executing the evasion plan, if they choose to evade, for the sake of simplicity. Otherwise, each robot would not only need to compute their plans while accounting for collisions for transferred obstacles, but it would also need to consider the social occupation cost of the obstacles, resulting in computational overhead.

Upon reaching the evasion configuration, the robot needs to wait for a moment so that the other robots involved in the potential deadlock may have time to move themselves, hopefully in a way that will solve the deadlock. Carefully choosing this waiting time is essential in order to augment the chances for the robot to solve the deadlock. For this purpose, we consider the time it would take for the other involved robot that is furthest from the evading robot to reach the same evasion configuration. This time is the sum of the evading robot's evasion plan time, This extra waiting time upon evasion completion is applied by executing WAIT steps that are directly appended to the evasion plan: this makes sure that the wait is not preempted as soon as conflicts disappear, triggering re-planning too early and causing deadlocks all over again. Because deadlocks are worst-case scenarios for plan execution that can lead to goal failure, full evasion completion takes full priority. Again, we remind that our coordination only guarantees that potential conflicts never actually become actual one, but our deadlock evasion strategy does not guarantee resolution: such a guarantee would either require explicit communication or artificial restrictions to specific scenarios. While our method works best under our hypothesis of Homogeneous & Omniscient Multi-Robot System, it is not a fundamental requirement. Indeed, since our method relies on predicting the other robot's behavior, the more accurate the prediction, the higher chance of deadlock resolution.

In order to qualitatively showcase this deadlock evasion strategy, we added snapshots of the different stages of a three-robots scenario illustrated in This results in a deadlock, which the green robot evades several times as to finally free the blue robot's path (Cf. Had the robots been allowed to communicate their goals and plans, maybe a better obstacle choice could have been selected in regard to their respective objectives, such as the top-left room corner. While showcasing the resolution capabilities of our approach, this example also shows a limit of a fully-implicit coordination strategy in solving MR-NAMO problems. Since NAMO literature differentiates transfer from transit path components, we keep this differentiation and also compute the Sum of Transfer Distances L trans f er . We will also differentiate wait steps for the time-related criteria as to better understand how much time robots "waste" waiting to execute their plans.

We also keep track of several other relevant counters (which are summed across robots):

• the number of postponements and replannings (the initial plan for a goal is not counted as a replanning), so that coordination efficiency can be compared regardless of the time cost of actions in terms of steps,

• the number of obstacle transfers, since each obstacle grab would carry some risk of failure in itself in the real world and should happen as little as possible.

• the number of successfully reached goals, since as covered at the end of the experiments in Chapter IV, and reminded in the discussion of our coordination strategy, the robots may fail to meet some goals. While previously, failure could only be caused by the incapacity of the NAMO algorithm to solve the NAMO problem, it may now also occur because of the exhaustion of the maximum number of authorized planner calls.

As in Chapter IV we still measure the plan computation time (in seconds) as a measure of computation cost efficiency. In the result tables discussed in the next section, each criterion is averaged over the 200 scenarios of each experiment set presented in the previous section, and provided with the standard deviation.

V. 3.3 Results

Each of the 5 sets of 200 scenarios is run using our coordination algorithm, with and without using our social placement cost model for choosing obstacle placements, respectively referred to as Coordinated NAMO (abb. C-NAMO) and Social Coordinated NAMO (abb. C-NAMO).

Robot-dependent criteria are grouped in Table V.3, while world-dependent ones are grouped in table V.2. For each set of scenarios, the presented values are averages over the 200 scenarios of the set, with corresponding standard deviation.

Plan improvement through Social & Coordinated NAMO (abb. SC-NAMO)

The most relevant observation is that our social cost model reduces the number of postponements and replans by about 40% to 10% in the 'Intersections' scenario as the number of robots increases, as can be seen in Table V.3. This results in a slightly lower number of wait steps, but that alone does not explain the significant drop in total number of steps to execute the goals (up to a fifth of the baseline). This drop can rather be explained by the reduction in total distance traveled L sum as obstacles are mostly cleared from the intersections, resulting in significantly shorter transit paths. Stable planning time As we had hoped, the T planning column in Table V.3 shows that opting for an implicit coordination approach prevented exponential explosion of planning time.

SC-NAMO is, as previously observed in our mono-robot experiments (Cf. Section IV. 7.3.2) between 2 and 3 times more costly in terms of computation time due to the greater exploration of the robot's action space during transfer planning, which could be alleviated by using more aggressive heuristics, lazy intersection verification. However, our social cost model did not compensate the impact of an implicit coordination strategy on the goal success rate, which is similar between C-NAMO and SC-NAMO, ranging from 86% of success with 2 agents to 60% with 10 agents.

World State rearrangement

V. 4 Conclusions

This chapter first introduced the new problem of General Multi-Robot Navigation Among Movable Obstacles. We selected relevant additional hypotheses from the Multi-Robot Coordination literature (Cf. Section II. 2.2) to facilitate our exploration, and devised an implicit coordination algorithm. This algorithm has been designed to allow concurrent use of existing NAMO algorithms as is, while keeping the no-collision guarantee, without requiring explicit communication. We reused our social occupation cost model previously defined in Chapter IV as a heuristic to help solve the fundamental sub-problem of deadlocks, that arises in distributed multi-robot systems, which is especially harder to do when explicit communication is not allowed.

Experimental results on scenarios of increasing complexity with growing number of robots have shown that in a multi-robot setting, the space rearranging properties of our social occupation cost model remain, resulting in an overall improved navigation for all robots in the long term in close-intersections environments (lower traversed distance, waiting time and replanning calls). In the absence of explicit communication, our fully-implicit coordination strategy scales well computation-timewise at the cost of a decreasing success-rate, as the number of robots grows.

It is to be noted that, to the best of our knowledge, we are the first to ever explore Multi-Robot NAMO, setting a baseline for future work to compare against. We have opened the way, but our model could certainly be improved, again in particular in regard to its parametrization (postponement time, maximum umber of replans, Robot-Robot conflict detection horizon).

Some variations to the proposed coordination algorithms could be studied, for instance not abandoning the current goal when no NAMO plan could be found when ignoring all obstacles.

Indeed, counting on other robots to improve the environment arrangement, so that the waiting robot could try planning again later, when the NAMO problem became simpler, could have possibly improved the goal success rate too. Also, maybe not assuming the transported obstacle should be released before evading a deadlock could also yield interesting results. and [START_REF] Stilman | s incremental binary occupancy grid model[END_REF], provides a stepping stone for reproducible and comparable NAMO experiments, with a common formalism (Cf. Chapter III). Our choice of standard, human-readable and well-supported formats such as SVG and JSON, for sharing our scenario datasets and output data, should also help with reproducibility and comparability. As of today, we have seen our implementation of (Wu&Levihn, 2014)'s algorithm already been reused by other scientists (e.g. [START_REF] Ellis | Navigation Among Movable Obstacles with Object Localization using Photorealistic Simulation[END_REF]).

Our state of the art showed how, until now, that the only existing obstacle placement heuristic in NAMO was to minimize the robot's displacement cost, regardless of its impact on the environment's accessibility and navigability. We thus introduced and defined the problem of Socially-Aware NAMO, and proposed a social occupation cost model, based on two heuristic hypotheses as to the significance of free space in human environments: avoiding narrow spaces, and not leaving objects in the middle of space (Cf. Chapter IV). This model relies solely on the analysis of the environment's binary occupancy grid of fixed obstacles; a very low requirement both in terms of prior knowledge and computations, as this analysis only needs to be done once for a given environment. Using this model, we showed how to extend NAMO to S-NAMO algorithms that can compute plans resulting in more connected, less fragmented, and overall better arranged environments; thus improving social acceptability. Experimental results on scenarios of increasing complexity showed the scaling and generalization capabilities of our method; from a simple scenario with a single corridor and room, to a huge room with multiple crossings with many obstacles, to a real-world scan of our laboratory (Cf. To the best of our knowledge, this is the first approach to propose an answer to social concerns in NAMO problems, and is the first study of the long-term impact of the use of NAMO algorithms. This model has recently been reused by other scientists as well [START_REF] Kai | Navigation among movable obstacles using machine learning based total time cost optimization[END_REF]. pearance of positive effects of this rearrangement, reducing parasite interactions between the robots that require replanning or waiting. Again, to the best of our knowledge, this is the first approach to propose an answer to multi-robot concerns in NAMO problems, which will provide a baseline for future works to build upon or compare against.

VI. 1 Perspectives

In

Relaxing our additional Multi-Robot hypotheses

The ultimate conclusion of Chapter V was that there is a lot of interesting new research to be done by simply relaxing some, or all of our additional Multi-Robot work hypotheses presented in Section V. 1.2. We thus identified the following four main exploration axes:

• Heterogeneous Multi-Robot System: Allowing heterogeneous robots with varying action spaces would for instance allow the exploration of new cooperative algorithms, that would encourage stronger robots to open the way for weaker robots by moving objects they can't manipulate, even if these objects don't impede the strong robot's path. Conversely, small robots could use our social occupation cost model to open a larger way than they need to pass, in prevision for larger robots to pass later.

• Explicit Communicating Multi-Robot System: Allowing robots to explicitly communicate about their plans would certainly further improve such cooperative behaviors. It would also provide significant improvements and guarantees in terms of problem resolution capabilities, compared to any fully implicit approach (e.g. deadlock resolution guarantee, resolution completeness, ...). This would hold more or less true depending on the exact type of coordination (centralized or decentralized, local or global, ...). Similarly, communicating their sensing data/maps would also facilitate NAMO planning under limited sensing constraints (in opposition to an omniscient view of the world). It would most notably allow all robots to keep track of both other robots and their manipulated obstacles, resulting in fewer replanning due to bad estimates of the world state.

• Many-to-one robot-obstacle relationship: If the one-robot-per-obstacle hypothesis were relaxed, it could allow the coordinated manipulation of hard-to-move obstacles that a single robot could not move alone, be it because of geometry, or more elaborate kinodynamic characteristics. Of course, assuming explicit communication about plans or sensing data would facilitate the development of such coordination.

• Human Agents: One could even go as far as imagining the collaborative resolution of a NAMO problem between robots and humans. This study could go both ways: robots helping humans navigate among obstacles, and vice versa. In both cases, explicit communication (e.g. through vocal recognition and speech synthesis) would likely be beneficial in achieving better planning outcomes.

VI. 2 Beyond planning, experimenting in the real world

Beyond our contributions, and the research perspectives mentioned above, there is much to be done outside path planning for NAMO research to enter our daily lives. Applied NAMO research needs to move beyond controlled laboratory environments. For this, much work still needs to be done in terms of sensing, mapping, and tracking of movable obstacles to allow the application of existing algorithms in a useful and trustworthy manner. In the real world, robots need to accurately evaluate the semantics, geometry and kinodynamics of obstacles in a coherent manner over time, as to provide a trustworthy-enough world model that NAMO planners can rely upon to generate successful NAMO plans. To this end, and in order to bring this thesis' contributions closer to real-world application, a research engineer has been recruited by INRIA.

We hope this work contributes in kindling renewed interest in NAMO, and may serve new advances in the field, as we believe that autonomously manipulating obstacles is an essential skill for robots to properly operate in human environments.

Operator

I Introduction 1 I. 1 1 I. 2 3 I. 3 4 I. 4 5 I. 4 . 1 5 I. 4 . 2 6 II 7 II. 1 . 1 " 7 II. 1 . 2 8 II. 1 . 3 10 II. 1 . 4 13 II. 1 . 5 20 II. 1 . 8 27 II. 2

 111233445415426711712813101413152018272 Motivation . Challenges . Approach . Thesis overview . Summary of Contributions . Document Outline . State of the Art 7 II. 1 Navigation Among Movable Obstacles (NAMO): Motion planning in the presence of movable obstacles" The first NAMO planning algorithm . Task-level planning for LP1 NAMO Problems Reverse-search planning for L k M NAMO Problems Sampling-based NAMO planning in continuous configuration space . . . 14 II. 1.6 NAMO planning in unknown environments 17 II. 1.7 NAMO planning under action and sensing uncertainty Kinodynamic NAMO planning . 22 II. 1.9 NAMO research since 2014 . 24 II. 1.10 Conclusion . Social & Multi-Robot considerations in NAMO-related problems 32 II. 2.1 Socially-aware robot navigation, task and motion planning 32 II. 2.1.1 Socially-aware robot navigation 32 II. 2.1.2 Socially-aware robot task and motion planning 38

Fig.I. 1 .

 1 Fig.I.1. Current household robots only know to avoid such clutter -when they do detect it (they otherwise hazardously run through it). In the case presented in Fig.I.1, avoidance is arguably safest, it would also mean failure of the cleaning mission altogether, since the robot would simply never enter the space to be cleaned; and mindlessly going through would damage the robot or objects.

 FIGURE I.2: A real-world NAMO experiment in a controlled lab environment, showcasing the results of Stilman's research. The robot autonomously identifies the surrounding objects,and determines that it needs to move the chair to reach its goal, and does so.

 FIGURE II.1: A NAMO problem used by Wilfong in their NP-hardness demonstration. Static obstacles are dashed, movable ones are annotated with a B. Several cases are studied, hence why the robot start can be either of the arrowed circles, and goal either of the arrows.

Fig.II. 1 .

 1 Fig.II.1. Crudely put, this demonstration showed that complete planning for the full NAMO domain is computationally infeasible.

FIGURE II. 3 :

 3 FIGURE II.3:Example NAMO problem resolution by Chen&Hwang's algorithm[1]. Robot is black circle, goal is white circle with a "G", movable obstacles are polygons. In (A), the global planner path is shown as white circles. The local planner verification sequence is shown in (B) to (F). In (B), the robot first "slides" to the configuration neighboring the square and L-shaped obstacles, then "shoves aside" both obstacles in (C), to clear the path to the next configuration shown in (D), where they are "shoved aside" again in (E) so that the robot may "slide" to the goal in (F).

 figurations over the full body joint space, assuming the obstacle is fully constrained by the robot's grasp. The RRT manipulation search is given a final obstacle configuration as goal, which is obtained by sampling candidate obstacle configurations in a grid space decomposition (Cf. Fig.II.5.B.6.Right), until one is found that does not intersect with a heuristic navigation path from the start to the goal location ignoring the movable obstacle (Cf. Fig.II.5.B.5.Left). The manipulation planner yields a work cost estimate for the task graph nodes, and the full motion plan is computed through a "standard graph search" algorithm (most likely Dijkstra's), using either this work estimate (Cf. Fig.II.5.B.1) or the navigation planner's distance cost estimate (Cf. Fig.II.5.B.2).While seemingly actionable at least in simulation, as the figure shows, this approach is however not provably complete nor optimal. Also, it is very computationally inefficient, as

FIGURE II. 5 :

 5 FIGURE II.5: Example NAMO problem resolution by Okada et al.'s algorithm [2]. On the left, the world model description, in the middle, the planner and its subcomponents, on the right, the planned motion sequence to solve the problem.

(

 FIGURE II.6: Example LP1 NAMO problem resolution by Stilman&Kuffner's algorithm [3]. The robot navigates in C 1 to transfer theTable 1 to fuse C 1 with C 2 , then navigates to the Couch to fuse C 2 with C 4 in order to finally navigate to its goal.

 Fig.II.6c). In order to select the "best" obstacle/component pair to connect, they used an additional relaxed-constraint navigation planner based on the A * algorithm, that was allowed to pass through movable obstacles for an additional heuristic traversal cost (Cf. Fig.II.6b) 5 . This allowed them to compute solutions within seconds, such as the one in Fig.II.6d, or to the previously unsolvable problem for Chen&Hwang's algorithm [1] (Cf. Fig.II.7a).(A) Unsolvable L 1 problem for Chen&Hwang's algorithm[1] (Cf. Fig.II.4a), solved by Stilman&Kuffner's algorithm [3] (B) Strongly coupled L 2 problem -The two obstacles need to be repeatedly and alternatively manipulated, or grabbed together (C) L 4 problem -The couch's movement is constrained by the table's, which is also constrained by the chairs'.

FIGURE II. 7 :

 7 FIGURE II.7: Capabilities and limitations of Stilman&Kuffner's algorithm [3]. (A) is a previously unsolved problem resolved by Stilman&Kuffner's algorithm, while (B) and (C) cannot be solved by it (and most likely neither Okada et al.'s algorithm [2]).

II. 1 . 4

 14 Fig.II.7 [B, C], as they are not of L 1 class. Reverse-search planning for L k M NAMO Problems Actually, the problem in Fig.II.7c could be solved by moving each blocking obstacle only once -if only they were moved in the right order. Inspired by the literature of Assembly Planning 7 [45], Stilman & Kuffner described such problems as Monotone (abb. M) [46, 47, 19]. Conversely, they defined situations like in Fig.II.7b as Non-Monotone (abb. N M i) problems, that need to be expressed as i monotone problems with intermediate states to be solved. In the linear and monotone problem illustrated in Fig.II.7c, it clearly appears that first reasoning about the obstacles closest to the goal (the couch), allows to then choose placements for other obstacles that would not interfere with the couch's displacement. It is this consideration that lead Stilman & Kuffner to the formulation of a new reverse-planning algorithm for solving Monotone Linear problems of k obstacles (abb. L k M). Here, reverse-planning means that the robot plans from its goal to its start configuration, and from the last obstacle to move to the first. This contrasts heavily with all the NAMO planners presented until now, that conversely used a forward-planning strategy, that is: planning from the start to the goal robot configuration, and from the first obstacle to move to the last. (A) Initial world state. The robot tries to reach the left corridor. (B) The movement of the last obstacle to move (couch) is planned for first, with the subsequent navigation sequence to the goal. (C) The area swept by the couch's movement and navigation to the goal (black area) is cleared by computing the table's movement.

FIGURE II. 8 :

 8 FIGURE II.8: A slightly modified version of Fig.II.7c into an L 2 problem, showcasing Stilman & Kuffner's reverse-planning NAMO algorithm [46]. Read left to right for the planning process, right to left for execution.

 Fig.II.8a and II.8b). Logically, any obstacle that moved before this last one cannot be left in the area swept by the last obstacle in this process. Thus, the planner recursively plans manipulation and navigation motion in the same fashion as previously described, so that swept areas remain clear of obstacles, as illustrated by the table being cleared from the couch's swept area in Fig.II.8c. When the swept areas cannot be cleared at some point during the search, the recursive loop backtracks to select another obstacle manipulation order. This whole process (obstacle selection -recursive clearing of swept areas) is repeated until the goal is reached or all obstacle manipulation orders are considered. While Stilman & Kuffner's new algorithm opened the door to solving harder problems in the new L k M class, it has not been proved L k M-complete nor L k M-optimal. The main reason

 Fig.II.9). "Grasp" actions (round nodes in Fig.II.9) are equivalent to transit/navigation paths in the previous literature, and are computed using an A * graph search over a Probabilistic Road-Map (abb. PRM). Correspondingly, "Manipulate" actions (triangle nodes in Fig.II.9

1 FIGURE II. 9 :

 19 FIGURE II.9: Example L 1 NAMO problem solved by Nieuwenhuisen et al.'s algorithm[START_REF] Nieuwenhuisen | An Effective Framework for Path Planning Amidst Movable Obstacles[END_REF]. From left to right, the vignettes depict the initial world state, then the alternating "grasp"/"manipulate" sequence for obstacles 1 then 2, before a direct navigation path to the goal can be found in the last vignette. Under each vignette is the "action tree", where round nodes are "grasp" nodes with the associated obstacle's number, and triangle nodes are "manipulate" nodes. The yellow squares represent the initial and goal states, and the red nodes are the selected nodes branch represented in the vignettes.

FIGURE II. 10 :

 10 FIGURE II.10: NAMO problem examples solved by Van den Berg et al.'s algorithm [5]. (A) NLN M problem where the robot must pass by M 2 , then move it to the right, then move M 3 to the left, navigate through the bottom U-turn, move M 3 again but to the right, to finally move M 1 in the space left by moving M 2 . (B) Axis-aligned version of an L k M problem initially solved by Stilman & Kuffner's reverse-planning algorithm[START_REF] Stilman | Planning among movable obstacles with artificial constraints[END_REF], where the smaller obstacles must be moved first to allow the necessary manipulation of M 1 .

 FIGURE II.11: Example NAMO problem resolution by Kakiuchi et al.'s algorithm [6]. In (C), the sensor's point cloud is segmented into prisms (obstacles) and floor points (bright green areas).

 NAMO problem class, it can still be quite easily defeated with simple problems such as the one illustrated in Fig.II.12c. Depending on the algorithm's implementation (more precisely, the default order of manipulation directions), it may either choose to move the small brown sofa up (2nd subfigure) or down (3rd subfigure), respectively succeeding or failing the problem resolution, as obstacle ordering cannot be considered by the algorithm due to the one-obstacle per plan hypothesis.

 FIGURE II.13:Example NAMO problem resolution by Levihn, Scholz and Stilman's decision theoretic algorithm[8]. In subfigure (A), the A value is the best action to execute (e.g. the best first action is to move O3 right, then down, to connect F1 to F6); The V value is the value-iteration algorithm's long-term expected reward for the state (i.e. the reward of passing through the connected component). Only low level policies corresponding to obstacles chosen by the high-level policy are shown for the sake of readability.

 search of the MAX-Q Value Iteration algorithm to dynamically bound the low-level MCTS's search depth, and the reward values of the MCTS to update the reward values of the high-level search. This two-way influence between the high and low-level policies searches allows the algorithm to focus computations on relevant high-level tasks (connecting components likely "useful" in reaching the goal), and their relevant portions, achieving linear time complexity in the number of obstacles. However, this planner is not complete nor optimal for any kind of NAMO problem class defined until now, and is limited to the resolution of L 1 problem because of its hierarchical decomposition of the problem.Levihn, with the help of Leslie Pack Kaelbling and Tomás Lozano-Pérez, ultimately addressed both action and perception uncertainty (including the absence of information)[9,[START_REF] Levihn | Autonomous environment manipulation to facilitate task completion[END_REF], by applying their generic Belief Hierarchical Planner in the Now (abb. BHPN)[START_REF] Kaelbling | Hierarchical task and motion planning in the now[END_REF][START_REF]Integrated task and motion planning in belief space[END_REF], an algorithm meant to solve the overarching problem of combined Task & Motion Planning (abb. TMP or TAMP). Citing a recent survey on the matter[START_REF] Garrett | Integrated task and motion planning[END_REF], combined Task and Motion Planning is "the problem of planning for a robot that operates in environments containing a large number of objects, taking actions to move itself through the world as well as to change the state of the objects" -and is thus a superset of the NAMO problem. BHPN is an online algorithm, based on a backward planning task-level planning routine (similar to Stilman's L k M planning algorithm[START_REF] Stilman | Planning among movable obstacles with artificial constraints[END_REF]), and time-bound RRT calls for motion-level planning. It relies on a belief-based world model reflecting the history of observations and actions made by the robot, explicitly modeling perception uncertainty using ϵ-shadows[START_REF]Integrated task and motion planning in belief space[END_REF] (akin to "fog of war" in video games) and probability contours[START_REF]Integrated task and motion planning in belief space[END_REF] (volumetric overestimates of actual object geometries), as shown in Fig.II.14a. This model is used at plan time to bias plan decisions in order to minimize the risk of failure. This even includes explicitly planning for deliberate observation actions, so that the planner is guaranteed to have sufficiently reduced its uncertainty concerning the spaces where it is supposed to act. The planner relies on the main concepts of "Foresight" (leveraging of knowledge of future subgoals and beliefs about future observations to maintain correctness and improve optimality, illustrated in Fig.II.14b) and "Reconsideration" (deciding when to replan based on opportunity for plan improvement and computational cost of replanning, illustrated in Fig.II.14c

(

 FIGURE II.14: Simulated NAMO problem solved by Levihn et al.'s BHPN-based algorithm [9].

 Fig.II.15. The authors provided theoretical and experimental evidence that despite the added complexity of this extension, the problem decomposition still keeps the algorithm's computational cost linear with respect to the number of obstacles, while retaining the same resolution capability limitation to L 1 problems.

FIGURE II. 15 :

 15 FIGURE II.15: Example NAMO problem resolution by Levihn et al.'s kinodynamic & decision theoretic algorithm [10], showcasing a nonholonomic robot with 5 Degrees of Freedom (3DOF base and 2DOF arm).

(

 FIGURE II.17: Demonstration of Mueggler et al.'s heterogeneous drone + manipulator robotMulti-Robot NAMO system[START_REF] Mueggler | Aerial-guided navigation of a ground robot among movable obstacles[END_REF].

Both

 Castaman et al. and Sun et al.'s approaches relied solely on visual information for the manipulation strategy choice; Castaman et al. deriving the manipulation method to use from the object's point cloud size, Sun et al. deriving it from the object's semantic category deduced by image recognition. In contrast, Wang et al.'s algorithm used a modeling method [72] that derives affordances, first through visual detection, then by validating the expectation through physical interaction. The second difference with the naive approach of Kakiuchi et al., is that Wang et al.'s algorithm reasons about the final placement of the obstacle before starting the manipulation, as in the rest of the literature. The manipulation path is computed using an algorithm called Contact-Implicit Trajectory Optimization (abb.CITO)

4 .

 4 The fourth column highlights that only the works of Levihn & Scholz -(Levihn, 2013-1 to 3) and (Scholz, 2016) -accounted for State and Action uncertainty at the planning level, while all other planners operate with deterministic state and action models.

5 .

 5 The fifth column summarizes our previous comments on the problem resolution capabilities of each algorithm. Only (Wu&Levihn, 2014) provides local optimality guarantees, and only (Stilman, 2005), (Van den Berg, 2009) and (Moghaddam, 2016) provide completeness guarantees. All other algorithms surrender such guarantees in the name of computational efficiency.

 Proxemics was first coined in 1963 by Edward T. Hall, a cultural anthropologist, defining it as "the interrelated observations and theories of humans use of space as a specialized elaboration of culture"[START_REF] Hall | The hidden dimension : man's use of space in public and private[END_REF]. In their survey, Rios-Martinez et al. defined the term as "the study of spatial distances individuals maintain in various social and interpersonal situationsthese distances vary depending on environmental or cultural factors". This resulted in a new definition of social navigation focused on the notion of space, that shall serve as a basis for this thesis : "A socially-aware navigation is the strategy exhibited by a social robot which identifies and follows social conventions (in terms of management of space) in order to preserve a comfortable interaction with humans. The resulting behavior is predictable, adaptable and easily understood by humans". This definition is reflected in their abstract illustration of the structure of a socially-aware navigation system (Fig.II.18).

FIGURE II. 18 :

 18 FIGURE II.18: Figure from Rios-Martinez et al.'s survey[START_REF] Rios-Martinez | From Proxemics Theory to Socially-Aware Navigation: A Survey[END_REF], depicting "The most important components of a socially-aware navigation system", a composite system with a social layer applied upon "classic" navigation elements.

Fig.

 Fig.II.19e), and is a term proposed by the roboticists Lindner & Eschenbach [82], derived from the term of "activity footprint" proposed by geographers Ostermann & Timpf [83]. Similarly, they defined an Affordance Space as a space "related to a potential activity provided by the environment" (illustrated in Fig.II.19f), following the previously mentioned Theory of Affor-

36 Fig.II. 20 .

 3620 Fig.II.20. These cost functions are oftentimes discretized into cost maps (Cf. Fig.II.21), generally square grids, associating each cell with a temporary occupancy cost. This facilitates the combination of the wide variety of cost functions for the different Social Spaces that may overlap one another, and allows for faster computations and simple visualizations, but as a drawback, may significantly oversimplify the problem, while raising a new problem of choosing proper weights to ponder costs with one another.

FIGURE II. 22 :

 22 FIGURE II.22: Illustration of the two main situations addressed in the socially-aware variants of NAMO-related problems other than Social Navigation

FIGURE II. 23 :

 23 FIGURE II.23: Multi-Robot Systems (abb. MRS) Taxonomy proposed by Verma & Ranga in 2021 [16]

 FIGURE II.24: Multi-Robot Coordination Taxonomy proposed by Verma & Ranga in 2021[START_REF] Verma | Multi-Robot Coordination Analysis, Taxonomy, Challenges and Future Scope[END_REF]

 Fig.II.25a showing two environment configurationsbetween which the solver should select the one that permits to solve the MAPF problem better).In their simulated experiments, they actually had the solver remove rather than move obstacles from the environment, further distancing the problem from NAMO, where obstacles can only be moved. In contrast, Vainshtain et al.[START_REF] Vainshtain | Multi-agent terraforming: Efficient multi-agent path finding via environment manipulation[END_REF]'s extension to MAPF, "Terraforming MAPF" (abb. TF-MAPF), is formulated under the hypothesis that actual agents move obstacle during execution. However, as shown in Fig.II.25b, while this problem is much closer to NAMO, it still differs greatly in that: only specific robots may manipulate objects (they do not have a navigation goal themselves), and they can only manipulate shelve-like objects by passing under them and lifting them.

(

 FIGURE II.25: (A) C-MAPF problem from Bellusci et al.'s paper [17], (B) MAPF and corresponding TF-MAPF problem from Vainshtain et al.'s paper[START_REF] Vainshtain | Multi-agent terraforming: Efficient multi-agent path finding via environment manipulation[END_REF]. Both consist in having robots navigate in a warehouse with movable shelves. Vainshtain et al.'s approach is even better understood with its accompanying video: https://bit.ly/3ImgfAw.

 FIGURE II.27:Example environments in the Multi-Robot combined Task and Motion Planning literature. In (A), trucks and boats exchange loads that don't occupy space beyond the agent's geometrical footprint. In (B), room have doors that can be closed or opened during execution, but by "deus ex machina"-like actions where a human would instantaneously change the door's state, not by the robot. In (C) the robots must remove all obstacles from the room.

 FIGURE III.1: Example solutions of algorithms implemented in our simulator. Neither algorithm is capable of planning through the middle obstacles because manipulating the big one requires to first manipulate the small one.

 Fig.III.2a). Wu&Levihn's formalization reduced Stilman's set of valid grasping points to the center of the axis-parallel sides (Cf. Fig.III.2b). On one hand, this choice significantly reduces the search space and makes it Chapter III. Revising and simulating reference NAMO algorithms 53 more independent of obstacle size (at most 4 grasping points instead of as many as one can

 (A) In blue, valid grasping points sampled along the table's edge, in green, corresponding robot configurations, in[START_REF] Stilman | s incremental binary occupancy grid model[END_REF])'s formulation.

 In purple, valid robot grasping configurations for obstacle M 3 , for (Wu&Levihn, 2014)'s formulation.

FIGURE III. 2 :

 2 FIGURE III.2: Illustration of the different grasping configuration restrictions for (Stilman, 2005) and (Wu&Levihn, 2014)'s problem formulations

. 3 : 1 .

 31 FIGURE III.3: Illustration of obstacle discovery and subsequent re-planning. Robot field of view voluntarily not shown for the sake of simplicity -it is assumed that O 1 , O 2 and M 3 are suddenly discovered at t 1 .

M 3 (12 FIGURE III. 4 :

 3124 FIGURE III.4: The task planner steps that yield the plan seen in Fig.III.3b at the same W t 1 world state. P * is replaced by P * M 3 as it has a lower cost.

. 5 : 2 FIGURE III. 6 :

 526 FIGURE III.5: Obstacle manipulation three-step NAMO plan -detailed notations

t 1 :

 1 Fig.III.6), to try and compute a three-step plan for each (Fig.III.8 provides a step-by-step overview of the process for one). Only if a transit path P to_obstacle to the grasp robot configuration q manip R can be found (Fig.III.8b), does the algorithm At t 0 : M 1 & M 2 detected, no manipulation computed as they are non-blocking, optimal navigation plan P * is executed -eList is updated O 1 , O 2 & M 3 detected, M 3 invalidates plan P * -a new plan P * avoiding all obstacles is computed to obtain an initial cost estimate C(P *) and the lists' traversal pointers eIndex & mIndex are initialized. Still at t 1 : M 3 is evaluated because smallest entry of both lists and not yet in mList. Once evaluation is done, mList and the upper bound C(P *) are updated.

at t 1 :

 1 FIGURE III.7:Step-by-step resolution of a NAMO problem by (Wu&Levihn, 2014)'s algorithm. The blue arrows in the tables represent the traversal indexes eIndex and mIndex for eList and mList respectively.

gR

 q next R | between this neighbor configuration q next R and the goal q g R . If this underestimated plan cost C est = C(P to_obstacle) + C(P manip) + |q g Rq next R | surpasses the cost of the current best plan C(P * M i), or the plan avoiding all obstacles P * , then the search branch is cut, considerably limiting the search tree expansion (Fig.III.8e and III.8f).

 .III.9a) and M * t+1 i (Fig.III.9b) 7 . The algorithm then computes the Blocking Areas for each state: the geometric intersections between the inflated obstacle and the other obstacles in the environment (Fig.[III.9a, III.9b]). Finally, these Blocking Areas are compared: if at least one of the initial Blocking Areas ∈ BA t does not intersect with any of the final Blocking Areas ∈ BA t+1 , then it means this initial Blocking Area has been freed, and a local new opening has been created (Fig.III.9c).This local opening detection algorithm guarantees the absence of false negatives -that is, not detecting a local opening when one exists. Otherwise, the full plan would not get computed when it should, making the whole (Wu&Levihn, 2014) algorithm lose its completeness and optimality properties. It may however false positives (detecting a local opening when there is no global opening), which does not affect the overall algorithm's properties, as they will be verified by the full P to_goal A * search.

(3 -

 3 FIGURE III.9: Local Opening Detection example -O 2 no longer blocks the local area around M 3 at t + 1: new local opening detected

(

 FIGURE III.13: Zoomed-in sample situations that may occur in Fig.III.12, where the relevance of rotation is shown.

Algorithm 4 :

 4 FIGURE III.14: Zoomed-in sample situations that may occur in Fig.III.12, where the robot needs to move an obstacle over the goal.

 FIGURE III.18: LP1 problem example copied from[19]. The robot navigates in C 1 to transfer the Table1to fuse C 1 with C 2 , then navigates to the Couch to fuse C 2 with C 4 in order to finally navigate to its goal.

 obstacle M F and component C F it encountered in the search branch that reached the goal first, following the 4 allowed transitions below, illustrated in Fig.III.19:

 FIGURE III.19: Example NAMO scenario showcasing the obstacle selection routine. The four types of allowed transitions are shown as brown lines and markers. For the sake of simplicity, only axis-aligned translations are allowed and only the relevant branches of the A * search are shown instead of the full tree.

 Just like the original (Wu&Levihn, 2014) algorithm, (Stilman, 2005)'s algorithm originally only works under the assumption that the goal configuration is completely free of obstacles. While this choice is perfectly justified, as it facilitated their demonstration of completeness for LP1 problems (requiring, by definition, the goal robot configuration to belong to a free space component), it prevented the algorithm from solving the same simplistic examples as described in Fig.III.14a. This obstacle-on-goal problem was solved by rewriting the obstacle selection routine as Algorithm 8. It is now formulated as a generic A * call (l.3), moving the extra logic of the original customized A * 21 in a separate method, as we did for (Wu&Levihn, 2014)'s algorithm (Alg.4

FIGURE III. 20 :

 20 FIGURE III.20: Live simulator view in Rviz in a map of our CITI laboratory. The robot (blue disc) reached its goal (dark blue circle) after moving a movable obstacle (outlined yellow rectangle with blue circle marking the robot configuration at release time) in a low-cost zone (coloured background is the combined costmap described in Chapter IV). Black shapes are static obstacles, and the path followed by the robot is traced as a blue (transit) and red (transfer) line. Pink cells are unaccessible (inflated obstacles).

 FIGURE III.21: Simplified Simulator Architecture Diagram -Solid colored boxes are simulator elements

 tables, and generate interactive HTML graphs that allow to explore the evolution of the various collected statistics in depth. A Robot Operating System (abb. ROS) export layer is also available to allow live visualization of the world & behavior state (as shown in Fig.III.20).

 sections will serve to provide further insight into specific components. These details are themselves synthesized at the end of this section in a more elaborate Architecture Diagram (Fig.III.29).

<

 FIGURE III.22: UML Diagram of our main world representation, showing the attributes, operators and relations between the different data structures involved

 Fig.III.2b) -which can of course only happen if neither the robot nor the obstacle are already respectively grabbing or being grabbed by another entity:

•

 since we preserve the original hypothesis from both (Stilman, 2005) and (Wu&Levihn, 2014)'s algorithms that, a single robot may only move a single obstacle at the same time, the Grab and Release operators it requires for the robot allow for non-ambiguous modeling of movable obstacle reservation (Cf. Robot and Movable Obstacle in Fig.III.22);

 FIGURE III.25:A circular robot (red) manipulates a polygonal obstacle (blue), sweeping an area delimited with a (black) line that needs to be free of obstacles.

 Fig.III.26a). Upon movement of an entity, the initial state rasterized cells are decremented by one in the grid, while the new state cells are incremented by one (Cf. Fig.III.26b) -allowing for fast updates of the grid keeping its memory footprint reasonable. Thanks to this grid, robot collision checks can be done by verifying whether the center cell of the robot has a 0-value in the grid, and only if it is

FIGURE

 FIGURE III.26: (Stilman, 2005)'s incremental binary occupancy grid model. (A) Initial state, (B) State after the rounded obstacle is moved to the right and bottom.

 is to have multiple robots solve NAMO problems in a common environment. The main simulation module is tasked with the job of initializing both the reference simulated world model W re f , and the individual robot behaviors that interact with it (and their individual perceived world models W R i) as illustrated on the left in Fig.III.28.

FIGURE III. 28 :

 28 FIGURE III.28: Main simulation module

 Fig.III.29. This figure summarizes the contribution that is our simulation tool itself, and provides the necessary context to understand how we formulated our Social and Multi-Robot extensions to the NAMO problem, as well as the solutions we propose in each case, which shall be presented in following chapters.

FIGURE III. 29 :

 29 FIGURE III.29: Detailed Simulator Architecture Diagram -Solid colored boxes are simulator elements; transparent boxes are external tools. To facilitate reading, we recommend going back to the description of its simplified counterpart in Section III. 3.1.

FIGURE IV. 1 :

 1 FIGURE IV.1: Basic socially-pathological NAMO problem. (A) The robot's goal is in the adjacent room but unreachable due to a movable obstacle. (B) (Stilman, 2005)'s NAMO algorithm solution. (C) Our social (S-NAMO) approach's solution. (D) Our social occupation costmap used by our S-NAMO approach to bias obstacle transfer to a more socially-acceptable location.

 This exploration leads us to the formulation of the "Social Placement Choice NAMO Problem", and our own affordance space model we call "Social Occupation Cost" (illustrated in Fig.IV.1d), and its application to (Stilman, 2005)'s algorithm (illustrated in Fig.IV.1c).

FIGURE IV. 2 :

 2 FIGURE IV.2: Simulation of a two-goals scenario with NAMO (A, B) vs. S-NAMO (C, D, E). Initial world state (A, C). Robot as blue disc with conical Field of View, movable obstacles in yellow, unmovable walls in black, goal as dark blue circle, taboo zones in red. Blue line is transit path to obstacle, red line is transfer path, orange line is transit path to goal.

 Fig.IV.4a), using Chapter IV. Socially-aware NAMO 94 manually designed affordance space models relevant to the experiment -designated as affordance map (Cf. Fig.IV.4b). Using this knowledge, the robot would sample candidate charging affordance spaces, and rank them using the concept of "socio-spatial reason". This concept associates each affordance with a positive or negative rank of entering it, with three degrees of strength (Strong, Medium or Weak). They finally use a pre-programmed decision rule to synthesize the social adequacy of intersecting multiple affordance spaces (Cf. Fig.IV.4c

FIGURE IV. 4 :

 4 FIGURE IV.4: Illustration of Lindner & Eschenbach's lab robot experiment from [21]. (A) Initial state of the experiment's environment. (B) Affordance spaces corresponding to each affordant object in A. (C) Charging affordance spaces -the lighter, the higher social adequacy of using it. Checkered space is selected as best charging space for the robot.

Fig.IV. 5 .

 5 While this allows for fully autonomous discovery of affordance spaces, Limosani et al.'s map is limited to the modeling of Potential Agent Regions, but not the Potential Transactional Regions nor the Affordant Regions. Also, generated affordance

FIGURE IV. 5 :FIGURE IV. 6 :

 56 FIGURE IV.5: Figures from [22] showing Limosani et al.'s affordance space model in their coffee lounge test environment. (A) Test environment in which furniture may be moved by humans during the 4-month experiment. (B) Autonomous navigation waypoints for the observation sequence. (C) Cumulated affordance map after 4 months of daily observation, but only using the data corresponding to the days when the environment was in configuration A -the yellower, the higher the probability of human presence. environment. This sampling is guided with pre-programmed constraints based on knowledge of how humans interact with objects and potential functions that model how a human pose is related to an object (e.g. no sitting on the top of a shelf, sitting at a certain distance from a television, . . .) -in other words, Potential Agent Regions models (Cf. Fig.IV.6a). Contrary to Lindner & Eschenbach, Jiang et al. assume that one object type only yields one affordance, and that only one hallucinated human may use each object (one hallucinated human can still use multiple objects). Once relevant human poses have been sampled in the training environments, probability distributions of object poses around humans can be learned, producing a model of Affordant Regions (Cf. Fig.IV.6b) -Transactional Regions are again not modeled inthis approach. In their latest paper[23], they further improve this concept by iteratively repeating the process, adapting their affordance models to sample ever more semantically relevant human poses in the scenario(s) at hand, yielding ever better Affordant Region models 3 .

FIGURE IV. 7 :

 7 FIGURE IV.7: Figure from [23], showcasing Jiang et al.'s real-world robot experiment where the robot must place a given computer mouse in the best possible placement. (A) RGB-D point-cloud of the environment. (B) Semantic segmentation using their algorithm. (C) Sampling of possible human poses (red heatmaps) and possible object placements (blue heatmaps).(D) The robot successfully places the mouse in the best location.

 To better understand how to do so, let us consider the schematized version in Fig.IV.8 of the basic pathological case previously introduced in Fig.IV.1 (repeated in Fig.IV.8a), where the

FIGURE IV. 8 :

 8 FIGURE IV.8: Illustrations of the AVOID-MIDDLE and AVOID-NARROW heuristic hypotheses (B) based on a schematized version of the basic pathological case presented in Fig.IV.1 (repeated in A).

 Fig.IV.8b, even leaving the obstacle closest to the wall would still halve the corridor's space allowance to a single human unit. On the other hand, as illustrated in the rightmost figures, leaving the obstacle in the room would either reduce the room's space allowance by half if left in the middle (2 over 4 human units), or by 25% if left

100 1 . 2 . 3 . 4 .

 1234 Identify the middle of space cells, noted SK(G(F)) -that is, the thinnest discrete version (one cell wide) of the environment's shape equidistant to the obstacles boundaries, also called "skeleton" (Cf. Fig.IV.9.A.Top); Measure the space allowance for each cell in SK(G(F)) -that is, the minimal distance from each cell to the fixed obstacles ∈ F as to differentiate narrow and wide spaces (Cf. Fig.IV.9.A.Bottom); Convert the previously determined minimal distance from obstacles into a social cost for each cell in the skeleton SK(G(F)), using a function f conv that relates the distance to appropriate human-sized constants to ensure high costs in narrow spaces and low costs in wide ones (Fig.IV.9.B); Propagate the social cost values from the skeleton cells in SK(G(F)) in a decreasing wave defined by a function f prop , to ensure local highest costs in the middle of space (Fig.IV.9.C.).

FIGURE IV. 9 :

 9 FIGURE IV.9: Illustration of the 4-steps computation based on the basic pathological example presented in Fig.IV.1: skeletonization & distance transform (A), conversion of space allowance into Social Cost (B) and decreasing wave propagation (C)

Chapter IV. Socially-aware NAMO 101 Just

 101 like the Medial-Axis method, it guarantees the preservation of components, which is paramount to properly represent passageways. An example of such skeletonization is available in Fig.IV.9A.Top.

FIGURE IV. 10 :

 10 FIGURE IV.10: Reference human diameter d h in the literature. (A) Illustration from Mitton and Nystuen's book on interior design we use as reference in this chapter [142] showing their "average adult space clearance for ambulatory human movement". (B) Screenshot of the DINED database interface showing our measurement.

 Fig.IV.10b). According to the most recent 2004 data for Dutch adults between the age of 20 to 60, we can reasonably cover about 95% of the population by setting d h = 0.55m (i.e. r h = 0.275m). This value is coherent with the average adult space clearance for ambulatory human movement of 0.559 m provided by Mitton and Nystuen [142] (Cf. Fig.IV.10a).

 FIGURE IV.11: (A) Social occupation cost as a function of the minimal distance from obstacles: ∀(x, y) ∈ SK(G(F)), SC(x, y) = f conv (d min (x, y)). (B) Illustration of the concept of "Unités de Passage" (litt. "Passage Units").

Fig.

 Fig.IV.11a shows a set of values we have found to yield a reasonably convincing social occupation cost representation in our experiments discussed in Section IV. 7. Intermediate values are determined by simple linear interpolation, resulting in the social cost conversion function in Equation IV.3. Again, the most relevant properties of this function are its decreasing nature and plateaux; beyond this, one may simplify or complexify the curve as they see fit for their own purposes.

Fig

 Fig.IV.13:

FIGURE IV. 13 :

 13 FIGURE IV.13: Illustration of the Compromise cost (CC) computation steps based on Fig.IV.1

. 1 .

 1 The choice of values has been manually tuned across the four different experiment environments illustrated in Fig.IV.15:

 FIGURE IV.14: Grid representation of W t inflated by the reference human radius r h . Pink cells are inaccessible cells for humans, other cell colors each correspond to a separate free space component for humans.

 Fig.IV.15, scenario [A] represents the same corridor&room scenario we have been studying since the beginning of this chapter (Cf. Fig.IV.1). Scenario [B] showcases 4 rooms joined by corridors, each containing a goal, which are executed counter-clockwise starting from the right (for the sake of readability, only the state after the first goal is shown in the third and fourth columns). Scenario [C] exhibits a room filled with unmovable tables (black squares) and miscellaneous movable obstacles "after a party". Finally, scenario [D] is a real-world representation of our lab's second floor, obtained from a 3D scan -a first goal lies in the second room from the left at the top, while a second goal is in the first room from the right at the bottom.

 scenarios [A], [B] and [D]. Table IV.2 compares the values of the previously presented evaluation criteria (Cf. Section IV. 7.2), obtained in these 4 scenarios between the baseline (Stilman, 2005) NAMO algorithm and its S-NAMO counterpart. Since scenarios [B] and [D] consist of multiple goals, displacement and computation costs for are cumulated over goals. Each scenario is run 50 times in order to obtain a meaningful average of planning time T planning . We further comment these results hereafter.

L

FIGURE IV. 15 :

 15 FIGURE IV.15: Experimental scenarios & NAMO vs. S-NAMO results. [A] "Corridor And Room" (Fig.IV.1), [B] "Crossing", [C] "Intersections" and [D] Real-world map of our "CITI Laboratory". In [A] and [C], the robot is only required to reach one goal, while in [B] and [D], it has to sequentially reach respectively 4 (counter-clockwise, starting from the right room in [B]) and 2 goals (top-left then bottom-right rooms in [D]). In the 3rd and 4th columns, only the final state after these multiple goals is shown.

 Fig.IV.17 -which we discuss hereafter.

 Fig.IV.17h, IV.17e) leading to faster goal completion than baseline NAMO. Indeed, as shown in Fig.IV.17g, after around 20 goals, S-NAMO starts to visibly allow the robot to accomplish its goals faster in terms of simulated time steps (i.e. number of executed actions), reaching a plateau about 25% steps sooner at around 90 successful goals on average. As NAMO eventually reaches its plateau of successful goals, its accumulated traversed distance is more than 20% than that of S-NAMO. The number of transfer operations (the number of continuous Manipulate operator sequences) is also reduced by around 25%, which is a net positive, since manipulations present an additional failure risk in real-world applications. The reason why both NAMO and S-NAMO however do not systematically succeed in completing 100% of their goals is due to resolution failure of the underlying improved[START_REF] Stilman | s incremental binary occupancy grid model[END_REF] algorithm, that cannot solve NAMO problems where more than one obstacle cover the goal configuration.It is to be reminded that[START_REF] Stilman | s incremental binary occupancy grid model[END_REF])'s algorithm is not optimal, and more exactly, it simply won't try to compute a plan including obstacle manipulations if it can reach its goal with a pure navigation plan. That is why the curvature of the number of transfers graph (Cf. Fig.IV.17h) becomes less steep as soon as most components have been connected (Cf. Fig.IV.17b),after about a dozen goals on average. The reason why transfers still occur after that is because some goals are still covered by obstacles, and trigger a transfer plan computation. This also explains why the computation time of S-NAMO remains consistently higher (Cf. IV.17f) compared to NAMO in this scenario.

FIGURE IV. 17 :

 17 FIGURE IV.17: Averaged evaluation criteria graphs (with standard deviation) of the 200 randomized experiments in the "Intersections" environment presented in Fig.IV.16, baseline NAMO in blue, S-NAMO in green. Ordinate (y-axis): values for the criterion given in caption. Abscissa (x-axis): number of elapsed simulation time steps.

FIGURE V. 1 :

 1 FIGURE V.1: Simple Multi-Robot scenario derived from Fig.IV.1, and resolution by our Implicit Coordination Strategy, without (1st line) and with (2nd line) the Social Cost Model presented in Chapter IV. The blue robot chooses a more appropriate placement for the obstacle using S-NAMO than NAMO, allowing the pink robot to reach its goal without having to move the obstacle again, reducing overall execution time (makespan) by almost 20%.

FIGURE V. 2 :

 2 FIGURE V.2: Abstract representation of potential conflict types

 FIGURE V.3: Detection of a Simultaneous Space Access potential conflict. In (A), both robots compute plans. In (B) and (C), they have executed their first step: blue grabbed the obstacle (illustrated by transfer marker), while pink translated up. (B) and (C) respectively show the SSA potential conflicts detected by blue and pink, caused by the intersection of their next action's swept area with their circular overestimates of each other's next action.

FIGURE V. 7 :

 7 FIGURE V.7: Detection of a Stolen Object potential conflict. (A) Same initial situation as Fig.V.6a, both robots compute plans. In (B), after 15 steps, pink transferred and released the movable obstacle, while blue translated right wanting to grab the same obstacle, causing blue to detect a Stolen Object potential conflict. This scenario happens under the assumption that the robot does not react subsequently to the detection of previously detected Stealing Object potential conflicts.

Fig.V. 3)

 3 and Simultaneous Grab (Cf. Fig.V.4), or mutual Robot-Robot potential conflicts where two robots are progressing towards one another and would cause potential conflicts detections at every step. With a random duration, one robot will almost always wait a shorter amount of time, re-plan before the other and seize the space or obstacle first. Lastly, Object in Path (OInP) and Stolen Object (SO) potential conflicts are very unlikely to disappear simply by having the robot wait, since movable obstacles can't move by themselves.

 Fig.V.10). On the other hand, always considering dynamic obstacles as static obstacles during the NAMO planning procedure may lead to unnecessary detours (Cf. Fig.V.11), or unsolvable situations (Cf. Fig.V.12).

 Fig.V.18 and Algorithm 11, obtained within our simulator.Evasion plans are each computed using Dijkstra's algorithm on the grid inflated by the robot's circumscribed circle radius. The evasion configuration is chosen similarly to the obstacle placement in the previous chapter, by combining the displacement cost obtained using the Dijkstra search and the social occupation cost, but not the displacement cost estimate to the goal (since the robots do not share their respective goals). The path is then straightforwardly constructed from this evasion configuration by traversing the Dijkstra search tree. This process is illustrated in Figures V.14A to C.

FIGURE V. 14 :

 14 FIGURE V.14: Illustration of the blue robot's deadlock evasion planning process after detection in Fig.V.13. (A) The corresponding social occupation costmap. (B) The combined costmap of the blue robot's evasion plan, which corresponds to Dijkstra search tree -the greener, the higher the cost. (C) Same illustration for the green robot's potential evasion plan computed by the blue robot. (D)The resulting evasion plan for blue, while green chooses to wait for blue to move; the number of steps of the blue robot's evasion plan[START_REF] Rios-Martinez | From Proxemics Theory to Socially-Aware Navigation: A Survey[END_REF] and of the green robot's would-be plan to reach the blue robot's current configuration(20) are added as wait time after evasion for the blue robot to let green pass before resuming.

 and the time of a navigation plan from its current position's to the furthest robot. The first one has already been computed, and the second one can be obtained by A-Star searches towards the other involved robots' current positions. The computation is illustrated in Figure V.14d, and the full evasion process including the wait is showcased in Figure V.15.

(

 FIGURE V.15: Complete deadlock resolution of Fig.V.13's scenario.

 Figure V.16, and a two-robots NAMO scenario with a single movable obstacle, illustrated in Figure V.17. We did not have the opportunity to use this deadlock evasion strategy in the large-scale quantitative experiments showcased in the following Section V. 3. In the three-robots scenario (Cf. Fig.V.16), the robots need to go from one room to the other through narrow corridors, which results in the creation of multiple successive deadlocks. As the robots sometimes underestimate the wait time after evading to let other robots pass, they resume their plans slightly too soon (Cf. Fig.V.16g & V.16h), resulting in the reappearance of a similar deadlock, needing evasion again. However, this process eventually converges, as we forbid the robot to use the same evasion configuration twice for the same goal, in order to prevent oscillation; this can be observed with the purple robot between Fig.V.16d to Fig.V.16j. In the two-robots NAMO scenario (Fig.V.17), the robots again need to go from one room to the other through a narrow corridor, but this one is blocked by a movable obstacle. As the blue robot grabs the obstacle first, the green robot abandons its initial NAMO plan for a pure Chapter V. Multi-Robot NAMO 135 navigation plan, eventually blocking the rightmost room's entrance (Cf. Fig.V.17a to V.17e).

 Fig.V.17f to V.17j). The blue robot finally resumes its NAMO plan, leaving the obstacle in an arguably not so good position(Cf. Fig.V.17k to V.17l), as the green robot blocked the way to the "recesses" of the rightmost room's walls at the time of the blue robot's planning. The green robot thus has to move the obstacle again to get to its goal (Cf. Fig.V.17m to V.17o).

 FIGURE V.16: Three-robot scenario showcasing successive deadlock situations. This example showcases how even if the first deadlock is not solved "in one go", our evasion strategy still makes relevant decisions that quickly converge to a resolution.

(

 FIGURE V.17: MR-NAMO scenario showcasing successive deadlock situations. As in Fig.V.16, this example also showcases how the deadlock is progressively solved.

FIGURE V. 18 :•

 18 FIGURE V.18: Implicit coordination strategy decision graph augmented with potential deadlock resolution, equivalent to Algorithm 11, C-NAMO+

(

 FIGURE V.21: Several snapshots of the simulation of the 4-robot scenario presented in Fig.V.20, assuming the use of Coordinated NAMO without using our social occupation model.

 Fig.V.21 shows how, without social awareness, robots executing NAMO algorithms can quickly and badly affect one another's plans, as highlighted by the red robot's plan elongation between subfigures E and F. Though our social-awareness may come at the cost of almost up to 3 times longer transfer distances L trans f er , the number of transferred obstacles is reduced by a third or quarter in SC-NAMO. As stated in Section IV. 7.3.2, we remind that since Stilman's algorithm does not seek optimality, once most components are connected after a few goals, it only moves obstacles when goals are under them. For the CITI case, the ring configuration of the environment in between the rooms explains why results are not as outstanding: intersections are too far from each other.

 Finally, our additional study hypotheses could be relaxed to open an entirely new realm of usable algorithms and passionating experimentations, with heterogeneous, non-omniscient and explicitly communicating robots. Our open simulation tool, algorithms and data provide a solid base to dive deeper in the study of this new problem.Chapter VI ConclusionIn this thesis, we have made the first steps in bringing together the Navigation Among Movable Obstacles (abb. NAMO) Problem with the larger domains of Social Robotics and Multi-Robot Coordination. This marks a milestone in the process of bringing NAMO closer to real-world applicability in human environments.We lowered the barrier of entry into NAMO research, with our extensive NAMO state of the art (Cf. Chapter II), open source simulation tool and datasets, all made from scratch. This, with our revision and implementation of two fundamental NAMO algorithms,[START_REF] Wu&levihn | s algorithm : Unsolvable problem using full prior knowledge (A), but solvable using a limited[END_REF]

 Fig.VI.1).

FIGURE VI. 1 :

 1 FIGURE VI.1: CITI Laboratory second floor. (A) Top-down view of the laboratory's 3D scan. (B) 3D-view of the social occupation costmap produced by our model. Blue costs are lower costs, red costs are high costs.

 a way, one of the main contributions of this thesis has been to introduce the two open problems of Socially-Aware and Multi-Robot NAMO. NAMO itself still being an open problem, we could only but scratch the surface of their multiple implications, and much remains to be explored.Consolidating existing NAMO research While we extensively studied the current NAMO state of the art in Chapter II, we could only study in details and implement the two most influential existing algorithms (Cf. Chapter III). Implementing the rest of these algorithms, eventually leading to an actual robust computer library people can pick their preferred algorithm from, remains a very relevant challenge today. Of course, the logical corollary would be to augment our current dataset, with new NAMO environments and scenarios that would best showcase these others algorithms' advantages and drawbacks. Finally, benchmarking said algorithms with said augmented dataset within a same experimental context (i.e. same machines with same characteristics) would also help in choosing which algorithm to use depending on context.Incorporating human feedback and knowledgeAs mentioned in the conclusion of Chapter IV, improving our social occupation cost model would mainly require larger and more diverse human input, in order to tune its parametrization and validate its social acceptability with actual human feedback. Setting up appropriate experiments requiring human participation would also require the input of social sciences experts, that would ensure their adherence to established experiment design guidelines. While the potential extension of our model with any of the other models presented in Section II. 2 or IV. 3 would be technically straightforward thanks to the commonplace nature of our grid-based approach, the appropriate choice of weight parameters and validation would also require the input of more humans and social sciences experts. While non-trivial, the resulting model would certainly yield more meaningful and relevant obstacle placements (and maybe robot placements in MR-NAMO deadlock situations).

Algorithm 19 : 2 M 5 BA 13 y 14 if 0 16 Z

 19251314016 Original Efficient Opening Detection Algorithm Data: Binary occupancy grid G, Manipulated obstacle M i , Manipulation action A M Result: True if new local opening detected, False otherwise1 CHECK-NEW-OPENING(G, M i , A M) = GET-M ′ i -MATRIX(M i) 3 x_o f f set = M i .x 4 y_o f f set = M i .y = GET-BLOCKING-AREAS(x_o f f set, y_o f f set) 6 x_o f f set = GET-NEW-X-POS(A m , M i) 7 y_o f f set = GET-NEW-Y-POS(A m , M i) 8 BA s = GET-BLOCKING-AREAS(x_o f f set, y_o f f set) 9 BA * s = [0][0] ; {0-Matrix; dim()=dim(M)} 10 for i = 0 → |BA * s | do 11 for j = 0 → |BA * s [i]| do 12 x = (x_o f f set -M i .x) + i = (y_o f f set -M i .y) + j < x < |BA * s | AND 0 < y < |BA * s [x]| then 15 BA * s [x][y] = BA s [i][j] = COMPARE(BA, BA * s)

Table

 to fuse C 1 with C 2 , then navigates to the Couch to fuse C 2 with C 4 in order to finally navigate to its goal.

resolution-optimal theoretical algorithm is structurally similar to Okada et al.'s algorithm

[START_REF] Okada | Environment manipulation planner for humanoid robots using task graph that generates action sequence[END_REF]

, making it no more computationally efficient because of the exact same requirement of computing the full task graph. That is why they rather devised and implemented a resolutioncomplete greedy variant, that instead of the full task graph, recursively computes a Best-First Search task tree (Cf.

6 NAMO planning in unknown environments

 Fig.II.10a), it still heavily relies on the two emphasized above hypotheses, and is definitely not trivially generalizable to more complex world geometries, which would come with a nonnegligible time and memory cost (if at all mathematically computable). Finally, while this approach is probabilistically complete, its randomized nature produces very suboptimal plans, with respectively 214 and 23 899 obstacle movements (grasps) for Fig.II.10a and II.10b, while it took only 6 such movements for Stilman & Kuffner L k M-planning algorithm [46] for the original scenario of Fig.II.10b.All the previously described planners were designed under the assumption that the

II. 1.

robot has, at any time, an accurate knowledge of the entire environment

 (obstacle position, geometry, type, mass, ...), and were thus mostly experimentally applicable in computer simulations. As mentioned earlier, the real world experiments of Okada et al. and Stilman & Kuffner

 Example NAMO problem resolution by Scholz et al.'s kinodynamic & decision theoretic algorithm [11], in a real-world setting. The robot has a differential drive base and two arms, totaling 17 Degrees of Freedom. Perception is provided by six overhead cameras tracking AR-tags[62].

	(A) Initial configuration.	(B) Expected solution:	(C) Expected solution: pull	(D) Expected solution:
	The goal is to reach the top	push the square table; but	the long table; but it rotates	rotate long table: rotated
	right corner of the room.	it is stuck -constraint	unexpectedly because a	successfully and opening
		learned.	wheel caster is locked -	found.
			constraint learned.	
	FIGURE II.16:			

TABLE II .

 II 1: Synthesis table with main differentiating criteria

	Reference	Prior	Movability Uncertainty Resolution capabilities	Cost	C-Space	Algorithms	Manipulations	Real-World
	(Chen, 1991)	Full	Given	-	Limited to "plowing"	E	Disc.	Dijkstra	(Re)Grasp (with	No
	[1, 38]				paths				movement	
									transfer)	
	(Okada, 2004)	Full	Given	-	Likely limited to L 1 prob-	D or E	Disc.	RRT, Graph-	Grasp	Yes
	[2, 42]				lems		(Transit)	Search Algo-		
							and Cont.	rithms		
							(Transfer)			
	(

Stilman, 2005) [39, 3, 43, 44, 19] Full Given - L 1 -Complete, can be made L 1 -Optimal NMO then E Disc. A*, Best-FS, Breadth-FS, DFS Prim. Yes

	(Stilman, 2008)	Full	Given	-	Limited to L k M prob-	NMO	Disc.	A*, Best-FS,	Grasp	No
	[46, 47, 19]				lems, can be made L k M-	then D		Breadth-FS,		
					complete			DFS		
	(Nieuwenhuisen, 2008)	Full	Given	-	Limited to LP problems	D	Cont.	A*, PRM, RRT	(Re)Grasp	No
	[4, 48, 49]									
	(Van den Berg, 2009)	Full	Given	-	LP-Probabilistically	None	Cont.	RRT	(Re)Grasp	No
	[5, 50]				Complete, limited to					
					axis-aligned environ-					
					ments					
	(Kakiuchi, 2010)	None	Manip.	-	Limited to "one-	NMO	Cont.	RRT	Push	Yes
	[6]				manipulation" plans	then D				
	(

Wu&Levihn, 2014) [33, 34, 35, 7] None Manip. - Locally-Optimal for "one-manipulation" plans D or T or E Disc. A*, D*Lite, Breadth-FS Push, Grasp No

	(Levihn, 2013-3)	Partial Recog.	State,	No clear limit, no guar-	Combined	Cont.	BHPN, RRT	Grasp	Yes
	[9, 27]			Action	antees	cost				
	(Mueggler, 2014)	Partial Recog.	-	Limited to L k M prob-	T	Disc.	A*, Dijkstra	Grasp	Yes
	[12]				lems, MR				(Pick&Place)	
	(Castaman, 2016)	Partial Recog.	-	No clear limit, no guar-	T	Disc.	KPIECE, A*	Grasp	No
	[64, 65]				antees				(Pick&Place)	
									or Push	
	(Moghaddam, 2016)	Full	Given	-	L k M-complete under	E	Cont.	DFS, Dijkstra,	(Re)Grasp	No
	[51]				other hypotheses, but not			VG		
					limited to L k M problems					
	(Scholz, 2016)	Partial Recog.	Action	Limited to L 1 problems	PS from	Cont.	MCMC, PRM,	Prim.	Yes
	[11, 28]					T and E		RRT		
	(Sun & Meng, 2018)	Partial Recog.	-	Limited to L k M prob-	D	Cont.	RRT*	Grasp	Yes
	[67, 52]				lems, Multi-Plane				(Pick&Place)	
									or Push	
	(Wang, 2020)	Partial Recog.	-	Limited to "one-	Combined	Disc. (Tran-	A*, CITO,	Grasp	Yes
	[70]		and Ma-		manipulation" plans	cost	sit) and	SCVX	(Pick&Place)	
			nip.				Cont.		or Push	
							(Transfer)			
	(Levihn, 2013-1)	Full	Given	Action	Limited to L 1 problems	PS	Disc.	Dijkstra, MAX-	Grasp	No
	[8, 27]							Q Value Itera-		
								tion, MCTS		
	(Levihn, 2013-2)	Full	Given	Action	Limited to L 1 problems	PS from	Cont.	MCTS, PRM,	Prim.	No
	[10, 27]					T and E		KDRRT, RRT-		
								Connect		

(Renault et al., 2019) [30] (Chapter IV) Partial Manip. - Locally-Optimal for "one-manipulation" plans, with social taboos D or T or E Disc. (Wu&Levihn, 2014) Push, Grasp No S-NAMO [69] (Chapter IV) Full Given - L 1 -Complete NMO then E and S Disc. (Stilman, 2005) Grasp No (S)C-NAMO (Chapter V)

	Full	Given	-	MR	NMO	Disc.	(Stilman, 2005)	Grasp	No
					then E				
					(and S)				
	Legend: Manip. = Found through manipulation; Recog. = Found through visual recognition; '-' = No uncertainty management in planning;
	D = Distance; E = Energy; T = Time; NMO = Number of Moved Obstacles; PS = Probability of Success; Disc. = Discrete; Cont. = Continuous;
				Prim. = Motion Primitives; MR = Multi-Robot			

II. 2 Social & Multi-Robot considerations in NAMO-related prob- lems

	In the previous Section II. 1, our thorough review of NAMO research has revealed a lack of con-
	cern for social or multi-robot considerations in the existing literature. However, Social Robotics
	and Multi-Robot coordination are far larger and more abstract problem domains, with thou-
	sands of papers addressing them in a huge variety of ways. Thus, the goal here is certainly
	not to provide as exhaustive a review of existing work as we did for NAMO. As we presented
	our review of NAMO algorithms, we also mentioned other robotics problems closely related
	to NAMO: Navigation Planning, Manipulation Planning, Rearrangement Planning, Assembly
	Planning, and the overarching domain of combined Task and Motion Planning. Thus, we will
	instead focus on providing examples of how social and multi-robot constraints have been ac-
	counted for in these neighboring problems, as a way to introduce relevant concepts for the next
	chapters and to better situate our work.

none of these papers do the robots need to choose which obstacles to move and where to leave them, which is actually where a great part of the NAMO problem's difficulty lies. Combined Task and Motion Planning (TMP/TAMP):

 to our subject of study. Both rearrangement planning and assembly planning arguably greatly differ from the NAMO problem, since the final position constraints they assume for each movable object drastically reduce the search space. In Finally, let us discuss Multi-Robot TMP, as TMP is a super-set of the NAMO problem and all the aforementioned related problems, according to the recent survey of Garrett et al.[START_REF] Garrett | Integrated task and motion planning[END_REF]. The same survey shows that, while problems that can be qualified as TAMP have existed for at least as long as robotics have been studied, it is only recently, in the last decade, that the term has emerged and gained trac-

Levihn et al.'s work, and shared the same aforementioned characteristics differentiating them from NAMO. These prior works and Levihn et al.'s were all strongly centralized, and required explicit communication. Later works under the name of "Multi-Robot Rearrangement Planning" focused on experiments with multi-robot arms fixed on a table

[START_REF] Shome | Synchronized multi-arm rearrangement guided by mode graphs with capacity constraints[END_REF][START_REF] Hartmann | Long-horizon multi-robot rearrangement planning for construction assembly[END_REF][START_REF] Motes | Hypergraph-based multi-robot task and motion planning[END_REF]

, mainly consisting in Assembly Planning problems (with priority constraints in object placement to assemble the goal construct), making them much less relevant

underlined in the previous paragraph, choosing which obstacles to move and relevant placements are characteristic subproblems of NAMO, and need to be properly addressed. Conclusion:

 . It also makes the conclusion that comparatively fewer approaches are based on decentralized than centralized coordination, and further research on decentralized coordination would be welcome to improve the applicability of TAMP algorithms to environments with either a large number of robots, or where individual robot failure is likely, or where communication capabilities are limited. Beyond this survey, the Multi Robot combined Task and Motion Plan-In the end, similarly to Socially-Aware concerns, it is apparent that none of the closest Multi-Robot problem formulations we could find actually address what we aim for: having multiple agents efficiently navigate in cluttered human indoor environments, where they need to also plan the manipulation of obstacles as needed to reach their goals. As such, we are free to formulate Multi-Robot NAMO as a new problem, which we do in Chapter V.For a first formulation, it would make most sense to start off with a fully homogeneous Multi-Robot System, as it is simpler to devise. In order to ensure maximum robustness regarding the possibility of individual robot or communication failure, we consider that the first approach

ning paper closest to the NAMO we could find was Tang et al.'s

[START_REF] Tang | Computing high-quality clutter removal solutions for multiple robots[END_REF]

, discussing the problem of Multi-Robot Clutter Removal (abb. MRCR), consisting in emptying a specified space from all obstacles occupying it. While similar to NAMO in appearance, this problem assumes the possibility of removal to infinity, and requires all objects to be moved, regardless on their impact on robot navigation efficiency (Cf. Fig.

II.27c). As

to Multi-Robot NAMO should be under the assumption of a Multi-Robot System that only allows implicit communication, and use a fully distributed coordination strategy. That way, more complex future Multi-Robot NAMO systems that would rely on explicit communication to coordinate in more efficient manners, would always have a backup solution in case of aforementioned failure. Under this hypothesis we make of no explicit communication, robots would not be able to communicate their individual navigation goals to each other: as such the system we are envisioning for this thesis could be considered mostly competitive, although we shall see in Chapter V how we may still create cooperative behaviors under these assumptions.

 E e > |E ∈ W that are unambiguously separated into the following: • a single manipulator robot R ∈ E with n degrees of freedom, • a set of obstacles (syn. objects) O =< O 1 , ..., O o >⊂ E that are either:

fixed (syn. static) obstacles F =< F 1 , ..., F f >⊂ O, that cannot be moved by the robot, -movable (syn. manipulable) obstacles M =< M 1 , ..., M m >⊂ O, s.t. F ∩ M = ∅ that can be moved by the robot (note that O

 Action and state validity not only depend on the absence of collision with other objects, but also on actual robot capabilities. The exact formulation (also called action space A) of Navigate and Manipulate abstract actions depends on implementation, which we shall discuss in Section III. 3.2. Instantiated actions of the Navigate abstract action are denoted as A N ∈ A N , and as A M ∈ A M for Manipulate.

III. 1.2.2 Action sequences (Plans)

A Plan (syn. Action Sequence), denoted P, is a continuous succession of actions indexed from A t s to A t e , where the resulting configuration of affected entities for one action is equal to the starting configuration of the same entities for the next action. The way actions have been previously defined, a plan, or a subsequence of a plan (also called a plan component), consisting of only continuous successive Navigate actions can be reduced to a single Navigate action. Similarly, this is also true for continuous successive Manipulate actions under the condition that they are applied on the same movable obstacle M i , with the same grasp G j .

1.6.2 Openings Another

 fundamental notion to Stilman and Wu&Levihn's formulations (and arguably, to the whole NAMO domain), is the concept of new opening. When a robot moves obstacles in a NAMO problem, it is for the purpose of finding a lower-cost path to its goal configuration -or finding a path at all. When the robot considers possible motions for an obstacle, it must thus determine when a new -ideally lower-cost -path to the goal has been indeed been created by a specific motion sequence, as to decide whether it is worth considering or not: this is, in broad Two pure navigation plans P 1 , P 2 ∈ P Nav (t) are homotopic if and only if there exists no known obstacle in the area enclosed by the paths that the robot traverses if executing the plans. Otherwise, they are ahomotopic. Manipulate action created a new opening if the set P Nav (t ′) at time t ′ after the execution of the Manipulate action has at least one plan P that is ahomotopic to all the plans in the set P Nav (t) at time t prior to the execution of the manipulation action.

	New opening: A

words, checking for the existence of a new opening. Let us now formally define this concept of new opening, using the notion of homotopic plans, that needs to be defined first, derived from the definition of Igarashi & Stilman

[START_REF] Igarashi | Homotopic Path Planning on Manifolds for Cabled Mobile Robots[END_REF]

: Homotopic plan:

 Table II.1), while providing a local optimality guarantee.

	Chapter III. Revising and simulating reference NAMO algorithms	57

 This same situation where only static obstacles were to block the way to the goal, was actually causing another loop (Alg.2, l.8) to cycle indefinitely. Actually, even if a plan avoiding all obstacles was found, but could not be replaced by a better plan manipulating a movable obstacle (Fig.III.10b), the loop would cycle indefinitely too. This was because the original obstacle routine10 did not explicitly formalize these cases, which is why we completely rewrote it as Algorithm 3 (SELECT-OBSTACLE). These edge cases now trigger the unambiguous return of a NULL value (Alg.3, l.2-4), that allows the calling loop (Alg.2, l.8) to properly terminate.

	O 1	q R g	O 1	q R g
	O 3		O 3	
	M 1	O 2	M 1	O 2
	M 2		M 2	P*
	(A) The way to the goal is blocked by static obstacles	(B) A plan avoiding all obstacles exists, but no better
			plan can be found by manipulating M 1 or M 2
	FIGURE III.10: Example edge case scenarios where the original algorithm formalization
		would enter infinite loops	
	Algorithm 1: Plan execution routine (EXECUTE) of our improved (Wu&Levihn,
	2014) algorithm -Cf. logic description page 57		

III.10a). Now, the once-affected loop (Alg.1, l.5) is properly terminated by returning failure in this case where absolutely no plan could be found (Alg.

1, l.10,15)

.

Data: Robot current configuration q t R , Robot goal configuration q g R

 failed manipulation → then the manipulated obstacle is updated in O new as static

7 if P * ∩ O new ̸ = ∅ then 8 PLAN(P * , q t R , q g R) 9

O new ← ∅ 10 if P * ̸ = ∅ then 11 nextAction ← GET-NEXT-ACTION(P *) 12 if nextAction ∈ A M then 13 mList ← ∅ 14 EXECUTE(nextAction) 15 else return Failure

 Selected obstacle M i , corresponding heuristic cost C heur SELECT-OBSTACLE(mList, eList, mIndex, eIndex, evaluated) M i , C heur ← mList[mIndex] // M i , C heur ← NULL, ∞ if index out of range

	M e i , C e heur ← eList[eIndex]	// M e
	if M e i ∈ mList then	

mList, eIndex, mIndex, evaluated) Algorithm 3: Obstacle selection routine (SELECT-OBSTACLE) of our improved (Wu&Levihn, 2014) algorithm -Cf. logic description page 59 Data: Heuristic obstacle lists mList and eList, corresponding indexes mIndex and eIndex, list of evaluated obstacles evaluated Result: i , C e heur ← NULL, ∞ if index out of range if C heur = C e heur = ∞ then return NULL, ∞ if C heur ≤ C e heur then mIndex + + else eIndex + + 9 return SELECT-OBSTACLE(mList, eList, mIndex, eIndex, evaluated) M i , C heur ← M e i , C e heur if M i / ∈ evaluated then APPEND(evaluated, M i) return M i , C heur else return SELECT-OBSTACLE(mList, eList, mIndex, eIndex, evaluated)

 C(P manip) + C(P to_goal) Current world state without the polygons of the robot and the obstacle to evaluate, but with the polygon of the robot if it were on the goal W t ∪R g /M i ,R , Current state of the obstacle to evaluate M t i , next state of the obstacle to evaluate after action M t+1

	Algorithm 5: New opening detection routine (CHECK-NEW-OPENING) for continu-
	ous geometries -Cf. logic description page 62
	24 25	if C(P to_obstacle) + C(P manip) + C(P to_goal) < C(P * M i) then P manip ← RECONSTRUCT-PATH(cameFrom, q manip R , q cur R)
	27	P * M i ← P

26 P ← P to_obstacle + P manip + P to_goal Data: i Result: True if new local opening detected, False otherwise

 . If we go back to Fig.III.18b, an actual path produced by the obstacle selection routine can be seen. This path first traverses M F = Table 1 to enter C F = C 2 . The selection routine is called again, starting from intermediate robot configuration q t 1 R , returning M F = Couch to enter C F = C 4 (not illustrated). This is how the full plan shown in Fig.III.18c and III.18d is found.

	1. Free space to free space 3. Obstacle space to obstacle space	2. Free space to obstacle space 4. Obstacle space to free space	Forbidden transition

 World state W t , previously evaluated (M i , C i) pairs EvaluatedPairs, components fused in previous recursions FusedComponents, goal configuration q Relevant obstacle to consider for manipulation O F , Connected Component C F to be joined with currently accessible cells C acc R

			algo-
	rithm -Cf. logic description page 73	
	components C	t 0 R	g R , initial connected
	Result:		

Data:

1 RCH(W t , EvaluatedPairs, FusedComponents, q

 algorithm -Cf. logic description page 74 Evaluated world state after manipulation W t+2 , Manipulation plan τ M

	Data: Current world state W t , Relevant obstacle to consider for manipulation O F , Connected Component C F to be joined with currently accessible cells C acc R , initial connected components C t 0 R
	Result: 1

. 4 .

 4 Compute the compromise cost CC for each potentially reachable cell with a weighted sum of the following normalized costs: occupation cost (SC(x, y)), distance d M i (x, y) and a heuristic euclidean distance to NAMO goal d goal (x, y): CC(x, y) = w M i * d′ M i + w goal * d′ goal + w SC * SC′ w M i + w goal + w SC (IV.5) where SC′, d′ M i , and d′ goal are respectively normalized versions of SC, d M i , and d goal in [0, 1]. The obtained Comprise Cost grid can then be used in the transfer planner of NAMO algorithms in two non-exclusive ways:

TABLE IV .

 IV 1: S-NAMO algorithm parameters values for the experiments

 transit + ST(W t start) → Nc(W t start) → f rag(W t start) →

						T planning
		L trans f er	ST(W t end)	Nc(W t end)	f rag(W t end)	±σ
		[m] + [m]			[% → %]	[s]
	[A]					
	Baseline	4. + 1.1	46.8 → 43.0	2 → 3	0.4 → 12.6	0.5 ± 0.2
	S-NAMO 2.5 + 2.8	46.8 → 15.0	2 → 1	0.4 → 0	1.1 ± 0.2
	[B]					
	Baseline 33.0 + 1.2	61.0 → 44.9	3 → 4	23.6 → 74.3	13.8 ± 1.6
	S-NAMO 35.7 + 3.4	61.0 → 23.7	3 → 1	23.6 → 0.	2.0 ± 0.3
	[C]					
	Baseline 11.2 + 0.6 559.0 → 556.5	4 → 3	45.5 → 28.5	1.3 ± 0.2
	S-NAMO 13.0 + 2.5 559.0 → 545.9	4 → 3	45.5 → 28.6	3.1 ± 0.4
	[D]					
	Baseline 31.8 + 1.0 105.4 → 116.7	14 → 15	47.2 → 45.5	28.1 ± 1.8
	S-NAMO 35.4 + 4.5 105.4 → 79.3	14 → 13	47.2 → 5.0	26.5 ± 1.7

TABLE IV .

 IV 2: Short-term single-robot experiments performance criteria comparison table. As a reminder: displacement and computation costs for [B] and [D] are cumulated over goals, ST and Nc have no units and T planning is given as average with standard deviation σ over 50 runs.

problem of General Socially-Aware Navigation Among Movable Obstacles.

 Inspired by our Social Navigation literature exploration (Cf. Section II. 2.1.1), we proposed a first naive social constraint of "taboo zones", or forbidden affordance spaces, to express this problem. While this simple approach does not affect optimality of algorithms, it does not scale nor generalize well to any NAMO scenario. After consulting the literature on Affordance Spaces, we realized that a new model was needed that did not require extensive semantic data and could cover the entirety of the environment. Hence, we introduced a new social occupation cost model representing an affordance space of accessibility/navigability based on two heuristic hypotheses: avoiding narrow spaces, and not leaving objects in the middle of space. This

	IV. 8 Conclusions
	This chapter first introduced the new

model relies solely on the analysis of the environment's binary occupancy grid of fixed obstacles

 . Then, we showed how to extend NAMO to S-NAMO algorithms that result in plans with better social acceptability. To

the best of our knowledge, this is the first approach to propose an answer to social concerns in NAMO problems.

 1 , ..., R r >⊂ E as a set of robots (part of the world's entities E). Similarly to how R was previously defined as a separate element from the set of obstacles (syn. objects) O, we keep this separation R ∩ O = ∅: as per this equation, it is hypothesized that a robot cannot Manipulate another robot as if it were a manipulable obstacle.Each robot R i is assumed to have its own sensing capabilities. As such as we did in Section III. 1.3, we differentiate the actual world (syn. reference world) W re f , where actions are executed, and the individual world perception of each robot W R i . The notations F R i and M R i respectively refer

 R j is not already transferring another movable obstacle M l (it is otherwise formally impossible for R j to grab M k within [t, t + 1], because of the "One-to-one robot-obstacle relationship" hypothesis);• R j is within grabbing distance of M k , which according to our NAMO problem definition in Section III.1.4, is equal to the radius of the circle circumscribing the robot R j 's polygon, as illustrated in Fig.V.4. Again, according to our "Homogeneous & Omniscient Multi-Robot System" hypothesis, each robot R i could compute the exact potential grasping configurations for each other robot R j around obstacle M k , but for the same reasons as for Simultaneous Space Access (abb. SSA) potential conflicts detection, we don't specialize our approach that much. Only movable obstacles that are not being transferred by a robot at time t need to be checked for intersection with the remaining plan steps. Robot System", we can directly check the grab status of the obstacle and detect the Stealing Object potential conflict type even before the obstacle is moved by the other robot R j .Without this hypothesis, detecting Stealing Object potential conflicts could be done by observing the geometrical closeness between the other robot R j and obstacle M k and/or their speed vectors. Detection of an Object In Path potential conflict. (A) Both robots compute plans (pink's goal being partially covered by the robot and the movable obstacle). In (B), after 5 steps, pink reached its goal and released the obstacle, while blue translated right, causing blue to detect an Object In Path potential conflict.

	Simultaneous Grab (abb. SGrab) potential conflicts: the situations where two or more robots could grab a same obstacle in between the current and next time step [t, Chapter V. Multi-Robot NAMO 123 • Stealing Object potential conflicts (abb. SingO): situations where a movable obstacle M k that was planned for movement by a robot R i is being transferred (Stealing) by another robot R j before R i (Cf. Fig.V.6), potentially verifying equation V.2. Under our hypothesis of an "Omni-124 (A) Initial state W t (B) After 5 steps, W t+5 Blue robot's plan swept area scient Multi-Chapter V. Multi-Robot NAMO FIGURE V.5:

t + 1], potentially verifying equation V.

[START_REF] Nieuwenhuisen | An Effective Framework for Path Planning Amidst Movable Obstacles[END_REF]

. Again, each robot R i can only predict whether another robot R j is likely to grab the same obstacle M k within [t, t + 1]. We thus detect such potential conflicts under the following two conditions:

Grabbing distance-inflated polygon of obstacle to be moved by blue robot FIGURE V.4: Detection of a Simultaneous Grab potential conflict. The center of each robot's is within the grabbing distance-inflated polygon of the movable obstacle, having them both consider that the other can instantaneously grab it within the next time step.

Detecting the above two subtypes of potential conflicts still is not sufficient to guarantee the absence of actual conflicts/collisions. For this, the three following situations also need to be detected:

Object In Path potential conflicts (abb. OInP): situations where a movable obstacle has been transferred (but is no longer being manipulated) on a robot R i 's path (Cf. Fig.V.5), potentially verifying equation V.1. (A) Initial state W t (B) After 2 steps, W t+2 Blue robot's plan swept area FIGURE V.6: Detection of a Stealing Object potential conflict. (A) Both robots compute plans. In (B), after 2 steps, pink grabbed the movable obstacle, while blue translated right wanting to grab the same obstacle, causing blue to detect a Stealing Object potential conflict.

TABLE V .

 V Table V.2 clearly shows that whatever the number of robots, using our social cost model will still converge to a similar better space rearrangement: the total social cost drops by a third, accessible cells are always significantly more numerous and the number of components only slightly lower (since NAMO still must connect components to operate). This better rearrangement can still be qualitatively observed in Fig.V.22. Detailed and interactive graphs showing the aggregated criteria's evolution over time are available on our git repository (https://gitlab.inria.fr/brenault/s-namo-sim), with raw statistical data and end state snapshots for all runs. 2: C-NAMO vs. SC-NAMO: World-dependent performance criteria comparison table, at world initial and end states. Values are averaged across 200 runs and provided with standard deviation. Number of robots is indicated in the first column with scenario name. 17 / 50 17.8 ± 14.4 434.2 ± 349.4 25 ± 20 205.2 ± 191.2 SC-NAMO 19 ± 30 14 ± 194 ± 360 5799 ± 4543 25 ± 19 / 50 43.5 ± 35.7 521.5 ± 411.7 13 ± 10 541.2 ± 480.2 TABLE V.3: C-NAMO vs. SC-NAMO: Agent-dependent performance criteria comparison table, cumulated over time. Values are averaged across 200 runs and provided with standard deviation. Unless specified otherwise in the first row, the unit is the number of occurrences. Number of robots is indicated in the first column with scenario name. Number of goals per robot is indicated in the 'Successes/Goals' column.

	Scenario		Scenario Postponements Replans Wait Steps Makespan t max (total steps) Number Accessible Social Cost Alg. of components cells	Successes / Goals	L trans f er (m)	L sum (m)	Transfers	T planning (s)
	Int -2	Initial conditions W t init	9	2606	636		
	C-NAMO		Int -2 W t end 38 ± 61	27 ± 337 ± 672	5061 ± 875	43 ± 8 / 50	12.9 ± 4.0	425.2 ± 93.0	24 ± 6	83.4 ± 141.0
	SC-NAMO	C-NAMO 24 ± 51	2.1 ± 1.1 16 ± 215 ± 561	2549 ± 86 4196 ± 727 636 ± 22	43 ± 8 / 50 31.9 ± 11.0 359.2 ± 72.6	16 ± 4	170.1 ± 336.6
	Int -4		SC-NAMO		1.4 ± 0.8	2800 ± 73	402 ± 47		
	C-NAMO SC-NAMO Int -5 C-NAMO SC-NAMO Int -10 C-NAMO SC-NAMO CITI -2 Initial conditions W t init 47 ± 27 30 ± 400 ± 281 Int -4 W t end C-NAMO 2.0 ± 1.0 36 ± 28 24 ± 332 ± 303 SC-NAMO 1.4 ± 0.6 50 ± 24 32 ± 430 ± 250 Int -5 W t end C-NAMO 2.0 ± 1.0 39 ± 25 25 ± 351 ± 263 SC-NAMO 1.4 ± 0.8 61 ± 22 40 ± 535 ± 223 Int -10 W t end C-NAMO 1.8 ± 0.9 51 ± 22 35 ± 475 ± 224 SC-NAMO 1.6 ± 0.8 40 C-NAMO 20 ± 30 17 ± 220 ± 363	2940 ± 686 2534 ± 86 2415 ± 635 631 ± 24 2785 ± 91 424 ± 41 2550 ± 740 2548 ± 76 2065 ± 571 633 ± 26 2774 ± 91 434 ± 46 1479 ± 480 2545 ± 89 1302 ± 422 639 ± 34 2761 ± 96 464 ± 44 7078 951 4985 ± 3980	21 ± 4 / 25 20 ± 5 / 25 16 ± 3 / 20 16 ± 4 / 20 6 ± 2 / 10 6 ± 2 / 10 23 ±	7.3 ± 2.9 16.1 ± 7.1 5.6 ± 2.4 13.4 ± 6.3 2.6 ± 1.7 6.1 ± 4.3	228.6 ± 57.2 188.2 ± 52.5 191.0 ± 59.1 154.8 ± 43.8 84.5 ± 32.8 74.3 ± 28.2	13 ± 4 8 ± 3 10 ± 3 7 ± 3 4 ± 2 3 ± 2	65.3 ± 117.7 154.0 ± 316.6 60.5 ± 157.3 150.6 ± 204.0 46.6 ± 53.8 155.8 ± 187.8
			CITI -2 W t end						
			C-NAMO		28.8 ± 5.2	7018 ± 81	929 ± 23		
			SC-NAMO		26.6 ± 6.8	7209 ± 94	760 ± 99		

 Transit path planner call (A* call on the discretized grid of W t) MANIP-SEARCH Manipulation/Transfer path planner call (Breadth-First search call assuming uniform action costs) append Inserts elements from the right list at the end of the left list [] Get list element at index between

	/Function	Description
	gets	Assignation operator
	∈	Element of
	FIND-PATH	Navigation/

TABLE C .

 C 2: Operators/Functions table for Algorithm 16 Same Initial state Blocking Areas matrix as in Table D.1 BA * Same Final state Blocking Areas matrix as in Table D.1 del_num Set of Indexes/Arbitrary identifiers of the blocking areas in BA that intersect with blocking areas in BA *

	Variable	Description
	BA	
			s
	∅	Empty set
	BS	Initially a copy of BA, should be the returned variable for
		the pseudocode to actually be valid
	x y	Traversal indexes of the BS matrix
		TABLE D.6: Variables table for Algorithm 22
	Operator/Function	Description
	:=	Assignment operator
	∈	Element of
	∪	Set union update
	Variable	Description
	Closed	Set of fully evaluated configurations
	∅ empty Empty set
	Q	Priority queue of configurations to evaluate (ordered by
		increasing cost + heuristic distance cost to goal (e.g. eu-
		clidean distance))
	r t	Robot start configuration at the function's call
	x 1	Currently evaluated state (r 1 , O F , C F)
	r 1	Current robot configuration (e.g. currently evaluated grid
		cell)
	r 2	Neighbor robot configuration from r 1 (accessible with a
		single action)
	O F	First traversed obstacle in path to cell (0 if no traversed
		obstacle yet)
	C F	First traversed component in path to cell (0 if no traversed
		component other than current robot component yet)
	O i	Obstacle exclusively colliding with the robot at configura-
		tion r 2
	C i	Free space at robot configuration r 2
	N IL	Failure to find a relevant obstacle/free space component
		to connect

s

The configuration of a robot/object can be understood as its coordinates in euclidean space. The configuration space refers to the mathematical space of all possible configurations of all the robots and obstacles.

Several approaches/algorithms presented in this NAMO literature overview have been published in different conferences/journals/thesis documents, with slightly variable content such as new figures or explanations. For each such instance, we first cite all publications, then refer to the algorithm with the reference we have found to be most relevant among these, for the sake of readability.

One example of such a problem is provided later in Fig.II.10a.

The term "resolution"-optimal/complete is used here to underline the use of purely graph-based navigation and manipulation search methods (respectively A * and Breadth-First Search), on a 2D grid graph with a specific square side-length resolution. It also refers to the fixed number, for each obstacle, of grasping points and corresponding robot grasping configurations (grid cells) from which they can be reached (Cf. Fig.II.6b).

We provide an in-depth explanation and revisited pseudocode formalization in the next chapter, Section III. 2.2.

Whereas the previously presented algorithm of Stilman's[START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF] added an extra cost for each traversed obstaclecolliding configuration (multiplying the cost by the number of robot configurations needed to pass through the obstacle). Also, this new heuristic allows collisions with more than one obstacle at once.

To be understood as all problems that do not require simultaneous movement of more than one obstacle.

Van den Berg was a colleague of Nieuwenhuisen, and although not identified as a co-author of[START_REF] Nieuwenhuisen | An Effective Framework for Path Planning Amidst Movable Obstacles[END_REF], is mentioned in the Acknowledgements section of the paper.

 11 These hypotheses actually fit a lot with Nieuwenhuisen's NAMO interpretation of Ben Shahar's LP rearrangement planning class.

As the robot discovers the environment and computes new plans, it may manipulate multiple obstacles during execution.

The whole process is best understood with the associated video: https://youtu.be/oQZLbJHYrl8

The whole process is best understood with the associated video: https://youtu.be/3AvfPVzBb-s

We provide an in-depth explanation and revised pseudocode formalization of Wu&Levihn's algorithm in the next chapter, Section III. 2.1.

They chose not to model the problem with the usual approach of Partially-Observable MDP (abb. POMDP) to handle perception uncertainty, as they collapse this uncertainty in the Transition Model of the MDP for the sake of computational efficiency.

The state space is sampled randomly and biased to always include valid grasping poses around the movable objects: at the end of the PRM process, sampled grasping poses of a same obstacle that belong to different subgraphs of the PRM allow to detect that the obstacle is disconnecting free spaces components, and to create the relevant action edge in the adjacency graph (Cf. Fig.II.13b).

Opening detection is done using a lower-dimensional RRT-connect search[START_REF] Kuffner | RRT-connect: An efficient approach to single-query path planning[END_REF], that only considers the robot footprint, and is bound by a maximum number of nodes from the robot's configuration to a random configuration in the road map of the free space component to connect.

The whole process is best understood with the associated videos: https://youtu.be/SFJbxUbuCO8 and https://youtu.be/cQDpo9yxrCI.

The whole process is best understood with the associated videos: https://www.youtube.com/@toomanyquestion/videos

The team website still exists at the following URL, and is a treasure trove of NAMO-related resources: http://www.golems.org/oldindex.html

Final placement of these small picked obstacles was planned not only for the floor plane, but every other reachable stable plane (tables and such) -to the best of our knowledge, their NAMO algorithm was the first to offer this capability.

Whose contents shall be discussed in Chapter IV

Affordances are possible interactions offered by the object to their user, as defined in the Theory of Affordance of J.J. Gibson[START_REF] Gibson | The Ecological Approach to Visual Perception[END_REF]

It is important to note here that while paths may not be explicitly parameterized by time, we use the variable t to refer to a chronological ordering on states and operations.

More concretely, in all our experiments, we choose parameter values so that the cost of a unit rotation action is equal to the cost of a unit translation action in axis-aligned directions, and manipulations actions are twice the cost of equivalent navigation actions.

The valid grasp robot configurations are implementation dependent. In our case, these configurations are the ones where the robot's front's midpoint coincides with the obstacle's sides midpoints (Cf. Fig.III.6).

This underestimate is only proven valid as long as no obstacle is moved -hence the reset of mList upon a manipulation action.

The exact operation depends on the world representation being used -more on this in III.3.2

The A Star algorithm has linear time complexity of O(|E|), E being the number of edges in the graph.

If the robot is not represented by a circle but by a polygon, the circumscribed circle's diameter is used for the initial state inflation, and the inscribed circle's diameter for the final state one -this, as to avoid any false negatives.

Original formalization available in Appendices B and D.

The plan execution and computation logic were originally formalized as a single function called "OPTI-MIZED" (Appendix B, Alg.13).

[START_REF] Levihn | Planning with movable obstacles in continuous environments with uncertain dynamics[END_REF] The obstacle choice logic was originally formalized as a function called "GET-NEXT" (Appendix B, Alg.14) + a single-line condition in the calling function "OPTIMIZED" (Appendix B, Alg.13, l.14).

This customized breadth-first search algorithm was originally formalized as a function called "OPT-EVALUATE-ACTION" (Appendix B, Alg.15).

[START_REF] Mueggler | Aerial-guided navigation of a ground robot among movable obstacles[END_REF] This is a precondition for Dijkstra's algorithm to be complete and optimal (and thus, the overall algorithm to remain optimal too

).[START_REF] Rios-Martinez | From Proxemics Theory to Socially-Aware Navigation: A Survey[END_REF] The main difference between breadth-first search and Dijkstra's algorithm is the use of a more computationally demanding priority queue instead of a queue. Our implementation automatically detects if action costs are constant in which case, the queue types are transparently switched -making it computationally

equivalent.14 Formalized in[START_REF] Levihn | Efficient Opening Detection[END_REF], formalization copied in Appendix D.

return neighbors

The provided pseudocode can be trivially modified for this by calling the PLAN function (after Alg.1 line 7) a second time if P * = ∅, but this time stripping the world representation W t of any prior knowledge / only keeping the accumulated sensed data.

It is however possible to use[START_REF] Stilman | s incremental binary occupancy grid model[END_REF]'s algorithm under the same perception hypotheses as (Wu&Levihn, 2014)'s algorithm. This can be achieved by using the same improved execution routine (Alg. 1) we previously formalized.

Using the same implementation mentioned in Section III. 2.1.2, that seamlessly falls back to a Breadth-First Search if a constant cost action space is detected.

The GEOS library implements the OGC Simple Features geometry model and provides all the spatial functions in that standard as well as many others. GEOS is at the core of widely used geospatial software like PostGIS, QGIS and GDAL.

In a real world setting, this hypothesis would be verified as long as the constant time step for each discrete action is big enough to compensate for internal clock error and drift -and the robot's planning algorithm is guaranteed to yield an action that will yield the next world state W t+1 .

As a reminder, NAMO neighboring problems are: Navigation Planning, Manipulation Planning, Rearrangement Planning, Assembly Planning, and combined Task and Motion Planning.

[START_REF] Okada | Environment manipulation planner for humanoid robots using task graph that generates action sequence[END_REF] (Wu&Levihn, 2014)'s algorithm, presented in Section III. 2.1, would generate the exact same resolutionoptimal solution, as would all other NAMO algorithms, because of the same sole optimization of displacement cost.

(A) (B) (C)

It is to be noted that the code and data used to be hosted on their now unavailable website http://pr.cs.cornell.edu/hallucinatinghumans/, but can still be accessed through the Internet Archive.

typically expressed as energy, time, or distance

(A) (B)

The accompanying video shows how both algorithms unfold: https://team.inria.fr/chroma/files/2020/07/iros_2020_Renault.mp4

The high amount of detected components is due to the chosen reference human radius r h : in the offices, space is considered fragmented between some desks because of this. This does however not make the comparison any less relevant.

Here, this is particularly true for robots smaller than humans due to our use of a human-size reference radius r h ; if robots were larger than humans, then we could simply adjust the reference radius and skeleton conversion function f conv to be coherent with the robot's size, resulting in a similar conclusion.

return NIL

Acknowledgements II. 2.2 Multi-Robot coordination . II. 2.2.1 Definitions . II. 2.2.2 Multi-Robot works with movable obstacles III Revising and simulating reference NAMO algorithms III. 1 Our NAMO Problem Formalization . III. 1.1 Workspace . III. 1.2 Actions and Action spaces . III. 1.2.1 Actions . III. 1.2.2 Action sequences (Plans) . III. 1.2.3 Manipulation Action Spaces . III. 1.3 Sensing . III. 1.4 Domain Restrictions . III. 1.5 Cost & Optimality . III. 1.6 Space Components and Openings . III. 1.6.1 Space Components . III. 1.6.2 Openings . III. 1.7 NAMO Problems . III. 2 Baseline NAMO Algorithms . III. 2.1 (Wu&Levihn, 2014)'s Algorithm . III. 2.1.1 Algorithm outline . III. 2.1.2 Generalization to larger action spaces, continuous environments & edge cases . III. 2.1.3 When more knowledge becomes an issue III. 2.2 (Stilman, 2005)'s Algorithm . III. 2.2.1 Algorithm outline . III. 2.2.2 Generalization to larger action spaces & edge cases III. 3 A new NAMO simulator . III. 3.1 Overview of the simulator . III. 3.2 World representations . III. 3.3 Main simulation module . III. 4 Conclusion . IV Socially-aware NAMO IV. 1 Introduction -the General Socially-Aware NAMO Problem IV. 2 A first naive, local and binary constraint model . IV. 3 Object placement & affordance spaces in the literature IV. 4 The Social Placement Choice NAMO Problem . IV. 5 The Social Occupation Cost Model . IV. 5.1 Heuristic hypotheses . IV. 5.2 Computation steps overview . IV. 5.3 Skeleton & Space Allowance . v IV. 5.4 From Space Allowance to Social Occupation Cost IV. 5.5 Propagation . IV. 6 Integrating the social occupation cost to NAMO Algorithms IV. 6.1 Relevant algorithms for this integration . IV. 6.2 A heuristic compromise cost . IV. 7 Experiments . IV. 7.1 Simulation parameters . IV. 7.2 Evaluation criteria . IV. 7.3 Results . IV. 7.3.1 Short-term experiments . IV. 7.3.2 Long-term experiments . IV. 8 Conclusions .

List of Algorithms

Plan execution routine (EXECUTE) of our improved [START_REF] Wu&levihn | s algorithm : Unsolvable problem using full prior knowledge (A), but solvable using a limited[END_REF] (A) Environment from [START_REF] Wu | Navigation Among Movable Obstacles in unknown environments[END_REF]. Blue obstacles are static, yellow ones are movable, robot is green, goal is red.

(B) Environment from [START_REF] Levihn | Locally optimal navigation among movable obstacles in unknown environments[END_REF]. Grey obstacles are static, colored ones are movable, robot is blue, goal is red. These environments are all artificial, obstacles are placed randomly in axis-aligned directions.

(A) "Intersections" (B) "CITI Laboratory" FIGURE III.12: Examples of our experimentation environments in the following chapters: for quite a few obstacles, it is difficult, if not completely impossible for the robot to maneuver while holding them to find relevant manipulation paths.

Chapter IV

Socially-aware NAMO

IV. 1 Introduction -the General Socially-Aware NAMO Problem

We concluded our NAMO state of the art in Section II. 1.10 with the observation that social concerns have never been addressed in NAMO problems; although human environments are a clear target application for NAMO algorithms in the literature. Another important conclusion of this state of the art, is the highlighting of obstacle placement choice as a characteristic subproblem of NAMO, compared to neighboring problems 1 . We have found that the only obstacle placement heuristic until now was to move the object just enough to make an opening for the robot. However, only minimizing the robot's displacement cost, without regards for other (potential) agents or its future self is bound to cause socially undesirable situations. One such situation is illustrated in Fig. IV.1a and IV.1b, using [START_REF] Stilman | s incremental binary occupancy grid model[END_REF]'s algorithm 2 presented in Section III. 2.2. Here, the robot's selfish choice would cause a human coming from the topmost doorway to get blocked; even in the absence of a human, the robot would still have hampered any future navigation towards the topmost or rightmost entryways for itself.

IV. 5.5 Propagation

As explained in the introduction of Section IV. 5, we need a propagation procedure that guarantees a decreasing cost from the skeleton values, in order to guarantee the benefit of getting the obstacle away from the "middle of space".

For this, we use a variant of the Wavefront Propagation algorithm [START_REF] Lavalle | Planning Algorithms[END_REF] where we start from the skeleton's set of cells SK. We then iteratively mark all unlabeled 4-neighbors cells with the λ-decayed minimum value of their own neighbor cells from the previous iteration, with λ ∈]0, 1[, as described in equation IV.4. Since the choice of λ value depends on the grid resolution, we will discuss it in Section IV. 7. from becoming actual conflicts. We shall discuss this decision process in the following sections.

V. 2.2 Conflict avoidance: a timing-based strategy

In order to prevent these previously defined potential conflicts from actually happening, we drew inspiration from the Fixed-path Coordination described by S. Lavalle in his reference book on Motion Planning [START_REF] Lavalle | Planning Algorithms[END_REF]. It consists in planning for each robot using a single-robot algorithm, then schedule the motion of the robots along the plans so that they do not collide by tuning execution speed, or introducing waiting times if speed is constant, as is our case.

V. 2.3 Deadlock evasion V. 2.3.1 Detecting potential deadlocks

While the previously formulated coordination strategy guarantees that the problem's constraints cannot ever be violated, it may result in deadlocks -that is, dependency cycles between robots' actions [START_REF] Ferber | Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence[END_REF]. Deadlocks are intrinsic problems of decentralized algorithms, as they emerge from the dependency cycles that appear in the merging process of independently computed decision trees. For Multi-Robot Systems, they can either cause the Robot Freezing Problem (i.e. the robots involved in the deadlock can not move) or oscillations (i.e. the robots involved in the deadlock indefinitely alternate between the same configurations). In an explicitly communicating multi-robot system, deadlocks can be straightforwardly solved by sharing robot plans, detecting the cycles in the shared dependency graph of robot actions and centrally planning a resolution for all robots.

Without explicit communication, in the same way we explained in Section V. 2.1 that robots could only detect potential conflicts, they can also only detect Potential Deadlocks. However, while our problem definition requires that no conflict actually occur, it does not require the non-occurrence of deadlocks. As such our potential deadlock detection strategy is allowed both false negatives or positives, but should still minimize both.

While the actual dependency cycles between plans cannot be observed, it is still possible for each robot to observe and remember the occurrence of potential conflict detections, as defined in Section V. If the time period to consider a recurring potential conflict is too small, then false positives may be too frequent and result in the robots trying to avoid deadlocks that do not exist. Since we assume that all robots run with the same algorithm and parameters, we wait for the maximum duration of a postponement to pass before considering a recurring conflict to be a deadlock. Under a different hypothesis, one may have to more carefully consider what a good time span would be depending on the hypothesis.

Algorithm 11: Improved Coordination NAMO (C-NAMO+) to evade deadlocks

Data: World state W t , Goal q g R , Current plan P, Minimum and maximum number of steps for timer [t min , t max], Maximum number of NAMO-PLAN and EVASION-PLAN calls n try , Conflict detection horizon h Result: Action A t to execute between t and t + 1, Current plan P 1 C-NAMO+(W t , q g R , P, t min , t max , n try , h)

R then return SUCCESS, P;

V. 3 Experiments

In the previous section, we explained the challenges of using existing NAMO algorithms in a Multi-Agent environment, discussed an implicit coordination strategy to address them, and qualitatively justified our choices with simple and specific problem examples. This section aims to:

• study the scalability of our approach as the number of robots grows;

• measure the impact of our Social Occupation Cost Model in a multi-robot NAMO context. We reused the two large-scale environments introduced in Chapter IV, re-illustrated in The different runs occur within similar CPU usage at all times, keeping planning times comparisons relevant. Also, since simulation time steps are synchronized across robots, varying plan computation times depending on machine CPU usage will not affect the determinism of the plan's computations. The random seed used for the random durations timers generation is saved as a scenario parameter also to guarantee determinism and experiment reproducibility.

V. 3.1 Experimental context

V. 3.2 Evaluation criteria

Now that we are considering several robots instead of one, robot-dependent evaluation criteria need to be aggregated together in a meaningful fashion, and separated from world-dependent (i.e. robot-independent) criteria that don't need to be aggregated. Algorithm 13: Original (Wu&Levihn, 2014) main robot control routine Data: Robot start configuration q s r , Robot goal configuration q g r Free space component to connect to the current robot accessible space in the current obstacle manipulation evaluation

Closed append (x 1) The following algorithm is our own formalization of the obstacle transfer/manipulation subroutine described in [START_REF] Stilman | Navigation among movable obstacles: real-time reasoning in complex environments[END_REF]19] (MANIP-SEARCH), derived from their textual statements. Algorithm 18: (Interpreted) original [START_REF] Stilman | s incremental binary occupancy grid model[END_REF] , q cur R))

))

10 return neighbors , q cur R))