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CHAPTER

Introduction

The developments presented in this PhD thesis are related to the study of the inverse
scattering problem for an unbounded periodic medium with defects. This area has at-
tracted much attention in the recent mathematical literature as it is related to many

applicative areas such as: chemistry, mechanics, optics, antenna arrays, etc.

A typical example of a targeted application is the non-destructive testing of the so-called
metamaterials, which are human-engineered materials with electromagnetic properties
modified from their nature (may have a negative refractive index). Initially designed
to control electromagnetic waves, these metamaterials have been developed for other
technological applications such as improving the properties of optical devices, noise con-
trol,... In general, the metamaterials are designed to be periodically printed on several

layers of substrate (See Figure 1.1).

We are interested in considering the case where these periodic layers admit defects. Our
problematic is then to identify the location and the shape of these defects. In order to
do so, an electromagnetic incident field is applied to this structures by some given source
and the scattered field is measured at some receivers. Collecting these measurements
for different source locations we would like to reconstruct the defect using some specific
non iterative inversion methods that will be introduced below. The main difficulty we
face in addressing this inverse problem comes from the fact that the defect breaks the

periodicity, and then we cannot deal with the problem in one period cell. This leads to
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FIGURE 1.1: (1): Illustration of a 3D Metamaterial allows controlling the
passage of light [1]. (2): Example of 3D electromagnetic metamaterials
(synthesized meta-lens)[57]. (3): Example of mechanical metamaterial
micro-structure [52]. (4): Hlustration of an Antenna metamaterial [27].

treat an inverse scattering problem in an unbounded domain. We refer for the studies
of scattering problems from unbounded surfaces to [15, 16, 18, 19, 46], and for the case
of wave guides we refer to [9, 10, 25, 33, 40].

In the literature, several works have considered the inverse scattering problem from per-
turbed periodic layers by assuming the knowledge of the periodic structure. However,
in real applications, we may not have access to this information or we obtain it in an
inaccurate way. The first challenge we raise in this work is to solve the inverse problem
assuming that we have no information about the periodic structure except the period-
icity length. A technical assumption was made in [30] to deal with this problem where
they assumed that the perturbation itself is periodically distributed (with larger peri-
odicity scale). This allows them to reduce the problem to a large and bounded period.
The main objective in this work is to use a similar approach in [30] but get rid of this

technical assumption.
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We first give an overview of the theoretical and numerical studies made in the literature
for the direct scattering problem. Under the assumption that the refractive index has a
positive imaginary part the well-posed character of our problem is proved in [39]. The
idea is based in applying the so-called Floquet-Bloch transform (for a detailed introduc-
tion of this operator, its properties and its application to scattering problems, we refer
to [24, 41, 43]). Indeed, the application of this operator allows to transform the problem
into coupled quasi-periodic problems in one bounded period. This allows to exploit the
well-posedness of the non-perturbed quasi-periodic problem to prove the well-posedness
of the perturbed case. We shall extend the analysis in [39] by considering solutions that
are continuous with respect to the Floquet-Bloch variable. This analysis when the re-
fractive index has only a non negative imaginary part is done in [38]. On the numerical
side, a volume integral method was introduced in [44, 47] to solve the direct problem for
periodic domain. This method has been extended in [29, 49] to the locally perturbed
periodic case. We shall present the main idea of this method and give some numerical
examples for the solution of our scattering problem. One of the perspectives of this work
is to consider the inverse problem for the anisotropic case. This is why we also extend

the well-posedness of the direct problem to the anisotropic case.

In order to solve the inverse problem, we employ sampling methods as introduced in [30].
Indeed, these methods have many advantages. They do not require solving a series of
forward problems. This makes the numerical implementation of the method easier and
faster compared to iterative methods. They do not require a linearization hypothesis.
Moreover, although we have no information about the physical characteristics of the
scatterer, we still can identify its location and shape. On the other side, one of the
disadvantages of these methods is the requirement of a large number of measured multi-

static data.

The idea of these methods is based on the construction of an indicator function that
allows to indicate for a grid of sampling points in the probed domain whether a sampling
point is inside or outside the obstacle. The Linear Sampling Method (LSM) was first
introduced in [20], (also [11, 22]). The theoretical justification of this method admits

some weak points as it does not give a regularization scheme to construct the indicator
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function. A new formulation called Generalized Linear Sampling Method (GLSM) was
proposed in [7, 16] to deal with the week point of the LSM. It gives an explicit indicator

function that provides an exact characterization for the scatterer geometry.

Several research works have applied sampling methods to solve the inverse problem
from a periodic medium without defects [2, 3, 4, 31, 32, 42, 48, 53, 56]. For the
case with defects that assumes the knowledge of the periodic background, we refer to
[9, 23, 26, 28, 39, 45, 54]. Sampling methods applied to our case (which do not assume
the knowledge of the periodic background) were considered in [30, 49] but as mentioned
before, they assumed that the defect is also periodic (with periodicity an integer mul-
tiple of the background periodicity). The first main goal considered in this thesis is to
provide a theoretical justification of the GLSM method by getting rid of this techni-
cal assumption. We consider first the GLSM method for a single Floquet-Bloch mode
where quasi-periodic incident fields are used. We introduce the near field operator for
fixed Floquet-Bloch variable and we prove that it admits a factorization similar to the
classical one encountered in the literature. However, this doesn’t allow us to apply the
abstract framework of the factorization method as introduced in [36, 37]. This explains
the reason for which the penalty term used for the application of the GLSM method in
this work is different from the one used in the literature. In a second step we consider
the case where non-periodic incident fields are applied. We introduce the full near-field
operator and its factorizations, and we give the theoretical justification of the GLSM
method in this context. The inversion method applied in this two cases provides two
indicator functions, the first one for the intersection of the domain with the first period
(distributed periodically), and the second one for the whole domain. These two results
were obtained under the assumption that the defect does not intersect the periodic do-
main, which allows us to introduce the so-called interior transmission problem for the
periodic background and the one associated with the perturbation separately. There-
fore, we can obtain in this case their well-posed character directly from the literature
[11, 12, 13, 34, 55]. The study of the interior transmission problem for the case where
the intersection is not empty is one of the perspectives of this thesis. Some preliminary

results are obtained in the last chapter.
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A Differential Linear Sampling Method (DLSM) was first proposed in [6] that allows
identifying defects from a complex domain using differential measurements, i.e it re-
quires measurements for the setting without and with defects. A new differential sam-
pling method inspired from [6] has been introduced in [30] for locally perturbed periodic
layers. It does not use differential measurements and provides an indicator function
to directly construct the defect using only a priori knowledge of the periodicity length
(but still assuming that the defect is also periodic). We revisit this differential sampling
method as presented in [30] without assuming that the local perturbation is also peri-
odic. The principle of this method consists in observing that the GLSM setting for single
Floquet-Bloch mode still holds if we change the periodicity of the background to an inte-
ger multiple of the original periodicity. Then one can construct a criterion depending on
the GLSM indicator functions established for different lengths of periodicity that allows
to directly construct the defect. We also study the GLSM for non-quasi periodic sources
and show that one can reconstruct the full domain without knowledge of this periodicity

length. This can also be exploited for DLSM.

One of our main perspectives is to consider this inverse problem in the case where
the perturbation intersects the periodic background. We are then interested in the
analysis of the interior transmission problem (ITP) in this case. In the case of non-quasi
periodic sources, this problem is difficult to solve because it arises in an unbounded
domain. Then Fredholm’s alternative cannot be applied as in the case of bounded
domains treated in the literature, see for instance [11]. Similarly to the solvability of
the direct problem, we apply the Floquet-Bloch transform and we analyze first the
quasi-periodic interior transmission problem. However, we face a difficulty to follow
the idea proposed in [39]. Indeed, contrary to the direct problem, after applying the
Floquet-Bloch transform to the variational formulation of the problem (ITP) we still
have a coupled term w.r.t to the Floquet-Bloch variable which although it has a compact
support, its compactness property cannot be proven and therefore Fredholm’s theory
cannot be applied as in the idea proposed in [39]. In order to solve this problem, we

consider the case for which the perturbation is contained in the periodic background and
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we perform a discretization with respect to the Floquet-Bloch variable. We prove first
the solvability of the discretized interior transmission problem with the help of the well-
posed character of the quasi-periodic one. Finally, we perform a convergence analysis
to prove that the discretized solution converges to a solution of I'TP. For uniqueness, we
still have to assume that the imaginary part of the periodic background is positive in an

open domain.

Organization of the manuscript

The manuscript is organized as follows:

Chapter 2: This chapter is dedicated to a presentation of some results on the well-
posedness of the direct scattering problem form unbounded locally perturbed periodic
layers. We first present and complement some theoretical results obtained from the
literature for the case of isotropic media. We then extend these results to prove the
well-posed character of the anisotropic inhomogeneous problem. We then give a brief
outline of a numerical method used to generate the solutions for the direct problem and

we present some numerical examples.

Chapter 3: An analysis of sampling methods is given in this chapter. More precisely,
two theoretical results are presented. In the first one, we consider quasi-periodic inci-
dent fields and we give a theoretical justification of the Generalized Linear Sampling
Method (GLSM) for a single Floquet-Bloch mode. Then based on this result, we give
a justification of the GLSM method for the case of full measurements. The theoretical
framework presented in this chapter is extracted from the published paper [8], and some

numerical examples are added in the end of the chapter.

Chapter 4: We revisit in this chapter the differential linear sampling method (DLSM)
as introduced in [30] based on the two results of the GLSM method obtained in Chapter
3. We first reintroduce the setting of the inverse problem in an integer multiple of the
original periodicity and then give two indicator functions that allow a direct reconstruc-

tion of the defect. We conclude this chapter with some numerical experiments.
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Chapter 5: This chapter is devoted to the analysis of the interior transmission problem
in the case where the intersection between the periodic background and the defect is
not empty. We first present the solvability of the quasi-periodic interior transmission
problem. We then consider the case where the defect is contained in the periodic do-
main. We apply the Floquet-Bloch transform and make a discretization with respect to
the Floquet-Bloch variable which brings us to the study of the solvability of the semi-
discretized problem. Finally, a convergence analysis is performed in order to construct a
solution of the problem. Uniqueness is proved under the assumption that the refractive

index has positive imaginary part.



16

CHAPTER

The direct scattering problem
from locally perturbed periodic

medium

Abstract: In this chapter we present and complement some results obtained in the
literature for the theoretical and numerical studies of the direct scattering problem from
unbounded periodic layers with compactly supported defects. Then, we extend the study

of the solvability of the direct problem to the case of anisotropic media.
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2.1 Introduction

We introduce in this chapter the direct scattering problem from unbounded periodic
layers with defects. We consider the problem in the upper half space U° := R x R
with Dirichlet condition on T'? := R x {0}. We first discuss the well-posedness of this
problem in isotropic media. We shall assume the existence of a small absorption zone in
the periodic layers in order to obtain the uniqueness of the solution. The presence of the
defect prevents us from transferring the problem from an unbounded periodic domain
to a bounded period and from there comes the main difficulty since it is not easy to
use Fredholm’s theory in an unbounded domain. This problem has been solved in [39].
The main idea is to first consider the periodic problem without defects such that we can
write using the Floquet-Bloch transform an equivalent coupled quasi-periodic problems
with respect to the Floquet-Bloch variable in one bounded period. By proving that this
equivalent problem is uniquely solvable one can deduce the well-posedness of the per-
turbed case. We present also in this chapter the main idea of the method proposed in
[29] to generate solutions for our considered direct problem and we give some numerical
examples. Finally we extend the well-posedness of the direct problem for the case of
anisotropic media.

The chapter is organized as follows. In Section 2.2 we present the solvability of the prob-
lem in isotropic media as proposed in [39] with some complementary results. Section 2.3
is dedicated to presenting some numerical illustrations of the solution to direct problem.
In Section 2.4 we follow the same idea proposed in [39] to prove the well-posedness of

the problem in anisotropic media.

2.2 Solvability of the direct scattering problem in isotropic

Media

2.2.1 Setting of the problem

We denote by k the real valued positive wavenumber and we denote by n e L®(U°) the
refractive index satisfying n = n, outside a bounded domain D, with n, € L®(U % a 27-

periodic refractive index. Through this chapter, a 2m-periodic functions refer to functions
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that are periodic with respect to the first variable x1, with period 2w. Moreover, n and
n, are assumed to have a non negative imaginary parts.

For R > Ry > 0, we denote by DP a periodic domain included in an infinite band
Of := R x [0, R] such that n, = 1 outside DP. We set T™ := R x {R}, and we denote
by D := D? U D where D is assumed to be included in the period Qf := [0, 2] x [0, R]

as shown in Figure 2.1. Given f € L?(U°), we consider the following problem

Au+k*nu = f in U°,

(2.1)
u=20 on I,
and we assume that u satisfies the angular spectrum representation
1 L R
u(z) = j VR e (2= R g ¢ R)de,  for o > R, (2.2)
V2T JR

1 ,
with (&, R) is the Fourier transform of u|rr defined as u(§, R) = N f e %%y (xy, R)dx;.
™ JR

Using (2.2) we conclude that problem (2.1)-(2.2) can be reformulated as: seek u €
HE(QF) n HY(QF) such that

Au+ K*nu = f in OF,

u=20 on I, (2.3)
ou

07[[32<.7 R) = TR(’U,‘FR> on FR.

where T7 : HY2(T'®) — H~Y2(T'f) is the exterior Dirichlet-to-Neumann map defined

by

TR(p) = 2= | VTP e ds (2.4

with @ is the Fourier transform of ¢ and the square root is the one with non negative
imaginary part.
2.2.2 The case of periodic layers without defects

In this section we discuss the well-posedness of the direct scattering problem from peri-

odic domain without presence of defects, i.e D = & and n = n,. Let us first introduce



2.2. Solvability of the direct scattering problem in isotropic Media 19

R
'. : R T
L U L e e - = e e o e e e e e - - L b e e e |
| ' Ko | 1 | :
: DP | Dr | | D | Dr i DP |
: | o : : 1o
—4m -2n 0 2n 4n 61 8n

FIGURE 2.1: Sketch of the domain

some definitions and functional spaces.

Definition 1. For £ € R, we say that a regular function u is &-quasi-periodic of period

27 if it satisfies

w(zy + 21j, 20) = 2™ Iu(zy,10) YV jeZ and (v1,10) € R (2.5)

In what follows, we do not indicate the quasi-periodicity length since it is fixed to 2.

Moreover, we introduce for a real valued m > 1 the following functional spaces
o H™(OF) := {ue H™(QF); u=0 on I’
. Hg”(QR) = {ue H" (QF); wis & — quasi-periodic with period 27},
. FIF(QR) = {ug € Hgm(QR); ug =0 on TV},
o HUO) = {ulops e HL(QM),
. L?(QR) = {ue L} .(QF); wuis & — quasi-periodic with period 27},

Finally, for a regular function ¢ € CF(U°) we define the one dimensional Floquet-Bloch

transform as

To(& w1, m9) = Y o1 +2mj, wa)e™ ™I, Cel, (w1,m) € U”. (2.6)
JeZ

We recall that for a 2m-periodic function n,, the Floquet-Bloch transform satisfies

J(npu) = npJ (u). (2.7)
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Therefore, using the periodicity of n,,, we can reduce the scattering problem to a bounded
period by applying the Floquet-Bloch transform to problem (2.1) with n replaced by n,.

Therefore, (2.1) lead to the following quasi-periodic problem for ue = J(u)(&,-)

Aug + k*n ug = fe in UO,
8 (2.8)

ug =0 on TV,

where & € I := [0, 1] is the Floquet-Bloch variable, fe = J(f)(§, ) € Lg(UO) and Lg(UO)
denotes the space of £-quasi-periodic functions in LQ(UO), with period 27. Let us denote
by Il := [0,27] x {R} and we prove in the following Lemma that ug satisfies the Rayleigh

radiation condition

ug(x) 1= Y (ug|pn) () e D@+ De=R) - for gy > R, (2.9)
JEZ

where ag(j) 1= £+ J, Be(j) := VK% — |§ + j|? such that Sm(Be(j)) = 0 for j € Z and
@i¢(j) is the j-th Fourier coefficient of e~“*1u(x1, R) defined as

1 21

ue(g) : e~ 0Ty (5 R)day.

:%0

The proof of the following Lemma can also be found in [41, 39].

Lemma 2. Let u € H'(QF) be the solution of (2.1) satisfying the angular spectrum
representation (2.8). Then for & fized we have J(u)(&,-) € Hgl(Qé%) solution of (2.8)

satisfies the Rayleigh radiation condition given by (2.9).

Proof. Let © = (x1,x2), we observe that ¥(&,z) := J(¢)(& x) is a &-quasi-periodic

function w.r.t z1, then we fix £ € R and we use the Fourier series to expend v as

Y& x) = D ag(j, wo)e 0™, (2.10)

JEZ
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with

1 21

af(j)$2) = % ¢(f» ) o ])wld;vl
1 27r ) )
= ng x1 + 27l z0)e —i2nglo—iae ()T gy
27T 0 yez

Taking z; := x1 + 27¢ we conclude that

) 1 iomEt —ioo () (2 O
ag(j, o) = 5 ]RSO(Zl)B 28l g i (7)(21=2m0) g
1 o .
o p(z1)e e dzy = F(o) (€ + ), (2.11)
T JR

with F denoting the Fourier transform. Therefore, from (2.10)-(2.11) we deduce that

the Floquet-Bloch transform J can be rewritten as

o(&, 1, x9) = Z}' (&+7) Wf(j)“”l, for £ e R, (z1,22) € U (2.12)
JEZ

Recall that J is an isomorphism between L?(T'®) and L*(I, Hg”(I"é{)), with Hg"(I"OR)

denotes the restriction to TJ of &-quasi periodic functions in H](T'®), with norm

ol am = 251+ 12e)
JEZ

Consider G : ¢ — F! (eiVk2_|§|2(“_R).7-"(u|rR)(§)> e L*(R). Then, applying the

Floquet-Bloch transform given by the expression (2.12) to the radiation condition (2.2)

we get
T (ulrr)(§ ) = Y F(G)(§ + j)e et
JEZ
= 3 Flulpa)(€ + j)efecnt VRIEP@R) - (913)
JEZ
Consequently, since we have F(u|pr) (& +J) = (@r\a)( ) with ug := J (u) (&, -), we deduce

that (2.13) coincides with the Rayleigh radiation condition given by (2.9). O
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Using the radiation condition (2.9) we can define the exterior quasi-periodic Dirichlet-

to-Neumann map TgR : Hg/Q(F(If) — Hglp(FOR) as

(9'LL£

T (p) (1) = 2=

T | = 2P DB (2.14)

Ig  jez

where with @¢(j) is the j-th Fourier coefficient of e “"((x1, R). Therefore, (2.8)-(2.9)

can be reformulated as: seek u¢ € H, g(QOR) such that

-

Aug + k‘anu§ = fe in OF,

| ue =0 on I, (2.15)
Oug R R

k6762('73) =1 (U§|rg§) on I'y".

We have the following Lemma, which a straightforward consequence of the expression

R
ong .

Lemma 3. The Dirichlet-to-Neumann operator TER is bounded and satisfies
Re <T§Ru,u>rgz <0 and Sm <T§Ru,u>rgz >0 VYue Hgl/z(l"R),

where the notation (-, ->1-(1)a refers to the HV2(TE) — HY2(TE) duality product that coin-

cides with the LZ(F(I)%) scalar product for regular functions.

2.2.2.1 Well posedness of the problem

In order to prove the well posedness of the problem (2.15) we make in what follows the

following assumption.
Assumption 4. Assume that the set {Sm(n,) > 0} contains a non empty open set O.

The variational formulation equivalent to problem (2.15) is given as: seek ug € H, 51 (Ol

such that

LR (Vug - Vibe — KPnpugtie) d — (Tu, ¢§>r§ - LR fee, Ve € HH(OQE). (2.16)
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We define the sesquilinear form

bg(u§, 1#5) = J;)R (Vug . V% — k2npu§¢7§) dx — <T§RU§, ¢£>ré{ . (2.17)

0

Let Be : Efg(ﬂ(lf) — ﬁg(QDR) be the operator defined by the Riesz representation

theorem such that
(Beug, ve) o) = belug, ve) ¥ e, ue € H (QF). (2.18)

Theorem 5. Consider fr € LE(QR). Assume that Assumption 4 holds. Then there

exists a unique solution ug € HEI(QOR) to problem (2.15).

Proof. We define by the Riesz representation theorem Bél), BéQ) : ﬁgl(()é%) — ﬁg(OOR)

such that Be = Bél) + B§2)

1 [E— —_

(Bé Jug, be)uiap) = o Vuge - Vipedz + LR ug - eda — <T5Rus7 ¢g>r§ ,
0 0

2 R

(Bé Ju, Ye)miap) =~ LR(anp + Dugtpeda,
0
for all ug, e € ﬁg(ﬂg) Clearly Bél) is a coercive operator since Re <T£Ru§, u5>rR < 0.
0

Moreover, since the period Qé% is bounded then one can use the compact injection of
H g(QOR) into Lg (QOR) to prove that BEQ) is compact. Consequently, the operator B is a

Fredholm operator of index zero. Assume now that
be(ug, the) =0 for all 1 € HE(Qf).

Form Lemma 3 we have Sm <T5Ru§,u5>réa > 0. Therefore, Assumption 4 implies in

particular that

0= S [be(ug, )| = 1 | Smny)uel*da >0,
QR

0

Consequently, we have u¢ vanishes in the open ball O. Using the unique continuation
principle we deduce that ue = 0 everywhere in Qé% which gives the injectivity of the

operator Bg. ]
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In order to deal with the case that considers the presence of defects in the next section,
we prove in the following theorem some uniform bound with respect to the Floquet-Bloch

variable for the operator B L

Theorem 6. Let B : FI;(QOR) — ﬁg(QOR) be the operator defined by (2.18). There

exists a constant ¢ > 0 independent of £ such that HBng <c
Proof. Fix ¢ € I and define for u¢ and ¢¢ € Hg(Qé%),
ug = e_if'xlug, and wg = e_’f'“wg.
We have ug,wg € Hﬁl(Qé%), where H;(QOR) denotes the space Hél(Qé%) for £ = 0. We

1
auf _ zf 1 auf 61/) _ 7,5 1 1/}5
P <z§u€ + pr and P zgwg .

Then, replacing u¢ and )¢ respectively by uge”le and ¢§€ix1§ in (2.16) we get

have

aq/ﬁ _ oul — -
L (Vuf - VO +iufe - P zg-axf¢§+(|§|2—anp)ugwg)dx—<T5Rug,¢2>r§ = b (uf, )

0
with
(T, o= 5P ) V)
JE

Fix n > 0 and consider &;,& € I such that |&; — &]| < 1. For all uf, ¢ € Hﬁl(QR) we

have

b, () — b, (o, 09)| < (116012 = &2 + 2161 — &) 1l s oy 16 s o

+ 318, () — By ()] | ) (9 )

JEZ

<706 (j)HuﬁHHl(Qg)HWHHl(ng

with «y is the continuity constant of the trace operator from Hﬁl (O into L*(TE). More-

over, we have

$upCes &2 (7) < Flé - &alv? — 0 for & — &, (2.19)
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where £ is a constant independent from j, & and &. The proof of (2.19) is given in the
proof of Theorem 21 in the next chapter. Consequently, bgl (u¥, yf) — bg2 (uﬁ,wﬁ) goes
to zero as § — &2, which implies that { — B¢ is uniformly continuous from I into
L(H Q).
Now, let &, € I, and set € = 2||B1501||' Then there exists 7g, > 0 such that for |{ — &| <
¢, We have

| B¢ — Bg, || < e

Therefore | Bg, Y(B¢ — Bg,)|| < = which implies that

N

I(7 + B, (Be = Bg, )7l < 2.
Consequently, by observing that Be = B, (I + By, Y(B¢ — Bg,)) we deduce that
1B < 20Bglll, V€€ By,

where B%O denotes the ball of radius 7, centered at &. Since I is a compact set and

there exists a finite set J < I for which I = U{&) € I; |€—&| < g, }- Therefore, for all
geJ
¢ € I we have

B < 2sup|| B! || = e
&oedJ

2.2.3 The case of periodic layers with defects

In this section we comeback to the case of the locally perturbed periodic domain, i.e.
D # @& and we use the well posedness of the quasi-periodic problem given in the previous

section to prove the well posedness of (2.3).

2.2.3.1 Well posedness of (2.3)

We define the sesquilinear form

b(u, ) = J (Vu -V — k*nui) do — <TRu, 1/1>

QR

e (2.20)
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The variational formulation equivalent to problem (2.3) is given as: seek u € H*(QF)

such that
b(u,1p) = J fode, Yipe H(QF). (2.21)
QR

In order to prove the well-posedness of (2.21), we shall first prove in the following theorem
that problem (2.21) with n = n,, is equivalent to a coupled quasi-periodic problems with

respect to the Floquet-Bloch variable.

Theorem 7. Seeking a solution u € H*(QR) for problem (2.21) with n replaced by n,

is equivalent to seek @ := Ju e L*(I; Flg(ﬂgf)) satisfying
[vetwevote= [ [ gibesas, wiera o), e
0

with the notation ug = 4(§,-) and ¢ = 1,2(.5, .

Proof. Let us first recall in addition to (2.7) that for m € R positive, J is an isomorphism
between H™(Q) and L?(I; Hgm(Qé%)) and that J* the adjoint of J coincides with the

inverse of J (see [24, 43]). Consequently, we have

JQR(VU V) — k‘anuﬁ)daz = fQR(Vu - T*T (V) — k:znpu J*T(W))dx,

= L JQR(Vungg — E*npugide)dxde. (2.23)

On the same way we have that

LR fodz = L LR fevbedade.

Moreover, since J (u|rr)(&, z1) = ((Ju)(&, wl))‘r{} we deduce from Lemma 2 that
J(TRu)(E,-) = TETu)(E, ),
and therefore

|, Tl T T s = | | 1Rl Welgidsds. 220
R 1JTE
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which ends the proof. O

Lemma 8. Assume that Assumption 4 holds. Then there exists a unique solution for

problem (2.22).

Proof. From the well posedness of problem (2.15) we consider ug € H, g(QR) solution of
(2.16) for all £ € I with fe = Jf(&,-). Consequently we have thanks to Theorem 6 that
@ defined by (&) = ue € L*(I, HE (Qf)) = L*(I, HE(Qf)) and verifies (2.22). Then it
remains to prove that (2.22) is uniquely solvable.

We consider @ solution to the homogeneous problem (2.22). Then, we have in particular

that

L be(ug.ie)de = 0, ¥ e L(1, IHOQ)). (2.25)

Using the same arguments as in the proof of uniqueness in Theorem 5 we get

k2f J Sm(ny)|ug|*dz = 0.
rJap

Therefore ug vanishes in the open ball O almost everywhere in I. Since ug satisfies
Aug + kznpug =0in QUR we deduce by the unique continuation principle that u¢ = 0 in

QOR and almost everywhere with respect to &. O

Theorem 9. Assume that Assumption j holds and that Sm(n) = 0. Consider f €

L2(QF), then there exists a unique solution u € H'(QF) to problem (2.3) such that

[ull rry < el fllzzry,

with ¢ > 0 is a constant independent from f.

Proof. We observe that (2.20) can be decomposed as

b(u, ) = o Vu - Vi — K2 nyupda — <TRu, ¢>FR — k2 f . (n — np)updz. (2.26)

0
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and we define using the Riesz representation Theorem the operators B, B?, B : H(Qf) —

HY(QF) such that

(Bu7¢)H1(QR) = b(“ﬂb)v (227)

(BPu,¥) g (qry = Vu - Vi — k2 nyupda — <TRu, w>
QR

(Bu, V) ary = —k? JQR(n — ny)uthdz,

TR’

for all u, € H*(QF). We have

(B u, ) iri(ary = (T (B"u), T (V) 21,11 i)y = L(Bfu@wf)m(og)df-

Using Theorems 5, 6 and 7 we deduce that B is invertible. Moreover, since (n —ny) is
compactly supported. Then we can use the compact injection of H(D) into L*(D) to
prove the compactness of the operator B. This implies that B is of Fredholm type of

index zero. It remains to prove that B is injective. Assume that
(Bu, ¥) giqry =0 Vo e H'(QF).
Since it holds that Sm(T%u,u) > 0, then we have in particular that
0= sz Sm(n)|ul® = 0,
QR

consequently v = 0 in O by Assumption 4. The unique continuation principle implies

that w = 0 in Q. This ends the proof. O

2.3 Numerical examples

We present in this section some numerical examples obtained from the volume integral
method introduced in [29] for solving the direct scattering problem from locally per-
turbed periodic domain.

Numerical method: Recall that the problem can be reformulated as : Given f €
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L3(U%), seek @ := Ju e L*(I; Hg(Qo)) satisfying

A€, ) + EPnpa(E, ) + kK2 (n—np) T Ha) = fe inQo, (e,
(2.28)

T\ (@) = La@, )de in Q.

with fe := Jf(&,-). We define Qg := [—m, 7] x R, and we set for numerics the period
11

O = [—7, 7] x [0,R] and I = [—5, 5] The main idea of the method proposed in [29]

is to first consider a discretization with respect to the Floquet-Bloch variable, using a

uniform partition of I into sub-domains of size A{ = —, where M denotes the number

M
of discretization points. This allows to write a discretized problem in the form: seek

(-, €5) € HE (Qo) satisfying

. M M
At (&5, ) + K npti(&5, ) + k*(n — np)uas = fe,  in Qg [—7] +1<j< [7],
1 (5] (2.29)
Upr = M Z ﬁ(fj, ) in Q().
==+

An equivalent volume integral problem to (2.29) was given as follows

UM(§j7 ) - kz‘/ij((np - 1)@(45], )) + kQVvEJ((n - np)uM> = ‘/fj (ffj) in LQ(Q(}){%
1 (] (2.30)
Upr = M Z ﬁ(fj, )

J=[—51+1

where V¢ is the volume potential defined in Of as
Vege() = Lg Ge(r —y)ge(y)dy z€R,
and G¢ is the {-quasi-periodic Green function satisfying
AGe + K*Ge = —dg, in Q.

Finally, a periodization with respect to xo variable for (2.30) was considered in order to

discretize the problem using a spectral Fourier basis.
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Numerical examples: We present now some numerical examples of the solution calcu-
lated using the MATLAB code developed to solve the direct problem using the method
outlined above. This code was developed by [39] and we just slightly adapted it for point
sources. We consider in our numerical examples an incident field generated by a point

source y := (y1, R) situated on T'® with Dirichlet condition on I'° given by the following

expression:
. - iBe. (0 —iBe (€
ve (y,7) 1= v Z oioe; (Owi—a1) | —iBe;(OR e Oz _ —iBe;(O)ws
for 1 € Qg and 22 < R. We define
1 (%]
UM = M Z 'Ugj.
j=[—241+1
J 2
The &j-quasi periodicity implies in particular that
1 (%] .
vy (1 + 2mm, x2) 1= i Z 6127rm£jvgj (z1,72) for z € Qy,
=[]+
1 (%] ‘
up(z1 + 2mm, x2) 1= — Z e8I G ((21, 12), &) for x € O,
M
2

for m € N . In the examples below we vary the wavenumber k£ and the number of periods

M from an example to another and we fix the following physical parameters:

A=Z2-, R=25X mn,=5 n=3, N,=400, N, =400,

where N, and N, denotes the number of discretization points respectively with respect

to x1 and z9 directions. In all the following tests we represent the solution wps in

1
2
total filed ups + vps in the sub-figures respectively numbered (1) (2), (3) and (4).

1
O = [(M )27, (m + 5)27r] x [-R, R] and in Q, the incident field vys, and the
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Example 1: We present in the first example the domain D? formed by periodic balls

centered at (0,0.8\) with radius 0.35\ and a rectangle with sides of width 0.25\ for fixed
3,5m

M = =
3 and k 514

+0.7¢.

FIGURE 2.2: The exact geometry

(1)

Joe 6o

FIGURE 2.3: (1) The scattered field uy; in Q. (2) The scattered field
upy in OF. (3) The incident filed vps in Q. (4) The total filed ups + vay
in Qf/[
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Example 2: We consider the same periodic domain given in the previous example and

we add a perturbation given by a ball centered at (0.85\,1.1\) with radius Rp = 0.3\
3,5m

or fixed 3 and k 514

+0.7q.

FIGURE 2.4: The exact geometry

FIGURE 2.5: (1) The scattered field uy; in Q. (2) The scattered field
upr in QF. (3) The incident filed vy in QF. (4) The total filed ups +vas
in Q]@ .
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Example 3: We consider in this example a more complex periodic domain as shown in

3,5
the Figure 2.6 for fixed M =4 and k = 3’—1: + 0.5¢.

-5 0 5 10 15

FI1GURE 2.6: Left: The exact geometry

1) (2)

X
3 4
10 10
5
-—— - -_—— -
>
0
-5
-5 0 5 10 15
X X

FIGURE 2.7: (1) The scattered field uy; in Q. (2) The scattered field
upy in OF. (3) The incident filed vy; in Q. (4) The total filed ups + vay
in QAR/I
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Example 4: We consider in the last example D? and D as an L-shape geometry as

shown in Figure 2.9 and we present the case for which D intersects D? for fixed M = 3

3,57
and k = —— 4 0.2i.
3.14
8
6
2
-4
8 6 4 2 l; 2 4 6 8
FIGURE 2.8: The exact geometry
(1) (2)
8
6
4
> 2
0
-2
-4
5 0 5 3 -2 -1 0 1 2 3
8 () B 4
6 6

5 0 5 5 0 5
X
FIGURE 2.9: (1) The scattered field uy; in Q. (2) The scattered field
upr in QF. (3) The incident filed vy in QF. (4) The total filed ups +vas
in QM
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2.4 Solvability of the direct scattering problem in anisotropic

Media

2.4.1 Setting of the problem

Let A, be a 2 x 2 symmetric and 27-periodic matrix with L (U)-entries. For a > 0 we

assume that A, satisfies:
C-Re(Ap)¢ = al¢* and {-Im(A,)¢ <0, (2.31)

forall € C?, and that A, = Id outside D?, where Id denotes the 2 x 2 identity matrix.
We consider for given (f, g) € HY(QF) x L?(QF) the inhomogeneous anisotropic problem

as follows: seek u € H'(QF) satisfying

V- (A, Vu) + k*nu =V - (Id — A)Vf) + k*(1 —n)g in UY,
(2.32)

u=0 on I'?

and we impose the radiation condition (2.2). Then (2.32)-(2.2) can be reformulated as

follows:
.
V- (A,Vu) + Enu =V - ((Id— Ap)Vf) + k*(1 —n)g in U,
{u=0 on I'% (2.33)
ou
\0752("]%) = TR(U|FR) on TR,

Similarly to the previous section we consider first the case without defects, i.e n = n,,.
This leads us to the study of the quasi-periodic problem that will be the topic of the

next subsection.
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2.4.2 The case of periodic layers without defects

The inhomogeneous anisotropic quasi-periodic problem can be formulated as: seek ug =

T (u)(€,-) € HH(Q) such that

-

V- (ApVue) + k*npue = V- (Id — Ap)V fe) + k2(1 —np)ge  in QF,

] ug =0 on T? (2.34)
ou,
| G () = T (uely) on T,

with (fe, ge) == (T (f)(&, ), T(9)(&,-)) € Hgl(QR) X LE(QR). The variational formulation

equivalent to problem (2.34) is given as: seek ug¢ € H, 51((26%) such that

he (ug, V) = JQRUd—Aprg Ve + K2 (np — Vgete, ¥ e € HHOG),  (235)

0

where h¢ being the sesquilinear form

he(ug,e) == JQR (ApVug - Ve — k‘2npu§¢7§) dx — <T5Ru§, 1!1§>FR . (2.36)

0 0

Let He¢ : ﬁg(ﬂ{f) — ﬁg(Qé%) be the operator defined by the Riesz representation

theorem such that
(Heug, V) (o) = he(ug, )V e, ue € HH(QE). (2.37)

Theorem 10. Consider (fe, ge) € Hgl(QR) X LE(QR). Assume that Assumption 4 holds.

Then there exists a unique solution ug € HE(QOR) to problem (2.34).

Proof. We define by the Riesz representation theorem ’Hg),’}—[?) H, 51(06%) — H 51 (Ol

such that He = Hél) 4 HEQ)

(1) . R cahady _ [ TR
(He "ue, Ye) g = Lg ApVug - Vipedx + Lg ug - Ped <T§ u§,¢£>r§,
(Hg)ug,wg)gg(og) = —f (K*np + Vugieda,

of
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for all ug, ¢ € ﬁg(QOR) Clearly, the operator Hél) is coercive since Re <T§Ru§, u§>r§ <0
and & - Re(A,)€ = al€|?. Moreover, since the period Qf is bounded then one can use the
compact injection of H, 51(06%) into Lg(Q(If) to prove that ’HéQ) is compact. Consequently,

H¢ is a Fredholm operator of index zero. Assume now that
he(ug,he) = 0 for all v € H Q).

From Lemma 3 we have Sm (T, gRuquOr{} > 0. Therefore (2.31) and Assumption 4

implies in particular that

0=

R
1—‘0

f . (—=Sm(A4p)|Vue* + k*Im(ny)|ug|?) dz + Sm <T§Ru§, u5>
QO

> B2 J Sm(ny)|ue 2z > 0, (2.38)
QR

0

consequently, we have u¢ vanishes in the open ball O almost everywhere in I. By the
unique continuation principle we conclude that ue = 0 everywhere in Qg and almost

everywhere with respect to &. O

Theorem 11. Let H; : FI;(QOR) — FI%(Q(I)%) be the operator defined by (2.37). There

exists a constant ¢ > 0 independent of & such that ||7-[5_1H <ec

Proof. The proof follows the same arguments as the proof of Theorem 6. O

2.4.3 The case of periodic layers with defects

We consider now the locally perturbed periodic problem (2.33). Define the sesquilinear

form
h(u, 1) := f (ApVu- Vi — E2nui) da — <TRu, ¢>FR . (2.39)
QR

The variational formulation equivalent to problem (2.33) is given as: seek u € H*(QF)

such that

h(u,) = LR(M — AV -V +E(n—1)gpde Ve HY(QF). (2.40)
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Theorem 12. Secking a solution u € H*(QF) for problem (2.40) with n replaced by Ny

is equivalent to seek 0 := Ju e L?(I; ﬁg(ﬂé{)) satisfying
L he(ug, pe)dS = JJQR (Id — Ap)V fe - Vipe + k*(ny, — 1) geedade, (2.41)
0

for all i € L*(I, FI%(Q(I)%)), with the notations ug = 4(€,-) and e = P(E, ).

Proof. We have n, and A, are both 27-periodic, then similarly to the the proof of

Theorem 7 one can use the properties of the Floquet-Bloch transform to prove that

J (A,Vu -V — kE*nyu)de = J f (ApVug - Vibe — E*npugthe)dod, (2.42)
QF 1Jol
[ (1= 4)v5 50+ 12, — 1)giiande
QR
= L JQR (Id— Ap)V fe - Vipe + k2 (n, — 1)getpedads  (2.43)
Therefore, form (2.42), (2.43) and (2.24) we obtain (2.41). O

Lemma 13. Assume that Assumption 4 holds. Then there exists a unique solution for

problem (2.41).

Proof. From the well posedness of problem (2.34) we consider u¢ € H, E(QR) solution of
(2.35) for all £ € I with (fe,g¢) € HE(QR) X Lg(QR). Consequently we have thanks to
Theorem 11 that @ defined by @(¢) = ug € L*(I, FI%(QR)) c L*(I, ﬁg(QR)) and verifies
(2.41). Then it remains to prove that (2.41) is uniquely solvable.

We consider 4 solution to the homogeneous problem (2.41). Then, we have in particular

that
[ etwevarte =0 v e 2,0k, (2.44)
I
Using (2.38) we get

k2f J Sm(ny)|ug|*dz = 0.
1Jok
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Therefore, using the unique continuation principle we deduce that ue = 0 in Q(}]z and

almost everywhere with respect to &. O

Theorem 14. Assume that Assumption 4 holds and that Sm(n) = 0. Consider (f,g) €
HYOQF) x L2QF), then there exists a unique solution v € H*(QF) to problem (2.33)

such that

lullsamy < e (11l am) + gl 2am)

with ¢ > 0 is a constant independent from f and g.

Proof. We observe that (2.39) can be decomposed as
h(u,v) = J (A, Vu -V — kE*nyugh — k*(n — np)ud)de — <TRu, ¢J> , (2.45)
Qr I®

and we define using the Riesz representation Theorem the operators H, H?, H : H' (QR) —

HY(QF) such that

(Hu’ d})Hl(QR) = h(u’ d})’ (246)

(HPu, ) g1 qry = JQR AVu -V — k*nyupdr — <TRu, ¢>FR ,

(Hu, V) ary == — k2 (n — ny)uidde,
QR

for all u, ¢ € H*(QF).

Using Theorems 10, 11 and 12 we deduce that H? is invertible. Moreover, since (n —ny)
is compactly supported. Then we can use the compact injection of H'(D) into L?(D)
to prove the compactness of the operator 7. This implies that H is of Fredholm type of

index zero. It remains to prove that H is injective. Assume that

(Hu, ) ey =0 Vip e H(QF).
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Since it holds that Im(T"u,u) = 0, and ¢ - Im(A4,)¢ < 0, then we have in particular

that

O:
TR

J (=Sm(A4p)|Vul? + k*Sm(n)|ul?) dz + Sm <TRu, u>
QR

> sz Sm(n)|ul2dz > 0, (2.47)
QR

consequently v = 0 in O by Assumption 4. The unique continuation principle implies

that w = 0 in Q. This ends the proof. O
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Sampling methods for imaging a

periodic layer and its defects

Abstract: The theoretical content of this chapter is extracted from the published paper [8].
We analyze sampling methods for the identification of an unbounded periodic domain and a
local perturbation. We consider first the case where quasi-periodic incident fields are applied.
We give a theoretical justification of the GLSM method for a single Floquet-Bloch mode. We
then analyze the application of the GLSM method when non-periodic incident fields are used. In
addition to the theoretical part extracted from [8] we give some numerical examples for the case

of data associated with a single Floquet-Bloch mode.
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3.1 Introduction

We consider in this chapter the inverse scattering problem for the identification of a
periodic domain and its defects from near field measurements at fixed frequency. This
problem has connections with many practical applications, such as non-destructive test-
ing of photonic structures, antenna arrays... The presence of the perturbation does not
allow us to reduce the problem to one-period cell and makes the analysis more challeng-
ing. We would like to develop so-called sampling methods to address the inverse problem
of identifying the geometry of the defect. For the non perturbed inverse periodic problem
we refer to [3, 31, 42, 56] and references therein. For the perturbed case, it is frequently
assumed that the periodic background is known a priori. We refer for those cases for
instance to [9, 26, 28, 39, 45, 54]. However, for some applications, this information is
not available or cannot be obtained in an exact way. This is what we would like to
consider in this work. An analysis of sampling methods was given in [30] by assuming
that the defect is also periodic with a larger periodicity (equals to an integer multiple of
the background periodicity). Our goal here is to perform an analysis that removes this
technical assumption on the defect. In order to do so, we analyze the scattering problem
in spaces that include continuity with respect to the Floquet-Bloch variable. This allows
for instance to consider the scattering problem at a fixed Floquet-Bloch mode. We first
provide the theoretical justification of the so-called Generalized Linear Sampling Method
(GLSM) [6, 7] for quasi-periodic incident waves. We remark that although a classical
factorization of the near field operator can be obtained in this case, we are not able to
apply the abstract framework of the factorization method as introduced in [37]. This is
why for the GLSM method seems to be more adapted and this is why the penalty term
that we use in our theory is different from the one used in the literature [7, 11]. For the
justification of the method we assume that the local perturbation does not intersect the
periodic background. The case where this intersection is not empty requires the study
of an interior transmission problem that has a non standard structure similar to the one

considered in [14]. For the sake of conciseness we leave this to future investigations.

We also provide a justification of a GLSM method using the whole near field operator

associated with point sources. This method needs in particular a specific result related
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to the denseness of a single layer operator in the space of solutions to the Helmholtz
equation that have continuous dependence with respect to the Floquet-Bloch variable.
This is what mainly justifies the consideration of the scattering problem in half plane
with Dirichlet boundary condition at the interface. Our analysis also assumes that the
periodic index of refraction has a positive imaginary part in at least some open domain
of the periodic background. We believe that this assumption can be removed using the
analysis of the direct problem as in [35, 38]. Considering this case will be subject of
future work.

The chapter is organized as follows. Section 3.2 is dedicated to the introduction of the
direct problems (with point source incident waves or quasi-periodic point source incident
waves). In Section 3.3, we study the GLSM method for quasi-periodic incident waves.
Section 3.4 is dedicated to the analysis of the GLSM for non quasi-periodic incident
waves. We end the chapter with some numerical examples for data associated with a

single Floquet-Bloch mode.

3.2 Setting of the direct problem

In this section, we introduce the direct scattering problem for a locally perturbed two

dimensional periodic medium and the corresponding quasi-periodic problems.

3.2.1 The locally perturbed periodic scattering problem

Let U° be the upper half-space R x Ry in R%. We set Qf := R x [0, R] the domain
delimited by T? := R x {0} and T® := R x {R}, with R > Ry > 0 as shown in Figure 3.1.
Let n, € LU ) be the refractive index with non negative imaginary part, 2r-periodic
with respect to the first component 1 such that n, = 1 outside a 27 periodic domain
DP included in QF.

We consider D := DP U D where D is a bounded domain included in QF := [0, 27] x
[0, R]. We assume that the complement of D in R? is connected. Let n € L®(U°) be the
perturbed refractive index with non negative imaginary part verifying n = n, outside

D.

Consider an incident field v € L?(D). The direct scattering problem we are interested
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in can be formulated as: seek a scattered field w € HZ, (QF) verifying

-

Aw + E*nw = E*(1 —n)v  in QF,
P)Sw=0 onT?, (3.1)

A R)=TR(wlpx)  onT™,

0.7}2

where T : HY2(I'*) — H~'2(I'®) is exterior Dirichlet-to-Neumann map defined by
l 11
Th(p) = = | VAT TR (e, (3:2)
21T JR

with @ is the Fourier transform defined as @(& ~®1 (21, R)dxy for L

)= =]
= — | e

V21 JR
functions on I'.

Assumption 15. Assume that in addition to the assumptions above, the set {3Sm(n,) > 0}

contains a non empty open set O and Im(n —n,) = 0.

Under this assumption the above stated direct scattering problem has been studied in

Chapter 2 and we summarize here the main theorem.

Theorem 16. If assumption 15 holds then there exists a unique solution w € H2 ,(QF) n

HY(Q) satisfying (P) and continuously depend on v e L*(D).

Remark 17. Given the solution w to problem (P) we extend w for |za| = R by

w et (2R g(¢ R)dE,  for o > R. (3.3)

w(x

= T

This provides the solution satisfying
Aw + E*nw = K*(1 —n)v  inUY. (3.4)

The scattering problem (P) can be equivalently formulated as (3.3)-(3.4) and the bound-

ary conditions on TY.

Let ®(-,y) be the fundamental solution of the homogeneous problem associated with

(P) given by
1

[V k] ) = BEO k]~ ] (3.5)
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where y := (y1,92), ¥ := (y1, —y2) and yo > 0.

Theorem 18. For v € L*(D), the solution w € HZ,.(QF) of problem (P) can be repre-

sented as

w(zx) = k2 JD O(z,y)(n—1)(w+ v)(y)dy. (3.6)

Proof. Consider N € N sufficiently large and let DY := (=N, N] xR} ) n D. Let us
define a cut-off function xx € C*(U°) such that xn(y) = 1 for y € DY and yn(y) = 0

DN+1

for y ¢ and xn(y) only depends on y;. We set

wy = k2J D(z,y)(n—1)(w+v)xn(y)dy for x e U°,
D

with w € HZ.(Qf) being the solution of (P). Using the properties of the volume

potentials [21] we deduce that wy € HE,.(QF) satisfies

Awy + Ky = K21 —n)(w +v)xn(y) in QF,

Jwy =0 on FO, (3.7)
TN (. Ry = T(wy|pr) onTE.
(9372

We set uy = w — wy, then uy € HE,.(QF) satisfies (3.7) with the right hand side of the
first equation is replaced by k%(1 —n)(w +v)(1 — xn)(y). Since (1 —n)(w +v) € L*(QF),
then

E2(1 —n)(w+v)(1 — xn) e 0 in L2(QF).

Hence A}im uy = 0 in HZ,(Qf). On the other hand, since (n — 1)(w + v)(y) € L*(Qf)
—00

and ®(-,y) € L2(QF) [17], then we have

Jim (@) = K [ @)= 1w+ )

almost everywhere in Qf by Lebesgue’s dominated convergence theorem. Therefore

w e HE (QF) satisfies (3.6) by the uniqueness of the limit. O

For the study of the inverse problem we shall consider quasi-periodic solutions obtained

by applying the Floquet-Bloch transform to the solution of (P). We will need to restrict
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the set of admissible solutions to those with some continuity property with respect to

the Floquet-Bloch variable. This is the subject of the following subsection.

__________________________________________________________________________________________

L L L L L L |
—6m —4m -2m 0 2m Am 671 8m

FIGURE 3.1: Sketch of the domain

3.2.2 The quasi-periodic scattering problem

A function u is called &-quasi-periodic with period 27 for some £ € R if it verifies
w(xy + 21j, 29) = 2™y (g, 20) forall j € Z, (3.8)

and (z1,x2) € R2. In the sequel we shall skip indicating the periodicity length 27 since
it is kept fixed and periodicity or quasi-periodicity only apply to the first variable x;.
In the following we denote by LE(QR) the set of &-quasi periodic functions in LZQOC(QR)
and by H, ?(QR) the set of £-quasi periodic functions in H.(QF). For m > 1 we denote
by H, ¢ (QF) the subspace of functions in H, & (QF) that vanish on T°. We define H, 51 (7
as the restriction to QF of functions in H, EI(QR). In order to avoid notation confusion
we denote by Hﬁl(Qé%) the space Hgl(Qé%) for £ = 0. We finally define Hg(l“é%) to be the
restriction to T of &-quasi periodic functions in Hj . (T'®).

Let £ € I := [0,1] and T{ := [0,27] x {R}. Consider an incident field v¢ € LE(QR),
the quasi-periodic direct scattering problem is formulated as: seek a scattered field

we € H gl(QR) verifying

Awe + k*npwe = —k*(n, — v in QF,

| we =0 on I, (3.9)
Jwe R R
%(',R) = T (welrr) on I'y,
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where TgR :H El/ 2(TOR) — H, 12 (T&) is the exterior quasi-periodic Dirichlet-to-Neumann

map defined by

TE (@) (1) = i ), Be () Pe(5)e’ V)™, (3.10)
JEZ

where

ag(j) :=8+7, Be(h) =k —£+1* Sm(Be(5)) =0, for jeZ,

and @¢(j) is the j-th Fourier coefficient of e %o (z1, R) defined as

N (s 1 o —iag ()T
Pe(Jd) =g . e W™ (21, R)dwy.

For the norm in Hg (TE) we shall use the following definition

el ey = 20 (1+5%)%1@e() .
JEZ
Multiplying the first equation of (3.9) with ¢¢ € H, 51(05”), integrating by parts and using
the boundary conditions and the quasi periodicity we obtain the variational formulation

given as

- Vb — kP npwetde) do — (TF =k —Dvethe, Y 1be € HE(QE).

ng (Vg - Vibe — kP npuwetie) da — (T wsa¢£>r0R Qg("p Jogte, Vi € He (Q)
(3.11)
where the notation (-, '>F§ refers to the HY2(TF) — HY2(T') duality product. Using
the Riesz representation theorem we can define the operator Ag¢ : H, 51((26%) — H, g(QOR)

such that
(Ag’LUg, ’Ug)Hé(Qéz) = JQR (wa . V?ﬁig — k‘Qnowlﬁig) dx — <T5Rw5, w§>r§ \ wg, We € ﬁg (Q(I)%)
0

We recall here the result proved in Chapter 2 (Theorems 5 and 6).

Theorem 19. Assume that {Sm(n,) > 0} in a non empty open set of Ql, then problem

(3.9) is well posed. Moreover, HA?H < ¢ with ¢ is a constant independent of €.
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Remark 20. Given the solution wg to problem (3.9) we extend we for |xa| = R by

we(z) = Z(@)(j)eio‘ﬁ(j)'“+w§(j)(m2_R) forzo > R. (3.12)
JEZ

This provides the solution satisfying
Awg + E*npwe = k2(1 —np)ve  in U°. (3.13)
The scattering problem (3.9) can be equivalently formulated as (3.12)-(3.13) and the

boundary conditions on T°.

Defining now for ¢ € C§°(U”) the one dimensional Floquet-Bloch transform as the fol-

lowing

\7¢(E,JJ1,LL‘2) = Z¢(m1 + 27rj7x2)6_i27r£.j7 fe Ia (1'1,.’1,'2) € UO' (314)
JEZ

Recall that the Floquet-Bloch transform is an isomorphism between H®(QF) (respec-
tively H*(I'®)) and L*(I, H{(Qf)) (respectively L*(I, HI(T())). Then, for 0 < o < 1,

we denote by
CY (I HE(OF) := {p e LI, HA(QF)); e ™ g e CP (I, Hy (OF))},

the space of periodic and « Hélderian functions on I with values in H, E(Qé%) The norm

of pe Cf’a(I,Hﬁs(Qé%)) is defined as

supllo(&, ) s (qpy + sup
gel &1 #82el

H@(fly ) - @(527 )HHS(Q(IJ?)
&1 — &> ’

with @ := e "% %1p. We then set

H5°(Qf) = {u e H (QR)/Tue (1, H;(ng))} , (3.15)

A%k = {u e H*(TR)/Ju e C°(1, Hg(rgf))} . (3.16)

Then we have the following theorem complementing the result of Theorem 19.
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Theorem 21. Assume that hypothesis of Theorem 19 holds and consider v e L**(Qf)

for 0 < o < 1. Let wg € HE(QOR) be the solution of (3.9) with ve = (Jv)(&,-). Then
e 1
w = j_lwg = f wed€ belongs to H17a(QR) with & = min(c, 5) and
I

leollgr.aam) < ellvll z2eqor)
with ¢ independent from v.

Proof. Set g := e " we and ¥ = —k*(n, — 1)ve. Then we have g € Hﬁl(QOR) and
verifies

: o
A = e~ €155 — 21'5%5 + ¢ — K*nye  in QOF.
1

Let &1,& € I, and set e := €11 (g, — 1, ). Then e € Hgl(Qéz) and
Ae + k*nye = Lg, ¢, in QF, (3.17)
with
Lg, g, i= €11 [(6_%”1 — T M e, eI (g, — g, ) — 2i(61 — Ez)%ﬁ? + (& - Eg)w@] :

By the Cauchy-Schwartz inequality and @ € L>*(QF) we get the existence of a constant

¢ > 0 independent from &; and &; such that

L6, &2l 2oy < clér — &2l <||U||E2,Q(Dp) + ||w£2||H1(Q§)) : (3.18)

On the other hand, using the third equation in (3.9) we have on T'®

06 (&1 —E&9) . . A\ A N o 1
A = T (wg) = €N T wg,) = Tf(e) +1 ) (Be () = Pl (1)) Bes ()60,
JEZ
(3.19)

The variational formulation of (3.17)-(3.19) can be written as

- 2 —_— R _ T _ ) 1 R
J‘Q(I){ (Ve . Vﬂ) —k npew) - <T§1€, ¢>F(’f = J;)g Lghgzi/)dl‘ <g§17§2, ¢>ré-¢ s A ¢ € H& (QO ),
(3.20)
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with ge, ¢, 1= Z (Ber (3) = Bey (4)) e, (G)e ie, () Using the definition of H~"2(T'f) norm
JEZ

in terms of Fourier coefficients we get

o621 vy = 35 01+ 1) 21, ()R, )
1 jeZ

with Cg, ¢, (j) = ‘55(11(‘:_) |;|2ﬁ)£12/(2]) For j € Z*:= Z\{0} such that B¢ (j) = 0, i.e k* =
&+
15+ & =1 + &P

1/2 1/2
(1+ |j|2)1/2 < (k+3) / |£1 _£2| / )

051752 (]) =

since |j] < |7 + &1] + |€1] < k + 1. For the case j = 0, if (k% — £3)(k* — €2) <0
Cee(0) = \/R2 =& — iy /& — k2 = |6 — &% < 2061 - &%,
while if (k% — &3)(k* — &3) > 0

2 2
Coea0) = 7= €'§1+ 52'2 i < Vala -l

Finally for the case where k? # €1 + j|2 and j # 0 we write

&2 + 417 — |&1 + 412
1+ GV /E2 = &+ 5 + VK2 = & + 4]

Ce, 6, (J) =

Since |Bg, (7)| > 0, then there exists § > 0 independent of j such that | B¢, (j) + Be, (J)| = 9,

therefore

, — &6 + & +2j
sup Cee:(J) < sup &2 &H& & j’<5|§2*§1|~

JEZ* K2 1] JEZ* K26+ ]2 716

Summarizing, there exist a constant § independent from j, & and & such that

supC, ¢, (4) < Bl — &[>,
JEZ

Consequently

2 < BHé - 2 : 3.21
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‘We observe that

el 2y < el g 1y oy < 2elle gy,

with ¢ being the continuity constant of the trace operator on Hul(Qé%) From Theorem

19 we have that

lwe, | gy < Ellvellz2ry < lvllz2a ey, (3.22)

where ¢ is independent of ;. Applying Theorem 19 to the variational formulation (3.20)
proves, using (3.18), (3.21) and (3.22), the existence of a constant ¢ independent of &;

and & such that

lell gram) <l — &2|%([v[l z2.c(pry»

which ends the proof. O

Theorem 22. Assume that hypothesis 15 holds and that v e L**(QF) for 0 < a < 1.

Then the solution w € HE,.(QF) of problem (P) belongs to HY*(Q) and

HwHHLa(QR) < C(H“Hiza(m) + HUHLQ(D))v
with ¢ independent from v.

Proof. Let we := (Jw)(€,-). Since the support of n —n, is included in Qf, then we

have w¢ € H, g(QR) and satisfies

-

Awg + E*npwe = —k*(ny — Dvg — E*Re((n — np)(w +v))  in QF,

Jwe =0 onT?,
ow
| Gos (1) = T (welp) on Tf,

with ve :== (Jv)(€,-) and Re(p) for a function ¢ compactly supported in Qf denotes
the extension by &-quasi periodicity of ¢ to all of QF. Indeed Re(p) =T (ngQ{)z) where

Xk indicates the indicator function of the domain QF. We decompose we as

We = w? + ¢,
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with wé’ being the solution of (3.9) and g := we — wé’ satisfying

-

AW + k*npe = —k*Re((n —np)(w+v))  in QF,

{ We =0 onTY,
O 5
T@("R) = TgR(wﬂrg) on I'ff.

Denoting by w? := j_lwg. From Theorem 21 we have that w” € A%%(Qf). Moreover,
since Re((n —np)(w +v)) € C;)’a(l, LE(Q(I)%)), then using Theorem 21 we deduce that
W= J e € AHY(QF) and then w = w? +w € AY*(Q). The estimate follows also

from application of Theorem 21. O

For the sake of studying the inverse problem, for fixed &y € I, we consider vg, € Lgo (D),
where

L3,(D) = {v € L{,(D)/ v|p» € L (D)},

where Lgo (DP) denotes the set of & quasi-periodic functions that are in L2 .(DP). We
would like to define a solution we, to problem (P) associated with v = vg,. Indeed, since
Vg, ¢ L*(D), the solution can not be defined as in Theorem 16. We rather define the
solution in this case as

We, 1= wgo + 7])507 (323)
with w:go eH 510(0(1)%) verifying

-

Awfo + E2npw? = k(1 —npy)vg,  in QF,

&
qwk, =0 on TE, (3.24)
ow?
o (o R) = TE (g lrp) on I,

and 1@, € H'(QF) satisfying

.
Ag, + I{:ango = k:2(np —n)(vg, + wé’o) in OF,

\ We, =0 on I'Y) (3.25)
0,

| G2 R) = T (i ) on T,
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The solutions of (3.24) and (3.25) are respectively defined by Theorems 19 and 22.
Multiplying the first equation of (3.25) with ¥ € H'(Q), integrating by parts and

using the boundary conditions we obtain the variational formulation given as

f (Vlbgo Vi) — k2mbgoa) dr — <TR1T)§O, 1/)>FR = k2 J (n—mnyp)(vey + w )w, Ve HI(QR)
QR QR
(3.26)

where the notation (-, -)pr refers to the H~Y2(T'®) — HY2(T'®) duality product.

Remark 23. Let v e L*(Qf) and set ve = T (v)(€,-). We define wé’ € Hg(Qg) verifying

(3.24) and we € A (QF) the solution of (3.25). Then w? := f wgdg is solution to (P)
I

with n = n, and 0 := J wedé € HY(QF) is solution of
I

-

A + K2y = K (n, —n)(wP + v+ @) in QF,

Lo =0 onT?, (3.27)
ow N
\ é’$2( ,R) = TE(w|rr) onTE,

Consequently 1 + wP € HY(QF) and is the solution of problem (P).

3.3 The inverse problem for quasi-periodic incident fields

3.3.1 Setting for the inverse problem

Consider &y € I fixed, and let ®¢ (x,y) := (TP(-,y))(€o, ) be the &-quasi-periodic

Green function having the following expression [45]

cD{o € y 72 Zaéo Y@1—y1) 06 (],x27y2) Yo < T2, (328)
]EZ
with
. . . eiiﬁéo (By2 _ 67;6{0 ()2
Oy (J, 72, y2) := €072 D) . (3.29)
0

Let y € TE. We define ug, (+,y) = weg, given by (3.23) with ve, = Pg,(y,-) € LEO(D).
From (3.23) we decompose ug, (-,y) = ug)’ (- y) + g, (-, y) with uZ’(-,y) = wg solution

of (3.24) and g (-, y) = W, solution of (3.25). We introduce the §y-quasi periodic near
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field operator N, : LEO(FR) — Lgo (T) as

Nt = | e e0)isto) + |06 ()T (0 () Goa)iste). (330
Define Sg, : L (') — L (D) as
Seageo () = Lg} 9e0 (¥) Pe, (v, 2)ds(y). (3.31)
Then, obviously the operator N¢, can be decomposed as
Neg = Geo(Seo) (3.32)
where G, : LEO(D) — Lgo (T®) is the operator defined by

Ge (UE()) = (wgo + wgo)‘l"{f’ (3.33)

with wg being the solution of (3.24) and @i, = J (i, ) (o, ") with g, is the solution of

3.25). We observe that @? € H! (QF) and verifies
o &o\* 20

Awgo + k2npu~)§0 = k*(np — n)(w?0 + Vg, +Wg,) in Of,

4 wgo =0 on I’é%, (3.34)
ow?
& _ R/~ R
\ 69520 (nR) =T¢ (wg)’r{f) on Iy

Multiplying the first equation of (3.34) with i, € ]:1510(062), integrating by parts and

using the boundary conditions we obtain the variational formulation given as

JQR (Vwé’o Ve, — kZ‘npng(T&)) do — <T£w§0, ¢£0>r§ = k2 JQR(n — 1) (WE + Vg, + ey ) Ve
0 0
(3.35)
for all v¢, € H. (Qf). For later use we decompose Ng, = N + NE where Nf

LEO(FR) — Lgo (T®) and Ngo : LEO(FR) — Lgo (T®) are respectively defined as

NEgeoa) = | oeo (gl st Nae ()= | a6 (@ () €0 2)ds(o)
’ ’ (3.36)
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Lemma 24. The operators Ng) and Ng) can be respectively factorized as
P o_ P TP _ 7
N&) = SgOTEOS§0 and N{o = Sgngo‘S’fm (3.37)

with T} LE (DP) — LE (DP) and T L (D) — LZ (D) are respectively defined by

Tg)vgo = k*(1—nyp)(ve, + wgo), (3.38)
Tg)vgo = kX (1 - np)u?go + k*(ny — n)(wé’o + v, + W), (3.39)

where wé’o being the solution of (3.24) and wé’o = J(We¢,) (o, ) with g, is the solution
of (3.25).

Proof. The proof of (3.37) is classical and we here outline the main steps. The solution

wg, of (3.24) with vg, = Sg,g¢, can be represented as [29]

wg (x) = JDP 2 D¢, (x,y) (1 — np)(wg, + Sege, ) (y)dy  for x € Of.

0

Then

(Ngogﬁm gfo)LQ(l"é%) = J

R, + Se6)() || @6 (i @ds(dy
0 0

- fm K2 (1 = np) (wg, + Seo90) () Seo o (4) Y,
0

= (Tgosfog&o’ S&ogfo)LQ(Dg)a

which proves the first of factorization in (3.37).
The second factorization is obtained in the same way based on the fact that wgo solution

of (3.34) can be represented as

g, = JDP K@, (-, y) (1 — np) g, (y)dy + L) K@, (-, y) (np — n) (wg, + Seoge, + Dey )dy.
0

O
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From Lemma 24 we conclude the following factorization
Ngy = SgoTéoS&)

with T, : LgO(D) — Lgo (D) is defined by Tg,(ve,) = T¢ (v, |pr) + Tg) (vg,) or equiva-

lently

Teyve, = k(1 — np)(tug0 +vg, + wgo) + k:2(np — n)(wg0 + vgy + We,)- (3.40)

3.3.2 Some properties of the operators defined in the previous section

In order to study the inverse problem we need to prove some properties of the operators

defined in the previous sections.

Lemma 25. The operator S, : Lgo T8 — LgO(D) is injective. The closure of its
range s

inc . 2 2 .
He (D) :={ve Lg (D), Av+k*v =0in Dj. (3.41)

Proof. Let ge, € LEO (TT) such that Se,g¢, = 0 in Do, where Dy := Qff n D. Using the
unique continuation principle we obtain S¢;ge, = 0 in Qé%. Let U := R x [R,o0[. Using
the continuity and regularity of single layer potentials we have that Sg, € H 2 (U, is

&o-quasi periodic, verifies

ASe ey + k2S¢ ge, =0 in UT,
&0 Y¢o &0Y¢o (3'42)

Sgoggo =0 on FR,

and the upper going radiation condition (3.12) with I'f replaced by '™ with R > R.
The uniqueness for this Dirichlet quasi-periodic scattering problem [39] implies that
S¢ogeo = 0in U R Therefore, using the jump relations for the normal derivative of St
we obtain g¢, = 0 which proves the injectivety of Sg,.

Let S¢ - LgO(D) — Lgo (T™) be the adjoint of Sg, given by

Styoeo(0) = | @ o) (o)
0
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Let vg, € Hggc(D), we set

Wey = e, (-, x)vgy (@) dw.
Do

Using the properties of the volume potential we deduce that we, € H, EO(QR) satisfies

]
Awg, + k2w50 = —Ug in Dy,

{ Awg, + k*wg, = 0 in Q\Dy, (3.43)
8w§
W;('aR) = Tg(w§o|r§) on I'ff.

Assume that wg, = 0 on T’ K. Then wg, vanishes in U R Using the unique continuation
principle we obtain that wg, = 0 in Qf\Dy. We then have wg, € H(Dp). Therefore,

since Avg, + k2v£0 =01in D,

0= | v ()8 + g )ds = e [ (3.44)
0
This proves that vg, = 0 and S¢, has a dense range in H, ggc(D) O

For the analysis below we need to assume the well posedness of the following two Interior
Transmission Problems (ITP).

(ITP1): Seek (u,v) € LgO(Dp) X LgO(Dp) such that (u —v) € HgO(Dp) satisfying

Au+k*nyu=0 in DE,

Av+k*v =0 in DF,

) (3.45)
U—v = on 0D},

o(u—v)
\ aV

=1 on 0DF,

for given (p, ) € HgO/Q(ﬁDp) X Hglo/Q(ﬁDp). The spaces Hg (DP) and H (DP) are defined
similarly to Hgg(QR) and Hg (TR).
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(ITP2): Seek (u,v) € L*(D) x L*(D) such that (u —v) € H*(D) satisfying

Au+k*nu=0 in D,

Av+k*w=0 inD,
) (3.46)

U—v = on 0D,
o(u—v)

Eoa v ondD,

for given (p,v) € H¥%(0D) x H'2(0D).

Assumption 26. Assume that k, n, are such as the (ITP1) is well posed.
Assumption 27. Assume that k, n, and n are such that (ITP2) is well posed.
Moreover, we need first to prove the following Lemma

Lemma 28. For all v%o,vgo € Lgo (D) we have

(Teovyr v2)12(D0) = (Teo vy V&) 12(D0)- (3.47)

Proof. For i = 1,2, consider wg’f € Flglo(()é%) solution of (3.11) with { = &y and ve = véo.

Define wé’: = j(u?éo)(ﬁo, -) where 1[)20 e H'(Qf) satisfies (3.25) with ve, = vgo. We set
] o pvl "‘pvi
wéo = W, T Wy

which verifies

[ (ks P = gl ) o — (Tl v )y = i) (349

0

for all 1, € H. (Qf) with

Tiy(ve) = | K =)ol Ty +1 | (ny = m)(uly + o, + 78, ),

0 0
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Taking v, = wgo and 1, = wgo respectively in the variational formulation (3.48)

satisfied by w%o and wgo we obtain by taking the difference

R, 1 2 R, 2 1 _ 2 1,2
<T£0w§0’ w§o>r(1]?, - <Téow£o’ w§o>r§, - po k(1 - np)véow&)dy
0

1, -
+ J;) k2(n, — n)(wgo + w%o + vglo)wgo dy

2 2,1 2 2, =2 24,1
- JDP k2 (1 — np)vg we, dy — JD k*(n, — n)(wgO + Wg, + v, Jwe, dy.
0
Since ng is symmetric, the left hand side in the previous equality vanishes and therefore

2 )2 ~D,2 2
- k(1 — np)vgo (wg) + wgo + vz, )dy
0

2 2 (Pl L =Dl 1 —
ng k2 (1 —np)vg, (we, + g+ ve, )dy = f

2 ,1 ~1 1 ,2 ~p,2
- f” b (np N n)(wépo + We, + U&o)(wgo + wgo )dy

D
2 A =pl
— f[) k2(n, — n)(wgo + wgo + vgo)(wzgo + wgo )dy. (3.49)

On the other hand, taking % = aﬂgf and 1/)750 = wgl respectively in the variational
formulations (3.35) satisfied by 1172’)1 and wgf we obtain by taking the difference and the

symmetry of Tg
L) K2 (np — ) (w2 + v}, + L, )il dy = JD K2y — m)(wl? + v2, + 0, )ik dy. (3.50)

Moreover, taking % = wgo and % = QI)%O respectively in the variational formulation
(3.26) satisfied by w%o and @D?O we obtain after taking the difference and using the

symmetry of the operator T

ff) K (ny — n)vg g, dy = — J;j k2 (n, — n)wg’fﬁ)%ody + J;j K (ny — n)@z, (v, + wgl)dy.
(3.51)

Now, using (3.40) we have

Te,vh, = K2(1—mp) (W' + vfy +087) + k2 (np — n) (wh + v}, +@f,). (3.52)
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Using (3.49) to substitute the first term in the right hand side of (3.52) we get
5 2, -p2
(Teyob, 02) 1200y = po K21 = np)ul, (wl? + 727 + 03 (3.53)
0
1, - 2 | -p2
+ L) k*(n, — n)(wg + g, + vgo)(wgo +0g7%)

2 . 1, pl
— fD k2(np — n)(wé’0 + wgo + vgo)(wgo + wg) )

[ - i o ol
D
Finally, using (3.50), (3.51) to simplify the previous expression we obtain

5 2 -p2
(Teyvéy, VE,) 12(Dy) = JDP k(1= np)vg, (wg" + @ + vz, )dy (3.54)
0

+ L") k:Q(np — n)vglo (wg;2 + wgo + vgo)dy,

where the right hand side coincides with the expression of (7; govgo,%) 12(Dy)- This ends

the proof. 0

Lemma 29. Assume that the assumptions of Theorem 19 hold and that Assumptions 26,
27 hold. Assume in addition that D5 n D = 5. Then, the operator Gy, : HEQC(D) —

LgO(FR) given by (3.33) is injective with dense range.

Proof. Let vg, € HESC(D) such that Ggve, = 0 on TH, i.e
We. = wP P =0 rR
{O . wé-o + ’u}&) on 0>

where wg is the solution of (3.24) and &g, = J(@g,) (o, ") With @g, being the solution

of (3.25). Therefore, wg, € Hp, (U"), is &-quasi periodic and verifies

Awg, + K*we, =0 in Uk,
we, =0 on FR,
and the upper going radiation condition (3.12) with rk replaced by '™ with R’ > R.

The uniqueness for this Dirichlet quasi-periodic scattering problem implies that we, = 0

in U Using the unique continuation principle we obtain that weg, = 0 in UO\DO.
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Moreover, we, € H, EO(QR) and satisfies
2 2 P Y g2 - OR
Awg, + k" npwe, + k7 (n — np)(we, + Dg,) = k(1 —n)vg, in O (3.55)
Since Dj n D = &, then we have in particular wg, € Hg(D}) and
Awg, + E*npwe, = k*(1 —np)ve, in DY,

Setting ug, := we, + vg, we observe that the couple (ug,,ve,) verifies (ITP1) with zero
data. Therefore, wy,| D = Vg, | pr = 0. The latter implies in particular that wgo =0
by well posedness of the periodic direct scattering problem. On the other hand, since

n, = 1in D, then we, € HZ(D) and satisfies
Awg, + Kwe, + k*(n — Davg, = k*(1 —n)vg, in D. (3.56)
Since we, € HE (D), then we have

ﬁ (Awg, + k*we,)0 = 0 for all @ € H™(D),
D

where H"¢(D) := {v € L*(D)/ Av + k*v = 0 in D}. Therefore, taking the L* scalar

product of (3.56) with 6 we get

ﬁ (K*(1 = n)vg, + k*(1 —n)wg,)d =0 ¥ 60e H™(D). (3.57)
D

From Theorem 18 we have that @, € H L) can be represented as

We, (x) = k2 D (x,y)(1 —np)ibg, (y)dy + k2 J~ D(x,y)((1—n)vg, + (1 —n)we,)dy for x e Qf.
Dp D

Since y — ®(z,y) € H"™(D) for x ¢ D, we obtain from (3.57) that

ey () = JDF K2(1 = )i, (y)®(a, y)dy forz ¢ D.
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Let us define wg, € H*(D) by

e, () = JDP K2(1 = )i, (y)®(x, y)dy for z e D.

We set ug, := ¢, + v¢,- Then the couple (ug,,ve,) satisfies (ITP2) with (¢,7) =
a v
(e, %) Moreover, since
v

A, + k*We, =0 in D,

and (ITP2) is well posed then vg, + g, = 0 and W, + vg, = 0 in D. We then deduce

that ¢, = we, in D. Consequently

We, (x) = JDP k2(1 —np)We, (y)P(z,y)dy forxe OF,

which implies that e, satisfies (P) with n = n, and v = 0. We then conclude that
Wg, = 0 by uniqueness of the solution to problem (P) with n = n,. Therefore ve, = 0 in
D which, together with vg, = 0 in DP prove the injectivety of G¢,.

==L
Now, we prove the denseness of the range of G¢,. Let g¢, € R(Gg,) , then

(G&)U{mg&o)LQ(Do) =0 Vv Vg, € HTC(D)-

Let fe, € L, (T*) and consider vg, = Sg, f¢,- Using Lemma 24 we have

(TEO (S§0f§0>7 Sfogfo) =0, V f&) € Lgo (FR)' (3'58)

Moreover, using Lemma 28 we get

(TEO (S£0f§0)7 Sﬁogﬁo) = (Tﬁo(sﬁogﬁo)v SﬁofEO) v fﬁo € Lgo (FR)‘

Therefore, (3.58) implies that

(G€0 (550950)7 fﬁo)L%F{f) =0, Vv fEO € Lgo (FR)'
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Then Gg,(S¢,9¢,) = 0. The injectivety of G, gives that S¢ ge, = 0 and then g¢, = 0 by
Lemma 25. [

Lemma 30. Under the same assumptions of Lemma 29 we have that
(z€Dy) <= (DPgl(-,2) € Range(Gy,)) -

Proof. Let z € DP. We consider vg, € Hgg‘c(D) such that ve|p = —Pg,(-,2). Let

) ) 0D¢, (-, 2)
(ugy, Ve,) € Lgo(Dp) X Lgo (DP) be the solution of (ITP1) with (p,v¢) = (Pg, (-, 2), 5371/)
We set

— in DP
WP Ugy — Vg, in DY,
o
D¢, (-, 2)  in QF\DP.

We observe that wé’o

of (3.25). Since (n, — n)(wg, +vg,) = 0, then W, = 0 and consequently Gg,(ve,) =

@50(',2),

Consider now the case where z € D. Since D n DP = ¢ Recall that the Green function

€ Hgo (OF) and satisfies (3.24). Moreover, let g, be the solution

®(-, z) defined by (3.5) belongs to L2(QF) [17]. Let u € H2,(QF) be the solution of
(P) with n = n, and v = ®(-, 2). Let us define @, (-, 2) := u+ P(-, 2) that satisfies in

particular, ®, (-, z) € L*(QF) ~n HE (QP\D)
AD,, (-, 2) + k°npy®y, (-, 2) = =6, in QF

together with the upper going radiation condition (3.3). Consider vg, € H, igc(D) such

that vg,|pr = 0 and let (dg,,ve,) € L*(D) x L*(D) be the solution of (ITP2) with

(0, ) = (Do, (-, 2), W) We set

N ﬂfo — Vgo in D,

Wey = )
®,,(-,2) in Qf\D.

We observe that g, € Hp,(QF) satisfies (3.25). Moreover, since vg,|pr = 0, then the

right hand side of the first equation of (3.24) vanishes and therefore the solution wgo of
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(3.24) vanishes. Consequently

Gfo(vﬁo) = j(q)np(7z>)(§0) = q)np,éo('7z)-

On the other hand, we consider ug, := J(u)(&o,-) € Hélo (Qf). Then wug, satisfies (3.24)

with v, = P, (-, 2). We set

) D¢y (,2) in DP,
'l}g0 = 5

—Ug, in D.

Let wgo and ¢, be respectively the solutions of (3.24) and (3.25) with v¢, = ¥¢,. By
uniqueness of the solution of problem (3.24) we have wgo = ug,. Moreover, g, = 0 since

k?(np — n) (g, + ug,) = 0. Therefore

GEO (550) = Ug-

Consequently

Gﬁo(vﬁo - 650) = ©£0('72)'

Consider finally the case where z ¢ Dy. Assume that there exists ve, € H, ggc(D) such that
Gy (vg,) = P, (-, 2). Using the unique continuation principle we get wg, := wg, + g, =
¢, (-, 2) in U"\Dy which is a contradiction since wg, € HEO(QR\DO) while g, (-, 2) ¢
HZ (Q™\Dy). O

Let us define now the following norm for g¢, € LZO(FR)
Iey9¢0 = ‘(Ng)gfoagfo)ﬂ(l"(’f)‘ + ’(Ngogﬁovggo)p(ré%)‘ . (3.59)

From the factorizations (3.37) we have the equivalent expression

Iey9¢0 = ‘(Tgsgogsmsgogﬁohgo (or)| + ‘(TgsﬁogfmSﬁogﬁo)Lgo(D)" (3.60)

Lemma 31. Assume that Assumption 15 and 27 hold. Assume in addition that Re(1 —

ny) = >0 in DP and Re(n, —n) =1 > 0 in D or Re(1 —n,) < —y < 0 in D? and
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Re(np —n) < —y1 < 0. Then, there exists a constant ¢ > 0 independent from & such

that

Ie, 96, > ¢ (11695022 m) + 160960225y )V 960 € L3, (TF),

with I¢,g¢, is the norm given by (3.59).

Proof. We prove the Lemma in the case Re(1 —np,) = v > 0 in D? and Re(n, —n) >
71 > 0in D. The other case can be proved in the same way. We shall use a contradiction
argument. We consider g¢, € Lgo (FR) and we denote by vg, = S¢,g¢,. Assume that there

exists a sequence Ufo such that

ZH”&H%?(DO) > (TpvgoaUgO)H(DP) ’(T gy VE ) 12(Dy)) - (3.61)

0
v
We set @éo = W. Let wgz be the solution of (3.11) and @ ~p£ = j(wg))(go,-)
Vgo | L2(Do)

with ve = Ofo and 10, is the solution of (3.26). Since HﬁfOHLz(DO) is bounded, then we

can extract a subsequence (that we still denote the same) @fo that converge weakly to f¢,

..p,@

in L?(Dy). Moreover, w5 ‘ and 2" converge weakly in H, 510 (Of) and strongly in L?(Dy)

respectively to some wé’o and wEO € H 510(0(1)%). On the other hand, taking v, = wg’f in

the variational formulation (3.11) satisfied by wg’f we obtain

412 2 2 N PN , R N N
jQR(|Vw§O > —k | | )dy = —k po(l — np)(wgo + U&o) WP > dy + < fo ,wgo >r§
0

0

Therefore, decomposing (ﬁfo + wg;e)% = |@§0 + wg’f|2 (UEO + wgo )w?lZ we get

Dy

— (Téjwl wh)

0 N i N
(T Ugovvgo)LQ(Dp) = J E*(1— nyp)|0g, + wgo |*dy + JQR(\ng) > — k2]w§0 1*)dy
0

Taking the imaginary part we obtain

NN N N R, pt £
m(T§, ey, Vg, ) 2(ppy = — fDP Sm(ny)|0g, + wg, dy — Sm <T0w§0 , W >
0

From (3.61) we have

D N
‘%m T vf()?on)LQ(Dp) £—>—o)00
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Therefore, using the fact that Sm <T R fog, wff>r n =0,
0

N ~ P |2
JDP %m(nPHU&) + wﬁo ‘ dy —) O = JDP Sm(np)|0g, + w§o| dy.

0 0

Since Ym(ny) > 0 in O we obtain that ug := 9, +wg = 0 in O. Observing that
Au?o + k‘anngo = 0 in D}, by unique continuation principle we deduce that ué’o =0in
Dg. Therefore, w{ satisfies (3.24) with n, = 1 and ¢, = 0, which implies that wg,

&o
vanishes in Qé%. Moreover, since w:g’f converges strongly to w? in LQ(Dg), then we have
0 &o

k(1 — np)wg, dg,dy = 0.

j k(1 — np)w5 vf dy —
DP DP

On the other hand, we have that

> k2 — k2

| a=miotpay

0

v
L)P k(1 — np)wgo vgody .

0

JAPNN 4
‘(Tso Ugy» Ogo ) 22 (DY)

From the hypothesis Re(1 —n,) > v > 0 in D” we then have

. ., T
lim |(T¢ B¢, By ) r2(0p) | = V06 I 22(pp)-

{—0

Therefore | pr = 0.

Now, taking ¢ = u”;fo in the variational formulation (3.26) satisfied by u”)ﬁo we obtain

g2 L)( — )l + o, + k)L dy = K JQR(I )|, [Py +

Vg |2 — k*|wf,|?)dy — (TR, of 3.62
| (vat 2 =kl Pray — (Tt ), (3.62)
Moreover, taking 1) = ﬁ)g’f in the variational formulation (3.35) satisfied by w&’f we get

~p,l ~n,0|2
g2 L)( np — ) (Wl + 8L, + L VT dy = LR(\vwgo 2 k2|2 P)dy
0

~p,l12 L ~pl
+k2fD (1= nyp) @2 [Pdy — (Tfw go,w§0> (3.63)

0
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On the other hand, we have

(T U&),UgO)Lz(DO) = JQR k(1 —n )wg Ugody+ JQR k*(n —n)|w§0 +v§0 +w§0| dy
0 0

— JQR k*(n, — n)(w&) + Uéo + wéo)w€0 dy

7£ 2 T T~
- JQR k*(n, — n)(wzgo + Uéo + wgo)wfody.
Then, using (3.62) and (3.63) we obtain by taking the imaginary part

X ~0
(Tp U&o’ ”go)LQ(Do) = JQR k2 m(n, — n)\’wé + 1150 + w§0| dy — k> JQR %m(np)]w&) ]2dy

0

~D Al y ¥ S od
rE JQR Sm((1 -~ np)wgo Uéo)dy o J;)R k2%m((np —n) (wgo + g, + w&o)wgo )dy

0

—Sm (TFk, 0f, ) - (3.64)

On the other hand, the application vg, — (1 — np)wg) with u?go is solution of (3.34) is
compact from L?*(Dy) into L?(Df) using the compactness of the injection of Hglo (7
into L?(D§). Similarly, the application vg, — (n, — n)wé’o with wgo is solution of (3.24)
is compact from L?(Dg) into L*(D). Therefore we have, using that o, | pr = 0 and

p _
wio_o’

v
k> JQR Sm((1— np)wgo vfo)dy e 0,

LR K2Sm((ny — m)(u’ + 08, + 0t Yl )dy — 0. (3.65)

{—0

From (3.61) we have
0. (3.66)

{—00

’%m T UEO’ UEO>L2(D0)

We observe that Sm <TRID§0, w§0> > 0. Consequently, using (3.64) , (3.65) and (3.66)
we get

ﬁ Sm(n — np)]w&) + ”Eo + wgo\Qdy + J %m(np)|w§0|2dy p 0.
D Dp —0

In particular, by Assumption 15 we deduce that f gm(np)hbfo |dy p 0. This implies
@ —®©
that ¢, = 0in O. We remark that wgo = 0 implies in particular that Ay, + k*nig, = 0

in QR\D. Consequently g, = 0 in QR\D by unique continuation principle. This proves
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that the couple (g, + gy, 0¢,) € L*(D) x L*(D) is solution of (ITP2) with zero data.
Hence g, = 0 in D. On the other hand, the application vg, —> (n, — n)we, with g,
is solution of (3.25) is compact from H, mC(D) into L?(D) thanks to the compactness of

the injection of H'(D) into L*(D). Therefore

2 =Dl 2
pok (1 —np)wyg, v§ f kE*(n —n)(wg +w§0)v§ dy—0.
Moreover, we have

= U~ k2 (n, — n)|®§0|2
D

2 P AT
JDP E=(1— np)wgo vfo

0

FP A0 AL
‘(ng Vo vﬁo)LQ(Do)
+ JD k2 (n, — n)(wE + wgo)vgody :

Using the hypothesis Re(n, —n) >y > 0 in D we conclude

0= lim (7% ¢, 0¢,)

A2
P = ’YlHU£o||L2(D)

which gives 9¢, = 0 in D. Combined with the result above we have that D¢y, = 0 in Dy

which contradicts with [|9¢, [|z2(p,) = 1. O

3.3.3 Application of the Generalized Linear Sampling Method (GLSM)

We present the free noise version of the GLSM. For fixed &y € I, introducing the func-

tional Jg : Lgo (T®) — R given as

TE (03 96,) = g (9g,) + [|(NE, + NE ), — 917,
o . o . cla)
We denote by jg (¢) = inf Jg (¢;ge,). Moreover, let c(a) > 0 verifying —= — 0
9eo€LE, (IF) a

as a — 0.

Theorem 32. Assume that Assumptions 26 and 27 hold. Assume in addition that the
hypothesis of Theorem 19 and Lemma 31 hold. Consider z € Qf, and let gg, € Lgo (TR

such that

Jg(é) (q)fo('7 Z)?.gg) (Z)) < j?o (CDEO('? Z)) + C(Ot),
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then

z€Dy Oléhg%)lgo(gg‘o(z)) < 0.

Moreover, if z € Dy then S¢,gg, |p converges to some ¥ in L*(D) and S&)g?obg converges

to some vg, in L*(D}) where © is solution of (ITP2) and v, is solution of (ITP1).

Proof. The proof of this theorem is an application of the abstract framework of GLSM
given by Theorem 2.7 in [11] and the series of Lemmas (24)-(31). Lemma 24, Lemma 25

and Lemma 29 prove that the operator Ng, = Ngo + Ng) can be factorized as
NSO = G&)S&) = SgOTg()SgO, (3.67)

and has dense range. Moreover, we need to verify that the norm I ge, is an equivalent
norm to || Sg,9¢, || 2 (p,) for all gg, € Lgo (T™). Theorem 19, Theorem 22 and the expression
of the operator Tg, prove the existence of a constant ¢; > 0 (independent from ) such

that

Ieygey < @1 (H‘S’Sog&JH%?(DS) + HS&JQSOH%Q(D)) V g € Lgo (FR)' (3.68)

Therefore, Lemma 31 and (3.68) prove this norm equivalence. The results of the theorem

are then a straightforward application of Theorem 2.7 in [11] and Lemma 30. O

3.4 Inverse problem for non-periodic incident fields

3.4.1 Setting of the inverse problem

Let y € T, One can deduce from (3.81)-(3.85) that @(-,y) € L2(QF) (see also [18, 58]).
We then define u®(-,y) € HL.(QF) the scattered field solution of (P) with v(-,y) =

®(-,y). We introduce the near field operator N : L*(T®) — L*(I'"?) as

Ng(z) = LR u®(z,y)g(y)ds(y).

Define S : L*(T®) — L*(D) as

Sg(z) = - D(z,y)9(y)ds(y).
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Then, the operator N can be decomposed as
N =GS,
where G : L?(D) — L*(T'®) is the operator defined by
G(v) = w|rs,

with w being the solution of (P).

Link between N and {-quasi periodic solutions: For { € I, we denote by g¢ :=
(Jg)(&,-) and we observe that
Sg¢ = Sege(x), (3.69)

with S¢ being the operator given by (3.31), in fact

2r(l4+1)
> [ @ G e, Ryaston),

Sge(x) = f B (o Bge(n, B)dstn) = 3 [
leZ YT

ZJ ®(z, (y1 + 27l, R))ge(y1 + 2ml)ds(y1) J @ (y, 7)ge (y)ds(y),
leZ

= Sege (),

therefore

f Sege(w)dg = J D(z,y) f ge(y)dé = Sg(x). (3.70)
1 rr I

Let Ne: Lg 2(r'?y — L2 (T be the operator defined by
Negelw) = || ae? st + | aee,)ds(o),
0

with ug” and @ are respectively the solutions of (3.24) and (3.25) with ve = ®¢(y, ).
Then

J(ngs) )d§ = JLR% y)ug (z,y)ds(y fLRgg é(z,y)ds(y)

- ng(x)df—i— ng(az)df, (3.71)
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with wf and 10¢ are respectively solutions of (3.24) and (3.25) with ve = S¢ge. We denote
by
wP(x) = f wg(z)d¢  and  @(v) = f We (x)dE. (3.72)
I

I
Using (3.70) we observe that w” satisfies (P) with n = n, and v = Sg. Moreover, W

satisfies

-

AW + Ky = k2 (ny —n)(w? +v + @)  in QF,

{1 =0 on T, (3.73)
oW .
L67,2(', R) = T"(i|rr) on ',

Therefore, w := wP + o satisfies (P) with v = Sg. Hence, we can equivalently define the

operator N : L2(I'f) — L2(T'®) as

Ny(x) = f (Wege) (x)de. (3.74)

We finally observe that N¢ge is not equal in general to J(Ng)(§) since the latter corre-

sponds with the scattered field w¢ € H, EI(Q(])%) satisfying
Awg + E*npwe = k2(1 —np)ve + k3 (np —n)(w +v)  in QF,

where w satisfies (P) with v = Sg and ve = S¢ge. This equation is different from (3.55)
that corresponds with the scattered field associated with N¢ge. The main difference

comes from the term k?(n, —n)v in the right hand side.

3.4.2 Some properties of the operator S

The goal of this section is to prove that the operator S : L*(T"") — L?(D) is injective
and characterize its range. The main difficulty here comes from the required continuity
with respect to the Floquet-Bloch variable. This is why we first prove the uniform
continuity of § — S¢ formalized in the technical Lemma 33.

Let y € C°(I) and ¢ € LﬁQ(TR). We consider g € L?(T'®) such that

ge() == T (9)(&,x) = ™19 (2)x(€), for (¢,2) € I x I, (3.75)
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Denoting
. 1 2m

Yj=—

5 e~V (yy ) dy,
™ Jo

we observe that the operator S¢ given by (3.31) verifies for 9 < R

2 T
Sege(x J Z aeNWi=21)0, (7, R, 22)ge (y1)dy,
jEZ

?

Ar JEZ

2m . .

e~ioci)10, (j, R, x5) f e <M ge (y1)dy.
0

Therefore,

Sege (@) =—*Z¢Jx ()0 (j, R, wp)e ), (3.76)
]EZ

Let 0 < Ry < R, we define S : L?(FR) — L%(QRO) as

Setp 1= e TG (T 1p). (3.77)
Using (3.76) we have
Setp(x) = —*Z%m e (3.78)
]EZ

Lemma 33. For all € > 0, there exists 6 > 0 such that for |¢' — €| < & we have
|Sewr — Serp 7 L2k < c€” |Sew|? L2k V¥ e LT, (3.79)

where ¢ > 0 is a constant independent of & and &' € I.

Proof. Let ¢ € Lg(FR). From (3.76) we have

ISct2niagn, = 3 R [ 10600, R )P

jGZ

[(S¢ = Se) 12y = Z'WQL 10(j, R, x2) — Opr (4, R, w2)|*duzs.
jEZ

Therefore, to prove (3.79) we prove for all € > 0 the existence of a constant ¢ > 0

independent from ¢ and ¢’ such that

Ro RO
f 8¢(j, Rov3) — O (s R, v0) Py < ceQJ 867, R, 0) s,
0 0
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Consider first j € Z such that k? > « ( ), i.e Be(j) = A/k? — |§ + j|?. There exists only

a finite number of j for which this holds. Then

et o) = L pin () = 2t = cos(2)a)
J, e, x2)|” = sin r9)|” = ——=5|1 —cos 7)z2)l|.
‘ B (P - B (P ‘
For B¢(j) = 0, we have
Ry 4R3
I 0:(j, R, z5)|2d —i el 3.80
Bg(‘ljr)n—>0 0 | 5(‘7 xQ)‘ T2 = 3 ‘1 ( )
while if B¢(j) > 0, we have
R .
. y — sin(y)
J;) |9§(3,R, 1’2)|2dl‘2 = SRg [yg} , (3.81)
. . : y — sin(y) )
with y = 2Ry|fBe(j)|. Since y — Y > 0 for y > 0 and since B¢(j) > 0 is

bounded for j € Z such that k? > ag( /), then there exists a constant ¢; > 0 independent

of £ and j such that

Ry
L 10c(j, R, a2) [2dars > . (3.82)

Consider € > 0, since 0¢(j, R, 2) is continuous on the compact set I. Then there exists

d > 0 such that for |¢' — £| < & we have
|0 (4, R, 22) — 0¢(j, R, 2)| < €. (3.83)

Consequently, using (3.80)-(3.82) we get

Ro Ro
f ‘Qﬁ'(]7Ra $2) 95(]7R x?)‘ dyQ ClRoéf ‘9§(j7R7x2)’2dx27 (384>
0 0
with ¢} := 1/min(cy, c}).
Consider the case where k? < aﬁ( ) for which fe(j) = in/|§+ j|*> — k2. Assume in

addition that |B¢(j)] < 1. There exists only a finite number of j for which this holds.

‘We have
e 21B: (IR

106(j, R, 22)|” = REXGEE sinh(| B¢ (5) | 22)*.
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Therefore

9 Rye—218e IR [smh(mg(j)mo) B 1] - @6_2‘550”3

Ry
0c (j 2dxy =
fo 065 B, w2)Pdz = == v 2Rol5e())] 3

(3.85)

where we used the inequality

. h 2
sinh(z) for x > 0. Since |f¢(j)| < 1, then we get
x

1=
6

3
ARy or _. 4

Ro
fo 0¢(§, R, x2)|*dzo > 3 : Ch. (3.86)

Consider € > 0, since 0¢(j, R, z2) is continuous on the compact set I, then there exists

§ > 0 such that for |¢ — &| < § we have

Ro RO
| e Ra) = Ol R Py < Ruc | 106, Bowa) Pz (380)
0 0

Consider now k? < ag(j) such that |B¢(j)] > 1. Let § > 0, 0 < 69 < J such that

¢ 1= & + &y, then we have

€+60 0f

Oesn =090, Roma) = | S (3.5%)

By the Cauchy-Schwartz inequality we get

Ro 89~

Ro £+50 5
j ‘95(j7R7x2) — 9§+50 (j,R, x2)|2dl’2 < 50f (J |7§(j,R, x2)|2da:2> dg. (3.89)
0 I3 0

1B G)IR

1
On the other hand, let us denote by vy :=2i({ + j)——=5 and 71 := R+ ——
B (7)1 B¢ (5)]

, We

have that

aaefu, R, w2) = o [ sinh(|Be(j) w2) — w3 cosh(|Be (j)2)] (3:90)

Using that sinh(2y) = 2sinh(y)cosh(y), cosh?(y) —sinh?(y) = 1 and 2sinh?(y) =

cosh(2y) — 1 for all y € R, we get

08¢ 2

%(]7 R7 .’172)

2 2 2 2
- |’YO|2 [(71 ;$2)cosh(2|ﬁ§(j)|x2) — Y12Z2 Sinh(2|/8£(j)|x2) _n + xQ} ]
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Therefore

2

flo106; _ 2{ osinh(2[B¢(j)|Ro) 1 | Rocosh(2[B¢(4)|Ro)
J, |70 R e = ol | B3 B0l RG] 250))
o2 sinb(218c()|Ro) _ 43Ry | B3
105:)| > T
1 1 . .
TRGTEO T Smh(Q\Bf(J)!Ro)] .

In relation to (3.85) and the previous identity we consider the following functions defined

for £ € R such that z > 1 as

272k [sinh(2x Ry
@) =0 [ (23; - RO] ! (3.92)
2
ole) = a| VSR RGO R) 3 Focoshrl)
x2 4z 2x 2%
(R+ 2)%sinh(2zRy) 1,Ry R} 1 3
+ p —(R+ ;)27+?0+47$2(R+ %)smh(QxRO) ,

and we prove the existence of a constant a > 0 such that g(z) < af(x) for all x > 1.
Let M € R sufficiently large and consider first the case 1 < x < M. Since f and g are

continuous functions and f(z) > 0, then we have

g(z) < o f(x) forl <x < M, (3.93)
max g(z)
with o = Kx,st( ] > (. For the case x > M, we compare f and g at infinity. We
min f(z
l<z<M
have
B (.1'2 +k2>6721R €2xRo 9 1
g(x) = 5t " (Ro—R)* + O )
e—?xR 621‘R0 1
= 1 — -
=S (%) o 0)
Therefore ?EZ; is equivalent to (R—Ry)? at infinity. Using (3.93) we deduce the existence

of a constant o > 0 such that

g(z) < af(x), forallz>1,
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which implies

9(1B () < af (187D,

for all j € Z such that |5¢(j)| > 1. Then we deduce that

fo- 00 fo
f aé (j, R, m2)|Pdzs < J 10¢(j, R, z2)|*das. (3.94)
0 0

Therefore, using (3.89)-(3.94) we have

Ro §+d0 Ry .
f 10c(, R, x2) — Og 45, (4, R, w2)[Pdz < doax f (f |95(j,R,x2)l2dzz) d. (3.95)
0 I3 0

On the other hand, we show that  — f(z) decreases in R;.. Indeed , taking y = 2z Ry
O 2k
and using that sinh(y Z 2k + we get

f'(y) = R "V h(y),

with

& -R 2k +1
=§ 2%k + 3)! ( +(2k+4)(2k+5)y>'

© 2k
Since cosh(y) := Z % we observe that
k=0""
, © y2k+3 0 y2k+4 y2
<-4 N Y n) —1- L <
yh(y) Z (2k + 3)! * Z (2k +4)! sinh(y) +y + cosh(y) 2 0

for y > 0. Therefore f'(y) < 0 forall y > 0. Since & —> |B¢(j)| increases in I
Ry

and © — f(z) decreases in R, we infer that £ — f 0¢(j, R, x2)|dxy decreases in 1.
0

Therefore, from (3.95) we finally obtain that

Ro

Ro
J |0£(],R,II}2) _9£+50(j7R7x2)|2dx2 < aég <f ’9§(j7R7 $2)|2d$2> )
0 0

which ends the proof. O
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Lemma 34. The operator S : L*(T®) — L?(D) is injective. The closure of its range
18

H™(D) := {ve L*(D); v|pr € L*(DP); Av+k*v =01inD}.

Proof. Let g € L*(T'®) such that Sg = 0 in D. Using the unique continuation principle
we obtain Sg = 0 in Q. Using the continuity and regularity of single layer potentials

we have that S € H2,(UT) and verifies

ASg+k*Sg=0 inUFE,

Sg=0 on TR,

and the upper going radiation condition (3.3) with I'® replaced by ' with R > R.
Therefore Sg = 0 in U. Using the jump relations for the normal derivative of S we
obtain g = 0 which proves the injectivety of S.

We prove now the denseness of the range of S. Let v € I?(D) and we denote by

ve = (Jv)(&,-). Fix e > 0 and consider a uniform partition of I into sub-domains
1
IJN = gllj of size § = N Using Lemma 25 we have, for all 5}\7 € IJN there exists
]:

Q/JJN = e—igf-xng € LE(I’R such that
J

. _ €

with O = e_igfi'v'xvgz_v, where S is defined by (3.77). We introduce the hat functions
J J

xj»v e C°(I) that are affine on each domain I; and verifies X§V (&) = d;1. We then define

"&év = Z TZJngXév(f)a @év = Z T)gj\fX;'V(g)a géV:: Z (SglegN)X;V(f)v

1<j<N 1<j<N 1<G<N

for 1 < j < N. Then, we have

g N __ ~ d N <\ GN _ AN AN ~
“S§¢§ - vf”LQ(Q?O)) < Hsf% - S& HLQ(Q?O)) + ”Sf — Vg ”LZ(ngO)) + va - vf”LZ(Q?O))'
(3.97)
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Since S&(lzégvxév(f)) = (Sgif)gzy)xjy (€), then the first term in the right hand side of (3.97)
J J

verifies
Setew =58 = D) (Seew — Sewhen)x5 (6).
1<j<N
Therefore
Sedd - 8 < Setben — Send .
156" = 5S¢l 2o S se[giliiﬁl]” een = Sev¥en |l ooy
€

Consider € := , using Lemma 33 we chose § > 0 for which

|80y = STy o) < V€IS P laany

therefore
5 TN _ & / €
sup sup HS e — Sentpen < W/cee | supllue| Ry + 1| =-.
ISIsN gele]) |60 ] e &7 Lf(ﬂfo)) gel ¢ L2 °) 4
(3.98)

On the other hand, using (3.96) we deduce that the second term in the right hand side

of (3.97) verifies

Hgé\’_ Z (ngﬁgjf\’_ﬂgjf\f)xy(f) < (3.99)

1<j<N

I

@f H[Q(Q?O) =

L2(Qg0)

Moreover, since vg € Cj? (1, LE(D)) then N could have been chosen from the beginning

sufficiently large so that

AN~ €
va - UEHLQ(Q(I)“O) < 9 (3.100)
Finally, using (3.98), (3.99) and (3.100) we get
sup||Sepl — @ = su su SN — o <€, 3.101
fe?H fwf §||L2(Q§0) 1<j£N Ee[gjl\ilf);\ﬁrl]H §¢§ £||L2(Q§O) ( )

for sufficiently large V. This proves the denseness of the range of the operator S. [

For the analysis below we need to assume the well posedness of the following Interior
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Transmission Problem.

(ITP3): Seek (u,v) € L*(D) x L*(D) such that (u —v) € H*(D) satisfying

-

Au+k*nu=0 inD

Av+kv=0 inD
) (3.102)

u—v=¢ ondD
o(u—v)

. =1 ondD

for given (p,v) € H*?(0D) x H'Y?(0D). This problem has been extensively studied
in the literature in the case of bounded domains D see for instance [11]. Indeed the
results for bounded domain D extend easily to the case where D is unbounded but is the
(infinite) union of disjoint bounded domains. This corresponds for instance to our case

when DP is the union of disjoint bounded domains. Consider the following assumption
Assumption 35. Assume that k, n, and n are such as (ITP3) is well posed.

Lemma 36. Assume that Assumptions 15 and 35 hold. Then the operator G given by

(3.69) is injective with dense range. Moreover,
(ze D) < (P(-,2) € Range(G)).
Proof. consider v € H™“(D) such that G(v) = 0, i.e
w=0 on I'f
with w € H2.(QF) being the solution of (P). Therefore, w € H2,(U™) and verifies

Aw+kw=0 inU",
w =0 on TR,
and the upper going radiation condition (3.3) with 't replaced by I'® with R > R.

Then w = 0 in U. Using the unique continuation principle we obtain that w = 0 in

O\ D. Setting u := w + v we observe that the couple (u,v) verifies (ITP3) with zero
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data. Therefore we deduce that v = 0 and then the injectivety of G.

Now we prove the denseness of the range of G. Let g € (G)L, then
(G(v),9)r2py =0 forallve H™(D).

Let f € L2(I'®) and consider v = Sf. We then have

(G(SF),9)p2qrry =0 for all f e L*(T*).

On the other hand, consider w(f) and w(g) solution of (P) associated respectively to
v = Sf and v = Sg. Using similar arguments as in the proof of Lemma 2.5 one can

prove that

| a=mutnsaay - [ (- nuo)s7as (3.103)
D D

Therefore, from Theorem 18 and (3.103) we get

(G(SF). 9)paam) = fD K2(1— n)(w(f) + SF)Sady = jD K2(1— n)(w(g) + 59)SFdy

Consequently

(G(89), [)r2qrry =0 for all f e L*(T*)

which implies that G(Sg) = 0. The injectivety of G gives that Sg = 0 and then g = 0
by Lemma 34.

Consider z € D. We have that y®(-, z) € L?(D), where x is a regular cutoff function that
vanishes in a neighborhood of z. Since ®(-, z) satisfies the Helmholtz equation outside

z, elliptic regularity results applied to each component of D? separately implies that
0P (-, 2)
ov
We then consider (u,v) € L*(D) x L*(D) to be the solution of (ITP3) with (p,) =

x® € H?(D). Trace theorems then imply (®(-, 2), ) € H%%(0D) x HY?(0D).
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(@(-, ), aq)a(; %)), We set

u—v inD

®(,2) in QH\D.

We observe that w € HZ.(Q) and satisfies (P). Hence G(v) = ®(-, 2).

Consider now the case where z € Qf\D. Assume that there exists v € H"(D) such
that G(v) = ®(+,2). By unique continuation principle we obtain that w = ®(-,2) in
O\ D, which is a contradiction since w € Hf,(Q\D) while ®(-, 2) ¢ HZ.(Q"\D). O

3.4.3 Application of the Generalized Linear Sampling Method (GLSM)

Let us consider the functional J,(¢,-) : L*(I') — R
Ja(#:9) = al(g) + |Ng—¢|*, forall ge L*(")

where

I(g) := gllegfgo(Jg(éo, ))- (3.104)

We denote by jo(¢) = inf Ju(¢;9). Let c(a) > 0 verifying o) —0asa—0
geL?(T'F) «

Theorem 37. Assume that Assumptions 15 and 35 hold. Assume in addition that the

hypothesis of Lemma 31 holds. Consider z € QF, and let ¢* € ﬂ2(FR) such that
Jo(@(+,2),9%(2)) < Jja(®(-, 2)) + c(a),

then

zeD <« limI(g%(2)) < ©. (3.105)

a—0

Moreover, if z € D then Sg*|p converges to some v in L?(D) where v is solution of

(ITP3).

Proof. The proof of this theorem is an application of the abstract framework of GLSM

given by Theorem 2.7 in [11] and Lemma 34, Lemma 36 and Lemma 31. Lemma 34 and
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Lemma 36 prove that the operator
N =(GS,

has dense range. Moreover, we need to verify that the norm g is an equivalent norm

to sup||STg(&, ) r2(p,) for all g € L*(T'®). Lemma 31 and Theorem 32 prove this
el

norm equivalence. The results of the theorem are then a straightforward application of

Theorem 2.7 in [11] and Lemma 36. O

3.5 Numerical examples

In this section we will test numerically the results of the Theorem 32.
Numerical scheme: Instead of solving the near field equation point-wise, we equiva-
lently solve the equation in the Fourier domain. We are then led to construct numerically

for a grid of sampling points z a nearby solution satisfying
Nﬁoggo (ﬁa Z) = q)io (& Z),

where

NeoGeo (6 2) := Y g8 (O)(@E, + D ) (¢, 2),
leZ.

with @f and zﬁgo are respectively the Rayleigh sequences of wy solution of (3.24) and wg,
solution of (3.34), and d/Dg\O(ﬁ, z) is the Rayleigh coefficient of the {y-quasi-periodic green
function given by (3.28). We use the Tikhonov regularization to determine a nearby

solution
(o + N Ny )2 (2) = Nz (@gy (1, 2)). (3.106)

where « is a constant determined by Morozov’s principle and ]\75*0 is the adjoint of N&)'
Let (e1,e2) be the canonical basis of R?>. We denote by N, and Ny respectively the
number of discretization points with respect to e; and eg directions. We consider in
practice the period QO = [—m, 7] x [0,R]. Let Xy be the matrix of size N, x N,

containing the discretization points of the interval | — 7, 7[ and by Yy be the matrix of
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size N, x N, containing the discretization points of the interval |0, R[. Moreover, for
¢ = 107'% we consider a uniform partition to the period [—7, ™ — €] into sub-domains
; P A 2m ; 2m
Y{ = [yl, 47 ™"] of size Az := -, with A := =——. We denote by N""¢ = ~— the number
10’ |E| Ax
of discretization points (y7) and we let

= {y; == (W],R); 1<j <N}, (3.107)

the set of point sources and we define by L;,. := {—Nr, -+, N1} the set of the Rayleigh

1/.2
coefficients where Ny, := [5 ([AZ] - 1>] such that the number of components of L;. is

equal to N, We then consider for every 1 < j < N and for & fixed

vl = e, (y], (Xn, Yn))

R iBeo (DYN _ —1Bey ())YN
_ MZW% I sz)[ ~iBe, (DR (6 ’ O] (?) - )] (3.108)
0

JEZ

and use the numerical method presented in [29] to solve the scattering problem and

generate for all 1 < j < N the solution
(wg,); + (g, )5,

where (wf ); is the solution of (3.24) and (ws )i = J (g, );(&o, -) with (g,); being the
solution of (3.25) with ve, = vg The discretized near field operator is then given by the

matrix of size N x N™¢ defined as

Ney (3, £) := ((BE); + (W );)(£), for 1 <j <N and L€ Lin,. (3.109)

o 0

We consider a complex-valued random matrix K of size N x N such that the real

and the imaginary parts are in [—1,1]?. The discretized noisy data are then given by

NE (3,0) i= Ney (7, )(1 + 6K (j,0)) ¥ 1<j<N™ and (€ Lic, (3.110)
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where ¢ being the level of noise fixed at 1%. We use the following indicator function for

the reconstruction of D}

1—50(2) : !

alrae (3.111)

In all the following examples the period length is fixed at 27 and the number of dis-
27

] for k fixed, where we fix k

cretization points are fixed at N, = N, = 300 and \ =

with a positive imaginary part.

Remark 38. We obtain numerical results comparable to the results presented in the

following examples when we use the indicator function defined as follows:

1
(N2 g0 (2), 96, () + NE 1198 (2) 12

Teo(2) = (3.112)
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Example 1: In the first example we fix

3.5 1
= i M =4 ==
k 3 1dx +0.71 , and & 1

and we consider a simple geometry given by a periodic ball centered at (0, ) with radius
Rppr := 0.45\ without any perturbation as shown in Figure 3.2 (Left). Figure 3.2 (right)

presents the numerical reconstruction obtained using Z,.

;A
10
«
«

-5 0 5 10 15 -5 [ 5 10 15

FIGURE 3.2: Left: exact geometry. Right: The reconstruction obtained
using Zg, .

Example 2: We consider in this example the same physical parameters and periodic
geometry, and we add a perturbation given by a ball centered at (1.2),0.4)) with radius
Rp := 0.33)\ as shown in Figure 3.3 (Left). Figure 3.3 (right) presents the numerical

reconstruction obtained using Zg,.

-5 0 5 10 15 —‘5 L; 5‘ 10 1‘5
FIGURE 3.3: Left: exact geometry. Right: The reconstruction obtained
using Zg, .
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3.5 .
3 1dn +04, M =6, and & = 5’ and
(

we consider the geometry of D and D given as L-shape as shown in Figure 3.4 (Left).

[u—y

Example 3: We consider also for k :=

Figure 3.4 (right) presents the numerical reconstruction obtained using Z¢, .

50 4 sp

IO ITETRYRTETEY

13 10 5 0 5 10 15 20 5 o B 0 s 10 = 20
FIGURE 3.4: Left: exact geometry. Right: The reconstruction obtained
using Z¢, .

3.14n
we consider DP as a periodic ball centered at (0,1.2)\) with radius Rpr := 0.4\ and a

1
Example 4: We fix in the last example k := + 0.8 M = 3, and & = 3’ and
periodic square centered at (0.85\,1.6A) with sides 0.25\. The perturbation is given by
the ball centered at (0.85X,1.6) with radius Rp := 0.25\ as shown in Figure 3.5 (Left).

Figure 3.5 (right) presents the numerical reconstruction obtained using Z,.

-8 -6 -4 -2 0 2 :1 (‘5 é -8 ‘6 4‘1 —‘2 l‘) 2l 4 6‘3 E;
FIGURE 3.5: Left: exact geometry. Right: The reconstruction obtained
using Zg, .
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Conclusion: In the examples above, we first tested the code with an unperturbed
periodic domain with a simple geometry given in Figure 3.2 (left). Using the indicator
function defined by (3.111) we obtain the reconstruction of the periodic domain given

in the Figure 3.2 (right).

Next, we tested our code for the case of a periodic domain containing a perturbation
using different geometries, such as balls, L-shapes and squares as shown respectively in
the Figures 3.3 (left), 3.4 (left) and 3.5 (left).

The Figures 3.3 (right), 3.4 (right) and 3.5 (right) respectively show the reconstruction
obtained using the indicator function Z¢, which provides the geometry of medium present
in the first period distributed periodically with period 2w. We also tested the code using
the indicator function given by (3.112) and we obtained reconstructions similar to the
one presented in the Figures above.

These results show that the indicator function that we introduced in the theory indeed
plays the role of an indicator function for the geometry of the domain present in the first

period.
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CHAPTER

Application to differential

imaging

Abstract: We revisit the differential sampling method introduced in [30] for the
identification of a periodic domain and some local perturbation. We provide a
theoretical justification of the method that avoids assuming that the local perturbation is
also periodic. We exploit the results obtained in the previous chapter extended to a
domain of periodicity length equal to an integer multiple of original periodicity. This
allows us to introduce two indicator functions that allow to directly reconstruct the
defect. The theoretical analysis of this chapter is extracted from the published paper [S]

and we give in the end some numerical examples.
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4.1 Introduction

In this chapter we are interested in studying the so-called differential sampling method
(DLSM) introduced in [30] for the reconstruction of a periodic domain with defects from
near fields measurements at fixed frequency. For this algorithm only the periodicity
size of the background is assumed to be known a priori. The theoretical developments
of the previous chapter allow us to provide a theoretical justification of the algorithm
proposed in [30] that provides an indicator function for the defect independently from
periodic background. This justification does not assume that the perturbation is also
periodic (with a larger periodicity) which was the case in [30]. Indeed, combining sam-
pling methods for a single Floquet-Bloch mode and the sampling method using the full
measurement operator, one is able to design an indicator function that separates the
perturbation from the periodic background. The principle consists in observing that we
do not change the scattering problem if we redefine the periodicity of the background
as an integer multiple of the original periodicity. The differential indicator function is
build using a comparison of the GLSM indicator function when we use these different
definitions of the periodicity of the background. The analysis of GLSM for quasi-periodic
incident waves is by itself sufficient to derive an indicator function in the spirit of the
differential linear sampling method of [30]. We introduce two indicator functions, one
depending only on the indicator function associated with the single Floquet-Bloch mode,
and the other depending on the one associated with the full measurement operator.

The chapter is organized as follows. A new setting for the inverse problem in a domain
with a periodicity length equal to an integer multiple of 27 is given in section 4.2. Section
4.3 explains how the single Floquet-Bloch mode indicator function can provide an indi-
cator function for the periodic background. We introduce in Section 4.4 two differential

indicator functions for the defect. We give in the last section some numerical examples.
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4.2 Setting of the problem and notations

Note that we keep here the notation of the previous chapter, and we keep referring by
periodic functions (quasi-periodic functions) to those which are periodic (quasi-periodic)
with respect to the first variable 1. As mentioned above, the principle idea behind the
DLSM method analyzed in this chapter is to consider the background as 2w M periodic
with M € IN such that M > 1 and combine the application of the framework given by
the previous chapter to different values of M. Indeed, the refractive index n, is also
27w M-periodic with respect to the first component x; (see Figure 4.1). Then, we can

follow the same approach adopted in Section 3.3 of the previous chapter by taking.

QFf = ofM .= 0,2rM] x [0,R] and DL =DM .= QlM ~ pr,

in order to reconstruct Dy = Déw = Dg’M u D using the GLSM method. To this end,

we reformulate in this section the setting of our problem in 2w M-periodic medium

. » D D D | DM ppM DM D pr  DP DP D
: Qg :
0 2n
N 2nM

FIGURE 4.1: Sketch of the domain

In the following, for m > 0, the spaces LgyM(QR), Hg}M(QR) and HET?M(QOR’M) has
respectively the same definition as LE?M(QR), Hém(QR) and Hgm(Qé%) in the previous
chapter with period 27 replaced by 27w M, that is, LgvM(QR) and HEM(QR) denotes
respectively the spaces of é-quasi periodic functions in L.(QF) and H™(QF), with
period 2w M. We denote Hg"M(Q(If’M) the restriction to Q(I)%’M of functions in HgM(QR),

and HiM(Qg’M) denotes the space H§17M(Q§’M) for £ = 0. Moreover, we define for

¢ € CL(UY) the one dimensional Floquet-Bloch transform with period 27 M as

jM¢(€7xla$2) = Z¢($l + 277Mj7x2)67i27rM5.j) 56 IM = [07 %]7 (581,562) € UO‘

JEZ
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£

Fix ¢ € I and we denote by &y := 2 € I™ . Consider Ué\g[ € LgmM(D), where

LE, 1 (D) := {v € Lioo(D)/ vlpr € L, (D)},

with Lgm v (DP) denotes the set of & quasi-periodic functions in L?,.(DP) with period
2w M. Similarly to the previous chapter we define a solution wé‘g to problem (P) given

by (3.1) associated with v = vé‘g as

M Mo M
we, 1= wgo + We, » (4.1)

Awg;M + k*nyuw? M k21— np)vé\g in Of,

%
{ wZ;M =0 on T?, (4.2)
awp7M
£ R,M M R.M
o (R = T ) on T,

and u”)é\(/)[ e AY(QF) solution of

-

Au?g)[ + k2mbé\g[ = k?*(np, — n)(vé\g +uw?™y in QF,

%
4 wg‘g =0 on I, (4.3)
oM
& R/~M R
5720(',3) =T (g, |rr) on I,

with T o= [0, 20 M] x {R} and T = B (00 — He Y7 (THM) s the Dirichlet-
to-Neumann operator defined as (3.10) with ¢ is replaced by

— 1
M\ .
e U) = 507

2 M
f e~ +)NT1 (1) R)dx; where the norm in HEO(TOR’M) is defined as
0

J——

2 _ 2\ | (MY ()[2
el gy = D0+ DG
JEZ
We consider @¢, pr(x,y) := (TpuP(-,y))(&o, x) the & M-quasi-periodic Green function
&o,
with period 2xM. Let y € T(I){’M, we define ung(-,y) = wg, given by (4.1) with vé\g =
D, My, ) € LEO,M(D)- From (4.1) we decompose ung(~,y) = uz(’)p(-,y) + g, (-, y) with

wll (5 y) = wg’)M solution of (4.2) and @, 5/(-,y) = We solution of (4.3). We introduce
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the {oM-quasi periodic near field operator Né\f : LgmM(FR) — LgmM(FR) given as

NGV gl )i [ 98 s,

NEM @) = [, 08 )T 000 0) o )50,

0

Define SM : .2 rfy — 2 D) the operator given as
&o &0, M §o,M

St (@)= |, 08 )P )dso). (4.4

0

Then, as in (3.32) we can decompose the operator Né‘g[ as
M M/ oM
N§0 = G&) (SEO ),

where Gé\g : LgO,M(D) — LgoyM(FR) is the operator defined by

M ~p,M
Gfo (U§0 ) (wfo + wgo )‘Té{’M’

with wg’M € Hglo M(QRM) being the solution of (4.2) and wg;M = jM(ﬁ)é\g)(fo, -) with
We, € AY(Qf) is the solution of (4.3). Moreover, Similarly to Lemma 24 we observe

that the operators Ngo’ and Ngo’ can be respectively factorized as
M _ oM yxpp,M oM M _ oM yxqp,M oM
NSO = (5’50 )*Tgo S{O and NéO = (Sgo )*TfO S);:O y (45)

with Tg’O’M : Lg, p(DP) —> L 3(DP) and TgO’M : L v(D) — LE, 3(D) are respec-

tively defined by

’ 7]\4
T2MoM = k(1= np) (0 +wl), (4.6)
Tgo’ vl = K2 (1— np)a? W ML (n —n)(wf + o + ), (4.7)
where w&;M being the solution of (4.2) and @ "p’ = Jum (g, ) (o, ) with wé‘g is the

solution of (4.3). Finally let us define for ggo € L§O7M(FR) the norm

M M .__ M M M M M M
Iﬁo 9¢o = (Ngo 9¢o » 9¢o )LZ(F(?’M)‘ + ’(Nfo 9¢0 5 9¢o )L2(1"OR’M) : (4.8)
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From the factorizations (4.5) we have the equivalent expression

M M ,__ o.M oM M M M
Igy 9y = |(Tgy " Sty 9eo + Se0 920 )12, (D7)

0,M

=p,M oM M oM M
+ ‘(Tg) Sfo gfo’sfo 9eo )Lg (D)| (4.9)

0-M

4.3 Application to the GLSM method

4.3.1 Application of the GLSM for the reconstruction of Déw.

Following the same steps as in Section 3.3 we can present the free noise version of the

GLSM. Introducing the functional Jgg’M : LgmM(FR) — R given as
7M . j— 7M \7 7M
Jg) (‘Zs:géo) = algg(géo) + ”(Ngo + Ngo )gﬁo - ¢H2

We denote by jg)’M(qb) = inf Jgof) ’M(qb;g&)). Moreover, let c(a) > 0 verifying
géoELgo,M(D)
c(a)

——~ > 0asa—0.
o

Theorem 39. Assume that Assumptions 26 and 27 hold. Assume in addition that the

hypothesis of Theorem 19 and Lemma 31 hold. Consider z € QF, and let ge, € LgmM(FR)

such that
T (e 1 (+,2), 98, (2)) < G (Peo pa (- 2)) + ela),
then
ze D} — iiir%)lé\f(gg)(z)) < 0.
Proof. The prove is similar to the proof of Theorem 32. O

4.3.2 Application of the GLSM for the reconstruction of Dg’M

In this section we consider M > 2 and we explain how one can reconstruct only the
domain Dg’M. Fix £ € I and denote by & := % e I™. We observe that the Green
function ®¢, (-, 2) is also {yM-quasi periodic with period 2w M. Therefore, we can follow
the same steps in the previous section by replacing ®¢, ar(x,y) by Pg,(x,y) and we use
that ®¢, (-, 2) admits singular points in QOR M for 2 € D to reconstruct only the periodic

domain DF M
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Lemma 40. Assume that the assumptions of Theorem 19 hold and that Assumptions

26 holds. Then we have that
(z € Dg’M) — (©£O(~, 2) € Range(Gé\g)) )

Proof. Let z € DP. We consider vg, € HEO"C(D) such that ve|p = —Pgy(-,2). Let

. ) 0D¢, (-, 2)
(ugy, Vg,) € Lgo (DP) x Lgo (DP) be the solution of (ITP1) with (p,) = (Cbgo(-, z), 5;}/)
We set

Ugy — Vg, in l)p7
w? =
0
D¢, (-, 2)  in QF\DP.

We observe that ve, € H, ZQCM( D), where
H{",(D) = {ve L} (D), Av+k* =0in D},

and wgo € H§207M(QR) satisfies (3.24). Moreover, let 10, be the solution of (3.25). Since
(np — n)(wgo + vg,) = 0, then g, = 0 and consequently Gé\g(v&)) = ®g (-, 2).

Consider now the case where z := (21, 2z2) ¢ DP. Assume that there exists v, € H, gCM(D)
such that Gé\o/[ (vgy) = Pg,(+,2). By the unique continuation principle we get we, :=
wgo + 1[)?0 = D¢ (-, 2) in UNDY. Since D is not distributed periodically, then for
z € D there exists j € Z such that z; := (21 + 27j,20) € Q?M\Déw. Therefore,
De, (-, 2) ¢ HE, 1 (Q\DY!) for all z e QF\DEY while we, € HZ 1, (QF\D}?), which is a

contradiction. O

Theorem 41. Assume that Assumptions 26 and 27 hold. Assume in addition that the
hypothesis of Theorem 19 and Lemma 31 hold. Consider z € QF, and let ge, € LgoﬁM(rR)

such that

TEM (@, (1 2), 98 (2)) < G (@ey (-, 2)) + (@),

then

aM 3
z€ DEY = i:molé\f(gg)(z)) < 0.

Moreover, if z € DS’M then Sé\;[ggobp,M converges to some vg, in LQ(DS’M) where v, s
0

solution of (ITP1).
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Proof. As in the proof of Theorem 32. By Lemma 24, Lemma 25 and Lemma 29 adopted
to the 2nM periodic case we prove that the operator NE]\O/‘[ = Ng;M + ngo’M can be
factorized as

M M oM * MM oM
N£0 - Ggo S&) - S§0 Tgo Sgo, (410)

and has dense range, with SZ;M : LgmM(D) — LgmM (T is the adjoint of the operator
Sgg and Tg‘OJ is the operator defined as (3.40). Moreover, using Lemma 31 we prove
that the norm I, 5]\04 ge, is an equivalent norm to ||Sé\04 9éollL2(pary- Therefore, the results of
the theorem are then a straightforward application of Theorem 2.7 in [11] and Lemma

40. O

4.4  Application of the Differential Sampling Method

As in [30], we explain in this section how one directly reconstruct D using a differential
indicator function. Consider M > 2, fix £ € I. We denote by & := % e IM. Consider

g% e L"), g¢ e L (T™) and g?O’M € L, (™) satisfying

Jg (Peo (5 2), 98, (2)) < Jg, (P (- 2)) + (),

TeM (@g, (-, 2), g8 (2)) < GEM (@ey (-, 2)) + (),

(@)

c
for ¢(a) > 0 verifying —= — 0 as & — 0. Let us define the indicator function to identify
a

v —1
T%(z) = [i(g“) (1 +— {(g ) )] , (4.11)
7 )

o, M 1
0 (950 - Mg?o

D as

with I is the norm defined by (3.104) and Ié\g[ is the norm given as (3.59) with Ngo =

NPM NP = NPM g T8 = 110M
0 o &o 0

Theorem 42. Under the assumptions of Theorem 41 we have

(€ D) < (limIO‘ > 0) )

a—0
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Proof. Consider z € DP. By Theorem 32 and Theorem 41 we have that S¢ gg and

Sé\g[ g?O’M converges respectively to ve, € H, g(’)w(D) and vé\éf € H, gch (D) verifying
Gﬁo(vﬁo) = D, (-, z) and Gé‘g(”é‘g) = q)ﬁo(H z). (4.12)

Moreover, from Lemma 30 and Lemma 40 we observe that vg, and vé\g are solutions

of (ITP1) with (p, ) = (¢§0(.72),W

other hand, from (3.60), Lemma 31 and Theorem 19 we have that I, é\f J¢, is equivalent

), then vg, coincides with vé\g . On the

(uniformly with respect to &) to HSgg 9¢o ||%2( piy- In particular, there exists of constant
0

c1 > 0 independent from &y such that

2
SM O!,M

1
00— 27 S 98 (4.13)

M 1
_[ O!,M _ 6% < c
e~ o) < L2(D}1)

Moreover, we observe that Sgg g, = MSg,g¢,- Therefore, the right hand side of (4.13)
tends to zero as a — 0. On the other hand, from Theorem 37 we have that I(¢%) < o

as o — 0. Hence

limZ%(z) =0 for ze DP.

a—0

Consider now the case where z € D. From Theorem 32 and Theorem 41 we have that
M .
HSA({Q?O’ HLQ(D(])\/[) — o0 and HSﬁogéoHLgo(Do) is bounded as &« — 0 . Moreover, we have

that

M/ a,M M oM 2 M _o,M 2 2
Igo (9?0 —Mg&)202!\5g09§; _Séogg)”m(pgf)?@”SOQ% ”Lz(D(J)\/I)_02"5509?0”L2(D0)7

with co > 0 is a constant independent from ;. therefore

M
i (96

1
I, —==gg) — © asa—0,

M

which implies that

0< lin%)Ia(z) <o forzeD,
a—

This ends the proof. O
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Remark 43. Consider Q?O’M(TR) satisfying

M ~o, M .o, M
Jg; ((Dfo,M('vz)ag?O (Z)) <]§0; (¢50,M('72))+C(a>7

and define

IM ~a, M -1
I3(2) = [Ig‘f(gg;M) <1+ — o 07 )] .

Igo (Q?O’M - ﬁg,?o)
We observe that I3, can be considered also as an indicator function for the identification
of D repeated 2 M periodically, i.e Theorem 42 still holds if we change % by I3, and
D by its 2 M copies. The proof follows the same arguments but with applying Theorem
39 instead of Theorem 37.

4.5 Numerical examples

Numerical scheme: In this section we use the same procedure considered in Section
3.5 in the previous chapter such that we solve the equations in the Fourier domain, we
also consider the same discretization scheme as in Section 3.5. We recall that X and
Yn denotes respectively the N, x N, and N, x N, matrices containing the discretization
points of the intervals | — 7, 7[ and |0, R[, where N, and N, are respectively the number
of discretization points w.r.t the x; and x5 directions, and )); is the set of point sources
of size N defined by (3.107).

We consider in practice the period of size 27 as Qff = [—7, 7] x [0, R] and the period of
size 2r M as QfPM = [277([%] + %), 277([%] + %)] x [0, R].

Similarly to the theoretical analysis we also extend the numerical scheme analyzed in
Section 3.5 to a 2w M-periodic setting. In order to do so, we exploit the decomposition

of 2w M-periodic functions into the sum of M 27-quasi-periodic functions [30], that is,

M/
for M’ € N* such that M’ > M and 7€ IN*, fixing

o 1= Jo for

= — 1<jo< ,
M7 on T SHOS o
considering
m jo m —-M M
Em §j0+M_M+M7 for[2]+1<m\[7],
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and defining a §;, 2w M-periodic function e, M € Hgle’ M(QR), then the following de-

composition holds

m=

1 (%]
Wejo,M = 77 Z we, (4.14)
[=M]+1

A -M
where wg = € Hgm(Qé?). Let us denote by N} := MN™¢ then for every [T] +1<

M ~ A
m < [—] we consider for &, fixed and for all 1 < j < N™*¢

which has the same expression as (3.108) with & replaced by &,, and we generate the

solutions

(wgm)j + (wgm)w
where (wgm)j is the solution of (3.24) and (ﬁ)gm)j = J (g, );(€m,-) with (wé‘i)j is the
solution of (3.25) with ve, = vé . Moreover, let us denote by (wgf) ;j the solution of (4.2)

and (wfgjé”)J = jM(wé\fO )i (&jo, ) with (wé\j{))j is the solution of (4.3). The discretized
near field operator for the 2w M periodic setting is then given by the matrix of size

NM « NM defined as

wmc wmc

], 1<j<NM and ¢e L

inc nc’

- ) ~ ~ -M M
Ny (3, 0) = ((@8,"); + (@g,);) (), for [—=]+1<m <[+

where L%c is the space of Rayleigh coefficients which is defined as M copies of the space
Linc defined in Section 3.5. The discretized noisy data is given by the matrix Ngjw M
satisfying (3.110) with Nﬁjo’ a1 is replaced by N7, where the matrix of random values K

is of size NM x NM

wmc wmce*

For fixed &jy, we have @¢; (-, 2) € Hglij(QR). Consequently,

using the decomposition (4.14), one can decompose P¢; (-, 2) as follows

1
q)ij,M('az) = M Z q)fm('az)a

m=[ 2M]+1

—

M
2

—

where CIng(~, 2) is the &,,-quasi-periodic Green function with period 2. Consider a grid

of sampling points z and we let first gg_o be the regularized solution of (3.106). Moreover,
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we construct g?j’M and g% satisfying
0

P O a,M Vs
(o N3 N3 g2 (2) = Nty (@, (4,2)), (4.15)
v é" v v —_—
(o + N3 N3 g (2) = Niy (P, ar (£, 2)). (4.16)

with « is a constant determined by Morozov’s principle. We then define

1

1
Z0P— — —_ and ZY = —— (4.17)
S lge M| g5l

and we define the indicator function for the reconstruction of the defect as follows

-1
gl

78 (o, M 1 a,M 1
(N30 = g ) M = Frag))|

2= | gl | 1+
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Example 1: In the first example we fix the physical and the geometrical parameters as

3.5 2
follows k := —— +0.4i, A = —
ollows 3.147r+ 1, Ik

as a periodic ball centered at (0,1.4)\) with radius Rpr := 0.4\ and the perturbation D

N, = Ny =300, M = 4, and & = 0. We consider D”

as a ball centered at (1.2),0.8\) with radius Ry := 0.4\ as shown in Figure 4.2 (1).

25] ‘ ‘ ' ' ‘ Ay ) @
20 ] o0l

15 15

10| 10

5 — 5

0 0

-5 5

10| 10

151 15
20 f 20

20 0 0 10 20 30 ) 0 0 o 20 a'o

25 3) 2 4)
20 20
15 15
10 10

5 5L

9 9 9 ® & % ® @® +@® -] 8 b b b &

0 0

5 s
10 -10

15 -15
20 -20
-2'0 -1'0 l; W‘U 20 30 -20 -10 0 10 20 30

FIGURE 4.2: (1): The exact geometry. (2): The reconstruction obtained
using Z5;. (8): The reconstruction obtained using Zg) P (4): The recon-
struction obtained using Z¢
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Example 2: We fix in this example the physical and geometrical parameters as:
3.5 2w

ki=——+407, A= —

31an %]’

the periodic domain and the perturbation as L-shapes as shown in Figure 4.3 (1).

N, =N, =300 and M =6, and { = 0. We consider

k | | | | | om @

10r-

DEOETEEE T

-10 10
5 10 5 o 5 10 15 2 5 0 = 0 s m s o
. @ (4)
10 10
5 sk
s s s s s @ . ..
5 5
-10 10

FIGURE 4.3: (1): The exact geometry. (2): The reconstruction obtained
using Z3;. (3): The reconstruction obtained using Zg) P (4): The recon-
struction obtained using Z¢
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. 2
Example 3: In the last example we fix k := 33172 +1i, A = ﬁ, N, = Ny, = 300,
14n

M = 2, and & = 0, and we consider the periodic geometry and the perturbation as

shown in the exact geometry given in Figure 4.4 (1)

7 4)

FIGURE 4.4: (1): The exact geometry. (2): The reconstruction obtained
using 2. (3): The reconstruction obtained using Z¢**. (4): The recon-

struction obtained using Z¢
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Conclusion: As explained in the theory of the Differential Method, the reconstruction
of the perturbation can be obtained from a criterion that depends on three indicator
functions: one is associated with the periodic domain, and the others are associated
with the domain present in the first period distributed periodically with the period 27
and 2w M, with M > 2. Then, in the examples above we presented the reconstruction
obtained using all these indicator functions (The results of the reconstruction of the first

period of length 27 were presented in Chapter 3).

In Example 1, we considered a simple (non-complex) geometry as shown in Figure 4.2
(1). We can clearly observe in Figure 4.2 (2) the reconstruction of domain in the
first period distributed periodically with period 2w M obtained by the indicator function
2. We can also observe the reconstruction of the periodic domain in Figure 4.2 (3)

using Zg) P In Figure 4.2 (4), we obtain the reconstruction of the perturbation using Z.

In the second example we also considered a non-convex geometry given by L-shapes
as shown in Figure 4.3 (1). Similarly to the first example, we obtained a good re-
construction for the 2wrM-period, the periodic domain, and the perturbation as shown

respectively in Figures 4.3 (2), 4.3 (3) and 4.3 (4).

In the last example, we considered a complex multiply connected domain as shown in
Figure 4.4 (1). In this example, we observe in Figure 4.4 (2) that we do not have a
good reconstruction neither for the 2w M-period nor for the periodic domain as shown
in Figure 4.4 (3) due to the complexity of the domain. However, we observe in Figure
4.4 (4) that the reconstruction of the perturbation still can be obtained even in a very

complex domain.
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CHAPTER

Analysis of the Interior

Transmission problem

Abstract: We analyze in this chapter the interior transmission problem in a locally
perturbed infinite periodic domain, considering the case where the perturbation
intersects the periodic background. An equivalent coupled quasi-periodic problem is
given by applying the Floquet-Bloch transform. We perform a discretization with
respect to the Floquet-Bloch variable and we prove the well-posedness of the
semi-discretized problem. This allows us to construct a sequence that converges to a

solution of the problem.
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5.1 Introduction

The inverse scattering problem from inhomogeneous media leads in general to the study
of the so-called interior transmission problem (ITP). This problem has been extensively
studied in the literature for the case of bounded domains, and we refer for instance to
[11, 13, 12, 55, 34]. The ITP for the case of unbounded periodic domains without defects
can always be reduced to a one period cell leading back to the study of the problem in
a bounded domain. However, the case of perturbed periodic media (which does not
suppose that the perturbation is also periodic) is more difficult since one is obliged to
study the solvability of the problem in the whole unbounded domain. More precisely, the
difficulty appears when the perturbation intersects the periodic background. In fact, for
the case where the intersection is empty, one can decouple the problem into two distinct
problems, one associated with the periodic domain and the other with the compact per-
turbation. Consequently, the study in this case can also be deduced from results on I'TP
for bounded domains (this is what we have considered in the two previous chapters).

We present in this chapter a study for the ITP problem when this intersection is not
empty. In this case, one can not use Fredholm’s alternative in the classical way consid-
ered in the literature. It also was not possible to follow the method in [39] (presented in
Chapter 2) for the solvability of the direct problem to deal with this type of problems.
The main scheme that we propose to solve this problem is given as follows: we apply
first the Floquet-Bloch transform to our considered problem and rewrite it in the form
of an equivalent coupled quasi-periodic problems. This explains the reason for which we
consider the well-posedness for the quasi-periodic I'TP problems in Section 5.3 before
considering our case. Next, we make a discretization with respect to the Floquet-Bloch
variable and we prove that the semi-discretized problem is uniquely solvable. Finally,
we perform a convergence analysis that allows us to prove that the solution of the dis-
cretized problem converges to the solution of initial problem, which provides an existence
results for I'TP. This analysis is done in the last Section. Our analysis assumes the same

hypothesis made in Chapter 2 on the refractive indices n and n,,.
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5.2 Setting of the problem

We consider the upper half space U? := R x Ry. For R > Ry > 0 we denote by
Of := R x [0, R] with boundary’s T? := R x {0} and T® := R x {R} (see Figure 5.1).

We consider the same domain notation as in Chapter 3:

e DP denotes a 27-periodic unbounded domain included in QF,
o ny(-,x2): the 2m-periodic refractive index such that n, = 1 outside D?,
« D denotes a bounded perturbation included in QF := [0, 27] x [0, R],

e ne L¥(U°): the perturbed refractive index verifying n = n, outside D,
o« DV =DP nQlf and D = D U D,
and we make the additional following notation:

oDp := 0Dh\ (FO U {z1 =0} U {zg = 27}).

H
’[
-

o)
=

;0

—47n -21 0 2n 47 61

FIGURE 5.1: Sketch of the domain

The locally perturbed interior transmission problem is formulated as follows: seek (u,v) €

L*(D) x L*(D) such that (u—v) € H?(D) satisfying

Au+k*nu=0 inD,

Av+ kv =0 in D,

Yu—v =0y on dD\I'Y, (5.1)
———2 =4  ondD\I",

u=v=0 on TY,
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for some boundary data (p,1) € H¥?(0D\I'°) x H'/2(0D\I'®). Let us first consider the

case of periodic domain without perturbation, i.e as D = ¢f. This brings us to the study
of the well-posedness of the quasi-periodic Interior Transmission Problem which will be

the subject of the subsection below.

5.3 The quasi-periodic Interior transmission problem

5.3.1 Setting of the problem

Fix £ € I := [0,1]. The quasi-periodic interior transmission problem can be formulated

as: Seek (ug,ve) € Lg(Dp) X Lg(Dp) such that (ug —ve) € HE(DP) satisfying

-

Aug + k*nyug =0 in D,

Avg + k‘%g =0 in Df,

\ ue —ve = ¢ on 0D, (5.2)
O(ug — <
(Uaay %) e on ol
ug =vg =0 onT?,

for given (¢, 1) € HE’/Q(&DP) X Hg/Z(ﬁlv)p). The analysis will be done under the fol-

lowing assumption:

Assumption 44. We assume that
Re(np(z)) —1=a>0 or 1—Re(ny(x))=>a >0,

for almost every x € DP and for some o > 0. Moreover, we assume that Im(ny,) = 0

and {Sm(ny,) > 0} contains a non empty open set O.

We set

nps« = inf RNe(ny) and nP* := sup Re(ny).
Dp Dp
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Under this assumption one can rewrite the problem (5.2) as: Seek wg = ug — Vg €

H 52 (DP) satisfying

1

(A +K?) (Awg + k‘anwg) =0 in D},

awé 514
wE = ¢ and —— = ¢ on 0Dy,

(5.3)
wg =0 on I,
T (Awg + k:anwg) =0 on I
We set
ow

HE(DP) := {wg € H{ (D) Jwe = a—j =0 on 0D} and we = 0on I'}.

We remark that we — \/||Aw§||L2 pry | we H%Z(Dg) defines an equivalent norm on I:Ig2 (DP).

6 y
Let 0¢ € Hg (D?) be a lifting function satisfying 6 = ¢ and 5@5 = ¢ on dDf, and
v

0 = 0 on % and

el sr2my < c(llell srsmqospy + Ibell araommy):
for some ¢ > 0.

5.3.2 Well-posedness of the problem

Define the sesquilinear form

1 .
ag(we, wg) := po - (Awe + anpwg)(Awé + k2w )dx. (5.4)
0

Then the variational formulation equivalent to (5.3) can be written as: Seek wg :=

—bc € I:IE(DP) such that

1 .
ag(we, wi) = — po - (AGe + anpﬂg)(Awé + k2wg)dx, (5.5)
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for all wg € a g(Dp ). We observe that

L: wp— (Afe + k:2np9§)(Awé + k*wg)dz,

Dg np — 1
is a bounded antilinear functional on A, 52 (DP). Using the Riesz representation theorem

we consider f¢ € ﬁg(Dp) such that L(w;) = (fe, wé)H2(Dg) for all w; € I:IEQ(D”) and

Vellzon) < e1lellgon < (el msnopn) + 1Gelmmn))

with ¢1, ¢y are two positive constants independent from £. Thus, Problem (5.5) is equiv-
alent to

Acwe = fe in FI?(DP),

where Ag : ﬁg (DP) — ﬁg (DP) is the operator defined by the Riesz representation

Theorem as

(Agwe, wg) g2 (ppy = ag(wg, wi) Y we, we € HZ(DP), (5.6)
Theorem 45. Assume that Assumption 44 holds. Then the operator A¢ is a Fredholm
operator of index zero.

Proof. Let us define by the Riesz representation the following two operators A¢ g, Ag¢ 1 :
fIg(Dp) — FI?(DP) satisfying

(A owe, we) gz DY) L)P np AwEAwé + wgwig dzx, (5.7)

(Ag 1we, we) ra DY) f /{:2Aw£wié + anpngwé + (k*n, — l)wgwié)dx. (5.8)

P Ny — 1
‘We observe that
Re(Ag o, w)gra o) = 00 (| Awell3a o) + lwelZaon )

with ag := in the case 0 < nP™ < 1,

in the case n,+« > 1 and g :=
np7* - v 1

which implies that Ag o is coercive in the case ny, » > 1 and —Ag o in the case 0 < ™ < 1.
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Now, let us denote by .Ag the part of the operator given by the first integral in (5.8).

Then, taking wé = Aélfwg we observe that

k2 1 1
| sweallucds) < ¢l A4S wel o (59

1, 2 _
IAg 1we 52 ) p iy — 1

with ¢ is a positive constant that does not depend on ¢. Consider now a sequence wé
bounded in A, g(D” ), then we can extract a subsequence that we still denote by wf that
converge weakly to w in A, 52 (DP). From the compact embedding of A g(Dp ) in Lg (DP) we
get that wf converges strongly to w in Lg(Dp ) and therefore Agl)wg converges strongly

to .Agfw in LE(D”). Hence, from (5.9) we have
A(l) l _ 2 < / 0 _ A l _ 0 g 5 10
| 5,1(% w&)”m(pg) < Cwg wEHH2(D§)H ¢,1(we wé)HL?(Dg) — 0 as { — o£5.10)

Consequently, Aélfwg converges strongly to Ag%wg in ]:If2 (DP) which implies the com-
pactness of Aéli. The compactness of the other parts in A¢; can be proved the same

way. O
Theorem 46. The operator A¢ is invertible.

Proof. From Theorem 45 we have that A¢ is a Fredholm operator of index zero. Then,

it remains to prove the injectivity of A¢. We assume that
(Agwe, wé)Hz(Dg) =0 forall wge Cy”(DP),

then we get

(A + k%) <n _1> (Awg + k*nywe) = 0. (5.11)
P
We set
ve 1= —*(Aw + k*nywe) and  we = we + v (5.12)
€= T, — 1y At R e € 1= We + Vg :
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Then, (ug,ve) satisfies the following equations

Aug + k*npug = 0 in DY,
g (5.13)
Avg + k‘2v§ =0 in Df.
On the other hand, we observe
a(we, we) = f |Aw§+k2w§\2kz2f |Vw§2dx+k‘4f lwe|*da.
prnp—1 D? D?
Taking the imaginary part we get
1 2,12
Sm |Awe + k*we|“dr = 0. (5.14)
Dg np — 1

Therefore Awg + k2w5 = 0 in O with means u¢ = 0 in O. The unique continuation
principle implies that ug = 0 vanishes in Df. Consequently we have Awg + k:zwg =0in
6w§

D§ and we = Fl 0 on @DP which implies that we = ve = 0 in D}j. This proves the

injectivity of the operator A¢. Therefore A is invertible. O

Theorem 47. There exists a constant v > 0 independent of & such that
A < 7. (5.15)

Proof. Let us denote by wg = e %"y, and wg/ = e*’f'xlwg. Then wg,wg’ € HﬁQ(Dp),

where HﬁQ(Dp ) is the space defined the same as H, 52 (DP) for £ = 0. We have
Awg = e (—|¢[2dg + 2iE Ve + At ) -

Then, replacing we and wé respectively by wgem 1€ and wglemlg in (5.4) we get

1
INTLY, § 2. 1g)2),f
ng (np—1> ( we + 2iEVwg + (k*np — [¢] )wg)

X (Awgl + 22’5ng, + (k* — ]§|2)w§/> dx := ag(wg,wg,).
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Fix n > 0 and consider &, & € I such that | — &y| <1, we observe that

ag(wﬁ, w'') — ago (wh, w?)

<C ([[€]* = 1€l + 1€° — &) + 11€%] — 1% + 1€ — &)

x HwﬁHHE(Dg)ku ‘|H§(Dg)a v wﬂawﬁ € Hﬁ2(D8>- (5.16)

with C' is a positive constant that depends on k2, np.x, nP* and does not depend of &.
Therefore, the right hand side of (5.16) goes to zero as & — &. Since w# — wke is
an isomorphism between Hf(Dp ) and H, g(Dp ) which is continuous with respect to £, we
deduce that £ — Ag is uniformly continuous from I into £(H, g(Dp ))-

Now, let & € I, and set € = Then there exists 7g, > 0 such that for |{ — &| <

2l
¢, We have

[Ae = Ago[| < e.

Therefore HAg_Ol (A¢ — Ag,)|l < 7 which implies that

N |

(I + Ag! (Ae — Ag,)) I < 2.
Consequently, observing that As = Ag, (I + .A;)l (Ag — Ag,)) we deduce that
1A < 21 A8, ¥ &€ By,

where B7750 denotes the ball of radius ng, centered at &. Since I is a compact set and

there exists a finite set J < I for which I = U {¢eT; |&—&| <ng}. Therefore, for all

EoeJ
¢ € I we have

14 < 2sup [l ALY = .
&oeJ
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5.4 The locally perturbed interior transmission problem

We analyze in this section the well-posedness of the interior transmission problem for
the infinite periodic domain D” when a local perturbation, namely the support of n, —n
lies inside DP. In this case D < DP and D = DP. The interior transmission problem
is formulated as follows: seek (u,v) € L?(DP) x L*(DP) such that (u—v) € H?(DP)

satisfying

Au+k*nu=0 in DP,

Av+k*v=0 in DP,

fu—v=0p on DP\I'?, (5.17)
ou—v) i,
Eoa Y on dDP\I',
u=v=>0 onT?,

for some boundary data (p,v) € H¥?(0DP\I'y) x H?(0DP\I'y). The analysis will be

done under the following assumption:

Assumption 48. We assume that
Re(n(z))—1=a>0 or 1—Re(n(z)) =>a>0.

for almost every x € DP and some a > 0 and n = n, outside Dc D}.

We set

ny :=inf Ne(n) and n* := sup Re(n).
Dpr Dp

Under this assumption, one can rewrite (5.17) as: seek wp := u —v € H?(DP) satisfying

1
(A + kz)m(Awo + k?nwg) =0 in DP,
0
wy = ¢ and o _ P on dDP\IY,
X ov (5.18)
wy =0 on I,
1
——(Awp + k*nwg) =0 onTY.
1—n
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We set

_ 2
H2(DP) := {wy € HX(DP) jwy = % —0 on dDP\IY and w = 0 on I°}.

Let # € H*(DP) be a lifting function satisfying 6 = ¢ and 20 — 1) on DP\I'” and 6 = 0
v

on TV and define the sesquilinear form

1 .
a(w,w’) = f (Aw + k*nw) (Aw' + k2w')dz. (5.19)
ppr 1L — 1

Then the variational formulation equivalent to (5.18) can be written as: Seek w :=

wy — 0 € H2(DP) such that
a(w,w’) = f(Aw' + k2w')dz, (5.20)

for all w’ € H2(DP) with

_ 1 2

Lemma 49. Problem (5.20) has at most one solution.

Proof. The uniqueness of solutions for problem (5.20) can be shown following the same

steps as the uniqueness result for problem (5.2) given by Theorem 46. O

To show the existence of solutions we shall rely on the rewriting of (5.20) using the

Floquet-Bloch transform. Setting

a(w,w') := f <ﬁ(Aw + k*nyw) + k‘QWw> (Aw' + k2w')dz, (5.21)
D n—
. 1 1 . /
with 7 := — we can decompose the sesquilinear form a(w,w’) as
n—1 n,—1

a(w,w') = a(w,w’) + f (Aw + kK*nyw) (A’ + k2w')dz. (5.22)

Dpnp—l
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For o € L*(I, A (DF)) and &' € L*(I, H}(Df)) we define
1 -
a(w, ') = J f (Mg + k> npide) (A + kg )dad€ + d(w, w') (5.23)
1Jpp Mp — 1
with
we [ (6 de and ' = | 06 e
I I
Then, using the properties of the Floquet-Bloch transform we deduce that
a(w,w') = a(Jw, Jw'), YV w,w' e HZ(DP), (5.24)

In the sequel, we shall use the short notation @ := Jw and w¢ := Jw(¢,-). From

(5.24) we deduce that the variational formulation (5.20) is equivalent to: Seek @ €

L*(I, HZ(D})) such that
a(, ') = L . fe(Dbg + k2dp)deds ¥ &' e L*(I, HZ (D).
In order to simplify the exposition, we shall study the variational problem
a(w, ) = L . fewpdzds ¥ &' e L*(I, HZ (D)),
0
for fe € H'(I x DE) which is equivalent to the variational formulation

a(w,w’) = fw'de Y w' e HX(DP).
Dp

(5.25)

(5.26)

(5.27)

The case of right hand side as in (5.25) can be treated in the same way and does not

change the result on the well posedness of the problem.

5.4.1 Semi-discretized interior transmission problem

In order to prove the existence of solution to problem (5.26) we first prove existence of

solution for semi-discretized version of this problem. We then construct a convergent

sequence that provide a solution to problem (5.26).

Let N be the number of discretization points with respect to the Floquet-Bloch variable.

We consider a uniform partition of I into sub-domains I := [§;,&41] for 0 < j < N —1
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with §; = % We define the discrete space
XN(Dp) := (W = (dgy, -+ ey); g, € HE (DP) for j = 0,--- ,N—1 and g, = 1dg,},

1 N=
equipped with the norm ||WNH§(N(DP == Z wagHH2 Dr): For Wy := (g, , ey ) €

XN(Db) we denote by

| -l
- N Z We; -
j=0
Then a discretized version of (5.26) is given as the following: seek Wy := (g, -+ ,Wey ) €
XN (DB) such that
1 N= 2
——————— k*(n—mnp)
g JDP - (Adbg, + k*npide, (A + kb )da + JD Tlpwjv(AuﬁV + k2wl )dz
- 1 Y5 R
= 2 _ -
+ J~ n(Awy + k*npwn ) (Awly + k2wl )dz = N j;o JDS fgjwéjd:z, (5.28)

for all Wy = (g, - 1, ) € X (DF), where
wy =X(Wy) and  why = Z(W).

With the short notation for the sesquilinear form

a(w,w') := JD <fz(Aw + k*nyw) + k2WM> (Aw' + k2w')dx, (5.29)

problem (5.28) can be synthetically written as

| N=
Z ng,wg )+ da(wy, wy) = NZJ fgngjdx (5.30)

Here, f¢, can be seen as pointwise values of f in Co(I, L*(D)) at £ = ;.
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5.4.2 'Well posedness of the discretized problem

We first prove uniqueness of solutions to problem (5.28). We proceed in two steps by

proving first that wy = 0 and then deduce that @¢; = 0. Let us denote by

N-1
DY = | J{Df +2jes},
j=0
where (eq,ez2) is the canonical basis of R%. Let Wy = (g, - ,W¢,) € X~ (Dh).

Clearly, the functions ¢, extended by {;-quasi periodicity in e; direction is in ﬁf(Dﬁ[)
for j = 0,---,N —1, with fIﬁZ(D%) being the subspace of HZ.(DP) of 21 N-periodic
functions in the ey direction. Consider 0 < 5,5 < N —1 and recall the following
identity

N—1

3 ei2meeli=i) = Ngl (5.31)
=0

where 5;:, denotes the Kronecker symbol. Consequently, for ¢, € Lg(Dp) and e, €
L?(Dp ) we have

N-—1
J g, e, W ,dr = Z i2mh(&i =€y )J g, e, We ,dx = N(V f g, e, We ,dz. (5.32)
DY £=0 Dy

Similarly for ¢ € Hg(Dp) and e € Hgl(Dp) we have

(D¢, hgr) rz(pry = NOj (g, Der) g2 ppy.- (5.33)

This proves in particular that FIEJ_(D”) and fIg/(Dp) are two orthogonal subspaces of
J

ﬁﬁQ (D%;). More precisely, we have the following decomposition of ﬁﬁQ (DX)).
Lemma 50. We have the following orthogonal decomposition

N—
p_ 2
a3 (DY —@po
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Proof. From the previous discussion we obviously have
P 2
@ £(DP) c (DY)
To prove the reverse inclusion let us first consider the following space
Sy(DYy) := { € Hf(DY,)/ dist(supp(d),dDf) > 6, for some § > 0}.

This set is dense in I:IﬁQ(Dﬁ,) We consider @ € Sy(DX) that we extend by zero outside
DY, which gives a function @ € ﬁf(Qﬁ), with QF := [0,27N] x [0, R]. Using Fourier
series we have that ¥ can be expanded as
N-1
W(x1,x2) Z an(x ””1, (5.34)

n=0

with a,(z2) is defined by

27N
an(w2) = oo [ (e
n\42 _27TN o w\r1,T2)€ X1.

Let 0 < j < N —1, then for all n € Z, there exists a unique £ € Z such that n = j + N/.

therefore 1 can be written as

N-—1
= 2 We; 5
7=0

N-1
with e, = Z aj+Ng(x2)ei(j+NZ)z1 which belongs to ng (Qf) since for m € Z we have
=0

ei(j-i—NZ)(au +2mm) _ eifjmei(j-i-Nﬁ) )

Moreover, @ € I:If(Dﬁ,) then @ vanishes on . Therefore, a,(0) = 0 and @, = 0 on I'.
Let us now define a cut-off function xy € C*(IR?) 27-periodic in the e; direction such

that x = 1 inside supp(®) and x = 0 outside DX;. Therefore
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N— N-1
where x1¢; € ﬁgj (Df). Consequently Sy(DX,) @ 52 (DP) which implies that (P Hg (DP)
J=0 j=0

is dense in ﬁﬁQ(D%) Moreover, since the orthogonal sum is a closed subset of ﬁﬁ (DX)

then we deduce the equality between the two spaces. ]

Lemma 51. Let Wy = (g, ,Wey_,) € X (DE) be a solution of problem (5.28) and
let wy := Z(Wy). Then wy € ﬁﬁz(D’fV) and

1 A7 . 19 I\ e ~
fDP n—1 (AwN + k2an)(Aw’ + ka’)dx - DP fyw'dz, Yu' e Hﬁz(D%)a (5.35)
N
1 N-1
j=0

Proof. Multiplying (5.28) by N and using (5.32) we get

1 Z f o _1 (A, + Knyive, ) (ADL, + K20 )da + Na(wy, wly)
-5 Z Jey g d (5.36)
B Nj:o D%, Eh i '

On the other hand, using again (5.32) we deduce that for j # j' we have

1 N N A A
po Np — 1 (Ang + k‘anng)(Ang, + kafj/)dx = 07 (537)
f L, Jehedw =0, (5.38)
N
N-1 N-1
Let w' e FIﬁQ(Dp ). From Lemma 50 we can decompose it as w’ = Z € ) ”gj (DP).
3=0 J=

Using (5.37) and (5.38) we deduce from (5.36) that

| Nl 1 | Nl B
N f 1 (Atde; + k2npw§j)(Aw’ + k2w')dz + a(wy,w') = — fe;w'dx.
§=0 D% P

which gives (5.35) using the definition of Z(Wy). O

Lemma 52. Under Assumptions 44 and 48, problem (5.28) has at most one solution.
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Proof. Let Wy = (i, - , gy ) € XV (DF) be a solution of the homogeneous problem
(5.28). Then, by Lemma 51, wy satisfies the 2w N-periodic problem (5.35). Using
uniqueness result for quasi-periodic interior transmission problems stated in Theorem 46
(replacing n, by n and the periodicity 27 by 2w V') we deduce that wy = 0. Consequently,

taking ¢, = 0 for j # £ in (5.28) we get

! D N ONTAANT 12T
JDP ny — 1 (Aw& + k2npw£g)(Awéz + kQ?Uée)dl' = O7
0

for all uﬁé , € H 522 (Df). Thus, e, = 0 by uniqueness of solutions to quasi-periodic interior

transmission problems (Theorem 46). O
Lemma 53. Under Assumptions 44 and 48, problem (5.28) is well posed.

Proof. From the well posedness of the 2w N-periodic problem given by Theorem 46 we
consider wy € f{i(Dﬁ,) that satisfies (5.35). Let 0 < j < N — 1. Using Theorem 46 we

define the solution 1, € a £2j (Dh) satisfying

ag; (ng,ng) = L)P fgjuﬁiéjdx - &(wN,uAJéj) for all wéj € ﬁgj(Dg). (5.39)
0
Therefore
| N 1 Nl | N
A i £ N7 ~ i
N Z ag, (W, W) = N 2 JDP fgjwéjdx -5 a(wn, dy)). (5.40)
§=0 j=0 0 Jj=0

Let us define

N-1 1 Nt 1
w = Z ng, Wy = N we;, and fn:= N 3
j=0 j=0 Jj=0

Then using (5.37) and (5.38) we deduce that (5.40) implies

N-1
1 1 —_— 1 A o—

— Atde, + k2nyide, ) (Aw' + k2w')de = —a N+ = wdz.
N;)JDﬁj np—l( e, + k™ npie; ) (Aw' + k?w')dx a(wn,w') + N Z JD% Je,w'dz
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Therefore Wy € A7 (DY) and satisfies

1 . _
J (Mby + E*nyiy) (Aw' + k2w')de = —a(wy, w') + fyw'dz,  (5.41)
DP np —1 DAZ;V

for all w' € FIﬁQ (D%;). Observe that wy also satisfies (5.41). Consequently by uniqueness

of solutions to 27w N-periodic interior transmission problems (under Assumption 44) we

deduce that Wy = wy. In conclusion, setting Wy = (g, - , ¢y ) € X (Df), we have
wy = X(Wy) and Wy satisfies problem (5.28). O

5.4.3 Convergence analysis

Let M > 0 be a given constant. We prove the convergence for the right hand sides

f € Far where
Fu = {f e L*(D"); Jfe H(I,L*(DY)) and ||T fll 1 (1,22(0p)) < M-

Let f € Fy and denote fe := J(f)(, "), Wy = (g, - ,Wey) € X (DE) be the
associated solution of problem (5.28) and set wy := Z(Wy). We define the &-quasi

periodic function

z{xl

e = e, e " for €€ [€,&41 andj=0,...,N—1, (5.42)

and define on DP the function

By = ngdg. (5.43)

Since the function & — g is in L*(I, ﬁg(Dg)), then wy € HZ(DP). In order to prove
existence of solution to the interior transmission problem (5.27) we shall prove that the

sequence Wy weakly converges to a solution of problem (5.27). We observe that

1 N—
. - 1 .
i Iacon) = | NtelBaqopde = 3 2 g Baqomy = lhow oy (5:44)
where the last equality is a consequence of (5.32). Clearly

|@¢llmr2(pry < 4lldg; || 2pry  for €€ (&, &1 andj=0,...,N —1. (5.45)
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Therefore

1 N—-1
. . 1 .
168 132 (pry = fo Il G2 g @6 < 4 5 g Fragop) = Alwnlirgn)s  (5:46)
7=0

where the last equality is a consequence of Lemma 50. We also introduce the continuous

and picewise affine function with respect to the & variable
We i= Ne (g e "™ (g1 — ) + g, e (€ = &),

for £ € [¢5,&j41[ and j = 0,..., N — 1. We then define

This function satisfies

2 ! 2 11°H 2 4 2
)i = )t < —— Ve . —
1w 132 ) L €32y € < 3Nj:0||ng||L2(Dg) slonllzzon ),
and
1 1 Nt
v o112 v 112 A 112 2
HwN||H2(DP) = Jo H%HH?(Dg)df < 4N 4 waj”HQ(Dg) = 4HwNHH2(D7V)'
j:

We also have for & € [£;,&41]

e 1oy = I, 2oy (€ = €541 + e, 4 72y (6 — &)

-2 <(€j+1 — €= &), | L2 (o) llde, 4, ||L2(Dg)> :

Therefore,

N-1 ;
1 Ei+1 1
.2 _ v 2 L 2
||wN||L2(Dp) - N ;:0 Lj stHLz(Dg)di = 3||wN||L2(D§[)‘

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

We shall prove that this sequence also converges to the solution of problem (5.27). It is

introduced to be able to apply a compactness argument in the Floquet-Bloch spaces.
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Lemma 54. Fiz Ny € N and consider N = Ny. Then there exists a constant C(Ny) > 0

that only depends on Ny such that

_ 1/2
y NoC(No) [ 1°& .
llwn _wNHLQ(DfVO) s—~ |\ Z stjH%?(Dg) ;
j=0

and

1/2
y NEC(No)
[wn _wN||L2(D§’VO) < TN Z [g, | L2 (D) :

Proof. Taking the difference between wy and Wy we get

N— | Nt
1 )
Wy —WN = 7N E 12) E J e”l(s_gj)ngdg = E On (1 wfj,

with

N .
1_.7<€zm1%—1> for x1 # 0,
91\7(1‘1) = (251 (5.52)

0 for x1 = 0.

We observe that 6y (z1) have the following asymptotic form as N tends to infinity

N (iz1 1 (iz)° 1\ iz 1

with z1 < Ny. Therefore

1 N-1
||wn _wNHLQ(Dﬁ’V VSN sup |0y (z1)] Hwﬁg”LQ(D” o)’
j=0 a:leD
NoC(No) .
< N2 Z wag'HLQ(Dg)?

7=0

with C'(Ny) > 0 is constant that depends on Ny and does not depend on N, then using

Cauchy-Schwartz inequality we get

1/2
NOC No) N=
lwn = @n 22, B ( Z [, 1I7.- DP> : (5.53)
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Let us now take the difference between wy and wy. We have

N-1 1 Ei+1 _
Wy —WN = Z Nwéj — Nibg; f em1(§—§J+1)(§ —&)dg
=0 :

J

Eir1
+Ny, f e (66 (¢ — @-H)) de,

&

N-1
1 . 11 1 —izy
- Z (Nwﬁj_Nwﬁjﬂ <Nix1+x%(1_e N ))

j=0 j=0
with
2N?
1——5 (1 - cos(%)) for x1 # 0,
Iy ={ o (5.54)
0 for x1 = 0.

We observe that éN(ml) have the following asymptotic form as N tends to infinity
I () = 1 2N? 1(m1)2 1 ($1)4+O 1 x? L O 1
21) =1 — T (et ) — )| = —
N 22 |2\N/) a\N NG 12N? NT)”
for 1 < Ny. Thus

NQC(NO)Nfl NQC(NO) 1 N—-1 1/2
lwn = dnllzas, ) < 012W D e Nl g2 ory < OHW (N > ngj”LQ(Dg)) )
=0 3=0

which ends the proof. O

N—-1
1 ~
Lemma 55. Let f € Fy and wy as defined previously. Set fy = N Z Je;- There
=0

exists a constant C > 0 independent from f and N (that may depend on M) such that

lwnllz2pzy < CHfNHL?(D‘;V)- (5.55)
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Proof. We prove this Lemma using a contradiction argument. Assume that for all C' € IN,
there exists f € Fjs that depends on C' and there exists IV that also depends on C' such

that

lwnllz2pzy = ClinllLzpz)-

One can choose the sequence N to be monotonically increasing with respect to C. In-
N wy

HU’NHL2(D§’\,) HwN”L?(Dﬁ,)’
the contradiction statement can be equivalently phrased as: there exits a monotonically

dexing C' with respect to N, replacing fn by and wy by

increasing sequence NN such that
Ifnllz2pry — 0 as N — oo, (5.56)

and ||wN||L2(D%) = 1 where wy is the solution of problem (5.35) associated with fn.

Taking w’ = wy in (5.35) we obtain

1 -
f |Awy |*dz = —f (> AwnNTN + k*nwyAwy +k2n]wN|2)dx+f fNwNdz.
pr.n—1 DP D%
N N

N

Therefore
ollBwn |2 pm ) < (K0 + Dllwn 2o 1 bwnllz o)
k2 n 32 on ) + 1Ll 2og llonll2os,) )
with 7 1= — 7 in the case n, > 1 and g := 7 in the case n* < 1. This inequal-
n* — Ny —

ity implies in particular Awy is uniformly bounded with respect to N in L? (D%;). This
implies in particular that wy is uniformly bounded in H?(D) (using elliptic regularity).

Recall that
ag, (g, dg,) = JDP fgju?iféjdx —a(wy, ;) forall we € ng(Dg). (5.57)
0
Using Lemma 47 we deduce that

I, 1220y < © (Il a2y + 15l 2p) )
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for some constant C' independent from N. Therefore

N— N—
1 1
~ !wggllm iy < 207 | lwn e )+ IngHL2 ory | - (5.58)
N = N =

Using (5.46) and (5.50) we infer that @y and Wy are bounded in H?(DP) and wy is
uniformly bounded in H? (D%;). Consequently, up to subsequence, we can assume that
Wy and Wy weakly converge in H 2(Dp ) and their limit is the same as a consequence of
Lemma 54. Let us denote by w € H?(DP) this limit. Let Ny € N be a fixed parameter.
According to Lemma 54 we can also assume (up to changing the subsequence) that wy
weakly converges to w in H 2(Dﬁ,0).

Consider now ¢ € C°(Djy, U %) that we extend by zero in DX, and by 2w N periodicity
in the x; direction. This extension give us a test function in ﬁﬁQ (D%;) that we can use

in (5.35) and get

1 -
f (Awy + k*nwy)(Ap + k2p)dx = fnpda. (5.59)
pp. n— 1 Df\’o

Passing to the limit as N goes to infinity in (5.59) shows that w e H Q(D%O) satisfies

1 -
ij n—1 (Aw + kanJ)(A(,O + k2g0)d$ = O7 VQD I= CSO(D%O U rO) (560)

Since Ny can be chosen arbitrarily large, the last equality holds for all ¢ € C*(DP U T?)
and by denseness argument for all ¢ € H?(DP). Then (5.60) shows that w is a solution
to the homogeneous interior transmission problem (5.20) and by the uniqueness result
of Lemma 49, w = 0.

In order to obtain a contradiction, we shall prove that the sequence wy strongly con-
verges to w in L?(DP) which is equivalent to proving that & — g is strongly convergent
in L*(I, L*(Df)). Since this sequence is bounded in L*(I, H(Dj)), using the Rellich
compactness embedding theorem it is sufficient to prove that £ — ¢ is bounded in

HY(I x Df).

From (5.50) we have that wy is uniformly bounded with respect to N in HZ(DP).

Therefore, there exists a subsequence Wy that weakly converges to zero in HZ(DP).

~ ow
Moreover, W is bounded in L*(I, Hg(Dg)). Then it remains to prove that £ — % is
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bounded in L*(I x D5). For ¢ € [¢;,&;11[ we have

aung . v ix1€ (8 A~
i T1g + Ne™s (g | — b ),

with

Bf = e g, and @f = e MG (5.61)

Let of € H(DP) and set We, = em&pt e I:Ié_ (D). Then, replacing ; and

respectively by @gj 18 and @F ¢18 in (5.57) we get

L +2¢56ng + (K2n, — &) 0t (5.62)
pr np — 1 & 7 0xy P I ’

AR/

< D
+ f (ﬁ(AwN + E*nywy) + k:Z(”n_”“wN>
(

’ 0 : ’ ;
A + 22'@-% + (k?ny — |&]?) 0t ) e®18) d

with fgg = e iT18 fgj. Define

€j+1-= N(ngﬂ - ng)

Consequently, taking the difference between equation (5.62) satisfied respectively for

§j+1 and & we get

1 1 i 865,
[ (B 216 T 1 00— e P,

P Ny, — 1
o P

AH!

, ot ’

X <Awﬂ + 2i€j+1L + (k2 — |§j+1|2)wﬂ >d$
&’xl

+ (fj_t,_l — fj) (ap71(’lf}2j7rlf)ﬁ/) —+ ap,Z(ﬁ)ng(Dﬂl) + a; (U)N, /lf)ﬁ/) —+ dQ(UJN, ﬁ)ﬁ’))

_ S S
_ JDS( - i, (5.63)
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128
with ap71(tf)§j,uﬁﬁ/) and apjg(uﬁgj,uﬁﬁ/) are the sesquilinear forms defined by

ot
NN 1 W, e vt
apalith o) o= [ (278 (gl + g,
D0 D
Aji/
X (Aﬁ)ﬂ/ + Qlfja;:;l + (k‘Z — |§]|2)@ﬂ/)d$,
ow!

N Ny ]. N . § A
ap,g(ng,wﬁ )= L)P — (Ang + 2z§j+1—axf + (k*ny — |§j+1]2)ng>
b T

0w A
< (250 (gl + g )do

and a1 (wy, ®"), d2(wy, ) are defined by

a1 (wn, UA’W) = f (ﬁ(AUJN + k2npr) + k2(n_WwN>
D n—1
o (007 »
X elfjxl (2Z F) — (|f]| + |§j+1|)wﬁ >d1;
€1

(ﬁ(AwN + anpr) + kZWwN>
n_

dg(’wN, Zf)ﬁl) = j~

D

; ; ’ a ned ’
o N (e — cing;) <Aﬁ)ﬁ 421650 00 1 (2 — e >d:n.
x1

Setting é¢,,, := elitie; ) € ﬁng(Dp) and choosing w'* = e_ixlgf“rlﬁ/jJrl for some
wgﬁl € flgj+1(Dp) we deduce that

ag; (é§j+1’wéj+1) = — (am(ng’wﬁ ) + ap’g(l’[}gj,'[[)ﬁ ) + &1(wN,1f1ﬁ ) + &Q(w]\/, b ))

Mo\
N <f§j —féjﬂ) oF de.
0

Therefore, using Theorem 47 we conclude that
5.64
n)e (50

with 1 > 0 is a constant independent from §;;1 and N. On the other hand, Denoting

ety lrsopy < (18 iscop) + sy + ¥ |7 = 7,

by é¢ := eigzlégjﬂe_i“gf“, then we have
ou
e (5.65)

o€

= 1x1We + E¢.
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Using the same arguments as for (5.44) we observe that

| N=
||€E”L2 I,L2(DE)) — Z 12; ||L2 DE) (5.66)

since é¢, = é¢,. Consequently, from (5.65) and (5.66) we deduce that

é’wg
o€

1 N=
< 8[| |12y + Z 16, 172 pz)-

L2(1,L2(DE))

Then using (5.49),(5.64) and (5.58) we get

H 8w§ 1672
L2(I,L2(DY)) 3 D)
| N=1 ) )
+8%sz;) <Hw ”H2 o) * ”wNHH2 N Hff ffa“ L2(D§)>’

with v > 0 is a constant independent from N. On the other hand,

N-1
1 A N 2
S N = A, < CLTFC g < CMP
Jj=0

L2(DY)

for some constant C' > 0. Thus, combining this inequality with (5.58) we deduce that

v

£ — —5 is bounded in L?*(I, L*(Dg)). Therefore, ¢ — W is bounded in H'(I x Dp)

which implies that Wy converges strongly to w = 0 in L?(DP) and by . This contradicts

. 1
HwNH%Q(DP) = 3 by (5.51). u

Theorem 56. Assume that Assumption 48 is verified and let f € Far. Then Problem
(5.27) has a unique solution w € HZ(DP). Moreover, there exists a constant C(M)

independent from f such that

lwll g2(pry < C(M)| fll22(Dr)-

Proof. Let wy and Wy be the sequences introduced above. From Lemma 55 we deduce
that wy is bounded in L?(DY;). Using (5.49) we infer that wy is bounded in L?(DP).
The same reasoning as in the proof of Lemma 55 allows us to conclude that (up to a

subsequence) wy and Wy locally converge in L?(DP) to a same limit w in Hg(DP) that
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satisfies (5.27). Moreover, using the same arguments that lead to (5.58), Lemma 55, and

(5.50) we infer the existence of a constant C'(M) such that

o 12 (pry < CM)|[fN N 22(02,)- (5.67)

This shows in particular that we can choose the subsequence wy to be weakly conver-
gent to w in H?(DP) and passing to the limit in the inequality leads to (5.67) since

HwHHz(Dp) < liminf||1DNHL2(Dp) and

N-1
]. ~ A
HfNH%%DfV) =N e 2 cpry — LHfaHLQ(Dg)dﬁ = | fllz2(pr)s
§=0
as N goes to infinity. This ends the proof. O

As explained before, the study of problem (5.25) follow the same lines as problem (5.26).
The only minor difference is in the treatment of the right hand side of equation (5.62)
that will contain an additional term depending on &; but without any effect on the
subsequent conclusions of Lemma 55. This leads to the following Theorem on the well

posedness of the interior transmission problem (5.17).

Theorem 57. Assume that Assumption 48 is verified and let M > 0 be a given constant.
Assume in addition that the boundary data @ and v are respectively the trace and the
normal trace on IDP\I? of some function 6 € HZ(DP) and such that 1T O r1.(1,12(D7)) <

M. Then, Problem (5.18) has a unique solution wo € H*(DP) satisfying

lwollz2(pry < C(M) (”90||H3/2(9Dp\r0) + ||¢||H1/2(aDp\r0)) ;

with a constant C(M) independent from ¢ and 1.
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Conclusion and perspectives

We presented in this PhD thesis a study of an inverse scattering problem for the recon-
struction of defects in an unbounded periodic structures. By applying incident point
sources and measuring the scattered field on a line parallel to the periodic layer, we
proposed the method to reconstruct the shape of the defects without a knowledge of the

periodic background.

In Chapter 2, we presented and complemented the results given in the literature on the
well-posedness of the direct scattering problem from unbounded periodic layers. This
problem was solved by applying the Floquet-Bloch transform which led us to study the
quasi-periodic scattering problem without defects and then to deduce the well-posed
character of the problem in the presence of defects. The uniqueness of the solution was
proven by assuming that the periodic refractive index is positive at least in an open

domain in the periodic background.

In Chapter 3, we employed the GLSM as introduced in [39] to solve the inverse scattering
problem by removing the technical assumption made in [39], where it is assumed that
the defect is also periodic with a longer period.

We first studied the inverse problem using quasi-periodic incident waves, we reintroduced
the problem associated with this type of incident sources, and then introduced the quasi-
periodic near field operator for fixed Floquet-Bloch variable. Next, we applied GLSM to
solve the inverse problem for a single Floquet-Bloch mode and constructed an indicator
function for reconstructing the defective period distributed periodically.

We then considered the case where non-quasi periodic incident sources are applied. The
main difficulty here is that the Floquet-Bloch transform of the full near-field operator

does not coincide with the quasi-periodic near field operator. In order to apply the
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GLSM we assume known the single Floquet-Bloch near field operators. This allows us
to construct a suitable penalty term for the GLSM and obtain an indicator function for
reconstructing the full domain. These two results were obtained under the assumption
that the defect does not intersect the periodic background. One of the main perspectives
of this part is to extend the analysis to the case where the defect does intersect the
periodic background.

The study of the inverse problem uses the results on the well-posedness of the forward
problem where it is assumed that the refractive index has a positive imaginary part.
Getting rid of this assumption is one of our perspectives that would rely on the analysis

of the direct problem done in [35, 38].

In numerics, we used the code developed by [39] to generate solutions to the scattering
problem from locally perturbed periodic layers, and we gave some numerical examples
for the reconstruction obtained using the indicator function associated with the single
Floquet-Bloch mode. Extending the numerics to 3D problems is one of our objectives

in the near future.

In Chapter 4, we applied the DLSM as introduced in [39] also with removing the as-
sumption that the defect is periodic. In order to do so, we reapplied the GLSM for
a single Floquet-Bloch mode as in Chapter 3, but taking a period equal to an integer
multiple of the original periodicity. Then, using the quasi-periodic indicator function
associated with these two different periodicity lengths and the one associated with the
complete domain, we introduced an indicator function allowing to directly reconstruct
the defect. We also observed that applying GLSM for a single Floquet-Bloch mode is
sufficient to derive an indicator function for the defect. We used the later to give some

numerical examples for the application of the DLSM.

In Chapter 5, we presented a study for the well-posedness of the interior transmission
problem (ITP) by considering one of the possible cases when the perturbation intersects

the periodic background (when the defect is included in the periodic domain). The study
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was based on the application of the Floquet-Bloch transform, a discretization with re-
spect to the Floquet-Bloch variable and a convergence analysis to construct a solution
of the ITP. The uniqueness was also proved under the assumption that the refractive
index has a positive imaginary part. Similarly to the direct problem, we would like to

remove this assumption in a future work.

As a more broader perspective for this work we can mention the extension to other
models for scattering problems such as Maxwell’s equations or elastodynamics, which

require in particular to consider the problem in a 3D setting.
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