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CHAPTER 1
Introduction

The developments presented in this PhD thesis are related to the study of the inverse

scattering problem for an unbounded periodic medium with defects. This area has at-

tracted much attention in the recent mathematical literature as it is related to many

applicative areas such as: chemistry, mechanics, optics, antenna arrays, etc.

A typical example of a targeted application is the non-destructive testing of the so-called

metamaterials, which are human-engineered materials with electromagnetic properties

modified from their nature (may have a negative refractive index). Initially designed

to control electromagnetic waves, these metamaterials have been developed for other

technological applications such as improving the properties of optical devices, noise con-

trol,... In general, the metamaterials are designed to be periodically printed on several

layers of substrate (See Figure 1.1).

We are interested in considering the case where these periodic layers admit defects. Our

problematic is then to identify the location and the shape of these defects. In order to

do so, an electromagnetic incident field is applied to this structures by some given source

and the scattered field is measured at some receivers. Collecting these measurements

for different source locations we would like to reconstruct the defect using some specific

non iterative inversion methods that will be introduced below. The main difficulty we

face in addressing this inverse problem comes from the fact that the defect breaks the

periodicity, and then we cannot deal with the problem in one period cell. This leads to
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Figure 1.1: (1): Illustration of a 3D Metamaterial allows controlling the
passage of light [1]. (2): Example of 3D electromagnetic metamaterials
(synthesized meta-lens)[57]. (3): Example of mechanical metamaterial
micro-structure [52]. (4): Illustration of an Antenna metamaterial [27].

treat an inverse scattering problem in an unbounded domain. We refer for the studies

of scattering problems from unbounded surfaces to [15, 16, 18, 19, 46], and for the case

of wave guides we refer to [9, 10, 25, 33, 40].

In the literature, several works have considered the inverse scattering problem from per-

turbed periodic layers by assuming the knowledge of the periodic structure. However,

in real applications, we may not have access to this information or we obtain it in an

inaccurate way. The first challenge we raise in this work is to solve the inverse problem

assuming that we have no information about the periodic structure except the period-

icity length. A technical assumption was made in [30] to deal with this problem where

they assumed that the perturbation itself is periodically distributed (with larger peri-

odicity scale). This allows them to reduce the problem to a large and bounded period.

The main objective in this work is to use a similar approach in [30] but get rid of this

technical assumption.
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We first give an overview of the theoretical and numerical studies made in the literature

for the direct scattering problem. Under the assumption that the refractive index has a

positive imaginary part the well-posed character of our problem is proved in [39]. The

idea is based in applying the so-called Floquet-Bloch transform (for a detailed introduc-

tion of this operator, its properties and its application to scattering problems, we refer

to [24, 41, 43]). Indeed, the application of this operator allows to transform the problem

into coupled quasi-periodic problems in one bounded period. This allows to exploit the

well-posedness of the non-perturbed quasi-periodic problem to prove the well-posedness

of the perturbed case. We shall extend the analysis in [39] by considering solutions that

are continuous with respect to the Floquet-Bloch variable. This analysis when the re-

fractive index has only a non negative imaginary part is done in [38]. On the numerical

side, a volume integral method was introduced in [44, 47] to solve the direct problem for

periodic domain. This method has been extended in [29, 49] to the locally perturbed

periodic case. We shall present the main idea of this method and give some numerical

examples for the solution of our scattering problem. One of the perspectives of this work

is to consider the inverse problem for the anisotropic case. This is why we also extend

the well-posedness of the direct problem to the anisotropic case.

In order to solve the inverse problem, we employ sampling methods as introduced in [30].

Indeed, these methods have many advantages. They do not require solving a series of

forward problems. This makes the numerical implementation of the method easier and

faster compared to iterative methods. They do not require a linearization hypothesis.

Moreover, although we have no information about the physical characteristics of the

scatterer, we still can identify its location and shape. On the other side, one of the

disadvantages of these methods is the requirement of a large number of measured multi-

static data.

The idea of these methods is based on the construction of an indicator function that

allows to indicate for a grid of sampling points in the probed domain whether a sampling

point is inside or outside the obstacle. The Linear Sampling Method (LSM) was first

introduced in [20], (also [11, 22]). The theoretical justification of this method admits

some weak points as it does not give a regularization scheme to construct the indicator
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function. A new formulation called Generalized Linear Sampling Method (GLSM) was

proposed in [7, 16] to deal with the week point of the LSM. It gives an explicit indicator

function that provides an exact characterization for the scatterer geometry.

Several research works have applied sampling methods to solve the inverse problem

from a periodic medium without defects [2, 3, 4, 31, 32, 42, 48, 53, 56]. For the

case with defects that assumes the knowledge of the periodic background, we refer to

[9, 23, 26, 28, 39, 45, 54]. Sampling methods applied to our case (which do not assume

the knowledge of the periodic background) were considered in [30, 49] but as mentioned

before, they assumed that the defect is also periodic (with periodicity an integer mul-

tiple of the background periodicity). The first main goal considered in this thesis is to

provide a theoretical justification of the GLSM method by getting rid of this techni-

cal assumption. We consider first the GLSM method for a single Floquet-Bloch mode

where quasi-periodic incident fields are used. We introduce the near field operator for

fixed Floquet-Bloch variable and we prove that it admits a factorization similar to the

classical one encountered in the literature. However, this doesn’t allow us to apply the

abstract framework of the factorization method as introduced in [36, 37]. This explains

the reason for which the penalty term used for the application of the GLSM method in

this work is different from the one used in the literature. In a second step we consider

the case where non-periodic incident fields are applied. We introduce the full near-field

operator and its factorizations, and we give the theoretical justification of the GLSM

method in this context. The inversion method applied in this two cases provides two

indicator functions, the first one for the intersection of the domain with the first period

(distributed periodically), and the second one for the whole domain. These two results

were obtained under the assumption that the defect does not intersect the periodic do-

main, which allows us to introduce the so-called interior transmission problem for the

periodic background and the one associated with the perturbation separately. There-

fore, we can obtain in this case their well-posed character directly from the literature

[11, 12, 13, 34, 55]. The study of the interior transmission problem for the case where

the intersection is not empty is one of the perspectives of this thesis. Some preliminary

results are obtained in the last chapter.
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A Differential Linear Sampling Method (DLSM) was first proposed in [6] that allows

identifying defects from a complex domain using differential measurements, i.e it re-

quires measurements for the setting without and with defects. A new differential sam-

pling method inspired from [6] has been introduced in [30] for locally perturbed periodic

layers. It does not use differential measurements and provides an indicator function

to directly construct the defect using only a priori knowledge of the periodicity length

(but still assuming that the defect is also periodic). We revisit this differential sampling

method as presented in [30] without assuming that the local perturbation is also peri-

odic. The principle of this method consists in observing that the GLSM setting for single

Floquet-Bloch mode still holds if we change the periodicity of the background to an inte-

ger multiple of the original periodicity. Then one can construct a criterion depending on

the GLSM indicator functions established for different lengths of periodicity that allows

to directly construct the defect. We also study the GLSM for non-quasi periodic sources

and show that one can reconstruct the full domain without knowledge of this periodicity

length. This can also be exploited for DLSM.

One of our main perspectives is to consider this inverse problem in the case where

the perturbation intersects the periodic background. We are then interested in the

analysis of the interior transmission problem (ITP) in this case. In the case of non-quasi

periodic sources, this problem is difficult to solve because it arises in an unbounded

domain. Then Fredholm’s alternative cannot be applied as in the case of bounded

domains treated in the literature, see for instance [11]. Similarly to the solvability of

the direct problem, we apply the Floquet-Bloch transform and we analyze first the

quasi-periodic interior transmission problem. However, we face a difficulty to follow

the idea proposed in [39]. Indeed, contrary to the direct problem, after applying the

Floquet-Bloch transform to the variational formulation of the problem (ITP) we still

have a coupled term w.r.t to the Floquet-Bloch variable which although it has a compact

support, its compactness property cannot be proven and therefore Fredholm’s theory

cannot be applied as in the idea proposed in [39]. In order to solve this problem, we

consider the case for which the perturbation is contained in the periodic background and
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we perform a discretization with respect to the Floquet-Bloch variable. We prove first

the solvability of the discretized interior transmission problem with the help of the well-

posed character of the quasi-periodic one. Finally, we perform a convergence analysis

to prove that the discretized solution converges to a solution of ITP. For uniqueness, we

still have to assume that the imaginary part of the periodic background is positive in an

open domain.

Organization of the manuscript

The manuscript is organized as follows:

Chapter 2: This chapter is dedicated to a presentation of some results on the well-

posedness of the direct scattering problem form unbounded locally perturbed periodic

layers. We first present and complement some theoretical results obtained from the

literature for the case of isotropic media. We then extend these results to prove the

well-posed character of the anisotropic inhomogeneous problem. We then give a brief

outline of a numerical method used to generate the solutions for the direct problem and

we present some numerical examples.

Chapter 3: An analysis of sampling methods is given in this chapter. More precisely,

two theoretical results are presented. In the first one, we consider quasi-periodic inci-

dent fields and we give a theoretical justification of the Generalized Linear Sampling

Method (GLSM) for a single Floquet-Bloch mode. Then based on this result, we give

a justification of the GLSM method for the case of full measurements. The theoretical

framework presented in this chapter is extracted from the published paper [8], and some

numerical examples are added in the end of the chapter.

Chapter 4: We revisit in this chapter the differential linear sampling method (DLSM)

as introduced in [30] based on the two results of the GLSM method obtained in Chapter

3. We first reintroduce the setting of the inverse problem in an integer multiple of the

original periodicity and then give two indicator functions that allow a direct reconstruc-

tion of the defect. We conclude this chapter with some numerical experiments.
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Chapter 5: This chapter is devoted to the analysis of the interior transmission problem

in the case where the intersection between the periodic background and the defect is

not empty. We first present the solvability of the quasi-periodic interior transmission

problem. We then consider the case where the defect is contained in the periodic do-

main. We apply the Floquet-Bloch transform and make a discretization with respect to

the Floquet-Bloch variable which brings us to the study of the solvability of the semi-

discretized problem. Finally, a convergence analysis is performed in order to construct a

solution of the problem. Uniqueness is proved under the assumption that the refractive

index has positive imaginary part.



16

CHAPTER 2
The direct scattering problem

from locally perturbed periodic

medium
Abstract: In this chapter we present and complement some results obtained in the

literature for the theoretical and numerical studies of the direct scattering problem from

unbounded periodic layers with compactly supported defects. Then, we extend the study

of the solvability of the direct problem to the case of anisotropic media.
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2.1 Introduction

We introduce in this chapter the direct scattering problem from unbounded periodic

layers with defects. We consider the problem in the upper half space U0 :“ R ˆ R`

with Dirichlet condition on Γ0 :“ R ˆ t0u. We first discuss the well-posedness of this

problem in isotropic media. We shall assume the existence of a small absorption zone in

the periodic layers in order to obtain the uniqueness of the solution. The presence of the

defect prevents us from transferring the problem from an unbounded periodic domain

to a bounded period and from there comes the main difficulty since it is not easy to

use Fredholm’s theory in an unbounded domain. This problem has been solved in [39].

The main idea is to first consider the periodic problem without defects such that we can

write using the Floquet-Bloch transform an equivalent coupled quasi-periodic problems

with respect to the Floquet-Bloch variable in one bounded period. By proving that this

equivalent problem is uniquely solvable one can deduce the well-posedness of the per-

turbed case. We present also in this chapter the main idea of the method proposed in

[29] to generate solutions for our considered direct problem and we give some numerical

examples. Finally we extend the well-posedness of the direct problem for the case of

anisotropic media.

The chapter is organized as follows. In Section 2.2 we present the solvability of the prob-

lem in isotropic media as proposed in [39] with some complementary results. Section 2.3

is dedicated to presenting some numerical illustrations of the solution to direct problem.

In Section 2.4 we follow the same idea proposed in [39] to prove the well-posedness of

the problem in anisotropic media.

2.2 Solvability of the direct scattering problem in isotropic

Media

2.2.1 Setting of the problem

We denote by k the real valued positive wavenumber and we denote by n P L8pU0q the

refractive index satisfying n “ np outside a bounded domain D̃, with np P L8pU0q a 2π-

periodic refractive index. Through this chapter, a 2π-periodic functions refer to functions
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that are periodic with respect to the first variable x1, with period 2π. Moreover, n and

np are assumed to have a non negative imaginary parts.

For R ą R0 ą 0, we denote by Dp a periodic domain included in an infinite band

ΩR :“ R ˆ r0,Rs such that np “ 1 outside Dp. We set ΓR :“ R ˆ tRu, and we denote

by D :“ Dp Y D̃ where D̃ is assumed to be included in the period ΩR
0 :“ r0, 2πs ˆ r0,Rs

as shown in Figure 2.1. Given f P L2pU0q, we consider the following problem

$

’

’

&

’

’

%

∆u` k2nu “ f in U0,

u “ 0 on Γ0,
(2.1)

and we assume that u satisfies the angular spectrum representation

upxq “
1

?
2π

ż

R

eix¨ξ`i
?

k2´|ξ|2px2´Rq
pupξ,Rqdξ, for x2 ą R, (2.2)

with pupξ,Rq is the Fourier transform of u|ΓR defined as pupξ,Rq “
1

?
2π

ż

R

e´iξx1upx1,Rqdx1.

Using (2.2) we conclude that problem (2.1)-(2.2) can be reformulated as: seek u P

H2
locpΩRq XH1pΩRq such that

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∆u` k2nu “ f in ΩR,

u “ 0 on Γ0,
Bu

Bx2
p¨,Rq “ TRpu|ΓRq on ΓR.

(2.3)

where TR : H1{2pΓRq ÝÑ H´1{2pΓRq is the exterior Dirichlet-to-Neumann map defined

by

TRpφq “
i

?
2π

ż

R

a

k2 ´ |ξ|2eix1¨ξ
pφpξqdξ, (2.4)

with pφ is the Fourier transform of φ and the square root is the one with non negative

imaginary part.

2.2.2 The case of periodic layers without defects

In this section we discuss the well-posedness of the direct scattering problem from peri-

odic domain without presence of defects, i.e D̃ “ H and n “ np. Let us first introduce
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Figure 2.1: Sketch of the domain

some definitions and functional spaces.

Definition 1. For ξ P R, we say that a regular function u is ξ-quasi-periodic of period

2π if it satisfies

upx1 ` 2πj,x2q “ ei2πξ¨jupx1,x2q @ j P Z and px1,x2q P R2. (2.5)

In what follows, we do not indicate the quasi-periodicity length since it is fixed to 2π.

Moreover, we introduce for a real valued m ě 1 the following functional spaces

• ȞmpΩRq :“ tu P HmpΩRq; u “ 0 on Γ0u

• Hm
ξ pΩRq :“ tu P Hm

locpΩRq; u is ξ ´ quasi-periodic with period 2πu,

• Ȟm
ξ pΩRq :“ tuξ P Hm

ξ pΩRq; uξ “ 0 on Γ0u,

• H1
ξ pΩR

0 q “ tu|ΩR
0

; u P H1
ξ pΩRqu.

• L2
ξpΩRq :“ tu P L2

locpΩRq; u is ξ ´ quasi-periodic with period 2πu,

Finally, for a regular function ϕ P C8
0 pU0q we define the one dimensional Floquet-Bloch

transform as

J ϕpξ,x1,x2q “
ÿ

jPZ

ϕpx1 ` 2πj,x2qe´i2πξ¨j , ξ P I, px1,x2q P U0. (2.6)

We recall that for a 2π-periodic function np, the Floquet-Bloch transform satisfies

J pnpuq “ npJ puq. (2.7)
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Therefore, using the periodicity of np, we can reduce the scattering problem to a bounded

period by applying the Floquet-Bloch transform to problem (2.1) with n replaced by np.

Therefore, (2.1) lead to the following quasi-periodic problem for uξ “ J puqpξ, ¨q

$

’

’

&

’

’

%

∆uξ ` k2npuξ “ fξ in U0,

uξ “ 0 on Γ0,
(2.8)

where ξ P I :“ r0, 1s is the Floquet-Bloch variable, fξ “ J pfqpξ, ¨q P L2
ξpU0q and L2

ξpU0q

denotes the space of ξ-quasi-periodic functions in L2pU0q, with period 2π. Let us denote

by ΓR
0 :“ r0, 2πs ˆ tRu and we prove in the following Lemma that uξ satisfies the Rayleigh

radiation condition

uξpxq :“
ÿ

jPZ

{puξ|ΓR
0

qpjqeiαξpjq¨x1`iβξpjqpx2´Rq for x2 ą R, (2.9)

where αξpjq :“ ξ ` j, βξpjq :“
a

k2 ´ |ξ ` j|2 such that ℑmpβξpjqq ě 0 for j P Z and

puξpjq is the j-th Fourier coefficient of e´iξx1upx1,Rq defined as

puξpjq :“
1

2π

ż 2π

0
e´iαξpjqx1upx1,Rqdx1.

The proof of the following Lemma can also be found in [41, 39].

Lemma 2. Let u P H1pΩRq be the solution of (2.1) satisfying the angular spectrum

representation (2.8). Then for ξ fixed we have J puqpξ, ¨q P H1
ξ pΩR

0 q solution of (2.8)

satisfies the Rayleigh radiation condition given by (2.9).

Proof. Let x “ px1,x2q, we observe that ψpξ,xq :“ J pφqpξ,xq is a ξ-quasi-periodic

function w.r.t x1, then we fix ξ P R and we use the Fourier series to expend ψ as

ψpξ,xq “
ÿ

jPZ

aξpj,x2qeiαξpjqx1 , (2.10)
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with

aξpj,x2q “
1

2π

ż 2π

0
ψpξ,xqe´iαξpjqx1dx1,

“
1

2π

ż 2π

0

ÿ

ℓPZ

φpx1 ` 2πℓ,x2qe´i2πξ¨ℓe´iαξpjqx1dx1.

Taking z1 :“ x1 ` 2πℓ we conclude that

aξpj,x2q “
1

2π

ż

R

φpz1qe´i2πξ¨ℓe´iαξpjqpz1´2πℓqdz1

“
1

2π

ż

R

φpz1qe´iαξpjqz1dz1 “ Fpφqpξ ` jq, (2.11)

with F denoting the Fourier transform. Therefore, from (2.10)-(2.11) we deduce that

the Floquet-Bloch transform J can be rewritten as

Jφpξ,x1,x2q “
ÿ

jPZ

Fpφqpξ ` jqeiαξpjqx1 , for ξ P R, px1,x2q P U0. (2.12)

Recall that J is an isomorphism between L2pΓRq and L2pI,Hm
ξ pΓR

0 qq, with Hm
ξ pΓR

0 q

denotes the restriction to ΓR
0 of ξ-quasi periodic functions in Hm

locpΓRq, with norm

∥φ∥2
Hm

ξ
pΓR

0 q
“

ÿ

jPZ

p1 ` j2qm|φ̂ξpjq|2.

Consider G : ξ ÝÑ F´1
´

ei
?

k2´|ξ|2px2´RqFpu|ΓRqpξq

¯

P L2pRq. Then, applying the

Floquet-Bloch transform given by the expression (2.12) to the radiation condition (2.2)

we get

J pu|ΓRqpξ,xq “
ÿ

jPZ

FpGqpξ ` jqeiαξpjqx1

“
ÿ

jPZ

Fpu|ΓRqpξ ` jqeipαξpjqx1`
?

k2´|ξ`j|2px2´Rqq. (2.13)

Consequently, since we have Fpu|ΓRqpξ` jq “ {puξ|ΓR
0

qpjq with uξ :“ J puqpξ, ¨q, we deduce

that (2.13) coincides with the Rayleigh radiation condition given by (2.9).
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Using the radiation condition (2.9) we can define the exterior quasi-periodic Dirichlet-

to-Neumann map TR
ξ : H1{2

ξ pΓR
0 q ÝÑ H

´1{2
ξ pΓR

0 q as

TR
ξ pφqpx1q “

Buξ

Bx2

ˇ

ˇ

ˇ

ˇ

ΓR
0

“ i
ÿ

jPZ

βξpjqφ̂ξpjqeiαξpjq¨x1 , (2.14)

where with pφξpjq is the j-th Fourier coefficient of e´iξx1φpx1,Rq. Therefore, (2.8)-(2.9)

can be reformulated as: seek uξ P H1
ξ pΩR

0 q such that

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∆uξ ` k2npuξ “ fξ in ΩR,

uξ “ 0 on Γ0,
Buξ

Bx2
p¨,Rq “ TR

ξ puξ|ΓR
0

q on ΓR
0 .

(2.15)

We have the following Lemma, which a straightforward consequence of the expression

of TR
ξ .

Lemma 3. The Dirichlet-to-Neumann operator TR
ξ is bounded and satisfies

ℜe xTR
ξ u,uyΓR

0
ď 0 and ℑm xTR

ξ u,uyΓR
0

ě 0 @ u P H
1{2
ξ pΓRq,

where the notation ⟨¨, ¨⟩ΓR
0

refers to the H´1{2pΓR
0 q ´H1{2pΓR

0 q duality product that coin-

cides with the L2pΓR
0 q scalar product for regular functions.

2.2.2.1 Well posedness of the problem

In order to prove the well posedness of the problem (2.15) we make in what follows the

following assumption.

Assumption 4. Assume that the set tℑmpnpq ą 0u contains a non empty open set O.

The variational formulation equivalent to problem (2.15) is given as: seek uξ P Ȟ1
ξ pΩR

0 q

such that

ż

ΩR
0

`

∇uξ ¨ ∇ψξ ´ k2npuξψξ

˘

dx´
〈
TR

ξ uξ,ψξ

〉
ΓR

0
“

ż

ΩR
0

fξψξ, @ ψξ P Ȟ1
ξ pΩR

0 q. (2.16)
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We define the sesquilinear form

bξpuξ,ψξq :“
ż

ΩR
0

`

∇uξ ¨ ∇ψξ ´ k2npuξψξ

˘

dx´
〈
TR

ξ uξ,ψξ

〉
ΓR

0
. (2.17)

Let Bξ : Ȟ1
ξ pΩR

0 q ÝÑ Ȟ1
ξ pΩR

0 q be the operator defined by the Riesz representation

theorem such that

pBξuξ,ψξqH1pΩR
0 q :“ bξpuξ,ψξq @ ψξ,uξ P Ȟ1

ξ pΩR
0 q. (2.18)

Theorem 5. Consider fξ P L2
ξpΩRq. Assume that Assumption 4 holds. Then there

exists a unique solution uξ P H1
ξ pΩR

0 q to problem (2.15).

Proof. We define by the Riesz representation theorem B
p1q

ξ ,Bp2q

ξ : Ȟ1
ξ pΩR

0 q ÝÑ Ȟ1
ξ pΩR

0 q

such that Bξ “ B
p1q

ξ `B
p2q

ξ

pB
p1q

ξ uξ,ψξqH1
ξ

pΩR
0 q :“

ż

ΩR
0

∇uξ ¨ ∇ψξdx`

ż

ΩR
0

uξ ¨ψξdx´
〈
TR

ξ uξ,ψξ

〉
ΓR

0
,

pB
p2q

ξ uξ,ψξqH1
ξ

pΩR
0 q :“ ´

ż

ΩR
0

pk2np ` 1quξψξdx,

for all uξ,ψξ P Ȟ1
ξ pΩR

0 q. Clearly Bp1q

ξ is a coercive operator since ℜe
〈
TR

ξ uξ,uξ

〉
ΓR

0
ď 0.

Moreover, since the period ΩR
0 is bounded then one can use the compact injection of

Ȟ1
ξ pΩR

0 q into L2
ξpΩR

0 q to prove that Bp2q

ξ is compact. Consequently, the operator Bξ is a

Fredholm operator of index zero. Assume now that

bξpuξ,ψξq “ 0 for all ψξ P Ȟ1
ξ pΩR

0 q.

Form Lemma 3 we have ℑm xTR
ξ uξ,uξyΓR

0
ě 0. Therefore, Assumption 4 implies in

particular that

0 “ ℑm |bξpuξ,ψξq| ě k2
ż

ΩR
0

ℑmpnpq|uξ|2dx ě 0,

Consequently, we have uξ vanishes in the open ball O. Using the unique continuation

principle we deduce that uξ “ 0 everywhere in ΩR
0 which gives the injectivity of the

operator Bξ.
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In order to deal with the case that considers the presence of defects in the next section,

we prove in the following theorem some uniform bound with respect to the Floquet-Bloch

variable for the operator B´1
ξ .

Theorem 6. Let Bξ : Ȟ1
ξ pΩR

0 q ÝÑ Ȟ1
ξ pΩR

0 q be the operator defined by (2.18). There

exists a constant c ą 0 independent of ξ such that ∥B´1
ξ ∥ ď c.

Proof. Fix ξ P I and define for uξ and φξ P H1
ξ pΩR

0 q,

u7

ξ :“ e´iξ¨x1uξ, and ψ7

ξ :“ e´iξ¨x1ψξ.

We have u7

ξ,ψ7

ξ P H1
7 pΩR

0 q, where H1
7 pΩR

0 q denotes the space H1
ξ pΩR

0 q for ξ “ 0. We

have
Buξ

Bx1
“ eiξ¨x1

˜

iξu7

ξ `
Bu7

ξ

Bx1

¸

and Bψξ

Bx1
“ eiξ¨x1

˜

iξψ7

ξ `
Bψ7

ξ

Bx1

¸

.

Then, replacing uξ and ψξ respectively by u7

ξe
ix1ξ and ψ7

ξe
ix1ξ in (2.16) we get

ż

ΩR
0

p∇u7

ξ ¨ ∇ψ7

ξ ` iu7

ξξ ¨
Bψ7

ξ

Bx1
´ iξ ¨

Bu7

ξ

Bx1
ψ7

ξ ` p|ξ|2 ´ k2npqu7

ξψ
7

ξqdx´

A

T̃R
ξ u

7

ξ,ψ7

ξ

E

ΓR
0

“: b7

ξpu7

ξ,ψ7

ξq

with
A

T̃R
ξ u

7

ξ,u7

ξ

E

ΓR
0

:“ i
ÿ

jPZ

βξpjq
{

pu7

ξ|ΓR
0

q
{

pψ7

ξ|ΓR
0

q.

Fix η ą 0 and consider ξ1, ξ2 P I such that |ξ1 ´ ξ2| ă η. For all u7,ψ7 P H1
7 pΩRq we

have

ˇ

ˇ

ˇ
b7

ξ1
pu7,ψ7q ´ b7

ξ2
pu7,ψ7q

ˇ

ˇ

ˇ
ď
`

||ξ1|2 ´ |ξ2|2| ` 2|ξ1 ´ ξ2|
˘

∥u7∥H1pΩR
0 q∥ψ

7∥H1pΩR
0 q

`
ÿ

jPZ

|βξ1pjq ´ βξ2pjq|

ˇ

ˇ

ˇ

ˇ

{pu7|ΓR
0

q {pψ7|ΓR
0

q

ˇ

ˇ

ˇ

ˇ

ď γCξ1,ξ2pjq∥u7∥H1pΩR
0 q∥ψ

7∥H1pΩR
0 q,

with γ is the continuity constant of the trace operator from H1
7 pΩR

0 q into L2pΓR
0 q. More-

over, we have

sup
jPZ

Cξ1,ξ2pjq ď β|ξ2 ´ ξ1|1{2 ÝÑ 0 for ξ1 Ñ ξ2, (2.19)
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where β is a constant independent from j, ξ1 and ξ2. The proof of (2.19) is given in the

proof of Theorem 21 in the next chapter. Consequently,
ˇ

ˇ

ˇ
b7

ξ1
pu7,ψ7q ´ b7

ξ2
pu7,ψ7q

ˇ

ˇ

ˇ
goes

to zero as ξ1 Ñ ξ2, which implies that ξ ÝÑ Bξ is uniformly continuous from I into

LpȞ1
ξ pΩRqq.

Now, let ξ0 P Ī, and set ϵ “
1

2∥B´1
ξ0

∥
. Then there exists ηξ0 ą 0 such that for |ξ ´ ξ0| ă

ηξ0 , we have

∥Bξ ´Bξ0∥ ď ϵ.

Therefore ∥B´1
ξ0

pBξ ´Bξ0q∥ ď
1
2 which implies that

∥pI `B´1
ξ0

pBξ ´Bξ0qq´1∥ ď 2.

Consequently, by observing that Bξ “ Bξ0pI `B´1
ξ0

pBξ ´Bξ0qq we deduce that

∥B´1
ξ ∥ ď 2∥B´1

ξ0
∥, @ ξ P Bηξ0

,

where Bηξ0
denotes the ball of radius ηξ0 centered at ξ0. Since Ī is a compact set and

there exists a finite set J Ă Ī for which Ī “
ď

ξPJ

tξ0 P Ī; |ξ ´ ξ0| ă ηξ0u. Therefore, for all

ξ P I we have

∥B´1
ξ ∥ ď 2sup

ξ0PJ
∥B´1

ξ0
∥ “ c.

2.2.3 The case of periodic layers with defects

In this section we comeback to the case of the locally perturbed periodic domain, i.e.

D̃ ‰ H and we use the well posedness of the quasi-periodic problem given in the previous

section to prove the well posedness of (2.3).

2.2.3.1 Well posedness of (2.3)

We define the sesquilinear form

bpu,ψq :“
ż

ΩR

`

∇u ¨ ∇ψ ´ k2nuψ
˘

dx´
〈
TRu,ψ

〉
ΓR

. (2.20)
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The variational formulation equivalent to problem (2.3) is given as: seek u P Ȟ1pΩRq

such that

bpu,ψq “

ż

ΩR

fψdx, @ ψ P H1pΩRq. (2.21)

In order to prove the well-posedness of (2.21), we shall first prove in the following theorem

that problem (2.21) with n “ np is equivalent to a coupled quasi-periodic problems with

respect to the Floquet-Bloch variable.

Theorem 7. Seeking a solution u P Ȟ1pΩRq for problem (2.21) with n replaced by np

is equivalent to seek û :“ J u P L2pI; Ȟ1
ξ pΩR

0 qq satisfying

ż

I
bξpuξ,ψξqdξ “

ż

I

ż

ΩR
0

fξψξdxdξ, @ ψ̂ P L2pI, Ȟ1
ξ pΩR

0 qq, (2.22)

with the notation uξ “ ûpξ, ¨q and ψξ “ ψ̂pξ, ¨q.

Proof. Let us first recall in addition to (2.7) that for m P R positive, J is an isomorphism

between HmpΩRq and L2pI;Hm
ξ pΩR

0 qq and that J ˚ the adjoint of J coincides with the

inverse of J (see [24, 43]). Consequently, we have

ż

ΩR

p∇u ¨ ∇ψ ´ k2npuψqdx “

ż

ΩR

p∇u ¨ J ˚J p∇ψq ´ k2npu J ˚J pψqqdx,

“

ż

I

ż

ΩR
0

p∇uξ∇ψξ ´ k2npuξψξqdxdξ. (2.23)

On the same way we have that

ż

ΩR

fψdx “

ż

I

ż

ΩR
0

fξψξdxdξ.

Moreover, since J pu|ΓRqpξ,x1q “ ppJ uqpξ,x1qq|ΓR
0

we deduce from Lemma 2 that

J pTRuqpξ, ¨q “ TR
ξ pJ uqpξ, ¨q,

and therefore

ż

ΓR

TRpu|ΓRqJ ˚J pψ|ΓRqds “

ż

I

ż

ΓR
0

TR
ξ puξ|ΓR

0
qpψξ|ΓR

0
qdsdξ. (2.24)
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which ends the proof.

Lemma 8. Assume that Assumption 4 holds. Then there exists a unique solution for

problem (2.22).

Proof. From the well posedness of problem (2.15) we consider uξ P Ȟ1
ξ pΩRq solution of

(2.16) for all ξ P I with fξ “ J fpξ, ¨q. Consequently we have thanks to Theorem 6 that

û defined by ûpξq “ uξ P L8pI, Ȟ1
ξ pΩR

0 qq Ă L2pI, Ȟ1
ξ pΩR

0 qq and verifies (2.22). Then it

remains to prove that (2.22) is uniquely solvable.

We consider û solution to the homogeneous problem (2.22). Then, we have in particular

that

ż

I
bξpuξ,ψξqdξ “ 0, @ ψ̂ P L2pI, Ȟ1

ξ pΩR
0 qq. (2.25)

Using the same arguments as in the proof of uniqueness in Theorem 5 we get

k2
ż

I

ż

ΩR
0

ℑmpnpq|uξ|2dx “ 0.

Therefore uξ vanishes in the open ball O almost everywhere in I. Since uξ satisfies

∆uξ ` k2npuξ “ 0 in ΩR
0 we deduce by the unique continuation principle that uξ “ 0 in

ΩR
0 and almost everywhere with respect to ξ.

Theorem 9. Assume that Assumption 4 holds and that ℑmpnq ě 0. Consider f P

L2pΩRq, then there exists a unique solution u P H1pΩRq to problem (2.3) such that

∥u∥H1pΩRq ď c∥f∥L2pΩRq,

with c ą 0 is a constant independent from f .

Proof. We observe that (2.20) can be decomposed as

bpu,ψq “

ż

ΩR

∇u ¨ ∇ψ ´ k2npuψdx´
〈
TRu,ψ

〉
ΓR

´ k2
ż

ΩR
0

pn´ npquψ̄dx. (2.26)
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and we define using the Riesz representation Theorem the operatorsB,Bp, B̃ : Ȟ1pΩRq ÝÑ

Ȟ1pΩRq such that

pBu,ψqH1pΩRq :“ bpu,ψq, (2.27)

pBpu,ψqH1pΩRq :“
ż

ΩR

∇u ¨ ∇ψ ´ k2npuψdx´
〈
TRu,ψ

〉
ΓR

,

pB̃u,ψqH1pΩRq :“ ´k2
ż

ΩR

pn´ npquψ̄dx,

for all u,ψ P Ȟ1pΩRq. We have

pBpu,ψqH1pΩRq “ pJ pBpuq, J pψqqL2pI,H1pΩR
0 qq “

ż

I
pBξuξ,ψξqH1pΩR

0 qdξ.

Using Theorems 5, 6 and 7 we deduce that Bp is invertible. Moreover, since pn´ npq is

compactly supported. Then we can use the compact injection of H1pD̃q into L2pD̃q to

prove the compactness of the operator B̃. This implies that B is of Fredholm type of

index zero. It remains to prove that B is injective. Assume that

pBu,ψqH1pΩRq “ 0 @ψ P Ȟ1pΩRq.

Since it holds that ℑmpTRu,uq ě 0, then we have in particular that

0 “ k2
ż

ΩR

ℑmpnq|u|2 ě 0,

consequently u “ 0 in O by Assumption 4. The unique continuation principle implies

that u “ 0 in ΩR. This ends the proof.

2.3 Numerical examples

We present in this section some numerical examples obtained from the volume integral

method introduced in [29] for solving the direct scattering problem from locally per-

turbed periodic domain.

Numerical method: Recall that the problem can be reformulated as : Given f P
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L2pU0q, seek û :“ J u P L2pI;H2
ξ pΩ0qq satisfying

$

’

’

&

’

’

%

∆ûpξ, ¨q ` k2npûpξ, ¨q ` k2pn´ npqJ ´1pûq “ fξ in Ω0, ξ P I,

J ´1pûq :“
ż

I
ûpξ, ¨qdξ in Ω0,

(2.28)

with fξ :“ J fpξ, ¨q. We define Ω0 :“ r´π,πs ˆ R, and we set for numerics the period

ΩR
0 “ r´π,πs ˆ r0,Rs and I “ r´

1
2, 1

2 s. The main idea of the method proposed in [29]

is to first consider a discretization with respect to the Floquet-Bloch variable, using a

uniform partition of I into sub-domains of size ∆ξ “
1
M

, where M denotes the number

of discretization points. This allows to write a discretized problem in the form: seek

ûM p¨, ξjq P H2
ξj

pΩ0q satisfying

$

’

’

’

’

&

’

’

’

’

%

∆ûM pξj , ¨q ` k2npûpξj , ¨q ` k2pn´ npquM “ fξj
in Ω0, r´

M

2 s ` 1 ď j ď r
M

2 s,

uM :“
1
M

r M
2 s
ÿ

j“r´ M
2 s`1

ûpξj , ¨q in Ω0.
(2.29)

An equivalent volume integral problem to (2.29) was given as follows

$

’

’

’

’

&

’

’

’

’

%

uM pξj , ¨q ´ k2Vξj
ppnp ´ 1qûpξj , ¨qq ` k2Vξj

ppn´ npquM q “ Vξj
pfξj

q in L2pΩR
0 q,

uM :“
1
M

r M
2 s
ÿ

j“r´ M
2 s`1

ûpξj , ¨q

(2.30)

where Vξ is the volume potential defined in ΩR
0 as

Vξgξpxq :“
ż

ΩR
0

Gξpx´ yqgξpyqdy x P R,

and Gξ is the ξ-quasi-periodic Green function satisfying

∆Gξ ` k2Gξ “ ´δ0, in Ω0.

Finally, a periodization with respect to x2 variable for (2.30) was considered in order to

discretize the problem using a spectral Fourier basis.
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Numerical examples: We present now some numerical examples of the solution calcu-

lated using the MATLAB code developed to solve the direct problem using the method

outlined above. This code was developed by [39] and we just slightly adapted it for point

sources. We consider in our numerical examples an incident field generated by a point

source y :“ py1,Rq situated on ΓR with Dirichlet condition on Γ0 given by the following

expression:

vξj
py, ¨q :“ ´

i

4π
ÿ

ℓPZ

e
´iαξj

pℓqpy1´x1q

»

–e
´iβξj

pℓqR

¨

˝

e
iβξj

pℓqx2 ´ e
´iβξj

pℓqx2

βξj
pℓq

˛

‚

fi

fl ,

for x1 P Ω0 and x2 ď R. We define

vM :“
1
M

r M
2 s
ÿ

j“r´ M
2 s`1

vξj
.

The ξj-quasi periodicity implies in particular that

vM px1 ` 2πm,x2q :“
1
M

r M
2 s
ÿ

j“r´ M
2 s`1

ei2πmξjvξj
px1,x2q for x P Ω0,

uM px1 ` 2πm,x2q :“
1
M

r M
2 s
ÿ

j“r´ M
2 s`1

ei2πmξj ûppx1,x2q, ξjq for x P Ω0,

for m P N . In the examples below we vary the wavenumber k and the number of periods

M from an example to another and we fix the following physical parameters:

λ “
2π
|k|

, R “ 2.5λ, np “ 5, n “ 3, Nx “ 400, Ny “ 400,

where Nx and Ny denotes the number of discretization points respectively with respect

to x1 and x2 directions. In all the following tests we represent the solution uM in

ΩR
M :“ rpM ´

1
2q2π, pm`

1
2q2πs ˆ r´R,Rs and in Ω0, the incident field vM , and the

total filed uM ` vM in the sub-figures respectively numbered p1q p2q, p3q and p4q.
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Example 1: We present in the first example the domain Dp formed by periodic balls

centered at p0, 0.8λq with radius 0.35λ and a rectangle with sides of width 0.25λ for fixed

M “ 3 and k “
3, 5π
3.14 ` 0.7i.

Figure 2.2: The exact geometry

Figure 2.3: (1) The scattered field uM in ΩR
M . (2) The scattered field

uM in ΩR
0 . (3) The incident filed vM in ΩR

M . (4) The total filed uM ` vM

in ΩR
M
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Example 2: We consider the same periodic domain given in the previous example and

we add a perturbation given by a ball centered at p0.85λ, 1.1λq with radius RD̃ “ 0.3λ

for fixed M “ 3 and k “
3, 5π
3.14 ` 0.7i.

Figure 2.4: The exact geometry

Figure 2.5: (1) The scattered field uM in ΩR
M . (2) The scattered field

uM in ΩR
0 . (3) The incident filed vM in ΩR

M . (4) The total filed uM ` vM

in ΩR
M .
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Example 3: We consider in this example a more complex periodic domain as shown in

the Figure 2.6 for fixed M “ 4 and k “
3, 5π
3.14 ` 0.5i.

Figure 2.6: Left: The exact geometry

Figure 2.7: (1) The scattered field uM in ΩR
M . (2) The scattered field

uM in ΩR
0 . (3) The incident filed vM in ΩR

M . (4) The total filed uM ` vM

in ΩR
M .
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Example 4: We consider in the last example Dp and D̃ as an L-shape geometry as

shown in Figure 2.9 and we present the case for which D̃ intersects Dp for fixed M “ 3

and k “
3, 5π
3.14 ` 0.2i.

Figure 2.8: The exact geometry

Figure 2.9: (1) The scattered field uM in ΩR
M . (2) The scattered field

uM in ΩR
0 . (3) The incident filed vM in ΩR

M . (4) The total filed uM ` vM

in ΩR
M
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2.4 Solvability of the direct scattering problem in anisotropic

Media

2.4.1 Setting of the problem

Let Ap be a 2 ˆ 2 symmetric and 2π-periodic matrix with L8pU0q-entries. For a ą 0 we

assume that Ap satisfies:

ζ̄ ¨ ℜepApqζ ě a|ζ|2 and ζ̄ ¨ ℑmpApqζ ď 0, (2.31)

for all ζ P C2, and that Ap “ Id outside Dp, where Id denotes the 2 ˆ 2 identity matrix.

We consider for given pf , gq P H1pΩRq ˆL2pΩRq the inhomogeneous anisotropic problem

as follows: seek u P H1pΩRq satisfying

$

’

’

&

’

’

%

∇ ¨ pAp∇uq ` k2nu “ ∇ ¨ ppId´Apq∇fq ` k2p1 ´ nqg in U0,

u “ 0 on Γ0,
(2.32)

and we impose the radiation condition (2.2). Then (2.32)-(2.2) can be reformulated as

follows:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∇ ¨ pAp∇uq ` k2nu “ ∇ ¨ ppId´Apq∇fq ` k2p1 ´ nqg in U0,

u “ 0 on Γ0,
Bu

Bx2
p¨,Rq “ TRpu|ΓRq on ΓR,

(2.33)

Similarly to the previous section we consider first the case without defects, i.e n “ np.

This leads us to the study of the quasi-periodic problem that will be the topic of the

next subsection.
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2.4.2 The case of periodic layers without defects

The inhomogeneous anisotropic quasi-periodic problem can be formulated as: seek uξ “

J puqpξ, ¨q P H1
ξ pΩR

0 q such that

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∇ ¨ pAp∇uξq ` k2npuξ “ ∇ ¨ ppId´Apq∇fξq ` k2p1 ´ npqgξ in ΩR,

uξ “ 0 on Γ0,
Buξ

Bx2
p¨,Rq “ TR

ξ puξ|ΓR
0

q on ΓR
0 ,

(2.34)

with pfξ, gξq :“ pJ pfqpξ, ¨q, J pgqpξ, ¨qq P H1
ξ pΩRq ˆL2

ξpΩRq. The variational formulation

equivalent to problem (2.34) is given as: seek uξ P Ȟ1
ξ pΩR

0 q such that

hξpuξ,ψξq “

ż

ΩR
0

pId´Apq∇fξ ¨ ∇ψξ ` k2pnp ´ 1qgξψξ, @ ψξ P Ȟ1
ξ pΩR

0 q, (2.35)

where hξ being the sesquilinear form

hξpuξ,ψξq :“
ż

ΩR
0

`

Ap∇uξ ¨ ∇ψξ ´ k2npuξψξ

˘

dx´
〈
TR

ξ uξ,ψξ

〉
ΓR

0
. (2.36)

Let Hξ : Ȟ1
ξ pΩR

0 q ÝÑ Ȟ1
ξ pΩR

0 q be the operator defined by the Riesz representation

theorem such that

pHξuξ,ψξqH1pΩR
0 q :“ hξpuξ,ψξq @ ψξ,uξ P Ȟ1

ξ pΩR
0 q. (2.37)

Theorem 10. Consider pfξ, gξq P H1
ξ pΩRq ˆL2

ξpΩRq. Assume that Assumption 4 holds.

Then there exists a unique solution uξ P H1
ξ pΩR

0 q to problem (2.34).

Proof. We define by the Riesz representation theorem Hp1q

ξ , Hp2q

ξ : Ȟ1
ξ pΩR

0 q ÝÑ Ȟ1
ξ pΩR

0 q

such that Hξ “ Hp1q

ξ ` Hp2q

ξ

pHp1q

ξ uξ,ψξqH1
ξ

pΩR
0 q :“

ż

ΩR
0

Ap∇uξ ¨ ∇ψξdx`

ż

ΩR
0

uξ ¨ψξdx´
〈
TR

ξ uξ,ψξ

〉
ΓR

0
,

pHp2q

ξ uξ,ψξqH1
ξ

pΩR
0 q :“ ´

ż

ΩR
0

pk2np ` 1quξψξdx,
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for all uξ,ψξ P Ȟ1
ξ pΩR

0 q. Clearly, the operator Hp1q

ξ is coercive since ℜe
〈
TR

ξ uξ,uξ

〉
ΓR

0
ď 0

and ξ̄ ¨ ℜepApqξ ě a|ξ|2. Moreover, since the period ΩR
0 is bounded then one can use the

compact injection of Ȟ1
ξ pΩR

0 q into L2
ξpΩR

0 q to prove that Hp2q

ξ is compact. Consequently,

Hξ is a Fredholm operator of index zero. Assume now that

hξpuξ,ψξq “ 0 for all ψξ P Ȟ1
ξ pΩR

0 q.

From Lemma 3 we have ℑm xTR
ξ uξ,uξyΓR

0
ě 0. Therefore (2.31) and Assumption 4

implies in particular that

0 “

ˇ

ˇ

ˇ

ˇ

ˇ

ż

ΩR
0

`

´ℑmpApq|∇uξ|2 ` k2ℑmpnpq|uξ|2
˘

dx` ℑm
〈
TR

ξ uξ,uξ

〉
ΓR

0

ˇ

ˇ

ˇ

ˇ

ˇ

ě k2
ż

ΩR
0

ℑmpnpq|uξ|2dx ě 0, (2.38)

consequently, we have uξ vanishes in the open ball O almost everywhere in I. By the

unique continuation principle we conclude that uξ “ 0 everywhere in ΩR
0 and almost

everywhere with respect to ξ.

Theorem 11. Let Hξ : Ȟ1
ξ pΩR

0 q ÝÑ Ȟ1
ξ pΩR

0 q be the operator defined by (2.37). There

exists a constant c ą 0 independent of ξ such that ∥H´1
ξ ∥ ď c.

Proof. The proof follows the same arguments as the proof of Theorem 6.

2.4.3 The case of periodic layers with defects

We consider now the locally perturbed periodic problem (2.33). Define the sesquilinear

form

hpu,ψq :“
ż

ΩR

`

Ap∇u ¨ ∇ψ ´ k2nuψ
˘

dx´
〈
TRu,ψ

〉
ΓR

. (2.39)

The variational formulation equivalent to problem (2.33) is given as: seek u P Ȟ1pΩRq

such that

hpu,ψq “

ż

ΩR

pId´Apq∇f ¨ ∇ψ ` k2pn´ 1qgψdx @ ψ P Ȟ1pΩRq. (2.40)
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Theorem 12. Seeking a solution u P Ȟ1pΩRq for problem (2.40) with n replaced by np

is equivalent to seek û :“ J u P L2pI; Ȟ1
ξ pΩR

0 qq satisfying

ż

I
hξpuξ,ψξqdξ “

ż

I

ż

ΩR
0

pId´Apq∇fξ ¨ ∇ψξ ` k2pnp ´ 1qgξψξdxdξ, (2.41)

for all ψ̂ P L2pI, Ȟ1
ξ pΩR

0 qq, with the notations uξ “ ûpξ, ¨q and ψξ “ ψ̂pξ, ¨q.

Proof. We have np and Ap are both 2π-periodic, then similarly to the the proof of

Theorem 7 one can use the properties of the Floquet-Bloch transform to prove that

ż

ΩR

pAp∇u ¨ ∇ψ ´ k2npuψqdx “

ż

I

ż

ΩR
0

pAp∇uξ ¨ ∇ψξ ´ k2npuξψξqdxdξ, (2.42)
ż

ΩR

pId´Apq∇f ¨ ∇ψ ` k2pnp ´ 1qgψdxdξ

“

ż

I

ż

ΩR
0

pId´Apq∇fξ ¨ ∇ψξ ` k2pnp ´ 1qgξψξdxdξ (2.43)

Therefore, form (2.42), (2.43) and (2.24) we obtain (2.41).

Lemma 13. Assume that Assumption 4 holds. Then there exists a unique solution for

problem (2.41).

Proof. From the well posedness of problem (2.34) we consider uξ P H1
ξ pΩRq solution of

(2.35) for all ξ P I with pfξ, gξq P H1
ξ pΩRq ˆ L2

ξpΩRq. Consequently we have thanks to

Theorem 11 that û defined by ûpξq “ uξ P L8pI, Ȟ1
ξ pΩRqq Ă L2pI, Ȟ1

ξ pΩRqq and verifies

(2.41). Then it remains to prove that (2.41) is uniquely solvable.

We consider û solution to the homogeneous problem (2.41). Then, we have in particular

that

ż

I
hξpuξ,ψξqdξ “ 0 @ ψ̂ P L2pI, Ȟ1

ξ pΩR
0 qq. (2.44)

Using (2.38) we get

k2
ż

I

ż

ΩR
0

ℑmpnpq|uξ|2dx “ 0.
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Therefore, using the unique continuation principle we deduce that uξ “ 0 in ΩR
0 and

almost everywhere with respect to ξ.

Theorem 14. Assume that Assumption 4 holds and that ℑmpnq ě 0. Consider pf , gq P

H1pΩRq ˆ L2pΩRq, then there exists a unique solution u P H1pΩRq to problem (2.33)

such that

∥u∥H1pΩRq ď c
´

∥f∥H1pΩRq ` ∥g∥L2pΩRq

¯

,

with c ą 0 is a constant independent from f and g.

Proof. We observe that (2.39) can be decomposed as

hpu,ψq “

ż

ΩR

pAp∇u ¨ ∇ψ ´ k2npuψ ´ k2pn´ npquψ̄qdx´
〈
TRu,ψ

〉
ΓR

, (2.45)

and we define using the Riesz representation Theorem the operators H, Hp, H̃ : Ȟ1pΩRq ÝÑ

Ȟ1pΩRq such that

pHu,ψqH1pΩRq :“ hpu,ψq, (2.46)

pHpu,ψqH1pΩRq :“
ż

ΩR

Ap∇u ¨ ∇ψ ´ k2npuψdx´
〈
TRu,ψ

〉
ΓR

,

pH̃u,ψqH1pΩRq :“ ´

ż

ΩR

k2pn´ npquψ̄dx,

for all u,ψ P Ȟ1pΩRq.

Using Theorems 10, 11 and 12 we deduce that Hp is invertible. Moreover, since pn´npq

is compactly supported. Then we can use the compact injection of H1pD̃q into L2pD̃q

to prove the compactness of the operator H̃. This implies that H is of Fredholm type of

index zero. It remains to prove that H is injective. Assume that

pHu,ψqH1pΩRq “ 0 @ψ P Ȟ1pΩRq.
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Since it holds that ℑmpTRu,uq ě 0, and ζ ¨ ℑmpApqζ ď 0, then we have in particular

that

0 “

ˇ

ˇ

ˇ

ˇ

ż

ΩR

`

´ℑmpApq|∇u|2 ` k2ℑmpnq|u|2
˘

dx` ℑm
〈
TRu,u

〉
ΓR

ˇ

ˇ

ˇ

ˇ

ě k2
ż

ΩR

ℑmpnq|u|2dx ě 0, (2.47)

consequently u “ 0 in O by Assumption 4. The unique continuation principle implies

that u “ 0 in ΩR. This ends the proof.
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CHAPTER 3
Sampling methods for imaging a

periodic layer and its defects
Abstract: The theoretical content of this chapter is extracted from the published paper [8].

We analyze sampling methods for the identification of an unbounded periodic domain and a

local perturbation. We consider first the case where quasi-periodic incident fields are applied.

We give a theoretical justification of the GLSM method for a single Floquet-Bloch mode. We

then analyze the application of the GLSM method when non-periodic incident fields are used. In

addition to the theoretical part extracted from [8] we give some numerical examples for the case

of data associated with a single Floquet-Bloch mode.
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3.1 Introduction

We consider in this chapter the inverse scattering problem for the identification of a

periodic domain and its defects from near field measurements at fixed frequency. This

problem has connections with many practical applications, such as non-destructive test-

ing of photonic structures, antenna arrays... The presence of the perturbation does not

allow us to reduce the problem to one-period cell and makes the analysis more challeng-

ing. We would like to develop so-called sampling methods to address the inverse problem

of identifying the geometry of the defect. For the non perturbed inverse periodic problem

we refer to [3, 31, 42, 56] and references therein. For the perturbed case, it is frequently

assumed that the periodic background is known a priori. We refer for those cases for

instance to [9, 26, 28, 39, 45, 54]. However, for some applications, this information is

not available or cannot be obtained in an exact way. This is what we would like to

consider in this work. An analysis of sampling methods was given in [30] by assuming

that the defect is also periodic with a larger periodicity (equals to an integer multiple of

the background periodicity). Our goal here is to perform an analysis that removes this

technical assumption on the defect. In order to do so, we analyze the scattering problem

in spaces that include continuity with respect to the Floquet-Bloch variable. This allows

for instance to consider the scattering problem at a fixed Floquet-Bloch mode. We first

provide the theoretical justification of the so-called Generalized Linear Sampling Method

(GLSM) [6, 7] for quasi-periodic incident waves. We remark that although a classical

factorization of the near field operator can be obtained in this case, we are not able to

apply the abstract framework of the factorization method as introduced in [37]. This is

why for the GLSM method seems to be more adapted and this is why the penalty term

that we use in our theory is different from the one used in the literature [7, 11]. For the

justification of the method we assume that the local perturbation does not intersect the

periodic background. The case where this intersection is not empty requires the study

of an interior transmission problem that has a non standard structure similar to the one

considered in [14]. For the sake of conciseness we leave this to future investigations.

We also provide a justification of a GLSM method using the whole near field operator

associated with point sources. This method needs in particular a specific result related
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to the denseness of a single layer operator in the space of solutions to the Helmholtz

equation that have continuous dependence with respect to the Floquet-Bloch variable.

This is what mainly justifies the consideration of the scattering problem in half plane

with Dirichlet boundary condition at the interface. Our analysis also assumes that the

periodic index of refraction has a positive imaginary part in at least some open domain

of the periodic background. We believe that this assumption can be removed using the

analysis of the direct problem as in [35, 38]. Considering this case will be subject of

future work.

The chapter is organized as follows. Section 3.2 is dedicated to the introduction of the

direct problems (with point source incident waves or quasi-periodic point source incident

waves). In Section 3.3, we study the GLSM method for quasi-periodic incident waves.

Section 3.4 is dedicated to the analysis of the GLSM for non quasi-periodic incident

waves. We end the chapter with some numerical examples for data associated with a

single Floquet-Bloch mode.

3.2 Setting of the direct problem

In this section, we introduce the direct scattering problem for a locally perturbed two

dimensional periodic medium and the corresponding quasi-periodic problems.

3.2.1 The locally perturbed periodic scattering problem

Let U0 be the upper half-space R ˆ R` in R2. We set ΩR :“ R ˆ r0,Rs the domain

delimited by Γ0 :“ R ˆ t0u and ΓR :“ R ˆ tRu, with R ą R0 ą 0 as shown in Figure 3.1.

Let np P L8pU0q be the refractive index with non negative imaginary part, 2π-periodic

with respect to the first component x1 such that np “ 1 outside a 2π periodic domain

Dp included in ΩR.

We consider D :“ Dp Y D̃ where D̃ is a bounded domain included in ΩR
0 :“ r0, 2πs ˆ

r0,Rs. We assume that the complement of D in R2 is connected. Let n P L8pU0q be the

perturbed refractive index with non negative imaginary part verifying n “ np outside

D̃.

Consider an incident field v P L2pDq. The direct scattering problem we are interested
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in can be formulated as: seek a scattered field w P H2
locpΩRq verifying

pPq

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∆w` k2nw “ k2p1 ´ nqv in ΩR,

w “ 0 on Γ0,
Bw

Bx2
p¨,Rq “ TRpw|ΓRq on ΓR,

(3.1)

where TR : H1{2pΓRq ÝÑ H´1{2pΓRq is exterior Dirichlet-to-Neumann map defined by

TRpφq “
i

?
2π

ż

R

a

k2 ´ |ξ|2eix1¨ξ
pφpξqdξ, (3.2)

with pφ is the Fourier transform defined as pφpξq “
1

?
2π

ż

R

e´iξx1φpx1,Rqdx1 for L1

functions on ΓR.

Assumption 15. Assume that in addition to the assumptions above, the set tℑmpnpq ą 0u

contains a non empty open set O and ℑmpn´ npq ě 0.

Under this assumption the above stated direct scattering problem has been studied in

Chapter 2 and we summarize here the main theorem.

Theorem 16. If assumption 15 holds then there exists a unique solution w P H2
locpΩRq X

H1pΩRq satisfying pPq and continuously depend on v P L2pDq.

Remark 17. Given the solution w to problem pPq we extend w for |x2| ě R by

wpxq “
1

?
2π

ż

R

eix¨ξ`i
?

k2´|ξ|2px2´Rq
pwpξ,Rqdξ, for x2 ą R. (3.3)

This provides the solution satisfying

∆w` k2nw “ k2p1 ´ nqv in U0. (3.4)

The scattering problem pPq can be equivalently formulated as (3.3)-(3.4) and the bound-

ary conditions on Γ0.

Let Φp¨, yq be the fundamental solution of the homogeneous problem associated with

pPq given by

Φp¨, yq :“
i

4

”

H
p1q

0 pk| ¨ ´y|q ´H
p1q

0 pk| ¨ ´y1|q

ı

, (3.5)
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where y :“ py1, y2q, y1 :“ py1, ´y2q and y2 ą 0.

Theorem 18. For v P L2pDq, the solution w P H2
locpΩRq of problem pPq can be repre-

sented as

wpxq “ k2
ż

D
Φpx, yqpn´ 1qpw` vqpyqdy. (3.6)

Proof. Consider N P N sufficiently large and let DN :“ pr´N ,N s ˆ R`q XD. Let us

define a cut-off function χN P C8pU0q such that χN pyq “ 1 for y P DN and χN pyq “ 0

for y R DN`1 and χN pyq only depends on y1. We set

wN :“ k2
ż

D
Φpx, yqpn´ 1qpw` vqχN pyqdy for x P U0,

with w P H2
locpΩRq being the solution of pPq. Using the properties of the volume

potentials [21] we deduce that wN P H2
locpΩRq satisfies

$

’

’

’

’

’
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∆wN ` k2wN “ k2p1 ´ nqpw` vqχN pyq in ΩR,

wN “ 0 on Γ0,
BwN

Bx2
p¨,Rq “ TRpwN |ΓRq on ΓR.

(3.7)

We set uN :“ w´wN , then uN P H2
locpΩRq satisfies (3.7) with the right hand side of the

first equation is replaced by k2p1 ´nqpw` vqp1 ´χN qpyq. Since p1 ´nqpw` vq P L2pΩRq,

then

k2p1 ´ nqpw` vqp1 ´ χN q ÝÑ
NÑ8

0 in L2pΩRq.

Hence lim
NÑ8

uN “ 0 in H2
locpΩRq. On the other hand, since pn´ 1qpw ` vqpyq P L2pΩRq

and Φp¨, yq P L2pΩRq [17], then we have

lim
NÑ8

wN pxq “ k2
ż

D
Φpx, yqpn´ 1qpw` vqpyqdy,

almost everywhere in ΩR by Lebesgue’s dominated convergence theorem. Therefore

w P H2
locpΩRq satisfies (3.6) by the uniqueness of the limit.

For the study of the inverse problem we shall consider quasi-periodic solutions obtained

by applying the Floquet-Bloch transform to the solution of pPq. We will need to restrict
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the set of admissible solutions to those with some continuity property with respect to

the Floquet-Bloch variable. This is the subject of the following subsection.

Figure 3.1: Sketch of the domain

3.2.2 The quasi-periodic scattering problem

A function u is called ξ-quasi-periodic with period 2π for some ξ P R if it verifies

upx1 ` 2πj,x2q “ ei2πξ¨jupx1,x2q for all j P Z, (3.8)

and px1,x2q P R2. In the sequel we shall skip indicating the periodicity length 2π since

it is kept fixed and periodicity or quasi-periodicity only apply to the first variable x1.

In the following we denote by L2
ξpΩRq the set of ξ-quasi periodic functions in L2

locpΩRq

and by Hm
ξ pΩRq the set of ξ-quasi periodic functions in Hm

locpΩRq. For m ě 1 we denote

by Ȟm
ξ pΩRq the subspace of functions in Hm

ξ pΩRq that vanish on Γ0. We define H1
ξ pΩR

0 q

as the restriction to ΩR
0 of functions in H1

ξ pΩRq. In order to avoid notation confusion

we denote by H1
7 pΩR

0 q the space H1
ξ pΩR

0 q for ξ “ 0. We finally define Hs
ξ pΓR

0 q to be the

restriction to ΓR
0 of ξ-quasi periodic functions in Hs

locpΓRq.

Let ξ P I :“ r0, 1s and ΓR
0 :“ r0, 2πs ˆ tRu. Consider an incident field vξ P L2

ξpΩRq,

the quasi-periodic direct scattering problem is formulated as: seek a scattered field

wξ P H1
ξ pΩRq verifying
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%

∆wξ ` k2npwξ “ ´k2pnp ´ 1qvξ in ΩR,

wξ “ 0 on Γ0,
Bwξ

Bx2
p¨,Rq “ TR

ξ pwξ|ΓR
0

q on ΓR
0 ,

(3.9)
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where TR
ξ : H1{2

ξ pΓR
0 q ÝÑ H

´1{2
ξ pΓR

0 q is the exterior quasi-periodic Dirichlet-to-Neumann

map defined by

TR
ξ pφqpx1q “ i

ÿ

jPZ

βξpjqφ̂ξpjqeiαξpjq¨x1 , (3.10)

where

αξpjq :“ ξ ` j, βξpjq :“
a

k2 ´ |ξ ` j|2, ℑmpβξpjqq ě 0, for j P Z,

and pφξpjq is the j-th Fourier coefficient of e´iξx1φpx1,Rq defined as

pφξpjq :“
1

2π

ż 2π

0
e´iαξpjqx1φpx1,Rqdx1.

For the norm in Hs
ξ pΓR

0 q we shall use the following definition

∥φ∥2
Hs

ξ
pΓR

0 q
“

ÿ

jPZ

p1 ` j2qs|φ̂ξpjq|2.

Multiplying the first equation of (3.9) with ψξ P Ȟ1
ξ pΩR

0 q, integrating by parts and using

the boundary conditions and the quasi periodicity we obtain the variational formulation

given as

ż

ΩR
0

`

∇wξ ¨ ∇ψξ ´ k2npwξψξ

˘

dx´
〈
TR

ξ wξ,ψξ

〉
ΓR

0
“ k2

ż

ΩR
0

pnp ´ 1qvξψξ, @ ψξ P Ȟ1
ξ pΩR

0 q.

(3.11)

where the notation ⟨¨, ¨⟩ΓR
0

refers to the H´1{2pΓR
0 q ´H1{2pΓR

0 q duality product. Using

the Riesz representation theorem we can define the operator Aξ : Ȟ1
ξ pΩR

0 q ÝÑ Ȟ1
ξ pΩR

0 q

such that

pAξwξ, vξqH1
ξ

pΩR
0 q :“

ż

ΩR
0

`

∇wξ ¨ ∇ψξ ´ k2npwξψξ

˘

dx´
〈
TR

ξ wξ,ψξ

〉
ΓR

0
@ ψξ,wξ P Ȟ1

ξ pΩR
0 q.

We recall here the result proved in Chapter 2 (Theorems 5 and 6).

Theorem 19. Assume that tℑmpnpq ą 0u in a non empty open set of ΩR
0 , then problem

(3.9) is well posed. Moreover, ∥A´1
ξ ∥ ď c with c is a constant independent of ξ.
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Remark 20. Given the solution wξ to problem p3.9q we extend wξ for |x2| ě R by

wξpxq :“
ÿ

jPZ

{pwξ|ΓR
0

qpjqeiαξpjq¨x1`iβξpjqpx2´Rq for x2 ą R. (3.12)

This provides the solution satisfying

∆wξ ` k2npwξ “ k2p1 ´ npqvξ in U0. (3.13)

The scattering problem p3.9q can be equivalently formulated as (3.12)-(3.13) and the

boundary conditions on Γ0.

Defining now for ϕ P C8
0 pU0q the one dimensional Floquet-Bloch transform as the fol-

lowing

J ϕpξ,x1,x2q “
ÿ

jPZ

ϕpx1 ` 2πj,x2qe´i2πξ¨j , ξ P I, px1,x2q P U0. (3.14)

Recall that the Floquet-Bloch transform is an isomorphism between HspΩRq (respec-

tively HspΓRq) and L2pI,Hs
ξ pΩR

0 qq (respectively L2pI,Hs
ξ pΓR

0 qq). Then, for 0 ď α ă 1,

we denote by

C0,α
7 pI,Hs

ξ pΩR
0 qq :“ tφ P L2pI,Hs

ξ pΩR
0 qq; e´iξ¨x1φ P C0,α

7 pI,Hs
7 pΩR

0 qqu,

the space of periodic and α Hölderian functions on I with values in Hs
ξ pΩR

0 q. The norm

of φ P C0,α
7 pI,Hs

7 pΩR
0 qq is defined as

sup
ξPI

∥φpξ, ¨q∥HspΩR
0 q ` sup

ξ1‰ξ2PI

˜

∥φ̃pξ1, ¨q ´ φ̃pξ2, ¨q∥HspΩR
0 q

|ξ1 ´ ξ2|α

¸

,

with φ̃ :“ e´iξ¨x1φ. We then set

H̃s,αpΩRq :“
!

u P HspΩRq{J u P C0,α
7 pI,Hs

ξ pΩR
0 qq

)

, (3.15)

H̃s,αpΓRq :“
!

u P HspΓRq{J u P C0,α
7 pI,Hs

ξ pΓR
0 qq

)

. (3.16)

Then we have the following theorem complementing the result of Theorem 19.
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Theorem 21. Assume that hypothesis of Theorem 19 holds and consider v P L̃2,αpΩRq

for 0 ď α ă 1. Let wξ P H1
ξ pΩR

0 q be the solution of (3.9) with vξ “ pJ vqpξ, ¨q. Then

w “ J ´1wξ :“
ż

I
wξdξ belongs to H̃1,α̃pΩRq with α̃ “ minpα, 1

2q and

∥w∥H̃1,α̃pΩRq ď c∥v∥L̃2,αpDpq

with c independent from v.

Proof. Set w̃ξ :“ e´iξ¨x1wξ and v̌ξ “ ´k2pnp ´ 1qvξ. Then we have w̃ξ P H1
7 pΩR

0 q and

verifies

∆w̃ξ “ e´iξ¨x1 v̌ξ ´ 2iξ Bw̃ξ

Bx1
` ξ2w̃ξ ´ k2npw̃ξ in ΩR.

Let ξ1, ξ2 P I, and set e :“ eiξ1¨x1pw̃ξ1 ´ w̃ξ2q. Then e P H1
ξ1pΩR

0 q and

∆e` k2npe “ Lξ1,ξ2 in ΩR, (3.17)

with

Lξ1,ξ2 :“ eiξ1¨x1

„

pe´iξ1¨x1 ´ e´iξ2x1qvξ1 ` e´iξ2¨x1pv̌ξ1 ´ v̌ξ2q ´ 2ipξ1 ´ ξ2q
Bw̃ξ2

Bx1
` pξ2

1 ´ ξ2
2qw̃ξ2

ȷ

.

By the Cauchy-Schwartz inequality and v̌ P L2,αpΩR
0 q we get the existence of a constant

c ą 0 independent from ξ1 and ξ2 such that

∥Lξ1,ξ2∥L2pΩR
0 q ď c|ξ1 ´ ξ2|α

´

∥v∥L̃2,αpDpq ` ∥wξ2∥H1pΩR
0 q

¯

. (3.18)

On the other hand, using the third equation in (3.9) we have on ΓR

Be

Bx2
“ TR

ξ1pwξ1q ´ eipξ1´ξ2qx1TR
ξ2pwξ2q “ TR

ξ1peq ` i
ÿ

jPZ

pβξ1pjq ´ βξ2pjqq pwξ2pjqeiαξ1 pjq.

(3.19)

The variational formulation of (3.17)-(3.19) can be written as

ż

ΩR
0

`

∇e ¨ ∇ψ̄ ´ k2npeψ̄
˘

´
〈
TR

ξ1e,ψ
〉

ΓR
0

“

ż

ΩR
0

Lξ1,ξ2ψ̄dx´ ⟨gξ1,ξ2 ,ψ⟩ΓR
0

, @ ψ P Ȟ1
ξ1pΩR

0 q,

(3.20)
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with gξ1,ξ2 :“
ÿ

jPZ

pβξ1pjq ´ βξ2pjqq pwξ2pjqeiαξ1 pjq. Using the definition of H´1{2pΓR
0 q norm

in terms of Fourier coefficients we get

∥gξ1,ξ2px1q∥2
H

´1{2
ξ1

pΓR
0 q

“
ÿ

jPZ

p1 ` |j|2q1{2| pwξ2pjq|2C2
ξ1,ξ2pjq,

with Cξ1,ξ2pjq :“
|βξ1pjq ´ βξ2pjq|

p1 ` |j|2q1{2 . For j P Z˚:“ Zzt0u such that βξ1pjq “ 0, i.e k2 “

|ξ1 ` j|2

Cξ1,ξ2pjq “
||j ` ξ1|2 ´ |j ` ξ2|2|1{2

p1 ` |j|2q1{2 ď pk ` 3q1{2|ξ1 ´ ξ2|1{2,

since |j| ď |j ` ξ1| ` |ξ1| ď k ` 1. For the case j “ 0, if pk2 ´ ξ2
2qpk2 ´ ξ2

1q ď 0

Cξ1,ξ2p0q “ |

b

k2 ´ ξ2
2 ´ i

b

ξ2
1 ´ k2| “ |ξ2

1 ´ ξ2
2 |1{2 ď 2|ξ1 ´ ξ2|1{2,

while if pk2 ´ ξ2
2qpk2 ´ ξ2

1q ą 0

Cξ1,ξ2p0q “
|ξ2

1 ´ ξ2
2 |

|
a

k2 ´ ξ2
2 `

a

k2 ´ ξ2
1 |1{2

ď
?

2|ξ1 ´ ξ2|1{2.

Finally for the case where k2 ‰ |ξ1 ` j|2 and j ‰ 0 we write

Cξ1,ξ2pjq “
||ξ2 ` j|2 ´ |ξ1 ` j|2|

p1 ` |j|2q1{2|
a

k2 ´ |ξ1 ` j|2 `
a

k2 ´ |ξ2 ` j|2|
.

Since |βξ1pjq| ą 0, then there exists δ ą 0 independent of j such that |βξ1pjq `βξ2pjq| ě δ,

therefore

sup
jPZ˚,k2‰|ξ1`j|2

Cξ1,ξ2pjq ď sup
jPZ˚,k2‰|ξ1`j|2

|ξ2 ´ ξ1||ξ2 ` ξ1 ` 2j|
|j|δ

ď
4
δ

|ξ2 ´ ξ1|.

Summarizing, there exist a constant β independent from j, ξ1 and ξ2 such that

sup
jPZ

Cξ1,ξ2pjq ď β|ξ2 ´ ξ1|1{2.

Consequently

∥gξ1,ξ2∥2
H

´1{2
ξ1

pΓR
0 q

ď β2|ξ1 ´ ξ2|∥wξ2∥2
H

1{2
ξ2

pΓR
0 q

. (3.21)
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We observe that

∥wξ2∥
H

1{2
ξ2

pΓR
0 q

ď c∥e´iξ2¨x1wξ2∥H1
7

pΩR
0 q ď 2c∥wξ2∥H1pΩR

0 q,

with c being the continuity constant of the trace operator on H1
7 pΩR

0 q. From Theorem

19 we have that

∥wξ2∥H1pΩR
0 q ď c̃∥vξ2∥L2pΩR

0 q ď ∥v∥L̃2,αpDpq, (3.22)

where c̃ is independent of ξ2. Applying Theorem 19 to the variational formulation (3.20)

proves, using (3.18), (3.21) and (3.22), the existence of a constant c independent of ξ1

and ξ2 such that

∥e∥H1pΩR
0 q ď c|ξ1 ´ ξ2|α̃∥v∥L̃2,αpDpq,

which ends the proof.

Theorem 22. Assume that hypothesis 15 holds and that v P L̃2,αpΩRq for 0 ď α ă 1.

Then the solution w P H2
locpΩRq of problem pPq belongs to H̃1,αpΩRq and

∥w∥H̃1,αpΩRq ď cp∥v∥L̃2,αpDpq ` ∥v∥L2pD̃qq,

with c independent from v.

Proof. Let wξ :“ pJwqpξ, ¨q. Since the support of n´ np is included in ΩR
0 , then we

have wξ P H1
ξ pΩRq and satisfies
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∆wξ ` k2npwξ “ ´k2pnp ´ 1qvξ ´ k2Rξppn´ npqpw` vqq in ΩR,

wξ “ 0 on Γ0,
Bwξ

Bx2
p¨,Rq “ TR

ξ pwξ|ΓR
0

q on ΓR
0 ,

with vξ :“ pJ vqpξ, ¨q and Rξpφq for a function φ compactly supported in ΩR
0 denotes

the extension by ξ-quasi periodicity of φ to all of ΩR. Indeed Rξpφq “ J pφχΩR
0

q where

χΩR
0

indicates the indicator function of the domain ΩR
0 . We decompose wξ as

wξ “ wp
ξ ` w̃ξ,
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with wp
ξ being the solution of (3.9) and w̌ξ :“ wξ ´wp

ξ satisfying
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%

∆w̌ξ ` k2npw̌ξ “ ´k2Rξppn´ npqpw` vqq in ΩR,

w̌ξ “ 0 on Γ0,
Bw̌ξ

Bx2
p¨,Rq “ TR

ξ pw̌ξ|ΓR
0

q on ΓR
0 .

Denoting by wp :“ J ´1wp
ξ . From Theorem 21 we have that wp P H̃1,α̃pΩRq. Moreover,

since Rξppn´ npqpw ` vqq P C0,α
7 pI,L2

ξpΩR
0 qq, then using Theorem 21 we deduce that

w̌ :“ J ´1w̌ξ P H̃1,α̃pΩRq and then w “ wp ` w̌ P H̃1,α̃pΩRq. The estimate follows also

from application of Theorem 21.

For the sake of studying the inverse problem, for fixed ξ0 P I, we consider vξ0 P L2
ξ0pDq,

where

L2
ξ0pDq :“ tv P L2

locpDq{ v|Dp P L2
ξ0pDpqu,

where L2
ξ0pDpq denotes the set of ξ0 quasi-periodic functions that are in L2

locpDpq. We

would like to define a solution wξ0 to problem pPq associated with v “ vξ0 . Indeed, since

vξ0 R L2pDq, the solution can not be defined as in Theorem 16. We rather define the

solution in this case as

wξ0 :“ wp
ξ0

` w̃ξ0 , (3.23)

with wp
ξ0

P H1
ξ0pΩR

0 q verifying
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∆wp
ξ0

` k2npw
p
ξ0

“ k2p1 ´ npqvξ0 in ΩR,

wp
ξ0

“ 0 on ΓR
0 ,

Bwp
ξ0

Bx2
p¨,Rq “ TR

ξ pwp
ξ0

|ΓR
0

q on ΓR
0 ,

(3.24)

and w̃ξ0 P H̃1pΩRq satisfying
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∆w̃ξ0 ` k2nw̃ξ0 “ k2pnp ´ nqpvξ0 `wp
ξ0

q in ΩR,

w̃ξ0 “ 0 on Γ0,
Bw̃ξ0

Bx2
p¨,Rq “ TRpw̃ξ0 |ΓRq on ΓR.

(3.25)
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The solutions of (3.24) and (3.25) are respectively defined by Theorems 19 and 22.

Multiplying the first equation of (3.25) with ψ P H̃1pΩRq, integrating by parts and

using the boundary conditions we obtain the variational formulation given as

ż

ΩR

`

∇w̃ξ0 ¨ ∇ψ ´ k2nw̃ξ0ψ
˘

dx´
〈
TRw̃ξ0 ,ψ

〉
ΓR

“ k2
ż

ΩR

pn´npqpvξ0 `wp
ξ0

qψ, @ ψ P H̃1pΩRq,

(3.26)

where the notation ⟨¨, ¨⟩ΓR refers to the H´1{2pΓRq ´H1{2pΓRq duality product.

Remark 23. Let v P L̃2pΩRq and set vξ “ J pvqpξ, ¨q. We define wp
ξ P H1

ξ pΩR
0 q verifying

(3.24) and w̃ξ P H̃1pΩRq the solution of (3.25). Then wp :“
ż

I
wp

ξdξ is solution to pPq

with n “ np and w̃ :“
ż

I
w̃ξdξ P H̃1pΩRq is solution of
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∆w̃` k2npw̃ “ k2pnp ´ nqpwp ` v ` w̃q in ΩR,

w̃ “ 0 on Γ0,
Bw̃

Bx2
p¨,Rq “ TRpw̃|ΓRq on ΓR.

(3.27)

Consequently w̃`wp P H̃1pΩRq and is the solution of problem pPq.

3.3 The inverse problem for quasi-periodic incident fields

3.3.1 Setting for the inverse problem

Consider ξ0 P I fixed, and let Φξ0px, yq :“ pJ Φp¨, yqqpξ0,xq be the ξ0-quasi-periodic

Green function having the following expression [45]

Φξ0px, yq :“
i

4π
ÿ

jPZ

eiαξ0 pjqpx1´y1qθξ0pj,x2, y2q, y2 ă x2, (3.28)

with

θξ0pj,x2, y2q :“ eiβξ0 pjqx2

«

e´iβξ0 pjqy2 ´ eiβξ0 pjqy2

βξ0pjq

ff

. (3.29)

Let y P ΓR
0 . We define us

ξ0p¨, yq “ wξ0 given by p3.23q with vξ0 “ Φξ0py, ¨q P L2
ξ0pDq.

From (3.23) we decompose us
ξ0p¨, yq “ us,p

ξ0
p¨, yq ` ũs

ξ0p¨, yq with us,p
ξ0

p¨, yq “ wp
ξ0

solution

of (3.24) and ũs
ξ0p¨, yq “ w̃ξ0 solution of (3.25). We introduce the ξ0-quasi periodic near
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field operator Nξ0 : L2
ξ0pΓRq ÝÑ L2

ξ0pΓRq as

Nξ0gξ0pxq :“
ż

ΓR
0

gξ0pyqus,p
ξ0

px, yqdspyq `

ż

ΓR
0

gξ0pyqJ pũs
ξ0p¨, yqqpξ0,xqdspyq. (3.30)

Define Sξ0 : L2
ξ0pΓRq ÝÑ L2

ξ0pDq as

Sξ0gξ0pxq :“
ż

ΓR
0

gξ0pyqΦξ0py,xqdspyq. (3.31)

Then, obviously the operator Nξ0 can be decomposed as

Nξ0 “ Gξ0pSξ0q, (3.32)

where Gξ0 : L2
ξ0pDq ÝÑ L2

ξ0pΓRq is the operator defined by

Gξ0pvξ0q “ pwp
ξ0

` w̃p
ξ0

q|ΓR
0

, (3.33)

with wp
ξ0

being the solution of (3.24) and w̃p
ξ0

“ J pw̃ξ0qpξ0, ¨q with w̃ξ0 is the solution of

(3.25). We observe that w̃p
ξ0

P H1
ξ0pΩR

0 q and verifies
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∆w̃p
ξ0

` k2npw̃
p
ξ0

“ k2pnp ´ nqpwp
ξ0

` vξ0 ` w̃ξ0q in ΩR,

w̃p
ξ0

“ 0 on ΓR
0 ,

Bw̃p
ξ0

Bx2
p¨,Rq “ TR

ξ pw̃p
ξ0

|ΓR
0

q on ΓR
0 .

(3.34)

Multiplying the first equation of (3.34) with ψξ0 P Ȟ1
ξ0pΩR

0 q, integrating by parts and

using the boundary conditions we obtain the variational formulation given as

ż

ΩR
0

´

∇w̃p
ξ0

¨ ∇ψξ0 ´ k2npw̃
p
ξ0
ψξ0

¯

dx´
〈
TR

ξ0w̃
p
ξ0

,ψξ0

〉
ΓR

0
“ k2

ż

ΩR
0

pn´npqpwp
ξ0

`vξ0 ` w̃ξ0qψξ0 ,

(3.35)

for all ψξ0 P Ȟ1
ξ0pΩR

0 q. For later use we decompose Nξ0 “ Np
ξ0

` Ñp
ξ0

where Np
ξ0

:

L2
ξ0pΓRq ÝÑ L2

ξ0pΓRq and Ñp
ξ0

: L2
ξ0pΓRq ÝÑ L2

ξ0pΓRq are respectively defined as

Np
ξ0
gξ0pxq :“

ż

ΓR
0

gξ0pyqus,p
ξ0

px, yqdspyq, Ñp
ξ0
gξ0pxq :“

ż

ΓR
0

gξ0pyqJ pũs
ξ0p¨, yqqpξ0,xqdspyq.

(3.36)
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Lemma 24. The operators Np
ξ0

and Ñp
ξ0

can be respectively factorized as

Np
ξ0

“ S˚
ξ0T

p
ξ0
Sξ0 and Ñp

ξ0
“ S˚

ξ0 T̃
p
ξ0
Sξ0 , (3.37)

with T p
ξ0

: L2
ξ0pDpq ÝÑ L2

ξ0pDpq and T̃ p
ξ0

: L2
ξ0pDq ÝÑ L2

ξ0pDq are respectively defined by

T p
ξ0
vξ0 “ k2p1 ´ npqpvξ0 `wp

ξ0
q, (3.38)

T̃ p
ξ0
vξ0 “ k2p1 ´ npqw̃p

ξ0
` k2pnp ´ nqpwp

ξ0
` vξ0 ` w̃ξ0q, (3.39)

where wp
ξ0

being the solution of (3.24) and w̃p
ξ0

“ J pw̃ξ0qpξ0, ¨q with w̃ξ0 is the solution

of (3.25).

Proof. The proof of (3.37) is classical and we here outline the main steps. The solution

wp
ξ0

of (3.24) with vξ0 “ Sξ0gξ0 can be represented as [29]

wp
ξ0

pxq “

ż

Dp
0

k2Φξ0px, yqp1 ´ npqpwp
ξ0

` Sξ0gξ0qpyqdy for x P ΩR
0 .

Then

pNp
ξ0
gξ0 , g̃ξ0qL2pΓR

0 q “

ż

Dp
0

k2p1 ´ npqpwp
ξ0

` Sξ0gξ0qpyq

ż

ΓR
0

Φξ0px, yqg̃ξ0pxqdspxqdy,

“

ż

Dp
0

k2p1 ´ npqpwp
ξ0

` Sξ0gξ0qpyqSξ0 g̃ξ0pyqdy,

“ pT p
ξ0
Sξ0gξ0 ,Sξ0 g̃ξ0qL2pDp

0 q,

which proves the first of factorization in (3.37).

The second factorization is obtained in the same way based on the fact that wp
ξ0

solution

of (3.34) can be represented as

w̃p
ξ0

“

ż

Dp
0

k2Φξ0p¨, yqp1 ´ npqw̃p
ξ0

pyqdy `

ż

D̃
k2Φξ0p¨, yqpnp ´ nqpwp

ξ0
` Sξ0gξ0 ` w̃ξ0qdy.
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From Lemma 24 we conclude the following factorization

Nξ0 “ S˚
ξ0Tξ0Sξ0

with Tξ0 : L2
ξ0pDq ÝÑ L2

ξ0pDq is defined by Tξ0pvξ0q “ T p
ξ0

pvξ0 |Dpq ` T̃ p
ξ0

pvξ0q or equiva-

lently

Tξ0vξ0 “ k2p1 ´ npqpwp
ξ0

` vξ0 ` w̃p
ξ0

q ` k2pnp ´ nqpwp
ξ0

` vξ0 ` w̃ξ0q. (3.40)

3.3.2 Some properties of the operators defined in the previous section

In order to study the inverse problem we need to prove some properties of the operators

defined in the previous sections.

Lemma 25. The operator Sξ0 : L2
ξ0pΓRq ÝÑ L2

ξ0pDq is injective. The closure of its

range is

H inc
ξ0 pDq :“ tv P L2

ξ0pDq, ∆v ` k2v “ 0 in Du. (3.41)

Proof. Let gξ0 P L2
ξ0pΓRq such that Sξ0gξ0 “ 0 in D0, where D0 :“ ΩR

0 XD. Using the

unique continuation principle we obtain Sξ0gξ0 “ 0 in ΩR
0 . Let UR :“ R ˆ rR, 8r. Using

the continuity and regularity of single layer potentials we have that Sξ0 P H2
locpURq, is

ξ0-quasi periodic, verifies

$

’

’

&

’

’

%

∆Sξ0gξ0 ` k2Sξ0gξ0 “ 0 in UR,

Sξ0gξ0 “ 0 on ΓR,
(3.42)

and the upper going radiation condition (3.12) with ΓR replaced by ΓR1 with R1 ą R.

The uniqueness for this Dirichlet quasi-periodic scattering problem [39] implies that

Sξ0gξ0 “ 0 in UR. Therefore, using the jump relations for the normal derivative of Sξ0

we obtain gξ0 “ 0 which proves the injectivety of Sξ0 .

Let S˚
ξ0 : L2

ξ0pDq ÝÑ L2
ξ0pΓRq be the adjoint of Sξ0 given by

S˚
ξ0vξ0pyq :“

ż

D0

Φξ0py,xqvξ0pxqdx.
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Let vξ0 P H inc
ξ0 pDq, we set

wξ0 :“
ż

D0

Φξ0p¨,xqvξ0pxqdx.

Using the properties of the volume potential we deduce that wξ0 P H2
ξ0pΩRq satisfies

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∆wξ0 ` k2wξ0 “ ´vξ0 in D0,

∆wξ0 ` k2wξ0 “ 0 in ΩR
0 zD0,

Bwξ0

Bx2
p¨,Rq “ TR

ξ pwξ0 |ΓR
0

q on ΓR
0 .

(3.43)

Assume that wξ0 “ 0 on ΓR
0 . Then wξ0 vanishes in UR. Using the unique continuation

principle we obtain that wξ0 “ 0 in ΩR
0 zD0. We then have wξ0 P H2

0 pD0q. Therefore,

since ∆vξ0 ` k2vξ0 “ 0 in D,

0 “

ż

D0

vξ0pyqp∆wξ0 ` k2wξ0qpyqdy “ ´∥vξ0∥2
L2pD0q. (3.44)

This proves that vξ0 “ 0 and Sξ0 has a dense range in H inc
ξ0 pDq.

For the analysis below we need to assume the well posedness of the following two Interior

Transmission Problems (ITP).

(ITP1): Seek pu, vq P L2
ξ0pDpq ˆL2

ξ0pDpq such that pu´ vq P H2
ξ0pDpq satisfying

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

∆u` k2npu “ 0 in Dp
0,

∆v ` k2v “ 0 in Dp
0,

u´ v “ φ on BDp
0,

Bpu´ vq

Bν
“ ψ on BDp

0,

(3.45)

for given pφ,ψq P H
3{2
ξ0

pBDpq ˆH
1{2
ξ0

pBDpq. The spaces Hm
ξ0 pDpq and Hs

ξ0pDpq are defined

similarly to Hm
ξ0 pΩRq and Hs

ξ0pΓRq.
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(ITP2): Seek pu, vq P L2pD̃q ˆL2pD̃q such that pu´ vq P H2pD̃q satisfying

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

∆u` k2nu “ 0 in D̃,

∆v ` k2v “ 0 in D̃,

u´ v “ φ on BD̃,
Bpu´ vq

Bν
“ ψ on BD̃,

(3.46)

for given pφ,ψq P H3{2pBD̃q ˆH1{2pBD̃q.

Assumption 26. Assume that k, np are such as the (ITP1) is well posed.

Assumption 27. Assume that k, np and n are such that (ITP2) is well posed.

Moreover, we need first to prove the following Lemma

Lemma 28. For all v1
ξ0 , v2

ξ0 P L2
ξ0pDq we have

pTξ0v
1
ξ0 , v2

ξ0
qL2pD0q “ pTξ0v

2
ξ0 , v1

ξ0
qL2pD0q. (3.47)

Proof. For i “ 1, 2, consider wp,i
ξ0

P Ȟ1
ξ0pΩR

0 q solution of (3.11) with ξ “ ξ0 and vξ “ vi
ξ0 .

Define w̃p,i
ξ0

:“ J pw̃i
ξ0qpξ0, ¨q where w̃i

ξ0 P H̃1pΩRq satisfies (3.25) with vξ0 “ vi
ξ0 . We set

wi
ξ0 :“ wp,i

ξ0
` w̃p,i

ξ0

which verifies

ż

ΩR
0

`

∇wi
ξ0 ¨ ∇ψξ0 ´ k2npw

i
ξ0ψξ0

˘

dx´
〈
TR

ξ w
i
ξ0 ,ψξ0

〉
ΓR

0
“ ´Li

ξ0pψξ0q (3.48)

for all ψξ0 P Ȟ1
ξ0pΩR

0 q with

Li
ξ0pψξ0q :“

ż

Dp
0

k2p1 ´ npqvi
ξ0ψξ0dy ` k2

ż

ΩR
0

pnp ´ nqpwp,i
ξ0

` vi
ξ0 ` w̃i

ξ0qψξ0 .
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Taking ψξ0 “ w2
ξ0 and ψξ0 “ w1

ξ0 respectively in the variational formulation (3.48)

satisfied by w1
ξ0 and w2

ξ0 we obtain by taking the difference

〈
TR

ξ0w
1
ξ0 ,w2

ξ0

〉
ΓR

0
´

〈
TR

ξ0w
2
ξ0 ,w1

ξ0

〉
ΓR

0
“

ż

Dp
0

k2p1 ´ npqv1
ξ0w

2
ξ0dy

`

ż

D̃
k2pnp ´ nqpwp,1

ξ0
` w̃1

ξ0 ` v1
ξ0qw2

ξ0dy

´

ż

Dp
0

k2p1 ´ npqv2
ξ0w

1
ξ0dy ´

ż

D̃
k2pnp ´ nqpwp,2

ξ0
` w̃2

ξ0 ` v2
ξ0qw1

ξ0dy.

Since TR
ξ0 is symmetric, the left hand side in the previous equality vanishes and therefore

ż

Dp
0

k2p1 ´ npqv2
ξ0pwp,1

ξ0
` w̃p,1

ξ0
` v1

ξ0qdy “

ż

Dp
0

k2p1 ´ npqv1
ξ0pwp,2

ξ0
` w̃p,2

ξ0
` v2

ξ0qdy

`

ż

D̃
k2pnp ´ nqpwp,1

ξ0
` w̃1

ξ0 ` v1
ξ0qpwp,2

ξ0
` w̃p,2

ξ0
qdy

´

ż

D̃
k2pnp ´ nqpwp,2

ξ0
` w̃2

ξ0 ` v2
ξ0qpwp,1

ξ0
` w̃p,1

ξ0
qdy. (3.49)

On the other hand, taking ψξ0 “ w̃p,2
ξ0

and ψξ0 “ w̃p,1
ξ0

respectively in the variational

formulations (3.35) satisfied by w̃p,1
ξ0

and w̃p,2
ξ0

we obtain by taking the difference and the

symmetry of TR
ξ0

ż

D̃
k2pnp ´ nqpwp,1

ξ0
` v1

ξ0 ` w̃1
ξ0qw̃p,2

ξ0
dy “

ż

D̃
k2pnp ´ nqpwp,2

ξ0
` v2

ξ0 ` w̃2
ξ0qw̃p,1

ξ0
dy. (3.50)

Moreover, taking ψξ0 “ w̃2
ξ0 and ψξ0 “ w̃1

ξ0 respectively in the variational formulation

(3.26) satisfied by w̃1
ξ0 and w̃2

ξ0 we obtain after taking the difference and using the

symmetry of the operator TR

ż

D̃
k2pnp ´ nqv2

ξ0w̃
1
ξ0dy “ ´

ż

D̃
k2pnp ´ nqwp,2

ξ0
w̃1

ξ0dy `

ż

D̃
k2pnp ´ nqw̃2

ξ0pv1
ξ0 `wp,1

ξ0
qdy.

(3.51)

Now, using (3.40) we have

Tξ0v
i
ξ0 “ k2p1 ´ npqpwp,i

ξ0
` vi

ξ0 ` w̃p,i
ξ0

q ` k2pnp ´ nqpwp,i
ξ0

` vi
ξ0 ` w̃i

ξ0q. (3.52)
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Using (3.49) to substitute the first term in the right hand side of (3.52) we get

pTξ0v
1
ξ0 , v2

ξ0
qL2pD0q “

ż

Dp
0

k2p1 ´ npqv1
ξ0pwp,2

ξ0
` w̃p,2

ξ0
` v2

ξ0q (3.53)

`

ż

D̃
k2pnp ´ nqpwp,1

ξ0
` w̃1

ξ0 ` v1
ξ0qpwp,2

ξ0
` w̃p,2

ξ0
q

´

ż

D̃
k2pnp ´ nqpwp,2

ξ0
` w̃2

ξ0 ` v2
ξ0qpwp,1

ξ0
` w̃p,1

ξ0
q

`

ż

D̃
k2pnp ´ nqv2

ξ0pwp,1
ξ0

` v1
ξ0 ` w̃1

ξ0q.

Finally, using (3.50), (3.51) to simplify the previous expression we obtain

pTξ0v
1
ξ0 , v2

ξ0
qL2pD0q “

ż

Dp
0

k2p1 ´ npqv1
ξ0pwp,2

ξ0
` w̃p,2

ξ0
` v2

ξ0qdy (3.54)

`

ż

D̃
k2pnp ´ nqv1

ξ0pwp,2
ξ0

` w̃2
ξ0 ` v2

ξ0qdy,

where the right hand side coincides with the expression of pTξ0v
2
ξ0 , v1

ξ0
qL2pD0q. This ends

the proof.

Lemma 29. Assume that the assumptions of Theorem 19 hold and that Assumptions 26,

27 hold. Assume in addition that Dp
0 X D̃ “ H. Then, the operator Gξ0 : H inc

ξ0 pDq ÝÑ

L2
ξ0pΓRq given by (3.33) is injective with dense range.

Proof. Let vξ0 P H inc
ξ0 pDq such that Gξ0vξ0 “ 0 on ΓR

0 , i.e

wξ0 :“ wp
ξ0

` w̃p
ξ0

“ 0 on ΓR
0 ,

where wp
ξ0

is the solution of (3.24) and w̃p
ξ0

“ J pw̃ξ0qpξ0, ¨q with w̃ξ0 being the solution

of (3.25). Therefore, wξ0 P H2
locpURq, is ξ0-quasi periodic and verifies

$

’

’

&

’

’

%

∆wξ0 ` k2wξ0 “ 0 in UR,

wξ0 “ 0 on ΓR,

and the upper going radiation condition (3.12) with ΓR replaced by ΓR1 with R1 ą R.

The uniqueness for this Dirichlet quasi-periodic scattering problem implies that wξ0 “ 0

in UR. Using the unique continuation principle we obtain that wξ0 “ 0 in U0zD0.



3.3. The inverse problem for quasi-periodic incident fields 61

Moreover, wξ0 P H2
ξ0pΩRq and satisfies

∆wξ0 ` k2npwξ0 ` k2pn´ npqpwp
ξ0

` w̃ξ0q “ k2p1 ´ nqvξ0 in ΩR
0 . (3.55)

Since Dp
0 X D̃ “ H, then we have in particular wξ0 P H2

0 pDp
0q and

∆wξ0 ` k2npwξ0 “ k2p1 ´ npqvξ0 in Dp
0.

Setting uξ0 :“ wξ0 ` vξ0 we observe that the couple puξ0 , vξ0q verifies (ITP1) with zero

data. Therefore, wξ0 |Dp
0

“ vξ0 |Dp
0

“ 0. The latter implies in particular that wp
ξ0

“ 0

by well posedness of the periodic direct scattering problem. On the other hand, since

np “ 1 in D̃, then wξ0 P H2
0 pD̃q and satisfies

∆wξ0 ` k2wξ0 ` k2pn´ 1qw̃ξ0 “ k2p1 ´ nqvξ0 in D̃. (3.56)

Since wξ0 P H2
0 pD̃q, then we have

ż

D̃
p∆wξ0 ` k2wξ0qθ “ 0 for all θ P H incpD̃q,

where H incpD̃q :“ tv P L2pD̃q{ ∆v ` k2v “ 0 in D̃u. Therefore, taking the L2 scalar

product of (3.56) with θ we get

ż

D̃
pk2p1 ´ nqvξ0 ` k2p1 ´ nqw̃ξ0qθ̄ “ 0 @ θ P H incpD̃q. (3.57)

From Theorem 18 we have that w̃ξ0 P H̃1pΩRq can be represented as

w̃ξ0pxq “ k2
ż

Dp

Φpx, yqp1 ´npqw̃ξ0pyqdy`k2
ż

D̃
Φpx, yqpp1 ´nqvξ0 ` p1 ´nqw̃ξ0qdy for x P ΩR.

Since y Ñ Φpx, yq P H incpD̃q for x R D̃, we obtain from (3.57) that

w̃ξ0pxq “

ż

Dp

k2p1 ´ npqw̃ξ0pyqΦpx, yqdy for x R D̃.
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Let us define w̌ξ0 P H2pD̃q by

w̌ξ0pxq :“
ż

Dp

k2p1 ´ npqw̃ξ0pyqΦpx, yqdy for x P D̃.

We set uξ0 :“ w̃ξ0 ` vξ0 . Then the couple puξ0 , vξ0q satisfies (ITP2) with pφ,ψq “

pw̌ξ0 , Bw̌ξ0

Bν
q. Moreover, since

∆w̌ξ0 ` k2w̌ξ0 “ 0 in D̃,

and (ITP2) is well posed then vξ0 ` w̌ξ0 “ 0 and w̃ξ0 ` vξ0 “ 0 in D̃. We then deduce

that w̃ξ0 “ w̌ξ0 in D̃. Consequently

w̃ξ0pxq “

ż

Dp

k2p1 ´ npqw̃ξ0pyqΦpx, yqdy for x P ΩR,

which implies that w̃ξ0 satisfies pPq with n “ np and v “ 0. We then conclude that

w̃ξ0 “ 0 by uniqueness of the solution to problem pPq with n “ np. Therefore vξ0 “ 0 in

D̃ which, together with vξ0 “ 0 in Dp prove the injectivety of Gξ0 .

Now, we prove the denseness of the range of Gξ0 . Let gξ0 P RpGξ0q
K, then

pGξ0vξ0 , gξ0qL2pD0q “ 0 @ vξ0 P H inc
ξ0 pDq.

Let fξ0 P L2
ξ0pΓRq and consider vξ0 “ Sξ0fξ0 . Using Lemma 24 we have

pTξ0pSξ0fξ0q,Sξ0gξ0q “ 0, @ fξ0 P L2
ξ0pΓRq. (3.58)

Moreover, using Lemma 28 we get

pTξ0pSξ0fξ0q,Sξ0gξ0q “ pTξ0pSξ0gξ0q,Sξ0fξ0q @ fξ0 P L2
ξ0pΓRq.

Therefore, (3.58) implies that

pGξ0pSξ0gξ0q, fξ0qL2pΓR
0 q “ 0, @ fξ0 P L2

ξ0pΓRq.
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Then Gξ0pSξ0gξ0q “ 0. The injectivety of Gξ0 gives that Sξ0gξ0 “ 0 and then gξ0 “ 0 by

Lemma 25.

Lemma 30. Under the same assumptions of Lemma 29 we have that

pz P D0q ðñ pΦξ0p¨, zq P RangepGξ0qq .

Proof. Let z P Dp. We consider vξ0 P H inc
ξ0 pDq such that vξ0 |D̃ “ ´Φξ0p¨, zq. Let

puξ0 , vξ0q P L2
ξ0pDpq ˆL2

ξ0pDpq be the solution of (ITP1) with pφ,ψq “ pΦξ0p¨, zq, BΦξ0p¨, zq

Bν
q.

We set

wp
ξ0

:“

$

’

’

&

’

’

%

uξ0 ´ vξ0 in Dp,

Φξ0p¨, zq in ΩRzDp.

We observe that wp
ξ0

P H2
ξ0pΩRq and satisfies (3.24). Moreover, let w̃ξ0 be the solution

of (3.25). Since pnp ´ nqpwp
ξ0

` vξ0q “ 0, then w̃ξ0 “ 0 and consequently Gξ0pvξ0q “

Φξ0p¨, zq.

Consider now the case where z P D̃. Since D̃XDp “ H Recall that the Green function

Φp¨, zq defined by (3.5) belongs to L2pΩRq [17]. Let u P H2
locpΩRq be the solution of

pPq with n “ np and v “ Φp¨, zq. Let us define Φnpp¨, zq :“ u` Φp¨, zq that satisfies in

particular, Φnpp¨, zq P L2pΩRq XH2
locpΩRzD̃q

∆Φnpp¨, zq ` k2npΦnpp¨, zq “ ´δz in ΩR

together with the upper going radiation condition (3.3). Consider vξ0 P H inc
ξ0 pDq such

that vξ0 |Dp “ 0 and let pũξ0 , vξ0q P L2pD̃q ˆ L2pD̃q be the solution of (ITP2) with

pφ,ψq “ pΦnpp¨, zq,
BΦnpp¨, zq

Bν
q. We set

w̃ξ0 :“

$

’

’

&

’

’

%

ũξ0 ´ vξ0 in D̃,

Φnpp¨, zq in ΩRzD̃.

We observe that w̃ξ0 P H2
locpΩRq satisfies p3.25q. Moreover, since vξ0 |Dp “ 0, then the

right hand side of the first equation of (3.24) vanishes and therefore the solution wp
ξ0

of
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(3.24) vanishes. Consequently

Gξ0pvξ0q “ J pΦnpp¨, zqqpξ0q “: Φnp,ξ0p¨, zq.

On the other hand, we consider uξ0 :“ J puqpξ0, ¨q P H1
ξ0pΩR

0 q. Then uξ0 satisfies (3.24)

with vξ0 “ Φξ0p¨, zq. We set

ṽξ0 :“

$

’

’

&

’

’

%

Φξ0p¨, zq in Dp,

´uξ0 in D̃.

Let wp
ξ0

and w̃ξ0 be respectively the solutions of (3.24) and (3.25) with vξ0 “ ṽξ0 . By

uniqueness of the solution of problem (3.24) we have wp
ξ0

“ uξ0 . Moreover, w̃ξ0 “ 0 since

k2pnp ´ nqpṽξ0 ` uξ0q “ 0. Therefore

Gξ0pṽξ0q “ uξ0 .

Consequently

Gξ0pvξ0 ´ ṽξ0q “ Φξ0p¨, zq.

Consider finally the case where z R D0. Assume that there exists vξ0 P H inc
ξ0 pDq such that

Gξ0pvξ0q “ Φξ0p¨, zq. Using the unique continuation principle we get wξ0 :“ wp
ξ0

` w̃p
ξ0

“

Φξ0p¨, zq in U0zD0 which is a contradiction since wξ0 P H2
ξ0pΩRzD0q while Φξ0p¨, zq R

H2
ξ0pΩRzD0q.

Let us define now the following norm for gξ0 P L2
ξ0pΓRq

Iξ0gξ0 :“
ˇ

ˇ

ˇ
pNp

ξ0
gξ0 , gξ0qL2pΓR

0 q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
pÑp

ξ0
gξ0 , gξ0qL2pΓR

0 q

ˇ

ˇ

ˇ
. (3.59)

From the factorizations (3.37) we have the equivalent expression

Iξ0gξ0 :“
ˇ

ˇ

ˇ
pT p

ξ0
Sξ0gξ0 ,Sξ0gξ0qL2

ξ0
pDpq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
pT̃ p

ξ0
Sξ0gξ0 ,Sξ0gξ0qL2

ξ0
pDq

ˇ

ˇ

ˇ
. (3.60)

Lemma 31. Assume that Assumption 15 and 27 hold. Assume in addition that ℜep1 ´

npq ě γ ą 0 in Dp and ℜepnp ´ nq ě γ1 ą 0 in D̃ or ℜep1 ´ npq ď ´γ ă 0 in Dp and
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ℜepnp ´ nq ď ´γ1 ă 0. Then, there exists a constant c ą 0 independent from ξ0 such

that

Iξ0gξ0 ě c
´

∥Sξ0gξ0∥2
L2pDp

0 q
` ∥Sξ0gξ0∥2

L2pD̃q

¯

@ gξ0 P L2
ξ0pΓRq,

with Iξ0gξ0 is the norm given by (3.59).

Proof. We prove the Lemma in the case ℜep1 ´ npq ě γ ą 0 in Dp and ℜepnp ´ nq ě

γ1 ą 0 in D̃. The other case can be proved in the same way. We shall use a contradiction

argument. We consider gξ0 P L2
ξ0pΓRq and we denote by vξ0 “ Sξ0gξ0 . Assume that there

exists a sequence vℓ
ξ0 such that

1
ℓ

∥vℓ
ξ0∥2

L2pD0q ě

ˇ

ˇ

ˇ
pT p

ξ0
vℓ

ξ0 , vℓ
ξ0qL2pDp

0 q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
pT̃ p

ξ0
vℓ

ξ0 , vℓ
ξ0qL2pD0q

ˇ

ˇ

ˇ
. (3.61)

We set v̂ℓ
ξ0 “

vℓ
ξ0

∥vℓ
ξ0

∥L2pD0q

. Let wp,ℓ
ξ0

be the solution of (3.11) and w̃p,ℓ
ξ0

“ J pw̃ℓ
ξ0qpξ0, ¨q

with vξ “ v̂ℓ
ξ0 and w̃ξ0 is the solution of (3.26). Since ∥v̂ℓ

ξ0∥L2pD0q is bounded, then we

can extract a subsequence (that we still denote the same) v̂ℓ
ξ0 that converge weakly to v̂ξ0

in L2pD0q. Moreover, wp,ℓ
ξ0

and w̃p,ℓ
ξ0

converge weakly in H1
ξ0pΩR

0 q and strongly in L2pD0q

respectively to some wp
ξ0

and w̃p
ξ0

P H1
ξ0pΩR

0 q. On the other hand, taking ψξ0 “ wp,ℓ
ξ0

in

the variational formulation (3.11) satisfied by wp,ℓ
ξ0

we obtain

ż

ΩR
0

p|∇wp,ℓ
ξ0

|2 ´ k2|wp,ℓ
ξ0

|2qdy “ ´k2
ż

Dp
0

p1 ´ npqpwp,ℓ
ξ0

` v̂ℓ
ξ0qwp,ℓ

ξ0
dy `

〈
TR

ξ0w
p,ℓ
ξ0

,wp,ℓ
ξ0

〉
ΓR

0
.

Therefore, decomposing pv̂ℓ
ξ0 `wp,ℓ

ξ0
qv̂ℓ

ξ0
“ |v̂ℓ

ξ0 `wp,ℓ
ξ0

|2 ´ pv̂ℓ
ξ0 `wp,ℓ

ξ0
qwp,ℓ

ξ0
we get

pT p
ξ0
v̂ℓ

ξ0 , v̂ℓ
ξ0qL2pDp

0 q “

ż

Dp
0

k2p1 ´ npq|v̂ℓ
ξ0 `wp,ℓ

ξ0
|2dy `

ż

ΩR
0

p|∇wp,ℓ
ξ0

|2 ´ k2|wp,ℓ
ξ0

|2qdy

´
〈
TR

ξ0w
p,ℓ
ξ0

,wp,ℓ
ξ0

〉
ΓR

0
.

Taking the imaginary part we obtain

ℑmpT p
ξ0
v̂ℓ

ξ0 , v̂ℓ
ξ0qL2pDp

0 q “ ´

ż

Dp
0

ℑmpnpq|v̂ℓ
ξ0 `wp,ℓ

ξ0
|2dy ´ ℑm

〈
TR

ξ0w
p,ℓ
ξ0

,wp,ℓ
ξ0

〉
ΓR

0
.

From (3.61) we have
ˇ

ˇ

ˇ
ℑmpT p

ξ0
v̂ℓ

ξ0 , v̂ℓ
ξ0qL2pDp

0 q

ˇ

ˇ

ˇ
ÝÑ
ℓÑ8

0.
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Therefore, using the fact that ℑm
〈
TR

ξ0w
p,ℓ
ξ0

,wp,ℓ
ξ0

〉
ΓR

0
ě 0,

ż

Dp
0

ℑmpnpq|v̂ℓ
ξ0 `wp,ℓ

ξ0
|2dy ÝÑ

ℓÑ8
0 ě

ż

Dp
0

ℑmpnpq|v̂ξ0 `wp
ξ0

|2dy.

Since ℑmpnpq ą 0 in O we obtain that up
ξ0

:“ v̂ξ0 ` wp
ξ0

“ 0 in O. Observing that

∆up
ξ0

` k2npu
p
ξ0

“ 0 in Dp
0, by unique continuation principle we deduce that up

ξ0
“ 0 in

Dp
0. Therefore, wp

ξ0
satisfies (3.24) with np “ 1 and v̂ξ0 “ 0, which implies that wp

ξ0

vanishes in ΩR
0 . Moreover, since wp,ℓ

ξ0
converges strongly to wp

ξ0
in L2pDp

0q, then we have

ż

Dp
0

k2p1 ´ npqwp,ℓ
ξ0
v̂ℓ

ξ0
dy ÝÑ

ż

Dp
0

k2p1 ´ npqwp
ξ0
v̂ξ0dy “ 0.

On the other hand, we have that

ˇ

ˇ

ˇ
pT p

ξ0
v̂ℓ

ξ0 , v̂ℓ
ξ0qL2pDp

0 q

ˇ

ˇ

ˇ
ě k2

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Dp
0

p1 ´ npq|v̂ℓ
ξ0 |2dy

ˇ

ˇ

ˇ

ˇ

ˇ

´ k2

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Dp
0

k2p1 ´ npqwp,ℓ
ξ0
v̂ℓ

ξ0
dy

ˇ

ˇ

ˇ

ˇ

ˇ

.

From the hypothesis ℜep1 ´ npq ě γ ą 0 in Dp we then have

lim
ℓÑ8

ˇ

ˇ

ˇ
pT p

ξ0
v̂ℓ

ξ0 , v̂ℓ
ξ0qL2pDp

0 q

ˇ

ˇ

ˇ
ě γ∥v̂ξ0∥2

L2pDp
0 q

.

Therefore v̂ξ0 |Dp
0

“ 0.

Now, taking ψ “ w̃ℓ
ξ0 in the variational formulation (3.26) satisfied by w̃ℓ

ξ0 we obtain

´k2
ż

D̃
pnp ´ nqpwp,ℓ

ξ0
` v̂ℓ

ξ0 ` w̃ℓ
ξ0qw̃ℓ

ξ0
dy “ k2

ż

ΩR

p1 ´ npq|w̃ℓ
ξ0 |2dy`

ż

ΩR

p|∇w̃ℓ
ξ0 |2 ´ k2|w̃ℓ

ξ0 |2qdy ´
〈
TRw̃ℓ

ξ0 , w̃ℓ
ξ0

〉
ΓR

. (3.62)

Moreover, taking ψ “ w̃p,ℓ
ξ0

in the variational formulation (3.35) satisfied by w̃p,ℓ
ξ0

we get

´k2
ż

D̃
pnp ´ nqpwp,ℓ

ξ0
` v̂ℓ

ξ0 ` w̃ℓ
ξ0qw̃p,ℓ

ξ0
dy “

ż

ΩR
0

p|∇w̃p,ℓ
ξ0

|2 ´ k2|w̃p,ℓ
ξ0

|2qdy

` k2
ż

Dp
0

p1 ´ npq|w̃p,ℓ
ξ0

|2dy ´
〈
TR

ξ0w̃
p,ℓ
ξ0

, w̃p,ℓ
ξ0

〉
ΓR

0
. (3.63)
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On the other hand, we have

pT̃ p
ξ0
v̂ℓ

ξ0 , v̂ℓ
ξ0qL2pD0q “

ż

ΩR
0

k2p1 ´ npqw̃p,ℓ
ξ0
v̂ℓ

ξ0
dy `

ż

ΩR
0

k2pnp ´ nq|wp,ℓ
ξ0

` v̂ℓ
ξ0 ` w̃ℓ

ξ0 |2dy

´

ż

ΩR

k2pnp ´ nqpwp,ℓ
ξ0

` v̂ℓ
ξ0 ` w̃ℓ

ξ0qw̃p,ℓ
ξ0
dy

´

ż

ΩR

k2pnp ´ nqpwp,ℓ
ξ0

` v̂ℓ
ξ0 ` w̃ℓ

ξ0qw̃ℓ
ξ0
dy.

Then, using (3.62) and (3.63) we obtain by taking the imaginary part

ℑmpT̃ p
ξ0
v̂ℓ

ξ0 , v̂ℓ
ξ0qL2pD0q “

ż

ΩR
0

k2ℑmpnp ´ nq|wp,ℓ
ξ0

` v̂ℓ
ξ0 ` w̃ℓ

ξ0 |2dy ´ k2
ż

ΩR

ℑmpnpq|w̃ℓ
ξ0 |2dy

` k2
ż

ΩR
0

ℑmpp1 ´ npqw̃p,ℓ
ξ0
v̂ℓ

ξ0
qdy ´

ż

ΩR

k2ℑmppnp ´ nqpwp,ℓ
ξ0

` v̂ℓ
ξ0 ` w̃ℓ

ξ0qwp,ℓ
ξ0

qdy

´ ℑm
〈
TRw̃ℓ

ξ0 , w̃ℓ
ξ0

〉
ΓR

. (3.64)

On the other hand, the application vξ0 ÝÑ p1 ´ npqw̃p
ξ0

with w̃p
ξ0

is solution of (3.34) is

compact from L2pD0q into L2pDp
0q using the compactness of the injection of H1

ξ0pΩR
0 q

into L2pDp
0q. Similarly, the application vξ0 ÝÑ pnp ´nqwp

ξ0
with wp

ξ0
is solution of (3.24)

is compact from L2pD0q into L2pD̃q. Therefore we have, using that v̂ξ0 |Dp
0

“ 0 and

wp
ξ0

“ 0,

k2
ż

ΩR
0

ℑmpp1 ´ npqw̃p,ℓ
ξ0
v̂ℓ

ξ0
qdy ÝÑ

ℓÑ8
0,

ż

ΩR

k2ℑmppnp ´ nqpwp,ℓ
ξ0

` v̂ℓ
ξ0 ` w̃ℓ

ξ0qwp,ℓ
ξ0

qdy ÝÑ
ℓÑ8

0. (3.65)

From (3.61) we have
ˇ

ˇ

ˇ
ℑmpT̃ p

ξ0
v̂ℓ

ξ0 , v̂ℓ
ξ0qL2pD0q

ˇ

ˇ

ˇ
ÝÑ
ℓÑ8

0. (3.66)

We observe that ℑm
〈
TRw̃ℓ

ξ0 , w̃ℓ
ξ0

〉
ΓR

ě 0. Consequently, using (3.64) , (3.65) and (3.66)

we get
ż

D̃
ℑmpn´ npq|wp,ℓ

ξ0
` v̂ℓ

ξ0 ` w̃ℓ
ξ0 |2dy `

ż

Dp

ℑmpnpq|w̃ℓ
ξ0 |2dy ÝÑ

ℓÑ8
0.

In particular, by Assumption 15 we deduce that
ż

O
ℑmpnpq|w̃ℓ

ξ0 |2dy ÝÑ
ℓÑ8

0. This implies

that w̃ξ0 “ 0 in O. We remark that wp
ξ0

“ 0 implies in particular that ∆w̃ξ0 ` k2nw̃ξ0 “ 0

in ΩRzD̃. Consequently w̃ξ0 “ 0 in ΩRzD̃ by unique continuation principle. This proves
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that the couple pw̃ξ0 ` v̂ξ0 , v̂ξ0q P L2pD̃q ˆL2pD̃q is solution of (ITP2) with zero data.

Hence w̃ξ0 “ 0 in D̃. On the other hand, the application vξ0 ÝÑ pnp ´ nqw̃ξ0 with w̃ξ0

is solution of (3.25) is compact from H inc
ξ0 pDq into L2pD̃q thanks to the compactness of

the injection of H1pD̃q into L2pD̃q. Therefore

ż

Dp
0

k2p1 ´ npqw̃p,ℓ
ξ0
v̂ℓ

ξ0
`

ż

D̃
k2pnp ´ nqpwp,ℓ

ξ0
` w̃ℓ

ξ0qv̂ℓ
ξ0
dyÝÑ0.

Moreover, we have

ˇ

ˇ

ˇ
pT̃ p

ξ0
v̂ℓ

ξ0 , v̂ℓ
ξ0qL2pD0q

ˇ

ˇ

ˇ
ě

ˇ

ˇ

ˇ

ˇ

ż

D̃
k2pnp ´ nq|v̂ℓ

ξ0 |2
ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Dp
0

k2p1 ´ npqw̃p,ℓ
ξ0
v̂ℓ

ξ0

`

ż

D̃
k2pnp ´ nqpwp,ℓ

ξ0
` w̃ℓ

ξ0qv̂ℓ
ξ0
dy

ˇ

ˇ

ˇ

ˇ

.

Using the hypothesis ℜepnp ´ nq ě γ1 ą 0 in D̃ we conclude

0 “ lim
ℓÑ8

ˇ

ˇ

ˇ
pT̃ p

ξ0
v̂ℓ

ξ0 , v̂ℓ
ξ0q

ˇ

ˇ

ˇ
ě γ1∥v̂ξ0∥2

L2pD̃q
,

which gives v̂ξ0 “ 0 in D̃. Combined with the result above we have that v̂ξ0 “ 0 in D0

which contradicts with ∥v̂ξ0∥L2pD0q “ 1.

3.3.3 Application of the Generalized Linear Sampling Method (GLSM)

We present the free noise version of the GLSM. For fixed ξ0 P I, introducing the func-

tional Jα
ξ0 : L2

ξ0pΓRq ÝÑ R given as

Jα
ξ0pϕ; gξ0q “ αIξ0pgξ0q ` ∥pNp

ξ0
` Ñp

ξ0
qgξ0 ´ ϕ∥2,

We denote by jα
ξ0pϕq “ inf

gξ0 PL2
ξ0

pΓRq
Jα

ξ0pϕ; gξ0q. Moreover, let cpαq ą 0 verifying cpαq

α
Ñ 0

as α Ñ 0.

Theorem 32. Assume that Assumptions 26 and 27 hold. Assume in addition that the

hypothesis of Theorem 19 and Lemma 31 hold. Consider z P ΩR, and let gα
ξ0 P L2

ξ0pΓRq

such that

Jα
ξ0pΦξ0p¨, zq, gα

ξ0pzqq ď jα
ξ0pΦξ0p¨, zqq ` cpαq,
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then

z P D0 ðñ lim
αÑ0

Iξ0pgα
ξ0pzqq ă 8.

Moreover, if z P D0 then Sξ0g
α
ξ0 |D̃ converges to some ṽ in L2pD̃q and Sξ0g

α
ξ0 |Dp

0
converges

to some vξ0 in L2pDp
0q where ṽ is solution of (ITP2) and vξ0 is solution of (ITP1).

Proof. The proof of this theorem is an application of the abstract framework of GLSM

given by Theorem 2.7 in [11] and the series of Lemmas (24)-(31). Lemma 24, Lemma 25

and Lemma 29 prove that the operator Nξ0 “ Np
ξ0

` Ñp
ξ0

can be factorized as

Nξ0 “ Gξ0Sξ0 “ S˚
ξ0Tξ0Sξ0 , (3.67)

and has dense range. Moreover, we need to verify that the norm Iξ0gξ0 is an equivalent

norm to ∥Sξ0gξ0∥L2pD0q for all gξ0 P L2
ξ0pΓRq. Theorem 19, Theorem 22 and the expression

of the operator Tξ0 prove the existence of a constant c1 ą 0 (independent from ξ0) such

that

Iξ0gξ0 ď c1

´

∥Sξ0gξ0∥2
L2pDp

0 q
` ∥Sξ0gξ0∥2

L2pD̃q

¯

@ gξ0 P L2
ξ0pΓRq. (3.68)

Therefore, Lemma 31 and (3.68) prove this norm equivalence. The results of the theorem

are then a straightforward application of Theorem 2.7 in [11] and Lemma 30.

3.4 Inverse problem for non-periodic incident fields

3.4.1 Setting of the inverse problem

Let y P ΓR. One can deduce from (3.81)-(3.85) that Φp¨, yq P L̃2pΩRq (see also [18, 58]).

We then define usp¨, yq P H̃1
locpΩRq the scattered field solution of pPq with vp¨, yq “

Φp¨, yq. We introduce the near field operator N : L̃2pΓRq Ñ L̃2pΓRq as

Ngpxq “

ż

ΓR

uspx, yqgpyqdspyq.

Define S : L̃2pΓRq ÝÑ L̃2pDq as

Sgpxq “

ż

ΓR

Φpx, yqgpyqdspyq.
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Then, the operator N can be decomposed as

N “ GS,

where G : L̃2pDq ÝÑ L̃2pΓRq is the operator defined by

Gpvq “ w|ΓR ,

with w being the solution of pPq.

Link between N and ξ-quasi periodic solutions: For ξ P I, we denote by gξ :“

pJ gqpξ, ¨q and we observe that

Sgξ “ Sξgξpxq, (3.69)

with Sξ being the operator given by (3.31), in fact

Sgξpxq “

ż

R

Φpx, py1,Rqqgξpy1,Rqdspy1q “
ÿ

lPZ

ż 2πpl`1q

2πl
Φpx, py1,Rqqgξpy1,Rqdspy1q,

“
ÿ

lPZ

ż 2π

0
Φpx, py1 ` 2πl,Rqqgξpy1 ` 2πlqdspy1q “

ż

ΓR
0

Φξpy,xqgξpyqdspyq,

“ Sξgξpxq,

therefore
ż

I
Sξgξpxqdξ “

ż

ΓR

Φpx, yq

ż

I
gξpyqdξ “ Sgpxq. (3.70)

Let Ñξ : L2
ξpΓRq ÝÑ L2

locpΓRq be the operator defined by

Ñξgξpxq :“
ż

ΓR
0

gξpyqus,p
ξ px, yqdspyq `

ż

ΓR
0

gξpyqũs
ξpx, yqdspyq,

with us,p
ξ and ũs

ξ are respectively the solutions of (3.24) and (3.25) with vξ “ Φξpy, ¨q.

Then

ż

I
pÑξgξqpxqdξ “

ż

I

ż

ΓR
0

gξpyqus,p
ξ px, yqdspyq `

ż

I

ż

ΓR
0

gξpyqũs
ξpx, yqdspyq

“

ż

I
wp

ξ pxqdξ `

ż

I
w̃ξpxqdξ, (3.71)
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with wp
ξ and w̃ξ are respectively solutions of (3.24) and (3.25) with vξ “ Sξgξ. We denote

by

wppxq :“
ż

I
wp

ξ pxqdξ and w̃pxq :“
ż

I
w̃ξpxqdξ. (3.72)

Using (3.70) we observe that wp satisfies pPq with n “ np and v “ Sg. Moreover, w̃

satisfies
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∆w̃` k2npw̃ “ k2pnp ´ nqpwp ` v ` w̃q in ΩR,

w̃ “ 0 on Γ0,
Bw̃

Bx2
p¨,Rq “ TRpw̃|ΓRq on ΓR,

(3.73)

Therefore, w :“ wp ` w̃ satisfies pPq with v “ Sg. Hence, we can equivalently define the

operator N : L̃2pΓRq ÝÑ L̃2pΓRq as

Ngpxq “

ż

I
pÑξgξqpxqdξ. (3.74)

We finally observe that Nξgξ is not equal in general to J pNgqpξq since the latter corre-

sponds with the scattered field wξ P H1
ξ pΩR

0 q satisfying

∆wξ ` k2npwξ “ k2p1 ´ npqvξ ` k2pnp ´ nqpw` vq in ΩR
0 ,

where w satisfies pPq with v “ Sg and vξ “ Sξgξ. This equation is different from (3.55)

that corresponds with the scattered field associated with Nξgξ. The main difference

comes from the term k2pnp ´ nqv in the right hand side.

3.4.2 Some properties of the operator S

The goal of this section is to prove that the operator S : L̃2pΓRq ÝÑ L2pDq is injective

and characterize its range. The main difficulty here comes from the required continuity

with respect to the Floquet-Bloch variable. This is why we first prove the uniform

continuity of ξ ÝÑ Sξ formalized in the technical Lemma 33.

Let χ P C0pIq and ψ P L2
7 pΓRq. We consider g P L̃2pΓRq such that

gξpxq :“ J pgqpξ,xq “ eiξ¨x1ψpxqχpξq, for pξ,xq P I ˆ ΓR
0 . (3.75)
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Denoting
pψj “

1
2π

ż 2π

0
e´ijy1ψpy1qdy1,

we observe that the operator Sξ given by (3.31) verifies for x2 ă R

Sξgξpxq “

ż 2π

0

i

4π
ÿ

jPZ

eiαξpjqpy1´x1qθξpj,R,x2qgξpy1qdy1,

“
i

4π
ÿ

jPZ

e´iαξpjqx1θξpj,R,x2q

ż 2π

0
e´iαξpjqy1gξpy1qdy1.

Therefore,

Sξgξpxq “ ´
i

2
ÿ

jPZ

pψjχpξqθξpj,R,x2qeiαξpjqx1 . (3.76)

Let 0 ă R0 ă R, we define S̃ξ : L2
7 pΓRq ÝÑ L2

7 pΩR0q as

S̃ξψ :“ e´iξ¨x1Sξpeiξ¨x1ψq. (3.77)

Using (3.76) we have

S̃ξψpxq “ ´
i

2
ÿ

jPZ

pψjθξpj,R,x2qeijx1 . (3.78)

Lemma 33. For all ϵ ą 0, there exists δ ą 0 such that for |ξ1 ´ ξ| ă δ we have

›

›S̃ξψ ´ S̃ξ1ψ
›

›

2
L2pΩR0

0 q
ď cϵ2

›

›S̃ξψ
›

›

2
L2pΩR0

0 q
@ ψ P L2

7 pΓRq, (3.79)

where c ą 0 is a constant independent of ξ and ξ1 P I.

Proof. Let ψ P L2
7 pΓRq. From (3.76) we have

›

›S̃ξψ
›

›

2
L2pΩR0

0 q
“
π

2
ÿ

jPZ

| pψj |2
ż R0

0
|θξpj,R,x2q|2dx2,

›

›pS̃ξ ´ S̃ξ1qψ
›

›

2
L2pΩR0

0 q
“
π

2
ÿ

jPZ

| pψj |2
ż R0

0
|θξpj,R,x2q ´ θξ1pj,R,x2q|2dx2.

Therefore, to prove (3.79) we prove for all ϵ ą 0 the existence of a constant c ą 0

independent from ξ and ξ1 such that

ż R0

0
|θξpj,R,x2q ´ θξ1pj,R,x2q|2dx2 ď cϵ2

ż R0

0
|θξpj,R,x2q|2dx2.
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Consider first j P Z such that k2 ě α2
ξpjq, i.e βξpjq “

a

k2 ´ |ξ ` j|2. There exists only

a finite number of j for which this holds. Then

|θξpj,R,x2q|2 “
|eiβξpjqR|2

|βξpjq|2
|2 sinpβξpjqx2q|2 “

2
|βξpjq|2

|1 ´ cosp2βξpjqx2q|.

For βξpjq “ 0, we have

lim
βξpjqÑ0

ż R0

0
|θξpj,R,x2q|2dx2 “

4R3
0

3 “: c1, (3.80)

while if βξpjq ą 0, we have

ż R0

0
|θξpj,R,x2q|2dx2 “ 8R3

0

„

y ´ sinpyq

y3

ȷ

, (3.81)

with y “ 2R0|βξpjq|. Since y ÝÑ
y ´ sinpyq

y3 ą 0 for y ě 0 and since βξpjq ą 0 is

bounded for j P Z such that k2 ě α2
ξpjq, then there exists a constant c1

1 ą 0 independent

of ξ and j such that
ż R0

0
|θξpj,R,x2q|2dx2 ě c1

1. (3.82)

Consider ϵ ą 0, since θξpj,R,x2q is continuous on the compact set Ī. Then there exists

δ ą 0 such that for |ξ1 ´ ξ| ă δ we have

|θξ1pj,R,x2q ´ θξpj,R,x2q| ď ϵ. (3.83)

Consequently, using (3.80)-(3.82) we get

ż R0

0
|θξ1pj,R,x2q ´ θξpj,R,x2q|2dy2 ď c2

1R0ϵ

ż R0

0
|θξpj,R,x2q|2dx2, (3.84)

with c2
1 :“ 1{ minpc1, c1

1q.

Consider the case where k2 ă α2
ξpjq for which βξpjq “ i

a

|ξ ` j|2 ´ k2. Assume in

addition that |βξpjq| ď 1. There exists only a finite number of j for which this holds.

We have

|θξpj,R,x2q|2 “
e´2|βξpjq|R

|βξpjq|2
sinhp|βξpjq|x2q2.
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Therefore

ż R0

0
|θξpj,R,x2q|2dx2 “

2R0e
´2|βξpjq|R

|βξpjq|2

„

sinhp2|βξpjq|R0q

2R0|βξpjq|
´ 1

ȷ

ě
4R3

0
3 e´2|βξpjq|R,

(3.85)

where we used the inequality sinhpxq

x
´ 1 ě

x2

6 for x ě 0. Since |βξpjq| ď 1, then we get

ż R0

0
|θξpj,R,x2q|2dx2 ě

4R3
0

3 e´2R “: c1
2. (3.86)

Consider ϵ ą 0, since θξpj,R,x2q is continuous on the compact set Ī, then there exists

δ ą 0 such that for |ξ1 ´ ξ| ă δ we have

ż R0

0
|θξ1pj,R,x2q ´ θξpj,R,x2q|2dy2 ď c1

2R0ϵ

ż R0

0
|θξpj,R,x2q|2dx2. (3.87)

Consider now k2 ď α2
ξpjq such that |βξpjq| ą 1. Let δ ě 0, 0 ď δ0 ă δ such that

ξ1 :“ ξ ` δ0, then we have

pθξ`δ0 ´ θξqpj,R,x2q “

ż ξ`δ0

ξ

Bθξ̃

Bξ̃
dξ̃. (3.88)

By the Cauchy-Schwartz inequality we get

ż R0

0
|θξpj,R,x2q ´ θξ`δ0pj,R,x2q|2dx2 ď δ0

ż ξ`δ0

ξ

ˆ
ż R0

0
|
Bθξ̃

Bξ̃
pj,R,x2q|2dx2

˙

dξ̃. (3.89)

On the other hand, let us denote by γ0 :“ 2ipξ ` jq
e´|βξpjq|R

|βξpjq|2
and γ1 :“ R`

1
|βξpjq|

, we

have that
Bθξ

Bξ
pj,R,x2q “ γ0 rγ1 sinhp|βξpjq|x2q ´ x2 coshp|βξpjq|x2qs (3.90)

Using that sinhp2yq “ 2 sinhpyq coshpyq, cosh2pyq ´ sinh2pyq “ 1 and 2 sinh2pyq “

coshp2yq ´ 1 for all y P R, we get

ˇ

ˇ

ˇ

ˇ

Bθξ

Bξ
pj,R,x2q

ˇ

ˇ

ˇ

ˇ

2
“ |γ0|2

„

p
γ2

1 ` x2
2

2 q coshp2|βξpjq|x2q ´ γ1x2 sinhp2|βξpjq|x2q ´
γ2

1
2 `

x2
2

2

ȷ

.

(3.91)
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Therefore

ż R0

0

ˇ

ˇ

ˇ

ˇ

Bθξ

Bξ
pj,R,x2q

ˇ

ˇ

ˇ

ˇ

2
dx2 “ |γ0|2

„

R2
0
sinhp2|βξpjq|R0q

4|βξpjq|
´ pγ1 `

1
2|βξpjq|

q
R0 coshp2|βξpjq|R0q

2|βξpjq|

`
γ2

1 sinhp2|βξpjq|R0q

4|βξpjq|
´
γ2

1R0
2 `

R3
0

6

`
1

4|βξpjq|2
pγ1 `

1
2|βξpjq|

q sinhp2|βξpjq|R0q

ȷ

.

In relation to (3.85) and the previous identity we consider the following functions defined

for x P R such that x ą 1 as

fpxq :“
2e´2xR

x2

„

sinhp2xR0q

2x ´R0

ȷ

, (3.92)

gpxq :“ 4
ˇ

ˇ

ˇ

ˇ

ˇ

?
x2 ` k2e´xR

x2

ˇ

ˇ

ˇ

ˇ

ˇ

2
„

R2
0 sinhp2xR0q

4x ´ pR`
3

2xq
R0 coshp2xR0q

2x

`
pR` 1

xq2 sinhp2xR0q

4x ´ pR`
1
x

q2R0
2 `

R3
0

6 `
1

4x2 pR`
3

2xq sinhp2xR0q

ff

,

and we prove the existence of a constant α ą 0 such that gpxq ă αfpxq for all x ą 1.

Let M P R sufficiently large and consider first the case 1 ă x ď M . Since f and g are

continuous functions and fpxq ą 0, then we have

gpxq ă α1fpxq for 1 ă x ď M , (3.93)

with α1 :“
max

1ďxďM
gpxq

min
1ďxďM

fpxq
ą 0. For the case x ą M , we compare f and g at infinity. We

have

gpxq “
px2 ` k2qe´2xR

2x4

ˆ

e2xR0

x

˙„

pR0´Rq2 `O

ˆ

1
x

˙ȷ

,

fpxq “
e´2xR

2x2

ˆ

e2xR0

x

˙„

1 `O

ˆ

1
x

˙ȷ

.

Therefore gpxq

fpxq
is equivalent to pR´R0q2 at infinity. Using (3.93) we deduce the existence

of a constant α ą 0 such that

gpxq ď αfpxq, for all x ą 1,
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which implies

gp|βξpjq|q ď αfp|βξpjq|q,

for all j P Z such that |βξpjq| ą 1. Then we deduce that

ż R0

0
|
Bθξ

Bξ
pj,R,x2q|2dx2 ď α

ż R0

0
|θξpj,R,x2q|2dx2. (3.94)

Therefore, using (3.89)-(3.94) we have

ż R0

0
|θξpj,R,x2q ´ θξ`δ0pj,R,x2q|2dx2 ď δ0α

ż ξ`δ0

ξ

ˆ
ż R0

0
|θξ̃pj,R,x2q|2dx2

˙

dξ̃. (3.95)

On the other hand, we show that x ÝÑ fpxq decreases in R`. Indeed , taking y “ 2xR0

and using that sinhpyq “

8
ÿ

k“0

y2k`1

p2k ` 1q!
we get

f 1pyq “ R3
0e

´ R
R0

y
hpyq,

with

hpyq :“
8
ÿ

k“0

y2k

p2k ` 3q!

ˆ

´R

R0
`

2k ` 1
p2k ` 4qp2k ` 5q

y

˙

.

Since coshpyq :“
8
ÿ

k“0

y2k

2k!
we observe that

y3hpyq ď ´

8
ÿ

k“0

y2k`3

p2k ` 3q!
`

8
ÿ

k“0

y2k`4

p2k ` 4q!
“ ´ sinhpyq ` y ` coshpyq ´ 1 ´

y2

2 ď 0

for y ě 0. Therefore f 1pyq ď 0 for all y ě 0. Since ξ ÝÑ |βξpjq| increases in Ī

and x ÝÑ fpxq decreases in R` we infer that ξ Ñ

ż R0

0
|θξpj,R,x2q|dx2 decreases in Ī.

Therefore, from (3.95) we finally obtain that

ż R0

0
|θξpj,R,x2q ´ θξ`δ0pj,R,x2q|2dx2 ď αδ2

0

ˆ
ż R0

0
|θξpj,R,x2q|2dx2

˙

,

which ends the proof.
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Lemma 34. The operator S : L̃2pΓRq ÝÑ L̃2pDq is injective. The closure of its range

is

H incpDq :“
␣

v P L2pDq; v|Dp P L̃2pDpq; ∆v ` k2v “ 0 in D
(

.

Proof. Let g P L̃2pΓRq such that Sg “ 0 in D. Using the unique continuation principle

we obtain Sg “ 0 in ΩR. Using the continuity and regularity of single layer potentials

we have that S P H2
locpURq and verifies

$

’

’

&

’

’

%

∆Sg ` k2Sg “ 0 in UR,

Sg “ 0 on ΓR,

and the upper going radiation condition (3.3) with ΓR replaced by ΓR1 with R1 ą R.

Therefore Sg “ 0 in UR. Using the jump relations for the normal derivative of S we

obtain g “ 0 which proves the injectivety of S.

We prove now the denseness of the range of S. Let v P L̃2pDq and we denote by

vξ :“ pJ vqpξ, ¨q. Fix ϵ ą 0 and consider a uniform partition of I into sub-domains

IN
j :“ N

Y
j“1

Ij of size δ “
1
N

. Using Lemma 25 we have, for all ξN
j P IN

j there exists

ψ̃N
j :“ e´iξN

j ¨xψξN
j

P L2
7 pΓRq such that

∥S̃ξN
j
ψ̃ξN

j
´ ṽξN

j
∥

L2pΩR0
0 q

ď
ϵ

4, (3.96)

with ṽξN
j

“ e´iξN
j ¨xvξN

j
, where S̃ξ is defined by (3.77). We introduce the hat functions

χN
j P C0pIq that are affine on each domain Il and verifies χN

j pξlq “ δjl. We then define

ψ̃N
ξ :“

ÿ

1ďjďN

ψ̃ξN
j
χN

j pξq, v̂N
ξ :“

ÿ

1ďjďN

ṽξN
j
χN

j pξq, ŜN
ξ :“

ÿ

1ďjďN

pS̃ξN
j
ψ̃ξN

j
qχN

j pξq,

for 1 ď j ď N . Then, we have

∥S̃ξψ̃
N
ξ ´ ṽξ∥

L2pΩR0
0 qq

ď ∥S̃ξψ̃
N
ξ ´ ŜN

ξ ∥
L2pΩR0

0 qq
` ∥ŜN

ξ ´ v̂N
ξ ∥

L2pΩR0
0 qq

` ∥v̂N
ξ ´ ṽξ∥

L2pΩR0
0 qq

.

(3.97)
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Since S̃ξpψ̃ξN
j
χN

j pξqq “ pS̃ξψ̃ξN
j

qχN
j pξq, then the first term in the right hand side of (3.97)

verifies

S̃ξψ̃ξN
j

´ ŜN
ξ “

ÿ

1ďjďN

pS̃ξψ̃ξN
j

´ S̃ξN
j
ψ̃ξN

j
qχN

j pξq.

Therefore

∥S̃ξψ̃
N
ξ ´ ŜN

ξ ∥
L2pΩR0

0 qq
ď sup

1ďjďN
sup

ξPrξN
j´1,ξN

j`1s

∥S̃ξψ̃ξN
j

´ S̃ξN
j
ψ̃ξN

j
∥

L2pΩR0
0 qq

.

Consider ϵ1 :“
ϵ

4
?
c

˜

sup
ξPI

∥vξ∥
L2pΩR0

0 q
` 1

¸ , using Lemma 33 we chose δ ą 0 for which

›

›

›
S̃ξψ̃ξN

j
´ S̃ξN

j
ψ̃ξN

j

›

›

›

L2pΩR0
0 q

ď
?
cϵ1∥S̃ξN

j
ψ̃ξN

j
∥

L2pΩR0
0 q

,

therefore

sup
1ďjďN

sup
ξPrξN

j´1,ξN
j`1s

›

›

›
S̃ξψ̃

N
ξ ´ S̃ξN

j
ψξN

j

›

›

›

L2
7

pΩR0
0 qq

ď
?
cϵ1

˜

sup
ξPI

∥vξ∥
L2pΩR0

0 q
` 1

¸

“
ϵ

4.

(3.98)

On the other hand, using (3.96) we deduce that the second term in the right hand side

of (3.97) verifies

∥ŜN
ξ ´ v̂N

ξ ∥
L2pΩR0

0 q
“

›

›

›

›

›

ÿ

1ďjďN

pS̃ξN
j
ψ̃ξN

j
´ ṽξN

j
qχN

j pξq

›

›

›

›

›

L2pΩR0
0 q

ď
ϵ

4. (3.99)

Moreover, since vξ P C0
7 pI,L2

ξpDqq then N could have been chosen from the beginning

sufficiently large so that

∥v̂N
ξ ´ ṽξ∥

L2pΩR0
0 q

ď
ϵ

2. (3.100)

Finally, using (3.98), (3.99) and (3.100) we get

sup
ξPI

∥S̃ξψ̃
N
ξ ´ ṽξ∥

L2pΩR0
0 q

“ sup
1ďjďN

sup
ξPrξN

j´1,ξN
j`1s

∥S̃ξψ̃
N
ξ ´ ṽξ∥

L2pΩR0
0 q

ď ϵ, (3.101)

for sufficiently large N . This proves the denseness of the range of the operator S.

For the analysis below we need to assume the well posedness of the following Interior
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Transmission Problem.

pITP3q: Seek pu, vq P L̃2pDq ˆ L̃2pDq such that pu´ vq P H̃2pDq satisfying

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

∆u` k2nu “ 0 in D

∆v ` k2v “ 0 in D

u´ v “ φ on BD

Bpu´ vq

Bν
“ ψ on BD

(3.102)

for given pφ,ψq P H̃3{2pBDq ˆ H̃1{2pBDq. This problem has been extensively studied

in the literature in the case of bounded domains D see for instance [11]. Indeed the

results for bounded domain D extend easily to the case where D is unbounded but is the

(infinite) union of disjoint bounded domains. This corresponds for instance to our case

when Dp is the union of disjoint bounded domains. Consider the following assumption

Assumption 35. Assume that k, np and n are such as pITP3q is well posed.

Lemma 36. Assume that Assumptions 15 and 35 hold. Then the operator G given by

p3.69q is injective with dense range. Moreover,

pz P Dq ðñ pΦp¨, zq P RangepGqq .

Proof. consider v P H incpDq such that Gpvq “ 0, i.e

w “ 0 on ΓR,

with w P H2
locpΩRq being the solution of pPq. Therefore, w P H2

locpURq and verifies

$

’

’

&

’

’

%

∆w` k2w “ 0 in UR,

w “ 0 on ΓR,

and the upper going radiation condition (3.3) with ΓR replaced by ΓR1 with R1 ą R.

Then w “ 0 in UR. Using the unique continuation principle we obtain that w “ 0 in

ΩRzD. Setting u :“ w ` v we observe that the couple pu, vq verifies pITP3q with zero



80 Chapter 3. Sampling methods for imaging a periodic layer and its defects

data. Therefore we deduce that v “ 0 and then the injectivety of G.

Now we prove the denseness of the range of G. Let g P RpGq
K, then

pGpvq, gqL2pDq “ 0 for all v P H incpDq.

Let f P L̃2pΓRq and consider v “ Sf . We then have

pGpSfq, gqL2pΓRq “ 0 for all f P L̃2pΓRq.

On the other hand, consider wpfq and wpgq solution of pPq associated respectively to

v “ Sf and v “ Sg. Using similar arguments as in the proof of Lemma 2.5 one can

prove that

ż

D
p1 ´ nqwpfqSgdy “

ż

D
p1 ´ nqwpgqSfdx. (3.103)

Therefore, from Theorem 18 and (3.103) we get

pGpSfq, gqL2pΓRq “

ż

D
k2p1 ´ nqpwpfq ` SfqSgdy “

ż

D
k2p1 ´ nqpwpgq ` SgqSfdy

“ pGpSgq, fqL2pΓRq.

Consequently

pGpSgq, fqL2pΓRq “ 0 for all f P L̃2pΓRq

which implies that GpSgq “ 0. The injectivety of G gives that Sg “ 0 and then g “ 0

by Lemma 34.

Consider z P D. We have that χΦp¨, zq P L̃2pDq, where χ is a regular cutoff function that

vanishes in a neighborhood of z. Since Φp¨, zq satisfies the Helmholtz equation outside

z, elliptic regularity results applied to each component of Dp separately implies that

χΦ P H̃2pDq. Trace theorems then imply pΦp¨, zq, BΦp¨, zq

Bν
q P H̃3{2pBDq ˆ H̃1{2pBDq.

We then consider pu, vq P L̃2pDq ˆ L̃2pDq to be the solution of (ITP3) with pφ,ψq “
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pΦp¨, zq, BΦp¨, zq

Bν
q. We set

w :“

$

’

’

&

’

’

%

u´ v in D

Φp¨, zq in ΩRzD.

We observe that w P H2
locpΩRq and satisfies pPq. Hence Gpvq “ Φp¨, zq.

Consider now the case where z P ΩRzD. Assume that there exists v P H incpDq such

that Gpvq “ Φp¨, zq. By unique continuation principle we obtain that w “ Φp¨, zq in

ΩRzD, which is a contradiction since w P H2
locpΩRzDq while Φp¨, zq R H2

locpΩRzDq.

3.4.3 Application of the Generalized Linear Sampling Method (GLSM)

Let us consider the functional Jαpϕ, ¨q : L̃2pΓRq ÝÑ R

Jαpϕ; gq :“ αǏpgq ` ∥Ng ´ ϕ∥2, for all g P L̃2pΓRq

where

Ǐpgq :“ sup
ξ0PI

Iξ0pJ gpξ0, ¨qq. (3.104)

We denote by jαpϕq “ inf
gPL̃2pΓRq

Jαpϕ; gq. Let cpαq ą 0 verifying cpαq

α
Ñ 0 as α Ñ 0

Theorem 37. Assume that Assumptions 15 and 35 hold. Assume in addition that the

hypothesis of Lemma 31 holds. Consider z P ΩR, and let gα P L̃2pΓRq such that

JαpΦp¨, zq, gαpzqq ď jαpΦp¨, zqq ` cpαq,

then

z P D ðñ lim
αÑ0

Ǐpgαpzqq ă 8. (3.105)

Moreover, if z P D then Sgα|D converges to some v in L2pDq where v is solution of

(ITP3).

Proof. The proof of this theorem is an application of the abstract framework of GLSM

given by Theorem 2.7 in [11] and Lemma 34, Lemma 36 and Lemma 31. Lemma 34 and
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Lemma 36 prove that the operator

N “ GS,

has dense range. Moreover, we need to verify that the norm Ǐg is an equivalent norm

to sup
ξPI

∥SJ gpξ, ¨q∥L2pD0q for all g P L̃2pΓRq. Lemma 31 and Theorem 32 prove this

norm equivalence. The results of the theorem are then a straightforward application of

Theorem 2.7 in [11] and Lemma 36.

3.5 Numerical examples

In this section we will test numerically the results of the Theorem 32.

Numerical scheme: Instead of solving the near field equation point-wise, we equiva-

lently solve the equation in the Fourier domain. We are then led to construct numerically

for a grid of sampling points z a nearby solution satisfying

Ňξ0g
α
ξ0pℓ, zq » yΦξ0pℓ, zq,

where

Ňξ0gξ0pℓ, zq :“
ÿ

ℓPZ

gα
ξ0pℓqp pwp

ξ0
` pw̃p

ξ0
qpℓ, zq,

with pwp
ξ0

and pw̃p
ξ0

are respectively the Rayleigh sequences of wp
ξ solution of (3.24) and w̃p

ξ0

solution of (3.34), and yΦξ0pℓ, zq is the Rayleigh coefficient of the ξ0-quasi-periodic green

function given by (3.28). We use the Tikhonov regularization to determine a nearby

solution

pα` Ň˚
ξ0Ňξ0qgα

ξ0pzq “ Ň˚
ξ0pyΦξ0pℓ, zqq. (3.106)

where α is a constant determined by Morozov’s principle and Ň˚
ξ0 is the adjoint of Ňξ0 .

Let pe1, e2q be the canonical basis of R2. We denote by Nx and Ny respectively the

number of discretization points with respect to e1 and e2 directions. We consider in

practice the period ΩR
0 “ r´π,πs ˆ r0,Rs. Let XN be the matrix of size Nx ˆ Nx

containing the discretization points of the interval s ´ π,πr and by YN be the matrix of
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size Ny ˆNy containing the discretization points of the interval s0,Rr. Moreover, for

ϵ “ 10´10 we consider a uniform partition to the period r´π,π ´ ϵs into sub-domains

Y j
1 :“ ryj

1, yj`1
1 s of size ∆x :“

λ

10, with λ :“
2π
|k|

. We denote by N inc “
2π
∆x

the number

of discretization points pyj
1q and we let

Yj :“ tyj :“ pyj
1,Rq; 1 ď j ď N incu, (3.107)

the set of point sources and we define by Linc :“ t´NL, ¨ ¨ ¨ ,NLu the set of the Rayleigh

coefficients where NL :“ r
1
2

ˆ

r
2π
∆x

s ´ 1
˙

s such that the number of components of Linc is

equal to N inc. We then consider for every 1 ď j ď N inc and for ξ0 fixed

vj
ξ0

“ Φξ0pyj
1, pXN ,YN qq

“ ´
i

4π
ÿ

jPZ

e´iαξ0 pjqpyj
1´XN q

«

e´iβξ0 pjqR

˜

eiβξ0 pjqYN ´ e´iβξ0 pjqYN

βξ0pjq

¸ff

, (3.108)

and use the numerical method presented in [29] to solve the scattering problem and

generate for all 1 ď j ď N inc the solution

pwp
ξ0

qj ` pw̃p
ξ0

qj ,

where pwp
ξ0

qj is the solution of (3.24) and pw̃p
ξ0

qj “ J pw̃ξ0qjpξ0, ¨q with pw̃ξ0qj being the

solution of (3.25) with vξ0 “ vj
ξ0

. The discretized near field operator is then given by the

matrix of size N inc ˆN inc defined as

Ňξ0pj, ℓq :“ pp pwp
ξ0

qj ` p pw̃p
ξ0

qjqpℓq, for 1 ď j ď N inc and ℓ P Linc. (3.109)

We consider a complex-valued random matrix K of size N inc ˆN inc such that the real

and the imaginary parts are in r´1, 1s2. The discretized noisy data are then given by

Ň δ
ξ0pj, ℓq :“ Ňξ0pj, ℓqp1 ` δKpj, ℓqq @ 1 ď j ď N inc and ℓ P Linc, (3.110)
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where δ being the level of noise fixed at 1%. We use the following indicator function for

the reconstruction of Dp
0

Iξ0pzq :“
1

∥gα
ξ0

pzq∥
. (3.111)

In all the following examples the period length is fixed at 2π and the number of dis-

cretization points are fixed at Nx “ Ny “ 300 and λ “
2π
|k|

for k fixed, where we fix k

with a positive imaginary part.

Remark 38. We obtain numerical results comparable to the results presented in the

following examples when we use the indicator function defined as follows:

Ǐξ0pzq :“
1

|pŇ δ
ξ0
gξ0pzq, gξ0pzqq ` δ∥Ň δ

ξ0
∥∥gα

ξ0
pzq∥2|

. (3.112)
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Example 1: In the first example we fix

k :“
3.5

3.14π ` 0.7i M “ 4, and ξ0 “
1
4

and we consider a simple geometry given by a periodic ball centered at p0,λq with radius

RDp :“ 0.45λ without any perturbation as shown in Figure 3.2 (Left). Figure 3.2 (right)

presents the numerical reconstruction obtained using Iξ0 .

Figure 3.2: Left: exact geometry. Right: The reconstruction obtained
using Iξ0 .

Example 2: We consider in this example the same physical parameters and periodic

geometry, and we add a perturbation given by a ball centered at p1.2λ, 0.4λq with radius

RD̃ :“ 0.33λ as shown in Figure 3.3 (Left). Figure 3.3 (right) presents the numerical

reconstruction obtained using Iξ0 .

Figure 3.3: Left: exact geometry. Right: The reconstruction obtained
using Iξ0 .
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Example 3: We consider also for k :“
3.5

3.14π ` 0.4i, M “ 6, and ξ0 “
1
6, and

we consider the geometry of Dp and D̃ given as L-shape as shown in Figure 3.4 (Left).

Figure 3.4 (right) presents the numerical reconstruction obtained using Iξ0 .

Figure 3.4: Left: exact geometry. Right: The reconstruction obtained
using Iξ0 .

Example 4: We fix in the last example k :“
3.5

3.14π ` 0.8i M “ 3, and ξ0 “
1
3, and

we consider Dp as a periodic ball centered at p0, 1.2λq with radius RDp :“ 0.4λ and a

periodic square centered at p0.85λ, 1.6λq with sides 0.25λ. The perturbation is given by

the ball centered at p0.85λ, 1.6λq with radius RD̃ :“ 0.25λ as shown in Figure 3.5 (Left).

Figure 3.5 (right) presents the numerical reconstruction obtained using Iξ0 .

Figure 3.5: Left: exact geometry. Right: The reconstruction obtained
using Iξ0 .
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Conclusion: In the examples above, we first tested the code with an unperturbed

periodic domain with a simple geometry given in Figure 3.2 (left). Using the indicator

function defined by (3.111) we obtain the reconstruction of the periodic domain given

in the Figure 3.2 (right).

Next, we tested our code for the case of a periodic domain containing a perturbation

using different geometries, such as balls, L-shapes and squares as shown respectively in

the Figures 3.3 (left), 3.4 (left) and 3.5 (left).

The Figures 3.3 (right), 3.4 (right) and 3.5 (right) respectively show the reconstruction

obtained using the indicator function Iξ0 which provides the geometry of medium present

in the first period distributed periodically with period 2π. We also tested the code using

the indicator function given by (3.112) and we obtained reconstructions similar to the

one presented in the Figures above.

These results show that the indicator function that we introduced in the theory indeed

plays the role of an indicator function for the geometry of the domain present in the first

period.
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CHAPTER 4
Application to differential

imaging

Abstract: We revisit the differential sampling method introduced in [30] for the

identification of a periodic domain and some local perturbation. We provide a

theoretical justification of the method that avoids assuming that the local perturbation is

also periodic. We exploit the results obtained in the previous chapter extended to a

domain of periodicity length equal to an integer multiple of original periodicity. This

allows us to introduce two indicator functions that allow to directly reconstruct the

defect. The theoretical analysis of this chapter is extracted from the published paper [8]

and we give in the end some numerical examples.
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4.1 Introduction

In this chapter we are interested in studying the so-called differential sampling method

(DLSM) introduced in [30] for the reconstruction of a periodic domain with defects from

near fields measurements at fixed frequency. For this algorithm only the periodicity

size of the background is assumed to be known a priori. The theoretical developments

of the previous chapter allow us to provide a theoretical justification of the algorithm

proposed in [30] that provides an indicator function for the defect independently from

periodic background. This justification does not assume that the perturbation is also

periodic (with a larger periodicity) which was the case in [30]. Indeed, combining sam-

pling methods for a single Floquet-Bloch mode and the sampling method using the full

measurement operator, one is able to design an indicator function that separates the

perturbation from the periodic background. The principle consists in observing that we

do not change the scattering problem if we redefine the periodicity of the background

as an integer multiple of the original periodicity. The differential indicator function is

build using a comparison of the GLSM indicator function when we use these different

definitions of the periodicity of the background. The analysis of GLSM for quasi-periodic

incident waves is by itself sufficient to derive an indicator function in the spirit of the

differential linear sampling method of [30]. We introduce two indicator functions, one

depending only on the indicator function associated with the single Floquet-Bloch mode,

and the other depending on the one associated with the full measurement operator.

The chapter is organized as follows. A new setting for the inverse problem in a domain

with a periodicity length equal to an integer multiple of 2π is given in section 4.2. Section

4.3 explains how the single Floquet-Bloch mode indicator function can provide an indi-

cator function for the periodic background. We introduce in Section 4.4 two differential

indicator functions for the defect. We give in the last section some numerical examples.
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4.2 Setting of the problem and notations

Note that we keep here the notation of the previous chapter, and we keep referring by

periodic functions (quasi-periodic functions) to those which are periodic (quasi-periodic)

with respect to the first variable x1. As mentioned above, the principle idea behind the

DLSM method analyzed in this chapter is to consider the background as 2πM periodic

with M P N such that M ě 1 and combine the application of the framework given by

the previous chapter to different values of M . Indeed, the refractive index np is also

2πM -periodic with respect to the first component x1 (see Figure 4.1). Then, we can

follow the same approach adopted in Section 3.3 of the previous chapter by taking.

ΩR
0 “ ΩR,M

0 :“ r0, 2πM s ˆ r0,Rs and Dp
0 “ Dp,M

0 :“ ΩR,M
0 XDp,

in order to reconstruct D0 “ DM
0 :“ Dp,M

0 Y D̃ using the GLSM method. To this end,

we reformulate in this section the setting of our problem in 2πM -periodic medium

Figure 4.1: Sketch of the domain

In the following, for m ě 0, the spaces L2
ξ,M pΩRq, Hm

ξ,M pΩRq and Hm
ξ,M pΩR,M

0 q has

respectively the same definition as L2
ξ,M pΩRq, Hm

ξ pΩRq and Hm
ξ pΩR

0 q in the previous

chapter with period 2π replaced by 2πM , that is, L2
ξ,M pΩRq and Hm

ξ,M pΩRq denotes

respectively the spaces of ξ-quasi periodic functions in L2
locpΩRq and Hm

locpΩRq, with

period 2πM . We denote Hm
ξ,M pΩR,M

0 q the restriction to ΩR,M
0 of functions in Hm

ξ,M pΩRq,

and H1
7,M pΩR,M

0 q denotes the space H1
ξ,M pΩR,M

0 q for ξ “ 0. Moreover, we define for

ϕ P C8
0 pU0q the one dimensional Floquet-Bloch transform with period 2πM as

JMϕpξ,x1,x2q “
ÿ

jPZ

ϕpx1 ` 2πMj,x2qe´i2πMξ¨j , ξ P IM :“ r0, 1
M

s, px1,x2q P U0.
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Fix ξ P I and we denote by ξ0 :“
ξ

M
P IM . Consider vM

ξ0 P L2
ξ0,M pDq, where

L2
ξ0,M pDq :“ tv P L2

locpDq{ v|Dp P L2
ξ0,M pDpqu,

with L2
ξ0,M pDpq denotes the set of ξ0 quasi-periodic functions in L2

locpDpq with period

2πM . Similarly to the previous chapter we define a solution wM
ξ0 to problem pPq given

by (3.1) associated with v “ vM
ξ0 as

wM
ξ0 :“ wp,M

ξ0
` w̃M

ξ0 , (4.1)

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∆wp,M
ξ0

` k2npw
p,M
ξ0

“ k2p1 ´ npqvM
ξ0 in ΩR,

wp,M
ξ0

“ 0 on Γ0,
Bwp,M

ξ0

Bx2
p¨,Rq “ TR,M

ξ0
pwp,M

ξ0
|ΓR,M

0
q on ΓR,M

0 ,

(4.2)

and w̃M
ξ0 P H̃1pΩRq solution of

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∆w̃M
ξ0 ` k2nw̃M

ξ0 “ k2pnp ´ nqpvM
ξ0 `wp,M

ξ0
q in ΩR,

w̃M
ξ0 “ 0 on Γ0,

Bw̃M
ξ0

Bx2
p¨,Rq “ TRpw̃M

ξ0 |ΓRq on ΓR,

(4.3)

with ΓR,M
0 :“ r0, 2πM s ˆ tRu and TR,M

ξ0
: H1{2

ξ0,M pΓR,M
0 q ÝÑ H

´1{2
ξ0,M pΓR,M

0 q is the Dirichlet-

to-Neumann operator defined as (3.10) with φ̂ξ is replaced by
yφM

ξ0
pjq :“

1
2πM

ż 2πM

0
e´ipξ0`jqx1φpx1,Rqdx1 where the norm in Hs

ξ0pΓR,M
0 q is defined as

∥φ∥2
Hs

ξ0
pΓR,M

0 q
“

ÿ

jPZ

p1 ` j2qs| zpφM
ξ0

qpjq|2.

We consider Φξ0,M px, yq :“ pJM Φp¨, yqqpξ0,xq the ξ0M -quasi-periodic Green function

with period 2πM . Let y P ΓR,M
0 , we define us,M

ξ0
p¨, yq “ wξ0 given by p4.1q with vM

ξ0 “

Φξ0,M py, ¨q P L2
ξ0,M pDq. From (4.1) we decompose us,M

ξ0
p¨, yq “ us,p

ξ0
p¨, yq ` ũs

ξ0p¨, yq with

us,p
ξ0,M p¨, yq “ wp,M

ξ0
solution of (4.2) and ũs

ξ0,M p¨, yq “ w̃M
ξ0 solution of (4.3). We introduce
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the ξ0M -quasi periodic near field operator NM
ξ0 : L2

ξ0,M pΓRq ÝÑ L2
ξ0,M pΓRq given as

Np,M
ξ0

gM
ξ0 pxq :“

ż

ΓR,M
0

gM
ξ0 pyqus,p

ξ0,M px, yqdspyq,

Ñp,M
ξ0

gM
ξ0 pxq :“

ż

ΓR,M
0

gM
ξ0 pyqJM pũs

ξ0,M p¨, yqqpξ0,xqdspyq.

Define SM
ξ0 : L2

ξ0,M pΓRq ÝÑ L2
ξ0,M pDq the operator given as

SM
ξ0 g

M
ξ0 pxq :“

ż

ΓR,M
0

gM
ξ0 pyqΦξ0,M py,xqdspyq. (4.4)

Then, as in (3.32) we can decompose the operator NM
ξ0 as

NM
ξ0 “ GM

ξ0 pSM
ξ0 q,

where GM
ξ0 : L2

ξ0,M pDq ÝÑ L2
ξ0,M pΓRq is the operator defined by

GM
ξ0 pvM

ξ0 q “ pwp,M
ξ0

` w̃p,M
ξ0

q|ΓR,M
0

,

with wp,M
ξ0

P H1
ξ0,M pΩR,M

0 q being the solution of (4.2) and w̃p,M
ξ0

“ JM pw̃M
ξ0 qpξ0, ¨q with

w̃M
ξ0 P H̃1pΩRq is the solution of (4.3). Moreover, Similarly to Lemma 24 we observe

that the operators Np,M
ξ0

and Ñp,M
ξ0

can be respectively factorized as

Np,M
ξ0

“ pSM
ξ0 q˚T p,M

ξ0
SM

ξ0 and Ñp,M
ξ0

“ pSM
ξ0 q˚T̃ p,M

ξ0
SM

ξ0 , (4.5)

with T p,M
ξ0

: L2
ξ0,M pDpq ÝÑ L2

ξ0,M pDpq and T̃ p,M
ξ0

: L2
ξ0,M pDq ÝÑ L2

ξ0,M pDq are respec-

tively defined by

T p,M
ξ0

vM
ξ0 “ k2p1 ´ npqpvM

ξ0 `wp,M
ξ0

q, (4.6)

T̃ p,M
ξ0

vM
ξ0 “ k2p1 ´ npqw̃p,M

ξ0
` k2pnp ´ nqpwp,M

ξ0
` vM

ξ0 ` w̃M
ξ0 q, (4.7)

where wp,M
ξ0

being the solution of (4.2) and w̃p,M
ξ0

“ JM pw̃ξ0qpξ0, ¨q with w̃M
ξ0 is the

solution of (4.3). Finally let us define for gM
ξ0 P L2

ξ0,M pΓRq the norm

IM
ξ0 g

M
ξ0 :“

ˇ

ˇ

ˇ
pNp,M

ξ0
gM

ξ0 , gM
ξ0 q

L2pΓR,M
0 q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
pÑp,M

ξ0
gM

ξ0 , gM
ξ0 q

L2pΓR,M
0 q

ˇ

ˇ

ˇ
. (4.8)
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From the factorizations (4.5) we have the equivalent expression

IM
ξ0 g

M
ξ0 :“

ˇ

ˇ

ˇ
pT p,M

ξ0
SM

ξ0 g
M
ξ0 ,SM

ξ0 g
M
ξ0 qL2

ξ0,M pDpq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
pT̃ p,M

ξ0
SM

ξ0 g
M
ξ0 ,SM

ξ0 g
M
ξ0 qL2

ξ0,M pDq

ˇ

ˇ

ˇ
. (4.9)

4.3 Application to the GLSM method

4.3.1 Application of the GLSM for the reconstruction of DM
0 .

Following the same steps as in Section 3.3 we can present the free noise version of the

GLSM. Introducing the functional Jα,M
ξ0

: L2
ξ0,M pΓRq ÝÑ R given as

Jα,M
ξ0

pϕ; gξ0q “ αIM
ξ0 pgξ0q ` ∥pNp,M

ξ0
` Ñp,M

ξ0
qgξ0 ´ ϕ∥2.

We denote by jα,M
ξ0

pϕq “ inf
gξ0 PL2

ξ0,M pDq
Jα,M

ξ0
pϕ; gξ0q. Moreover, let cpαq ą 0 verifying

cpαq

α
Ñ 0 as α Ñ 0.

Theorem 39. Assume that Assumptions 26 and 27 hold. Assume in addition that the

hypothesis of Theorem 19 and Lemma 31 hold. Consider z P ΩR, and let gα
ξ0 P L2

ξ0,M pΓRq

such that

Jα,M
ξ0

pΦξ0,M p¨, zq, gα
ξ0pzqq ď jα,M

ξ0
pΦξ0,M p¨, zqq ` cpαq,

then

z P DM
0 ðñ lim

αÑ0
IM

ξ0 pgα
ξ0pzqq ă 8.

Proof. The prove is similar to the proof of Theorem 32.

4.3.2 Application of the GLSM for the reconstruction of Dp,M
0

In this section we consider M ě 2 and we explain how one can reconstruct only the

domain Dp,M
0 . Fix ξ P I and denote by ξ0 :“

ξ

M
P IM . We observe that the Green

function Φξ0p¨, zq is also ξ0M -quasi periodic with period 2πM . Therefore, we can follow

the same steps in the previous section by replacing Φξ0,M px, yq by Φξ0px, yq and we use

that Φξ0p¨, zq admits singular points in ΩR,M
0 for z P D̃ to reconstruct only the periodic

domain Dp,M
0 .
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Lemma 40. Assume that the assumptions of Theorem 19 hold and that Assumptions

26 holds. Then we have that

pz P Dp,M
0 q ðñ

`

Φξ0p¨, zq P RangepGM
ξ0 q

˘

.

Proof. Let z P Dp. We consider vξ0 P H inc
ξ0 pDq such that vξ0 |D̃ “ ´Φξ0p¨, zq. Let

puξ0 , vξ0q P L2
ξ0pDpq ˆL2

ξ0pDpq be the solution of (ITP1) with pφ,ψq “

ˆ

Φξ0p¨, zq, BΦξ0p¨, zq

Bν

˙

.

We set

wp
ξ0

:“

$

’

’

&

’

’

%

uξ0 ´ vξ0 in Dp,

Φξ0p¨, zq in ΩRzDp.

We observe that vξ0 P H inc
ξ0,M pDq, where

H inc
ξ0,M pDq :“ tv P L2

ξ0,M pDq, ∆v ` k2v “ 0 in Du,

and wp
ξ0

P H2
ξ0,M pΩRq satisfies (3.24). Moreover, let w̃ξ0 be the solution of (3.25). Since

pnp ´ nqpwp
ξ0

` vξ0q “ 0, then w̃ξ0 “ 0 and consequently GM
ξ0 pvξ0q “ Φξ0p¨, zq.

Consider now the case where z :“ pz1, z2q R Dp. Assume that there exists vξ0 P H inc
ξ0,M pDq

such that GM
ξ0 pvξ0q “ Φξ0p¨, zq. By the unique continuation principle we get wξ0 :“

wp
ξ0

` w̃p
ξ0

“ Φξ0p¨, zq in U0zDM
0 . Since D̃ is not distributed periodically, then for

z P D̃ there exists j P Z such that zj :“ pz1 ` 2πj, z2q P ΩR,M
0 zDM

0 . Therefore,

Φξ0p¨, zq R H2
ξ0,M pΩRzDM

0 q for all z P ΩRzDp,M
0 while wξ0 P H2

ξ0,M pΩRzDM
0 q, which is a

contradiction.

Theorem 41. Assume that Assumptions 26 and 27 hold. Assume in addition that the

hypothesis of Theorem 19 and Lemma 31 hold. Consider z P ΩR, and let gα
ξ0 P L2

ξ0,M pΓRq

such that

Jα,M
ξ0

pΦξ0p¨, zq, gα
ξ0pzqq ď jα,M

ξ0
pΦξ0p¨, zqq ` cpαq,

then

z P Dp,M
0 ðñ lim

αÑ0
IM

ξ0 pgα
ξ0pzqq ă 8.

Moreover, if z P Dp,M
0 then SM

ξ0 gξ0 |
Dp,M

0
converges to some vξ0 in L2pDp,M

0 q where vξ0 is

solution of (ITP1).
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Proof. As in the proof of Theorem 32. By Lemma 24, Lemma 25 and Lemma 29 adopted

to the 2πM periodic case we prove that the operator NM
ξ0 “ Np,M

ξ0
` Ñp,M

ξ0
can be

factorized as

NM
ξ0 “ GM

ξ0 S
M
ξ0 “ S˚,M

ξ0
TM

ξ0 S
M
ξ0 , (4.10)

and has dense range, with S˚,M
ξ0

: L2
ξ0,M pDq ÝÑ L2

ξ0,M pΓRq is the adjoint of the operator

SM
ξ0 and TM

ξ0 is the operator defined as (3.40). Moreover, using Lemma 31 we prove

that the norm IM
ξ0 gξ0 is an equivalent norm to ∥SM

ξ0 gξ0∥L2pDM
0 q. Therefore, the results of

the theorem are then a straightforward application of Theorem 2.7 in [11] and Lemma

40.

4.4 Application of the Differential Sampling Method

As in [30], we explain in this section how one directly reconstruct D̃ using a differential

indicator function. Consider M ě 2, fix ξ P I. We denote by ξ0 :“
ξ

M
P IM . Consider

gα P L̃2pΓRq, gα
ξ0 P L2

ξ0pΓRq and gα,M
ξ0

P L2
ξ0,M pΓRq satisfying

JαpΦp¨, zq, gαpzqq ď jαpΦp¨, zqq ` cpαq,

Jα
ξ0pΦξ0p¨, zq, gα

ξ0pzqq ď jα
ξ0pΦξ0p¨, zqq ` cpαq,

Jα,M
ξ0

pΦξ0p¨, zq, gα,M
ξ0

pzqq ď jα,M
ξ0

pΦξ0p¨, zqq ` cpαq,

for cpαq ą 0 verifying cpαq

α
Ñ 0 as α Ñ 0. Let us define the indicator function to identify

D̃ as

Iαpzq :“

«

Ǐpgαq

˜

1 `
Ǐpgαq

IM
ξ0

pgα,M
ξ0

´ 1
M gα

ξ0
q

¸ff´1

, (4.11)

with Ǐ is the norm defined by (3.104) and IM
ξ0 is the norm given as (3.59) with Np

ξ0
“

Np,M
ξ0

, Ñp
ξ0

“ Ñp,M
ξ0

and ΓR
0 “ ΓR,M

0 .

Theorem 42. Under the assumptions of Theorem 41 we have

`

z P D̃
˘

ðñ

´

lim
αÑ0

Iα ą 0
¯

.
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Proof. Consider z P Dp. By Theorem 32 and Theorem 41 we have that Sξ0g
α
ξ0 and

SM
ξ0 g

α,M
ξ0

converges respectively to vξ0 P H inc
ξ0 pDq and vM

ξ0 P H inc
ξ0,M pDq verifying

Gξ0pvξ0q “ Φξ0p¨, zq and GM
ξ0 pvM

ξ0 q “ Φξ0p¨, zq. (4.12)

Moreover, from Lemma 30 and Lemma 40 we observe that vξ0 and vM
ξ0 are solutions

of (ITP1) with pφ,ψq “

ˆ

Φξ0p¨, zq, BΦξ0p¨, zq

Bν

˙

, then vξ0 coincides with vM
ξ0 . On the

other hand, from (3.60), Lemma 31 and Theorem 19 we have that IM
ξ0 gξ0 is equivalent

(uniformly with respect to ξ0) to ∥SM
ξ0 gξ0∥2

L2pDM
0 q

. In particular, there exists of constant

c1 ą 0 independent from ξ0 such that

IM
ξ0 pgα,M

ξ0
´

1
M
gα

ξ0q ď c1

›

›

›

›

SM
ξ0 g

α,M
ξ0

´
1
M
SM

ξ0 g
α
ξ0

›

›

›

›

2

L2pDM
0 q

. (4.13)

Moreover, we observe that SM
ξ0 g

α
ξ0 “ MSξ0g

α
ξ0 . Therefore, the right hand side of (4.13)

tends to zero as α Ñ 0. On the other hand, from Theorem 37 we have that Ǐpgαq ă 8

as α Ñ 0. Hence

lim
αÑ0

Iαpzq “ 0 for z P Dp.

Consider now the case where z P D̃. From Theorem 32 and Theorem 41 we have that

∥SM
ξ0 g

α,M
ξ0

∥L2pDM
0 q Ñ 8 and ∥Sξ0gξ0∥L2

ξ0
pD0q is bounded as α Ñ 0 . Moreover, we have

that

IM
ξ0 pgα,M

ξ0
´

1
M
gα

ξ0q ě c2∥SM
ξ0 g

α,M
ξ0

´Sξ0g
α
ξ0∥2

L2pDM
0 q

ě c2∥SM
ξ0 g

α,M
ξ0

∥2
L2pDM

0 q
´ c2∥Sξ0g

α
ξ0∥2

L2pD0q,

with c2 ą 0 is a constant independent from ξ0. therefore

IM
ξ0 pgα,M

ξ0
´

1
M
gα

ξ0q ÝÑ 8 as α Ñ 0,

which implies that

0 ă lim
αÑ0

Iαpzq ă 8 for z P D̃,

This ends the proof.
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Remark 43. Consider ĝα,M
ξ0

pΓRq satisfying

Jα,M
ξ0

pΦξ0,M p¨, zq, ĝα,M
ξ0

pzqq ď jα,M
ξ0

pΦξ0,M p¨, zqq ` cpαq,

and define

Iα
M pzq :“

«

IM
ξ0 pĝα,M

ξ0
q

˜

1 `
IM

ξ0
pĝα,M q

IM
ξ0

pgα,M
ξ0

´ 1
M gα

ξ0
q

¸ff´1

.

We observe that Iα
M can be considered also as an indicator function for the identification

of D̃ repeated 2πM periodically, i.e Theorem 42 still holds if we change Iα by Iα
M and

D̃ by its 2πM copies. The proof follows the same arguments but with applying Theorem

39 instead of Theorem 37.

4.5 Numerical examples

Numerical scheme: In this section we use the same procedure considered in Section

3.5 in the previous chapter such that we solve the equations in the Fourier domain, we

also consider the same discretization scheme as in Section 3.5. We recall that XN and

YN denotes respectively the Nx ˆNx and Ny ˆNy matrices containing the discretization

points of the intervals s ´ π,πr and s0,Rr, where Nx and Ny are respectively the number

of discretization points w.r.t the x1 and x2 directions, and Yj is the set of point sources

of size N inc defined by (3.107).

We consider in practice the period of size 2π as ΩR
0 “ r´π,πs ˆ r0,Rs and the period of

size 2πM as ΩR,M
0 “ r2πpr

´M

2 s `
1
2q, 2πpr

M

2 s `
1
2qs ˆ r0,Rs.

Similarly to the theoretical analysis we also extend the numerical scheme analyzed in

Section 3.5 to a 2πM -periodic setting. In order to do so, we exploit the decomposition

of 2πM -periodic functions into the sum of M 2π-quasi-periodic functions [30], that is,

for M 1 P N˚ such that M 1 ě M and M 1

M
P N˚, fixing

ξj0 :“
j0
M 1

, for ´M

2M 1
` 1 ď j0 ď

M

2M 1
,

considering

ξ̃m :“ ξj0 `
m

M
“
j0
M

`
m

M
, for r

´M

2 s ` 1 ď m ď r
M

2 s,
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and defining a ξj0 2πM -periodic function wξj0 ,M P H1
ξj0 ,M pΩRq, then the following de-

composition holds

wξj0 ,M “
1
M

r M
2 s
ÿ

m“r
´M

2 s`1

wξ̃m
, (4.14)

where wξ̃m
P H1

ξ̃m
pΩR

0 q. Let us denote by NM
inc :“ MN inc, then for every r

´M

2 s ` 1 ď

m ď r
M

2 s we consider for ξ̃m fixed and for all 1 ď j ď N inc

vj

ξ̃m
“ Φξ̃m

pyj
1, pXN ,YN qq,

which has the same expression as (3.108) with ξ0 replaced by ξ̃m and we generate the

solutions

pwp

ξ̃m
qj ` pw̃p

ξ̃m
qj ,

where pwp

ξ̃m
qj is the solution of (3.24) and pw̃p

ξ̃m
qj “ J pw̃ξ̃m

qjpξ̃m, ¨q with pw̃M
ξ̃m

qj is the

solution of (3.25) with vξ0 “ vj

ξ̃m
. Moreover, let us denote by pwp,M

ξj0
qj the solution of (4.2)

and pw̃p,M
ξj0

qj “ JM pw̃M
ξj0

qjpξj0 , ¨q with pw̃M
ξj0

qj is the solution of (4.3). The discretized

near field operator for the 2πM periodic setting is then given by the matrix of size

NM
inc ˆNM

inc defined as

Ňξj0 ,M pj, ℓq :“ pp pwp,M
ξm

qj ` p pw̃p,M
ξm

qjqpℓq, for r
´M

2 s ` 1 ď m ď r
M

2 s, 1 ď j ď NM
inc and ℓ P LM

inc,

where LM
inc is the space of Rayleigh coefficients which is defined as M copies of the space

Linc defined in Section 3.5. The discretized noisy data is given by the matrix Ň δ
ξj0 ,M

satisfying (3.110) with Ňξj0 ,M is replaced by ŇM , where the matrix of random values K

is of size NM
inc ˆNM

inc. For fixed ξj0 , we have Φξj0 ,M p¨, zq P H1
ξj0 ,M pΩRq. Consequently,

using the decomposition (4.14), one can decompose Φξj0 ,M p¨, zq as follows

Φξj0 ,M p¨, zq “
1
M

r M
2 s
ÿ

m“r
´M

2 s`1

Φξ̃m
p¨, zq,

where Φξ̃m
p¨, zq is the ξ̃m-quasi-periodic Green function with period 2π. Consider a grid

of sampling points z and we let first gα
ξj0

be the regularized solution of (3.106). Moreover,
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we construct gα,M
ξj0

and gα
M satisfying

pα` Ň δ,˚
M Ň δ

M qgα,M
ξj0

pzq “ Ň˚
M pzΦξj0

pℓ, zqq, (4.15)

pα` Ň δ,˚
M Ň δ

M qgα
M pzq “ Ň˚

M p {Φξj0 ,M pℓ, zqq. (4.16)

with α is a constant determined by Morozov’s principle. We then define

Zα,p
ξj0

“
1

∥gα,M
ξj0

∥
and Zα

M “
1

∥gα
M ∥

(4.17)

and we define the indicator function for the reconstruction of the defect as follows

Zα :“

»

–∥gα
M ∥

¨

˝1 `
∥gα

M ∥
ˇ

ˇ

ˇ

´

Ň δ
M pgα,M

ξj0
´ 1

M gα
ξj0

q, pgα,M
ξj0

´ 1
M gα

ξj0
q

¯ˇ

ˇ

ˇ

˛

‚

fi

fl

´1

.
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Example 1: In the first example we fix the physical and the geometrical parameters as

follows k :“
3.5

3.14π ` 0.4i, λ “
2π
|k|

, Nx “ Ny “ 300, M “ 4, and ξ0 “ 0. We consider Dp

as a periodic ball centered at p0, 1.4λq with radius RDp :“ 0.4λ and the perturbation D̃

as a ball centered at p1.2λ, 0.8λq with radius RD̃ :“ 0.4λ as shown in Figure 4.2 (1).

Figure 4.2: (1): The exact geometry. (2): The reconstruction obtained
using Zα

M . (3): The reconstruction obtained using Zα,p
ξ0

. (4): The recon-
struction obtained using Zα
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Example 2: We fix in this example the physical and geometrical parameters as:

k :“
3.5

3.14π ` 0.7i, λ “
2π
|k|

, Nx “ Ny “ 300 and M “ 6, and ξ0 “ 0. We consider

the periodic domain and the perturbation as L-shapes as shown in Figure 4.3 (1).

Figure 4.3: (1): The exact geometry. (2): The reconstruction obtained
using Zα

M . (3): The reconstruction obtained using Zα,p
ξ0

. (4): The recon-
struction obtained using Zα
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Example 3: In the last example we fix k :“
3.5

3.14π ` 1i, λ “
2π
|k|

, Nx “ Ny “ 300,

M “ 2, and ξ0 “ 0, and we consider the periodic geometry and the perturbation as

shown in the exact geometry given in Figure 4.4 (1)

Figure 4.4: (1): The exact geometry. (2): The reconstruction obtained
using Zα

M . (3): The reconstruction obtained using Zα,p
ξ0

. (4): The recon-
struction obtained using Zα
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Conclusion: As explained in the theory of the Differential Method, the reconstruction

of the perturbation can be obtained from a criterion that depends on three indicator

functions: one is associated with the periodic domain, and the others are associated

with the domain present in the first period distributed periodically with the period 2π

and 2πM , with M ě 2. Then, in the examples above we presented the reconstruction

obtained using all these indicator functions (The results of the reconstruction of the first

period of length 2π were presented in Chapter 3).

In Example 1, we considered a simple (non-complex) geometry as shown in Figure 4.2

(1). We can clearly observe in Figure 4.2 (2) the reconstruction of domain in the

first period distributed periodically with period 2πM obtained by the indicator function

Zα
M . We can also observe the reconstruction of the periodic domain in Figure 4.2 (3)

using Zα,p
ξ0

. In Figure 4.2 (4), we obtain the reconstruction of the perturbation using Zα.

In the second example we also considered a non-convex geometry given by L-shapes

as shown in Figure 4.3 (1). Similarly to the first example, we obtained a good re-

construction for the 2πM-period, the periodic domain, and the perturbation as shown

respectively in Figures 4.3 (2), 4.3 (3) and 4.3 (4).

In the last example, we considered a complex multiply connected domain as shown in

Figure 4.4 (1). In this example, we observe in Figure 4.4 (2) that we do not have a

good reconstruction neither for the 2πM -period nor for the periodic domain as shown

in Figure 4.4 (3) due to the complexity of the domain. However, we observe in Figure

4.4 (4) that the reconstruction of the perturbation still can be obtained even in a very

complex domain.
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CHAPTER 5
Analysis of the Interior

Transmission problem

Abstract: We analyze in this chapter the interior transmission problem in a locally

perturbed infinite periodic domain, considering the case where the perturbation

intersects the periodic background. An equivalent coupled quasi-periodic problem is

given by applying the Floquet-Bloch transform. We perform a discretization with

respect to the Floquet-Bloch variable and we prove the well-posedness of the

semi-discretized problem. This allows us to construct a sequence that converges to a

solution of the problem.
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5.1 Introduction

The inverse scattering problem from inhomogeneous media leads in general to the study

of the so-called interior transmission problem (ITP). This problem has been extensively

studied in the literature for the case of bounded domains, and we refer for instance to

[11, 13, 12, 55, 34]. The ITP for the case of unbounded periodic domains without defects

can always be reduced to a one period cell leading back to the study of the problem in

a bounded domain. However, the case of perturbed periodic media (which does not

suppose that the perturbation is also periodic) is more difficult since one is obliged to

study the solvability of the problem in the whole unbounded domain. More precisely, the

difficulty appears when the perturbation intersects the periodic background. In fact, for

the case where the intersection is empty, one can decouple the problem into two distinct

problems, one associated with the periodic domain and the other with the compact per-

turbation. Consequently, the study in this case can also be deduced from results on ITP

for bounded domains (this is what we have considered in the two previous chapters).

We present in this chapter a study for the ITP problem when this intersection is not

empty. In this case, one can not use Fredholm’s alternative in the classical way consid-

ered in the literature. It also was not possible to follow the method in [39] (presented in

Chapter 2) for the solvability of the direct problem to deal with this type of problems.

The main scheme that we propose to solve this problem is given as follows: we apply

first the Floquet-Bloch transform to our considered problem and rewrite it in the form

of an equivalent coupled quasi-periodic problems. This explains the reason for which we

consider the well-posedness for the quasi-periodic ITP problems in Section 5.3 before

considering our case. Next, we make a discretization with respect to the Floquet-Bloch

variable and we prove that the semi-discretized problem is uniquely solvable. Finally,

we perform a convergence analysis that allows us to prove that the solution of the dis-

cretized problem converges to the solution of initial problem, which provides an existence

results for ITP. This analysis is done in the last Section. Our analysis assumes the same

hypothesis made in Chapter 2 on the refractive indices n and np.
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5.2 Setting of the problem

We consider the upper half space U0 :“ R ˆ R`. For R ą R0 ą 0 we denote by

ΩR :“ R ˆ r0,Rs with boundary’s Γ0 :“ R ˆ t0u and ΓR :“ R ˆ tRu (see Figure 5.1).

We consider the same domain notation as in Chapter 3:

• Dp denotes a 2π-periodic unbounded domain included in ΩR,

• npp¨,x2q: the 2π-periodic refractive index such that np “ 1 outside Dp,

• D̃ denotes a bounded perturbation included in ΩR
0 :“ r0, 2πs ˆ r0,Rs,

• n P L8pU0q: the perturbed refractive index verifying n “ np outside D̃,

• Dp
0 “ Dp X ΩR

0 and D “ Dp Y D̃,

and we make the additional following notation:

BĎp
0 :“ BDp

0z
`

Γ0 Y tx1 “ 0u Y tx1 “ 2πu
˘

.

Figure 5.1: Sketch of the domain

The locally perturbed interior transmission problem is formulated as follows: seek pu, vq P

L2pDq ˆL2pDq such that pu´ vq P H2pDq satisfying

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

∆u` k2nu “ 0 in D,

∆v ` k2v “ 0 in D,

u´ v “ φ on BDzΓ0,
Bpu´ vq

Bν
“ ψ on BDzΓ0,

u “ v “ 0 on Γ0,

(5.1)
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for some boundary data pφ,ψq P H3{2pBDzΓ0q ˆH1{2pBDzΓ0q. Let us first consider the

case of periodic domain without perturbation, i.e as D̃ “ H. This brings us to the study

of the well-posedness of the quasi-periodic Interior Transmission Problem which will be

the subject of the subsection below.

5.3 The quasi-periodic Interior transmission problem

5.3.1 Setting of the problem

Fix ξ P I :“ r0, 1s. The quasi-periodic interior transmission problem can be formulated

as: Seek puξ, vξq P L2
ξpDpq ˆL2

ξpDpq such that puξ ´ vξq P H2
ξ pDpq satisfying

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

∆uξ ` k2npuξ “ 0 in Dp
0,

∆vξ ` k2vξ “ 0 in Dp
0,

uξ ´ vξ “ φξ on BĎp
0,

Bpuξ ´ vξq

Bν
“ ψξ on BĎp

0,

uξ “ vξ “ 0 on Γ0,

(5.2)

for given pφξ,ψξq P H
3{2
ξ pBĎpq ˆH

1{2
ξ pBĎpq. The analysis will be done under the fol-

lowing assumption:

Assumption 44. We assume that

ℜepnppxqq ´ 1 ě α ą 0 or 1 ´ ℜepnppxqq ě α ą 0,

for almost every x P Dp and for some α ą 0. Moreover, we assume that ℑmpnpq ě 0

and tℑmpnpq ą 0u contains a non empty open set O.

We set

np,˚ :“ inf
Dp

ℜepnpq and np,˚ :“ sup
Dp

ℜepnpq.
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Under this assumption one can rewrite the problem (5.2) as: Seek w0
ξ :“ uξ ´ vξ P

H2
ξ pDpq satisfying

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

p∆ ` k2q
1

1 ´ np
p∆w0

ξ ` k2npw
0
ξ q “ 0 in Dp

0,

w0
ξ “ φξ and

Bw0
ξ

Bν
“ ψξ on BĎp

0,

w0
ξ “ 0 on Γ0,
1

1 ´ np
p∆w0

ξ ` k2npw
0
ξ q “ 0 on Γ0.

(5.3)

We set

H̃2
ξ pDpq :“ twξ P H2

ξ pDpq {wξ “
Bwξ

Bν
“ 0 on BĎp

0 and wξ “ 0 on Γ0u.

We remark that wξ Ñ

b

∥∆wξ∥2
L2pDp

0 q
` ∥wξ∥2

L2pDp
0 q

defines an equivalent norm on H̃2
ξ pDpq.

Let θξ P H2
ξ pDpq be a lifting function satisfying θξ “ φξ and Bθξ

Bν
“ ψξ on BĎp

0, and

θξ “ 0 on Γ0 and

∥θξ∥H2pDp
0 q ď cp∥φξ∥H3{2pBĎp

0 q ` ∥ψξ∥H1{2pBĎp
0 qq,

for some c ą 0.

5.3.2 Well-posedness of the problem

Define the sesquilinear form

aξpwξ,w1
ξq :“

ż

Dp
0

1
np ´ 1p∆wξ ` k2npwξqp∆w1

ξ ` k2w1
ξqdx. (5.4)

Then the variational formulation equivalent to (5.3) can be written as: Seek wξ :“

w0
ξ ´ θξ P H̃2

ξ pDpq such that

aξpwξ,w1
ξq “ ´

ż

Dp
0

1
np ´ 1p∆θξ ` k2npθξqp∆w1

ξ ` k2w1
ξqdx, (5.5)
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for all w1
ξ P H̃2

ξ pDpq. We observe that

L : w1
ξ Ñ

ż

Dp
0

1
np ´ 1p∆θξ ` k2npθξqp∆w1

ξ ` k2w1
ξqdx,

is a bounded antilinear functional on H̃2
ξ pDpq. Using the Riesz representation theorem

we consider fξ P H̃2
ξ pDpq such that Lpw1

ξq “ pfξ,w1
ξqH2pDp

0 q for all w1
ξ P H̃2

ξ pDpq and

∥fξ∥H2pDp
0 q ď c1∥θξ∥H2pDp

0 q ď c2

´

∥φξ∥H3{2pBĎp
0 q ` ∥ψξ∥H1{2pBĎp

0 q

¯

,

with c1, c2 are two positive constants independent from ξ. Thus, Problem (5.5) is equiv-

alent to

Aξwξ “ fξ in H̃2
ξ pDpq,

where Aξ : H̃2
ξ pDpq ÝÑ H̃2

ξ pDpq is the operator defined by the Riesz representation

Theorem as

pAξwξ,w1
ξqH2pDp

0 q “ aξpwξ,w1
ξq @ wξ,wξ1 P H̃2

ξ pDpq, (5.6)

Theorem 45. Assume that Assumption 44 holds. Then the operator Aξ is a Fredholm

operator of index zero.

Proof. Let us define by the Riesz representation the following two operators Aξ,0, Aξ,1 :

H̃2
ξ pDpq ÝÑ H̃2

ξ pDpq satisfying

pAξ,0wξ,w1
ξqH2pDp

0 q “

ż

Dp
0

1
np ´ 1

´

∆wξ∆w1
ξ `wξw

1
ξ

¯

dx, (5.7)

pAξ,1wξ,w1
ξqH2pDp

0 q “

ż

Dp
0

1
np ´ 1pk2∆wξw

1
ξ ` k2npwξ∆w1

ξ ` pk4np ´ 1qwξw
1
ξqdx. (5.8)

We observe that

ℜepAξ,0w,wqH2pDp
0 q ě α0

´

∥∆wξ∥2
L2pDp

0 q
` ∥wξ∥2

L2pDp
0 q

¯

,

with α0 :“
1

np,˚ ´ 1 in the case np,˚ ą 1 and α0 :“
1

np,˚ ´ 1 in the case 0 ă np,˚ ă 1,

which implies that Aξ,0 is coercive in the case np,˚ ą 1 and ´Aξ,0 in the case 0 ă np,˚ ă 1.
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Now, let us denote by Ap1q

ξ,1 the part of the operator given by the first integral in (5.8).

Then, taking w1
ξ “ Ap1q

ξ,1wξ we observe that

∥Ap1q

ξ,1wξ∥2
H2pDp

0 q
“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Dp
0

k2

np ´ 1∆wξAp1q

ξ,1wξdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď c1∥wξ∥H2pDp
0 q∥Ap1q

ξ,1wξ∥L2pDp
0 q, (5.9)

with c1 is a positive constant that does not depend on ξ. Consider now a sequence wℓ
ξ

bounded in H̃2
ξ pDpq, then we can extract a subsequence that we still denote by wℓ

ξ that

converge weakly to w in H̃2
ξ pDpq. From the compact embedding of H̃2

ξ pDpq in L2
ξpDpq we

get that wℓ
ξ converges strongly to w in L2

ξpDpq and therefore Ap1q

ξ,1w
ℓ
ξ converges strongly

to Ap1q

ξ,1w in L2
ξpDpq. Hence, from (5.9) we have

∥Ap1q

ξ,1pwℓ
ξ ´wξq∥2

H2pDp
0 q

ď c1∥wℓ
ξ ´wξ∥H2pDp

0 q∥Aξ,1pwℓ
ξ ´wξq∥L2pDp

0 q ÝÑ 0 as ℓ Ñ 8.(5.10)

Consequently, Ap1q

ξ,1w
ℓ
ξ converges strongly to Ap1q

ξ,1wξ in H̃2
ξ pDpq which implies the com-

pactness of Ap1q

ξ,1. The compactness of the other parts in Aξ,1 can be proved the same

way.

Theorem 46. The operator Aξ is invertible.

Proof. From Theorem 45 we have that Aξ is a Fredholm operator of index zero. Then,

it remains to prove the injectivity of Aξ. We assume that

pAξwξ,w1
ξqH2pDp

0 q “ 0 for all w1
ξ P C8

0 pDpq,

then we get

p∆ ` k2q

ˆ

1
np ´ 1

˙

p∆wξ ` k2npwξq “ 0. (5.11)

We set

vξ :“ ´
1

k2pnp ´ 1q
p∆wξ ` k2npwξq and uξ :“ wξ ` vξ. (5.12)
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Then, puξ, vξq satisfies the following equations

$

’

’

&

’

’

%

∆uξ ` k2npuξ “ 0 in Dp
0,

∆vξ ` k2vξ “ 0 in Dp
0.

(5.13)

On the other hand, we observe

apwξ,wξq “

ż

Dp
0

1
np ´ 1 |∆wξ ` k2wξ|2 ´ k2

ż

Dp
0

|∇wξ|2dx` k4
ż

Dp
0

|wξ|2dx.

Taking the imaginary part we get

ż

Dp
0

ℑm
ˆ

1
np ´ 1

˙

|∆wξ ` k2wξ|2dx “ 0. (5.14)

Therefore ∆wξ ` k2wξ “ 0 in O with means uξ “ 0 in O. The unique continuation

principle implies that uξ “ 0 vanishes in Dp
0. Consequently we have ∆wξ ` k2wξ “ 0 in

Dp
0 and wξ “

Bwξ

Bν
“ 0 on BĎp which implies that wξ “ vξ “ 0 in Dp

0. This proves the

injectivity of the operator Aξ. Therefore Aξ is invertible.

Theorem 47. There exists a constant γ ą 0 independent of ξ such that

∥A´1
ξ ∥ ď γ. (5.15)

Proof. Let us denote by w7

ξ :“ e´iξ¨x1wξ and w̃71

ξ :“ e´iξ¨x1w1
ξ. Then w̃7

ξ, w̃71

ξ P H2
7 pDpq,

where H2
7 pDpq is the space defined the same as H̃2

ξ pDpq for ξ “ 0. We have

∆wξ “ eiξ¨x1
`

´|ξ|2w̃ξ ` 2iξ∇w̃ξ ` ∆w̃ξ

˘

.

Then, replacing wξ and w1
ξ respectively by w̃7

ξe
ix1ξ and w̃71

ξ e
ix1ξ in (5.4) we get

ż

Dp
0

ˆ

1
np ´ 1

˙

´

∆w7

ξ ` 2iξ∇w7

ξ ` pk2np ´ |ξ|2qw7

ξ

¯

ˆ

´

∆w71

ξ ` 2iξ∇w71

ξ ` pk2 ´ |ξ|2qw71

ξ

¯

dx :“ a7

ξpw7

ξ,w71

ξ q.
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Fix η ą 0 and consider ξ, ξ0 P I such that |ξ ´ ξ0| ă η, we observe that

ˇ

ˇ

ˇ
a7

ξpw7,w71

q ´ a7

ξ0
pw7,w71

q

ˇ

ˇ

ˇ
ďC

`

||ξ|4 ´ |ξ0|4| ` |ξ3 ´ ξ3
0 | ` ||ξ2| ´ |ξ0|2| ` |ξ ´ ξ0|

˘

ˆ ∥w7∥H2
7

pDp
0 q∥w71∥H2

7
pDp

0 q, @ w7,w71

P H2
7 pDp

0q. (5.16)

with C is a positive constant that depends on k2, np,˚, np,˚ and does not depend of ξ.

Therefore, the right hand side of (5.16) goes to zero as ξ Ñ ξ0. Since w7 Ñ w7eiξ¨x1 is

an isomorphism between H2
7 pDpq and H2

ξ pDpq which is continuous with respect to ξ, we

deduce that ξ Ñ Aξ is uniformly continuous from I into LpH̃2
ξ pDpqq.

Now, let ξ0 P Ī, and set ϵ “
1

2∥A´1
ξ0

∥
. Then there exists ηξ0 ą 0 such that for |ξ ´ ξ0| ă

ηξ0 , we have

∥Aξ ´ Aξ0∥ ď ϵ.

Therefore ∥A´1
ξ0

pAξ ´ Aξ0q∥ ď
1
2 which implies that

∥pI ` A´1
ξ0

pAξ ´ Aξ0qq´1∥ ď 2.

Consequently, observing that Aξ “ Aξ0pI ` A´1
ξ0

pAξ ´ Aξ0qq we deduce that

∥A´1
ξ ∥ ď 2∥A´1

ξ0
∥, @ ξ P Bηξ0

,

where Bηξ0
denotes the ball of radius ηξ0 centered at ξ0. Since Ī is a compact set and

there exists a finite set J Ă Ī for which Ī “
ď

ξ0PJ

tξ P Ī; |ξ ´ ξ0| ă ηξ0u. Therefore, for all

ξ P I we have

∥A´1
ξ ∥ ď 2sup

ξ0PJ
∥A´1

ξ0
∥ “ γ.
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5.4 The locally perturbed interior transmission problem

We analyze in this section the well-posedness of the interior transmission problem for

the infinite periodic domain Dp when a local perturbation, namely the support of np ´n

lies inside Dp. In this case D̃ Ă Dp and D “ Dp. The interior transmission problem

is formulated as follows: seek pu, vq P L2pDpq ˆ L2pDpq such that pu ´ vq P H2pDpq

satisfying

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

∆u` k2nu “ 0 in Dp,

∆v ` k2v “ 0 in Dp,

u´ v “ φ on BDpzΓ0,
Bpu´ vq

Bν
“ ψ on BDpzΓ0,

u “ v “ 0 on Γ0,

(5.17)

for some boundary data pφ,ψq P H3{2pBDpzΓ0q ˆH1{2pBDpzΓ0q. The analysis will be

done under the following assumption:

Assumption 48. We assume that

ℜepnpxqq ´ 1 ě α ą 0 or 1 ´ ℜepnpxqq ě α ą 0.

for almost every x P Dp and some α ą 0 and n “ np outside D̃ Ă Dp
0.

We set

n˚ :“ inf
Dp

ℜepnq and n˚ :“ sup
Dp

ℜepnq.

Under this assumption, one can rewrite (5.17) as: seek w0 :“ u´ v P H2pDpq satisfying

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

p∆ ` k2q
1

1 ´ n
p∆w0 ` k2nw0q “ 0 in Dp,

w0 “ φ and Bw0
Bν

“ ψ on BDpzΓ0,

w0 “ 0 on Γ0,
1

1 ´ n
p∆w0 ` k2nw0q “ 0 on Γ0.

(5.18)
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We set

H̃2
0 pDpq :“ tw0 P H2pDpq {w0 “

Bw0
Bν

“ 0 on BDpzΓ0 and w0 “ 0 on Γ0u.

Let θ P H2pDpq be a lifting function satisfying θ “ φ and Bθ

Bν
“ ψ on BDpzΓ0 and θ “ 0

on Γ0 and define the sesquilinear form

apw,w1q :“
ż

Dp

1
n´ 1p∆w` k2nwqp∆w1 ` k2w1qdx. (5.19)

Then the variational formulation equivalent to (5.18) can be written as: Seek w :“

w0 ´ θ P H̃2
0 pDpq such that

apw,w1q “

ż

Dp

fp∆w1 ` k2w1qdx, (5.20)

for all w1 P H̃2
0 pDpq with

f “
1

n´ 1p∆θ` k2nθq.

Lemma 49. Problem (5.20) has at most one solution.

Proof. The uniqueness of solutions for problem (5.20) can be shown following the same

steps as the uniqueness result for problem (5.2) given by Theorem 46.

To show the existence of solutions we shall rely on the rewriting of (5.20) using the

Floquet-Bloch transform. Setting

ãpw,w1q :“
ż

D̃

ˆ

ñp∆w` k2npwq ` k2 pn´ npq

n´ 1 w

˙

p∆w1 ` k2w1qdx, (5.21)

with ñ :“
ˆ

1
n´ 1 ´

1
np ´ 1

˙

we can decompose the sesquilinear form apw,w1q as

apw,w1q “ ãpw,w1q `

ż

Dp

1
np ´ 1p∆w` k2npwqp∆w1 ` k2w1qdx. (5.22)



5.4. The locally perturbed interior transmission problem 115

For ŵ P L2pI, H̃2
ξ pDp

0qq and ŵ1 P L2pI, H̃2
ξ pDp

0qq we define

âpŵ, ŵ1q :“
ż

I

ż

Dp
0

1
np ´ 1p∆ŵξ ` k2npŵξqp∆ŵ1

ξ ` k2ŵ1
ξqdxdξ ` ãpw,w1q (5.23)

with

w “

ż

I
ŵpξ, ¨qdξ and w1 “

ż

I
ŵ1pξ, ¨qdξ.

Then, using the properties of the Floquet-Bloch transform we deduce that

apw,w1q “ âpJw, Jw1q, @ w,w1 P H̃2
0 pDpq. (5.24)

In the sequel, we shall use the short notation ŵ :“ Jw and ŵξ :“ Jwpξ, ¨q. From

(5.24) we deduce that the variational formulation (5.20) is equivalent to: Seek ŵ P

L2pI, H̃2
ξ pDp

0qq such that

âpŵ, ŵ1q “

ż

I

ż

Dp
0

f̂ξp∆ŵ1
ξ ` k2ŵ1

ξqdxdξ @ ŵ1 P L2pI, H̃2
ξ pDp

0qq. (5.25)

In order to simplify the exposition, we shall study the variational problem

âpŵ, ŵ1q “

ż

I

ż

Dp
0

f̂ξŵ
1
ξdxdξ @ ŵ1 P L2pI, H̃2

ξ pDp
0qq, (5.26)

for f̂ξ P H1pI ˆDp
0q which is equivalent to the variational formulation

apw,w1q “

ż

Dp

fw1dx @ w1 P H̃2
0 pDpq. (5.27)

The case of right hand side as in (5.25) can be treated in the same way and does not

change the result on the well posedness of the problem.

5.4.1 Semi-discretized interior transmission problem

In order to prove the existence of solution to problem (5.26) we first prove existence of

solution for semi-discretized version of this problem. We then construct a convergent

sequence that provide a solution to problem (5.26).

Let N be the number of discretization points with respect to the Floquet-Bloch variable.

We consider a uniform partition of I into sub-domains Ij :“ rξj , ξj`1s for 0 ď j ď N ´ 1
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with ξj :“
j

N
. We define the discrete space

XN pDp
0q :“ tŴN “ pŵξ0 , ¨ ¨ ¨ , ŵξN

q; ŵξj
P H̃2

ξj
pDpq for j “ 0, ¨ ¨ ¨ ,N ´ 1 and ŵξN

“ ŵξ0u,

equipped with the norm ∥ŴN ∥2
XN pDp

0 q
:“

1
N

N´1
ÿ

j“0
∥ŵξj

∥2
H2pDp

0 q
. For ŴN :“ pŵξ0 , ¨ ¨ ¨ , ŵξN

q P

XN pDp
0q we denote by

ΣpŴN q :“
1
N

N´1
ÿ

j“0
ŵξj

.

Then a discretized version of (5.26) is given as the following: seek ŴN :“ pŵξ0 , ¨ ¨ ¨ , ŵξN
q P

XN pDp
0q such that

1
N

N´1
ÿ

j“0

ż

Dp
0

1
np ´ 1p∆ŵξj

` k2npŵξj
qp∆ŵ1

ξj
` k2ŵ1

ξj
qdx`

ż

D̃

k2pn´ npq

n´ 1 wN p∆w1
N ` k2w1

N qdx

`

ż

D̃
ñp∆wN ` k2npwN qp∆w1

N ` k2w1
N qdx “

1
N

N´1
ÿ

j“0

ż

Dp
0

f̂ξj
ŵ1

ξj
dx, (5.28)

for all Ŵ 1
N “ pŵ1

ξ0 , ¨ ¨ ¨ , ŵ1
ξN

q P XN pDp
0q, where

wN “ ΣpŴN q and w1
N “ ΣpŴ 1

N q.

With the short notation for the sesquilinear form

ãpw,w1q :“
ż

D̃

ˆ

ñp∆w` k2npwq ` k2 pn´ npq

n´ 1 w

˙

p∆w1 ` k2w1qdx, (5.29)

problem (5.28) can be synthetically written as

1
N

N´1
ÿ

j“0
aξj

pŵξj
, ŵ1

ξj
q ` ãpwN ,w1

N q “
1
N

N´1
ÿ

j“0

ż

Dp
0

f̂ξj
ŵ1

ξj
dx. (5.30)

Here, f̂ξj
can be seen as pointwise values of f̂ in C0pĪ,L2pDp

0qq at ξ “ ξj .
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5.4.2 Well posedness of the discretized problem

We first prove uniqueness of solutions to problem (5.28). We proceed in two steps by

proving first that wN “ 0 and then deduce that ŵξj
“ 0. Let us denote by

Dp
N :“

N´1
ď

j“0
tDp

0 ` 2πje1u,

where pe1, e2q is the canonical basis of R2. Let ŴN “ pŵξ0 , ¨ ¨ ¨ , ŵξN
q P XN pDp

0q.

Clearly, the functions ŵξj
extended by ξj-quasi periodicity in e1 direction is in H̃2

7 pDp
N q

for j “ 0, ¨ ¨ ¨ ,N ´ 1, with H̃2
7 pDp

N q being the subspace of H̃2
locpDpq of 2πN -periodic

functions in the e1 direction. Consider 0 ď j, j1 ď N ´ 1 and recall the following

identity

N´1
ÿ

ℓ“0
ei2πξℓpj´j1q “ Nδj1

j . (5.31)

where δj1

j denotes the Kronecker symbol. Consequently, for ŵξj
P L2

ξpDpq and ŵξj1 P

L2
ξ1pDpq we have

ż

Dp
N

ŵξj
ŵξj1dx “

N´1
ÿ

ℓ“0
ei2πℓpξj´ξj1 q

ż

Dp
0

ŵξj
ŵξj1dx “ Nδj1

j

ż

Dp
0

ŵξj
ŵξj1dx. (5.32)

Similarly for ŵξ P H2
ξ pDpq and ŵξ1 P H2

ξ1pDpq we have

pŵξ, ŵξ1qH2pDp
N q “ Nδj1

j pŵξ, ŵξ1qH2pDp
0 q. (5.33)

This proves in particular that H̃2
ξj

pDpq and H̃2
ξj1

pDpq are two orthogonal subspaces of

H̃2
7 pDp

N q. More precisely, we have the following decomposition of H̃2
7 pDp

N q.

Lemma 50. We have the following orthogonal decomposition

H̃2
7 pDp

N q “

N´1
à

j“0
H̃2

ξj
pDpq.
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Proof. From the previous discussion we obviously have

N´1
à

j“0
H̃2

ξj
pDpq Ă H̃2

7 pDp
N q.

To prove the reverse inclusion let us first consider the following space

S7pD
p
N q :“ tŵ P H̃2

7 pDp
N q{ distpsupppŵq, BĎp

0q ą δ, for some δ ą 0u.

This set is dense in H̃2
7 pDp

N q. We consider ŵ P S7pD
p
N q that we extend by zero outside

Dp
N which gives a function ŵ P H̃2

7 pΩR
N q, with ΩR

N :“ r0, 2πN s ˆ r0,Rs. Using Fourier

series we have that ŵ can be expanded as

ŵpx1,x2q “

N´1
ÿ

n“0
anpx2qeinx1 , (5.34)

with anpx2q is defined by

anpx2q “
1

2πN

ż 2πN

0
ŵpx1,x2qe´inx1dx1.

Let 0 ď j ď N ´ 1, then for all n P Z, there exists a unique ℓ P Z such that n “ j `Nℓ.

therefore ŵ can be written as

ŵ “

N´1
ÿ

j“0
ŵξj

,

with ŵξj
“

N´1
ÿ

ℓ“0
aj`Nℓpx2qeipj`Nℓqx1 which belongs to H2

ξj
pΩRq since for m P Z we have

eipj`Nℓqpx1`2πmq “ eiξjmeipj`Nℓq.

Moreover, ŵ P H̃2
7 pDp

N q then ŵ vanishes on Γ0. Therefore, anp0q “ 0 and ŵξj
“ 0 on Γ0.

Let us now define a cut-off function χ P C8pR2
`q 2π-periodic in the e1 direction such

that χ “ 1 inside supppŵq and χ “ 0 outside Dp
N . Therefore

ŵ “ χŵ “

N´1
ÿ

j“0
χŵξj

,



5.4. The locally perturbed interior transmission problem 119

where χŵξj
P H̃2

ξj
pDp

0q. Consequently S7pD
p
N q Ă

N´1
à

j“0
H̃2

ξj
pDpq which implies that

N´1
à

j“0
H̃2

ξj
pDpq

is dense in H̃2
7 pDp

N q. Moreover, since the orthogonal sum is a closed subset of H̃2
7 pDp

N q

then we deduce the equality between the two spaces.

Lemma 51. Let ŴN “ pŵξ0 , ¨ ¨ ¨ , ŵξN´1q P XN pDp
0q be a solution of problem (5.28) and

let wN :“ ΣpŴN q. Then wN P H̃2
7 pDp

N q and

ż

Dp
N

1
n´ 1p∆wN ` k2nwN qp∆w1 ` k2w1qdx “

ż

Dp
N

fNw1dx, @w1 P H̃2
7 pDp

N q, (5.35)

with fN :“
1
N

N´1
ÿ

j“0
f̂ξj

.

Proof. Multiplying (5.28) by N and using (5.32) we get

1
N

N´1
ÿ

j“0

ż

Dp
N

1
np ´ 1p∆ŵξj

` k2npŵξj
qp∆ŵ1

ξj
` k2ŵ1

ξj
qdx`NãpwN ,w1

N q

“
1
N

N´1
ÿ

j“0

ż

Dp
N

f̂ξj
ŵ1

ξj
dx. (5.36)

On the other hand, using again (5.32) we deduce that for j ‰ j1 we have

ż

Dp
N

1
np ´ 1p∆ŵξj

` k2npŵξj
qp∆ŵξj1 ` k2ŵξj1 qdx “ 0, (5.37)

ż

Dp
N

f̂ξj
ŵξj1dx “ 0. (5.38)

Let w1 P H̃2
7 pDp

N q. From Lemma 50 we can decompose it as w1 “

N´1
ÿ

j“0
ŵ1

ξj
P

N´1
à

j“0
H̃2

ξj
pDpq.

Using (5.37) and (5.38) we deduce from (5.36) that

1
N

N´1
ÿ

j“0

ż

Dp
N

1
np ´ 1p∆ŵξj

` k2npŵξj
qp∆w1 ` k2w1qdx` ãpwN ,w1q “

1
N

N´1
ÿ

j“0

ż

Dp
N

f̂ξj
w1dx.

which gives (5.35) using the definition of ΣpŴN q.

Lemma 52. Under Assumptions 44 and 48, problem (5.28) has at most one solution.
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Proof. Let ŴN “ pŵξ0 , ¨ ¨ ¨ , ŵξN
q P XN pDp

0q be a solution of the homogeneous problem

(5.28). Then, by Lemma 51, wN satisfies the 2πN -periodic problem (5.35). Using

uniqueness result for quasi-periodic interior transmission problems stated in Theorem 46

(replacing np by n and the periodicity 2π by 2πN) we deduce that wN “ 0. Consequently,

taking ŵ1
ξj

“ 0 for j ‰ ℓ in (5.28) we get

ż

Dp
0

1
np ´ 1p∆ŵξℓ

` k2npŵξℓ
qp∆ŵ1

ξℓ
` k2ŵ1

ξℓ
qdx “ 0,

for all ŵ1
ξℓ

P H̃2
ξℓ

pDp
0q. Thus, ŵξℓ

“ 0 by uniqueness of solutions to quasi-periodic interior

transmission problems (Theorem 46).

Lemma 53. Under Assumptions 44 and 48, problem (5.28) is well posed.

Proof. From the well posedness of the 2πN -periodic problem given by Theorem 46 we

consider wN P H̃2
7 pDp

N q that satisfies (5.35). Let 0 ď j ď N ´ 1. Using Theorem 46 we

define the solution ŵξj
P H̃2

ξj
pDp

0q satisfying

aξj
pŵξj

, ŵ1
ξj

q “

ż

Dp
0

f̂ξj
ŵ1

ξj
dx´ ãpwN , ŵ1

ξj
q for all w1

ξj
P H̃2

ξj
pDp

0q. (5.39)

Therefore

1
N

N´1
ÿ

j“0
aξj

pŵξj
, ŵ1

ξj
q “

1
N

N´1
ÿ

j“0

ż

Dp
0

f̂ξj
ŵ1

ξj
dx´

1
N

N´1
ÿ

j“0
ãpwN , ŵ1

ξj
q. (5.40)

Let us define

w1 “

N´1
ÿ

j“0
ŵ1

ξj
, w̌N :“

1
N

N´1
ÿ

j“0
ŵξj

, and fN :“
1
N

N´1
ÿ

j“0
f̂ξj

.

Then using (5.37) and (5.38) we deduce that (5.40) implies

1
N

N´1
ÿ

j“0

ż

Dp
N

1
np ´ 1p∆ŵξj

` k2npŵξj
qp∆w1 ` k2w1qdx “ ´ãpwN ,w1q `

1
N

N´1
ÿ

j“0

ż

Dp
N

f̂ξj
w1dx.
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Therefore w̌N P H̃2
7 pDp

N q and satisfies

ż

Dp
N

1
np ´ 1p∆w̌N ` k2npw̌N qp∆w1 ` k2w1qdx “ ´ãpwN ,w1q `

ż

Dp
N

fNw1dx, (5.41)

for all w1 P H̃2
7 pDp

N q. Observe that wN also satisfies (5.41). Consequently by uniqueness

of solutions to 2πN -periodic interior transmission problems (under Assumption 44) we

deduce that w̌N “ wN . In conclusion, setting ŴN “ pŵξ0 , ¨ ¨ ¨ , ŵξN
q P XN pDp

0q, we have

wN “ ΣpŴN q and ŴN satisfies problem (5.28).

5.4.3 Convergence analysis

Let M ą 0 be a given constant. We prove the convergence for the right hand sides

f P FM where

FM :“ tf P L2pDpq; J f P H1pI,L2pDp
0qq and ∥J f∥H1pI,L2pDp

0 qq ď Mu.

Let f P FM and denote f̂ξ :“ J pfqpξ, ¨q, ŴN “ pŵξ0 , ¨ ¨ ¨ , ŵξN
q P XN pDp

0q be the

associated solution of problem (5.28) and set wN :“ ΣpŴN q. We define the ξ-quasi

periodic function

w̃ξ :“ eiξx1ŵξj
e´iξjx1 for ξ P rξj , ξj`1r and j “ 0, . . . ,N ´ 1, (5.42)

and define on Dp the function

w̃N “

ż

I
w̃ξdξ. (5.43)

Since the function ξ ÞÑ w̃ξ is in L2pI, H̃2
ξ pDp

0qq, then w̃N P H̃2
0 pDpq. In order to prove

existence of solution to the interior transmission problem (5.27) we shall prove that the

sequence w̃N weakly converges to a solution of problem (5.27). We observe that

∥w̃N ∥2
L2pDpq “

ż 1

0
∥w̃ξ∥2

L2pDp
0 q
dξ “

1
N

N´1
ÿ

j“0
∥ŵξj

∥2
L2pDp

0 q
“ ∥wN ∥2

L2pDp
N q

, (5.44)

where the last equality is a consequence of (5.32). Clearly

∥w̃ξ∥H2pDpq ď 4∥w̃ξj
∥H2pDp

0 q for ξ P rξj , ξj`1r and j “ 0, . . . ,N ´ 1. (5.45)
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Therefore

∥w̃N ∥2
H2pDpq “

ż 1

0
∥w̃ξ∥2

H2pDp
0 q
dξ ď 4 1

N

N´1
ÿ

j“0
∥ŵξj

∥2
H2pDp

0 q
“ 4∥wN ∥2

H2pDp
N q

, (5.46)

where the last equality is a consequence of Lemma 50. We also introduce the continuous

and picewise affine function with respect to the ξ variable

w̌ξ :“ Neiξx1pŵξj
e´iξjx1pξj`1 ´ ξq ` ŵξj`1e

´iξj`1x1pξ ´ ξjqq, (5.47)

for ξ P rξj , ξj`1r and j “ 0, . . . ,N ´ 1. We then define

w̌N :“
ż

I
w̌ξdξ. (5.48)

This function satisfies

∥w̌N ∥2
L2pDpq “

ż 1

0
∥w̌ξ∥2

L2pDp
0 q
dξ ď

4
3

1
N

N´1
ÿ

j“0
∥ŵξj

∥2
L2pDp

0 q
“

4
3∥wN ∥2

L2pDp
N q

, (5.49)

and

∥w̌N ∥2
H2pDpq “

ż 1

0
∥w̌ξ∥2

H2pDp
0 q
dξ ď 4 1

N

N´1
ÿ

j“0
∥ŵξj

∥2
H2pDp

0 q
“ 4∥wN ∥2

H2pDp
N q

. (5.50)

We also have for ξ P rξj , ξj`1r

∥w̌ξ∥2
L2pDp

0 q
ě ∥ŵξj

∥2
L2pDp

0 q
pξ ´ ξj`1q2 ` ∥ŵξj`1∥2

L2pDp
0 q

pξ ´ ξjq2

´ 2
´

pξj`1 ´ ξqpξ ´ ξjq∥ŵξj
∥L2pDp

0 q∥ŵξj`1∥L2pDp
0 q

¯

.

Therefore,

∥w̌N ∥2
L2pDpq “

1
N

N´1
ÿ

j“0

ż ξj`1

ξj

∥w̌ξ∥2
L2pDp

0 q
dξ ě

1
3∥wN ∥2

L2pDp
N q

. (5.51)

We shall prove that this sequence also converges to the solution of problem (5.27). It is

introduced to be able to apply a compactness argument in the Floquet-Bloch spaces.
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Lemma 54. Fix N0 P N and consider N ě N0. Then there exists a constant CpN0q ą 0

that only depends on N0 such that

∥wN ´ w̃N ∥L2pDp
N0

q ď
N0CpN0q

N

˜

1
N

N´1
ÿ

j“0
∥ŵξj

∥2
L2pDp

0 q

¸1{2

,

and

∥wN ´ w̌N ∥L2pDp
N0

q ď
N2

0CpN0q

12N2

˜

1
N

N´1
ÿ

j“0
∥ŵξj

∥L2pDp
0 q

¸1{2

.

Proof. Taking the difference between wN and w̃N we get

wN ´ w̃N “
1
N

N´1
ÿ

j“0
ŵξj

´

N´1
ÿ

j“0

ż ξj`1

ξj

eix1pξ´ξjqŵξj
dξ “

1
N

N´1
ÿ

j“0
θN px1qŵξj

,

with

θN px1q “

$

’

’

&

’

’

%

1 ´
N

ix1

´

eix1
1
N ´ 1

¯

for x1 ‰ 0,

0 for x1 “ 0.
(5.52)

We observe that θN px1q have the following asymptotic form as N tends to infinity

θN px1q “ 1 ´
N

ix1

˜

ix1
N

`
1
2

ˆ

ix1
N

˙2
` O

ˆ

1
N3

˙

¸

“
ix1
2N ` O

ˆ

1
N2

˙

.

with x1 ď N0. Therefore

∥wN ´ w̃N ∥L2pDp
N0

q ď
1
N

N´1
ÿ

j“0
sup

x1PDp
N0

|θN px1q| ∥ŵξj
∥L2pDp

N0
q,

ď
N0CpN0q

N2

N´1
ÿ

j“0
∥ŵξj

∥L2pDp
0 q,

with CpN0q ą 0 is constant that depends on N0 and does not depend on N , then using

Cauchy-Schwartz inequality we get

∥wN ´ w̃N ∥L2pDp
N0

q ď
N0CpN0q

N

˜

1
N

N´1
ÿ

j“0
∥ŵξj

∥2
L2pDp

0 q

¸1{2

. (5.53)
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Let us now take the difference between wN and w̌N . We have

wN ´ w̌N “

N´1
ÿ

j“0

˜

1
N
ŵξj

´Nŵξj`1

ż ξj`1

ξj

eix1pξ´ξj`1qpξ ´ ξjqdξ

`Nŵξj

ż ξj`1

ξj

eix1pξ´ξjqpξ ´ ξj`1q

¸

dξ,

“

N´1
ÿ

j“0

ˆ

1
N
ŵξj

´Nŵξj`1

ˆ

1
N

1
ix1

`
1
x2

1
p1 ´ e

´ix1
N q

˙

`Nŵξj

ˆ

1
N

1
ix1

´
1
x2

1
p1 ´ e

ix1
N q

˙˙

,

Since ŵξ0 “ ŵξN
then we have

wN ´ w̌N “
1
N

N´1
ÿ

j“0
ŵξj

„

1 ´
N2

x2
1

´

p1 ´ e
´ix1

N q ` p1 ´ e
ix1
N q

¯

ȷ

“
1
N

N´1
ÿ

j“0
ŵξj

θ̌N px1q,

with

θ̌N px1q “

$

’

’

&

’

’

%

1 ´
2N2

x2
1

´

1 ´ cosp
x1
N

q

¯

for x1 ‰ 0,

0 for x1 “ 0.
(5.54)

We observe that θ̌N px1q have the following asymptotic form as N tends to infinity

θ̌N px1q “ 1 ´
2N2

x2
1

„

1
2

´x1
N

¯2
´

1
4!

´x1
N

¯4
` O

ˆ

1
N6

˙ȷ

“
x2

1
12N2 ` O

ˆ

1
N4

˙

,

for x1 ď N0. Thus

∥wN ´ w̌N ∥L2pDp
N0

q ď
N2

0CpN0q

12N3

N´1
ÿ

j“0
∥ŵξj

∥L2pDp
0 q ď

N2
0CpN0q

12N2

˜

1
N

N´1
ÿ

j“0
∥ŵξj

∥L2pDp
0 q

¸1{2

,

which ends the proof.

Lemma 55. Let f P FM and wN as defined previously. Set fN :“
1
N

N´1
ÿ

j“0
f̂ξj

. There

exists a constant C ą 0 independent from f and N (that may depend on M) such that

∥wN ∥L2pDp
N q ď C∥fN ∥L2pDp

N q. (5.55)
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Proof. We prove this Lemma using a contradiction argument. Assume that for all C P N,

there exists f P FM that depends on C and there exists N that also depends on C such

that

∥wN ∥L2pDp
N q ě C∥fN ∥L2pDp

N q.

One can choose the sequence N to be monotonically increasing with respect to C. In-

dexing C with respect to N , replacing fN by fN

∥wN ∥L2pDp
N q

and wN by wN

∥wN ∥L2pDp
N q

,

the contradiction statement can be equivalently phrased as: there exits a monotonically

increasing sequence N such that

∥fN ∥L2pDp
N q ÝÑ 0 as N Ñ 8, (5.56)

and ∥wN ∥L2pDp
N q “ 1 where wN is the solution of problem (5.35) associated with fN .

Taking w1 “ wN in (5.35) we obtain

ż

Dp
N

1
n´ 1 |∆wN |2dx “ ´

ż

Dp
N

pk2∆wNwN ` k2nwN ∆wN ` k2n|wN |2qdx`

ż

Dp
N

fNwNdx.

Therefore

γ0∥∆wN ∥2
L2pDp

N q
ď

´

k2pn˚ ` 1q∥wN ∥L2pDp
N q∥∆wN ∥L2pDp

N q

`k2n˚∥wN ∥2
L2pDp

N q
` ∥fN ∥L2pDp

N q∥wN ∥L2pDp
N q

¯

,

with γ0 :“
1

n˚ ´ 1 in the case n˚ ą 1 and γ0 :“
1

n˚ ´ 1 in the case n˚ ă 1 . This inequal-

ity implies in particular ∆wN is uniformly bounded with respect to N in L2pDp
N q. This

implies in particular that wN is uniformly bounded in H2pD̃q (using elliptic regularity).

Recall that

aξj
pŵξj

, ŵ1
ξj

q “

ż

Dp
0

f̂ξj
ŵ1

ξj
dx´ ãpwN , ŵ1

ξj
q for all w1

ξj
P H̃2

ξj
pDp

0q. (5.57)

Using Lemma 47 we deduce that

∥ŵξj
∥H2pDp

0 qď C
´

∥wN ∥H2pD̃q`∥f̂ξj
∥L2pDp

0 q

¯
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for some constant C independent from N . Therefore

1
N

N´1
ÿ

j“0
∥ŵξj

∥2
H2pDp

0 q
ď 2C2

˜

∥wN ∥2
H2pD̃q

`
1
N

N´1
ÿ

j“0
∥f̂ξj

∥2
L2pDp

0 q

¸

. (5.58)

Using (5.46) and (5.50) we infer that w̃N and w̌N are bounded in H̃2pDpq and wN is

uniformly bounded in H̃2pDp
N q. Consequently, up to subsequence, we can assume that

w̃N and w̌N weakly converge in H̃2pDpq and their limit is the same as a consequence of

Lemma 54. Let us denote by w P H̃2pDpq this limit. Let N0 P N be a fixed parameter.

According to Lemma 54 we can also assume (up to changing the subsequence) that wN

weakly converges to w in H̃2pDp
N0

q.

Consider now φ P C8
c pDp

N0
Y Γ0q that we extend by zero in Dp

N and by 2πN periodicity

in the x1 direction. This extension give us a test function in H̃2
7 pDp

N q that we can use

in (5.35) and get

ż

Dp
N0

1
n´ 1p∆wN ` k2nwN qp∆φ` k2φqdx “

ż

Dp
N0

fNφdx. (5.59)

Passing to the limit as N goes to infinity in (5.59) shows that w P H̃2pDp
N0

q satisfies

ż

Dp

1
n´ 1p∆w` k2nwqp∆φ` k2φqdx “ 0, @φ P C8

c pDp
N0

Y Γ0q. (5.60)

Since N0 can be chosen arbitrarily large, the last equality holds for all φ P C8
c pDp Y Γ0q

and by denseness argument for all φ P H̃2pDpq. Then (5.60) shows that w is a solution

to the homogeneous interior transmission problem (5.20) and by the uniqueness result

of Lemma 49, w “ 0.

In order to obtain a contradiction, we shall prove that the sequence w̌N strongly con-

verges to w in L2pDpq which is equivalent to proving that ξ Ñ w̌ξ is strongly convergent

in L2pI,L2pDp
0qq. Since this sequence is bounded in L2pI,H2

ξ pDp
0qq, using the Rellich

compactness embedding theorem it is sufficient to prove that ξ Ñ w̌ξ is bounded in

H1pI ˆDp
0q.

From (5.50) we have that w̌N is uniformly bounded with respect to N in H̃2
0 pDpq.

Therefore, there exists a subsequence w̌N that weakly converges to zero in H̃2
0 pDpq.

Moreover, w̌ξ is bounded in L2pI, H̃2
ξ pDp

0qq. Then it remains to prove that ξ Ñ
Bw̌ξ

Bξ
is
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bounded in L2pI ˆDp
0q. For ξ P rξj , ξj`1r we have

Bw̌ξ

Bξ
“ ix1w̌ξ `Neix1ξpŵ7

ξj`1
´ ŵ7

ξj
q,

with

ŵ7

ξj
:“ e´ix1ξj ŵξj

and ŵ7

ξj`1
:“ e´ix1ξj`1ŵξj`1 . (5.61)

Let ŵ71

P H̃2
7 pDpq and set ŵ1

ξj
“ eix1ξj ŵ71

P H̃2
ξj

pDpq. Then, replacing ŵξj
and ŵ1

ξj

respectively by ŵ7

ξj
eix1ξj and ŵ71

eix1ξj in (5.57) we get

ż

Dp
0

1
np ´ 1

˜

∆ŵ7

ξj
` 2iξj

Bŵ7

ξj

Bx1
` pk2np ´ |ξj |2qŵ7

ξj

¸

(5.62)

ˆ

ˆ

∆ŵ71
` 2iξj

Bŵ71

Bx1
` pk2np ´ |ξj |2qŵ71

˙

dx

`

ż

D̃

ˆ

ñp∆wN ` k2npwN q ` k2 pn´ npq

n´ 1 wN

˙

ˆ

ˆ

∆ŵ71
` 2iξj

Bŵ71

Bx1
` pk2np ´ |ξj |2qŵ71

˙

eix1ξjdx

“

ż

Dp
0

f̂ 7

ξj
ŵ71dx,

with f̂ 7

ξj
:“ e´ix1ξj f̂ξj

. Define

ej`1 :“ Npŵ7

ξj`1
´ ŵ7

ξj
q.

Consequently, taking the difference between equation (5.62) satisfied respectively for

ξj`1 and ξj we get

1
N

ż

Dp
0

1
np ´ 1

ˆ

∆eξj`1 ` 2iξj`1
Beξj`1

Bx1
` pk2np ´ |ξj`1|2qeξj`1

˙

ˆ

ˆ

∆ŵ71
` 2iξj`1

Bŵ71

Bx1
` pk2 ´ |ξj`1|2qŵ71

˙

dx

` pξj`1 ´ ξjq

´

ap,1pŵ7

ξj
, ŵ71

q ` ap,2pŵ7

ξj
, ŵ71

q ` ã1pwN , ŵ71

q ` ã2pwN , ŵ71

q

¯

“

ż

Dp
0

pf̂ 7

ξj
´ f̂ 7

ξj`1
qŵ71dx. (5.63)
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with ap,1pŵ7

ξj
, ŵ71

q and ap,2pŵ7

ξj
, ŵ71

q are the sesquilinear forms defined by

ap,1pŵ7

ξj
, ŵ71

q :“
ż

Dp
0

1
np ´ 1

˜

2i
Bŵ7

ξj

Bx1
´ p|ξj`1| ` |ξj |qŵ7

ξj

¸

ˆ

ˆ

∆ŵ71
` 2iξj

Bŵ71

Bx1
` pk2 ´ |ξj |2qŵ71

˙

dx,

ap,2pŵ7

ξj
, ŵ71

q :“
ż

Dp
0

1
np ´ 1

˜

∆ŵ7

ξj
` 2iξj`1

Bŵ7

ξj

Bx1
` pk2np ´ |ξj`1|2qŵ7

ξj

¸

ˆ

ˆ

2iBŵ
71

Bx1
´ p|ξj`1| ` |ξj |qŵ71

˙

dx,

and ã1pwN , ŵ71

q, ã2pwN , ŵ71

q are defined by

ã1pwN , ŵ71

q :“
ż

D̃

ˆ

ñp∆wN ` k2npwN q ` k2 pn´ npq

n´ 1 wN

˙

ˆ eiξjx1

ˆ

2iBŵ
71

Bx1
´ p|ξj | ` |ξj`1|qŵ71

˙

dx

ã2pwN , ŵ71

q :“
ż

D̃

ˆ

ñp∆wN ` k2npwN q ` k2 pn´ npq

n´ 1 wN

˙

ˆN
`

eix1ξj`1 ´ eix1ξj
˘

ˆ

∆ŵ71
` 2iξj`1

Bŵ71

Bx1
` pk2 ´ |ξj`1|2qŵ71

˙

dx.

Setting êξj`1 :“ eix1ξj`1ej`1 P H̃2
ξj`1pDpq and choosing w17 “ e´ix1ξj`1ŵ1

ξj`1 for some

ŵ1
ξj`1 P H̃2

ξj`1pDpq we deduce that

aξj`1pêξj`1 , ŵ1
ξj`1q “ ´

´

ap,1pŵ7

ξj
, ŵ71

q ` ap,2pŵ7

ξj
, ŵ71

q ` ã1pwN , ŵ71

q ` ã2pwN , ŵ71

q

¯

`N

ż

Dp
0

´

f̂ 7

ξj
´ f̂ 7

ξj`1

¯

ŵ71dx.

Therefore, using Theorem 47 we conclude that

∥êξj`1∥H2pDp
0 q ď γ1

ˆ

∥ŵ7

ξj
∥H2pDp

0 q ` ∥wN ∥H2pD̃q `N
›

›

›
f̂ 7

ξj
´ f̂ 7

ξj`1

›

›

›

L2pDp
0 q

˙

, (5.64)

with γ1 ą 0 is a constant independent from ξj`1 and N . On the other hand, Denoting

by ẽξ :“ eiξx1 êξj`1e
´ix1ξj`1 , then we have

Bw̌ξ

Bξ
“ ix1w̌ξ ` ẽξ. (5.65)
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Using the same arguments as for (5.44) we observe that

∥ẽξ∥2
L2pI,L2pDp

0 qq
“

1
N

N´1
ÿ

j“0
∥êξj

∥2
L2pDp

0 q
, (5.66)

since êξ0 “ êξN
. Consequently, from (5.65) and (5.66) we deduce that

›

›

›

›

Bw̌ξ

Bξ

›

›

›

›

2

L2pI,L2pDp
0 qq

ď 8π2∥w̌N ∥2
L2pDpq ` 2 1

N

N´1
ÿ

j“0
∥êξj

∥2
L2pDp

0 q
.

Then using (5.49),(5.64) and (5.58) we get

›

›

›

›

Bw̌ξ

Bξ

›

›

›

›

2

L2pI,L2pDp
0 qq

ď
16π2

3 ∥wN ∥2
L2pD̃q

` 8γ2
1

1
N

N´1
ÿ

j“0

ˆ

∥ŵ7

ξj
∥2

H2pDp
0 q

` ∥wN ∥2
H2pD̃q

`N2
›

›

›
f̂ 7

ξj
´ f̂ 7

ξj`1

›

›

›

2

L2pDp
0 q

˙

,

with γ2 ą 0 is a constant independent from N . On the other hand,

1
N

N´1
ÿ

j“0
N2

›

›

›
f̂ 7

ξj
´ f̂ 7

ξj`1

›

›

›

2

L2pDp
0 q

ď C }J fp¨, ¨q}
2
H1pIˆDp

0 q ď CM2,

for some constant C ą 0. Thus, combining this inequality with (5.58) we deduce that

ξ Ñ
Bw̌ξ

Bξ
is bounded in L2pI,L2pDp

0qq. Therefore, ξ Ñ w̌ξ is bounded in H1pI ˆDp
0q

which implies that w̌N converges strongly to w “ 0 in L2pDpq and by . This contradicts

∥w̌N ∥2
L2pDpq ě

1
3 by (5.51).

Theorem 56. Assume that Assumption 48 is verified and let f P FM . Then Problem

(5.27) has a unique solution w P H̃2
0 pDpq. Moreover, there exists a constant CpMq

independent from f such that

∥w∥H2pDpq ď CpMq∥f∥L2pDpq.

Proof. Let wN and w̌N be the sequences introduced above. From Lemma 55 we deduce

that wN is bounded in L2pDp
N q. Using (5.49) we infer that w̌N is bounded in L2pDpq.

The same reasoning as in the proof of Lemma 55 allows us to conclude that (up to a

subsequence) wN and w̌N locally converge in L2pDpq to a same limit w in H̃2
0 pDpq that
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satisfies (5.27). Moreover, using the same arguments that lead to (5.58), Lemma 55, and

(5.50) we infer the existence of a constant CpMq such that

∥w̌N ∥H2pDpq ď CpMq∥fN ∥L2pDp
N q. (5.67)

This shows in particular that we can choose the subsequence w̌N to be weakly conver-

gent to w in H2pDpq and passing to the limit in the inequality leads to (5.67) since

∥w∥H2pDpq ď lim inf∥w̌N ∥L2pDpq and

∥fN ∥2
L2pDp

N q
“

1
N

N´1
ÿ

j“0
∥f̂ξj

∥L2pDp
0 q ÝÑ

ż

I
∥f̂ξ∥L2pDp

0 qdξ “ ∥f∥L2pDpq,

as N goes to infinity. This ends the proof.

As explained before, the study of problem (5.25) follow the same lines as problem (5.26).

The only minor difference is in the treatment of the right hand side of equation (5.62)

that will contain an additional term depending on ξj but without any effect on the

subsequent conclusions of Lemma 55. This leads to the following Theorem on the well

posedness of the interior transmission problem (5.17).

Theorem 57. Assume that Assumption 48 is verified and let M ą 0 be a given constant.

Assume in addition that the boundary data φ and ψ are respectively the trace and the

normal trace on BDpzΓ0 of some function θ P H̃2
0 pDpq and such that ∥J θ∥H1pI,H2pDp

0 qq ď

M . Then, Problem (5.18) has a unique solution w0 P H2pDpq satisfying

∥w0∥H2pDpq ď CpMq

´

∥φ∥H3{2pBDpzΓ0q ` ∥ψ∥H1{2pBDpzΓ0q

¯

,

with a constant CpMq independent from φ and ψ.
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Conclusion and perspectives

We presented in this PhD thesis a study of an inverse scattering problem for the recon-

struction of defects in an unbounded periodic structures. By applying incident point

sources and measuring the scattered field on a line parallel to the periodic layer, we

proposed the method to reconstruct the shape of the defects without a knowledge of the

periodic background.

In Chapter 2, we presented and complemented the results given in the literature on the

well-posedness of the direct scattering problem from unbounded periodic layers. This

problem was solved by applying the Floquet-Bloch transform which led us to study the

quasi-periodic scattering problem without defects and then to deduce the well-posed

character of the problem in the presence of defects. The uniqueness of the solution was

proven by assuming that the periodic refractive index is positive at least in an open

domain in the periodic background.

In Chapter 3, we employed the GLSM as introduced in [39] to solve the inverse scattering

problem by removing the technical assumption made in [39], where it is assumed that

the defect is also periodic with a longer period.

We first studied the inverse problem using quasi-periodic incident waves, we reintroduced

the problem associated with this type of incident sources, and then introduced the quasi-

periodic near field operator for fixed Floquet-Bloch variable. Next, we applied GLSM to

solve the inverse problem for a single Floquet-Bloch mode and constructed an indicator

function for reconstructing the defective period distributed periodically.

We then considered the case where non-quasi periodic incident sources are applied. The

main difficulty here is that the Floquet-Bloch transform of the full near-field operator

does not coincide with the quasi-periodic near field operator. In order to apply the
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GLSM we assume known the single Floquet-Bloch near field operators. This allows us

to construct a suitable penalty term for the GLSM and obtain an indicator function for

reconstructing the full domain. These two results were obtained under the assumption

that the defect does not intersect the periodic background. One of the main perspectives

of this part is to extend the analysis to the case where the defect does intersect the

periodic background.

The study of the inverse problem uses the results on the well-posedness of the forward

problem where it is assumed that the refractive index has a positive imaginary part.

Getting rid of this assumption is one of our perspectives that would rely on the analysis

of the direct problem done in [35, 38].

In numerics, we used the code developed by [39] to generate solutions to the scattering

problem from locally perturbed periodic layers, and we gave some numerical examples

for the reconstruction obtained using the indicator function associated with the single

Floquet-Bloch mode. Extending the numerics to 3D problems is one of our objectives

in the near future.

In Chapter 4, we applied the DLSM as introduced in [39] also with removing the as-

sumption that the defect is periodic. In order to do so, we reapplied the GLSM for

a single Floquet-Bloch mode as in Chapter 3, but taking a period equal to an integer

multiple of the original periodicity. Then, using the quasi-periodic indicator function

associated with these two different periodicity lengths and the one associated with the

complete domain, we introduced an indicator function allowing to directly reconstruct

the defect. We also observed that applying GLSM for a single Floquet-Bloch mode is

sufficient to derive an indicator function for the defect. We used the later to give some

numerical examples for the application of the DLSM.

In Chapter 5, we presented a study for the well-posedness of the interior transmission

problem (ITP) by considering one of the possible cases when the perturbation intersects

the periodic background (when the defect is included in the periodic domain). The study
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was based on the application of the Floquet-Bloch transform, a discretization with re-

spect to the Floquet-Bloch variable and a convergence analysis to construct a solution

of the ITP. The uniqueness was also proved under the assumption that the refractive

index has a positive imaginary part. Similarly to the direct problem, we would like to

remove this assumption in a future work.

As a more broader perspective for this work we can mention the extension to other

models for scattering problems such as Maxwell’s equations or elastodynamics, which

require in particular to consider the problem in a 3D setting.
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des dans des milieux périodiques infinis localement perturbés. PhD thesis, Ecole

Polytechnique, (2009).

[25] S. Fliss and P. Joly. Solutions of the time-harmonic wave equation in periodic waveg-

uides: asymptotic behaviour and radiation condition. Archive for Rational Mechan-

ics and Analysis, 219, 349-386, (2016).

[26] T. Furuya. The factorization and monotonicity method for the defect in an open pe-

riodic waveguide. Journal of Inverse and Ill-posed Problems, 28(6), 783-796, (2020).

[27] S. V. Georgakopoulos, C. L. Zekios, A. Sattar-Kaddour, M. Hamza, A. Biswas, B.

Clark, ... and R. J. Lang. Origami antennas. IEEE Open Journal of Antennas and

Propagation, 2, 1020-1043, (2021).

[28] H. Haddar and A. Konschin. Factorization method for imaging a local perturbation

in inhomogeneous periodic layers from far field measurements. Inverse Problems

and Imaging, 14(1), 133-152, (2020).

[29] H. Haddar and T. P. Nguyen. A volume integral method for solving scattering prob-

lems from locally perturbed infinite periodic layers. Applicable Analysis, 96(1), 130-

158, (2017).

[30] H. Haddar and T.P. Nguyen. Sampling methods for reconstructing the geometry

of a local perturbation in unknown periodic layers. Computers Mathematics with

Applications, 74(11), 2831-2855, (2017).

[31] G. Hu, Y. Lu and B. Zhang. The factorization method for inverse elastic scattering

from periodic structures. Inverse Problems, 29(11), 115005, (2013).



BIBLIOGRAPHY 137

[32] G. Hu and B. Zhang. The linear sampling method for the inverse electromagnetic

scattering by a partially coated bi-periodic structure. Mathematical methods in the

applied sciences, 34(5), 509-519, (2011).

[33] P. Joly, J. R. Li and S. Fliss. Exact boundary conditions for periodic waveguides

containing a local perturbation. Commun. Comput. Phys, 1(6), 945-973, (2006).

[34] A. Kirsch. A note on Sylvester’s proof of discreteness of interior transmission eigen-

values. Comptes Rendus Mathematique, 354(4), 377-382, (2016).

[35] A. Kirsch. A scattering problem for a local perturbation of an open periodic waveg-

uide. Mathematical Methods in the Applied Sciences, (2022).

[36] A. Kirsch. Factorization of the far-field operator for the inhomogeneous medium

case and an application in inverse scattering theory. Inverse problems, 15(2), 413,

(1999).

[37] A. Kirsch and N. Grinberg. The factorization method for inverse problems. (Vol.

36). OUP Oxford, (2007).

[38] A. Kirsch and A. Lechleiter. The limiting absorption principle and a radiation condi-

tion for the scattering by a periodic layer. SIAM Journal on Mathematical Analysis,

50(3), 2536-2565, (2018).

[39] A. Konschin and A. Lechleiter. Reconstruction of a local perturbation in inhomo-

geneous periodic layers from partial near field measurements. Inverse Problems,

35(11), 114006, (2019).

[40] A. Lechleiter, Imaging of periodic dielectrics. BIT Numerical Mathematics, 50(1),

59-83, (2010).

[41] A. Lechleiter. The Floquet-Bloch transform and scattering from locally perturbed

periodic surfaces. Journal of Mathematical Analysis and Applications, 446(1), 605-

627, (2017).

[42] A. Lechleiter and D-L. Nguyen. Factorization Method for Electromagnetic Inverse

Scattering from Biperiodic Structures, SIAM Journal on Imaging Sciences, 6(2),

1111-1139. (2013).



138 BIBLIOGRAPHY

[43] A. Lechleiter and D-L. Nguyen. Scattering of Herglotz waves from periodic structures

and mapping properties of the Bloch transform. Proceedings of the Royal Society of

Edinburgh Section A: Mathematics, 145(6), 1283-1311, (2015).

[44] A. Lechleiter and D-L. Nguyen. Volume integral equations for scattering from

anisotropic diffraction gratings. Mathematical Methods in the Applied Sciences,

36(3), 262-274, (2013).

[45] A. Lechleiter and R. Zhang. A convergent numerical scheme for scattering of ape-

riodic waves from periodic surfaces based on the Floquet-Bloch transform. SIAM

Journal on Numerical Analysis, 55(2), 713-736, (2017).

[46] A. Lechleiter, R. Zhang. Reconstruction of local perturbations in periodic surfaces.

Inverse Problems, 34(3), 035006, (2018)

[47] D. L. Nguyen, Spectral Methods for Direct and Inverse Scattering from Periodic

Structures, PhD thesis, (2012).

[48] D. L. Nguyen, K. Stahl, and T. Truong. A new sampling indicator function for stable

imaging of periodic scattering media. Inverse Problems, 39(6), 065013, (2023).

[49] T. P. Nguyen. Direct and inverse solvers for scattering problems from locally per-

turbed infinite periodic layers, phD thesis, (2017).

[50] T. P. Nguyen. Differential imaging of local perturbations in anisotropic periodic

media. Inverse Problems, 36(3), 034004, (2020).

[51] T. P. Nguyen, F. Cakoni and H. Haddar. Direct Imaging of Local Perturbations in

a Unknown Bi-Periodic Layered Medium, Preprint, (2022).

[52] J. Reinbold, T. Frenzel, A. Münchinger and M. Wegener. The rise of (chiral) 3D

mechanical metamaterials. Materials, 12(21), 3527, (2019).

[53] K. Sandfort, The factorization method for inverse scattering from periodic inhomo-

geneous media, PhD thesis, Karlsruher Institut für Technologie, (2010).

[54] J. Sun and C. Zheng. Reconstruction of obstacles embedded in waveguides. 8th Int.

Conf. on Scientific Computing and Applications (University of Nevada, Las Vegas,

Nevada, 1–4 April 2012) vol 586 pp 341–50, (2013).



BIBLIOGRAPHY 139

[55] J. Sylvester. Discreteness of transmission eigenvalues via upper triangular compact

operators. SIAM Journal on Mathematical Analysis, 44(1), 341-354, (2012).

[56] J. Yang, B. Zhang and R. Zhang. A sampling method for the inverse transmission

problem for periodic media. Inverse Problems, 28(3), 035004, (2012).

[57] H. Wang, Q. Chen, O. Zetterstrom and O. Quevedo-Teruel. Three-dimensional

broadband and isotropic double-mesh twin-wire media for meta-lenses. Applied Sci-

ences, 11(15), 7153, (2021).

[58] B. Zhang and S. N. Chandler-Wilde. Acoustic Scattering by an Inhomogeneous Layer

on a Rigid Plate. SIAM Journal on Applied Mathematics, 58(6), 1931-1950, (1998).


	Introduction
	The direct scattering problem from locally perturbed periodic medium
	Introduction
	Solvability of the direct scattering problem in isotropic Media
	Setting of the problem
	The case of periodic layers without defects
	Well posedness of the problem

	The case of periodic layers with defects
	Well posedness of (2.3)


	Numerical examples
	Solvability of the direct scattering problem in anisotropic Media
	Setting of the problem
	The case of periodic layers without defects
	The case of periodic layers with defects


	Sampling methods for imaging a periodic layer and its defects
	Introduction
	Setting of the direct problem
	The locally perturbed periodic scattering problem
	The quasi-periodic scattering problem

	The inverse problem for quasi-periodic incident fields
	Setting for the inverse problem
	Some properties of the operators defined in the previous section
	Application of the Generalized Linear Sampling Method (GLSM)

	Inverse problem for non-periodic incident fields
	Setting of the inverse problem
	Some properties of the operator S
	Application of the Generalized Linear Sampling Method (GLSM)

	Numerical examples

	Application to differential imaging
	Introduction
	Setting of the problem and notations
	Application to the GLSM method
	Application of the GLSM for the reconstruction of DM0.
	Application of the GLSM for the reconstruction of Dp,M0 

	 Application of the Differential Sampling Method
	Numerical examples

	Analysis of the Interior Transmission problem
	Introduction
	Setting of the problem
	The quasi-periodic Interior transmission problem
	Setting of the problem
	Well-posedness of the problem

	The locally perturbed interior transmission problem
	Semi-discretized interior transmission problem
	Well posedness of the discretized problem
	Convergence analysis


	Conclusion and perspectives
	Bibliography

