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1

This scientific subject represents my largest scientific investment since my PhD thesis and I thus chose
to develop it in the rest of the present habilitation thesis. As a short informal introduction to the topic, I
would like to mention how I got acquainted with the world of subcritical transition. I simply got entrained
by other people who underwent that transition from rotating flows instabilities to shear flow transition,
namely Rich Kerswell from Bristol University, who was apparently following the scheme proposed by
Fabian Waleffe before him and got interested in the application of dynamical systems theories to these
flows. I got seduced initially by the apparent mathematical formalism used in the related studies as well
as by the appealing simplicity and importance of the flow configurations under study. After working on
pipe flow in Bristol with R.R. Kerswell together with A.P. Willis and C.C.T. Pringle, I continued along
(hopefully) the same lines at the Department of Mechanics of KTH Stockholm together with Dan S.
Henningson, Philipp Schlatter and Luca Brandt, who were experts of transitional shear flows but some-
how new to the nonlinear interpretation schemes. My interest, influenced directly by numerical feasibility,
switched from turbulence itself to transition (via the study of "edge states") for which the dynamical
systems paradigm semt more relevant... at least to me. At about the same time I got acquainted with Paul
Manneville from LadHyx who convinced me that a spatiotemporal look at such flows is not an option,
and suggested instead a spatiotemporal if not statistical physics–oriented perspective. Such a view gets
challenged periodically by some of my colleagues from the field, including the late Bruno Eckhardt (whose
scientific influence I am hardly able to quantify as of now), Predrag Cvitanović, Olivier Dauchot, Yves
Pomeau, Björn Hof, John F. Gibson, Marc Avila, Laurette Tuckerman or Dwight Barkley, to name just
the most productive of them. My current understanding of transition results from the interplay between
these stimulating as well as often conflicting points of views, but more importantly from the scientific
optimism of the people mentioned just above.



2 Sommaire

Preamble

Here are a few words to explain the way I structured my habilitation thesis. First of all I chose to
write in English because my priority targets are my own students, those gone as well as those to come.
These many students are all different, yet the one thing they have in common is that they understand
English. English is not my mother tongue although I use it more than French for Science, nevertheless
I apologise in advance for all the pain endured by genuine Anglophones upon reading my manuscript.
I chose to tell a story here, or (hopefully) give a course at an advanced scientific level. I hence chose a
coherent storyline whose elements were subtle from my past published papers. Choosing to dissert on the
transition to turbulence was a natural choice because that is so far the most coherent story line I can
offer, and because it covers all the time period since my first post-doctoral position. The story told is
almost free from technicalities. In particular, although my own everyday work (and that of my students)
has long consisted of implementing numerical schemes and post-processing numerical data, I intended to
zoom out and tell a physicist story. There won’t be any detail about the numerical codes used, about
how "details" were implemented. There are several reasons behind this choice. To start with, this is my
second thesis and I wanted it to be as different as possible from the first one which was very numerics-
oriented. More importantly perhaps, these details can be found in the published articles. Crucially too,
including them would shadow or obscure the thinking underlying all these studies. Instead I would ideally
like the potential reader to grasp the subtile connections between the mathematician’s approach to the
Navier–Stokes equations, the engineer’s concern about keeping his pipe flow energetically interesting, and
the physicist’s wish to understand complexity and summarise it using a few modular concepts. Almost
all images included in this document have been published somewhere and the bibliographic reference
is always included in the caption or in the related text. A small number of images come from as yet
unpublished studies, in which case the collaborator(s) for this image is/are also mentioned. One of the
main difficulties in writing a research course, or something close to it, is that each result mentioned, be
it from me or someone else, is dated. In the relatively recent field of hydrodynamics, only a very small
number of results are universally accepted as being part of a basic knowledge package. This becomes
especially relevant when transition to turbulence is concerned, namely a field with almost no established
mathematical formulas. As a consequence I had to give in the first chapter an overview of the status of
the field as I found it when I began working in it. Obviously, and I am in fact glad to have witnessed so
much, during the 15 years in which I have worked on transition the field itself has mutated. The reasons
are multiple : huge progress in numerical as well as experimental facilities, understanding of certains
concepts evolving with time, newborn scientific analogies, new fashionable directions in this field as in
other fields... It was difficult to untangle all the different contributions and to extract mine out of the
context of the work of a community (since this was the initially requested homework). This let to a
tendency to rewrite history in a different order, rather multiple back and forth in time. And last but
not least I hope to convince you that I was among the people responsible for that mutation of the field,
although most of the people mentioned in the introductory chapter bring so much more than I could
ever dream of. With a certain taste for provocation or intellectual stimulation I took a guilty pleasure in
revising some of the well-accepted concepts and to re-define them either more formally, or from a more
general or exotic perspective. This is hence a highly subjective report, and I apologise in advance for not
citing every single contribution.
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4 Chapitre 1. Transition to turbulence in canonical shear flows

1.1 Introduction and Motivation
Hydrodynamic stability lies at the crossroads between hydrodynamics and applied mathematics. The

main reason for this intersection is two-fold : it is due first to the highly mathematical formalism de-
veloped in the pioneering studies of G.I. Taylor and co-workers, but also to the historical impact that
hydrodynamic stability has had later on other fields of applied mathematics such as pattern formation
or chaos theory. The fundamental mathematical property of the governing equations, here the incom-
pressible Navier–Stokes equations, is the multiplicity of their solutions. For the same parameters, some
solutions appear stable in time while others happen to be unstable in time. The dynamics of the system
results from the influence of all these solutions together, and not only from the stable ones. Even stable
solutions have, most often, finite-size basins of attraction and do not necessarily act as global attractors,
especially in the presence of noise, fluctuations,... or anything that can provoke dynamical transitions.
The goal of the present chapter is to introduce the basic concepts necessary for the understanding of the
next chapters, together with some historical/bibliographical remarks.

1.2 Governing equations
The fluid system of interest in this thesis is, almost without exception, governed by the incompressible

Navier–Stokes equations, in their unsteady form. Before any non-dimensionalisation this system of partial
differential equations reads

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u + f(t) (1.1)

∇ · u = 0, (1.2)

The space is by default assumed three-dimensional. In Eq. 1.1, ρ is the fluid density (usually taken
as unity) and ν the kinematic viscosity of the fluid, which we will assume to be known, constant and
homogeneous. The scalar field p denotes the pressure. It can in certain cases incorporate additional
potential energies from which additional forces derive, for instance gravity or centrifugal forces. The
external force f(t) does not need to be specified at this point. Most flows with the same Newtonian
rheology obey the set of equations above. What distinguishes one flow case from another one is, rather
than the governing equations, the domain of study, called V , and the boundary conditions that are
associated with its boundary ∂V . Close to a solid boundary, consistently with the viscous hypothesis, we
will usually consider that the fluid obeys no slip. As a consequence, the fluid velocity close to the wall
equals the wall velocity :

u(xwall) = Uwall. (1.3)

The other simple boundary conditions that are sometimes considered are free slip (used for mathema-
tical simplicity), stress-free (at free interfaces) or other types. In particular, for "open" flows, in constrast
to "closed" flows, ∂V does not consist only of wall-like boundaries where the velocity is prescribed : the
problem needs to consist also of entrance and exit conditions. We are left with the impossible task of
modelling the state of the flow as it enters V , whereas we assume that the flow is not known outside V .
Several strategies can be adopted : the entrance flow can be modelled, for instance by noise, by inco-
ming flow stemming from another problem... the main hypothesis in this thesis consists of choosing to
make the flow periodic, i.e. assuming that outflow is recycled into inflow. This hypothesis corresponds to
the imposition of a given fundamental wavelength to the solutions of the system. This approach, highly
debatable from a physical point of view, ensures in general that the mathematical problem is well-posed.

1.3 Canonical base flows

1.3.1 Planar flows
The most trivial solutions to the usual planar wall-bounded flows form a single parametric family of

solutions to the incompressible Navier-Stokes equations. For a planar infinite geometry along the variables
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x and z, let y stand for the direction normal to the solid plate(s). If a 2D steady solution is sought for,
independently of the third variable z, it is written a priori U = (Ux(x, y), Uy(x, y)). Incompressibility then
leads to to ∂xUx + ∂yUy = 0. Searching for an x-independent flow leads to ∂yUy = 0 i.e. Uy independent
of y. If Uy vanishes at the wall it is identically zero everywhere. Yet that does not necessarily need to be
the case, for instance when uniform suction of blowing is applied at the wall, then Uy = v at the wall
(with v a constant). In all cases the nonlinear term (U ·∇)U vanishes altogether too, and the streamwise
momentum equation reduces to

ν
∂2Ux
∂y2

= v
∂Ux
∂y︸ ︷︷ ︸

vertical transport

+
1

ρ

∂P

∂x︸ ︷︷ ︸
pressure term

. (1.4)

Let us label the main terms A = Uy∂yUx and B = ρ−1∂xP . The classification of the solutions depends
on the values (zero or non-zero) of A and B :

— A = B = 0 → plane Couette flow (pCf),

— A = 0 and B 6= 0 → plane Poiseuille flow (pPf) or Couette-Poiseuille flow (CPf),

— A 6= 0 and B = 0 → Asymptotic Suction boundary layer flow (ASBL),

— A 6= 0 and B 6= 0 → generic Couette Poiseuille flow with suction.

We list below the usual velocity profiles for the canonical base flows that will be analysed here, together
with the usual conventions for dimensional and non-dimensional variables.

plane Couette flow

Plane Couette flow (pCf) is the simplest example of shear flow, forced by the difference in velocity
between the two walls. In a frame travelling at the average velocity, the boundary conditions can be
expressed as Ux(y = ±h) = ±Uw, together with Ui(y = ±h) = 0 for i = y, z. The resulting laminar
profile is hence given by

Ux(y) =
Uwy

h
. (1.5)

The shear is Uw/h and is spatially homogeneous. One frequent convention is to non-dimensionalise dis-
tances by the half-gap h between the walls and velocities by the wall velocity Uw > 0. The resulting
velocity profile is simply Ux = y. The Reynolds number is hence Re = Uwh/ν.

plane Poiseuille flow

Plane Poiseuille flow is the flow between two parallel plates, forced by a given axial pressure gradient.
Meanwhile, in the frame of the walls, the flow at the walls is at rest, hence the boundary conditions
reduce to Ui(y = ±h) = 0 for alisl i. For simplicity we denote G = −∂xP the pressure gradient imposed
in the x direction. The resulting laminar velocity profile is given by

Ux(y) = G(1− (
y

h
)2). (1.6)

Note that Ux ≥ 0 when G ≥ 0, i.e. when the pressure P decreases with x. The shear now depends
on y, it is maximal in magnitude at the walls and it vanishes at the centerplane. Many different non-
dimensionalisations coexist for plane Poiseuille flow, depending on the culture of the author and the exact
forcing protocol selected. For distances, as for pCf the half-gap h is the usual reference length. As for
velocities, the most classical is perhaps non-dimensionalisation by the centerline velocity of the laminar
regime Ucl = G. It is related to the bulk velocity Ub = Q/2h, where Q is the flow rate by unit width.
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The relation for a laminar plane channel flow is simply Ub = 2Ucl/3. At equilibrium the wall shear rate
τw = µ∂ux/∂y evaluated and averaged at the walls is constant and is given by τw/h = G. It is common
practice in pressure-driven flows to use the Reynolds number Reτ based on the friction velocity uτ defined
by ρu2

τ = τw. This results in Reτ = uτh/ν ∼
√
τw so that Re2

τ = 3Reb in the laminar regime.

Asymptotic Suction boundary layer flow

The less known Asymptotic Suction boundary layer (ASBL) profile occurs in the presence of only
one wall, which by convention is located at y = 0. The flow occurs only in the half-space y > 0 while
the other half-space y ≤ 0 is ideally a dense porous medium. The system assumes Couette-like boundary
conditions for Ux : Ux(y = 0) = 0, Ux(y → ∞) = U∞. Simultaneously there is constant suction at the
wall and Uy is subject to Uy(y = 0) = −VS at the wall. The resulting base flow profile has two non-zero
components rather than one, and is given by

Ux(y) = U∞(1− exp(− y

δ∗
)), (1.7)

Uy = −VS . (1.8)

The convention is to non-dimensionalise velocities by U∞ and distances by the boundary layer thick-
ness thickness δ∗, given analytically by δ∗ = ν/VS . This yields a definition for the Reynolds number
Re = U∞δ

∗/ν = U∞
VS

. The shear is maximal at the wall and the wall-normal velocity is constant and
non-zero everywhere. In any regime this flow verifies the property that the mean friction velocity uτ is
fixed by the Reynolds number by u2

τ = U2
∞/Re [1]. The Reynolds number Reτ based on the friction

velocity is hence also constant on average when Re is imposed.

1.3.2 Cylindrical flows

The same problem can also be solved inside a cylindrical geometry of radius r0 when the mean flow
direction is aligned with the cylinder axis (called by convention z). When the flow is forced by an axial
pressure gradient, the laminar profile is parabolic and corresponds to the Hagen-Poiseuille solution
(HPf)

Ux(r) = Uz(r) =
G

4ν
(1− (r/r0)2). (1.9)

A common modification of this geometry consists in adding a coaxial cylindrical wall inside the primary
pipe at radius r = ri whereas the outer wall still lies at r = ro. The flow in the gap between the two
cylinders resulting from an applied axial pressure gradient G is referred to as annular Poiseuille flow
(aPf). Finally, another canonical annular flow can be suggested where the fluid is entrained, not by an
axial pressure gradient, but by the axial translation of the inner rod ; it is labelled annular Couette
flow. If η = ri/ro, d = r0− ri, y = r− ri and U(r = ri) = Uw, it admits the simple analytical logarithmic
solution

Ux(r) = Uw
ln((y(1− η) + η)/d)

ln(η)
. (1.10)

1.3.3 Notion of forcing protocol

In practice, depending on the type of boundary conditions applied, two main classes emerge from
the list of simple parallel shear flows above. In cases like plane Couette flow, the fluid flow is entrained,
whereas for plane Poiseuille flow or pipe flow it is pressure-driven. There are several ways to achieve
a given pressure-driven flow in practice, depending on which physical quantity is strictly imposed and
which one is left free to adapt. The simplest conceptual way to achieve such a flow is to impose a fixed
pressure gradient, this is the case for example when the fluid inside a straight vertical pipe is subject to
a constant gravity field. Another less direct way to achieve a similar flow is to impose a given flow rate,



1.4. Wall turbulence at onset 7

for instance by considering that the fluid is pushed or pulled by a piston or a syringe, whose own velocity
is known. Other protocols can be suggested, for instance imposing a fixed energy input. It is not obvious
which protocol characterises a priori a given hydrodynamic device, for instance standard pump engines
are rather believed to operate in the constant power input protocol [2]. Even entrained flow cases are sub-
ject to such a distinction, if one considers that the shear is imposed at the wall, rather than the velocity.
This is the case for instance in standard models of gas–liquid interfaces although this has recently been
questioned in liquids [3]. In the strictly steady regime laminar regime there is no mathematical distinction
between these protocols. This is not true in other circumstances. For instance in the steady turbulent
regime, the mean values of the kinetic energy, dissipation, etc... are independent of the protocol, however
the fluctuations around these mean values are not.

The standard convention in wall turbulence studies (but not always in transition studies !) is to use
different governing parameters depending on the forcing protocol. For flows driven by an imposed flow
rate, the Reynolds number (which necessitates a velocity scale) is usually based on the so-called bulk
velocity Ub (defined classically by the flow rate divided by the equivalent cross-sectional area). The ad-
vantage of using Ub in that case is that Ub stays the same no matter whether the flow is laminar or
turbulent, whereas the value of the corresponding mean pressure gradient is strongly dependent on the
regime. For flows driven by an imposed pressure gradient G, one can exploit the equivalence between the
pressure gradient G and the mean wall shear stress τw. Such a relation only involves average values and is
hence not valid instantaneously, unlike its fixed flow rate counterpart. A velocity scale uτ can be defined
from the knowledge of τw via the relation τw = ρu2

τ ∼ G. This allows one to define the friction Reynolds
number Reτ based on the velocity scale uτ rather than Ub. By construction Reτ is proportional to

√
G

independently of whether the flow is in a laminar or turbulent regime.

1.4 Wall turbulence at onset

Writing a whole thesis about transition to turbulence without ever documenting the turbulent state
itself would look incomplete. This section does not pretend to contain all the knowledge on wall turbulence.
However it aims at presenting briefly the minimum knowledge necessary for a decent theory of transition,
including a justification of the present parameter range of investigation.

1.4.1 High-Reynolds number wall turbulence

Anyone who has glanced at the beginning of a textbook about turbulence might have faced the same
question : although the meaning of the word is not so ambiguous in everyday life, is there a solid, uni-
versally accepted definition of what turbulent means in hydrodynamics ? Although laminar flows are
perfectly well defined, turbulent flows are not, although we expect them to have all the worst possible
complications : finite unsteadiness, correlations in time and space, multiscale structure, impredictability...
Etymology hardly helps here, at the very least it indicates (from "turbinis" in Latin) that the flow has to
contain... vortices, which does not really come as a surprise. Everyday intuition might be more useful here.
We all have a mental image of what a very turbulent flow looks like from watching rivers, cascades, weather
maps. Hence it sounds wiser to consider first these conditions which make fluid flows very turbulent and to
test how far they can be pushed when that same Reynolds number is reduced. In that spirit we should look
at published works on huge values of the Reynolds number Re. We emphasize that, no matter how large,
Re should nevertheless be finite since it is well known that the infinite Reynolds number/zero viscosity
limit is singular and might lead to very wrong speculations. This looks preferable to an abstract theory
from scratch à la Bourbaki, because it is more likely to reconnect properly with the real engineering world.

Let us have a look at a set of recent well-resolved turbulent channel flow simulations. Such simulations
are considered in periodic domains and run over long enough times to gather converged flow statistics.
Figure 1.1 displays a rendition of vortex clusters for a high Reynolds number of Reτ ≈ 4200 in a domain
of size 2πh × 2h × πh. It is confirmed that vortices abound in the flow, but also that many scales
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Figure 1.1 – Three-dimensional visualisation of vortex clusters in a simulation of channel at Reτ ≈ 4200,
from Ref. [4] (only the bottom of the channel is shown).

coexist on a single snapshot, and that clusters of small scales form larger scales. Figure 1.2, based on a
simulation of the same flow at a slightly lower value of Reτ , displays the turbulent kinetic energy of the
streamwise velocity component plotted in a (λ+

z , y
+) diagram. y+ represents the distance from the lower

wall expressed in units of δν = h/Reτ , the classical units of wall turbulence, whereas λ+
z represents a

wavelength in the spanwise (z) direction, also normalised by δν . Such a figure is less sexy yet more useful
than visualisations. It appears clearly that a whole set of scales ranging from λ+

z ≈ 40 up to λ+
z ≈ 104

(and more for higher Reτ ) is present in the flow. Worse : the distribution of scales involved energetically
depends strongly on the distance from the wall, with energetic features present from as low as y+ ≈ 10.
The whole distribution of energy apparently lies around a line y ∼ 0.1λz. This echoes the Attached Eddy
Hypothesis of A. Townsend [5, 6] sketched in figure 1.3. This theory states that the size of each eddy
is proportional to its distance from the wall, as opposed to dynamically inert detached eddies. In this
sketch the wall-parallel space variable can be either x or z. Although the multiscale nature of turbulence
is also not surprising, what matters here are the numbers. The smallest eddy in this hierarchy, equivalent
to the Kolmogorov scale in isotropic settings, turns out to be slightly less than 100δν no matter how
high Reτ . This validates the importance of inner units O(δν) for scaling laws. The largest eddies in the
hierarchy are simply bounded by the channel geometry, which can be estimated as the channel height
2h. The multiscale nature of wall turbulence can be attributed grossly to the fact that these two orders
of magnitude, 100δν on one hand and 2h on the other hand, do not coincide. It is precisely in this scale
interval that universal features, such as the law of the wall Ū ≈ 1

κ log(y+) + B, are valid [8]. This whole
picture holds of course as long as 100δν � 2h, which supposes Reτ large enough.

1.4.2 Estimating the onset of wall turbulence

The previous estimates imply a simple yet powerful reverse idea : multiscale turbulence cannot sustain
if 100δν > 2h. Besides, if 100δν = 2h, the resulting turbulent regime is characterised by one lengthscale
only. It does feature any log law or k−5/3 energy spectrum typical of turbulent cascade, and the turbulent
flow is limited to the buffer layer only, together with a viscous sublayer for y+ < 5. Given the defini-
tion of δν = h/Reτ , this suggests as a gross estimation that the turbulent state should collapse, should
δν = h/Reτ < 50 be verified. Such an estimate is as universal as the scaling laws and is independent
of the flow case. It has been advanced or re-discovered several times in the literature [9, 10] and proves
correct as a rule of thumb.
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Figure 1.2 – Streamwise Energy as a function of (λ+
z , y

+) for a DNS of channel flow at Reτ = 2003
(from Ref. [5]).

Figure 1.3 – Sketch of the Attached Eddy Hypothesis (from Ref. [5]).
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What this estimation does not reveal is what such a collapse should look like if one starts from a pre-
existing turbulent velocity field. There is ample evidence that in almost all wall-contained shear flows,
an adiabatic reduction of the Reynolds number yields a spatially and temporally intermittent state of
turbulence : where it is turbulent, the flow field looks similar to developed turbulence, but it is not tur-
bulent at every location at the same time.

The way turbulence collapses is illustrated in figure 1.4, taken from Ref. [11] in pipe flow driven by
a fixed mass flux. The Reynolds number Re is progressively reduced in small steps starting from a high
enough value at which a turbulent flow field is present, no matter how it got generated. The quantity
visualised here is the streamwise velocity fluctuation A similar diagram can be found in Ref. [12] for other
velocity components and is reproducible, provided the boundary conditions are periodic in the axial di-
rection and the length of the computational domain is large enough. The Reynolds number is here based
on the bulk velocity and the pipe diameter. For Re = 2800 and above the flow looks unambiguously
turbulent, moreover it appears uniformly turbulent, in the mild sense that the large-scale turbulent pro-
perties do not depend on the axial coordinate (note that "homogeneous turbulence" is a different, more
demanding concept in turbulence theory). For Re = 2600 the flow looks similar except for a "hole"
located around x = 150 where the turbulent activity is less intense, at least at the moment displayed
here. More such holes are present at Re = 2400. At Re = 2200, something has changed qualitatively :
rather than laminar-like holes inside a turbulent sea, it is better described by a sequence of localised
turbulent-like structures in an otherwise laminar-like environment. These coherent structures look all
alike, they are called puffs and they form an apparent pattern with defects inside. Whether or not an
exact wavelength emerges from a well-defined relation dispersion, like in Turing instabilities, is today still
a matter of debate. As Re decreases the number of puffs goes down until extinction. At Re = 1680 a
last puff survives and it is known from the literature that this puff has a finite lifetime. Once the last
puff has died the flow is said to have relaminarised. There is a complex dynamics associated with puffs
and trains of puffs [13] that cannot be grasped easily from still pictures, but will be explored in Chapter 4.

The collapse of turbulent flows in planar geometries obeys a similar story. It is illustrated in figure
1.5 in the case of plane Poiseuille flow driven by a fixed pressure gradient. The advantage of this kind
of forcing over the former fixed mass flow protocol, is precisely that here Reτ is the control parameter,
whereas the traditional Re should be regarded as an (unsteady) output of the simulation. This represents
an opportunity to test the above 100δν = 2h criterion. The quantity visualised in the diagram is the
cross-flow energy Ecf based on the transverse velocity components only, and the spatial variable is the
streamwise coordinate x in a frame moving with the streamwise bulk velocity U , and Reτ is decreased in
steps of 10. As in pipe flow, the flow appears homogeneously turbulent for Reτ = 100 and above. Large
streamwise modulations appear around Reτ = 90. These modulations travel downstream at a velocity
slightly slower than the bulk velocity. They grow in amplitude and turn into increasingly disordered
laminar-turbulent patterns present from Reτ = 90 down to approximately 55. Below Reτ = 50, a ra-
dical change appears : the individual structures forming the already irregular pattern accelerate, they
dissociate, and the resulting dynamics resembles ballistic trajectories of uncorrelated localised structures.
Lowering further down Reτ below 40 leads to the individual extinction of each of these structures, even-
tually leading to a perfectly laminar flow.

The transitional range associated with pressure-driven plane Poiseuille flow occurs grossly, according
to the above visualisation, between Reτ = 40 and 100. This is highly consistent quantitatively with
the 100δν = 2h that suggests a critical value of 50. It remains to understand why there is an extended
transitional range, rather than a simple critical point with laminar flow below and turbulent flow above.

1.4.3 Relevant interrogations regarding transition to turbulence in shear
flows

The Moody diagram illustrates how the friction factor Cf of a given flow evolves as a function of
the Reynolds number Re (traditionally understood as the bulk-based Reynolds number Reb). Cf is often
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Figure 1.4 – Simulations of circular pipe flow for decreasing Re from [11].
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Figure 1.5 – Simulations of plane Poiseuille flow for decreasing Reτ from [14].
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Figure 1.6 – Moody diagram for pipe flow (source : www.nativdynamics.com.au)

introduced in textbooks either as an efficiency term as compared to the inviscid equivalent, or preferably
as the head loss along the considered portion of the flow, normalised by a kinetic energy term based on
the bulk velocity. Although convenient for experimentalists, this last definition should still be considered
when care when dealing with numerics, because it requires proper averaging (see Ref. [14] for a discussion).
We prefer here the definition

Cf = 2 (Reτ/Reb)
2
, (1.11)

which has to be understood differently according to the chosen protocol. For presure-driven flow Reτ
is imposed, but Reb is not and is understood as a time average of the unsteady Reb. Conversely for
mass-driven flows, Reb is constant but Reτ should be defined based on the time-and-space averaged wall-
shear stress. For laminar flow, both protocols are equivalent and Cf can be computed analytically. For
all laminar shear flows we find that Cf ∼ 1/Re with a coefficient specific to the flow geometry and the
non-dimensionalisation only. The Moody diagram for pipe flow is depicted in figure 1.6. For high Rey-
nolds numbers in industrial settings, Cf is a constant dependent only on the type of roughness present at
the walls. It is this property that justifies the constant coefficients found in all aerodynamics textbook,
e.g. the Cx of a car reported in car catalogues. When walls are not rough (which implies either labora-
tory experiments or low Reynolds number), Cf depends on Re. Again three regimes emerge. The two
limiting regimes are the laminar regime, clearly distinct at low Re with the expected O(1/Re) scaling,
and a turbulent regime characterised by fits O(Re−

1
4 ). The hacked area is traditionally left with a ques-

tion mark in textbooks and labelled either ’complicated’, ’critical’, ’uncertain’ or an expression hardly
clearer : ’transitional’. In the transitional range (according to visualisations) turbulence is spatially and
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temporally intermittent. It is the region where mean values do not suffice to shed light on the dynamics
of the flow and where the study of fluctuations becomes paramount.

Two complementary approaches will be used in this work depending on whether the focus is on the
"transitional" regimes themselves, which exist in a limited range of Reynolds numbers, or on the transi-
tion towards the turbulent state, which is possible as soon as a turbulent state can be defined.

Starting from the turbulent state, we can define the "adiabatic descent procedure", inspired by the
experimental methodology used e.g. by Prigent for plane Couette flow, as in figures 1.4 and 1.5. A tur-
bulent state is achieved at a sufficient high value of Re, then Re is decreased in very small steps (or
equivalently as a ramp with dRe/dt < 0). By analogy with thermodynamic processes this is called an
adiabatic decrease (in Re). It allows one to track a given turbulent state in parameter space. It is very
robust when the turbulent state is unique, which is the usual case here. This process delivers the full
zoology of states present in the transitional range, as well as above it if the initial value of Re is high,
and works well in unbounded geometries. It also yields in principle the true critical Reynolds numbers
below which no turbulence is found, or at least the critical Reynolds number associated with the finite
observation time chosen. Figures 1.4 and 1.5 also highlight the huge lengthscales involved in the collapse
process. Such simulations are very CPU-demanding and one can be tempted (or forced) to shorten the
domain at equivalent local resolution. Simulations in numerical domains smaller than such lengthscales
risk either deforming the associated phenomena or simply missing them.

We can adopt a point of view starting from the well-defined laminar state instead, the "path to tur-
bulence" procedure. There is ample mathematical, experimental and numerical evidence that, for the
flows of interest here, the laminar state is always stable with respect to infinitesimal disturbances, no
matter what the shape of such disturbance is. However as soon as a turbulent state is realisable for a
given Reynolds number, this suggests that certain disturbances of finite amplitude are able to provoke a
change of regime. Certain preferred paths towards the turbulent state exist in a reproducible way. Out of
mathematical convenience, stability theory is often formulated as an initial value problem, consistently
with the evolution form ( ∂∂t = ...) of the governing equations. Other approaches can be envisioned, such
as the receptivity to noise [15], or to sinusoidal excitations (e.g. resolvent analysis [16]), depending mainly
on their potential to match a given experimental (or numerical) protocol. They are not treated here. A
large part of the work reported here deals instead with transition to turbulence as an initial value problem,
based either on the full set of nonlinear equations, on their finite-dimensional truncation in numerical
studies, or sometimes on a low-dimensional system of model equations when pedagogically useful. The
emphasis is on the determination of physically meaningful initial conditions and the associated trajecto-
ries in a suitable state space. For such a task the theory of dynamical systems, an intrinsically nonlinear
approach well adapted to complex dynamics, is of direct relevance. We will explore the current state of
the art in the quest for a description of the transition process in terms of its state space description. Its
limitations will also be pointed out with possible self-criticism.

1.5 Linear stability of canonical base flows
Symbolically the nonlinear equation system 1.1-1.2 can be rewritten in the general form :

dU
dt

= LU +N (U) (1.12)

where L is a linear operator and N contains all nonlinear terms. The meaning of U does not really
need to be made explicit at this stage. It is enough to know that it contains all the independent degrees
of freedom of the velocity field. The pressure field p can be determined uniquely (modulo an additive
constant) by considering the divergence of Eq. (1.1) and does not need to be considered as an additional
field.
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We label here "base flow" the steady solution U0 of Eq. 1.1 consistent with the boundary conditions.
As far as trivial solutions with a high degree of symmetry are concerned, they are usually unique. As a
steady solution it must verify dU0

dt = 0. The equation for the perturbation X = U −U0 is

dX

dt
= LX +N (U)−N (U0). (1.13)

By asssuming that the perturbation X is small enough in a given norm, the above system can be
linearised in the neighbourhood of U0. The linearised system reads in symbolic form

dX

dt
= LX. (1.14)

The issue of the stability of the base flow U0 with respect to infinitesimal flow disturbances is dictated by
a few key properties of the linear operator L. Writing down L explicitly is a tedious task. In practice, the
use of a numerical discretization often leads to a large square matrix (also referred to as L for simplicity)
whose properties can be determined computationally.

Figure 1.7 – Definition of different critical values of the Reynolds number ReE , ReL and Rec. Sketch of
typical time series of the kinetic energy ε for several Reynolds numbers, after Ref. [17].

A set of three critical values of the Reynolds number must be considered, depending on the exact
notion of stability considered [17]. They are defined graphically in figure 1.7.

The simplest critical value, which also corresponds to the lowest one in the hierarchy, is the energy
Reynolds number ReE . It is defined as the highest value of Re below which all perturbations to the base
flow decay monotonically to zero. By all perturbations we mean all shapes as well as all amplitudes. This
is hence a nonlinear concept. The Reynolds-Orr theorem leads however to a simplified defining criterion
for ReE invoking only the linear operator L.

The usual critical value considered in linear stability theory is the critical Reynolds number ReL, de-
fined as the smallest value of Re below which at least one class of perturbations grows indefinitely under
the action of the linear operator. This is a linear concept only. It corresponds to the smallest value of Re
for which the spectrum of L contains at least one eigenvalue with positive real part. In shear flows, unlike
e.g. Rayleigh-Bénard convection or classical Taylor-Couette flow, ReE never coincides with ReL. ReL does



16 Chapitre 1. Transition to turbulence in canonical shear flows

not necessarily match the value at which transition to turbulence is observed in experiments and numerics.

The global critical Reynolds Rec, corresponds to the largest value of Re below which all perturba-
tions to the base flow eventually return to it. It is a fully nonlinear concept unlike ReL and ReE . In
other words it is the critical value above which nonlinearity can maintain turbulence provided the right
initial condition(s) are supplied. Even if a given perturbation induces turbulence, if the turbulent state
relaminarises in finite time with probability 1, there is no guarantee that Rec has been reached. Rec is,
in the adiabatic limit, the value yielded by the adiabatic descent procedure.

1.5.1 Transient growth
It is crucial to distinguish between finite-time stability and infinite-time stability [18]. The long-time

stability is fully determined by the spectrum of L, denoted as Sp(L) = {λ ∈ C,∃X 6= 0,LX = λX}.
In finite dimensions the spectrum of L is discrete and corresponds to the eigenvalues of the associated
matrix. It is a classical result that if all eigenvalues in the spectrum have strictly negative real parts,
then the system is asymptotically stable for long times. The decay of perturbations is also dominated on
long times by the least stable eigenvalue (the one with the largest real part). However, transient growth
of ||X|| =

√
X ·X is also possible even if all eigenvalues of L indicate long-time stability. This arises

provided L and its adjoint (defined using the same scalar product as for the 2-norm) do not commute,
i.e. LL∗ 6= L∗L, in which case L is called non-normal. Another equivalent measure of non-normality, for
invertible operators, is the condition number of the eigenbasis, defined as κ = ||L|| · ||L−1||, where the ma-
trix norm used here is the usual Frobenius norm. κ = 1 for normal operators while κ > 1 for non-normal
operators [19]. A symmetric or anti-symmetric operator is for instance normal. A non-normal operator
can be diagonalisable but this is not a necessary condition. If it is diagonalisable, then the eigenvectors
do not form an orthogonal basis.

A numerically determined point spectrum typical of shear flows, belonging to plane Poiseuille flow at
Re = 104, is displayed in figure 1.8 using dots. Any dot lying above the real axis represents an unstable
mode. In the figure almost all dots lie below that line, indicating that damped modes dominate. Only
one dot lies above it, and it can be established that no such unstable mode is found when Re < 5772
[20]. The pseudo-spectrum Λε = z ∈ C, ||(zI −L)−1|| ≥ ε−1 is a useful generalisation of the spectrum [21].

A popular interrogation emerging from the non-normality property is the following : given the linea-
rised context, what is the initial condition producing the largest transient growth of perturbation kinetic
energy ? Let us suppose that the perturbation kinetic energy E(t) is given by 1

2 ||X(t)||2, that the related
energy gain at time t is defined as G(t) = E(t)/E(0), and that the optimal gain is given by

Gmax = max
X,t

G(t). (1.15)

For operators that are not asymptotically stable, there is at least one eigenvalue with positive real part :
if a given initial perturbation has a non-zero projection in the related eigenspace, then this perturbation
will grow indefinitely with time in that direction ; in that case the optimal gain is Gmax =∞. For stable
normal operators, Gmax = 1 since the decay of the perturbation kinetic energy is monotonic. A non-trivial
situation occurs when L is stable but non-normal. In such a situation there is potential for energy growth
over finite times.

It was determined numerically that Gmax rises rapidly with the Reynolds number, in fact as O(Re2)
[18]. This result holds apparently regardless of the flow case. It is this result, rather than the non-normal
property itself, that justifies why laminar shear flows are so sensitive in practice to arbitrary perturbations
such as incoming noise or small geometrical imperfections.

The so-called optimal modes are the flow structures achieving maximum growth in finite time. When
considered in three dimensions, they correspond invariably to structured arrays of streamwise vortices. If
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Figure 1.8 – Spectrum (dots), pseudo-spectrum for ε = 10−n, n =1 to 8 (solid lines) and numerical
range (dashed line) for plane Poiseuille flow at Re = 104, from Reddy et al. (1993) [19].

Figure 1.9 – Levels of Gmax in plane Poiseuille flow depending on the axial wavenumber α, and on the
Reynolds number R based on laminar the centerline velocity, from Reddy et al. (1993) [19]. Dashed line :
G = 1, dark area : G = +∞, other lines correspond to G = 5, 10, 20, 30, 40, 50, 60.
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such a flow field is considered as an initial condition in the framework of an initial-value problem, then
the output at the optimal time tmax is also a structured array of streamwise streaks superimposed on the
original array of streamwise vortices. The streaks are defined as spanwise variations of the streamwise
velocity field, i.e. an alternation of slow and fast lanes forming a given spanwise wavelength. These opti-

Figure 1.10 – Sketch of the lift-up effect from F. Charru’s textbook [22] showing the development in
time or space of streamwise streaks from streamwise vortices.

mal streaks, as well as the associated vortices are independent of the streamwise variable. The amplitude
of the vortices themselves decreases steadily with time whereas the amplitude of the streaks reaches its
maximum at t = tmax. The development of streaks from an initial distribution of streamwise vorticity is
labelled lift-up to celebrate the fact that streamwise vorticity is able to lift up the streamwise velocity
isocontours, although by continuity they are associated with push-down regions where the fluid is brought
down closer to the wall by the neighbouring vortices. If the wall is at rest, upwards motion inside the
vortices generates a low-speed streak, whose instability will be emphasized later. This lift-up effect, in the
streamwise-independent case, is formally and mathematically similar to the rise of plumes by vortices in
the advection of a passive scalar. The difference of the shear flow case with the two-dimensional convec-
tion picture is that a third velocity component arises. This allows one to generate a three-dimensional
vorticity field out of an initial condition that features only streamwise vorticity. Another way to interpret
the lift-up mechanism is that it demonstrates the advection of the base flow by the flow perturbation [23].

The importance of streamwise streaks in transitional as well as turbulent shear flows should not be
minimised : they represent the main coherent structures found near the wall in all flows featuring boun-
dary layers. This includes all the flow cases investigated here. A velocity field of plane Couette flow is
computed using a visualisation routine developed by J. F. Gibson [24] in figure 1.11. The red/yellow
lanes correspond to the highspeed streaks whereas the blue lanes, which appear slightly more sinuous,
are the low-speed streaks. Streaks can also be found in free jets or wakes. One of the rare "formulas"
of the shear flow literature is the mean spanwise wavelength of the streaks, found almost universally to
be λ+

z ≈ 100. This formula alone justifies the introduction of inner units (the non-dimensionalisation by
δν =

√
τw
ρ instead of h). This simple scaling relation can be extracted directly, in a statistical sense,

from the small-scale peak present in figure 1.2. The linear framework, more elegantly reformulated as an
input-ouput formalism [25], is convenient to explain why streaks emerge, not only when initialised by the
optimal mode, but also from a disordered vorticity field and in finite time.

The linear point of view on subcritical transition has certainly put an end to a mathematical mystery.
Beyond explaining the universal emergence of streaks in high Reynolds numbers shear flows, it has also
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Figure 1.11 – Velocity field of plane Couette flow from a computation in Ref. [24]. The red/yellow lanes
correspond to the highspeed streaks whereas the blue lanes, which appear slightly more sinuous, are the
low-speed streaks.

emphasized the importance of non-normality in generic linear dynamics. This is perhaps welcome after
decades of influence from quantum physics, where the emphasis is on symmetric, hence normal opera-
tors. However turbulence is a nonlinear phenomenon. A linear theory alone, although it can yield a path
towards a turbulent flow, cannot explain the emergence and, more importantly, the ability of a turbulent
flow state to sustain itself.

1.5.2 Nonlinear extension

For a linear system of equations, all solutions found independently can be combined linearly to form
new solutions. In planar flows, the equivariance of the equations with respect to the two planar directions
justifies ansätze of the form eikxx+ikzz when solving the linearised equations. Although general solutions
contain a summation of these exponential solutions, linearity allows to focus on each wavenumber sepa-
rately. Such an assumption leads to the boundary conditions u′(x + 2π/kx, z + 2π/kz) = u′(x, z) being
automatically satisfied, by construction. Historically, after linear concepts have been applied to the study
of the stability of fluid flows, it has become very tempting to generalise the system by restoring the
neglected nonlinear terms... even if in the nonlinear context, the study of individual exponential ansätze
is no longer justified ! Although it is obvious that no nonlinear open flow obeys a strict spatial periodicity
condition, there are some cases for which this hypothesis can be justified. On one hand, if the wave-
length is sufficiently large, for instance much larger than the correlation length of the system, the natural
outflow and inflows are in practice uncorrelated : in such a situation the error committed by recycling
outputs into inputs is less problematic. On the other hand, if that imposed wavelength is too short,
additional unphysical correlation is added into the system of equations, and we deal with a flow case
that cannot be reproduced experimentally. Another case in which spatial periodicity is relevant is the nu-
merical simulation/analysis of localised velocity fields, at least when the spatial decay is sufficiently rapid.

Not only do periodic boundary conditions make the mathematical analysis of open flows mathema-
tically better-posed, they also imply simpler theorems. For instance, the Reynolds-Orr equation governs
the time evolution of the energy e = 1

2 < u′,u′ > of the fluctuations. It is obtained by multipying scalarly
the equation for dX

dt by X and making ample use of integration-by-parts theorems. In the presence of
periodic boundary conditions in the planar variables, it can be verified that < N (X),X >= 0. The
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Reynolds-Orr then reads in compact form :

de

dt
=< LX,X > . (1.16)

This equation, also valid in the nonlinear regime, states that the energy amplification is independent of
the exact nonlinear terms, provided the energy-conserving property < N(X),X >= 0 is verified. By
dividing Eq. 1.16 by |u′|2 = |X|2, this conclusion can be pushed even further : the instantaneous rate
of change of the perturbation kinetic energy does not depend on the instantaneous perturbation energy
given by |u′|2. Although this has generated controversy [26], it is now clear that this does not make the
nonlinear terms less important. The norm of X might not depend on N , but its orientation definitely
does, and the term involved in the momentum equations is X, not ||X||.

1.6 Nonlinear concepts

1.6.1 Self-sustaining process
Within the previous linearised framework, the main and perhaps only question addressed deals with

the ability of a perturbation to escape, or not, the neighbourhood of the base flow solution. If restoring
nonlinearity into the original equations is a welcome departure from linear stability theory, it does not
indicate how to deal mathematically with the new nonlinear system. The true change of paradigm occurs
when, instead of assessing how far from the laminar state the system temporarily lies, one gets interested
in how close to new alternative flow states the system can get. This new type of interrogation brings back
the question of turbulent state into the picture. It is mathematically consistent with the possibility that the
laminar base flow, when described as a fixed point in state space, has a basin of attraction that does not
necessarily coincide with the full state space. Now provided other dynamical regimes are possible, there
must be a mechanism that maintains their dynamics away from the laminar regime for all times. Such a
mechanism, called simply self-sustaining process [27], is necessarily nonlinear. Its identification and vali-
dation are not trivial and constitute a mechanistic way of understanding the existence of a turbulent state.

Figure 1.12 – Left : Reduction in domain size, taken from Jiménez & Moin [28]. Right : instantaneous
wall vorticity highlighting the wavy streak.

Crucial progress in this direction has been made by Fabian Waleffe and co-authors in a series of papers
in the second half of the 1990s [9]. Its strategy can be summarised by following their 1995 paper :

— consider a flow case (they chose plane Couette flow) with a linearly stable base flow
— use direct numerical solution to simulate the turbulent regime inside a spatially periodic box,
— decrease carefully both the Reynolds number and the box size while keeping the dynamics non-

relaminarising as in Figure 1.12,
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— when the system seems on the verge of relaminarising, analyse the dynamics over a finite-time
segment

The success of this strategy is to yield a new type of flow with its own dynamics, that appears at the
same time prone to analysis while being strongly reminiscent of the dynamics observed in wall turbulence
simulations. In particular, the velocity field found in plane Couette flow after such a reduction, shown in
figure 1.13, possesses long wavy streaks flanked by shorter streamwise vortices, as found in many turbu-
lence simulations at moderate Reynolds numbers.

Figure 1.13 – From a) to h) : ordered snapshots of streamwise velocity field at mid-gap in pCf, investi-
gated by [9], illustration of one turbulent cycle consistently with the proposed self-sustaining process.

The streamwise streaks are not steady and they are known to undergo so-called bursting events also
described as "streak breakdown". It is indeed evident in figure 1.13, where the long sinuous coherent
structure in figure 1.13a gets increasingly distorted with time until it almost disappears in figure 1.13f.
It then gets regenerated back to the same amplitude as in a), which closes the loop. It is perhaps best
understood in terms of vorticity components : a streak is characterised in the xz plane of figure 1.13a as a
wave of wall-normal vorticity ωy. The streak instability starting from figure 1.13b amplifies ωy [29], up to
levels where the nonlinear behaviour of the instability starts to manifest itself : the streak breaks down.
Through the advection by the mean shear, ωy gets tilted in the streamwise direction and its streamwise
component ωx increases in amplitude. Eventually, the lift-up mechanism [18], essentially the advection
of the base flow by streamwise vortices, regenerates streaks and restores the original level of ωy. For the
case of a spatially correlated minimal box, this sequence of events illustrates the self-sustaining process of
Waleffe as sketched in figure 1.14. Variations on this mechanism can be found in the literature provided
a slightly different computational domain is used, however they mainly impact the symmetries of the
streak instability without modifying the sequence of events and the approximate period of the process.
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As will be see in future chapters, slightly different three-dimensional SSPs can be identified in shear flows
yet only in the presence of spatial localisation.

Figure 1.14 – Sketch of the self-sustaining process from F. Waleffe [30].

Dynamically speaking, the self-sustaining process is found to be weakly chaotic although the authors
once hoped they would reduce to a perfectly cyclic dynamics [31]. This intuitively suggests, by analogy
with simple low-dimensional chaotic attractors such as the Lorenz or the Rössler attractor -where the
attractor can be covered by unstable periodic solutions-, that an ordered cyclic process is embedded in
this chaotic dynamics. It should feature exactly the same ingredients as the wilder self-sustaining process
(wavy streaks and rolls). This was confirmed a few years later by G. Kawahara & S. Kida who identi-
fied numerically an unstable periodic orbit (UPO) apparently embedded in the turbulent dynamics [32].
This apparent embedding was suggested by both the sequence of events visualised in videos, and by a
convincing match between the statistics of the UPO of mean flow, r.m.s velocity fluctuations etc... and
those from turbulent simulations. A sequence of events taken along the orbit is displayed in figure 1.15
and favourably compares with the material displayed in figures 1.13 and 1.14 Another convincing fea-
ture, although only qualitative, is the fact that the UPO seems intricately linked with the state portraits
displayed in Figure 1.17.

The hunting season for other invariant solutions mimicking the turbulent dynamics was then declared
open. Waleffe himself completed his description of the state space of plane shear flows by identifying
solutions simpler than the UPO of Kawahara and Kida [33]. The associated numerical strategy, not so
easily generalisable, assumes a forcing term able to generate wavy streaks via the subcritical instability
of straight streamwise streaks. It then makes use of a numerical continuation technique to identifiy a
solution that sustains itself without forcing. This method was then used by several groups to yield brand
new solutions [34, 35]. It was at the same time understood that formerly found finite-amplitude solutions,
notably the so-called Nagata solutions of plane Couette flow [36] originally identified via numerical ho-
motopy, were from the same large family and could be found using similar techniques.

The periodic cell considered first by Hamilton et al. [9] was re-considered by P. Cvitanović and co-
workers (a by-product of this investigation is the now freely available DNS code channelflow developed
by J.F. Gibson). Their investigations shed a clearer light on the complexity of the state space of even that
simple flow. Multiple steady states [37], heteroclinic connections [38] as well as periodic orbits [39] were
identified and plotted using savant projection systems. These authors pointed out the need for symmetry
reduction in order to take into acount systems with advection [40]. That led ultimately to representations
of the state space of pipe flow [41, 42], as visualised in an arbitrary Poincaré section in Fig. 1.19.

Although experimental verification of such concepts might seem one step more arduous (but decisive
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Figure 1.15 – Three-dimensional visualisations of the velocity field along the turbulent-like periodic
orbit found by Kawahara & Kida [32].

for the credibility of the theory), careful work worth mentioning has been achieved by a few teams. The
original theoretical idea of Waleffe to identify self-sustaining solutions by introducing a forcing term,
waiting for the flow to bifurcate and then bringing back the forcing to zero was tried successfully by S.
Bottin and co-workers at CEA Saclay. By using wires and beads of increasingly small size, they could
confirm that streamwise vortices are indeed crucial elements of possible finite-amplitude solutions of the
Navier–Stokes equations [43]. Later, excited by the recent numerical discovery [34, 35] of unstable travel-
ling wave solutions in cylindrical pipe flow, Hof et al. [44] used cutting edge time-resolved Particle Image
Velocimetry to report on furtive observations of similar travelling wave solutions from at a bulk Reynolds
number of Re=2400. Another such travelling wave, analogous to one identified numerically by Pringle
& Kerswell [45] was identified in the wake of a decaying turbulent zone by the same experimental group
[46] in pipe flow. The concept of self-sustaining process itself was claimed to be observed in the wake of
vortex generators in a boundary layer set-up [47]. More recently, focusing on the so-called Kolmogorov-
flow driven by a sinusoidal shear profile, a detailed comparison between exact solutions computed from
DNS versus those computed from experiments was made possible [48, 49].

It is important to highlight some implications of the strategy used by F. Waleffe, notably the use of
smaller and smaller numerical domains in order to "confine" the dynamics. It is not strictly true that
such an operation is equivalent to confinement, since the physical domain is still formally infinite. Instead
it amounts to strengthening correlations. In this study, the whole flow was interpreted as a crystalline
structure. Jimenez & Moin used a similar strategy in order to prevent the existence of velocity eddies of
size larger than a specified cut-off size [28], i.e. to make turbulence less multi-scale, whereas Waleffe and
subsequent authors would focus on lower Re and on making turbulence less "spatiotemporal". Choosing
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Figure 1.16 – State portrait energy input vs dissipation for plane Couette flow, taken from Ref. [32].

Figure 1.17 – Three-dimensional projection of the state space of plane Couette flow, including several
fixed points, their unstable manifolds as well as 5 periodic orbits, from Ref. [39].

this cut-off in inner units (the natural unit for streak width in turbulent flows) rather than in outer units
allowed them to bypass the reduction in Reynolds number and focus only on the reduction in domain
size. This lead to the famous concept of "Minimal Flow Unit" [28], understood as the smallest domain
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size able to sustain turbulent motion, or equivalently non-laminar flow (despite the absence of any strict
minimisation in the optimal sense).

1.6.2 Finite-amplitude solutions
Let us first define what is meant by "finite-amplitude solution" here in order to remove any ambi-

guity. The historical perspective is perhaps useful : it starts with the vague turbulent notion of coherent
structure, a word used from the 1970s to label any shape recognisable in the flow that has some spatial
coherence over some time interval, as opposed to the purely statistical investigations of the time [50].
F. Waleffe, aware of the contradictory nature of the concept, introduced the notion of exact coherent
structure’ (ECS) in order to restore the link with the Navier–Stokes equations. Once that link restored,
finding ECS in practice turned into the usual numerical problem of identifying solutions to the discretised
Navier–Stokes equations. The adjective "finite-amplitude" is added here in order to emphasize that the so-
lutions are not obtained via the other method popular at the time, namely weakly nonlinear analysis, and
thus that no assumption is made on the smallness of the amplitude. As soon as the self-sustaining process
(SSP) was identified by Waleffe and co-authors, the quest for finite-amplitude solutions in the same flow
set-ups became a quest for illustrations of the very same SSP using mathematically well-defined solutions.

There is some ambiguity to the fact that, especially in the numericist’s jargon, any unsteady solution
X(t) to an initial value problem is precisely also a "solution". Behind the label "finite-amplitude solu-
tion", the notion of "simple solution" has been progressively eclipsed. "Simplicity" is not an objective
property, however it still makes sense to talk about a hierarchy of solutions starting from the simplest ones.

When focusing on the temporal dynamics, the simplest solutions to the Navier–Stokes equations (or
more generally any PDE system) are steady states. For all times t, t′ they obey the steady property

u(x, y, z, t) = u(x, y, z, t′). (1.17)

The next level in the hierarchy corresponds to solutions that are steady in a given moving frame of
reference : travelling wave solutions (TWs) are defined by

u(x, y, z, t+ T ) = u(x+ cxT, y, z + czT, t), (1.18)

for all t and T. The c’s are interpreted as phase velocities.

Periodic orbits (POs) are defined as

u(x, y, z, t+ T ) = u(x, y, z, t), (1.19)

for all t but for given values of T .

Next in the hierarchy, relative periodic orbits (RPOs) are defined as

u(x, y, z, t+ T ) = u(x+ σx, y, z + σz, t), (1.20)

for all t but for given values of T , σx and σz. Note that travelling waves are degenerate relative periodic
orbits as well as degenerate steady states.

It is possible to describe such special solutions independently of the notion of space. If the system is
written under the generic form Ẋ = F (X) with a propagator φt, then steady states are simply zeros
of F , or equivalently fixed points of φt. As for travelling waves and relative periodic orbits, the shifts in
space form a vector σ = (σx, σz) of rank two. Spatial shifts can be reinterpreted as simple application of
an operator Tσ on velocity fields. That way a TW can be redefined as any solution, for any T > 0 to

φTU = TσU , (1.21)
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whereas an RPO is defined as a solution to the same equation yet for a specific value of T > 0.

Many methods have been used in the past to find exact solutions to the Navier–Stokes equations,
especially in the context of subcritical shear flows where the laminar solution, the only one known analy-
tically a priori, is evidently no good description of a sustained turbulent flow. Some of these methods will
be described in the next chapter. The original hope is that once a finite-amplitude solution is identified,
it might serve as a reduced laboratory to investigate a turbulent flow without the difficulties inherent to
very unsteady signals, such as arbitrary time-integration, choice of initial condition, need for ensemble
averaging, etc... in other words a laboratory where the dynamics is fully reproducible. Since in the context
of turbulence most finite-amplitude solutions of interest are expected to be unstable, a pedagogic cartoon
has emerged progressively to describe the dynamics of a turbulent flow : as depicted in Fig. 1.21, the
dynamics of the flow is encoded in an ergodic state-space trajectory X(t). The state space is populated
by pointwise finite-amplitude solutions in the shape of points and cycles, all unstable except the fixed
point corresponding to the laminar base flow. A turbulent trajectory, if any, corresponds to a trajectory
staying away from the basin of the laminar state forever and visting the neighbourhoods of the individual
ECSs one after the other. All other trajectories eventually converge to the laminar state and are labelled
transient, possibly transiently turbulent if its lifetime is deemed sufficiently long. The picture of transition
associated with it is two-fold. To start with, only initial conditions located in the right dynamical region
are likely to appear turbulent, be it only transiently. Moreover, as the Reynolds number decreases the
number of unstable solutions reduces and eventually drops to zero. In such a cartoon the complexity of the
state space is mainly determined by the number of unstable solutions. It is worth repeating that this view,
although faithful to an original view of turbulence by Hopf [51], and no matter how pedagogically helpful,
is only a cartoon. In particular it is unable to shed light on such concerns as the fractality/strangeness
of the attractor and is unable to yield any information about the invariant measure of the system.

Figure 1.18 – Cartoon of the state space in subcritical transition to turbulence. Each cross except the
laminar one denotes a locally hyperbolic finite-amplitude solution together with its stable and unstable
manifolds. Courtesy of T. K. Kreilos [52].

1.6.3 Cycle Expansions

There is a deeper reason as to why the knowledge of simple exact solutions is important : cycle
expansions. The e-book by P. Cvitanović [53] is devoted to a detailed explanation of the mathematics
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underlying this very general idea. Suppose an autonomous dynamical system of the form ẋ = F (x) in
arbitrarily high dimension, associated with the flow map φt. Suppose now also that the system above
verifies the axiom A property, i.e. that in the neighbourhood of each periodic or steady solution, the
system can be linearised and decomposed into stable and unstable tangent eigenspaces. This hypothesis
rules out central manifolds, non-hyperbolic effects and hence rules out the proximity to a bifurcation
point. For a given system, the validity of the axiom A hypothesis is notoriously difficult to predict ; at
best it is usually assumed as a hypothesis. Under these assumptions, a formula originally suggested by
Gutzwiller [53] expresses the dynamical averages of any observable as a weighted average over the entire
set of periodic orbits of the system. No information other than the location of the periodic orbits, their
period and their linear stability is required. [54]. By the dynamical average of an observable A = A(x), we
mean all the possible moments and cumulants obtained by averaging A(x(t)) along an ergodic trajectory
x = x(t) from time t = −∞ to t = +∞ [55].

More mathematically, if At is an observable evaluated at time t, we can always introduce the transfer
operator

Lt(x,y) = δ(y − φt(x))eβA
t(x), (1.22)

where x and y are two arbitrary points of state space. β is an auxiliary variable whose main role is to
enable one to recover the desired state space average by differentiation. The kernel δ(y − φt(x)) is the
Perron–Frobenius operator which transports densities in time (cf Chap. 6 in Ref [53]). Note that taking
the trace of a linear operator containing the factor δ(y − φt(x)) is equivalent to considering only the
points x where δ(y − φt(x)) 6= 0, i.e. periodic orbits whose period is an integer multiple of t. The cycle
expansion formula states that

tr(Lt) =
∑
p

Tp

∞∑
r=1

δ(t− rTp)
|det(I − J rp )| , (1.23)

where I is the identity matrix, Jp the Jacobian at the system linearised around the periodic orbit of
interest, r the multiplicity of the orbit and Tp its prime period.

More intuitively, the above formula is a generalisation of the trace formula tr(log(L)) = log(det(L))
for a matrix L. On the left-hand side of Eq. 1.23 we have the statistical information expressed as function
of the right-hand side, i.e. the individual deterministic elements. Indeed the spectral theory applied to
the operator L = Lt relates its trace to a series of Policott resonances γα of multiplicity mα, i.e.

tr(Lt) =

∞∑
α=0

mαe
−γαt. (1.24)

The exponents γα are related to the escape rates (for the leading eigenvalue) and correlation functions
(for the exponents beyond the leading one), that are all key characteristics about the asymptotics of the
system as t→ +∞ [56]. For instance, if averages over the state space Ω are defined by

< eβA >=

∫
Ω

eβA(x)dx, (1.25)

then the average of A is given directly by

< A >=
∂

∂β
< eβA > |β=0, (1.26)

the standard deviation of A is given by the second derivative with respect to β, etc...

Owing to Eq. 1.23, such information can be evaluated using individual averages over periodic orbits,
and only the periodic orbits ! The inclusion of steady states is discussed in [54]. The presence of additional
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symmetries is discussed in [53] and results in periodic orbits being generalised into relative periodic orbits.

The main limitation in Eq. 1.23 is the infinite number of periodic orbits required to cover the attrac-
tor. Super-exponential convergence of the main averages versus T is usually observed for low-dimensional
systems such as the Lorenz system when only periodic orbits up to period T are considered [57]. Never-
theless in high dimension this still leaves one with a daunting numerical task of determining all periodic
orbits of period less than T without missing any of them.

Two remarks can be made at this stage. The first one is that unstable periodic orbits are generic
and are expected to be found in all dynamical systems displaying chaos. An illustration is given by the
construction of the Smale’s horseshoe [58]. More than an expectation, the existence of unstable periodic
orbits is sometimes listed as one of the conditions defining chaos, together with the condition that they
are over the attractor [59, 60]. Beyond the numerical challenge associated with it, the mere identification
of a given periodic solution is hence by itself not a theoretical breakthrough. In the context of the flow
inside a MFU for instance, UPOs of the kind identified by [61] are in fact expected. UPOs are a conse-
quence of the presence of chaos and do not "explain" chaos. In the same vein, periodic orbits likely to be
found embedded within turbulent flows will not explain turbulence either. The second one is a matter of
feasibility in a finite world : it remains far from clear whether such a heavy numerical machinery is truly
progress if the main goal is to compute the mean flow profile. It seems that so far, and for a number of
years to come, an efficient numerical solver will be much more efficient in predicting the flow statistics.

Figure 1.19 – a) Projection of a Poincaré section of the state space of pipe flow. Turbulent trajectories
(grey) and relative periodic orbits (black, green and red), b) and c) successive zooms. Taken from [42].
d) same as c) with the unstable manifold of one of the periodic orbits depicted in blue.
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1.6.4 Chaotic saddles

A large part of the literature on dissipative dynamical systems celebrates the notion of attractor, or
equivalently of ω-limit set : the part of the state space that will again be visited by a given trajectory, no
matter how many times it has been visited by the same trajectory already. Attractors are consistent with
i) the dissipative nature of the Navier–Stokes equations and ii) the notion of sustained dynamical regime.
A clearer link between the two notions (attractors and turbulence) emerged in the 1960s pioneered by
E.A. Lorenz, initially with thermal convection in mind, for which turbulence is indeed sustained as long as
thermal forcing is on. Direct application of this analogy to open shear flows leads to surprising results. At
large enough Reynolds number, it is certainly more straightforward to consider turbulence as sustained,
although even there some concepts become shaky due to the main advection. This is at least the case
in spatially periodic simulations of channels and pipes in which, once initiated, turbulence never dies
out. At lower Reynolds numbers, close to the onset of appearance of turbulent dynamics, the situation
is less clear. Although some initial conditions seem to lead to a sustained turbulent flow, simulations
over longer and longer observation times sometimes reveal relaminarisation. Unless transition is triggered
again, the autonomous system stays laminar forever and the turbulent episode is nothing more than
a transient. Experimentally (i.e. without periodic boundary conditions) this has a counterpart, easiest
understood in pipe flow : a turbulent patch can travel several thousands of pipe diameters and die over
the space of only a few pipe diameters [62–64]. In spatially extended systems such as plane Couette flow,
although turbulence can spread, it can also recess until the whole flow becomes laminar [65, 66]. This
relaminarisation is hence not only a numerical artefact but a genuine physical phenomenon, although
again the mechanisms at play in the presence of spatial periodicity might differ from those in free space.
Theoretical efforts to understand this relaminarisation phenomena have led to many interesting analo-
gies with other areas of theoretical or applied physics [67]. To begin with, the lifetimes corresponding
to multiple laboratory or computer experiments all pointed towards statistical distributions. Moreover
the cumulated distributions of lifetimes frequently appear exponential, indicating a memoryless process.
Although an analogy with radioactivity was unavoidably made, a more fruitful analogy turned out to be
classical scattering, seen as a model of idealized unimolecular fragmentation [68]. The same formalism
turned out later to be useful in other areas of hydrodynamics, namely fluid mixing [69], [70]. In the
scattering picture, trajectories bounce alternatively on an array of hard spheres in a chaotic fashion, until
they escape a given region of the associated state space. Despite the lack of dissipation, this picture of
state space in figure 1.20 is very close to that depicted schematically in Fig. 1.21. It is structured around
not one, but rather several invariant sets. In particular the rate of leakage of a delayed trajectory from the
interaction region is claimed to be analogous to the rate of decay of a metastable system. This analogy
has given a yet stronger weight to the cartoon of Fig. 1.21 : the lifetime of individual turbulent realisa-
tions corresponds to the time it takes for the corresponding trajectory to bounce through the "jungle"
of unstable solutions and eventually to escape from it. The more entangled the network the longer the
mean lifetime. A formalism of Markov chains has even been developed to account for the memoryless
statistics observed [71, 72]. The initial success of this new dynamical picture came however from i) its ori-
ginality and ii) its ability to incorporate well-chosen elements from dynamical systems theories to explain
new features of low-Reynolds number turbulence. A question that remained, however, unanswered by this
approach is about the possible divergence of turbulence’s mean lifetime as the Reynolds number increases.

1.6.5 Other invariant sets

The historical focus on a set of fixed points and periodic orbits has perhaps slightly shadowed the
search for other invariant sets beyond them. Invariant manifolds are as important as fixed points in many
dissipative systems. In particular stable manifolds of objects yet-to-be-identified often act as inpenetrable
barriers to trajectories, and hence as proper state space frontiers when their codimension is one. This
will be the case for the edge manifold that will be extensively reported in the next chapter. It is as yet
unknown whether other invariant manifolds can be of interest to the description of the state space for
this class of hydrodynamic systems.
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Figure 1.20 – Cartoon of two trajectories bouncing periodically between three repelling invariant sets.
Taken from Chaosbook.org. Any other trajectory leaving the game after a finite number of rebounds is
interpreted as a chaotic transient.

Other orbits (understood as ’trajectories’) are however of interest. The ECSs reported above corres-
pond almost exclusively to states with both a stable and an unstable eigenspace. As a direct consequence,
heteroclinic orbits leaving the neighbourhood of one given state at t = −∞ and connecting with the
neighbourhood of another one for t → +∞ are likely to exist. Their properties are important as they
are believed to guide the dynamics of most trajectories. They have been investigated numerically in Refs
[73–75].

Homoclinic trajectories are also important as a support for state-space trajectories, however their
numerical identification is potentially even richer in consequences. The Smale–horseshoe, a cornerstone
of dissipative dynamical systems theories [76][58], states that the existence of a homoclinic orbit from an
unstable periodic orbit automatically implies chaotic dynamics. This strong theorem has been used by
[77, 78] to justifiy the chaoticity of plane Couette flow in the HKW cell. Interestingly, the Smale Horse-
shoe theorem is not expected to be valid if the periodic orbit is replaced by a steady state or a travelling
wave. Given the number of unstable steady states identified in shear flows at the moment rather than
UPOs, one can wonder what implication it has for the dynamics.

Another conceptually easy (but practically heavy) generalisation concerns the inclusion of unstable
quasiperiodic states into the same picture. Such new solutions can emerge from Neimark–Säcker bifur-
cations of periodic orbits, and they can also bifurcate out of the blue. While formally the repelling role
played by two-frequency solutions cannot be ignored, it remains to be shown how such information can
be quantitatively useful : there is no equivalent of cycle expansions taking two-tori solutions into account.
However exact toroidal solutions with more than two temporal frequencies are likely to play an increased
role at slightly higher Reynolds numbers where the flow starts to display multiscale properties [79].
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Figure 1.21 – Two homoclinic orbits of plane Couette flow starting from a time-periodic edge
state (colours), together with the PDF of individual trajectories (grey). Representation in a kinetic
energy/dissipation state portrait. From [77].
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2.1 The edge of chaos
Among the concepts from dynamical systems theories developed in the preceding introductory chapter,

the recently formalised concepts of edge manifold and edge state have been left aside. The present chapter
represents a personal opportunity to re-define these concepts from scratch, with the relevant mathematical
rigour and with a (hopefully) consistent vocabulary.

2.1.1 The edge as a smooth separatrix
3.1.1.1 Illustration on a low-dimensional model

We consider first, mainly for pedagogic purposes, the two-dimensional autonomous model suggest by
O. Dauchot and P. Manneville [17], which we label DM2D. This system is written under the general form
ẋ = Lx +N (x), where x ∈ Ω = R2. L is a typical non-normal matrix suggested by Trefethen [80]. The
components of N consist of quadratic forms that conserve energy such that <N (X),X >= 0 for all X
in line with the Reynolds-Orr theorem. These two operators read respectively :

L =

[
s1 1
0 s2

]
, N (x1, x2) =

[
x1x2

−x2
1

]
.

A state portrait of the DM2D model is displayed in figure 2.1 for the parameters s1 = −0.1875 and
s2 = −1.
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Figure 2.1 – State space of the DM2D model [17]. The laminar state xL and the turbulent state xT
are represented together with their respective superstable manifolds, Wss(L) and Wss(T ). The dividing
line in red represents the edge manifold and coincides with the stable manifold of the edge state xE ,
Ws(xE) = Σ. The blue trajectories form the oriented unstable manifold of E, Wu(xE). The green
diamond corresponds to the minimal seed (see Section 3.3). Taken from Ref. [81].

The description of the state space is straighforward : two attracting fixed points xL (the "laminar
state") and xT (the "turbulent state") coexist. The fact that the turbulent state has no proper "turbulent"
dynamics does not matter much for the present illustration. By construction xL is linearly stable, and
it can be checked analytically that xT is also linearly stable. Each attractor hence possesses its own
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attraction basin, respectively BL and BT . Their intersection is non-empty and we define the edge manifold
as the intersection of their closures :

Σ = BL ∩ BT , (2.1)

displayed in red in figure 2.1. Trajectories starting at initial time from any point in Σ stay on Σ, hence Σ
is an invariant set for the dynamics [82]. In addition, all such trajectories converge to a third fixed point
labelled xE . We have the identity Σ =Ws({xE}). xE is labelled the "edge state", and it is here a point
of zero dimension. It should not be confused with the "edge manifold" Σ (sometimes simply referred to
as "edge") which here has dimension 1, in other words Σ is a hypersurface of codimension one. As the
governing parameter s1 is decreased, the two attractors xE and xT merge together and disappear at the
same time, leaving the laminar state xL alone (as fixed point) in the state space.

Within the DM2D model, the transition process from the laminar state to the turbulent one is already
rich enough to be compared to the basic transition process as observed in hydrodynamical systems :

— initial conditions close inside BL can approach xE transiently but end up in xL
— initial conditions close inside BT can approach xE transiently but end up in xT
— the closer the initial condition to Σ, the longer the transient visit to xE .

This indicates that xE , although unstable with respect to two-dimensional disturbances, is stable and
attracting within Σ and unstable in any direction transverse to Σ. Numerically, xE can be hence found by
a simple one-dimensional search (labelled also shooting method in the early Japanese literature). Such a
search only requires initial conditions within a one-dimensional segment that intersects Σ somewhere. The
concept is illustrated in figure 2.10. This is an iterative process terminated once the two initial conditions
one either side of Σ are considered close enough. Note that in dissipative systems this algorithm always
identifies an edge state, regardless of the associated dynamics.

0 100 200 300 400 500
t

10 1

100

a(
t)

Figure 2.2 – Illustration of the "classical" iterative bisection process (courtesy M. Beneitez). Grey dashed
lines : lower and upper bounds chosen for an observable a(t). The sets of red and blue curves bracket an
edge trajectory from t =0 until at least t =500.

3.1.1.2 The edge seen as a Lagrangian Coherent structure in high dimension

It is visually clear from figure 2.1 that the manifold Σ divides the state space into two complementary
parts. No initial condition located strictly within one attraction basin can end up in the other basin,
which makes Σ a barrier to transport. In addition, the hyperbolic nature of xE is responsible for repelling
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all nearby trajectories, even those infinitesimally close to Σ. All these conditions are strongly reminiscent
of the physical concept of hyperbolic Lagrangian Coherent Structure, where Lagrangian refers to the tra-
cking of individual trajectories [83]. The original frame for which LCSs were developed is also motivated
by hydrodynamics, namely the finite-time transport of fluid particles by known time-dependent fluid
flows [84, 85]. In particular, in steady velocity fields, repelling LCSs essentially mean material barriers to
transport. Other applications, for instance chemical reactions, have also been considered [86]. The class
of systems under study are however very different from the current context in transition : the dynamics
are always conservative, there are no attractors, the trajectories can be computed in either forward or
backward time, and the dimension of the state space (which coincides with the physical space) is very
low, typically two. Besides, the system is in general non-autonomous due to the time dependence of the
vector field. In most applications of Lagrangian concepts, the state space associated with Lagrangian
tracers (governed by an equation ẋ = v) and the physical space coincide. In the Eulerian point of view
relevant to the present transition problem, both spaces differ radically in their dimension.

There are several definitions used to identify repelling LCSs. We consider here only two of the simplest
quantifiers : Finite-time Lyapunov exponents (FTLEs) and Lagrangian Descriptors (LDs).

Finite-time Lyapunov exponents

Finite-time Lyapunov exponents (FTLEs) have been popularised as a tool for the identification of
LCSs in [84, 87]. Let Ctt0 be the (positive definite) Cauchy-Green tensor defined by

Ctt0 = (∇φtt0)∗∇φtt0 , (2.2)

where (·)∗ represents the Hermitian transpose and the derivatives ∇ are with respect to state space
variables. The Cauchy-green tensor has size n × n, and its entries are usually computed using second-
order centered finite-differences [83]. If τ = t − t0 > 0, the average growth rate over the time interval
(t0, t0 + τ) around an initial condition x0 is given by

√
λ(t0, t0 + τ, x0), with λ the largest eigenvalue of

the diagonalisable matrix Ctt0 . The present system is autonomous hence t0 = 0 without loss of generality.
The leading finite-time Lyapunov exponent of the system at position x0 is given by

Λ(x0, τ) =
1

τ
log
√
λ(0, τ, x0). (2.3)

The ridges in the field of the leading FTLE at time τ can be used as a diagnostic of a hyperbolic LCS [83,
88]. Hyperbolic LCSs refer to attracting and repelling distinguished invariant manifolds [84], with only
the forward time FTLEs relevant for the identification of repelling LCSs [89]. FTLEs can be computed
in arbitrarily high dimension using the recent scalable algorithm based on Optimally Time Dependent
(OTD) modes, which are themselves determined from a minimization principle [90]. Under generic condi-
tions these OTD modes converge exponentially fast to the eigendirections of the Cauchy-Green tensor
associated with the largest eigenvalues, i.e. the largest finite-time Lyapunov exponents [91].

Lagrangian Descriptors

Lagrangian Descriptors (LDs) are a more recent diagnostic for Lagrangian coherence introduced in [92,
93] and its theoretical framework further developed in [94]. Like FTLEs, LDs are based on the integration
of a given observable along trajectories, however they do not request any differentiation of the flow map
with respect to the initial condition. The original quantity of interest is

M(x0, t0, τ) =

∫ t0+τ

t0−τ
g(x(t))dt, . (2.4)

The observable g can be defined as

g(x(t)) =

m∑
i=1

|fi(x, t)|p, (2.5)
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where the fi’s are the components of the velocity field f , and p ∈ (0, 1] and τ ∈ R+ are two parameters.
p = 0.5 is a good choice in practice. Eq. 2.4 can be split into its forward and backwards contribution [86,
95]. For the present autonomous system, again t0 = 0 without loss of generality, and these contributions
write hence respectively

M(x0, τ)+ =

∫ τ

0

g(x(t))dt,M(x0, τ)− = M(x0, τ)−M+(x0, 0, τ). (2.6)

Due to the dissipative nature of the system, numerical backwards integration is ruled out for numerical
stability reasons, only M+ can be considered here. Since our focus is on stable manifolds rather than
unstable ones it is sufficient to focus on the computation of M+(x0, t0, τ). The abrupt change also means
that the derivative of M+ transverse to the boundaries is discontinuous. These singular features in LD
plots are often connected to the stable and unstable manifolds of saddle points. Depending on the case,
it is also useful to quantify abrupt changes of M+ via the L2-norm of its gradient

B(x0, τ) =

[
n∑
i=1

(
∂M+

∂x0,i
(x0, τ)

)2
]1/2

. (2.7)

Figure 2.3 – State space of the DM model represented using isolevels of a) the leading FTLE Λ b) M+

and c) B = ||∇M+||. In each case the time horizon is T = 60. The edge manifold Σ is highlighted by the
ridge in a) and c).

Other diagnostics for LCSs are routinely used, see [88] for a comparative review. Alongside the diag-
nostics based on a scalar field, such as FTLEs and LDs, other approaches based on transfer operators
or dynamic Laplace operators seek coherent structures by formulating rigorous mathematical coherence
principles (see e.g. [88, 96]). These diagnostics generally display limited scalability and are not considered
here.

3.1.1.3 Illustration on hydrodynamic examples

The first pioneering use of the concepts of edge manifold and edge state in hydrodynamics is probably
due to S. Toh and T. Itano [97]. The system they investigated is plane channel flow in a computational
cell relatively close to that considered in [28]. Their pedagogic sketch, displayed in figure 2.4 shares many
ressemblances with figure 2.1. The edge state identified in their study was claimed to be travelling wave
solution. It was later re-interpreted, based on a longer computational, as a very long (relative) periodic
orbit [98]. Eventually, it was demonstrated using better resolution and even longer edge tracking that the
edge state in that system is in fact neither steady nor periodic or quasiperiodic, but apparently chaotic
[99]. What was originally interpreted by Toh & Itano as the instability of the edge state was in fact part
of the edge state dynamics itself. Note that in the same lab in Kyoto, G. Kawahara and S. Kida also used
the same computational method in their 2001 paper on periodic orbits but in plane Couette flow : the
edge state identified is the "gentle" periodic orbit visible in state portraits of the previous chapter.
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Figure 2.4 – Sketch of state space from Toh & Itano 2001 [97]. The dividing hypersurface labelled "Basin
Boundary" represents the edge manifold.

turbulent

Figure 2.5 – Three-dimensional snapshots of the unsteady velocity field for the relative periodic edge
state, as identified in channel flow by Toh & Itano 2003 [98]. Light grey : isocontours of streamwise
velocity, darker colours : isocontours of the vortex criterion Q coloured by the sign of the streamwise
vorticity.

2.1.2 Concept of edge state in chaotic saddles

In the previous example of the DM2D model, all fixed points but the edge state are attractors, and
the edge manifold appears smooth. As previously mentioned, a key property of transitional shear flows
close to their onset is the finite lifetime of the turbulent dynamics, observed both in experiments and in
computations [100]. This property appears incompatible with the definition of a "turbulent" attractor,
hence the only attractor left in this picture is the laminar state. The notion of attraction basin hence
needs to be generalised to that of a separatrix between short transients and supertransients [67]. The
generalisation works in practice since, for observation times shorter than the mean lifetime, the dyna-
mics is indistinguishable from the bistable dynamics detailed earlier. Similarly, most usual quantities
such as Lyapunov exponents, correlation functions etc.. can be computed over finite times only [67]. Se-
vere practical problems arise however if the observation time is longer or comparable to the mean lifetime.

There has been a strong interest in transient chaos by theoreticians, going back perhaps as early as
the foundations of complex dynamics and Fatou’s dust in iterative maps in the early 20th century. Fatou’s
dust is the union of the attraction basins of periodic points in simple maps such as the tent map, which
is known to have the structure of a Cantor set and whose construction is illustrated in figure 2.6.

There is a direct analogy with the edge manifold in smooth differential systems. Since the turbulent
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Figure 2.6 – Iterative construction of the Cantor set of Fatou’s dusts of the tent map (courtesy P.
Manneville).

dynamics itself does not define an invariant set, the edge manifold is regarded as the only remaining
non-trivial invariant set of the system. It can hence be sought directly as a set characterised by infinite
lifetimes, i.e. the ridge in a lifetime landscape as in figure 2.7. Most related algorithms use the idea that
any segment joining two regions of the state space with different lifetimes must straddle the edge. Luckily
they do not differ from standard bisection algorithms [101–103].

Figure 2.7 – Chaotic saddle of the Henon attractor revealed by the ridge in the lifetime landscape. [103].

Until 2005 the edge state was reported under very different names such as "chaotic saddle". The
introduction of the word edge (in fact, originally edge of chaos) dates back to the reference paper of J.
Skufca, B. Eckhardt and J. Yorke in 2006, who focus on a 9-dimensional Galerkin model of subcritical
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transition. It has remained popular ever since. We would like to emphasize the distinction between the
edge Σ (the manifold/separatrix/barrier) and the edge state E, which is the limit state of a trajectory
within Σ. E is sometimes labelled the relative attractor on Σ. Note that, although the turbulent state is
often considered unique, no principle warrants the uniqueness of the edge state for a given system. In a
few cases several distinct edge states have been identified for the same set of parameters.

It did not take long until the above concept was used in a genuine Navier–Stokes context, starting with
pipe flow [104–106], in situations where the mean turbulent lifetimes are either finite or unbounded. From
a dynamical point of view, the edge state can host relatively simple time variations or look chaotic, howe-
ver the time variations look modest compared to the associated turbulent dynamics. Experience suggests
that the chaoticity of edge states is the exception rather than the rule. From a structural point of view,
the perturbation velocity field associated with edge states possesses a few robust features : streamwise
rolls and streaks are always present, just as for the turbulent state (see figure 2.8). Edge states are never
strictly two-dimensional and display streamwise variations for finite Re. These elements are all consistent
with the SSP picture of F. Waleffe [107]. As Re goes to infinity (provided the numerical domain is un-
changed), the corresponding coherent structures evolve towards a two-dimensional flow different from
the laminar one, whereas the streamwise-dependent part becomes dominated by a wave part traveling at
constant speed. It was later realised [108] that this is perfectly consistent with the Vortex-Wave Interac-
tion picture suggested by P. Hall and co-workers in the 1980s to address the question of high-Re shear
turbulence [109]. This theory involves critical layers, whose thickness scales like O((αRe)−

1
3 ), such that

they become singularly thin in the high-Re limit [110]. This apparent issue will be mentioned again in
the last section of this chapter when dealing with localised edge states.

Figure 2.8 – Snapshot of the edge state in pipe flow with parameters Re = 2875 and domain length
L = 5D, from Ref. [105]. Top : cross-sectional velocity field, bottom : three-dimensional side view (flow
from left to right).
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2.1.3 Edge tracking techniques
A posteriori verification

The methods to identify numerically edge states will be referred to as "edge tracking techniques".
Several methods coexist in the hydrodynamic literature with their pros and cons, although edge tracking
tends to be dominated by the "classical" bisection method. The first edge states in shear flows were
found accidentally even before the separatrix concept emerged. It simply turned out that, out of the
multitude of finite-amplitude solutions identified numerically (no matter how), some of them have the
edge state property that their stable manifold divides the state space into two separate parts. The sim-
plest finite-amplitude solutions to date usually emerge in saddle-node bifurcations, and form pairs with
one "lower-branch solution" and one "upper-branch solution" (the distinction is usually based on the
perturbation kinetic energy). If one of these states has, even for a bounded parameter range, strictly one
unstable eigenvalue (equivalently one unstable Floquet multiplier if the state has time periodicity), then
it is very likely to be an edge state because its stable eigenspace has codimension one (dim(Eu) = 1).
This is the case for instance with the steady lower-branch Nagata state, the first finite-amplitude solution
found in plane Couette flow [111]. It was verified multiple times that i) slight perturbations to the edge
state lead either to turbulent or laminar dynamics depending on the sign of the perturbation, ii) classical
bisection finds this steady solution as the edge state, and iii) for low enough Re this is the only such
state for the corresponding numerical parameters [112]. Conversely, finite-amplitude solutions with two
or more distinct instability directions (dim(Eu) > 1) are not eligible as edge states, however they can
belong to Σ or not.

Figure 2.9 – Sketch of local stability near hyperbolic points. a) dim(Eu) > 1 b) dim(Eu) = 1. Only in
the case b) can the fixed point be an edge state.

Bisection techniques

The core of popular edge tracking techniques is the bisection process. Geometrically speaking, a one-
dimensional state space segment is first identified such that it straddles the laminar-turbulent separatrix
Σ. The straddling property is identified simply by monitoring whether the flow is laminar or turbulent
after some observation time. The segment is iteratively shrunk until it coincides with a state on Σ as in
figure 2.10. The process is always convergent as soon as the length of the segment can shrink to zero,
irrespective of the dynamics obtained. It occurs however in practice that machine precision is reached
before the bisection has led to the desired or expected dynamics. In such a case the process is simply
restarted by considering another pair straddling Σ (usually chosen from the end of the previous steps).
Most searches employ this restarted technique in order to access the true asymptotic state without being
fooled by finite arithmetic.

A common misunderstanding consists in claiming that edge tracking algorithms fail to converge if
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Figure 2.10 – Sketch of edge tracking from Ref. [113]

the end result is dynamically "complex". In addition, the seducing advantage of simple edge states is
the possibility to monitor the convergence towards them. If the edge state is instead a chaotic relative
attractor, it is much more delicate to assess quantitatively when the asymptotic state is ’reached’ or to
claim convergence.

Each bisection algorithm can be summarised as a recursive loop :

———————-

Step 0 k = 0, choose a perturbation to the laminar flow u0

For k=0,1,2,... repeat until machine precision is reached :
Step 1 uk(t = 0) = λku0

Step 2 λk+1 = 1
2 (min(λk, λk−1) +max(λk, λk−1))

Step 3 if uk(t) ever becomes turbulent (even transiently), λk−1 ← λk and λk ← λk+1

else λk ← λk+1.

———————-

Bisection algorithms differ according to the method chosen to select the final observation time.

The "classical" bisection technique used here is based on the choice of one observable a = a(t) =
a(x(t)) together with the choice of bounds aL and aT . It is then assumed, based on physical intuition,
that the dynamics has no choice but to relaminarise if a(t) < aL, or no choice but to go turbulent
if a(t) > aT . A transient time is usually excluded at the beginning of each run before the previous
property aL < a(t) < aT is checked for. Note that a good choice of (aL, aT ) can in practice really ac-
celerate the process by several orders of magnitude. Ideally the choices aL = min{a(x),x ∈ Σ} and
aT = max{a(x),x ∈ Σ} are ideal, but such information is not necessarily available beforehand. If the
amplitude of the edge aE is known (even when time-dependent), this can lead to further improvements
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in speed.

One of the issues with classical bisection algorithm is that each step is longer than the previous one.
The time needed for each iteration diverges in principle as the relative attractor is approached. This is due
to the increasing transient time spent in the neighbourhood of the relative attractor before the bounds
are reached. Restarting from states ever closer to E can limit this divergence but not fully prevent it.
The interpretation of Σ as a Lagrangian Coherent Structure can here provide a solution : bisection now
refers to the classical maximisation (or minimisation) of a given state space functional, in the hope to
locate ridges in a given landscape. This functional can be for instance the leading FTLE computed over
a specified time horizon τ . It can also be, when using Lagrangian Descriptors, the gradient B+ of M+

introduced in Eq. 2.7 for a specified time horizon τ .

The performances of these three different bisection algorithms have been compared in figure 2.11a for
the simple two-dimensional DM2D model introduced earlier. All three algorithms converge exponentially
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Figure 2.11 – DM2D model. Left : convergence in log scale of the there types of bisection versus the
horizon time τ . Right : LCS diagnostics as a function of x2.

fast towards the edge state E. The FTLE-based bisection outperforms the classical bisection algorithm
although the improvement is not spectacular. The LD-based method, however, is much faster than the
two other ones. This suggests the use of such a variant of the bisection technique for future studies. We
note that the ridge structure on Σ characterises geometrically the edge manifold only when the turbulent
state is a simple fixed point. The computations above have been generalised to investigate the structure
of Σ in minimal flow units of plane Couette flow at Re = 400. There the landscape of both FTLEs, M+

and B is slightly more difficult to apprehend. In particular, turbulence for these parameters is transient :
following the Λ-lemma [114], the edge manifold crosses the straddling segment multiple times. This leads
to the jagged landscape depicted in figure 2.12. It is not clear whether in such cases the new bisection
techniques offer any advantage compared to the original method considered by Skufca et al..

Feedback control methods

Bisection algorithms are conceptually simple but, because they are based on multiple simulations,
they can be costly and slow. Indeed one bisection requires 2n individual runs until machine precision εM
is reached at nth iteration, i.e. n ∼ −log(εM )/log2, at which point the process needs to be restarted M
times as long as no simple edge state has been reached. The total cost is hence of Mn ≥ 100 runs at
least, with each run getting longer as accuracy improves. For instance, in [115], each bisection required
a total of Mn ≈ 400 runs, which corresponds to ≈ 106 − 107 CPU hours. This high cost makes para-
metric studies infeasible in practice. Other numerical methods have been suggested as alternatives to
the bisection-rootfinder combination, e.g. iterative adjoint optimisation methods [112, 116] though they
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Figure 2.12 – Plane Couette flow computations. Left : One-dimensional landscape of state space rendered
using LCS indicators (FTLEs, B) for τ = 300. Right : two-dimensional cut through state space visualised
using iso-levels of FTLEs. A and α are two coordinates centered on the laminar state and defined in Ref.
[81].

involve significant mathematical and computational complexity.

Since the goal is to pinpoint and converge towards one of the unstable regions of the state space,
refined control strategies can achieve a similar task. This is done by introducing into the original sys-
tem a control term that counteracts the edge instability and is able to stabilise unstable states without
altering them significantly. Several theoretical control strategies have been suggested in the past in or-
der to converge towards unstable states, some of the notable ones are Pyragas delay-based control [117]
and Selective Frequency Damping [118]. The former is heavy to implement in high dimension because
of memory requirements and suffers from some limitations regarding convergence. The latter is easy to
implement and is convenient at least for steady states. However it turns out not to converge in shear
flows, because eigenvalues with zero imaginary part are not stabilised (see e.g. [119]).

We propose a remarkably simple linear feedback control able to constrain the dynamics to the edge
manifold, and to stabilise invariant solutions that are stable within it. This scheme has been applied to
track unstable chimera states in systems of non-locally coupled phase oscillators [120, 121]. In its most
simple form, the control scheme makes one of the system parameters µ state-dependent by imposing a
linear relation between the parameter and an observable A(t).

µ(t) = µ0 + κ(A0 −A(t)) (2.8)

For the shear flow problems we will identify µ with Re and A with some pre-defined perturbation energy

A(t) =

∫ rw

ri

(u2 + v2) r dr dθ dz . (2.9)

Geometrically, the resulting dynamics can be understood by considering its representation in the (µ, x)
plane. For κ = 0 we are back to the uncontrolled system, where for a fixed choice of the parameter the
dynamics is constrained to a vertical line in the (µ, x) plane, determined by the choice of the parameter.
The equilibria for each fixed parameter µ > 0 are selected as the intersections with the corresponding
vertical line. The equilibria on the upper branch of the parabola are dynamically stable, while those on
the lower branch are unstable (cf figure 2.13a) . By choosing the pivot point (µ0, x0) fixed and varying
the control gain κ we can now sweep the stable equilibrium of the controlled system along the parabola,
until the straight line becomes tangential to the parabola and both equilibria disappear in a saddle-node
bifurcation (cf figure 2.13b).
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Figure 2.13 – Sketch in an (A,Re) representation of the stability of the uncontrolled (a) and controlled
system using the feedback control method (b) based on the constraint (2.8) corresponding to the dashed
slanted lines. The labels ’UB’ and ’LB’ refer to the upper and lower branch in the uncontrolled system,
respectively. In fig. (b) the dashed slanted line is rotated around a pivot point at a given rate, allowing
the unstable fixed point on LB to be tracked dynamically.
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Figure 2.14 – (a) Cross section of the stabilised TW solution with α = 1.25 and m0 = 2. Streamwise ve-
locity perturbation in colour (from dark to white) and cross-stream components (vectors). (b) Eigenvalue
spectrum for the TW solution with (blue circles) and without control (red crosses).

This control scheme was applied to the case of pipe flow investigated in ref. [106]. Within a few hours
of computation it manages to stabilise the lower-branch travelling solution which is the edge state for
that system. Not only does it identify this unstable state for one parameter value, but it can trace a
large part of the corresponding branch of TWs in the same computation. Although computationally very
appealing, the suggested method converges exactly only when the edge state does not display any oscil-
latory instability. It would be desirable to explore further the properties of this control scheme as well as
the possibilities to use unconverged results combined with another algorithm [122].

2.2 Edge state dynamics in terms of finite-amplitude solutions.

In the present section, we consider a finite-time segment from an edge trajectory computed in pipe
flow, and analyse how the edge fluctuations are structured by the presence in state space of neighbouring
finite-amplitude solutions. This analysis is based on classical recurrence analysis traditionally used in
chaotic theory and signal processing [123].
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2.2.1 Recurrences

We begin by defining the notion of spatial shift by considering a velocity field, independently of the
time t at which it is considered. σ = (σθ, σz) is a pair containing the values of the shifts in the axial and
azimuthal directions respectively (the generalisation to Cartesian coordinates is trivial and intuitive). Let
Tσ act on u such that

(Tσu) (r, θ, z, t) = u(r, θ + σθ, z + σz, t). (2.10)

Several types of finite-amplitude solutions are identified during this study. In particular, travelling wave
solutions (TWs) are defined by

u(r, θ, z, t+ T ) = (Tσu) (r, θ, z, t), (2.11)

with σ = (cθT, czT ) for a specific couple (cθ, cz) and for all t and T. Relative periodic orbits (RPOs)
are defined by the same relation (2.11) for all t, which however holds only for given values of T , σθ and σz.

We define now a recurrence function depending on the two time arguments ti and t

r(ti, t) :=
|X(t)− TσX(ti)|

|X(ti)|
(2.12)

Identifying all the minima in t of the recurrence function yields rmin, a function of only ti, defined as

rmin(ti) := min
t>ti
{ ri(t) :

∂ri
∂t

= 0 }. (2.13)

The signal of rmin is depicted in figure 2.15 for σ = (0, 0). The value of σθ = 0 is motivated by computa-
tional simplicity. The value σz = 0 is selected arbitrarily to alleviate, in the case of travelling waves, the
degeneracy between σz and the time period. rmin(ti) features an alternation of relative lows and highs,
with low values reaching 10−1. Note that such values are substantially lower than the corresponding rmin
found in turbulent runs for the same system, which rarely dip under 0.2−0.3.

The main idea of recurrence analysis is that local minima of rmin(ti), associated with a time T
such that rmin(ti) = r(T, ti), correspond to furtive approaches to RPOs with a period close to T . Such
RPOs would in fact correspond to exact zeros of the recurrence function r. Such zeros can be identified
numerically within machine precision, using adaptations of classical rootfinding techniques. Rootfinders
are iterative algorithms which need an initial condition, and the state corresponding to each dip of rmin is
precisely a good choice of initial condition. The classical Newton method, by far the most used rootfinder
in this context, seeks for instance zeros of the functional

g : X → |φT (X)− TσX|2. (2.14)

in a (N + 3)-dimensional state space. N is the dimension of X, 3 refers to the additional scalar unknowns
T , σz and σθ and φT is the nonlinear propagator over a time horizon T > 0. If convergence fails, the
Newton algorithm can be complemented by a globalisation technique such as the Hookstep [124] or the
double dogleg step [125]. For the case displayed in figure 2.15, a different TW solution has been found for
almost every dip, and it was verified that the TWs look visually close to the initial condition given to the
Newton solver. Closer inspection has revealed that one special TW is recurrent in this search (modulo
azimuthal shifts), namely the TW labelled S1.

This investigation validates the sketch below (see figure 2.16) where the dynamics along the edge ma-
nifold Σ can be described as a hyperbolic saddle, i.e. a networks of connected hyperbolic points guiding
the dynamics. In the direction transverse to Σ the dynamics is dominated by the two attractors of the
system, the laminar and the turbulent state, which are outside Σ. Asymptotic convergence towards a
given finite-amplitude solution belonging to Σ, i.e. towards an edge state, is possible only if, among the
list of states sitting on Σ, one of them possesses a stable manifold of codimension one. This is consistent
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Figure 2.15 – Residual rmin(ti) from [106]. Labels indicate the dips of rmin likely to yield good initial
conditions for a subsequent Newton search.

with the sketches in figure 2.9.

The imposition of well-chosen discrete symmetries in the computations can help to identify more exact
solutions, because it can reduce the number of unstable eigenvalues. Intuition is unfortunately a poor
guide here and one relies mostly on luck. In the case of pipe flow for instance, luck was bypassed by the
knowledge of one special case. A TW has been found in a former study [126] with axial wavenumber
α = 1.25. It possesses the R2 symmetry, i.e. it is π-periodic in the azimuthal coordinate rather than
2π-periodic. When its eigenvectors are restricted to the symmetric subspace invariant under R2, only
one eigenvalue is unstable. This TW fullfills the conditions to be an edge state according to figure 2.9a.
Indeed it was identified as an asymptotic edge state using the classical bisection method. A surprise arose
however : depending on the initial condition chosen for the bisection with R2 symmetry, either that TW
is found, or another (new) solution labelled C3. This is attested to by the recurrence function rmin shown
in figure 2.17, where the convergence to a TW is clear. The convergence to a well-defined attractor such
as C3 does not prevent the transient approach to other states. This is for instance the case with the TW
labelled A3, identified using the recurrence function in figure 2.17, and displayed in figure 2.18 together
with C3.

Edge tracking was employed in the examples above as a tool to reveal new exact solutions. These
solutions belong by construction to Σ and their identification allows one to construct, stone after stone,
a better representation of the topology of Σ. The main advantage of this approach over e.g. homotopy, is
the simplicity of the concept. Moreover, the solutions found are guaranteed to be weakly unstable (else
they would not have been found) and have a dynamical role that is already understood. The edge tracking
method, if complemented with a good continuation solver, yields more than edge states. Continuation
allows one to track edge states (and other more unstable states) down to the saddle-node bifurcation from
which they are born, and to trace the upper branch as well. This is shown in figure 2.19 as an example
drawn from pipe flow. This whole diagram of new solutions [127] was started from the knowledge of one
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Figure 2.16 – Illustration of the hyperbolic saddle structure of the edge manifold in state space, taken
from Ref. [106].

 1e-04

 0.001

 0.01

 0.1

 0  50  100  150  200  250  300  350

r m
in

time

A3

B3

C3

Figure 2.17 – Residual rmin(ti) from [106]. Edge trajectory restricted to the subspace invariant by the
R2 symmetry. α = 1.25.

edge state only with R2 symmetry. The other solutions were found by changing the index of the azimuthal
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Figure 2.18 – Residual rmin(ti) from [106]. Cross-section of TW solutions A3 (left) and C3 (right).
Isovalues of streamwise velocity perturbation superimposed with quivers for the transverse velocity field.
α = 1.25.

symmetry and by applying numerical arclength continuation.
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Figure 2.19 – Bifurcation diagram c (streamwise phase velocity) vs Re for travelling waves solutions in
pipe flow with α = 1.25 and different values of the azimuthal symmetry index m [127].

These findings suggest a full method in order to identify whole new families of exact solutions of the
Navier–Stokes equations. It requires only a timestepper and the evidence that the dynamics is bistable,
(with a laminar point as an attractor and another turbulent attractor)... and some luck too. The method
can work as well if the attractor is a chaotic saddle, provided its mean lifetime is long enough with respect
to the time to approach the edge state along the edge. Then if the system possesses an exact coherent
state as an edge state, the bisection algorithm will asymptotically converge to it from suitable initial
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conditions. This was the case in Refs. [106] and [128] in pipe flow, Ref. [129] in plane Couette flow, Ref.
[130] in plane Poiseuille flow, Ref. [113] and Ref. [131] in ASBL (the list is non exhaustive). Convergence
can be accelerated using an efficient rootfinder adapted to high dimension. Compared to the homotopy
methods used beforehand, the present method offers the important advantage that the dynamic role of
these solutions in state space is known by construction.

Numerical continuation of these solutions in R (or in α) invariably reveals that the branch of the ori-
ginal edge state turns around in a fold at some finite parameter value. It appears then that the edge state
is a lower-branch solution and that the other solution is an upper-branch solution, the two originating
from the same saddle-node bifurcation. Application of this technique in the pipe flow instance of figures
2.17, conducted for several values of the azimuthal wavenumber m, has led to many new branches of TW
solutions, as in fig. 2.19. Together with the related investigations in [45], [132], [133] or [134], more than
20 different families of travelling waves have been found so far in spatially periodic pipe flow ; all are
exact solutions to the Navier–Stokes equations within numerical accuracy. Together they all contribute
to the structure of the state space of turbulent pipe flow [126]. The new information is that the dynamics
on the edge is organised around the lower-branch solutions only.

2.2.2 Chaoticity of edge trajectories
The sketch of the topology of the edge manifold in figure 2.16 is very comparable in spirit to the

random walk picture suggested for the turbulent attractor/saddle in the previous chapter. It is (at least
a posteriori) no surprise for the case of a turbulent saddle, where the stable manifold of the edge state
appears dense in the state space. However this is not a trivial result in the usual case where turbulence
is an attractor, as evidenced by the counter-examples when the edge state is a simple relative attractor.
The main implication of the dynamics sketched in figure 2.16 is the possibility that the edge dynamics
be chaotic. While this has been speculated many times, the chaoticity of generic edge trajectories has
never been properly demonstrated. We suggest here to focus on a given flow case in which the edge state
is known to be dynamically unsteady and to test its chaoticity by using standard Lyapunov analysis, i.e.
by computing its Lyapunov exponents λ1, λ2, ...., λr. Lyapunov exponents are defined as the infinite time
limit of FTLEs defined earlier :

λi = lim
T→∞

(λt0+T
t0 )i (2.15)

independently of t0.

The computation of the FTLEs is achieved using the side-computation of Optimally Time-Dependent
(OTD) modes [91]. The flow case chosen for this demanding computation is the minimal flow unit of pPF
in a computational domain with L+

x ×L+
z = 200× 100 [135–137] illustrated in figure 2.20. The mass flux

is kept constant and the centerline Reynolds number for the laminar flow is Recl = 7, 200 corresponding
to Reτ = 120. This computation required at least 80, 000 outer time units of edge tracking for the
convergence of the r = 40 first exponents. The spectrum is shown in figure 2.21(left). There are at least 6
exponents that are strictly positive, which validates the former hypothesis that the edge state is chaotic.
More can be deduced from this computation : one exponent dominates the spectrum whereas all other
exponents (including the negative ones) form a continuum. It is interesting to compare this spectrum to
the Lyapunov spectrum corresponding to the turbulent regime of channel flow, as computed in Ref. [138]
in a comparable computational domain and comparable Reynolds number Reτ of 80 (although with a
less good numerical resolution). There the exponents formed one continuum without any dominant value.
The number of positive exponents was also reported to be 166, a number expected to rise for higher Reτ
and better resolution. We now turn our attention to the dimension of the underlying attractor, defined
according to the Kaplan-Yorke conjecture [139] by

DKY = j +
1

λj+1

j∑
i=1

λk (2.16)
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Figure 2.20 – Edge state in minimal flow unit pPf for Reτ = 100. Left : 3D snapshot of isolevels of
streamwise velocity perturbation. Right : space-time diagram [137] of < u >x (y = −0.5, z, t) (three
copies concatenated together).

where
j∑
i=1

λk ≥ 0

and
j+1∑
i=1

λk < 0,

The computation of DKY for the edge state at Recl = 7, 200 suggests DKY ≈ 22.5 ± 0.1 as can be
deduced from the change of sign of λ1 + ...+ λk in figure 2.21 (right). As with all strange attractors that
number is non-integer. For the turbulent case, the corresponding Kaplan-Yorke dimension is close to 360
[138], a number likely to increase with a higher computational resolution.

Conditions for turbulence to be transient

One interesting trend appeared during the investigation of this edge state. As previously mentioned, it
is customary to define the computational domain in outer units whereas the original study of Jiménez and
Moin [28] originally considered a scaling in inner units, making the box size in outer units Re-dependent.
In the investigation of [137] different box sizes were tested in inner units, most of them slightly smaller
than in Ref. [28], for instance L+

x = 200 instead of 300. One of the consequences was that the turbu-
lence turned transient no matter how high the value of Reτ (as far as 180). This suggests that, unlike
speculated in early works, the finite lifetime is not only a trivial consequence of low Reynolds numbers.
For periodic domains defined in inner units, the finiteness of the lifetimes becomes apparent when the
domain size L+ = L×Reτ itself becomes small enough once measured in outer units. This suggests that
the transient character of these turbulent flows is linked, consistently with the 2h ≈ 100δν concept [9,
10], to the confinement by the domain size. In other words, turbulence in periodic domains is transient
when the dynamics is spatially correlated. This is perfectly consistent with the common observation that,
at fixed domain size, turbulence relaminarises only at low enough Re. Since full spatial correlation is the
property that justifies the dynamical systems approach at odds with genuine spatio-temporal turbulent
flows, one is left wondering how much the transiency phenomenon (at least in MFUs) is a consequence
of the periodic domains only. Note a similar dilemma in the case where turbulence takes place in a triply
periodic domain too [140]. All these results suggest to investigate the transiency phenomenon in the
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Figure 2.21 – Left : Lyapunov spectrum {µi}i for minimal flow unit pPf for Recl = 7, 200. Right : sum
of Lyapunov exponents

∑k
i=1 µi versus k.

absence of finite-size effects.

2.3 Minimal states

2.3.1 Theoretical concept and limitations
The relative attractor on the edge manifold Σ is not the only place of interest in the state space.

Geometrically speaking, it is interesting to investigate how close Σ gets to the laminar attractor. This
supposes the choice of metric, usually related to the energy norm, such that the problem amounts to
finding

argmin{|x|,x ∈ BT }, (2.17)

where BT is the basin of attraction of the laminar state. In the toy problem suggested by Dauchot and
Manneville in figure 2.1, the point M closest to the laminar fixed point is represented, using a green
diamond, as the tangency point between Σ and the smallest ball centered on the laminar state that
touches Σ [141]. M differs from the edge state and does not form an invariant set. The associated phy-
sical question concerns the critical perturbation energy i) below which no transition to turbulence is
possible, and ii) above which transition is possible provided the right initial condition is chosen. A given
perturbation is associated to this global minimum of the critical energy landscape. It is called the minimal
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seed or equivalently the nonlinear optimal disturbance. It must by construction belong to Σ which is the
boundary of BT , as a consequence of which it can not induce transition by itself : optimal transition
requires in practice an infinitesimal perturbation of the minimal seed. A popular question in the 1990s
was to identify how the energy of the minimal seed Ec scales with the Reynolds number. Experimental
evidence suggests that the optimal threshold should decrease with Re, making transition for identical
initial disturbances more likely at higher Re. Although simple dimensionless analysis suggests a scaling
Ec = O(Re−2) independently of the flow type [142], many studies including analytical ones suggested
other power-law alternatives of the kind Ec = O(Re−γ) with γ > 1 [143, 144]. Solving the optimisation
problem 2.17 is a direct way to determine how the critical energy or other quantities depend on Re.
Although the definition of the norm to be minimised is straighforward, one slightly more ambiguous issue
is to define a quantitative scalar indicator of the transition phenomenon itself.

A simplified sketch of the state space is shown in figure 2.22, with an emphasis on the minimal seed
M . The laminar state is the point O, the edge state is represented for simplicity as a saddle point S, and
the turbulent attractor itself does not need to be represented explicitly. The case where turbulence is not
an attractor has not been fully investigated as of now. We emphasize that, as for the whole dynamics
picture, the concept of minimal seed is intrinsically linked to the framework of initial value problems.
Determinining the minimal background disturbance likely to maintain non-laminar flow is another pro-
blem. Another possible issue, relevant to experiments where localised disturbances are considered, is to
consider disturbances applied for a finite duration. This is again a different problem that would call for
different mathematical approaches. We will detail below two numerical approaches to the initial value
problem (2.17) and describe the transition path to turbulence starting from the neighnourhood of such
initial conditions.

Figure 2.22 – Sketch of the state space with an underlying energy metrics, where O is the laminar state,
S the edge state on the edge manifold Σ, and M the minimal seed.

2.3.2 Optimal oblique transition
During the 1990s and 2000s a large body of the numerical literature in shear flows dealt with the

concept of linear optimal perturbations (LOP), those maximising the gain due to the linearised operator
[18]. There is no direct theoretical link between LOPs and the minimal seed concept, a fully nonlinear
concept. In particular LOPs can be computed in different specific subspaces corresponding to different
symmetries, such as different wavenumbers, whereas the minimal seed is a global minimiser in state space.
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However it is intuitively plausible that a transition path starting from the lowest possible amplitude would
share features in common with the linear mechanisms, those commonly observed for low-amplitude (in
theory infinitesimally low) disturbances. It was hence assumed for simplicity in [145] that the perturbation
velocity field of the minimal seed Uopt could be decomposed as a sum of LOPs Ūi, i = 1, ...,m, computed
each for a different wavenumber :

Uopt =

m∑
i=1

AiŪi. (2.18)

The norm to be minimised is the perturbation kinetic energy

||Uopt|| = (
1

vol(V )

∫
V

|Uopt|2dV )
1
2 , (2.19)

where V denotes both the computational domain and vol(V ) its three-dimensional volume. A scalar
measure of transition remains to be defined. The main idea here exploits the sketch of fig. 2.22 : a per-
turbation in the neighbourhood of Σ must, if it leads to transition, approach the edge state S, which
has a well-defined energy ES . Minimising the energy of Uopt is hence equivalent to maximising the ratio
ES/Ec i.e. the energy gain. This leads in the space of the {Ai} to an minimisation of the energy needed
to reach, not the turbulent attractor, but the edge state S. This is a much better defined optimisation
problem, since the critical energy to reach the edge state is precisely a byproduct of the classical bisection
process. For m given, we can indeed define formally the mapping (A1, ..., Am)→ Ec(A1, ...., Am). In this
definition, Ec is the perturbation kinetic energy of the state obtained by rescaling

∑
AiŪi using the

classical bisection algorithm. A simple m-dimensional Newton solver is then used to make ∇iEc vanish,
i.e. to find the explicit minima of the mapping {Ai}i → Ec. Note that this is a fully nonlinear approach
even if LOPs are involved, and the equations used in the optimisation are the fully nonlinear ones. The
finiteness of m (m=2 or 3 in practice) makes it only a low-price reduced approach, yet. Since LOPs are
not localised in physical space, a short summation of them shares similar properties. This implies that
only non-localised minimal seeds can be sought using this method, therefore the approach is restrained
to minimal flow units only.

The optimal condition found in plane Couette flow for m = 2 is found to feature the modes (1, 1) and
(1,−1) with equal amplitude. This result holds for all computational domains and Reynolds numbers
tested. This is exactly the oblique wave identified earlier in Ref. [146]. This perturbation used nonli-
near interactions to generate a mode (2, 0) as well as (0, 2). The optimal mode with (kx, kz) ∼ (0, 2)
corresponds to a pair of streamwise vortices, known to be associated with a strong linear gain via the
lift-up effect. This alone justifies that the oblique wave transition path is an efficient one in terms of
energy gain. The present results complement this intuition by proving that this path is in fact nonlinearly
optimal, at least for m = 2. The threshold energy of the oblique waves is shown in figure 2.23 as a func-
tion of Re. The exponent γ resulting from the optimisation is γ = 2. This result corrects in passing the
numerical evaluation γ = 2.5 from [147], the mismatch being attributed to different numerical resolutions.

The flow field resulting from the optimisation with m = 3 -based on the LOPs associated with
wavevectors (1, 1), (1,−1) and (1, 2) - is displayed in figure 2.24. Its structure is itself very similar to the
oblique wave identified for m = 2, and its perturbation energy is only 1% less than Ec found for m = 2.
The corresponding transition scenario is shown in figure 2.25 as a sequence of three-dimensional plots of
the wall-normal velocity field. The initial condition corresponding to Uopt magnified in amplitude by a
factor (1 + ε̃), with ε̃ smaller than 10−4. The different phases of the transition process unfold as follows.
From t = 0 to t = 10, the oblique wave pattern gets strongly distorted by the shear. It turns rapidly from
an initially upward-tilted shape to a downward-tilted one, as an illustration of the linear Orr mechanism
in shear flows [18]. This is associated with the transient growth of the oblique modes. After t = 10,
the structures elongate in the downstream direction and the disturbance is dominated from t = 20 on
by streamwise vortices with a small but noticeable streamwise undulation. After t = 40, the dynamics
slows down dramatically and the spatial structure of the perturbation hardly changes until t = 220, as
an unstable steady state solution located on the edge is being transiently approached. The duration of
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Figure 2.24 – (Color online) Initial condition of minimal energy leading to turbulence for m = 3. The
state is the superposition of three linearly optimal modes with wavenumber (kx, kz) = (1,±1) and (1, 2),
where the complex amplitudes are determined by the optimisation procedure. Streamwise velocity in the
mid-plane y = 0 (left), cross-stream velocity field in a section x = 0 (right).

the transient approach increases with decreasing ε̂. Near t ≈ 240, the low-speed streaks start to distort
and the velocity field becomes rapidly unsteady. By t ≈ 270 it has all the qualitative features of the
turbulent flow reached at Re = 400 from other initial disturbances : elongated streamwise structures,
stronger velocity fluctuations, stronger unsteadiness.

2.3.3 Variational technique

The former approach is difficultly exploitable with higher values of m. A natural alternative is to
perform a more classical nonlinear adjoint optimisation, yet in the full state space of dimension n� m,
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Figure 2.25 – Three-dimensional view of the time evolution of the wall-normal velocity, v = ±4× 10−3,
along the trajectory Topt initiated by the minimal perturbation M with amplitude (1+ ε̂) (see text). From
top to bottom and from left to right, t = 2.5, 7.5, 17.5, 25, 90, 180, 245, 295.
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Figure 2.26 – Optimised objective function versus intial energy ε0. from Monokrous et al. [148]. The
energy is found using classical bisection. Blue : relaminarising cases, green : transitioning cases.The
minmal energy threshold corresponds to the red star.

with n of order 106. Adjoint optimisation is an iterative process that requires the differentiation of a scalar
Lagrangian function with respect to all the variables of the problem. It turns out that the the mapping Ec
used in Ref. [145] is not straightforward to differentiate, therefore other indicators of the transition must
be chosen. A standard choice used in all works by R.R. Kerswell, S. Cherubini and co-authors relies on
the energy gain G, making nonlinear optimals genuine nonlinear generalisations of the linear concept of
the LOPs. In the work carried out in Refs [148] and [149], the integral viscous dissipation was preferred,
defined by :

D = 1 +
1

Re

1

2LxLz

∫
V

∂ui
∂xj

∂ui
∂xj

dxdydz, (2.20)

where u still denotes the perturbation velocity field. The objective function maximised by the constrained
optimisation algorithm is the total time-averaged dissipation

J =
1

T

∫ T

0

D(t)dt. (2.21)

A trajectory reaching the turbulent state at finite time T is expected to display a value of J larger than
for a laminarising trajectory. The main advantage of J over the energy gain G is that J contains an
average contribution of positive D(t) at all times, and saturates for large T in a monotonous way. In
contrast to G(t), it neither undergoes rapid variations nor pronounced overshoots when approaching the
edge. Besides, maximising J amounts to maximising the area between 0 and D(t) > 0 in the interval
[0 : T ]. This implies for ε0 > Ec that the algorithm seeks the trajectory reaching high dissipation in the
fastest way. It was verified visually in [150] that the optimisation does not appear to depend on the choice
of functional.

The optimisation algorithm relies on two steps : first an energy shell characterised by E0>0 is selected,
on which the adjoint optimisation is performed together with the additional constraint E = ε0 (for the
definition of the energy used in Ref. [149] E does no feature the factor 1/vol(V ) any longer). Then E0

is varied (as in the bisection process yet with less accuracy) until the maximal value of J displays an
change of trend, indicating that turbulence is no longer reached for ε0 low enough, as in figure 2.26 from
the actual data.
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The adjoint optimisation algorithm can now be furtively described. It looks iteratively for stationary
points of the Lagrange functional , where optimality is fulfilled with respect to the various design variables.
The Lagrangian functional L is defined by

L(X) = J (ũ)− � v, ∂tu−NS(u, p)�
−� q,∇ · u� −λ(ε(ũ)− ε0). (2.22)

(the product� ·, · � denotes here the spatial scalar product < ·, · > together with time integration). The
direct variables in the optimisation are contained in a large vector ũ containing the perturbation velocity
field u(x, t) and the pressure field p(x, t), and is considered in a suitable space of functions defined on
V × [0 : T ]. The dynamical constraints to be satisfied include the governing equations and the energy
shell constraint :

i) ∂tu = NS(u, p) at all times (the momentum equation)

ii) ∇ · u = 0 at all times (the incompressibility equation),

iii) E = ε0 at t = 0 (the energy shell constraint).

Differentiating L with respect to the adjoint variables v, q and λ leads to the above constraints. Dif-
ferentiating L leads however to a new set of equations. It includes the adjoint Navier–Stokes equations
that are linear in v and need to be integrated backwards in time, as well as compatibility conditions to
close the loop. The algorithm is convergent for a given value of ε0.

Figure 2.27 – Minimal seed for plane Couette flow at Re = 2000. Iso-levels of streamwise perturbation
velocity. The laminar base flow profile is sketched for visual guidance.

The minimal seed M obtained in pCf for Re = 2000 is displayed in figure 2.27. The checkerboard
structure typical of oblique waves can be recognised, again with a non-perfect symmetry. However it is
now localised spatially and surrounded by laminar flow. It is indeed intuitive that, since energy is now an
extensive quantity, a localised velocity field represents a better candidate than a non-localised one for an
"efficient" transition process. The optimal transition path starting from a small neighbourhood of M is
now displayed in figure 2.28, again by using a sequence of still visualisations of the perturbation velocity
field in a plane y = −0.5. The early times prior to t = 80 feature evidence for the Orr mechanism but are
not analysed here. Between t = 80 and t ≈ 138 a sinuous streaky structure is transiently visited, identified
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with the edge state (S in the sketch of figure 2.22). A rapid instability of the streaks manifests itself in
the form of intense small-scale wall-normal motions at the tips of the streaks. Their breakdown produces
even smaller-scale turbulent fluctuations that form a front aligned with the streamwise direction. The
front moves in the spanwise direction until the whole flow becomes and remains turbulent.

2.3.4 Dependence on Re

The dependence of the threshold energy Ec versus Re is displayed in figure 2.29. The emerging power-
law scaling has an exponent of γ ≈ 2.6, larger than the exponent γ = 2 obtained for oblique waves. It
is tempting to interpret this steeper exponent as the same exponent as for oblique waves, with a Re-
dependent correction associated with a spatial localisation that gets more pronounced as Re is increased.
This requires however a deeper study involving most likely larger computational domains. The present
results highlight the importance of large computational domains in the presence of spatially localised dy-
namics. It features in passing evidence that the edge state, which is dynamically visited along the optimal
transition path, displays itself spatial localisation. The localisation of edge states forms the subject of the
next section.

2.4 Spatial localisation of edge states

2.4.1 Motivation

There are two main reasons to revisit all the previous theory of edge states in the absence of finite-size
effects. The first one is unphysical : it is the limitation inherent to the choice of periodic computational
domains. Many of the bifurcations occuring with respect to the computational box size, or the Reynolds
number, appear as a by-product of the periodic boundary conditions chosen... even though the governing
equations are the true ones from hydrodynamics. The second reason is simply the experimental evidence
that, in a given range of Reynolds numbers, the coherent structures of the turbulent regime are indeed
found to be spatially localised. For instance pipe flow features localised puffs [151] as the only possible
turbulent state when 1800 ≤ Re ≤ 2500 approximately. It makes sense to expect the liminal pertur-
bations leading to puffs to be also spatially localised. An auxiliary motivation is that experimentalists
can be tempted to excite the flow in a localised fashion ; even if no localised turbulent structure sustains
forever in the regime of interest, the transition from localised to delocalised features coherent structures
characterised by laminar-turbulent interfaces. All these reasons have pushed researchers in subcritical
transition to favour larger computational domains (without necessary changing numerical method) in an
effort to reduce the impact of the periodic boundary conditions. As often, this conceptual progress has
been made possible by some technical progress, notably the ever-increasing computational power, and no-
tably by the development and spreading of parallelisation techniques (MPI). Performing edge tracking in
larger domains is only a matter of computing power. The characteristics of the edge tracking algorithm(s)
remain unchanged, and there is no strong reason to consider other observables for the bisection process.
However, we stress that choosing an extensive quantity (e.g. perturbation kinetic energy or cross-flow
energy) is a wiser choice than an intensive one, at least if domain changes are to be carried out. For the
classical bisection described earlier, the choice of the bounds aL and aT can reveal practically crucial
because of the more costly simulations.

To our knowledge the first localised edge states have been computed in pipe flow and shown at the
Newton Institute in September 2008 by three different teams, Marburg together with Barcelona [152] at
the same time as the team in Bristol [153]. The discovery was quickly extended to pCf [154–158] and
later to other flows. The conclusion from all edge tracking computations so far is deceptively simple :
edge states appear localised in each direction provided there is enough space for localisation to proceed,
with no exception. Importantly for what follows, the choice for longer computational domains only makes
spatial localisation possible, but it does not imply it from first principles : the physical reason why a
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Figure 2.28 – Velocity field in the plane py : y = −0.5. uy : colours, (ux, uz) : arrows. Iso-contours of
uy normalised by their maximum, where maxuy = 0.0055 (t=80), 0.0117 (t=110), 0.052 (t=138), 0.1023
(t=142), 0.2329 (t=146), 0.3333 (t=160), 0.3273 (t=176), 0.5473 (t=184).
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Figure 2.29 – Energy threshold Ec vs. Re for Re = 750, 1500, 2000, 3000. The fit 125Re−2.7 is
compared to the fit 4Re−2 obtained for the Oblique Wave scenario for the same computational box (data
from Duguet, Brandt & Larsson (2010)).

given flow state "prefers" to be localised requires a deeper explanation that is still pending and will be
discussed in the conclusions. A few representative examples will be considered below, together with a
description of the associated dynamics, in order both of increasing localisation and complex dynamics.

2.4.2 One-dimensional localisation

Striped edge state in channel flow

We begin with the localised edge state which, although not historically first, hosts the simplest dyna-
mics. It was found and reported recently in three-dimensional computational domains of plane channel
flow with extension in one direction only. The computational domain is a paralleloid, however it is not
trivially aligned with the usual x and z directions of the flow (denoted x′ and z′ in the pedagogical sketch
of figure 2.30). Instead it makes an angle θ with the streamwise direction. This "tilted domain" was first
suggested by Tuckerman & Barkley [159] in order to reproduce numerically, at a cheaper price, the oblique
laminar-turbulent patterns found in experiments of pCf. It was described initially as an extended MFU
domain, the extension being along one dimension only [159]. It was later generalised without difficulty
to simulations of Taylor–Couette flows and plane Poiseuille flows, both known to host oblique turbulent
stripes in well-tuned parameter ranges [160–162]. The classical bisection algorithm has been run using the
channelflow code [163] with the total perturbation energy as the extensive observable and a well-chosen
pair of bounds. The algorithm converged easily towards a constant energy signal, which is the signature
of a TW solution and is displayed in figure 2.31. This TW was converged down to accuracy rmin < 10−12

using the Newton solver included in the channelflow code.

The spatial structure of the solution, shown in figure 2.32a for θ = 45◦ and Re = 720 is the first
property of interest. There is an active core characterised by vortices and streaks. They are approxima-
tely aligned with the physical streamwise direction although a small tilt angle is perceptible. Outside
this zone the flow is streak-free and almost laminar except for the presence of a smooth secondary flow
reconnecting with the laminar flow far enough from the active core. The robustness of the spatial locali-
sation with respect to an increase in domain size has been tested in figure 2.32b by comparing different
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Figure 2.30 – Sketch of tilted periodic domain for pPf.
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Figure 2.31 – bisection Energy Re = 720, domain = 40h× 2h× 10h.
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Figure 2.32 – a) Edge state (several wavelengths concatenated b) Energy e(z) for an edge state Re = 720
for increasing domain sizes. Localisation appears as a robust feature of edge states in large enough
domains.

converged states, computed for different values of the long domain direction Lz, whereas Lx has been
fixed to various values between 2 and 10. Here as in all other shear flows investigated, localisation turns
out robust. The tails of the velocity field are exponential for all components, a result also found valid
in the corresponding localised turbulent regimes [162]. There is another robust feature that distinguishes
however these localised edge states from their turbulent counterparts : localisation of edge states is valid
for all values of Re whereas the turbulent states are only localised in a finite range of Re, bounded by
Recl approximately 2000 in the case of pPf [161].

Another recent discovery worth a deeper investigation concerns the relevance of Waleffe’s SSP to the
present exact states. For small computational domains it is an undisputed fact that Waleffe’s SSP rules
out the dynamics and structures of all exact states [33, 135]. This is justified by the fact that the SSP
itself was deduced from the detailed analysis of the turbulent dynamics in MFUs. As spatial localisation
is added to the picture, the interaction between streaks, rolls and waves predicted theoretically happens
to be violated : as seen in figure 2.32a, the streaks in the active part do not display the streamwise
undulations characteristic of the SSP. They are however not streamwise-independent either since both
streak tips upstream and downstream feature some light tilting (related to the presence of a large-scale
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Figure 2.33 – Bifurcation of TWs as function of Re for different angles.

flow [130]. It is plausible that the feedback of the streak on the streamwise vorticity, the darkest phase in
Waleffe’s picture, is modified in the presence of localisation and does not even feature the streak instabi-
lity phase that precedes it. As a supplementary element for discussion, we can mention that other steady
localised solutions with the oblique property have been recently identified in pCf [164]. They are not edge
states and emerge from modulational instabilities of MFU states. These other new solutions, unlike the
edge states of pPF, do feature streamwise undulations. It is then an open question how many variants of
the SSP can exist in the presence of localisation, and what the implications are as far the relevance of
these solutions to transition is concerned.

Similar TWs have been converged for other values of the angle θ. The range of values of θ for which
TWs have been found widens with increasing Re. Arclength continuation has been applied to the TWs
obtained for all angles, starting from initial states obtained for Re = 720. The structure of the bifurcation
diagram for the TWs is shown in figure 2.33. It is confirmed that for a fixed value of Lx, all TWs emerge
in saddle-node bifurcations at marginally low values of Re. The value ReSN of the lowest saddle-node
bifurcation is less than 400, well below the value of 660 where turbulence can no longer sustain in such
computational domains as well as in experiments [161, 165]. Among the many TW solutions ever identi-
fied in MFUs of pPf, these are the ones appearing at the lowest values of Re We understand that, unless
new solutions are found at even lower Re, the state space of plane Poiseuille restricts to the laminar basin
for Re < ReSN , and gets populated by more and more different unstable TW solutions as Re increases
beyond ReSN . These solutions, together with a myriad of RPO states bifurcating from them [130], are
understood to form the backbone of a chaotic saddle, with a real attractor forming only beyond Re ≥ 660.
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Figure 2.34 – Instantaneous meridian cuts of the axial perturbation vorticity field for edge states of pipe
flow for Re=2000,3000 and 6000 (from top to bottom). The axial dimension has been scaled by a factor
of two and only 25D of the total domain is shown.

Localised edge state in pipe flow

Localised edge state in pipe flow were computed initially in Refs [152] and [153] without any imposed
discrete symmetry. The bisection method in each study is strictly similar to the one used in the corres-
ponding non-localised case. Only the streamwise length of the computational domain was increased, from
e.g. 5D in Refs [105, 106] to 33.51D and 50 to 100D in Refs [152] and [153], respectively. The results
mimic those from the preceding plane Poiseuille case : whatever the value of Re investigated, the edge
state identified is localised axially. For the values of Re in the transitional range, where turbulent puffs
are found (1800 < Re < 2500 approximately), the edge state ressembles its turbulent counterpart, as
shown in figure 2.34(top) for Re = 2000. As Re is increased beyond that range, the edge state stays
axially localised and starts to localise also within the cross-section. As is most evident for Re = 6000,
ultimately the edge state is best described solely as a finite-amplitude near-wall disturbance without any
need to be related to the turbulent puffs of the transitional range. A crucial difference with plane Poi-
seuille lies however in the temporal dynamics : all signals suggest chaotic dynamics. In a direct analogy
with the shorter domains of pipe flow [106], an attempt to stabilise the dynamics by imposing a dis-
crete symmetry R3 was performed in Ref. [153] : the dynamics of the energetic observable stayed erratic
as long as the edge state could be tracked. Fortunately, this attempt was ignored by Avila et al. who,
unaware of this lack of success, tried to impose a discrete R2 and observed convergence to a localised
RPO state [128]. This state is quantitatively very similar to a TW, except for a temporal modulation
of very small amplitude, observable at the downstream tip only [11, 166]. Note that a similar state has
been also observed in a low-resolution bisection in Ref. [153] and initially interpreted as a TW. This state
is displayed at the bottom in figure 2.35a using isolevels of streamwise velocity perturbation, compared
to its corresponding upper-branch state and to a non-symmetric turbulent puff. Several studies of this
RPO state are worth mentioning at this point. The first one is related to the origin of the localisation
property : a path in parameter space was found, from the point of view of bifurcations, that relates the
non-localised travelling waves of former studies to the present RPO state [167]. As far as we know no
localised TW has been found in pipe flow. The second set of results concerns the emergence of complex
behaviour in pipe flow [128, 168]. The scenario for the onset of chaos in pipe flow (all in the context of the
imposed R2 symmetry) follows a route slightly different from the usual cascade of bifurcations leading
from the base flow to the turbulent state. Here the story unfolds not from the base flow, which is linearly
stable, but from the RPO-branch of the edge state. Following down this branch in Re leads classically
to a saddle-node bifurcation at Re = ReSN ≈ 1428. After the fold, increasing Re leads now to a cascade
of supercritical bifurcations from the upper-branch state, also found in the non-localised cases of Refs.
[169] and [170]. The type of cascade seems to depend on the details of the flow case, e.g. torus breakdown
in pipe [128] versus period doubling in [169]. The chaotic attractor born at Re ≈ 1540 is not the end of
the story as in the typical Ruelle–Takens scenarios from textbooks. The chaotic attractor grows in size
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Figure 2.35 – a) from top to bottom : turbulent state (puff), upper-branch and lower-branch RPOs
for pipe flow at Re= (iso-levels of streamwise velocity perturbation. b) bifurcation diagram for the RPO
branch.
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until it touches the stable manifold of the edge state, i.e. the edge manifold. At this point located at
Re = Rebc ≈ 1545 ± 1 a boundary crisis occurs : the attractor turns into a saddle and lifetimes become
finite. Close to the boudary crisis the mean lifetimes scale as (Re−Rebc)−1 and decrease with increasing
Re, before they grow again for yet higher Re [171]. The rest of the story requires even larger domains
and will be detailed in the next chapter.

Summing up the pipe flow case, the edge state is again robustly localised yet with a more complex
dynamics. As with smaller computational domains the edge dynamics is still of relatively low dimension,
so low that a well-chosen restriction to a symmetry subspace (via the imposition of a discrete symmetry)
is enough to stabilise a simple RPO state as the edge state. Again in a perfect analogy with smaller
domains, a detailed bifurcation study of the RPO state (technically unfeasible as such starting from a
chaotic state) reveals the dynamical origin of the chaotic behaviour of the corresponding turbulent state.
Assuming that the localisation of the edge state is understood (e.g. via the amplitude modulation sug-
gested in Ref. [167]), this justifies directly the localisation of the turbulent puffs. Besides, the transient
chaos so often celebrated in pipe flow finds its origin in a boundary crisis of the upper branch state. Such
a scenario starts again with the knowledge of an edge state and relies on the luck of identifying a simple
tractable edge state of TW or RPO type.

Localised edge states in ASBL

The third flow case considered here is the Asymptotic Suction Boundary Layer (ASBL) flow. As for
plane Couette or plane Poiseuille flow, the simulation of ASBL in periodic domains requires the knowledge
of two numerical parameters Lx and Lz, the streamwise and spanwise wavelengths of the computatio-
nal domain, respectively. An additional parameter compared to the other confined planar flows is the
wall-normal extent Ly, although it is expected that the results should not depend on Ly once it is large
enough, because the base flow is uniform at a sufficiently far distance from the wall located at y = 0.
Although this can be considered physically artifical, one-dimension spanwise extension can be enforced
by choosing Lz >> Lx, with the values of Lz varied between 4π and 6π. In a similar vein one could also
choose Lx >> Lz as well as tilted domains as in pPf/pCf, although this has not been considered. The
present edge tracking computations have all been performed for fixed parameters Re = 500 and Lz = 40,
while the parameter Lx has been varied in small steps [131, 172].

Classical edge tracking has been performed using the code SIMSON developed at KTH, with the
cross-flow energy as scalar observable. As for some parameters of pPf (including those in Refs. [98, 99,
173] the energy signal on the edge displays large peak-to-peak variations typical of bursting dynamics. We
stress that, unlike initially believed by Toh & Itano in their 2001 paper [97], the bursts are intrinsic parts
of the edge state and do not belong to its unstable manifold : they do not represent an instability of the
edge state but are part of its dynamics. This implies looser bounds for the bisection and eventually longer
simulations. The long periods of these bursts makes Newton convergence technically impossible even when
the edge state seems to be an RPO. Space-time diagrams typical of converged solutions are represented
in figure 2.36. The first three frames correspond to three different asymptotic dynamics obtained for the
same set of parameters from different initial conidtions. It represents evidence that edge states need not be
uniquely defined. The two first frames correspond to two symmetric counterparts and are a consequence
of the equivariance of the system with respect to z ← −z flips. For the first case, the active core where
the streaks are present shifts to the right (i.e. increasing z) after each burst in a periodic fashion ; for the
second case the shifts occur towards the left (i.e. decreasing z). The third one displays alternate shifts
towards the left and the right, also in a periodic fashion yet with a slightly shorter time period. The
fourth case displayed has been found for a different streamwise wavelength Lx of 4π. It features very
similar shifts in both direction, but the direction of the shifts appears erratic as in a random walk. The
mechanics behind the shifts has been analysed in Ref. [131] and turns out to represent a generalisation
of the scenario found in related MFUs [113], where low-speed and high-speed streaks periodically cross
and exchange roles, therefore appearing as drifting in the spanwise direction.
It was decided to investigate intermediate values of Lx between 4π and 6π to understand the dynamical
origin of the chaotic edge states. Since none of the states can be converged using a rootfinder and because
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Figure 2.36 – Space-time diagrams of cross-flow energy for edge states in wide domains of ASBL [172],
Re = 500, Lz = 400, Lx = 6π except for the last frame where Lx = 4π. The branches for the Left-shifting
and Left-Right-shifting states are represented with red squares and blue circles, respectively. Larger
symbols represent stable (filled) and unstable (empty) states, whereas erratic behaviour is denoted with
smaller symbols.



2.4. Spatial localisation of edge states 69

L
x
/π

E
c
f_

m
a
x
 ×

 1
0

4

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

2

3

4

5

6

Figure 2.37 – Bifurcation diagram for edge states in wide ASBL : cross-flow energy versus Lx [172].

of multistability, several new edge tracking computations had to be performed independently for each new
parameter. This computationally expensive series of edge computations revealed unsuspected complexity.
This is summarized in the incomplete bifurcation diagram of figure 2.37. In this diagram, coloured circles
denote RPOs : blue circles represent the states shifting alternatively left and right, represent red circles
the ones shifting in one direction only. All the other states are chaotic. Some of them feature clear
transient yet recurrent approaches towards one type of periodic state. It was established in Ref. [172]
using first-return maps that chaos emerges in various ways, including type-III intermittency [174]. Such
a complex wealth of dynamical scenario makes it clear that the picture with the edge state as a uniquely
defined saddle point is naive.

It is interesting to investigate the fate of supraliminal perturbations, i.e. initial perturbations that
are close to the edge state and belong to the turbulent basin BT . Formally speaking, this corresponds to
investigating the one-dimensional unstable manifold of the edge state(s). In practice the tracking of an
unstable manifold in high dimension is a delicate task (see e.g. [75, 175]. Fortunately, there are robust
features common to most supraliminar perturbations. When the turbulent state is spatially localised (e.g.
in the transitional range) the transition form the edge state to the turbulent state proceeds as a local
phenomenon. When the turbulent state is not localised, which corresponds to all parameters beyond the
transitional range, the transition proceeds in two stages [152, 153] : an initial rapid phase of local transi-
tion is followed by a slower phase of front propagation where turbulence invades laminar flow around it.
This can also be seen in figures 2.28 in pCf as well as in figure 2.38 in ASBL. In a few exotic situations,
the transition process can involve both localisation on the way towards the edge state and delocalisa-
tion on the way from the edge state. This is the case for instance for supraliminal noisy perturbations [153].
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2.4.3 Two-dimensional localisation

2.4.4 plane Couette flow

The investigation of the one-dimensional localisation of edge states might seem natural for pipe flow,
whose geometry has an "effective dimension" of one. Its relevance is a priori less convincing for planar
flows, as attested by the dependence of the results on the parameter Lx. This had lead some researchers to
denigrate edge states as "spurious" solutions. This is erroneous since edge states are true solutions of the
Navier–Stokes equations. Nevertheless the physical relevance of formerly found solutions to experiments
is, because of the of periodic boundary conditions involved in their computation, debatable. A truly ro-
bust picture of edge states exists however (in the sense that it does not depend on any input parameter).
The generalisation from one-dimensional to two-dimensional localisation of edge states is theoretically
straightforward. It is robustly attested in all shear flows provided the two planar dimensions (say x and
z) present a sufficient extension with respect to the wall-normal direction y. The real practical challenge
is the computational cost of the many individual simulations and the difficulty to reach an asymptotic
state. This high cost explains why so few full computations of localised edge states have been performed
to date, let alone Newton convergence and/or parametric investigations.

The first instance of such computations can be found in Ref. [154] as well as [157] for plane Couette
flow. The largest dimensions considered for the computational domain in Ref. [154] are Lx = 400 and Lz =
100 in units of the half-gap h. These dimensions are large enough to warrant unambiguous localisation
of the velocity field in x and z as appreciable in figure 2.39 for Re = 375. Halving the box dimensions
also yields a state describable as localised, with an active core comparable in terms of dimensions : this
suggests that the localisation is, again, a robust feature independently of the box size for large enough
domains. The dimensions Lx = 400 and Lz = 100 can be compared to those of the computational box
for the MFU, for instance Lx = 5.51 and Lz = 2.51 in Ref. [24], for which no localisation is detectable
at least for Re ≈ 400. No physical rule of thumb has emerged so far to distinguish between localised and
non-localised cases, but evidence suggest that Lx,z > 50 is sufficient in practice. From a dynamical point
of view the edge state in pCf appears chaotic as judged from global energy signals. Some efforts have been
undertaken to provide one with a description of the edge trajectory in terms of finite-amplitude solutions.
Although transient approaches to apparent steady states have been noted, no convergence towards an
exact solution was established. Only later did J.F. Gibson and E. Brand identify a steady state solution
with a localised structure similar to that of the edge state in Ref. [154], however that solution turned out
neither to be an edge state nor to even lie on the edge manifold. More work is required to have a perfectly
deterministic picture of the dynamics on the edge.

Moving towards higher Re suggests that edge states get narrower in z but also longer in x, see fi-
gure 2.39 for Re = 1000. This suggests that higher Re require even longer numerical domains. At this
point it is worth remembering that Vortex Wave interaction theory predicts the emergence as Re → ∞
of a critical layer whose thickness scales as (αRe)−

1
3 [108]. The emergence of such a singular layer is

confirmed in MFUs where the streamwise wavelength α remains O(1), however in the present computa-
tions with localisation there are several wavelengths α contributing. Choosing the largest wavelength as
α = 2π/Lx ∼ Re−1, the thickness of a possible critical layer is (αRe)−

1
3 = O(1) and no critical layer

needs to be considered [176]. Choosing α representative of the O(1) wavelengths found in the active region
makes the "local" occurence of critical layers possible. This is the case for instance for the localised edge
state found in pipe flow at Re = 6, 000 and 10, 000 (resp. Figs 9 and 10 in Ref. [153]).

2.4.5 ASBL

An analogous edge tracking computation has been considered in ASBL, seen as a model for a boundary
layer flow without the technical complications due to spatial development [115]. No additional discrete
symmetry was imposed. The present computation made use of a PRACE allocation of several million
CPU hours exclusively dedicated to this project. Unlike the previous pCf computation, the bisection was
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Figure 2.39 – Localised edge states in pCf for Re =375 and 1000 from [154]
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Figure 2.40 – Snapshot of the localised edge in ASBL for Re = 500. Isolevels of streamwise velocity
perturbation (red/blue) with isolevels of λ2 < 0 (grey).

pushed as far as possible, with the hope that if a simple relative attractor exists it will not be missed.
No simple state was eventually found for the parameters tested (Re = 500 notably) therefore the edge
trajectory is claimed by default to be chaotic. The geometric parameters are Lx = 800 and Lz = 100,
whereas Ly is kept to 15. It has been verified that the spatial structure of the edge state (shown in figure
2.40) changes little for Re = 500 when these dimensions vary.
A two-dimensional space-time diagram (x, t) of the cross-flow energy was constructed in a manner si-
milar to those of figure 2.36, with the explicit aim of performing qualitative comparisons. This diagram,
displayed in figure 2.41 happens to look surprisingly close to the chaotic edge state found for Lx = 4π
in figure 2.36d : the main structure is localised in z over a support of approximately 20 units of δ∗0 . It
drifts alternately towards z > 0 or z < 0 with changes of direction over timescales of O(103δ∗0/U∞). Each
change in the numbers of active streaks correlates well with a burst of the cross-flow energy. Such changes
of direction were already found to be typical of ASBL in smaller computational domains [131, 172]. Here
they similarly involve the crossing of low- and high-speed streaks preliminary to energy bursts. Howe-
ver these bursts and drifts were found neither in large-domain pCf nor in MFU of pCf. The qualitative
conclusion from this global comparison is speculative but optimistic : edge states in large computational
domains are invariably localised and are robust coherent structures, however they keep dynamically the
same main features as their MFU counterparts. This is true with respect to bursts and drifts as well as
for critical layers, local wavelength selection etc... More computations would be needed to confirm this
speculation. If confirmed, this implies that the investigation of edge states in spatially correlated systems,
presents a physical interest despite their lack of robustness with respect to geometric parameters. Instead
it can be used as a cheaper laboratory to understand the more complex yet robust dynamics of localised
edge states for the same flows.

The last crucial property of edge states concerns their relevance to the transition process. It is un-
derstood that, by definition, only perturbations to the laminar flow with a very specific amplitude are
attracted by the edge state. For trajectories initiated very close to the minimal seed, transient visits to the
edge state were detected and even exploited to find new exact solutions [112]. This is not surprising given
the saddle nature of the edge state but that property is not expected to hold beyond its linear neighbou-
rhood. However, does the edge state play a role of any importance for generic initial conditions, in the
absence of any bisection process ? This has been tested by focussing on a large domain of ASBL where
different instances of noisy velocity fields (with different amplitudes) were imposed as initial conditions
at t = 0 [115]. Some initial conditions lead to an incipient turbulent spot and some lead to laminarisation.
However all trajectories, when visualised in the state portrait of figure 2.42, displayed a clear transient
approach to the same state space region where the edge state is located, similar to the approach to a
simple hyperbolic saddle point. A state portrait based on energetic quantities is not a rigorous projection
and these results should only be seen as an indication that the edge state plays the role of an unavoidable
toll station in a high-dimensional state space.
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Figure 2.41 – Space-time diagram for the localised edge in ASBL at R = 500. The dynamics is qualita-
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Figure 2.42 – State portrait of ASBL during transition initiated by 20 different noisy initial conditions.
[115]. Edge state : red solid line. The axis denote the r.m.s. averages of the wall-normal and spanwise
velocity components, normalised by the domain size in order to account for the different computational
domains used.
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2.5 Conclusions
This section has mainly focused on the concept of edge states and its development in the context of

parallel shear flows in the last 10 years. Edge states correspond to relative attractors for the dynamics of
edge trajectories, the trajectories constrained to lie on the laminar-boundary state space boundary Σ [97,
177]. Edge states are not unique and do not necessarily host simple dynamics, instead they can support
low-dimensional temporal chaos [106]. Chaotic edge states appear even as the generic rule rather than
as an exception. The computational algorithms used to find them rely usually on the classical bisection
based on energy bounds, although new variants based on Lagrangian concepts and/or feedback control
can be envisioned. The principal success in the exploitation of edge states lies in their property of spatial
localisation independent on the physical parameters. The localisation property emerges in practice as
soon as the computational domain is large enough [154]. This makes edge states physically robust objects
since their existence and dynamics no longer depends on numerical parameters such as the computatio-
nal domain size or the numerical discretisation. The same robustness concept applies as well to minimal
states, the initial perturbations of smallest energy likely to trigger actual transition [178]. In some sense,
edge states and minimal states are hence the most relevant instance, if not the only one, of application
of dynamical systems theory to shear flows. Other concepts such as e.g. periodic orbits have so far only
been identified in MFUs. They are therefore intimately connected to periodic boundary conditions and
the property of MFUs to capture only spatially correlated dynamics. There is still hope to construct
a fully robust dynamical systems theory for localised turbulent states, whose simulation does not rely
on a specific choice of domain size. Turbulent puffs in pipe flow appear as the best candidate for such
a task and encouraging results have appeared recently [75]. At the time where the present conclusions
started to emerge, there was growing evidence that more knowledge on the dynamics of localised states
was required, that the study of transitional shear flows in periodic domains was reaching its limits... but
also that the current numerical facilities has reached the stage of development where they could shed
some light on some open questions. The next chapter is dedicated to the dynamics of localised structures
in transitional shear flows. In particular it explores the recent contribution of large domain numerical
simulations to the study of transitional regimes of shear flow turbulence.
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3.1 Transition as a phase transition

The previous chapter was devoted to the question of the coexistence of the laminar and the turbulent
regimes in state space. The present chapter attacks the question of laminar-turbulent coexistence from
the point of view of their coexistence in physical space. These are two different questions that request
very different angles of attack, different philosophies as well as different methodologies... and lead to
different results. The state space coexistence implies, when dealing with extended systems, the possibility
to achieve different regimes at different places but at a single time. These different "phases" are then
separated by interfaces, whose competition rules the dynamics of the flow. Moreover, it is a well-known
peculiarity of subcritical flows that, in a well chosen range of parameters, the different phases can also
coexist in a sustained fashion. There is a clear analogy with the language used in equilibrium thermody-
namics when dealing with different phases. The general analogy between the laminar-turbulent problem
and the thermodynamics of phase change was probably proposed first by Yves Pomeau in the 1980s [179].
It rapidly developed into a school of thought around people such as P. Manneville, F. Daviaud and many
others. As soon as the different phases are well defined, interpreting the transition from laminar to turbu-
lent as a genuine phase transition becomes paramount. The use of a vocabular imported from the world of
statistical physics becomes very tempting despite many caveats. For instance, should laminar–turbulent
transition correspond to a continuous or a discontinuous phase transition ? And of which order ? Some of
the concepts from equilibrium thermodynamics do not export very well towards the field of dissipative
non-equilibrium physics. Since the laminar phase is defined without any fluctuations, a fruitful analogy
must consider it as an absorbing state, whereas the turbulent state contains its own fluctuations. The
concept of edge corresponds to a third regime that has the property of being unstable and not realizable.
For a phase transition to make sense, a control parameter must be chosen, in general taken to be the
Reynolds number Re under one of its numerous incarnations. The question of which order parameter
to use is more arduous. There is no free energy associated with the Navier–Stokes equations to rely on
to define the type of transition in the spirit of Ehrenfest. Free energies can also be defined as limiting
distributions by using the principle of large deviations but this has not yet been exploited deeply in the
turbulence context, because of limitations in terms of volume of data. Instead it was chosen to use as
order parameter an intensive quantity akin to a density of turbulence, namely a turbulent fraction that
can be estimated from data (also called intermittency factor). An important question that has stirred
the community in the last ten years concerns the universal and the continuous/discontinuous character of
the transition using this formalism. The present chapter mentions these issues, but not only. It does not
only focus on the onset of the turbulent regime but on the full transitional range, where the turbulent
fraction is not necesarily small, but simply finite. Moreover, D. Barkley developed recently a low-order
PDE model for pipe flow. The way he derived the model from phenomenological facts [180] is based on
a constructive criticism of the simple one-component phase transition picture. This criticism invokes the
need for large-scale flows to be included in the picture. The present chapter is an opportunity to investi-
gate large-scale flows, to re-define the concept and to use it for a better understanding of morphogenesis
of laminar–turbulent patterns. This chapter begins with the spatiotemporal description of the transitional
regimes of pipe flow, followed by planar flows. Spatially developing boundary layer flows are treated only
in the next chapter.

3.2 One-dimensional shear flows

We begin with the description of pipe flow, whose effective dimension is one. This makes the phe-
nomenology geometrically simpler to describe. The comparison with laboratory experiments. is also a
priori simpler. By default the forcing protocol corresponds to constant mass flux. We choose hence the
bulk-based Reynolds number Re = UbD/ν as the governing parameter. Laminar pipe flow is linearly
stable for all Re, hence the laminar regime is always a possibility. A relevant bifurcation diagram for
pipe flow should, for simplicity, refer only to regimes observable in the so-called thermodynamic limit of
infinite domains over infinite observation times. It should feature laminar flow only when this is the only
possible regime, otherwise it should indicate the turbulent regime. A sketchy diagram (taken from [181])
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condensing much of the information available ten years ago is displayed in figure 3.1 for pedagogy. It
suggests that only the laminar flow can be observed, sufficiently far down the pipe, provided Re < 2050.
Sustained turbulent states are only observed above this value. Two specific turbulent states exist : the
first is referred to as spatiotemporal intermittency (STI) and features only spatially sparse turbulence.
The other corresponds to the high-Reynolds number regime where turbulence, if seeded locally, expands
continuously. This regime is characterised by expanding slugs. At any location sufficiently far downs-
tream, the flow will eventually become turbulent in a sustained manner, and the turbulent state is locally
indistinguishable from its prediction in periodic computations [180].

Figure 3.1 – Qualitative bifurcation diagram for pipe flow as a function of the Reynolds number Re
(from [181]).

3.2.1 Localised puffs

In its sparest incarnation, the STI regime consists of individual coherent structures called turbu-
lent puffs. Puffs are localised in the streamwise direction and remain coherent over their cross-section
[182].They were already identified in Reynolds’ experiment [183] and described as "flashes", or also as
"streaks" in Ref. [184]. The localisation of turbulent puffs makes them relatively easy to trigger one by
one using localised perturbations, e.g. transverse impulsive jets as in figure 3.2. However, puffs can also
form from other types of upstream perturbations, including permanent ones [185]. The apparent stability
of puffs (seen as unsteady objects) over short times suggests that they are manifestations of a turbulent
equilibrium [151, 186], naively thought to be a metastable one. In fact, and this is one of the main findings
in transition during the years 2000s, individual puffs appear stable only on the timescales typical of short
pipe experiments, but they are never in equilibrium : either they relaminarise after a finite time [62, 63,
187–189], or they proliferate [13, 180, 184, 186, 190]. Observing the instability of a puff is hence only a
matter of time. Despite this property, the ratio between the lifetime of the puffs by the typical timescale of
the turbulent fluctuations inside them is always reported to be very large. It hence makes sense to study
puffs as equilibrium regimes over intermediatly long timescales, and to look for a self-sustaining process
(SSP). The situation was similar in small periodic domains, where Waleffe’s self-sustaining process (SSP)
did not prevent the turbulent state built on a chaotic saddle of relaminarising. However, the SSP of locali-
sed states turns out to differ structurally from that of Waleffe, precisely because of the spatial localisation.

Figure 3.2 – Puff in experimental pipe flow for Re = 1800 visualised by Mearlmaid Pearlessence illumi-
nated by a vertical sheet of light [191]. Flow from left to right.

.
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Figure 3.3 – Puff in numerical pipe flow for Re = 2000 visualised by isolevels of absolute vorticity. Flow
from left to right. From Ref. [192]

.

The total vorticity field inside a meridian plane of a puff is shown in figure 3.3, with the flow from left
to right. The less coherent part corresponding to the ’turbulent’ zone (between x=285 and 320 in units
of the pipe radius) has a well-reported arrowhead structure. The fluctuations closest to the pipe wall are
those located most upstream and are relatively large-scale. Since they are in a zone of low velocity, their
propagation velocity is slower than that of the mean structure. From the point of view of the puff, these
wall structures are "left behind". They correspond to the tails of streaks generated within the turbulent
zone itself. The strongest velocity gradients, also visible in figure 3.3 because of the strong levels of
absolute vorticity, occur at the steep upstream interface between the fluctuations. Since they are located
in a faster zone of the flow, these small-scale structures have a propagation velocity which is positive in
the frame of the puff : these small-scales structures catch up with the puff, thereby contributing to its
re-energization. This has led Shimizu & Kida [193] to suggest a simple cyclic SSP to explain the puff’s
long lifetime : the production of small-scale turbulence is the result of the shear instability of the vortex
layer corresponding to the tails of the low-speed streaks (cf figure 3.4). These streaks are the signature
of the lift-up effect due to the vortical activity close to the wall (due to the turbulence), and the loop is
closed. As for periodic domains, it is intuitive that if any of these links fails to occur fast enough, the loop
is broken, the puff fails at sustaining and relaminarises. Note that this SSP is not two-dimensional since
it involves the azimuthal direction, without which there is no transverse modulation and no low-speed
streak. This cyclic mechanism differs effectively from that of Waleffe [30] : the spatial localisation of
the fluctuations is crucial to ensure enough shear upstream from the puff and to give rise to the shear
instability (labelled for simplicity "KH" like the Kelvin-Helmholtz instability). This difference has not
yet been much emphasized. Note that it is consistent with the PDE models suggested by Barkley [180,
194]. In the deterministic part of these models, localised states exist at values of the Reynolds number
smaller than those where the homogeneous steady states bifurcate. Necessarily such localised states need
a specific mechanism to sustain themselves against viscous dissipation as well.

3.2.2 Turbulence proliferation
Puff splitting

Since the natural organisation of the turbulent regime at low Re is precisely a series of localised puffs,
it makes sense to investigate the proliferation phenomenon by starting from a single turbulent puff first.
Unlike Fourier modes and other delocalised initial conditions, choosing a localised initial condition has
the important advantage of being experimentally reproducible. There is a deeper justification to this
choice. As shown in the previous chapter, edge states, which are invariant sets of the system, possess the
localisation property as soon as they are computed in large enough domains (or, in other words, when
they are computed in the absence of finite-size effects). Minimal states also share this property. These
special perturbations are well defined mathematically ; they are not rigorously unique but do not rely on
a long list of parameters. In addition they are, by construction, robust to domain changes. Initialising
the system at initial time with such perturbations is a consistent, non-parametric way to excite the flow
with only little perturbation energy. For pipe flow the choice to start from the edge state was considered
natural for instance in order to excite slugs in Refs [152] and [153], whereas localised minimal seeds were
considered in Ref. [195].
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Figure 3.4 – Sketch of the Self-Sustaining Process for localised states in pipe flow (taken from Ref. [193])
.

The mechanisms of proliferation are relatively well described qualitatively in the early pipe experi-
ments of Lindgren [184]. Their quantification in the immediate neighbourhood of the critical point can be
found in Ref. [13]. In this regime turbulence proliferation corresponds qualitatively to the "splitting" of
individual puffs, or rather to their duplication or self-replication (in the sense that the turbulent fraction
is supposed to increase), if we are to borrow vocabulary from biology and pattern formation [196].

Figure 3.5 – Mean lifetimes and splitting times versus Re in pipe flow. Taken from [197].
.

In this plot (reproduced in figure 3.5 in double log data following Ref. [197]) the mean lifetime and
the mean splitting time are plotted versus the Reynolds number. The mean lifetime increases super-
exponentially with Re while the mean splitting time decreases also in a super-exponential manner. Both
mean values cross at a given value of Re where the probability to decay balances exactly that of splitting.
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Above this value of Re, turbulence spreads statistically. This single plot, beyond the impressive statistical
database needed to achieve it, represents a real conceptual progress since it offers at last, after almost
130 years of investigation, a rigorous definition of the critical point for pipe flow.

The dynamics of the splitting process [192] is shown as a still movie in figure 3.6. The representation
makes use of r ≈ 0.8 surfaces, where fewer small-scale fluctuations are present and where the streaks
dynamics is particularly clear. The initial puff fluctuates in length with some vorticity intermittently
shed downstream at a fast pace (comparable to the turn-over time O(D/U)). The splitting process pro-
ceeds in several steps and is successful only if all steps have occurred in a fast enough sequence. First
a low-speed streak undergoes a statistically atypical elongation in the downstream direction (1st to 5th
frame) considered to be a rare event. Then the associated flow destabilises downstream. This gives rise
to a new puff a distance of roughly 40 radii downstream of the initial puff (9th frame). Depending on the
quantity chosen, it is possible to detect that the puff grows in length before effectively splitting into two
turbulent parts. Whether the puff first elongates and then splits, or first splits and only later nucleates a
new puff, is not entirely clear and deserves more investigation. The link with extreme value theory and
Gumbel distributions [198], like for the relaminarisation process [199], deserves as well a deeper look.

What makes the description of the STI regime relatively simple in the approximate range Re ∈ (1800 :
2350) is, beyond the one-dimensional geometry inherent to the pipe set-up, the quantized nature of the
proliferation rules themselves. Each puff yields, at the next instant, either the same puff, two puffs, or
no puff at all. This set of probabilistic rules lends itself very well to a description in terms of cellular
automata, known in the presence of an absorbing state to reproduce well STI dynamics [200]. For slightly
larger values of Re however, i.e. from 2350 to approximately 2700, an emerging trend competes with the
quantized dynamics : continuous expansion. For Re ≥ 2700, most expansion events can be described as
continuous.

Continuous expansion

Although laminar-like holes and interrupted growth sequences can still be found as rare events [201],
the flow tends to a uniformly turbulent flow as time increases. It is tempting to try to define a second
critical value of Re around 2700 but this is not as effective as in the case of the first critical point.
Moxey & Barkley [12] have for instance defined an intermittent factor γ (otherwise called "turbulent
fraction" in other flows) by thresholding the local perturbation kinetic energy. In principle one would
wish to define the second critical point at the value of Re where γ reaches 100%. The dependence on
the threshold does not make this definition very accurate yet, although it is again consistent with a
transition from STI to full-fledged turbulence at around Re ≈ 2600 − 2700. Using the second moment
of the distribution of laminar lengths is another option used by the same authors, with similar conclusions.

The hydrodynamic mechanisms responsible for the elongation of a puff (i.e. in this regime a slug)
are not clear as of now. As pointed out in Ref. [192], most dynamical events of importance take place
at the leading edge. They are related to the production and the fast propagation downstream of vortical
disturbances : when the fluctuations born upstream (whatever their origin) overtake the puff before any
decay, this results in a temporary elongation of the puff. The same mechanism can well occur for an
already well elongated slug. This can be labelled leading edge growth since the presence of the trailing
edge does not seem crucial as long as there is a turbulence production mechanism.

Two different variants of leading edge growth have been identified qualitatively in the space-time
diagrams from Ref. [153] : for Re = 3000 for instance, there is no production of turbulent kinetic energy
at the downstream front (only at the upstream one), the leading edge can be described as diffusive as for
puffs at lower Re. For Re = 6000 in turn, there is strong production of turbulent kinetic energy at the
downstream front, as visualised by the vigorous small-scale vorticity present near the wall. The existence
of these two types of leading edge fronts have later been confirmed, first in the Barkley model [180] then
in DNS [202]. They have been labelled respectively "weak" and "strong" fronts. The transition from weak
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to strong fronts in terms of probabilities is gradual as Re increases, with only strong fronts selected at
high Re.

Although this has been considerably less investigated, an additional mechanism for slug elongation
at the trailing edge has also been reported in Ref. [153]. It can be labelled by analogy "trailing edge
growth" since it requires a trailing edge but, apparently, no leading edge. It is illustrated in figure 3.7
for Re = 4500. This mechanism is a direct extension of the SSP of Shimizu & Kida to the higher-Re
regime, outside the standard puff regime. Once the vortex layer upstream has shed Kelvin-Helmholtz
vortices in what seems like a standard three-dimensional shear instability, these vortices propagate with
a positive velocity downstream. The trailing edge growth mechanism relies on the idea that the value of
the streamwise advection velocity obeys a non-trivial distribution. While the fastest vortical disturbances
travel fast enough to enter the turbulent zone, the slowest ones do not manage to catch up with the puff
and are left behind it as it propagates. As a consequence there are remains of turbulent fluctuations just
upstream of the turbulent zone. This possibly nucleates new turbulence that forms a new trailing edge
interface, in a mechanism of growth by aggregation.
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Figure 3.6 – Sequence of events leading to puff splitting in numerical pipe flow for Re = 2300 visualised
by isolevels of absolute vorticity at r ≈ 0.8 at a frame velocity equal to the bulk speed. Flow from left to
right. [192].

.
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Figure 3.7 – Sequence of events leading to trailing edge growth of slugs in numerical pipe flow for
Re = 4500 visualised by isolevels of absolute vorticity. Flow from left to right. Taken from Ref. [153].
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3.3 Two-dimensional shear flows

3.3.1 Experimental approach

The structuration of the transitional regimes is notoriously more challenging when the effective di-
mension is two rather than one. This includes all flows with two neutral directions, be they planar or
not. The first historical mention of laminar-turbulent patterning occured, as often, in an experimental
investigation ofTaylor-Couette flow. It appeared first in conference proceedings [203] and later as a part of
a long article in which D. Coles [204] describes the many regimes of Taylor-Couette flow. A photograph
from the experimental campaign is included here in figure 3.8, where a simple turbulent helix can be
recognised amidst the flow. It was also mentioned before publication in the lecture notes of R. Feynman
[205]. This special flow case was baptized with humour "barber-pole turbulence" or, for geometrical rea-
sons not yet understood, "spiral turbulence". In this thesis, the wording ’oblique stripe pattern’ will be
preferred, with the convention that ’oblique’ refers to a non-zero angle with respect to the mean (stream-
wise) flow direction. At the time it was not clear whether this coherent structure, obtained when the
two cylinders are nearly exactly counter-rotating, was a consequence of the end walls or not, or whether
several wavelengths could be captured at once. Further experiments with different aspect ratios [206–209]
and numerics [210, 211] have eversince provided ample evidence that the helical-shaped turbulence is an
intrinsic regime of the flow and exists also in the presence of periodic boundary conditions.

Figure 3.8 – Experiments by D. Coles [204].

There are some clear advantages yet also difficulties associated with the Taylor-Couette configuration
that explain the frequent choice for plane Couette flow as a decent alternative. One of the undispu-
ted advantages is the closed geometry. Difficulties include the fact that exact counter-rotation leads to
laminar-turbulent patterns only in the limit η → 1, where η is the radius ratio. Since a set-up with
η ≈ 1 is difficult to engineer accurately, this implies a specific tuning for the angular velocities of the
cylinder and a complicated parametric dependence. Beyond the engineering issues, having non-equal an-
gular velocities implies a non-zero flow rate and hence advection of the patterns. Also, for η far from 1,
the natural azimuthal periodicity strongly influences the wavelength selection. This is at odds with the
initial motivation of investigating two-dimensional patterns in the absence of finite-size effects. All these
reasons combined together lead to the choice of plane Couette flow as a simpler candidate for the study
of subcritical transition. Experimentally speaking, plane Couette flow with zero mass flux is difficult to
achieve. Since the experiments of Tillmark [212] and Daviaud [213] all pCf apparatuses are similar and
follow the sketch in figure 3.9. For technical reasons, the working fluid must be a liquid and the two walls
must consist of a single flexible belt guided by two co-rotating cylinders. Most of the theoretical progress
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of the 1990s has been achieved using the apparatus at CEA Saclay, notably in the experimental studies
of F. Daviaud [213], J. Hegseth [214], O. Dauchot [215, 216], S. Bottin [43, 65, 217], A. Prigent [209, 218,
219]), and later R. Monchaux at ENSTA [220–223].

Figure 3.9 – Sketch of experimental pCf apparatus, taken from Ref. [223].

The transitional range of pCf, parametrised by the Reynolds number Re = Uwh/ν based on the
half-gap h and the velocity of the walls ±Uw, does not appear in experiments to depend quantitati-
vely on the dimensions of the apparatus or of the numerical domain. Its bounds lie within the interval
Re ∈ (280 : 410). Meanwhile turbulence seems sustained statistically above Re = 325 [43, 65, 66, 217,
224, 225]. However, there are differences. The domain used in S. Bottin’s experiments [217] has dimen-
sions Lx × Lz = 35× 190, expressed in units of the half-gap h. The STI regime has been found and well
described, but it features no order, only laminar and turbulent patches without a clear organisation. The
set-up used by A. Prigent has dimensions Lx × Lz = 340 × 770 in units of h. The upper transitional
range, for Re ≥ 340 at least, is much more ordered than in the smaller set-up. It is shown in figure 3.10
and can be qualified as the patterning range. The range of values of Re below it, that includes the critcial
point around Re = 325, is again less ordered. Understanding how the transitional range is structured for
diverging domain sizes and observation times ("in the thermodynamic limit") has motivated the use of
direct numerical simulation for pCf.

A conceptually simpler flow case is plane Poiseuille flow (pPf), especially for experimentalists, since
in contrast with pCf it only features rigid static walls. Like pipe flow, it possesses a non-zero flow rate
in the laboratory frame. This issue implies that long observation times require long channels, with a
special emphasis on the technically demanding plate parallelism. Transitional plane Poiseuille flow had
remained a curiosity in the 2000s and until very recently, only tackled numerically by T. Tsukahara and
co-authors and later experimentally [226], and thought to be a simple generalisation of pCf. It turned
out later that the two flows have subtle differences when it comes to pattern formation and the existence
of a critical point. There was however a recent explosion in the number of experimental studies of the
transitional range of pPf [165, 227–230], backed by associated numerical studies [14, 161, 162, 231–234].
Both pressure-driven and mass-driven pPf have been considered depending on the authors, implying ei-
ther Reτ or Recl as the genuine governing parameter. We note as well emerging studies in a companion
flow, namely zero mass flux plane Couette-Poiseuille flow [235, 236].

3.3.2 Numerical approach
Theoretical efforts to understand the organisation of these shear flows in the transitional ranges are

not many. The spatial structure of the turbulent "spirals" was qualititatively understood in the early
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Figure 3.10 – Adiabatic descent in plane Couette flow, Experiments by A. Prigent [224]

works of Coles [203], athough it is not clear that these works were well recognised in their time. Pomeau
and Hayot [237] attempted to explain the presence of laminar gaps in Taylor-Couette experiments from
the feedback by the pressure forces, whose consequence is to halt the progression of the turbulent inter-
face. Hegseth [214] has written about the importance of the spanwise vorticity in the formation of the
intermittent state. The numerical work of Tuckerman & Barkley [159, 161, 238] has been carried out
almost exclusively in oblique tilted domains. Laminar-turbulent patterns emerge in the turbulent regime
without difficulty provided the dimensions of the domain are large enough. The range of values of Re in
which they are found is compatible with experiments. These studies lead to a good understanding of the
structuration of the mean flow. The main drawback is that the angle and the wavelength of the patterns
are imposed input parameters.

In parallel a series of PDE models, where most of the modelling hypotheses concern the wall-normal
structuration, have been developed over two decades by P. Manneville in the hope to reproduce laminar-
turbulent patterns at a cheaper computational cost [239–241]. It was eventually confirmed that this
approach is qualitatively valid provided the reduction in the wall-normal direction is not too severe [241].
The resulting computational model [242] does not lend itself easily to analytical predictions, but can be
used as a low-order proxy of generic shear flows. The cheaper cost allows one, rather than to simply
compute faster, to reach domain sizes unavailable by DNS and to eventually conclude about the conti-
nuous/discontinuous character of the transition [243]. This is detailed in Section 4.4.

In the context of the 2000s, although puffs in pipe flow had been properly reproduced numerically,
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Figure 3.11 – Numerical simulation of laminar-turbulent patterns in pCf by L.S. Tuckerman and D.
Barkley [159] perfomed in a tilted domain (2005). Several copies concatenated together displayed in
the usual streamwise-spanwise coordinates. Instantaneous perturbation kinetic energy shown in the mid-
plane. Domain angle : 24◦, original dimensions 10h× 2h× 40h.

a proper numerical simulation of the transitional laminar-turbulent patterns of pCf or TCf was still
lacking. The simulations in a tilted slender domain of Tuckerman and Barkley [159] capture the long-
wavelength modulation of turbulence flow with an imposed angle. The qualitative match with experiments
is however not fully satisfying. For instance the signed orientation of the turbulent stripes observed in
Prigent’s experiments [224] can by construction not be reproduced.

plane Couette flow

Owing to the computational power of the machines available at KTH Stockholm, numerical simula-
tions in a domain with Lx × Lz = 800 × 356 (still in units of h) were performed over observation times
ranging from 2 × 103 to 2 × 104 h/Uw. The simulation is based on the spectral code SIMSON which
assumes Fourier modes in x and z, i.e. periodic boundary conditions in x and z. For 310 ≤ Re ≤ 410, for
any initial condition (spot, edge state, noise, turbulent field from another value of Re) the flow evolves
towards a state of laminar-turbulent coexistence, with interfaces always oblique with respect to the mean
flow. The instances where the interface is locally not oblique all result in rapid relaminarisation or in a
rapid evolution of the flow, suggesting that non-oblique interfaces are simply unstable. The development
of a turbulent pattern from a noisy initial condition is documented in figure 3.12 for Re = 350. The
noisy flow field was selected because it allows for a faster convergence to the final turbulent flow field.
The early receptivity stage is well visible in the animated plots : streaks emerge rapidly from the noise
at every location due to the lift-up effect. After ≈ 100 − 200 time units the streaks have decayed in
amplitude everywhere, except at a few random locations where streak breakdown occurs : this is the
stage of spot nucleation. The third phase is slower and corresponds to front propagation : the spots grow,
usually in an oblique fashion, split, reconnect, merge... until a statistically steady pattern with weakly
varying turbulent fraction settles. We note in passing that the high resolution typical of spectral methods
is comparable to the spatial resolution achievable nowadays in experimental PIV. The comparison of the
streamwise velocity field from DNS (figure 3.12c) vs. experiments (figure 3.13) is excellent and leaves no
doubt that the governing Navier-Stokes equations are well adapted to the hydrodynamic phenomena of
interest.
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Figure 3.12 – Development of a turbulent pattern at Re = 330 starting from a noisy initial condition.
Streamwise velocity field in the mid-plane y = 0 at time t = 200, 1865 and 20, 000.

plane Poiseuille flow

A similar computational series of runs was carried out in plane Poiseuille (pPf) driven by a fixed
pressure gradient [14]. This time, unlike the protocol followed in pCf, a genuine adiabatic descent was
performed by lowering the governing parameter Reτ in small steps. A computational domain with Lx ×
Lz = 250 × 125 was considered initially (expressed in units of the half-gap h). As Reτ decreased, the
mean spacing between stripes was observed to increase, until for Reτ = 55 it was decided to restart the
process from a noisy initial condition but in a larger domain with Lx ×Lz = 500× 250 in order to avoid
accumulating finite-size effects. Instantaneous representations of the wall shear stress (averaged between
the two walls) is shown in figure 3.14 for Reτ=100,80,60 and finally 40 in figure 3.15. As in pCf an oblique
and irregular stripe pattern is present for all values of Reτ ≤ 90 ; it invariably forms whatever the initial
condition. It is hence interpreted, at least in the upper transitional range, as a modulational instability
of the homogeneous turbulent state [209]. The snapshot at Reτ=40 stands out as all stripes point in the
same direction. This phenomenon was pointed out in Ref. [244] and analysed as a macroscopic bifurcation.
For Reτ ≥ 50 the network of oblique stripes is tight and rigid, both orientations are equally possible and
are in competition at all times. As Reτ is lowered below 50, one of the two orientations gets beaten
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Figure 3.13 – Experimental velocity field (ux, uz) of turbulent stripes in pCf obtained using Particle
Image Velocimetry (2020). From Ref. [223].

in finite time by the other one. As a consequence past a size-dependent transient all stripes propagate
downstream in the same direction and move freely like particles in a gas [165, 245–247]. The existence of
this lower transitional range with a different dynamics [234] has as of yet no equivalent in pCf.
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Figure 3.14 – Pressure-driven pPf for Reτ=100, 80 and 60. Isolevels of the instantaneous wall shear
stress fluctuation τ ′(x, z, t). Domain length Lx = 250h. From Ref. [14].

3.3.3 Bifurcation diagrams

Qualitative diagrams

Qualitative bifurcation diagrams can be deduced from the database obtained earlier. The protocol
chosen to determine these bifurcation diagrams is always the same and is standard in the presence of
hysteresis : the starting point is the featureless regime (no matter how it was found) and the exploration is
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Figure 3.15 – Pressure-driven pPf for Reτ = 40. Isolevels of the instantaneous wall shear stress fluctua-
tion τ ′(x, z, t). Domain length Lx = 500h. From Ref. [14]

carried out by quasi-adiabatically reducing the Reynolds number. The descent is in practice never strictly
adiabatic, and the easiest way is to choose small enough steps in Re with long enough plateaus between
parameter changes. In analogy with figure 3.1 for pipe flow, the qualitative bifurcation diagrams for pCf
and pPf are represented along a unidimensional axis in figure 3.16, respectively top and bottom.

Several comments can be made at this stage. These two flows have in common the presence of an
STI/pattern regime lcoated between the laminar and the turbulent ones. As an order of magnitude the
width of the STI zone occupies one quarter of the value of the critical value Reg. But these two flows
also display clear qualitative differences. The fact that the numbers do not match is secondary and can
be assigned to the historically different definitions of Re (as discussed in Refs [238, 248]). There are also
clear qualitative differences. In pCf the STI zone seems to consist of one part only, whereas in pPf there
is a change of behaviour for Reτ slightly above 50 as pointed out only recently by Shimizu & Manneville
[244] and mentioned on the previous page.

Wavelengths and angles

On a more quantitative basis, as far as pCf is concerned the pattern range lies approximately in the
interval Re ∈ (330 : 410). As far as pressure-driven pPf is concerned, it is restrained to Reτ ∈ (50 : 90).
We see in figure 3.12c that several values of the unsigned angle as well as several values of the wavelengths
coexist within the same snapshot. This should act as a warning : wavelengths and angles might not be
uniquely determined by Re. This is only one of the reasons why angles and wavelengths have not been
much documented so far. Another reason is simply that such statistics have been sufficiently dominated
by finite-size effects.

More recent computational data has been gathered for the patterns of pressure-driven pPf [14]. Wave-
lengths and angles have been extracted using several standard methods from image processing. Stream-
wise/spanwise wavelengths are reported versus Reτ (occasionally denoted ReGτ ) in figure 3.17a, whereas
angles are reported in figure 3.17b and compared with recent available experimental/numerical data.
Despite the good quantitative match, a solid trend emerges : the angle θ gets steeper as Re decreases,
culminating with θ ≈ 45◦ close to the critical point Reτ . Analyzing the wavelengths λx and λz shows
that they both evolve similarly with Re for Reτ ≥ 60. Consequently the ratio λz/λx and the angle
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Figure 3.16 – Qualitative bifurcation diagrams for pCf (top) and pPf (bottom) (from Refs. [248] and
[244], respectively).

θ = arctan λz
λx

stay approximately constant for Reτ ≥ 60. The increase of the angle θ = arctan λz
λx

for
Reτ ≤ 55 is linked to an increase in the wavelength λz for Reτ ≤ 55 that is no longer compensated by an
increase in λx. This suggests yet another possible bifurcation point, that lies strictly between the usual
thresholds Reg and Ret, and more precisely in the interval (55, 60).

Barkley and Tuckerman [238] have suggested, from the streamwise momentum balance expressed
in the laminar zones, one of the rare quantitative formulas of this field as a link between angles and
wavelengths. If θ refers to the angle between the stripes and the streamwise direction, Λ is the wavelength
of the patterns, then

Re sin θ

λ
≈ π, (3.1)

where λ, λx and λz (respectively the wavelength, the streamwise wavelength and the spanwise wavelength)
are connected geometrically via

1

λ2
=

1

λ2
x

+
1

λ2
z

. (3.2)

Eq. (3.1) suggests, consistently with e.g. figure 3.12c, that for fixed Re steeper stripe angles are associated
with sparser turbulence. Statistics gathered from many published papers (as of 2011) have been gathered
in Ref. [249] in an effort to directly verify the validity of Eq. 3.1. They are displayed in figure 3.18. A clear
visual conclusion is as follows : the larger the domain size considered (both experimentally or numerically
speaking), the more valid the formula.

Turbulent fraction

The instantaneous turbulent fraction is simply the percentage of the wall covered on average by
turbulent motion. In line with experimental studies [217], it can be defined using standard thresholding
of appropriate wall quantities. Using for example the wall-normal velocity at the centerplane v = v(y = 0)
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Figure 3.17 – Statistics of (top) : streamwise and spanwise wavelengths denoted respectively lx and lz,
and (bottom) : angle θ with respect to the streamwise direction in pPf, taken from Ref. [14]. Comparison
to angles reported in Refs [233] and [165].

(which vanishes exactly for laminar flow) leads to the instantaneous definition of the turbulent fraction
FT (t) as

FT (t) =

∫
δ(v2(x, z) > a)dxdz∫

dxdz
, (3.3)

while the time-averaged turbulent fraction, an order parameter, is classically defined by

< FT >= lim
T→∞

1

T

∫ T

0

FT (t)dt. (3.4)

Equivalently other definitions can be used, without any clear influence on the results. We begin by des-
cribing the bifurcations of < FT > for pCf. The mean value of FT versus Re, gathered in principle over
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Figure 3.18 – Statistics gathered from many numerical and experimental studies as of 2011, compiled
by [249] together with original caption with references therein.

inifinite times, are reported in figure 3.19, together with the values of FT at intermediate times (cor-
responding to the time of nucleation). We note that the turbulent fraction at intermediate times grows
continuously with Re, indicating that more and more spots get nucleated as Re increases. The values
of < FT >, on the other hand, display a clear discontinuity near Re ≈ 325. This is perfectly consistent
with the experimental results of Bottin et al. [43, 217] who also predicted a discontinuous transition from
measuring < FT > (Re). The discontinuity at large times constrasts with the continuity at intermediate
times. It shows that for Re < 325, nucleated spots shrink and collapse, whereas for Re > 325 a growth
process takes place and the array of initial spots needs to mutate into a proper network of mature turbu-
lent stripes before statistical equilibrium is reached. The good match, both quantitative and qualitative,
between simulation and experiments is only partial : although the diagrams of < FT (Re) > match well,
the oblique stripes from figure 3.12 have no experimental counterpart in Ref. [217] whereas they com-
pare qualitatively well with Prigent’s experimental visualisations. Perhaps more importantly, the match
between computational and experimental results, although encouraging, does not imply that finite-size
effects have been mastered. On the contrary, both studies [66] and [217] suffer from similar limitations
due to finite-size effects.

The analysis of< FT> in pPf is slightly more difficult for several reasons : there is no solid experimental
data for comparison, and there are additional bifurcations. It was chosen to compute < FT > based on
the observable Ev =

∫
v2dy/2. It is illustrated versus Reτ in figure 3.20 for different values of the

thresholding. As for pCf though, the trend is monotonic : < FT > decreases with decreasing Reynolds
number. Consistently with the observations above and in Ref. [244], a bifurcation occurs near Reτ = 50,
visible in all curves via a change of convexity. As already pointed out in Ref. [12], the values of < FT>
depend strongly on the choice of thresholding, despite the lack of strong qualitative difference. The
amplitude of the fluctuations around the mean value of FT increases around Reτ =50 and decreases for
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lower Reynolds numbers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 300  320  340  360  380  400  420

F
T

Re

spot density after nucleation
final time

Figure 3.19 – Turbulent fraction FT as a function of Re in pCf : The dotted (blue) line corresponds to
the value at equilibrium, whereas the full (red) line corresponds to the turbulent fraction at nucleation
time. From [66].

Figure 3.20 – Turbulent fraction FT as a function of Reτ in pPf, based on the observable Ev =
∫
v2dy/2,

with error-bars based on the standard deviation σ(Ev). Different cut-off values have been used, each of
the form < Ev > +ασ(Ev). Same database as Ref. [14]. Courtesy Pavan Kashyap.
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Figure 3.21 – Friction factor Cf vs bulk Reynolds number Rem in plane channel flow [244].

Friction factor

It is also possible to return to the original Moody diagram (also named Fanning for channel flow)
for the mean friction factor Cf = Cf (Re), where by convention Re is understood as the bulk Reynolds
number Reb. We note that Cf can be rewritten as Cf = 2(Reτ/Reb)

2 independently of the chosen pro-
tocol. For pressure-driven pPf, Cf is shown in figure 3.21 taken from Ref. [244]. The laminar branch
Cf ∼ Re−1 as well as the experimental Prandtl law Cf = O(Re−

1
4 ) have been indicated for clarity. Two

regimes intermediate between the laminar and the turbulent one are found. The first regime, in order of
decreasing Re, is the pattern regime with the two competing orientations, in the approximate interval
700 ≤ Rem ≤ 1600, i.e. 50 ≤ Reτ ≤ 90. It is characterised in a first approximation by constant Cf . Note
that, almost 100 years after the determination of the first Moody diagram, this is a new result. Statistics
in smaller domains had not yet revealed this property of constant Cf , which might then be a property of
the thermodynamic limit only. The second regime occurs for Reτ ≤ 50 only, and features a value of Cf
much closer to its laminar counterpart. This is the regime with one dominant orientation, characterised
by finite-length stripes in weak interaction with another [14, 165, 234, 246].

The direct implications of a conserved quantity (here Cf ) are not yet known. Cf = cst implies
mathematically that the variations of Reτ and those of Reb are linked in a linear way. The value of Cf
in the pattern regime seems in a first approximation to be the same for all shear flows and is found to be
very close to 0.01. This number could well be a universal constant of the patterning regime with a weak
case-dependence, analogous in that respect to the von Kármán constant for developed turbulent flows
[250]. Another analogy, certainly naive and incomplete but closer to the realm of phase transitions, is
the (p, v) diagram for a van der Waals mixture [251]. The constitutive law of a van der Waals mixture is
given by (p+ a

v2 )(v− b) = RT . As the volume available to the confined gas is progressively increased, the
transition from liquid to gas proceeds through a plateau in the pressure. The value of the pressure at the
plateau is determined by the equality of the chemical potentials of the two pure phases. Note that the van
der Waals gas is a classical example of thermodynamically isolated system, hence of equilibrium statistics,
in contrast with the present non-equilibrium example of a shear flow. In addition, the phase transition in
a van der Waals mixture is the typical example of first-order phase transition, a concept which does not
have a strict analog in the hydrodynamic case because free energies are not defined. Nevertheless there
is a rich potential to explore from this analogy in terms of nucleation and front propagation [179]. For
instance the notion of Gibbs plateau is intrinsically linked to the existence of a latent heat, and it would
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Figure 3.22 – Thermodynamic (p,v) diagram for a van der Waals mixture.

be interesting to test how far such cross-disciplinary analogies can be pushed. Another example is the
relevance of the concept of unstable edge state to the present picture : is there for instance a robust link
between the unstable branch in the thermodynamic diagram of figure 3.22 and the edge branch ?

3.4 The directed percolation hypothesis

3.4.1 Concept and motivation

As demonstrated earlier and summarised in figure 3.23, the turbulent fraction in pCf seems to un-
dergo a discontinuity at a critical Reynolds number close to 325. This conclusion relies on a comparison
between the experiments of S. Bottin [217] and direct numerical simulation [66]. Are there however any

Figure 3.23 – Turbulent fraction FT as a function of Re : Comparison between the experiments of
S. Bottin [217], direct numerical simulation [66], and theoretical expectation from directed percolation
theory (continuous transitions). Taken from Ref. [252].
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analytical theories to rely on ? Nucleation theory is intrisically a first-order transition theory, and it is a
priori relevant to explain how laminar-turbulent fronts start to move, but its inability to support any sus-
tained laminar-turbulent coexistence makes it poorly adapted. In contrast, the series of experiments and
numerical simulations in the 1990-2000s [43, 63, 188] has highlighted the possibility to have on-site rela-
minarisation at least for localised turbulent structures. Moreover, a few computational works, e.g. Xiong
et al. [233] have reported bifurcation diagrams based on other (intensive) observables, e.g. the product
ReCf in channel flow. Their results suggest a continuous transition for this choice of order parameter ra-
ther than the discontinuous transition put forward until 2010. Looking back in the earlier Taylor-Couette
literature, a few studies actually also suggest results for FT (Re) consistent with continuous rather than
discontinuous transition [208, 253]. In principle, such results become robust in the so-called thermody-
namic limit of infinitely large domains over infinite observation times. The inconsistency between these
results suggest remnant finite-size effects, but how is that possible given the huge domains considered ?
As an illustration, the typical size of a minimal flow unit is O(1) while the largest domains used so far [66,
224] included at least 104 such "subdomains", a priori a large enough number even in the absence of any
reference. The concept of "subdomain" is relatively fuzzy, nevertheless it proves useful when modelling
complex phenomena using cellular automata. This is the ideal size for the correlated sub-systems such
that a network of such connected subsystems behaves like the macroscopic system. B. Hof and co-authors
questioned the relevance of the MFU concept when it comes to determining the ideal size of a sub-system
over which there is a finite probability to relaminarise. They hypothesized correctly that the correct size
of a "sub-unit" for transitional shear flows should correspond more to the natural wavelength of laminar-
turbulent stripes rather than that of minimal flow units. In other words, STI should correspond to the
interaction of neighbouring stripes rather than streaks. Using this point of view, if the turbulent flow
can accomodate an arbitrarily low density, then by definition of "continuity" FT should be continuous
near zero (i.e. in the low-density regime). This is bad news in practice both for experimentalists and
numericists, because it makes the determination of the continuous/discontinuous nature of the transition
even more demanding in terms of domain size. Moreover, at equivalent front propagation speed, larger
domains imply longer transition times too.

More is known if fluctuations are taken into account. Grassberger [254] and Janssen [255] have consi-
dered the case of a system with two states, one with fluctuations (our turbulent phase) and the other
unique and absorbing, i.e. linearly stable and without fluctuations (our laminar phase). Moreover they
have assumed no long-range order, a positive scalar order parameter (the turbulent fraction or the kinetic
energy). In such circumstances when the effective dimension is one (e.g. in pipe flow), the system must
undergo a phase transition which not only is continuous, but belongs to the universality class of directed
percolation. In two or more effective dimensions (as for planar flows) both continuous and discontinuous
phase transitions are possible. Belonging to a universality class is, from a physicist’s point of view, a very
strong property : it brings phenomena from different area of physics together through a set of unifying
scaling relations. Like most critical phenomena, directed percolation is defined by a set of three inde-
pendent critical exponents that depend only on the effective dimension. Suppose that the critical point
is located at the value of the control parameter R = Rc, that ε = R − Rc (possibly including a division
by Rc), that the positive scalar order parameter is denoted ρ and its ergodic average < ρ >. We denote
also by P (l > L) and P (t > T ) respectively the cumulative probability distributions of finding a laminar
subdomain of size l larger than a given L, or of duration t larger than a given T . Critical phenomena are
characterised by the following scaling relations [256, 257]

ρ(ε = 0, t) ∼ t−α (3.5)

< ρ(ε) >∼ εβ (3.6)

P (l > L) ∼ L−µ⊥ , (3.7)

P (t > T ) ∼ T−µ‖ . (3.8)
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Equation (3.5) is valid at ε = 0 only, it actually allows one in practice to locate Rc and hence to define
ε = R−Rc. Equation 3.6 expresses the continuity of the transition. Equations 3.7 and 3.8 are related to
the distribution of large laminar gaps both in space and in time. The values of the critical exponents α, β,
µ⊥ and µ‖ in one and two dimensions are respectively (within 3 digits of accuracy) 0.159, 0.276, 1.784 and
1.84 in 1D, 0.45, 0.583, 1.204 and 1.549 in 2D [258]. Genuine experimental evidence for systems behaving
in this way is scarce, mainly due to the eternal limitations by finite-size effects. Physical systems closest
to achieving such a critical scaling include for instance one-dimensional thermal convection [259], and in
two dimensions electroconvection in nematics [258]. In transitional shear flows, although that idea had
been around since Pomeau’s 1986 article [179], convincing evidence for directed percolation (DP) at the
onset of the turbulent regime was lacking until the work of Lemoult et al. [225] in one effective dimension
(based on both experiments and numerics).

Figure 3.24 – Space-time diagram from [225]. From left to right : ε < 0 (transient), ε = 0 (critical) and
ε > 0 (sustained STI).

The experimental scaling relations in Ref. [225], corresponding to an axially short Taylor-Couette
set-up with a radius ratio very close to unity, are displayed in figures 3.24 and 3.25. Convincing evidence
for DP in two-dimensional fluid systems, with a complete set of exponents, is so far restricted to the si-
mulations of Chantry in a sinusoidal shear flow [243, 260] (with reduced resolution). Figure 3.27 is taken
from Ref. [243], and it illustrates the domain size necessary to accomodate the relevant STI structures
close to ε = 0, in comparison with domains used formerly in the literature (including Refs. [43] and [66]).
It illustrates pegagogically why the numerical domain used in Ref. [66], which could accomodate only a
maximum of 5 to 6 stripes at onset, necessarily suffered from finite-size effects.

Note that an algebraic fit of the form FT ∼ (R−Rc)β alone is in general not sufficient to validate the
critical scaling hypothesis. This hypothesis is inseparable from the FT � 1 framework, in other words
from a ’dilute’ regime where turbulence is scarce. An example of such misleading statistics can be found
in [244] for the study of pressure-driven channel flow. Their figure 10 alone could suggest that the scaling
FT ∼ (R − Rc)β is well verified in the range R ∈ (1000 : 2500), which would be a very wide range. Ho-
wever the cumulative distributions of laminar gap size were computed in the same numerical domain in
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Figure 3.25 – Statistics in the experiment of [225]. From top to bottom, from left to right : equilibirum
turbulent fraction < FT > vs. Re (inset : < FT > vs. ε), instantaneous turbulent fraction FT (t) vs t,
CDF of laminar gap size, and CDF of laminar interval duration, all in log-log scale.

Figure 3.26 – Comparison of two-dimensional domains of shear flows [243], including references such as
[65, 66, 225, 261].
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Ref. [14]. Such distributions are expected to be algebraic close to the critical point, however they appear
exponential for all parameters investigated. This demonstrates that a credible algebraic scaling for the
turbulent fraction alone has no validity if the scaling relations are not all verified simultaneously. We
illustrate this subtle point using two flow cases, namely pPf from Ref. [14] and aCf from Ref. [262]. The
latter has been artificially widened in order to reduce finite-size effects due to the confinement [263]. For
both flows the investigated distribution is compatible with an algebraic scaling of the form FT ∼ εβ with
values of β compatible with DP theory (see figure 3.20 for pPf, and figure 3.28(top) for aCf). Figure 3.27
shows clearly that the distribution of laminar gaps in the streamwise direction of pPf is exponential for all
parameters considered, as in standard STI regimes. This is in contrast with the case of aCf where, as Re
is varied, figure 3.28(bottom) suggests a cross-over from an exponential towards an algebraic distribution,
in other words a transition from an STI to a laminar regime via a critical scaling. The illustration of
this point shows more generally that the parameter range where the DP scaling is expected to be valid
is always very narrow. Moreover, this DP range differs markedly from the range of Re characterised by
laminar-turbulent patterns.

Figure 3.27 – Laminar gap statistics in computational pressure-driven pPf from [14]. The exponential
statistics suggest that the critical point is still out of reach.
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Figure 3.28 – Turbulent fraction vs. Rew (top) and laminar gap statistics in the numerical simulations
of aCf from [262], both in the axial (bottom left) and azimuthal direction (bottom right). The azimuthal
extent has been artificially extended up to 128π. Unlike figure 3.27 the present cross-over from exponential
to algebraic statistics suggests the proximity to the critical point.
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3.5 Large-scale flows

3.5.1 Motivation

One of the most striking manifestations of the laminar-turbulent coexistence in the planar case is
the obliqueness of the coherent structures. Such a property is intrisically large-scale, since at smallest
scale the coherent structures are mainly streaks known to be aligned with the streamwise direction. We
hence need to define a large-scale component for the velocity field. The mean flow, understood as the
temporal average of the velocity field, is the first candidate for a large-scale flow, since the smallest
scales corresponding to turbulent fluctuations are usually absorbed by averaging. In the case of banded
turbulence, the mean velocity field has been computed and modelled by Barkley & Tuckerman [238].
The limitation inherent to the mean flow is its absence of time-dependence and hence of dynamics. The
common alternative is to extract the large-scale component directly from the velocity by using spatial
filtering. Spatial filtering approaches are routinely used in higher-Re turbulent flows for scale-by-scale
energy budgets (see e.g. [264, 265] for pPf), in the presence of a multitude of scales. It is also central in the
computational concept of Large Eddy Simulation, when scales below a given cut-off value are modelled
instead of being simulated [266]. The low values of Re typical of the transitional regime are less complex.
Owing to a spectral gap property, the more basic distinction between "large" and "small" velocity scales
is sufficient for the present purpose of explaining the morphogenesis of stripes and spots in wall shear flows.

A relatively simple computational experiment demonstrates the role played by large-scale flows in the
formation of oblique stripes. The main trick is to play with the periodicity of the computational domain
in order to annihilate precisely the large-scale flow, in order to understand what is lost in its absence.
Suppose, as in Refs [267] and [238], that the computational domain of plane Couette flow is extended
in the spanwise direction (Lz � 200 ) but not in the streamwise direction (Lx ≈ 10, comparable to
MFUs). As a consequence of this confinement no large-scale flow can form with low wavenumber kx. The
spreading of turbulence in this system was analysed in Ref. [267] based on a statistical approach. Spatial
proliferation occurs only above a critical Reynolds number Re = Rez ≈ 310. No marked intermittency is
present for Re > Rez. As an alternative, consider now the case (as in Ref. [238]) where the extension is in
the streamwise direction only and not spanwise, i.e. Lx � 200 but Lz = 10. The expansion of turbulent
patches occurs only above Re = Rex ≈ 400 in a slug-like fashion (fronts moving in the streamwise
direction with well determined front speeds). In these two configurations, the dynamics of the turbulent
fluctuations is heavily influenced by the choice of the numerical domain. These domains been considered
because they are free of large-scale flow. When compared to the case ideally unaffected by finite-size
effects (where both dimensions Lx and Lz are simultaneously large), the transitional range is found in an
Re-interval of approximately 320–410 [66]. This range of values are numerically very compatible with the
values of Rex and Rez. This suggests that the sustainment properties of the stripe patterns, including
their infamous obliqueness, require a two-dimensional large-scale flow, with both components in x and z.

For the case of a simple steady parallel stripe pattern of plane Couette flow, the large-scale velocity
integrated from wall-to-wall is depicted in figure 3.29 using white arrows. The steadiness of the pattern
implies that the large-scale flow matches the mean flow considered in [238]. It features two-dimensional
jets along each side of the stripes, flowing in opposite directions on either side. The large-scale flow is
most prominent where a laminar–turbulent interface can be identified : it is weaker inside the turbulent
zones and falls down to zero in laminar domains. The same properties of the large-scale flow around
stripes are found in all other extended planar flows, such as pPf and cPf [14, 233, 269]. The case of pipe
or duct flows will be mentioned later.

3.5.2 Large/small scale coupling

We base our analysis on the existence of two distinct characteristic scales. The small scales O(h)
correspond to the coherence of the turbulent fluctuations inside a turbulent patch (streaks). The large
scales can be associated with the diffusive tails of the streaks and can be anticipated to scale like O(hR).
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Figure 3.29 – Unfiltered and y-integrated large-scale velocity field of pCf for Re = 350, from [268].

The hypothesis R � 1 justifies the names "large" and "small" scales, however we make an additional
hypothesis of scale separation, i.e. we assume the existence of a range of intermediate scales Λ between
O(h) and O(hR) in which there is (ideally) no energy. We separate the flow field u into small scales
ũ = Hu and large scales U = Lu such that

u = Lu +Hu = U + ũ. (3.9)

The large-scale flow U = Lu = G ? u is frequently defined using the plane-isotropic Gaussian low-pass
Gaussian kernel G :

G(x, z) =
1√
2π
e−

(x2+z2)

2Λ2 . (3.10)

The high-pass filter is defined simply by the convolution kernel I −G. Although this decomposition can
be carried out a priori for any flow field, the scale separation hypothesis is crucial in making it robust
with respect to the choice of Λ. In practice, in units of h, the value of Λ can be chosen anywhere in
the interval (20 : 60) for most shear flows. U includes the laminar base flow as well as the large-scale
modulations typical of STI. The residual ũ contains the rest, including what intuitively corresponds to
the turbulent fluctuations.

We denote y-averaging with a bar (̄.). The incompressibility condition leads to the two-dimensional
divergence-free condition in the xz-plane :

∂xŪx + ∂zŪz = 0. (3.11)

The momentum equation in the wall-normal (y) direction can be simplified using the scale separation
hypothesis. It results in a coupled system of PDE for the large and small scales, respectively :

(∂t + U · ∇)Uy = −∂yP +R−1∇2Uy − L ((ũ · ∇) ũy) (3.12)
(∂t + U · ∇) ũy = −∂yp̃+R−1∇2ũy −H ((ũ · ∇) ũy) (3.13)

The second equation for the small scales can be simplified at the laminar–turbulent interface, which can
be defined as a place where ũy is small enough without being zero. This hypothesis leads to H ((ũ · ∇) ũy)



3.5. Large-scale flows 107

being negligible, such that the second equation expresses now the simple advection of ũy by the large-scale
flow U . We also note the presence of the small-scale presure gradient −∂yp̃ which does not generate any
large-scale flow.

3.5.3 Spot structure
We begin by assessing the structure of the large-scale velocity field around an incipient turbulent

spot, at early times before it proliferates. The emphasis is on the far field, which implies particularly
large computational domains of size Lx,z > 103 and hence large memory requirements. In the case of
plane Couette flow, a robust large-scale quadrupolar structure has been observed in earlier spot simu-
lations [270, 271]. Fluid is sucked inward into the spot in the streamwise direction and ejected out of
the spot in the outward spanwise direction as in figure 3.30 (left). As for spots in Poiseuille flow, the
large-scale flow is found to differ in topology. The velocity field shown in figure 3.30 (right) is dipolar,
consistently with the fact that the spot moves in the streamwise direction with respect to the mean fluid
velocity. To our knowledge this dipolar structure had not been inferred from earlier spot simulations [272].

Figure 3.30 – Incipient spots in shear flows. Wall-to-wall integrated velocity field in the xz plane. Left :
pCf for Re = 400, right : pPf for Re = 3200.

The far field velocity field can be extracted directly from the above simulations [273]. In contrast to the
exponential scaling found e.g. for the localised steady state of Brand and Gibson [274], the velocity field
decays algebraically with the distance from the spot. The analytical study of Ref. [275] aims at deriving
this algebraic law directly from properties of the linearised Navier-Stokes operator. It is now confirmed
by simulations that, independently of time and of the Reynolds number, the quadrupolar velocity field of
pCf has its two in-plane components decaying like r−3, with r =

√
x2 + z2 the distance from the center of

the spot (see figure 3.31). The robustness of this scaling has been probed by reproducing the same spot
in different computational domains of increasing size and with varying numerical resolution. For pPf as
well as cPf, the decay is also algebraic but with an exponent -2 rather than -3.

These exponents match exactly those predicted for the velocity field of multipoles [273] in two spatial
dimensions merely by kinematic theory. In this naive planar model sketched in figure 3.33, the spot
corresponds to a two-dimensional distribution of vorticity ω(r, θ) (in polar coordinates), strictly localised
in the plane, so that the two-dimensional flow is irrotational outside r > a (where a is larger than the
size of the region where turbulent fluctuations are found). This is indeed verified approximately in our
simulations when the y-integrated wall-normal vorticity ωy is considered as visible in figure 3.32. The
associated two-dimensional flow (Ūx, Ūz) has been shown to be divergence-free in the plane in Eq. 3.11. It
thus derives from a two-dimensional stream function Ψ verifying ∇2Ψ = ω. The solutions to this equation
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Figure 3.31 – Tails of y-integrated streamwise velocity Ūx in pCf for Re = 400, measured along the
diagonal x = z, shown in increasingly large computational domains (log-log coordinates) [273]. The solid
line corresponds to an algebraic fit of exponent −3.
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Figure 3.32 – Tails of y-integrated wall-normal vorticity ω̄y in pCf for Re = 400, measured along the
diagonal x = z, shown in lin-log scale.

can be expanded in the far-field as Taylor series with respect to the small parameter 1/r. This gives rise



3.5. Large-scale flows 109

𝒓′
𝒓

𝜽𝜽′

𝒙

𝒛

𝑷𝑷′

Figure 3.33 – Sketch of the two-dimensional kinematic model for spots.

classically to a multipolar expansion of the form

Ψ(r, θ) =

∞∑
k=1

1

rk
fk(θ) (3.14)

=
f1(θ)

r
+
f2(θ)

r2
+ ... (3.15)

The term in Eq. 3.15 corresponding to monopoles has been discarded for being unphysical. The velocity
field deriving from this streamfunction can hence be expanded in the far field as the sum of a dipole (de-
caying as r−2), a quadrupole (decaying as r−3), and higher-order terms. Unlike Ref. [275] this kinematic
approach makes no use of the momentum balance. It suffices to justify the algebraic nature of the decay
of the velocity field as well as the exponents found. The upstream-downstream symmetry of the two-
dimensional flow field (Ūx, Ūz) in plane Couette flow has the effect of cancelling the dipolar component.
This explains why, in this flow, the quadrupolar component dominates the flow with an algebraic decay
rate steeper than in pressure-driven flows.

Generalising this kinematic theory to three dimensions turns out more tricky. In three dimensions,
even when taking the confinement by the walls into account the exponents found do not match the mea-
sured exponents. This issue has been noted also in recent studies of the dynamics of pointwise swimmers
in the Stokes regimes in active matter studies [276].

3.5.4 Stripe development from spots
From the point of view of morphogenesis, we can analyse the growth of a given spot, as it turns with

increasing time into an oblique stripe of finite length [268]. The transient and time-dependent character
of the velocity field is hence crucial in the present context. Moreover, whatever the shear flow type consi-
dered, spots at early times are symmetric, hence the emergence of oblique stripes requires a breaking of
symmetry.

The growth of a turbulent patch is shown in Fig. 3.34 for Re = 360 along with the corresponding
large scale flow

(
Ūx, Ūz

)
. The streamwise ends of a such a turbulent patch are characterised by so-called

overhang regions where locally turbulent flow on one wall faces nearly laminar flow near the other wall,
visible in figure 3.35. These regions correspond to a mismatch in the flow rates Ūx 6= 0, whereas Ūx = 0
everywhere else. As a consequence ∂xŪx 6= 0 in the overhang regions. Hence Ūz 6= 0 by virtue of Eq.
3.11. The resulting total large-scale flow is thus locally oblique with respect to the streamwise direction.
This suggests that newly nucleated streaks at the tips of the spots are simply advected by the large-scale
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Figure 3.34 – Obliquely growing spot in plane Couette flow at R = 360 (grey : streamwise velocity in
the midplane) and associated y-integrated large-scale flow

(
Ūx, Ūz

)
(x, z) (arrows). From left to right :

t = 200, 300 and 400. Simulations in a periodic domain with Λ = 500 and 1536 × 33 × 2048 spectral
modes. Only the subdomain [−60 : 60]× [−60 : 60] is displayed here.
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Figure 3.35 – PCF from [268]. Cut in the z direction.

flow, which itself has a non-zero angle with respect to the streamwise direction. As a consequence of
the non-zero angle between U and the streamwise direction, the growth of the spots is distorted by the
presence of the large-scale flow and proceeds obliquely as well [268].

We can now suggest a mechanism to explain the emerging obliqueness of stripes. A forming stripe
pattern should be seen as an initial array of growing turbulent spots that consist of small-scale streaks of
finite streamwise extent. The main mechanism for the expansion of turbulence in the spanwise direction
proceeds via the stochastic nucleation of new streaks [267]. The small fluctuations of ũy near the interface,
the signature of newly nucleated streaks, are advected in the direction of U , which is oblique with respect
to the x direction. The local orientation of U hence determines the direction in which the turbulent patch
elongates every time a new streak is added in a nucleation event.

The angle θ measured for turbulent stripes hence appears as a large-scale quantity. Stochasticity of the
streak generation process acts on the large-scale flow as intrinsic noise that can even break the symmetry
θ ↔ −θ after a sufficiently long time. The global labyrinthine aspect of spots observed at late times results
from a random sequence of symmetry breakings occuring at the extremities of the developing spot. For
larger values of R ≥ 380, streaks start to elongate in the streamwise direction while their spanwise rate
of nucleation increases rapidly [267]. Those combined effects accelerate the spreading of the turbulent
spot while the obliqueness of the turbulent interfaces is qualitatively preserved. As the spot continues
to grow, other such discrete extreme events (named "budding" in the study of Ref. [277]) can allow for
the outgrowth of additional stripes. The resulting field can be described as a labyrinthine spot shown in
figure 3.36 [66]. The success of this approach is unfortunately limited by its inability to predict accurately
the angle of the resulting laminar-turbulent interfaces.

The mechanism above has been the subject of experimental verification including a series of expe-
riments carried out in the Paris region. In the context of pCf, the experimental study by Couliou and
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Figure 3.36 – Labyrinthine development of a turbulent spot in pCf for Re = 350. From top to bottom :
t=201, 1043 and 2102 h/Uw.

Monchaux [220, 221], based on Particle Image Velocimetry, as mimicked the numerrcal strategy of Ref.
[268]. The spectral gap hypothesis is satisfied. The quadrupolar structure of the velocity field and its
orientation shown in figure 3.37 are consistent with the numerical predictions, although y-averaging can-
not be performed from planar PIV data.

Experimental investigations of other shear flows have been performed as well using the same metho-
dology, in pPf [278] as well as more recently cPf [269]. The structure of the large-scale flow around the
pPf spot was initially described as quadrupolar although the lack of upstream/downstream symmetry
suggests the presence of a dipolar component, consistently with Ref. [273]. The far field predictions are
however far from being verified, and the nature of the decay of the velocity field can not be assessed from
this experimental data. Given the short spanwise extent used (Lz = 7.5h) this is not really a surprise,
and much wider domains are required to verify these predictions.
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Figure 3.37 – Large-scale around a turbulent spot in experimental pCf, from Ref. [221].

Figure 3.38 – Large-scale around a turbulent spot in a narrow channel of width Lz = 10 from Ref. [227] :
streamwise velocity component (top), spanwise velocity component (bottom).
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3.5.5 Helical spots in annular flows
In this subsection we wish to explore the limits of the previous theory by examining a few flow cases

where the spanwise extent can be conveniently varied. We focus on shear flows inside an annular geometry
consisting of two coaxial cylinders. The radius ratio ri/ro is denoted as η. The geometry (and terminology)
is common to the Taylor-Couette family but the flow is forced axially rather than azimuthally. Two flow
cases are actually considered : annular Poiseuille flow (aPf), where an axial pressure gradient is applied,
and annular Couette flow (aCf), where the inner cylinder moves axially with a steady positive velocity.
In the η → 1 limit, aPf coincides with pPf whereas aCf coincides with pCf, they hence display exactly
the same phenomenology as far as the transitional range is concerned. For finite η, e.g. here η = 0.8, by
varying Re and making sure that the domain is long enough it is not difficult to identify a transitional
range characterised by helical stripes wrapped around the inner cylinder. These stripes are directly com-
parable with the oblique stripes of pPf once unwrapped and mapped onto a planar domain. In particular
the large-scale flow can again be computed, and it displays the same property of being parallel to the
laminar-turbulent interfaces. However the pitch angle of the stripes apparently decreases together with
η. Lowering η below 0.5 for aCf, or 0.3 for aPf, brings unexpected results : the helical patterns are no
longer found. For η = 0.1 the flow is still characterised by localised structures, however their dynamics
features mainly splitting and decay, in a way much more reminiscent of cylindrical pipe flow than of pPf.

The theory invoked for the growth of the patterns [268], based on the presence of a large-scale flow,
can again be used here in its steady version. It is actually simpler since it is based solely on the two-
dimensional divergence-free property of the large-scale flow. Written in cylindrical coordinates consistent
with the annular geometry, incompressibility is written :

∂xux +
1

r
∂r(rur) +

1

r
∂θuθ = 0. (3.16)

An angle α with the streamwise direction can, as before, be defined by

tanα(x, θ, t) =

∣∣∣∣∣Uθ(x, θ, t)Ux(x, θ, t)

∣∣∣∣∣ . (3.17)

where

(·) =

∫ Ro
Ri

r(·) dr∫ Ro
Ri

r dr
. (3.18)

The key point is that the azimuthal extent of 2π can be interpreted as a large number in units of the
gap d = ro − ri, if η is close to 1. Fig. 3.40 displays the inner and outer perimeters, resp. Lzi(η) and
Lzo(η), in units of d as the radius ratio is varied. When Lzi/d � 1, the flow in the gap behaves as a
planar flow. Otherwise the situation is closer to pipe flow with an effective dimension of one and no large-
scale azimuthal flow. The intersection of an arbitrary line Lz = λcz with the curves Lzo(η) and Lzi(η) in
Fig. 3.40 defines two values of η, respectively η1 and η2. This leads to three distinct ranges of values for η :

— for 0 < η ≤ η1, there is no space for large scales in the azimuthal direction, neither at the inner
nor at the outer wall. As a consequence Uθ = 0 for all r, and ∂xUx = 0.

— for η2 ≤ η ≤ 1, azimuthal large scales can form at both inner and outer walls : ∂θUθ = −∂xUx
with Uθ 6= 0. The situation is then analogous to the planar case where oblique laminar-interfaces
can be sustained.

— for η1 ≤ η ≤ η2, the situation is mixed : azimuthal large scale flows cannot be accommodated at
all locations in the cross-section. A probabilistic approach is required.

Since the exact values of η1 and η2 depend on the threshold λcz, the qualitative conclusions above need
to be verified numerically. Figure 3.41 shows, for η = 0.2, two values of Re for which the two types of
inclinations (θ = 0◦ and θ 6= 0) coexist spatially. Two antagonist effects likely to deviate from the planar
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Figure 3.39 – Localised coherent structures in Annular Pipe Flow (aPf), from top to bottom : η = 0.8
and Reτ = 72, η = 0.5 and Reτ = 56, η = 0.3 and Reτ = 56, η = 0.1 and Reτ = 52. Three-dimensional
isolevels of streamwise velocity fluctuations.
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Figure 3.41 – Localised coherent structures in APF, η = 0.2. From top to bottom : Reτ = 56 (top) and
Reτ = 52 (bottom). Two-dimensional isolevels of radial velocity close to mid-gap.

case compete here : wall curvature and azimuthal confinement. They are a priori linked together by the
geometry. The two related parameters can however be made independent if the outer perimeter Lz is
chosen such that Lz > 2π. This is achieved in practice by simulating the same regimes in an artificial
domain with an azimuthal wavenumber β = 2π/Lz input as a non-integer. This numerical trick has been
considered in Refs. [263],[262] in the context of aCf. We can focus for instance on the case η = 0.5. When
Lz = 2π, no laminar-turbulence is found whatever the value of Re. However for Lz � 2π the flow for
η = 0.5 features a transitional range characterised by clear oblique/helical stripe patterns. This rules out
wall curvature as a possible explanation why oblique interfaces do not form. However it validates the idea
that regular oblique patterning in a given Re-interval is the rule once azimuthal confinement by periodic
boundary conditions is weak.

3.5.6 Boundary layer flows

While the annular examples above were opportunities to test the robustness of the theory with res-
pect to azimuthal confinement, its robustness with respect to wall-normal confinement needs to be also
addressed. In the planar case with two plates (pPf or pCf), a two-dimensional divergence-free property
was established in Eq. 3.11 for the velocity field integrated from wall to wall. The crucial mathematical
step to Eq. 3.11 is the property [uy]y=+h

y=−h = 0, in other words the fact that the wall-normal mass flux is
zero (due to wall impermeability in pCf and pPf). This property can be violated in the case with one
wall only, i.e. boundary layer flows. This is illustrated in the Asymptotic Suction Boundary Layer flow
(ASBL). For this flow, in the absence of a top wall the integration in y of Eq. 3.11 can be carried out
between the lower wall (by convention at y = 0) and any wall-normal position y∗, yielding

∂xūx + ∂zūz = −uy(y∗) + uy(0), (3.19)

where ui =
∫ y∗

0
ui(x, y, z, t)dy is the equivalent of the wall-integrated flow in the original Eq. (3.11). As a

consequence, the loss of streamwise flow rate experienced when entering a localised turbulence patch in
the x direction does no longer have to be balanced by a spanwise flux like in contained shear flows.
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Figure 3.42 – Two-dimensional yz-plane visualisations of the streamwise velocity fluctuations u′ in ASBL
for (a) Re = 333 and (b) Re = 260 computed using R1 resolution. Only part of the wall-normal extent of
the domain is shown. The black dashed line marks the height y+ = 100. The values of the time-averaged
99% boundary-layer thickness are δ99 ≈ 155 and 27 for Re = 333 and 260, respectively. Computations
obtained using moderate resolution [1]
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This loss of streamwise flow rate can instead be balanced by a wall-normal gradient of momentum or
by both wall-normal and spanwise gradients. In the absence of clear rule, we simply state that oblique
laminar-turbulent interfaces are not generic in ASBL, whereas in channel and Couette flows they are.
This conclusion is true independently of Re. Direct numerical simulation in computational domains both
large and high (i.e. Ly large too), with well-adapted numerical resolution, has shown that there is indeed
no ordered laminar-turbulent coexistence in ASBL even arbitrarily close to the onset of its turbulence
regime [1]. In other words ASBL does not possess any transitional range. Moreover, all elements point
towards a clear violation of the directed percolation hypothesis : transition seems discontinuous in the
sense that the turbulent fraction directly goes from 100% to 0% as Re is decreased below the critical
point Re = 269 ± 1. The value of this critical Reynolds number has been verified experimentally in a
recent study. It falls within only 1% of the numerical value [279, 280]. An element of justification is found
in turbulent statistics : for Re = 270 (just above onset) the turbulent regime verifies the logarithmic law
of the wall, whereas this is far from true for any of the classical contained flow such as pipe or channels
near their critical point. Turbulent ASBL is hence multiscale for all Reynolds numbers from onset.

In order to verify that the mechanism suggested here to discard sustained laminar-turbulent coexis-
tence in ASBL applies in practice, a numerical manipulation of the flow has been implemented. Similarly
to Ref. [281], the non-zero fluctuations of the wall-normal and spanwise velocity are brought to zero at a
given distance from the wall using a volume force. This mimics a "ceiling effect", whereas it is expected
that truly confined flows would exhibit a transitional range, just as pCf or pPf do. If VS is the suction
velocity (independent of y), the additional body force writes F = (0,−λ(y)(VS + uy),−λ(y)uz), with
λ(y) = S((y − ys)/d). The function S is chosen as

S(u) =


0 , u ≤ 0 ,
1/
(
1 + e(1/(u−1)+1/u)

)
, 0 < u < 1 ,

1 , u ≥ 1 ,
(3.20)

The parameters values tested correspond to y+
s = 100 and d+ ≈ 80. The distance of 100δν corres-

ponds to the mean streak spacing for all shear flows, or in other words to the Kolmogorov length of
inhomogeneous shear flows. It is believed that choosing a similar wall-normal extent would leave out any
scale larger than this cut-off value, make the flow monoscale and hence make it susceptible to develop
large-scale modulations. The results are encouraging, and at least the main hypothesis turns out to be
correct : although the flow ultimately relaminarises for Re = 280, it develops transient interfaces du-
ring the relaminarisation process. Importantly, these interfaces (visualised furtively in figure 3.44) appear
unambiguously oblique with respect to the streamwise axes. For Re ≥ 290 the flow does not relaminarise
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Figure 3.44 – Two-dimensional xz-plane visualisations with wall-normal damping for Re = 280 in ASBL.
Streamwise velocity at y+ ≈ 12.

and other furtive oblique interfaces are easily identified [1]. However, with the choice of filtering function
and the parameters used no sustained STI or pattern regime was identified so far.

3.6 Multiphysics extensions

The range of Reynolds numbers corresponding to the transitional range for planar shear flows is
relatively narrow. Moreover, it does not correspond to a very wide range of applications. Most flows
encountered in everyday applications, because of the typical lengthscales and velocity scales involved are
characterised by Reynolds numbers of the order of 105 or more, where full-fledged turbulence is the rule.
It is however possible, and relevant in a large range of realistic applications, to consider shear flows in
the presence of an additional force F such that the transitional range is pushed to such high Reynolds
numbers. In primitive variables formulation, the non-dimensional incompressible equations read

∂u

∂t
+ (u · ∇)u = −∇p+

1

R
∇2u + F , (3.21)

∇ · u = 0 , (3.22)

where p is the pressure field, u is the velocity field and F is an external force (of module F ) which can be
added to damp turbulent fluctuations. For purely shear-driven flows, F = 0. For patterns to be pushed
towards higher R, the additional force of interest should have a tendency to damp turbulent fluctuations.
If the Reynolds number is denoted R for simplicity, the range of R where patterns can be observed can
be noted a priori [Rg(F ) : Rt(F )]. Equivalently, for a given value of the governing parameter R, patterns
are sustained within a range [Ft(R) : Fg(R)]. The force F can alternatively be seen as a way to control
turbulence in applications when strong unsteadiness is considered as undesirable.

A first example from the literature is found in plane Couette flow with global spanwise rotation
(RPCF). Cyclonic spanwise rotation is known to damp turbulent fluctuations [283]. In this case we can
define F as a measure of the rotation rate, for instance the non-dimensional rotation number Ro propo-
tional to the rotation rate Ω < 0 -not to be confused with the Rossby number inversely proportional to
it-. It was verified experimentally [282] that RPCF has a linearly stable laminar regime. Under suitable
excitation, a regime of localised turbulence exists in a well defined range of values of R and F . For fixed F ,
when R is increased, as documented in figure 3.45 one encounters first a regime of spots within a laminar
environment, then a patterned regime, an intermittent one and eventually turbulence. That sequence is
qualitatively similar to that encountered for F = 0 when increasing R. It was verified using large nume-
rical domains that this phenomenology is well captured numerically [284] for R up to 6000, as shown in
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Figure 3.45 – Top : Experimental parameter space (Ω, Re) for negative rotation Ω [282] (COU : laminar
Couette flow, SPT : spots, TRS : turbulent stripe patterns, INT : intermittent turbulence, TUR : turbulent
flow). Bottom : snapshot of the spot regime
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Figure 3.46 – Stripe pattern in DNS of RPCF.

figure 3.46 . Above R = 6000 the phenomenology changes. The value of R in Ref. [284] was pushed as
high as R = 20, 000 with relevant numerical resolution. Laminar-turbulent patterns are still found but
only at a small distance from the wall. Further away from the wall the flow is characterised by turbulent
fluctuations without any dominant large-scale structure. We witness in figure 3.47 the emergence as R
increases of near-wall stripes of increasingly small thickness. Moreover, the stripes on either wall are no
longer steady as in pCf, instead they travel in opposite directions with velocities O(1) corresponding to
the large-scale velocity if not to the mean flow velocity. This new regime is very expensive to simulate
and equally difficult to achieve experimentally with large dimensions. As a consequence, the parameter
space remains to be properly explored.
Note that another related example is the classical Taylor-Couette flow when both cylinders rotate in
opposite directions. This is not a surprise since Taylor-Couette is viewed as a limiting case of spanwise
rotating pCf when the radius ratio tends towards unity. When this aspect ratio is close to 1, it is known
that helical laminar-turbulent patterns can be found [207, 218, 253, 261].

A second area of application of the above concept is found in the presence of stable density strati-
fication. Such applications abound in geophysics both in the atmospheric and oceanic contexts. Former
investigations in small enough periodic domains have revealed a trend for turbulent regimes to relamina-
rise for strong enough density gradient [285, 286]. In analogy with the observations for pure shear flows, it
was tempting to speculate that laminar-turbulent coexistence would be possible, for neighbouring para-
meters, provided large enough domains are used. This has been verified again in Ref. [284] in a symmetric
("open") channel geometry that turbulent-laminar stripe patterns could be maintained at higher R, with
a grossly constant turbulent fraction, provided the stratification parameter (the Richardson number)
would be increased with the same rate. As for RPCF, at really high values of R patterns do not occupy
the full gap width, they are located at a close distance from the wall amidst turbulent fluctuations. The
value of R in Ref. [284] was pushed also as high as R = 20, 000 with the relevant numerical resolution.
The two systems are yet not equivalent. For instance, it is believed that internal waves, made possible,
can be excited at the right frequency by the large-scale modulations or by turbulent fluctuations, and
start to interfere with the turbulence itself. Despite more recent continuations of this work [287–289] this
scenario lacks as of now a proper investigation.

The last application of interest is found within the context of electrically conducting fluids in the
presence of an imposed magnetic field. Applications of low-magnetic Reynolds number magnetohydro-
dynamics are frequent in industry when liquid metals are involved, e.g. in electromagnetic brakes or in
the growth of semiconductor crystals. Similarly to stratified flows, there was former evidence, from si-
mulations in small periodic domains, that the application of a magnetic field could make turbulent flows
relaminarise [290, 291]. A similar approach was undertaken in Ref. [284] using much larger computational
domains, for the case of plane Poiseuille flow, again for R up to 20,000. The force F is parametrised by
a Hartmann number. The orientation of the magnetic field was chosen aligned with either x, y or z. The
only clear case, from the point of view of the formation of laminar-turbulent patterns, corresponds to the
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Figure 3.47 – RPCF in (x, y) section as Ro is increased. Isolevels of absolute value of wall-normal velocity.
Values of Re and Ro and Lx from top to bottom : (350, 0, 250), (750,−0.02, 250), (6 × 103,−0.116, 48)
and (2× 104,−0.2, 25.1).
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spanwise magnetic field. There again, laminar-turbulent patterns appear robust to increasing F until the
laminar-turbulent coexistence is found only by the wall. More recent investigations of these regimes have
pointed out similarities and a few discrepancies with non-magnetic cases in duct geometries [292, 293].

These separate investigations have been carried out with the aim of identifying features in common.
Beyond the immediate message that laminar-turbulent patterns are robust to increases in F (provided
F has the property to dampen out turbulent fluctuations), it represents an opportunity to measure the
wavelengths of the patterns over a much wider range of R than is possible for F = 0, namely almost
two decades from R = 300 to 20, 000. These wavelengths are represented for a large class of patterns
from various sources in a two-dimensional cluster plot (Λx,Λz) in figure 3.48(left). Although R varies by
almost two decades, wavelengths vary over hardly a factor of 4 (an exception is represented by the MHD
case Mzh at R = 20, 000 which displays a smaller wavelength, may be influenced by the choice of the
numerical domain). Although a very slow dependence of Λx and Λz on Re is not strictly ruled out, the
present results rather suggest a lack of direct dependence, i.e. Λx,Λz = O(1). This is in contrast with
the small scales which, as is clear from e.g. figures 3.47 but also figure 3.46, shrink with increasing Re
as in all turbulent flows. A reduction to inner units has been performed in the spectrum of figure 3.48b,
for the cases with increasing density stratification. Such cases are seen in figure 3.48a to have similar
large-scale wavelengths (as indicated by the labels PP, S80 and S183). According to the classical wall
turbulence theory, for featureless turbulent flows the near-wall peaks of the spectrum should collapse
around λ+

z = 100. This is the case here, to acceptable accuracy, even in the patterning regime. The large-
scale peaks, however, do not scale at all in inner units and the outer unit suggestion from figure 3.48a is
much more adequate. We conclude that, whereas small-scale structures scale in inner units, large-scale
patterns scale in outer units. Such a result would not have been exploitable from pure shear flow data only.

The last teaching from this very global comparison concerns the correlation between the imposed (resp.
measured) Reynolds numbers depending on the choice of protocol. The friction Reynolds number Reτ is
plotted in figure 3.49 versus the bulk Reynolds number Re defined for each case, in log-log coordinates.
Although no accurate power-law fit dominates this plot, a linear relation of the kind Reτ = O(Reb) is
compatible with the data. Recall that for pure shear flows such a relation was suggested from the largest-
domain investigations, in correspondence with the relation Cf = cst. A simple extrapolation of this law
to the data of figure 3.49 suggests again that, at least as a rule of thumb, laminar-turbulent patterns are
characterised by a constant friction factor, also whenever additional forces are present in the budget.

3.7 Conclusion

The last decade has been important for the study of transition to turbulence from a spatiotemporal
point of view, mainly because numerical facilities are now a full alternative to the more classical experi-
mental approach. In particular, large computational domains are now feasible using numerical simulation.
The global issue of whether transition obeys the equivalent of a phase transition is now essentially solved :
as far as the turbulent fraction as a function of the Reynolds number is concerned, continuous transition
is the rule, with critical exponents compatible with the scenario of directed percolation [225, 260]. Quan-
titative evidence for this universal scenario requires however large computational domains that remain
extremely costly to simulate, even as of 2021. However, understanding that such requirements are in order
represents already an important theoretical progress. For pipe flow, the spreading of turbulence results
from puff splitting events, and for higher Reynolds number from the growth of slugs [153, 180, 202]. For
planar flows such as plane Couette flow and plane Poiseuille flow, the spreading of turbulence proceeds
from a sequence of events leading from receptivity to streak growth, to localised spot nucleation to spa-
tial proliferation [14, 66]. The role played by large-scale flows in the proliferation process is now better
understood : being generated at the level of the laminar-turbulent interfaces, the large-scale flow simply
advects the weakest perturbations at the interface in a direction necessarily oblique to the streamwise
direction. The resulting growth is hence dominated by the oblique elongation of the nucleated patches
of turbulence [268]. This mechanism has been validated by analysing its actual limits. It breaks down in
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Figure 3.48 – Top : location of modulation wavelengths of the patterns in (Λx,Λz) space for various
cases listed in Ref. [284]. Bottom : energy spectrum for the density stratified cases PP, S80 and S183,
with lengths displayed in inner units.
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Figure 3.49 – (Reτ −Reb) relation for many different flow cases together in the transitional regime.

two cases : in annular flows [263, 294] because of the azimuthal confinement that rules out large-scale
flows [295], and in boundary layer flows because the flow is not confined in the wall-normal direction.
The mechanistic reasons why large-scale modulations form in the transitional range are still not fully
understood. Several competing theories exist, mainly motivated by low-order models : Turing instability
[296] modified with noise, crystallisation of turbulent puffs [297] or simply excitability [180], but a deeper
investigation is needed to distinguish between all these credible scenarios from real data. Interestingly,
the notion of transitional range appears irrelevant in the parallel boundary layer flow (ASBL), which
hosts no laminar-turbulent patterns and features a wholly discontinuous phase transition. The case of
boundary layer flows is shown to differ strongly from the channel geometries because of the absence of
wall confinement [1]. The next chapter is dedicated to a deeper theory of transition applicable to spatially
developing boundary layer flows.
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4.1 Phenomenology of Blasius boundary layer transition
Boundary layer flows are, simultaneously, among the most obvious hydrodynamic examples of so-

lid/fluid interaction, and a complicated case of transition to turbulence. The simplest example is proba-
bly the Blasius boundary layer flow, because of its two-dimensional steady solution, and this chapter is
concerned about the nonlinear stability of this base flow with respect to incoming disturbances. Unlike
e.g. Couette flow, whose academical origin is hard to hide, the Blasius flow configuration is prevalent
in many real applications including aeronautics, propulsion and aerodynamics. This explains why expe-
rimental studies abound, in particular those based on wind tunnels experiments. The present chapter
aims at unifying recent results obtained by attempting to apply the concepts stemming from dynamical
systems theories to the Blasius boundary layer flow.

4.1.1 Flow set-up
The Blasius flow corresponds to the steady flow developing above a semi-infinite plate that starts

at some origin x = 0. Despite the steadiness hypothesis, the flow experiences spatial development, such
that tracers advected by that flow are constantly slowing down. Besides there is always entrainment of
fluid from the region outside. The spatial development can be interpreted as the combined advection and
viscous diffusion of the spanwise vorticity. It emanates from the leading edge, which acts as a singular
source of vorticity.

We begin by presenting the ’ideal set-up’ and then confront it with more realistic cases comparable
to wind tunnel conditions. The ’ideal’ Blasius set-up is illustrated in figure 4.17(top). The velocity at the
plate is exactly zero when the plate is still, whereas at an infinite distance above the plate the velocity
vectors are oriented in the streamwise direction, and have constant amplitude U∞. Owing to viscous
diffusion the displacement thickness grows with the distance x from the leading edge as

√
x. This flow

does not depend on any physical control parameter [298]. Reynolds numbers are based either on x or
on the layer displacement thickness δ∗, and they change with x. The displacement thickness is defined
classically from the streamwise velocity base flow profile u(x, y) as

δ∗(x) =

∫ ∞
0

(1− u(x, y)

U∞
)dy (4.1)

Such Reynolds numbers are interpreted as a coordinate system rather than as a governing parameter.
Numerically however, it is important to specify the value of the Reynolds number at the upstream end
of the computational domain Reδ∗0 = U∞δ

∗
0/ν, with δ∗0 corresponding to δ∗ evaluated at this point. The

laminar solution is given, for x > 0 sufficiently large, by the solution of the Blasius O.D.E. [298]. This
equation rules the dynamics of the streamfunction, considered as a function of the reduced variable y/

√
x

only, under additional hypotheses such as steadiness and lubrication (x� y). The laminar Blasius solu-
tion has no analytical expression but it is easily integrated numerically. It is not strictly valid immediately
close to the leading edge, however it constitutes an excellent approximation of the real laminar solution
as soon as Rex = xU∞/ν ≥ 200. The linear stability (in time or in space, or both) of the steady Blasius
solution is a difficult mathematical problem. Under the lubrication hypothesis it is however possible to
"freeze" the base flow locally as if the spatial development was too slow to matter. Under such condi-
tions the system can be linearised around the base flow solution u0, and an ansatz of the form eαt is
admissible. The linear stability computed under these assumptions is displayed in figure 4.2. Linearly
unstable modes correspond to the zone R(α) > 0. They exist for Re > 519 [18]. These modes have finite
streamwise wavenumber kx 6= 0 and kz = 0, they are localised inside the boundary layer, travel uniquely
downstream, consist of co-rotating spanwise vortices and are called Tollmien-Schlichting waves. In real
experiments these waves appear via wavepackets that also grow in length with x [299] A large series of
experiments are dedicated to exciting these waves, to the way they lose their stability with respect to
three-dimensional disturbances and finally transition to a turbulent flow far enough downstream. This is
the so-called classical transition scenario usually present in most textbooks.



4.1. Phenomenology of Blasius boundary layer transition 127

The realistic set-up is very similar to the ideal one, yet it incorporates sources of inhomogeneity that
are responsible for the transition as observed in realistic wind tunnel experiments [300]. This is sketched
in figure 4.17(bottom). The potential sources of flow disturbance can be of various physical origins :
incompressible vortical disturbances, acoustic waves, incoming turbulence, tripping wire, wake of a grid
[301], etc... They are located typically "upstream" but not necessarily upstream of the leading edge, nor
upstream of the computational domain if the latter starts at a finite value of x = x0. In a simplified
picture the sources of disturbance are rather located upstream of the zone where transition happens :
laminar flow is considered under the influence of permanent disturbances of finite amplitude, while the
turbulent flow further downstream is not subject to disturbances. In particular, the permanent character
of the disturbances takes the system a priori away from the realm of initial-value problems. The reason
why such a distinction needs to be made between ideal and realistic set-up is the following : the transition
scenario might differ from the classical one provided the finite-amplitude disturbances are strong enough
[302–305]. We base the present investigations on the underlying idea that the flow is destabilised by
incoming turbulence that might be caused by either an upstream grid, or by any other non-specified
reason. In order to keep the flow conditions well defined, the in-coming turbulence is considered as
temporally permanent, spatially decaying with x, isotropic and homogeneous, and it is characterised by
two parameters : the turbulence intensity Tu and the integral lengthscale of the decaying turbulence, L.
Only the effect of Tu will be considered in what follows, with Tu > 0 defined classically by

Tu =
1√
3

√
u2
x,rms + u2

y,rms + u2
z,rms. (4.2)

The sketch in figure 4.17 illustrates the three main transition scenarios found as Tu is increased from
low levels (Tu < 1%) to high levels, via intermediate levels (everything inbetween) :

— For low enough Tu, the classical transition scenario is at play : the initial receptivity phase converts
the weak disturbances into nascent TS waves which grow and later destabilise into Λ–shaped
vortices. These vortices eventually break down into sustained turbulence further downstream.

— For intermediate Tu, the scenario is called bypass transition [307] : the receptivity phase leads to
the spatial growth of coherent streaks (also called Klebanoff modes), and the transition is provoked
by the destabilisation of these streaks.

— For large enough Tu (Tu > 6%) free-stream turbulence breaks initially into smaller structures,
which later destabilise into turbulent spots.[308])

The present aim is to generalise the knowledge on edge states to better understand their role in the
bypass process. The presence of TS waves in one of the scenarios interferes with the concept of edge state
in a puzzling way that has not been addressed before. The high amplitude regime is not investigated
here, but it has also been investigated in a possible relation with minimal seeds [309, 310].

4.1.2 Bypass scenario
The bypass scenario was initially identified in experiments, and it has eversince been validated in

several numerical simulations. A rapid but more detailed description of the process is useful to determine
the "ingredients" needed for a nonlinear theory of transition. Pedagogic experimental visualisations from
Ref. [302] are displayed in figure 4.4. They correspond to the same flow yet with different upstream grids
and different values of Re at the level of the grid. These visualisations show sudden bursts of turbulence
nucleating randomly on an well-ordered array of straight streamwise streaks. The presence of streamwise
streaks is consistent with computational observations. For instance in figure 4.5, the excitation by free-
stream turbulence is achieved by mimicking a synthetic turbulent flow upstream [303].

The receptivity stage upstream, that turns decaying turbulence into active streaks, is not fully un-
derstood. It is essentially based on linear mechanisms but does not feature any instability. It does not
differ from the lift-up provided there is streamwise vorticity upstream. The first manifestation of non-
linear behaviour lies probably at the level of the first solitary streak breaking down, i.e. when the first
incipients spot gets nucleated. This is where the analogy with edge state scenarios from the previous
chapter become tempting (despite the lack of an obvious initial-value problem context). In the case of
plane Couette flow, it was demonstrated in Ref. [149] how the occurrence of a streaky edge state and
its linear instability were the essential nonlinear steps justifying the search for exact solutions (although
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Figure 4.1 – Sketches of Blasius boundary layer flow in the laminar (top) and transitional cases (top).
From Ref. [306].
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Figure 4.2 – Stability of the Blasius flow in a frequency-Reynolds number diagram (F,Re). Solid lines :
iso-real part of the related eigenvalues, Dashed lines : iso-imaginary part. From Ref. [306]

Figure 4.3 – Sketch of transition in Blasius boundary layer depending on the incoming turbulence level
Tu. From Ref. [311].

the instability of the edge state can also be investigated in a linearised fashion). As in planar flows, the
nonlinear approach consists first in identifying numerically a relevant and non-trivial base flow, then in
analysing its stability and predicting the structures responsible for the breakdown of the streaks.

The edge state, being defined as an invariant set, is the ideal candidate for such a base flow. Scrutini-
sing figure 4.5 leads to additional information on the edge state to be sought. It is clear from this figure
that the early nucleation of spots is a local phenomenon. It make hence sense to consider the growth of a
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Figure 4.4 – Visualisations of the bypass process for several entrance grids and flow speeds. Experiment
from Ref. [302].

Figure 4.5 – Visualisation of the bypass process from Ref. [303]. Isovalues of streamwise velocity fluc-
tuations, together isolevels of λ < 0 (green).
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Figure 4.6 – Instabilities of streaks generated in an experimental boundary layer flow, of varicose (top)
or sinuous (bottom) typeFrom Ref. [312].

localised disturbance on a localised streak of finite length in order to free oneself from the dependency on
the chosen wavenumbers. Computationally this has the advantage to restrain the study to single localised
initial disturbances, closer to computational studies such as Ref. [313]. A further comment about the
choice for an initial value problem formulation can be made at this point. Under a permanent distur-
bance it would sound more adequate to look for another framework. Nucleation of spots in the bypass
picture proceeds however as a series of discrete localised events (see figure 4.4). It thus makes sense to
reverse the arrow of time and to assign to an incipient spot at time T a predecessor, i.e. a velocity field
corresponding to an "initial" time t = 0. The relevance of the initial value concept would be less credible
if the generation of new turbulence was continuous in time. The problem becomes again the identification
of the most unstable modes of a relevant streaky base flow. This problem was addressed experimentally
by Asai and co-workers who generated a straight low-speed streak in a boundary layer flow in order to
study its instability and breakdown [312]. Two different symmetries characterise the instability of straight
streaks : either spanwise-symmetric (varicose) or anti-symmetric (sinuous). Both types are illustrated in
figure 4.6. In Ref. [314], the modal instability of a spatially periodic array of straight streaks has been
considered instead, except that the base flow consists of synthetic streaks whose spatial structure was
determined from a numerical fit. The same qualitative conclusions as the localised case arise : both sym-
metric and anti-symmetric streamwise modulations of the streaks stand out as least stable. The threshold
amplitude levels required for this instability to occur might still depend on the localisation features [315].
Later, non-modal instability was also predicted [316] to lead to very similar structures without the need
for a proper exponential streak instability. Some confusion is still present, entertained by the choice of a
synthetic base flow which is not solution to the governing equations. The suggested alternative here is to
generate a new relevant base flow using an edge tracking method, as it ensures that the resulting velocity
field will belong to an invariant set of the governing equations.
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4.1.3 Difficulties associated with state space picture

A pedagogically clear state portrait of the state space of the Blasius system would be a formidable
achievement, both from a fundamental and applicative point of view. There are however fundamental
obstacles to such a task. The main theoretical difficulty compared to, say, the pipe flow problem, might
be due to the spatial development of the boundary layer. Let us list the possible invariant sets of interest
for such a challenge.

The laminar base flow is steady and should hence be represented as a fixed point of the state space.
The issue of its stability is more subtle. The definition of (linear) stability indicates that a fixed point is
unstable as soon as one unstable direction exists. This is here clearly the case since TS waves, although
analytically predicted for frozen base flows only, have been found experimentally. The troubling detail
is that the critical Reynolds number of 519 suggested has no relevance to the stability problem since
Re is not an external control parameters any longer. As a consequence, the linear instability of the Bla-
sius base flow is of an unconditional type : the right perturbation at the right initial location leads to
an exponentially growing mode at large times, and this is all that matters to declare the base flow unstable.

The notion of turbulent attractor is more problematic. Consider an initial disturbance with a spatially
localised support. In the right conditions this perturbation will advect downstream while growing spa-
tially. It will increase in size and its kinetic energy, enstrophy etc... will all diverge. The system can hence
not support a bounded attractor, at least not using the usual energy-based metrics. One might argue that
the situation is similar for slugs in pipe flow, which is true, however there is a difference. Slugs operate
at constant Reynolds number. An extensive quantity used as observable would diverge with time during
transition, but an intensive quantity would probably converge to a constant value. A genuine attractor is
hence possible if the coordinate system is revised. In spatially developing flows yet, every perturbation is
advected downstream, while it experiences increasingly larger boundary layer thicknesses as time evolves.
The turbulent state needs locally to adapt to its new environment, characterised by the continuous ap-
parition of new scales. This rules out the possibility for a well-defined turbulent equilibrium. Even by
renormalising at every time the outer size of the turbulence patch or the boundary layer thickness, smaller
and smaller scales would appear in its interior as time increases, as if the viscosity was decreasing with
time.

The third possible regime is, without surprise, the edge state intermediate between laminar and tur-
bulent... although there is no well-defined asymptotic turbulent state, the "turbulent" (resp. "laminar")
fate of a given perturbation is often unambiguous when the perturbation energy or enstrophy is monitored
in time, since it corresponds to a rapid growth (resp. decay) of the corresponding observable. The same
argument holds as for the turbulent state, namely that there is a risk to deal with an unbounded relative
attractor as an edge state. As shown in Ref. [317] bisection is still possible because of the self-similarity
property of the edge state. Eventually, it is shown in Ref. [318] that the issue of long-time asymptotic
states is in practice irrelevant because of the instability of TS waves.

There are further difficulties associated with the boundary layer context, all related to the issue of
finite times. Most perturbations travel in the positive downstream direction no matter their wall-normal
position [319]. Once perturbations have exited the computation domain it does not make sense to re-
cycle them using periodic boundary conditions. The situation might seem analog in channels and pipes ;
however in these parallel flows the equivalence between incoming and outgoing disturbances makes it rea-
sonable to recycle outputs into inputs, computationally and even experimentally (see Ref. [320]). There
is a simple, disappointing perhaps, but at least rigorous to handle this problem in spatially developing
flows : one needs to i) use computational domains that are as long as possible and ii) consider all the
dynamics as a finite-time phenomenon. The former condition is solely a matter of computational cost
and duration. The latter has deep mathematical implications, since even the notion of attractor does not
make any sense anymore. In particular, although the term "edge state" (formally an asymptotic regime
only) is still used, the right concept here is only that of "edge trajectory". Fortunately, a majority of
other concepts such as stable and unstable manifolds, Lyapunov exponents etc.. are easily generalisable
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to the finite-time framework [321].

Eventually, provided the edge manifold can be defined in finite time, so can the minimal seeds. Their
definition does not differ from the one used in previous flow cases since it is intrisically a finite-time notion
with an associated time horizon T . Nonlinear optimal perturbations in boundary layer flows have been
computed first in Ref. [309, 310] (initially without energy minimisation), whereas minimal states have
been computed recently in Ref. [322].

4.2 Competition between two transition scenarios
The application of the classical edge tracking requires, as always, the definition of a global observable

which vanishes for the laminar flow and reaches high values in the turbulent regime. The quantity chosen
in this study is the enstrophy associated with the streamwise vorticity only :

a =

(
1

vol(V )

∫
V

|ωx|2dv

) 1
2

, (4.3)

(note that the denominator vol(V ) is not crucial in the definition). Reporting on the results of bisection
best supposes a "short" and a "long" time horizon.

Figure 4.7 – Three-dimensional rendition of streamwise velocity perturbation along the edge trajectory
at t = 1050 (symmetric case). From Ref. [317].

4.2.1 Impact on edge tracking
The "short" time horizon corresponds to a computational domain of length Lx = 2000δ∗0 , where δ∗0

is chosen such that Reδ∗0 =
U∞δ

∗
0

ν = 300. This allows to carry out converged edge tracking over a time
horizon of T ≈ 2000 [317]. The "long" time horizon corresponds to a computational domain of length
Lx = 3000δ∗0 , still with Reδ∗0 = 300. This is not much longer except that a new trick was used, as detailed
in the appendix of Ref. [318] : perturbations to the base flow are considered in frame moving with pres-
cribed velocity 0.8U∞. This numerical technique allows for much longer edge tracking with T ≈ 15, 000.
The technique might be useful in many instances where localised disturbances travel through spatially
varying environments.
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For the short time bisection there is essentially no strong difference from the planar cases, except
that the bisection time is limited. A localised initial condition similar to Ref. [270, 313] was first imposed
with spanwise symmetry. The reason for this choice was initially a scientific interest in hairpin vortices
suggested to impose their symmetry, coupled to the initial hope to find a simpler edge state in the presence
of discrete symmetries as in Refs [106, 128]. Two bounds aL and aT have been chosen by trial and error.
The dynamics of a(t) and other observables shows no sign of convergence and is characterised by a few
large-amplitude bursts. A snapshot of the velocity field along the edge trajectory after roughly 103 time
units is shown in figure 4.7. The striking features of this perturbation include its spatial localisation in
three directions, the robust presence of long low-speed streaks (in blue). The length of the state fluctuates
in time as the main structure upstream sheds short-lived perturbations further downstream, in a manner
comparable to puffs in pipe flow. Despite these fluctuations, it was found that a simple rescaling of most
spatial quantities by the "local" displacement thickness δ simplifies much the dynamics.

Ωx = (δ∗0/δ)
1
2

(
1

vol(V )

∫
V

|ωx|2dv

) 1
2

, (4.4)

Ωy = (δ∗0/δ)
1
2

(
1

vol(V )

∫
V

|ωy|2dv

) 1
2

, (4.5)

W = (δ∗0/δ)
3
2

(
1

vol(V )

∫
V

|uz|2dv

) 1
2

. (4.6)

δ can be evaluated in several ways. In Ref. [317] the location of the edge state was monitored at every
time by the maximum local wall shear stress, and δ was simply the value of δ∗ at this location. In Ref.
[318] a velocity barycenter was determined at every time, and the value of δ∗ was determined at this
location. The rescaling follows Eq. 4.6, and the dynamics expressed in these variables is included in figure
4.8. This state portrait suggests an approximate time periodicity. Note that the original time coordinate
also needs to be rescaled by δ∗. This suggests that, even if the edge state was time-periodic in the rescaled
variables, the time between two sucessive bursts would diverge in the original units. Besides, since the
wall-normal and spanwise extents of the edge state both increases as fast as δ∗(t), larger domains are
required for longer time horizons. This sets a severe limit to the number of bursts that can be captured
in a single bisection. As for non-symmetric initial conditions, on short timescales the situation is not very
different. No convergence towards a simple state is found, instead bursts seems unavoidable.
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Figure 4.8 – Left : Phase portraits using recaled variables (symmetric case).

Despite the relative shortness of the edge tracking, figure 4.8 suggests that a relative attractor with a
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self-similarity property can exist. We note that, in analogy with the reduction of continuous symmetries
that has emerged recently [40], there is also a possibility to reduce continuous symmetries together toge-
ther with self-similarity [323], but it has never been used in fluids. The present self-similarity property is
surprisingly straightforward to justify : the factor (δ/δ∗0) prefactor rules how the boundary layer thickness
evolves with time, as well as the effective width of the localised state. Quantities such as enstrophies, edge
state dimensions etc... simply adapt to the ever-thickening boundary layer. It is surprising that the size
of this coherent structure manages to adapt to its changing environment on such a fast timescale, rather
than adiabatically given that the edge state travels at speed O(U∞). Nevertheless it is simple enough to
warrant that a priori the concept of relative attractor makes sense in the Blasius boundary layer. As we
shall see yet, longer time horizons blur this simple picture.

Figure 4.9 – Phase portraits using rescaled variables in the non-symmetric case for subliminal (left) and
supraliminal (right) perturbations.

The long-time case has been analysed only in the presence of non-symmetric initial condition. Three
space-time diagrams (using only rescaled variables) illustrate the situation : figure 4.8 documents the
liminal perturbation, while figure 4.9 illustrates the late-time dynamics of supra- and sub-liminimal per-
turbations, respectively. These diagrams have been constructed by monitoring at every time the stream-
wise position xG and speed ẋG of the velocity barycenter, then using ẋG as a moving frame. Figure 4.8
illustrated the dynamics non-symmetric edge trajectory. Again it features a small number of bursts that
correspond in space to streak switching events. Although no conclusion related to the long-time dynamics
can be made at this point, the dynamics of the fully localised Blasius edge state on such time scales is
comparable to that of the fully localised edge state in ASBL : long localised streaky flow where low-
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Figure 4.10 – Space-time diagram of ux(x, y, z, t) for z = −10 and y = yp for the trajectory away from
the edge manifold. Streaks decay while the Tollmien-Schlichting wavepacket grows in amplitude and form
a turbulent spot.

and high-speed streaks switch spanwise position quasi-periodically. For the supra-liminal perturbation,
the differences with other localised edge states are not striking : the central low-speed streak undergoes
an instability which very rapidly (less than 50 rescaled time units) induces a turbulent flow. It takes
approximately the same timescale of 50 reduced time units for the ensuing turbulent spot to spread
in the spanwise direction and fill the computational domain downstream. The difference concerns the
sub-liminal case. From t∗ = (δ∗0/δ

∗)t=1200 to 1400, the edge state appears to decay in amplitude like
in a standard relaminarisation event where the largest scales decay last. For 1400<t∗<1500, spanwise-
independent waves start to propagate downstream while increasing in amplitude. At t∗ ≈ 1400 these
waves undergo several destabilisations at various z-positions. Each destabilisation invariably leads to a
turbulent spot, and the flow appears fully turbulent for t∗>1600. There is no doubt that these waves
are Tollmien-Schlichting waves. This is confirmed by their phase speed, range of wavelengths and by the
space-time diagram (x, t) displayed in figure 4.10. An interesting feature in this diagram is how TS waves
grow upstream of the streaky edge state, not at the same location (the mechanism pointed out in Ref.
[324] actually prevents TS waves to grow on streaks). Since streaks and TS waves travel at unambiguously
different velocities, the TS waves are quickly left behind. It is thus not strictly impossible to observe, out
of one single localised initial condition, two patches transitioning through different mechanisms.

The above results unfortunately has nasty consequences for the classical bisection process. On short
times it is still possible to monitor without ambiguity, out of a single observable a(t), on which "side"
of the edge manifold the perturbation lies : the laminar side is characterised by trajectories where a(t)
decrease monotonically to zero. Over longer times one observable is no longer enough for such a task :
an initial decay has little meaning given that ultimately, all trajectories will experience transition (be is
via TS waves or streaks) and display increasing a(t). It is hence no longer possible to know on which side
of the edge manifold a given state lies. This has nothing to do with the choice of the observable a(t). It
is not even known whether the edge manifold is still orientable and whether its sides have a particular
meaning. The situation in practice is illustrated in figure 4.11 using precisely the observable a(t) used in
Ref. [318]. For a given choice of the bound aL, some trajectories might be interpreted on short times as
going laminar, whereas in fact they turn turbulent at later times. Bracketing a given trajectory becomes
thus impossible as long as one cannot monitor whether the ensuing transition is due to the destabilisation
of TS waves or not. Long-time bisection leads hence to an ’uncertain area’.

Although this is the initial definition adopted in other contexts, one can no longer claim that the stable
manifold of the edge state divides the state space into two distinct basins of attraction. All perturbations
end up at later time turbulent, except perhaps the ones lying directly on that manifold to be found.
There is however an edge which, to the accuracy permitted in the "uncertain area’, marks the boundary
between two different types of trajectories : those experiencing transition through streak breakdown and
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Figure 4.11 – Observable a(t) vs. t during application of the bisection algorithm. The green vertical line
marks the maximum time for the edge tracking algorithm using that observable, and the two dotted lines
stand for the observable bounds a = aL and aT (see text).

those undergoing destabilisation of TS waves. In other words, the edge marks the boundary between
bypass and classical transition. The latter involves trajectories with, in principle, an early and transient
relaminarisation stage as in figure 4.9 (right). The existence of an uncertain area suggests that some
perturbations might transition twice at two different locations, in a mixed-type transition.

4.2.2 Application to wind tunnel experiments

The conclusion from the previous results is difficult to handle : bisection in spatially developing flows
can only be trusted over finite time horizons, however the edge state is defined as an asymptotic state
only. This contradiction is not necessarily important for the original purpose of explaining the main me-
chanisms occuring during bypass transition. Indeed, as long as the excitation parameters do not favour
the rapid growth of TS waves over streaks breakdown, bypass remains the only important phenomenon. It
is hence important to delimitate the parameter range of applicability of the edge-bypass picture. Figure
4.12 contains parts of the experimental database by S. Shahinfar and J. Fransson [325, 326] for wind
tunnels excited by incoming grid turbulence, namely the transition values of Rex = xU∞/ν depending
on the turbulence level Tu (in %). These x-locations are compared with the locations where transition
occurs latest in the present initial value problem. Such locations are close to Rex ≈ 106, to be compared
also to the theoretical onset for TS waves at Rex = 9.1× 104. This gives a lower bound for the Tu levels
required in practice to observe transition earlier than suggested by edge tracking. The minimal corres-
ponding Tu levels are around 1.5%. This corresponds to the "weak bypass regime" reported originally by
Narasimha [327]. As a reminder, classical transition dominates for Tu < 1% whereas bypass is classically
observed even up to 6%. The above limitations still offer a comfortable zone in which to investigate streak
breakdown with the help of the edge state as a base flow.

4.2.3 Low-order modelling

The results from Ref. [318] make it clear that the bistable picture in the introduction of Chapter 3
does not apply to the Blasius flow, because the laminar fixed point is itself unstable. This property is not
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Figure 4.12 – Tu(%) versus Rex for experimental bypass transition data [325], showing intermittency of
10% and 90% (thick lines) and 50% (dashed line). The arrows mark the Rex-limitation of the bisection
algorithm. For larger times and Rex, mixed transition is expected (grey area).

a consequence of the spatial development of the boundary layer, and it can a posteriori manifest itself in
other flows including planar ones. The instability of the laminar base flow to Tollmien-Schlichting waves
has been also reported in plane Poiseuille flow [20], in ASBL [328], annular pipe flow and many others
(it is shorter to insist instead on the fact that such unstable waves are not found only in pipe and pCf).
However in these flow parametrised by a meaningful Reynolds number Re, this instability occurs only
above a given value Re = Rec which in general exceeds by several orders of magnitude the onset of bypass
transition. For all these flow cases one expects, in analogy with the results in the Blasius flow, that the
notion of edge manifold changes or loses its relevance beyond Rec. Two such cases have been documen-
ted recently. The simplest is bent pipe flow [329] for which the turbulent regime can be in competition
with a Hopf bifurcation of the laminar flow. From a dynamical point of view, this case is hardly more
complex than the standard case without Hopf bifurcation. Indeed, the Hopf bifurcation is supercriticial :
the possible attractors are, on one hand, either the fixed point or the limit cycle and, on the other hand,
the turbulent state. Bisection and edge tracking are expected to proceed well and to identify the edge
state. A second example is plane Poiseuille flow in a small periodic box [330]. This case is more difficult :
the edge state exists before Rec as a TW state, which can be continued beyond Rec. The instability to
TS waves is known to be subcritical [331] and to include many bifurcations. As a consequence, does the
TW state remain an edge state beyond Rec ? The amount of open questions regarding the edge manifold
in the presence of an additional instability of the base flow suggests the use of a low-dimensional model.
The reduced cost of the simulations would leave ample room for parametric studies or exploration, as
opposed to the very costly Blasius simulations.

Autonomous model

The two-dimensional DM2D model by Dauchot and Manneville [17] was used in Chapter 3 to introduce
the concept of edge in the bistable context. In the same way we wish to introduce a new low-order model
that would cope with the above constraints, yet with maximal simplicity. It was decided to generalise the
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DM2D model into a three-dimensional "DM3D" model, with the same variables x1, x2 and an additional
variable x3. The model should satisfy the following properties :

— when restricted to the two first dimensions x1 and x2 (i.e. when x3 = 0), the model coincides with
DM2D

— the laminar fixed point L is linearly unstable above some parameter
— the nonlinear terms conserve the new total energy E = x2

1 + x2
2 + x2

3.

These constraints lead to the three-dimensional below :

dx1

dt
= s1x1 + x2 + x1x2 (4.7)

dx2

dt
= s2x2 − x2

1 + σx2
3 (4.8)

dx3

dt
= s3x3 − σx2x3. (4.9)

Eqs. 4.7, 4.8, 4.9 are characterised by the two same constants s1 < 0, s2 < 0 as the original DM2D model
(s1 = −0.1875, s2 = −1) [17] . It involves also the additional parameter s3, interpreted as the exponential
growth rate of the new instability of L. Furthermore, s3 is the control parameter for this new study. The
instability is only present if s3 > 0. The constant σ = −1 allows the instability to saturate, it occurs in
the third as well as the second equation by virtue of the conservation of energy by the nonlinear terms.

The bifurcation diagram of the DM3D model, as s3 increases, is reported in figure 4.13. The hyper-
plane P : {x3 = 0} is an invariant set of the dynamics for all s3. For s3 < 0, the invariant sets of the
system are only those of the DM2D model, embedded in R3. The three fixed points L, E, T ∈ R3 are
respectively the stable "laminar" attractor L, the hyperbolic saddle point E, which acts as the "edge
state", and the stable "turbulent" fixed point T . They remain the same for all s3 but their stability will
depend on s3. Figure 4.13 can be read as follows :

— For s3 < 0, P is locally stable and the dynamics transverse to P is contracting. The edge manifold
Σ is a two-dimensional surface invariant along x3.

— At s3 = 0, L loses its stability in a supercritical pitchfork bifurcation. A new stable attractor S
emerges for 0 < s3 < s3H ≈ 0.0296. This is the start of zone I in figure 4.13.

— At s3 = s3H , via a supercritical Hopf bifurcation S becomes unstable in favour of a stable limit
cycle C. For s3H < s3 < s3c ≈ 0.03125, the limit cycle C increases in size.

— At s3 = s3c, the attracting limit cycle C collides with P simultaneously at the points E and L.
— For s3c < s3 < s3d ≈ 0.063, E still has one unstable direction but all trajectories outside P

converge now to the turbulent attractor T . This is zone II in figure 4.13.
— At s3 = s3d, S merges with the saddle point E in a pitchfork bifurcation.
— Beyond s3 = s3d, E still exists but it has now two unstable directions, include now one unstable

direction transverse to P. This is zone III.

The edge manifold appears robust for all s3 ≤ s3c, in the sense that it separates two separate basins
of attraction. Note that the attractor in the "laminar basin" is not necessarily the fixed point L, but
can also be instead S or C. The collapse of the edge manifold begins at the boundary crisis at s3 = s3c.
According to the typology defined by N. Lebovitz [332], the edge turns from strong to weak : it separates
the state space locally but not globally. All orbits outside Σ are attracted by T and they may "only be
distinguished by features such as orbital complexity and time to reach the attractor" [332]. However for
s3c < s3 < s3d, E remains a saddle point with one unstable direction. Classical bisection would output
E as an edge state. The "edge manifold" exists, yet it no longer separates the state space into two basins
of attraction, rather it delimitates the fast routes from the slow ones. The slow routes comprise all tra-
jectories that transiently visit the neighbourhood of L before converging towards T . The last bifurcation
at s3 = s3d corresponds to the loss of accessibility of E. Beyond s3 = s3d no trajectory outside P leads
to E. Classical bisection would fail in that case as it would output T . There is neither any edge state nor
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edge manifold any longer [333].

Figure 4.13 – Bifurcation diagram for the DM3D model as s3 is increased. L : laminar fixed point, E :
saddle point (edge state), T : turbulent fixed point, S : secondary laminar fixed point.

A surprisingly simple correspondence between the model and the hydrodynamic cases mentioned ear-
lier can be claimed. The case of bent pipe flow corresponds to zone I in figure 4.13. It is essentially the
bistable picture with the classical edge notion. The main difference is that the attractor in the laminar
basin is not the laminar solution but another state bifurcating from it. Zone II corresponds to the dy-
namics discussed in Ref. [330] : the edge state solution still exists and can be identified using bisection.
However its stable manifold does not separate the state space into two basins anymore, but into zones
with different transition properties. State portraits corresponding to Zones I and II are displayed in figure
4.14. Eventually zone III displays the dynamics closest to the Blasius case, where bisection reveals unable
to identify any edge state. The edge state existing for lower s3 is still a solution of the system but it has
changed stability and dynamical role.

Non-autonomous model

Eq. 4.9 is still relatively ill-adapted to the description of the edge dynamics in the Blasius boundary
layer because it depends explicitely on an external parameter s3. By contrast, for the Blasius flow (or
any spatial developing flow) one would expect the control parameter to evolve with time, in analogy with
the Reynolds number which evolves with the position of the localised state as time progresses. Assuming
for simplicity a single propagation velocity, Eq. 4.9 can be turned easily into an non-autonomous O.D.E.
system by decreeing s3 = k1t+ k2 (with k1 > 0). The resulting system reads

dx1

dt
= s1x1 + x2 + x1x2 (4.10)

dx2

dt
= s2x2 − x2

1 + σx2
3 (4.11)

dx3

dt
= (k1t+ k2)x3 − σx2x3, (4.12)

The time interval is restrained to t ∈ [t0, t0 + TF ], with k1 = 0.73/TF and k2 = −0.1. Two trajectories
are represented in a three-dimensional state portrait displayed in Figure 4.15. The two corresponding
initial conditions lie at t = 0 on either side of the original edge manifold (i.e. the manifold existing for
s3 < 0) with a small non-zero value of x3. The non-autonomous dynamics is easier to describe than
its autonomous counterpart : either the trajectory reaches T directly, or it does so by first approaching
transiently the neighbourhood of L, leaving P locally near L and approaching it again near T .
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Figure 4.14 – Autonomous DM3D. Comparison between region I and II. Phase portraits for different
values of s3 close to the global bifurcation : (a) s3 = 0.031. The system presents a hard edge between C and
T , region I (b) s3 = 0.03125. Heteroclinic cycle close to s3c (c) s3 = 0.032, beyond s3c the heteroclinic
connection collapses and the edge Ws(E) becomes of the weak kind, region II. The blue and orange
trajectories illustrate the two newly born different routes to transition.
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Figure 4.15 – DM3D nonautonomous model. state portrait for two trajectories starting close to the edge
of DM2D and to the invariant plane P.
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Figure 4.16 –

4.3 Low-order modelling using cellular automata

We would eventually like to test the validity, in the Blasius boundary layer, of the nucleation scenario
involving a localised edge state. The nucleation scenario is based on the simple idea that the nucleation
and the spreading phenomena are two decoupled phenomena. The main idea is to analyse quantitatively
a real simulation of the bypass transition process in the Blasius boundary layer, in order to learn the
basic rules of turbulence spreading. Then in a second phase, the nucleation scenario, in the form of a
space-dependent nucleation probability, can be tested inside a simple automaton model featuring the
same probabilistic spreading rules. The transition statistics obtained that way can be compared with the
original statistics from the large-scale simulation or even from experiments. The nucleation scenario is
later labelled ’valid’ in case the turbulence statistics match well.

For simplicity, this study is restricted to short-time edge state dynamics explained earlier, so that
no Tollmien-Schichting wave is expected to interfere with the transition proces. This implies that the
equivalent turbulence level at the entrance (located at Reδ∗0 = 300) must lie strictly above 2%. The
chosen range of values of Tu is therefore 3–4%, while the integral lengthscale of the incoming turbulence
is set to L = 10.

The whole transition process was reproduced using costly Large-Eddy numerical simulation (LES)
of the incompressible Navier-Stokes equations with suitable boundary conditions, in a computational
domain of width Lz = 500δ∗0 . The same code and methodology as Brandt et al. [303] were used, as
illustrated in Fig. 4.16(top). The massive amount of space/time data collected in such simulations was
post-processed and reduced to binarised data on a plane, with a focus on laminar-turbulent coexistence.
A given location at the wall is either laminar or turbulent with a given probability p(R), where R is the
Reynolds number coordinate, e.g. Reδ∗ . In practice, because of the finite correlation lengths within the
flow, probabilities need not be defined pointwise but rather cell -wise, where the dimensions of a typical
cell will be defined later. This reduced dynamics becomes akin to a two-dimensional probabilistic cellular
automaton (PCA), consisting of two phases : laminar or turbulent, as illustrated in Fig. 4.16(bottom).
Within this approach, turbulent is identified using a Boolean variable. In a given cell at a given time the
laminar/turbulent nature of the flow depends, in a probabilistic way, on the neighbouring variables at
previous times.
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Figure 4.17 – Update rules determined directly from the LES simulations.

Figure 4.18 – Probabilities pp pf , pb and ps for turbulence to respectively persist, move forward, back-
wards or sideways among the cells defined in figure 4.17. These probabilities are deduced from the LES
data and plotted versus the streamwise position x− x0 for different values of the free-stream turbulence
level Tu from 3 to 4 (expressed in %).

As an indicator for turbulent motion the local spanwise shear stress at the wall Q = ∂w/∂y|y=0 is used
with a threshold value of 0.3. The size of a cell, as well as the timestep in the automaton, are deduced
from the autocorrelation functions of Q in space and time. The data is finally regularised using Gaussian
filtering in order to remove spurious events. This yields a two-dimensional array with discretisation on
Nx ×Nz = 204× 76 gridpoints.

The probability rules of the PCA are schematically shown in 4.17. Each temporal update follows two
steps. The first step is deterministic and models the advection, translating all cells by one unit in the
downstream direction. In the second step, a turbulent cell can persist with probability pp and infect neigh-
bouring cells, spreading turbulence forward, backward or sideways (left and right) with probabilities pf ,
pb and ps, respectively. In addition, spontaneous nucleation of turbulence is allowed for with probability
pc as in Ref. [259]. The four probabilities pp, pf , pb and ps are directly identified as functions of R from
the simulation data. Their small variations in the transitional region suggest to model these functions as
constants, represented as solid lines in figure 4.18.

The exact choice for the nucleation rate pc(R) is however more delicate and has a crucial influence
on the dynamics of the automaton. It is clear that pc = cst is not a physically relevant hypothesis.
The experimental literature often assumes, instead, pc to be a Dirac function, consistently with the old
"concentrated breakdown hypothesis" [334, 335]. Determining the exact function form for pc from data
turned out to be too demanding in terms of simulations to be deduced and was given up. The nucleation
rate has instead been modelled using a minimal one-dimensional approach to the edge state concept.
This requires the knowledge of a scalar quantity A(x(t)) to be defined. Let AE be the amplitude of the
edge state, assumed constant at leading order. For turbulence to develop downstream from a nucleation
event, it is required that the amplitude A = A0 at the entrance of the domain satisfies A0 ≥ AE . The
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Figure 4.19 – Top : Sketch to explain the nucleation model based on the edge state concept and yielding
the nucleation rate pc(x). Bottom : Nucleation rate pc(x) estimated for various values of the free-stream
turbulence level Tu from 3 to 4 (expressed in %).

instability of the edge state implies that, after some time corresponding to a distance x, the amplitude
A grows exponentially from A0, until it reaches the threshold value AT . The way how A0 is distributed
statistically at the entrance of the domain x = 0 determines indirectly the nucleation probability, using
the differential relation pc(x)dx = p(A0(x))dA0 illustrated in figure 4.19(top). A standard Gaussian dis-
tribution has been assumed here, which leads to an analytical expression for pc(R) documented in Ref.
[336] and shown in Figure 4.19(bottom) for different values of Tu. The higher the value of Tu, the earlier
the nucleation of a spot, and the narrower the distribution of pc(x). Direct measurements of ur.m.s.,
considered as a relevant choice for A, have yielded different distributions closer to Gamma distributions,
yet the philosophy behind this modelling does not change. Note that no variant of the model ever predicts
concentrated breakdown.

Eventually, by seeding the flow statistically using the nucleation rate pc displayed in figure 4.19 and
using the constant fits from figure 4.18, the automaton reaches a steady regime with fluctuations. The
main quantity of interest is the intermittency factor γ(R), identical to the turbulent fraction introduced
in the previous chapter. The qualitative as well as quantitative match with the experimental measure-
ments, as well as with the computational results from the simulation, are very convincing. This suggests
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Figure 4.20 – Intermittency factor γ versus streamwise position. Top : experimental measurements from
Ref. [304] (using a rescaled streamwise variable). Bottom : model versus LES measurements.
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that the decoupled dynamics "nucleation + spreading" is a relevant picture for modelling. The match is
equally good when it comes to other statistical quantities [336]. Besides, we note that independently of
the details of the model, the distribution for γ is invariably sigmoid–shaped. This distribution differs from
the distribution suggested by the Directed Percolation hypothesis, which exhibits a non-derivable singu-
larity at γ = 0. Leaving aside the issue of spatial development, which probably has no influence on such
local issues, the sigmoid-shaped scenario seems particularly adapted to the development of turbulence
downstream of a grid, in the presence of a non-homogeneous nucleation rate. A similarly-looking curve
was also found in recent experiments of channel flow [228, 337], although it was not necessarily recognised
as such by the authors. By contrast, the nucleation rates in models compatible with the DP scaling are
implicitely homogeneous. This important example suggests that, depending on the way turbulence can
be nucleated spatially, different universal scenarios can be envisioned.

4.4 Conclusion
Establishing a state space picture for turbulent spots in the Blasius boundary layer is not a trivial

generalisation of the approach followed for parallel shear flows. However, although the concept of turbulent
attractor is not relevant due to the spatial development, the concept of edge manifold is tractable and
can be investigated using the classical bisection algorithm. Unsteady edge trajectories become hence the
new object of study. Their internal dynamics reveals localised streaks with bursts and streak switching,
which is comparable to parallel flows such as channel flow or the boundary layer with suction [115].
An additional complication blurs the picture : the edge trajectory is well defined only over moderate
times [317]. Over long timescales the linear instability of the laminar base flow to Tollmien-Schlichting
waves can not be ignored. These waves form localised wavepackets that lead invariably to turbulent
spots later downstream. Their very existence makes the usual concept of edge irrelevant as such, however
trajectories on the edge manifold remain interpretable as mediators between two types of transition : the
bypass and classical scenarios [318]. This distinction appears relevant in wind tunnel experiments for levels
of incoming turbulence Tu above 2%. The structure of state space close to the edge manifold has been
understood and reproduced using a three-dimensional O.D.E. model system, obtained as a generalisation
of the two-dimensional Dauchot–Manneville [333]. Eventually, realistic LES simulations of the bypass
process have been analysed directly. The short-time edge model can be used to relate theoretically the
nucleation rate of turbulent spots to the distribution of incoming turbulence. The relevance of this model
has been tested within the context of a data-driven celullar automaton, where the spreading probabilities
have been directly inferred from the large-scale simulations [336]. The model reproduces without any
difficulty the mean intermittency curve, a sigmoid-shaped curve different from the critical scalings from
directed percolation, explained by the non-homogeneous nucleation rate. This project in its entirety
suggests that the realistic bypass transition process in spatially boundary layers can be regarded, on
moderate timescales, as an activation process where the edge state plays the role of the unstable saddle.
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5

Conclusions and outlooks

5.1 Conclusions

5.1.1 State space organisation

A large part of the research illustrated in this thesis deals with a temptative sketch of the state space
of a fluid system where transition to turbulence is possible from some (but not all) initial conditions. In
most cases a robust picture needs to include an edge hypersurface that separates the state space in two
different basins of attraction [81, 97, 100]. That picture gets challenged in a few cases : when the turbulent
state is not a formal attractor, or when the laminar state itself is unstable. The edge manifold has been
shown to persist in such cases although its nature as a separatrix is no longer guaranteed in the latter case
[333]. Two locations on this edge manifold are worth deeper investigations : the local attractors within
the edge, namely edge states [177], and the lowest-energy perturbations namely minimal seed [178]. The
former forms an invariant set often displaying chaotic dynamics, while the latter is a well-defined optimal
way of triggering transition in the frame of initial value problems (IVPs). Generalising such a picture
to a framework different from IVPs is a welcome challenge. Resolvent analysis has been an increasingly
popular tool in this regard [16, 25] although the problem of initial conditions is not fully absent of that
formulation either. Another case where the edge picture needs an update is that of subcritical boundary
layer flow. While parallel boundary layer flows (e.g. ASBL) do not introduce any additional difficulty
with respect to the other planar flows [338], an additional complication arises in spatially developing
boundary layers due to the absence of governing parameter. Achieving a description of transitioning
boundary layers in terms of dynamical systems was not a trivial generalisation of the concepts developed
by former authors : the mathematical notion of turbulent attractor itself is formerly fragile, and the
notion of bounded edge trajectories does not emerge unless a rescaling by the boundary layer thickness
is considered [318]. For spatially developing boundary layer flows, it turns out that the notion of edge
trajectory is more useful that the (asymptotic) notion of edge state. Consequently a finite-time description
and formalism are better suited to the description of the bypass transition process, as adopted in the
recent PhD manuscript of Miguel Beneitez [339].

5.1.2 Phenomenology depending on the scale of observation

The increase in computing power in the last decades has accompanied the recent progress in unders-
tanding transition to turbulence. In particular, locally well-resolved simulations of the governing equations
are now routinely achieved. However the spatial extent of the flows under consideration is in computa-
tions always finite. This has lead to difficulties related to the interpretation of the computation results.
Some confusion has inevitably taken place when considering minimal flow units (MFUs), in other words
spatially periodic domains of smallest size able to accommodate non-trivial flow dynamics. Designed his-
torically [28] as a numerical means to simulating the flow at a cheaper price and in isolation from the
largest turbulent scales, the MFU concept has evolved into an autonomous paradigm of computational
turbulence, independently of the experimental reality. In such small domains, the velocity field is fully cor-
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related with itself at least in the spatial sense. This artificial constraint turns turbulence into mainstream
temporal chaos, and the clean application of dynamical systems concepts proceeds as expected, despite
the technical difficulties associated with continuous symmetries and high dimension. Although the limi-
tations of this deterministic view have been frequently mentioned in the last decade, notably by Paul
Manneville, a few concepts developed in that framework have proved robust to generalisation. This is the
case in particular for edge states and minimal seeds : as the computation domain size is increased, these
structures become progressively spatially localised. In the limit of infinitely large domains the localisation
property becomes robust. Edge states and minimal seeds remain hence relevant to spatially unbounded
experimental contexts, although their natural instability makes their experimental investigation arduous.
Since edge states are equilibrium regimes, they are governed by a nonlinear process usually referred to as
self-sustaining process (SSP). The first SSP was originally suggested by F. Waleffe and co-authors in the
context of a periodic cell of plane Couette flow [9]. The present contribution demonstrates the multiplicity
of SSPs, and the crucial differences between different SSPs, notably in the presence of localisation [130,
153, 193].

The possibility to change from one scale of observation to another one, simply by considering different
spatial extents among the computational parameters, completes this description. For a given periodic do-
main (with a size fixed in outer units), reducing the driving Reynolds number makes the turbulent state
feel increasingly the boundary conditions. Whatever the domain size, below a size-dependent value of Re
the flow dynamics will manifest self-correlation effects due to the spatial periodicity. The consequence
is usually a boundary crisis turning a sustained (although possibly intermittent) turbulent state into a
chaotic regime with finite lifetimes, i.e. a chaotic saddle. This phenomenon, rather than a computational
nuisance, should be seen as a handwavy explanation for the occurrence of local relaminarisation in shear
flows. Similarly, increasing the domain size makes the apparition/disappearance of the turbulent state
qualitatively closer to the concept of absorbing phase transitions. Important efforts have been devoted to
the question of whether or not subcritical transition to turbulence obeys the universal class of directed
percolation independently of finite-size effects. Although the emerging answer is predominantly positive
for parallel flows, again this thesis has highlighted different scenarios specific to boundary layer cases.
For parallel boundary layer flow cases a discontinuous transition seems to be the rule [1], because wall-
localised structures happen to be ruled out by kinematic effects. For spatially developing boundary layer
flows, the situation is more subtle. The non-homogeneity of the base flow in the streamwise direction
implies a non-homogeneous spot nucleation in space (but homogenous in time). By contrast in parallel
flows, usually described as IVPs, spots have to be nucleated at early times but with equal probability
through the spatial domain. Although parallel flows seem to fall, in the thermodynamic limit, into the
class of directed percolation, for spatially boundary layer flows this description of the nucleation rate leads
to a dramatically different dynamics : the turbulent fraction increases like a sigmoid with the distance
downstream, not like a power law. This new distinction allows one to shed light on formerly ambiguous
results. In recent experiments of channel flow [228] for instance, turbulence was generated upstream using
a honeycomb and left to decay by itself, and the departure from power-law in intermittency statistics was
rapidly attributed to finite-size effects. The present point of view (based on an analysis of the nucleation
rate both as a function of space and time) suggests a situation closer to the bypass case as in developing
boundary layer flows, with intermittency statistics fully consistent with a sigmoid curve.

5.2 Outlooks

5.2.1 Patterning mechanism

Although a number of new elements has contributed to a better understanding of the transitional
regime of wall-bounded shear flows, much remains to be understood. In particular the missing piece in
the puzzle seems to concern the origin of the streamwise localisation of turbulent patches, from which
much follows. Suggesting self-sustaining processes compatible with streamwise localisation is a necessary
first step. However it does not necessarily indicate why streamwise localisation is the only stable option
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for the turbulent flow below some value of the Reynolds number. Another related aspect is the mechanism
present at the onset of laminar-turbulent patterning, before defects start to appear inside the patterms
themselves. Recent simulations suggest that the laminar-turbulent structures are the most pronouced
instances of a simpler amplitude modulation [244]. Does this modulation arise as an instability of the
homogeneous turbulent flow ? Can it even be compared qualitatively to a Turing instability mechanism
as found in standard reaction-diffusion systems [296] ? Or is a fully different picture needed, like the
crystallisation picture recently suggested in Ref. [297]. Beyond the onset, the finite-amplitude patterns
themselves keep some of their best secret unanswered. The data in chapter 3 has shown that the angle
as well as the wavelength selection, and their dependence on the Reynolds number, are not trivial. The
values determined from numerics correspond to a given numerical or experimental protocol, which sug-
gests multistability, a feature already noted in Ref. [66]. It is yet not understood whether the range of
possible wavelengths and angles obeys well-defined rules, and whether such rules can be deduced from
first principles, either the Navier–Stokes equations or even model equations. The thesis of Pavan Kashyap,
currently PhD student at LISN, will aim at answering some of these open questions.

5.2.2 Rough walls

One of the reference engineering plots in hydrodynamics is the Moody diagram, which features the
energy loss in the flow due to mostly viscous effects. It is a well-known fact that at sufficiently high Rey-
nolds numbers the "smooth" part of the Cf curves is a poor description of the reality, and that the mean
roughness of the walls needs to be taken into account. This observation naturally suggests that no study of
transition to turbulence is complete without the eventual inclusion of wall roughness. The high-Reynolds
number range where such effects manifest themselves calls for a modelling strategy. It is not fully unders-
tood how much roughness plays a role in the intermittent range of values of Re where spatio-temporal
intermittency is the dominant dynamics. To start with, there has not been any convincing dynamical
systems approach to the rough case so far. Although the linear stability of the corresponding laminar
flow can be envisioned, the recurrent issue of selecting the right computation domain size emerges again.
Although recently a minimal flow unit framework was suggested for rough flows [340], the intrinsically
disordered nature of the roughness landscape appears rather incompatible with the notion of ’minimal’
domain.

A preliminary study of the patterning regime of plane Couette flow under the hypothesis of rough
walls has appeared recently [341, 342]. It is based on a simple statistical model where the influence of the
roughness elements amounts in average to a damping force, applied in the streamwise direction and de-
pendent only on the distance from the wall. This study suggests that the transition phenomenon is hardly
affected by weak roughness amplitudes of less than 10%, consistently with the fate of the high-Re picture
when considered at sufficient low Reτ [343]. For larger amplitudes exotic structures such as non-oblique
stripes were predicted. These results call for a wider range of values of Re of investigation, and possibly
other flows, and compared with experimental and model-free numerical investigations. Another point of
view on turbulence can be adopted by considering, rather than developed turbulent regimes, transients
such as the growth of turbulent spots. This would be closer to the modelling approach adopted by Y.
Pomeau [179] and later D. Barkley [180] based on front motion. Finally, "rough" wall geometries do not
reduce to rigid solid walls that are not flat. A number of natural situations exists where knowledge of the
fluid-structure interaction is crucial. They include non exhaustively vegetated canopies [344, 345], soft
and even hairy surfaces [346].

5.2.3 Control of subcritical transition

In some circumstances (most trivially for drag reduction) one wishes the flow to remain laminar at
all times. Since the laminar state is usually already linearly stable, the aim of control in such a case
would be, rather than stabilising the laminar state even more, to either destabilise the turbulent state,
or to reduce the size of its attraction basin. The robust presence of a saddle state at the root of the
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laminar-turbulent distinction makes it ideal for nonlinear control strategies. The goal becomes simply to
play on the parameters of the system such that a given initial condition finds itself on the other side of the
boundary. This simple idea has been surprisingly under-exploited. A notable exception is the study by
G. Kawahara [347] who managed to stabilise numerically a minimal flow unit of turbulent plane Couette
flow by adding suitably quantified spanwise rotation. It is my personal opinion that simple instances of
subcritical flow transition can open a new avenue of control strategies with an emphasis on nonlinear ra-
ther than linear properties. However, as often size matters : a successful algorithm in a minimal flow unit
can fail in an arbitrary large domain. As seen in Chapter 3 the dynamical systems perspective becomes of
a questionable interest when dealing with extended flow systems or experimental condition. Therefore an
effective control strategy should be developed by taking this limitation into account. Recently, a simple
methodology was suggested by Hof and co-workers [348] based on a mean flow perspective. A blunted
mean flow profile is less efficient at supporting Waleffe’s self-sustaining process [30], therefore any way to
sufficiently blunt that mean flow should make relaminarisation effective. This method is heavily reminis-
cent of Large Eddy Break-up devices developed much earlier in (higher-Re) wind tunnels investigations
(see e.g. Refs [349, 350]).

5.2.4 Non-Newtonian rheologies

The results presented in this thesis are limited to the context of Newtonian fluids. Basic evidence sug-
gests that one of the simplest yet effective passive control strategies to reduce the drag is to change the
fluid. This can be achieved efficiently by, in the case of liquids, adding polymers [351] whose concentration
is a new parameter of the problem. There are well-known analytical closures in the literature for such
rheologies such as the Fene-P model. The addition of an additional parameter (usually in the form of a
Weissenberg number Wi) opens up a fully different zoology of states including the celebrated Maximum
Drag Reduction state (see e.g. [352]) and the recently discovered regime of elasto-inertial turbulence [353].
Interestingly for the present purpose, the classification between edge and turbulent regimes put forward
in Newtonian fluids also has its relevance in the presence of polymers at least for moderate values of Wi,
mainly because the structure of the edge states make them poorly sensible to the polymers [354]. The
situation for other rheologies remains almost entirely open as of now. The inclusion of surfactants (e.g.
washing-up product into water), either added directly into the bullk of the fluid or inside gas bubbles fed
into the flow, is also potentially interesting as another way of reducing drag (see e.g. Ref. [355]).

5.2.5 Towards more turbulent shear flows

Ultimately, like in the conclusions of most hydrodynamical studies I am expected to discuss the ex-
tension of the present theories to higher Reynolds number. Two questions arise for the present thesis.
Firstly, how does the transition process evolve for higher values of Re ? Secondly, now that we can pretend
to understand the transient transition process, does it teach us anything new about the nature of the
turbulent flow itself ?

As for the first question, it was partially treated here in Chapter 2, where the dynamical systems
picture can naturally be pushed to higher values of Re. Surprisingly, the transition process becomes
simpler for larger Re at least when the computational domain scales in outer units : finite lifetimes of
the turbulent flow are too large to differ from the infinite lifetime phenomenology, edge states feature
critical layers and their eigenspectrum simplifies too [107]. However it is not obvious that continuation
in outer units is the most relevant option from a physical point of view [136]. It was also discussed how
this picture evolves in arbitrarily long computational domains. For localised states only continuation in
outer units makes full sense because inner units are not appropriate for localised flows. For outer unit
continuation it was confirmed that the usual saddle point picture holds, however without any critical
layer in physical space. The phenomenology of a rapid spot nucleation for high enough initial disturbance
amplitude, based on the existence of a high-Re localised edge state, is hence expected to be a robust
picture.
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As for the second question, the answer is less clear. The general trend in shear flows is that the edge
regime is increasingly intermingled with the turbulent state as Re is lowered. Conversely, as Re increases,
several features are worth remarking. The edge and the turbulent regime are increasingly separated both
in state space and in energy levels. Although, loosely speaking they were born together in a saddle-node
bifurcation, the edge and turbulent regimes are also increasingly different from the point of view of the
temporal and spatial scales involved. As often speculated, a full dynamical systems description of the
turbulent state at high Re, in terms of invariant sets and periodic solutions, seems vain : the state space
gets increasingly complicated and high-dimensional. Besides the multi-scale and multi-frequency nature
of the flow lends itself poorly to the identification of one-frequency solutions. If such solutions exist they
will be both hard to find, and difficult to justify as templates for the turbulent dynamics [356]. The
high-Re fate of edge states is, again, different. Edge states remain essentially large-scale structures (at
odds with the initial framework of the ’near-wall turbulence’ for which they were originally introduced).
The only small scales supported by such solutions are found within critical layers, should they exist.
However the self-sustaning process at the core of the edge state’s existence stays the same as put forward
in Ref. [108]. On the other hand, the self-sustained process associated with the turbulent flow, currently
re-visited by several teams at higher Re [357–359], becomes increasingly complicated. That leads to an
auxiliary question of, perhaps, an even deeper interest : are critical layers an important concept or a
mathematical oddity ? Can they be related succesfullly to the occurrence of uniform momentum zones in
developed turbulent flows [360] ? Or, more philosophically, to the occurrence of blow-up singularities and
of a finite dissipation in infinite-Re turbulent flows [361] ? It is not excluded that the state space concepts
developed in simple shear flows, all revolving around the notion of unstable states, sheds some light on
this mysterious and singular infinite-Re limit.
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