
HAL Id: tel-04414619
https://hal.science/tel-04414619v1

Submitted on 8 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generative models for times series data
Yohan Petetin

To cite this version:
Yohan Petetin. Generative models for times series data. Statistiques [math.ST]. Institut polytechnique
de Paris, 2023. �tel-04414619�

https://hal.science/tel-04414619v1
https://hal.archives-ouvertes.fr

HABILITATION À DIRIGER DES RECHERCHES

Discipline : Mathématiques Appliquées (Statistiques)

présentée par

Yohan PETETIN

Generative models for time series data

Soutenue le XXX devant le jury composé de :

Randal DOUC Télécom SudParis Rapporteur interne
Petar DJURIC Stony Brook University Rapporteur
Simon GODSILL Cambridge University Rapporteur

Contents

Avant propos 5

Research and teaching activities 9

1 An overview of generative models for time series analysis 15

1.1 A brief review of Bayesian estimation . 15

1.1.1 Modelling the joint distribution . 16

1.1.2 Statistical learning approach . 17

1.1.3 Discussion . 18

1.2 Statistical models for time series . 18

1.2.1 Hidden Markov models . 19

1.2.2 Extensions of HMC models . 22

1.2.3 Recurrent Neural Networks . 24

1.3 About the notations . 26

1.4 Organization of the thesis . 26

2 Revisiting some (sequential) Monte Carlo methods 29

2.1 Background . 29

2.2 Double Proposal Importance Sampling . 33

2.3 The Rubin’s independent resampling mechanism . 35

2.4 Sequential independent resampling mechanism: an implicit APF 40

3 Estimating asymptotic variances with recycled particles 45

3.1 Background . 45

3.2 Variance estimation for filtering estimators . 50

3.3 Asymptotic variance estimation for smoothing estimators 60

4 About the expressivity of latent variable models 65

4.1 Background . 65

4.2 HMC vs. RNN from stochastic realization theory . 69

4.3 About the generative power of PMCs . 75

3

5 Cross benefits of hidden Markov models and recurrent neural networks architectures 81

5.1 Background . 81
5.2 Generative models based on Variational PMCs . 82
5.3 Deep and interpretable hidden Markov models . 86
5.4 Variational Inference in linear and Gaussian TMC . 95

Perspectives 101

Bibliography 107

Avant propos

Après quelques longs mois d’hésitation, me voici enfin en mesure de présenter mon manuscrit d’habilitation
à diriger des recherches. J’avais initialement prévu de m’attaquer à sa rédaction au cours de l’année 2020.
Cependant, deux évènements de nature bien différentes sont venus contrarier mes ambitions. D’une part,
j’ai eu le bonheur d’accueillir mes deux petits garçons, Rafael et Simon, à la fin de l’année 2019. Dans la
foulée, le confinement a fait son apparition dans notre quotidien pour une période indeterminée. Alors que
pour beaucoup de collègues cette période a été propice à l’avancement de leurs projets, je dois avouer que
l’énergie consacrée à mes deux nouveaux locataires, le bonheur que j’en ai retiré, et l’urgence d’adapter mes
enseignements à la situation ont très vite limité mon enthousiasme quant à initier une quelconque rédaction
et avancer sur ce projet qui me tient particulièrement à coeur. Essayant d’exploiter la situation tant bien que
mal, j’ai décidé de profiter du temps qu’il me restait pour mettre sur pieds de nouveaux projets de recherche.
Finalement, la concrétisation de ces projets de recherche m’a permis de donner une dimension nouvelle à
ce manuscrit, que je n’avais pas prévue au départ. Certaines contributions post-confinement seront en effet
présentées tout au long de ce manuscrit.

Lorsque l’on arrive à la concrétisation d’un projet quelconque, ici la rédaction de ce manuscrit, il convient
d’admettre que ce dernier n’aurait pu aboutir sans le soutien des nombreuses personnes qui nous entourent
au quotidien. Je souhaite donc adresser des remerciements à toutes les personnes qui ont contribué, de près
ou de loin, à l’aboutissement de ce manuscrit d’HDR.

Bien évidemment, c’est un grand honneur pour moi que d’être lu par les trois rapporteurs que sont Simon
Godsill, Petar Djuric et Randal Douc. Je les remercie infiniment de consacrer du temps à ce manuscrit, et
j’espère ne pas avoir fait souffrir Randal Douc qui s’est attaqué à une première lecture en plein été caniculaire.

Je souhaite remercier mes collègues du département Communications, Images et Traitement de l’information
(CITI) de Télécom SudParis avec lesquels je partage une partie mon quotidien. Ce dernier n’en est que plus
agréable grâce à la bonne humeur de tous. Je remercie particulièrement Daniel Clark qui m’a relancé et
encouragé à plusieurs reprises pour entamer la rédaction de mon manuscrit. À peine est t-il terminé que
j’apprends que tu nous quittes pour un poste de Professeur au Royaume Uni; nous commençons néan-
moins conjointement un projet de recherche des plus passionnants visant à me reconcilier avec mes premiers
amours, le pistage multi-cibles, multi-capteurs. J’en profite également pour remercier Julie, qui nous quitte
au moment où ce manuscrit entre dans sa dernière ligne droite; ton aide préciseuse du quotidien risque de
manquer à tous.

Toujours dans le domaine académique, je souhaite remercier mes thésards de ces dernières années qui,
chacun à leur façon, m’ont fait progresser lors de nos discussions, rédactions d’articles ou rédaction de leur
manuscrit. Les résultats présentés dans cette synthèse sont avant tout le fruit d’un travail commun avec Jana,

Avant propos

Roland, Nicolas, Achille, Yazid et Katherine.

Enfin, il est temps de remercier tout ceux dont la présence suffit à me motiver dans mon activité de
chercheur au quotidien: mes élèves et amis du club de Kick-Boxing de Ris-Orangis, mon frère et mes parents,
et par dessus tout, Rafael et Simon. Je ne puis dire si ce sont leurs gribouillis sur mes brouillons de calcul
qui m’auront permis de débloquer certaines situations, mais je suis certain que le bonheur qu’ils m’apportent
quotidiennement est un catalyseur pour mes différentes activités. Je leur dédie donc ce manuscrit, en espérant
qu’ils soient capables d’en comprendre le contenu dans les années à venir.

Venons en maintenant au contenu scientifique de ce manuscript. Il s’agit bien évidemment d’une syn-
thèse de mes activités de recherche depuis ma soutenance de thèse de doctorat en 2013. Les résultats
théoriques et expérimentaux, ainsi que les preuves des résultats mathématiques sont détaillés dans les ar-
ticles de recherche dont une liste sélective est présentée dans un court chapitré dédié. J’ai souhaité faire
refléter ma façon de réfléchir à travers la rédaction de ce manuscrit. Ma plus grande motivation dans le
métier que j’exerce est avant tout de comprendre et réussir à expliquer un problème ou un résultat poten-
tiellement compliqué de la manière la plus intuitive possible. Je considère qu’un résultat ou un algorithme
n’est compris qu’à partir du moment où la solution qu’ils décrivent peut être expliquée de manière intuitive.
Par conséquent, et comme nous le verrons tout au long du manuscrit, une partie de ma méthodologie con-
siste à repartir de solutions très populaires pour un problème donné, à chercher à les réinterpréter et voir
s’il n’est pas possible d’y inclure des modifications pour améliorer et proposer des solutions originales. Il
s’agit de l’esprit général de ce manuscrit, dans lequel j’essaierai d’abord d’expliquer de la façon la plus
simple les problèmes auxquels je me suis attaqué ces dernières années, puis je synthétiserai mes différentes
contributions à partir de ces conclusions préliminaires.

Il me reste maintenant à résumer le contenu de ce manuscrit dont le fil rouge consiste à présenter et sim-
plifier un problème statistique lié à modélisation d’un processus stochastique observé, à décrire ses solutions
puis à les remettre en question pour tenter de s’affranchir de leurs limitations.

Le chapitre 1 est une introduction aux concepts mathématiques qui seront utilisés tout au long de cette
présentation. Je m’attache à introduire les modèles probabilistes qui sont au coeur de mes recherches et qui
reposent sur des variables latentes ou cachées. Plus précisément, je m’interesse aux modèles de Markov
cachés et aux architectures neuronales récurrentes pour le traitement des séries temporelles. On trouvera
donc dans ce chapitre une vue d’ensemble de ces modèles et des traitements associés qui me permettra,
au fur et à mesure, de soulever certaines questions en rapport avec la logique de leur construction, leur
estimation et les problèmes de prédiction associés.

Le chapitre 2 est consacré aux algorithmes de filtrage particulaire (ou méthodes de Monte Carlo séquen-
tielles) dans des modèles de chaines de Markov cachées. Ces algorithmes reposent principalement sur un
mécanisme de base composé de trois opérations élémentaires : simulations de variables aléatoires selon
une loi d’importance; pondération des échantillons générés; et enfin, réechantillonnage d’un sous ensem-
ble d’échantillons. Ma contribution consiste à revisiter la logique de ce mécanisme dans deux directions.
Dans un premier temps, je pars du fait que ce mécanisme peut être utilisé pour estimer un ratio d’espérance
mathématique; auquel cas, un ensemble commun d’échantillons est utilisé pour approcher conjointement le
numérateur et le dénominateur. J’exploite donc l’idée d’introduire deux lois d’importance différentes pour
l’approximation d’un ratio, et je discute de la construction de ces lois et des méthodes d’échantillonnage
associées. Dans un deuxième temps, je m’intéresse à la troisième étape de rééchantillonnage de ce mécan-
isme. Celle ci s’avère indispensable lorsque le mécanisme est appliqué de manière séquentielle, comme dans

6

Avant propos

le filtrage particulaire, en terme de stabilité. Néanmoins, le prix à payer pour cette stabilité est un appau-
vrissement local de l’approximation Monte Carlo qui résulte de cette opération. Je cherche donc à mesurer
l’impact stastistique et computationnel d’une procédure qui viserait à garder inchangée la distribution des
échantillons mais à les rendre indépendant de manière à contourner le problème d’appauvrissement. Lorsque
cette procédure est appliquée de manière séquentielle, il est possible de l’interpréter comme un algorithme
de filtrage particulaire (auxiliaire) particulier que l’on aurait pu déduire de manière très intuitive s’il nous
avait été demandé d’élaborer à un algorithme "optimal" de ce type lorsque la loi de tirage est imposée.

Après avoir passé en revue ces algorithmes, le chapitre 3 est consacré à l’estimation de la variance
asymptotique associée aux estimateurs Monte Carlo qu’ils produisent. De manière schématique, ce prob-
lème d’estimation peut être vu comme une extension du problème d’estimation de la variance associée à un
estimateur empirique. En effet, dans le cas d’un tel estimateur reposant sur la simulation d’échantillons, il
est possible de réeutiliser ces échantillons pour estimer, de manière non biasée, sa variance asymptotique.
Cette estimateur de la variance peut lui même être réinterprété comme la différence de deux estimateurs non
biaisés, celui de la moyenne du carré et du carré de la moyenne. Ces deux quantités peuvent également être
vues comme deux espérances mathématiques d’une même fonction mais selon deux lois différentes, en di-
mension augmenté. Une fois que nous cherchons à généraliser cette méthodologie à des problèmes avec une
dimension temporelle, et donc aux algorithmes de filtrage particulaire, le problème du recyclage des vari-
ables produites par l’algorithme apparait comme fondamental. La difficulté est double puisqu’elle consiste
à proposer un schéma qui garantit de bonnes propriétés statistiques à l’estimateur de la variance asympto-
tique (convergence, vitesse de convergence) mais qui reste implémentable avec une complexité calculatoire
raisonnable. Deux schémas sont donc proposés. Le premier découle d’une réinterprétation des solutions
existantes et vise à robustifier les schémas de recyclage de l’état de l’art pour des algorithmes de filtrage
particulaire. Le deuxième schéma vise à estimer la variance asymptotique d’estimateurs issus d’algorithmes
de lissage particulaire, pour lesquels il n’existe pas, à notre connaissance, de solutions à ce jour.

Le chapitre 4 s’intéresse au problème fondamental du choix d’un modèle probabiliste pour la modéli-
sation des séries temporelles. Comme il s’agit de la thématique générale de ce manuscrit, je me restreins
à la comparaison entre modèles de Markov cachés et architectures neuronales récurrentes, qui sont deux
modèles connus et exploités dans leur communauté respective. En effet, les modèles de Markov cachés
sont particulièrement connus des statisticiens et de la communauté du traitement statistique du signal, tandis
que les architectures neuronales font l’objet de nombreuses études dans la communauté de l’apprentissage
statistique. L’idée de ce chapitre est de comparer le pouvoir modélisant des deux modèles, d’un point de
vue théorique et non expérimental, tout en mettant de côté les algorithmes d’inférence associés. Pour cela,
je me focalise sur les différences structurelles des deux modèles et cherche à analyser l’impact de ces dif-
férences sur la loi de probabilité d’un processus stochastique observé qu’ils construisent implicitement. Pour
réaliser cette comparaison, les deux modèles sont dans un premier temps réinterprétés comme des instances
particulières d’un même modèle probabiliste.

Enfin, le chapitre 5 est le fruit d’une fertilisation croisée entre les modèles de Markov cachés et les ar-
chitectures neuronales récurrentes discutées jusqu’ici. Je montre que la combinaison de ces deux modèles
permet de fournir des solutions nouvelles à trois problèmes relatifs à l’estimation bayésienne séquentielle.
Dans un premier temps, des modèles de Markov cachés paramétrés par des architectures neuronales et as-
sociés à des algorithmes d’estimation de paramètres de type bayésien variationnel permettent de fabriquer
des modèles (génératifs) puissants pour la modélisation de séries temporelles. Pour le second problème, de
telles combinaisons sont étudiées mais visent à inclure une contrainte d’interprétabilité dans le modèle et son

7

Avant propos

estimation : contrairement au problème précédent dans lequel les variables latentes ne sont que des intermé-
diaires de calcul pour complexifier la loi des observations, je cherche maintenant à extraire une information
bien précise (et donc interprétable) à partir des observations et à travers les mêmes variables latentes, et ce de
manière non supervisée. Enfin, dans le dernier problème, je montre comment cette combinaison de modèles
peut être utilisé pour proposer des techniques d’inférence bayésienne dans des modèles probabilistes bien
connus tels que le modèle de chaine de Markov cachée linéaire et gaussien à sauts markoviens.

8

Research and teaching activities

A. Research activity

I start by describing my research activity since I have defended my Ph.D thesis (2010-2013). It was devoted
to inference algorithms mainly based on sequential Monte Carlo methods for single and multi-object filtering.

A.1. Post-doctoral and Research engineer at CEA (2013-2015)

In november 2013, I joined the Laboratoire d’Intégration des Systèmes et des Technologies of the French
Alternative Energies and Atomic Energy Commission. My research activity was guided in two directions.
First, I have worked on assimilation data problems in connection with green energies. More precisely, one of
the problem consisted in predicting future solar radiation for the maintenance of photovoltaic power plants.
In parallel, I have been asked to co-supervise a Ph.D student, J. Kalawoun, who has receveived a grant from
the CEA. I co-supervised her between september 2014 and september 2015, for her final year. The objective
was to use hidden Markov models with regime switchings to model and evaluate the battery-state-of-charge
of electrical vehicles in real time. The second direction was the most interesting since I discovered the
Statistical Learning community. Through a common project with a start-up (Invensense), I got familiar with
Deep Learning. The project consisted in providing a state of the art of such methods and next evaluating
them for audio scene recognition. While I thought that Bayesian inference and Deep Learning were totally
different, I realized that "generative" probabilistic models based on latent random variables have led to
a renewal of interest of neural networks architectures. Consequently, I was curious to understand if the
two points of view (Bayesian inference in hidden Markov model vs. deep learning for recurrent neural
architectures) can be conciled in a given sense.

A.2. Associate Professor, Télécom SudParis, 2015-Today

In 2015, I joined Télécom SudParis as an assistant professor. In parallel of my teaching activity that will be
described later, I focused my activity on the following topics.

•Monte Carlo methods

Of course, I have continued to investigate Monte Carlo methods. A preliminary objective was to scale some
Monte Carlo algorithms for big-data. In this context, the spatial and the temporal dimensions of the data
can be large and traditional Monte Carlo algorithm may be unreliable. As we will see in this manuscript,
the co-supervision of the Ph.D student R. Lamberti (2015-2018) has been an opportunity to revise the core
mechanism (sampling, weighting and resampling) of sequential Monte Carlo algorithms in two directions.

Research and teaching activities

• Statistical Learning and applications

In parallel, I have further explored statistical learning approaches through the co-supervision of two Ph.D
students. These works were led in an applied framework. I have first co-supervised N. Aussel (2015-2019)
in collaboration with Tryagnosis (now Safran) and we looked for detecting anomaly from machine learning
algorithms for flight data. The particularity of these data is that they are unbalanced (typically the class
failure is under represented compared to the other class), so classical supervising learning algorithms suffer
from poor performances. I have next co-supervised A. Salaun (2017-2021) with Nokia Bell-labs and we
focussed on predicting failures in telecommunication networks from alarm logs.

• Bridging hidden Markov models and recurrent neural networks architectures

Once I was comfortable with statistical learning approaches and in particular with neural network archi-
tectures, I came back to my initial objective of understanding the fundamental differences between hidden
Markov models and Recurrent neural networks for sequential data. The first observation was that such ar-
chitectures are based on (high dimensional) variables (the neurons) and have become the reference in terms
of performance for many classification and prediction problems. By contrast, statistical properties of graph-
ical probabilistic models are well understood but associated inference algorithms (parameter estimation,
computation of posterior distributions,...) become unreliable when the dimension of the involved (random)
variables is large. Some topics related to the general problem of gathering both point of views are addressed
in this manuscript and are the results of the co-supervision of three Ph.D. students. With A. Salaun (2017-
2021), we first described hidden Markov models and recurrent neural networks as a particular case of a
more general model and we proposed a characterization of the distribution of observations produced by each
model. Currently, I am co-supervising Y. Janati (2020-2023) on the mutual contribution of stochastic neural
architectures and Monte Carlo methods. The objective is to improve Monte Carlo algorithms through the
introduction of such parameterizations (for tuning the importance distribution, for example), and recipro-
cally to think about Monte Carlo algorithms for Bayesian estimation in this kind of architectures. As we will
see, other directions have also been exploited. I am also co-supervising K. Morales (2020-2023). We first
extended the preliminary comparison between hidden Markov model and recurrent neural architectures of
the thesis of A. Salaun and we have next proposed powerful hidden Markov models parameterized by neural
architectures with associated Bayesian inference algorithms. The next step consists in adapting these tools
for decision support in cardiac surgery through a collaboration with the Gepromed, Strasbourg.

A.3. Ph.D students (2014 - Present)

In summary, I have co-supervised 6 Ph.D students between 2014 and 2022.

• Yazid Janati, co-supervised with S. Le-Corff (Télécom SudParis), 2020-2023. Mutual contributions of
Monte-Carlo methods and stochastic neural networks architectures.

• Katherine Morales, co-supervised with E. Monfrini (Télécom SudParis), 2020-2023. Artificial intelli-
gence for decision support in vascular surgery.

• Achille Salaun, co-supervised with F. Desbouvries (Télécom SudParis) and A. Bouillard (Huawei) and
M.O. Buob (Nokia), 2017-2021. Alarms prediction in networks via the research of spatio-temporal
patterns and machine learning.

10

Research and teaching activities

• Nicolas Aussel, co-supervised with S. Chabridon (Télécom SudParis), 2015-2019. Real-time anomaly
detection with insight data: streaming anomaly detection with heterogeneous communicating agents.

• Roland Lamberti, co-supervised with F. Desbouvries (Télécom SudParis) and F. Septier (Université
Bretagne Sud), 2015-2018. Contributions to Monte Carlo methods and their application to statistical
filtering.

• Jana Kalawoun, co-supervised with P. Pamphile and G. Celeux (Université Paris Sud), 2014-2015.
Statistical modeling of battery-state-of-charge.

A.4. Selected list of publications (journals and international conferences)

I finally present a selected list of publications in which more information can be found about my previous
research activity and in relation with the work described in this manuscript.

[19] H. Gangloff, K. Morales, Y. Petetin, “Generalized Pairwise and Triplet Markov Chains: a deep
extension for unsupervised signal processing estimation. In hal-03584314.

[18] Y. Janati, S. Le Corff, Y. Petetin, "‘Consistent estimation of the asymptotic variance of Sequential
Monte Carlo smoothers"’. In arxiv:2204.01401.

[17] F. Desbouvries, Y. Petetin and A. Salaun, “Expressivity of Hidden Markov models vs. Recurrent
neural networks from a systems theory viewpoint”. In arXiv:2208.08175.

[16] H. Gangloff, K. Morales, Y. Petetin, “A General parametrization framework for pairwise Markov
models : an application to unsupervised image segmentation”, 2021 IEEE International Workshop on
Machine Learning for Signal Processing (MSLSP), Gold Coast, Australia, Oct. 2021.

[15] Y. Petetin, Y. Janati and F. Desbouvries, “Structured variational Bayesian inference for Gaussian
state-space models with regime switching ”, IEEE Signal Processing Letters, Volume: 28, Issue: 1,
pages 1953-1957, Sept. 2021.

[14] K. Morales, Y. Petetin, “Variational Bayesian inference for pairwise Markov models ”, Proceedings
of the 21th IEEE workshop on statistical signal processing (SSP ’21), Rio De Janeiro, Brazil, pp.251-
255, Jul 2021.

[13] A. Salaun, Y. Petetin and F. Desbouvries, “Comparing the modeling powers of RNN and HMM”,
ICMLA 2019: 18th International Conference on Machine Learning and Applications, Boca Raton,
FL, United States. pp.1496-1499, Dec 2019.

[12] N. Aussel, Y. Petetin and S. Chabridon, “Improving performances of log mining for anomaly pre-
diction through NLP-based log parsing”, 2018 IEEE 26th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), Milwaukee,
Wisconsin, USA , September 25-28, 2018.

[11] R. Lamberti, Y. Petetin, F. Septier and F. Desbouvries, “A Double Proposal Normalized Importance
Sampling Estimator”, Proceedings of the 20th IEEE workshop on statistical signal processing (SSP
’18), Fribourg, Germany, June 10-13, 2018.

11

Research and teaching activities

[10] R. Lamberti, Y. Petetin, F. Desbouvries and F. Septier, “Semi-Independent Resampling for Particle
filtering”, IEEE Signal Processing Letters, Volume: 25, Issue: 1, pages 130-134, January 2018.

[9] N. Aussel, S. Jaulin, G. Gandon, Y. Petetin, E. Fazli and S.Chabridon , “Predictive Models of hard
drive failures based on operational data “, Proceedings of the 16th IEEE Conference On Machine
Learning and Applications (ICMLA), Cancun, Mexico, December 18-21, 2017.

[8] R. Lamberti, Y. Petetin, F. Desbouvries and F. Septier, “Independent Resampling Sequential Monte
Carlo Algorithms”, IEEE Transactions on Signal Processing, Volume: 65, Issue: 20, pages 5318-5333,
October 2017.

[7] Y. Petetin and F. Desbouvries, “Bayesian Conditional Monte Carlo Algorithms for non linear time-
series state estimation”, IEEE Transactions on Signal Processing, Volume 63, Issue 14, Pages 3626-
3638, July 2015.

[6] Y. Petetin and F. Desbouvries, “A class of fast exact Bayesian filters in dynamical models with
jumps”, IEEE Transactions on Signal Processing, Volume 62, Issue 14, Pages 3643-3653, June 2014.

[5] Y. Petetin, M. Morelande and F. Desbouvries, “Marginalized particle PHD filters for multiple object
Bayesian filtering”, IEEE Transactions on Aerospace and Electronic Systems, Volume 50, Issue 2,
Pages 1182-1196, April 2014.

[4] N. Abassi, S. Derrode, F. Desbouvries, Y. Petetin and W. Pieczynski, “Filtrage statistique rapide dans
des systèmes linéaires à sauts non stationnaires”, Traitement du Signal, num. 3-4/2014, 1-23.

[3] Y. Petetin and F. Desbouvries, “Bayesian multi-object filtering for Pairwise Markov Chains”, IEEE
Transactions on Signal Processing, Volume 61, Issue 18, Pages 4481-4490, September 2013.

[2] Y. Petetin and F. Desbouvries, “Optimal SIR algorithm vs. fully adapted auxiliary particle filter: a non
asymptotical analysis”, Statistics and computing, Volume 23, Number 6, Pages 759-775, September
2013.

[1] F. Desbouvries, Y. Petetin and B. Ait-el-Fquih, “Direct, Prediction- and Smoothing-based Kalman
and Particle Filter Algorithms”, Signal Processing, Volume 91, Number 8, Pages 2064-2077, August
2011.

B. Teaching activity

My teaching activity is mainly based in Télécom SudParis, but I also teach in some partner schools of the
group Institut Polytechnique de Paris (IPP). For one year, my number of teaching hours is approximately
between 190h and 220h. I coordinate 5 courses; in addition to teach basic courses (Introduction to statistics,
numerical analysis,...), I have created several courses in relationship with some topics addressed in this
manuscript. In particular, I have introduced a course of Deep Learning in Télécom SudParis and extended it
in the Master Data Science of IPP. I propose an overview of probabilistic models based on neural networks
(Restricted Boltzmann Machines, Deep Belief Networks, Variational-Auto encoders,...). Finally, I am also
the coordinator of the advanced research projects for the third year students of Télécom SudParis who choose
a specialization in probability and statistics. An example of my teaching activity for the year 2020/2021 is

12

Research and teaching activities

L
ectu

re
(h

)

T
u

to
ria

ls
(h

)

P
ra

ctica
l

w
o
rk

(h
)

T
o
ta

l
(h

)

Probability 0 40 9 46
Introduction to statistics (coordinator) 9 16 0 29.5
Numerical analysis (coordinator) 4.5 18 4.5 27.75
Statistical filtering 6 0 12 17
Statistical learning: application to biostatistics (coordinator) 15 9 0 31.5
Deep learning (coordinator) 18 15 0 34
Deep Learning II (IP Paris, coordinator) 10.5 0 0 15.75
Probabilistic models in artificial intelligence 6 0 0 9
Initiation to computational statistics 0.5 0 4 3.4

Total 104 98 13.6 222

Table 1: Description of my teaching activity in 2020/2021. 1h of lecture = 1.5h of tutorial. 1h of practical
work = 0.66h of tutorial. Moreover, I have also supervised 2 initiation research projects for 2nd year students
(February-June) and 2 advanced research projects for 3rd year students (September-January). Finally, I have
followed 4 students during their internship in companies.

given in Table 1. The total number of hours is converted in hours of tutorials according to the French
university system.

13

CHAPTER 1

An overview of generative models for time series analysis

This chapter introduces the general tools that we will develop in this manuscript. We focus on probabilistic
models based on latent random variables for describing time series. Along this general presentation, I wish to
describe the framework of my research; once the general tools have been presented, I introduce the questions
which have arisen these last years.

We start by recalling the (static) Bayesian estimation problem. We next adapt it when the involved ran-
dom variables aim at describing a time series problem. To that end, we introduce some popular probabilistic
models based on latent variables which are at the core of this synthesis. We highlight particular aspects of
the structure of these models or of their associated Bayesian inference algorithms when they give rise to
a fundamental statistical problem. These aspects are briefly discussed before being addressed in the next
chapters. We finally present the general organization of this thesis which aims at gathering the contributions
into homogeneous chapters.

1.1 A brief review of Bayesian estimation

Let X (resp. Y) be an hidden (resp. observed) random variable in a general measurable space (X,X) (resp.
(Y,Y)). We assume that the pair (X,Y) admits a joint probability distribution function (pdf) p(x, y) w.r.t.
a product measure ν ⊗ λ on X ⊗ Y . Let h : x 7→ h(x) ∈ R be a given functional. The Bayesian problem
aims at "estimating" h(X) from Y . To that end, we introduce a (positive) loss function L(., .) and we look
for minimizing the Bayesian risk defined as

R(f) = E
(
L(f(Y), h(X))

)
. (1.1)

The Bayesian estimator of h(X) coincides with ĥ(X) = f⋆(Y) where f⋆ = argminf (R(f)). For example,
if the objective is to estimate a scalar random variable X from a realization Y = y (so h(x) = x), the
Bayesian estimate which coincides with the quadratic loss L(u, v) = (u− v)2 is

x̂ = E(X|Y = y).

More generally, the minimization of (1.1) involves the posterior distribution

p(x|y) = p(x, y)

p(y)
=

p(x, y)∫
X
p(x, y)ν(dx)

.

However, the joint distribution p(x, y) is generally unknown and two directions are possible to overcome
this limitation.

Chapter 1 : An overview of generative models for time series analysis

1.1.1 Modelling the joint distribution

The first solution consists in introducing a parameterized distribution pθ, where θ ∈ Θ is an unknown
multidimensional parameter. pθ aims at approximating the unknown distribution p in a given sense. Once a
family pθ has been chosen, θ can be estimated from two options according to the available data. If we have
at our disposal a set of independent samples

E1 = {(xi, yi) i.i.d∼ p(x, y)}1≤i≤n,

then we are in the context of supervised estimation; by contrast, if we only have a set of observations

E2 = {yi i.i.d∼ p(y)}1≤i≤n, (1.2)

then we are in the context of unsupervised estimation. Due to its asymptotic properties, a popular estimator
of θ is the Maximum-Likelihood (ML) estimator (Huber, 1967; White, 1982) which aims at maximizing
(supervised case)

L1(.; E1) : θ 7→
n∏

i=1

pθ(x
i, yi),

or (unsupervised case)

L2(.; E2) : θ 7→
n∏

i=1

pθ(y
i) (1.3)

w.r.t. θ. In this last case, the optimization of (1.3) is not obvious because pθ(y) is not necessarily available in
a closed-form expression. According to the structure of pθ(x, y), the ML estimator can be approximated with
a gradient ascent method on (1.3), the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) or
a variational Bayesian inference algorithm (Jordan et al., 1999; Blei et al., 2017). These algorithms will be
described in the framework of our probabilistic models for time series.

Once θ has been estimated, it remains to compute or approximate the associated posterior distribution
pθ(x|y). Generally, this can be done by using a Monte-Carlo method such as normalized importance sam-
pling (Hesterberg, 1988). Introducing an importance distribution q(x) from which it is possible to sample N

particles ξi
i.i.d∼ q(x), the posterior measure p(dx|y) can be approximated by the discrete measure

φN (dx) =

N∑

i=1

W iδξi(dx),

where

W i = Ω−1ωi, ωi =
pθ(ξ

i, y)

q(ξi)
and Ω =

N∑

i=1

ωi.

An unweighted representation can be obtained by sampling Ai i.i.d∼ Categorical({W l}1≤l≤N),

φ̃N (dx) =
1

N

N∑

i=1

δ
ξA

i (dx).

16

1.1 A brief review of Bayesian estimation

1.1.2 Statistical learning approach

The second approach also relies on the set of i.i.d. samples E1 but aims at using it for deriving the crude
Monte Carlo estimate Rn(f) of R(f) and next minimizing it w.r.t. f . The problem of building an estimator
becomes that of minimizing the empirical risk,

f⋆
n = argmin

f

1

n

n∑

i=1

L(f(yi), h(xi)) = argmin
f

Rn(f). (1.4)

Since the dataset is finite, in the absence of further constraints, any function interpolating the points (h(xi),
f(yi)) satisfies the optimisation problem (1.4). In such a case, the model overfits and proves unable to
generalize to new observations. This problem is often overcome by choosing a family of functions (fθ)θ∈Θ,
and finally (1.4) turns into the parameter estimation problem

θ⋆n = argmin
θ

1

n

n∑

i=1

L(fθ(y
i), h(xi)), (1.5)

which eventually produces the estimator ĥ(x) = fθ⋆n(y) (notation θ⋆n underlines the fact that the estimator
depends on the training set E1, which is of dimension n). The choice of the family (fθ)θ∈Θ should be
balanced: a poor set of functions will lead to unrealistic predictions, while a rich set of functions can lead
to overfitting. Moreover (fθ)θ∈Θ should lead to tractable learning, i.e. it should be possible to solve (1.5)
efficiently. Classical solutions include the functions belonging to a reproducing kernel Hilbert space (RKHS)
(Manton and Amblard, 2015) (Paulsen and Raghupathi, 2016) and the functions defined by neural network
architectures (Jain et al., 1996) (LeCun et al., 2015). Optimizing (1.5) for these families of functions leads
to well known algorithms such as (linear or kernel based) least squares (Bishop, 2006), Support Vector
Machines (SVM) (Burges, 1998) (Hu et al., 2003) (Vapnik, 2013), or deep learning algorithms (Bishop,
2006) (Goodfellow et al., 2016) for regression or classification.

Example 1.1. Deep neural networks (DNNs) are particular parameterized functions which have gain in pop-
ularity these last years due to their performances on different prediction or classification tasks. Let us detail
their rationale. A DNN is a succession of parameterized functions called neurons. A neuron typically com-
putes a real multivariate function h 7→ σ(wh+ b), where wx is the dot product of w (a vector of weights)
and x (a vector of variables), b is the bias, and σ(.) is a so-called (nonlinear) activation function, such as
the sigmoid, hyperbolic tangent or ReLu function. Neurons can be gathered into layers which themselves
can be cascaded, yielding increasingly complex functions. Some universal approximation theorems have
been proposed in Cybenko (1989); Hornik (1991); Pinkus (1999); Lu et al. (2017); for instance, given any
real valued continuous function f , there exists a single-layer DNN fθ arbitrarily close to f , provided the
activation function is not polynomial (Pinkus, 1999). Similar results have been proposed for multiple layers
DNNs. So any Lebesgue-integrable function f : Rdy → R can be approximated by an NN with ReLu acti-
vation functions and layers made of at least dy + 4 neurons, provided the network is deep enough (Lu et al.,
2017). The number of layers and of neurons per layer, as well as the activation functions, are hyperparame-
ters which characterize the DNN architecture while the weights and biases are the model parameters learnt
from a training set. For DNNs, the optimization problem (1.5) is usually approximated by a gradient descent
approach; the recursive structure of the function induced by the successive DNN layers indeed enables to
compute the gradient of fθ via the backpropagation algorithm (Rumelhart et al., 1985; Hecht-Nielsen, 1992).

17

Chapter 1 : An overview of generative models for time series analysis

1.1.3 Discussion

Let us now discuss on these two approaches. A main advantage of optimizing (1.5) is that we do not need to
model the distribution p(x, y) by pθ(x, y). Under some assumptions about the family (fθ)θ∈Θ (in particular
in some RKHSs), it is possible to derive concentration inequalities

P
(
|Rn(fθ⋆n)−R(fθ⋆n)| > ǫ

)
≤ δǫ,n,

where δǫ,n depends on ǫ, n and on the characteristics of the family (fθ)θ∈Θ (Vapnik, 1998; Bousquet et al.,
2003). If δǫ,n tends to 0 as a function of n, it means that the estimated function fθ⋆n remains valid for unseen
data since the training error Rn(fθ⋆n) is close to the Bayesian risk R(fθ⋆n), in probability. δǫ,n also provides
a convergence rate.

By contrast, the first approach described in section 1.1.1 relies on the relevance of the parameterized joint
distribution pθ(x, y). However, it can be estimated from realizations {y(i)}1≤i≤n. This is particularly inter-
esting, even in machine learning problems, because the introduction of a non observed and artificial hidden
random variable X can be used to build an implicit distribution pθ(y) defined as the marginal of pθ(x, y). In
addition, the distribution pθ(x|y) is richer than a point estimator such as the conditional expectation. Con-
sequently, it is possible to quantify the uncertainty of a prediction. Finally, once we have at our disposal
the posterior distribution pθ(x|y), it can be used to estimate h(X) for a large class of functions h without
running a new estimation algorithm. In summary, modelling the joint distribution can address two issues:
the estimation of an hidden random variable X from an observation Y ; or the design of a generative model
based on a latent random variable which aims at modelling implicitly the distribution of the observations.
From now on, we will mainly focus on this methodology in the context of time series. Indeed, generally we
only have at our disposal a set of unlabelled observations (1.2). However, we would like to underline that
some solutions developed in the framework of Section 1.1.2 are not incompatible with those of Section 1.1.1
as we see in the following example.

Example 1.2. In this manuscript, we will exploit the fact that it is possible to describe the parameters of a
given conditional distribution pθ(y|x) by a DNN fθ(x). This idea has been exploited by the successful work
of Kingma and Welling (2014) through the variational auto-encoder (VAE). The VAE methodology aims at
building an implicit but powerful generative models in which

pθ(x, y) = p(x)pθ(y|x),

where

p(x) = N (x; 0; I) ,

pθ(y|x) = N
(
y; fθ(x); gθ(x)

)
,

and where fθ(x) and gθ(x) are the outputs of a DNN described by a set of weights and biases θ (N (x;µ; Σ)

denotes the Gaussian pdf with mean µ and covariance matrix Σ evaluated in x). The estimation of θ from a
set of observations (1.2) will be discussed later and relies on variational Bayesian inference.

1.2 Statistical models for time series

Let us now turn to time series problems. Let {Yt}t∈N be a sequence of observed random variables with
unknown distribution. Following the conclusion of the previous section, two related estimation problems

18

1.2 Statistical models for time series

can be considered. The first one consists in predicting future observations of a time series. For example,
applying the framework of Paragraph 1.1.1 with Y ← Y0:t and X ← Yt+1, the prediction of Yt+1 relies on

p(yt+1|y0:t) =
p(y0:t+1)

p(y0:t)
,

and so on modelling the joint distribution of the observations (Y0, · · · , Yt) = Y0:t by a family of distributions
pθ(y0:t), for all t ∈ N. However, as we have just seen, it can be relevant to introduce an hidden process
{Xt}t∈N which depends on {Yt}t∈N; in this case, the generative distribution pθ(y0:t) becomes the marginal
of pθ(x0:t, y0:t). As a direct consequence, if {Xt}t∈N is a process of interest (i.e. a physical interpretable
process), then we can also look for estimating a (real) functional h(X0:t) from a realization y0:t.

As we see, whether it is to predict a set of future observations or to estimate an hidden random process
dependent of the observations, the problem can be cast into the framework of Bayesian estimation in a latent
data model pθ(x0:t, y0:t). It gives rise to three fundamentals problems that we approach in this thesis:

P.1 Which family of parametric distribution pθ(x0:t, y0:t) should we choose?

P.2 For a given family pθ, how to estimate θ from a given realization Y0:t = y0:t?

P.3 For a given θ, how to compute or approximate quantities of interest such as any posterior/predictive
distribution pθ(xt′ |y0:t) or the predictive likelihoods pθ(yt+1:t+t′ |y0:t)?

Actually, these problems are related with each other and should not be addressed independently. For P.1,
note that in the context of time series, the model pθ should be able to consider sequences of any length, so
θ should not depend on t (otherwise, the model cannot be used with any sequence of observations). Next,
a thorny issue is to choose an expressive distribution which is able to describe accurately the statistical
properties of the observations, but also the dependencies between the observed and the hidden processes
when this last one is interpretable and should be estimated. However, we have to take into account that
the Bayesian quantities of interest should be computed or approximated in a reasonable computational time,
particularly in a context where the observations can arrive over time. This last constraint is the reason why the
tools developed for static Bayesian estimation cannot be directly applied: when the sequence of observations
is large, the computation of quantities of interest have to be done sequentially. In summary, a compromise
between the model pθ and the computational problems involved in Bayesian estimation has to be found.

Of course, this very general problem is not new and has been considered for decades. In particular, many
statistical models based on latent random variables have been proposed. Some of them are the cornerstone
of this synthesis: Markovian models (in a wide sense) and Recurrent Neural Networks (RNNs) which have
been particularly developed and used in the machine learning community. We now give a short description
of these models and some problems connecting them to P.1-P.3 that we have addressed (or at least tried to
address) these last years.

1.2.1 Hidden Markov models

Let us briefly review the rationale of Hidden Markov models. Taking into account that the objective is to
model the distribution of a time series {Yt}t∈N, assuming that the observations are independent would be
irrelevant. An alternative would be to consider a Markov chain

pθ(y0:t) = pθ(y0)
t∏

s=1

pθ(ys|ys−1)︸ ︷︷ ︸
pθ(ys|y0:s−1)

, for all t ∈ N.

19

Chapter 1 : An overview of generative models for time series analysis

However, this model is also very limited since a direct consequence is that Yt only depends on Yt−1 given
Y0:t−1 and so that it is not possible to model dependencies between a current observation and the past ones
when Yt−1 = yt−1 is observed.

Construction (P.1) - An efficient way to introduce dependency between all the observations is to con-
sider a simple additional hidden process {Xt}t∈N which is assumed to be a Markov chain. We also assume
that given X0:t = x0:t, the observations Y0:t are independent and Ys only depends on xs , for all s ≤ t and
for all t ∈ N. The deduced joint distribution is called an Hidden Markov Chain (HMC) and satisfies

pθ(x0:t, y0:t)
HMC
= pθ(x0)

t∏

s=1

pθ(xs|xs−1)

︸ ︷︷ ︸
pθ(x0:t)

t∏

s=0

pθ(ys|xs)
︸ ︷︷ ︸
pθ(y0:t|x0:t)

, for all t ∈ N. (1.6)

The pdfs pθ(xt|xt−1) describe the transitions of the Markov chain {Xt}t∈N (w.r.t. a measure ν) while the
distributions pθ(yt|xt) are the conditional likelihoods and are assumed to be measurable w.r.t. ν as a function
of xt. Even if we have motivated the introduction of (1.6) to model time series, it appears that it can also be
used to describe an interpretable hidden process dependent on observations. Indeed, this model has found
many applications in signal processing such as tracking (Xt represents the state vector of a target at time t

and Yt the associated noisy range bearing measurement) (Jazwinski, 1970), financial problems (Xt represents
the volatility of a financial time series) (Pitt and Shephard, 1999) or image segmentation (Xt represents the
class associated to a noisy observed pixel Yt) (Derrode and Pieczynski, 2004). While the HMC model is
quite simple, it involves many challenges.

Prediction in an HMC (P.3) - When θ is known (so we remove the dependency in the notation θ), let us
observe that our two initial estimation problems are directly connected. Indeed, in model (1.6), p(xt|xt−1) =

p(xt|xt−1, y0:t−1) so the predictive likelihood can be sequentially computed from

p(yt+1|y0:t) =
∫

X2

p(yt+1|xt+1)p(xt+1|xt)p(xt|y0:t)ν⊗2(dxt:t+1). (1.7)

The computation of (1.7) relies on the filtering density, denoted as

φt(xt) = p(xt|y0:t),

which can be itself computed sequentially from

φt+1(xt+1) =
p(yt+1|xt+1)

∫
X
p(xt+1|xt)φt(xt)ν(dxt)∫

X2 p(yt+1|xt+1)p(xt+1|xt)φt(xt)ν⊗2(dxt:t+1)
.

From φt(xt), it is also possible to estimate a functional h(Xt) from the past observations and we denote the
expectation of h(Xt) w.r.t. φt as

φt(h) =

∫

X

h(xt)φt(xt)ν(dxt).

These key distributions are computable in a few cases such as discrete state-space models (Rabiner, 1989)
or linear and Gaussian HMCs (Jazwinski, 1970). In the general case, one needs to resort to approximations.

20

1.2 Statistical models for time series

A popular class of approximations is the Sequential Monte Carlo methods. These methods approximate the
filtering measure φt(dxt) by a random discrete measure

φN
t (dxt) =

N∑

i=1

W i
tδξit(dxt) (1.8)

from which we deduce an approximation of φt(h),

φN
t (h) =

N∑

i=1

W i
th(ξ

i
t), (1.9)

and so one of p(yt+1|y0:t). The sequential computation of {(W i
t , ξ

i
t)}1≤i≤N relies on particle filters. Most

of them are based on the sequential application of the Rubin’s Sampling Importance Resampling (SIR)
mechanism (Rubin, 1988; Smith and Gelfand, 1992). The mechanism consists of the three steps described
at the end of Paragraph 1.1.1: a sampling step according to a given importance distribution; a weighting
step which involves the target and the importance distributions; a resampling step from which an unweighted
representation of the filtering distribution is obtained. In a sequential context, this last step is critical and is
a rescue against the weight degeneracy phenomenon over time. However, while it ensures the stability of
the particle filter overtime, this step tends to shrink severely the support of the unweighted representation
when the weights in (1.8) are imbalanced and has consequences on future steps. An additional and general
problem is to evaluate the reliability of estimator (1.9). Consequently, we have proposed some contributions
in these directions; they are related to problem P.3 through sequential Monte Carlo algorithms and aim at
addressing the following questions.

Q.1 As stated above, particle filters rely on the Rubin’s SIR mechanism. Rather than looking for tuning
some steps of the mechanism (e.g. optimizing the conditional importance distribution), we revisit
it in two directions. First, note that the rationale of this mechanism is to approximate a ratio of two
integrals by a Monte Carlo method which uses the same importance distribution and the same samples.
What happens when we introduce different importance distributions? Next, can we revisit the global
mechanism (and not only its resampling step) without losing its rationale but with the objective to limit
the degeneration phenomenon induced by classical resampling algorithms?

Q.2 The reliability of the estimator φN
t (h) is related to its variance. Under some assumptions, φN

t (h) sat-
isfies a Central Limit Theorem (CLT) from which we can deduce its (theoretical) asymptotic variance
(in the number of samples N). Can we propose an estimator of this asymptotic variance based on the
samples already produced by the particle filter algorithm, for computational cost reasons?

Parameter estimation in an HMC (P.2) - When θ is unknown and we have at our disposal a se-
quence of dependent observations y0:t, the likelihood (1.3) becomes pθ(y0:t). In such models, the statistical
properties of the ML estimator

θ̂ML = argmax
θ∈Θ

log(pθ(y0)) +
t∑

s=1

log(pθ(ys|y0:s−1)),

where pθ(ys|y0:s−1) is computed from (1.7), has been theoretically studied in Douc et al. (2004) and Douc and Moulines
(2012). However, pθ(y0:t) (and so its gradient w.r.t. θ) is generally not computable. As discussed above,

21

Chapter 1 : An overview of generative models for time series analysis

pθ(y0:t) can be approximated with an SMC algorithm; however, obtaining a differentiable Monte Carlo ap-
proximation to use a gradient ascent method is a thorny issue due to the resampling steps of such algorithms
(Kantas et al., 2015).

A well known alternative is the application of the EM algorithm for the joint distribution (1.6) (Dempster et al.,
1977; Rabiner, 1989; Cappé et al., 2005). It consists of two steps. For a given θ = θ(i), the E-step computes

Q(θ, θ(i)) = Eθ(i)

(
log
(
pθ(X0:t, Y0:t)

)
|Y0:t = y0:t

)
,

=
t∑

s=1

∫

X2

[
log(pθ(xs|xs−1)) + log(pθ(ys|xs))

]
pθ(i)(xs−1:s|y0:t)ν⊗2(dxs−1:s)

+

∫

X

log(pθ(x0))pθ(i)(x0|y0:t)ν(dx0).

Next, θ(i) is updated by computing

θ(i+1) = argmax
θ

Q(θ, θ(i)).

Note that the posterior distributions pθ(i)(xs−1:s|y0:t) are generally not computable except in models where
pθ(y0:t) is available. For such models, choosing between a gradient ascent method or the EM-algorithm
remains an open question that we do not address. Statistical properties of the EM algorithm are discussed
in Balakrishnan et al. (2017). In the general case, approximations should be used and are based on the
observation that Q(θ, θ(i)) computes a mathematical expectation of a functional

h0:t(x0:t) =
t∑

s=1

hs(xs−1, xs)

according to the smoothing distribution

φ0:t|t(x0:t) = pθ(x0:t|y0:t).

In the case of the E-step of the EM algorithm, hs(xs−1, xs) = log(pθ(xs|xs−1)) + log(pθ(ys|xs)). This
problem is more complicated than the previous filtering problem but sequential Monte Carlo algorithms
have been extended for the smoothing problem. A popular smoother is the Forward Filtering Backward
Smoothing (FFBS) algorithm (Tanizaki and Mariano, 1994; Doucet et al., 2000) which has the advantage to
be computable online (i.e. in a forward way) for additive functionals (Del Moral et al., 2010). Consequently,
Q.2 can be extended for the smoothing problem:

Q.2′ If we have at our disposal a Monte Carlo estimator φN
0:t|t(h0:t) based on the FFBS algorithm for

additive functionals, can we estimate its asymptotic variance?

1.2.2 Extensions of HMC models

As we have just seen, problems P.2 and P.3 have been deeply tackled for HMCs. Let us now question P.1

in HMCs. Remember that a motivation to introduce the HMC (1.6) is that a Markovian hypothesis on the
observations {Yt}t∈N is unsatisfying from a modelling point of view. So one can wonder if in the case where
the hidden process {Xt}t∈N is of interest, the Markovian assumption related to this process is reasonable.
The models we now introduce aim at revising the answer to problem P.1 brought by the HMC construction.

22

1.2 Statistical models for time series

Construction (P.1) - A direct way to relax the Markovian assumption related to {Xt}t∈N is to consider
the Pairwise Markov Chain (PMC) of Pieczynski (2003); Derrode and Pieczynski (2004) in which the joint
distribution of the hidden and observed processes reads

pθ(x0:t, y0:t)
PMC
= pθ(x0, y0)

t∏

s=1

pθ(xs, ys|xs−1, ys−1), for all t ∈ N. (1.10)

It is easy to check that if

pθ(xt, yt|xt−1, yt−1) = pθ(xt|xt−1)pθ(yt|xt), for all t ∈ N,

the PMC (1.10) coincides with the HMC (1.6).

Since the motivation in this context is to provide a relevant model for the joint process {Xt, Yt}t∈N (and
not only {Yt}t∈N), we can follow the same path as in section 1.2.1 and introduce a latent process {Zt}t∈N
which aims at building an implicit (but more realistic) distribution for {Xt, Yt}t∈N. Thus, the PMC model
can be further extended by the Triplet Markov Chain (TMC) (Pieczynski, 2002), a probabilistic model in
which the distribution of {Zt, Xt, Yt}t∈N reads

pθ(z0:t, x0:t, y0:t)
TMC
= pθ(z0, x0, y0)

t∏

s=1

pθ(zs, xs, ys|zs−1, xs−1, ys−1), for all t ∈ N. (1.11)

From a mathematical point of view, a TMC can be seen as a PMC in an augmented dimension in the sense
that the role of the hidden random process is now played by {Zt, Xt}t∈N. However, in the case where
{Xt}t∈N is a physical process of interest, the role played by {Xt}t∈N and {Zt}t∈N is different and their
separation in two distinct processes is critical as we will see later. The introduction of these models gives
rise to a fundamental question from a modelling point of view.

Q.3 Even if we have introduced the PMC to strengthen the statistical properties of the hidden process, we
can wonder if it has an impact on the distribution of the observations; more precisely, can we evaluate
the relevance of the generative model pθ(y0:t) induced by (1.10) w.r.t. that induced by (1.6)? Note that
according to the previous remark, this question is irrelevant in the context of TMCs since the fact that
the hidden process is interpretable or not does not impact the distribution of the observations.

While these models are more general, the choice of the transition distributions in (1.10)-(1.11) for a given
application is not obvious. When an HMC has been validated for a given application, how can we improve
it with models (1.10)-(1.11)? For example, it is not clear how to model the new dependencies between the
current hidden state and the past observation via pθ(xt|xt−1, yt−1), or that between the current and the past
observations via pθ(yt|xt, yt−1).

Q.4 Such models have been used in some applications such that unsupervised image segmentation but the
problem of modelling their core distributions has been circumvented by the introduction of some as-
sumptions which may reduce the modelling power of these generalized models (Derrode and Pieczynski,
2004; Gorynin et al., 2018). Based on the observation that DNNs can be seen as universal approxima-
tors, can we propose a general parameterized approach for models (1.10)-(1.11) which enables us to
embed DNNs in these models?

23

Chapter 1 : An overview of generative models for time series analysis

Prediction and parameter estimation (P.2 and P.3) - The Bayesian estimation algorithms devel-
oped for HMCs can be extended to PMCs and TMCs by replacing the transition pθ(xt|xt−1)pθ(yt|xt) which
appears in these algorithms by pθ(xt, yt|xt−1, yt−1) or pθ(zt, xt, yt|zt−1, xt−1, yt−1) (Desbouvries and Pieczynski,
2003a,b; Ait-El-Fquih and Desbouvries, 2006; Abbassi et al., 2011). This can be seen from the fact that
PMCs and TMCs are nothing more than a partially observed Markov Chain and so an HMC in which one
of the component of the (augmented) hidden state is perfectly observed. Thus, we do not further discuss on
these direct extensions.

However, when these models are used for a Bayesian problem in which we focus on the estimation of
an interpretable hidden process {Xt}t∈N, the direct adaptation of unsupervised estimation methods can be
detrimental in terms of classification or prediction. The reason why is that when the complexity of the model
increases (in terms of dependencies between the random variables and of number of parameters), nothing
ensures that the hidden process {Xt}t∈N associated to the estimated model has the desired physical properties
of interest. For example, in the case of the PMC, the observation Yt depends on Xt but also on Xt−1 given
the past; at first glance, it is not clear if Yt is explained by Xt or Xt−1, contrary to a simple HMC.

Q.5 When we introduce the PMC and the TMC models for the Bayesian estimation problem of an hidden
process of interest, the estimation parameters methods should be tuned in a such way that the inter-
pretability of the hidden process that we have with a fundamental HMC is kept. This problem is all the
more important when we introduce highly parameterized models as suggested by question Q.4. How
to include this constraint in the parameter estimation of models (1.10)-(1.11) and how to exploit the
interpretability of an already used model such as the HMC?

Finally, in the general class of TMC models, Pieczynski (2011a) has highlighted a particular TMC model
which presents interesting computational properties. When Zt is discrete and the model satisfies

pθ(zt, xt, yt|zt−1, xt−1, yt−1) = pθ(zt, yt|zt−1, yt−1)pθ(xt|zt, xt−1, yt−1:t),

pθ(xt|zt, xt−1, yt−1:t) = N
(
xt;Cθ (zt, yt−1:t)xt−1 + hθ (zt, yt−1:t) ; Σθ (zt, yt−1:t)

)
,

(1.12)

E(h(Xs)|y0:t) can be exactly computed if h is a quadratic function, at cost linear in the number of observa-
tions (Pieczynski, 2011a,b; Derrode and Pieczynski, 2013).

Q.6 Model (1.12) is interesting from a computational point of view but is clearly non-identifiable since the
parameters related to pθ(xt|zt, xt−1, yt−1:t) do not depend on the associated likelihood. It is also close
to the popular linear and Gaussian Jump Markov State Space System (JMSS), i.e. a linear and Gaussian
HMC which depends on a Markovian discrete random process (Tugnait, 1982). The JMSS has been
used for many applications (Doucet et al., 2001b) but the computation of E(h(xs)|y0:t) is an NP-hard
problem for quadratic functionals. How to use model (1.12) (in which the posterior distribution is also
unknown) to address in an alternative way the Bayesian inference problems P.1 and P.2 in the linear
and Gaussian JMSS?

1.2.3 Recurrent Neural Networks

Initially, RNNs aimed at solving the statistical learning approach of section 1.1.2 in the case of sequential
data by building parameterized functions which take into account all observations until time t. They are an
adaptation of DNNs (see Ex. 1.1) for time series, but they can be used to produce generative models as we
now see.

24

1.2 Statistical models for time series

Construction (P.1) - A DNN is not relevant to predict an observation Yt+1 from Y0:t = y0:t because its
input has a fixed size and cannot take into account an increasing sequence of observations. Even if it can be
used with a predefined window size of observations, it is unsatisfying from a modelling point of view. The
idea underlying RNNs is to store a summary of all the past observations in a variable of fixed dimension. At
a given time t, the so-called latent state ht is a function of all the past observations y0:t. In order to respect the
constraint that the parameters of the model do not depend on time, the latent state is computed sequentially
as

ht = fθ(ht−1, yt), for all t ∈ N, (1.13)

where fθ is a parameterized activation function (e.g. a DNN). A prediction of interest at time t is deduced
from the latent state through a function gθ(ht) which can also be parameterized by a DNN. However, as dis-
cussed previously, we focus on generative models to quantify the uncertainty of our predictions. Endowing
the observations a pdf turns the RNN into a generative model. To do this, gθ is replaced by a parameter-
ized pdf pθ(yt+1|ht). This yields a generative model based on the conditional distribution pθ(yt+1|ht) and
described as

pθ(y0:t)
RNN
= pθ(y0)

t∏

s=1

pθ(ys|hs−1)︸ ︷︷ ︸
pθ(ys|y0:s−1)

, for all t ∈ N, (1.14)

where hs is computed from (1.13) for all s, s ≤ t. So the construction of a generative model based on an
RNN also relies on a latent but conditionally deterministic process {Ht}t∈N. Actually, in the time series
framework, model (1.13)-(1.14) is called an observation driven model while the HMC (1.6) is a parameter
driven model (Cox et al., 1981; Koopman et al., 2016).

Q.7 Starting from the observation that Markovian models and generative RNNs share a common construc-
tion (the distribution of the observations is deduced from a random or deterministic variable), can
we extend the question Q.3 to the RNN? More precisely, how to compare the modelling power of
Markovian and RNN models? We will see that this comparison can be done under the general PMC
framework introduced in Paragraph 1.2.2.

Prediction in an RNN (P.2) - By construction of (1.14), the prediction of an observation Yt+1 from
y0:t is obtained by computing the latent state ht from (1.13) and next pθ(yt+1|ht). More generally, it is
possible to obtain a discrete approximation of pθ(yt+1:t+t′ |y0:t) by sampling sequentially yit+s according to
from pθ(yt+s|hit+s−1), where hit+s−1 is computed from (1.13) for all s, 1 ≤ s ≤ t′.

Estimation of θ (P.3) - The parameter estimation in a RNN is often computed from a gradient ascent
method since the log-likelihood

log
(
pθ(y0:t)

)
= log

(
pθ(y0)

)
+

t−1∑

s=1

log
(
pθ(ys+1|hs)

)

is computable in a generative RNN. However, note that the computation of the gradient of log(pθ(y0:t))

w.r.t. θ is not direct since hs also depends on θ via (1.13). However, gradient backpropagation can still be
used. By constrast with feedforward DNN, there can be as many computed gradients as observations for a
given parameter. In that case, a parameter is updated according to the sum of partial derivatives computed
at each time instant. This adaptation of the backpropagation algorithm is called backpropagation through

25

Chapter 1 : An overview of generative models for time series analysis

time (Robinson and Fallside, 1987; Werbos, 1990; Mozer, 1995). In practice, the gradients computed for a
given parameter geometrically tend to infinity or to zero when we get back into the past. These phenomena
are called exploding gradient and vanishing gradient. The exploding gradient phenomenon is often due to
the repeated multiplication of high weights. Learning the RNN becomes particularly unstable. An efficient
way to limit this behavior is to bound the values taken by the gradient (Goodfellow et al., 2016; Goldberg,
2017). One can also include a regularization term to the cost function in order to penalize weights that
are too large (Pascanu et al., 2013). By contrast, the vanishing gradient phenomenon results from the re-
peated multiplication or small size weights, as well as the iterated use of activation functions which have
derivates bounded by 1 in magnitude (e.g. the sigmoid). In that case, the oldest observations are not taken
into account in the learning phase, so it is difficult to learn long term dependencies. Consequently more
sophisticated parameterizations of fθ in (1.13) have been proposed, such as the Long Short Term Memories
(LSTM) (Hochreiter and Schmidhuber, 1997) and the Gated Recurrent Units (GRU) (Chung et al., 2014).
In particular, LSTM and GRU render the returning loop of the RNN more complex, in order to mitigate the
vanishing gradient phenomenon.

1.3 About the notations

Let us now clarify our notations for the different processes introduced in the previous sections. From now
on, {Yt}t∈N refers to an observed time series; {Xt}t∈N refers to an hidden process of physical interest, i.e.

a process that we aim at estimating (even partially). We will sometimes say that {Xt}t∈N is interpretable
(e.g. Xt is a 4-dimensional vector and consists of the position and the velocity of a target in the Euclidean
plane at time t). {Ht}t∈N refers to an intermediate hidden process (whether it is deterministic or not) which
only aims at building an implicit distribution to model the observations; so its estimation is not the main
purpose when it is considered. Finally, {Zt}t∈N also refers to an intermediate hidden process but will always
be introduced jointly with {Xt}t∈N or {Ht}t∈N; it aims at emphasizing its different nature w.r.t. {Xt}t∈N or
{Ht}t∈N. As an example, Xt can be a continuous random variable while Zt is a discrete one; or {Ht}t∈N is
random while {Zt}t∈N is deterministic, given the observations.

1.4 Organization of the thesis

In this brief review of latent data models for time series, we have highlighted some problems related to P.1-
P.3 (construction, estimation, prediction) through questions Q.1-Q.7. This manuscript proposes a synthesis
of my contributions to address some of these questions. It is organized as follows.

Chapter 2 is devoted to alternative (sequential) Monte Carlo algorithms when the probabilistic model is
known. More precisely, we focus on P.3 in an HMC and we address the points raised in Q.1. For these
questions, we first revisit the Rubin’s SIR mechanism (Rubin, 1988; Smith and Gelfand, 1992) by proposing
an importance sampling estimator of E(h(X)|Y = y) based on two importance distributions; we propose
a procedure to tune the introduced importance distributions with the objective to minimize the asymptotic
variance of the resulting estimator. In a second stage, we carefully study the resampling scheme associated to
the mechanism and which is critical in the sequential case. In pathological models (e.g. informative HMCs),
when the resampling steps tend to eliminate all the samples except one, we propose a resampling mecha-
nism which produces independent conditional samples. Actually, our methodology can be interpreted as an
implicit auxiliary particle filter. Since the computational cost associated to our particle filter increases com-

26

1.4 Organization of the thesis

pared to the original mechanism, we compare our scheme with traditional methods at a fixed computational
cost and we also propose an intermediate solution to decrease it.

Chapter 3 also focusses on Problem P.3 in an HMC but aims at estimating the asymptotic variance of
some estimators based on particle filter; so it addresses Q.2 − 2′ . We focus on two popular sequential
Monte Carlo algorithms: the bootstrap particle filter of Gordon et al. (1993) and the FFBS algorithm of
Tanizaki and Mariano (1994); Doucet et al. (2000). For each of these algorithms, we propose estimators of
the asymptotic variance of φN

t (h) and of φN
0:t(h0:t). Our estimators satisfy the following constraints: (i)

they are built from the output of these algorithms (i.e. no additional simulations are required); (ii) they are
sequentially computable; (iii) they converge to the theoretical asymptotic variances. When it is possible, a
convergence rate is given.

While the two previous chapters are related to P.3, Chapter 4 is devoted to P.1 and aims at understanding
the impact of the structural differences of the HMC, the PMC and the RNN on their associated generative
distribution pθ(y0:t), for all t ∈ N. We thus address Q.3 and Q.7 and we show that under some assumptions,
these questions can be approached from a system theory perspective (Chen, 1970).

Finally, Chapter 5 is a cross-fertilization of the reflexions which have emerged from the previous chap-
ters. And indeed, we deal with the complete chain P.1 - P.3 for Bayesian classification and prediction of
time series. We show that by unifying the two point of views (hidden Markov models and recurrent neural
architectures), we can address Q.4 - Q.6 with powerful probabilistic models (P.1) in which we propose
some Bayesian inference methods (P.2 - P.3). Three applications are proposed. We first introduce new
generative models based on the combination of PMCs and RNNs which are able to learn the distribution of
complex time series. These models are next used in the case where we want to classify each observation
of a time-series in an unsupervised way. In this case, the hidden process becomes of physical interest and
parameter estimation algorithms should be guided in order to take into account this constraint. Finally, we
show that such combinations can be used to propose a fast alternative to Monte Carlo methods for Bayesian
estimation in linear and Gaussian JMSS (Tugnait, 1982).

At the end of the manuscript, we summarize the contributions and describe the unanswered questions
related to our solutions. We also give a short description of future projects in which I will be involved.

27

CHAPTER 2

Revisiting some (sequential) Monte Carlo methods

This chapter focuses on Monte Carlo methods based on the Rubin’s SIR mechanism (Rubin, 1988). We
assume that the probabilistic models are known so we give up temporarily the dependency in θ of the involved
distributions. Moreover, in the sequential case, we particularly focus on the HMC and we emphasize the
fact that this model is built from two class of conditional distributions: the transitions of the Markov chain
{Xt}t∈N denoted as ft(xt|xt−1) at time t, and the conditional likelihoods of the observations with the hidden
states denoted as gt(yt|xt) at time t. In other words, the joint distribution of an HMC reads

p(x0:t, y0:t)
HMC
= p(x0)

t∏

s=1

fs(xs|xs−1)
t∏

s=0

gs(ys|xs), for all t ∈ N. (2.1)

In model (2.1), we discuss on sampling strategies which aim at improving current Monte Carlo estimators

φN
t (h) =

N∑

i=1

W i
th(ξ

i
t) (2.2)

of

φt(h) =

∫

X

h(xt)φt(xt)ν(dxt)

(remember that the filtering distribution is denoted as φt(xt) = p(xt|y0:t)). After recalling the rationale of
Monte Carlo methods and their sequential application, we propose two improvements. In section 2.2, we
discuss on the relevance of introducing two importance distributions for normalized importance sampling.
In section 2.3, we propose to use resampled but independent particles to compute Monte Carlo estimators.
This last alternative is extended in the sequential case.

The methods proposed in this chapter are mainly a synthesis of the work I realized during the supervision
of R. Lamberti (2015-2018), with F. Desbouvries and F. Septier. More details can be found in [6,7,10,11],
see paragraph A.4. of my research activities.

2.1 Background

The Rubin’s SIR mechanism (Alg. 2.1) - Let π ∝ p be a pdf known up to a constant and q be an
importance distribution which satisfies q(x) = 0 when p(x) = 0; The objective is to compute

π(h) =

∫

X

h(x)π(x)ν(dx) =

∫
X
h(x)p(x)ν(dx)∫
X
p(x)ν(dx)

=
p(h)

p(1)
=

q
(
ph
q

)

q
(
p
q

) . (2.3)

Chapter 2 : Revisiting some (sequential) Monte Carlo methods

The so-called importance sampling estimator of this ratio is obtained by drawing i.i.d. samples {ξi}Ni=1

according to q,

πN
IS(h) =

N∑

i=1

W ih(ξi), (2.4)

where

W i = Ω−1ωi, ωi =
p(ξi)

q(ξi)
and Ω =

N∑

i=1

ωi, for all i ∈ [1 : N]. (2.5)

If we want an unweighted representation of π, particles {ξi}Ni=1 can be resampled according to the nor-
malized weights. The resampling step is equivalent to sample independently discrete variables {Ai}Ni=1

according to the categorical distribution defined by {W i}Ni=1. We thus obtain an alternative estimator

πN
SIR(h) =

N∑

i=1

1

N
h(ξA

i

). (2.6)

From a computational point of view, it is easy to check that πN
IS(h) is a better estimator than πN

SIR(h) because
Var(πN

IS(h)) ≤ Var(πN
SIR(h)). However, studying πN

SIR(h) can be interesting to evaluate the consequences
of the resampling step. It is well known that a sample ξA

i
converges in distribution to π when N → ∞

(Geweke, 1989). Setting

V∞q (h) = q

(
π2

q2
(h− π(h))2

)
,

Ṽ∞q (h) = V∞q (h) + π
(
(h− π(h))2

)
, (2.7)

and assuming that V∞q (h) <∞ and Ṽ∞q (h) <∞, we have

√
N
(
πN
IS(h)− π(h)

)
=⇒
N→∞

N
(
0,V∞q (h)

)
,

√
N
(
πN
SIR(h)− π(h)

)
=⇒
N→∞

N
(
0, Ṽ∞q (h)

)
,

where =⇒ denotes the convergence in distribution. This result suggests some ideas to improve the estimators
πN
IS(h) and πN

SIR(h).

• It is well known that
q∗(x) ∝ |h(x)|π(x)

minimizes the asymptotic variance V∞q (h) of πN
IS(h). However, the fact that the variance cannot be

further decreased is the consequence that the same samples (and so the same importance distributions)
are used to compute the numerator and denominator of (2.3). In order to break this classical scheme,
we propose to introduce an importance distribution in augmented dimension on X2 (so two marginal
importance distributions) and next to tune them by taking into account the computational cost and the
asymptotic variance of the resulting Monte Carlo estimator;

• The resampling step is critical in sequential problems. It can be observed in (2.7) that πN
SIR(h) is poor

when πN
IS(h) is poor or Varπ(h) is large. In order to limit the increase of variance w.r.t. πN

IS(h), sev-
eral alternative schemes such as the residual, systematic or stratified resampling have been proposed

30

2.1 Background

(Hol et al., 2006; Douc et al., 2005; Li et al., 2015) but the improvement w.r.t. the multinomial resam-
pling is very limited if the importance distribution is not well chosen. Starting from the observation
that the degree of dependence of the samples {ξAi}Ni=1 is related to the quality of the multinomial
resampling (in a degenerate case, samples {ξAi}Ni=1 tend to be all equal), we propose a mechanism
which produces samples according to the same marginal distribution as that of {ξAi}Ni=1, but which
are independent. As we will see, the obtained mechanism can be interpreted as particular importance
sampling algorithm with an implicit importance distribution, provided the samples are reweighted.

Algorithm 2.1 Rubin’s SIR mechanism

Require: p(x) such that π(x) ∝ p(x), an importance distribution q
for i ∈ [1 : N] do

Sample ξi ∼ q(x).

Set ωi = p(ξi)
q(ξi)

.
end for

for i ∈ [1 : N] do

Sample Ai i.i.d.∼ Categorical

({
W l = ωl ×

(∑N
j=1 ω

j
)−1

}

l∈[1:N]

)
.

end for

return {ωi, ξi, Ai}Ni=1

Sequential Importance Sampling with Resampling (Alg. 2.2) - Let us now introduce the HMC
(2.1) and set

π(x) ← φ0:t|t(x0:t) = p(x0:t|y0:t) ∝ p(x0:t, y0:t)

q(x) ← qt(x0:t).

In order to update φN
t|t(h) from φN

t−1|t−1(h) when a new observation yt is available, the importance distribu-
tion qt satisfies

qt(x0:t) = qt−1(x0:t−1)qt(xt|x0:t−1).

In practice, we set qt(xt|x0:t−1) = qt(xt|xt−1) but note that it can depend on the observations y0:t. Applying
importance sampling with this particular setting allows to sample new particles and to compute the impor-
tance weights sequentially. However, this direct sequential application tends to degenerate when t grows: all
the normalized weights {W i

t}Ni=1 associated to φN
t|t(h) in (2.2) are equal to 0, except one. The reason why is

that the dimension of the space on which evolves the target distribution φ0:t|t(x0:t) increases overtime. This
phenomenon can be addressed by introducing the resampling step of the Alg. 2.1. The resulting algorithm
known as the sequential importance sampling with resampling algorithm (Doucet et al., 2001a) coincides
with Alg. 2.2 and consists of a sequential application of Alg. 2.1.

Auxiliary Particle Filters (Alg. 2.3) - The rationale of Auxiliary Particle Filters (APFs) is based on
the sequential expression of the filtering density

φt(xt) ∝ gt(yt|xt)
∫

X

ft(xt|xt−1)φt−1(xt−1)ν(dxt−1).

31

Chapter 2 : Revisiting some (sequential) Monte Carlo methods

Algorithm 2.2 SIR particle filter

Require: {ωi
t−1, ξ

i
t−1}Ni=1, yt, a conditional importance distribution qt(xt|xt−1)

for i ∈ [1 : N] do

Sample Ai
t−1

i.i.d∼ Categorical

(
{W l

t−1 = ωl
t−1

(∑N
j=1 ω

j
t−1

)−1
}l∈[1:N]

)
.

Sample ξit ∼ qt(xt|ξ
Ai

t−1

t−1).

Set ωi
t =

ft(ξit|ξ
Ai
t−1

t−1)gt(yt|ξit)

qt(ξit|ξ
Ai
t−1

t−1)

.

end for

return {ωi
t, ξ

i
t}Ni=1

Plugging a Monte Carlo approximation φN
t−1(xt−1), we obtain a mixture approximation of φt(xt),

φ̃N
t (xt) ∝

N∑

i=1

ωi
t−1p(yt|ξit−1)p(xt|ξit−1, yt) =

N∑

i=1

ωi
t−1gt(yt|xt)ft(xt|ξit−1).

APF algorithms target the mixture φ̃N
t (xt) by resorting to importance sampling in augmented dimension

(Pitt and Shephard, 1999; Cappé et al., 2007). It relies on an importance mixture

qNt (xt) ∝
N∑

i=1

µ(ξit−1)qt(xt|ξit−1). (2.8)

An iteration of the APF is given in Alg. 2.3. Note that under this point of view, the resampling step appears
naturally when we sample according to (2.8). Alg. 2.3 also generalizes Alg. 2.2 which corresponds to the
particular setting µ(ξit−1) = ωi

t−1. Finally, the particular setting µ(xt−1) = p(yt|xt−1) and qt(xt|xt−1) =

p(xt|xt−1, yt) ∝ ft(xt|xt−1)gt(yt|xt) coincides with the Fully Adapted APF (FA-APF); in this case, the
particles of time t − 1 are first resampled according to the likelihood of ξit−1 with new observation yt; they
are next extended with new samples drawn from the so-called optimal distribution which takes into account
observation yt.

Algorithm 2.3 Auxiliary Particle Filter

Require: {ωi
t−1, ξ

i
t−1}Ni=1, yt, µ(xt−1), qt(xt|xt−1)

for i ∈ [1 : N] do

Sample Ai
t
i.i.d.∼ Categorical

({
µ(ξlt−1)×

(∑N
j=1 µ(ξ

j
t−1)

)−1
}

l∈[1:N]

)
.

Sample ξit ∼ qt(xt|ξA
i
t

t−1).

Set ωi
t =

ω
Ai
t

t−1ft(ξ
i
t|ξ

Ai
t

t−1)gt(yt|ξ
i
t)

µ(ξ
Ai
t

t−1)qt(ξ
i
t|ξ

Ai
t

t−1)
.

end for

return {ωi
t, ξ

i
t}Ni=1

The asymptotic results of the static case can be extended to the sequential one but are not presented in
this chapter (see e.g. (Cappé et al., 2005; Chopin and Papaspiliopoulos, 2020)). Here, we rather focus on
the critical resampling step of Alg. 2.2. Even if it ensures the stability of the algorithm overtime, there are

32

2.2 Double Proposal Importance Sampling

pathological cases for which the resampling step is severe since it may eliminate all the particles except one
(when N is finite). Even if diversity is recreated during the next sampling step, the particles at a given time
t have the same ancestor. Such cases can appear in informative or high dimensional HMCs in which it is
difficult to draw samples in relevant regions of gt(.|xt). A sequential version of the revisited SIR mech-
anism can improve the particle filters estimators and actually provides a relevant and implicit importance
distribution for the APF which mimics the rationale of the FA-APF with any conditional importance distri-
bution qt(xt|xt−1). Our experiments show that it can be used to mitigate the shrinkage phenomenon of the
traditional resampling scheme at the same computational cost of classical particle filters.

2.2 Double Proposal Importance Sampling

Construction of the estimator - We first turn back to the problem of approximating π(h). Let q1,2(x1, x2)
be an importance distribution on X2 such that its marginal distributions q1(x1) and q2(x2) are known. The
main idea of the Double Proposal Importance Sampling (DPIS) idea is to rewrite (2.3) as

π(h) =
q1

(
ph
q1

)

q2

(
p
q2

) .

A natural Monte Carlo estimator reads

πN
DPIS(h) =

∑N
i=1 ω

i
1h(ξ

i
1)∑N

i=1 ω
i
2

, (ξi1, ξ
i
2)

i.i.d.∼ q1,2, for all i ∈ [1 : N], (2.9)

where

ωi
1 =

p(ξi1)

q1(ξi1)
and ωi

2 =
p(ξi2)

q2(ξi2)
, for all i ∈ [1 : N].

Note that we do not make any assumption about the statistical dependency between ξi1 and ξi2 for a given i.
Estimator (2.9) generalizes (2.4) which coincides with the particular setting q1,2(dx2|x1) = δx1(dx2), i.e.

q2 = q1 and ξi1 = ξi2 for all i ∈ [1 : N]. The following Proposition describes the asymptotic properties of
πN
DPIS(h).

Proposition 2.1. Let q1,2(x1, x2) be the (importance) distribution associated to samples {ξi1, ξi2}Ni=1. We
note

g(x1, x2) =
p(x1)

q1(x1)
h(x1)−

π(x2)

q2(x2)
π(h), (2.10)

V∞q1,2(h) = q1,2

(
g2
)

. (2.11)

Then if V∞q1,2(h) <∞,
√
N
(
πN
DPIS(h)− π(h)

)
=⇒
N→∞

N
(
0;V∞q1,2(h)

)
.

Of course, V∞q1,2(h) coincides with V∞q (h) if q1,2(dx2|x1) = δx1(dx2). The introduction of two impor-
tance distributions gives an additional degree of freedom. Indeed, let us assume that h is a constant sign
function. Then it is easy to check that V∞q∗1,2(h) = 0 if q∗1,2 satisfies q∗1 ∝ |h|p and q∗2 ∝ p, contrary to the

classical importance sampling estimator where V∞q∗ (h) ≥ 0 when q∗ ∝ |h|q (except if h is a constant). Of
course, the distributions q∗1 and q∗2 are not computable in practice and the practical computation of (2.9) is
related to the following constraints:

33

Chapter 2 : Revisiting some (sequential) Monte Carlo methods

1. The choice of q1 and q2;

2. The dependency between ξi1 and ξi2 (so the choice of q1,2 such that the marginals coincide with q1 and
q2);

3. The computational cost associated to πN
DPIS(h) w.r.t. πN

IS(h).

In the light of Prop. 2.1, a natural objective is to minimize V∞q1,2(h). Setting (X1, X2) ∼ q1,2, let us first
remark that the asymptotic variance can be rewritten as

V∞q1,2(h) = Var

(
π(X1)

q1(X1)
h(X1)

)
− 2π(h)Cov

(
π(X1)

q1(X1)
h(X1),

π(X2)

q2(X2)

)
+ Var

(
π(X2)

q2(X2)

)
. (2.12)

Consequently, if the marginals q1 and q2 are first fixed (remember that we need them to compute the impor-
tance weights), the minimization of V∞q1,2(h) relies on the covariance term and so on the dependency between
X1 and X2. A preliminary study in the Gaussian case (π and q1,2 are Gaussian) where all the quantities are
computable has shown that the optimal relation of dependency depends on the parameters of q1 and on q2;
the optimal choice of q1,2 from q1 and q2 actually remains an open problem. However, in the sequel we
constraint X1 and X2 to be deterministic transformations of a given random variable. The reason why is that
it can be interpreted as direct extension of the computation of the estimator πN

IS(h), where X1 = X2, and the
associated computational cost remains unchanged in terms of sampling steps. Indeed, in the general case,
the computation of πN

DPIS(h) would require 2N sampling steps.

A Practical DPIS estimator (Alg. 2.4) - It remains to deal with the first point. We propose an easy
way to build relevant importance distributions q1 and q2. We start from a common importance distribution
q used to compute πN

DPIS(h) and its associated samples {ξi}Ni=1. The idea is to move samples {ξi}Ni=1 in
order to optimize V∞q1,2(h). As an illustration, we focus on the case where x ∈ R and we propose a linear
transformation of the original samples {ξi}Ni=1. Note that any differentiable transformation such that q1 and
q2 are computable remains valid. In the linear case, we have

ξi1 = α1ξ
i + β1 and ξ21 = α2ξ

i + β2,

and so

qφ,1(x1) =
1

|α1|
q

(
x1 − β1

α1

)
,

qφ,2(x2) =
1

|α2|
q

(
x2 − β2

α2

)
.

When φ = (α1, α2, β1, β2) = (1, 1, 0, 0), πN
DPIS(h) = πN

IS(h). Setting

pφ,1(x) = p(α1x+ β1), pφ,2(x) = p(α2x+ β2) and hφ,1(x) = h(α1x+ β1),

the asymptotic variance (2.11) now depends on φ and reads

V∞φ,1,2(h) =
1

p(1)2
× q

(
1

q2
(
|α1|pφ,1hφ,1 − |α2|pφ,2π(h)

)2
)

.

34

2.3 The Rubin’s independent resampling mechanism

Let us remark that we have transformed a mathematical expectation according to qφ,1,2 in (2.11) to an ex-
pectation according to q (which does not depend on φ). Consequently, it can be approximated by a Monte
Carlo estimator in which the samples are drawn according to q and do not depend on φ,

VN,∞
φ,1,2(h) =

N
(∑N

i=1 ω
i
φ,2

)2
N∑

i=1

1

q(ξi)2

(
|α1|p1,φ(ξi)h1,φ(ξi)− |α2|pφ,2(ξi)πN

φ,DPIS(h)
)2

. (2.13)

The fact that the samples do not depend on φ is particularly desirable in optimization problems. Actually, the
reparametrization of (ξi1, ξ

i
2) as a differentiable function (w.r.t. φ) of a random variable is a particular case

of the popular reparametrization trick in machine learning and introduced in Kingma and Welling (2014).
Finally, (2.13) can be optimized w.r.t. φ with a given optimization method. In particular, any gradient
descent method can be used if p and h are also differentiable. Alg. 2.4 gives an example of the tuning of the
DPIS estimator with a basic gradient descent method.

Algorithm 2.4 DPIS Algorithm

Require: q, a learning rate ǫ, a threshold S
for i ∈ [1 : N] do

Sample ξi ∼ q(x).
end for

Initialize φ = φ(∗) randomly.

while || ∇VN,∞
φ,1,2(h)

∣∣∣
φ=φ(∗)

|| ≥ S do

Set φ(∗) = φ(∗) − ǫ∇VN,∞
φ,1,2(h)

∣∣∣
φ=φ(∗)

end while

return φ(∗) = (α
(∗)
1 , α

(∗)
2 , β

(∗)
1 , β

(∗)
2)

Experimental result (Fig. 2.1) - We compare the performance of our optimized DPIS estimator based
on an initial distribution q with the classical importance sampling estimator (2.4) based on q but also with
an optimized importance sampling estimator in two scenarios. In the first scenario (Fig. 2.1a), we compare
the resulting DPIS estimator based on the optimization of the Monte Carlo approximation (2.13) of the
asymptotic variance with an exact optimization of (2.11) (it is computable for this particular case). In the
second scenario, we compute our estimator in a Bayesian scenario where π(x) ∝ p(x)p(y|x).

2.3 The Rubin’s independent resampling mechanism

The DPIS idea is promising in the static case but remains difficult to apply in the sequential one because
it would involve an optimization procedure at each time step. We revisit the Rubin’s SIR mechanism in an
alternative direction. We first propose a procedure to mitigate the support shrinkage of the (multinomial)
resampling step of particle filters. This enables us to build an implicit relevant importance distribution. It is
next exploited for the sequential case.

Main Idea - We still consider the problem of approximating π(h). In Alg. 2.1, the local effect of the
resampling step can be measured through the estimator πN

SIR(h) in (2.6). It involves discrete index variables

35

Chapter 2 : Revisiting some (sequential) Monte Carlo methods

N (number of samples)

R
M
S
E

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.005

0.01

0.015

0.02

0.025

×104

Normalized Importance Sampling

Optimized normalized Importance Sampling

Optimized DPIS with Monte Carlo approximation

Optimized DPIS

(a) Toy model : h(x) = x2, π(x) = q(x) = N (x; 0; 1). Simulation with 100 MC runs comparing DPIS estimators,
using either exact or approximated asymptotic variance expressions for minimization, with classical importance sam-
pling and optimized classical importance sampling estimators.

N (number of samples)

R
M
S
E

2
×104

1.81.61.41.210.80.6

×10−4

0.4
1

2

3

4

5

6

7
Normalized importance sampling
Optimized normalized importance sampling
Optimized DPIS

(b) Bayesian non-linear Gaussian model, h(x) = N (x; 3; 1), p(x) = q(x) = N (x; 1; 1), p(y|x) = N (y;x2; 1). Sim-
ulation with 100 Monte Carlo runs comparing the DPIS estimator with classical importance sampling and optimized
importance sampling estimators.

Figure 2.1

36

2.3 The Rubin’s independent resampling mechanism

{Ai}Ni=1 sampled according to the categorical distribution Cat({W l}l∈[1:N]). So we focus on the samples

ξ̃i = ξA
i

, for all i ∈ [1 : N]

produced by the SIR mechanism and we have the following Proposition.

Proposition 2.2. Let us consider the samples {ξ̃i}Ni=1 produced by the SIR mechanism and let us emphasize
that the normalized weights in (2.5) are a realization of a random variable function of all the particles {ξi}Ni=1,
i.e.

W(ξ1, · · · , ξn) =
p(ξ1)
q(ξ1)

∑N
i=1

p(ξi)
q(ξi)

(2.14)

(soW i =W(ξi, ξ1, · · · , ξi−1, ξi+1, · · · , ξn) in (2.5)). Then {ξ̃i}Ni=1 are identically distributed according to
q̃N with

q̃N (x) = NE

(
W(x, ξ2, · · · , ξn)|ξ1 = x

)
q(x)

but are dependent.

To illustrate this result, let us consider the particular case where π and q are pdfs w.r.t. the Lebesgue
measure on R. Then

E

(
W(x, ξ2, · · · , ξN)|ξ1 = x

)
=

∫

RN−1

p(x)
q(x)

p(x)
q(x) +

∑N
i=2

p(xi)
q(xi)

N∏

i=2

q(xi)dx2 · · · dxN

and q̃N (x) is also a pdf w.r.t. the Lebesgue measure on R. However, since there is a non null probability
that two final samples are equal, it means that {ξ̃i}Ni=1 are dependent. Now, what happens if we have at
our disposal i.i.d samples according to q̃N (x)? To measure the impact, we introduce the (fictional, for the
moment) estimator

πN
I−SIR(h) =

1

N

N∑

i=1

h(ξi), {ξi}Ni=1
i.i.d∼ q̃N (2.15)

We then have the following results.

Proposition 2.3. Let us consider the three estimators πN
IS(h), π

N
SIR(h) and πN

I−SIR(h) in (2.4), (2.6) and
(2.15), respectively. Then

E(πN
IS(h)) = E(πN

SIR(h)) = E(πN
I−SIR(h)),

Var(πN
SIR(h)) = Var(πN

I−SIR(h)) +
N − 1

N
Var(πN

IS(h)).
(2.16)

In addition, if E(πN
I−SIR(h)

2) <∞, then πN
I−SIR(h) satisfies a CLT,

√
N(πN

I−SIR(h)− π(h)) =⇒
N→∞

N (0;π(h− π(h))2). (2.17)

Let us comment this result. First, it shows that the variance of πN
I−SIR(h) is lower than that of πN

SIR(h).
This is not surprising since N−1

N
Var(πN (h)) in (2.16) actually coincides with the sum of (positive) covari-

ance terms between the samples involved in the dependent resampling scheme. In addition, the CLT (2.17)

37

Chapter 2 : Revisiting some (sequential) Monte Carlo methods

shows that in an asymptotic regime, getting i.i.d. samples according to q̃N is equivalent to sampling ac-
cording to the target distribution π. The comparison between πN

I−SIR(h) and πN
IS(h) depends on h and on

q and coincides with the traditional discussion between a crude and an importance sampling estimator. In
particular, if q has been tuned in function of h, then πN

IS(h) may be more interesting than πN
I−SIR(h). By

contrast, πN
I−SIR(h) is more adapted for a large class of functions h.

As we have just seen, i.i.d. samples according to q̃N provide an alternative and interesting estimator, at
least from an asymptotic point of view. However, considering that q̃N can be seen as a particular importance
distribution for a given N , we are able to propose an importance sampling estimator based on q̃N ,

πN
I−SIR−w(h) =

N∑

i=1

W ih(ξi), {ξi}Ni=1
i.i.d∼ q̃

where

W i = Ω−1ωi, ωi =
p(ξi)

q̃N (ξi)
and Ω =

N∑

i=1

ωi, for all i ∈ [1 : N]. (2.18)

Note that the importance distribution q̃N and so the importance weights {ωi}Ni=1 now depend on N . The
objective of this weighted estimator is to correct the fact that q̃N is different from π, from a non asymptotical
point of view. The statistical interest of πN

I−SIR−w(h) w.r.t. πN
IS(h) can be highlighted in the case where the

number of samples obtained from q̃N is different from N .

Drawing i.i.d. samples from q̃N (Alg. 2.5) - As we have just seen, if we replace the classical depen-
dent resampling by a resampling scheme which achieves to produce independent samples without affecting
the marginal distribution of the resampled particles, then we eliminate the support shrinkage but we also ob-
tain estimators which may be more interesting than the estimator πN

IS(h). However, obtaining such samples
and computing their weights in (2.18). is not direct. We provide a procedure in Alg. 2.5 with a computa-
tional cost in O(N2). It is based on N2 samples according to q which can be latter recycled to approximate
q̃N (x) and so the new importance weights in (2.18). An unbiased estimator of E

(
W(ξi, ξi1 , · · · , ξiN−1)|ξi

)

is indeed given by

E

(
W(ξi, ξi1 , · · · , ξiN−1)|ξi

)
≈ 1

N

N∑

j=1

W(ξi, ξ1,j , · · · , ξi−1,j , ξi+1,j , · · · ξN,j), {ξi,j}Ni,j=1
i.i.d.∼ q

(2.19)
and deduced from the computed weights {ωi,j}Ni,j=1 of Alg. 2.5.

Due to its computational cost, Alg. 2.5 should also be compared to a SIR algorithm which first samples
N2 particles and next resamples N particles among the N2 ones. In this case, the N resampled particles are
dependent according to q̃N

2
and it is easy to check that it satisfies the same CLT (2.17) as the I-SIR estimator.

However, an advantage of the I-SIR estimator is that it can be parallelized since the N resampling steps are
independent.

Experiments (Fig. 2.2) - We consider a static linear and Gaussian model, π(x) ∝ p(x)p(y|x) ∝
N (x; 0; 10)N (y;x; 3), h(x) = x. We compute several estimators based on the same number of final samples
N : the SIR estimator πN

SIR(h) based on N intermediate samples; the SIR estimator πN
SIR−2(h) based on N2

intermediate samples; the importance sampling estimator πN
IS(h); our estimators πN

I−SIR(h) and πN
I−SIR−w(h)

which have the same computational cost as πN
SIR−2(h) but which can be parallelized.

38

2.3 The Rubin’s independent resampling mechanism

Algorithm 2.5 I-SIR mechanism

Require: p(x) such that π(x) ∝ p(x)
for i ∈ [1 : N] do

for j ∈ [1 : N] do

Sample ξi,j ∼ q(x).

Set ωi,j = p(ξi,j)
q(ξi,j)

.
end for

Sample Ai ∼ Categorical

({
ωi,l ×

(∑N
j=1 ω

i,j
)−1

}

l∈[1:N]

)
.

end for

return {ωi,j , ξi = ξi,A
i}Ni,j=1

N (number of final samples for all algorithms)

R
M
S
E
w
.r
.t
.
E
[X

|y
]

0 100 200 300 400 500 600 700 800 900 1000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
SIR estimator

Importance sampling estimator

Independent SIR estimator

SIR estimator with N 2 intermediate samples

Weighted independent SIR estimator

Figure 2.2: Static linear and Gaussian model - Bayesian estimates of π(x) based on the independent resam-
pling mechanism outperform the estimators based on the traditional IS and SIR mechanisms although they
require an extra computational cost. Other simulations show that for small N (N < 100), the estimator
based on weighted i.i.d. samples from q̃N slightly outperforms the estimator based on dependent samples
from q̃N

2
(which uses the same overall computational cost), while for large N the performances coincide.

39

Chapter 2 : Revisiting some (sequential) Monte Carlo methods

2.4 Sequential independent resampling mechanism: an implicit APF

In this section, we extend our resampling scheme to the sequential case. It requires some adaptation since
Alg. 2.2 produces conditionally identically distributed particles at time t.

An adaptation to the sequential case (Alg. 2.6) - In order to evaluate the impact of the resampling
step of Alg. 2.2, we consider the sampling → weighting → resampling loop, that is to say the mechanism

which transforms {ξA
i
t−1

t−1 }Ni=1 in {ξA
i
t

t }Ni=1. It is possible to extend Proposition 2.3 for the sequential case;

former pdf q̃N now coincides with the conditional distribution of ξ
Ai

t
t given {ξA

j
t−1

t−1 }Nj=1 .

Proposition 2.4. Let us consider the samples produced by Alg. 2.2. Given {ξA
j
t−1

t−1 }Nj=1, the sampling →
weighting → resampling loop produces identically distributed (but dependent) particles {ξA

i
t

t }Ni=1 according
to

q̃Nt (x) =
N∑

i=1

mi
t(x)qt(x|ξ

Ai
t−1

t−1),

where mi
t(x) is the conditional expectation of the i-th normalized importance weight

W i
t(ξ

i
t, ξ

1
t , · · · , ξi−1

t , ξi+1
t , · · · , ξNt) =

ft(ξit|ξ
i
t−1)gt(yt|ξ

i
t)

qt(ξit|ξ
i
t−1)

ft(ξit|ξ
i
t−1)gt(yt|ξ

i
t)

qt(ξit|ξ
i
t−1)

+
∑

j 6=i

ft(ξ
j
t |ξ

j
t−1)gt(yt|ξ

j
t)

qt(ξ
j
t |ξ

j
t−1)

(2.20)

given {ξA
j
t−1

t−1 }Nj=1 and ξit = x,

mi
t(x) = E

(
W i

t(ξ
i
t = x, ξ1t , · · · , ξi−1

t , ξi+1
t , · · · , ξNt)|x, {ξA

j
t−1

t−1 }Nj=1

)
. (2.21)

For the same reasons as those presented in the static case, it is interesting to deal with (conditionally) i.i.d.
samples: starting from a common set of samples, a direct adaptation of Prop. 2.3 shows that an estimator
based on i.i.d. samples according to q̃Nt (x) has a lower variance than that computed after the classical
resampling step of Alg. 2.2. Consequently, obtaining conditionally i.i.d. samples is a way to to keep the

marginal distribution of each sample ξ
Ai

t
t but also to cancel locally the detrimental effect of the resampling

step. Note that it is a conditional property and that the global trajectories remain dependent. As in the static
case, Alg. 2.6 describes a procedure to obtain such i.i.d. samples according to q̃Nt (x) and Fig. 2.5 provides
an explicative scheme. It also requires the sampling of N2 particles {ξi,jt }Ni,j=1 but it can be parallelized in
the light of the Island particle filter (Vergé et al., 2015). From now on, in the framework the I-SIR particle
filter, we note

ξit = ξ
Ai

t,i
t , for all t ∈ N and for all i ∈ [1 : N].

Relation with APF Alg. 2.3 - We now show that the sampling → weighting → resampling loop of
Alg. 2.6 can be interpreted as a resampling→ sampling step of the APF. Indeed, the conditional importance
distribution q̃Nt (x) can be rewritten as a mixture

q̃Nt (x) =
N∑

i=1

E

(
W i

t

∣∣∣ {ξjt−1}Nj=1)
mi

t(x)qt(x|ξit−1)

E

(
W i

t |{ξjt−1}Nj=1

) . (2.22)

40

2.4 Sequential independent resampling mechanism: an implicit APF

Algorithm 2.6 I-SIR particle filter

Require: {ωi,j
t−1, ξ

i,j
t−1}Ni=1, yt

for i ∈ [1 : N] do

Sample Ai
t−1 ∼ Categorical

(
{W l,i

t−1 = ωl,i
t−1 ×

(∑N
l=1 ω

l,i
t−1

)−1
}l∈[1:N]

)
.

for j ∈ [1 : N] do

Sample ξi,jt ∼ qt(xt|ξ
Ai

t−1,i

t−1).

Set ωi,j
t =

ft(ξ
i,j
t |ξ

i,Ai
t−1

t−1)gt(yt|ξ
i,j
t)

qt(ξ
i,j
t |ξ

i,Ai
t−1

t−1)

end for

end for

return {ωi,j
t , ξi,jt }Ni,j=1

And indeed, the pair (Ai
t, ξ

i
t = ξ

Ai
t,i

t) produced by Alg. 2.6 is distributed (in augmented dimension) ac-

cording to q̃Nt (x): it is easy to check that Ai
t is distributed according to Cat({E

(
W l

t |{ξjt−1}Nj=1)}l∈[1:N]

)
,

where W l
t is defined in (2.14); and given Ai

t, ξit = ξ
Ai

t,i
t is distributed according to mi

t(x)qt(x|ξ
Ai

t−1

t−1)

E(W i
t |{ξjt−1}Nj=1)

−1 (Alg. 2.6 describes the distribution of {ξi,jt }Ni,j=1 and next that of Ai
t given {ξi,jt }Ni,j=1).

Let us now interpret the sense of sampling (indirectly) according to this mixture. Starting from a given set
of initial particles {ξit−1}Ni=1, they are first resampled according to the expectation of the normalized im-
portance weights of the SIR algorithm at time t. In other words, samples ξit−1 which will likely produce
large important weights tend to be selected; but even if such samples have been selected, it not ensured that
the final associated weights will be large, so they are extended according to a distribution proportional to
mt(xt)qt(xt|xt−1), i.e. a distribution which puts mass where the conditional expectation of the normalized
weight and the sampling distribution are large. Thus, the mixture (2.22) can be interpreted as a kind of
optimal importance distribution which aims at selecting and next guiding the samples in an optimal sense
when we only have at our disposal an importance distribution qt(xt|xt−1). As the FA-APF which produces
a mixture from the SIR algorithm with the optimal importance distribution p(xt|xt−1, yt) (and so with the
associated weights p(yt|xt−1)), our mixture is deduced from any importance distribution of the the SIR
algorithm and coincides with the FA-APF in the particular case of the optimal importance distribution.

In conclusion, if we now start from a set of weighting samples {ωi
t−1, ξ

i
t−1}Ni=1, it is possible to apply

the sampling, weighting and resampling steps of Alg. 2.5 (up to the introduction of ωj
t−1 in the expression

of ωi,j
t) to obtain i.i.d. samples according to a relevant mixture in the APF framework. It remains to weight

samples (ξit, A
i
t) produced by Alg. 2.5 by the APF importance weights,

ωi
t =

ft(ξ
i
t|ξ

Ai
t

t−1)gt(yt|ξit)
m

Ai
t

t (ξit)qt(ξ
i
t|ξ

At−1

t−1)
.

As in the static case, ωi
t is not computable because it relies on m

Ai
t

t (ξit). However, remember that it coincides
with the conditional expectation of the Ai

t-th normalized importance weight so a crude Monte Carlo estimator

of m
Ai

t
t (ξit) can be estimated from the intermediate samples {ξl,jt }, j ∈ [1 : N] and l 6= Ai

t. This is nothing
more that the extension of the computation (2.19) in the static case. In summary, let us retain the following
conclusions:

41

Chapter 2 : Revisiting some (sequential) Monte Carlo methods

• when we study the sampling→ weighting→ resampling loop of Alg. 2.2, we obtain dependent and
unweighted samples according to an implicit mixture; this loop can be reinterpreted as a degenerated
iteration of the APF;

• if the objective is to reduce the effect of the support shrinkage in the context of particle filters based
on the SIR mechanism, Alg. 2.6 can be applied and produces unweighted but conditionnally i.i.d.
samples according to the previous mixture;

• based on the observation that this mixture has a relevant interpretation, it can be used in the APF
framework. In this case, the final samples are (approximately) weighted.

Simulations (Figs. 2.3 and 2.4) - We consider two simulations. In the first one, we consider the ARCH
model

ft(xt|xt−1) = N
(
xt; 0;β0 + β1x

2
t−1

)
,

gt(yt|xt) = N (yt;xt; 1)

in which the FA-APF is computable and we compare all the discussed algorithms for the estimation of
φt(h) with h(x) = x, without discussing of the extra computational cost involved by our algorithm. The
reason why is that we want to compare the implicit mixture q̃Nt obtained from qt(xt|xt−1) with those used
in the APF framework. For our algorithms, we use the conditional importance distribution of the bootstrap
algorithm, qt(xt|xt−1) = ft(xt|xt−1).

In the second scenario, we consider a tracking scenario (i.e. we estimate the position and the velocity of
a target Xt) from informative range-bearing measurements,

ft(xt|xt−1) = N


xt;

[
1 1
0 1

]
⊗ I2xt−1;

[
1/3 1/2
1/2 1

]
⊗ I2


 ,

gt(yt|xt) = N


yt; g(xt);

[
σ2
ρ 0

0 σ2
θ

]
 ,

where g is the non linear function which computes the polar coordinates from the Cartesian coordinates xt.
In Fig. 2.4, we compare different estimators for a given budget of samples. If the size of the support after
our resampling step is M , Alg. 2.6 is based on M2 +M sampling operations which can be parallelized; on
the other hand Alg. 2.2 requires 2N sampling operations, so we set N = M2+M

2 .

Reducing the computational cost from semi-independent resampling (Fig. 2.5) - Alg. 2.6
requires N2 sampling operations. We propose an iterative procedure which can be seen as an intermediate
solution between the SIR and I-SIR particle filters. This procedure is called semi-independent resampling
and relies on an hyperparameter k, 0 ≤ k ≤ N . It coincides with the degree of diversity that we want
to introduce after the resampling step. Rather than presenting an algorithm, we explain the core idea of the
procedure through Fig. 2.5. In this figure, we have represented the set of N2 intermediate particles {ξi,jt }Ni,j=1

produced by Alg. 2.6; remember that for each block i ∈ [1 : N], a particle ξit = ξ
Ai

t,i
t is resampled. Note

also that the classical SIR particle filter can be seen as a particular case of this figure in which the blocks are
replicated, i.e. ξi,jt = ξi,j

′

t for all (j, j′) ∈ [1 : N] × [1 : N]. The semi-independent resampling solution

42

2.4 Sequential independent resampling mechanism: an implicit APF

N (number of particles for all algorithms)

R
M
S
E

10 20 30 40 50 60 70 80 90 100
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Bootstrap

APF with optimal first stage weights

FA-APF

I-SIR

Weighted I-SIR

(a) RMSE w.r.t. number of particles

Time step

R
M
S
E

1009080706050403020100
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08
Bootstrap

APF estimate with optimal first stage weights

FA-APF

I-SIR

Weighted I-SIR

(b) RMSE w.r.t. time

Figure 2.3: ARCH model - R = 1, β0 = 3 and β1 = 0.75 - (a) The estimator based on the independent
resampling mechanism with a final reweighting has the same performances as the estimator deduced from
the FA-APF. The final reweighting mechanism is beneficial when compared to the use of uniform weights. -
(b) RMSE w.r.t time of the various estimates for N = 100

M (number of particles of I-SIR algorithms)

R
M
S
E

0 10 20 30 40 50 60 70 80 90 100

4

6

8

10

12

14

16
Island particle filter (5 Islands)

SIR with residual resampling, M 2+M
2 samples

I-SIR, uniform weights, M samples

I-SIR with reweighting, M samples

(a) σQ =
√
10, σρ = 0.25 and σθ = π

720

M (number of particles of I-SIR algorithms)

R
M
S
E

0 10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

Island particle filter (5 Islands)

SIR with residual resampling, M 2+M
2 samples

I-SIR with reweighting, M samples

I-SIR, uniform weights, M samples

(b) σQ =
√
10, σρ = 0.05 and σθ = π

3600

Figure 2.4: Target tracking model from range-bearing measurements - (a) the independent resampling pro-
cedure with final weighting outperforms the other estimators and is particularly interesting when the number
of final samples is weak - (b) in the informative case, all estimates suffer from the degeneration of the impor-
tance weights except that based on the unweighted independent resampling algorithm. To achieve the same
performances as Θ̂I−SIR−w,M

k with M = 20, the classical particle filter uses N = (502 + 50)/2 = 1275
samples.

43

Chapter 2 : Revisiting some (sequential) Monte Carlo methods

that we propose is an intermediate solution in which the j + 1-th block is first replicated from the j-th one;
next among the N samples of this j + 1-th block, k samples are selected uniformly and are next replaced
by a new sample drawing from the corresponding conditional importance distribution. Thus, the diversity
in introduced iteratively over the construction of the blocks. We can show that starting from a common
set of samples, the variance of the semi-independent resampled estimators is a decreasing function of k.
Experimentally, we can observe that a value of k = N/2 produces approximately the same performance as
the independent resampling procedure (k = N). A parallelized version can be also deduced, provided that
the j blocks, for j ∈ [2 : N], are built from the first one. A direct consequence is that the diversity is reduced
w.r.t. the previous construction. Experimentally, a value of k = 4N/5 offers similar performances to the
independent resampling procedure.

In Fig. 2.6, we consider again the range-bearing tracking scenario and we compare different algorithms
with a given budget of samples. Since the complexity of the semi-independent resampling in terms of
sampling operations is N + k(N − 1) +N , for N = 100 and k = N/2, we compare it with Alg. 2.6 with
72 samples and with Alg. 2.2 with N + (N − 1)k/2 = 2575 particles.




ξ1,1t
...

ξN,1
t




︸ ︷︷ ︸
ξ
A1
t
,1

t

→




ξ1,2t
...

ξN,2
t




︸ ︷︷ ︸
ξ
A2
t
,2

t

→ · · · →




ξ1,Nt
...

ξN,N
t




︸ ︷︷ ︸
ξ
AN
t

,N

t

↓ ↓ ↓
ξ1t ξ2t ξNt

Figure 2.5: The classical, independent and semi-independent resampling mechanisms. Each scheme draws N supports
ξi,

:

t and redraws one sample ξit out of each support. The difference lies in the way ξi,
:

t is built from ξi−1,:
t : ξi,jt is a

copy of ξi−1,j
t in the classical case; is a new particle in the independent case; and can be either copied of redrawn in

the intermediate, semi-independent case.

Standard deviations (σρ,σθ) of the measured range and bearing

R
M
S
E

(0,0) (0.05, π
3600) (0.1,

π
1800)(0.15,

π
1200) (0.2, π

900) (0.25, π
720) (0.3, π

600)

2.8

3

3.2

3.4

3.6

3.8

4

Bootstrap with k = N
2
resample-moves

I-SIR with N I−SIR = 72 final particles

Parallelized semi I-SIR with k = 4N
5

= 80

Semi I-SIR with k = N
2

Bootstrap with N + (N−1)k
2

= 2575 final particles

Figure 2.6: Tracking model, σρ ∈ [0.01, 0.3] and σθ ∈ [π
18000 ,

π
600]. Our estimators based on the I-SIR

and the semi-I-SIR algorithm are compared with traditional SMC algorithms for a fixed budget of sampling
operations.

44

CHAPTER 3

Estimating asymptotic variances with recycled particles

We continue to investigate SMC methods in the HMC model. However, instead of proposing alternative
sampling algorithms, we rather exploit and recycle the current outputs of traditional sequential Monte Carlo
methods such as the bootstrap and the FFBS algorithms for estimating the asymptotic variance of their as-
sociated estimators. We also provide a statistical analysis of the variance estimators and practical algorithms
to compute them.

The analysis proposed in this Chapter are a synthesis of some work I realized during the supervision of
Y. Janati (2020-2023) with S. Le Corff. The proofs are omitted for clarity but can be found in [18].

3.1 Background

Before recalling the two estimators for which we look an estimator of their asymptotic variance, we introduce
some notations with the objective of simplifying the presentation of our main results.

General notations - In this chapter, the unit function 1 satisfies 1(x) = 1 for all x in X. When consider
an augmented space such as Xt+1×Xt+1 , the functionals from this augmented space are denoted as h. From
a given augmented space, we also define a functional h ⊗ h′ which satisfies (h ⊗ h′)(x, x′) = h(x)h′(x′).
For (a, b) ∈ N2, a ≤ b, the set of integer between a and b is denoted as [a : b], and we define [b] = [1 : b].
Given a set of particles {ξis}s∈[0:t],i∈[1:N], we write ξ1:Nt = (ξ1t , · · · , ξNt) the set of particles at time t,
ξk0:t0:t = (ξk00 , · · · , ξktt) a particular trajectory indexed by (k0, · · · , kt) and ξ1:N0:t = {ξk0:t0:t }k0:t∈[N]t+1 the set
of all trajectories.

Notation in HMCs - Since our estimators are conditional to a given set of observations, we give up
the dependence in yt and we introduce some notations related to the Feynmann-Kac framework (Del Moral,
2004). In model (1.6), the transitions of the Markov chain and the conditional likelihoods are denoted as

ft(xt−1, xt) = p(xt|xt−1),

gt(xt) = p(yt|xt).

In addition, the moment of a given functional h w.r.t. a conditional pdf (e.g. ft(xt−1, xt)) is noted

ft[h](xt−1) =

∫

X

ft(xt−1, xt)h(xt)dν(xt).

It is easy to check that in an HMC, the pair {Xt, Yt−1}t∈N∗ is a Markov chain; its transitions are denoted as
Qt(xt−1, xt) and satisfy

Qt(xt−1, xt) = p(xt, yt−1|xt−1) = gt−1(xt−1)ft(xt−1, xt).

Chapter 3 : Estimating asymptotic variances with recycled particles

By extension, we note Qs:t(xs−1, xs:t) = p(xs:t, ys−1:t−1|xs−1) and we have

Qs:t(xs−1, xs:t) = Qs(xs−1, xs)× · · · ×Qt(xt−1, xt), if s ≤ t.

When s > t, we set Qs:t[h](xs−1) = h(xs−1). In our problem, the sequence of unormalized distributions

γ0:t(x0:t) = p(x0:t, y0:t−1)

plays a key role and can be defined from

γ0(x0) = p(x0), γ0:t(x0:t) = γ0:t−1(x0:t−1)Qt(xt−1, xt).

The marginal p(xt, y0:t−1) is denoted as γt(xt). The predictive and the filtering distributions, ηt(xt) =

p(xt|y0:t−1) and φt(xt) = p(xt|y0:t), satisfy

ηt(xt) = γ−1
t (1)γt(xt), φt(xt) = gt(xt)ηt(xt)/ηt(gt).

When we deal with the smoothing problem, it is interesting to consider the HMC in a backward way.
Given {Yt}t∈N, {Xt}t∈N satisfies a backward Markov property since the smoothing distribution φ0:t|t(x0:t) =

p(x0:t|y0:t) can be written as

φ0:t|t(x0:t) = φt(xt)
t−1∏

s=0

p(xs|xs+1, y0:s)︸ ︷︷ ︸
p(xs|xs+1:t,y0:t)

, for all t ∈ N.

We thus introduce the so-called Backward kernels Bφs
(xs+1, xs) = p(xs|xs+1, y0:s) which satisfy

Bφs
(xs+1, xs) =

fs+1(xs, xs+1)φs(xs)∫
X
fs+1(xs, xs+1)φs(xs)dν(xs)

, for all s ∈ [0 : t− 1].

Finally, the kernel defined by Tt(xt, x0:t−1) = p(x0:t−1|xt, y0:t) satisfies

Tt(xt, x0:t−1) =
t−1∏

s=0

Bφs
(xs+1, xs), for all t ≥ 1.

The bootstrap particle filter - This algorithm is nothing more than a particular case of Alg. 2.2 of
the previous chapter in which we set qt(xt|xt−1) = ft(xt−1, xt) (Gordon et al., 1993). In this case, the
importance weights ωi

t reduce to the conditional likelihood of a particle with the current observation yt,
ωi
t = gt(ξ

i
t). As we will see, it can be relevant to retrace the genealogy of each particle ξit until time s = 0.

We note the index of this ancestor Ei
t,0 (it represents the index of the particle a time t = 0 which has finally

produces ξit) The bootstrap algorithm is recalled in Alg. 3.1 and we include the sequential computation of
Ei
t,0. From Alg. 3.1, we deduce the approximations

ηNt (h) =
1

N

N∑

i=1

h(ξit), φN
t (h) =

N∑

i=1

ωi
th(ξ

i
t).

Finally, based on the identities ηt−1(gt−1) =
γt(1)

γt−1(1)
, γt(1) =

∏t
s=1

γs(1)
γs−1(1)

, and remembering that γt(h) =
γt(1)ηt(h), we deduce an approximation of γt(h),

γNt (h) =




t∏

s=1

ηNs−1(gs−1)


 ηNt (h) =




t∏

s=1

N−1Ωs


 ηNt (h).

46

3.1 Background

Algorithm 3.1 Bootstrap particle filter

Require: {ωi
t−1, ξ

i
t−1}Ni=1, yt

Set Ωt−1 =
∑N

i=1 ω
i
t−1

for i ∈ [1 : N] do

Sample Ai
t−1

i.i.d.∼ Categorical
(
{W l

t−1 = ωl
t−1Ω

−1
t−1}l∈[1:N]

)
.

Set Ei
t,0 = E

Ai
t−1

t−1,0.

Sample ξit ∼ qt(xt|ξ
Ai

t−1

t−1).

Set ωi
t =

ft(ξit|ξ
Ai
t−1

t−1)gt(yt|ξit)

qt(ξit|ξ
Ai
t−1

t−1)

.

end for

return {ωi
t, ξ

i
t}Ni=1

It can be shown that γNt (h) is an unbiased estimator of γt(h) (Del Moral, 2004); in the particular case where
h = 1, we have an unbiased estimator of the likelihood p(y0:t).

The estimators γNt (h), ηNt (h) and φN
t (h) have asymptotic properties which ensure the validity of Alg.

3.1 and which extend the static results of the previous chapter. Let us assume that

(A1) there exists a constant G∞ > 0 such that for all t ∈ N and x ∈ X, 0 < gt(x) ≤ G∞.

Then for any bounded functional h, the three estimators converge almost surely to γNt (h), ηNt (h) and φN
t (h),

respectively, and they also satisfy a CLT,

√
N
(
γNt (h)− γt(h)

)
=⇒
N→∞

N
(
0;V∞γ,t(h)

)
,

√
N
(
ηNt (h)− ηt(h)

)
=⇒
N→∞

N
(
0,V∞η,t(h)

)
,

√
N
(
φN
t (h)− φt(h)

)
=⇒
N→∞

N
(
0,V∞φ,t(h)

)
,

(3.1)

where

V∞γ,t(h) =
t∑

s=0

{
γs(1)γs

(
Qs+1:t[h]

2
)
− γt(h)

2

}
, (3.2)

V∞η,t(h) =
t∑

s=0

γs(1)γs
(
Qs+1:t[h− ηt(h)]

2
)

γt(1)2
, (3.3)

V∞φ,t(h) =
t∑

s=0

γs(1)γs
(
Qs+1:t[gt{h− φt(h)}]2

)

γt+1(1)2
. (3.4)

With the previous notations, remember that Qs+1:t[h](xs) is a function of xs; so γs(Qs+1:t[h]
2) is noth-

ing more than the expectation of this function w.r.t. γs. The asymptotic variances (3.2)-(3.4) describe the
reliability of the estimators but are not computable in practice. We address their approximation under the
constraint that the samples produced by Alg. 3.1 should be recycled. The reason why is that these estimators
are computed in an online context, so their variance should be estimated at each time step. In our work, we
mainly focus on the estimation of V∞γ,t(h). The asymptotic variances V∞η,t(h) and V∞φ,t(h) can be deduced

47

Chapter 3 : Estimating asymptotic variances with recycled particles

from V∞γ,t(h) since it is easy to check that

V∞η,t(h) =
Vγ,t(h− ηt(h))

γt(1)2
, V∞φ,t(h) =

Vγ,t{gt(h− φt(h))}
γt+1(1)2

. (3.5)

A first estimator of V∞γ,t(h) has been proposed by Chan and Lai (2013) and relies on the ancestors of
each sample ξit . The Chan & Lai estimator (CLE) reads

VNη,t(h) = −N−1
∑

i,j∈[N]2

1
Ei
t,0 6=Ej

t,0

(
h(ξit)− ηNt (h)

)(
h(ξjt)− ηNt (h)

)
. (3.6)

It is very easy to compute since it only considers the samples at time t which do not have a common ancestor
at time t = 0. However, due to degeneration phenomenon detailed in the previous chapter, VNγ,t(h) tends to
be equal to 0 when t is large; in this setting, all the samples have a common ancestor. This phenomenon can
be controlled by considering a fixed-lag parameter λ which truncates the genealogy of the particle system.
The truncated estimator proposed by Olsson and Douc (2019) reads

VN,λ
γ,t (h) = −N−1

∑

i,j∈[N]2

1
Ei
t,t−λ

6=Ej
t,t−λ

(
h(ξit)− ηNt (h)

)(
h(ξjt)− ηNt (h)

)
, (3.7)

where Ei
t,t−λ is the index ancestor of ξit at time t − λ. Ei

t,t−λ can be computed in the same way as Ei
t,0 in

Alg. 3.1. This estimator can be made stable provided λ is well chosen but its practical choice is not trivial.
Finally, Lee and Whiteley (2018) proposes a consistent term by term estimator of (3.2). Its construction will
be described later since the alternative estimator we propose also relies on it. It also brings an alternative
point of view about the CLE estimator. Actually, (3.6) can be rewritten as a mathematical expectation,

VN,λ
γ,t (h) = −NE




t∏

s=0

1K1
s 6=K2

s
× {h(ξK

1
t

t)− ηNt (h)}{h(ξK
2
t

t)− ηNt (h)}
∣∣∣∣FN

t


 , (3.8)

where

FN
t = σ

(
{ξi0}Ni=1, · · · , {ξit}Ni=1, {Ai

0}Ni=1, · · · , {Ai
t}Ni=1

)

is the σ-field containing all the particles and ancestors up to time t, (K1
0:t,K

2
0:t) are discrete random variables

such as K1
t and K2

t are i.i.d. uniformly on [N] and

K1
s = A

K1
s+1

s , K2
s = 1K1

s+1 6=K2
s+1

A
K2

s+1
s + 1K1

s+1=K2
s+1

Cs,

where Cs ∼ Categorical({W l
s}l∈[1:N]).

The FFBS algorithm - By considering the complete trajectories generated by Alg. 3.1, it is possible to
approximate directly φ0:t|t(h0:t) with the bootstrap particle filter (see the rationale of sequential importance
sampling in chapter 2). However, due to the degeneration phenomenon, such estimators are very poor in
practice, in particular when we consider the problem of approximating φs|t(h0:t) for s << t. In this chapter,
we consider additive functionals

h0:t(x0:t) =

t−1∑

s=0

hs(xs, xs+1); (3.9)

48

3.1 Background

for such functionals, we also set h̃s:r(xs:r) =
∑r−1

l=s hl(xl, xl+1), if s < r, and h̃s:r(xs:r) = 0, otherwise.
When (3.9) is satisfied, the output φN

0:t|t(h0:t) of the FFBS algorithm can be directly computed in a forward
way and so updated when a new observation yt+1 is available. Let us briefly explain why. First, remark that

φ0:t|t (h0:t) = φt

(
Tt[h0:t]

)

(remember that Tt[h0:t](xt) depends on xt). On the other hand, Alg. 3.1 provides an approximation φN
t [h] =∑N

i=1W i
th(ξ

i
t) for any functional h from X. So it remains to obtain an approximation of Tt[h0:t](xt) for

any xt. This can be done sequentially since

Tt[h0:t](xt) =

∫ {
h̃0:t−1(x0:t−1) + ht(xt−1, xt)

}
Tt(xt, x0:t−1)ν(dx0:t−1),

=

∫ {
h̃0:t−1(x0:t−1) + ht−1(xt−1, xt)

}
Bφt−1(xt, xt−1)Tt−1(xt−1, x0:t−2)ν(dx0:t−1),

= Bφt−1

[
Tt−1[h̃0:t−1] + ht−1(., xt)

]
(xt).

Using that Bφt−1 [h](xt) is a ratio of integrals w.r.t. φt−1 (see (3.1)), we obtain a Monte Carlo approximation
TN

t [h0:t](xt) by plugging TN
t−1 and φN

t−1 above,

TN
t [h0:t](xt) =

N∑

i=1

ωi
t−1ft(ξ

i
t−1, xt)∑N

j=1 ω
j
t−1ft(ξ

j
t−1, xt)

{
TN

t−1[h̃0:t−1](ξ
i
t−1) + ht−1(ξ

i
t−1, xt)

}
.

Finally,

φN
0:t|t(h0:t) =

N∑

i=1

W i
tT

N
t [h0:t](ξ

i
t).

In other words, the computation of the FFBS algorithm for additive functionals (3.9) coincides with the
bootstrap particle filter, Alg. 3.1, up to the additive computation of TN

t [h0:t](ξ
i
t) after the sampling step at

time t.

For any bounded functionals h0:t (not necessarily additive) and under A1, φN
0:t|t(h0:t) also satisfies a

CLT (Douc et al., 2011a),

√
N
(
φN
0:t|t(h0:t)− φ0:t|t(h0:t)

)
=⇒ N

(
0;VFFBS

0:t|t (h0:t)
)

,

where

VFFBS
0:t|t (h0:t) =

t∑

s=0

ηs

(
Gs,t

[
gt

{
h− φ0:t|t(h0:t)

}]2)

ηs(Qs+1,t[gt])2
, (3.10)

and where Gs,t is the kernel that integrates h0:t forward and backward starting from xs, i.e.

Gs,t[h0:t](xs) = Ts

[
Qs+1:t[h0:t]

]
(xs) =

∫
h0:t(x0:t)Ts(xs, x0:s−1)Qs+1:t(xs, xs+1:t)ν(dx0:s−1, dxs+1:t),

for any s ∈ [0 : t] and xs ∈ X. However, and contrary to the bootstrap particle filter, no estimator of (3.10)
has been proposed. It is the objective of our second contribution but we limit it to additive functionals in
order to propose an online algorithm.

49

Chapter 3 : Estimating asymptotic variances with recycled particles

3.2 Variance estimation for filtering estimators

The starting point of our approach is the following. From (3.8), it can be observed that the degeneration of

the CLE can be explained by the distribution of (K1
0:t,K

2
0:t) which only considers the ancestors of ξ

K1
t

t and

of ξ
K2

t
t . However, once we have observed a full sequence of observation y0:t, there may be other relevant

trajectories which are not necessarily the ancestral ones; we would like to take into account such posterior
trajectories. Our idea is to replace the deterministic assignment in (3.8) by a stochastic distribution related
to that used in the FFBS algorithm and which allows to re-evaluate the contribution of past trajectories.

Principle - We first rediscover the rationale of the general construction of the asymptotic variance estima-
tor of Lee and Whiteley (2018). Let X ∼ π(x), and assume that we want to compute unbiased estimators of
E(f(X)g(X)) and of E(f(X))E(g(X)). These two quantities can be seen as the same moment according
to two distributions on (X2,X⊗2),

Qb(x, x
′) = π(x)

(
1b=0π(x

′) + 1b=1δx(x
′)
)

.

For functionals h defined on X2 as h = f ⊗ g (so remember that h(x, x′) = f(x)g(x′)), we have

E(f(X))E(g(X)) = Q0(f ⊗ g), E(f(X)g(X)) = Q1(f ⊗ g).

Using this point of view, it seems that we need to sample in augmented dimension to obtain unbiased estima-
tors of E(f(X)g(X)) and of E(f(X))E(g(X)). However, an unbiased estimator of E(f(X)g(X)) is easily
deduced from i.i.d. samples from π. Using the fact that an unbiased estimator of Cov(f(X), g(X)) is also
available, one of E(f(X))E(g(X)) = E(f(X)g(X))− Cov(f(X), g(X)) can be deduced. In summary,

QN
0 (f ⊗ g) =

1

N(N − 1)

∑

i,j∈[N]2

1i 6=jf(ξ
i)g(ξj), QN

1 (f ⊗ g) =
1

N

N∑

i=1

f(ξi)g(ξi), {ξi}Ni=1
i.i.d∼ π

are unbiased estimators only based on i.i.d. samples according to π. The rationale of the estimator of the
asymptotic variance is the same: we look for building distributions Qb,t(x0:t, x0:t′) such that each term
γs(1)γs

(
Qs+1:t[h]

2
)
− γt(h)

2 in (3.2) can be seen as a moment according to a particular Qb,t; we next
derive an unbiased estimator of Qb,t(h) from the samples generated by the bootstrap particle filter. We now
detail this construction and the statistical properties of our estimator.

Our estimator - Using the same construction as previously, we can rewrite γs(1)γs
(
Qs+1:t[h]

2
)

as an
integral in augmented dimension. For any t ∈ N, we define Bt = {0, 1}t+1 and b = (b0, · · · , bt) ∈ Bt.
Denote by 0 the null vector in Bt and es the vector with 1 at position s and 0 elsewhere. We also consider
the following HMC in an augmented space,

Qb,t

(
x0:t, x

′
0:t

)
= pb0

(
x0, x

′
0

) t−1∏

s=0

g⊗2
s (xs, x

′
s)

t∏

s=1

f bs
s

(
(xs−1, x

′
s−1), (xs, x

′
s)
)

,

where

pb0
(
x0, x

′
0

)
= p(x0)(1b0=0p(x

′
0) + 1b0=1δx0(x

′
0)),

f bt
t

(
(xt−1, x

′
t−1), (xt, x

′
t)
)

= ft(xt−1, xt)(1bt=0ft(x
′
t−1, x

′
t)) + 1bt=1δxt(x

′
t).

50

3.2 Variance estimation for filtering estimators

Then the terms in (3.2) can be seen as particular moments according to Qb,t and we have for any functional
h from X

Q0,t(h
⊗2) = γt(h)

2,

Qes,t(h
⊗2) = γs(1)γs

(
Qs+1:t[h]

2
)

.

Consequently, our target VNγ,t(h) can be rewritten as

t∑

s=0

(
Qes,t(h

⊗2)−Q0,t(h
⊗2)
)

. (3.11)

Let us now see how to obtain intuitively an unbiased estimator of Qb,t(h) with the following example.

Example 3.1. Let (X0, X1) ∼ π(x0, x1) and let us assume that we have (ξi0, ξ
i
1)

i.i.d.∼ π(x0, x1), for i ∈ [1 :

N]. The objective is to compute

πb(h) =

∫
h(x0:1, x

′
0:1)πb(dx0:1, dx

′
0:1),

where b = (b0, b1) ∈ {0, 1}2 and

πb(x0:1, x
′
0:1) = π(x0)(1b0=0π(x

′
0) + 1b0=1δx0(x

′
0))π(x1|x0)(1b1=0π(x

′
1|x′0)) + 1b1=1δx1(x

′
1),

from {ξi0, ξi1}Ni=1.

• Case b = (0, 0): it is the direct application in augmented dimension of what we have seen above, so
an unbiased estimator is given by (up to the proper constant)

πN
(0,0)(h) ∝

∑

i 6=j

h(ξi0:1, ξ
j
0:1);

• Case b = (1, 1): it also the application in augmented dimension of what we have seen before, so an
unbiased estimator is given by

πN
(1,1)(h) ∝

N∑

i=1

h(ξi0:1, ξ
i
0:1);

• Case b = (0, 1): πb(h) can be rewritten as

π(0,1)(h) =

∫ [∫
h(x0:1, x

′
0, x1)π(dx1|x0)

]
π(dx0)π(dx

′
0),

so again one can recycle {ξi0}Ni=1 and compute

πN
(0,1)(h) ∝

∑

i 6=j

h(ξi0:1, ξ
j
0, ξ

i
1);

• Case b = (1, 0) is the most challenging case. πb(h) can be rewritten as

π(1,0)(h) =

∫ [∫
h(x0:1, x0, x

′
1)π(dx1|x0)π(dx′1|x0)

]
π(dx0).

51

Chapter 3 : Estimating asymptotic variances with recycled particles

However, we cannot recycle {ξi1}Ni=1 because ξj1 is not sampled according to π(x1|ξi0) for j 6= i.
The trick is to resample artificially the set {ξi0}Ni=1 via indexes Ai

0 ∼ Cat(1/N) before extending the

trajectories by sampling ξi1 ∼ π(x1|ξA
i
0

0). An unbiased estimator reads

πN
(1,0)(h) ∝

∑

i 6=j

1
Ai

0=A
j
0
h(ξ

Ai
0

0 , ξi1, ξ
A

j
0

0 , ξj1).

The computation of the last estimator has prompted us to review our sampling scheme by adding a resampling
step. So we have to review the computation of the third first estimators in the case where we use the sampling-
resampling-sampling prodedure in order to have a common scheme for any b.

• Case b = (0, 0): the main difference is that we now have dependent but still identically distributed
samples according to π(x0, x1). An unbiased estimator reads

πN
(0,0)(h) ∝

∑

i,j

1
Ai

0 6=A
j
0
h(ξ

Ai
0

0 , ξi1, ξ
A

j
0

0 , ξj1);

• Case b = (1, 1): this case is also trivial and the unbiased estimator becomes

πN
(1,1)(h) ∝

N∑

i=1

h(ξ
Ai

0
0 , ξi1, ξ

Ai
0

0 , ξi1);

• Case b = (0, 1): this case should take into account the samples {ξj0}Nj=1 different from {ξA
i
0

0 }. To that

end, it recycles the samples {ξj0}Nj=1. The estimator becomes

πN
(0,1)(h) ∝

N∑

i,j

1j 6=Ai
0
h(ξ

Ai
0

0 , ξi1, ξ
j
0, ξ

i
1);

Actually, these estimators remain unbiased as their previous version, but their variance increases because of
the resampling step.

The unbiased estimator of Qb,t(h) of Lee and Whiteley (2018) can be interpreted as the generalization
of Ex. 3.1 in the case where the integrals involve γ0:t(x0:t). However, remember that the bootstrap particle
filter provides an unbiased estimator of any functional according to γ0:t (Del Moral, 2004). So the estimator
of Lee and Whiteley (2018) relies on a discrete Markov chain K1

0:t and a conditional discrete Markov chain
K2

0:t whose distributions satisfy

Λ1,t(k
1
0:t) =

1

N

t∏

s=1

p(k1s−1|k
1
s)︷ ︸︸ ︷

βs(k
1
s , k

1
s−1) ,

Λ2,t(k
1
0:t, k

2
0:t) = p(k20:t|k10:t) =

1

N

t∏

s=1

1k1s=k2s
Wk2s−1

s−1 + 1k1s 6=k2s
βs(k

2
s ; k

2
s−1),

(3.12)

where
βs(k, l) = βGT

s (k, l) = 1l=Ak
s−1

. (3.13)

52

3.2 Variance estimation for filtering estimators

The indicator function in (3.13) enables to retrace the genealogy of a final particle, as we did in Ex. 3.1, while

Wk2s−1

s−1 in (3.12) quantifies the relevance of sample ξ
k2s−1

s−1 when it comes to consider the support of particles
at time s−1 (see the analogy with the case b = (0, 1) in Ex. 3.1). Next, introducing the coalescence function

Ib,s(k
1
0:s, k

2
0:s) =

s∏

l=0

{1k1
l
=k2

l
1bl=1 + 1k1

l
6=k2

l
1bl=0}, ∀s ∈ [0 : t], (3.14)

which is equal to 1 if vector b is in accordance with trajectories (k10:s, k
2
0:s), an unbiased estimator ofQb,t(h)

for any bounded functionals h(x0:t, x′0:t) from the augmented space X2(t+1) reads

QN,GT
b,t (h) =

t∏

s=0

N bs

(
N

N − 1

)1−bs

× γNt (1)2EGT

[
Ib,t

(
K1

0:t,K
2
0:t

)
h(ξ

K1
0:t

0:t , ξ
K2

0:t
0:t)|Ft

]
, (3.15)

where EGT means for the expectation under the distribution (3.12)-(3.13). However, this estimator has not
been used in practice due to its computational cost. Surprisingly, the online procedure that we propose for
our refined estimator can also be applied to QN,GT

b,t (h) but it has not been exploited in (Lee and Whiteley,
2018). Following the intuition of Ex. 3.1, we look for building an estimator which aims at considering other
alternative relevant trajectories rather than only the ancestors of the final samples. In the case of Ex. 3.1,
it would be equivalent to consider trajectories (ξj0, ξ

i
1) where j 6= Ai

0 to build our estimator. To that end,
we would need to quantify the relevance of associating ξj0 with ξi1. It is what we do when we build our
new estimator: in the same way as the FFBS algorithm modifies the output of the bootstrap particle filter
for considering such trajectories, we replace the conditional distribution βGT

s (k, l) in (3.13) by the backward
kernel

βBS
s (k, l) =

ωl
s−1f(ξ

l
s−1, ξ

k
s)∑N

j=1 ω
j
s−1f(ξ

j
s−1, ξ

k
s)

. (3.16)

Intuitively, βs(k, l) aims at selecting among the samples {ξls−1}Nl=1 those which are in accordance with ξks
and the future observations. We then propose a new estimator

QN,BS
b,t (h) =

t∏

s=0

N bs

(
N

N − 1

)1−bs

× γNt (1)2EBS

[
Ib,t

(
K1

0:t,K
2
0:t

)
h(ξ

K1
0:t

0:t , ξ
K2

0:t
0:t)|Ft

]
, (3.17)

where the expectation is now taken under the distribution defined by (3.12) and (3.16). From (3.11), we also
deduce an estimator of V∞γ,t(h) for any functional h from X,

VN,BS
γ,t (h) =

t∑

s=0

{
QN,BS

es,t
(h⊗2)−QN,BS

0,t (h⊗2)
}

. (3.18)

Let us now discuss on the statistical properties of these estimators.

Proposition 3.1. Let t ∈ N. For any b ∈ Bt and any bounded functional h from X2(t+1),

(i) E

[
QN,BS

b,t (h)|FN
t−1

]
= QN,BS

b,t−1

(
g⊗2
t−1f

bt
t [h]

)
for all t ∈ N∗;

(ii) QN,BS
b,t (h) is an unbiased estimator of Qb,t(h).

(iii) For any bounded functional h , VN,BS
γ,t (h) is an unbiased estimator of V∞γ,t(h).

53

Chapter 3 : Estimating asymptotic variances with recycled particles

The proof of (i) is based on the identity

QN,BS
b,t (h) =

∑

k10:t,k
2
0:t

Λ
1,2
b,t (k

1
0:t, k

2
0:t)h(ξ

k10:t
0:t , ξ

k20:t
0:t),

where

Λ
1,2
b,t (k

1
0:t, k

2
0:t) =

t∏

s=0

N bs

(
N

N − 1

)1−bs

× γNt (1)2Λ1,t(k
1
0:t)Λ2,t(k

1
0:t, k

2
0:t);

the sum on (k10:t, k
2
0:t) is split in a sum on (k10:t−1, k

2
0:t−1) and on (k1t , k

2
t). This last sum is next manipulated

in order to obtain the result. For item (ii), we proceed by induction: the property is valid for t = 0 (this
case coincides with the static one that we described above); we next apply (i) to obtain the property at time
t. Finally, (iii) is a direct consequence of (ii) and (3.11).

We now focus on the convergence ofQN,BS
b,t (h) (resp. VN,BS

γ,t (h)) for any bounded functional h (resp. h)
under the following set of assumptions:

(A2) For all t > 0 and (x, x′) ∈ X2, ft(x′, x) > 0.

(A3) There exists σ+ > 0 such that for all t ≥ 1, supx,x′∈X2 ft(x
′, x) ≤ σ+.

(A4) There exists 0 < σ− < σ+ such that for all t ≥ 1, infx,x′∈X2 ft(x
′, x) ≥ σ−.

Theorem 3.1. Assume that A1−A3 hold. For any t ∈ N, b ∈ Bt and for any bounded functional h,

lim
N→∞

E

[(
QN,BS

b,t (h)−Qb,t(h)
)2]

= 0. (3.19)

In addition, if A4 holds, the convergence rate is O(1/
√
N).

The proof proceeds by induction. After proving the convergence is true at time t = 0, the main term of
(3.19) is written as

QN,BS
b,t (h)−Qb,t(h) = QN,BS

b,t (h)−QN,BS
b,t−1

(
g⊗2
t−1f

bt
t [h]

)
+QN,BS

b,t−1

(
g⊗2
t−1f

bt
t [h]

)
−Qb,t−1

(
g⊗2
t−1f

bt
t [h]

)
.

Next, by the induction hypothesis

lim
N→∞

E

[(
QN,BS

b,t−1

(
g⊗2
t−1f

bt
t [h]

)
−Qb,t−1

(
g⊗2
t−1f

bt
t [h]

))2
]
= 0;

it remains to show that

lim
N→∞

E

[(
QN,BS

b,t (h)−QN,BS
b,t−1

(
g⊗2
t−1f

bt
t [h]

))2
]
= lim

N→∞
E

[(
QN,BS

b,t (h)
)2]
−E

[(
QN,BS

b,t−1

(
g⊗2
t−1f

bt
t [h]

))2
]
= 0.

This is the technical part of the proof and it relies on an upper bound of E[(QN,BS
b,t (h))2] in function of

E[(QN,BS
b,t−1(g

⊗2
t−1f

bt
t [h]))2] and next on A1−A3. Assumption A4 enables us to obtain the convergence rate

of this upper-bound. From (3.18), a direct consequence is that VN,BS
γ,t (h) converges in probability to V∞γ,t(h).

54

3.2 Variance estimation for filtering estimators

ComputingQN,BS
b,t (h) and VN,BS

γ,t (h) - While our estimator is theoretically valid, its computation is not

obvious and relies on that of QN,BS
b,t (h) for b = es and b = 0. This can be done sequentially by introducing

T b
t (K

1
t ,K

2
t) = EBS

[
Ib,t

(
K1

0:t,K
2
0:t

) ∣∣Ft,K
1
t ,K

2
t

]
. (3.20)

In the practical case where h(x0:t, x
′
0:t) = h(xt, x

′
t), (3.17) can be rewritten as

QN,BS
b,t (h) =

t∏

s=0

N bs

(
N

N − 1

)1−bs

× γNt (1)2

N2

∑

k,l

T b
t (k, l)h(ξ

k
t , ξ

l
t).

Indeed, remember that K1
t and K2

t are uniformly distributed. In addition, by introducing

St(k, l) =
t∑

s=0

T es
t (k, l), for all (k, l) ∈ N2, (3.21)

VN,BS
γ,t (h) reads

VN,BS
γ,t (h) =

N t−1γNt (1)2

(N − 1)t

∑

k,l

{
St(k, l)−

t+ 1

N − 1
T 0

t (k, l)

}
h(ξkt)h(ξ

l
t).

It suffices to show that T b
t (k, l) and St(k, l) are sequentially computable to ensure the computation of our

estimator. Using (3.14) and the fact that (K1
0:t,K

2
0:t) is a Markov chain, we have





T b
0 (k, l) = 1k 6=l,b0=0 + 1k=l,b0=1,

T b
t (k, l) = 1k 6=l

∑
i,j∈[N]2 β

BS
t (k, i)βBS

t (l, j)T b
t−1(i, j) if bt = 0,

T b
t (k, l) = 1k=k

∑
i,j∈[N]2 β

BS
t (k, i)Wj

t−1T b
t−1(i, j) if bt = 1.

(3.22)

In particular, for b = 0 we have

T 0

t (k, l) = 1k 6=l

∑

i,j∈[N]2

βBS
t (k, i)βBS

t (l, j)T 0

t−1(i, j),

and for b = es,

T es
t (k, l) =





1k 6=l

∑
i,j∈[N]2 β

BS
t (k, i)βBS

t (l, j)T es
t−1(i, j) t > s,

1k=l

∑
i,j∈[N]2 β

BS
t (k, i)Wj

t−1T 0

t−1(i, j) t = s,

T 0
t (k, l) t < s.

(3.23)

Plugging (3.23) in (3.21), we obtain

St(k, l) = T et
t (k, l) + 1k 6=l

∑

i,j∈[N]2

βBS
t (k, i)βBS

t (l, j)St−1(i, j).

Consequently, VN,BS
γ,t (h) can be updated online through the update of St(k, l) and of T 0

t (k, l).

55

Chapter 3 : Estimating asymptotic variances with recycled particles

An alternative estimator - If we remove the unbiased constraint, it is possible to derive an altervative
estimator from the following observation. Since γNt (h) is unbiased, its variance coincides with

E

((
γNt (h)− γt(h)

)2)
= E

(
γNt (h)2

)
− γt(h)

2 = E

(
γNt (h)2

)
−Q0,t(h

⊗2) .

Moreover, if h(xt) is bounded, N(γNt (h) − γt(h))
2 is uniformly integrable; this can be seen by using a

Hoeffding type inequality (see e.g. (Douc et al., 2014)). Consequently, using the CLT (3.1) and Theorem
(25.12) of Billingsley (1986),

lim
N→∞

NE

((
γNt (h)− γt(h)

)2)
= V∞γ,t(h).

Because Q0,t(h
⊗2) = γt(h)

2, a natural estimator of V∞γ,t(h) is

VBSγ,t (h) = N
(
γNt (h)2 −QN,BS

0,t (h⊗2
t)
)

= NγNt (1)2


ηNt (h)2 − N t−1

(N − 1)t+1

∑

i,j

T 0

t (i, j)h(ξit)h(ξ
j
t)


 .

(3.24)

Note that VBSγ,t (h) is an unbiased estimator of a quantity which converges to the asymptotic variance, while

VN,BS
γ,t (h) is a unbiased estimator of the asymptotic variance. The following theorem ensures that VBSγ,t (h)

also converges to V∞γ,t(h).

Theorem 3.2. Let A1−A3 hold. For any bounded functional h from X, VN,BS
γ,t (h) converges in probability

to V∞γ,t(h).

The proof consists in expressing γNt (h)2 in function ofQBS
b,t (h

⊗2) and relies on the equality of Cérou et al.
(2011),

∑

b∈Bt





t∏

s=0

1

N bs

(
N − 1

N

)1−bs



Q

N,BS
b,t (h⊗2)

= γtN (1)2EBS


∑

b∈Bt

Ib,t(K
1
0:t,K

2
0:t)h(ξ

K1
t

t)h(ξ
K2

t
t)

∣∣∣∣∣∣
Ft


 = γtN (1)2ηNt (h)2 = γNt (h)2.

(3.25)

Using Theorem 3.1 which states that QN,BS
b,t (h) converges in probability to Qb,t(h), the convergence of

VBSγ,t (h) is also ensured.

A major advantage of VBSγ,t (h) w.r.t. VN,BS
γ,t (h) is the computational cost. Indeed, the first estimator only

relies on the update of T 0
t contrary to the second one for which we need to compute T es

t

Reducing the computational cost of VBS
γ,t (h) and of VN,BS

γ,t (h) - It is possible to reduce the com-
putational cost of our previous estimators by interpreting (3.22) as expectations according to the discrete
conditional distributions βBS

t (k, i)βBS
t (l, j) or βBS

t (k, i). By sampling

{J i
k,t−1, J

i
l,t−1}Mi=1

i.i.d∼ βBS
t (k, .)βBS

t (l, .) for all (k, l), k 6= l

56

3.2 Variance estimation for filtering estimators

T b
t (k, l) in (3.22) are replaced by their Monte Carlo approximation

T̃ b
t (k, l) =

1k 6=l

M

M∑

i=1

T̃ b
t−1(J

i
k,t−1, J

i
l,t−1) if bt = 0,

T̃ b
t (k, l) =

1k=l

M

M∑

i=1

N∑

j=1

Wj
t−1T̃ b

t−1(J
i
k,t−1, j) if bt = 1.

The time complexity to compute T̃ b
t (k, l) becomesO(MN2) and in practice M does not need to be large (it

has been observed that M = 3 is sufficient, as for the PaRIS smoothing algorithm of Olsson and Westerborn
(2017)). An interesting result it that the convergence of the corresponding PaRIS estimator of Qb,t(h)

Q̃N,M
b,t (h) =

t∏

s=0

N bs

(
N

N − 1

)1−bs

× γNt (1)2

N2

∑

k,l

T̃ b
t (k, l)h(ξ

k
t , ξ

l
t). (3.26)

remains ensured for any value of M .

Theorem 3.3. Assume that A1 −A3 hold. For any t ∈ N, b ∈ Bt, M > 1 and any bounded functional h
from X2(t+1),

lim
N→∞

E

[(
Q̃N,M

b,t (h)−Qb,t(h)
)2]

= 0. (3.27)

In addition, if A4 holds the convergence rate is O(1/
√
N).

Theorem 3.3 can be seen as the PaRIS version of Theorem 3.1; the proof follows the same steps but the
additional sampling steps introduce non trivial terms that need to be handled carefully. A direct consequence
is that the PaRIS version of VN,BS

γ,t (h),

V
N,M

γ,t (h) =
t∑

s=0

{
Q̃N,M

es,t
(h⊗2)− Q̃N,M

0,t (h⊗2)
}

, (3.28)

also converges in probability to V∞γ,t(h) Finally, the PaRIS version of VN,BS
γ,t (h),

V
N,M
γ,t (h) = N

(
γNt (h)2 − Q̃N,M

0,t (h⊗2)
)

. (3.29)

also converges in probability to V∞γ,t(h).

Theorem 3.4. Let A.1 − 3 hold. For all t ∈ N, M > 1, and any bounded functionnal h(xt), V
N,M
γ,t (h)

converges in probability to V∞γ,t(h) when N goes to infinity.

Its proof is based on the same steps as those of Theorem 3.2 but we start to show that identity (3.25) is
still valid when QN,BS

b,t (h⊗2) is replaced by Q̃N,M
b,t (h⊗2).

Asymptotic variance associated to the predicting and filtering distributions - Based on (3.5),
we are now able to deduce estimators of V∞η,t and V∞φ,t. These estimators are obtained by replacing V∞γ,t by one
of the estimators obtained above, and γt(1), ηt(h) or φt(h) by their Monte Carlo estimators. The resulting
estimators satisfy the same asymptotic properties as those of V∞η,t because

QN,BS
b,t

(
{h− ηNt (h)}⊗2

)
= QN,BS

b,t (h⊗2)− ηNt (h)QN,BS
b,t (h⊗ 1)− ηNt (h)QN,BS

b,t (1⊗ h) + ηNt (h)2QN,BS
b,t (1)

P−→ Qb,t

(
{h− ηt(h)}⊗2

)
.

57

Chapter 3 : Estimating asymptotic variances with recycled particles

Numerical Experiments (Figs. 3.1-3.3) - Let us consider the stochastic volatility model

p(x0) = N
(
x0; 0;σ

2/(1− ϕ2)
)

,

ft(xt−1, xt) = N
(
xt;φxt−1;σ

2
)

,

gt(xt) = N
(
yt; 0;β

2 exp(xt)
)

,

(3.30)

with (ϕ, β, σ) = (.975, .641, .165) (Pitt and Shephard, 1999). We generate a sequence of 750 observations
and we consider the estimation of the asymptotic variance of the predictor γt(h) where h(x) = x. The
true asymptotic variance is approximated by the empirical variance obtained by running 1000 particle filters
with 10000 samples and multiplied by 10000. We next compute our three estimators VN,BS

η,t , VN,BS
η,t and

V
N,M
γ,t (h) with N = 3000 and M = 3, 50 times. Fig. 3.1 displays the behavior of the thee estimators.

They have approximately the same performances but VN,BS
η,t tends to be biased when t is large. It appears

that the most interesting estimator in terms of performances and of computational cost is VN,M=3
γ,t (h). Con-

sequently, we compare it to the fixed-lag estimators VN,λ
γ,t (h) of Olsson and Douc (2019) (see (3.7)) with

λ ∈ {20, 100, 200, 750} for a sequence of 3000 observations. The results are displayed in Figs. 3.2 and 3.3.
Our estimator performs better even if its computational cost is approximately twice larger than the fixed-lag
ones. Note however that the fine tuning of λ is not obvious in practice.

0 100 200 300 400 500 600 700
0

2

4

6

8

0 100 200 300 400 500 600 700
0

2

4

6

8

0 100 200 300 400 500 600 700
timesteps

0

2

4

6

8

A
s
y
m

p
to

ti
c
 v

a
ri
a
n
c
e
s

Figure 3.1: Long-term behavior of VBSη,t (top), VN,M
η,t with M = 3 (middle) and VBSη,t (bottom). The black

dashed line is the asymptotic variance estimated using brute force. The number of particles is set to N =
3000.

58

3.2 Variance estimation for filtering estimators

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0 100 200 300 400 500 600 700

timesteps

0

2

4

6

A
s
y
m

p
to

ti
c
 v

a
ri
a
n
c
e
s

Figure 3.2: Long-term behavior of the asymptotic variance estimators up to t = 750. From top to bottom:
PaRIS estimator VN,M

η,t with M = 3, lagged estimators with (in order) λ ∈ {20, 100, 200, 750}. The case
λ = 750 corresponds to the CLE estimator. For each estimator, the blurred colored lines represent each run
out of fifty runs and solid colored lines correspond to their average. The black dashed line is the asymptotic
variance obtained by brute force. The number of particles N is set to 3000.

t = 1000 t = 2000 t = 3000
0.0

0.5

1.0

1.5

2.0

2.5

A
s
y
m

p
to

ti
c
 v

a
ri
a
n
c
e
s

t = 1000 t = 2000 t = 3000

Figure 3.3: Boxplots of the long-term behavior of the asymptotic variance estimates up to t = 3000.
VBS refers to V

N,M
η,t with M = 3. The white dots represent the average of the asymptotic variance es-

timates of each algorithm at the specified time t. The dashed black lines correspond to the asymptotic
variances estimated by brute force. N is set to 5000 on the left boxplot and 10000 on the right one. The
boxplots at each time step from left to right are: V

N,M
γ,t (h) with M = 3 and then the lagged CLEs with

λ ∈ {20, 100, 200, 3000}, in order.

59

Chapter 3 : Estimating asymptotic variances with recycled particles

3.3 Asymptotic variance estimation for smoothing estimators

We now turn back to the smoothing problem. As we recalled before, no estimator of

VFFBS
0:t|t (h0:t) =

t∑

s=0

ηs

(
Gs,t

[
gt

{
h0:t − φ0:t|t(h0:t)

}]2)

ηs(Qs+1,t[gt])2
=

t∑

s=0

γs(1)γs

(
Gs,t

[
gt

{
h0:t − φ0:t|t(h0:t)

}]2)

γt+1(1)2

have been proposed. The principle used for the construction of VN,BS
η,t can be applied to estimate VFFBS

0:t|t (h0:t).
It relies on the following Proposition.

Proposition 3.2. For any s ∈ [0 : t] and any additive functional h0:t,

γs(1)γs

(
Gs,t[h0:t]

2
)
= Qes,t

([
Ts[h̃0:s] + h̃s:t

]⊗2
)

.

Indeed, first note that γs(1) =
∫
γ0:s−1(x

′
0:s−1)gs−1(x

′
s−1)ν(dx

′
0:s−1); next, γs(Gs,t[h0:t]

2) can be
expressed as an integral of Qs+1,t[Ts[h̃0:s] + h̃s:t](xs) w.r.t. γ0:s if h0:t is indeed additive. Finally, the
product of integrals can be rewritten as a unique integral w.r.t. Qes,t.

We can now deduce a natural estimator of VFFBS
0:t|t (h0:t) which takes into account that Ts[h̃0:s] and

φ0:t|t(h) are not computable but can be approximated sequentially. This estimator reads

VN,BS

0:t|t (h0:t) =
t∑

s=0

QN
es,t

([
gt

{
TN

s [h̃0:s] + h̃s:t − φN
0:t|t(h0:t)

}]⊗2
)

γNt+1(1)
2

. (3.31)

It remains to show that VN,BS

0:t|t converges in probability to VFFBS
0:t|t (h0:t). It is not a direct consequence of

Theorem 3.1 because TN
s [h̃0:s] is a function of xs which depends on N . We have the following theorem.

Theorem 3.5. Let h0:t(x0:t) be an additive functional such that hs(xs, xs+1) is bounded for all s ∈ [0 : t−1].
Then

VN,BS

0:t|t (h0:t)
P−→ VFFBS

0:t|t (h0:t).

The proof consists in showing that

lim
N→∞

E





QN

es,t

([
gt

{
TN

s [h̃0:s] + h̃s:t

}]⊗2
)
−Qes,t

([
gt

{
Ts[h̃0:s] + h̃s:t

}]⊗2
)


2

 = 0

(remember that φN
0:t|t(h0:t) is a constant w.r.t. x0:t and converges to φ0:t|t(h0:t), so we do not need to consider

it). Using the triangle inequality and Theorem 3.1, it suffices to show

lim
N→∞

E





QN

es,t

(
gt

{
TN

s [h̃0:s] + h̃s:t

}⊗2
)
−QN

es,t

([
gt

{
Ts[h̃0:s] + h̃s:t

}]⊗2
)


2

 = 0.

The proof of this last result consists of three steps. First, for any xs, TN
s [h̃0:s](xs) converges almost surely

to Ts[h̃0:s](xs); next, we show that the result is satisfied for t = s; finally, it remains valid by induction, in
the same spirit of Theorem 3.1.

60

3.3 Asymptotic variance estimation for smoothing estimators

Practical computation of VN,BS

0:t|t (h) - We finally propose the computation of our estimator for the
marginal smoothing problem, i.e. h0:t(x0:t) = hl(xl), in the spirit of what we have done for computing
VN,BS
γ,t (h). For marginal functionals hl(xl), (3.31) becomes

VN,BS

l|t (hl) =

1

γNt+1(1)
2





l∑

s=0

QN,BS
es,t

([
gt{hl − φN

l|t(hl)}
]⊗2
)
+

t∑

s=l+1

QN,BS
es,t

([
gt{TN

s [hl]− φN
l|t(hl)}

]⊗2
)
 .

(3.32)

and can be rewritten as
VN,BS

l|t (hl) = Rl
1,t − φN

l|t(hl)R
l
2,t + φN

l|t(hl)
2Rt,

where




R1
l,t =

∑l
s=0Q

N,BS
es,t

(
[gthl]

⊗2
)
+
∑t

s=l+1Q
N,BS
es,t

([
gtT

N
s [hl]

]⊗2
)

,

R2
l,t =

{∑l
s=0Q

N,BS
es,t

(gthl ⊗ gt) +QN,BS
es,t

(gt ⊗ gthl)
}

+
{∑t

s=l+1Q
N,BS
es,t

(gtT
N
s [hl]⊗ gt) +QN,BS

es,t
(gt ⊗ gtT

N
s [hl])

}
,

Rt =
∑t

s=0Q
N,BS
es,t

(g⊗2
t).

As previously, the objective consists in computing sequentially the sums. However, we have to take into
account that they rely on QN,BS

es,t
([gthl]

⊗2) and involve a function at time l ≤ t. To that end, we need to
generalize the definition of T b

t (K
1
t ,K

2
t) in (3.20) and we introduce for a functional hl from X2

T es
t [hl](K

1
t ,K

2
t) = EBS

[
Ies,t

(
K1

0:t,K
2
0:t

)
hl(ξ

K1
l , ξK

2
l)
∣∣Ft−1,K

1
t ,K

2
t

]
. (3.33)

For example, from (3.17), we have

QN,BS
es,t

(
[gthl]

⊗2
)
= N

(
N

N − 1

)t

γNt (1)2
1

N2

∑

i,j

T es
t [h⊗2

l](i, j)gt(ξ
i
t)gt(ξ

j
t).

For this particular term, it remains to propagate
∑

i,j T es
t [h⊗2

l](i, j)gt(ξ
i
t)gt(ξ

j
t). Turning back to the general

case, we also generalize the expression of St(i, j) in (3.21) by introducing

S1
l,t(K

1
t ,K

2
t) =





∑l
s=0 T es

t [h⊗2
l](K1

t ,K
2
t) +

∑t
s=l+1 T es

t

[
TN

s [hl]
⊗2
]
(K1

t ,K
2
t) if t > l,

Sl(K
1
l ,K

2
l)h

⊗2
l (ξ

K1
l

l , ξ
K2

l

l) if t = l,

S2
l,t(K

1
t ,K

2
t) =





∑l
s=0 T es

t [h⊕2
l](K1

t ,K
2
t) +

∑t
s=l+1 T es

t

[
TN

s [hl]
⊕2
]
(K1

t ,K
2
t) if t > l,

Sl(K
1
l ,K

2
l)h

⊕2
l (ξ

K1
l

l , ξ
K2

l

l) if t = l,

where for any functional hl, h
⊕2

l (xl) = hl(xl) + hl(x
′
l). With these definitions, VN,BS

l|t (hl) reads

VN,BS

l|t (hl) = N

(
N

N − 1

)t ∑

i,j∈[N]2

W i
tWj

t

{
S1
l,t(i, j)− φN

l|t(hl)S
2
l,t(i, j) + φN

l|t(hl)
2St(i, j)

}
;

61

Chapter 3 : Estimating asymptotic variances with recycled particles

Using the same rationale as for the update of St(i, j) in (3.23), S1
l,t(i, j) and S2

l,t(i, j) can be updated as

S1
l,t+1(i, j) = T

et+1

t+1 (i, j)TN
t+1[hl](ξ

i
t+1)T

N
t+1[hl](ξ

j
t+1)

+ 1i 6=j

∑

m,n∈[N]2

βBS
t+1(i,m)βBS

t+1(j, n)S
1
l,t(m,n), (3.34)

and

S2
l,t+1(i, j) = T

et+1

t+1 (i, j)
{
TN

t+1[hl](ξ
i
t+1) +TN

t+1[hl](ξ
j
t+1)

}

+ 1i 6=j

∑

m,n∈[N]2

βBS
t+1(i,m)βBS

t+1(j, n)S
2
l,t(m,n), (3.35)

which enables us to compute sequentially VN,BS

l|t (hl).

Numerical experiments (Fig. 3.4) - We go on with model (3.30) for which we generate 4 sequences
of 160 observations. We next compute VN,BS

l|t (hl) for hl(xl) = xl, l = 100, t ∈ [100 : 160] and N = 5000.
The results are displayed in Fig. 3.4. When t increases the variance tends to be stable. This is not surprising
since future observations do not affect the estimator φN

l|t(xl) when t becomes large. Our estimator is close to
the true variance that we estimated in the same way as our previous numerical experiments.

0.0

0.5

1.0

1.5

2.0

100 110 120 130 140 150 160
t

0.0

0.5

1.0

1.5

2.0

100 110 120 130 140 150 160
t

A
s
y
m

p
to

ti
c
 v

a
ri
a
n
c
e

Figure 3.4: Asymptotic variance estimates for four different observation records of the marginal mean
φN
100|t(Id) where t ∈ [100, 160]. The blurred brown lines on the left plot represent 50 runs and the solid

brown line their average. The black dashed line is the crude variance estimator. The number of particles N
is set to 5000.

62

3.3 Asymptotic variance estimation for smoothing estimators

Pseudo codes for computing VN,BS
γ,t (h), VN,M

γ,t (h) and VN,BS
l|t (hl)

We give the algorithms for computing our main estimators. If A,B ∈ RM×N are two matrices, then the
Hadamard product A ⊙ B is the element-wise product, i.e for all 1 ≤ i ≤ M and 1 ≤ j ≤ N , (A ⊙
B)i,j = ai,jbi,j . If A ∈ RN×N , then Diag(A) is the N × N diagonal matrix such that for all 1 ≤ i ≤ N ,
Diag(A)i,i = Ai,i and if x ∈ RN×1 then Diag(x) is the N ×N diagonal matrix such that Diag(x)i,i = xi.
If f is a mapping from [N]2 to R, we denote by f the associated N ×N matrix such that fi,j = f(i, j).

Algorithm 3.2 Variance estimators VN,BS
γ,t (h) (see (3.24)) and V

N,M
γ,t (h) (see (3.29)) associated to γNt (h)

Require: M,ω1:N
t , ξ1:Nt , ξ1:Nt+1 , T 0

t and γNt (1)
Compute βBS

t+1

if PaRis then

for k ∈ [1 : N] do

Sample J1:M
k,t

i.i.d∼ βBS
t+1(k, .)

end for

for (k, l) ∈ [1 : N]2 do

Set T 0

t+1(k, l) = 1k 6=l

∑M
i=1 T 0

t (J i
k,t, J

i
l,t)/M

end for

else

Compute T
0

t+1 = βBS
t+1T

0

t β
BS′
t+1.

Set T 0

t+1 = T
0

t+1 −Diag(T
0

t+1).
end if

Compute Q = T 0

t+1 ⊙
[
h(ξ1:Nt+1)h(ξ

1:N
t+1)

⊤
]
. ⊲ h is applied elementwise

return NγNt (1)2
{
ηNt (h)2 −N t−2

∑
i,j∈[N]2 Qi,j/(N − 1)t+1

}
, T 0

t+1.

Algorithm 3.3 Variance estimator VN,BS

l|t (hl) (see (3.32)) associated to φN
l|t(hl)

Require: W1:N
t+1,W

1:N
t ,βBS

t+1,Tt+ 1N [hl],T
0

t ,S
1
l,t,S

2
l,t, φ

N
l|t+1(hl)

Compute T
et+1

t+1 = βBS
t+1T

0

tW t, T
0

t+1 = βBS
t+1T

0

t β
BS⊤
t+1 , S̃t+1 = βBS

t+1Stβ
BS⊤
t+1

Set T et+1

t+1 = Diag(T
et+1

t+1), T 0

t+1 = T
0

t+1 −Diag(T
0

t+1), St+1 = S̃t+1 −Diag(S̃t+1) + T et+1

t+1

for i ∈ {1, 2} do

Compute S̃i
l,t+1 = βBS

t+1S
i
l,tβ

BS⊤
t+1 .

Set S̃i
l,t+1 = S̃i

t+1 −Diag(S̃i
t+1)

end for

Set S1
l,t+1 = S̃1

l,t+1 + T
et+1

t+1 ⊙
[
Tt+1[hl]Tt+1[hl]

⊤]

Set S2
l,t+1 = S̃2

l,t+1 + T
et+1

t+1 ⊙
[
Tt+1[hl] +Tt+1[hl]

⊤]

Set Sl,t+1 = S1
l,t+1 − φN

l|t+1(hl)S
2
l,t+1 + φN

l|t+1(xl)
2St+1

return N t+2/(N − 1)t+1
∑

i,j∈[N]2W i
t+1Wj

t+1Sl,t+1(i, j), T 0

t+1,S
1
l,t+1,S

2
l,t+1,St+1.

63

CHAPTER 4

About the expressivity of latent variable models

The previous chapters were devoted to problem P.2 (and a part of P.3) in the HMC model. We now focus
on P.1 in the generative models introduced in chapter 1. Remember that when we deal with time series,
our initial objective consists in choosing a proper generative model for building the distribution of {Yt}t∈N
(here, we will assume that Yt ∈ R). Probabilistic models based on a latent process which is now denoted as
{Ht}t∈N has been used in many applications. The reason why we use another notation is that we emphasize
that {Ht}t∈N does not necessarily represent a physical process of interest. In this chapter, we address the
comparison of these generative models without considering their associated computational challenges. More
precisely, we compare the models on the basis of their expressivity, i.e. we want to compare the distributions
pθ(y0:t) induced by each model, so θ represents the set of parameters associated to a given model among the
HMC, the RNN or the PMC.

The motivation of this work has emerged from some problems addressed during the CIFRE thesis of
Achille Salaun (2017-2021) that I supervised with F. Desbouvries (Télécom SudParis), A. Bouillard (Nokia
Bell-labs, then Huawei) and M-O. Buob (Nokia Bell-labs). A part of this work was devoted to the prediction
of alarms in telecommunication networks. Such alarms can be considered as time series and so we wonder
what model fits the data well. From a practical point of view, a direct solution would have consisted in
comparing the models directly on a dataset. In this work, we propose a different approach since our main
motivation is to understand the impact of the structural differences between the HMC, the RNN and their
direct generalization [17], in the linear case. Because these models can be seen as particular instance of the
(generative) PMC, we also propose an extension of our initial analysis to such models. This extension has
has been studied during the beginning of the thesis of Katherine Morales (2020-2023) [14].

4.1 Background

HMC and RNN generative models - Let us start by reintroducing the generative models that we want
to compare. As stated in chapter 1, the prediction of a future observation in an HMC can be done from the
computation of the predictive likelihood

p(yt|y0:t−1) =

∫
p(yt|ht)p(ht|y0:t−1)ν(dht) = ηt(gt).

When the parameters of the models are unknown (so p becomes pθ), θ can be estimated from the EM-
algorithm which relies on the computation of

Q(θ, θ(i)) = Eθ(i)

(
log
(
pθ(H0:t, Y0:t)

)
|Y0:t = y0:t

)
;

Q(θ, θ(i)) is nothing more than the expectation of a particular additive functional h0:t,θ,

Q(θ, θ(i)) = φ0:t|t,θ(i)(h0:t,θ),

Chapter 4 : About the expressivity of latent variable models

and the problem of approximating such moments have been addressed in the previous chapter. Consequently,
in the context of time series forecasting, using an HMC requires to run a smoothing algorithm to estimate
the parameters of the model (Kantas et al., 2015) and next a particle filter to compute sequentially ηNt (gt).

By contrast, the construction of the RNN avoids to resort to such approximations. Indeed, a generative
RNN is defined from

pθ(y0:t) = pθ(y0) =
t∏

s=1

pθ(ys|y0:s−1) (4.1)

where pθ(yt|y0:t−1) is deduced from a parameterized distribution pθ(yt|ht) and a latent variable ht computed
from a given parameterized function fθ,

pθ(yt|y0:t−1) = pθ(yt|ht−1),

h−1 = 0,

ht−1 = fθ(ht−2, yt−1).

(4.2)

θ represents the parameters of the function fθ and of the conditional distribution pθ(yt|ht). By construction,
the likelihood is directly computable, so the estimation of θ can be done by running an ascent gradient
method on pθ(y0:t) w.r.t. θ. Due to the sequential structure of the model, the gradient can be computed with
the backpropagation algorithm (Hochreiter and Schmidhuber, 1997).

In summary, these two models can be used for the common objective of time series forecasting and both
are generative models pθ(y0:t) based on latent variables. For the HMC, this distribution is implicit and relies
on stochastic latent variables; for the RNN, the distribution is explicit and relies on deterministic (given the
past observations) latent variables. For each model, inference algorithms are available and have been well
studied. Now, from a practical point of view, if the objective is to design a generative model which aims at
modelling a times series, should we use an HMC or an RNN? It may be to possible to answer experimentally
but the conclusions will depend on the dataset considered. As far as we are aware, such comparisons have
indeed been done experimentally for several problems (Deshmukh, 2020; Bikmukhamedov et al., 2020). We
also note that the HMCs considered in these comparisons consist of models with discrete hidden states.
However, nothing prevents from using the general HMC we described before as a generative model, in
particular HMCs with continuous latent variables.

If we put aside the computational aspects recalled above, the question boils down to comparing the dis-
tributions pθ(y0:t) resulting of each construction. Of course, this is a thorny issue because the nature of the
distribution pθ(y0:t) is unknown in both cases; even if we have its expression for the RNN, its characteris-
tics such as its covariance matrix are not computable. Under linear assumptions, our comparison relies on
an original tool borrowed from the stochastic realization theory (Faurre, 1976; Gevers and Wouters, 1978;
Faurre, 1979; Gevers, 2006; Caines, 2018) that we next recall and which is a part of systems theory (Chen,
1970; Kailath, 1980; Chui and Chen, 2012).

Deterministic realization theory - Let us consider a linear discrete time and deterministic system with
state ht,

ht+1 = Fht +Nut,

yt = Hht,
(4.3)

where F (resp. N , H) are n × n (resp. n × 1, 1 × n) matrices (we only deal here with the case where
observation yt and known input ut are one-dimensional). The mapping between input ut and output yt is

66

4.1 Background

given by the convolution equation yt =
∑+∞

k=1Hkut−k, where the lags Hk of the impulse response (the
so-called Markov parameters of the system) satisfy

Hk = HF k−1N , for all k ≥ 1. (4.4)

Equivalently, the strictly causal transfer function H(z) =
∑+∞

k=1Hkz
−k can be written as H(z) = H(zI −

F)−1N .
The deterministic realization problem consists in building three matrices H,F,N , with F of minimal

dimension, from the impulse response of the system, i.e. move from the infinite representation (Hk)k∈N∗

to the finite representation (H,F,N), with F of minimal dimension. The key tool for this problem is the
infinite Hankel matrix

H∞ =




H1 H2 H3 . . .
H2 H3

H3
...



.

In model (4.3), it can be seen from (4.4) thatH∞ factorizes as

H∞ =




H
HF
HF 2

...



.[N,FN,F 2N, ...], (4.5)

and so has finite rank, which moreover is equal to n (the dimension of F) if and only if each factor is itself
full rank n. Besides, by introducing between these two factors the matrix I = TT−1 (where T is any
invertible matrix), we get an equivalent factorization. Conversely, if H∞ has finite rank n, then it can be
factorized as a product of two factors of dimensions (∞× n) and (n×∞), both of them being of full rank
n, and due to the Hankel structure, there exists Fn×n, Nn×1, H1×n so that (4.5) (and so (4.4)) is satisfied.
Moreover, from the proposition below, all minimal realizations of H(z) are isomorphic:

Proposition 4.1. (Ho and Kalman, 1966, Proposition 3) (H1, F1, N1) and (H2, F2, N2) are two minimal
realizations of H(z) if and only if there exists T invertible such that F2 = TF1T

−1, N2 = TN1 and
H2 = H1T

−1.

Numerically efficient deterministic realization algorithms have been proposed by De Jong (1975, 1978).

Stochastic realization theory - Let us now consider the state space system

Ht+1 = FHt + Ũt,

Yt = Hht + Ṽt,
(4.6)

(so we now deal with random variables) where H0 is zero-mean and uncorrelated with (Ũt, Ṽt), and where
(Ũt, Ṽt) is a zero-mean, uncorrelated, stationary random process with

E



[
Ũt

Ṽt

]
.
[
ŨT
t′ Ṽ T

t′

]

 =

[
Q S
ST R

]
δt,t′ ,

67

Chapter 4 : About the expressivity of latent variable models

where δt,t′ is the Kronecker symbol. In addition, we focus on stationnary latent process {Ht}t∈N Conse-
quently, the covariance matrix P = E[HtH

T
t] does not depend on t and satisfies

P = FPF T +Q.

In this case, {Yt}t∈N is stationary as well and its covariance function is given by

r0 = E[Y 2
t] = R+HPHT ,

rk = E[YtYt+k] = HF k−1 (FPHT+ S)︸ ︷︷ ︸
N

, for all k ∈ N∗. (4.7)

Starting from a covariance series {rk}k∈N which satisfies (4.7), the stochastic realization problem consists
of building a minimal "Markovian representation" of (Yt)t∈N, i.e. a stationnary state-space system (4.6) with
F of minimal dimension. It consists of two steps.

• First, thanks to the structure of function {rk}k∈N∗ , we can build a Hankel matrix

H∞ =




r1 r2 r3 . . .
r2 r3
r3
...



=




H
HF
HF 2

...




[
N FN F 2N . . .

]
(4.8)

which should be compared to factorization (4.5). The first (and, in fact, "deterministic") step of
a stochastic realization algorithm consists in building a minimal realization (H,F,N) of (rk)k∈N∗

(unique up to an invertible matrix).

• At this point, we dispose of (H,F,N) but N remains a function of P and S, and it remains to iden-
tify Q and R. This second step is more delicate and the problem must be solved under positivity

constraints: P and

[
Q S
ST R

]
are covariance matrices and so must be semi-definite positive (≥ 0).

If these constraints were not satisfied, the solution would be meaningless. Finally, the problem is as
follows: knowing (H,F,N, r0), we look for (P,Q,R, S) such that

[
P N
NT r0

]
−
[
F
H

]
P
[
F T HT

]
=

[
Q S
ST R

]
,

[
Q S
ST R

]
≥ 0,

P > 0,

(4.9)

in which > 0 stands for definite positive (the constraint on P should be, a priori, that P is semi-definite

positive, but indeed it happens that any solution P must be definite positive Faurre (1979), see theorem
4.1 below).

System (4.9) can be seen as a system with three equations and four unknowns (P , Q, R and S), or
rather as a system with three equations and three unknowns (Q, R and S) parameterized by P . Finally,
P parameterizes solutions of the constrained system (4.9) and we denote as P the set of parameters

P = {P s.t. (4.9) is satisfied}. (4.10)

68

4.2 HMC vs. RNN from stochastic realization theory

A result known as the positive real lemma connects the positivity of the series {rk}k∈N (in other words,
whether (rk)k∈N is a covariance series) to the existence of at least one solution to the constrained
system (4.9). Let us recall that the infinite series {rk}k∈N is a covariance function iff. the Toeplitz
form

∑m
i,j=0 uiujr|j−i| is positive or null for all m, i.e. iff. the associated Toeplitz matrix is semi-

definite positive for all m.

Lemma 4.1 (Positive real lemma Faurre (1979)). The (factorizable) series (rk)k∈N is a covariance
function iff. P is non void.

In addition, the structure of P can be described by the following theorem.

Theorem 4.1 (Faurre (1979)). The set P is closed, convex, bounded and definite positive; it admits
(for the usual order relation between symmetric matrices) a maximum P ∗ and a minimum P∗.

Let us finally notice that there exists efficient algorithms for building elements ofP (see Faurre (1979);
Caines (2018)).

4.2 HMC vs. RNN from stochastic realization theory

We have now the necessary tools to compare some kind of RNNs and HMCs. We start by interpreting these
models as particular instances of a more general model, and we next discuss on the generative properties of
this model.

A unified framework - We cast the HMC and RNN generative models into a more general model. The
HMC

pθ(h0:t, y0:t)
HMC
= p(h0)

t∏

s=1

pθ(hs|hs−1)

t∏

s=0

pθ(ys|hs), for all t ∈ N,

and the RNN (up to the transformation ht−1 ← ht in (4.2))

pθ(y0:t)
RNN
= pθ(y0)

t∏

s=1

pθ(ys|hs), with ht = fθ(ht−1, yt−1) and h0 = 0, for all t ∈ N,

can be seen as a particular instance of a generative model that we call Generative Unified Model (GUM); it
satisfies

pθ(h0:t, y0:t)
GUM
= p(h0)

t∏

s=1

pθ(hs|hs−1, ys−1)
t∏

s=0

pθ(ys|hs), for all t ∈ N. (4.11)

Indeed, starting from (4.11), we obtain the HMC by setting

pθ(hs|hs−1, ys−1)
HMC
= pθ(hs|hs−1)

or the RNN by setting

pθ(hs|hs−1, ys−1)
RNN
= δfθ(hs−1,ys)(hs), h0

RNN
= 0, pθ(y0|h0) RNN

= pθ(y0).

69

Chapter 4 : About the expressivity of latent variable models

These models share common properties. First, an observation Yt only depends on its associated hidden state
Ht given the past; next, the latent process {Ht}t∈N is a Markov chain, even in the GUM. Indeed, in this case
Ht also depends on the observation Yt−1 given the past, but

pθ(ht|h0:t−1) =

∫
pθ(dyt−1|ht−1)pθ(ht|ht−1, yt−1) = pθ(ht|ht−1).

So the main difference between the models comes from the conditional distribution of the observations
given the latent process, pθ(y0:t|h0:t), which does not necessarily factorize as

∏t
s=0 pθ(ys|hs). In terms of

comparison between the RNN and the HMC, we can state that:

• in both models, the latent process is Markovian and the distribution of an observation at time t given
the past only depends on the latent variable at the same time;

• in an HMC, given (ht−1, yt−1), Ht only depends on ht−1 but is stochastic, so pθ(y0:t|h0:t) =
∏t

s=0

pθ (ys|hs) but pθ(y0:t) is known in a closed-form expression;

• in an RNN, given (ht−1, yt−1), ht also depends on yt−1 but is deterministic, so pθ(y0:t|h0:t) is more
complex but we have a closed-form expression of pθ(y0:t).

As we see, comparing the distribution pθ(y0:t) induced by an RNN or an HMM is equivalent to study that
induced by the GUM and next considering the two particular instances. In the GUM, the study of such a
distribution is difficult since we do not have a closed-form expression of pθ(y0:t) =

∫
pθ(x0:t, y0:t)ν(dx0:t).

Linear and stationary GUM - In order to address a comparison, we consider linear GUMs in which





E(H0) = 0

E(Ht|ht−1, yt−1) = aht−1 + cyt−1

E(Yt|ht) = bht

,





Var(H0) = η

Var(Ht|ht−1, yt−1) = α

Var(Yt|ht) = β

,

where Ht is an n-dimensional random variable and Yt is scalar; so the dimensions of a, b and c are n × n,
1 × n, n × 1, respectively, η and α are n square covariance matrices, and β ≥ 0. So (a, b, c, α, β, η) is
included in θ. The GUM can be rewritten as a state-space model with additive noise,

Ht = aHt−1 + cYt−1 + Ut,

Yt = bHt + Vt,
(4.12)

where {Ut}t∈N and {Vt}t∈N are i.i.d., Ui is independent of Vj for all (i, j) ∈ N2, E(Ut) = 0, E(Vt) = 0,
Var(Ut) = α and Var(Vt) = β. It is easy to check that pθ(y0:t) is a zero mean multivariate distribution for
all t ∈ N. If we note ηt = Var(Xt) = E(XtX

T
t), the covariance function of {Yt}t∈N is described by

Var(Yt) = β + bηtb
T , for all t ∈ N,

Cov(Yt, Yt+k) = b+ (a+ cb)k−1(aηtb
T + c(β + bηtb

T)), for all (t, k) ∈ N× N∗.
(4.13)

Our comparison is limited to the comparison of the covariance function associated to each model. Note
that in the Gaussian case (i.e. the conditional distributions in (4.11) are Gaussian or the noises {Ut}t∈N and
{Vt}t∈N in (4.12) are Gaussian), then pθ(y0:t) is also a centered Gaussian and is fully described by (4.13).

70

4.2 HMC vs. RNN from stochastic realization theory

Since (4.13) depends on time, we also introduce simple sufficient conditions yielding stationarity of
{Yt}t∈N. First, remark that (4.13) depends on t via ηt which satisfies

η0 = η,

ηt+1 = (α+ cβcT) + (a+ cb)ηt(a+ cb)T ,
(4.14)

and becomes constant if η1 = η0, i.e.

η = (α+ cbcT) + (a+ cb)η(a+ cb)T . (4.15)

This equation admits a semi-definite positive solution if (Gevers and Wouters, 1978; Brockett, 2015)

(a+ cb) has all its eigenvalues in {z ∈ C; |z| < 1}.

Under these assumptions, {Yt}t∈N becomes a stationary process and its associated covariance series {rk =

Cov(Yt, Yt+k)}k∈N reads

r0 = β + bηbT ,

rk = b︸︷︷︸
H

(a+ cb︸ ︷︷ ︸
F

)k−1(aηbT + c(β + bηbT)︸ ︷︷ ︸
N

), for all k ∈ N∗. (4.16)

Remark 4.1. The covariance function {rk}k∈N associated to a stationary HMC or RNN coincides with two
particular cases of (4.16):

• setting c = 0 (HMC), we have rk = bak−1aηbT ;

• in an RNN, the transition between (ht−1, yt−1) and ht is deterministic so α = 0; in, addition remember
that h0 = 0 and Y0 is independent of h0. So if Var(Y0) = r0 = Var(Yt) = β + bηbT , the constraint
η = c(β + bηbT)cT should also be satisfied to ensure that ηt = η and Var(Yt) = r0 for all t ∈ N.

In conclusion, in a linear and stationary GUM, the covariance function {rk}k∈N can be factorized as

rk = HF k−1N , for all k ∈ N∗.

This particular factorization gives rise to the following questions:

1. Let {rk}k∈N be a given real series; what are the conditions to factorize it as rk = HF k−1N?;

2. if {rk}k∈N satisfies such a factorization, is it a covariance series?

3. finally, if {rk = HF k−1N}k∈N∗ is indeed a covariance series, which ones can be realized by a GUM,
an RNN and an HMC?

The first point has been addressed in the background section and is a direct application of the deterministic
realization theory. In order to address the two other points, we could first identify the parameters H , F and
N such that rk = HF k−1N is indeed a covariance matrix (it can be characterized either by the constraint
that for all k ∈ N, the Toeplitz matrix with first row [r0, · · · , rk] is positive semi definite or, equivalently by
the Carathéodory-Toeplitz theorem which states that C(z) = r0 + 2

∑∞
k=1 rkz

k is a Carathéodory function,
i.e. has positive real part in the open unit disk {z ∈ C; |z| < 1} (Akhiezer and Kemmer, 1965)), and
next looking for the parameters (a, b, c, α, β, η) satisfying (4.16) under positivity constraints. However, the
analysis of C(z) may be difficult so we resort to the stochastic realization recalled above and which enables
us to address these points simultaneously.

71

Chapter 4 : About the expressivity of latent variable models

Resorting to stochastic realization theory for the linear GUM and its particular instances -

Starting from the state-space representation (4.12) and plugging the observation equation in that describing
the latent process, a GUM admits an alternative state-space representation given by (4.6) where





F = a+ cb

H = b

R = β

Q = cβcT + α

S = cβ

⇔





a = F − SR−1H

b = H

c = SR−1

α = Q− SR−1ST

β = R

. (4.17)

In other words, there is a unique correspondence between the linear and stationary GUMs and the stationary
state-space models (4.12) considered in the stochastic realization theory.

Consequently, we are now able to address some properties related to the GUM and its particular in-
stances. Let {rk}k∈N be a real valued series (not necessarily a covariance series). Then we have seen that it
is factorizable (i.e. there exists a triplet (H,F,N) such that rk = HF k−1N for all k ∈ N∗) iff. the Hankel
matrixH∞ defined in (4.8) is finite rank; the rank n ofH∞ is also the minimal dimension of any realization
of {rk}k∈N. In addition, this series is a covariance function iff. there exists a matrix P satisfying (4.9). Due
to the correspondence between a GUM and a state-space model (4.12), the following Proposition can be seen
as a direct consequence of the positive real Lemma 4.1.

Proposition 4.2. Let {rk}k∈N be a real valued series satisfying rk = HF k−1N , for all k > 0, for some
triplet (H,F,N). Then {rk}k∈N is a covariance function if and only if there exists a GUM which produces a
stationary observation process described by covariance function {rk}k∈N. In other words, there exists P > 0

such that
Q = P − FPF T ,

R = r0 −HPHT ,

S = N − FPHT ,

(4.18)

defines a semi-positive definite matrix [
Q S
ST R

]
≥ 0. (4.19)

Equivalently, {rk}k∈N is a covariance series iff. there exists a set of parameters (a, b, c, α, β, η) satisfying
(4.15)-(4.16).

This result can be illustrated by Fig. 4.1. Among all the real valued series {rk}k∈N, a GUM can produce
any (covariance) function of the South-West quarter.

Among all the covariance series which can be produced by a GUM, we now describe the subset of those
which can be produced by an HMC or by an RNN of same dimension (i.e. dim(ht) = n). For the HMC, we
have the following (implicit) characterization.

Proposition 4.3. Let a triplet (H,F,N) such that {rk = HF k−1N}k∈N∗ defines a covariance series. Let P
be the set of solutions P of (4.18)-(4.19). Then if there exists P in P such that

N −HFP = 0,

the covariance series can be produced by an HMC.

72

4.2 HMC vs. RNN from stochastic realization theory

Figure 4.1: This figure represents the set of all real times series. The series {rk}k∈N which are factorizable
covariance series is the South-West quarter of the figure (orange and blue lines). Computing H∞ enables
to move from the full set to the Southern part, whereas the positive real lemma enables to move from the
Southern part to the South-West quarter.

For example, this condition cannot be satisfied if N /∈ Span(F)

Remark 4.2. Let us observe that if no solutions can be found in a set P1 associated to a triplet (H1, F1, N1),
then we cannot found any solution in the set P2 associated to the triplet (H2 = H1T

−
121, T12F2T

−
121, T12N2)

which produces the same covariance series {rk}k∈N. The reason why is that any solution P2 of P2 can be
written as P2 = T12P1T

T
12 where P1 ∈ P . Consequently, if there is a solution P1 in P1 which satisfies

N1 = H1F1P1 (so P1 can be associated to an HMC), then

N2 = T12N1 = T12FT−1
12 T12P1T

T
12T

−T
12 HT

1 = F2P2H
T
2

and so P2 in P2 can also be associated to an HMC.

We finally give a description of the deterministic GUM (i.e. the transition distribution between pθ(ht|ht−1, yt−1)

is deterministic) and of the RNN in which an additional constraint on c has to be satisfied (see Remark 4.1).

Proposition 4.4. Let a triplet (H,F,N) such that {rk = HF k−1N}k∈N∗ is a covariance matrix. Let P be
the set of solutions P satisfying (4.18)-(4.19). Then if there exists P in P such that

Q− SR−1ST = P − FPF T − (N − FPHT)(r0 −HPHT)−1(N − FPHT)T = 0,

the covariance series can be produced by a GUM with a deterministic transition. If in addition P satisfies

P = SR−1r0R
−TST = r0(r0 −HPHT)−2(N − FPHT)(N − FPHT)T ,

the covariance series can be produced by a traditional RNN initialized to h0 = 0 with a linear activation
function.

By construction, if P satisfies the RNN condition above, then P is a rank 1 n× n semi-definite positive
matrix and is positive definite only if n = 1. In other words, a factorizable covariance series can be realized
by an RNN if the latent vector is monodimensional and the condition above holds but can never be realized
by an RNN if n > 1.

73

Chapter 4 : About the expressivity of latent variable models

An illustration in the scalar case (Fig. 4.2) - In this paragraph, we set dim(ht) = n = 1. For this
particular case, (4.18)-(4.19) becomes





Q = P (1− F 2) ≥ 0

R = r0 − PH2 ≥ 0

S = N −HFP

QR− S2 ≥ 0

. (4.20)

The first constraint is satisfied if −1 ≤ F ≤ 1. We also show that the last constraint is satisfied if

−H2P 2 +
[
r0(1− F 2) + 2HFN

]
P −N2 ≥ 0.

As a quadratic function of P , it admits a solution provided

∆ = (1− F 2)(r0(1 + F)− 2HN)(r0(1− F) + 2HN) ≥ 0,

i.e.
r0(F − 1)

2
≤ HN ≤ r0(F + 1)

2
,

when F satisfies the first constraint. If the pair (F,HN) is valid, P coincides with the interval [P1, P2]

where

Pi =
2FHN + r0

(
1− F 2

)
+ (−1)i

√
∆

2F 2
.

Finally, we remark that [P1, P2] is included in [0, r0/H
2] so the constraint r0 − PH2 ≥ 0 is satisfied. In

conclusion, in the scalar case, P is non void iff.
{
−1 ≤ F ≤ 1
r0(F−1)

2 ≤ HN ≤ r0(F+1)
2

,

and coincides with P = [P1, P2]. According to the real-positive lemma, we deduce that series defined by r0
and {rk = HNF k−1}k∈N∗ are covariance series if and only if F and HN satisfy the conditions above.

Such covariance series can be produced by an HMC if P satisfies

P =
N

HF
, P ∈

[
0,

r0
H2

]
.

Such a P exists provided
{
0 ≤ HN ≤ r0F , if F ≥ 0

r0F ≤ HN ≤ 0, if F ≤ 0
.

In other words, the HMC cannot produce the covariance series {rk = HNF k−1}k∈N∗ which do not respect
the conditions above, contrary to the GUM.

Finally, GUMs with a deterministic transition can describe the same covariance series as the GUM.
Indeed, the deterministic condition QR − S2 = 0 is satisfied if P = P1 or P = P2. Even if the set of
solutions is reduced to {P1, P2}, it is sufficient to produce any factorizable covariance series of degree n and
it requires less parameters than the GUM (since α = 0). If we add the RNN constraint P = c2r0, we show
by solving

Qr0 = PiR⇔ Pi(1− F 2)r0 = Pi(r0 − PiH
2), for i ∈ {1, 2}

74

4.3 About the generative power of PMCs

that there exists a solution if

HN = r0F

or

HN = r0F (2F 2 − 1).

Consequently, an original RNN with a linear activation function produces a restricted set of covariance series
but can be easily transformed into a deterministic GUM (or an observation driven model) by considering a
random (and not deterministic) X0.

Fig. 4.2 summarizes this discussion and describes the covariance series described by r0 and by {rk =

HNF k−1}k≥0 which can be produced by each model in function of (F,HN).

F

HN

-1 1

−r0

r0

Figure 4.2: Modeling powers of RNN, HMM and GUM with regards to F and HN . The parallelogram
(blue+cyan) coincides with the distributions with a covariance function Cov(Yt, Yt+k) = F k−1HN . Such
distributions can be modeled by a GUM or a deterministic GUM. The cyan (resp. orange) areas (resp.
curves) coincides with the value of F and HN which can be taken by the HMC (resp. the RNN).

4.3 About the generative power of PMCs

We have seen that a linear and stationary GUM with a latent random variable of dimension n produces a
factorizable covariance series {rk}k∈N,

rk = HF k−1N , for all k ∈ N∗,

where F is an n× n matrix. On the other hand, a series {rk}k∈N satisfying this factorization is a covariance
function if there exists an n-dimensional GUM which can produce it. Actually, a GUM can be seen as a

75

Chapter 4 : About the expressivity of latent variable models

particular instance of the PMC. In a PMC, we only assume that the pair {Ht, Yt}t∈N is Markovian,

pθ(h0:t, y0:t)
PMC
= pθ(h0, y0)

t∏

s=1

pθ(hs, ys|hs−1, ys−1)

= pθ(h0, y0)
t∏

s=1

pθ(hs|hs−1, ys−1)pθ(ys|hs−1:s, ys−1).

Actually, this property ensures that all the computing Bayesian inference tools (particle filters, EM algo-
rithm,...) developed for the HMC are adaptable for the PMC. Consequently, using PMCs as generative
models could be relevant, and we will see some practical examples of these models in the next chapter. At
this point, a natural problem is to quantify the gain of this model w.r.t. the previous GUM.

Linear and stationary PMCs - In order to extend our previous study, we include the same linear
assumptions; so we consider that the first and second order moments of pθ(ht|ht−1, yt−1) and of pθ(yt|ht−1:t,

yt−1) read





E([H0, Y0]
T) =

[
0 0

]T

E(Ht|ht−1, yt−1) = aht−1 + cyt−1

E(Yt|ht−1:t, yt−1) = bht + eht−1 + fyt−1

,





Var([H0, Y0]
T) = Σ0 =

[
η γ̃T

γ̃ r0

]
,

Var(Ht|ht−1, yt−1) = α

Var(Yt|ht) = β

.

This generalization involves three new parameters e, f and γ̃ of dimension 1×n, 1×1 and 1×n, respectively.
When e = 0, f = 0 and γ̃ = bη, the model coincides with the GUM of the previous section. An equivalent
representation is obtained by considering the first and second order moments of the pair (Ht, Yt) given
(ht−1, yt−1),

E

([
Ht Yt

]T
|ht−1, yt−1

)
= M

[
ht−1

yt−1

]
, Var

([
Ht Yt

]T
|ht−1, yt−1

)
= Σt|t−1,

where

M =

[
a c

ba+ e bc+ f

]
, Σt|t−1 =

[
α αbT

bα β + bαbT

]
. (4.21)

In the previous section, the stationarity of {Ht}t∈N involved that of {Yt}t∈N due to the structure of
the model. By extension, we consider directly that the process {Ht, Yt}t∈N is stationary. Consequently,
Var([H0, Y0]

T) = Σ0 should satisfy

Σ0 = MΣ0M
T +Σt|t−1. (4.22)

This matrix equation describes a set of three constraints which generalizes the constraints (4.15)-(4.16) : in
the GUM case, e = 0, f = 0 and Cov(H0, Y0) = ηbT , the global constraint (4.22) is reduced to the two
constraints described by (4.15) and the first line of (4.16).

Stochastic realization theory for linear PMCs - We are now tempted to resort again to stochastic
realization theory to describe the covariance series which can be produced by these models. However, the
main difficulty is that they do not admit a state-space model representation (4.6). The reason why is that the

76

4.3 About the generative power of PMCs

introduction of the new dependencies through parameters (e, f) cancels the Markoviannity of {Ht}t∈N of
the previous models. This can be seen if we use a state-space representation of the same form as (4.12) for
the PMC,

Ht = aHt−1 + cYt−1 + Ut,

Yt = bHt + eHt−1 + fYt−1 + Vt.
(4.23)

If we now plug the second equation into the first one, we are not able to obtain the state-space representation
(4.6). The trick is to interpret the PMC as a particular HMC in augmented dimension. Let us set H̃t =

(Ht, Yt). Then the linear PMC can be seen as a particular HMC with n+ 1 latent random variables,

H̃t = MHt−1 + Ut,

Yt =
[
01×n 1

]
H̃t,

(4.24)

where {Ut}t∈N is a sequence of uncorrelated noises, E(Ut) = 0, E(UtU
T
t) = Σt|t−1. In other words, our

linear PMC can now be seen as a particular state-space model (4.12) of dimension n+1, with H = [01×n, 1],
S = 0 and R = 0. As a direct consequence, we have the following Proposition.

Proposition 4.5. Let F̃ (resp. Ñ) be an (n + 1) × (n + 1) (resp. (n + 1) × 1) matrix such that the series

{rk}k∈N satisfies rk =
[
01×n 1

]
F̃ k−1Ñ for all k ∈ N∗. If there exists P̃ > 0 such that





Q̃ = P̃ − F̃ P̃ F̃ T ≥ 0

R̃ = r0 −
[
01×n 1

]
P̃
[
01×n 1

]T
= 0

S̃ = Ñ − F̃ P̃
[
01×n 1

]T
= 0

, (4.25)

then {rk}k∈N is a covariance function and can be produced by a PMC.

This proposition shows that it is theoretically possible to aim a subset of the factorizable covariance
series of degree n+ 1 with a PMC with n latent random variables, contrary to the GUM.

Remark 4.3. From the previous section, we already know that a GUM of dimension n can only produces
covariance series of degree n, at most. However, we could use the same argument as that used for the PMC
and interpret the GUM of degree n as a particular HMC of degree n+ 1. However, note that contrary to the
PMC, the transition matrix of the GUM in augmented dimension is not free and reads (see (4.21) with e = 0,
f = 0)

M =

[
a c
ba bc

]
=

[
In×n

b

] [
a c

]
.

In this case, the rank of M is lower than n+ 1.

The scalar case - Proposition 4.5 gives an implicit characterization of covariance functions of degree
n + 1 which can be produced by a PMC with n latent variables. We would like to illustrate the result with
n = 1 and to compare the covariance functions which can be produced by a PMC w.r.t. that produced by
the GUM. However, we would first need to describe explicitly the set P associated to covariances functions
of degree n+ 1 = 2 and next looking for those which satisfy the constraints of Proposition 4.5. An explicit
characterization of P is difficult in this case and we use an alternative path. We start again from the (scalar)

77

Chapter 4 : About the expressivity of latent variable models

stationary PMC described by (4.21) which satisfies (4.22); for clarity, we set r0 = 1 and we parameterize
γ̃ = γη.

In order to extend the scalar case of the GUM, we assume that M is diagonalizable, i.e. M = PDP−1

with

P =

[
−a+bc+f+K

2(ab+e)
a−bc−f+K
2(ab+e)

1 1

]
,

D =

[
1
2(a+ bc+ f −K) 0

0 1
2(a+ bc+ f +K)

]
,

P−1 =

[
−ab+e

K
a−bc−f+K

2K
ab+e
K

−a+bc+f+K
2K

]
,

where
K =

√
(a+ bc+ f)2 − 4(af − ce).

So it is assumed that (a + bc + f)2 − 4(af − ce) ≥ 0, and note that this condition is always satisfied in
the GUM (e = f = 0). The covariance function {rk}k∈N is then deduced from that of the joint process
{Ht, Yt}t∈N which reads Σ0 × (Mk)T . We have the following result.

Proposition 4.6. Let a linear and stationnary (scalar) PMC defined by the transition and the conditional
covariance matrices M and Σ in (4.21) and the initial covariance matrix

Σ0 =

[
η γη
γη 1

]
.

If M is diagonalizable, the covariance function of {Yt}t∈N reads

Cov(Yt, Yt+k) = A
k
(B +

1

2
)− C

k
(B − 1

2
), (4.26)

where

A =
a+ bc+ f −K

2
,

B =
a− bc− f − 2γη(ab+ e)

2K
,

C =
a+ bc+ f +K

2
,

K =
√
(a+ bc+ f)2 − 4(af − ce)

and where the following stationnarity constraints are satisfied :

bη + (ae+ afγ + ceγ) + fc = γη,

(1− a2 − 2acγ)η − c2 ≥ 0,

1− b2η − 2bη(γ − b)− eη(e+ 2fγ)− f2 ≥ 0.

If we set e = f = 0, then necessarily γ = b and this covariance series reduces to (4.13). While the
form of the covariance function associated to a scalar linear PMC is more general, it remains difficult to
identify if any covariance series of the form (4.26) can be produced by a PMC because identifying A, B and
C such that (4.26) is indeed a covariance series is a thorny issue. However, we can exhibit some particular
covariance functions which can be produced by a PMC but not by a GUM.

78

4.3 About the generative power of PMCs

Proposition 4.7. Let Ã and B̃ be two scalars, r0 = 1 and

rk =

{
Ãk if k is even

Ãk−1B̃ otherwise.
. (4.27)

Then {rk}k∈N is a covariance function if and only if

−1 ≤ Ã ≤ 1 and − Ã2 + 1

2
≤ B̃ ≤ Ã2 + 1

2
, (4.28)

and can be realized by a PMC.

The proof relies on the Caratheodory theorem of Akhiezer and Kemmer (1965) which enables us to
describe the values of Ã and of B̃ such that {rk}k∈N is covariance function. Next, setting γ = b, and f = 0,
we show that (4.26) coincides with (4.27) with

Ã =
√
ce and B̃ = b(c(1− b2η) + eη).

Finally, for any (Ã, B̃) satisfying (4.28), we show that it is possible to find a set of parameters (a, b, c, e, η, α, β)
which satisfies the previous system and the stationnarity constraints (4.22). This result should be compared
with that of the GUM in the scalar case. Remember that the GUM of dimension 1 can produce any covariance
function

rk = Ak−1B.

Proposition 4.7 shows that it is possible to produce a covariance function

rk = Ak−1B(k).

with a switching B(k) satisfying B(k) = A if k is even and B(k) = B, otherwise.

79

CHAPTER 5

Cross benefits of hidden Markov models and recurrent

neural networks architectures

This chapter is the result of a cross fertilization between the previous chapters of this manuscript. Each
chapter was devoted to a particular problem among P.1 − P.3. Here, we synthesize three contributions in
which the full chain of processing P.1-P.3 is addressed for three different objectives: (i) designing powerful
generative models; (ii) designing powerful and interpretable models for Bayesian classification; (iii) design-
ing fast approximations for hidden Markov models with discrete jumps. For each contribution, we propose
a probabilistic model in accordance with our objective and we next address the specific Bayesian inference
tools for these models.

This work results from the supervising of 3 Ph.D students. Section 5.2 coincides with the first work
of K. Morales (2020-2023), a Ph.D. student I supervise with E. Monfrini (Télécom SudParis) [14]. The
second contribution has also been led with K. Morales (2020-2023) and H. Gangloff (IRISA, Université de
Bretagne Sud), a post-doctoral student [16,19]. Finally, the third contribution coincides with the first project
of Y. Janati (2020-2023) during his last year at Télécom SudParis and the beginning of its thesis [15].

5.1 Background

Markovian models - As we have seen in chapters 1 and 4, a PMC

pθ(h0:t, y0:t)
PMC
= pθ(h0, y0)

t∏

s=1

pθ(hs, ys|hs−1, ys−1), for all t ∈ N, (5.1)

may be more adapted to model observed data {Yt}t∈N via a latent process {Ht}t∈N. However, the choice
of the PMC model (i.e. of pθ(ht, yt|ht−1, yt−1)) is a critical problem. In the case where we want to build
a generative model (which means that {Ht}t∈N does not need to be interpretable), the choice of the nature
of the transition distribution and its parameterization is not obvious. In the case where the latent process is
interpretable, so Ht ← Xt (e.g. Xt coincides with the position of a target), sliding from the intuitive HMC,
where pθ(xt|xt−1) describes the evolution of the hidden process and pθ(yt|xt) the relationship between
the observation and the hidden random variable at the same time, to the PMC in which we should model
the relationship between the hidden state Xt with Xt−1 but also with Yt−1 is a difficult problem. Our
objective is thus to introduce "universal" parameterizations based on neural network architectures. In the
first application, where the objective is to design a relevant distribution pθ(y0:t), PMCs parameterized by
neural networks aim at estimating this implicit distribution. In the second application, they are introduced to
propose a parameterization of the joint distribution pθ(x0:t, y0:t) in problems where we look for estimating a
discrete random variable Xs from Y0:t. If we want also to estimate the nature of this distribution, we resort

Chapter 5 : Cross benefits of hidden Markov models and recurrent neural networks architectures

to TMCs where a third non observed process {Zt}t∈N is introduced and where

pθ(z0:t, x0:t, y0:t) = pθ(z0, x0, y0)
t∏

s=1

pθ(zs, xs, ys|zs−1, xs−1, ys−1).

The same kind of parameterizations are used but we have to take into account that {Xt}t∈N is interpretable,
contrary to {Zt}t∈N.

Variational Bayesian inference - This method is the cornerstone of the Bayesian inference algorithms
we propose for our highly parameterized models. It provides an alternative when the EM algorithm is not
computable or the Monte Carlo approximations proposed in the previous chapters are unreliable (e.g. in high
dimensional problems). Let us consider the generals problem of computing or approximating a posterior
distribution pθ(x|y) ∝ pθ(x, y) known up to a constant when y is observed and X is hidden. Variational
Bayesian inference (see e.g. (Blei et al., 2017) for a detailed introduction) relies on a parameterized distri-
bution qφ(x|y) that is optimized to fit the posterior distribution p(x|y) by minimizing the Kullback-Leibler
Divergence (KLD)

DKL(qφ, pθ) =

∫
qφ(x|y) log

(
qφ(x|y)
pθ(x|y)

)
dx ≥ 0,

=

∫
qφ(x|y) log

(
qφ(x|y)
pθ(x, y)

)
dx+ log

(
pθ(y)

)
(5.2)

w.r.t. θ . Of course, the choice of the variational distribution qφ(x|y) is critical since the first term of the
r.h.s. of (5.2) has to be computed or easily approximated, and next optimized w.r.t. φ. A popular choice of
variational distribution is the mean-field approximation (Bishop, 2006) where the variational components of
x = (x1, · · · , xdx) are independent given y and one set of parameters φi is associated to each component xi,
i.e. qφ(x|y) =

∏dx
i=1 qφi

(xi|y) and φ = (φ1, · · · , φdx).
This approach also provides a parameter estimation method when some parameters of the original model

pθ are unknown. Indeed, we deduce from (5.2) that

log pθ(y) ≥ −
∫

qφ(x|y) log
(
qφ(x|y)
pθ(x, y)

)
dx = F (θ, φ), (5.3)

where equality holds when qφ(x|y) = pθ(x|y). Computing the so-called Evidence Lower Bound (ELBO)
F (θ, φ) and next maximizing it w.r.t. (θ, φ) leads to a maximization of a lower bound of the log-likelihood
log pθ(y). The resulting variational EM algorithm (Tzikas et al., 2008) is an alternative to the EM algorithm
(Dempster et al., 1977) when the original posterior pθ(x|y) is not available. This tool will be extended for
our sequential models.

5.2 Generative models based on Variational PMCs

Variational Bayesian Inference for PMCs - We start with (5.1) in which we assume that Ht is a
continuous random variable. Before introducing particular parameterizations, we consider the general case
in which we only assume that

pθ(h0, y0) and pθ(ht, yt|ht−1, yt−1)

82

5.2 Generative models based on Variational PMCs

are differentiable w.r.t. θ, for all t ∈ N. To estimate θ, we want to maximize the (uncomputable) log-
likelihood log(pθ(y0:t)). Since the dimension of Ht may be large, we adapt the variational Bayesian infer-
ence framework described previously. In our case, the ELBO becomes

F (θ, φ) = −
∫

log

(
qφ(h0:t|y0:t)
pθ(h0:t, y0:t)

)
qφ(dh0:t|y0:t), (5.4)

where qφ(h0:t|y0:t) is a variational distribution depending on a set of parameters φ. In the sequential case,
the variational distribution

qφ(h0:t|y0:t) = qφ(h0|y0:t)
t∏

s=1

qφ(hs|h0:s−1, y0:t)

should respect the following constraints:

• qφ(hs|h0:s−1, y0:t) should be parameterized in such a way that it can be used with any sequence y0:t,
so φ cannot depend on t;

• qφ should be chosen in such a way that F (θ, φ) is computable or can be approximated but is also
differentiable. Typically, for general PMCs, F (θ, φ) is not computable. Interpreting it as an expec-
tation w.r.t. qφ, an unbiased Monte Carlo approximation can be obtained if qφ is a distribution from
which we can easily sample. However, the samples depend on φ; in order to ensure that the Monte
Carlo approximation remains differentiable w.r.t. φ, a sample hi0:t has to be reparamatrized as a dif-
ferentiable function of φ. This is the reparametrization trick (Kingma and Welling, 2014). The final
approximation reads

F̂ (θ, φ) = − 1

N

N∑

i=1

log

(
qφ(h

i
0:t|y0:t)

pθ(h
i
0:t, y0:t)

)
, his ∼ qφ(h

i
s|hi0:s−1, y0:t), for i ∈ [1 : N],

and where his is a differentiable function of φ, for i ∈ [1 : N] and s ∈ [0 : t].

Example 5.1. A variational distribution satisfying the previous constraint is

qφ(hs|h0:s−1, y0:t) = qφ(hs|hs−1, ys) = N
(
hs; fφ(hs−1, ys); diag(gφ(hs−1, ys−1:s))

)
,

where fφ and gφ are differentiable functions w.r.t. φ (e.g. they represent the output of neural networks)
and diag(.) denotes the diagonal matrix deduced from the values of gφ. In this case, a sample his can be
reparametrized as

his = fφ(h
i
s−1, ys) + diag(gφ(hs−1, ys))

1
2 × ǫis, ǫis

i.i.d.∼ N (0, I), for i ∈ [1 : N], for s ∈ [1 : t].

The Monte Carlo approximation of the ELBO can be rewritten as

F̂ (θ, φ) = − 1

N

N∑

i=1

log

(
qφ(h

i
0)

pθ(h
i
0, y0)

)
− 1

N

N∑

i=1

t∑

s=1

log

(
qφ(h

i
s|his−1, ys)

pθ(his, ys|his−1, ys−1)

)

and is next optimized w.r.t. (θ, φ).

83

Chapter 5 : Cross benefits of hidden Markov models and recurrent neural networks architectures

Deep Generative PMCs and experiments - We now propose particular PMC architectures for mod-
elling times series {Yt}t∈N. It is possible to generalize the Stochastic RNN architectures described in
Bayer and Osendorfer (2014); Chung et al. (2015) and which are actually particular instances of the GUM
(see section 4.2 of the previous chapter) and so of our generative PMCs. Stochastic RNN architectures have
provided good experimental results (Chung et al., 2015) so it is natural to compare them with their PMC
extension. Our generative PMC consists of a latent process in augmented dimension, Ht ← (Ht, Zt),

pθ(zt, ht, yt|zt−1, ht−1, yt−1) = pθ(zt|zt−1, ht−1, yt−1)pθ(ht|zt−1:t, ht−1, yt−1)pθ(yt|zt−1:t, ht−1:t, yt−1),
(5.5)

and so is nothing more than a TMC with transition (5.5). We now need to parameterize (5.5). Let ς , λ and µ

be distributions on Z, H and Y, respectively, and parameterized by differentiable (w.r.t. θ) and vector valued
functions denoted as sθ, fθ and gθ and which can depend on (zt−1, ht−1, yt−1), (zt−1:t, ht−1, yt−1) and on
(zt−1:t, ht−1:t, yt−1), respectively. The transition (5.5) is then parameterized as

pθ(zt|zt−1, ht−1, yt−1) = ς
(
zt; sθ(zt−1, ht−1, yt−1)

)
,

pθ(ht|zt−1:t, ht−1, yt−1) = λ
(
ht; fθ(zt−1:t, ht−1, yt−1)

)
,

pθ(yt|zt−1:t, ht−1:t, yt−1) = µ
(
yt; gθ(zt−1:t, ht−1:t, yt−1)

)
.

(5.6)

In the context of Stochastic RNN architectures, the variable Zt is a deterministic summary of the past until
time t− 1 while Ht is a noisy version of Zt (it is why we have split the latent process in two). Keeping this
rationale for the two latent processes (so with a slight abuse, ς coincides with the Dirac measure and is not
a pdf), it is possible to include several degrees of generalization of the classical RNN and of the variational
RNN (VRNN) of Chung et al. (2015). Our different models are defined in Table 5.1 through the particular
dependencies of the involved random variables.

Model
Parameterized function

sθ fθ gθ

RNN (ht−1, yt−1) X zt
VRNN (zt−1, ht−1, yt−1) zt (zt, ht)
PMC-I (zt−1, ht−1, yt−1) zt (zt, ht, yt−1)
PMC-II (zt−1, ht−1, yt−1) zt (zt, ht−1:t, yt−1)
PMC-III (zt−1, ht−1, yt−1) zt (zt−1:t, ht−1:t, yt−1)
PMC-IV (zt−1, ht−1, yt−1) (zt, yt−1) (zt, ht−1:t, yt−1)

Table 5.1: Configuration of the dependencies of different deep generative PMCs. For each model, {Zt}t∈N
is deterministic variable given the observations, so ς coincides with the Dirac measure. λ is generally chosen
as the Gaussian distribution, while µ depends on the nature of the observations. Remember that in a classical
RNN, {Ht}t∈N is not considered.

In our experiments, {Yt}t∈N are discrete random variables where Yt ∈ {0, 1}dy , so µ coincides with the
product of Bernoulli distribution and the output of gθ with its parameters. For λ, we choose the Gaussian
distribution so the output of fθ coincides with mean and covariance matrix parameters. The variational
distribution qφ is chosen as

qφ(ht|zt, ht−1, yt) = N
(
ht; νφ(zt, yt)

)
, (5.7)

84

5.2 Generative models based on Variational PMCs

where the output of νφ is a mean and a diagonal covariance matrix. Note that since Z0:t is deterministic
given (h0:t, y0:t), its posterior distribution is trivial and we do not need to consider a variational one. Finally,
sθ, fθ, gθ and νφ are neural networks with two hidden layers, we use the ReLu activation function and the
outputs of the neural networks are adapted according to their role (e.g. the output of gθ is a layer of dy
sigmoid functions due to the nature of the observations).

We first work on the MNIST dataset (LeCun, 1998) which contains 60000 (resp. 10000) train (resp. test)
28× 28 binary images. An observation Yt consists of a column of the image (dim(yt) = dy = 28), and the
length of a sequence is t+ 1 = 28. Each model was trained with a stochastic gradient ascent method on the
approximated ELBO with the Adam optimizer (Kingma and Ba, 2015) using a learning rate of 0.001 and a
batch size of 512 images. The number of hidden units of each neural network coincides with the dimension
dh of Ht. For dh, we consider two configurations (see Table 5.2). In the first one, we set dh = 100 for
each model; in the second one, we take into account that each model should be compared with the same
number of parameters, so we set dh = 100, dh = 95, dh = 79, dh = 78, dh = 74 and dh = 162 for the
VRNN, the PMC-I, the PMC-II, the PMC-III, the PMC-IV and the RNN, respectively. The performance of
the models is evaluated in terms of the approximated ELBO and log-likelihood of the observations on the
test data set; we use a particle filter with the estimated variational distribution as importance distribution and
N = 100 particles, see Alg. 2.2. In Table 5.3, we report the averaged ELBO and the averaged approximated
log-likelihood on the test set assigned by our models. The results with the Config.1 (resp. Config. 2) show
that PMC-IV (resp. PMC-II) has the higher averaged ELBO and averaged approximated log-likelihood. As
we see, PMCs perform better than VRNN and RNN.

Model
Data set MNIST 1 MNIST 2 MIDI

dz dh dz dh dz dh
RNN 3 100 3 162 300 562
VRNN 3 100 3 100 300 300
PMC-I 3 100 3 95 300 294
PMC-II 3 100 3 79 300 278
PMC-III 3 100 3 78 300 260
PMC-IV 3 100 3 74 300 272

Table 5.2: Dimensions of latent variables for each Deep PMC. sθ, fθ, gθ and νφ are neural networks with
two hidden layers. The number of neurons on each layer coincide with dh.

Model
Data set MNIST, config. 1 MNIST, config. 2

ELBO approx. log-likelihood ELBO approx. log-likelihood
RNN -65,976 -65,976 -65,700 -65,700
VRNN -67,248 -64,760 -67,222 -64,762
PMC-I -66,544 -64,076 -67,322 -64,698
PMC-II -66,784 -64,201 -66,815 -64,255

PMC-III -66,518 -63,876 -67,513 -64,876
PMC-IV -66,150 -63,60318 -67,648 -64,924

Table 5.3: Averaged ELBO and approximated log-likelihood of the observations on the test set with two
different configurations. For the RNN, the ELBO coincides with the (exact) log-likelihood.

85

Chapter 5 : Cross benefits of hidden Markov models and recurrent neural networks architectures

Figure 5.1: Examples of images generated from estimated pθ(y0:t) of the PMC-II.

We finally consider the three polyphonic music data sets, classical piano music (Piano), folk tunes (Not-
tingham) and the four-part chorales by J.S. Bach (JSB). Here yt ∈ {0, 1}88 consists of a MIDI note than
span the whole range of piano from A0 to C8 and we have compared the models in terms of approximated
log-likelihood for the same number of parameters (again, by adjusting dh, see Table 5.2). For each data set,
dz is fixed and is set to 300. The results are presented in Table 5.4 where dh = 300, dh = 294, dh = 278,
dh = 260, dh = 272 and dh = 562 for the VRNN, the PMC-I, the PMC-II, the PMC-III, the PMC-IV and
the RNN respectively.

Model
Data set

Piano Nottingham JSB

RNN -10,52 -23,89 -10,77
VRNN -9,4011 -13,2982 -10,2739
PMC-I -9,3077 -11,3856 -10,3126
PMC-II -8,8265 -14,8485 -10,2409
PMC-III -9,2285 -13,3900 -10,1103
PMC-IV -9,4134 -10,6323 -9,2372

Table 5.4: Approximated likelihoods on the MIDI data sets. For the RNN, the exact log-likelihood is com-
puted.

5.3 Deep and interpretable hidden Markov models

Our objective is to build powerful generative models with the same rationale as before, but we take into
account that the latent process {Xt}t∈N is of physical interest and needs to be estimated. We address this
problem in the case where Xt is discrete and represents an interpretable class related to Yt. In order to illus-
trate our models, we consider the problem of unsupervised image segmentation which consists in estimating
the class of a pixel Xs (e.g. black or white) of an image X0:t from a noisy image Y0:t = y0:t. So we have

Xt ∈ Ω = {ω1, · · · , ωK} and Yt ∈ Rdy , for all t ∈ N.

As experimented in some preliminary simulations, maximizing directly the log-likelihood of highly param-
eterized models can produce poor classifications compared to a simple models such as a discrete HMC with
Gaussian noise. The reason why is that the estimation method aims at maximizing the likelihood of the model
but the hidden variables coinciding with the estimated model do not correspond to the desired interpretation.

86

5.3 Deep and interpretable hidden Markov models

A general Parameterization of PMCs - First, we only consider the hidden and observed processes;
the general parameterization (5.5) becomes

pθ(xt|xt−1, yt−1) = λ
(
xt; fθ(xt−1, yt−1)

)
,

pθ(yt|xt−1:t, yt−1) = µ
(
yt; gθ(xt−1:t, yt−1)

) (5.8)

and parameterizes a PMC

pθ(x0:t, y0:t) = pθ(x0, y0)
t∏

s=1

pθ(xs, ys|xs−1, ys−1), for all t ∈ N.

Example 5.2. This parameterization includes the HMC with discrete hidden states and Gaussian noise
(Rabiner, 1989). For clarity, let us assume that Ω = {ω1, ω2}, and we note sigm(z) = 1/(1 + exp(−z)) ∈
[0, 1] the sigmoid function, Ber(x, v) the Bernoulli distribution of parameter v evaluated in x. Then this
model can be described by

fθ(xt−1, yt−1) = sigm
(
bxt−1

)
,

gθ(xt−1:t, yt−1) =
[
dxt σxt

]
,

λ(x; v) = Ber(x, v),

µ
(
x; v′ =

[
v′1; v

′
2

])
= N

(
x; v′1; (v

′
2)

2
)

,

(5.9)

and θ = (bωi
, dωj

, σωj
|(ωi, ωj) ∈ Ω× Ω).

Example 5.3. A direct extension of the previous HMC is the linear and Gaussian PMC in which

fθ(xt−1, yt−1) = sigm
(
axt−1yt−1 + bxt−1

)
, (5.10)

gθ(xt−1:t, yt−1) =
[
cxt−1,xtyt−1 + dxt−1,xt ; σxt−1,xt

]
. (5.11)

Actually, whatever the parameterization, the likelihood pθ(y0:t) and the posterior probabilities pθ(xs|y0:t)
can be computed for s ∈ [0 : t]. The reason why in that in discrete PMCs, these probabilities can be deduced
from

αθ,s(xs) = pθ(xs, y0:s), βθ,s(xs) = pθ(ys+1:t|xs, ys), βθ,t(xt) = 1,

which are sequentially computable (Pieczynski, 2003). Indeed,

αθ,s(xs) =
∑

xs−1∈Ω

αθ,s−1(xs−1)λ(xs; fθ(xs−1, ys−1))µ(ys; gθ(xs−1:s, ys−1)), (5.12)

βθ,s−1(xs−1) =
∑

xs∈Ω

βθ,s(xs)λ(xs; fθ(xs−1, ys−1))µ(ys; gθ(xs−1:s, ys−1)); (5.13)

finally

pθ(y0:t) =
∑

xt∈Ω

αθ,t(xt), (5.14)

pθ(xs−1:s|y0:t) ∝ αθ,s−1(xs−1)βθ,s(xs)λ(xs; fθ(xs−1, ys−1))µ(ys; gθ(xs−1:s, ys−1)), (5.15)

pθ(xs|y0:t) =
∑

xs−1∈Ω

pθ(xs−1:s|y0:t). (5.16)

For a PMC (5.8), the estimation of θ (from a gradient ascent method) and the computation of the posterior
distributions are recalled in Algs. 5.1 and 5.2, respectively.

87

Chapter 5 : Cross benefits of hidden Markov models and recurrent neural networks architectures

Algorithm 5.1 Estimation of θ in general PMC models.

Require: Observations y0:t, a learning rate ǫ, an initial parameter θ(0)

1: j = 0
2: while convergence of log pθ(j)(y0:t) in (5.14) is not attained do

3: Compute logαθ(j),s(xs) and ∇θ logαθ(j),s(xs)
∣∣∣
θ=θ(j)

, for xs ∈ Ω, for s ∈ [0 : s], with (5.12)

4: Compute log pθ(j)(y0:t) and ∇θ log pθ(y0:t)
∣∣∣
θ=θ(j)

with (5.14)

5: Set θ(j+1) = θ(j) + ǫ∇θ log pθ(y0:t)
∣∣∣
θ=θ(j)

6: j ← j + 1
7: end while

8: return θ∗ = θ(j)

Algorithm 5.2 Estimation of Xs in general PMC models.

Require: A realization y0:t, a given parameter θ
1: Compute αθ,s(xs), for xs ∈ Ω, for s ∈ [0 : t], with (5.12)
2: Compute βθ,s(xs), for xs ∈ Ω, for s ∈ [0 : t], with (5.13)
3: Compute pθ(xk−1:k|y0:t), for xs−1:s ∈ Ω× Ω, for s ∈ [0 : t], with (5.15)
4: Compute x̂s = argmaxxs

pθ(xs|y0:t), for s ∈ [0 : t], with (5.16)
5: return x̂0:t, the estimated hidden process

Pretraining for deep PMCs (Fig. 5.2, Alg. 5.3) - As we did for our generative models of the previous
section, our objective is to parameterize fθ and gθ by neural networks. However, running directly Alg. 5.1
for estimating the parameters of the resulting PMC may give poor results in practice because the estimated
sequence x̂0:t does not necessarily have the desired interpretation obtained with a simple model. For these
models, we propose a particular pre-training step which aims at keeping the interpretability of a simple model
such as those of Exs. 5.2-5.3 This pretraining step consists of two steps illustrated in Fig. 5.2 and Alg. 5.3
and aims at initializing the neural architectures in such a way that our initial highly parameterized model
coincides with the simple model:

1. we estimate the parameters of a basic model such as a linear PMC of Ex. 5.3 with Alg. 5.1. The
estimated linear functions can be seen as the output of a neural network with no hidden layer and their
associated parameters θfr are now frozen in the sense that we will not further tune them. Using Alg.
5.2, this step also returns a pre-classification x̂pre0:t

2. we next consider the linear layers as the output of general DNNs where the other parameters are
denoted as θufr. θufr is initialized in such a way that the DNNs produce the same output as the previous
linear functions. To that end, we introduce cost functions Cfθ and Cgθ . Cfθ is typically the averaged
overtime cross-entropy between the output of fθ and x̂pres , for all s ∈ [0 : t], while Cgθ is the mean
square error between the output of gθ and the output of the linear model where x̂pres−1:s is used as input,
for all s ∈ [1 : t]. These cost functions can be optimized with backpropagation algorithms. Finally,
after this pretraining step, the unfrozen parameters are fine-tuned with Alg. 5.1.

This pretraining step can be interpreted as a reverse approach w.r.t. those proposed at the beginning of
2010s to help supervised learning in deep neural networks (Erhan et al., 2010). In such architectures,
Mohamed et al. (2012); Glorot and Bengio (2010); Hinton et al. (2012) have suggested to first pretrain in

88

5.3 Deep and interpretable hidden Markov models

an unsupervised way a deep neural network from a generative probabilistic model which shares common
parameters with the original architecture (e.g. a Deep Belief Network). The backpropagation algorithm
for supervised estimation is next initialized with the (approximated) maximum likelihood estimator of this
probabilistic model. Here, we have started to pretrain our architecture in a supervised way thanks to a
pre-classification and next embedded it in our original probabilistic model in which we compute an approx-
imation of the maximum likelihood estimator.

Σ

κ

...
...

xs−1

ys−1

xs−1ys−1

l11 l21

l12 l22

l13 l23

l1n l2n

l31

l32

l33

γ
1

γ2

γ3

unconstrained
part (θufr)

constrained
part (θfr)

Σ = fθ(xs−1, ys−1, xs−1ys−1) = sigm(γ1l
3
1 +

γ2l
3
2 + γ3l

3
3 + κ) where the last layer parameters

{γ1, γ2, γ3, κ} are frozen to γ1 = bω2 − bω1 , γ2 =
aω2 − aω1 , γ3 = aω1 and κ = bω1

Figure 5.2: DNN architecture with constrained output layer for fθ with two hidden layers. The parameters
θfr are related to the output layer which computes the function fθ of the linear PMC model (5.10). Due to
the one-hot encoding of the discrete random variable xs−1 (xs−1 = ω1 ↔ xs−1 = 0 and xs−1 = ω2 ↔
xs−1 = 1), this parameterization is equivalent to that of (5.10) up to the given correspondence between
θfr = (γ1, γ2, γ3, κ) and (aω1 , aω2 , bω1 , bω2). Linear activation functions are used in the last hidden layer in
red.

Algorithm 5.3 A general estimation algorithm for deep parameterization of PMC models.

Require: Observations y0:t
/* Linear model: initialization of the ouput layer of fθ and gθ

1: Initialize randomly θ
(0)
fr

2: Estimate θ∗fr using Alg. 5.1 with θ
(0)
fr

3: Estimate x̂pre0:t using Alg. 5.2 with θ∗fr
/* Pretraining of θufr */

4: θ
(0)
ufr ← Backprop(x̂pre0:t , y0:t, θ

∗
fr, Cfθ , Cgθ)
/* Complete deep model: fine-tuning */

5: Compute θ∗ufr using Alg. 5.1 with (θ∗fr, θ
(0)
ufr) (θ∗fr is not updated)

6: Compute x̂0:t using Alg. 5.2 with (θ∗fr, θ
∗
ufr)

7: return x̂0:t, the final classification

PMCs versus Deep PMCs (Fig. 5.3) - We illustrate the gain obtained with these models by considering
the binary image segmentation problem. We consider the cattle-type images of the Binary Shape Database
(http://vision.lems.brown.edu/content/available-software-and-databases). These

89

http://vision.lems.brown.edu/content/available-software-and-databases

Chapter 5 : Cross benefits of hidden Markov models and recurrent neural networks architectures

images are transformed into a 1-D signal y0:t with a Hilbert-Peano filling curve (Sagan, 2012). We next gen-
erate an artificial noise according to

Ys|xs, ys−1 ∼ N
(
sin(axs + ys−1);σ

2
)
, (5.17)

where aω1 = 0, σ2 = 0.25 and aω2 is a varying parameter. We consider several models: the HMC with
Gaussian noise (ex. 5.9), two PMCs (SPMC and PMC) based on the linear parameterizations of Ex. 5.3
and two Deep PMCs (D-SPMC and D-PMC) based on deep neural networks with one hidden layer, 100
neurons and the ReLU activation function. λ and µ coincides with the Bernoulli and Gaussian distributions,
respectively. In the SPMC and D-SPMC, gθ does not depend on hs−1. The results are displayed in Fig. 5.3
where it can be observed that the deep versions of PMC models outperform their non-deep counterpart.

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

aω2

E
rr

or
ra

te
(M

P
M

)

Scenario (5.17)

HMC
SPMC
PMC

D-SPMC
D-PMC

(a) Error rate from the unsupervised segmentations with a noise described by (5.17). Results are averaged on all the
cattle-type images from the database.

x0:t y0:t HMC SPMC PMC D-SPMC D-PMC

17.6% 13.3% 13.5% 4.2% 5.8%

(b) Selected classifications for aω2
= 0.4 (signaled by the red vertical line in Fig. 5.3a). Error rates appear below the

images.

Figure 5.3: Unsupervised image segmentation with PMC models.

Variational inference for interpretable TMCs - We now have at our disposal a robust algorithm to
estimate highly parameterized PMCs. Through an additional parameterization, we want to complexify the
nature of the joint distribution associated to {Xt, Yt}t∈N. To that end, we add an additional latent process
{Zt}t∈N such that {Zt, Xt, Yt}t∈N is described by a TMC; the joint distribution of interest is now a marginal
of the TMC,

pθ(x0:t, y0:t) =

∫
pθ(dz0:t, x0:t, y0:t), for all t ∈ N.

However, we have to take into account that {Zt}t∈N does not need to be interpretable contrary to {Xt}t∈N.
Moreover, in the case where Zt is continuous, Algs. 5.1 and 5.2 cannot be computed contrary to the case
where Zt is also discrete (Gorynin et al., 2018) (it suffices to consider the previous algorithms in augmented

90

5.3 Deep and interpretable hidden Markov models

dimension). Consequently, we resort to variational Bayesian inference but we modify the objective function
in order to strengthen the interpretability of {Xt}t∈N.

Let {Zt, Xt, Yt}t∈N be a TMC satisfying the parameterization (5.6). The ELBO (5.4) becomes

F (θ, φ) = −
∫

log

(
qφ(z0:t, x0:t|y0:t)
pθ(z0:t, x0:t, y0:t)

)
qφ(dx0:t|y0:t) (5.18)

and we have the following Proposition.

Proposition 5.1. Let us denote F opt(θ, φ) the ELBO resulting of (5.18) with

qoptφ (z0:t, x0:t|y0:t) = qφ(z0:t|y0:t)pθ(x0:t|y0:t, z0:t).

Then for any (θ, φ),
log pθ(y0:t) ≥ F opt(θ, φ) ≥ F (θ, φ).

Since the conditional posterior

pθ(x0:t|y0:t, z0:t) = pθ(xt|y0:t, z0:t)
T∏

s=1

pθ(xs−1|xs, y0:t, z0:t)

is computable in the discrete case through a direct extension of the definitions of αs and βs in (5.12)-(5.13)
(even if Zt is continuous), this Proposition illustrates that we only need to choose a variational distribution
qφ(z0:t|y0:t).

We now modify the ELBO F opt(θ, φ) in order to enforce the interpretability of {Xt}t∈N. The following
Corollary provides an alternative expression of F opt(θ, φ)

Corollary 5.1. Let us factorize pθ(z0:t, x0:t, y0:t) = pθ(z0:t, x0:t|y0:t)p̃θ(y0:t|x0:t, z0:t) with

p̃θ(y0:t|x0:t, z0:t) = pθ(y0|x0, z0)
t∏

s=1

µ
(
ys; gθ(zs−1:s, xs−1:s, ys−1)

)
,

pθ(z0:t, x0:t|y0:t) = pθ(z0, x0)
t∏

s=1

ς
(
zs; sθ(zs−1, hs−1, ys−1)

)
λ
(
hs; fθ(zs−1:s, xs−1, ys−1)

)
.

(5.19)

Then
F opt(θ, φ) = L1(θ, φ) + L2(θ, φ), (5.20)

where
L1(θ, φ) = E

q
opt
φ

(z0:t,x0:t|y0:t)

(
log p̃θ(y0:t|x0:t, z0:t)

)
,

L2(θ, φ) = −DKL

(
qoptφ (z0:t, x0:t|y0:t)||pθ(z0:t, x0:t|y0:t)

)
.

(5.21)

This result enables to adapt the concept of β-ELBO of Higgins et al. (2017); the idea is to penalize
L2(θ, φ) through the introduction of a coefficient β1. Regarding L1(θ, φ), its maximization guides the
model to interpret the latent process {Zt, Xt}t∈N as that which explains the best the observations given
the past. On the other hand, the maximization of L2(θ, φ) tends to push the conditional variational dis-
tribution qoptφ (zs, xs|z0:s−1, x0:s−1, y0:t) at each time step to be close to the conditional prior distribution

pθ(zs, xs|zs−1, xs−1, ys−1). The interest of this term is to boost the posterior distribution qoptφ to take into
account the (conditional) prior terms at each time step and so aims at limiting the impact of the observations

91

Chapter 5 : Cross benefits of hidden Markov models and recurrent neural networks architectures

on the interpretability of the hidden process, particularly in problems where the observations are a very noisy
version of {Xt}t∈N.

Finally, we complete our objective function in order to guide the estimation process to distinguish the role
of {Xt}t∈N to that of {Zt}t∈N. We assume that we have a pre-classification x̂pre0:t and we introduce the KLD
between the empirical distribution deduced from this pre-classification, pemp(x0:t) = δx̂pre

0:t
(x0:t), and the

marginal variational distribution qφ(x0:t|y0:t) =
∫
qoptφ (dz0:t, x0:t|y0:t) which aims itself at approximating

the true posterior distribution pθ(x0:t|y0:t). Thus, the objective is to push the variational distribution qφ to
take into account the labels obtained from an already interpretable pre-classification through the negative
cross-entropy

L3(θ, φ) = Epemp(x0:t)

(
log qφ(x0:t|y0:t)

)
= log qφ(x̂

pre
0:t |y0:t), (5.22)

see for example (Kingma et al., 2014; Klys et al., 2018; Kumar et al., 2021). This additional term is next
penalized by a scalar β2 which controls the proximity of the pre-classification with the variational posterior
distribution.

The final objective function reads

L(θ, φ) = L1(θ, φ) + β1L2(θ, φ) + β2L3(θ, φ) (5.23)

and can be approximated with the same Monte Carlo technique as that described in Section 5.2, and based
on the reparametrization trick,

L̂(θ, φ) = L̂1(θ, φ) + L̂2(θ, φ) + L̂3(θ, φ),

where

L̂1(θ, φ) =
1

N

N∑

i=1

Epθ(x0:t|zi0:t,y0:t)

(
log p̃θ(y0:t|zi0:t, x0:t)

)
,

L̂2(θ, φ) =
1

N

N∑

i=1

Epθ(x0:t|zi0:t,y0:t)


log

(
pθ(z

i
0:t, x0:t|y0:t)

pθ(x0:t|zi0:t, y0:t)qφ(zi0:t|y0:t)

)
 ,

L̂3(θ, φ) = log


 1

N

N∑

i=1

pθ(x̂
pre
0:t |zi0:t, y0:t)

t∏

s=1

pθ(x̂
pre
s−1|zi0:t, x̂pres , y0:t)


 ,

and where {zi0:t}Ni=1 are i.i.d. and differentiable samples from qφ(z0:t|y0:t). Once the model has been esti-
mated, it remains to estimate Xs for s ∈ [0 : t]. Since

pθ(xs|y0:t) = Epθ(z0:t|y0:t)

(
pθ(xs|z0:t, y0:t)

)
,

where pθ(z0:t|y0:t) is known up to a constant and pθ(xs|z0:t, y0:t) is computable, pθ(xs|y0:t) can be approxi-
mated with any particle filter/smoothing algorithm of the previous chapters or directly from the correspond-
ing variational distribution.

Deep TMCs (Fig. 5.4 and Alg. 5.4) - As for PMCs, we include a pretraining step when the TMCs
are parameterized by DNNs. The main difference with the PMC is that the input of such architectures can
also depend on the unobserved latent process {Zt}t∈N and that the parameters of the conditional posterior
distribution qφ(zs|z0:s−1, y0:t) can also be represented by a DNN.

92

5.3 Deep and interpretable hidden Markov models

1. We first start by estimating the parameters of a linear TMC from the modified variational framework
developed above. Since {Zt}t∈N does not need to be interpretable, qφ(zs|z0:s−1, y0:t) is already pa-
rameterized by a DNN. The DNNs sθ, fθ and gθ in (5.6) are next built in the same way as those in Fig.
5.2;

2. we next mimic the pretraining of PMCs based on x̂pre0:t but we take into account that Z0:t is not observed.
Since it encodes the observations, we sample z0:t ∼ qφ(z0:t|y0:t), where qφ is the estimated variational
distribution estimated from the previous step, and we use the components zs−1:s as inputs of the
neural networks sθ, fθ and gθ, for s ∈ [1 : t]. Finally, from the backpropagation algorithm, the neural
networks are pretrained through adapted cost functions to reproduce the results of the linear TMC.

y0 t

zs−1

qφ layers
(φ)

r.t.
zs−1 s

xs−1

ys−1

fθ layers
(θufr, θfr)

Σ

Figure 5.4: Graphical and condensed representation of the parameterization of fθ in Deep TMCs. r.t. stands
for reparameterization trick. The dashed arrows represent the fact that some variables are copied. For clarity,
we do not represent the block fθ which is similar to Fig. 5.2, up to the introduction of zs−1:s.

Algorithm 5.4 A general estimation algorithm for deep parameterizations of TMC models

Require: Observations y0:t, a parameterized variational distribution qφ, β1, β2
/* Initialization of the output layer of sθ, fθ and gθ */

Estimate (θ∗fr, φ̃) and x̂pre0:t related to a non deep TMC with modified variational inference
/* Pretraining of θufr */

θ
(0)
fr ← Backprop(x̂pre0:t , y0:t, θ

∗
fr, φ̃, Csθ , Cfθ , Cgθ)

/* Fine-tuning of the complete model */

Compute (θ∗ufr, φ
∗) with modified variational inference

Compute x̂0:t a particle smoother based on qφ∗ as importance distribution
return A classification x̂0:t

Some Deep TMC architectures (Figs. 5.5-5.6) - We consider two applications of the third latent
process.

In the first one, the role of {Zt}t∈N is to model the unknown distribution of the noise pθ(yt|xt) in an
HMC. So we consider a TMC satisfying

pθ(z0:t, x0:t, y0:t) =
t∏

s=0

ς(zs; sθ)

︸ ︷︷ ︸
pθ(z0:t)

pθ(x0)
t∏

s=1

λ(xs; fθ(xs−1))

︸ ︷︷ ︸
pθ(x0:t|z0:t)=pθ(x0:t)

t∏

s=0

µ(xs; gθ(zs, xs))

︸ ︷︷ ︸
pθ(y0:t|z0:t,x0:t)

.

We consider two versions of this model. In both versions, Zs is a univariate centered Gaussian distribution
(so ς is the Gaussian distribution and sθ = [0; 1]). The linear version (TMC) coincides with (5.9), while

93

Chapter 5 : Cross benefits of hidden Markov models and recurrent neural networks architectures

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

aω2

E
rr

or
ra

te
(M

P
M

)

Scenario (5.24)

HMC-IN
di-MTMC

MTMC
D-MTMC

(a) Error rate from the unsupervised segmentations of Scenario (5.24). Results are averaged on all the camel-type
images from the database.

x0:t y0:t HMC di-TMC TMC D-TMC

7.6% 6.9% 3.6% 2.8%

(b) Selected illustrations for aω2
= 0.5 (signaled by the red vertical line on Fig. 5.5a). Error rates appear below the

images.

Figure 5.5: Unsupervised image segmentation with General Triplet Markov Chains (Scenario (5.24)).

in the deep one (D-TMC), fθ and gθ are neural networks with one hidden layer of 100 neurons. For both
models, we use the variational distribution

qφ(z0:t|y0:t) = qφ(z0|y0)
t∏

s=1

qφ(zs|zs−1, ys) =
t∏

s=1

N (zs; νφ(zs−1, ys)),

where νφ(zs−1, ys) is a neural network with one hidden layer of 100 neurons and a ReLU activation function.
The models are tested on the camel-type images of the Binary Shape Database and are corrupted with a
stationary multiplicative noise,

Ys|zs, xs ∼ N
(
ahk

; b2hk

)
zs, for s ∈ [0 : t], (5.24)

where zs ∼ N (0, 1), aω1 = 0, aω2 is a varying parameter and bω1 = bω2 = 0.2. Our models are compared
with the classical HMC and a TMC with a discrete latent process (di-TMC). The results are displayed on
Fig. 5.5 for β1 = 5 and β2 = 1.

A second application of the third process consists in transforming the PMC into a model where the pair
(Xt, Yt) depends on Y0:t−1 in an explicit way but in which Algs. 5.1 and 5.2 remain valid. To that end, it
suffices that the third latent process {Zt}t∈N becomes deterministic given the past (i.e. ς coincides with the
Dirac measure δ) and satisfies

zs = sθ(zs−1, ys−1).

This model is nothing more than a particular deep variational PMC of section 5.2 but with the objective of
estimating a physical hidden process. In this particular case, the pair {Xt, Yt}t∈N is a partially PMC since

94

5.4 Variational Inference in linear and Gaussian TMC

its distribution reads

pθ(x0:t, y0:t) = pθ(x0, y0)
t∏

s=1

λ(xs; fθ(zs−1:s, xs−1, ys−1))︸ ︷︷ ︸
pθ(xs|xs−1,y0:s−1)

µ(ys; gθ(zs−1:s, xs−1:s, ys−1))︸ ︷︷ ︸
pθ(ys|xs−1:s,y0:s−1)

, for all t ∈ N.

This model can also be interpreted as a particular TMC in which the optimal importance variational dis-
tribution qoptφ (zs|z0:s−1, y0:t) = δsθ(zs−1,ys−1)(zs) is now computable. Consequently, (5.23) can be exactly
computed. In particular, when β1 = 1 and β2 = 0, the objective function coincides with the log-likelihood.
In order to evaluate the interest of such a latent process w.r.t. PMCs, we compare the counterpart versions
of the D-SPMC and the D-PMC of previous paragraph; our models are denoted D-SPPMC and D-PPMC.
We go on with the cattle-type images of the Binary Shape Database. They are corrupted by a noise which
satisfies

Ys|xs, Ys−2:s−1 ∼ N
(
sin(axs + 0.2(ys−1 + ys−2));σ

2
)
. (5.25)

where aω1 = 0, σ2 = 0.25 and aω2 is a varying parameter. The results are displayed on Fig. 5.6, where zs is
a 10-dimensional vector.

0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

aω2

E
rr

or
ra

te
(M

P
M

)

Scenario (5.25)

D-SPMC
D-PMC

D-SPPMC
D-PPMC

(a) Error rate from the unsupervised segmentations of Scenario (5.25). Results are averaged on all the cattle-type
images from the database.

x0:t y0:t D-SPMC D-PMC D-SPPMC D-PPMC

22.1% 28.0% 19.0% 19.5%

(b) Selected illustrations for aω2
= 0.21 (signaled by the red vertical line on Figure 5.6a). Error rates appear below the

images.

Figure 5.6: Unsupervised image segmentation with Partially Pairwise Markov Chains.

5.4 Variational Inference in linear and Gaussian TMC

We finally consider another application of our parameterized TMC models. Our goal is to provide a fast
Bayesian inference algorithms for the linear and Gaussian JMSS and its generalizations. This model is a
particular TMC in which {Xt}t∈N is continuous and {Zt}t∈N is discrete. Our approximation consists of two

95

Chapter 5 : Cross benefits of hidden Markov models and recurrent neural networks architectures

steps. First, we show that there exists a particular parameterization (5.5) in which it is possible to compute
sequentially the first and second order moments of the posterior distribution in a linear cost in the number of
observations; next, we show that the ELBO associated to our (variational) TMC and the original JMSS can
be computed exactly.

General linear and Gaussian Jump Markov state-space models - Let {Zt}t∈N be a discrete
Markov Chain, Zt ∈ Ω = {ω1, · · · , ωK} and

pθ(z0:t, x0:t, y0:t) = pθ(z0, x0, y0)
t∏

s=1

pθ(zs|zs−1)pθ(xs, ys|zs, xs−1, y0:s−1),

pθ(zt = ωj |zt−1 = ωi) = µi,j ,

pθ(xt, yt|zt, xt−1, y0:t−1) = N



(
xt
yt

)
;Bθ(zt, y0:t−1)xt−1 + gθ(zt, y0:t−1); Ξθ(zt, y0:t−1)


 ,

(5.26)

where Bθ, gθ and Ξθ are parameterized vector valued functions with appropriate dimensions. This model is
nothing more than a generalization of the popular linear and Gaussian JMSS,

pθ(xt, yt|zt, xt−1, y0:t−1) = pθ(xt|zt, xt−1)pθ(yt|zt, xt),
pθ(xt|zt, xt−1) = N

(
xt;F (zt)xt−1;Q(zt)

)
,

pθ(yt|zt, xt) = N
(
yt;H(zt)xt;R(zt)

)
,

(5.27)

where
θ =

(
µi,j , F (ωj), Q(ωj), H(ωj), R(ωj)/(ωi, ωj) ∈ Ω× Ω

)
.

The introduction of a discrete latent process in such models transforms the computation of the first and
second order moments of the filtering distribution into an NP-hard problem. The particle filters of the pre-
vious chapters and their Rao-Blackwellized versions (Schön et al., 2005) can be used to approximate such
moments. However, we present an alternative and faster solution which does not require any Monte Carlo
approximation. Our solution is based on variational Bayesian inference and also enables us to the estimate
the parameters θ of the original model. For sake of clarity, we only focus on the linear and Gaussian JMSS
(5.27) and we use its alternative representation given by

pθ(xt, yt|zt, xt−1, yt−1) = pθ(yt|zt, xt−1)pθ(xt|zt, xt−1, yt),

pθ(yt|xt−1, zt) = N (yt; H̃(zt)xt−1; R̃(zt)),

pθ(xt|zt, xt−1, yt) = N (xt; F̃ (zt)xt−1 + D̃(zt)yt; Q̃(zt)),

(5.28)

where F̃ , D̃, Q̃, H̃ and R̃ are deduced from (5.27) with conditioning results on Gaussian distributions.

An alternative probabilistic model with jumps - Let us now consider a distribution qφ which satis-
fies for all t ∈ N

qφ(z0:t, x0:t, y0:t) = qφ(z0, x0, y0)
t∏

s=1

qφ(zs, ys|zs−1, y0:s−1)qφ(xs|zs, xs−1, y0:t),

qφ(zt, yt|zt−1, y0:t−1) = ς
(
zt; sφ(zt−1, y0:t−1)

)
× µ

(
yt; gφ(zt−1:t, y0:t−1)

)
,

qφ(xt|zt, xt−1, y0:t) = N
(
xt;Cφ(zt, y0:t)xt−1 + hφ(zt, y0:t); Σφ(zt, y0:t)

)
.

(5.29)

96

5.4 Variational Inference in linear and Gaussian TMC

Strictly, this model is not a TMC but rather a partially TMC since the parameters can depend on all the
past observations. As we did for the partially PMC of Section 5.2, these dependencies can be modelled by
an RNN and so a fourth deterministic latent process. In this model, it is possible to compute E(Xs|y0:t)
and Var(Xs|y0:t) at a linear cost in the number of observations. As an extension of Pieczynski (2002);
Derrode and Pieczynski (2013), model (5.29) satisfies,

Eqφ(Xs|y0:t) =
∑

zs∈Ω

qφ(zs|y0:t)Eqφ(Xs|zs, y0:s)︸ ︷︷ ︸
mφ,s(zs)

, Eqφ(XsX
T
s |y0:t) =

∑

zs∈Ω

qφ(zs|y0:t)Eqφ(XsX
T
s |zs, y0:s)︸ ︷︷ ︸

vφ,s(zs)

.

Next, observing that {Zt, Xt}t∈N is a partially PMC, the sequential computation of qφ(zs−1:s|y0:t) is sim-
ilar to (5.15) where the products λ(.)µ(.) are replaced by ς(.)µ(.). Finally, mφ,s(zs) and vφ,s(zs) can be
computed as

mφ,s(zs) =
∑

zs−1

qφ(zs−1|zs, y0:s)
(
Cφ(zs, y0:s)mφ,s−1(zs−1) + hφ(zs, y0:s)

)
, (5.30)

vφ,s(zs) =
∑

zs−1

qφ(zs−1|zs, y0:s)
(
Σφ(zs, y0:s) + Cφ(zs, y0:s)vφ,s−1(zs−1)Cφ(zs, y0:s)

T+

hφ(zs, y0:s)mφ,s−1(zs−1)
TCφ(zs, y0:s)

T + Cφ(zs, y0:s)mφ,s−1(zs−1)hφ(zs, y0:s)
T+

hφ(zs, y0:s)hφ(zs, y0:s)
T
)

. (5.31)

Since qφ has interesting computational properties, our objective is to use it to approximate the first and
second order moments of the filtering distribution in the model pθ. Even if θ is known, we first need to
estimate φ. This can be done by minimizing the KLD between the posterior distributions of the two models,
i.e. by maximizing the ELBO. As a bonus, we also have a new estimation method of θ in such models. Note
that it is not a direct application of the variational Bayesian framework because we have not parameterized a
posterior distribution qφ(z0:t, x0:t|y0:t) (which is unknown in the case of model (5.29)) but rather a variational
generative model which aims at mimic the original one.

Computing the ELBO from model (5.29) - It is possible to compute the ELBO

F (θ, φ) = Eqφ(z0:t,x0:t|y0:t)

[
log

(
qφ(z0:t, x0:t|y0:t)
pθ(z0:t, x0:t, y0:t)

)]

from the two following lemmas (Petersen and Pedersen, 2008; Mathai and Provost, 1992), even if the varia-
tional distribution qφ(z0:t, x0:t|y0:t) is unkonwn.

Lemma 5.1. Let x ∈ Rdx and p1(x) and p2(x) be two Gaussian distributions, p1(x) = N (x;m1;P1) and
p2(x) = N (x;m2;P2). Then the KLD between p1 and p2 reads

DKL(p1, p2) = Tr(P−1
2 P1) + (m2 −m1)

TP−1
2 (m2 −m1)− dx + log

(
detP2

detP1

)
.

Lemma 5.2. Let X be a random variable with pdf p(x) such that Ep(X) = µ and Varp(X) = P . Then for
any covariance matrix Q,

Ep

(
(HX − b)TQ(HX − b)

)
= Tr(QHPHT) + (Hµ− b)TQ(Hµ− b).

97

Chapter 5 : Cross benefits of hidden Markov models and recurrent neural networks architectures

We next have the following Proposition.

Proposition 5.2. Let qφ(z0:s, x0:s|y0:t) and pθ(z0:s, x0:s|y0:s) be the posterior distributions associated to
(5.29) and to the JMSS (5.27), respectively. We denote as dx (resp. dy) the dimension of x (resp. of y).
Once qφ(zs−1:s|y0:t), mθ,s(zs) and Pθ,s(zs) = Var(Xs|zs, y0:s) have been computed for s ∈ [0 : t] (see
(5.30)-(5.31)), then the ELBO F (θ, φ) is available for free and reads

F (θ, φ) =
∑

z0

qφ(z0|y0:s)Dθ,φ,0(z0) +
t∑

s=1

∑

zs−1:s

qφ(zs−1:s|y0:s)Dθ,φ,s(zs−1:s),

Dθ,φ,0(z0) = log

(
qφ(z0|y0:s)
pθ(z0)

)
− log(pθ(y0|z0)) + DKL(qφ(x0|z0, y0), pθ(x0|z0, y0)),

Dθ,φ,s(zs−1:s) = γ̃θ,φ,s(zs−1:s) + α̃θ,φ,s(zs−1:s) + β̃θ,φ,s(zs−1:s),

where

γ̃θ,φ,s(zs−1:s) = log

(
qφ(zs|zs−1, y0:s)

pθ(zs|zs−1)

)
,

α̃θ,φ,t(zs−1:s) =
1

2

[
Gθ,φ,s(zs) + Tr

(
Q̃(zs)

−1Aθ,φ,s(zs)Pφ,s−1(zs−1)Aθ,φ,t(zs)
T
)
+

(
Aθ,φ,s(zs)mφ,s−1(zs−1) +Dθ,φ,t(zs)

)T × Q̃(zs)
−1 ×

(
Aθ,φ,t(zs)mφ,s−1(zs−1) +Dθ,φ,s(zs)

)]
,

β̃θ,φ,s(zs−1:s) =
1

2

[
log(det(R̃(zs))) + Tr

(
R̃(zs)

−1H̃(zs)Pφ,t−1(zs−1)H̃(zs)
T
)
+

(
H̃(zs)mφ,s−1(zs−1)− ys

)T
× R̃(zs)

−1 ×
(
H̃(zs)mφ,s−1(zs−1)− ys

)
+ dy log(2π)

]
,

where

Gθ,φ,s(zs) = Tr(Q̃(zs)
−1Σφ(zs))+log

(
det(Q̃(zs))

det(Σφ(zs))

)
− dx,

Aθ,φ,t(zs) = F̃ (zs)− Cφ(zs, y0:s),

Dθ,φ,s(zs) = D̃(zs)ys − hφ(y0:s, zs),

and where F̃ (zs), D̃(zs), Q̃(zs), H̃(zs) and R̃(zs) define the alternate representation (5.28) of pθ.

The ELBO is next optimized from an ascent gradient approach where the all the quantities that de-
pend on (θ, φ) can be differentiated sequentially. In our experiments, we have used the Adam optimizer
(Kingma and Ba, 2015) and computed the gradients by auto-differentiation (Paszke et al., 2019).

Experiments (Fig. 5.7) - Let us now evaluate the relevance of model qφ to perform Bayesian inference
in model pθ. We use the following parameterization of qφ,

ς
(
zt = ωj ; sφ(zt−1 = ωi, y0:t−1)

)
=

exp(λi,j)∑K
j=1 exp(λi,j)

,

µ
(
yt; gφ(zt−1 = ωi, zt = ωj , y0:t−1)

)
= N (yt;B(ωj)yt−1;P (ωj)),

Cφ(ωj , y0:t) = C(ωj),

hφ(ωj , y0:t) = D(ωj)yt +D′(ωj)yt−1,

Σφ(ωj , y0:t) = Σ(ωj),

98

5.4 Variational Inference in linear and Gaussian TMC

which shares common properties with the linear and Gaussian JMSS. We proceed as follows. First, we
generate a sequence y0:t from a known JMSS (5.28) of length t = 300; we next estimate the parameters of
qφ and possibly those of pθ when they are assumed to be unknown. Once the parameters have been estimated,
we generate 200 new sequences {x0:t′,p, y0:t′,p}200p=1 of length t′ = 100 and we compute, for all s, the Mean
Square Errors (MSE) 1

200

∑200
p=1[(x̂s,p − xs,p)

T (x̂s,p − xs,p)], where x̂s,p represents a Rao-Blackwellized
particle filter estimator of xt,p with N = 50 particles (Fearnhead and Clifford, 2003) or our exact estimator
Eq

φ̂
(Xs,p|ys,p) in the estimated variational model q

φ̂
.

We first consider a scalar model where Zt ∈ {1, 2} The true parameters of model (5.28) are set to
F (zt) ∈ {−0.95, 0.95}, Q(zt) = 10, H(zt) = 1, R(zt) = 1, p(zt|zt−1) = 0.8 if zt = zt−1 and p(zt|zt−1) =

0.2 otherwise. We estimate these parameters, except H(rt) which is assumed to be known. The KLD
converges after 500 iterations, with a learning rate of 10−2. The parameters estimated for pθ are F̂ (rt) ∈
{−0.9488, 0.9469}, Q̂(rt) ∈ {11.9170, 11.9602}, R̂(rt) = 1.0637; for the transition matrix we have p̂(rt =
1|rt−1 = 1) = 0.8252, p̂(rt = 2|rt−1 = 2) = 0.7967. Fig. 5.7 displays the MSE on new trajectories
estimated with the particle filter in true model pθ, the particle filter in estimated model p

θ̂
and our fast

estimator in model q
φ̂

. No difference is obseved and the computation of our variational estimate is fast
since we do not generate samples (0.4ms vs. 14ms for the particle filter for one iteration step). We have
also computed the averaged MSE over time of the estimators of X2

t (resp. of the variance of the posterior
distribution approximated by a particle filter with 105 particles) which can be computed exactly with our
method. Again, performances are similar and the difference is not significant since averaged over time the
MSEs are 322.45 (resp. 1.5× 10−4) for our method, 322.58 (resp. 1.4× 10−4) for the particle filter
and 322.60 (resp. 4.5× 10−3) for the particle filter with estimated parameters, respectively.

We finally consider a maneuvering target tracking scenario with 3 jumps (straight, turn left, turn right).
Here, H(zt) = I4, R(zt) = 3I4,

F (zt) =




1 sin(ω(zt)Te)
ω(zt)

0 −1−cos(ω(zt)Te)
ω(zt)

0 cos(ω(zt)Te) 0 − sin(ω(zt)Te)

0 1−cos(ω(zt)Te)
ω(zt)

1 sin(ω(zt)Te)
ω(zt)

0 sin(ω(zt)Te) 0 cos(ω(zt)Te)




, Q(zt) = σ2
v(zt)

[
T 3
e

3
T 2
e

2
T 2
e

2 Te

]
⊗ I2,

Te = 2, ω(zt) ∈ {0, 6π/180,−6π/180} and σv(zt) ∈ {7, 10, 10}. We set p(zt|zt−1) = 0.8 if zt = zt−1

and 0.1 otherwise. Here, we assume that pθ = p is known. Estimating qφ is challenging because the
variational model consists of 3 × 3 (transition probabilities) +3 × 2 × 10 (symmetric covariance matrices)
+3× 4× 4 = 117 parameters. The model is initialized such that qφ(0)(xt|zt, xt−1, y0:t) = p(xt|zt, xt−1, yt)

for all zt; we also set B(0)(zt) = F (1) and P (0)(zt) = R + HQ(1)HT , for all zt. The KLD converges
after 30000 iteration steps with a learning rate of 10−5 for the first 10000-th iterations and next 10−6. The
initial KLD is 2474.08 while the final value is 2177.14. The MSE as a function of time presents the same
profile as in Fig. 5.7, so we give directly the averaged MSE over time: 3.78 (estimated variational model),
6.69 (initial variational model qθ(0)) and 3.76 (particle filter). Again, our estimated variational distribution
q
φ̂

offers the same performance as the particle filter but only requires 0.8ms vs. 17ms for computing one
time step.

99

Chapter 5 : Cross benefits of hidden Markov models and recurrent neural networks architectures

0 20 40 60 80 100
Time

0.6

0.8

1.0

1.2

1.4

A
v
e
ra

g
e
d
 M

S
E

Figure 5.7: MSE of different estimators for the scalar scenario: Rao-Blackwellized particle filter (RB-PF) in
the true model, RB-PF in the estimated model and exact estimator in the variational model.

100

Perspectives

Through this synthesis, we have revisited some problems related to Bayesian inference in models with latent
variables and we have presented some contributions to address some limitations of the current tools. We
end this synthesis by highlighting some unanswered questions or the new problems arose by the presented
solutions. We also give some axis and projects in which I am or I will be involved and which focus on topics
not discussed in the manuscript.

About this work

Particle filters - In chapter 2, we have proposed two alternate importance sampling mechanisms. The
first one is based on the introduction of two importance distributions and aims at reducing the variance
of Monte Carlo estimators by tuning the parameters of each importance distribution. In order to keep the
rationale of traditional normalized importance sampling, the samples according to these distributions have
been obtained by applying two deterministic transformations of initial samples drawn from any importance
distribution. While this scheme is interesting from a computational point of view (it only requires a common
set of samples), it may be not optimal from a statistical point of view. Indeed, let us address the following
example in which we want to compute

∫
x2N (x; 0; 1)dx = 1 with

q1,2(x1, x2) = N



(
x1
x2

)
;

[
m
m

]
;

(
σ2 ρσ2

ρσ2 σ2

)
 .

Remember that the variance of the DPIS estimator can be rewritten as (see (2.12))

V∞q1,2(h) = Var (Z)− Cov (Z,W) + Var (W) ,

where Z depends on X1 ∼ q1 and W on X2 ∼ q2. So the joint distribution acts on the opposite covariance
term which should be as small as possible. Fig. 5.8 displays the behaviour of this covariance term for
different values of m and σ2, in function of ρ. Consequently, even if we have introduced a new scheme for
normalized importance sampling, the tuning of a joint distribution such that all marginals are computable and
with a limited extra computational cost compared to traditional normalized importance sampling remains an
open problem.

In the same chapter, a new sampling-weighting-resampling mechanism has been proposed and aims
at producing independent samples according to the same marginal distribution as that of the traditional
mechanism while avoiding the support shrinkage due to the resampling step. In pathological models such as
informative or high dimensional HMCs our technique can improve the results of classical particle filters for

Perspectives

ρ

−
2c
ov
(Z

,W
)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
m = 0.5, σ = 2

(a) m = 0.5, σ = 2.

ρ

−
2c
ov
(Z

,W
)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
m = 1, σ = 2

(b) m = 1, σ = 2.

Figure 5.8: Behaviour of the covariance term in the variance of the DPIS estimator.

a fixed computational cost and it involves a complexity in O(N2). In the case where we would have at our
disposal a procedure to sample directly N samples according to q̃N (static case) or to q̃Nt (sequential case),
it would be possible to replace the three steps of particle filtering algorithm by a unique global sampling
step. Some paths could be explored to reduce the computational cost in O(N2). First, we could further
consider the semi-independent resampling method proposed at the end of the chapter. Remember that our
iterative solution is based on an uniform choice of the particles we sample again from their (conditional)
importance distribution. However, an alternative solution which takes into account the current importance
weights may improve the variance reduction w.r.t. our proposed strategy. Next, a different strategy would
rely on a rejection sampling method based on samples according to the importance distribution q used in the
classical mechanism; in this case, the averaged computational cost involved by the rejection step should be
evaluated as it has been done for the PaRIS algorithm (Olsson and Westerborn, 2017; Douc et al., 2011b),
for example. Next, in the spirit of differentiable particle filters (Corenflos et al., 2021), a solution could be
to look for a transformation of independent samples according to q in independent samples according to
q̃N through optimal transport solution. Finally, reducing the computational cost is not the only perspective
associated to this method. Since our algorithm struggles against the degeneration phenomenon, it would be
interesting to exploit it for smoothing problems. As a preliminary study, we have first measured this diversity
by considering the experiment of Fig. 2.4, in which we have considered a sequence of observation of length
t = 10 and computed the number of different ancestors from time t− t′, t′ ∈ [0, t]. It can be observed in Fig.
5.9 that our sampling scheme limits the degeneration phenomenon not only for the filtering time (t = 10) but
also for the past times. Note that in this figure, our independent-SIR solution only keeps N samples among
the N2 generated at each time step (so there is at most N different ancestors). In a smoothing perspective,
it could be interesting to build algorithms which exploit the N2 samples of each time step to select relevant
trajectories (this is also the cost of the FFBS algorithm for additive functionals). Finally, in chapter 3 we
have proposed some estimators of the asymptotic variance of a particular filtering and smoothing algorithms.
A natural extension would be to consider the variance estimation associated to our independent SIR particle
filter, but also to alternative smoothers (Briers et al., 2010).

102

Perspectives

Time

N
u
m
b
er

of
d
iff
er
en
t
an

ce
st
or
s

0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120
I-SIR, N = 100

Semi I-SIR, N = 100, k = N
2

Bootstrap, k(N − 1) intermediate samples, N = 100, k = N
2

Bootstrap, N = 100

Figure 5.9: Number of different ancestors from time 10 − t′ for a range bearing tracking scenario with
σρ = 0.1 et σθ =

π
1800 .

103

Perspectives

Expressivity of generative models - In chapter 4, we have addressed the expressivity of the HMC
and the RNN models from a system theory point of view. Our comparison is at the crossroad of several
research field and involves statistical signal processing, machine learning and system theory. We compared
the auto-correlation function of a stationnary observed process describing by one of the generative model of
this manuscript. We have considered the linear case, so a natural perspective is to extend our result since
RNNs are used with non linear activation function in practice. To that end, our study could be generalized
by considering piecewise linear activation functions and tools relying on Extended/Unscented Kalman filter
for approximating the computation of covariance function. Another perspective consists of clarifying the
role of the dimension of the latent variables. We have seen that this dimension is directly related to the
complexity of the covariance function produced by a model (through the rank of the Hankel matrix which
enables to factorize the covariance function) but it would be interesting to obtain an explicit characterization
as we did for the unidimensional case. In particular, it could be the first step to better understand the interest
of generative models based on an LSTM parameterization. Indeed, LSTM architectures are sophisticated
parameterizations of the deterministic function which computes the latent variable of a RNN,

ht = fθ(ht−1, yt);

the parameterization of an LSTM involves a latent variable in augmented dimension,

ct = f̃θ(ht−1, ct−1, yt), ht = fθ(ht−1, ct, yt),

where ct is called the memory cell and aims at addressing the problem of vanishing gradient. Now, let us
consider the problem where we want to build a generative model such as the core distributions of the GUM or
the PMC are parameterized by such an architecture; what is the impact of this parameterization on the covari-
ance function of the observed process? Note that since it involves a latent variable in augmented dimension,
such a generative model could be interpreted as a TMC (so the latent process {Ht}t∈N would coincide with a
joint process including the "memory" process) and so a generative model in augmented dimension, whence
the importance of understanding the effect of the dimension of latent variables. Finally, the last part of the
chapter is also related to the previous question. We have seen that relaxing the Markoviannity of the latent
process through a PMC enables us to describe more general covariance functions for the observed process.
It however remains to fully characterize such covariance functions in order to clarify the role of the general
PMC w.r.t. the GUM but also to understand the impact of the dimension since we have interpreted the PMC
as a particular HMC in augmented dimension.

Deep parameterized Markovian models - In chapter 5, we have proposed hidden Markov models
based on neural networks parameterizations for several Bayesian problem. In particular, we have proposed
a step by step solution to build deep PMC models from simple and interpretable HMCs for classification
problems. It remains to adapt this methodology for prediction problems in the continuous case such as target
tracking, estimation of volatility,..., i.e. moving from an already parameterized HMC model to a deep PMC
or TMC.

From an applicative point of view, the reliability of our construction for real data and in particular for
biomedical problems is a work in progress in the context of the Ph.D of K. Morales with the Gepromed. Pre-
liminary experiments in which we have compared some of our models have been done for the segmentation
of micro-computed tomography X-ray scans of human arteries containing a metallic stent biomaterial, see

104

Perspectives

x0:t y0:t HMC di-TMC TMC D-TMC

10.9% 10.9% 8.7% 6.5%

Figure 5.10: Illustration of the unsupervised segmentation of a slice. Our D-TMC appears to better fit the
non-stationary noise, offering a 4%-point improvement in the error rate. The stent components appearing in
red are segmented beforehand with a thresholding technique and are considered as image borders during the
segmentation using the probabilistic models.

Fig. 5.10. The next step will be to decline such models to realize in a unique step two critical tasks, super
resolution image reconstruction and segmentation.

Finally, the construction of our deep Markovian models has been done for time series data models. The
extension for spatial models such as hidden Markov random field parameterized by convolutional neural
networks is a natural perspective.

Other perspectives

Importance Sampling for high dimensional problems - Currently, in the context of the Ph.D thesis
of Y. Janati, we are reviewing some adaptive sampling strategies for high dimensional distributions. It has
been observed that even recent sampling strategies such as those proposed in Gabrie et al. (2022); Thin et al.
(2021) tend to fail when we consider an anisotropic target distribution

π(x) =
1

4

4∑

i=1

N (x; mi,Σ),

where m1 = −15 · 1dx , m2 = 15 · 1dx , m3 is such that m3,2i = 10 and m3,2i+1 = −10 and m4 such that
m3,2i = −10 and m3,2i+1 = 10 (1dx is a dx dimensional vector where each coordinate takes the value 1).
Indeed, when we estimate the normalizing constant of π (so 1), these strategies are not reliable when the
dimension increases:

Method d = 2 d = 10

NEO (50.103 samples) 0.98± 0.21 10−6

Gabrié’s algo (2.103 samples) 0.98± 0.11 0.90± 0.26

It has been observed that the main drawback of such methods is that the adaptive strategy fails to discover
some modes of the target distribution when the dimension is large. We are thus building an adaptive strategy
with the following rationale:

1. we first look for building a sequence of distribution {qt}t∈N such that qt+1 puts mass in the modes of
π which have not been explored until time t;

2. we next analyse the convergence properties of this sequence of importance distributions;

105

Perspectives

3. using a combination of sampling tools (importance sampling and Monte Carlo Markov Chain methods)
and variational inference, we are able to sample approximately given this sequence of distribution and
to propose a parameterized distribution close to π, in a given sense.

This work is still in progress but the first results are positive; for the previous example, an estimation of the
normalization constant gives 1.00± 10−2 for dx = 2 and 1.01± 3 · 10−2 for dx = 10.

Multi-target surveillance - Some parts of my Ph.D thesis were devoted to the multi-target filtering
problem where contrary to the filtering problem addressed in this manuscript, we look for estimating the
hidden states of an unknown number of targets from measurements which consist of observations and false
alarms. I have not worked on this topic since 2013. In the context of a collaboration between IP Paris and the
Direction générale de l’armement, I am involved in a three years CIEDS (Centre Interdisciplinaire d’Etudes
pour la Défense et la Sécurité) project which will start at the end of 2022. The objective of this project is
to develop an approach to adaptively allocate sensing resources in multisensor multi-target tracking surveil-
lance networks based on fundamental concepts in network information theory and decision-theoretic criteria.
A great challenge of this project will consist in re-evaluating the key tools in information theory applied to
the challenges of multi-target surveillance based on point process theory (Clark, 2022), which is designed to
accommodate uncertainty in the states of individual targets and the target number. The information-theoretic
methods developed will be applied to multi-sensor problems to enable decisions to be made on how to allo-
cate sensor resources in addition to refining the knowledge of the scene. Some applications related to defense
security are aimed. With the recent advances in autonomous systems, such as Autonomous Underwater Ve-
hicles, Unmanned Aerial Vehicles and Unmanned Ground Vehicles, the need for a mathematically coherent
framework for fusing data from different vehicles is necessary if the best understanding of the environment is
to be achieved. In conventional systems, a human operator typically makes the decision about which sensors
to operate based on their assessment of the scenario which is infeasible for large scale sensor networks with
many potential threats. This project will develop methods for autonomous sensor management for heteroge-
neous sensor networks to enhance situational awareness without the need for costly and sub-optimal human
selection of the sensors. I will manage the supervision of postdoctoral research associate and a PhD student.

106

Bibliography

Abbassi, N., Benboudjema, D., and Pieczynski, W. (2011). Kalman filtering approximations in triplet
Markov Gaussian switching models. In IEEE Workshop on Statistical Signal Processing, Nice, France.
24

Ait-El-Fquih, B. and Desbouvries, F. (2006). Kalman filtering in triplet Markov chains. IEEE Transactions

on Signal Processing, 54(8):2957–63. 24

Akhiezer, N. I. and Kemmer, N. (1965). The classical moment problem and some related questions in

analysis, volume 5. Oliver & Boyd Edinburgh. 71, 79

Balakrishnan, S., Wainwright, M. J., Yu, B., et al. (2017). Statistical guarantees for the EM algorithm: From
population to sample-based analysis. Annals of Statistics, 45(1):77–120. 22

Bayer, J. and Osendorfer, C. (2014). Learning Stochastic Recurrent networks. preprint arXiv:1411.7610. 84

Bikmukhamedov, R., Nadeev, A., Maione, G., and Striccoli, D. (2020). Comparison of HMM and RNN
models for network traffic modeling. Internet Technology Letters, 3. 66

Billingsley, P. (1986). Probability and Measure. John Wiley and Sons, second edition. 56

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. 17, 82

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859–877. 16, 82

Bousquet, O., Boucheron, S., and Lugosi, G. (2003). Introduction to statistical learning theory. In Bousquet,
O., von Luxburg, U., and Ratsch, G., editors, Advanced Lectures on Machine Learning, volume 3176 of
Lecture Notes in Computer Science, pages 169–207. Springer. 18

Briers, M., Doucet, A., and Maskell, S. (2010). Smoothing algorithms for state–space models. Annals of the

Institute of Statistical Mathematics, 62(1):61. 102

Brockett, R. W. (2015). Finite dimensional linear systems. SIAM. 71

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data mining and

knowledge discovery, 2(2):121–167. 17

Caines, P. E. (2018). Linear stochastic systems, volume 77. SIAM. 66, 69

107

BIBLIOGRAPHY

Cappé, O., Godsill, S. J., and Moulines, E. (2007). An overview of existing methods and recent advances in
sequential Monte Carlo. Proc. of the IEEE, 95(5):899–924. 32

Cappé, O., Moulines, É., and Rydén, T. (2005). Inference in Hidden Markov Models. Springer Series in
Statistics. Springer-Verlag. 22, 32

Cérou, F., Moral, P. D., and Guyader, A. (2011). A nonasymptotic theorem for unnormalized Feynman-Kac
particle models. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 47(3):629 – 649. 56

Chan, H. P. and Lai, T. L. (2013). A general theory of particle filters in hidden Markov models and some
applications. The Annals of Statistics, 41(6):2877 – 2904. 48

Chen, C.-T. (1970). Introduction to linear system theory. Holt, Rinehart and Winston. 27, 66

Chopin, N. and Papaspiliopoulos, O. (2020). An introduction to sequential Monte Carlo. Springer. 32

Chui, C. K. and Chen, G. (2012). Signal processing and systems theory: selected topics, volume 26. Springer
Science & Business Media. 66

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent neural
networks on sequence modeling. In Advances in Neural Information Processing Systems (NIPS 2006. 26

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C., and Bengio, Y. (2015). A recurrent latent variable
model for sequential data. In Advances in neural information processing systems, pages 2980–2988. 84

Clark, D. E. (2022). A Cramér Rao bound for point processes. IEEE Transactions on Information Theory,
68(4):2147–2155. 106

Corenflos, A., Thornton, J., Deligiannidis, G., and Doucet, A. (2021). Differentiable particle filtering via
entropy-regularized optimal transport. In Meila, M. and Zhang, T., editors, Proceedings of the 38th Inter-

national Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 2100–2111. PMLR. 102

Cox, D. R., Gudmundsson, G., Lindgren, G., Bondesson, L., Harsaae, E., Laake, P., Juselius, K., and Lau-
ritzen, S. L. (1981). Statistical analysis of time series: Some recent developments [with discussion and
reply]. Scandinavian Journal of Statistics, 8(2):93–115. 25

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control,

signals and systems, 2(4):303–314. 17

De Jong, L. S. (1975). Numerical aspects of realization algorithms in linear systems theory. PhD thesis,
Department of Mathematics and Computer Science. 67

De Jong, L. S. (1978). Numerical aspects of recursive realization algorithms. SIAM Journal on Control and

optimization, 16(4):646–659. 67

Del Moral, P. (2004). Feynman-kac formulae. In Feynman-Kac Formulae, pages 47–93. Springer. 45, 47,
52

Del Moral, P., Doucet, A., and Sumeetpal, S. (2010). Forward smoothing using sequential monte carlo.
ArXiv:1012.5390. 22

108

BIBLIOGRAPHY

Dempster, A. P., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society (B), 39(1):1–38. 16, 22, 82

Derrode, S. and Pieczynski, W. (2004). Signal and image segmentation using pairwise Markov chains. IEEE

Transactions on Signal Processing, 52(9):2477–89. 20, 23

Derrode, S. and Pieczynski, W. (2013). Exact fast computation of optimal filter in gaussian switching linear
systems. IEEE Signal Processing Letters, 20(7):701–704. 24, 97

Desbouvries, F. and Pieczynski, W. (2003a). Modèles de Markov triplet et filtrage de Kalman. Comptes

Rendus de l’Académie des Sciences - Mathématiques, 336(8):667–670. in French. 24

Desbouvries, F. and Pieczynski, W. (2003b). Particle filtering in pairwise and triplet Markov chains. In Proc.

IEEE - EURASIP Workshop on Nonlinear Signal and Image Processing, Grado-Gorizia, Italy. 24

Deshmukh, A. M. (2020). Comparison of hidden markov model and recurrent neural network in automatic
speech recognition. European Journal of Engineering and Technology Research, 5(8):958–965. 66

Douc, R., Cappé, O., and Moulines, É. (2005). Comparison of resampling schemes for particle filtering. In
Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis (ISPA),
Zagreb, Croatia. 31

Douc, R., Garivier, A., Moulines, E., and Olsson, J. (2011a). Sequential Monte Carlo smoothing for general
state space hidden Markov models. The Annals of Applied Probability, 21(6):2109 – 2145. 49

Douc, R., Garivier, A., Moulines, E., and Olsson, J. (2011b). Sequential monte carlo smoothing for general
state space hidden markov models. Annals of Applied Probability, 21(6):2109–2145. 102

Douc, R. and Moulines, E. (2012). Asymptotic properties of the maximum likelihood estimation in misspec-
ified hidden Markov models. Annals of Statistics, 40(5):2697–2732. 21

Douc, R., Moulines, E., and Ryden, T. (2004). Asymptotic properties of the maximum likelihood estimator
in autoregressive models with markov regime. Annals of Statistics, 32(5):2254–2304. 21

Douc, R., Moulines, E., and Stoffer, D. (2014). Nonlinear time series: Theory, methods and applications

with R examples. CRC press. 56

Doucet, A., de Freitas, N., and Gordon, N. (2001a). Sequential Monte Carlo Methods in Practice. Statistics
for Engineering and Information Science. Springer-Verlag. 31

Doucet, A., Godsill, S. J., and Andrieu, C. (2000). On sequential Monte Carlo sampling methods for
Bayesian filtering. Statistics and Computing, 10:197–208. 22, 27

Doucet, A., Gordon, N. J., and Krishnamurthy, V. (2001b). Particle filters for state estimation of jump
Markov linear systems. IEEE Transactions on Signal Processing, 49(3):613–24. 24

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S. (2010). Why does un-
supervised pre-training help deep learning? Journal of Machine Learning Research, 11(19):625–660.
88

109

BIBLIOGRAPHY

Faurre, P. (1979). Opérateurs rationnels positifs. Dunod. 66, 68, 69

Faurre, P. L. (1976). Stochastic realization algorithms. In Mathematics in Science and Engineering, volume
126, pages 1–25. Elsevier. 66

Fearnhead, P. and Clifford, P. (2003). On-line inference for hidden markov models via particle filters. Journal

of The Royal Statistical Society Series B-statistical Methodology, 65:887–899. 99

Gabrie, M., Rotskoff, G., and Vanden-Eijnden, E. (2022). Adaptive monte carlo augmented with normalizing
flows. Proceedings of the National Academy of Sciences, 119. 105

Gevers, M. (2006). A personal view of the development of system identification: A 30-year journey through
an exciting field. IEEE Control systems magazine, 26(6):93–105. 66

Gevers, M. and Wouters, W. (1978). An innovations approach to the discrete-time stochastic realization
problem. Journal A, 19(2):90–110. 66, 71

Geweke, J. (1989). Bayesian Inference in Econometric Models Using Monte Carlo Integration. Economet-

rica, 57(6):1317–1339. 30

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural net-
works. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,

AISTATS, volume 9 of JMLR Proceedings, pages 249–256. JMLR.org. 88

Goldberg, Y. (2017). Neural network methods for natural language processing. Synthesis Lectures on Human

Language Technologies, 10(1):1–309. 26

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning, volume 1. MIT press
Cambridge. 17, 26

Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to nonlinear/ non-Gaussian
Bayesian state estimation. IEE Proceedings-F, 140(2):107–113. 27, 46

Gorynin, I., Gangloff, H., Monfrini, E., and Pieczynski, W. (2018). Assessing the segmentation performance
of pairwise and triplet Markov Models. Signal Processing, 145:183–192. 23, 90

Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. In Neural networks for perception,
pages 65–93. Elsevier. 17

Hesterberg, T. (1988). Advances in Importance Sampling. PhD thesis, Stanford University. 16

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner, A.
(2017). Beta-VAE: Learning basic visual concepts with a constrained variational framework. In 5th

International Conference on Learning Representations, ICLR. OpenReview.net. 91

Hinton, G. E., Deng, L., Yu, D., Dahl, G. E., A-R., M., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
Sainath, T., and Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97. 88

Ho, B. and Kalman, R. E. (1966). Effective construction of linear state-variable models from input/output
functions. at-Automatisierungstechnik, 14(1-12):545–548. 67

110

BIBLIOGRAPHY

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8):1735–1780.
26, 66

Hol, J. D., Schön, T. B., and Gustafsson, F. (2006). On resampling algorithms for particle filtering. In Proc.

IEEE NSSPW, Cambridge, UK. 31

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257. 17

Hu, W., Liao, Y., and Vemuri, V. R. (2003). Robust anomaly detection using support vector machines. In
Proceedings of the international conference on machine learning, pages 282–289. Citeseer. 17

Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard condition. In LeCam,
N. and Neyman, J., editors, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and

Probability, Berkeley, CA, USA. University of California Press. 16

Jain, A. K., Mao, J., and Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial. Computer,
29(3):31–44. 17

Jazwinski, A. H. (1970). Stochastic Processes and Filtering Theory, volume 64 of Mathematics in Science

and Engineering. Academic Press, San Diego. 20

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to variational methods
for graphical models. Mach. Learn., 37(2):183–233. 16

Kailath, T. (1980). Linear systems, volume 156. Prentice-Hall Englewood Cliffs, NJ. 66

Kantas, N., Doucet, A., Singh, S. S., Maciejowski, J., and Chopin, N. (2015). On particle methods for
parameter estimation in state-space models. Statist. Sci., 30(3):328–351. 22, 66

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd International Con-

ference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track

Proceedings. 85, 98

Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling, M. (2014). Semi-supervised learning with deep
generative models. In Advances in Neural Information Processing Systems 27: Annual Conference on

Neural Information Processing Systems, pages 3581–3589. 92

Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes. In 2nd International Conference

on Learning Representations, ICLR. 18, 35, 83

Klys, J., Snell, J., and Zemel, R. (2018). Learning latent subspaces in variational autoencoders. In Advances

in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing

Systems, pages 6445–6455. 92

Koopman, S. J., Lucas, A., and Scharth, M. (2016). Predicting Time-Varying Parameters with Parameter-
Driven and Observation-Driven Models. The Review of Economics and Statistics, 98(1):97–110. 25

Kumar, S., Pradeep, J., and Zaidi, H. (2021). Learning robust latent representations for controllable
speech synthesis. In Findings of the Association for Computational Linguistics: ACL/IJCNLP, volume
ACL/IJCNLP 2021 of Findings of ACL, pages 3562–3575. Association for Computational Linguistics. 92

111

BIBLIOGRAPHY

LeCun, Y. (1998). The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/. 85

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444. 17

Lee, A. and Whiteley, N. (2018). Variance estimation in the particle filter. Biometrika, 105(3):609–625. 48,
50, 52, 53

Li, T., Bolić, M., and Djuric, P. M. (2015). Resampling Methods for Particle Filtering: Classification,
implementation, and strategies. IEEE Signal Processing Magazine, 32(3):70–86. 31

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of neural networks: A view
from the width. In Advances in neural information processing systems, pages 6231–6239. 17

Manton, J. H. and Amblard, P.-O. (2015). A primer on Reproducing Kernel Hilbert Spaces. Found. Trends

Signal Process., 8(1-2):1–126. 17

Mathai, A. and Provost, S. (1992). Quadratic Forms in Random Variables. Statistics: A Series of Textbooks
and Monographs. Taylor & Francis. 97

Mohamed, A., Dahl, G. E., and Hinton, G. (2012). Acoustic modeling using deep belief networks. IEEE

Transactions on Audio, Speech and Langage Processing, 20(1):14–22. 88

Mozer, M. C. (1995). A focused backpropagation algorithm for temporal. Backpropagation: Theory, archi-

tectures, and applications, 137. 26

Olsson, J. and Douc, R. (2019). Numerically stable online estimation of variance in particle filters. Bernoulli,
25(2):1504 – 1535. 48, 58

Olsson, J. and Westerborn, J. (2017). Efficient particle-based online smoothing in general hidden Markov
models: The PaRIS algorithm. Bernoulli, 23(3):1951 – 1996. 57, 102

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In
International conference on machine learning, pages 1310–1318. 26

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32. 98

Paulsen, V. I. and Raghupathi, M. (2016). An introduction to the theory of reproducing kernel Hilbert spaces,
volume 152. Cambridge University Press. 17

Petersen, K. B. and Pedersen, M. S. (2008). The matrix cookbook. Version 20081110. 97

Pieczynski, W. (2002). Chaînes de Markov triplet. Comptes Rendus de l’Académie des Sciences - Mathé-

matiques, 335:275–278. in French. 23, 97

Pieczynski, W. (2003). Pairwise Markov chains. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 25(5):634–39. 23, 87

112

BIBLIOGRAPHY

Pieczynski, W. (2011a). Exact filtering in conditionally Markov switching hidden linear models. Comptes

Rendus Mathematique, 349(9-10):587–590. 24

Pieczynski, W. (2011b). Exact smoothing in hidden conditionally Markov switching linear models. Com-

munications in Statistics - Theory and Methods, 40(16):2823–2829. 24

Pinkus, A. (1999). Approximation theory of the MLP model in neural networks. Acta numerica, 8(1):143–
195. 17

Pitt, M. K. and Shephard, N. (1999). Filtering via simulation : Auxiliary particle filter. Journal of the

American Statistical Association, 94:590–99. 20, 32, 58

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286. 20, 22, 87

Robinson, A. and Fallside, F. (1987). The utility driven dynamic error propagation network. University of
Cambridge Department of Engineering Cambridge, MA. 26

Rubin, D. B. (1988). Using the SIR algorithm to simulate posterior distributions. In Bayesian Statistics III.
Oxford University Press. 21, 26, 29

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal representations by error
propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science. 17

Sagan, H. (2012). Space-filling curves. Springer. 90

Schön, T., Gustafsson, F., and Nordlund, P.-J. (2005). Marginalized particle filters for mixed linear nonlinear
state-space models. IEEE Trans. on Signal Processing, 53:2279–2289. 96

Smith, A. F. M. and Gelfand, A. E. (1992). Bayesian statistics without tears : a sampling-resampling per-
spective. The American Statistician, 46(2):84–87. 21, 26

Tanizaki, H. and Mariano, R. (1994). Prediction, filtering and smoothing in non-linear and non-normal cases
using Monte Carlo integration. Journal of Applied Econometrics, 9(2):163–79. 22, 27

Thin, A., Janati El Idrissi, Y., Le Corff, S., Ollion, C., Moulines, E., Doucet, A., Durmus, A., and Robert,
C. X. (2021). Neo: Non equilibrium sampling on the orbits of a deterministic transform. In Ranzato,
M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information

Processing Systems, volume 34, pages 17060–17071. Curran Associates, Inc. 105

Tugnait, J. K. (1982). Adaptive estimation and identification for discrete systems with Markov jump param-
eters. IEEE Transactions on Automatic Control, 27(5):1054–65. 24, 27

Tzikas, D. G., Likas, A. C., and Galatsanos, N. P. (2008). The variational approximation for Bayesian
inference. IEEE Signal Processing Magazine, 25(6):131–146. 82

Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business media. 17

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience. 18

113

BIBLIOGRAPHY

Vergé, C., Dubarry, C., Del Moral, P., and Moulines, É. (2015). On parallel implementation of sequential
Monte Carlo methods: the island particle model. Statistics and Computing, 25(2):243–260. 40

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Proceedings of the IEEE,
78(10):1550–1560. 26

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50(1):1–25. 16

114

	Page de garde
	Avant propos
	Research and teaching activities
	An overview of generative models for time series analysis
	A brief review of Bayesian estimation
	Modelling the joint distribution
	Statistical learning approach
	Discussion

	Statistical models for time series
	Hidden Markov models
	Extensions of HMC models
	Recurrent Neural Networks

	About the notations
	Organization of the thesis

	Revisiting some (sequential) Monte Carlo methods
	Background
	Double Proposal Importance Sampling
	The Rubin's independent resampling mechanism
	Sequential independent resampling mechanism: an implicit APF

	Estimating asymptotic variances with recycled particles
	Background
	Variance estimation for filtering estimators
	Asymptotic variance estimation for smoothing estimators

	About the expressivity of latent variable models
	Background
	HMC vs. RNN from stochastic realization theory
	About the generative power of PMCs

	Cross benefits of hidden Markov models and recurrent neural networks architectures
	Background
	Generative models based on Variational PMCs
	Deep and interpretable hidden Markov models
	Variational Inference in linear and Gaussian TMC

	Perspectives
	Bibliography

