
HAL Id: tel-04414495
https://hal.science/tel-04414495v1

Submitted on 24 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions à la résolution de problèmes
d’optimisation combinatoire difficiles

Zacharie Ales

To cite this version:
Zacharie Ales. Contributions à la résolution de problèmes d’optimisation combinatoire difficiles. Com-
binatoire [math.CO]. IPParis, 2023. �tel-04414495�

https://hal.science/tel-04414495v1
https://hal.archives-ouvertes.fr

a
M

ém
oi

re
d’

H
ab

ili
ta

tio
n

à
D

iri
ge

rd
es

R
ec

he
rc

he
s

Contributions to solving hard
combinatorial optimization problems

Mémoire d’Habilitation à Diriger des Recherches
de l’Institut Polytechnique de Paris

préparée à l’UMA, ENSTA Paris, Institut Polytechnique de Paris

ZACHARIE ALES

Composition du Jury :

Prof. Stéphane Canu LITIS, INSA Rouen, France Examinateur

D.R. Claudia Dambrosio LIX, Ecole Polytechnique, France Examinateur

Prof. Sourour Elloumi UMA, ENSTA Paris, France Examinateur

Prof. Bernard Fortz HEC Liège, Belgique Rapporteur

Prof. Pierre Fouilhoux LIPN, Université Sorbonne Paris Nord, France Rapporteur

Prof. Marco Lübbecke Université RWTH D’Aachen, Allemagne Rapporteur

M.C.F. Jose Neto SAMOVAR, Telecom SudParis, France Examinateur

Contents

1 Introduction 3
1.1 Context . 3
1.2 Main contributions . 4

2 Improving the solution of hard MILPs 7
2.1 A polyhedral approach for the K-partitioning problem 7
2.2 A Benders decomposition for the p-median problem 11

3 Dealing with uncertainty 15
3.1 A two-stage robust weighted vertex p-center problem 15
3.2 A new framework for structurally robust solutions 21

4 Learning from the data 27
4.1 New strong formulations to build optimal classification trees 27
4.2 A reinforcement learning approach to learn how to branch 32

5 Conclusions and perspectives 39
5.1 Perspectives on the solution of hard MILPs . 40
5.2 Perspectives on dealing with uncertainty . 40
5.3 Perspectives on learning from the data . 40

Publications 42

Bibliography 43

Appendices 47

A K-clustering formulations 48
A.1 Edge-representative formulation pFerq . 48
A.2 Node-cluster formulations . 48

B Benders cuts separation algorithm 50

C Robust weighted p-center problem 51
C.1 Deterministic formulations of pPCPq . 51
C.2 Robust formulations of pRPCPq . 52
C.3 Column and constraint generation algorithm . 53

D Minimizing the recovery cost 54
D.1 Min-cost flow problems definition . 54
D.2 Max-flow problems definitions . 55

E Building optimal classification trees 56
E.1 Formulations . 56

2

Chapter 1

Introduction

1.1 Context

A Mixed Integer Linear Program (MILP) is a mathematical model that involves optimizing a
linear function over a feasible region described by linear constraints where a subset of variables
are restricted to integer values.

The study of MILPs is a very active field of research that encompasses the solution of a diverse
range of concrete problems such as energy production, railway scheduling and warehouses
location. This thesis is organized into three chapters, each dedicated to a line of research I have
undertaken in order to define and solve MILPs. My objective is to provide solutions that not
only have good objective values but are also satisfactory in terms of their practical applicability
for real-world problems.

In the context of this thesis, a formulation corresponds to a MILP mathematical model of a com-
binatorial optimization problem. For a given problem, multiple formulations with distinct vari-
ables or constraints may be considered. In this thesis, various examples illustrate the significant
impact that the choice of a formulation can have on the numerical performances. Solving a
combinatorial optimization problem optimally can be achieved by providing a formulation to
generic solvers such as Scip [1], CPLEX [38] or Gurobi [63]. Despite mixed integer linear pro-
gramming being NP-hard [72], these solvers have made impressive progress in recent decades.
However, when problems size increases, many of them quickly become computationally in-
tractable. My first line of research is dedicated to overcoming this limitation in two comple-
mentary directions:

1. improving the problem modeling: extended formulations, breaking symmetries, identify-
ing stronger alternative models, etc.;

2. enhancing the solution method: exact decomposition algorithms (e.g., column generation,
Benders decomposition), parameters selection, dynamic addition of constraints during
the resolution, algorithms with performance guarantees, tailored heuristics, etc.

Various methods can be considered to obtain MILP solutions with good objective values. Nonethe-
less, this is not necessarily sufficient to guarantee that the solution can be implemented in prac-
tice. Indeed, when solving a problem it is generally unrealistic to assume precise knowledge
of all its objective and constraints coefficients. For example, travel time depend on road traf-
fic and energy output derived from solar panels are influenced by the level of sunlight. These
values may be hard to determine precisely in advance. Consequently, an optimal solution for
a specific value of the coefficients can rapidly deteriorate or even become infeasible when the
coefficients are subject to minor perturbations, thus making it invalid from a practical point of
view. Henceforth, my second line of research is to take into account uncertainty in MILPs. Two
main approaches have been considered for this purpose:

1. stochastic optimization in which it is assumed that the uncertain coefficients vary according
to probability distributions; and

3

2. robust optimization in which we seek a solution with the best objective value for the worst
possible value of the uncertain coefficients.

The choice of the approach depends on the problem under consideration. If the aim is to obtain
solutions that perform well on average, stochastic optimization should then be preferred. Con-
versely, if the aim is to strongly avoid the most unfavorable scenarios (e.g., when human lives
are at stake), robust optimization appears to be a more suitable alternative.

My final area of research to efficiently solve MILPs is focused on the use of data. It is estimated
that more than 1018 bytes of data are generated every day. Hence, when confronted with a
specific real-life application, the collection of a substantial volume of potentially valuable data
becomes possible. This has contributed to a huge surge in the development of Machine Learn-
ing (ML) methods in recent years. As a consequence many approaches have been developed to
use ML methods to help solve operational research problems, and vice versa. To improve the
definition and the solution of MILPs, various objectives have been considered such as learn-
ing how to branch [62], selecting relevant valid inequalities to add during the resolution [92],
or defining appropriate uncertainty sets in robust optimization [104]. Other works focus on
solving MILPs to improve the resolution of Machine Learning (ML) problems such as learning
interpretable classifiers [3, 24] or identifying adversarial examples [53].

In the following, I summarize the main contributions presented in this thesis.

1.2 Main contributions

In the course of my research career, I had the opportunity to study diverse combinatorial op-
timization problems in collaboration with colleagues from the research laboratories to which
I have belonged. For example, I worked on the identification of recurrent dialogical patterns
during my PhD thesis at INSA Rouen [P9, P10], on the correlation clustering and scheduling
problems at Laboratoire d’Informatique d’Avignon [P3,P8,P17] and on the placement of virtual
machines at the Unité de Mathématiques Appliquées d’ENSTA Paris [P16].

In this thesis I present my main contributions in the three lines of research described in the
previous section.

1.2.1 Improving the solution of hard MILPs

A consequent part of my research focuses on improving the modeling and the resolution of
combinatorial optimization problems [P1, P3, P5–P7, P11, P16, P17]. Chapter 2 addresses two of
these contributions.

The problem of identifying dialogical patterns considered during my PhD thesis led us to con-
sider the K-partitioning problem which consists in partitioning an edge-weighted graph into
K P N˚ clusters such that the sum of the weights inside the clusters is minimized. We pro-
posed for this problem a new formulation as well as a cutting plane algorithm [P7]. Section 2.1
presents our subsequent work on that topic. We first extend our formulation by the addition of
edge variables and show that it enables to strengthen the linear relaxation [P6]. Then we iden-
tify a new family of valid inequalities involving these new variables and determine conditions
under which this family and three others are facet-defining of the extended formulation. We in-
troduce an efficient branch-and-cut algorithm based on the generation of facet-defining inequal-
ities that provides better numerical results than the direct resolution of our two formulations
and two generic clustering formulations from the literature that we adapt to the K-partitioning
problem. Indeed, among all the instances considered from the TSPLib [95], 34% of them are
solved to optimality only by our branch-and-cut algorithm. Finally, we provide bounds on the
linear relaxation of the two formulations from the literature which could explain their poor
numerical performances.

We then consider in Section 2.2 a classical location problem called the p-median problem [P11]
that we studied in the context of the PhD thesis of Cristian Duran. This problem considers a set
of clients, a set of sites, and distances between the clients and the sites. The objective is to select
p sites to open such that the sum of the distances between each client and its closest opened
site is minimized. We first consider a Benders decomposition for this problem and introduce

4

an efficient algorithm to separate the Benders cuts. Secondly, we propose a two-step algorithm
based on this decomposition to solve the problem. In its first step, the integrality of the variables
is relaxed which enables to quickly provide strong bounds on the optimal solution. Finally, we
perform an extensive computational study of more than 250 instances from 6 distinct datasets
from the literature. This experiment shows that our algorithm outperforms the other state of
the art methods. Among all the instances which optimal solution was previously unknown, we
are able to improve the best known solution for 91% of them and to guarantee their optimality
in 81% of the cases.

1.2.2 Dealing with uncertainty

My second line of research, presented in Chapter 3, is robust optimization [P2, P8, P14].

In a previous work we considered the solution of the deterministic p-center problem for which
we proposed two new formulations [P1]. This discrete location problem is similar to the p-
median problem except that the objective is to minimize the maximal distance between any
client and its closest opened site. In Section 3.1 we present a new a robust variant of this prob-
lem, studied during the PhD thesis of Cristian Duran, in which the uncertainty lies in the value
of the node weights and of the distances [P12]. By assumption they can take any value in a
box-uncertainty set. In this two-stage problem the sites to open must be decided before the
uncertainty is revealed while the allocation of the clients to the opened sites is determined af-
terwards. Our most important result is that considering a finite number of uncertain scenarios
is sufficient to obtain an optimal solution. We use this result to adapt five different formula-
tions of the deterministic weighted p-center problem to our robust variant. Finally, we define
and numerically evaluate two exact algorithms based on these formulations: a column-and-
constraint generation algorithm and a branch-and-cut algorithm. The latter can only be used
with two robust formulations which deterministic counterparts are not the most efficient. An
interesting results is that despite this limitation, the branch-and-cut algorithm provides orders
of magnitude smaller computation times.

During the PhD thesis of Rémi Lucas, we worked on a robust railway scheduling problem in
collaboration with the SNCF company [81]. The objective was not only to take into account
the cost of the solution in the worst case scenario but also to obtain a solution that would only
require a limited number of structural modifications once the uncertainty is revealed. Indeed, in
many real-world applications, the cost of modifying an initially planned solution may be huge.
Nevertheless, few robust approaches take this type of criterion into account. In Section 3.2 we
generalize this approach in a new robust framework that minimizes the distance between the
solutions before and after the uncertainty is revealed [P2]. We apply it to two flow problems
for two distinct solution distances, and prove that all the corresponding robust problems are
NP-hard. We then identify a class of problems for which considering a discrete set of uncertain
scenarios U is equivalent to considering its convex hull convpUq. We prove that this result does
not hold for three similar classes of problems. Finally, we present a case study on a railroad
planning problem in which we compare our approach with two others from the literature.

1.2.3 Learning from the data

My last line of research, covered in Chapter 4, is dedicated to the combined use of operational
research and machine learning techniques [P4, P9, P10, P13, P15, P18].

Section 4.1 is dedicated to a study conducted during the PhD thesis of Valentine Huré. We con-
sider supervised classification which consists in learning a classifier able to predict as accurately
as possible the class of labeled data. In order to produce a classifier that is both efficient and
interpretable, we focus on the exact solution of the problem of building an optimal classifica-
tion tree [P4]. We introduce three new MILPs for this problem and prove that they have a better
relaxation than the most well-known formulation for this problem. Subsequently, we define a
new iterative algorithm to fix the parameters of our models. Finally, we highlight the efficiency
of our models and of our fitting algorithm through an extensive computational study. In partic-
ular, these experiments highlight that our approach is twice as fast as the exact state-of-the-art
method, while providing similar or better predictions.

5

Section 4.2 focuses on learning B&B branching strategies in the context of repeated problems
from the EDF company [P13]. We propose a reinforcement learning framework based on a
Markov decision process for which we propose an original transition function that enables to
take into account the structure of the B&B tree. We prove that when considering this transition
function and a specific cost model, the problem of minimizing the size of the B&B tree can be
solved optimally by a dynamic programming approach. Since the use of such algorithm is pro-
hibitive in practice, we propose a Q-learning heuristic which leads in a few hours to satisfying
results compared with the branching strategy of the commercial solver CPLEX. This work was
undertaken during the PhD thesis of Marc Etheve [50] in collaboration with the EDF company.

6

Chapter 2

Improving the solution of hard
MILPs

The MILP solution methods, such as branch-and-bound (B&B) and branch-and-cut (B&C), are
fundamental techniques that involve exploring the solution space through the construction of
an initially unknown-sized tree. To mitigate the exponential growth of the tree, solvers suc-
cessfully employ various heuristic techniques. Nevertheless, as problem sizes increase, they
generally rapidly become computationally intractable.

This chapter exemplifies the diverse approaches I have undertaken to extend the boundaries of
MILP solving. Each of the two sections focuses on a specific problem, highlighting the theoreti-
cal and algorithmic contributions I have made in addressing this challenge.

2.1 A polyhedral approach for the K-partitioning problem

K-PARTITIONING PROBLEM

Input: A weighted graph G “ pV, E, wq and K P N˚.

Output: A partition of V in K clusters with minimal weight inside the clusters.

K-clustering is an NP-hard supervised classification problem [57] for which many heuristics
have been designed [82, 106]. To optimally solve graph partitioning problems, most of the
linear programming approaches in the literature are based on node-cluster binary variables zk

i
taking value 1 if and only if node i P V is assigned to the cluster of index k. Unfortunately,
these variables induce symmetry since permutations of the clusters indices k lead to equivalent
solutions. Note that this can be more or less alleviated by additional constraints depending on
the formulation considered [31,51]. During my PhD, I introduced a symmetry-free formulation
called edge-representative formulation pFerq – detailed in Appendix A.1 – and studied its associated
polyhedron [P7].

Let vpP1q be the optimal value of a problem pP1q and let pP2q be the linear relaxation of a MILP
pP2q. I present in this section the main results that I subsequently obtained on this topic in
collaboration with Arnaud Knippel [P5, P6]:

• an extension pFextq of pFerqwith additional edge variables such that vpFrepq ď vpFextq;

• the identification of a family of valid inequalities and the characterization of the conditions
under which this family and constraints from pFextq are facet-defining;

• an efficient branch-and-cut algorithm that provides better numerical results than the di-
rect resolution of pFerq, pFextq and two node-clusters formulations pFnc1q and pFnc2q;

• bounds on vpFnc1q and vpFnc2qwhich help to understand the poor numerical performances
of these formulations.

7

2.1.1 Extended formulation

Our extended formulation pFextq considers the binary variables of pFerq: xij equals to 1 if and
only if nodes i and j are in the same cluster, and ri equals to 1 if and only if node i is the node
of lowest index in its cluster. In that last case, node i is said to be the representative of its cluster.
The formulation additionally includes a new set of binary edge variables x̃ij equal to 1 if and
only if node j is represented by node i:

pFextq

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize
ř

ijPE
wijxij

subject to xij ` xik ´ xjk ď 1 i P V j, k P Vztiu, j ă k p2.1q

rj `

j´1
ÿ

i“1

x̃ij “ 1 j P V p2.2q

x̃ij ď xij ij P E p2.3q

x̃ij ď ri ij P E, i ă j p2.4q

xij ` ri ´ x̃ij ď 1 ij P E, i ă j p2.5q
n
ÿ

i“1

ri “ K p2.6q

rj ` xij ď 1 i, j P V, i ă j p2.7q

ri P r0, 1s i P V

xij, x̃ij P t0, 1u ij P E

.

The triangle inequalities p2.1q ensure that for any distinct nodes i, j, and k, it is not possible to
have exactly two of the edges pijq, pikq and pjkq inside a cluster, thus guaranteeing the coherence
of the partition. A node i is either a representative of its cluster or represented by a node j ă i
through Constraints p2.2q. The linearization Constraints p2.3q, p2.4q, and p2.5q ensure that x̃ij is
equal to rixij. Exactly K clusters are obtained by Constraint p2.6q. Constraints p2.7q are optional
but enable to strengthen the formulation. Note that the integrity of variables r is ensured by
that of variables x̃ through Constraints p2.2q.

The only difference between pFerq and pFextq is the constraints considered to ensure that each
vertex is either a representative or is represented by a vertex with a lower index. Instead of
Constraints p2.2q to p2.5q, pFerq considers

rj `

j´1
ÿ

i“1

xij ě 1 j P V (2.8)

We now prove that the optimal value of the linear relaxation of pFerq can not be better than that
of pFextq.

Theorem 2.1 vpFextq ě vpFerq if n ě 4 and K P t2, . . . , n´ 2u.

Sketch of proof - We consider projpFextq, the projection of convpFextq – the convex hull of the
solutions of Fext – onto the variable space of Fer. We show that projpFextq is strictly included in
convpFerq by first identifying a point in convpFerq that is not in projpFextq and then by proving
that any point in projpFextq necessarily satisfies all the constraints of Fer. ˝

This theorem shows that Fext is stronger than Fer and that its resolution through branch-and-cut
can thus lead to smaller search trees.

2.1.2 Facet defining inequalities

In order to define an efficient branch-and-cut algorithm, we first identify a new family of valid
inequalities for pFextq.

8

Property 2.2 For each pair of nodes i and j with i ă j, the sub-representative inequality

xij ď

i
ÿ

h“1

x̃hj (2.9)

is valid for pFextq.

Constraint (2.9) ensures that if nodes i and j are in the same cluster (i.e., xij “ 1) then node j is
represented by a node which index is at most i (i.e.,

ři
h“1 x̃hj “ 1).

Prior to determining if valid inequalities are facet-defining of convpFextq, we must determine its
dimension.

Theorem 2.3 The dimension of convpFextq is equal to:

(i) 0 if K P t1, nu;

(ii) |V| p|V| ´ 2q ` 2 if K “ 2;

(iii) |V| p|V| ´ 2q if K P t3, 4, . . . , |V| ´ 2u (i.e., it is full dimensional);

(iv) |V| p|V|´1q
2 ´ 1 if K “ |V| ´ 1.

Sketch of proof - The dimension is at most |V| p|V| ´ 2q since pFextq contains |V|2 variables and
since 2|V| of them can be substituted (using Constraints p2.2q and p2.6q and the fact that node 1
is always the representative of its cluster).

To prove that convpFextq is full-dimensional, we assume that it is included in a hyperplane H “

tx P R|V| p|V|´2q | αTx “ α0u and prove that α is necessarily equal to the null vector. This
can be done by considering several feasible solutions of the problem which lead to necessary
conditions on the components of α. ˝

Since a polyhedral study of pFerq has already been performed [P7], we focus on the new families
of constraints. We consider the most general case K P t3, 4, ..., |V| ´ 2u in which the polytope is
full-dimensional.

Theorem 2.4 The conditions under which constraints p2.3q - p2.5q, and (2.9) are facet-defining of
convpFextq are summarized in Table 2.1.

Sketch of proof - We prove that the face F induced by an inequality aTx ď b is facet-defining
by assuming, similarly to the previous proof, that F is included in a hyperplane H “ tx P

R|V| p|V|´2q | αTx “ α0u. We show that α is necessarily equal to λa with λ P R by considering
several solutions in F. ˝

Constraints Conditions

p2.3q if i ě 2, j ě 4

p2.4q and p2.5q if i ě 4

(2.9) if and only if i “ 2 or i ě 3 and K ď |V| ´ 3

Table 2.1. Conditions under which family of constraints are facet-defining of convpFextq when K P

t3, 4, ..., |V| ´ 2u.

We also obtain similar polyhedral results for the two variants of the problem in which the num-
ber of clusters is at least or at most K.

9

2.1.3 Branch-and-cut algorithm

Our branch-and-cut starts by a thorough cutting-plane step. In order to quickly solve the
successive linear relaxations, we only keep in pFextq its smallest families of inequalities: Con-
straints p2.2q and p2.6q. The constraints removed from the formulation are separated in this
first step. We also separate sub-representative inequalities as well as 3 additional families of
valid inequalities that have previously been identified, namely: the 2-partition inequalities, the
general clique inequalities and the paw inequalities. For each family, we define a fast greedy
algorithm and a slower local search algorithm inspired by the work of Kernighan and Lin [74].
The slower algorithms are only used when no violated inequality is found by the greedy algo-
rithms in order to extend the cutting plane step. At each step, at most 3000 violated inequalities
are separated and the 500 most violated are added to the model.

Once no more violated inequality is found for a continuous solution xc, we consider pFextqwith
all its constraints plus all the previously generated inequalities that are tight for xc (i.e., in-
equalities aTx ď b such that aTxc “ b). A classical branch-and-cut is then performed on this
formulation in which the slower separation algorithms are not considered.

We compare the performances of this algorithm with the direct resolution through CPLEX of
pFerq, pFextq as well as of two node-cluster partitioning formulations pFnc1q and pFnc2q that we
adapted to the K-clustering problem and that are detailed in Appendix A.2. Table 2.2 illustrates
some of the results obtained when clustering cities from instances of the traveling salesman
problem. When the time limit of one hour is reached, the relative gap between the best upper
and lower bounds on the optimal solution is represented. We can see that the node-cluster
formulations have the worst performances and that the branch-and-cut has the best. Moreover,
we can observe on instances solved optimally that pFextq leads to smaller search trees than pFerq.
This is probably due to its stronger linear relaxation.

Instance n K
Time (s) and Gap (%) Nodes

pFnc1q pFnc2q pFerq pFextq pBCq pFnc1q pFnc2q pFerq pFextq pBCq
time gap time gap time gap time gap time gap

bayg 29

2 19 0 468 0 3251 0 112 0 3 0 1534 4287 35141 265 0
4 TL 10 TL 19 TL 1 TL 1 156 0 210026 22604 41339 34090 57
6 TL 16 TL 9 230 0 304 0 14 0 230472 42730 6442 4875 0
8 TL 16 1966 0 40 0 109 0 9 0 215260 33339 1541 1859 0

att 48

2 26 0 1231 0 TL 5 1388 0 35 0 167 140 1385 197 0
4 552 0 3503 0 TL 4 2285 0 18 0 5035 2596 4142 1940 0
6 TL 9 TL 6 TL 7 TL 6 19 0 33152 2645 19753 5477 0
8 TL 13 TL 2 TL 5 TL 3 14 0 25983 4174 46173 10428 0

st 70

2 629 0 TL 12 197 0 308 0 86 0 859 0 0 0 0
4 TL 4 TL 7 TL 3 TL 2 TL 0 2941 31 79 49 0
6 TL 13 TL 10 TL 5 TL 4 566 0 4342 142 694 206 5
8 TL 16 TL 11 TL 8 TL 7 TL 3 3557 319 1300 350 8

eil 101

2 TL 9 TL 19 TL 4 TL 4 TL 1 1287 0 0 0 0
4 TL 19 TL 20 TL 10 TL 9 TL 6 294 0 3 0 0
6 TL 35 TL 32 TL 24 TL 24 TL 18 57 0 7 2 0
8 TL 34 TL 30 TL 24 TL 23 TL 16 41 0 39 5 0

bier 127

2 TL 25 TL 37 TL 32 TL 31 TL 15 869 0 0 0 0
4 TL 54 TL 54 TL 49 TL 48 TL 31 10 0 2 0 0
6 TL 69 TL 69 TL 65 TL 64 TL 53 13 0 2 0 0
8 TL 65 TL 63 TL 59 TL 58 TL 47 7 0 0 0 0

Table 2.2. Average results (in terms of time in seconds, gap and number of nodes in the branch-and-cut
tree) obtained for each of the five K-partitioning methods over 5 instances of the TSPLIB [95]. pBCq
corresponds to the branch-and-cut algorithm. Bold results are the best in terms of gap and time. A gap
of 0% corresponds to an optimal solution. The symbol TL indicates that the time limit of one hour is
reached.

10

2.1.4 Bounds on vpFnc1q and vpFnc2q

To further understand these results, we determine bounds that prove that the optimal value of
the linear relaxations of the two node-cluster formulations are low.

Property 2.5

• vpFnc2q ď min
jPt2,...,Ku

min
iăj

wij

2K´j`1 .

• If K P t3, . . . , nu, then vpFnc1q ď min
jPt2,...,K´1u

min
iăj

wij

2K´j .

• If K “ 2, then vpFnc1q P rmin
i,jPV

wij
n´1

2 , 1
2

n
ř

i“2
w1is.

Sketch of proof - The upper bounds are obtained by building feasible solutions of the linear
relaxations and taking the minimal value of their objective function. For the lower bound, we
deduce from the constraints of pFnc1q that, when K “ 2,

ř

ijPE
xij is necessarily greater than or

equal to n´1
2 . ˝

The fact that vpFnc1q is higher when K “ 2 is coherent with the numerical results.

We now consider the p-median problem that we efficiently solve through a Benders decomposi-
tion which enables to significantly reduce the number of constraints considered in the problem.

2.2 A Benders decomposition for the p-median problem

p-MEDIAN PROBLEM

Input: A set of clients V, a set of sites U, distances tdijupi,jqP VˆU and p P N˚.

Output: p sites to open such that the sum of the distances between each client and its
closest opened site is minimized.

The p-median is an NP-hard discrete location problem [71]. It has many applications in which
the sites can for example be warehouses, factories, shelters, public services, etc. When the set
of clients and sites are identical, it corresponds to a clustering problem known as the k-medoids
problem [73]. Similarly to the K-clustering problem, various heuristics and meta-heuristics have
been proposed in the literature for this problem [14, 70, 86, 94] but the exact resolution of large
instances remains a challenge.

The results presented in this section have been obtained during the PhD of Cristian Duran
which I co-supervise with Sourour Elloumi [P11]. The main contributions are:

• a Benders decomposition of the p-median problem;

• an efficient algorithm to separate the Benders cuts;

• a two-step Benders decomposition algorithm. In the first step, the integrity of the variables
is relaxed which enables to obtain quickly very strong bounds on the optimal solution;

• an extensive computational study which highlights that our algorithm provides better
results than state of the art methods.

2.2.1 Benders decomposition

Benders decomposition [19] is a technique that splits the optimization problem into a master
problem pMPq and one or several sub-problems pSPq. This method takes advantage of the fact
that fixing the integer variables of a MILP yields a linear program whose dual can be solved to
obtain valid inequalities known as Benders cuts. The pMPq contains the integer variables, and its
solution enables to fix their values in the sub-problems. These problems are solved iteratively
until no violated Benders cut is found.

11

All the MILP formulations of the p-median problem associate a binary variable yj to each site
j P U equal to 1 if and only if site j is opened. Our Benders decomposition is based on a
formulation pFq that additionally considers one variable for each client i P V and each distinct
distance between i and a site [49]. Let Ki be the number of different distances from i to any site
and let D1

i ă D2
i ă ... ă DKi

i be these distances sorted. Let the allocation distance of client i P V
be the distance between i and its closest opened site. Binary variable zk

i is equal to one if and
only if the allocation distance of client i P V is at least Dk`1

i :

pFq

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize
ř

iPV

´

D1
i `

Ki´1
ř

k“1
pDk`1

i ´Dk
i qz

k
i

¯

subject to
ř

jPU
yj “ p p2.10q

z1
i `

ř

jPU : dij“D1
i

yj ě 1 i P V p2.11q

zk
i `

ř

jPU : dij“Dk
i

yj ě zk´1
i i P V, k P t2, ..., Kiu p2.12q

zk
i ě 0 i P V, k P t1, ..., Kiu

yj P t0, 1u j P U

Constraint p2.10q ensures that exactly p sites are opened. Constraints p2.11q and p2.12q impose
that zk

i is equal to 1 if there is no site opened at a distance lower than Dk`1
i of client i.

Note that only the y variables are required to be integer. Consequently, our Benders decompo-
sition is based on an pMPq including the y variables as well as a new set of continuous variables
θi representing the allocation distance of each client i P V:

pMPq

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

minimize
ÿ

iPV

θi

subject to
ÿ

jPU

yj “ p

θi satisfies BDi i P V

yj P t0, 1u j P U

where BDi is the set of benders cuts generated for client i. These sets are initially empty and
grow through the iterations to ensure that the allocation distances of the clients tθiuiPV are not
underestimated.

The sub-problem can be decomposed into |V| sub-problems, each one computing the allocation
distance of a single client. Given a feasible solution y of pMPq or of its linear relaxation pMPq,
the sub-problem of client i is defined by:

SPipyq

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize D1
i `

Ki´1
ÿ

k“1

pDk`1
i ´Dk

i qz
k
i

subject to z1
i ě 1´

ÿ

jPU : dij“D1
i

yj

zk
i ´ zk´1

i ě 1´
ÿ

jPU : dij“Dk
i

yj k P t2, ..., Kiu

zk
i ě 0 k P t1, 2, ..., Kiu

The objective function corresponds to the allocation distance of client i while the constraints are
similar to Constraints p2.11q and p2.12q.

We now determine the expression of the unique Benders cut that can be obtained from this
problem.

12

Theorem 2.6 Let k̃i be the largest index in t1, 2, ..., Kiu which satisfies
ř

jPU : dijďDk
i

yj ă 1 for a given

solution y of pMPq or pMPq. The unique Benders cut obtained from SPipyq is θi ě D1
i if k̃i “ 0 and

θi ě Dk̃i`1
i ´

ř

jPU : dijďD
k̃i
i

pDk̃i`1
i ´ dijqyj otherwise.

Sketch of proof - We first determine that SPipyq necessarily has one unique solution whose
expression we determine. We deduce from it the optimal solution of the dual of SPipyq through
the complementary slackness conditions which directly leads to the expression of the Benders
cut. ˝

We observe that these inequalities are the same as those obtained in previous decompositions
from another ppMPq formulation [37, 83]. This was quite unexpected since, even though the
master problems are the same in the two decompositions, the sub-problems are different.

We consider the polytope associated with pMPq when for all clients i P V the set BDi contains
the Benders cuts associated with all possible indexes k̃i P t0, 1, ..., Ki ´ 1u:

pMPFq “

¨

˚

˚

˚

˚

˝

y P t0, 1uM
M
ÿ

j“1

yj “ p p2.13q

θ P RN` θi ě Dk
i ´

ÿ

jPU | dijďDk
i

pDk
i ´ dijqyj i P N k P t1, ..., Kiu p2.14qi,k

˛

‹

‹

‹

‹

‚

We now determine when the Benders cuts are facet-defining of convpMPFq, the convex hull of
the solutions of pMPFq.

Theorem 2.7 The dimension of convpMPFq is |U| ` |V| ´ 1 if p ă |U| and Ki ą 1 for all clients i P V.
Otherwise, the dimension is lower.

For a given client i P V and index k P t1, 2, ..., Kiu, let Fi,k be the face of convpMPFq defined by
inequality p2.14qi,k. We focus on the case in which the dimension of convpMPFq is maximal (i.e.,
p ă |U| and Ki ą 1 for all clients i P V) and characterize the conditions under which Fi,k is
facet-defining.

Theorem 2.8 If p ă |U| and Ki ą 1 for all clients i P V, then Fi,k defines a facet of convpMPFq if and
only if |tj P U | dij ě Dk

i u| ě p ě 2.

Sketch of proof - The techniques used in the two previous proofs are similar to the ones used
for the K-clustering problem in Section 2.1. The additional difficulty here resides in the identifi-
cation of relevant feasible solutions in Fi,k. ˝

Thus, when the dimension of convpMPFq is maximal, most of the Benders cuts are facet-defining.
This highlights the relevance of a solution algorithm based on their generation.

2.2.2 Solution algorithm

Thanks to Theorem (2.6) we know that generating the Benders cut of client i P V only requires
to compute index k̃i. We show that this can be done in Op|U|q by computing a priori for each
client i P V and each index r P t1, 2, ..., |U|u, the rth closest site of client i. This algorithm is
detailed in Appendix B.

We use this separation algorithm in a two-step decomposition algorithm. A strong initial up-
per bound is obtained through the solution provided by Popstar [96] which, to the best of our
knowledge, is the best heuristic for the ppMPq. To quickly generate Benders cuts, the integrity
of the y variables of pMPq are relaxed in the first step. At each iteration, a feasible solution is
generated from the fractional solution of pMPq by opening the p sites for which the value of the
y variables are maximal.

13

At the end of the first phase, in order to reduce the size of the MILP, we do not keep all the gen-
erated Benders cuts. Instead, for each client i P V, we identify the largest index k̃i of a generated
cut that is tight for the last fractional solution obtained and ignore all the cuts obtained from a
larger index. Moreover, we apply a reduced cost fixing step to fix the value of y variables to 0
or 1 whenever possible.

In the second step, the integrity constraints on the y variables are added and the problem is
solved through a branch-and-cut. To ensure the validity of each integer solution found, the
associated sub-problems are solved and any violated Benders cut is added.

An extensive computational study of more than 250 instances from 6 distinct datasets enables us
to establish that this algorithm is extremely efficient compared with many approaches from the
literature. It is significantly faster than state-of-the-art methods including heuristics. Table 2.3
presents a representative extract of our results obtained on TSP instances. Column “Objective"
contains the objective value of the solution returned by our method. This value is in bold if
it is the first time that the corresponding instance is solved to optimality or if the best known
solution for this instance is improved. Columns “LB” and “UB” represent the bounds on the
optimal objective value obtained at the end of the first phase of our algorithm. Column “Iter.”
corresponds to the number of solutions for which Benders cuts were separated. The two last
columns are dedicated to Zebra [56], the best exact solution method in the literature that we run
on the same computer than our Benders decomposition. We are able to solve to optimality 7
more instances than Zebra and when both methods are optimal, we are significantly faster.

Instance Phase 1 Phase 1 + 2 Zebra

Name |U| “ |V| p Objective LB UB Time Gap Iter. Time Gap Time

usa13509 13509 10 398561730 398561600 398561730 288 0% 10 755 8 �

usa13509 13509 100 108002205 107983102 108002411 523 0% 23 4043 8 �

usa13509 13509 1000 29268216 29262339 29309009 154 0% 31 1382 0% TL

usa13509 13509 2000 18230856 18229432 18238229 47 0% 21 125 0% 584

usa13509 13509 3000 13098935 13097929 13101469 49 0% 28 72 0% 1674

usa13509 13509 4000 9905715 9905071 9910848 37 0% 17 50 0% 166

usa13509 13509 5000 7608605 7608242 7611958 45 0% 22 61 0% 86

sw24978 24978 10 22670073 22670073 22670073 1037 0% 12 1037 8 �

sw24978 24978 100 6660424 6657806 6660424 9634 0,031% 14 TL 8 �

sw24978 24978 1000 1841723 1841613 1844801 621 0% 23 3814 0% 30796

sw24978 24978 2000 1197278 1197231 1198464 208 0% 17 476 0% TL

sw24978 24978 3000 911361 911308 911988 145 0% 17 344 0% 3614

sw24978 24978 4000 737645 737602 738045 92 0% 15 190 0% TL

sw24978 24978 5000 617637 617593 618096 76 0% 18 127 0% TL

Table 2.3. Results on large TSP instances for our method and Zebra. TL indicates that the time limit
of 36000 seconds has been reached. The symbol � means that the computer ran out of memory. A bold
objective value indicates that it is the first time the instance is solved to optimality or that we improve the
best-known value.

14

Chapter 3

Dealing with uncertainty

In this chapter we now assume that the exact value of some coefficients of the MILP are not
known exactly and focus on robust optimization to handle this uncertainty. Following the work
of Soyster [98] robust approaches often search a solution which is feasible for any value of the
data in an uncertainty set [18,27]. However, in many concrete problems, a competitive solution
may not be feasible for all possible realizations of the uncertainty. To alleviate this problem,
two-stage robust optimization consider recourse variables which value is computed only once
the uncertainty is revealed [8, 17]. In this chapter, we present two robust two-stage approaches.

We first focus in Section 3.1 on a robust weighted vertex p-center problem. We consider a stan-
dard robust framework in which the objective function of the deterministic problem is opti-
mized.

Then, in Section 3.2, we motivate and introduce a new generic robust framework in which the
objective is now to minimize the distance between the solutions before and after the uncertainty
is revealed.

3.1 A two-stage robust weighted vertex p-center problem

WEIGHTED VERTEX p-CENTER PROBLEM

Input: A set of clients V, a set of sites U, weights twiuiPV , distances tdijupi,jqP VˆU , and
p P N˚.

Output: Select p sites to open such that the maximal weighted distance between a client
and its closest opened site is minimized.

The weighted vertex p-center problem pPCPq is a generalization of the NP-hard p-center prob-
lem which corresponds to the case where all the clients weights twiuiPV are equal to 1. The only
difference between the p-center problem and the p-median problem considered in Section 2.2
is the objective function. In the former it is equal to the maximal allocation distance of a client
and in the latter it corresponds to the sum of all clients allocations.

The incorporation of uncertainty in pPCPq has important applications in emergency logistics
problems, where a prompt response is required following a disaster (such as earthquakes,
tsunami, or landslides). The consequences of these disasters make it challenging to precisely
estimate the demand for relief materials or the travel times between relief centers and affected
locations [97]. In robust versions of this problem, two approaches can be considered depend-
ing on whether the clients allocation to the opened sites are made before [9, 80] or after [40, 47]
the uncertainty is revealed. The first approach leads to single-stage problems while the second
leads to more difficult two-stage problems in which the clients allocation are recourse variables.
In both approaches, the choice of the opened sites are made before the uncertainty is revealed
since the construction of a relief center requires time. Most of the works in this context have
been focused on the investigation of integer programming modeling and heuristic resolution
approaches [13, 64, 90, 102, 103].

15

The work presented in this section has been initiated during the master thesis of Natalia Bo-
canegra which was also supervised by Cristian Duran and Sourour Elloumi [P12]. Our main
contributions are:

• the definition of a robust two-stage variant of pPCPq called pRPCPq;

• the definition of robust reformulations of pRPCPq based on 5 different MILP formulation
of pPCPq;

• the proof that a finite subset of the uncertainty set can be considered without losing opti-
mality;

• the definition of two exact algorithms based on this result: a column-and-constraint gen-
eration algorithm and a branch-and-cut algorithm;

• the evaluation of their efficiency on randomly generated instances.

3.1.1 Problem definition

In robust optimization, the uncertainty is generally represented by coefficients which can take
any value in an uncertainty set. Each realization of the uncertainty set is called a scenario. The
most classical uncertainty sets are the box, the ellipsoidal and the budgeted uncertainty sets [16,
27, 46, 91].

Several robust variants of pPCPqwith either a single-stage or two-stages have been considered.
For example, [9] consider uncertain clients weights, minimize the regret of the worst-case sce-
nario and show that the problem can be solved through a number of particular pPCPq. In [10] a
box uncertainty set for both the clients weights and the edge lengths is considered for p “ 1. A
polynomial algorithm to find the robust solution for the problem on a tree is presented. In [80]
a similar uncertainty set is considered for the single-stage robust pPCPq and a simulating an-
nealing heuristic is developed to solve it. Du and Zhou propose a two-stage robust model
for a reliable facility location problem in which the clients of disrupted facilities can be reallo-
cated [47]. They propose three solution methods: a linear reformulation, a Benders dual cutting
planes method, and a column-and-constraint generation method. Demange et al. introduce the
robust p-center problem under pressure motivated by the context of locating shelters for evac-
uation in case of wildfires, where the uncertainty is in the available network connections [40].
They present a MILP formulation and a decomposition scheme to solve it.

Following [80], we consider uncertain weights and distances that can take any value in a box
uncertainty set. More precisely, the weight wi of client i P V is assumed to be in rw´i , w`i s
with 0 ď w´i ď w`i , while the distance dij between client i P V and site j P U takes its value
in rd´ij , d`ij s with 0 ď d´ij ď d`ij . The box uncertainty set we consider Ω Ă R|V|`|U|ˆ|V| is the

Cartesian product of intervals rw´i , w`i s and rd´ij , d`ij s for each i P V and j P U.

Before formally defining problem pRPCPq, we first introduce several notations. Let Y “ ty P
t0, 1u|U| |

ř

jPU yj “ pu be the set of vectors representing p opened sites and let Jy “ tj P U | yj “

1u be the set of opened sites for vector y P Y. Let wω
i and dω

ij respectively be the weight of client
i P V and the distance between client i and site j P U in a given scenario ω P Ω.

In pRPCPq, the clients allocations are determined after both the opening of the sites and the
revelation of the uncertainty. Consequently, we define the maximal weighted distance between
a client and its closest opened site, also called radius, for a given set of opened sites y P Y and a
given scenario ω P Ω:

Rpω, yq “ max
iPV

min
jPJy

wω
i dω

ij (3.1)

This corresponds to the optimal value of the deterministic pPCPq when sites Jy are opened and
when the uncertain coefficients take the value ω. Let y˚pωq P Y be a vector that minimizes
the radius when scenario ω occurs and let R˚ω be the value of this minimal radius (i.e., R˚ω “

Rpω, y˚pωqq “ minyPY Rpω, yq).

16

Problem pRPCPq consists in finding a solution y P Y that minimizes the regret of the worst-case
scenario:

pRPCPq : min
yPY

max
ωPΩ

Rpω, yq ´ R˚ω (3.2)

3.1.2 MILP formulations

To model pRPCPq, we adapt five pPCPq formulations from the literature. All these deterministic
formulations contain a set of variables tyjujPU equal to 1 if and only if site j is opened. As
summarized in Table 3.1, these formulations consider various sets of additional variables in
order to represent the value of the radius:

• xij P t0, 1u for pi, jq P V ˆU is equal to 1 if and only if client i is allocated to site j;

• zk P t0, 1u for k P t1, 2, ..., Ku is similar to variable zk
i of the p-median formulation pFq in

Section 2.2 and is equal to 1 if and only if the radius is greater than Dk with D0 ă D1 ă

... ă DK all the distinct weighted distances between clients and sites;

• uk P t0, 1u for k P t1, ..., Ku is equal to 1 if and only if the radius is equal to Dk;

• r P rD0, DKs is equal to the radius.

Formulation
Variables

xij yj zk uk r

pF1q [39] x x x

pF2q [P1] x x

pF3q [P1] x x

pF4q [65] x x

pF5q [55] x x

Table 3.1. Sets of variables considered in the different formulations of the p-center problem considered.

Note that Formulations pF2q and pF3q were introduced by Sourour Elloumi and I in a previous
work [P1].

To model the robust problem pRPCPq variables xij, uk
i , and zk

i must be duplicated for each
possible scenario since the clients allocations and the radius can change from one scenario to
another. As formulations pF3q and pF5q do not consider these variables, their adaptation to
pRPCPq are the only ones in which the number of variables is not proportional to the number
of scenarios. We will see in Section 3.1.4 that this feature will make possible the use of a branch-
and-cut algorithm for these two formulations that will significantly outperform the alternative
solution method. Since the adaptation of the formulations to the robust case are similar and
since the number of pages in this thesis is limited, we focus on one formulation in which the
number of variables depends on the number of scenarios pF1q and one in which it does not pF3q

to highlight their differences. The definition of the three other formulations and their robust
counterparts are detailed in Appendix C. Formulations pF1q and pF3q are defined as follows:

17

pF1q

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

min r

s.t. r ě
ÿ

jPU

widijxij i P V p3.3q

ÿ

jPU

xij “ 1 i P V p3.4q

xij ď yj i P V j P U p3.5q
ÿ

jPU

yj “ p p3.6q

yj P t0, 1u j P U

xij P t0, 1u i P V j P U

pF3q

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

min r

s.t. r`Dk
ÿ

jPU : widijăDk

yj ě Dk i P V k P t1, ..., Ku
(3.7)

s.t. Dj P U ditij “ Dk
ÿ

jPU

yj “ p p3.8q

yj P t0, 1u j P U

Constraints p3.3q ensure that the radius is not lower than the weighted distance between a client
and its allocated site. Similarly, Constraints p3.7q imposes that the radius is at least Dk if there
is no opened site at distance less than Dk of client i. Each client is assigned to exactly one
site through Constraints p3.4q and a site can not be assigned to a client if it is not opened via
Constraints p3.5q. Finally, Constraints p3.6q and p3.8q set the number of opened sites to p.

Our robust formulation based on pF1q considers one set of binary allocation variables txω
ij upi,jqPVˆU

for each scenario ω P Ω such that xω
ij is equal to 1 if and only if client i is assigned to site j when

scenario ω occurs:

pRF1q

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize v

subject to v ě
ÿ

jPU

wω
i dω

ij xω
ij ´ R˚ω i P V ω P Ω p3.9q

ÿ

jPU

xω
ij “ 1 i P V ω P Ω p3.10q

xω
ij ď yj i P V j P U ω P Ω p3.11q
ÿ

jPU

yj “ p

yj P t0, 1u j P U

xω
ij P t0, 1u i P V j P U ω P Ω

Constraints p3.9q, p3.10q and p3.11q correspond to Constraints p3.3q, p3.4q and p3.5q but applied
to each scenario ω P Ω. In Constraints p3.9q, R˚ω is additionally subtracted so that v is at least
equal to the regret of each scenario ω P Ω.

We now present the adaption of formulation pF3q to pRPCPq:

18

pRF3q

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

minimize v

subject to v ě Dk
ωp1´

ÿ

jPU : wω
i dω

ijăDk
ω

yjq ´ R˚ω ω P Ω i P V
(3.12)

k P t1, 2, ..., Kωu | Dj P U wω
i dω

ij “ Dk
ω

ÿ

jPU

yj “ p

yj P t0, 1u j P U

with Kω the number of distinct values twω
i dω

ij uiPV,jPU in scenario ω P Ω and Dk
ω the kth smallest

of these values.

Since Ω contains an infinite number of scenarios, the number of constraints of pRF1q and pRF3q

is also infinite. Additionally, pRF1q also has an infinite number of variables. We show in the next
section how this problem can be circumvented to enable the practical resolution of pRPCPq.

3.1.3 Reduction of the number of scenarios

In this section we prove that pRPCPq can be solved by considering at most |V| scenarios for each
solution y P Y. We first define these scenarios.

Definition 3.1 Let y P Y be a feasible solution and let i P V be any client. We define ωipyq as the
following scenario:

• w
ωipyq
i “

$

&

%

w`i if i “ i

w´i otherwise
• d

ωipyq
ij “

$

&

%

d`ij if i “ i and yj “ 1

d´ij otherwise

We now prove that at least one of the scenarios in tωipyquiPV leads to a maximal regret for y P Y.

Theorem 3.1 Let y P Y be a first-stage solution of pRPCPq. There exists i P V such that ωipyq is an
optimal solution of maxωPΩ Rpω, yq ´ R˚ω.

Sketch of proof - We consider a scenario ω P Ω that leads to a maximal regret for solution y
(i.e., ω “ argmaxωPΩRpω, yq´ R˚ω). We iteratively modify this scenario so that it becomes equal
to one scenario in tωipyquiPV and ensure at each iteration that the regret is not reduced. ˝

Theorem 3.1 enables to only consider a finite set of scenarios without losing the optimality:

pRPCPq : min
yPY

max
ωPtωipyquiPV

Rpω, yq ´ R˚ω (3.13)

Nevertheless, the direct resolution of pRPCPq remains a challenge as the number of scenarios to
consider is equal to |Y| ˆ |V|which is exponential in the number of sites.

3.1.4 Solution algorithms

Column-and-constraint generation algorithm

To solve pRPCPq, we first define a column and constraint generation algorithm pC&CGq that
takes as an input any of our robust formulations denoted by pRFq. In this algorithm, a set of
scenarios Ω initially empty is considered. A solution py, vq is obtained by solving optimally a
relaxation of pRFq in which we only consider scenarios Ω. We then compute the regret of each
scenario tωipyquiPV and if any is greater than v, the scenario with the largest regret is added
to Ω. This process is repeated until no violated scenario is found. The detailed algorithm is
presented in Appendix C.3.

19

Branch-and-cut algorithm

The main drawback of algorithm pC&CGq is that the resolution of pRFq is restarted from scratch
each time a scenario is added to Ω. To improve the performances, we propose a branch-and-
cut algorithm that only solves pRFq once. During this resolution, each feasible solution py, vq
found by the solver is accepted only if it satisfies all the scenarios in tωipyquiPV . Otherwise, the
scenarios with the largest regret is added to Ω. This process can be performed through callbacks
which are features of MILP solvers.

For formulations pRF1q, pRF2q and pRF4q, the addition of a scenario to Ω requires the addition
of new variables to the model which is not possible in a callback. Consequently, this approach
is only possible for formulations pRF3q and pRF5q.

Reducing the number of deterministic problems solved

Each time a feasible solution py, vq of pRFq is obtained, our two algorithms must determine if
this solution satisfies scenario ωipyq for each i P V (i.e., if Rpωipyq, yq ´ R˚

ωipyq
ď v). Computing

Rpωipyq, yq only requires for each client to find its closest center in Jy which can be done in
polynomial time. However, computing R˚

ωipyq
requires the resolution of a deterministic p-center

problem which is NP-hard. This resolution can be avoided if we know beforehand that py, vq
satisfies scenario ωipyq. This is the case if there exists a lower bound R˚i

lb on R˚
ωipyq

such that

Rpωipyq, yq ´ R˚i
lb ď v.

To obtain such lower bounds, we consider the following scenarios.

Definition 3.2 Let i P V. We define ωi
lb such that for all i P V and all j P U, d

ω
i
lb

ij “ d´ij , and

w
ω

i
lb

i “

$

&

%

w`i if i “ i

w´i otherwise
.

The following lemma shows that the optimal value of the deterministic PCP associated with
scenario ωi

lb provides a lower bound on R˚
ωipyq

.

Lemma 3.1 For any i P V and y P Y, R˚
ωi

lb
ď R˚

ωipyq
.

Proof - By definition of R˚
ωi

lb
, we know that R˚

ωi
lb
ď Rpωi

lb, y˚pωipyqqq. Moreover, since the only

difference between scenarios ωipyq and ωi
lb is a reduction of the distances Rpωi

lb, y˚pωipyqqq ď
R˚

ωipyq
. ˝

Note that unlike tωipyquiPV , scenarios tωi
lbuiPV do not depend on any feasible solution y P

Ω. Therefore, the |V| corresponding lower bounds tR˚
ωi

lb
uiPV can all be computed in a pre-

processing step to reduce the number of deterministic p-center solved. We observed empirically
that this improvement enables a significant reduction of the solution time.

3.1.5 Computational results

We start by comparing the five formulations of the deterministic pPCPq in Table 3.2 on instances
from the ORLIB [15]. We can see that pF1q is never able to solve optimally any instance within
the time limit of 7200 seconds. For the other formulations, the results vary from one instance to
another but in average pF3q is the slowest and pF4q the fastest. We will see that the opposite is
true for the resolution of the robust problem.

To create instances of pRPCPq, we first obtain nominal distances tdijupi,jqPVˆU by randomly gen-
erating two-dimensional coordinates for the clients and the sites, and nominal clients weights
twiuiPV randomly taken in r1000, 2000s. The box uncertainty set is parameterized by α

ij
1 and αi

2
randomly generated in either r0.1, 0.3s, r0.4, 0.6s, or r0.7, 0.9s for each i P V and each j P U. In a
scenario, the distance between client i P V and site j P U is in rdij; dijp1` α1qs, while the weight

20

Instance Time (s)

Name |V| “ |U| p F1 F2 F3 F4 F5

pmed35 800 5 TL 2116 262 129 201

pmed36 800 10 TL 4243 4889 1875 314

pmed37 800 80 TL 1681 3922 1595 3251

pmed38 900 5 TL 89 1235 183 609

pmed39 900 10 TL 1932 521 1687 1932

pmed40 900 90 TL 1419 6397 1570 2341

Average TL 1913 2871 1173 1441

Table 3.2. Performance comparison of the pPCPq formulations. Symbol TL indicates that the time limit
of 7200s is reached. The best result of each instance is represented in bold.

of client i is in rwip1´ α2q; wip1` α2qs. Table 3.3 presents a representative extract of our results
on pRPCPq on such instances.

Instance Time (s)

|V| “ |U| α
ij
1 , αi

2

C&CG B&C

RF1 RF2 RF3 RF4 RF5 RF3 RF5

15 P[0.1, 0.3] 0.7 0.7 0.4 15,5 0.5 0.4 0.4

15 P[0.4, 0.6] 3.6 5.1 0.8 59.7 1.0 0.7 0.5

15 P[0.7, 0.9] 19.6 14.4 1.5 200.3 2.0 1.0 1.0

25 P[0.1, 0.3] 6.7 4.7 0.9 157.3 1.7 1.1 0.7

25 P[0.4, 0.6] 18.6 27.3 6.3 TL 5.5 3.2 2.0

25 P[0.7, 0.9] 305.8 94.8 14.6 TL 17.9 3.9 4.1

40 P[0.1, 0.3] 213.1 TL 20.6 TL 22.7 9.4 8.5

40 P[0.4, 0.6] TL TL 389.7 TL 161.7 26.9 18.1

40 P[0.7, 0.9] TL TL TL TL TL 71.2 74.9

Table 3.3. Results of C&CG and B&C algorithms on randomly generated instances for pRPCPq with
p “ 3. Symbol TL indicates that the time limit of 600s is reached.

We first note that the difficulty of the problem increases with the bounds on the uncertain pa-
rameters tαij

1 upi,jqPVˆU and tαi
2uiPV . Then, we can see that the C&CG algorithms are significantly

slower than the B&C algorithms. Even though formulation pF3q is one of the least efficient to
solve the deterministic pPCPq, the branch-and-cut based on pRF3q is the fastest to solve pRPCPq.

In this section we have seen how to model and solve a specific robust problem in order to obtain
a solution which cost is minimal in the worst-case scenario. In the next section, we present a
more general robust framework in which we are not only interested in the cost of the solution
but also on the number of structural modifications that will be required to make the solution
feasible if the scenarios occur.

3.2 A new framework for structurally robust solutions

Liebchen et al. [78] introduced a general two-stage framework, called recoverable robustness, in
which a nominal solution xnom and a recovery algorithm A are determined. In this framework,
the nominal objective (i.e., the objective of the deterministic problem) is optimized and once un-
certain scenario ω is revealed, applying A on xnom must enable to obtain a recovered solution xω

(i.e., a solution feasible for scenario ω). The cost incurred when adapting the solution xnom to
a scenario is called the recovery cost. This cost can correspond to a deterioration of the nominal
objective (e.g., the financial cost of adding or delaying trains) or to potential risks related to

21

a change of solution (e.g., customers missing a train which platform is modified or potential
miscommunications to implement the unanticipated changes).

We consider a similar framework and propose for the first time to minimize the recovery cost
that we model by a distance between x and xω. This is motivated by the fact that in many ap-
plications, once the uncertainty is revealed, it can be more important for xω to be as structurally
similar as possible to xnom than to minimize its nominal objective value. This for example oc-
curs when the nominal solution is implemented on a regular basis – to avoid human errors due
to habit – or when the uncertainty is revealed late – since there simply may not be not enough
time to make a lot of modifications. Our approach consists in solving a robust problem called
the proactive problem. We also study the reactive problem which consists in adapting a solution to
a scenario.

This work has been realized in collaboration with Sourour Elloumi [P2] and is inspired from the
PhD thesis of Rémi Lucas [81], [P14] at SNCF that was also co-supervised by Francois Ramond.
Our main contributions are:

• the definition of the nominal, the reactive and the proactive problems;

• the characterization of the complexity of the reactive and the proactive problems for two
different solution distances and two robust flow problems;

• the identification of a class of proactive problems for which considering a discrete set of
uncertain scenarios Ω is equivalent to considering its convex hull convpΩq;

• a case study on a railroad planning problem in which we compare the proactive approach
to two other approaches from the literature: the anchored approach and the k-distance
approach.

3.2.1 Problems definition

We consider an optimization problem in which the set of feasible solutions depends on uncer-
tain parameters that can take any value in an uncertainty set Ω. Consequently, a solution is
generally not feasible for all scenarios and may require to be adapted once the uncertainty is re-
vealed. In the deterministic version pPq of this optimization problem, called the nominal problem,
the uncertain parameters take their nominal value ωnom:

pPq

$

&

%

min f pxq

s.t. x P Xpωnomq

where Xpωnomq is the feasibility set associated with parameters ωnom. The objective function
f : Rn Ñ R is called the nominal objective.

We model the uncertainty by a discrete set of scenarios that may occur Ω “ tωiu
|Ω|
i“1. To each

scenario ωi P Ω is associated its feasibility set Xpωiq. Both feasibility sets Xpωnomq and Xpωiq

can be any subsets of Rn and they are thus not restricted to linear constraints. Each scenario
in Ω corresponds to a possible realization of the uncertainty (e.g., changes in the passenger
demands, unavailability of resources, ...).

In this work we consider robust flow problems which can be modeled as MILPs. To represent
uncertain flow demands or capacities on the arcs of a graph, we consider constraints with un-
certain right-hand side coefficients. In that context, a scenario ω is a vector of Rm which directly
corresponds to the value of these right-hand side coefficients: Xpωq “ tx P Zn1 ˆRn2 | Ax ď ωu.

We now introduce two problems that represent two possible approaches to handle the uncer-
tainty. In the reactive problem, the uncertainty has not been anticipated and once scenario ω is
revealed, the initially planned solution xnom must be adapted into a reactive solution xr feasible
for scenario ω (i.e., xr P Xpωq). In contrast, the proactive problem is a robust approach in which a
nominal solution and a recovery solution for each scenario in Ω are computed a priori.

22

Reactive robust solutions

We suppose that the implementation of a solution xnom of the nominal problem pPq is planned
and that scenario ω P Ω occurs at operating time (i.e., a few days or hours before its realization).
To cause as little disruption as possible, the reactive problem provides a reactive solution xr P Xpωq
which distance to xnom is minimal:

Prpω, xnomq

$

&

%

min dpxr, xnomq

s.t. xr P Xpωq

where d : Rn ˆRn Ñ R is a solution distance that models the recovery cost between xr and
xnom. The reactive problem Prpω, xnomq is only considered once the uncertainty is revealed.
We now introduce the proactive problem which allows further minimize the recovery cost by
anticipating the uncertainties.

Proactive robust solutions

A reactive solution xr may have a high nominal objective value f pxrq as f is not taken into
account in the reactive problem. Furthermore, the recovery cost may also be high as it has not
been anticipated. To address these issues, we introduce the two-stage proactive problem whose
variables are a proactive solution xp of the nominal problem, set in the first stage, and a recovery
solution xi for each scenario ωi P Ω, set in the second stage.

PppΩ, c˚q

$

&

%

min
xpPXpωnomq

max
ωiPΩ

min
xiPXpωiq

dpxp, xiq p3.14q

s.t. f pxpq “ c˚ p3.15q

where c˚ is the optimal value of the nominal problem pPq.

This problem minimizes the maximal recovery cost over all the scenarios while ensuring that
xp is feasible for pPq and that each xi is feasible for scenario ωi. Constraint p3.15q ensures that
the nominal objective value of xp is equal to c˚. Consequently, xp is an optimal solution of the
nominal problem which additionally minimizes the maximal recovery cost over Ω.

Both the reactive and the proactive problems require the definition of a solution distance d. We
now present the two distances that we considered.

The first one corresponds to the `1 norm that we call the distance in values.

Definition 3.3 The distance in values between two solutions x1 P Rn and x2 P Rn is

dvalpx1, x2q “

n
ÿ

j“1

|x1
j ´ x2

j |.

Depending on the context, dval is not necessarily the most relevant distance. In rail planning, for
example, increasing the number of cars in an existing train by one is much less expensive than
planning a new train with only one car. This is because creating a train requires checking the
availability of a locomotive and agents as well as the compatibility of the new train’s schedule
with that of other trains. Thus, we also introduce a distance in structure. Let 1b be equal to 1 if
and only if condition b is true.

Definition 3.4 The distance in structure between two solutions x1 P Rn and x2 P Rn is

dstructpx1, x2q

n
ÿ

j“1

|1x1
ją0 ´ 1x2

ją0|.

23

3.2.2 Complexity results

Our main contribution is the characterization of the complexity of reactive and proactive prob-
lems for both distances dval and dstruct for two robust flow problems which deterministic ver-
sions are polynomial. These two robust problems are detailed in Appendix D.

Theorem 3.2 For both the min-cost flow problem with uncertain demands and the max-flow problem
with uncertain capacities:

• the proactive problem with distance dval is strongly NP-hard;

• the reactive problem with distance dval is polynomial;

• the proactive problem with distance dstruct is strongly NP-hard even with 1 scenario;

• the reactive problem with distance dstruct is strongly NP-hard.

Sketch of proof - For each of the six problems proved to be NP-hard, we determine a distinct
polynomial-time reduction from a known NP-hard problem.

To prove that the complexity of the two reactive problems with distance dval is polynomial, we
show that they both correspond to a convex cost flow problem which complexity is known to
be polynomial [5]. ˝

3.2.3 Equivalence on optimization over the discrete set of scenarios set and
its convex hull

Let PpΩq be a robust problem to which is associated the uncertainty set Ω and let vpPpΩqq be
its optimal value. For many robust optimization problems it has been proved that considering
a discrete set of uncertain scenarios Ω is equivalent to considering its convex hull (i.e., that
vpPpΩqq “ vpPpconvpΩqq) [11, 27, 93]. Such results can make solving PpconvpΩqq easier by
restricting the set of scenarios considered during the resolution.

We first prove that this result holds for a large class of proactive problems P0.

Proposition 3.1 Let P0 be the set of proactive problems in which piq the distance d is convex, and piiq
the feasibility set of any scenario ω P Rm is a convex set defined as Xpωq “ tx P Rn | hpxq ď ωu, where
h : Rn Ñ Rm is a convex function. It holds that vpP0pΩ, c˚qq “ vpP0pconvpΩq, c˚qq for all P0 P P0
and all discrete uncertainty sets Ω Ă Rm.

Sketch of proof - We first show that the proactive problem can be rewritten as follows:

P0pΩ, c˚q

$

&

%

min
xpPXpωnomq

max
ωiPΩ

gxppωiq.

s.t. f pxpq “ c˚

with gxp : ω ÞÑ min
xPXpωq

dpxp, xq the function which associates to any scenario ω P convpΩq the

distance between xp and its closest solution in Xpωq.

We then prove that gxp is convex. Finally, since convpΩq is a compact set, the convexity of gxp

ensures that it reaches a maximum on one of its extreme points which, by definition, are all
included in Ω. ˝

Note that P0 includes in particular proactive problems with distance dval in which the feasibility
set Xpωq of a scenario ω P Ω is defined by linear constraints with uncertain right-hand sides.

We now consider three different classes of proactive problems: piq P1 is the same as P0 but solu-
tions x are additionally imposed to be integers, piiq P2 is the same as P0 except that the distance
d is no longer convex, and piiiq P3 is the same as P0 but the the feasibility sets are polyhedrons
with an uncertain constraint matrix. More precisely, in P3, the scenarios are matrices in Rnˆm

and the feasibility sets are defined by X : ω ÞÑ tx P Rn | ωx ď buwith b P Rm. For each of these
classes derived from P0 we show that the results in Proposition 3.1 does not hold anymore.

24

Proposition 3.2 In each set P1, P2, and P3 there exists an instance P and a discrete uncertainty set Ω,
such that vpPpΩ, c˚qq ă vpPpconvpΩq, c˚qq.

Sketch of proof - For each class, we construct an instance P and an uncertainty set reduced to
two scenarios: Ω “ tω1, ω2u. We then prove that vpPptω1, ω2u, c˚qq ă vpPpt 1

2 ω1 `
1
2 ω2u, c˚qq ˝

3.2.4 Computational results

In our experiments we design a case study based on the Line Optimization Problem (LOP)
which occurs in railway systems with periodic timetables [34,61]. In this problem a line is a path
from a departure station to an arrival station with stops in intermediary stations. The objective
is to determine which lines to open and to fix their frequencies in order to cover passenger
demands while minimizing the costs.

We use this case study to compare the proactive problem with two approaches from the lit-
erature: the anchored approach and the k-distance approach. The first approach consists in
bounding the nominal objective and maximizing the weights of the anchored variables in the
solution [20]. A variable is said to be anchored if its value can not be modified once the un-
certainty is revealed. This objective can be viewed as a way to limit the recovery cost. The
authors considered a scheduling problem with uncertain processing times and show that max-
imizing the weight of the anchored jobs is polynomial for the box uncertainty set. It is however
NP-hard for both the budgeted and the polytope uncertainty sets.

The k-distance approach was introduced and applied to shortest path problems in [33]. In this
approach, the recovery actions are limited since at most k new arcs can be used once the uncer-
tainty is revealed. The authors showed that the problem is NP-hard for three distinct uncer-
tainty sets.

For each approach, we consider a discrete uncertainty set Ω and show that the corresponding
robust problem can be modeled as a MILP. Similarly to the proactive approach, we fix in the
anchored approach the nominal objective of the nominal solution to c˚ in order to ease the
comparison. The value c˚ is obtained by the resolution a priori of the nominal problem pPq.

A representative extract of the numerical results obtained for the case study are presented in
Table 3.4. Ten scenarios have been generated and three instances have been obtained by consid-
ering the first 2, the first 6, and all 10 scenarios. The number of scenarios is reported in the first
column. The k-distance approach requires to fix the value of parameter k P N which represents
the maximal number of differences between the nominal solution and any scenario solution.
Since there is no a priori relevant choice for this parameter we set its value to 0, 1, 2, 4 and 10.
Consequently, seven lines are associated to each instance, one for the proactive approach, one
for the anchored approach, and five for the k-distance approach.

The nominal objective is reported in the third column. Since its optimality is imposed by the
proactive and the anchored approach, it is equal to c˚ “ 81742 regardless of the number of sce-
narios. This objective is larger for the k-distance approach whenever k is small. This highlights
a drawback of the k-distance approach which does not allow to constrain the nominal objective
of the nominal solution. In other applications, a low value of k could even lead to infeasibilities.
Each approach provides a nominal solution as well as a one solution for each considered sce-
nario. From these solutions we deduce the value of the nominal objective, the distance dval and
the number of anchored lines. Note that among all solutions with an optimal nominal objective
of 81742, the proactive approach returns one with an optimal value dval (e.g., 50 for |Ω| “ 2) and
the anchored approach returns one with an optimal number of anchored lines (200 for |Ω| “ 2q.
For small values of k, the k-distance is only to improve dval and the number of anchored jobs
but at the cost of the nominal objective. For example when no difference is allowed between the
nominal and the scenario solutions, all the 210 lines are anchored and the distance dval is null.
However, we observe a quick deterioration of these two objectives when k increases showing
once again that the choice of parameter k can be challenging. Moreover, the value k is shared
by all scenarios while some of them may require less changes than others. This may lead to less
suitable scenario solutions than necessary.

25

The proactive and the anchored approaches do not lead to the same solutions since the recovery
cost is not optimal in the anchored approach and the number of anchored lines is not optimal
in the proactive approach. These differences are increased with the number of scenarios as it
becomes harder to satisfy both objectives simultaneously. Note that the increase in dval provided
by the anchored approach is often greater than the decrease in number of variables anchored
in the proactive approach. This is due to the fact that anchoring a variable is quite constraining
as it requires its value to be identical in the nominal solution and in all the scenario solutions.
The advantage is that it guarantees that parts of the nominal solution will not be disrupted.
However, this comes at a price in terms of flexibility which is reflected by an increase of the
recovery costs dval .

In most cases, resolutions are completed within seconds. However, we notice that the com-
putation time increases with the number of scenarios and even becomes prohibitive for the
k-distance approach. For example, for k “ 2 more than 39 hours were necessary.

|Ω| Method
Nominal

dval
Number of

Time (s)
objective anchored lines

2

Proactive 81742 50 192 (-4%) 9

Anchored 81742 78 (+56%) 200 18

0-distance 89028 (+9%) 0 (-100%) 210 (+5%) 0

2-distance 84740 (+4%) 19 (-62%) 206 (+3%) 8

4-distance 82156 (+1%) 43 (-14%) 202 (+1%) 7

10-distance 81742 96 (+92%) 194 (-3%) 3

6

Proactive 81742 120 185 (-7%) 22

Anchored 81742 189 (+58%) 199 80

0-distance 91998 (+13%) 0 (-100%) 210 (+6%) 1

2-distance 85178 (+4%) 56 (-53%) 201 (+1%) 503

4-distance 82158 (+1%) 122 (+2%) 195 (-2%) 75

10-distance 81742 248 (+107%) 170 (-15%) 18

10

Proactive 81742 196 181 (-9%) 25

Anchored 81742 327 (+67%) 198 500

0-distance 94308 (+15%) 0 (-100%) 210 (+6%) 0

2-distance 86428 (+6%) 80 (-59%) 197 (-1%) 141417

4-distance 83124 (+2%) 153 (-22%) 190 (-4%) 4718

10-distance 81742 400 (+104%) 158 (-20%) 27

Table 3.4. Results of all three robust approaches. For a given number of scenarios |Ω|, the percentage in
a cell corresponds to the relative change between the cell value and the value in bold in the same column.

26

Chapter 4

Learning from the data

The rapid growth of data science has led to the development numerous methods combining
Machine Learning (ML) and operational research (OR) that can be regrouped in two categories.

The methods in the first category aims to solve ML problems through OR approaches. This for
example includes regression problems [7, 30], dimension reduction [23], interpretable matrix
completion [26], and factor analysis [22]. In Section 4.1, we consider supervised classification
which is one of the most well-known learning task. We propose new models to improve the
solution of the optimal classification tree problem.

The second category of methods uses ML to improve the solution OR problems. Some ap-
proaches are for example dedicated to learning good feasible solutions [28,29]. Another consists
in learning when a Dantzig-Wolf decomposition should be applied and if several are possible,
which one is the best [77]. Several works have also been dedicated to learning good cuts to
add in cutting planes and branch-and-cut algorithms [92, 101]. In this context, we introduce
in Section 4.2 a reinforcement learning approach to learn how to make branching decision in a
B&B.

4.1 New strong formulations to build optimal classification trees

A supervised classification problem considers a dataset pXi, yiqiPI such that Xi “ pxi,jqjPJ P

R|J | is the features vector of data i P I and yi P K is its associated class. The objective is to
determine a classification function C : R|J | ÞÑ K, called a classifier to best predict the class of
new data from their features. To that end, the data are partitioned into two subsets: the training
set used to train the classifier and the test set used for the evaluation. The evaluation consists in
computing the percentage of exact predictions over the test set.

The work presented in this article aims to provide classifiers which both have good perfor-
mances on the training set and are interpretable. Interpretability is a concept that is increasingly
considered in supervised classification [36] which can be summarized as the ability to explain
or to present in understandable terms to a human how a classifier works [45]. There is currently
no clear metric to measure interpretability but rather a consensus on which models are (or are
not) interpretable [111]. Several reasons explain the rising interest of interpretability. For exam-
ple, in the General Data Protection Regulation (GDRP), the notion of a right to explanation was
introduced [60,107]. Interpretability may also allow users to have more confidence in the results
of a classifier which is particularly important when taking sensitive decisions (e.g. medical or
legal applications).

Interpretability and prediction performances are usually conflicting goals as the most efficient
classifiers tend to be very complex (e.g., deep neural networks). In order to both obtain inter-
pretability and good performances, we consider decision tree classifiers – which are commonly
regarded as among the most interpretable – and focus on the exact resolution of the training
problem.

27

A decision tree is an oriented binary tree T “ pN Y L, Aq which associates a split function
ft : R|J | Ñ ttrue, f alseu to each of its internal node t P N and a class k P K to each of its
leaves ` P L. A data i P I is classified by following a path from the root to a leaf. This path is
determined by applying the split functions of each internal node reached to the features vector
Xi. Data i follows the left branch of node t P N if ftpXiq is true and the right branch otherwise.
The class predicted by the classifier is the one associated with the leaf reached by data i.

The split functions are generally linear functions aᵀXi ă b with a P R|J | and b P R. When
the vectors a are restricted to be binary unit vectors, the tree is said to have axis-aligned splits.
Otherwise, we say that the splits are oblique. Since our contributions are similar for the axis-
aligned and the oblique cases, we only focus on the former in this section.

The problem of the construction of an optimal decision tree is NP-complete [69] and the most
used approaches are greedy heuristics such as CART [32]. Recently, exact approaches based on
MILP have been proposed to solve this problem [24,105]. However, these formulations quickly
become intractable with the size of the dataset. Consequently, to reduce the solution time, other
approaches consider less ambitious goals by either restricting the datasets to be binary (i.e., Xi
in t0, 1u|J | instead of R|J |) [3, 4, 41, 79] or by developing heuristics approaches [35, 48, 52].

The results presented in this section have been obtained during the PhD of Valentine Huré
which I co-supervise with Amélie Lambert [P4]. Our work focuses on improving the resolution
of the general case in which the data are not restricted to be binary and the optimality of the
solution is guaranteed. Our main contributions are:

• a quadratic formulation based on the model pTq from [24] that we linearize in two different
ways;

• an extension of the flow formulation pFbq from [3] to non-binary datasets;

• the proof that our three linear formulations have a better relaxation than that of pTq;

• an iterative algorithm to fit the parameters of our models;

• extensive experimental results in which we show the efficiency of our formulations and
of our iterative algorithm.

4.1.1 New formulations

This section presents the improvements we made to formulations pTq and pFbq. For each formu-
lation I describe its sets of variables and the key features that we improved. Due to the limited
number of pages allowed for this thesis, the constraints of the formulations are not detailed in
this section but in Appendix E.

Without loss of generality, we consider that the value of each feature belongs to r0, 1s.

Reinforcement of pTq

The first sets of variables considered in formulation pTq determine the structure of the classifier:

• binary variables ck,` is equals to 1 if and only if leaf ` P L predicts class k P K;

• variables taj,tupj,tqPJˆN and tbtutPN in r0, 1s are the coefficients of the internal nodes split
functions;

• binary variable dt is equal to 1 if and only if internal node t P N performs a split or if leaf
t P L is reached by a data;

The path of each data i P I in the tree is followed through binary variables tzi,`upi,`qPIˆL equal
to 1 if and only if data i reaches leaf `.

Finally, the last sets of variables enable to count the number of misclassifications:

• Nk,` is equal to the number of data of class k P K reaching leaf ` P L;

• N` is equal to the number of data reaching leaf ` P L;

• L` is equal to the number of misclassifications in leaf ` P L.

28

Our reinforcement of pTq is based on a reformulation that removes these last three sets of vari-
ables.

Formulation pTq has two conflicting objectives. The first one is the minimization of the misclas-
sifications: min

ř

`PL L`. The second one is the maximization of the interpretability which cor-
responds to the minimization of the number of internal nodes performing a split: min α

ř

tPN dt,
with α ě 0 a coefficient enabling to adjust the weight given to interpretability. This second ob-
jective also enables to avoid overfitting which is a common pitfall of supervised classification
that occurs when a classifier has very good performances on the training set at the expanse of
its performances on the test set.

Formulation pTq has two more parameters: β the minimal number of data reaching a leaf – that
also enables to reduce overfitting – and δ the maximal depth of the tree which enables to fix the
number of variables and constraints in the model.

We use the following property to define a new formulation of the problem.

Property 4.1 L` “
ÿ

kPK

ÿ

iPIzIk

ck,`zi,`

Proof: L` “
ÿ

kPK
ck,`

`

N` ´ Nk,`
˘

“
ÿ

kPK
pck,`

ÿ

iPIzIk

zi,`q “
ÿ

kPK

ÿ

iPIzIk

ck,`zi,` ˝

Our quadratic formulation pQq consists in removing from pTq variables tL`u`PL and replacing
them in the objective by the quadratic expression of Property 4.1. This also enables to remove
variables tNk`upk,`qPKˆL and tN`u`PL and their corresponding constraints.

We then obtain two linear formulations by linearizing the quadratic objective of pQq in two
different ways:

• Formulation pQFq uses Fortet linearization [54] to replace each product zi,`ck,` by an aux-
iliary variable θi,k,l ;

• Formulation pQGq uses Glover’s procedure [59] to replace each product ck,`

´

ÿ

iPIzIk

zi,`

¯

by

a variable Θk,`.

We remind that vpP1q denotes the optimal value of a problem pP1q and that pP2q corresponds to
the linear relaxation of a MILP pP2q. We now compare the linear relaxation of the three linear
formulations pTq, pQGq and pQFq.

Property 4.2

(i) vpQFq ě vpQGq;

(ii) vpTq “ 0;

(iii) vpQGq ą vpTq if α ą 0.

Sketch of proof - To prove piq we consider an optimal solution of pQFq and show that we can
necessarily construct a solution of pQGqwith the same objective value.

We prove that vpTq “ 0 by exhibiting a fractional solution of pTq in which all variables in tL`u`PL
and in tdtutPN are equal to 0.

To prove piiiq we show that a solution of pQGq with an objective value of 0 would necessarily
be infeasible. ˝

We see in Section 4.1.3 that the numerical results reflect the results in this property: pTq leads to
the largest solution time and pQFq to the smallest.

29

Generalization of pFbq to non-binary datasets

Formulation pFbq considers two additional nodes on top of N YL: a source s and a think w. In
this formulation, a binary flow is associated to each data from s to w which value is 1 if and only
if the data is correctly classified.

On top of variables tajtupj,tqPJYN from pTq, it also considers:

• binary variable ui
t1,t2

equal to 1 if and only if data i is correctly classified and if its flow
goes through the arc pt1, t2q P A;

• binary variable gk,t equal to 1 if and only if node t P N YL predicts class k P K.

This last set of variables plays the same role as variables tck,tupk,tqPKYL of pTq. The only differ-
ence is that they are also indexed on N since in the flow formulation, any node can predict a
class.

Since pFbq is only able to handle binary datasets, the values of variables tajtujPJ are sufficient to
determine the path of the data at internal node t P N . Indeed, if ajt “ 1, a data i P I reaching
node t P N , goes to the left if xij “ 0 and to the left if xij “ 1. To take into account non-
binary datasets, we adapt formulation pFbq into formulation pFq by adding the variables tbtutPN
considered in pTq and by adapting the constraints ensuring that the paths of the data in the tree
are coherent.

We now prove that pTq and pFq have the same optimal objective values.

Property 4.3 If β “ 0, vpTq “ vpFq.

Sketch of proof - We show that from any optimal solution of pTq we can build a solution of
pFq with the same objective value and vice-versa. Note that due to the differences in terms of
variables and constraints considered in these two formulations, the construction of the solutions
and the satisfaction of the constraints are significantly harder than in Property 4.2 ˝

We then compare their linear relaxations.

Property 4.4 If α ą 0, β ą 0, and |K| ą 1, then vpFq ą vpTq.

Sketch of proof - Similarly to the proof of Property 4.2, we show that there is no feasible solution
of pFqwith an objective value of 0. ˝

Once again, this is reflected in the numerical results which are better for pFq than for pTq. A
similar result is also obtained in the case of oblique splits.

4.1.2 Parameters fitting algorithm

Our formulations take the three following parameters as an input: the weight of the second
objective α, the minimal number of data in a leaf β and the maximal depth of the tree δ. A fitting
algorithm called TreeTraining was proposed in [24] to fit the value of these parameters. In
this context, the data are split in 3 sets: the training set, the test set and the validation set.
The formulation considered is then iteratively solved on the training set in order to obtain one
classification tree for different values of the parameters. Afterwards, the trees that are Pareto-
dominated are removed. Finally, one of the remaining trees with the best performances on the
validation set is selected. Since parameter α is continuous, the algorithm can not iterate on all
its possible values. To overcome this, the authors remove the second objective and iterate on
the possible values of a parameter C P Z` that bounds the total number of internal nodes that
perform a split.

This fitting algorithm can take time as it requires at each step to solve a MILP. To reduce the
number of MILPs solved, we observe that the misclassifications of optimal classification trees
is a decreasing piecewise constant function of C. Hence, it is not necessary to test each possible
value of parameter C to obtain all the non-Pareto-dominated solutions. To reduce the number
of iterations, we define a new fitting algorithm named CompactTreeTraining. It iterates on
the values of C in decreasing order and keep in the model the second objective with a value α

30

low enough to ensure that an optimal number of misclassifications is obtained. Consequently,
among all solutions that minimize the misclassifications, we obtain one that additionally mini-
mize the number of splits. At the next iteration, the value of C is set to

ř

tPN d˚t ´ 1 with d˚t the
value of variable dt for t P N in the last computed tree.

We see in the numerical results that this procedure enables to significantly reduce the number
of iterations of the algorithm.

4.1.3 Computational results

Formulations comparison

We first compare the CPU times of the direct submission to the Gurobi solver of the formula-
tions pTq, pQq, pQFq, pQGq, and pFq. We run our experiments on 7 different training sets for each
of the following classical datasets: Blood donation, Breast cancer, Car evaluation, Dermatology,
Iris, Tic tac toe and Wine whose characteristics are described in Table 4.1. We set parameters to
the following values: depths δ P t2, 3, 4u, and β “ 0.

We present in Figure 4.1 the performance profile [44] of the CPU time of the considered for-
mulations. Each curve corresponds to a formulation, where each point of a curve gives, for a
given factor τ, the percentage of instances whose CPU time was at most τ times greater than
the minimal CPU time within the considered formulations. In particular, for τ “ 1, we have the
proportion of instances on which the formulation was the best on the criterion.

Figure 4.1. Performance Profile of CPU Times over the 105 considered instances with a time limit of one
hour.

We observe that formulation pTq is the slowest followed by pQGq. Formulations pQFq and pQq
are generally faster than pFqwhich nevertheless solves the most instances to optimality.

In conclusion, the linearization pQGq is not a clear improvement over pTq. Formulations pQq,
pQFq and pFq significantly outperform pTq in terms of CPU times. Given, the similar perfor-
mances of pQq and pQFq we assume that Gurobi uses Fortet’s linearization. Consequently, we
only focus in the following on formulations pQFq and pFq.

Fitting algorithms comparison

We run our experiments on all the datasets whose characteristics are summed up in Table 4.1.
For each dataset, we consider the 5 distinct partitions of the data. A partition is described by
a training set, a validation set and a test set representing 50%, 25% and 25% of the original
datasets, respectively. As in [24], we set the time limit to 1800 seconds.

We start with a comparison of the CPU times and of the number of iterations of algorithm
TreeTraining run with pTq, and of our new algorithm CompactTreeTraining run with
pQFq and pFq. In Figure 4.2 we plot the ratios of CPU time (in blue) and of the number of itera-
tions (in red) for pQFq and pFq compared to pTq for depth δ P t2, 3, 4u. More precisely, each blue

31

Dataset |I | |J | |K|

Balance scale 625 4 3

Bank marketing 10% 4521 51 2

Car evaluation 1728 6 4

Ionosphere 351 34 2

Iris 150 4 3

Monk1 124 6 2

Monk2 169 6 2

Monk3 122 6 2

Pima Indians diabetes 1151 19 2

Qsar biodegradation 1055 41 2

Seismic bumps 2584 18 2

Dataset |I | |J | |K|

Spambase 4601 57 2

Statlog satellite 4435 36 7

Tic tac toe 958 18 2

Wine 178 13 3

Blood transfusion 748 4 2

Breast cancer 683 9 2

Dermatology 358 34 6

Ecoli 336 7 8

German 1000 24 2

Haberman 306 3 2

Seeds 210 6 3

Table 4.1. Datasets considered.

point corresponds to CPUppQFq or pFqq
CPUppTqq for one dataset. Hence, if a point has a value smaller than

1 it means that our formulation outperforms pTq. We observe that CompactTreeTraining al-
ways reduces the number of iterations in comparison to TreeTraining. Moreover, it is often
faster, and the reduction of CPU times grows with the depth of the tree. This speed-up is also
due to the fact that, at each iteration pQFq and pFq are faster to solve than pTq.

Figure 4.2. Ratio of CPU times in blue and ratio of number of iterations in red for
CompactTreeTraining with pQFq and pFq compared to TreeTraining with pTq.

4.2 A reinforcement learning approach to learn how to branch

At each non-pruned node of a B&B tree considered, a branching strategy is used to determine on
which integer variable the branching will be performed. Various studies suggest this strategy
plays a crucial, if not the most important, role in the building of B&B trees [2,84]. Due to a lack of
mathematical understanding of the dynamic nature of such strategies, state-of-the-art solvers
use heuristically designed policies, empirically tuned on classic benchmarks from literature
(e.g. [76]). The plethora of existing heuristics (see [88] for a survey) reflects the difficulty of the
task, and their efficiency heavily depends on the problem to be solved. For this reason, the

32

use of Machine Learning has been a growing trend over the past few years in the design of the
aforementioned policies [21].

When learning strategies in a B&B algorithm, the majority of the literature approaches opt for
either imitating [58, 66, 75, 109, 110] or arbitrating between heuristics [12, 42]. In this section, we
focus on learning oracle policies, i.e. optimal policies with respect to the objective of minimizing
the B&B tree size.

The results presented in this section have been obtained during the PhD thesis of Marc Etheve [50],
[P13] which was co-supervised by Safia Kedad-Sidhoum as well as two supervisors from EDF:
Côme Bissuel and Olivier Juan. The main contributions are:

• the definition of a reinforcement learning framework to learn a B&B branching strategy;

• the definition of a transition function that enables to take into account the structure of the
tree;

• the proof that using this transition function and a specific cost model with a dynamic
programming approach leads to an oracle strategy;

• the definition of a heuristic Q-learning approach which leads in practice to good results.

4.2.1 Problem definition

Let Π be the set of branching strategies. Our objective is to find a branching strategy called
oracle strategy that minimizes

min
πPΠ

Ep„L r|T πppq|s (4.1)

where Tπppq refers to the tree produced when using strategy π on instance p drawn from a
distribution L. In this work L corresponds to similar MILPs that EDF has to solve on a regular
basis. For example, we consider microgrid energy production problems with fixed production
units in which only the gas prices and the clients demands vary from one instance to another.

Supervised learning methods do not appear relevant to solve 4.1 as they require labeled data.
Indeed, labeling data is not straightforward in this context as it is hard to evaluate the impact
of a single branching decision on the size of the B&B tree.

Consequently, we consider Reinforcement Learning (RL) which is an approach dedicated to
finding good sequential control strategies that does not require labeled data. Instead policies
are learned through trials and errors in order to minimize a cost. This approach emerged in
the late 1980s especially with the works of Richard Sutton [99] and Chris Watkins [108] and has
been since then a really active and prolific field of research, with many applications in various
domains such as games, robotics, or finance.

An RL system is defined by an agent that is in a state of an environment and that must choose an
action to perform. At time t, applying action at in state st leads to a new state st`1 through a
transition at the price of a cost cpst, atq.

The choice of the actions taken by the agent is made by a policy πt such that πtpa|sq is the
probability of taking action a at state s. RL often assumes the environment to be markovian
which gives rise to the notion of Markov Decision Process (MDP) ă S ,A, T, c, γ ą. In the
context of our application:

• a state s P S corresponds to all the information available when taking a branching deci-
sion (e.g., the previous branching decisions, the best feasible solution, ...). Each state s is
associated to a B&B node denoted by ξpsq;

• selecting an action a P A at a state s corresponds to selecting the variable on which to
branch at node ξpsq. Thus, the set of actions A corresponds to the set of integer variables
in the model;

• we consider two transition probabilities T: trajectory-based transitions that is the standard
transition function used in RL and a new tree-based transitions that takes into account the
structure of the tree;

33

• we consider a unitary cost model c (i.e., each node created leads to a cost of 1) and show
that it provides better results than considering standard heuristic costs such as strong
branching or most fractional;

• the discount factor γ P r0, 1s is used to give a greater weight to the cost of the closest future
states when assessing the quality of an action.

Another important strategy in the B&B algorithm is the node selection strategy that determines
which is the next open node considered after branching. We make the simplifying assumption
that this strategy is deterministic (i.e., that taking action a P A at state s P S always lead to the
same subsequent state).

Hypothesis 1 The node selection strategy of the B&B is deterministic.

Note that this assumption is not always guaranteed in modern solvers since we do not neces-
sarily have access to all the data they use to select the next visited node. Moreover, their node
selection strategy could also rely on non-deterministic heuristics.

We now define the transition function considered in classic RL tasks that associates to a pair
(state, action) the next visited state.

Definition 4.1 The trajectory-based transition function is defined as Tpst, atq “ st`1.

Note that the B&B node ξpst`1q selected by the node selection strategy can be any open node
in the B&B tree. Thus, it does not necessarily correspond to one of the two nodes created when
branching on node ξpstq.

We focus on branching policies of the form

πpsq “ argminaPAQπps, aq (4.2)

with Qπ the discounted sum of costs occurring in state-action pairs visited when applying strat-
egy π from ps, aq:

Qπ
γ ps, aq “

$

&

%

1 if ξpsq is a leaf of the B&B tree

1` γQπ
γ pTps, aq, πpTps, aqqq otherwise

(4.3)

To sum up, Qπ
γ ps, aq enables to evaluate the cost of taking action a at state s and we consider

policies that select the action associated to the lowest possible cost.

We define the value function associated to Qπ
γ as Vπ

γ psq “ Qπ
γ ps, πpsqq.

The objective of our RL problem consists in identifying an optimal policy π˚ with respect to this
value function: Vπ˚

γ “ minπPΠ Vπ
γ psq.

4.2.2 Exact solution

It is important to note that an optimal policy is not necessarily an oracle policy since the former
minimizes a value function which does not necessarily correspond to minimizing the size of
the tree. This is particularly the case if we consider a cost model c based on classical branch-
ing heuristics such as most fractional or strong branching [6]. That is the reason why in the
following we consider a unit cost model.

We first show that the trajectory-based transition function ensures that an optimal policy is an
oracle policy.

Property 4.5 With trajectory-based transitions and the unit cost model, a policy is optimal for the value
function Vπ

γ if and only if it is an oracle strategy.

34

Sketch of proof - We first show that for γ “ 1, the size of the tree rooted at a given state is equal
to its value function.

We then prove that this remains true for any γ P r0, 1q by showing that for any two policies π1
and π2, Vπ1

1 psq ď Vπ2
1 psq is equivalent to Vπ1

γ psq ď Vπ2
γ psq. Thus, an optimal policy for γ “ 1 is

also optimal for any γ P r0, 1s. ˝

Different exact methods have been introduced to solve RL. The dynamic programming ap-
proach called value iteration is one of the most well-known (see [100] for a complete introduc-
tion).

Theorem 4.6 Value iteration with trajectory-based transitions and the unit cost model leads to an oracle
strategy.

Sketch of proof - We first show that an optimal value function satisfies a Bellman recursion
which can be turned into a dynamic programming operator B.

Then, we prove that B is a contraction for the L8 norm when γ P r0, 1q (i.e., that ||BV1 ´

BV2||8 ď γ||V1 ´V2||8 for two arbitrary functions V1 and V2).

Finally we prove that there is a unique fixed point for B that is necessarily an oracle strategy. ˝

We observe empirically in Section 4.2.4 that despite these results using trajectory-based transi-
tions without taking into account the tree structure is not very efficient. Our explanation for
this failure is that this value function is not sufficiently informative and localized. Indeed, after
branching at state s, the next visited state may correspond to a node that is not one of the two
created by this branching. Consequently, the quality of the action would be evaluated based on
the quality of nodes potentially far from ξpsq in the B&B tree which could make the learning task
harder. Consequently, it suffers from a recurrent challenge in RL called credit assignment which
corresponds to the problem of identifying and thus crediting more the important actions.

To alleviate this problem, we define a second transition function called tree-based transitions that
takes into account the structure of the tree.

Definition 4.2 The tree-based transition function is defined as Tpst, atq “ tlpst, atq, rpst, atqu with
lpst, atq (resp. rpst, atq), the states that correspond to the left (resp. right) son of the node ξpstq.

When considering tree-based transitions, the quality of an action taken at state s is only eval-
uated based on the states of the nodes in the subtree rooted in ξpsq. Thus, this value function
is less dependent on other choices made in the tree, hence more stable and informative which
may improve the credit assignment.

This transition function leads to a new definition of the Q-value function:

Qπ
γ ps, aq “ cps, aq `

ÿ

s1PDπps,aq

γdps1q´dpsqcps1, πps1qq (4.4)

where dpsq is the depth of ξpsq in the B&B tree and Dπps, aq is the set states associated to nodes
in the subtree rooted in ξpsq.

Unfortunately, we show that, unlike trajectory based transitions, an optimal strategy with tree-
based transitions is not necessarily an oracle strategy.

Proposition 4.1 An optimal policy for the value function associated to tree-based transitions is not
necessarily an oracle strategy.

Sketch of proof - We build a MILP instance in which an optimal solution can only be found
in one side of the tree. Then, we design a case where taking a detour (i.e., branching on an
unnecessary variable to find the optimum) allows to quickly obtain a strong bound. However,
if one only wants to minimize the subtree on the optimal side, this early bound is not found and
the global tree is bigger. ˝

35

Nevertheless, we prove that the equivalence between oracle and optimal strategies is satisfied
if γ “ 1 and if we consider a Depth-First Search (DFS) node selection strategy. The DFS strategy
consists in always selecting one of the deepest nodes in the tree.

Proposition 4.2 With DFS node selection strategy, the unit cost model and γ “ 1, a policy is optimal
for the value function associated to tree-based transitions if and only if it is an oracle strategy.

Sketch of proof - We prove that in DFS, minimizing the tree size is equivalent to minimizing
the sub-tree size at each state. ˝

We also prove that using a dynamic programming approach can lead to an optimal strategy.

Theorem 4.7 Value iteration with tree-based transitions leads to an optimal strategy for γ P r0, 0.5q.

Sketch of proof - The proof is similar to that of Theorem 4.6. ˝

Proposition 4.2 is only true for γ “ 1 and Theorem 4.7 is only true for γ P r0, 0.5q. Nevertheless,
we will see in the numerical experiments that tree-based transitions provide significantly better
results than trajectory-based transitions.

Unfortunately, exact methods for RL become quickly intractable with the size of the set of states
S . Thus, we cannot apply them in the context of learning a branching strategy as |S | is expo-
nential in the number of integer variables. Consequently, we opt for a heuristic method.

4.2.3 Approximate solution

When solving a RL problem heuristically, the convergence speed depends on the ability of the
learner to search efficiently the state space, which comes by estimating properly the quality of
the actions. In this context, the Q-value Qpst, aq of action a P A at state st P S is estimated by
a surrogate Q̂θpst, aq parameterized by a vector θ. The more a state-action pair is visited dur-
ing the learning, the more its estimation by the surrogate will be accurate. To converge toward
an efficient policy, a balance has to be found between exploration of new states and exploita-
tion of states with a good estimated value. This trade-off is called the exploration/exploitation
dilemma and exclusively arises in RL by opposition with other forms of learning. This can be
handled efficiently by an algorithm called DQN in which the surrogate Q̂θ is a neural network.
A synthesized version of DQN is shown in Algorithm 10 [87]. It considers M P N MILP in-
stances drawn from the considered set of instances L (Step 4). For each MILP, T P N branching
decisions are taken with the current policy. To deal with the trade-off between exploration and
exploitation, a technique called ε-greedy exploration is considered (Step 6). This technique con-
sists in selecting with probability p1´ εq the action maximizing Q̂θ . Otherwise, a random action
is selected to enable the exploration of the state-action space. The probability ε may be de-
creased over time. Considering a surrogate neural network Q̂θ can be risky since an update of θ
from a specific location in the state space may have an influence on the estimations in any other
regions. To overcome this issue, DQN uses experience replay (i.e., updating θ from samples
drawn from previously collected tuples of states, actions and costs in Step 9) and batch learning
(i.e., considering two parameters θ and θ´ such that θ´ is not updated at each iteration, see

36

Step 10).

1 Initialize θ “ θ´

2 Create an empty replay buffer B

3 for each trajectory from 1 to M do

4 Choose an initial state

5 for each element in the trajectory from 1 to T do

6 Chose an action randomly with probability ε%, otherwise chose

argmaxaPAQ̂θpst, aq

7 Add the tuple pst, a, cpst, aq, st`1q to B

8 Draw samples from B

9 Update θ using the samples drawn from B and θ´ instead of θ in the loss of the

neural network Q̂

10 θ´ Ð θ or θ´ periodically

Algorithme 1 : DQN algorithm.

4.2.4 Computational results

In order to obtain a fair comparison of the efficiency of our branching policies, we disable the
automatic cuts and the presolve of CPLEX.

The results obtained on energy production problems with the trajectory-based and the tree-
based transition functions are presented in Figure 4.3. It represents the average size of the trees
found at each step of the training. The tree-based function clearly provides better results. Note
that the tree size are still larger than the one produced by CPLEX. However, given the fact that
CPLEX branching policy has been improved across decades by numerous researchers, obtaining
such close values in a few hours of training is a satisfying result.

Figure 4.3. Training processes: comparison between tree-based transition (Uc_tree) and trajectory-
based transitions (Uc_traj) for the unitary cost model.

Fixing the value of the discount factor γ is not a trivial task. We observe empirically that low
values of γ tend to make all actions have a similar score that tends towards 1 which makes
it harder to learn the most relevant ones. On the other hand, larger values tend to make the
value function more volatile since the subtrees can be significantly larger at the root than close
to the bottom of a B&B tree. Moreover, the size of the trees can vary a lot due to the fact that
all instances are not as difficult to solve and also since the efficiency of the branching strategy
improves during training as we can see in Figure 4.3. To solve this dilemma, we introduce the
subtree cost model defined such that the cost cps, aq of taking action a P A in state s P S is equal
to the size of the subtree of root ξpsq and of a given depth h P N when action a is taken.

Table 4.2 compares the unit cost model and the subtree cost model on eight sets of energy pro-

37

Dataset
Unit cost model Subtree cost model

Train Test Train Test

1 +65% +93% +21% +38%

2 +122% +157% +61% +100%

3 +222% +233% +6% +22%

4 +602% +618% +157% +183%

5 -33% -35% +31% +36%

6 +2502% +1585% +739% +279%

7 +24% +24% +335% +32%

8 +433% +187% +45% +26%

Table 4.2. Number of nodes on train and test instances against CPLEX. The performances are displayed
in average on train instances over 25 independent training processes. The best results are in bold.

duction instances with tree-based transitions. Each value corresponds to an average percentage
of increase of the tree size compared with CPLEX. Consequently, a negative value indicates that
the method provided better average results than CPLEX. The agents are generally less efficient
on test instances than on train instances, which was expected, but do not show excessive signs
of overfitting. More importantly, we can see that the subtree cost model generally provides
significantly more efficient agents.

38

Chapter 5

Conclusions and perspectives

In this thesis I summarized my main contributions for the exact solution of combinatorial opti-
mization problems modeled as MILPs.

The results presented in Chapter 2 illustrate some typical research work that can be done to
make a combinatorial optimization problem more tractable. I address these problems by com-
bining the identification of strong formulations with theoretical results leading to efficient solu-
tion algorithms. Thus, for the K-partitioning problem, we extend one of our previous formula-
tions and prove that its linear relaxation is stronger. For the p-median problem, we implement
a Benders decomposition and show how to efficiently separate its cuts. In both problems, we
identify families of inequalities that are facet-defining and use them to design state-of-the-art
solution algorithms. Note that even if these results have been designed for a specific problem,
they may nevertheless be applied in broader contexts. For example, in [P5] we show that the
facial results obtained for the K-partitioning problem can easily be adapted when seeking at
most or at least K clusters.

Since optimal solutions of deterministic problems can be very sensitive to variations of the MILP
coefficients, we focus in Chapter 3 on handling uncertainty through robust approaches. We first
consider a two-stage robust weighted vertex p-center problem in which the uncertainty lies on
the node weights and the distances between clients and sites. We prove that considering a sub-
set of uncertain scenarios is sufficient to obtain an optimal solution and deduce from this result
two exact solution algorithms. We also use this result to model the robust problem by adapting
five formulations of the deterministic p-center problem from the literature. Secondly, we de-
fine a new generic robust framework that minimizes the structural differences of the solutions
before and after the uncertainty is revealed. We prove that all the four robust problems consid-
ered in this framework are NP-hard. Finally, we highlight the relevance of this new approach
through a case study.

To both improve the resolution and expand the scope of mixed integer linear programming,
we explore in Chapter 4 links between machine learning and operational research. We first
introduce new formulations for the problem of building optimal classification trees which linear
relaxations are stronger than the state-of-the-art MILP formulation. We also propose a new
algorithm to fit the parameters of these formulations that is twice as fast as the state-of-the-art
method. In the second part of this chapter, we propose a reinforcement learning framework
to learn how to make branching decisions that minimize the size of the B&B tree. We define a
new transition function that enables to take into account the structure of the tree and prove that
it leads to an oracle strategy when combined with a dynamic programming algorithm. Since
such algorithm is not usable in practice due to the size of the state space, we design a Q-learning
heuristic that shows promising results.

I now present my perspectives for each of these three lines of research.

39

5.1 Perspectives on the solution of hard MILPs

My first research perspective is to improve the clustering of sparse graphs into connected com-
ponents. Recent works were able to solve such problem to optimality for large graphs with
several hundred nodes [67,68]. Our extended formulation pFextq introduced in Section 2.1 could
be improved for this problem. The triangle inequalities is the largest family of constraints in
pFextq. To significantly reduce the formulation size, unnecessary triangle inequalities could be
removed similarly to [43,85,89]. To scale up, we also plan on designing a matheuristic based on
such formulation in which variables would be iteratively fixed depending on their value in an
optimal solution of the linear relaxation.

A second perspective would be to take advantage of the recent improvements in the solution of
Mixed Integer Quadratic Programs (MIQPs). Several solvers such as CPLEX or Gurobi are now
able to solve this type of problems making their resolution even more accessible. I intend to use
this opportunity to solve a drone location problem in which the objective is to cover a maximal
number of ground units. The modeling of this problem through MILPs reduces the position
at which a drone can be positioned to a discrete set which is quite restrictive. However, the
use of MIQPs allows us to make the drone locations unconstrained. Unfortunately, the MIQP
formulations lead to prohibitive solution times. Consequently, we are currently working on
an approach that combines both linear and quadratic formulations to leverage their respective
advantages.

Finally, I am currently designing a new exact iterative algorithm for the deterministic p-center
problem based on a Benders decomposition, on an initial clustering of the clients, and on an
increasingly accurate rounding of the distances between the sites and the clients. In its current
version, this algorithm already outperforms the two state of the art methods for this problem.

5.2 Perspectives on dealing with uncertainty

Among all solutions with a minimal cost, the robust approach we introduced in Section 3.2
provides one that additionally minimizes the structural modifications required once the uncer-
tainty is revealed. An interesting perspective would be to study the bi-objective optimization
problem which consists in minimizing both the cost and the number of modifications. Instead
of one unique solution, this would provide a set of non-dominated solutions which could be
very relevant in decision-making contexts.

We proved that all the problems considered within our robust framework are NP-hard even
if their deterministic counterparts are polynomial. Thus, it would be very interesting to iden-
tify problems that are polynomial. This could be achieved by considering different solution
distances or by applying the framework to other applications such as the one considered in
Chapter 2.

Finally, since a large number of robust optimization approaches have been developed and stud-
ied in the recent years, identifying the most relevant one for a specific use case can be far from
trivial. That is why in Section 3.2, we performed a comparison of three robust approaches with
similar objectives in the context of a specific railway scheduling problem. An important re-
search perspective would therefore be to generalize this work by a thorough survey of the main
existing robust approaches that would include in-depth experiments to assess their respective
advantages depending on the type of problem considered.

5.3 Perspectives on learning from the data

The formulation of Machine Learning (ML) problems through MILPs provides a double ad-
vantage. First, unlike the vast majority of optimization methods considered in ML, it enables
to obtain optimal solutions which could thus provide better performances. Nevertheless, such
MILPs must be carefully defined since optimal solutions for a performance objective on a train-
ing set is likely to produce overfitting. To avoid this, our MILPs presented in Section 4.1 have
a second objective which aims to produce classifiers that are as simple as possible. Moreover,

40

an iterative algorithm and a validation set are considered to balance these two conflicting ob-
jectives. Such mechanisms could be generalized to the modeling of other ML problems. The
second advantage provided by the use of MILPs is that they ensure the satisfaction of con-
straints that can not easily be enforced by most of the ML methods. This is for example the
case in sparse regression and sparse reduction of dimension where the number of non-zero
components in the solution is bounded [25].

However, the main limitation of the use of MILPs for ML problems is the computation time
which can be prohibitive when the size of the datasets increases. That is the reason why defin-
ing better formulations and solution algorithms, like we did in Section 4.1 to build optimal clas-
sification trees, is a promising line of research. For this same problem we are currently working
on a matheuristic based on our new formulations. To reduce the size of the MILPs solved, the
algorithm first clusters the data and create a MILP which only considers one data per cluster.
The algorithm then iteratively solves this MILP and split clusters until an optimal solution is
obtained. This idea of an optimal iterative algorithm based on an initial clustering is also lever-
aged in the algorithm I am currently developing for the p-center problem (see Section 5.1). The
preliminary results provided by these two approaches are very promising and such general
technique could be extended to other combinatorial optimization problems. This could open
an interesting line of research that both combines algorithmic and theoretical results. Indeed,
adapting this approach to other problems first requires to identify stopping conditions that can
be proved to guarantee the optimality of the algorithm. Moreover, in order to be computation-
ally efficient, the update of the clusters at each step must be carefully tailored so that they are
not too time consuming while also limiting the total number of iterations.

A second perspective I am currently working on that associates ML and mixed integer linear
programming is the robustness of neural network. This type of classifiers are currently the most
commonly used in supervised classification problems due to their accuracy. Unfortunately, they
can be very confident in their predictions even when they are wrong. This over-confidence
can be exploited to perform adversarial attacks which consist in imperceptibly perturbing data
in order to change their predicted class. This can for example consist in adding a specifically
designed sticker on a traffic sign to make it misinterpreted by self-driving cars. We are currently
working on modeling the training of robust neural networks by a min-max problem in which
the prediction error is minimized for the largest possible perturbation of the data. The design
of an efficient method for such problem would have a decisive impact on the reliability and the
trust of the users for such classifier. This would be particularly important for sensitive tasks
such as those involving human lives.

In continuation of our work presented in Section 4.2, I recently started supervising a new PhD
thesis involving the EDF company. We aim to improve the performances of branching strategies
obtained through our reinforcement learning algorithm. To achieve this, our initial focus is to
identify a more informative state representation so that situations where similar decisions need
to be made can more easily be identified. To take advantage of the expertise derived from
operational research in the pursuit of optimality in reinforcement learning, we will incorporate
domain knowledge into the learning process. Such knowledge could for example correspond to
symmetries of the solutions, links between the variables (e.g., variables representing the start-
up of a particular machine at consecutive time-steps), or the existence of dominance among the
solutions.

41

Publications

[P1] Z. Ales and S. Elloumi. Compact milp formulations for the p-center problem. In International Symposium on
Combinatorial Optimization, pages 14–25. Springer, 2018. https://hal.science/hal-03503279.

[P2] Z. Ales and S. Elloumi. Minimizing recovery cost of network optimization problems. Networks, 81(1):125–151,
2023. https://hal.science/hal-03753311.

[P3] Z. Alès, C. Engelbeen, and R. Figueiredo. Correlation clustering problem under mediation. Accepted in INFORMS
Journal on Computing, 2023. https://ensta-paris.hal.science/hal-03503061.

[P4] Z. Alès, V. Huré, and A. Lambert. New optimization models for optimal classification trees. https://hal.
science/hal-03865931, November 2022.

[P5] Z. Ales and A. Knippel. An extended edge-representative formulation for the k-partitioning problem. Electronic
Notes in Discrete Mathematics, 100(52):333–342, 2016. https://hal.science/hal-04144875.

[P6] Z. Ales and A. Knippel. The k-partitioning problem: Formulations and branch-and-cut. Networks, 76(3):323–349,
2020. https://ensta-paris.hal.science/hal-03428695.

[P7] Z. Ales, A. Knippel, and A. Pauchet. Polyhedral combinatorics of the k-partitioning problem with representative
variables. Discrete Applied Mathematics, 211:1–14, 2016. https://hal.science/hal-01759687.

[P8] Z. Ales, T. S. Nguyen, and M. Poss. Minimizing the weighted sum of completion times under processing time un-
certainty. Electronic Notes in Discrete Mathematics, 64:15–24, 2018. https://hal.science/hal-01768638.

[P9] Z. Alès, A. Pauchet, and A. Knippel. Extraction and clustering of two-dimensional dialogue patterns. International
Journal on Artificial Intelligence Tools, 27(02):1850001, 2018. https://hal.science/hal-02932003.

[P10] Z. Ales, A. Pauchet, A. Knippel, L. Vercouter, and G. Gout. Extraction de motifs dialogiques bidi-
mensionnels. Revue d’Intelligence Artificielle, 29(6):655–683, 2015. https://hal-normandie-univ.
archives-ouvertes.fr/hal-02123282.

[P11] C. Duran-Mateluna, Z. Ales, and S. Elloumi. An efficient benders decomposition for the p-median problem.
European Journal of Operational Research, 308(1):84–96, 2022. https://hal.science/hal-03450829.

[P12] C. Duran-Mateluna, Z. Ales, S. Elloumi, and N. Jorquera-Bravo. Robust milp formulations for the two-stage
weighted vertex p-center problem. Computers & Operations Research, page 106334, 2023. https://hal.
science/hal-04146260.

[P13] M. Etheve, Z. Ales, C. Bissuel, O. Juan, and S. Kedad-Sidhoum. Reinforcement learning for variable selection in
a branch and bound algorithm. In 17th International Conference on Integration of Constraint Programming,
Artificial Intelligence, and Operations Research (CPAIOR), Vienna, Austria, September 21–24, pages 176–185.
Springer, 2020. https://hal.science/hal-02987320.

[P14] R. Lucas, Z. Ales, S. Elloumi, and F. Ramond. Reducing the adaptation costs of a rolling stock schedule with adap-
tive solution: The case of demand changes. In 8th International Conference on Railway Operations Modelling
and Analysis (ICROMA), Norrköping, Sweden, June 17–20, number 69 in Linköping University Electronic
Press, pages 857–876. Linköping University Electronic Press, 2019. https://ensta-paris.hal.science/
hal-02428735.

[P15] A. Pauchet, F. Rioult, E. Chanoni, Z. Ales, and O. Serban. Interactive narration requires interaction and emotion.
In 5th International Conference on Agents and Artificial Intelligence (ICAART), Barcelona, Spain, February 15–18,
pages 527–530, 2013. https://hal.science/hal-01024388.

[P16] R. Regaieg, M. Koubàa, Z. Ales, and T. Aguili. Multi-objective optimization for vm placement in homo-
geneous and heterogeneous cloud service provider data centers. Computing, 103:1255–1279, 2021. https:
//ensta-paris.hal.science/hal-03428661.

[P17] B. F. Rosa, M. J. F. Souza, S. r. de Souza, M. F. de Franca Filho, Z. Ales, and P. Michelon. Algorithms for job schedul-
ing problems with distinct time windows and general earliness/tardiness penalties. Computers & Operations
Research, 81:203–215, 2017. https://ensta-paris.hal.science/hal-03503054.

[P18] O. Serban, AN. Bersoult, Z. Ales, E. Lebertois, E. Chanoni, F. Rioult, and A. Pauchet. Modélisation de di-
alogues pour personnage virtuel narrateur. Revue d’Intelligence Artificielle, 28(1):101–130, 2014. https:
//hal.science/hal-01024530.

42

https://hal.science/hal-03503279
https://hal.science/hal-03753311
https://ensta-paris.hal.science/hal-03503061
https://hal.science/hal-03865931
https://hal.science/hal-03865931
https://hal.science/hal-04144875
https://ensta-paris.hal.science/hal-03428695
https://hal.science/hal-01759687
https://hal.science/hal-01768638
https://hal.science/hal-02932003
https://hal-normandie-univ.archives-ouvertes.fr/hal-02123282
https://hal-normandie-univ.archives-ouvertes.fr/hal-02123282
https://hal.science/hal-03450829
https://hal.science/hal-04146260
https://hal.science/hal-04146260
https://hal.science/hal-02987320
https://ensta-paris.hal.science/hal-02428735
https://ensta-paris.hal.science/hal-02428735
https://hal.science/hal-01024388
https://ensta-paris.hal.science/hal-03428661
https://ensta-paris.hal.science/hal-03428661
https://ensta-paris.hal.science/hal-03503054
https://hal.science/hal-01024530
https://hal.science/hal-01024530

Bibliography

[1] T. Achterberg. Scip: solving constraint integer programs. Mathematical Programming Computation, 1:1–41, 2009.

[2] T. Achterberg and R. Wunderling. Mixed integer programming: Analyzing 12 years of progress. Facets of
Combinatorial Optimization, pages 449–481, 2013.

[3] S. Aghaei, A. Gomez, and P. Vayanos. Learning Optimal Classification Trees: Strong Max-Flow Formulations, May
2020. https://arxiv.org/abs/2002.09142.

[4] G. Aglin, S. Nijssen, and P. Schaus. Learning Optimal Decision Trees Using Caching Branch-and-Bound Search.
AAAI Conference on Artificial Intelligence, 34(04):3146–3153, April 2020. Number: 04.

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. Cambridge, Mass.: Alfred P. Sloan School of Manage-
ment, Massachusetts, 1988.

[6] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding cuts in the tsp (a preliminary report). Technical report,
Citeseer, 1995. https://dl.acm.org/doi/10.5555/868329.

[7] A. Atamturk and A. Gómez. Safe screening rules for l0-regression from perspective relaxations. In International
conference on machine learning, pages 421–430. PMLR, 2020.

[8] A. Atamtürk and M. Zhang. Two-stage robust network flow and design under demand uncertainty. Operations
Research, 55(4):662–673, 2007.

[9] I. Averbakh and O. Berman. Minimax regret p-center location on a network with demand uncertainty. Location
Science, 5(4):247–254, 1997.

[10] I. Averbakh and O. Oded. Algorithms for the robust 1-center problem on a tree. European Journal of Operational
Research, 123(2):292–302, 2000.

[11] J. Ayoub and M. Poss. Decomposition for adjustable robust linear optimization subject to uncertainty polytope.
Computational Management Science, 13(2):219–239, 2016.

[12] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik. Learning to branch. In International conference on machine
learning, pages 344–353. PMLR, 2018.

[13] O. Baron, J. Milner, and H. Naseraldin. Facility location: A robust optimization approach. Production and
Operations Management, 20, 09 2011.

[14] S. Basu, M. Sharma, and P. S. Ghosh. Metaheuristic applications on discrete facility location problems: a survey.
OPSEARCH, 52(3):530–561, 2015.

[15] J. E. Beasley. Or-library: Distributing test problems by electronic mail. The Journal of the Operational Research
Society, 41(11):1069–1072, 1990.

[16] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series in Applied Mathematics.
Princeton University Press, 2009.

[17] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions of uncertain linear pro-
grams. Mathematical Programming, 99(2):351–376, 2004.

[18] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations Research, 23(4):769–805,
1998.

[19] J. F. Benders. Partitioning procedures for solving mixed-variables programming problems. Numerische
mathematik, 4(1):238–252, 1962.

[20] P. Bendotti, P. Chrétienne, P. Fouilhoux, and A. Pass-Lanneau. The anchor-robust project scheduling problem.
Operations Research, 2022.

[21] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research, 290(2):405–421, 2021.

[22] D. Bertsimas, M. S. Copenhaver, and R. Mazumder. Certifiably optimal low rank factor analysis. Journal of
Machine Learning Research, 18(1):907–959, 2017.

[23] D. Bertsimas, R. Cory-Wright, and J. Pauphilet. Solving large-scale sparse pca to certifiable (near) optimality.
Journal of Machine Learning Research, 23(13):1–35, 2022.

[24] D. Bertsimas and J. Dunn. Optimal classification trees. Machine Learning, 106(7):1039–1082, July 2017.

[25] D. Bertsimas and J. Dunn. Machine learning under a modern optimization lens. Dynamic Ideas LLC Charlestown,
MA, 2019.

43

https://arxiv.org/abs/2002.09142
https://dl.acm.org/doi/10.5555/868329

[26] D. Bertsimas and M. L. Li. Interpretable matrix completion: A discrete optimization approach. INFORMS Journal
on Computing, 2023.

[27] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53, 2004.

[28] D. Bertsimas and B. Stellato. The voice of optimization. Machine Learning, 110:249–277, 2021.

[29] D. Bertsimas and B. Stellato. Online mixed-integer optimization in milliseconds. INFORMS Journal on Computing,
34(4):2229–2248, 2022.

[30] D. Bertsimas and B. Van Parys. Sparse high-dimensional regression: Exact scalable algorithms and phase transi-
tions. The Annals of Statistics, 48(1):300 – 323, 2020.

[31] P. Bonami, V. H. Nguyen, M. Klein, and M. Minoux. On the solution of a graph partitioning problem under
capacity constraints. In Combinatorial Optimization: Second International Symposium (ISCO), Athens, Greece,
April 19-21, pages 285–296. Springer, 2012.

[32] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression Trees. Taylor & Francis,
January 1984.

[33] C. Büsing. Recoverable robust shortest path problems. Networks, 59(1):181–189, 2012.

[34] M. R. Bussieck, P. Kreuzer, and U. T. Zimmermann. Optimal lines for railway systems. European Journal of
Operational Research, 96(1):54–63, 1997.

[35] M. A. Carreira-Perpinan and P. Tavallali. Alternating optimization of decision trees, with application to learning
sparse oblique trees. In Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018.

[36] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso. Machine Learning Interpretability: A Survey on Methods and
Metrics. Electronics, 8(8):832, July 2019.

[37] G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey. A canonical representation of simple plant location problems
and its applications. SIAM Journal on Algebraic Discrete Methods, 1(3):261–272, 1980.

[38] User’s manual for cplex. https://www.ibm.com/docs/en/icos/22.1.1?topic=
optimizers-users-manual-cplex. Accessed: 2023-06-01.

[39] M. Daskin. Network and discrete location: Models, algorithms and applications. Journal of the Operational
Research Society, 48, 01 1996.

[40] M. Demange, V. Gabrel, M. A. Haddad, and C. Murat. A robust p-center problem under pressure to locate shelters
in wildfire context. EURO Journal on Computational Optimization, 8:103–139, 2020.

[41] E. Demirović, A. Lukina, E. Hebrard, J. Chan, J. Bailey, C. Leckie, K. Ramamohanarao, and P. J. Stuckey. MurTree:
Optimal Decision Trees via Dynamic Programming and Search. Journal of Machine Learning Research, 23(26):1–
47, 2022.

[42] G. Di Liberto, S. Kadioglu, K. Leo, and Y. Malitsky. Dash: Dynamic approach for switching heuristics. European
Journal of Operational Research, 248(3):943–953, 2016.

[43] T. N. Dinh and M. T. Thai. Toward optimal community detection: From trees to general weighted networks.
Internet Mathematics, 11(3):181–200, 2015.

[44] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Mathematical
Programming, 91(2):201–213, January 2002.

[45] F. Doshi-Velez and B. Kim. Towards A Rigorous Science of Interpretable Machine Learning, March 2017.

[46] B. Du and H. Zhou. A robust optimization approach to the multiple allocation p-center facility location problem.
Symmetry, 10(11):588, 2018.

[47] B. Du, H. Zhou, and R. Leus. A two-stage robust model for a reliable p-center facility location problem. Applied
Mathematical Modelling, 77:99–114, 2020.

[48] J. W. Dunn. Optimal trees for prediction and prescription. Thesis, Massachusetts Institute of Technology, 2018.
Accepted: 2018-11-28T15:25:46Z.

[49] S. Elloumi. A tighter formulation of the p-median problem. Journal of Combinatorial Optimization, 19(1):69–83,
2010.

[50] M. Etheve. Solving repeated optimization problems by Machine Learning. PhD thesis, Paris, HESAM, 2021.

[51] N. Fan and P.M. Pardalos. Linear and quadratic programming approaches for the general graph partitioning
problem. Journal of Global Optimization, 48(1):57–71, 2010.

[52] M. Firat, G. Crognier, A. F. Gabor, C. A. J. Hurkens, and Y. Zhang. Column generation based heuristic for learning
classification trees. Computers & Operations Research, 116:104866, April 2020.

[53] M. Fischetti and J. Jo. Deep neural networks and mixed integer linear optimization. Constraints, 23(3):296–309,
2018.

[54] R. Fortet. L’algebre de Boole et ses applications en recherche operationnelle. Trabajos de Estadistica, 11(2):111–118,
June 1960.

[55] E. Gaar and M. Sinnl. A scaleable projection-based branch-and-cut algorithm for the p-center problem. European
Journal of Operational Research, 2022.

[56] S. García, M. Labbé, and A. Marín. Solving large p-median problems with a radius formulation. INFORMS Journal
on Computing, 23(4):546–556, 2011.

[57] M. R. Garey, R. L. Graham, and D. S. Johnson. Some np-complete geometric problems. In 8th annual ACM
symposium on Theory of computing, pages 10–22, 1976.

44

https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex

[58] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization with graph convolu-
tional neural networks. In NeurIPS, 2019.

[59] F. Glover. Improved Linear Integer Programming Formulations of Nonlinear Integer Problems. Management
Science, 22:455–460, December 1975.

[60] B. Goodman and S. Flaxman. European Union regulations on algorithmic decision-making and a "right to expla-
nation". AI Magazine, 38(3):50–57, October 2017.

[61] J. W. Goossens, S. Van Hoesel, and L. Kroon. A branch-and-cut approach for solving railway line-planning prob-
lems. Transportation Science, 38(3):379–393, 2004.

[62] P. Gupta, M. Gasse, E. Khalil, P. Mudigonda, A. Lodi, and Y. Bengio. Hybrid models for learning to branch.
Advances in neural information processing systems, 33:18087–18097, 2020.

[63] Gurobi optimization. https://www.gurobi.com/. Accessed: 2023-06-01.

[64] A. Hasani and H. Mokhtari. Redesign strategies of a comprehensive robust relief network for disaster manage-
ment. Socio-Economic Planning Sciences, 64:92–102, 2018.

[65] C. Hatice and C. T. Barbaros. Double bound method for solving the p-center location problem. Computers &
Operations Research, 40(12):2991–2999, 2013.

[66] H. He, H. Daume III, and J. M. Eisner. Learning to search in branch and bound algorithms. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 27, pages 3293–3301. Curran Associates, Inc., 2014.

[67] P. Healy, N. Jozefowiez, P. Laroche, F. Marchetti, S. Martin, and Z. Róka. A branch-and-cut algorithm for the
connected max-k-cut problem. European Journal of Operational Research, 2023.

[68] V. N. Hung, D. P. Nguyen, and M. Minoux. A model for large scale graph partitioning and efficient upper/lower
bound computation via cutting-planes. In 24th National Conference of the Société Francaise de Recherche
Opérationnelle et d’Aide à la Décision (ROADEF), Rennes, France, February 20–23, 2023.

[69] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-complete. Information Processing
Letters, 5(1):15–17, May 1976.

[70] C. Irawan and S. Salhi. Aggregation and non aggregation techniques for large facility location problems: A survey.
Yugoslav Journal of Operations Research, 25:1–1, 01 2015.

[71] O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems. ii: The p-medians. SIAM
Journal on Applied Mathematics, 37(3):539–560, 1979.

[72] R Karp. Reducibility among combinatorial problems. Complexity of Computer Computation, pages 85–104, 1972.

[73] L. Kaufman. Partitioning around medoids (program pam). Finding groups in data, 344:68–125, 1990.

[74] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell system technical
journal, 49(2):291–307, 1970.

[75] E. B. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch in mixed integer programming.
In 30th AAAI Conference on Artificial Intelligence, 2016.

[76] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna, G. Gamrath, A. M. Gleixner,
S. Heinz, et al. Miplib 2010. Mathematical Programming Computation, 3(2):103–163, 2011.

[77] M. Kruber, M. E. Lübbecke, and A. Parmentier. Learning when to use a decomposition. In 14th International
Conference on Integration of AI and OR Techniques in Constraint Programming (CPAIOR), Padua, Italy, June 5-8,
pages 202–210. Springer, 2017.

[78] C. Liebchen, M. Lübbecke, R. Möhring, and S. Stiller. The concept of recoverable robustness, linear programming
recovery, and railway applications. In R. K. Ahuja, R. H. Möhring, and C. D. Zaroliagis, editors, Robust and Online
Large-Scale Optimization: Models and Techniques for Transportation Systems, pages 1–27, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[79] J. Lin, C. Zhong, D. Hu, C. Rudin, and M. Seltzer. Generalized and Scalable Optimal Sparse Decision Trees. In
37th International Conference on Machine Learning, pages 6150–6160. PMLR, November 2020. ISSN: 2640-3498.

[80] C. C. Lu. Robust weighted vertex p-center model considering uncertain data: An application to emergency man-
agement. European Journal of Operational Research, 230(1):113–121, 2013.

[81] R. Lucas. Planification adaptative des ressources ferroviaires. PhD thesis, ENSTA Paris, 2020.

[82] J. MacQueen. Classification and analysis of multivariate observations. In 5th Berkeley Symposium on
Mathematical Statistics and Probability, pages 281–297. University of California Los Angeles LA USA, 1967.

[83] T. L. Magnanti and R. T. Wong. Accelerating benders decomposition: Algorithmic enhancement and model selec-
tion criteria. Operations Research, 29(3):464–484, 1981.

[84] A. Marcos Alvarez, Q. Louveaux, and L. Wehenkel. A supervised machine learning approach to variable branching
in branch-and-bound. Technical report, Universite de Liége, 2014. https://orbi.uliege.be/bitstream/
2268/167559/1/ecml.pdf.

[85] A. Miyauchi and N. Sukegawa. Redundant constraints in the standard formulation for the clique partitioning
problem. Optimization Letters, 9(1):199–207, 2015.

[86] N. Mladenović, J. Brimberg, P. Hansen, and J. A. Moreno-Pérez. The p-median problem: A survey of metaheuristic
approaches. European Journal of Operational Research, 2007.

[87] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529,
2015.

45

https://www.gurobi.com/
https://orbi.uliege.be/bitstream/2268/167559/1/ecml.pdf
https://orbi.uliege.be/bitstream/2268/167559/1/ecml.pdf

[88] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell. Branch-and-bound algorithms: A survey of recent
advances in searching, branching, and pruning. Discrete Optimization, 19:79–102, 2016.

[89] D. P. Nguyen, M. Minoux, V. H. Nguyen, T. H. Nguyen, and R. Sirdey. Improved compact formulations for a wide
class of graph partitioning problems in sparse graphs. Discrete Optimization, 25:175–188, 2017.

[90] J. A. Paul and X. J. Wang. Robust optimization for united states department of agriculture food aid bid allocations.
Transportation Research Part E: Logistics and Transportation Review, 82:129–146, 2015.

[91] J. A. Paul and X. J. Wang. Robust location-allocation network design for earthquake preparedness. Transportation
research part B: methodological, 119:139–155, 2019.

[92] M. B. Paulus, G. Zarpellon, A. Krause, L. Charlin, and C. Maddison. Learning to cut by looking ahead: Cutting
plane selection via imitation learning. In International conference on machine learning, pages 17584–17600. PMLR,
2022.

[93] M. Poss and C. Raack. Affine recourse for the robust network design problem: Between static and dynamic
routing. Networks, 61(2):180–198, 2013.

[94] J. Reese. Solution methods for the p-median problem: An annotated bibliography. Networks, 48(3):125–142, 2006.

[95] Gerhard Reinelt. Tsplib - a traveling salesman problem library. ORSA journal on computing, 3(4):376–384, 1991.

[96] M. G. C. Resende and R. F. Werneck. A Hybrid Heuristic for the p-Median Problem. Journal of Heuristics, 10(1):59–
88, 2004.

[97] J. B. Sheu. An emergency logistics distribution approach for quick response to urgent relief demand in disasters.
Transportation Research Part E: Logistics and Transportation Review, 43(6):687–709, 2007.

[98] A. L. Soyster. Convex programming with set-inclusive constraints and applications to inexact linear programming.
Operations Research, 21(5):1154–1157, 1973.

[99] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3:9–44, 1988.

[100] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[101] Y. Tang, S. Agrawal, and Y. Faenza. Reinforcement learning for integer programming: Learning to cut. In
International conference on machine learning, pages 9367–9376. PMLR, 2020.

[102] A. Trivedi and A. Singh. A hybrid multi-objective decision model for emergency shelter location-relocation
projects using fuzzy analytic hierarchy process and goal programming approach. International Journal of Project
Management, 35(5):827–840, 2017.

[103] A. Trivedi and A. Singh. Shelter planning for uncertain seismic hazards using multicriteria decision approach: a
case of nepal earthquake. Journal of Multi-Criteria Decision Analysis, 26(3-4):99–111, 2019.

[104] T. Tulabandhula and C. Rudin. Robust optimization using machine learning for uncertainty sets, 2014. https:
//arxiv.org/abs/1407.1097.

[105] S. Verwer and Y. Zhang. Learning Optimal Classification Trees Using a Binary Linear Program Formulation.
AAAI Conference on Artificial Intelligence, 33(01):1625–1632, July 2019. Number: 01.

[106] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.

[107] S. Wachter, B. Mittelstadt, and L. Floridi. Why a Right to Explanation of Automated Decision-Making Does Not
Exist in the General Data Protection Regulation. International Data Privacy Law, 7(2):76–99, 2017.

[108] C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, Cambride University, 1989.

[109] K. Yilmaz and N Yorke-Smith. A study of learning search approximation in mixed integer branch and bound:
Node selection in scip. AI, 2(2):150–178, 2021.

[110] Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound search trees to
learn branching policies. In AAAI Conference on Artificial Intelligence, volume 35, pages 3931–3939, 2021.

[111] J. Zhou, A. H. Gandomi, F. Chen, and A. Holzinger. Evaluating the Quality of Machine Learning Explanations:
A Survey on Methods and Metrics. Electronics, 10(5):593, March 2021.

46

https://arxiv.org/abs/1407.1097
https://arxiv.org/abs/1407.1097

Appendices

47

Appendix A

K-clustering formulations

A.1 Edge-representative formulation pFerq

In this formulation, binary variable xij is equal to 1 if and only if nodes i and j are in the same
cluster and binary variable ri is equal to 1 if and only if node i is the node of lowest index in its
cluster:

pFerq

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize
ÿ

ijPE

wijxij

subject to xij ` xik ´ xjk ď 1 i P V j, k P Vztiu, j ă k pA.1q

rj ` xij ď 1 i, j P V, i ă j pA.2q

rj `

j´1
ÿ

i“1

xij ě 1 j P V pA.3q

n
ÿ

i“1

ri “ K pA.4q

ri P r0, 1s i P V

xij P t0, 1u ij P E

.

The triangle inequalities pA.1q ensure that if node i is in the same cluster than nodes j and k,
then nodes j and k are also in the same cluster. Constraints pA.2q and pA.3q ensure that the
value of r variables are coherent with the value of the x variables. Eventually, Constraint pA.4q
enables to obtain exactly K clusters.

A.2 Node-cluster formulations

The two node-cluster formulations that we adapted to the K-clustering problem consider a max-
imal number of clusters Kmax, binary variables zk

i taking value 1 if and only if node i P V is
assigned to cluster k P t1, ..., Kmaxu and binary variables xij equal to 1 if and only if node i and j
are in the same cluster.

48

A.2.1 Formulation pFnc1q

In pFnc1q, Kmax is equal to K:

pFnc1q

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize
ÿ

ijPE

wijxij

subject to xij ` zk
i ´ zk

j ď 1 ij P E, k P t1, . . . , Kmaxu pA.5q

xij ´ zk
i ` zk

j ď 1 ij P E, k P t1, . . . , Kmaxu pA.6q

´xij ` zk
i ` zk

j ď 1 ij P E, k P t1, . . . , Kmaxu pA.7q
Kmax
ÿ

k“1

zk
i “ 1 i P V pA.8q

zk
i “ 0 k ą i, i P V, k P t1, . . . , Kmaxu pA.9q
ÿ

iPV

zk
i ě 1 k P t1, . . . , Kmaxu pA.10q

xij P t0, 1u ij P E pA.11q

zk
i P t0, 1u i P V, k P t1, . . . , Kmaxu pA.12q

.

Constraints pA.5q, pA.6q and pA.7q are similar to the triangle inequalities and ensure the link
between variables x and z. Each node i P V is in exactly one cluster thanks to Equations pA.8q.
Equations pA.9q alleviate some of the symmetry by imposing that each node i P V is not in a
cluster whose index is greater than i. Eventually, Constraints pA.10q enforce that all the clusters
are non-empty.

A.2.2 Formulation pFnc2q

In Formulation pFnc2q, Kmax is equal to |V|:

pFnc2q

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

minimize
ÿ

ijPE

wijxij

subject to pA.5q ´ pA.9q, pA.11q, pA.12q

zi
j ď zi

i i, j P V, j ą i pA.13q
ÿ

iPV

zi
i “ K pA.14q

.

In this variant, Constraints pA.13q ensure that variables zi
i is equal to 1 if and only if node i is

the lowest of its cluster. Consequently, due to Constraint pA.14q exactly K clusters are obtained.

49

Appendix B

Benders cuts separation algorithm

To separate the Benders cut in Op|U|q, we compute in a pre-processing step the distance matrix
tSi,rupi,rqPVˆt1,2,...,|U|u such that Si,r is the distance between client i P V and its rth closest site in
U. Since index k̃i corresponds to the largest index k P t1, 2, ..., Kiu such that

ř

jPU : dijďDk
i

yj ă 1,
the algorithm iteratively removes ySir

from 1 until a value of 0 or less is reached.

Data : a client i P V, distances tdijupi,jqPVˆU , p P N˚, ordered distances

tSi,rupi,rqPVˆt1,2,...,|U|u, and y the current solution of pMPq or pMPq

1 k̃i Ð 0

2 r Ð 1

3 val Ð 1´ ySir

4 while val ą 0 and r ă M do

5 if di,Sipr`1q
ą diSir then

6 k̃i Ð k̃i ` 1

7 r Ð r` 1

8 val Ð val ´ ySir

9 return k̃i

Algorithme 2 : Computation of index k̃i for a given solution y of pMPq or pMPq.

50

Appendix C

Robust weighted p-center problem

C.1 Deterministic formulations of pPCPq

Formulation pF2q associates one binary variable zk to each weighted distance in the set twidijupi,jqPVˆU [P1].
Let D0 ă D1 ă . . . ă DK be these sorted weighted distances. Variable zk is equal to 1 if and
only if the radius is greater than or equal to Dk:

pF2q

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize D0 `

K
ÿ

k“1

´

Dk ´Dk´1
¯

zk

subject to zk `
ÿ

jPU : widijăDk

yj ě 1 i P V k P t1, 2, ..., Ku | Dj P U widij “ Dk pC.1q

zk ě zk`1 k P t1, 2, . . . , K´ 1u pC.2q
ÿ

jPU

yj “ p pC.3q

yj P t0, 1u j P U

zk P t0, 1u k P t1, 2, ..., Ku

Constraints pC.1q indicate that either a client is covered by a center at a distance less than Dk, or
that the radius is at least Dk. Constraints pC.2q ensure that if the radius is at least Dk`1 then it is
necessarily at least Dk.

Formulation pF4q considers a binary variable uk for all k P t0, 1, 2, ..., Ku equal to 1 if and only if
the radius is equal to Dk [65]. The solutions of these formulations can be mapped to those of

pF2q by setting u0 “ 1´ z1, uk “ zk ´ zk`1, and zk “ 1´
K
ÿ

k“0

uk.

pF4q

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize
K
ÿ

k“0

Dkuk

subject to
ÿ

jPU : widijďDk

yj ě

k
ÿ

q“0

uq i P V k P t0, 1, ..., Ku pC.4q

K
ÿ

k“0

uk “ 1 pC.5q

ÿ

jPU

yj “ p pC.6q

yj P t0, 1u j P U

uk P t0, 1u k P t0, 1, ..., Ku

51

Constraints pC.4q play a similar role than constraints pC.1q. Constraints pC.5q ensure that the
radius is only equal to a unique distance.

Finally, Gaar and Sinnl recently presented a formulation obtained from a Benders decompo-
sition of pF1q [55] which is closely related to a formulation of the uncapacitated facility location
problem pUFLq from [37] and [83]. This formulation considers a single continuous variable r to
represent the radius.

pF5q

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

minimize r

subject to r ě widij ´
ÿ

j1PU : widij1ăwidij

pwidij ´widij1qyj1 i P V j P U pC.7q

ÿ

jPU

yj “ p pC.8q

yj P t0, 1u j P U

Constraints pC.7q ensure that the radius is at least widij if no site closer to client i is opened. If a
unique closer site j1 is opened, then r is at least widij1 .

C.2 Robust formulations of pRPCPq

We adapt pF2q, pF4q and pF5q to pRPCPq as follows:

pRF2q

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize v

subject to v ě D1
ω `

Kω
ÿ

k“2

´

Dk
ω ´Dk´1

ω

¯

zk
ω ´ R˚ω ω P Ω pC.9q

zk
ω `

ÿ

jPU : wω
i dω

ijăDk
ω

yj ě 1 ω P Ω i P V
(C.10)

k P t1, 2, ..., Kωu | Dj P U wω
i dω

ij “ Dk
ω

zk
ω ě zk`1

ω ω P Ω k P t1, 2, ..., Kω ´ 1u pC.11q
ÿ

jPU

yj “ p pC.12q

yj P t0, 1u j P U

zk
ω P t0, 1u ω P Ω k P t1, 2, ..., Kωu

pRF4q

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize v

subject to v ě
Kω
ÿ

k“1

Dk
ωuk

ω ´ R˚ω ω P Ω pC.13q

ÿ

jPU : wω
i dω

ijďDk
ω

yj ě

k
ÿ

q“1

uq
ω ω P Ω i P V k P t1, 2, ..., Kωu pC.14q

Kω
ÿ

k“1

uk
ω “ 1 ω P Ω pC.15q

ÿ

jPU

yj “ p pC.16q

yj P t0, 1u j P U

uk
ω P t0, 1u ω P Ω k P t1, 2, ..., Kωu

52

pRF5q

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

minimize v

subject to v ě wω
i dω

ij ´
ÿ

j1PU : wω
i dω

ij1ăwω
i dω

ij

pwω
i dω

ij ´wω
i dω

ij1qyj1 ´ R˚ω ω P Ω i P V j P U pC.17q

ÿ

jPU

yj “ p pC.18q

yj P t0, 1u j P U

The first difference between these robust formulations and their deterministic counterparts is
that to each scenario ω P Ω is associated a set of variables tzk

ωukPt1,2,...,Kωu
in pRF2q, and a set of

variables tuk
ωukPt1,2,...,Kωu

in pRF4q. Moreover, to minimize the regret instead of the radius, the
term R˚ω is subtracted from the right-hand side of Constraints pC.9q, pC.13q, and pC.17q.

C.3 Column and constraint generation algorithm

Our method is detailed in Algorithm 3. Formulation pRFq can be any of our five robust formu-
lations pRF1q, pRF2q, pRF3q, pRF4q, or pRF5q.

At each iteration, a solution py, vq which satisfies all the scenarios currently in Ω is obtained by
solving pRFq (Step 3). If the solution does not satisfy one of the scenarios tωipyquiPV (Step 9), the
most violated scenario is added to Ω (Step 13). When no violated scenario is found, an optimal
solution is returned.

The value of the optimal radius considering a scenario wipxq can be calculated by solving a
deterministic pPCPq (Step 7). Note that the radius associated with a feasible solution x in a
scenario wi can be obtained quickly as it only requires to determine the distance between each
client and its closest opened site in Jy (Step 8).

input : An instance and a robust formulation pRFq of pRPCPq

output : An optimal solution y and its regret v.

1 v Ð 0, Ω ÐH, isOptimal Ð f alse

2 while isOptimal = false do

3 py, vq Ð solve pRFqwith scenarios Ω

4 isOptimal Ð true

5 ω ÐH

6 for i P V do

7 R˚ Ð optimal radius of the deterministic pPCPq for scenario

ωipyq

8 R Ð radius of y in scenario ωipyq

9 if R´ R˚ ą v then

10 isOptimal Ð f alse

11 v Ð R´ R˚

12 ω Ð ωipyq

13 Ω Ð ΩY tωu

14 return y and v
Algorithme 3 : Column-and-constraint generation algorithm

53

Appendix D

Minimizing the recovery cost

D.1 Min-cost flow problems definition

The deterministic min-cost flow problem can be stated as:

MIN-COST FLOW PROBLEM

Input: A digraph G “ pV, Aq with for each arc a P A a demand ωnom
a P N, a capacity

ua P N and a unitary cost ca P R` and for each vertex v P V a node demands
bv P Z (bv ą 0 if v is a supply node, bv ă 0 if v is a demand node and bv “ 0 if v is a
transshipment node).

Output: Find an integer flow with minimal cost.

For a node v P V, let δ´pvq and δ`pvq be the set of predecessors and successors of v in G, respec-
tively. An integer flow f P N|A| is feasible for this problem if it satisfies all the arc demands and
capacities (i.e., fa P rω

nom
a , uas @a P A) and the node demands (i.e.,

ř

uPδ´pvq fuv´
ř

uPδ`pvq fvu “

bv @v P V).

We assume that the uncertainties are on the arc demands ωnom. Consequently, each scenario
ω P Ω is a vector of arc demands in N|A| and Xpωq represents the set of feasible integer flows
when the arc demands are set to ω. The corresponding reactive and proactive problems can be
stated as follows:

REACTIVE MIN-COST FLOW PROBLEM

Input: A min-cost flow problem, one of its solutions f nom P Xpωnomq, a distance
d : N|A| ˆN|A| Ñ R` and arc demands ω P N|A|.

Output: Find a reactive flow f r P Xpωqwhich minimizes dp f nom, f rq.

PROACTIVE MIN-COST FLOW PROBLEM

Input: A min-cost flow problem with demands ωnom P N|A|, its optimal flow value c˚,
a distance d : N|A| ˆN|A| Ñ R`, and a discrete set of scenarios Ω Ă N|A|.

Output: Find a proactive flow f p P Xpωnomq and a flow f ω P Xpωq for each scenario ω P Ω
which minimize

ř

ωPΩ dp f p, f ωq.

54

D.2 Max-flow problems definitions

The discrete max-flow problem can be stated as:

MAX-FLOW PROBLEM

Input: A digraph G “ pV, Aq with a source s P V, a sink t P V and capacities ωnom
a P N

on the flow of each arc a P A.

Output: Find an integer flow with maximum value.

We consider max-flow problems with uncertainties on the capacities. Consequently, each sce-
nario ω P Ω is a vector of arc capacities in N|A|. Note that the associated reactive and proactive
problems are not particular cases of the ones considered in the previous section as the uncer-
tainty is not on the arc demands and Xpωq represents the set of feasible integer flows when the
arc capacities are set to ω. The corresponding reactive and proactive problems can be stated as
follows:

REACTIVE MAX-FLOW PROBLEM

Input: A max-flow problem, one of its solutions f nom P Xpωnomq, a distance d : N|A| ˆ

N|A| Ñ R` and arc capacities ω P N|A|.

Output: Find a reactive flow f r P Xpωqwhich minimizes dp f nom, f rq.

PROACTIVE MAX-FLOW PROBLEM

Input: A max-flow problem with capacities ωnom P N|A|, its optimal flow value c˚, a
distance d : N|A| ˆN|A| Ñ R` and a discrete set of scenarios U Ă N|A|.

Output: Find a proactive flow f p P Xpωnomq and a flow f ω P Xpωq for each scenario ω P Ω
which minimize

ř

ωPΩ dp f p, f ωq.

55

Appendix E

Building optimal classification trees

E.1 Formulations

Since the variables used in the formulations are detailed in Section 4.1.1, we do not recall them
in this section.

In the following, we denote by r P N the root of the tree, and by aptq the direct ancestor of node
t P N ztru. Let P` be the path from r to a leaf ` P L, we also denote by ALp`q and ARp`q, the
subsets of P` whose left and right child is in P`, respectively.

E.1.1 Formulation pFq

The formulation pFq from [3] considers a digraph G “ pN YLYts, wu, E “ AYtps, rq, pt, wqtPNYLuq
with A the arcs of the binary tree:

pFbq

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

max
ÿ

iPI
ui

s,r ´ α
ÿ

tPN

ÿ

jPJ
aj,t

s.t.
ÿ

jPJ
aj,t `

ÿ

kPK
gk,t “ 1 t P N (E.1)

ÿ

kPK
gk,` “ 1 ` P L (E.2)

ui
aptq,t “ ui

t,lptq ` ui
t,rptq ` ui

t,w t P N i P I (E.3)

ui
ap`q,` “ ui

`,w ` P L i P I (E.4)

ui
t,lptq ď

ÿ

jPJ :xi,j“0

aj,t t P N i P I (E.5)

ui
t,rptq ď

ÿ

jPJ :xi,j“1

aj,t t P N i P I (E.6)

ui
t,w ď gyi ,t i P I t P N YL (E.7)

aj,t P t0, 1u t P N j P J
gk,t P t0, 1u t P N YL k P K
ui

t,t1 P t0, 1u i P I pt, t1q P E

Constraints (E.1) ensure that each internal node either performs a split or predicts a class and
Constraints (E.2) that exactly one class is assigned to each leaf. Constraints (E.3) and (E.4) im-
pose the flow conservation. Constraints (E.5) and (E.6) ensure the consistency of the split func-
tions. Finally, Constraints (E.7) impose that the flow of a misclassified data is null.

56

E.1.2 Formulation pTq

A difficulty in the modelisation of the problem on non-binary datasets is that if a data i assigned
to leaf ` the strict inequalities

ř

jPJ aj,tl xi,j ă btl for all tl P ALp`q must be true. To satisfy
these strict inequalities in a MILP, the authors of formulation pTq [24] consider for each feature
j P J the smallest positive interval between values of the training data on feature j: µj “

mini1,i2PI2t|xi1,j ´ xi2,j|, s.t. xi1,j ‰ xi2,ju. Consequently, the constraint xi,j ă bt can be replaced
by xi,j ` µj ď bt. To strengthen the constraints, they also consider µ´ “ minjPJ pµjq and µ` “
maxjPJ pµjq.

pTq

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

min
ÿ

`PL
L` ` α

ÿ

tPN
dt

s.t.
ÿ

jPJ
aj,t “ dt t P N (E.8)

0 ď bt ď dt t P N (E.9)

dt ď daptq t P N ztru (E.10)
ÿ

kPK
ck,` “ d` ` P L (E.11)

ÿ

iPI
zi,` ě βd` ` P L (E.12)

zi,` ď d` ` P L i P I (E.13)
ÿ

`PL
zi,` “ 1 i P I (E.14)

ÿ

jPJ
aj,t

´

xi,j ` µj ´ µ´
¯

` µ´ ď bt ` p1` µ`qp1´ zi,`q i P I ` P L t P ALp`q (E.15)

ÿ

jPJ
aj,txi,j ě bt ´ p1´ zi,`q i P I ` P L t P ARp`q (E.16)

Nk,` “
ÿ

iPI | yi“k

zi,` ` P L k P K (E.17)

N` “
ÿ

iPI
zi,` ` P L (E.18)

L` ě N` ´ Nk,` ´ |I |p1´ ck,`q ` P L k P K (E.19)

L` ď N` ´ Nk,` ` |I |ck,` ` P L k P K (E.20)

L` ě 0 ` P L (E.21)

aj,t P t0, 1u t P N j P J (E.22)

ck,` P t0, 1u, d` P t0, 1u, zi,` P t0, 1u ` P L k P K i P I (E.23)

dt P t0, 1u t P N YL (E.24)

Constraints (E.8) and (E.9) ensure that the variables defining the split function of t P N are
null if t does not perform a split. Constraints (E.10) prevent node t from performing a split
if its ancestor does not perform one. Constraints (E.11) ensure that a class is assigned to leaf
` if and only if it is reached by a data. The second part of the model follows the path of the
data in the tree. Constraints (E.12) and (E.13) ensure that the number of data reaching a leaf
is not in t1, ..., β´ 1u. Constraints (E.14) impose that each data is assigned to exactly one leaf,
and Constraints (E.15) - (E.16) that the path of each data is consistent with the split functions.
The last set of constraints counts the number of misclassifications. Constraints (E.17) and (E.18)
fix the values of variables tNk,`upk,`qPKYL and tN`u`PL which then enables to fix the value of
tL`u`PL through Constraints (E.19) to (E.21).

57

E.1.3 Our new formulations

We first present our quadratic formulation pQq and its two linearizations:

pQq

$

’

’

’

&

’

’

’

%

min
ÿ

`PL

ÿ

kPK

ÿ

iPIzIk

ck,`zi,` ` α
ÿ

tPN
dt

s.t. (E.8)´ (E.16), (E.22)´ (E.24)
l` ď dt ` P L t P ALp`q (E.25)

Note that Constraints (E.25) are not required but strengthen the formulation.

pQFq

$

’

’

’

’

’

&

’

’

’

’

’

%

min
ÿ

`PL

ÿ

kPK

ÿ

iPIzIk

θi,k,` ` α
ÿ

`PN
d`

s.t. (E.8)´ (E.16), (E.22)´ (E.24), (E.25)
θi,k,` ě ck,` ` zi,` ´ 1 i P IzIk, k P K ` P L (E.26)
θi,k,` ě 0 i P IzIk, k P K ` P L (E.27)

Constraints (E.26) and (E.27) correspond to Fortet’s linearization. They ensure that θi,k,l is nec-
essarily equal to ck,`zi,`.

pQGq

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

min
ÿ

kPK

ÿ

`PL
Θk,` ` α

ÿ

tPN
dt

s.t. (E.8)´ (E.16), (E.22)´ (E.24), (E.25)
Θk,` ě 0 k P K ` P L (E.28)

Θk,` ě
ÿ

iPIzIk

zi,` ´ |IzIk|p1´ ck,`q k P K ` P L (E.29)

Constraints (E.28) and (E.29) correspond to Glover’s procedure. They ensure that Θk,l is equal
to ck,`

ř

iPIzIk
zi,`.

Finally, we present our generalisation pFq of the flow formulation pFbq to non-binary datasets:

pFq

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

min |I | ´
ÿ

iPI
ui

s,r ` α
ÿ

tPN

ÿ

jPJ
aj,t

s.t. (E.1)´ (E.4), (E.7), (E.22)´ (E.24)

0 ď bt ď
ÿ

jPJ
aj,t t P N (E.30)

ÿ

jPJ
aj,t

´

xi,j ` µj ´ µ´
¯

` µ´ ď bt ` p1` µ`qp1´ ui
t lptqq t P N i P I (E.31)

ÿ

jPJ
aj,txi,j ě bt ´ p1´ ui

t,rptqq t P N i P I (E.32)

ui
t,lptq ď

ÿ

jPJ
aj,t i P I t P N (E.33)

ui
t,rptq ď

ÿ

jPJ
aj,t i P I t P N (E.34)

aj,t P t0, 1u t P N j P J (E.35)

To ease the comparison with other formulations, we replace the objective by a minimization
rather than a maximization. Constraints (E.31) and (E.32) model the split functions. They are
obtained from Constraints (E.15) and (E.16) of pTq by replacing variable zi,` by either variable
ui

t,`ptq or ui
t,rptq. Finally, we adapt the capacity constraints (E.5) and (E.6) into Constraints (E.33)

and (E.34).

58

59

Institut Polytechnique de Paris

91120 Palaiseau, France

	Introduction
	Context
	Main contributions

	Improving the solution of hard MILPs
	A polyhedral approach for the K-partitioning problem
	A Benders decomposition for the p-median problem

	Dealing with uncertainty
	A two-stage robust weighted vertex p-center problem
	A new framework for structurally robust solutions

	Learning from the data
	New strong formulations to build optimal classification trees
	A reinforcement learning approach to learn how to branch

	Conclusions and perspectives
	Perspectives on the solution of hard MILPs
	Perspectives on dealing with uncertainty
	Perspectives on learning from the data

	Publications
	Bibliography
	Appendices
	K-clustering formulations
	Edge-representative formulation (Fer)
	Node-cluster formulations

	Benders cuts separation algorithm
	Robust weighted p-center problem
	Deterministic formulations of (PCP)
	Robust formulations of (RPCP)
	Column and constraint generation algorithm

	Minimizing the recovery cost
	Min-cost flow problems definition
	Max-flow problems definitions

	Building optimal classification trees
	Formulations

