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Abstract

The recent development of high-throughput technologies and computational meth-
ods revealed the existence of many non-canonical short open reading frames (sORFs)
on most prokaryotic and eukaryotic RNAs, including presumptive non-coding RNAs.
Because of their short size (< 100 codons) and the use of alternative start codons and
reading frames, these ubiquitous elements have been missed for long. Functional
sORF-encoded peptides (sPEPs) have been demonstrated to be involved in a wide
range of biological processes, including cell physiology and proliferation, signaling,
organogenesis, cell growth and death, transport, enzymatic regulation, metabolism,
development, cytoskeleton organization and major histocompatibility complex class-I
(MHC-I) presentation. Some of them are even taking part in disease onset (e.g. can-
cers). Nonetheless, this novel class of peptides remains poorly characterized and
annotation of most sPEPs is still missing. In addition, sORFs located upstream of the
canonical ORFs of mRNAs (upstream ORFs, uORFs), have been early described as cis
regulators of the translation. By changing the efficiency of the translation initiation
at the canonical ORF, uORFs participate to the translational regulatory mechanism.
Indeed, some uORFs have been shown to alleviate the repression of the protein syn-
thesis of canonical ORFs under stress. However, existing models of regulation of the
translation by uORFs are still limited to a few set of genes, and the mechanisms remain
cryptic for most RNAs.

This project aims to investigate the sORFs functions by (i) identifying all sORFs
in human genome, (ii) exploring sPEP functions in monocytes and (iii) exploring
the mechanisms of regulation of the translation by the uORFs. Human monocytes
constitute a good model as they are able to express MHC molecules, whilst numerous
sPEPs have been determined to be presented as self-antigens. Monocytes are playing
a major role in the initiation of immune responses and derived from a bone marrow
progenitor common to dendritic cells. These last have special needs regarding their
translational regulation and could thus constitute an interesting model to study sORFs
cis-regulatory functions.

To address these questions, (i) publicly available data were gathered in a repository
of unique sORFs identified by complementary methods, (ii) interactions of sPEPs with
canonical proteins in monocytes were predicted to identify the processes targeted
by sPEPs and (iii) ribosomes’ behaviours were mimicked by implementing an agent-
based model to identify the most important parameters for translational regulation by
uORFs.

(i) By gathering publicly available sORF data, normalizing them and summarizing
redundant information, a total of 664,771 unique sORFs were identified in human.
This repository allows new analyses at locus, gene, transcript and ORF levels. (ii) Our
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findings suggest that sPEPs are involved in fundamental regulatory functions, both
ubiquitous (protein, DNA and RNA metabolism, gene expression...) and related to
specialized functions (immunological responses...). We also demonstrated that most
sPEPs are preferentially interacting with annotated proteins of the same process as
their cognate canonical protein. (iii) Finally, the agent-based model developed does
not success yet to explain the mechanisms of translational regulation by the uORFs,
but provides an adaptable tool to the scientific community for their investigation.

Keywords: short open reading frame (sORF), sORF-encoded peptide (sPEP), protein-
protein interaction (PPI), translation
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Résumé

Le développement récent des technologies haut-débit et des méthodes computa-
tionnelles a révélé l’existance de nombreux petits cadres ouverts de lecture (sORFs)
non canoniques sur la majorité des ARNs procaryotes et eucaryotes, y compris ceux
supposés non codants. Du fait de leur petite taille (< 100 codons) et de l’usage de
codons d’initiation et de cadres de lecture alternatifs, ces éléments ubiquitaires ont
été négligés pendant longtemps. Il a été démontré que des peptides encodés par les
sORFs (sPEPs) sont fonctionnels et impliqués dans une large gamme de processus
biologiques. Ces sPEPs prennent notamment part à des activités dans la physiologie
des cellules, de prolifération, signalisation, organogenèse, croissance, mort cellulaire,
transport, régulation enzymatique, métabolisme, développement, organisation du
cytosquelette et présentation antigénique (complexe majeur d’histocompatibilité) de
classe I (MHC-I). Certains d’entre eux participent même à l’étiologie de maladies (e.g.
cancers). Cependant, cette nouvelle classe de peptides demeure mal caractérisée et la
majorité des sPEPs ne sont pas encore annotés. De plus, les sORFs localisés en amont
des ORFs canoniques des mRNAs (appelés upstream ORFs, uORFs) ont été précocé-
ment décrits comme étant des éléments cis régulateurs de la traduction. En modifiant
l’efficacité d’initiation de la traduction de l’ORF canonique, les uORFs participent à
la régulation traductionnelle. En effet, certains uORFs sont capables de réduire une
répression globale de la synthèse protéine des ORFs canoniques en condition de stress.
Néanmoins, les modèles existants de régulation de la traduction par les uORFs sont
limités à un nombre restreint de gènes et ces mécanismes demeurent cryptiques pour
la majorité des ARNs.

Mon projet vise à élucider les fonctions des sORFs en (i) identifiant tous les sORFs
du génome humain, (ii) explorant les fonctions des sPEPs dans les monocytes, et (iii)
explorant les mécanismes de régulation de la traduction par les uORFs. Les monocytes
humains constituent un modèle d’intérêt car ils sont capables d’exprimer les molé-
cules du MHC, tandis que de nombreux sPEPs sont présentés comme antigènes du soi.
Les monocytes jouent un rôle fondamental dans l’initiation de la réponse immunitaire
et dérivent de progéniteurs de la moëlle osseuse communs aux cellules dendritiques.
Ces dernières ont des besoins spécifiques quant à leur régulation traductionnelle et
constituent donc un modèle intéressant d’étude des fonctions cis-régulatrices des
sORFs.

Afin de répondre à ces questions, (i) des données publiées ont été recueillies dans
une base de données de sORFs uniques identifiés par des méthodes complémentaires,
(ii) les interactions des sPEPs avec les protéines canoniques des monocytes ont été
prédites afin d’identifier les processus ciblés par les sPEPs, et (iii) le comportement des
ribosomes a été reproduit par l’implémentation d’un modèle agent afin d’identifier
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les paramètres les plus importants à la régulation traductionnelle par les uORFs.
(i) En recueillant les données disponibles sur les sORFs, en les normalisant, et en

supprimant les entrées redondantes, un total de 664,771 sORFs uniques a été identifié
chez l’humain. Ce répertoire permet de nouvelles analyses au niveau des locus, gènes,
transcripts et ORFs. (ii) Nos résultats suggèrent que les sPEPs sont impliqués dans
des fonctions régulatrices fondamentales, à la fois ubiquitaires (métabolisme des
protéines, ADNs, ARNs, expression génique ...) et spécialisées (réponses immunitaires
...). Nous avons également démontré que la majorité des sPEPs intéragissent préféren-
tiellement avec les protéines annotées du même processus que la protéine canonique
codée par leur propre transcrit. Enfin, si le modèle agent implémenté ne permet pas
d’expliquer les mécanismes de régulation traductionnelle par les uORFs à l’heure
actuelle, il fournit à la communauté scientifique un outil facilement adaptable pour
approfondir leur étude.

Mots clés : petit cadre ouvert de lecture (sORF), peptides codés par des sORFs
(sPEPs), interaction protéine-protéine, traduction

8



Acknowledgments

Cette thèse et ses productions sont le fruit de plus de quatre ans de travail au sein
de CENTURI, du TAGC et du CIML. Elles n’auraient pu aboutir sans le concours de
nombreuses personnes. La thèse est une expérience scientifique et surtout, humaine,
si intense que je me dois de conclure ce manuscrit en remerciant les nombreuses
personnes qui m’ont tant apportées au cours de ces années. Je prie d’accepter mes
excuses aux personnes que je n’ai pas mentionnées et qui m’ont néanmoins offert leur
support scientifique / technique / moral au cours de cette expérience, ou avec qui j’ai
simplement partagé de bons moments.

Je tiens à remercier en premier lieu Sylvie Ricard-Blum et Yves Vandenbrouck d’avoir
acceptés de relire ce manuscrit et de m’avoir aidé à sa correction et son amélioration.
Je remercie également Serge Plaza d’avoir accédé à ma requête pour présider mon jury
de thèse. Merci également à Benoit Ballester d’avoir consenti à évaluer mes travaux
à l’occasion de ma soutenance, ainsi que pour votre apport scientifique dans son
contenu.

Je souhaite exprimer ma gratitude à mes directeurs de thèse, Christine Brun et
Philippe Pierre et de m’avoir accueilli dans leurs équipes et supervisé pendant ces an-
nées. Merci de m’avoir donné l’opportunité de développer ces différents projets et de
m’avoir fait confiance quant à mes capacités à réaliser cette thèse en soutenant notam-
ment mes candidatures à CENTURI et à la FRM. Merci également pour l’autonomie
que vous m’avez laissée durant ces quatre années et pour le partage de la nécessaire
prise de conscience de l’équilibre entre vie professionnelle et ma sphère privée.

Je tiens à adresser un grand merci à Lionel Spinelli pour son encadrement scien-
tifique et technique et pour son soutien moral. Merci pour ta rigueur bienveillante,
ta disponibilité et ton aide constante pour m’aider à trouver des solutions dans les
moments difficiles et pour ta guidance dans cette thèse.

J’espère retenir les enseignements que vous avez tenté de me transmettre, et savoir
en faire bon usage dans le futur et vous remercie des moments passés ensembles à
l’occasion des meetings que j’ai sollicité, parfois même en dernière minute.

Merci aussi à Andreas Zanzoni d’avoir pris part à l’encadrement scientifique et
technique de ma thèse, de m’avoir proposé de rejoindre les nombreux projets liés à
mimicINT, émaillés de discussions enrichissantes sur les différents projets, y compris
ceux spécifiques à ma thèse.

Je remercie également Pierre Milpied, Benoit Ballester et François Payre, de leur
regard extérieur critique, mais bienveillant, sur mes travaux. Merci Pierre et Ben de

9



vous êtes toujours montrés accessibles et attentifs à mon bien-être. Merci Ben, pour
tes compliments encourageants sur mes présentations orales. Ceux-ci ont su motiver
"le psychopathe de la diapo" que je suis à chercher à améliorer encore ces dernières !

J’adresse un grand merci aux communautés de CENTURI, du TAGC et du CIML.
Je ne pourrai citer toutes les personnes qui m’ont apporté soutien professionnel ou
personnel. Néanmoins, je tiens à citer Mélina de Oliveira, Marlène Salom, Simon
Legendre, Jasmina Stamenova, Alizée Guarino et Gaël Le Mehaute de m’avoir si bien
accueilli, dans cette communauté naissante où j’étais si isolé au début ! Merci pour
votre réactivité et votre aide dans les démarches administratives, et surtout pour votre
implication en faveur de la communauté étudiante de l’Institut. Je remercie également
CENTURI et la FRM et leurs comités de sélection, sans lesquels aucun financement
n’aurait été possible. Merci également aux équipes du Mésocentre de m’avoir laisser
tester les limites de leur cluster et des capacités de stockage individuelles du data
center !

Merci à Audrey Wagner, Kévin Maldonado, Mégane Boujeant, Marceau Cristianini
et Lilian Drets pour votre contribution à mes projets scientifiques, l’allègement fa-
cilitateur de mon travail, votre enthousiasme et votre curiosité et de m’avoir laissé
prendre part à votre supervision. Merci à Audrey de ton intérêt pour la biologie des
sORFs et pour ton incroyable travail produit dans le développement de l’interface
web. J’espère que vous avez apprécié autant que moi les moments partagés et mes
réponses à vos attentes dans vos projets professionnels et parfois personnels. Je vous
souhaite le meilleur pour la suite !

J’adresse également ma gratitude à Bertrand Fabre et Serge Plaza pour m’avoir
donné l’opportunité de collaborer avec eux dans le cadre du projet visant à caractériser
les sPEPs chez la drosophile.

Merci également à Béatrice Nal-Rogier, Eva Strock, Marisa Reverendo et Renaud
Vincentelli pour les projets entrepris ensemble et nos tentatives de collaboration,
malheureusement interrompues précocement faute de temps, mais je vous sais gré de
votre enthousiasme et de votre implication. Peut-être auront-ils une suite ensemble
dans l’avenir ?

Une pensée pour Fatiha Tabet, Laurence Conraux, Philippe Legrand, Vincent Rioux,
Philip Barter et Gilles Lambert qui ont su stimuler ma curiosité scientifique, m’ont
soutenu dans l’idée de faire une thèse et pour les connaissances et compétences
transmises si utiles durant cette période.

Je tiens à remercier Julien Gigan et Rémy Char: nous avons traversé les mêmes
"phases de vie de doctorants" (parfois avec un peu de décalage). Peu confiants d’avoir
tous trois une quatrième année, je suis heureux de votre soutenance quasi en même
temps que moi, ayant débutés cette aventure le même jour ! Merci à vous pour les
multiples discussions scientifiques et élargies, tentatives de collaborations, conseils,
soirées, et pour votre soutien, en particulier durant des périodes difficiles. Je remer-
cie aussi fortement Julie Bavais pour nos multiples échanges ; les repas passés à
m’entendre douter et râler, les rires autour d’une bière et de m’avoir apporté tant de

10



support depuis son arrivée à Marseille. Un grand merci aussi à Marie Dessard pour
tes idées de génie (aussi folles que les miennes), les moments passés ensemble et les
divers échanges sur nos passions communes. Merci également à Eva Strock et Ania
Baaziz pour les partages et le soutien mutuel lors de nos “craquages”. Je tiens enfin à re-
mercier Cloé Zamit, Rosario Lavignolle, Morgane Jaeger, Romain Fenouil, Lou Galliot,
Raphaël Chapuy, Elèna Brunet, Thomas Morvan, Eglantine Hector, Alexandre Bonomo,
Meriem Djendli, Pauline Brochet, Pauline Andrieux, Marina Cresci ainsi que tous les
autres collègues pour ces très bons moments. Je vous souhaite beaucoup de courage
et de réussite pour la fin de vos thèses, la suite de vos carrières, et surtout dans vos vies !

Je ne pourrais écrire ces remerciements sans mentionner mes amis les plus proches,
bien que parfois géographiquement éloignés. Un très grand merci à vous tous pour
m’apporter votre appui, votre bonne humeur, votre joie de vivre et votre écoute si
précieux au cours de ces dernières années. Je souhaite tout particulièrement remercier
les Faidherbards et les Agros, Véro, Maxou, Lucie, Toinou, PE, Manon, Jéro, Poppy,
Myriam, Zoé, Cysouche, MB, Laure, Michou, Teug, Thibault et Eva ; Chouise, Solveig,
Pi-Axe, le KGB, Florence, Guillaume, Leslie, Yoze, Laetitia, Alice, Alex, Emilie et Panette
pour les occasions festives ensemble : accueilli chez vous ou en visite à Marseille !
Merci également à Alix, Ambre, Chloé, Léa, Laurie, Andrea, Julien, Stéphanie, Marie,
Emma, Wendy et Cécile pour tous ces épisodes partagés aux écuries, et plus partic-
ulièrement à Pascalou pour avoir su me faire progresser autant, pour son excellent
accueil, son énergie débordante et ses soirées cavalières sans égal ! Merci à Emma pour
nos échanges et notre soutien mutuel pendant cette période de rédaction. Un très
grand merci à Marie pour son soutien, sa disponibilité, ses précieux conseils et pour
m’avoir aidé à tant avancer au cours des dernières années. Enfin, une reconnaissance
particulière à Tzarine et Pacific qui sont sûrement ceux qui ont eu à me (sup)porter le
plus souvent, même au quotidien, dans les meilleurs moments comme dans les pires,
et ce, sans jamais chercher à me dégager (littéralement !).

Pour terminer, j’adresse un immense merci à ma famille et plus particulièrement
à mes parents, Brigitte et Jacques, sans qui rien n’aurait été possible. Merci pour
votre confiance, votre indéfectible présence concernée et affectueuse qui m’a offerte
l’opportunité de réaliser ces longues études. Une pensée vers mes grand-parents
défunts qui m’ont toujours soutenu.

A toutes et à tous : notre temps partagé, nos moments rares, vos conseils aidants,
votre joie de vivre, votre bonne humeur et vos rires ont été mes moteurs !

11



Contents

Affidavit 2

List of publications and participation to conferences 3

Abstract 5

Résumé 7

Acknowledgments 9

Contents 12

List of Figures 15

List of Tables 16

List of Acronyms 17

General overview 27

1. Introduction 30
1.1. Short open reading frames (sORFs) are ubiquitous elements expressed

in many species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.1.1. sORFs constitute a novel class of coding sequences . . . . . . . . 30
1.1.2. sORFs and their products of translation can be identified by com-

plementary methods . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.1.3. sORFs have been gathered in publicly available repositories . . 41

1.2. Short open reading frames encode functional peptides . . . . . . . . . . 43
1.2.1. sORF-encoded peptide (sPEP) functions are mainly unknown . 43
1.2.2. Eukaryotic genomes should no longer be described as mono-

cistronic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.3. Short open reading frames regulate the translation of CDSs . . . . . . . 52

1.3.1. eIF2α factor is essential to the translation initiation . . . . . . . 52
1.3.2. The phosphorylation of eIF2α triggers a translational arrest . . . 54
1.3.3. The regulation of the translation by uORFs is related to eIF2α

availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.3.4. uORFs are involved in many processes and diseases as transla-

tional cis regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

12



1.4. Short open reading frame variants are conserved across species and
involved in the etiology of diseases . . . . . . . . . . . . . . . . . . . . . . 60
1.4.1. sORFs are conserved across species . . . . . . . . . . . . . . . . . 60
1.4.2. sORF variants have been related to diseases . . . . . . . . . . . . 61

1.5. Many questions about short open reading frames and their functions
remain unanswered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2. sORFs identified in human and mouse genomes have been gath-
ered as unique entries in a database: MetamORF 66
2.1. A repository of unique, homogenized sORFs was required to get the data

necessary to address the questions raised in this thesis . . . . . . . . . . 66

3. sPEP functions in monocytes have been assessed by a system
approach based on their interactions with canonical proteins 99
3.1. Studying protein-protein interactions (PPIs) may help characterizing

proteins of unknow functions . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.1.1. Study of sPEP interactions with canonical proteins should provide

new insights about their functions . . . . . . . . . . . . . . . . . . 99
3.1.2. Proteins functions can be predicted by studying their interactions

with annotated proteins . . . . . . . . . . . . . . . . . . . . . . . . 100
3.1.3. Short linear motifs and domains mediate PPIs . . . . . . . . . . . 101

3.2. A workflow was required to infer sPEP-protein interactions (sPEPRIs)
from protein sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3. mimicINT is of major interest to explore the human sPEP-ome . . . . . 127

4. Understanding of the translational regulation by uORFs may be
improved by mathematical modeling 160
4.1. Agent-based modeling may help deciphering complex mechanisms . . 160

4.1.1. ICIER, a published TASEP model, partially explains the transla-
tional regulation by a single uORF . . . . . . . . . . . . . . . . . . 160

4.1.2. Many parameters and uORF features may impact the transla-
tion and should be considered in future models of translational
regulation by uORFs . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.1.3. Agent-based models (ABMs) have been used to solve complex
questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.1.4. Agent-based modeling allowed to implement a new model of
translational regulation by the uORFs . . . . . . . . . . . . . . . . 168

5. Concluding remarks, limitations and perspectives 173

A. Article: In depth exploration of the alternative proteome of Drosophila
melanogaster 177

B. Article: Proteostasis in dendritic cells is controlled by the PERK
signaling axis independently of ATF4 209

13



Bibliography 232

14



List of Figures

1.1. The annotation of ORFs is usually based on existing annotations, length,
reading frame, transcript biotype and relative position on the transcript 32

1.2. Principle of the ribosome profiling (RiboSeq) . . . . . . . . . . . . . . . 37
1.3. Some demonstrated and putative functions of sPEPs . . . . . . . . . . . 44
1.4. eIF2α factor is essential to the translation initiation . . . . . . . . . . . . 53
1.5. ATF4-like mechanism of regulation of the translation by uORFs . . . . 56

3.1. Overview of the mimicINT workflow . . . . . . . . . . . . . . . . . . . . . 106

4.1. Principle of the ICIER model . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.2. Decision tree of the agent-based modeling of uORF cis regulatory func-

tions informed by experimental data (ABMCisReg) . . . . . . . . . . . . 169

15



List of Tables

1.1. Methods of detection and identification of the sORFs and sPEPs . . . . 33
1.2. Computational tools for identifying sORFs and/or assessing their coding

potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3. Publicly available repositories of sORFs and sPEPs . . . . . . . . . . . . 42
1.4. Examples of sPEPs whose functions have been elucidated . . . . . . . . 44

16



List of Acronyms

3’UTR

3’ untranslated region. 31, 53, 175

43S PIC

43S pre-initiation complex. 53, 54, 58, 161, 164

5TOP

5’ terminal oligopyrimidine. 175

5’UTR

5’ untranslated region. 31, 53, 55, 57–62, 64, 160–162, 164, 168, 171, 175

aa

amino acid. 31, 36, 39, 43–51, 62, 66, 164, 175

ABM

agent-based model. 166–168, 170

ABMCisReg

agent-based modeling of uORF cis regulatory functions informed by experimen-
tal data. 168, 170–172, 174

acORF

annotated coding open reading frame. 30

altORF

alternative open reading frame. 31, 42, 60

AltProt

alternative protein. 43

ATF4

Activating transcription factor 4. 55, 57, 63, 162, 163, 174, 209

ATF5

activating transcription factor 5. 55

17



BAX

Bcl-2-associated X. 47

BCL-2

apoptosis regulator Bcl-2. 59

BDI

Beliefs - Desires - Intentions. 167, 168

bp

base pair. 47

cDNA

complementary DNA. 103

CDS

coding sequence. 30, 31, 33, 35, 38, 50–52, 54, 55, 57–64, 68, 160–162, 164, 165,
168, 174, 175

CHOP

C/EBP homologous protein, a.k.a. DNA demage inducible transcript 3 (DDIT3).
55, 57, 58, 209

C-MYC

Myc proto-oncogene protein. 59

CReP

constitutive repressor of eIF2α phosphorylation a.k.a. protein phosphatase 1
regulatory subunit 15B (PPP1R15B). 54, 57, 58

CRISPR-Cas9

clustered regularly interspaced palindromic repeat - Cas9. 33, 99, 176

DC

dendritic cell. 48, 65, 209

DDI

domain-domain interaction. 101, 127

DMI

domain-SLiM interaction. 101, 105, 127

18



DNA

deoxyribonucleic acid. 27, 33, 34, 46

dORF

downstream open reading frame. 31, 52, 177

eIF

eukaryotic translation initiation factor. 19, 20, 57

eIF1

eukaryotic translation initiation factor 1. 54

eIF2

eukaryotic translation initiation factor 2. 19, 53, 54, 57, 58, 65, 174, 209

eIF2A

eukaryotic translation initiation factor 2A. 58

eIF2B

eukaryotic translation initiation factor 2B. 54, 57

eIF3

eukaryotic translation initiation factor 3. 53, 164

eIF4F

eukaryotic translation initiation factor 4F. 53, 175

eIF5

eukaryotic translation initiation factor 5. 54

ELM

eukaryotic linear motif. 101

EMF

extreme multifunctional protein. 101

ER

endoplasmic reticulum. 54, 209

FLOSS

fragment length organization similarity score. 38

19



GADD34

growth arrest and DNA-damage inducible 34, a.k.a. protein phosphatase 1
regulatory subunit 15A (PPP1R15A). 54, 55, 57, 58, 209

GCH1

guanosine triphosphate (GTP) cyclohydrolase 1. 62

GCN2

general control non-depressible 2, a.k.a. eukaryotic translation initiation factor
2 alpha kinase 4. 54

GCN4

general control non-depressible 4. 55, 57, 163

GDP

guanosine diphosphate. 53, 54

GEF

guanosine exchange factor. 54, 57

GO

Gene Ontology. 127, 128

GSEA

gene set enrichment analysis. 209

GTP

guanosine triphosphate. 20, 53, 54

HMM

hidden Markov model. 34, 35, 41, 105

HMT2

protein arginine N-methyltransferase 1. 61

HPC

high-performance computing. 107, 108, 128

HRI

eukaryotic translation initiation factor 2 alpha kinase 1. 54

HTR3A

5-hydroxytryptamine receptor 3A. 59

20



ICIER

initiation complexes interference with elongating ribosomes. 160–163, 168

IFRD1

interferon related developmental regulator 1. 58

IGFBP3

insulin-like growth factor binding protein 3. 47

IRES

internal ribosome entry site. 53, 64, 171, 175

ISR

integrated stress response. 54, 55, 57, 175, 209

kDa

kilodalton. 39

lncRNA

long non-coding RNA. 39, 42, 43, 45–49, 51, 64

m6A

N6-methyladenine. 53, 175

m7G

m7-methylguanosine. 175

MAPK

mitogen-activated protein kinase. 59

MAS

multi-agents system. 170

Met-tRNAi

methionyl-initiator tRNA. 53

MHC

major histocompatibility complex. 58, 65

MHC-I

major histocompatibility complex class-I. 27, 43, 65

21



MHC-II

major histocompatibility complex class-II. 47, 65

miRNA

micro RNA. 30, 48, 49, 51

mRNA

messenger RNA. 27, 39, 42, 46, 51–55, 58, 60, 161, 163, 165, 171, 174–176

MS

mass spectrometry. 33, 35, 39, 40, 50, 67, 103, 173, 177

MSH5

MutS protein homolog 5. 59

mTOR

mammalian target of rapamycin. 175

ncORF

non-canonical open reading frame. 30, 31, 33, 37, 41, 51, 62, 66, 67

ncRNA

non-coding RNA. 22, 30, 43, 46, 47, 49, 51, 65

ncRNA-ORF

open reading frame on non-coding RNAs (ncRNAs). 51

NGS

next generation sequencing. 40

NMD

nonsense-mediated decay. 64, 175

nORF

novel open reading frame. 30

nRibo-seq

nascent Ribo-seq. 39

nt

nucleotide. 37, 164

22



oORF

overlapping open reading frame. 31

ORF

open reading frame. 27, 30, 31, 33–39, 41, 42, 51, 52, 57–59, 61, 63, 66–69, 163–165,
168, 174–177

P53

cellular tumor antigen p53. 59

PERK

protein kinase R-like endoplasmic reticulum kinase. 54, 209

PI3K

phosphatidylinositol 3-kinase. 59

PKR

protein kinase R. 54

PMVK

phosphomevalonate kinase. 61

PPI

protein-protein interaction. 43, 100–104, 107, 127, 176

PPIN

protein-protein interaction network. 104, 107

PRS

procedural reasoning system. 167

Ptch1

protein patched homolog 1. 59

PTEN

phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity
protein phosphatase PTEN. 59

PTM

post-translational modification. 46

RefProt

reference proteins. 51, 57, 63, 100, 104–106, 127, 128

23



Ribo-seq

ribosome profiling. 22, 24, 33–40, 55, 57, 65, 67, 127, 160, 163, 173, 176

RNA

ribonucleic acid. 27, 30, 33, 37, 38, 43, 47, 51–53, 63, 128, 162, 165, 170, 174, 175

RNA-seq

RNA sequencing. 38

RPF

ribosome-protected fragment. 35–38, 170

RPKM

reads per kilobase per million. 38

rRNA

ribosomal RNA. 30, 48

RRS

ribosome release score. 38

scRibo-seq

single-cell Ribo-seq. 38

SEP

sORF-encoded peptide (or sEP). 43

SERCA

Sarco/endoplasmic reticulum calcium-ATPase (adenosine triphosphatase) pump.
45

SHH

sonic hedgehog protein. 59

SLiM

short linear motif. 101–105, 107, 173, 177

smORF

small open reading frame. 31

SNP

single nucleotide polymorphism. 62

24



sORF

short open reading frame. 24, 25, 27–29, 31, 33–41, 43, 46, 47, 50–52, 59–69, 99,
128, 168, 171, 173–176

SOX9

transcription factor SOX-9. 59

sPEP

sORF-encoded peptide. 27, 28, 33, 35, 39–41, 43, 44, 46–51, 57, 59, 60, 62–65,
99–107, 127, 128, 173–177

sPEPRI

sPEP-RefProt interaction. 100, 103, 107, 127, 128, 176

sPEPRIN

sPEP-RefProt interaction network. 51, 100, 127

SVM

support-vector machine. 35, 41

TASEP

totally asymmetric simple exclusion process. 160

TC

ternary complex. 53–55, 57, 161, 174

TE

translation efficiency. 38, 58, 59, 164, 165

TIS

translation initiation site. 34, 37, 39, 42

TI-Seq

translation initiation sequencing. 34, 39

TISU

translation initiator of short 5’UTRs. 53

TPO

thyroid peroxidase. 59

TRDD1

T cell receptor delta diversity 1. 43

25



List of Acronyms

uORF

upstream open reading frame. 27, 28, 31, 35, 36, 47–50, 52, 53, 55, 57–65, 128,
160–165, 168, 171, 174–177

UPR

unfolded protein response. 54

UTR

untranslated region. 61

VPS53

vacuolar protein sorting-associated protein 53 homolog. 61

Y2H

yeast tow-hybrid system. 103

26



General overview

Biological context
Advances in biology over the past decades has revealed the existence of many non-
canonical short open reading frames (sORFs) on most prokaryotic and eukaryotic
RNAs. For long, they have been successively missed and ignored, being part of what
was designated as "junk DNA" at the beginning of the century (even though it would
probably be more accurate to talk about "junk RNA" in the case of sORFs). Indeed,
many regions of the genomes were believed to be non-functional at that time, because
they were assumed not to encode for any functional protein.

However, earlier publications (based on low-scale experiments) already suggested
the functionality of this shunned part of the genomes. These have later been supported
by the advent of high-throughput technologies and computational methods. The re-
alisation that these regions of the DNA (and subsequently RNA) could be functional
brought a full new level of complexity in our understanding of biological systems.
This led to the development of new topics of interest as well as new fields of biology;
and we may now probably count at least as many labs interested in these parts of
the genomes assumed earlier to be non coding than in the canonical encoding regions.

The non-canonical sORFs are characterized by their short size (< 100 codons), the
use of alternative start codons and of alternative reading frames. A growing body of
evidence suggests they are able to encode functional peptides (called sORF-encoded
peptides (sPEPs)) that are taking part in a wide range of biological processes, including
cell physiology and proliferation, signaling, organogenesis, cell growth and death,
transport, enzymatic regulation, metabolism, development, cytoskeleton organization
and major histocompatibility complex class-I (MHC-I) presentation. In addition, a
particular class of sORFs, located upstream of the canonical open reading frames
(ORFs) of mRNAs (upstream open reading frames (uORFs)) has been described as a
novel regulator of the translation. Finally, sORFs have been shown to be involved in
the etiology of many diseases, including cancers and neurodegenerative diseases for
instance. However, the functions of sORFs and the peptides they encode, as well as
the mechanisms in which they are involved, remain poorly characterized at this time.

PhD thesis project and objectives
sORFs constitute thus a novel repertoire of fascinating biological entities whose roles
have certainly been underestimated so far. In particular, their large-scale functional
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characterization is still in its infancy. Hence, my PhD thesis aimed at exploring sORFs
functions and to bring new elements of answer to the following question:

What are the biological functions of sORFs?

As sORFs have been proved to have both trans and cis functions, respectively as
peptides and as regulators of the translation, my PhD thesis aimed to adress the two
following questions:

1. What are the biological functions of the sPEPs?

2. Could we elucidate new mechanisms of translational regulation by the uORFs?

In order to discuss these questions, I thus decided to:

1. Gather all sORFs identified in H. sapiens into a repository (chapter 2)

2. Ascertain sPEPs functions in monocytes through a system approach, by predict-
ing their interaction with canonical proteins (chapter 3)

3. Explore mechanisms of translational regulation by the uORFs in monocytes, by
using agent-based modeling to imitate the translation process (chapter 4)

Organisation of the manuscript
In this manuscript, I report several research projects with the attempt to investigate
the role of short open reading frames.

The introduction (section 1) focuses on the biology of short open reading frames
and reviews the current knowledge about these. It notably provides the reader the
knowledge necessary to understand the biological context and it states the hypotheses
and questions that are being addressed in this thesis. For the sake of clarity, literature
related to other topics has been voluntarily omitted from this section.

The chapters 2, 3 and 4 bring additional elements of literature and references neces-
sary to understand the methodology used. They aim at detailing the scientific process
chosen and to provide a general overview of the methodology employed and the main
findings. Discussions, scattered with personal scientific opinions, are also proposed.
The chapter 2 describes an approach to gather all sORFs identified in H. sapiens and
M. musculus into a repository, addressing thus the objective 1. The chapter 3 focuses
on the exploration of sPEP functions in order to explore the question 1 (and its cor-
responding objective 2). The chapter 4 focuses on the elucidation of translational
regulation by the uORFs (question 2 and its corresponding objective 3). Studies pre-
sented in chapters 3 and 4 are based on the repository presented in chapter 2. Hence,
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whilst the chapter 2 has to be read first to understand the source of data used in the
other chapters, the chapters 3 and 4 may be read independently.

The appendices present publications related to collaborative projects to which I
contributed.

Finally, I voluntarily tried to be as concise as possible and developments about side
topics have been reduced to the points necessary to understand this thesis.

Scientific environment
My PhD thesis took place in the fame of the Turing Centre for Living Systems (CEN-
TURI) international PhD program. This last aims at supporting interdisciplinary
projects with the willing to decipher the complexity of living systems. My PhD thesis
has been led as a collaboration between the Theories and Approaches of Genomic
Complexity (TAGC) and the Centre d’Immunologie de Marseille-Luminy (CIML), in
order to combine the strengths of Christine BRUN’s (TAGC) and Philippe PIERRE’s
(CIML) labs respectively in the fields of network biology and dendritic cell biology. My
PhD was funded by CENTURI for 38 months and the Fondation pour la Recherche
Médicale (FRM) for 12 additional months.

In addition to the biological questions that I tried to address during my thesis, my
work aimed at bringing new data, methods and tools that may be easily used for other
projects and more generally accessible to the scientific community. Mentions of my
work related to other scientific projects are briefly made in this manuscript, but details
about these have been voluntarily omitted as this is outside the scope of the study of
the sORFs.
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1. Introduction
Deciphering the genetic information encoded in RNA molecules is one of the biggest
challenges in current biology

Vitorino et al. (2021)

1.1. Short open reading frames (sORFs) are
ubiquitous elements expressed in many
species

1.1.1. sORFs constitute a novel class of coding sequences
Genes sequences were initially defined as containing ORFs, which are coding se-
quences eventually translated into functional proteins. A historical arbitrary threshold
of 100 codons was early used to define canonical ORFs (usually designated as coding
sequences (CDSs), annotated coding open reading frame (acORFs) or main ORFs)
under the assumption that ORFs of fewer than this size have no coding potential [8, 36,
94, 133, 147]. In this manuscript, coding sequence (CDS) will be used to systematically
refer to the canonical coding sequence of a ribonucleic acid (RNA). ORFs shorter
than 100 codons were thus discarded in most gene annotation programs until the
beginning of the 2010s, with the notion that they had no coding potential [92, 106,
147, 161]. This threshold was historically set by reasoning on the size distribution of
random ORFs generated by modelling an equivalent random genome to determine
the ORF length distribution [133].

Nonetheless, the development of high-throughput technologies and computational
methods during the past decades revealed the existence of many non-canonical open
reading frames (ncORFs) (or novel open reading frames (nORFs)) outside of annotated
protein-coding ORFs on most RNAs, including presumptive ncRNAs, microRNAs
(miRNAs) and even ribosomal RNAs (rRNAs) [25, 93, 102, 105, 147, 164]. Because of
their short size and the use of alternative start codons (i.e. other than AUG; CUG, GUG
and UUG being the most frequently used alternative start codons [46, 72, 131, 164])
and alternative reading frames [8, 80, 92, 109, 132, 147], ncORFs have been missed for
a long time, and proteins they encode were commonly discarded from proteomics
datasets. Indeed, a minimal length of 100 codons, the use of an AUG as start codon
as well as the presence of a single ORF per transcript were the criterion commonly
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used so far to identify the CDS in order to decrease the false positives during the
assignment of protein-coding ORFs [94, 113]. However, ncORFs have been detected
in most prokaryotes (bacteria...) and eukaryotes (yeast, invertebrates, mammals...)
[8, 113] and it has been demonstrated that some of these ubiquitous elements are
conserved across species, although they seem to be less conserved than canonical
protein-coding ORFs.

Despite a growing effort in identifying, characterizing and classifying these novel
ORFs during the past years [36], there is still no clear consensus regarding their defi-
nition or the nomenclature to use [97]. However, a common nomenclature tends to
emerge and to be used by the vast majority of the scientific community to annotate
the non-canonical open reading frames. This nomenclature mainly relies on the
annotation of the ORFs according to three main criteria: their length, relative position
on the transcript and their frame (Fig. 1.1). Several efforts have been developed in that
sense and a correspondence of main authors in the field has been recently published
to propose a standardized annotation of translated ORFs [91].

By convention, and mainly for historical reason, ORFs shorter than 100 codons
are usually designated as sORFs (or small open reading frames (smORFs)), whilst
ORFs located in an alternative frame (i.e. other than the canonical one) are usually
referred to as alternative open reading frames (altORFs) [8, 36, 80, 117, 139, 147]. One
of the most commonly used nomenclature relies on the location of the ORF on its
transcript, relatively to the CDS [81]: ORFs having their start codon located in the 5’
untranslated region (5’UTR) and their stop codon located upstream of those of the
CDS are designated as uORFs (as they are located upstream of the CDS), ORFs located
in the 3’ untranslated region (3’UTR) are referred to as downstream open reading
frames (dORFs) [36, 57, 74, 109] and ORFs overlapping with the CDS are designated
as overlapping open reading frames (oORFs) [57, 84]. It should be noticed that while
most sORFs contain one single exon, some of them contain introns [81], an important
feature that is found in all categories of sORFs and most of the time overlooked in the
literature.

It should be stressed out that all classes of ncORFs relatively to their location on the
transcript cannot be distinguished one from another other than through information
about their location relatively to the CDS. Because this information relies exclusively
on existing annotation of canonical ORFs, and no clear distinction can be a priori
made between ncORFs and the canonical ones based on biological features [48], the
biological relevance of making such distinctions between the ORFs may be argued.
However, the only manner to eventually identify such distinguishing features, proper-
ties or functions between annotated CDSs and newly discovered ORFs is to study the
last one as a distinct biological class of coding sequences.

In the scope of my thesis, I decided to focus exclusively on sORFs, which constitute
the largest class of ncORFs and is more likely to present specific features than long
ncORFs. As a consequence, discussions related to ncORFs longer than 100 amino acids
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Figure 1.1.: The annotation of ORFs is usually based on existing annotations, length,
reading frame, transcript biotype and relative position on the transcript.
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(aas) and the discovery of protein isoforms will not be developed in this manuscript.

1.1.2. sORFs and their products of translation can be
identified by complementary methods

Over the past decades, various methods have emerged and been successfully used
to identify and study the sORFs, in particular as traditional biochemical techniques
failed for identifying them [142]. These methods rely either on the identification of
the sORFs themselves, at the genomic (DNA) or transcriptomic level (RNA), or of
their products of translation. I review briefly here the methods most commonly used
to identify ncORFs. These includes computational approaches, sequencing-based
methods, mass-spectrometry based proteomics as well as proteogenomics (Table 1.1).

Table 1.1.: Methods of detection and identification of the sORFs and sPEPs.
Method Advantages Drawbacks Optimal application
Computational
approaches

No requirement of experimental
data, large-scale and comprehen-
sive prediction of sORFs, conserva-
tion analyses

Predictions regarding sORF func-
tionality requires additional data;
requires a priori hypothesis for
identification (start codon se-
quences, bias in sORF codon usage
etc.)

Large-scale and comprehensive
discovery of sORFs

Ribosome pro-
filing (Ribo-seq)
and polysomal
profiling

Discovery of new ORFs, alternative
start codons, translation efficiency
and rates, translational pause sites

Requires specialised equipment,
labour intensive, expensive, com-
plex bioinformatics analysis, elu-
cidation of sORF functionality re-
quires additional data

Large-scale discovery of sORFs, es-
timation of translation efficiency

Mass spectrom-
etry (MS)-based
proteomics

Direct identification and quantifi-
cation of sPEPs

Requires specialised equipment,
labour intensive, requires novel
protocols, numerous sPEPs
are missing from the spectral
databases, elucidation of sORF
functionality requires additional
data or non-classical proteomics
experiments

Identification of sORFs at the pep-
tide level

Proteogenomics Direct identification and quantifi-
cation of sPEPs, allows identify-
ing more sPEPs than proteomics
alone as spectra are matched to a
database generated in silico from
genomic or transcriptomic data

Requires specialised equipment,
labour intensive, complex bioin-
formatics analysis, elucidation of
sORF functionality requires addi-
tional data

Large-scale discovery of sPEPs, re-
processing of existing proteomics
datasets

Low-scale bio-
chemical experi-
ments (Western-
blot, immuno-
precipitations,
CRISPR-Cas9
etc.)

Direct identification and func-
tional characterization of sPEP, no
complex bioinformatics analysis

Requires a priori knowledge about
the sORF or sPEP of interest and
available material (e.g. antibodies),
labour intensive

In-depth characterization of sPEPs
previously identified by other
methods

1.1.2.1. Computational approaches allow systematic searches for sORFs

Computational identification of sORFs is challenging because of the difficulty to
distinguish sORFs from chance in-frame start and stop codons [113]. Nevertheless,
computational approaches that aim at identifying sORFs which are distinct from es-
tablished well-known CDSs have been successfully developed [8]. These approaches

33



1. Introduction – 1.1. Short open reading frames (sORFs) are ubiquitous elements
expressed in many species

encompass several methods usually based either on sequence analysis or comparative
genomics [81, 82, 94, 147]. The table 1.2 reviews the tools most commonly used for
identifying sORFs or assessing their coding potential.

Table 1.2.: Computational tools for identifying sORFs and/or assessing their coding
potential.

Tool Method Input Description Ref.
sORFfinder Comparative

genomics
Sequences Identifies sORFs with high-coding potential

based on the nucleotide composition bias
(hexamer composition bias) among coding se-
quence and the functional constraint at the
amino acid level through evaluation of synony-
mous and non-synonymous substitution rates.
Potential coding sORFs are tested for function-
ality by searching for homologs.

[50]

MiPeptid Sequence
analysis

Sequences Uses a logistic regression based on hexamer fea-
tures to predict whether a peptide is encoded
by an sORF from its sequence.

[166]

PhyloCSF Comparative
genomics

Sequences Analyzes a multispecies nucleotide sequence
alignment to determine whether an ORF is likely
to represent a conserved protein-coding region,
based on substitution rates of synonymous to
nonsynonymous ratios.

[77]

PhastCons Comparative
genomics

Sequences Predicts conserved elements in multiple align-
ment sequences taking into account the proba-
bility of nucleotide substitutions at each site in a
genome and how this probability changes from
one site to the next, using an hidden Markov
model (HMM).

[124]

CRITICA Comparative
genomics
and Se-
quence
analysis

Sequences Coding region identification tool invoking com-
parative analysis (CRITICA) is a prediction algo-
rithm for identifying protein-coding sequences
in DNA. It combines a comparative analysis of
homologous sequences based on synonymous
variations between sequences with noncompar-
ative methods based on the analysis of codon
bias usage.

[12]

Ribo-TISH Ribo-seq
data analysis

Ribo-seq
and TI-Seq
data

Detects and quantitatively compares transla-
tion initiation sites across conditions from
translation initiation sequencing (TI-Seq) data
and predicts sORFs from ribosome profiling
(Ribo-seq) data. It is an unsupervised method
that does not rely on prior knowledge of the ORF
annotation and allows predicting de novo ORFs.

[164]

34



1. Introduction – 1.1. Short open reading frames (sORFs) are ubiquitous elements
expressed in many species

Tool Method Input Description Ref.
RiboTaper Ribo-seq

data analysis
Ribo-seq
data

Permits de novo prediction of ORFs from Ribo-
seq data, on the basis of the characteristic three-
nucleotide periodicity of the data. It is built
upon the multi-taper unsupervised method de-
veloped in the signal-processing field.

[27]

ORF-RATER Ribo-seq
data analysis

Ribo-seq
data

ORF regression algorithm for translational eval-
uation of ribosome-protected fragments (RPFs)
(ORF-RATER) predicts ORFs from Ribo-seq data.
It uses a linear regression method that assumes
that translated ORFs display a pattern of ribo-
some occupancy that mimics that of annotated
CDS.

[46]

RiboHMM Ribo-seq
data analysis

Ribo-seq
data

Predicts translated ORFs from Ribo-seq data,
using a HMM method.

[107]

RiboORF Ribo-seq
data analysis

Ribo-seq
data

Analyzes Ribo-seq data to identify translated
ORFs that combines alignment of ribosomal A-
sites, trinucleotide periodicity and uniformity
across codon, using a support-vector machine
(SVM).

[60]

PRICE Ribo-seq
data analysis

Ribo-seq
data

Probabilistic inference of codon activities by an
expectation – maximization algorithm (PRICE)
models experimental noise to accurately resolve
overlapping sORFs and non-canonical transla-
tion initiation.

[44]

uORF-seqr Comparative
genomics
and Ribo-seq

Ribo-seq
data

Identifies uORFs based on comparative ge-
nomics to study AUG and non-AUG uORFs. The
algorithm uses regression to select and weight
the features that correlate with uORF detection
in biological replicate Ribo-seq datasets.

[131]

uPEPperoni Comparative
genomics

Sequence Was an online tool (no longer available) for
the identification of putative functional sPEPs,
based on the detection of conserved uORFs in
eukaryotic transcripts.

[127]

SPECtre Ribo-seq
data analysis

Ribo-seq
data.

Uses Ribo-seq data to model the trinucleotide
periodicity of ribosomal occupancy using a clas-
sifier based on spectral coherence.

[34]

PROTEOFORMER
Proteoge-
nomics

Ribo-seq
and MS
data

Is a pipeline that allows performing proteoge-
nomics by automatically processing of MS and
Ribo-seq data. It builds a reference database by
identifying ORFs from Ribo-seq data that can
thus be compiled for MS-based identification.

[37,
145]
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Tool Method Input Description Ref.
ORFik Ribo-seq

data inte-
gration and
visualisation

Ribo-seq
data

Is a Bioconductor R package supporting stan-
dard translation analysis, including read map-
ping for Ribo-seq, trimming, P-site shifting and
ribosomal occupancy quantification. It can
notably quantify translation initiation through
scanning efficiency and ribosome recruitment.
It also incorporates tools for visualisation.

[136]

RiboNT Ribo-seq
data analysis

Ribo-seq
data

Is a noise-tolerant ORF predictor that can utilize
RPFs with poor periodicity. It uses the RPF pe-
riodicity as well as the codon usage to identify
translated ORFs. This tools has been proved to
be more efficient with RPF-sparsed data due to
low-level of translation.

[130]

uORF-Tools Ribo-seq
data analysis

Ribo-seq
data

Is a pipeline enabling the identification of differ-
entially translated uORFs from Ribo-seq data,
using the Ribo-TISH tool for the identification
of uORFs.

[120]

One of the simplest and most common approach consists in detecting all start
codons and their downstream stop codon in all three possible reading frames [84].
Because this method is susceptible to generate many ORFs, when several ORFs are
sharing a stop codon, this is usually the longest one which is retained (i.e. the one
with the most upstream start codon) [81, 84]. However, whilst such computational
methods relying on the detection of long continuous coding potential has shown to be
quite efficient for long ORFs, the inflated false discovery of sORFs requires to integrate
additional parameters or to consider other methods of detection, in particular when
considering alternative start codons [48, 81, 82]. As an example, McGillivray et al.
[84] identified nearly 1.3 million uORFs by scanning the human genome for uORFs
beginning with an ATG or a single nucleotide variant of ATG and associated with
protein coding genes. Because sORFs are not encoded by typical genes containing
classical gene structure elements, it was believed that expressed sORFs have a biased
use of nucleotides and codons, which has been used for the development of initial
computational strategies [8, 36, 106, 147].

A more recent set of computational methods relies on phylogenetic conservation
analyses and cross-species comparison to identify conserved sORFs. The rationale
for conservation analysis is related to the fact that sORFs that lack cross-species
conservation are less likely to be functional or to encode functional peptides1. In addi-
tion, evolutionary conservation has shown to be a strong indicator of functionality
for canonical proteins. However, non-conserved sORFs should not be dismissed as
species-specific sORFs may also be biologically relevant and susceptible to evolve
more quickly [8, 82, 102, 117]. As highlighted by Makarewich and Olson [82], cross-
species comparisons are powerful techniques because most genes are subject to

1The term peptide refers to proteins of approximately less than 50 aa
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evolutionary pressure to maintain sequence conservation and display a prevalence of
synonymous codon substitutions versus nonsynonymous substitution.

Finally, many of existing bioinformatics strategies are combining pure computa-
tional approaches with the integration of experimental data, as described hereafter.

1.1.2.2. Ribosome profiling (RiboSeq) allows detection of translated
sORFs

Ribo-seq is a method introduced for the first time in 2009 by Ingolia et al. [58] and
that aims at identifying ncORFs with their exact position and to estimate their level
of translation [8, 14, 31, 36, 57]. This approach evolved from the polysomal profil-
ing method developed in the 1960s that is based on sucrose-gradient separation of
translated mRNAs from untranslated ones [31, 66]. Ribo-seq takes a ribosome-centric
perspective in order to provide a high-resolution quantitative profile of the translation
across the transcriptome [57]. To do so, it aims at stabilizing the interactions between
RNA molecules and their translating ribosomes (Fig. 1.2), providing then the ability to
map the position of ribosomes in all RNAs [147].

Figure 1.2.: Principle of the ribosome profiling (RiboSeq).

The first step consists in stalling the elongating ribosome on the transcript and/or
the initiating ribosome at the translation initiation sites (TISs), using respectively
cycloheximide and harringtonine, two chemical inhibitors of the translation. The non-
protected RNA fragments are then digested using a RNase treatment in order to collect
RPFs. RPFs usually size 20-32 nucleotides (nts) and are massively sequenced to be
mapped on the transcriptome. The density of ribosome footprint is finally exploited
to infer the level of translation of each ORF [57, 92, 106, 147].

Because Ribo-seq allows large-scale systematic detection of translated ORFs at
codon resolution, it is considered as the current gold standard method for identifying
novel functional sORFs at a specific time point and in a particular context [31, 147].
In addition, it provides direct evidence for translation, regardless of the size of ORFs
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and whether they use canonical or alternative start codons [142]. Ribo-seq is usually
performed in combination with bulk RNA sequencing (RNA-seq) analysis in order to
estimate the translation efficiency2 of the various ORFs and CDSs [31]. Indeed, Ribo-
seq data provide measurements of protein synthesis that reflect both the translational
status of an ORF and the underlying abundance of its RNA. Hence, normalization to
RNA-seq data is required to be able to distinguish translational and transcriptional
regulations [57]. In addition, one prerequisite for translational studies with Ribo-seq
is to preserve the translational status of the cell as well as the integrity of its ribosomes,
and the protocols need to be carefully designed to avoid any displacement of ribo-
somes during the preparation of samples [31].

If this recent approach has proved to be particularly efficient and has been exten-
sively used during the past decade, Schott et al. [122] point out the fact that analyzing
Ribo-seq data is complex, as ribosome density is affected both by passive and active
changes [14]. Distinct computational strategies have thus been developed to distin-
guish actual translation events from technical noise. These last are usually based on
RPF abundance, length and trinucleotide periodicity (since ribosomes move three
nucleotides at a time during elongation), positioning within a transcript as well as
responsiveness to translation inhibitors [25]. Most of these strategies allocate the
translated P-sites (peptidyl sites) or A-sites (aminoacyl sites)3 according to the posi-
tions and offsets of RPFs (i.e. the number of nucleotides separating the start of the
A-site codon from the 5’ end of the RPF) in order to determine the translated frame
for a given sequence [130]. The translation efficiency is commonly computed. This
metric is defined as the ratio of RPKM in Ribo-seq over RPKM in RNA-seq across the
ORF. It is used to assign a level of translation to an ORF [92, 106]. ORFscore is an
alternative method that has been developed to quantify the level of translation of the
ORF. It exploits the three codon periodicity of the distribution of RPKM relative to the
predicted ORF [16, 106]. Fragment length organization similarity score (FLOSS) is a
method that enables to identify the true ribosome footprint bioinformaticaly based
on the magnitude of disagreement between the RPF-length distribution of CDSs and
those of the sORFs [94]. To the difference of most computational tools that focus on
initiation sites, ribosome release score (RRS) is a method that has been designed to
detect the termination of translation at stop codons [82].

Various modifications of the initial protocol of Ribo-seq as it has been described by
Ingolia et al. [58] led to the development of slightly different methods. In 2021, VanIns-
berghe et al. notably developed single-cell Ribo-seq (scRibo-seq) [141] bringing the

2The translation (or translational) efficiency (TE) is a common metrics introduced with ribosome
profiling (Ribo-seq) experiments that aims to quantify the level of expression of an ORF. It is defined
as the ratio of ribosome footprint abundance over normalized mRNA abundance across the ORF

(i.e. T E = RPKM in Ribo-seq
RPKM in RNA-seq ) [31, 88, 92, 106, 109]. It should be noticed that TE score is not a reliable

estimator at low expression levels [10].
3The A-site of a ribosome is the binding site for the aminoacyl-transfer RNA, which assure the transla-

tion of the codon into an amino acid
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Ribo-seq to a new level that allows the identification of sORFs and the measurement of
their translation at the single-cell resolution. Another example is the nascent Ribo-seq
(nRibo-seq), published by Schott et al. in 2021 [122], and that allows monitoring the
latency between the appearance of nascent messenger RNAs (mRNAs) and their asso-
ciation with ribosomes. Poly-Ribo-seq is another derivative of Ribo-seq described by
Aspden et al. in 2014 [10]. It aims at studying the sORFs bound by multiple ribosomes
under the assumption that this makes them more likely to be actually translated.
However, this methods tends to preferentially enrich for actively translated single
sORF-containing mRNAs because ribosomes have been reported to reach densities of
1 ribosome every 80 nucleotides, which makes the shortest ORFs less likely to harbor
multiple ribosomes. Hence, it makes it less reliable when it comes to the identification
of multiple sORFs on the same transcript. Finally, TI-Seq has been presented by Zhang
et al. in 2017 [164] and focus exclusively on the translation initiation sites. It aims
to discover and quantify the translation initiation events, in particular at alternative
TISs. Many other slight variations of Ribo-seq have been published since the original
publication and applied to many species of all kingdoms. Alternative or complemen-
tary antibiotic treatments (such as lactimidomycin or puromycin) have also been
proposed to enrich specifically for initiation or termination complexes [48, 57].

Despite being the gold standard method for translational studies, Ribo-seq suffers
from a substantial level of noise [44] and it is arguable that ribosome occupancy on
ORFs lead to the synthesis of a functional protein. In addition, it should be highlighted
that Ribo-seq does not provide any information regarding the stability or the eventual
functionality of the products of translation [5, 8, 36, 48, 82, 133], and complementary
experiments are necessarily required to address these issues.

1.1.2.3. Mass spectrometry (MS) based proteomics allows detection of
sORF-encoded peptides (sPEPs)

Detection by MS remains so far the best method for identifying proteins, but the short
length of sPEPs raises numerous technical limitations, in both isolating, identifying
and detecting the peptides [48, 82, 147]. Indeed, standard protein extraction proto-
cols usually exclude proteins smaller than 10 kDa [147], which requires to develop
protocols specifically for short size proteins and peptides. Such protocols evolved
during the past years and allowed successful direct detection of sPEPs [36]. However
Tharakan and Sawa [133] report that the detection of peptides as short as 5 aa by MS
is still impossible.

In addition, a huge number of peptides are also generated from canonical proteins
by proteosomal degradation, which makes harder the specific recovery and detection
of functional sPEPs [102]. It has also been highlighted that only a small fraction of
sORFs produces peptides in sufficient abundance for detection [54] and that there is a
rapid turnover of sPEPs [46]. While less than 1% of long non-coding RNAs (lncRNAs)-
encoded peptides are currently evaluated by proteomics [147], 40 % of lncRNAs were
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estimated to contain translated sORFs [164], suggesting that MS-based proteomics
methods still struggle at detecting sPEPs.

Hence proteomics is of great interest for identifying sPEPs and studying their func-
tions, in particular as it provides a proof of the existence of stable peptides. However,
it should not be the method of predilection when it comes to systematic identification
of sORFs, in particular when one is willing to explore the functions of the coding
sequence itself, independently of its translational product.

1.1.2.4. Proteogenomics combines advantages of transcriptomics and
proteomics approaches to identify sPEPs

The presence of many unidentified ion peaks in mass spectrometry data and the lack
of comprehensive databases [8, 132] led to the recent development of proteogenomics
approaches, that have become more and more popular during the past few years
[82, 133]. As described by Laumon et al. [72], proteogenomics "leverages on next
generation sequencing (NGS) to perform genomically informed proteomics". In other
words, proteogenomics combines proteomics with genomics or transcriptomics [144].
It consists in searching the mass spectral data against a database generated in silico
and that contains the conceptual translation of all six reading frames (three forwards
and three reverse) of the genome or transcriptome assembly, or generated from the
translatome identified by Ribo-seq experiments or any of the computational methods
described above [8, 106, 113, 144].

Using proteogenomics allowed thus to recover many sPEPs from existing MS data,
that were missed because most databases are missing information about sPEPs. How-
ever, the central problem with these spectral databases generated based on transcrip-
tomics or genomics data is their extremely large size, which tends to decrease the
search sensitivity [133]. Proteogenomics approaches thus struggle with the distinction
between true and false peptide-to-spectrum matches as the database sizes enlarge.
Using Ribo-seq data allows narrowing down the search space to the translatome and
to partially solve this issue [144].

Hence, while ribosome profiling (Ribo-seq) allows detecting many more sORFs by
far, proteomics provides a direct evidence of the accumulation of sPEPs at a mean-
ingful level [48], providing thus an additional insight about their functionality. Using
different discovery methods and combining data from experiments run in various
cellular contexts is expected to provide distinct but often complementary information
and should be encouraged [48, 57]. Gray et al. [48] even consider that two lines of
evidences are necessary for annotation of sPEPs: either independent identification
by conservation analysis and ribosome profiling, or by ribosome profiling and pro-
teomics. Based on this principle, many methods have been developed by combining
experimental and computational approaches to identify new sORFs and estimate
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their level of translation. Some of them take notably advantage of Bayes’ classifiers,
HMM, SVMs, random forest-based and logistic regression-based classifiers, as well
as experimental data, to identify sORFs susceptible to be translated but for which
experimental evidences at the peptide level are still missing [8, 81, 84, 106] (Table 1.2).

Because of their short size, it has been often argued that sORFs can quite easily
appear randomly in the genomes, arising questions regarding the relevance to study
such ORFs. Altogether, these methods have greatly improved the identification of
sORFs [48] and our knowledge regarding these new biological entities and should
continue to provide proofs of their functionality in the future.

1.1.3. sORFs have been gathered in publicly available
repositories

Given the growing body of evidence regarding the functional importance of the
ncORFs and their sPEPs, there is an urgent need in gathering information about
these novel ORFs and making it accessible to the scientific community. Efforts have
already been made in this direction and the table 1.3 reviews publicly available re-
sources that gather information about sORFs and/or sPEPs.

It should be noticed that sORFs.org [94, 95] and OpenProt [23, 24] are currently con-
sidered as the two main and most comprehensive repositories of sORFs experimentally
identified. In 2018, publicly available data were scattered across different databases,
datasets were aligned on different genome builds as well as differently annotated and
formatted and no uniform nomenclature was used to describe the sORFs. This called
for an uniformed, easily-accessible resource where each sORF would be individually
described, a first task I tried to address during my thesis. However, as stressed out by
Neville et al. [93], there is by no means a comprehensive catalog of sORFs as more of
them are sure to be discovered in the future, and it is likely that several databases will
remain necessary as they are build on different, but complementary, paradigms.
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Table 1.3.: Publicly available repositories of sORFs and sPEPs (adapted from Choteau et

al. (2021) [33]).
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1.2. Short open reading frames encode functional
peptides

1.2.1. sORF-encoded peptide (sPEP) functions are mainly
unknown

A growing body of evidence demonstrated that sORFs may encode functional peptides
that have been overlooked for a long time because of their short size [36, 102, 133,
142, 147]. They are designated as sORF-encoded peptides (sPEPs) (SEPs), alternative
proteins (AltProts), micropeptides, microproteins or miniproteins [5, 52, 54, 74, 81, 82,
94, 97, 102, 106, 109, 147, 160]. The first description of such peptides in eukaryotes has
been made during the 1990s and the first sPEPs were mainly identified by serendipity
through investigation of ncRNAs [102]. The recent discovery that lncRNAs are able to
encode functional peptides has drawn an increasing attention for the past few years
[79] and emphasizes the functional potential of this unexplored class of peptides [113].
To the difference of peptides generated by cleavage of a long precursor (such as hor-
mones or neurotransmitters), sPEPs are, by definition, de novo products of translation
[52, 80, 82, 113]. It is not yet clear if there will be any lower size limit, but one can argue
that there is no reason to consider a lower limit [8, 48], in particular regarding the fact
that peptides as short as two amino acids are known to be functional (e.g. 2 aa TRDD1
or the 4 aa phagocytosis-stimulating peptide).

Numerous studies support the importance of sPEPs in many functions, notably in
fundamental cellular and physiological processes and even their involvement in the
etiology of some diseases [79]. It has been suggested that they constitute a new pool of
cancer-related peptides that could become potential therapeutic targets in the future
[36, 109, 113, 133] or be used as biomarkers for diagnosis [109, 147]. Functional sPEPs
have already been discovered in many species, in both prokaryotes (bacteria) and
eukaryotes (yeast, invertebrates, mammals, plants...) [36, 82, 113]. sPEPs have notably
been demonstrated to be involved in cell proliferation, signaling, cell physiology,
organogenesis, growth, cell death, transport, enzymatic regulation, metabolism and
development, cytoskeleton organization, major histocompatibility complex class-I
(MHC-I) presentation and control of RNA polymerase [25, 36, 44, 52, 72, 109, 133, 147],
but also to be involved in protein-protein interactions, ribosomal complexes or be
receptors’ ligands and to have antibacterial properties [10, 25, 36, 97, 147, 161].

Due to their short size, sPEPs have also been hypothesized to easily fit into binding
pockets of other proteins, which makes them candidate regulators of protein-protein
interactions and enzymatic activity (as it has been demonstrated for Pri-peptides in
drosophila for instance, see Table 1.4) and susceptible to take part in larger protein
assemblies [25]. In addition, Hazarika et al. [52] point out the fact that protein-peptide
interactions involve smaller interfaces than canonical protein-protein interactions
(PPIs), which make these interactions usually of weaker affinity and transient. This
can thus bring to fast changes in interactions when they are broken under sudden
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cellular perturbations, and lead in fine to faster cellular responses. Because they often
present hydrophobic features, it has also been suggested that sPEPs are likely to inter-
act with membranes [97, 102]. In addition canonical peptides are known to be toxins,
transmembrane peptides, enzymatic interactors, modulators of enzymatic activity,
transporter regulators, regulators of the transcription, secreted peptides, hormones or
receptors [10, 25, 48], so we may reasonably hypothesized that some of these functions
are likely to be fulfilled by sPEPs. Aspden et al. [10] also emphasize that sPEPs are more
susceptible to interact with canonical proteins as regulators, as their size limits their
structural capabilities. The Figure 1.3 presents a graphical summary of sPEPs putative
and demonstrated molecular functions and the Table 1.4 presents some sPEPs which
functions have been elucidated, mainly based on low-scale experiments.

Figure 1.3.: Some demonstrated and putative functions of sPEPs. Examples of charac-

terized sPEPs are presented in the Table 1.4.

Table 1.4.: Examples of sPEPs whose functions have been elucidated. NB: Contrary to

canonical proteins, most sPEPs do not have a symbol, alias, name or unique identifier.

sPEP Size
(aa)

Organism(s) Functions Ref.

Myomixer 84 M. musculus a.k.a. microprotein inducer of fusion (minion) or
Myomerger. Myomixer has a muscle-related func-
tion and is unique to skeletal muscle. It links to My-
omaker, a fusogenic membrane protein that controls
the cell fusion and muscle formation.

[102,
147]
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sPEP Size
(aa)

Organism(s) Functions Ref.

Myoregulin
(MLN)

46 Mammals Encoded by an lncRNA. MLN is an inhibitor of
the Sarco/endoplasmic reticulum calcium-ATPase
(adenosine triphosphatase) pump (SERCA) pump
in muscle. The SERCA pump is encoded by
three genes in vertebrate and belongs to a fam-
ily of P-type ATPases. It ensures the transport
of calcium, notably in various skeletal muscles.
MLN presents structural similarities with PLN and
SLN. SERCA (Sarco/endoplasmic reticulum calcium-
ATPase (adenosine triphosphatase) pump) ensure
the uptake of calcium in the sarcoplasmic retic-
ulum. The calcium is involved in many cellu-
lar processses, such as cell motility, fertilization,
platelet cell activation, cardiac hypertrophy, vascu-
lar tone, neuronal transmission, synaptic plastic-
ity and muscle contraction. The calcium release
from sarco/endoplasmic reticulum (s/ER) is per-
formed by various distinct channels and a passive
leak whilst the reuptake of calcium into the S/ER is
exclusively performed through SERCA pump. In ver-
tebrates, SERCA is encoded by three genes (SERCA1
to SERCA3) transcripted into multiple splice iso-
forms expressed in distinct cell types [4, 147]

[4,
25,
81,
102,
113,
133,
147,
159,
161]

Phospholamban
(PLN)

52 Mammals PLN is an inhibitor of the SERCA pump. It is specif-
ically expressed in the atria and ventricles of the
heart and bladder in mouse embryos. It competi-
tively binds to SERCA with SLN, ALN and ELN.

[4,
25,
102,
161]

Sarcolipin
(SLN)

31 Mammals SLN is an inhibitor of the SERCA pump. It is specifi-
cally expressed in the atria of the heat and embyonic
slow-type skeletal muscles in mouse. It competi-
tively binds to SERCA with PLN, ALN and ELN.

[4,
25,
102]

Endoregulin
(ELN)

65 Mammals a.k.a. 1110017F19Rik/SMIM6. ELN is a transmem-
brane peptide conserved in mammals and binding
to the SERCA pump. It competitively binds to SERCA
with PLN and SLN.

[4,
133]

Another-
regulin (ALN)

58 Mammals a.k.a. 1810037I17Rik. ALN is a transmembrane
peptide conserved in mammals and binding to the
SERCA pump. It competitively binds to SERCA with
PLN and SLN.

[4,
133]

Sarcolamban
(SCL)

28 D.
melanogaster

SCL is an inhibitor of the SERCA pump in inverte-
brates, found in the cardiac and somatic muscle.

[4,
81,
106,
133]

Dwarf ORF
(DWORF)

34 D.
melanogaster

DWORF is encoded by a lncRNA. It binds SERCA in
muscle and increases its activity by displacing in-
hibitory proteins (MLN, SLN and PLN). It has been
found to be suppressed in human heart with is-
chemia.

[4,
102,
147]
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sPEP Size
(aa)

Organism(s) Functions Ref.

Tarsal-less
(tal) / pol-
ished rice
(pri) sORFs

11 &
32

D.
melanogaster

The pri transcript is a lncRNA that encodes four func-
tionally redundant peptides (3 sPEPs of 11 aa, 1 sPEP
of 32 aa) involved in fly embryonic development.
These peptides are among the best-characterized
sPEPs. Pri (a.k.a. tarsalless) is required for the devel-
opment of adult legs. Its beetles homolog millepat-
tes (Mlpt) is also involved in the embryonic segmen-
tation and leg specification. In drosophila, epider-
mal cells normally differentiate extensions called
trichomes. During the terminal differentiation of
embryonic epidermal cells, Pri triggers the remodel-
ing of apical cell shapes. It has been shown to medi-
ate the post-translational modification (PTM) of the
transcription factor Shavenbaby (Svb). Svb is a large
protein (1,351 aa) expressed in epidermal cells that
acts as a repressor under its complete form. It or-
chestrates the expression of various cellular effectors
responsible for the reorganization of the cytoskele-
ton, extracellular matrix and membrane domains,
resulting in the repression of trichome formation.
Pri induces N-terminal truncation of Svb by inter-
acting with the E3 ubiquitin ligase Ubr3 and Svb, re-
sulting in proteasomal degradation. This results into
the removal of the repressor region and thus into a
shorter activator (906 aa) triggering trichome forma-
tion. In addition, Pri is controlled by periodic pulse
of steroid hormones and thus related to a systemic
temporal control of developmental transitions.

[8,
80,
81,
102,
106,
113,
147,
160,
161]

NoBody 68 Mammals NoBody is a well-conserved sPEP encoded by
LINC01420/LOC550643 in mammals. It interacts
with EDC4 that facilitates mRNA decapping and
promotes their decay. NoBody has been found to
co-localize with P-body and other mRNA decap-
ping/decay factors.

[102,
133,
147]

Toddler 58 Zebrafish a.k.a. ELABELA or Apela (ELA). Toddler is encoded
by a ncRNA, evolutionary conserved and expressed
in the extracellular compartment. It is a ligand for
the Apelin receptor that functions as a motogen (i.e.
stimulates the cell motility) by promoting the cell
migration and gastrulation motion.

[81,
102,
106,
133,
147,
161]

Polar granule
component
(Pgc) sPEP

71 D.
melanogaster

Pgc is encoded by a lncRNA specific to germ cells
and required for their development.

[8,
81,
102,
161]

MRI-2 69 Mammals MRI-2 is involved in DNA repair process. It activates
the nonhomologous end joining (NHEJ) factor by
interacting with Ku, a protein that binds to DNA
ends.

[102,
106,
113,
147,
160]
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sPEP Size
(aa)

Organism(s) Functions Ref.

PEP7 7 Mammals PEP7 is encoded by an uORF of the angiotensin type
1a receptor (AT1aR) gene. Binding of angiotensin II
to the angiotensin receptor activates both, G protein-
coupled and non-G protein-coupled pathways to
control fluid and electrolyte homeostasis. PEP7 se-
lectively impedes the non-G protein-coupled sig-
naling, without affecting the classical G protein-
coupled signaling pathway.

[109]

Alternative-
MiD51

70 Mammals Alternative-MiD51 is encoded by an uORF of the
mitochondrial elongation factor 1 (MIEF1), a mito-
chondrial receptor of Drp1. Alternative-MiD51 is a
mitochondria fission factor and upstream regulator
of MiD51 translation.

[109]

P155 17 Mammals P155 is encoded by ncRNA MIR155HG. It modulates
major histocompatibility complex class-II (MHC-II)-
mediated antigen presentation and T cell priming
and acts as a suppressor of inflammatory diseases.

[147]

Humanin 24 H. sapiens Humanin is encoded by a 75 bp sORF localized on
mitochondrial 16S RNA. Humanin interacts with
a tripartite cytokine receptor and presents anti-
apoptotic functions by inhibiting Bcl-2-associated X
(BAX) protein and insulin-like growth factor binding
protein 3 (IGFBP3).

[80,
102,
113,
133]

HOXB-AS3
sPEP

53 H. sapiens lncRNA HOXB-AS3-encoded sPEP (unnamed). This
sPEP suppresses tumorigenesis by PKM alternative
splicing regulation and colon cancer cell metabolic
reprogramming.

[147]

AGD3 sPEP 63 H. sapiens AGD3 (a.k.a. TUF)-encoded sPEP (unnamed). This
sPEP is active in human stem cell differentiation.

[147]

Yin Yang
1 (YY1)-
binding
micropeptide
(YY1BM)

21
aa

H. sapiens YY1BM is encoded by ncRNA LINC00278. It is in-
volved in esophageal squamous cell carcinoma pro-
gression by inhibiting the interaction between YY1
and the androgen receptor, making it more adaptive
to nutrient deprivation.

[147]

Micropeptide
inhibiting
actin cy-
toskeleton
(MIAC)

51 H. sapiens MIAC is a sPEP inhibiting actin cytoskeleton. It is
an key player in cancer progression and low MIAC
expression has been correlated with poor overall sur-
vival of head and neck squamous cell carcinoma
patients. It has also been significantly associated
with the progression of five other tumors.

[147]

CIP2A-BP 52 H. sapiens CIP2A-BP is encoded by lncRNA LINC00665. It is
a prognostic marker of breast cancer and has been
suggested to constitute a novel therapeutic target.

[147]

NR3C1 sPEP 93 H. sapiens NR3C1 sPEP is localized at the cell membrane and
regulates expression of the glucocorticoid receptor
through interaction with unknown cellular factors.

[8]
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sPEP Size
(aa)

Organism(s) Functions Ref.

ASS1 sPEP 44 H. sapiens This sPEP (unnamed) inhibits the expression of
ASS1.

[8]

EPHX1 sPEPs 17 &
26

H. sapiens Two sPEPs (unnamed) are encoded by EPHX1 uORFs.
They inhibit the translation of EPHX1 through inter-
actions with the translational machinery.

[8]

MKKS sPEPs 50 H. sapiens MKKS sPEPs (unnamed) localizes to the mitochon-
drial membrane.

[109]

AltPrP sPEP 73 H. sapiens AltPrP sPEP (unnamed) is co-expressed from the
prion protein transcript in brain, primary neurons
and peripheral blood mononuclear cells. It has been
localized to the mitochondria.

[8]

AltATXN1
sPEP

185 H. sapiens AltATXN1 sPEP (unnamed) is expressed in the cere-
bellum and interacts with the ATXN1 protein in the
nucleus.

[8]

AltMRVI1
sPEP

134 H. sapiens AltMRVI1 sPEP (unnamed) colocalizes to the nu-
cleus and interacts with BRCA1.

[8]

Mitochondrial
open reading
frame of the
12S rRNA-c
(MOTS-C)

16 H. sapiens MOTS-C is encoded by the 12s rRNA gene in the
mitochondrial genome. It is conserved between 14
mammalian species and presents an antidiabetic ac-
tivity. It regulates the cellular metabolism through
changes in the methionine-folate cycle and an in-
crease in AMPK activity. MOTS-C acts as a mitochon-
drially derived hormone and play a systemic role in
the metabolic homeostasis of skeletal muscles and
fat tissues.

[102,
113,
133]

C17ORF91 57 H. sapiens C17ORF91 is encoded by lncRNA MIR22HG (pri-
miRNA-22) induced in response viral infection. Its
functions are still unknown.

[105]

miPEP200a
and
miPEP200b

187
& 54

H. sapiens miPEP200a and miPEP200b are respectively en-
coded by the pri-miRNAs of miR-200a and miR-200b.
They have been shown to inhibit prostate cancer
cells migration by downregulating vimentin expres-
sion, however the mechanism needs to be eluci-
dated.

[105]

miPEP155 17 H. sapiens miPEP155 is encoded by lncRNA MIR155HG
(pri-miRNA-155), an important regulator of
hematopoiesis, inflammation, immunity and
tumorigenesis. miPEP155 suppresses autoimmune
inflammation by regulating antigen transportation
and presentation by antigen-presenting cells
(notably in dendritic cells). miPEP155 is conserved
in primates.

[105]
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sPEP Size
(aa)

Organism(s) Functions Ref.

miPEP133 133 H. sapiens miPEP133 is encoded by MIR34ahg (pri-miRNA 34a).
It is expressed in various normal tissues and down-
regulated in cancer cell lines and tumors and has
been reported to be a tumor suppressor when over-
expressed. It localizes to mitochondria and en-
hances p53 transcriptional activity.

[105]

Mm47 47 M. musculus Mm7 is encoded by ncRNA 1810058I24Rik and local-
ized in the mitochondrion and seems to be involved
in the responses of NLRP3 inflammasomes.

[147]

Tal1 sPEP NA M. musculus Tal1 uORF translation results in the synthesis of trun-
cated TAL1 isoforms that favor erythroid lineage
choice.

[109]

SCL 28 &
29

D.
melanogaster

ncRNA pncr003:2L encodes two sPEPs known as SCL
and that control the calcium transport. They are
also known to regulate heart muscle contraction in
drosophila.

[8,
113,
147,
161]

Small peptide
of amino
acid response
(SPAR)

90 D.
melanogaster,
H. sapiens

SPAR is encoded by lncRNA LINC00961 and local-
ized in late endosomes and lysosomes. It controls
the activation of mTORC1 and facilitates muscle re-
generation.

[102,
133,
147]

Hemotin 88 D.
melanogaster

Hemotin is expressed in macrophages. It regulates
endosomal maturation during phagocytosis. Weak
sequence conservation was found in vertebrates for
this peptide, but tertiary structures similarities were
found with Stannin, a 88 aa peptide which is in-
volved in organometallic toxicity.

[102]

Early nodulin
40 gene
(Enod40)
sPEPs

12 &
24

Plants Enod40 encodes two sPEPs that interact with en-
zyme synthesizing sucrose during the organogenesis
of root nodules.

[147,
161]

DLV1 51 Plants DLV1 is involved in the regulation of organogenesis. [147]

Zm908p11 97 Plants Zm908p11 facilitates the pollen development. [147]

Zm401p10 89 Plants Zm401p10 facilitates the pollen development. [147]

AtCDC26 65 Plants AtCDC26 regulates the accumulation com-
plex/cyclosome (APC/C) target proteins during the
plant anaphase. It is involved in the control of cell
division, growth and embryo development.

[97]

POLARIS
sPEPs

36 A. thaliana POLARIS encodes a sPEP (unnamed) that affects the
vascular patterning of leaves and root growth.

[147,
161]

PLS 36 A. thaliana PLS modulates root growth and leaf vascular pat-
terning.

[8]

ROT4 53 A. thaliana,
maize

ROT4 controls polar cell proliferation in lateral or-
gans and leaf morphogenesis.

[8,
147]

ROT18 25 A. thaliana ROT18 regulates the programmed cell death. [147]
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sPEP Size
(aa)

Organism(s) Functions Ref.

Brk 76 A. thaliana,
maize

Brk has been shown to play a role in leaf morpho-
genesis.

[81,
147]

SAMDC sPEP 52 A. thaliana The expression of SAMDC CDS is regulated by
polyamines binding to the nascent uORF-encoded
peptide (unnamed).

[8]

CPA1 25 S. cerevisiae CPA1 reduces the expression of the CDS through
ribosomal stalling.

[8]

SgrT 43 Bacteria SgrT is involved in glucose metabolism through in-
teraction with glucose transporter PtsG.

[113]

spoVM 26 Bacteria spoVM is an essential for endospore formation. [161]

Despite the characterization of some sPEPs and an intensification of the studies
about these peptides during the past years [48], very few have been identified by
mass spectrometry [132] and their functional annotation remains a major challenge,
as the functions of most of them is still unknown. The fact that an entire class of
peptides has been missed so far implies that one has been missing a whole level of
regulation, critical structural components, as well as unique mechanisms of action
[48]. In addition, because the relative abundance of sPEPs changes during stress [48,
88], it is legitimate to wonder if they play a role in the homeostasis of the cell. The
functional characterization of novel sPEPs is thus challenging, as they are likely to
significantly increase the proteome4 of many species [10] (and sometimes designated
as being part of the "dark proteome" [97]).

However, one of the first major issue remains to know if the product of a translated
sORF has a function in the cell [48]. Since all large-scale techniques are susceptible
to generate false positive, the fact that sPEPs could be artifact of the techniques used
for their discovery is still discussed [133]. Nonetheless, the growing body of evidence
about functional sPEPs shed the light on their actual existence at peptide level, their
stability and of their functionality, including if the number of sPEPs in human and
model species is still controversial and varied by orders of magnitudes between studies
[133]. If the use of labels or tags is usually relevant for exploring functions of unknown
proteins [133], it could be especially tricky when it comes to sPEPs, as such sequences
are sometimes of a similar size or even longer than the sPEP of interest itself. Thus,
the size and biochemical properties of the tag itself (such as hydrophobicity or charge)
must be considered when analyzing data from such experiments [147].

4The proteome of a cell is defined as the full set of proteins and peptides actually expressed in the
cell. When referred to at species or organism level, the proteome actually refers to the full set of
proteins (and peptides) that can be synthesized from the genome of this species or organism. By
definition, sORF-encoded peptide (sPEP) should thus be considered as being part of the proteome
as soon as there are evidence of their existence at the peptide level. The proteome may sometimes
be distinguished from the peptidome, which contains only the shortest proteins (i.e. the peptides).
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To my knowledge, large-scale functional characterization and annotation of sPEPs
(including the shortest ones) are still missing and interactions of these novel peptides
with the canonical proteins (designated hereafter as reference proteins (RefProts))
remain mostly uncharacterized. Because elucidation of the role of unknown proteins
have been successfully performed by studying their interactions with proteins of
known functions in the past, I suggest to use similar approaches to explore and
discover the functions and biological processes in which sPEPs are implicated. In
addition, Gray et al. [48] emphasizes that sPEPs are typically missing from large-
scale protein localization and interaction studies, and predicting the first large-scale
sPEP-RefProt interaction network will tackle this issue.

1.2.2. Eukaryotic genomes should no longer be described as
monocistronic

I must first stress out the fact that the definition of ncORFs reveals a dual issue of
biology and semantic. In particular, transcripts lacking canonical ORFs longer than
100 aa were early defined as ncRNAs (including lncRNAs, miRNAs etc.) [102, 133],
whilst the recent detection of sPEPs encoded by sORFs on such transcripts questions
the actual relevance of referring to them as non-coding RNAs. Hence, calling such
transcript "non-coding" does not make sense anymore and they should be reclassified
as mRNAs [8, 81, 159], in particular regarding the fact that they share features with
mRNAs, such as capping and polyadenylation [36]. However, we still need to use
the term of ncRNA to point at the fact that sORFs were identified on RNAs that were
believed to be non-coding. As a consequence, the ncRNA-ORF term will be used in
the rest of this manuscript to refer to ORFs encoded by ncRNAs.

Gray et al. [48] highlighted that, in general, the main defining and unifying charac-
teristics of sPEPs is their short size and the fact that they commonly have been missed,
a definition that is thus currently not related to any biological feature or property of
these peptides.

Finally, eukaryotic genomes have been described for long as monocistronic, a
dogma which is mainly accepted by the scientific community [54]. As a growing body
of evidence suggests that many transcripts harbors several ncORFs or both ncORFs
and canonical ORF(s), this deeply questions the relevance of referring to such genomes
as monocistronic. Because the existence of several sORFs encoding functional sPEPs
on the same RNA has been proved in eukaryotes (including in mammals), we may
already describe a polycistronic organization of eukaryote mRNAs [46, 88, 92, 109,
113]. In addition, some sPEPs interact directly with the protein encoded by the CDS
of their transcript. Moro et al. [88] hypothesized that the co-expression from the
same mRNA could facilitate the functionalisation of sPEPs and their integration in
cellular pathways related to the main protein product. This hypothesis is supported by
Samandi et al. [117] who even suggest that this coordinated transcriptional regulation
could be similar to prokaryotic operons, and Andreev et al. [7] who stressed out that
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being located on the same RNA for two functionally related proteins may represent
an advantage for the coordination of their expression. Based on these evidences,
a growing community of scientists suggests not to describe any longer eukaryotic
genomes as monocistronic [90].

1.3. Short open reading frames regulate the
translation of CDSs

An inverse correlation between the number of uORFs within the transcript and the
efficiency of CDS translation has been highlighted quite early, and the presence of
uORFs correlates with reduced steady-state levels of transcripts [25]. This suggested
a possible role of uORFs in the regulation of the translation as well as the stability of
transcripts. Translational control is an essential step of gene expression that is tightly
controlled and can change the final protein abundance more rapidly than through
the synthesis of new transcripts. Indeed, the translation and ribosome occupancy can
change in a matter of seconds whereas the synthesis of new RNAs occurs over many
minutes [57, 164].

A growing body of evidence also demonstrated that during a global translational
arrest, some stress-resistant CDSs are preferentially translated [7]. It has been ob-
served that the mRNAs encoding for these CDSs possess translated uORFs and several
models of regulation of the translation by the uORFs have been proposed since then
[5, 6]. Under certain cellular contexts, uORFs engage initiating ribosomes and may re-
duce initiation of the translation at the CDSs through various mechanisms, including
ribosome stalling, altering the ribosome’s capacity to initiate, terminate and reinitiate
translation [109]. To understand these various mechanisms, it is important to describe
first the mechanisms of initiation of the translation, the most important rate-limiting
step at which the translation is regulated and controlling post-transcriptional gene
expression [6, 35, 74, 120, 164].

Because they were discovered first to be involved in the regulation of the translation,
uORFs were considered for long as the sole class with such regulatory function among
sORFs, even if some cases of translational regulation by dORFs or internal ORFs have
been recently reported [97]. Hence, the exploration of the translational regulatory
functions of sORFs in the scope of this thesis has been restricted to uORFs, including
if some recent studies demonstrated that other classes of sORFs may also be key
regulatory elements of the translation.

1.3.1. eIF2α factor is essential to the translation initiation
The first step necessary for the translation is the association of ribosomes to the
transcript (Fig. 1.4). Translation can happen in a cap-dependent or alternative cap-
independent process, meaning that the ribosome can start scanning the transcript
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from its 5’UTR extremity or fix it directly at a latter position, notably through the
involvment of internal ribosome entry sites (IRESs) or translation initiator of short
5’UTRss (TISUs) and scanning-free translation initiation [11, 54, 102, 109, 157]. Cap-
independent translation is facilitated by conserved N6-methyladenine (m6A) mod-
ifications in the 5’UTR which promote direct binding of a translation factor (eIF3)
to a 5’UTR m6A that recruits itself the translation machinery. RNA methylation can
be affected by various stimuli, including heat shock responses [109]. Nonetheless,
the role of uORFs in the regulation of the translation has been quasi-exclusively stud-
ied in the context of cap-dependent translation so far. Hence I decided to focus
on cap-dependent translation mechanisms and only those will be discussed in this
manuscript.

Figure 1.4.: eIF2α factor is essential to the translation initiation.

Before the initiation of the translation, the eIF2α factor assembles with a guanosine
triphosphate (GTP) and a methionyl-initiator tRNA (Met-tRNAi) to form the ternary
complex5 [6, 7, 99, 102, 109]. The ternary complex then associates with the 40S
ribosome subunit and several small initiation factors to assemble as the 43S pre-
initiation complex (43S PIC) [6, 7, 54, 99, 102, 109]. The 43S PIC is finally recruited to
the 5’ methylguanine Cap of mRNA in a process helped by the cap-binding complex
eIF4F [5, 54, 74, 99, 109]. Once fixated to the transcript, the 43S PIC scans the mRNA
from the 5’UTR extremity to its 3’UTR end until it recognizes a start codon [6, 54, 102,
109]. When a start codon is met, the Met-tRNAi anticodon is bound to the start codon
(canonically an AUG), which triggers the recruitment of the 40S ribosomal subunit
with translation initiation factors and results in the hydrolysis of GTP into a guanosine

5The ternary complex is a complex necessary to the initiation of the translation. It is constituted by
the association of the eIF2α factor with GTP and Met-tRNAi [99, 109].
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diphosphate (GDP) under the help of eIF5 [54, 74, 99]. This results in the dissociation
of the factor eIF1 and the eIF2-GDP complex from the 40S ribosomal complex and
produces a stable 48S pre-initiation complex [7, 54, 99]. This is immediately followed
by joining of the large 60S ribosome subunit to produce an 80S initiation complex
ready to begin the protein synthesis [54]. Finally, the GDP is catalyzed into a GTP by
eIF2B, a guanosine exchange factor (GEF). This restores the eIF2α factor to its active
form, that can be used another time to form a new ternary complex [7, 99, 104, 132].

1.3.2. The phosphorylation of eIF2α triggers a translational
arrest

As previously described, eIF2α is an essential factor for the initiation of the translation.
This factor can be phosphorylated and its phosphorylation severely impairs the global
level of protein synthesis and results in a translational arrest for most CDSs [7, 88].
Phosphorylated eIF2α is a competitive inhibitor of eIF2B that blocks the conversion
of GDP into GTP. This prevents the formation of the 43S PIC and results in fine into a
global inhibition of the protein synthesis [7, 35, 54, 99, 104, 121]. Such phosphorylation
of eIF2α may be triggered by the integrated stress response (ISR), a conserved eukary-
otic stress response to many stimuli, including viral and bacterial infections, growth
factor deprivation, some cytokines, ribotoxic stress, stress granules sensing, heparin,
amino acid deprivation, UV light sensing, heme deprivation, (arsenite-induced) ox-
idative stress, heat shock, osmotic stress, 26S proteasome inhibition, nitric oxide
and endoplasmic reticulum (ER) stress [35, 99, 121, 132]. The ISR can also be acti-
vated by the unfolded protein response (UPR), a signaling pathway triggered by an
ER stress during the sensing of misfolded proteins or a viral infection and known to
promote inflammation [35, 73, 150]. The ISR can even be persistently activated in
some pathological conditions, such as in mice with traumatic brain injury [104]. It is
activated by the sensing of the stress by one of four kinases (GCN2, PKR, HRI or PERK)
presenting different regulatory domains and that phosphorylate eIF2α on Ser51. It
is terminated by the dephosphorylation of eIF2α under the action of either CReP or
GADD34, two proteins respectively constitutively expressed in unstressed cells and
specifically expressed in the later stage of ISR [7, 35, 99, 121, 132]. The ISR can be
solved by cell survival (short-lived ISR) or cell death when the homeostasis cannot be
restored (prolonged ISR), but the precise mechanism of switch between pro-survival
and pro-death signaling is still largely misunderstood [35, 99]. The diminution of the
global protein synthesis ensures a diminution of the translation of viral mRNAs in
the case of an infection and diminishes the need of amino acids required for protein
synthesis in the case of amino acid depletion [99]. Whilst the phosphorylation of
eIF2α has been shown to have protecting effects against metabolic and oxidative
stress [99], an aberrant level of phosphorylation related to the malfunction of eIF2α
kinases has been shown to play a role in various pathologies [35]. Hence, the phos-
phorylation of eIF2α is associated with a global repression of the translation but some
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particular CDSs, such as those encoding for Activating transcription factor 4 (ATF4)6,
ATF5, CHOP or GADD34, are preferentially translated during the ISR [7, 99, 132]. It has
been observed that the most stress-resistant CDSs possess uORFs and several studies
demonstrated the importance of these uORFs in this stress resistance [5, 7, 102].

1.3.3. The regulation of the translation by uORFs is related to
eIF2α availability

Translation of the yeast transcription factor general control non-depressible 4 (GCN4)
and its mammalian homolog ATF4 is strongly increased under amino acid starvation.
It has been early described to be regulated by uORFs and remains one of the best-
studied example for regulatory uORFs [6, 25, 36, 102, 131, 132].

The 5’UTR of S. cerevisiae GCN4 contains four uORFs that repress the translation of
the CDS under normal conditions (Fig. 1.5). The presence of uORF1 alone reduces
the translation of GCN4 by nearly 50%, mainly because after the translation of uORF1,
only half of the 40S ribosomes will remain attached to the mRNA and be available to
reinitiate translation at the next start codon. In a similar way, uORF2 enables reinitia-
tion, likely as a backup mechanism to capture scanning ribosomes that would have
failed to initiate at uORF1. The translation of uORF3 and uORF4 favors the release of
translating ribosomes, further preventing them from reaching the CDS start codon.
Therefore, under normal conditions, the translation of GCN4 uORFs represses the
synthesis of GCN4. In summary, under normal conditions the two uORFs the closest
to the CDS repress the CDS translation and will be translated but the two first are
permissive for downstream translation. However, during a cellular stress triggering
a decrease of ternary complex availability (such as the ISR), the association of the
40S ribosome with the ternary complex is delayed and the ribosomes that reinitiate
after the translation of uORF1 are more likely to bypass the three other uORFs (uORF2,
uORF3 and uORF4), promoting efficient translation of GCN4 CDS [6, 25, 88, 102, 109].
It should be noticed that recent Ribo-seq experiments identified additional non-AUG
initiating uORFs on the transcript of GCN4, which nevertheless appear dispensable
for the translational control of the CDS [102].

6Activating transcription factor 4. ATF4 is a leucine zipper (bZIP) transcription factor of the ATF/CREB
family. ATF4 is able to form many homodimers as well as heterodimers with other bZIP transcription
factors, including CHOP. It is known to regulate more than 400 genes important in cell survival and
cell death. It has been reported to have functions in the regulation of obesity, glucose homostasis,
energy expenditure, neural plasticity, lipid metabolism, thermoregulation, muscle weakness in aging,
memory formation, autophagy, amino acid transfer and biosynthesis [99]. ATF4 is activated during
the integrated stress response (ISR) [73, 99, 104, 109, 150] and notably promotes the transcription of
CHOP and GADD34 [35].
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Figure 1.5.: ATF4-like mechanism of regulation of the translation by uORFs. (A)

Considering a protein encoded from a canonical ORF and expressed under normal condition,

and under the assumption of the canonical model of translation (i.e. without uORF regulation),

translation initiation occurs normally (Fig. 1.4) and results in the protein synthesis. (B) However,

under a cellular stress, such as the integrated stress response, eIF2α is phosphorylated and

sequestrated by the eukaryotic translation initiation factor 2B (eIF2B) GEF, reducing the global

availability of ternary complex, which results in turn in a global repression of the translation.

(C) In the archetypal model of ATF4, the transcript harbors two functional uORFs in its 5’UTR.

Translation of uORF1 occcurs and is followed by a reinitiation, a mechanism by which the 40S

subunit resumes scanning despite lacking the ternary complex (reinitiation) and is able to initiate

again the translation at the uORF2, resulting thus in the synthesis of sPEPs. However, the ribosome

dissociates at the end of the translation of uORF2 and no reinitiation is possible, which lead to a

reduced synthesis of the RefProt. (D) Under stress, after the translation of uOR1, the 40S subunit

resumes scanning despite lacking the ternary complex but, as the distance scanned by the 40S

before acquiring the ternary complex depends on ternary complex availability, reinitiation occurs

at the CDS start codon. GEF: guanosine exchange factor, ISR: integrated stress response.

To the difference of GCN4, ATF4 harbors only two short uORFs, but the mechanism
described is quite similar. Under normal conditions, uORF1 is efficiently translated, a
fraction of 40S ribosome remain attached to the transcript and the scanning resumes
after, allowing reinitiation at uORF2. In such cases, the translation of a downstream
element is only made possible by the re-acquisition of the other initiation factors
before the 40S reaches the start codon [74]. Because uORF2 overlaps the CDS, there
are less scanning ribosomes reaching the start codon of this last and the translation of
uORF2 represses the expression of ATF4 CDS. Under stress conditions, reduced ternary
complex availability together with leaky scanning (i.e. the ability of the ribosome to
read-through uORF without initiating) allow bypassing the inhibition by uORF2. A
fraction of re-scanning ribosome re-binds the ternary complex after leaky scanning
the inhibitory uORF2 and initiates the translation at the CDS [7, 54, 109].

Because uORFs have been identified in more than half of mammalian transcripts,
they may actually constitute key players in the regulation of the translation [28, 32,
54, 74, 84, 102, 109, 132]. A growing number of ribosome profiling studies identified
uORF-mediated regulation in several species (such as for FIL1, UBI4 and eIF-5 in
yeast [88] or CHOP, GADD34, CReP in mammals [7, 99, 113, 132]), but molecular
mechanisms of regulation that differ from the one described for ATF4 are rare. Indeed,
mechanisms to explain the translational regulation by the uORFs are limited only to
a few set of CDSs and it is important to mention that even the archetypal example
of the regulation of ATF4 expression is still debated. Some recent ribosome profiling
data showed increased translation of ATF4 uORF2 upon stress. This contradicts the
admitted model of leaky scanning that assumes that uORF2 translation is bypassed.
As the model of regulation of ATF4 by uORFs is one of the best characterized, this
raises questions about the accuracy of this last and highlight the importance to pursue
our efforts in unraveling the mechanisms of translational regulation by uORFs [109].
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In addition, this model involves at least two uORFs, whilst examples of modulation
of the translation by one single uORF have been described, suggesting that other
mechanisms of regulation of the translation during cellular stress exist [5]. As an
example, a single uORF seems to be sufficient to ensure the translation of the CDSs of
GADD34, CReP, CHOP or IFRD1 under stress [6].

Despite being commonly considered as inhibitors of the translation under normal
condition, evidence that particular uORFs do not affect or enhance translation of
downstream ORFs or that uORFs translation is up-regulated under stress exists also
for a relatively small number of genes [54, 88]. Chew et al. [32] demonstrated that
vertebrate uORFs tend to have features associated with a weak repressiveness, includ-
ing if they were able to show an association between uORFs and the diminution of
CDS translation in a "dose-dependent" manner (more uORFs in transcripts was corre-
lated with reduced translation of CDSs). They demonstrated that uORFs are generally
modestly repressive towards downstream CDS translation and that various sequence
features modulate the uORF repressiveness and they showed that such features are
broadly conserved among vertebrates.

Finally, whilst most stress-resistant mRNAs possess uORFs, only a small fraction
of uORF-containing mRNAs are actually stress-resistant, demonstrating that the sole
presence of an uORF on the transcript is not sufficient to ensure stress-resistance
of the CDS [5, 6]. In addition, Gerashchenko et al. showed that increased ribosome
occupancy at the 5’UTR does not to affect the translation efficiency of the downstream
CDS [88]. Hence, the translation of most uORFs is unlikely to systematically affect
the translation of downstream CDSs [88]. Some studies did not observe an overall
positive or negative correlation between the translation of uORFs and that of their
CDS as could be expected under the archetypal model of regulation [10].

It should be mentioned that alternative mechanisms of translation that do not
require eIF2α exist also [54, 109] and may explain a part of the variability observed.
In particular, Leucyl-tRNALeu can be engaged by a scanning 43S PIC in a manner
requiring the non-canonical initiation factor eIF2A, but not eIF2, a mechanism that
has notably been shown to occur in the synthesis of antigenic precursors for loading
on major histocompatibility complex (MHC) molecules [54].

Hence, there is an important need for new models to explain the cis regulatory
functions of uORFs and to identify the features actually important to such regulation.
Andreev et al [5, 6] proposed a stochastic and a deterministic model to explain the reg-
ulation of the translation by a single uORF. I suggest to implement this mathematical
model with new experimental data to improve our understanding of the mechanisms
of regulation of the translation by uORFs.
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1.3.4. uORFs are involved in many processes and diseases as
translational cis regulator

Interestingly, stress response genes have been shown to be significantly enriched in
the group of genes up-regulated at the translation level and uORFs may play a key role
in the rapid activation of such genes [88]. Some uORFs have been shown to be involved
in development, learning and memory, cardiovascular diseases, neurodegenerative
disorders and cancers [54, 102] and many diseases have already been reported to be
associated with a dysregulation of the translation [102, 163, 164], notably because al-
teration of uORFs could result in aberrant protein levels and subsequently in diseases
[102, 156]. uORFs have notably been shown to control the translation of components
of integral developmental signaling pathways, such as SHH, WNT, PI3K, MAPK as well
as many pluripotency factors, including the homeobox protein NANOG and C-MYC
[109]. By the way, the list of mutations associated with human diseases that increase or
decrease the influence of uORFs on the translation of the CDS is growing over time [54].

As an example, it has been shown that the G185A7 mutation in the 5’UTR of SOX9
in human creates a novel ORF of 62 codons encoding for a functional sPEP. This
novel uORF reduces the translation efficiency of wildtype transcription factor SOX-9
(SOX9) and causes campomelic dysplasia, a rare semi-lethal developmental disorder
characterized by a distinctive pattern of abnormal skeletal features [109, 148].

The C178T8 mutation in the sORF of a serotonin receptor gene HTR3A is responsible
of a decrease in the repressive activity of the uORF, leading to an increase of HTR3A
protein levels, which has been demonstrated to be associated with bipolar disorder
and depression [109]. Also, disruption of a protein patched homolog 1 (Ptch1) uORF
leads to decreased overall hedgehog signaling activity and disrupts neurogenesis [109].

Other mutations have been reported to disrupt an existing uORF of the throm-
bopoietin (TPO) gene, resulting in an increased translational efficiency of the CDS.
This causes hereditary thrombocytosis, i.e. an increased number of platelets in the
peripheral blood, along with a increased thrombosis risk [109].

Even expression of tumor suppressors and oncogenes have been shown to be under
the regulation of uORFs, such as C-MYC, BCL-2, MSH5, PTEN, P53 [109].

7A guanosine is replaced by an adenosine at position 185
8A cytidine is replaced by an thymidine at position 178, resulting in a change of a proline for a serine
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1.4. Short open reading frame variants are
conserved across species and involved in the
etiology of diseases

1.4.1. sORFs are conserved across species
The conservation of an sORF and its surrounding genes is usually considered as a
clue that this sORF and/or its product may have a function [48, 113]. However, as
previously discussed by Couso and Patraquim [36], the true conservation and ho-
mology of sORFs is difficult to establish, in particular because short sequences tend
to have lower conservation score than longer canonical proteins and because the
probability of short sequences to get a low conservation score by chance is higher.
They report that uORFs show low average conservation and their amino acid usage
is different from random values, but is slightly different from canonical proteins. In
addition, Lee et al. [74] demonstrated a weak selection to maintain amino acid identity
in sPEP encoded by uORFs compared to canonical proteins. By comparing human
5’UTRs with shuffled transcriptomes, Samandi et al. [117] observed that the den-
sity of altORFs observed in the mRNA leader sequence was much lower than in the
shuffled transcriptome, supporting evidence that negative selection eliminates uORFs.

However, Mackowiak et al. [81] demonstrated in 2015 that predicted sORFs show
stronger conservation signatures than those identified in previous studies and are
sometimes conserved over large evolutionary distances. They showed that sORFs are
often widely conserved at the sequence level, with uORFs being the most conserved
class of sORFs between species [81]. Other recent findings suggest that some sPEPs
are evolutionary conserved [25, 38, 60, 139] and that genomic positions with the
potential to produce new uORFs are strongly conserved across vertebrates [74]. Lee et
al. [74] showed also that uORF start codons are frequently conserved across species.
Some other studies, including those performed by Chew et al. [32], demonstrated
also that the regulatory effect related to the presence of the uORF is conserved across
vertebrates, in particular regarding their role in repressing CDS translation [25, 28, 56,
61], which suggests that the regulatory effect of uORFs may be more conserved than
their sequences themselves. Zhang et al. [163] showed that start codons of uORFs with
Kozak contexts, particularly the translated ones, tend to be maintained by functional
constraints during evolution.

Despite a growing body of evidence of the conservation of sORFs across species, it
is to note that this does not necessarily means that the sPEPs are functional, as the
coding region can be constrained for optimizing exclusively cis regulatory functions
[163].

Finally, it has been proposed several models for the generation of sORFs over time:
they may have been generated (i) from existing protein-coding sequence, where sORFs
emerge as fragments of longer protein-coding genes and only a small fragment of
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the original ORF remains intact; (ii) from a small region of a larger protein (e.g. a
transmembrane domain) that has been duplicated and aquired a separate function; or
(iii) because of a de novo formation from previously non-coding sequences. It is likely
that some sORFs have emerged from the three evolutionary mechanism proposed
here. As highlighed by Couso and Patraquim [36, 48], if sORFs may appear at random,
their nucleotide sequences are subjected to selection, whatever this selection is related
to a coding or a non-coding function and needs to be ascertained [48]. Zhang et al.
[163] proposed that the majority of newly formed uORFs are deleterious and quickly
removed from the population, whilst a smaller fraction are beneficial and rapidly fixed
in population under positive selection.

1.4.2. sORF variants have been related to diseases
As discussed earlier, a growing body of evidence demonstrates that changes in sORF
functionality are linked to diseases [32, 129, 132]. Sequence variations in human
5’UTR have notably been associated with variations in gene expression and mutations
in uORFs are now known to contribute to diseases [32]. Mackowiak et al. [81] ob-
served that predicted sORFs mainly permit synonymous more than non-synonymous
sequence variations when comparing within or between species, suggesting the im-
portance of the peptide sequence. However, using such ratio of nonsynonymous over
synonymous substitutions can be tricky for sORFs as the number of possible changes
is low. Interestingly, McGillivray et al. [84] demonstrated that despite CUG being
the most prevalent start codon in usage frequency, it is altered relatively frequently
by natural human variants, whilst AUG is relatively conserved among uORFs. It has
also been demonstrated that translated uORF stop codons were significantly depleted
of UAAs compared to background UTRs distributions, suggesting that weaker stop
codons are preferentially used by uORFs [74].

Lee et al. [74] demonstrated that uORF variants introducing new stop codons or
strengthening existing stop codons are under strong negative selection comparable
to protein-coding missense variants. This result suggests that upstream stop codons
variants may functionally disrupt the protein expression [74]. In the same manner, vari-
ants destroying stop codons in translated uORFs are under strong negative selection
too, as resultant translational read-through can decrease the start codon recognition
and the translation initiation at the CDS [74]. They also showed that genetic variants
creating new uORFs are rare, and suggested they are also subjected to strong negative
selection due to their capacity to cause pathogenic loss-of-function of associated
protein [74].

Heterozygous and homozygous individuals carrying 5’UTR stop codons and stop-
strengthening variants have been described and associated with pathological condi-
tions [74]. In particular stop-strengthening variants in PMVK have been associated
to an increased risk of Type 1 diabetes; in VPS53 to a protective effect against anxiety
disorders; and in HMT2 to cardiac and movement disorders, including congenital
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anomalies of the great vessels, abnormal involuntary movements, abnormality of gait,
Mobitz II atrioventricular block, and arrhythmia [74].

As another example, GCH1 has been associated with familial Dopa-responsive dys-
tonia9. Single nucleotide polymorphisms (SNPs) have been identified in its 5’UTR at
the position +14 (changing a cytidine for a thymidin) that generates an upstream initi-
ation codon ATG and consequently an uORF. This new uORF represses the translation
of the CDS and allows instead for the translation of an aberrant, cytotoxic, 73 aa sPEP
[109]. Zhang et al. [163] report also that mutations generating polymorphic uORFs are
usually deleterious and selected against in humans.

Neville et al. [93] demonstrated that sORFs show large heritability enrichments
characteristics of CDSs. Additionally, uORFs that overlap their CDSs showed larger
heritability enrichments than those which do not, suggesting a possible functional
importance on heridity [93]. They also highlighed that disease mutations that appear
benign to canonical proteins may be highly deleterious to sORFs and hypothesized
that numerous variants in disease mutation database could potentially have sORF-
related mechanism of pathogenicity (stop-lost, stop-gained, frameshift mutations)
[93]. Hence, they identified potential disease-causing variants in ncORFs, in particular
cancer-associated genes with mutation with benign consequences in CDS but with
deleterious consequences in the sORF [93].

1.5. Many questions about short open reading
frames and their functions remain unanswered

Growing efforts have been made by the scientific community during the past decades
to better understand the functions of sORFs and their peptides. It is now clear that
they are prevalently translated in eukaryotic cells and that uORFs can be key players
of the translation regulation [163]. However, this novel class of molecules challenge
our current understanding of genetics and there are still many questions that remain
unanswered or even unexplored so far (Box 1).

9Dopa-responsive dystonia was described for the first time in 1972. Dystonic syndromes with L-dopa
responsiveness are very heterogenous and its clinical presentation is still debated. Nonetheless, it
has a classic presentation of childhood or adolescent-onset dystonia, mild parkinsonism, marked
diurnal fluctuations, improvement with sleep or rest, and a dramatic and sustained response to low
doses of L-dopa without motor fluctuations or dyskinesias [76]
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Box 1.: Some unanswered questions about sORFs.

Some of the questions that remain opened in the field of sORF biology:

• Are all the sORFs actually functional (either as cis or trans regulatory ele-
ments)?

• What is the therapeutic potential of targeting sORFs or their peptides, re-
garding their apparent involvement in many processes and diseases?

• Could we edit existing sORFs or introduced artificial ones in the genome in
the context of novel gene therapies?

• Could we use synthetic peptides as drugs to re-establish disturbed home-
ostasis related to sPEP loss-of-function in certain diseases?

• What is the place of the sORFs in the homeostasis of the cell?

• Are cis and trans regulatory functions of the sORFs related one with each
other (for all/some transcripts)?

• Are there sPEPs that interact with their own transcript? Is this common?

• Are there sPEPs that interact with their own RefProt? Is this common?

• Are there "extreme multifunctional sPEPs", i.e. sPEPs whose multiple func-
tions are very dissimilar to one another?

• How long-lived are sPEPs?

• What are the mechanisms of regulation of the translation by the uORFs? In
which way do they differ of the ATF4-like mechanism?

• What are the features that make some uORF-harboring RNAs resistant to
stress and some others not?

• Are there sub-classes of uORFs that have distinct effects on the translation?

• How is the uORF translation regulated?

• In the case of nested ORFs, does the translation of the longer ORF(s) affects
the translation of the embedded shorter ones? or vice-versa?

• What makes an uORF more likely to repress or increase the CDS translation
under stress condition?
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• Could we consider the use of antisense oligonucleotides to specifically tar-
get some uORFs in order to enhance or reduce levels of disease-relevant
proteins?

• Does early translation termination in uORFs facilitate active nonsense-
mediated decay (NMD)?

• What is the importance of uORFs in the regulation of protein levels during
changes in the cellular identity along development trajectories?

• Can the interactions of scanning and elongating ribosomes trailing along
the uORFs explain the up-regulation or down-regulation of downstream
expression under certain conditions?

• Can the translation of uORFs result in structural changes of the transcript?
Or reveal new IRESs?

• Are there specific sequences or stop codons in the uORFs that are susceptible
to stall ribosomes during the elongation or termination?

• Does the presence of uORFs in the 5’UTR facilitate ribosomal frameshifts?

• How do uORFs and their translation impact the stability of transcripts?

• How is the heterogeneity of ribosomal loading and translational initiation
mechanisms exploited in a cell to control uORF and CDS translation?

• Do (putative) non-transcribed intergenic sORFs have functions?

• Are sORFs and CDSs showing an additive effect in heritability?

• Are there operon-like systems in eukaryotes? In particular on presumptive
lncRNAs that harbor several coding-sORFs?

• Are uORFs transcriptional cis regulators?

• Are there alternative transcriptions that favor the encoding and expression
of some sORFs?

In the frame of my thesis project, I decided to explore the following questions:

1. Can data about the sORFs identified in H. sapiens be gathered as unique entries
into a publicly accessible repository?

2. What are the biological functions of the sPEPs?

3. Could we elucidate new mechanisms of translational regulation by the uORFs?
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As highlighed by Aspden et al. [10], the putative function of sORFs and their en-
coded peptides is a separate issue from their translation, just as the transcription of
thousand of apparently ncRNAs is an accepted fact separated from their, as yet, not
fully understand function. Fields et al. [46] also state that the translation may be
functionally important independently of the sequence of the encoded peptide. Hence
I propose here to explore the questions (2) and (3) as complementary but separate
issues, despite their obvious entanglement. In addition, these questions have been
addressed using computational approaches on monocytes.

Human monocytes are an heterogenous population of innate immune cells of
the mononuclear phagocyte system that may differentiate into macrophages and
play a major role in the initiation of immune responses. They are able to express
molecules of the major histocompatibility complex class-I (MHC-I) and MHC-II,
which make them of particular interest as numerous sPEPs have been determined
to be able to fixate the MHC-I and be presented as self-antigens with high predicted
binding affinities [25, 35, 44, 64, 72, 96], a process which is suspected to depend
mainly on translation rates rather than overall peptide abundance [44]. In addition,
because the presentation of peptides by MHC molecules is largely independent of the
amino acid sequence, and many sPEPs may not need proteosomal degradation before
entering the MHC-I presentation pathway, a certain fraction of sPEPs is likely to be
involved in immunological functions [25, 72]. Recent estimates suggest that MHC-I
alone could display up to 120,000 peptides on each cell surface [132] and that more
than half of MHC-I-associated peptides may result from out-of-frame translation
[72]. They are specialized cells that are able to activate immunology responses, such
as the production of cytokines under the sensing of a pathogen [111]. Monocytes
are derived from a bone marrow progenitor common to dendritic cells. These last
are known to display extremely high levels of eIF2α phosphorylation both in vivo
and in vitro, suggesting they should have special needs regarding their translation
regulation. Finally, since much of the functional data is based on conditions that
knock-out whole transcripts, validating uORF functions is difficult [10]. Hence, it
may be more efficient for the moment to base studies on specific cell contexts. It is
important to note that publicly available data (notably from Ribo-seq experiments)
identifying sORFs in monocytes were available in 2018 and can be exploited to explore
the questions previously raised. Altogether, monocytes constitute a good model to
study the functions of the sORFs and their sPEPs and the chapter 3 and chapter 4
focus on their roles in monocytes.

In order to discuss the questions previously stated, I thus decided to:

1. Gather all sORFs identified in H. sapiens into a repository (chapter 2)

2. Ascertain sPEPs functions in monocytes through a system approach, by predict-
ing their interaction with canonical proteins (chapter 3)

3. Explore mechanisms of translational regulation by the uORFs in monocytes, by
using agent-based modeling to imitate the translation process (chapter 4)
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2.1. A repository of unique, homogenized sORFs
was required to get the data necessary to
address the questions raised in this thesis

Study of the sORFs has started to be a hot topic since a few years. Whatever we are con-
sidering experimental or computational tools for their study, any approach that aims
at better characterizing them first requires to identify them properly. Similar reasons
supported the development of repositories of canonical (yet uncharacterized) proteins
a few decades ago, with the willing to gather at the same place all the current knowl-
edge about them, in a way that makes this information easily accessible to end-user
biologists (including those without advanced computational skills). This requirement,
along with the emergence of computational sciences and of the internet, accelerated
the development of bioinformatics and computational biology in the late 1990s. A few
years later, well-known databases, such as SWISS-PROT, NCBI and Ensembl databases
were released. Those databases now constitute crucial resources that are known by any
biologist and used on a daily basis by both experimental and computational biologists.

However, for many reasons explained earlier, sORFs have been missed for long.
Because we still lack many information about them and because of the ongoing dis-
cussion in the scientific community regarding the relevance to consider them as
actual functional elements, these biological entities are still missing from the most
commonly used repositories. This led to the development of novel resources, that aim
at exclusively gathering information about ncORFs or sORFs. So far, the two main
active repositories that fall into that category are sORFs.org [94, 95] and OpenProt [23,
24]. These publicly accessible resources present a mine of information waiting to be
exploited, as they gather computational and experimental evidence of the existence
of sORFs. However, it is noteworthy that OpenProt is missing all sORFs shorter than
30 aa, a class of ORFs I am particularly interested in the frame of my thesis regarding
the growing body of evidence that suggest their functionality in the literature. On
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was required to get the data necessary to address the questions raised in this thesis

the other side, when sORFs.org is not missing such short ORFs, it contains a lot of
redundancies and does not provide the opportunity to easily look for sORFs identified
on a particular transcript or gene. Such missing feature makes their analysis more
complicated and would be of great interest for biologists, especially for those without
advanced computational skills. In addition, it is unfortunate that despite the impor-
tant number of datasets that have been reprocessed and integrated in sORFs.org, the
redundancy cannot be easily exploited by the users to identify at a glance the sORFs
identified by many datasets. Finally, as discussed earlier, no clear consensus regarding
the nomenclature to use to annotate sORFs was designed in 2018 (and it is noteworthy
that this is still not the case in 2022, despite growing efforts of our community to
address this particular issue). Hence, comparing sORFs coming from various studies
or resources can quickly become terrible as different authors used sometimes the
same annotation with distinct definitions, sometimes even incompatible (e.g. an
"altORF" may refer exclusively to ORFs using an alternative reading frames according
to some authors whilst it may be used to designate at any ncORF by some others).

Because we were willing to get a resource of unique human and mouse sORFs, as
comprehensive as possible, with proof of existence from complementary methods,
and providing homogenized information (coordinates on the same genome anno-
tation, homogenized nomenclature of sORFs etc.), I proposed to take advantage of
existing resources to address these particular issue. I was also willing to post-process
the entries integrated in order to provide some novel information (such as Kozak
contexts) more easily accessible to the users. I notably took advantage of the strengths
of sORFs.org, which already reprocessed lots of data from Ribo-seq experiments and
integrated data from 73 original studies at that time. After careful evaluation of 18
data sources [6, 32, 44–46, 51, 61, 72, 75, 78, 81, 84, 95, 110, 117, 123, 152, 155] (either
single datasets from original publication or repositories of reprocessed data) of sORFs
in H. sapiens and/or M. musculus, 6 of them [44, 61, 72, 81, 95, 117] were matching
the selection criterion I defined (e.g. absoluted sORF coordinates on the genome) and
were retained for inclusion in a new database, called MetamORF. The remaining 12
data sources were discarded because they were not providing the absolute genomic
coordinates of the ORF start and stop codons [6, 32, 45, 110, 123, 155], because they
were already fully included in another data source [46], because they did not allow
export of the full database [78, 152] or because they were missing crucial information
regarding the ORF splicing [51, 75, 84]. The six data sources selected had the quality
to provide crucial information to characterize the ORFs (such as absolute genomic
coordinates and a clear identifier for the transcript(s) harboring them) and to be
derived from either computational prediction or experimental evidences (Ribo-seq,
MS-based proteomics or proteogenomics).

The first step for building MetamORF consisted in integrating these data in an
uniform format, an apparently easy task that in reality raised lots of issues because of
the diversity of formats in which the data were available, and mainly because of the
lack of well-documented metadata. This difficulty highlight the absolute necessity
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for our community to agree on rules for storing and sharing biological data, and
I personally acknowledge and strongly encourage initiatives such as the definition
of FAIR (Findability, Accessibility, Interoperability, and Reusability of digital assets)
principles or the Dublin core initiative. As the amount of data generated by biologists
becomes more and more important over years, the respect of such principles will
become an absolute necessity to ensure the reliability, traceability and usability of
data in a near future.

Because genome annotations have evolved a lot over time, and data about sORFs
have been published over several years, those were mapped on several genome an-
notations (notably GRCh37 and GRCh38 releases for human sORFs). Hence, my next
task was to bring all sORF coordinates on the same genome. Despite the availability
of tools to perform such coordinate homogenization (called liftover), this operation
required additional steps to ensure the consistency of data (as an example, an ORF
having start and end positions of its exons mixed together because of inconsistency in
the conversion of genomics coordinates was discarded).

Once data had been inserted into a query-able database and normalized by bringing
genomics coordinates to the same annotation, the next step (definitively one of the
most important for MetamORF) consisted in merging all redundant entries into single
entries. This actually constitutes an originality of our database, as the aggregation of
redundant entries into single ones allows in fine to provide to the user the number of
computational and experimental proofs of existence for each sORF.

Finally, data were post-processed to includes some novel information to MetamORF.
In particular relative coordinates of sORFs on their transcripts were computed and
exploited to annotate the ORFs based on a novel nomenclature where I tried to take
into account the most frequently used annotations at that time. Because original data
sources were not providing cell types as understandable terms, I also reprocessed
this information in order to get cell types that could be easily understood by the end-
users, and connected those terms to existing ontologies (Cell Ontology [40], Cell Line
Ontology [118], BRENDA Tissue Ontology [29], Human Cell Atlas Ontology [154], Foun-
dational Model of Anatomy Ontology [47], Ontology for Biomedical Investigations
[13], NCI Thesaurus OBO Edition [126], Experimental Factor Ontology [83], BioAssay
Ontology [1] and Ontology for MIRNA Target [55]). Finally, by looking for regular
expressions, I computed Kozak contexts [53, 69] based on local sequences near to the
start codons. If the role of this context was clearly demonstrated for canonical CDSs
by many times from its initial discovery by Marilyn Kozak (1986) [69], its importance
in the particular case of sORFs is still largely debated. As a consequence, I assumed
that having such information in a database of sORFs would be of primary interest for
people willing to tackle this still-debated question.

The last step of this work was to build an user-friendly web interface, a common task
for database developers, but that brought many difficulties because of the complex
nature and the huge amount of the biological data manipulated there. This interface
allows notably to navigate easily between the ORFs, transcripts and genes, to get the
most important information (number of computational and experimental evidences,
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data sources, absolute and relative coordinates, sequences, Kozak contexts etc.), to
export them at convenient formats (notably FASTA and BED formats) and to visualize
the ORFs on the genome using the UCSC genome browser [65]. The development
of the web interface has been performed in close collaboration with A. Wagner, a
technology degree graduate student (DUT) I had the opportunity to co-supervise
(using agile methods).

MetamORF finally registers 1,162,675 unique sORFs, identified in H. sapiens and
M. musculus and derived from the processing of 5,445,846 original entries. It is to
note that despite their apparent simplicity, all the steps described above require
computational skills, many hours of processing and eventually access to advanced
computational facilities. In addition, even for computational biologists, it can be
inconvenient to perform such many tasks prior to start studying sORFs. By developing
MetamORF, I think and hope it is providing an easy-to-use resource to the scientific
community. It is for sure that no database can be fully comprehensive, and MetamORF
will definitively not escape this rule. However, it offers complementary information
with existing databases (notably sORFs.org and OpenProt), and is the first database
to provide at the same time homogenized information about sORFs (without size
limit) identified by both computational and experimental methods and accessible
at both the ORF, transcript and gene levels. Clearly, MetamORF does not address by
itself any of the biological questions previously raised; however, it provides scientists
the necessary data to address such questions. To that extent, it is important to note
that MetamORF data can be exploited for large-scale studies (which I did during
my thesis and present in the following sections), or even for low-scale studies, by
helping scientists to check known sORFs on their gene(s) of interest for instance.
Finally, we may hope that future releases of MetamORF will integrate more data, in
particular about new species, and continue to make links with existing resources
such as sORFs.org. This update constitutes an important task for maintaining such
repository and will probably require to perform in a few years a similar work to the
one I did there. I think that maintaining relationships between resources is of primary
importance, and should always be considered and supported during the development
of databases. In our case, MetamORF did not intend to overstep existing databases,
but instead to provide complementary information that were missing or not easily
accessible in resources that were available at the time I started this project.

Choteau SA, Wagner A, Pierre P, Spinelli L, Brun C (2021). MetamORF: a repository of
unique short open reading frames identified by both experimental and computational
approaches for gene and metagene analyses. Database, 10.1093/database/baab032,
2021:baab032.
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Abstract
The development of high-throughput technologies revealed the existence of non-
canonical short open reading frames (sORFs) on most eukaryotic ribonucleic acids. They
are ubiquitous genetic elements conserved across species and suspected to be involved
in numerous cellular processes. MetamORF (https://metamorf.hb.univ-amu.fr/) aims to
provide a repository of unique sORFs identified in the human and mouse genomes with
both experimental and computational approaches. By gathering publicly available sORF
data, normalizing them and summarizing redundant information, we were able to iden-
tify a total of 1 162 675 unique sORFs. Despite the usual characterization of ORFs as short,
upstream or downstream, there is currently no clear consensus regarding the definition
of these categories. Thus, the data have been reprocessed using a normalized nomencla-
ture. MetamORF enables new analyses at locus, gene, transcript and ORF levels, which
should offer the possibility to address new questions regarding sORF functions in the
future. The repository is available through an user-friendly web interface, allowing easy
browsing, visualization, filtering over multiple criteria and export possibilities. sORFs
can be searched starting from a gene, a transcript and an ORF ID, looking in a genome
area or browsing the whole repository for a species. The database content has also been
made available through track hubs at UCSC Genome Browser. Finally, we demonstrated
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an enrichment of genes harboring upstream ORFs among genes expressed in response
to reticular stress.

Database URL: https://metamorf.hb.univ-amu.fr/

Introduction

Short open reading frames (sORFs) are usually defined as
sequences delimited by a start codon and a stop codon and
potentially translatable into proteins of <100 amino acids
(1–8). They are present in all classes of transcripts [includ-
ing presumptive long non-coding ribonucleic acids (lncR-
NAs)] and have been identified in most eukaryotic RNAs
(2, 5, 8–15). In addition, their sequence often begins with
a non-canonical start codon (8). Consequently, they have
long been overlooked, and interest in their possible regula-
tory functions has only raised recently with the advent of
the ribosome profiling method that strongly suggests their
translation (1, 3, 5, 6, 16–22).

Several sORF categories have been defined according to
their location on RNAs (Figure 1). For instance, upstream
ORFs (uORFs) are located in the 5′ untranslated regions
(5′ UTRs) of messenger RNAs (mRNAs) and have been
defined as sORFs whose start codon precedes the main cod-
ing sequence (CDS; 6, 8, 17, 18, 23). They are conserved
across species (5, 6, 11, 21, 24), but less conserved than
canonical protein-coding ORFs (25). To date, uORFs have
been essentially reported as gene-expression cis-regulatory
elements that regulate the efficiency of translation initia-
tion of the main CDS, notably alleviating the repression of
translation during cellular stress (13, 17, 18, 20, 23, 26).
Moreover, the discovery of uORF-encoded peptides, and
more generally sORF-encoded peptides, led to the assump-
tion that they may also play functional roles in trans
(2–4, 7, 9, 10, 18, 24, 27–30), for instance as ligands of
major histocompatibility complex molecules (12, 22, 23).
Very interestingly, uORF-encoded peptides have also been
shown to form protein complexes with the protein encoded
by the main CDS of the same mRNA (31), and it has been
suggested that polycistronic sequences may exist in eukary-
otes (24, 31). Furthermore, given the increasing evidence
on the regulatory functions of peptides encoded by sORFs
located within mRNAs, introns of pre-mRNAs, lncRNAs
and primary transcripts of microRNAs or ribosomal RNAs
(2, 8–15, 26), there is an urgent need to study sORFs (i)
individually and (ii) at the whole proteome scale. Indeed,
the latter should reveal important features of sORFs, thus
enabling the characterization and the identification of their
functions. However, the fact that (i) the publicly avail-
able data are scattered across different databases and (ii)
datasets are aligned on different genome builds, differently
annotated and formatted, calls for an uniformed resource

where each sORF is individually described. With this in
mind, we have built a resource database of publicly avail-
able sORFs identified in the human and mouse genomes,
by gathering information from computational predictions
and Ribo-seq and proteomic experiments. The curation of
data, their homogenization in order to merge the redun-
dant information into unique entries, the completion and
computation of missing information (e.g. sequences and
Kozak contexts) and the re-annotation of sORF classes
represent the added value of this database. Notably, this
enables the analyses at locus, gene, transcript and ORF
levels. In this work, we propose (i) a pipeline to regularly
update the content of the database in a reproducible man-
ner, (ii) a database content that can be fully downloaded
for custom computational analyses and (iii) an user-friendly
web interface to ease data access to biologists.

Material and methods

MetamORF pipeline and database development

Inclusion criteria for publicly available sORF-related data
A total of 18 data sources, either Homo. sapiens and
Mus. musculus original datasets or re-processed pub-
licly available sORFs repositories, have been considered
for inclusion in our database (Supplementary Table S1)
(5, 7, 11, 12, 14, 15, 17–22, 32–37). These data sources
provide results from computational predictions, Ribo-
seq experiment analyses and mass spectrometry (pro-
teomics/proteogenomics) analyses. The data sources not
providing the absolute genomic coordinates of the ORF
start and stop codons (5, 17, 20, 32–34) or fully included
in another data source considered here (21) have been
discarded. Databases that did not allow export of their
content in a single file or automating the download of
all the files from their website have also been discarded
(19, 35). Despite their short size, it has been noticed
that sORFs can be spliced. Theoretical lengths of the
ORFs have been computed as the distance between the
start and stop codons, eventually removing the intron
length(s) when information about ORF splicing was pro-
vided. Due to splicing, the theoretical length and the one
reported by the data source may be different. Data sources
harboring this difference for >95% of their entries were
discarded as this indicates the splicing information was
missing (10). Finally, data sources for which we were not
able to perform this assessment as they were not providing
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Figure 1. MetamORF pipeline. This figure represents the workflow used to build MetamORF. First, the data from the sources selected have been
inserted into the database, and the absolute genomic coordinates have been homogenized from their original annotation version to the most recent
version (GRCh38 or GRCm38). Then, the redundant information, i.e. the entries describing the same ORFs (same start, stop and splicing), has
been merged, allowing to get one single and unique entries for each ORF detected on the human and mouse genomes. The missing information
(sequences and transcript biotypes) has been downloaded from Ensembl, and the ORF relative coordinates have been computed. Finally, the cell
types and ORF classes have been normalized, and the Kozak contexts have been computed using the sequences flanking the start codons.

information regarding (i) the splicing of the ORF and
(ii) ORF length (15, 36) have not been included as well.
Hence, the database has been made by collecting data
from six distinct sources (Table 1), including either orig-
inal datasets (Table 1 and Supplementary Table S2) (11,
12, 14, 18, 22) or reprocessed data (37), and discard-
ing 12 of them (Supplementary Table S1). Notably, we
have included data from sORFs.org (37), considered as

the main and most comprehensive repository of sORFs
identified by genome-wide translation profiling (Ribo-seq),
that currently integrates re-processed data from 73 original
publications.

For each of these sources, a set of features essential to
properly characterize the sORFs, related to their location,
length, sequences, environmental signatures and cell types
(i.e. cell lines, tissues or organs) in which they are expressed,

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baab032/6307706 by IN

SER
M

 user on 19 July 2022
2. sORFs identified in human and mouse genomes have been gathered as unique

entries in a database: MetamORF – 2.1. A repository of unique, homogenized sORFs
was required to get the data necessary to address the questions raised in this thesis

72



Page 4 of 12 Database, Vol. 2021, Article ID baab032

Table 1. Information about the data sources used to build

MetamORF

Publication DOI

Mackowiak et al., 2015,
Genome Biol. (11)

10.1186/s13059-015-0742-x

Erhard et al., 2018, Nat.
Methods (22)

10.1038/nmeth.4631

Johnstone et al., 2016, EMBO
J. (18)

10.15252/embj.201592759

Laumont et al., 2016, Nat.
Commun. (12)

10.1038/ncomms10238

Samandi et al., 2017, eLife (14) 10.7554/eLife.27860
Olexiouk et al., 2018, Nucleic
Acids Res. (37)

10.1093/nar/gkx1130

See Supplementary Table S1 for more information about these data sources.

have been collected (see Table 2 for a full list of features
considered for inclusion). When it was not provided by the
source, the symbol of the gene related to the sORF was
recovered using the transcript identifier (ID, if provided)
or searching for the gene(s) or ncRNA(s) overlapping with
the sORF coordinates in the original annotation version by
querying Ensembl databases (38) in their appropriate ver-
sions (v74, 75, 76, 80, 90) with pyensembl (v1.8.5, https://
github.com/openvax/pyensembl). In addition to these fea-
tures, information regarding the transcript(s) harboring the
ORFs have been collected from the data sources when avail-
able. This is of particular interest as some ORF features,
such as the ORF class, may depend on the transcript they
are located in (e.g. an ORF may be located in the 5′ UTR
of a transcript and be overlapping with the CDS of another
transcript). Finally, 3 379 219 and 2066 627 entries from
these six data sources have been collected and inserted in
MetamORF for H. sapiens and M. musculus, respectively
(Table 3).

Homogenization of genomic coordinates
As the data sources were providing genomic coordinates
from different genome annotation versions (e.g. GRCh38
and GRCh37), all the genomic coordinates registered in our
database have been lifted over the latest annotation version
(GRCh38 for H. sapiens and GRCm38 for M. musculus)
using pyliftover (v0.4, https://pypi.org/project/pyliftover).
The liftover has been considered as failed for an entry if
(i) at least one of the coordinates (i.e. start, stop or one of
the start or end exon coordinates) was located on a strand
different from all the others or (ii) the chromosome of the
position changed during the liftover or (iii) the distance
(in nucleotides) between the sORF start and stop codons
has changed after the liftover. All the entries for which the
liftover failed were removed from the database. Based on
the previous assumptions, the liftover failed for 709 ORFs

(377 failed due to the last criteria) in H. sapiens and for
none of the M. musculus entries (Table 3). The choice of
such stringent criteria has been strengthened by the fact
that these entries (i) only represent <0.05% of the entries
forH. sapiens and (ii) are more susceptible to be unreliable
entries.

Merge of redundant information
As our database aims to provide a repository of unique
identified sORFs of the human and mouse genomes, all
the redundant entries describing the same sORFs have been
merged. In a first step, we identified all the sORF entries
for which all the identification features were provided
(chromosome, strand, start position, stop position, splic-
ing status and splicing coordinates). sORFs sharing the
same feature values were merged. In a second step, we
identified all the remaining entries with only partial iden-
tification features provided: the chromosome as well as
either (i) both the strand and the start positions or (ii)
both the strand and the stop positions or (iii) both the
start and the stop positions. Those entries were merged
to the best matching fully described entries identified in
the first step. If no matching fully described entry was
found, then the entries were removed. In order to keep
track of the number of times a same sORF has been
described in the original data sources, the initial num-
ber of entries merged together was registered for each
sORF.

During this merging, information regarding the tran-
scripts that harbor the sORFs has been registered too.
Hence, when several sORFs were merged into one single
entry in MetamORF, the resulting new sORF entry was
registered as harbored by all the distinct transcripts related
to the original entries. After this removal of redundant
information, we were finally able to identify 664 771 and
497904 unique sORFs for H. sapiens and M. musculus,
respectively (Table 3).

It should be noticed that all unique sORF entries gen-
erated at this stage have been kept, including the ones
describing ORFs longer than 100 amino acids. Entries
describing such ORFs may be either coming from data
sources that (i) did not remove the ORFs longer than 100
amino acids or (ii) used a higher threshold or (iii) described
the ORF as unspliced while it is actually susceptible to be
spliced (and thus has a shorter sequence on the transcript
than the one expected).

Completion of missing information and computation of
relative coordinates
In the original data sources, the only information pro-
vided (when provided) on the transcripts was the tran-
script ID. Detailed information was retrieved from Ensembl
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Table 2. Features allowing to characterize the sORFs

Family Feature Details

Location Chromosome The chromosome or scaffold on which the ORF is located
Strand The strand of the sORF
ORF start The absolute genomic coordinates of the start codon (position of the

first nucleotide)
ORF stop The absolute genomic coordinates of the stop codon (position of the

third nucleotide)
Splicing status Is the sORF spliced?
Splicing coordinates The coordinates of the start and end of each exon constituting the

sORF
Transcript The name or ID of the transcript(s) related to the sORF (eventually

with transcript strand, start and end positions and transcript biotype)
Gene The name, symbol, alias or ID of the gene(s) related to the sORF (when

not intergenic)
Lengths Length The length of the sORF (in nucleotides)

Putative sPEP length The length of the (putative) sORF-encoded peptide in amino acids
Category Category The category to which the sORF belongs (e.g. upstream or down-

stream)
Sequence signature Start codon sequence The nucleic sequence of the sORF start codon

Nucleic sequence The nucleic sequence of the sORF
Amino acid sequence The amino acid sequence of the (putative) sORF-encoded peptide

Environmental signature Kozak context Does a Kozak context has been identified for the sORF start codon?
Conservation PhyloCSF score The PhyloCSF score computed for the sORF

PhastCons score The PhastCons score computed for the sORF
Coding potential assessment FLOSS class and score The FLOSS class and score computed for the sORF

ORF score The ORF score computed for the sORF
Biological context Cell context The cellular context in which the sORF has been identified or detected

Table 3. MetamORF most important statistics

Feature H. sapiens M. musculus

ORFs 1 344 978 1249 176
Transcripts 101 597 85653
Predicted ORFs for which the transcript is unknown 181122 213301
ORFs detected by Ribo-seq for which the transcript is unknown 79422 8546
ORFs detected by MS for which the transcript is unknown 54 0
ORF to transcript associations 3 379 219 2066 627
ORFs predicted 202 309 222705
ORFs identified by ribosome profiling 1 142 669 1026 471

Original data sources

ORFs identified by MS 166 0
ORFs for which the homogeneization of genomic coordinates failed 709 0

ORFs 664 771 497904
Transcripts 90 406 63147
Predicted ORFs for which the transcript is unknown 13440 14327
ORFs detected by Ribo-seq for which the transcript is unknown 71158 2
ORFs detected by MS for which the transcript is unknown 48 0
ORF for which the transcripts are unknown 83403 14329
ORF to transcript associations 729 793 696785
ORFs predicted 17 027 14500
ORFs identified by ribosome profiling 664 771 497904

MetamORF database

ORFs identified by MS 147 0
Genes harboring at least 1 sORF 23767 15869
ORFs having at least one class annotation (short, upstream) 630 953 497904

MS: mass spectrometry.
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databases (v90) through their REST API and inserted in
our database: (i) the transcript biotype, (ii) the transcript
start and end genomic coordinates, (iii) the codon of the
canonical CDS (for protein-coding transcripts only) start
and stop genomic coordinates and (iv) the full nucleic
sequence. In addition, the sequence flanking the start codon
(20) has been recovered. As the sORF nucleic and amino
acid sequences were not systematically provided by the
data sources, these were downloaded from the Ensembl
databases using their genomic coordinates.

Moreover, when the transcript ID was available, sORF
start and stop relative coordinates have been computed on
each of their transcript using AnnotationHub (v2.18.0; 39)
and ensembldb (v2.10.2, https://bioconductor.org/package
s/release/bioc/html/ensembldb.html) R packages (R v3.6.0).

Standardization of the cell types and ORF classes

Cell types
Original data sources do not use a common thesaurus or
ontology to name the cell types (e.g. ‘HFF’ and ‘Human
Foreskin Fibroblast’) or use non-biological meaning names
(e.g. sORFs.org (37) provides the name of the original pub-
lication as a cell type). In order to provide an uniform
informative naming, we manually recovered the name of
the cell line, tissue or organ used in these datasets and
defined an unique name to be used in our database for each
cell line, tissue or organ, trying to use the most commonly
used nomenclature for cell lines (Supplementary Table S3).
In addition, in order to ensure interoperability with other
biological resources, we recovered the matching ontology
terms from the following ontologies when feasible: the Cell
Ontology (40), the Cell Line Ontology (41), the BRENDA
Tissue Ontology (42), the Human Cell Atlas Ontology
(43), the Foundational Model of the Anatomy Ontology
(44), the Ontology for Biomedical Investigations (45), the
NCI Thesaurus OBO Edition (46), the Experimental Factor
Ontology (47), the BioAssay Ontology (48) and the Ontol-
ogy for MIRNA Target (49), using the Ontology Lookup
Service (EBI) (50) (Supplementary Table S4).

ORF classification
Despite the use of a common nomenclature by the wide
majority of the scientific community to annotate the open
reading frames, based on their size and relative position
on their transcript (e.g. short, upstream, downstream and
overlapping), no clear consensus about the definitions of
these categories nor their names has been defined so far
(25). In order to homogenize this information in Meta-
mORF, we created a new annotation of the ORFs using
the ORF length, transcript biotype, relative positions and
reading frame information when available (see Supplemen-
taryMethods). In this annotation, a threshold of 100 amino

acids has been used to define the ‘short ORFs’, as this
value is the most commonly used for historical reasons
(2, 4, 6, 8, 24).

Computation of the Kozak contexts
The Kozak motif and context have been regarded as
the optimal sequence context to initiate translation in all
eukaryotes. We have thus assessed the Kozak context
for each sORF, using the criteria defined by Hernández
et al. (51). Briefly, for each ORF to transcript associa-
tion, the Kozak context was computed looking for regular
expression characterizing an optimal, strong, moderate or
weak Kozak context (Supplementary Tables S5 and S6).
Kozak-alike contexts were also computed for non-ATG ini-
tiated sORFs looking for the same patterns with flexibility
regarding nucleotides at +1 to +4 positions.

MetamORF software and languages

The pipeline used to build MetamORF has been devel-
oped using Python (v2.7) with SQLAlchemy ORM
(sqlalchemy.org, v1.3.5). The database has been handled
using MySQL (mysql.com, v8.0.16). Docker (docker.com,
v18.09.3) and Singularity (singularity.lbl.gov, v2.5.1) envi-
ronments have been used in order to ensure reproducibility
and to facilitate deployment on high-performance clusters.

The MetamORF web interface has been developed
using the Laravel (laravel.com, v7.14.1) framework with
PHP (v7.3.0), JavaScript 9, HTML 5 and CSS 3. The
NGINX (v1.17.10) web server and PHP server (v7.3.0)
were deployed with Docker (docker.com, v18.09.3) and
Docker-compose (v1.24.0) to ensure stability.

Enrichment analysis

Gene lists
The list of genes harboring at least one uORF has been
collected from MetamORF as a list of Ensembl identifiers
using a SQL query.

The list of ATF4 and CHOP targets identified by ChIP-
seq comes from Han et al. (52) (available as supplementary
data on the editor’s website). Genes congruently and trans-
lationally upregulated under endoplasmic reticular (ER)
stress have been provided by Guan et al. (53) (upon
request). As these lists of genes were provided as gene sym-
bols, matching Ensembl IDs have been recovered using the
g:Convert tool available on the gProfiler web interface (54).

The universe contains all protein-coding genes anno-
tated at least once in Gene Ontology (55, 56) (downloaded
from the g:Profiler web interface on 3 November 2020).

Statistics
After discarding genes absent in the universe from
the lists, the enrichment analysis was performed using
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an hypergeometric test with R 3.6.0 (https://www.r-
project.org/). A Benjamini–Hochberg correction has been
applied to allow for multiple comparisons, and a False Dis-
covery Rate (FDR) threshold of 0.05 has been considered
as significant.

Database content, accessibility and web
interface

A new repository of short ORF-related data

MetamORF describes 664 771 and 497904 unique ORFs
in the human and mouse genomes, respectively, provid-
ing at least the information necessary to locate the ORF
on the genome, its sequence and the gene it is located
on (excepted for intergenic ORFs). Extensive information
related to the transcripts is provided for 614 997 (∼93%)
and 497904 (100%) sORFs for the human and mouse
genomes, respectively. These features allowed us to clas-
sify 630 953 (∼95%) human ORFs and 497 904 (100%)
mouse ORFs in at least one class (Table 3, Figure 2, Sup-
plementary Figure S1). Interestingly, it should be noticed
that a large proportion (36% and 52% for H. sapiens and
M. musculus, respectively) of ORFs are using an alter-
native frame to the main CDS. In addition, nearly 23%
of the ORFs are located on non-coding RNAs for both
species.

User-friendly web interface and genome tracks

To provide users with a clear, fast and easy-to-use database,
MetamORF can be queried through an user-friendly web
interface at https://metamorf.hb.univ-amu.fr. A tutorial as
well as a documentation page are available online. Briefly,
the users may search for sORFs contained in the database
starting with a gene symbol (symbol, alias, ID), a transcript
ID (ID, name) and an ORF ID or screening a particular
genomic area. The data are made accessible through four
types of pages: (i) a ‘gene’ page (Figure 3) to allow visu-
alizing information related to all transcripts and sORFs
on a gene, (ii) a ‘transcript’ page to allow browsing infor-
mation related to a transcript gene and all its sORFs, (iii)
an ‘ORF’ page to allow fetching information related to all
transcripts and gene that harbor the chosenORF and finally
(iv) a ‘locus’ page to allow getting information related to all
sORFs located in a particular locus. In addition, the user
may also browse across all sORFs related to a species or
detected in a particular cell type. It is possible to navigate
from one to another page easily to get extensive informa-
tion about a sORF, a gene or a transcript (Supplementary
Figure S2).

In each page, the results can be filtered on (i) the
identification method (computational prediction, ribosome

profiling or mass spectrometry), (ii) the start codon, (iii)
the Kozak context (as previously defined), (iv) the genomic
length (defined as the sum of lengths of each exon consti-
tuting the ORF), (v) the transcript biotype (according to
the Ensembl definitions), (vi) the ORF annotation (as previ-
ously defined) and (vii) the cell type (Supplementary Tables
S3 and S4).

All results can be exported in an easily parsable format
(comma-separated values file, CSV), as well as in FASTA or
BED format.

On ORF, transcript and locus pages, a link allowing the
user to easily visualize all the ORFs localized in a particular
area on the UCSC Genome Browser (57) is proposed. We
also implemented genome track hubs, to allow using UCSC
Genome Browser advanced options, such as filtering on
ORF categories, transcript biotypes, cell types and tran-
script IDs.

In addition to this user-friendly interface, it is possi-
ble to download from the website the content of the full
MetamORF database in BED and FASTA formats.

Using MetamORF to analyze the regulation of
integrated stress response

Several studies have reported the role of uORFs in the
regulation of the translation during the integrated stress
response (ISR) (13, 23, 26, 28). Notably, the mechanism
by which the repression of the translation is alleviated
under an ER stress has been elucidated for the mam-
malian transcription factor ATF4, the targets of which
are responsible for cell adaptation to stress. Briefly, ATF4
CDS is preceded by two functional uORFs (58), both
highly expressed under normal growth and stress con-
ditions. Under the ISR, the small ribosomal subunit is
expected to remain bound to the mRNA, scan through
the uORF2 and acquire the eIF2•GTP•Met-tRNAi

Met and
the large ribosomal subunit in time for initiation at the
start codon of the CDS, a phenomenon known as ‘leaky
scanning’. In addition, it has been also suggested that the
translation of the CDS under stress may result from the
‘re-initiation’, a model in which the large ribosomal sub-
unit and the initiation complex are recruited by the small
subunit right after the termination of the translation of
the uORF2, allowing thus the initiation at the CDS start
codon. Both events are nevertheless technically difficult to
distinguish and the exact process remains debated. Hence,
assuming the presence of one uORF is sufficient to regu-
late the translation of the CDS (20), are targets of ATF4
and CHOP (another transcription factor activated upon
stress) more likely to harbor uORFs than other genes? Are
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Figure 2. Count of ORFs in each class. The bar plots represent the count of ORFs annotated for each class for (A) H. sapiens and (B)M.musculus. The
percentages displayed over the bars indicate the proportion of ORFs annotated in the class over the total number of ORFs registered in the database
for the species. NMD: non-sense-mediated decay; NSD: non-stop decay.
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Figure 3. MetamORF gene-centric view. The page displays the transcripts and the ORFs related to SGK3 gene. A filter has been applied to select
exclusively the ORFs detected in HFF, Jurkat, RPE-1, HEK293 or HeLa cells. Other filters may be used and the results can be exported as CSV, FASTA
or BED files.

Table 4. Enrichment analysis

Gene lista List size
Genes harboring
uORFs

Intersection
size Universea size FDR Odds ratio

ATF4 targets 392 8863 256 19985 5.52.10−17 2.40
CHOP targets 256 8863 166 19985 3.34.10−11 2.34
Genes congruently
upregulated

484 8863 268 19985 5.41.10−7 1.57

Genes transitionally
upregulated

1068 8863 736 19985 1.21.10−61 2.94

aSee Supplementary Table S7 for more information about the gene lists.

genes translationally or congruently upregulated during an
ER stress, enriched in genes harboring uORFs? To answer
these questions, we performed enrichment analyses, get-
ting the list of genes harboring uORFs by querying Meta-
mORF, and using the published lists of target genes of
ATF4 and CHOP identified by ChIP-seq (Supplementary
Table S7). We demonstrated that ATF4 and CHOP tar-
gets as well as genes upregulated under an ER stress are
more likely to harbor uORFs than expected by chance
(ORATF4 =2.40, pval=2.76.10−17 and ORCHOP =2.34,
pval=2.50.10−11, respectively; Table 4). This suggests that
the translation of these genes is likely to be under the con-
trol of uORFs, as it has been experimentally shown for
PPP1R15A and PPP1R15B (23), two well-known targets of
ATF4.

Discussion and conclusion

MetamORF contains data about 1 162 675 unique sORFs
for the human andmouse genomes identified by both exper-
imental and computational approaches. While the Ribo-seq
is considered bymost as the ‘gold standard’ method to iden-
tify sORFs experimentally, the added value of predictive
computational approaches, proteomics and peptidomics
to characterize such biological sequences remains certain.
Because these technologies are offering complementary
information at genomic, transcriptomic and proteomic
scales, we decided to include data from both experimental
and computational experiments in our database. Neverthe-
less, data coming from distinct data sources may be difficult
to compare, in particular because they are not necessarily
using the same genome annotation and definitions of ORF
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classes and Kozak contexts, for instance. By homogenizing
this information, MetamORF offers the possibility to com-
pare datasets coming from different sources. We noticed
that information regarding the Kozak context is missing
most of the time, and start flanking sequences are usually
not provided. Hence, MetamORF provides a new interest-
ing set of information. It is noteworthy that we discarded
12 of 18 datasets because they lack crucial information
regarding their integration into MetamORF. Although this
is a rather drastic method, this is performed for the sake of
data quality. In these conditions, the confidence in the data
and the reliability in the existence of the sORF of interest
can be assessed by the number of original experiments that
identify the sORF (column ‘EXP. COUNT’ in the tables
of the web interface). It is noteworthy that >97% of the
unique ORF entries registered in MetamORF have been
identified by at least one experimental method.

It should be noticed that a large amount (∼80%) of
the sORFs contained in our database have been described
in the sORFs.org repository (37). Despite being the most
prominent sORF database and offering the community
data processed in a normalized way using their own work-
flow, sORFs.org does not provide metagene analyses (1). In
addition, such analysis is made difficult by the absence of
gene names and transcriptomic coordinates as well as the
high redundancy of information contained in the sORF.org
database (37), issues that we addressed withMetamORF. It
is noteworthy that another sORF resource, namely Open-
Prot (59), does not contain ORFs shorter than 30 amino
acids, whereas in MetamORF, sORFs of such size repre-
sent∼50% of the dataset. Of note, 54% of them have been
detected in at least two data sources, therefore reinforcing
their probability of existence. Hence, in comparison with
existing resources (Supplementary Table S8), MetamORF
is complementary and allows analyses at ORF, transcript,
gene and locus levels. In addition, it opens the possibility
of studying sORFs as a group, at a global scale.

The resource is accessible at https://metamorf.hb.univ-
amu.fr and provides an intuitive querying interface to
enable wet-laboratory researchers to easily question this
large set of information. The web interface comes with
advanced filters, notably on computed ORF classes, ORF
start codons, identification methods, Kozak contexts and
cell contexts. Such filters should help end-user biologists
without computational skills to identify and collect infor-
mation about the sORFs important for their topic of inter-
est. Moreover, the implementation of MetamORF content
in track hubs allows both quick and advanced visualiza-
tion of data through the UCSC Genome Browser. Finally,
the database content may be exported in various con-
venient formats widely used by the scientific community
(e.g. FASTA and BED).

We believe that MetamORF is of interest not only to
bioinformaticians working on short ORFs but also to a
wider community, including any biologist who may ben-
efit from knowledge regarding the sORFs located on their
gene, transcript or region of interest. As ribosome profiling
becomes more appreciated and proteomics starts allowing
accurate identification of short peptides, new data describ-
ing sORFs in various conditions will be published in the
next years, and our database is expected to grow accord-
ingly. In particular, the next release of MetamORF is
expected to include data describing the sORFs of other
organisms such as Drosophila melanogaster. As a conclu-
sion, we believe that MetamORF should help to address
new questions in the future, in particular regarding the
regulatory functions of the sORFs as well as the functions
of the short peptides they may encode.

Supplementary data
Supplementary data are available at Database online.
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Supp. Table S2 | Date of download of the data sources and cross-references 

File / data source Date of download 

HGNC cross-references for H. sapiens 08/06/2020 

NCBI cross-references for M. musculus 08/06/2020 

sORFs.org - H. sapiens 08/06/2020 

Erhard et al., 2018 - H. sapiens (14) 04/01/2019 

Johnstone et al., 2016 - H. sapiens (15) 04/01/2019 

Laumont et al., 2016 - H. sapiens (16) 04/01/2019 

Mackowiak et al., 2015 - H. sapiens (13) 20/03/2019 

Samandi et al., 2017 - H. sapiens (17) 04/01/2019 

Johnstone et al., 2016 - M. musculus (15) 04/01/2019 

sORFs.org - M. musculus 08/06/2020 

Mackowiak et al., 2015 - M. musculus 

(13) 
20/03/2019 

Samandi et al., 2017 - M. musculus (17) 04/01/2019 
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Supp. Table S3 | Homogenization of cell types 

Species Name of the original cell type  

(as provided by the data source)

  

Cell type name  

used in MetamORF 

H. sapiens 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

loayza_puch_2013 

BJ rooijers_2013 

ji_BJ_2015 

B cells B_cell 

mills_2016 Blood 

gonzalez_2014 Brain 

Human brain tumor Brain_tumor 

ji_breast_2015 Breast 

loayza_puch_2016 Breast_tumor 

jakobsson_2017 HAP1 

crappe_2014 HCT116 

lee_2012 

HEK293 

andreev_2015 

sidrauski_2015 

liu_2013_HEK 

liu_HEK_2013 

ingolia_2012 

ingolia_2014 

calviello_2016 

iwasaki_2016 

park_2017 

zhang_2017 

eichorn_2014 

HEK293T 
jan_2014 

Primary human foreskin fibroblasts 

(HFFs) 

HFF Primary human fibroblast (HFF) 

rutkowski_2015 

wang_2015 

HeLa 

niu_2014 

yoon_2014 

liu_2013_HeLa 

liu_Hela_2013 

stumpf_2013 
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park_2016 

zur_2016 

shi_2017 

werner_2015 

hES 
xu_2016 

gawron_2016 Jurkat 

cenik_2015 LCL 

Loayza_Puch_2016 MCF7 

rubio_2014 MDA-MB-231 

wiita_2013 MM1S 

su_2015 Monocyte 

grow_2015 NCCIT 

tanenbaum_2015 

RPE-1 
tirosh_2015 

wein_2014 Skeletal_muscle 

fritsch_2012 

THP-1 
stern_ginossar_2012 

elkon_2015 U2OS 

malecki_2017 Flp-In_T-REx-293 

M. 
musculus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

eichorn_3t3_2014 3T3 

jovanovic_2015 

BMDC 
fields_2015 

eichorn_bcell_2014 B_cell 

gonzalez_2014_mmu 

Brain cho_2015 

laguesse_2015 

deklerck_2015 C2C12 

ingolia_2014_mmu 

E14 Ingolia_2011 

ingolia_2011 

Mouse gliomal cells Glioma 

Mouse liver cell 

Liver 

eichorn_liver_2014 

gao_liver_2014 

gerashchenko_2016 

janich_2015 

Mouse Embryonic Fibroblast (MEFs) 

MEF thoreen_2012 

lee_2012_mmu 
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gao_mef_2014 

reid_er_2016 

reid_cytosol_2016 

reid_2014 

Mouse Embryonic Stem Cells MESC 

katz_2014 NSC 

guo_2010_mmu Neutrophil 

you_2015 R1E 

blanco_2016 Skin_tumor 

diaz_munoz_2015 Spleen_B_cell 

castaneda_2014 Testis 

hurt_2013 v6-5 
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Supp. Table S5 | Kozak contexts definitions. The start codon contains the nucleotides +1 to +3. The 

same patterns with variation allowed on the nucleotides between +1 to +3 position were used to compute 

the Kozak contexts of sORFs with alternative start codons. 

 -6 -5 -4 -3 -2 -1 +1 +2 +3 +4 

Optimal G C C R C C A T G G 

Strong N N N R N N A T G G 

Moderate N N N R N N A T G A / T / C 

or N N N Y N N A T G G 

Weak N N N Y N N A T G A / T / C 

R = A / G (purine), Y = C / T (pyrimidine) 

 

Supp. Table S6 | Regular expressions corresponding to Kozak contexts. The Kozak contexts have 

been computed using the criteria described in the Supp. table S2. To perform this computation, regular 

expressions have been searched in the sequences flanking the ORF start codons. 

Kozak context Regular expression 

Optimal GCC[AG]CC.{3}G 

Strong .{3}[AG].{2}.{3}G 

Moderate (.{3}[AG].{2}.{3}[ATC]|.{3}[CT].{2}.{3}G) 

Weak .{3}[CT].{2}.{3}[ACT] 

 

 

Supp. Table S7 | Source of the gene lists used to perform the enrichment analysis 

Gene list Source Description 

ATF4 targets1 Han et al., 2013, 
Nat. Cell. Biol. 

Table S1: "Supplementary Table S2. List of ATF4 and CHOP target 
genes that have binding peaks within 3kb from TSS of annotated 
gene." restricted to ATF4 targets (i.e. genes with 
"Overlap=Common” or “ATF4_Only") 

CHOP targets2 Han et al., 2013, 
Nat. Cell. Biol. 

Table S1: "Supplementary Table S2. List of ATF4 and CHOP target 
genes that have binding peaks within 3kb from TSS of annotated 
gene." restricted to ATF4 targets (i.e. genes with 
"Overlap=Common” or “CHOP_Only") 

Genes 

congruently 

up-regulated3 

Guan et al., 2017, 
Mol. Cell. 

Get upon request - Congruent (Transcriptional and translational) 
up-regulation at 16h (chronic ER stress) 

Genes 

transitionally 

up-regulated4 

Guan et al., 2017, 
Mol. Cell. 

Get on request - Translational up-regulation at 1h (accute ER 
stress) 
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Universe Gene ontology / 
gProfiler  

All protein coding genes with at least one gene ontology annotation 

have been included in the universe. The lists of  GO terms 

associated with their Ensembl gene IDs have been downloaded 

using the gProfiler web interface as a gmt file (data sources tab).  

 

 

Supp. Table S8 | Comparison of MetamORF with existing sORF-related databases 
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Supp. Figure S1 | Count of ORFs in each class. The barplot represent the count of ORFs annotated 

for each class for (A) H. sapiens and (B) M. musculus. The percentages displayed over the bars 

indicates the proportion of ORFs annotated in the class over the total number of annotations 

computed by the MetamORF workflow for the species.  
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Supp. Figure S2 | Relational map of MetamORF web interface. 
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3. sPEP functions in monocytes
have been assessed by a system
approach based on their
interactions with canonical
proteins

3.1. Studying protein-protein interactions (PPIs)
may help characterizing proteins of unknow
functions

3.1.1. Study of sPEP interactions with canonical proteins
should provide new insights about their functions

Functions of sPEPs were mainly studied through low scale approaches so far. One
possible strategy is to overexpress sPEPs in transfected cell lines or whole organism to
monitor changes in phenotypes. Knock-down of sORFs (based on clustered regularly
interspaced palindromic repeat - Cas9 (CRISPR-Cas9) technology1 for instance) can
also be performed but are more challenging as phenotypic changes may be due to
loss of function or disruption of the transcription harboring the sORF [8, 36, 82, 106].
If such approaches have proven to be successful for the characterization of some
peptides of unknown functions, they fail at performing large-scale functional charac-
terization and annotation of full proteomes or peptidomes.

1Clustered regularly interspaced palindromic repeat - Cas9 (CRISPR-Cas9) is a technology allowing
genome engineering in animals in plants. It originates from type II CRISPR-Cas systems, which
provide bacteria with adaptive immunity to viruses and plasmids. The CRISPR-associated protein
Cas9 is an endonuclease that uses a guide sequence within an RNA duplex, tracrRNA:crRNA, to form
base pairs with DNA target sequences, enabling Cas9 to introduce a site-specific double-strand
break in the DNA. This cost-effective and easy-to-use technology offers the possibility to target
any DNA sequence of interest and has become widely used during the past few years. It allows to
precisely and efficiently target, edit, modify, regulate, and mark genomic loci of a wide array of cells
and organisms [42]. In the particular case of short open reading frames (sORFs), this technology
may allow to edit or replace a particular sORF with an unrelated sequence or with a sequence that
has specific internal changes. This allows to examine the consequences of a change in nucleotide
and/or in amino acids of the product of translation. It may also be used to create fusion peptides by
adding a tag to the encoded peptide [8, 82].
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3. sPEP functions in monocytes have been assessed by a system approach based on
their interactions with canonical proteins – 3.1. Studying protein-protein interactions

(PPIs) may help characterizing proteins of unknow functions

However, Plaza et al. [102] pointed out the fact that the functions of most sPEPs char-
acterized so far mainly rely on specific interactions with larger proteins. In addition,
it has been demonstrated that for canonical proteins, cellular processes arise from
the dynamic organization of proteins in networks of physical interactions, notably
through the dynamic association of individual proteins into complexes and signaling
pathways [101, 103, 128]. Saghatelian and Couso [113] as well as Makarewich and
Olson [82] estimated also that the importance of protein-protein interactions (PPIs) in
known sPEP functions suggests that the identification of sPEP-RefProt interactions
(sPEPRIs) will be an expedient route for characterizing the molecular functions of
uncharacterized sPEPs. Hazarika et al. [52] were the first (to the best of my knowledge)
to propose a computational method for large-scale prediction of sPEP-RefProt interac-
tions (sPEPRIs). This last consists in screening of sPEP binding pockets on the peptide
surfaces and predicting models of interactions based on biophysical properties of
sPEPs and their interactors, and has been successfully applied to investigate the roles
of sPEPs in A. thaliana. Finally, Adai et al. [2] stressed out that studying novel proteins
as component of networks is an important method of function discovery, providing
additional information than individual studies of these proteins in isolation or linear
pathways.

In addition, it has been demonstrated that the human interactome is composed of
functional network modules, defined as groups of proteins densely connected through
their interactions and involved in the same biological processes [21, 22]. This feature
has been exploited in the past to annotate proteins of unknown functions [18, 22, 162].
Hence, it is likely for the human sPEP-RefProt interaction network (sPEPRIN) to be
also composed of functional network modules containing sPEPs and RefProts that are
involved in the same biological processes; and we may expect to perform large-scale
annotation of sPEPs based on this assumption.

3.1.2. Proteins functions can be predicted by studying their
interactions with annotated proteins

In the early 2000s, functions of many canonical proteins were still unknown. In 2021,
You et al. noticed that there were more than 200 million proteins in UniProtKB, while
less than 0.1 % of them had experimental GO annotation because of the the high cost
of biochemical experiments and the challenge they are rising [52, 158]. Furthermore,
these methods usually require to obtain large quantities of proteins and most of them
perform better at detecting high-affinity interactions than transient, low-affinity ones
[101]. To overcome this issue and characterize the functions of these proteins, many
computational methods have been and continue to be developed, including large-
scale studies of PPIs [21, 158]. Whilst the first computational methods relied mainly
on sequence similarities, more recent ones were based on identification of functional
modules after network clustering and the assignment of functions to proteins of un-
known function on the basis of the functional annotation of their neighbors [21].
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3. sPEP functions in monocytes have been assessed by a system approach based on
their interactions with canonical proteins – 3.1. Studying protein-protein interactions

(PPIs) may help characterizing proteins of unknow functions

These methods are based on the observation that proteins of similar cellular functions
tend to be close in the interaction graphs [22]. The first methods in this line of idea
predicted functions by assigning to proteins the three most frequent cellular functions
represented among their direct interaction partners. However this local approach did
not consider the graph as a whole but only the immediate protein neighborhood [22].
In addition, it was highlighted that more complex relationships exist, such as between
proteins that are part of the same complexes or pathways, and thus involved in the
same protein biological processes [22].

Brun et al. [21] hypothesized that the more two proteins share common interactors,
the more likely they are to be functionally related. They demonstrated that proteins in-
volved in the same molecular complexes, pathways or cellular processes are clustered,
making possible the prediction of cellular functions for uncharacterized proteins.
They also emphasize that dense PPIs are the sign of common involvement of proteins
in certain biological processes [22]. Based on these observation, they implemented
methods performing graph clustering and assigning to the resulting classes biologi-
cal functions according to the functional annotations of their members following a
classical majority rule (i.e. the most frequent functions or those shared by more than
half of annotated proteins in the class are assigned to proteins of unknown functions
in the class). The cellular functions of uncharacterized proteins were then predicted
by taking into account the functions assigned to the class and the direct interaction
partners of uncharacterized proteins present within the class [22]. The modularity
of the network allowed identifying clusters of proteins acting together in particular
biological processes using appropriate graph partitioning [18]. As a consequence
of these approaches, Becker et al. [18] defined clusters as ’functional modules’, i.e.
groups of proteins involved in the same pathway or the same cellular process.

For instance, such system approach based on PPI clustering have notably been
used in the past for the identification of extreme multifunctional protein (EMF), a
class of proteins whose multiple functions are very dissimilar to one another and thus
involved in unrelated cellular functions [18, 30, 162].

3.1.3. Short linear motifs and domains mediate PPIs
Many PPIs are mediated by short linear motifs (SLiMs) and domains through domain-
domain interactions (DDIs) [89] and domain-SLiM interactions (DMIs) [39, 70, 102,
162]. Because the presence of particular sequence signatures, including short linear
motifs (SLiMs) and domains, are a good indicator of a protein’s function [117]. Hence,
the study of these features in sPEPs should provide an insight to their biochemical
and molecular functions whilst the study of their interactions with canonical proteins
should help identifying the cellular functions and processes in which sPEPs are in-
volved.

SLiMs, a.k.a. eukaryotic linear motifs (ELMs) or motifs are compact disordered
mono-partite motifs that constitute an important class of interfaces of interactions

101



3. sPEP functions in monocytes have been assessed by a system approach based on
their interactions with canonical proteins – 3.2. A workflow was required to infer

sPEP-protein interactions (sPEPRIs) from protein sequences

[39]. SLiMs are short stretches of 3-10 contiguous amino acids residues (6 in average,
1-23 at most) that have been observed in many species and viruses. They are often
found in disordered regions and mediate transient PPIs with low affinity [39, 146, 149,
162]. SLiMs have a lower affinity for their binding partners than globular domains,
allowing them to engage in reverse and transient interactions [39]. They can be impor-
tant regulators of protein function and PPIs [81] and have a role in many processes,
including cell signaling and the cell cycle for instance [70, 149]. Six class types of
SLiMs have been identified according to the functional site and are registered in the
ELM database: proteolytic cleavage sites (CLVs), post-translational modification sites
(MODs), subcellular targeting sites (TRGs), ligand-binding sites (LIGs), docking sites
(DOCs) and degradation sites (DEGs) [39, 146]. Mackowiak et al. [81] demonstrated
that sPEPs tend to be disordered and rich in protein interaction motifs. A disorder
analysis with IUPred [41], a software for the prediction of intrinsically unstructured re-
gions of proteins, demonstrated that sPEPs are much more disordered than canonical
peptides and that conserved sPEPs adopt a more stable structure only upon biding to
other proteins or nucleic acids.

Andrews and Rothnagel [8] hypothesized that sPEPs could also mimic binding
domains of interacting proteins. However, sPEPs usually do not support typical mul-
tidomain structures of canonical proteins because of their short size [36, 102], and
they are thus less likely to harbor domains than SLiMs. It should also be noticed that
the surface area available for stable interaction with other molecules diminishes with
size [48], making interaction through SLiM more likely than through domains for
sPEPs.

3.2. A workflow was required to infer sPEP-protein
interactions (sPEPRIs) from protein sequences

Because most peptides and proteins can only fulfill their functions through interac-
tions with other proteins, network biology has emerged as a major field of biology.
It notably aims at understanding relationships among proteins. The study of PPIs
has been proved to be of major interest for the characterization of unknown pro-
teins which interactions with annotated ones are known, either from experimental
approach or computational predictions. In particular, it is now known that proteins
being part of the same complexes and/or involved in similar cellular processes or
pathways tends to cluster in networks representing PPIs. As previously reported, this
knowledge has notably been exploited in the early 2000s to annotate and propose
functional characterization of canonical proteins of unknown functions.

To date, only a handful of sPEPs have been successfully characterized. Although
these ones are involved in many distinct biological functions and lots of putative func-
tions have been proposed for sPEPs because of their short size, the actual functions
of the wide majority remain to be determined. One objective of my thesis was to
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explore the functions exerted by sPEPs and to propose a characterization of these
novel peptides. Hence, I decided to take advantage of PPIs networks for addressing
such objective. However, no large-scale study of sPEP-canonical protein interactions
(sPEPRIs) was available in 2018 for human cells (the only one published was available
for A. thaliana, and, to the best of my knowledge, there is still no sPEPRI network
in human available at the time of writing). In addition, acquisition of experimental
evidences of sPEPRIs can be hard, expensive and would require specific equipment
and training, in particular because sPEPs seem to have a short half life, be present
in low amount, difficult to recover and identify by MS and last but not least most
experimental methods for the detection or validation of PPI are low-scale. Hence, it is
unfortunately highly unlikely that large-scale experimental interactomes of sPEPs will
be released in a near future. To tackle this issue, I decided instead to take advantage of
computational approaches to predict the first human sPEPRI network.

The pitfall of experimental biology in the identification of large-scale interactomes
evoked above also applies to canonical PPIs. Although some methods (such has Y2H2)
perform better at identifying interactions for canonical proteins than peptides, they
globally remain expensive when compared with in silico prediction, slower (consider-
ing that prediction tools are available) and could be harder to perform, in particular
when it comes to proteins of pathogens whose manipulation is under strict control
(such as SARS-CoV-2, Lassa or Maarburg viruses for instance). Those reasons, in
line with other topics of interest for our laboratories regarding the study of host-
pathogen interactions, brought us to develop mimicINT, a tool aiming at predicting
host-pathogen protein interactions.

mimicINT is based on the same paradigm and assumptions as the method used
by our team in 2017 for predicting interactions between F. nucleatum and human
proteins. A. Zanzoni and his colleagues [146, 162] reported that virulence factors often
display structures resembling host components in form and function to interact with
host proteins, and that pathogen proteins often carry a range of mimics, which resem-
ble structures of the host at the molecular level, what is usually referred as molecular
mimicry. Briefly, the method described in 2017 is based on the observation that molec-
ular mimicry occurs in pathogenic viruses and bacteria, as a result of evolution, and
allows the emergence of domains and motifs in pathogenic proteins similar to the
ones harbored by host proteins. In addition, as the genesis of a rudimentary functional
motif necessitates only a handful of mutations, SLiMs have a greater propensity to

2Yeast tow-hybrid system (Y2H) is a method that aims at detecting protein-protein interactions
developed by Fields and Song in 1989. Briefly, the cDNA encoding a protein of interest is cloned into
a vector allowing the expression of the protein (the "bait") fused to a transcription factor binding-
domain (BD). The cDNA encoding anoter protein of interest is cloned into a vector allowing also the
expression of the protein (the "prey") fused to a transcription factor activation domain (AD). If the
two expressed proteins interact in the nucleus of the yeast, the proximity of BD and AD allows for
activation of the transcription factor of reporter genes under the control of promoters containing
sequences bound by BD. By running multiple Y2H experiments in parallel, this technology is now
commonly used for large-scale screening of protein-protein interactions [98].
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evolve convergently, and many SLiMs are indeed conserved across large evolutionary
distances [39]. Hence, by looking at host domain and motifs (as well as experimentally
validated pathogenic motifs) in pathogens, and under the assumption of this mimicry
and that templates of interactions are also valid for host-pathogen interactions, it is
possible to infer the full spectrum of theoretically possible PPIs between a pathogen
and its host.

At the beginning of 2020, A. Zanzoni and C. Brun were involved in a project entitled
"The role of diet-dependent human microbiome encoded T3SS-dependent effectors in
modulating health" (DIME) with the group of P. Falter-Braun (Germany). This project
notably planned to predict interactions between human proteins and proteins of (non-
pathogenic) multiple bacteria. The sequences of these proteins were collected from
metagenomic analyses. Under the observation that commensal bacteria share cell-
to-cell but also proteins interactions with their host, and that they evolved together
across time, it makes sense to assume that mimicry principle can also apply to non-
pathogenic bacteria. This led our team to plan the development of a computational
approach that aimed to improve and facilitate the application of the method initially
described by A. Zanzoni in 2017.

When COVID-19 pandemic happened, such tool was unfortunately not yet devel-
oped. In response to this global threat, our lab started RiPCoN (Rapid interaction
profiling of SARS-CoV-2 for network-based deep drug-repurpose learning), an Euro-
pean project led in collaboration with two other teams (P. Falter-Braun, Germany and
P. Aloy, Spain). This project notably integrated a work package related to the prediction
and analysis of interactions between human and SARS-CoV-2 proteins. Because of
the urgency to develop this computational method, and the requirement of similar
approach for the DIME project and my own PhD project, I had the opportunity to join
this initiative, with the objective to develop mimicINT and infer the host-pathogen
interactome as fast as possible. The interactomes I predicted in the frame of the
RiPCoN and DIME projects are not yet published but should lead to publications in a
near future. Because the study of these protein-protein interaction networks (PPINs)
is out of the scope of this manuscript, these results will not be discussed here.

For the sake of clarity, I refer to the host proteins (for multi-species interactions) or
canonical proteins (RefProt) as target proteins. On the other hand, I refer to bacterial
/ viral proteins or sPEPs as query proteins when describing the mimicINT approach
(Fig. 3.1). mimicINT relies on the identification of interfaces of interactions (domains
and SLiMs) on both target and query proteins to infer the interactions between them.
It uses as input the sequences of the proteins (as a FASTA file) (Fig. 3.1A). Domains are
identified on both target and query sequences by using a third-party software (Inter-
ProScan [62]) and the domain signatures from the InterPro database [20] (Fig. 3.1B).
The detection of SLiMs on query proteins exploits the motif definitions provided in the
ELM database [71] and is performed by another third-party program (SLiMProb, from
the SLiMSuite package [43]) (Fig. 3.1C). As SLiMs are usually located in disorder re-
gions, the disorder propensity of each amino-acid is assessed by the IUPred algorithm
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and the average disorder propensity score is computed for each sequence. We defined
this score as the ratio of the number of residues considered as disordered (according
to a threshold previously defined by the user) over the length of the protein. Several
versions of mimicINT have been developed and one of them allows to collect target
domains directly from the InterPro database instead of performing their detection
from the amino acid sequences, in order to consider only occurrences of domains
whose functionality has already been demonstrated.

Then, mimicINT infers the interactions between target and query proteins. This
inference is performed based on experimentally validated templates of interactions
among globular domains (identified based on three-dimensional protein structures,
from the 3DID database [89]) as well as between domains and SLiMs (templates of in-
teractions validated in Eukaryotes, from the ELM database [70]) (Fig. 3.1D). mimicINT
checks whether any of the query protein contains at least one domain or SLiM for
which an interaction template is available. In such case, it infers the interaction be-
tween the given protein and all the target proteins containing the cognate domain.

Because they belong to the same species, we may reasonably expect that human
sPEPs display interfaces of interactions which resemble structures of the canonical
proteins at the molecular level. Thus mimicINT can be used to infer interaction
between human sPEPs and RefProts.

Because mimicINT is prone to over-estimation, we also developed two comple-
mentary strategies to identify the interactions the most likely to be true positives. As
motif-biding domains of the same group (e.g. SH3, PDZ) show different interaction
specificities, we implemented a strategy (based on published method using HMM
[153]) to take into consideration these different specificities. This approach assigns a
domain score that can then be used to rank or filter inferred domain-SLiM interactions
(DMIs). Because SLiMs are short and degenerate in sequence (i.e. there are few fixed
amino acid positions for most of them), their detection is also prone to over-prediction.
As the level of degeneracy of a SLiM correlates with the stochastically occurring motif
count in a proteome, therefore making expectation of random occurrence not equal
for all ELM classes, I developed a second approach based on Monte-Carlo simulations.
This method is based on published work [49] and aims at assessing the probability of a
given SLiM to occur by chance in query sequences. By comparing natural occurrences
with occurrences in randomly generated sequences, mimicINT is able to compute
p-values that can then be used to filter SLiM occurrences in the query sequences.

Then, SLiM and domain predictions are based on the strong assumption that the
mimicry principle applies, i.e. that sPEPs are using the same motifs and domain than
canonical proteins. This is an important assumption that can be argued, as most of
them have never been experimentally detected on sPEPs so far. However, we may
easily oppose that functional SLiMs have already been reported experimentally on
canonical short peptides [70].

Interaction inferences are also likely to be incomplete due to the limited number of
experimentally validated templates of interactions, a recurrent issue in computational
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Figure 3.1.: Overview of the mimicINT workflow. (A) By providing a fasta file of query

protein (bacterial / viral protein or sPEP) sequences, mimicINT allows identifying both (B) the

domain and (C) SLiM mediated interfaces of interactions. (D) Using publicly available templates

of interactions, mimicINT infers the interactions between the query and target proteins (host

proteins or canonical proteins (RefProts)).
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biology. However, due to the limited number of residues that make direct contact with
the binding partner in SLiM interfaces [39], mimicINT is more prone to over-prediction
than under-prediction. Additionally, many false positive instances will probably not
co-occur with their corresponding binding partner due to restricted protein expression
as a result of cell compartmentalisation, cell state or tissue specificity [39].

Finally, mimicINT does not take into account the secondary structure of the pro-
teins. sPEP hydrophobicity is not considered whilst it is known that unstructured
interfaces have a strong preference for hydrophobic residues [39], a feature that could
be integrated in future releases of mimicINT to improve the quality of inferences.
Additionally, conformation changes can be induced by peptide binding and potenti-
ate specific interaction [8], a property of proteins that is difficult to integrate in PPIs
prediction tools based exclusively on the peptide sequences.

Despite these drawbacks, mimicINT provides the possibility to predict interaction
interfaces along with the PPIs (or sPEPRIs) they are able to mediate from the sole
amino acid sequence of peptides, a major interest as we are usually missing many
information about newly discovered proteins (or sPEPs). In addition, when most
of network-based methods totally ignore the protein sequence information [158],
mimicINT provides the opportunity to take both into consideration the protein se-
quences (through the identification of interaction interfaces) and the topology of the
PPIN to characterize unknown proteins.

It is important to note that mimicINT includes many steps as well as the use of
several third-party softwares. Because of the rapid evolution of operating systems’ ker-
nels and software versions, inconsistency or even incompatibility can quickly appear
when trying to deploy such complex workflows on new computers. Hence, to ease
the deployment and ensure reproducibility and scalability on HPC3 clusters, I took
advantage of Snakemake [87] and containerized environments based on Docker [85]
(https://docs.docker.com/) and Singularity (https://github.com/sylabs/singularity)
technologies. Snakemake is a workflow management system based on Python lan-
guage. It allows easing the development of workflows, and ensuring the automatic
execution of a set of predefined rules. In addition, it allows easy execution on HPC
clusters through the easy communication with workload managers, such as SLURM
(https://slurm.schedmd.com). Containerized environments enable to separate appli-
cations from the infrastructure on which they run, so it makes software delivery easier.

3High-performance computing refers to the practice of using massive computational resources in a
way that delivers much higher performance than one could get out of a typical workstation. HPC
aggregates a great number of processors (CPUs) and allows to manipulate big volumes of data.
Such computational resources are now used in many fields (meteorology, ecology, fluid mechanics,
astronomy, molecular biology, genetics, finance etc.). A HPC cluster is constituted of thousands of
compute servers (called nodes) that are connected together. The nodes work in parallel with each
other, and each one can work independently of the others. Such architecture allows for massive
parallelization of computations, which may decrease by decades the computational time. As a
matter of comparison, I used more than 3 millions of CPU hours in the frame of my thesis, which
would roughly correspond to 20+ years of computation on a common bioinformatician’s workstation
(assuming a workstation is provided 16 CPUs fully available).
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Such technologies were initially developed by and for pure computer scientists, but
they are more and more used in the field of bioinformatics. As many other computa-
tional biologist, I strongly support and encourage the use of such environments as
they help ensuring deployment, portability, reproducibility and scalability on HPC
clusters. It is to note that all the (bio)informatics tools I developed and analysis I run
during my thesis were performed using Docker and/or Singularity. Docker offers the
opportunity to provide micro-services, such as web server, but usually requires to
have administrator access to the infrastructure it is executed on. On the contrary,
Singularity can be used without administrator access, but is not appropriate for the
development of servers. It should be highlighted that all the tools previously described
are open-source, a practice that tends to be encourage over years in our application
field.

Finally, mimicINT may also benefit to experimental biologists, as for scientist willing
to predict interactions between newly discovered proteins and human proteins or
to predict yet unknown interactions between canonical proteins for instance. Unfor-
tunately, the use of mimicINT requires advanced computational skills which makes
it hard to use for most biologists. For this reason, we decided to build a web server,
allowing to run mimicINT online, through an user-friendly interface. This task brought
some difficulties notably because it requires to be able to manage putative numerous
job submissions on the server at the same time. We started to develop this web server
in collaboration with three students (M. Cristianini, a Master 2 student, L. Drets and K.
Maldonado, two technology degrees graduate students (DUT)) I had the opportunity
to co-supervise. This task is still under progress and we expect the deployment of this
web server to happen in the upcoming months.

Choteau SA, Cristianini M, Maldonado K, Drets L, Boujeant M, Brun C, Spinelli L, Zan-
zoni A (2022). mimicINT: a workflow for microbe-host protein interaction inference.
bioRxiv, 10.1101/2022.11.04.515250.
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Abstract 

The increasing incidence of emerging infectious diseases is posing serious global 

threats. Therefore, there is a clear need for developing computational methods that 

can assist and speed-up experimental research to better characterize the molecular 

mechanisms of microbial infections. In this context, we developed mimicINT, a freely 

available computational workflow for large-scale protein-protein interaction inference 

between microbe and human by detecting putative molecular mimicry elements that 

can mediate the interaction with host proteins: short linear motifs (SLiMs) and host-

like globular domains. mimicINT exploits these putative elements to infer the 

interaction with human proteins by using known templates of domain-domain and 

SLiM-domain interaction templates. mimicINT provides (i) robust Monte-Carlo 

simulations to assess the statistical significance of SLiM detection which suffers from 
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false positive, and (ii) interaction specificity filter to account for differences between 

motif-binding domains of the same family.  

mimicINT is implemented in Python and R, and it is available at: 

https://github.com/TAGC-NetworkBiology/mimicINT. 

 

Introduction 

Most pathogens interact with their hosts to reach an advantageous niche and ensure 

their successful dissemination. For instance, viruses interfere with important host-cell 

processes through protein-protein interactions to coordinate their life cycle 

(Yamauchi and Helenius, 2013). It has been shown that host cell networks subversion 

by pathogen proteins can be achieved through interface mimicry of endogenous 

interactions (i.e., interaction between host proteins) (Franzosa and Xia, 2011; 

Garamszegi et al., 2013). This strategy relies on the presence in pathogen protein 

sequences of host-like elements, such as globular domains and short linear motifs 

(SLiMs), that can mediate the interaction with host proteins (Davey et al., 2011; Hagai 

et al., 2014; Via et al., 2015).  

Over the last years, many computational methods have been developed to predict 

pathogen-host protein interactions, some of which are based on the detection of 

sequence or structural mimicry elements (Arnold et al., 2012; Nourani et al., 2015). 

Such approaches allowed, for instance, to suggest potential molecular mechanisms 

underlying the implication of gastrointestinal bacteria in human cancer (Zanzoni et al., 

2017; Guven-Maiorov et al., 2017) or to discriminate between viral strains with 

different oncogenic potential (Lasso et al., 2019), thus showing that protein-protein 

interaction predictions can be instrumental in untangling microbe-host disease 
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associations. Nevertheless, the source code of many of these tools are not freely 

available to the community (e.g., (Becerra et al., 2017; Guven-Maiorov et al., 2017; 

Lasso et al., 2019)) providing the predictions through a database (e.g., (Lasso et al., 

2019)), or can be only used through a web interface (e.g. (Guven-Maiorov et al., 

2020)), thus limiting the prediction reproducibility and tool usability. 

In this context, and inspired by our previous work (Zanzoni et al., 2017), we present 

mimicINT, a computational workflow for large-scale interaction inference between 

microbe and human proteins by detecting host-like elements and using 

experimentally identified interaction templates (Mosca et al., 2014; Kumar et al., 

2020).  

 

Implementation  

mimicINT detects putative molecular mimicry elements in microbe sequences of 

interest that can mediate the interaction with host proteins (Figure 1). mimicINT is 

written in Python and R languages and exploits the Snakemake workflow manager 

for automated execution (Köster and Rahmann, 2018). It consists of four main steps: 

(i) the detection of host-like elements in microbe sequences; (ii) the collection of 

domains on the host protein (iii); the interaction inferences between microbe and host 

proteins; and (iv) the functional enrichment analysis on the list of inferred host 

interactors.  

In the first step, mimicINT takes as input the FASTA-formatted sequences of microbe 

proteins (e.g., viral or other pathogen proteins susceptible to be found at the 

pathogen-host interface) to detect host-like elements: domains and SLiMs. The 

domain identification is performed by the stand-alone version of InterProScan (Jones 
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et al., 2014) using the domain signatures from the InterPro database (Blum et al., 

2021). By default, mimicINT retains InterProScan matches with an E-value below 10-

5, a threshold value commonly used for detecting profile-based domain signatures in 

protein sequences in the context of interaction inference (Schleker et al., 2012). The 

host-like SLiMs detection exploits the motif definitions available in the ELM database 

(Kumar et al., 2020) and is carried out by the SLiMProb tool from the SLiMSuite 

software package (Edwards et al., 2020). As SLiMs are usually located in disordered 

regions (Davey et al., 2012), SLiMProb uses the IUPred algorithm (Dosztányi, 2018) 

to compute the disorder propensity of each amino acid in the query sequences, and 

generates an average disorder propensity score for every detected SLiM occurrence. 

For SLiM detection, the default IUPred disorder propensity threshold is set to 0.2, a 

value commonly used to limit false negatives (Edwards and Palopoli, 2015; Edwards 

et al., 2020), and the minimum size of the predicted disorder region is set to 5, the 

optimal size to detect true positive SLiM occurrences (Paulsen, 2019). Nevertheless, 

the user can choose all running parameters for the host-like element detection in the 

mimicINT configuration file.  

In the second step, mimicINT gathered the domain annotations of the host proteins 

from the InterPro database through a REST API query.  

In the third step, mimicINT infers the interactions between host and microbe proteins. 

This analysis takes as input the list of known interactions templates gathered from 

two resources: (i) the 3did database (Mosca et al., 2014), a collection of domain-

domain interactions extracted from three-dimensional protein structures (Rose et al., 

2013), and (ii) the ELM database (Kumar et al., 2020) that provides a list of 

experimentally identified SLIM-domain interactions in Eukaryotes. The inference 
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checks whether any of the microbe proteins contains at least one domain or SLIM for 

which an interaction template is available. In this case, it infers the interaction 

between the given protein and all the host proteins containing the cognate domain 

(i.e., the interacting domain in the template). As motif-binding domains of the same 

group, like SH3 or PDZ, show different interaction specificities (Gfeller et al., 2011) for 

the SLiM-domain interaction inference, we have implemented a previously proposed 

strategy (Weatheritt et al., 2012) to take these differences into account (see 

Supplementary Methods). This approach assigns a "domain score" that can be used 

to rank or filter inferred SLiM-domain interactions. Once this step is completed, the 

inferred interactions are stored in both tab-delimited and JSON files to facilitate the 

import in other applications, such as Cytoscape (Shannon et al., 2003). 

In the final step, in order to identify the host cellular functions potentially targeted by 

the pathogen proteins, mimicINT executes a functional enrichment analysis of host 

inferred interactors. This analysis statistically assesses the over-representation of 

functional categories, such as Gene Ontology terms and biological pathways (e.g., 

KEGG and Reactome), using the g:Profiler R client (Raudvere et al., 2019). 

Given the degenerate nature of SLiMs (Davey et al., 2012), their detection is prone to 

generate false positive occurrences. For this reason, we implemented an optional 

sub-workflow that, using Monte-Carlo simulations, assesses the probability of a given 

SLiM to occur by chance in query sequences and, thus, can be used to filter out 

potential false positives (Hagai et al., 2014) (see Supplementary Methods). 

To ease deployment and ensure reproducibility and scalability on high-performance 

computing infrastructures, mimicINT is provided as a containerized application based 
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on Docker and Singularity (Merkel, 2014; Kurtzer et al., 2017). mimicINT is available 

at https://github.com/TAGC-NetworkBiology/mimicINT. 

 

Results 

We sought to evaluate the ability of mimicINT to correctly infer SLiM-domain 

interactions, as this inference can generate many false positives (Weatheritt et al., 

2012), using the default parameters for SLiM detection (see Implementation). To do 

so, we used as controls two datasets of established motif-mediated interactions 

(MDI) from the ELM database (Kumar et al., 2020) (see Supplementary Methods): (i) 

103 interactions between 87 viral and 44 human proteins (vMDI); (ii) 31 interactions 

between 16 bacterial and 23 human proteins (bMDI). We were able to correctly infer 

the majority of these interactions (91 vMDI, true positive rate = 88.3%; 21 bMDI, true 

positive rate = 67.7%). As the availability of negative SLiM-mediated interaction 

datasets is very limited (Weatheritt et al., 2012; Idrees et al., 2018; Kumar et al., 2020), 

we estimated the false positive rate (FPR) by applying mimicINT to two sets of 

randomly generated interactions sets (degree-controlled, vMDIrnd and bMDIrnd, 

respectively). Thirty-four vMDIrnd and 7 bMDIrnd were inferred as motif-mediated (FPR 

= 33% and FPR = 23%, respectively). We next annotated the human proteins in the 

two random sets with domain similarity scores. We kept only interactions for which 

the domain score was above 0.4 (Weatheritt et al., 2012), thereby reducing the 

number of random interactions predicted as motif-mediated to 9 (FPR = 8.7%) for 

vMDIrnd and 2 (FPR = 6.4%) for bMDIrnd. Finally, we tested mimicINT on two sets of 

experimentally verified negative 37 viral-human and 4 bacterial-human protein 
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interactions from the Negatome 2.0 database (Blohm et al., 2014). Only two virus-

human interactions (5.4%) were inferred as motif-mediated by mimicINT. 

In the light of these results, we used mimicINT to infer the interactions between 

human proteins and the Marburg virus (MARV), an emerging infectious agent for 

which experimental protein interaction data is scarce (23 interactions for VP24 protein 

in IMEx interaction databases (Orchard et al., 2012)).  

We downloaded MARV protein sequences (7 proteins, Proteome ID: UP000180448) 

from UniprotKB in FASTA format. For domain detection, we considered only 

InterProScan matches in MARV sequences and ran mimicINT with default 

parameters.  

In total, we inferred 11,431 interactions between 7 MARV and 2757 human proteins 

(see Supplementary Data). The vast majority of the inferred interactions, namely 

10,101, are motif-domain interactions (MDI, 7 MARV and 2324 human proteins), and 

the remaining 1,339 are domain-domain interactions (DDI, 5 MARV and 479 human 

proteins). Interestingly, we observed an significant enrichment of known targets of 

other viruses among inferred interactors (1096 human proteins, 39.7% of the total, 

odds ratio = 1.3, P-value = 1.8x10-8, one-sided Fisher's Exact test) (Orchard et al., 

2012): 62 (13% of DDI interactors, odds ratio = 0.2, P-value = 1, one-sided Fisher's 

Exact test) are involved in 133 inferred DDIs, and 1059 (45% of MDI interactors, odds 

ratio = 1.3, P-value = 6.7x10-6, one-sided Fisher's Exact test) participated in 4591 

inferred MDIs. By setting a stringent cutoff of 0.4 on the domain similarity scores, the 

number of inferred MDI decreases to 2082 (7 MARV and 597 human proteins), while 

the proportion of known viral targets among human interactors slightly increases (i.e., 
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50%, 299 proteins, odds ratio = 1.4, P-value = 4.7x10-5, one-sided Fisher's Exact 

test). 

None of the 23 experimentally identified interactions of the MARV VP24 proteins were 

identified by mimicINT, probably due to the fact that they were detected by an affinity-

based purification method (Pichlmair et al., 2012), which is more suited to identify 

indirect protein associations rather than direct interactions (Snider et al., 2015). 

However, 17 MARV inferred interactions (17 MDI and 4 DDI) are supported by 

experimental evidence in the closely related Zaire Ebola Virus (Orchard et al., 2012; 

Batra et al., 2018).  

The functional enrichment analysis performed by mimicINT on the full list of inferred 

host interactors returned a list of 975 enriched annotations at FDR<0.01 (see 

Supplementary Data). We next filtered out the functional categories annotating less 

than 5 or more 500 proteins obtaining a list of 763 enriched annotations (241 GO 

biological processes, 63 GO Cellular components, 6 CORUM complexes, 130 KEGG 

and 237 Reactome pathways), which points towards cellular processes and pathways 

related to viral infection and immune system (see Supplementary Data), thus further 

reinforcing the biological relevance of the inferred interactions. 

 

Conclusions 

We present mimicINT, a computational workflow enabling large-scale interaction 

inference between microbe and host sequences. Given the increasing frequency of 

(re-)emerging infectious diseases, mimicINT can be instrumental to better understand 
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the molecular details underlying microbial infections and to identify proteins and 

interactions as candidate points for therapeutic intervention. Although we developed 

mimicINT as a tool to infer protein interactions at the microbe-human interface, the 

workflow can be used to infer interaction among human proteins as well, or applied 

to organisms whose proteins bear either domains or SLiMs participating in known 

interaction templates. 
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Figures 

 

Figure 1: Overview of the mimicINT workflow. By providing a fasta file of protein 

sequences of the query species (e.g., microbe sequences) (A), mimicINT allows identifying 
both the domain (B) and SLiM (C) mediated interfaces of interactions. Using publicly available 
templates of interactions, mimicINT infers the interactions between the proteins of the query 

and target (i.e., host) species (D). Finally, it provides a list of functional annotations that are 
significantly enriched in inferred protein targets (E). 
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Supplementary Methods 

Computation of the motif-binding domain similarity scores. To identify motif-

binding domains that can be specifically associated to a given ELM motif class, we 

use the same strategy proposed by Weatheritt et al. in 2012 (Weatheritt et al., 2012), 

which assumes that a domain significantly similar to a known motif-binding domain 

should also bind the same motif. We first compiled a list of experimentally identified 

motif bind domains by gathering the original list from Weatheritt et al. complemented 

by more recent annotations from the ELM database (Kumar et al., 2020) (August 

2020). Obsolete ELM class identifiers from Weatheritt et al. were mapped to current 

ELM identifiers using the "Renamed ELM classes file 

(http://elm.eu.org/infos/browse_renamed.tsv) and duplicated domain annotations 

were removed. In total, we collected 538 domains in 415 human proteins known to 

bind 212 ELM motif classes (73% of the 290 motif classes present in ELM, August 

2020). The sequences of these 415 annotated proteins were fetched from UniprotKB 

(UniProt Consortium, 2019). We next gathered the sequences of 1452 reference 
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Eukaryota proteomes (22,262,113 protein sequences in total) from UniprotKB (August 

2020). We removed redundancy using the CD-HIT algorithm (Fu et al., 2012) to 

generate a database of 21,414,544 non-identical sequences. We used the GOPHER 

tool (Davey et al., 2007) from the SLiMSuite package (Edwards et al., 2020) to identify 

orthologous sequences of the annotated proteins in the database of non-identical 

eukaryotic sequences by reciprocal BLAST best hits. Selected orthologous proteins 

were aligned using the multiple sequence alignment algorithm Clustal Omega (v. 

1.2.4) (Sievers et al., 2011). Once the position of the motif-binding domain was 

identified within the alignment, we removed aligned domains with indels covering 

>10% of the annotated domain sequence. We iteratively realigned the sequences 

until a set of proteins was identified with <10% indels coverage. In total, we selected 

701 multiple sequence alignments that were used as input for generating domain-

specific HMM profiles with the hmmbuild program from the HMMER package v.3.1.1 

(Eddy, 1998).  Subsequently, we scanned a representative set of the human proteome 

(20,350 “reviewed” sequences from UniprotKB) with the domain-specific HMMs 

using the hmmsearch program. We used a E-value cutoff of 0.01 to select the best 

hits and we rejected those hits with a length of <90% of the annotated motif-binding 

domain sequence length. Finally, the E-value of the best-scoring domain was 

converted into a domain similarity score using the iELM script downloaded from 

http://elmint.embl.de/program_file/ (Weatheritt et al., 2012). Doing so, we computed 

at least one motif-binding domain similarity score for 1,461 human proteins. 

Statistical significance of the SLiMs detected on the microbe sequences. To 

assess the probability of a given motif to occur by chance in microbe sequences, we 

implemented a previously proposed approach (Hagai et al., 2014) to randomly shuffle 
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the disordered regions of each sequence of a microbe of interest to generate a large 

set of randomized microbe proteins. The number of shuffled sequences to be 

generated by mimicINT can be chosen by the user in the corresponding configuration 

file (see the mimicINT online documentation for more details). By default, mimicINT 

creates a set of 100,000 randomly shuffled proteins, with the assumption that the 

input sequences belong to the same microbe species or strain. Once the shuffled 

sequences are generated, the occurrences of each detected motif are compared in 

each microbe input sequence to the occurrences observed in the corresponding set 

of shuffled sequences. In order to compute the probability (P) of each detected motif 

to occur by chance, mimicINT counts the number of times (m) out of the shuffled 

sequences (N) where there are at least the same number of instances of the given 

motif in the input sequence: 

𝑃	 = 	
𝑚	 + 	1
𝑁		 + 	1 

For example, if a given motif occurs twice in the input sequence, the methods count 

how many times the same motif is detected at least twice in the corresponding set of 

randomly shuffled sequences. 

Virus-human and bacteria-human motif-domain interaction datasets. We 

gathered two interaction datasets that are known to be mediated by motif-domain 

interfaces from the ELM database (Kumar et al., 2020) (January 2022). The first 

consists of 103 interactions between 87 viral and 44 human proteins, and the second 

consists of 31 interactions between 16 bacterial and 23 human proteins. As the 

availability of negative motif-mediated interaction datasets is very limited (Weatheritt 

et al., 2012; Idrees et al., 2018; Kumar et al., 2020), we generated for each dataset a 
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corresponding random set as follows: we shuffled human interactors by randomly 

sampling a set of proteins (44 for the virus-human dataset and 23 for the bacteria-

human dataset) proteins from the list of human proteins annotated with at least one 

motif-binding domain according to InterPro (i.e, 3940 human proteins in total). We 

conserved the degree of both viral/bacterial and human proteins. In addition, we 

fetched a manually curated negative human protein interaction dataset from the 

Negatome Database 2.0 (manually_stringent set) (Blohm et al., 2014) extracting 57 

virus-human and 4 bacteria-human interactions. We further filtered these sets against 

the interaction data stored in IMEx consortium databases (4 virus-human interactions 

removed), and kept only interactions described in research articles only (i.e., we 

excluded 2 review and 1 conference abstract papers, 16 virus-human interactions 

removed) in order to have negative data supported by direct experimental evidence 

in peer-reviewed papers. Doing so, we obtained a list of 37 negative virus-human 

protein interactions and 4 negative bacteria-human protein interactions.  
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3.3. mimicINT is of major interest to explore the
human sPEP-ome

I thus used the mimicINT workflow to perform a large-scale prediction of sPEPRIs in
monocytes. This prediction was based on the sequences of 11,404 canonical proteins
(RefProts, from UniProtKB) expressed in monocytes (according to the Human Protein
Atlas) and of 10,475 putative sPEPs identified in monocytes by Ribo-seq (from Meta-
mORF). By running this computation, I present there the first large-scale sPEP-RefProt
interaction network in human. After filtering the interactions the most likely to be
functional (based on domain scores and Monte-Carlo simulations), I finally inferred a
total of 250,959 unique interactions (65,508 domain-domain interactions (DDIs) and
185,451 DMIs). It is to note that when looking at interactions independently of their
interfaces (i.e. counting only once several interactions involving the same canonical
protein and sPEP), 154,407 interactions between RefProts and sPEPs were actually
inferred (42,097 DDIs and 112,414 DMIs). One may highlight that even for a compu-
tational biologist, the manipulation of such big interactomes is quite unusual and
raised many computational issues. As a matter of comparison, the Human Reference
Interactome (HuRI), that registers all experimentally validated interactions among
RefProts in H. sapiens, contains 64,006 interactions (among 6,047 proteins) at the time
of writing.

I first performed a descriptive analysis of the interfaces of interactions harbored by
sPEPs in monocytes. In line with published results, this analysis suggested that most
sPEPs are involved in key biological functions, including notably regulatory functions
and metabolism, immunology responses and cytoskeleton organization. These results
were confirmed by looking for GO4 enrichment in interacting RefProts.

I then took advantage of the fact that canonical proteins clustering in canonical
PPIs have been demonstrated to be involved in similar complexes or pathways. As
detailed above, we may reasonably expect that sPEPs and RefProts involved in the same
complexes or pathways are clustering together in sPEPRIs. I thus performed a systemic
annotation of sPEPs with GO terms, based on graph clustering and assignment of
class biological functions according to the functional annotations of their members
following a classical majority rule. This large-scale annotation of sPEPs with GO terms
is also the first to be proposed at the time, and it would be valuable to integrate it
to the web interface of MetamORF in order to make this information more easily
accessible to end-user biologists. Interestingly, the wide majority of sPEPs (90 %
of them) were annotated with metabolic process-related GO:BP terms, a result that

4The Gene Ontology (GO) is a resource initially published in 2000 by a consortium (the Gene Ontol-
ogy consortium) willing to "produce a dynamic, controlled vocabulary that can be applied to all
eukaryotes, even as knowledge of gene and protein roles in cells is accumulating and changing".
This consortium defined three independent ontologies: biological process (BP), molecular function
(MF) and cellular component (CC). Each of these ontologies provides annotations for the (partially
characterized) genes and proteins. GO is one of the resources the most commonly used by biologist
that keeps to be updated [9, 134].
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highlights the importance of these peptides in the regulation of the cell metabolism.
This is particularly interesting as sORFs (especially uORFs) have been reported to
impair the translation under stress, and we may legitimately wonder the exact nature
of the relationship between sORF cis and trans roles.

Because they are located on the same transcripts, and thus transcribed at the same
time, I wondered if the sPEP located on genes annotated with a certain GO:BP term
were preferentially interacting with the RefProts encoded by these exact same genes. I
discovered that for 72 % of GO:BP terms (in the GO generic subset), the sPEPs encoded
by the genes of these terms were indeed preferentially interacting with RefProts of
the same term. These terms were notably related to metabolism (protein folding,
metabolic processes etc.), cell cycle (mitotic cell cycle), cytoskeleton (cytokinesis,
cytoskeleton organization etc.) and immune responses (inflammatory response etc.).
Despite further evidence are required, this result support the hypothesis of coordi-
nated transcriptional regulation and the idea that being located on the same RNAs
for a peptide and a protein functionally related may represent an advantage for the
coordination of their expression.

Further evidence, in particular experimental validation of interactions and experi-
mental characterization of sPEP functions are clearly required. However, these results
stress out the wide array of cellular functions, biological processes and the number
of pathways in which sPEPs seem to be involved. In addition, some of these pro-
cesses are clearly crucial to the cell, such as metabolism pathways. Interestingly, RNA
metabolism is among the processes in which sPEPs seem to be involved. This is of
particular interest as sORFs are already known to act as cis regulators of the translation,
and these results suggest they may also play an additional role in the regulation of
the translation as trans regulators. Finally, I am personally confident that sPEPs will
become a topic of primary interest in the future, in particular in regard to applications
in multiple domain, included (but not restricted to) human and veterinary medicine,
ecology and agronomy.

It is to note that I also performed large-scale prediction of sPEPRIs from the full set
of 20,368 RefProt and 659,735 putative sPEPs respectively registered in UniProtKB and
MetamORF. Whilst mimicINT was designed from the beginning to be adaptable for
really large fasta files, it is quite unusual and unexpected to perform bioinformatics
analyses with such large datasets. This led me to release several versions of mimicINT
over time in order to make it scalable for huge amount of data. mimicINT demon-
strated to be efficient for handling unusually large datasets, despite such computation
can only be considered on HPC clusters and required to use the resources from the
intensive computational centre of Aix-Marseille (> 2 millions CPUh consumed). This
interactome and most of the tools necessary for its analysis are now available, and we
may expect that analysing this network could be of great interest for the discovery of
novel sPEPs functions or the experimental validation of interactions, despite being
run outside of a particular cell context. It is thus likely that one of the future step of C.
Brun’s lab will be to analyse in details this larger, non cell-specific, interactome.
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Short open reading frames-encoded peptides in human

monocytes are involved in ubiquitous regulatory functions,

metabolism and immunology responses

Sébastien A. Choteau, Philippe Pierre, Lionel Spinelli, Andreas Zanzoni, Christine Brun

Abstract

Short Open Reading Frames (sORFs) are ubiquitous genomic elements that have been overlooked
for years. Some may encode functional peptides, so-called sORF-encoded peptides (sPEPs).
Most of these lasts have failed to be annotated notably due to their short length (< 100 residues)
and the use of alternative start codons (other than AUG). So far, the roles of only few sPEPs
have been characterized and sPEPs whose functions have been determined are involved in a wide
range of key biological processes (apoptosis, DNA reparation, transcriptional regulation, mTOR
signaling, antigen presentation, cardiac activity regulation etc.). However, the functions of most
sPEPs remains unknown.

In this study, we propose a system approach to determine the functions of sPEPs in mono-
cytes. We first predicted the interactions of sPEPs with canonical proteins (RefProts) and we
analyzed the interfaces of interactions as well as the set of RefProts interacting with sPEPs.
Based on the topology of the sPEP-canonical protein interaction network, we then predicted
the function of the sPEPs. Our results suggest that the majority of sPEPs are involved in key
biological functions, including regulatory functions and metabolism, immunology responses and
cytoskeleton organization. Finally, we showed that sPEPs preferentially target RefProts involved
in the same processes as their cognate RefProt.

Our results suggest that sPEPs may be key regulator of both ubiquitous and specialized
functions. They therefore should be of growing interest for the future proteome-wide analyses.

1 Introduction

Open reading frames shorter than 100 codons were initially thought to be non functional and
discarded in most gene annotation programs with the notion they had no coding potential [1, 12,
30, 40, 44]. More recent studies demonstrated that these sequences, called short open reading
frames (sORFs), may actually encode functional peptides [19, 31, 32, 34, 44]. sORF-encoded
peptides (sEPs or sPEPs, a.k.a. micropeptides) have notably been described in eukaryotic cells
and are encoded by sORFs located on all classes of RNAs (including presumptive ncRNAs) [7,
31, 44]. Because (i) messenger RNAs (mRNAs) are usually considered as monocistronic, (ii) the
use of alternative start codons and (iii) their short sizes, sPEPs have been missed for long [6].

However, due to the growing body of evidences that sPEPs are stable within cells and have
regulatory functions, the study of this novel class of peptides has intensified [17]. Recent studies
have demonstrated sPEPs to be involved in various cellular processes and diseases, notably
cell proliferation, signaling, cell growth, death, metabolism or development [44]. It has even
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been suggested that sPEPs may constitute a new pool of cancer-related peptides that could be
targeted by immunotherapy [34]. As an example, Laumont et al. identified 168 novel major
histocompatibility complex class I (MHC-I)-associated peptides that were derived from sORFs
[22], demonstrating that sPEPs can also be involved in specialized functions such as antigen
presentation.

Human monocytes are an heterogenous population of innate immune cells that may differen-
tiate into macrophages and play a major role in the initiation of immune responses. They are
able to express molecules of the MHC-I and MHC-II, which make them of particular interest as
numerous sPEPs have been determined to be able to fixate the MHC-I. Indeed, they may be pre-
sented as self-antigens with high predicted binding affinities [7, 16, 22]. Additionally, because the
presentation of peptides by MHC molecules is largely independent of the amino acid sequence,
and many sPEPs may not need proteosomal degradation before entering the MHC-I presentation
pathway, a certain fraction of sPEPs is likely to be involved in immunological functions [7, 22]

We recently gathered 664,771 unique sORFs in the full human genome among which 10,475
have been identified to be transcribed in monocytes according to ribosome profiling experiments
[10]. Although for most of them there is no strong insight about their actual translation into
functional sPEPs, it has been suggested that a sizable fraction of sORFs are translated [19].
Hence, sPEPs could constitute a major pool of functional peptides overlooked so far.

Whilst some methods (such as proteogenomics) succeed at identifying large pool of peptides,
there is currently a lack of experimental method leading to the systematic determination of the
functions of novel peptides. Consequently, the functions of most sPEPs are currently unknown
and to our knowledge, no systematic annotation of sPEPs has been performed so far. To overcome
this obstacle, we propose here to study the interactions of the sPEPs with the canonical proteins
(designated as RefProts hereafter), for which the functions are known and functional annotations
are available. Indeed, protein-protein interactions (PPIs) drive biological functions [23] and it
has been demonstrated that protein functions can be assigned on the basis of the annotation of
their neighbors in the PPI network [5]. Hence, we hypothesize that analyzing the interactions
between sPEPs and RefProts will allow performing a systematic functional annotation of the
sPEPs. Nonetheless, as highlighted earlier by Gray et al. [17], sPEPs are typically missing from
large-scale protein localization and interaction studies [17]. As we recently developed mimicINT
[11], a computational method that allows inferring protein-protein interactions (PPIs) based on
the presence of short linear motifs and globular domains in amino acid sequences, we herein pre-
dicted interactions between sPEPs and RefProts using this method, integrated those predicted
interactions in the human interactome and investigate network modules and topology to predict
sPEP functions. We then asked whether sPEPs do participate to specific functions in mono-
cytes? Are there processes in which sPEPs are preferentially involved? Are sPEPs preferentially
interacting with RefProts involved in the same processes as the RefProts located on the same
transcript as their coding sequence, suggesting a regulatory function?

To that extent, we decided to (i) identify the SLiMs and domains with the highest occurrences
as sPEP interaction interfaces, to asses the biological processes to which sPEPs are participating;
(ii) check the most common sPEP annotations, by annotating sPEP from network clustering
followed by function assignment based on a majority rule; and (iii) determine for some GO
terms whether there is an enrichment of RefProts involved in the GO term among the RefProts
interacting with sPEPs encoded by genes annotated with the GO term.
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2 Results and discussion

2.1 250,959 sPEP-RefProt interactions have been inferred in mono-
cytes

This study presents here the first large-scale network of sPEP-RefProt interactions in human, to
the best of our knowledge. In this paper, we aim at exploring sPEP functions by studying these
interactions. In particular, interfaces of interactions (domains and SLiMs) provide information
about the molecular and biochemical functions of the proteins that harbor them. Indeed, in-
terfaces may mediate interactions with other proteins that notably allow them to take part in
particular complexes or pathways, to be addressed to certain subcellular compartments or to be
submitted to post-translational modifications. Hence, our first goal (i) was to study which inter-
faces are the most commonly used by sPEPs to predict their putative functions. Then, proteins
involved in the same complexes or metabolic pathways are known to cluster in the canonical
PPI network, and the topology of the PPI has been successfully exploited in the past to perform
assignment of cellular functions to uncharacterized proteins. Consequently, our second objective
(ii) was to take advantage of the sPEP-RefProt interaction (sPEPRI) network topology to pre-
dict sPEP functions based on clustering and using a classical majority annotation rule. Finally, a
growing community of scientists hypothesized that the co-expression of sPEPs and RefProt from
the same transcript could facilitate the integration of sPEPs in cellular pathways related to the
main protein product [26, 36]. Hence, our last objective (iii) was to determine for all Gene Ontol-
ogy (GO) terms of the generic GO subset whether RefProts interacting with the sPEPs encoded
by the genes these terms annotate tend to be themselves annotated with this particular GO term.

The amino acid sequences of 10,475 putative sORF-encoded peptides (sPEPs) identified by
ribosome profiling in monocytes were collected from MetamORF, a repository of unique sORFs
identified by computational and experimental methods we previously developed (Fig. 1A). 11,404
canonical proteins (RefProts) have been identified in monocytes at the protein level according to
the Human Protein Atlas and their amino acid sequences were downloaded from the UniProtKB
database (Fig. 1B). Finally, 250,959 interactions and 154,407 binary interactions (i.e. interac-
tions involving distinct partners) between 4,393 sPEPs and 3,981 RefProts in monocytes were
predicted with mimicINT, a computational method we previously implemented to infer protein-
protein interactions from their sequences (Fig. 1C-E, Table 2). Overall, 41% of the sPEPs (4,393
/ 10,475) are predicted to interact with 35% of the RefProt (3,981 / 11,404) within monocytes.
Additionally, mimicINT prediction is based upon the detection of interfaces of interactions on
sPEPs and RefProts and it identified a total of 17,101 (398 domains and 16,703 SLiMs) and
21,258 interfaces (21,258 domains) respectively on sPEPs and RefProts (Table 1).

Table 1: Counts of inferred sPEP-RefProt interactions

Type of interaction Total interactions Binary interactions
Domain-domain interactions (DDIs) 65,508 42,097
Domain-SLiM interactions (DMIs) 185,451 112,414
All interactions 250,959 154,407

NB: Two interactions involving the same couple of sPEP and RefProt interactors but mediated

through two different set of interfaces are counted as two in the count of total interactions whilst

counted as one in the number of binary interactions.
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Figure 1: Method of inference of the sPEP-RefProt interactions (sPEPRIs). (A) sPEPs

sequences identified in monocytes have been collected from MetamORF and (B) RefProts sequences expressed

in monocytes have been collected from UniProtKB. (C-E) sPEP-RefProt interactions have been inferred using

the mimicINT workflow. Briefly, (C) Short linear motifs (SLiMs) occurrences have been detected on sPEPs

(using SLiMProb and data from ELM) and filtered based on pvalues computed by Monte-Carlo simulations; (D)

Pfam signatures of globular domains have been detected on RefProts and sPEPs (using InterProScan) and; (E)

templates of domain-domain interactions (DDIs, from 3DID) as well as of domain-SLiM interactions (DMIs, from

ELM) were used to infer DDIs and DMIs between sPEPs and RefProts. DMIs were then filtered based on domain

scores computed by looking for Hidden Markov Models. (F) A system approach has finally been used to explore

the functions to which sPEPs participate.
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2.2 The SLiMs and domains mediating interactions in sPEPs are re-
lated to ubiquitous regulatory functions, metabolism, immunology
processes and cytoskeleton

2.2.1 97% of interaction interfaces on sPEPs are SLiMs

First, we checked what interfaces of interaction are more often harbored by sPEPs, as they can
provide an insight about the putative functions of the peptides. When inferring the interactions
between sPEPs and RefProts in monocytes, mimicINT detects two types of protein interfaces
for PPIs: short linear motifs (SLiMs), that are short stretches of amino acids mainly located
in disordered regions [21], as well as globular domains. Globular domains are constituted in
median of 88 amino acids (ranging from 4 to 6,907 residues in H. sapiens, according to data
from the InterPro database [4]) whilst the SLiMs are short stretches of 1 to 23 residues (6.3
in average, according to [13]) preferentially located in highly disordered regions [13]. As by
definition sPEPs are short (< 100 residues), we hypothesized sPEPs are more likely to harbor
SLiMs than domains. Therefore, mimicINT appears to be suited to predict sPEP interactions
since SLiMs are expected to be their favorite interface of interactions.

Table 2: Counts of domain and SLiM occurrences in sPEPs and RefProts

sPEPs RefProts
Counts in monocytes 10,475 11,404
Interacting 4,393 3,981

Domains
#Occ. 398 21,258
#Occ. interacting 336 7,267
#Pfam domains 120 5,475
#Pfam domains interacting 104 676

SLiMs
#Occ. 16,703 -
#Occ. interacting 12,949 -
#ELM classes 60 -
#ELM classes interacting 43 -

We found that sPEPs harbor respectively 16,703 and 398 distinct occurrences of SLiMs and
domains, which confirms that sPEPs harbor more SLiMs than domains (Table 1).

In order to check if the presence of SLiMs and domain was indeed related to the size and
disorder level of the sPEPs, we also compared the lengths of the sPEPs based upon their presence.
As expected, the sPEPs harboring domains are the longest, whilst the length of the sPEPs seems
not to be related with the presence of SLiMs (Fig. S2), which could be easily explained by the fact
that long sequences can also present disordered regions harboring SLiMs. We noticed that the
general disorder propensity scores are the highest for sPEPs harboring SLiMs (median—average
score: 1—0.86; all sPEPs: 0.53—0.57; sPEPs with domains: 0.25—0.33), a result that was
expected as the SLiMs were identified in disordered regions.

In accordance with the presence of multiple SLiMs on sPEPs when compared to domains,
we were expecting the sPEP-RefProt interactions to be mainly mediated by SLiMs. Indeed,
74% (185,451/250,959) of predicted interactions are domain-SLiM interactions (Table 1) and the
SLiM occurrences constituted 97% (12,949/13,285) of the interfaces of interactions harbored by
sPEPs (Table 2).

Interestingly, the 12,949 SLiM occurrences mediating at least one interaction on sPEPs be-
longed to 43 classes of SLiMs (ELM classes) over the 60 ones with a p-value lower than 0.01. In
addition, the 336 occurrences of domains mediating at least one interaction on sPEPs belonged
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to 104 classes of domains (Pfam signatures) over the 17,929 families registered in Pfam. On the
other hand, 3,754 SLiM occurrences, belonging to 17 ELM classes, on sPEPs do not mediate any
interaction. In addition, the 62 occurrences of domains of sPEP not mediating any interaction
belonged to 16 classes of domains (Pfam signatures). Because of the diversity of interfaces har-
bored by sPEPs (147 distinct classes of interfaces), we suggest that looking at the most common
ones could provide insights about the molecular functions to which sPEPs participate.

2.2.2 Most commonly used domains are related to metabolism, immunology re-
sponses and cytoskeleton

We thus next investigated the classes of domains used by the sPEPs to interact with RefProts.
As previously stated, 26% (65,508/250,959) of interactions are DDIs and 3% (336/13,285) of the
interfaces of interactions on sPEPs are domains. In accordance with this relatively low number
of interactions mediated by domains, 92% (4,058/4,393) sPEPs are not harboring any domain
able to mediate an interaction with RefProts.

We first only considered the most represented domains responsible of interaction(s) with
RefProt and selected the 10 most commonly used domains and noticed these domains are mainly
related to the cytoskeleton, immunology responses and metabolism (amino acid degradation
notably) (Table 3 and Table S1).

Table 3: Top 10 domains (Pfam) based on occurrence counts in sPEPs

Pfam acces-
sion

Domain name Function family #Occ.a #Interactionsb

PF00038 Intermediate filament protein Cytoskeleton 15 285
PF00048 Small cytokines (inter-

crine/chemokine), IL-8 like
Immunology 14 2,100

PF00112 Papain family cysteine protease AA degradation 13 4,797
PF01231 Indoleamine 2,3-dioxygenase AA degradation 10 20
PF04699 ARP2/3 complex, 16 kDa subunit (p16-

Arc)
Actin 9 1,458

PF09286 Pro-kumamolisin, activation domain Peptide cleavage 9 45
PF00113 Enolase, C-terminal TIM barrel domain Glycolysis 8 56
PF12146 Serine aminopeptidase, S33 AA degradation 8 208
PF00129 Class I Histocompatibility antigen, do-

mains alpha 1 and 2
Immunology 7 1,253

PF00262 Calreticulin family Ca2+ regulation 7 91
PF00340 Interleukin-1 / 18 Immunology 7 2,303
PF02841 Guanylate-binding protein, C-terminal

domain
Immunology 7 91

PF04045 ARP2/3 complex, 34 kDa subunit (p34-
Arc)

Actin 7 133

PF07654 Immunoglobulin C1-set domain Immunology 7 5,859
a: Number of occurrences of the domain in sPEPs
b: Number of sPEPRIs mediated by the domain

We then considered all the domains mediating at least one interaction with a RefProt and
mapped their Pfam accessions to GO terms (Table S1). The figure 2 presents the visualiza-
tion of the GO biological process (GO:BP) terms using the REVIGO software. This result

6

3. sPEP functions in monocytes have been assessed by a system approach based on
their interactions with canonical proteins – 3.3. mimicINT is of major interest to

explore the human sPEP-ome

135



shows that the domains used as interaction interfaces by the sPEPs are mainly related with im-
munology responses (inflammatory response, antigen processing and presentation, regulation of
TOR signaling etc.), cytoskeleton (regulation of actin filament polymerization), as well as ubiq-
uitous regulatory functions (regulation of apoptotic process, protein folding, translation etc.)
and metabolic processes (proteolysis, ubiquitin-dependent catabolic process, pentose-phosphate
shunt etc.), underlining the possible role of the sPEPs in those processes.

Figure 2: Summarized visualization of the GO:BP terms mapped to the Pfam ac-
cessions mediating at least one interaction with a RefProt. The size of the boxes are
related with the number of GO:BP terms aggregated with the GO term shown.

We finally considered the domains that do not mediate any interaction and noticed these
domains are mainly related to immunology responses (cytokine production, antigen processing
and presentation, scavenger and T-cell receptors, inflammatory responses etc.), cytoskeleton and
transport (Table 4 and S2).

All together, these results suggest sPEPs may be involved in many biological processes, some
of them which are crucial for the cell (metabolism) or specifically related to the functions of
monocytes (notably to immunology responses, the regulation of apoptosis and the cytoskeleton).
These findings are in line with our current knowledge of sPEPs that are known to be notably
involved in cell proliferation, signaling, growth, cell death, metabolism and development, cy-
toskeleton organization and antigen presentation in eukaryotes [12, 16, 22, 34, 44].

2.2.3 Most commonly used SLiMs are related to housekeeping regulatory functions

As SLiMs are preferred interfaces of interactions when compared with domains, we also inves-
tigated the ELM classes preferentially used by the sPEPs to interact with RefProts. As stated
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Table 4: Top 10 domains (Pfam) not mediating interactions, based on occurrence
counts in sPEPs

Pfam acces-
sion

Domain name Function family #Occ.a #Interactionsb

PF00335 Tetraspanin family Membrane proteins 15 0
PF05038 Cytochrome Cytochrome b558 alpha-

subunit
Oxidative phospho-
rylation (phago-
cytes)

8 0

PF03821 Golgi 4-transmembrane spanning trans-
porter

Transport 7 0

PF09307 CLIP, MHC2 interacting Immunology
(MHC-II)

5 0

PF02394 Interleukin-1 propeptide Immunology (Cy-
tokines)

4 0

PF03227 Gamma interferon inducible lysosomal
thiol reductase (GILT)

Immunology (scav-
enger receptors)

4 0

PF05283 Multi-glycosylated core protein 24
(MGC-24), sialomucin

Immunology (Cy-
tokines)

4 0

PF03836 RasGAP C-terminus Cytoskeleton 3 0
PF02535 ZIP Zinc transporter Transport 2 0
PF07946 Protein of unknown function

(DUF1682)
ER biology 2 0

PF10601 LITAF-like zinc ribbon domain Immunolgy
(pathogen sens-
ing)

2 0

PF11029 DAZ associated protein 2 (DAZAP2) - 2 0
a: Number of occurrences of the domain in sPEPs
b: Number of sPEPRIs mediated by the domain

above, 74% (185,451/250,959) of interactions are DMIs and 97% (12,949/13,285) of the inter-
faces of interactions on sPEPs are SLiMs. As expected regarding this high number of interactions
mediated by SLiMs, 95% (4,162/4,393) of the sPEPs are harboring at least one SLiM able to
mediate interactions with RefProts. More precisely, 68% of the sPEPs harbor between 1 and 3
SLiMs mediating interactions.

The ELM database classifies the SLiM classes into six distinct types: ligand-binding sites
(LIGs), docking sites (DOCs), subcellular targeting sites (TRGs), post-translational modification
sites (MODs), proteolytic cleavage sites (CLVs) and degradation sites (DEGs).

Classes of interacting SLiMs belonging to the MOD class are the most commonly harbored
by sPEPs (48%) whilst the DEG, known to favor the degradation of the protein that harbors it,
are the less commonly used (5%) (Fig. 3). The LIG (16%), CLV (11%), TRG (10%) and DOC
(9%) class types of SLiMs have similar numbers of occurrences. Many distinct SLiM classes are
constituting the occurrences of LIG and MOD motifs, a result that was expected regarding the
fact that the LIG and MOD class types respectively gather 47% (26/60) and 22% (13/60) of the
SLiM classes.

Like for the domains, we hypothesized that the type of SLiMs the most commonly used to
mediate interactions with RefProts were likely to provide insight about the biological processes
in which the sPEPs are involved. Thus, we first only considered the most represented SLiMs
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Figure 3: SLiM classes harbored by sPEPs. For each SLiM class type, (A) the count of
occurrences and (B) proportion of occurrences belonging to the class have been computed. (C)
The count of occurrences has also been computed for each individual SLiM class.
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responsible of interaction(s) with RefProt and selected the 10 most commonly used SLiM classes.
These classes are involved in many biological processes, in particular in cell cycle regulation, DNA
repair, metabolism and protein metabolism (Table 5 and Table S3).

Table 5: Top 10 SLiM classes based on occurrence counts in sPEPs

SliM class Site name (from ELM) Function family Pattern prob. #Occ.a #Interactionsb

MOD NEK2 1 NEK2 phosphorylation
site

Cell cycle 0.0097983 2035 20350

MOD PKA 2 PKA Phosphorylation site Metabolism 0.0094575 1720 51600
MOD PIKK 1 PIKK phosphorylation

site
DNA repair 0.0092301 877 3508

LIG FHA 1 FHA phosphopeptide lig-
ands

Cell cycle, DNA re-
pair

0.0086622 863 1726

CLV PCSK SKI1 1 PCSK cleavage site Proteolytic process-
ing of peptides

0.0068205 783 783

MOD N-GLC 1 N-glycosylation site Translation 0.0050178 515 515
CLV PCSK PC1ET2 1 PCSK cleavage site Metabolism 0.0039028 515 1545
TRG NLS MonoExtN 4 NLS classical Nuclear Lo-

calization Signals
Nuclear localiza-
tion signal

0.0012764 467 17746

DEG SPOP SBC 1 SPOP SBC docking motif Cell cycle, protein
degradation

0.000938 423 846

DOC USP7 UBL2 3 USP7 binding motif Cell survival, re-
sponse to viral in-
fections

0.0037418 394 394

a: Number of occurrences of the SLiMs in sPEPs
b: Number of sPEPRIs mediated by the SLiMs

On the other hand, classes of SLiMs not interacting belonging to the TRG class are the most
commonly harbored by sPEPs (53%) whilst the DEG and DOC are the less commonly used
(2%) (Fig. 4). The MOD (19%) and LIG (17%) class types of SLiMs have similar numbers of
occurrences whilst CLV (6%) are less represented. As expected, more distinct SLiM classes are
constituting the occurrences of LIG and MOD motifs than the other classes.

Considering the most represented SLiMs not used as interface of interaction with RefProt and
selecting the 10 most commonly used SLiM classes, we noticed that these classes are involved
in various biological processes, in particular in cell cycle regulation, cell survival and protein
degradation (Table 6 and Table S4). It should be noticed that apart from LIG KEPE 2, all
ELM classes are involved in exactly one template of interaction. This implies that the lack of
interaction computed is not biased by the lack of experimental evidence of interaction for those
ELMs, but instead by the absence of interacting interfaces on canonical proteins.

The analysis of the SLiM usage comforts the hypothesis that sPEPs are involved in diverse
biological processes, some of them being ubiquitous processes, such as cell cycle and metabolism
regulations.

2.2.4 RefProts interacting with sPEPs are involved in metabolism, immunology
responses and cytoskeleton

The results previously presented are based upon the assumption that the processes in which are
involved the sPEPs are dictated by the domains and SLiMs mediating interaction with RefProts.
In order to strengthen this hypothesis, we next investigated the biological process in which the
RefProts interacting with sPEPs are involved. As the functions of RefProts are relatively quite
well known (when compared to functions of sPEPs), we wondered in which biological processes
are involved the RefProts interacting with sPEPs in monocytes. To address this question, we
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Figure 4: Non-interacting SLiM classes harbored by sPEPs. For each SLiM class type,
(A) the count of occurrences and (B) proportion of occurrences belonging to the class have been
computed. (C) The count of occurrences has also been computed for each individual SLiM class.
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Table 6: Top 10 non interacting SLiM classes based on occurrence counts in sPEPs

SliM class Site name (from ELM) Function family Pattern prob. #Occ.a #Interactionsb

TRG ER diArg 1 di Arginine reten-
tion/retrieving signal

ER localization sig-
nal

0.0053693 1906 0

MOD Plk 4 Polo-like kinase phospho-
sites

Cell cycle, cytoki-
nesis

0.0060193 629 0

LIG UBA3 1 Binding motif for UBA3
adenylation domain

Ubiquitination,
protein degrada-
tion

0.0011962 218 0

CLV PCSK PC7 1 PCSK cleavage site Proteolytic process-
ing of peptides

0.0005087 211 0

LIG TRAF2 1 TRAF2 binding site Cell survival 0.0042998 162 0
DOC PP2A B56 1 PP2A holoenzyme B56-

docking site
Cell cycle, cy-
toskeleton, growth
factor signaling

0.0014581 90 0

DEG APCC TPR 1 APCC TPR-docking mo-
tifs

Cell cycle, protein
degradation

0.0000136 87 0

TRG PTS1 PTS1 Peroxisomal local-
ization signal

0.0000152 78 0

LIG Pex14 2 Pex14 ligand motif Peroxisomal import 0.0004628 68 0
MOD CMANNOS C-Mannosylation site Protein glycosyla-

tion
0.0000469 57 0

a: Number of occurrences of the SLiMs in sPEPs
b: Number of sPEPRIs mediated by the SLiMs

looked for GO term enrichments among the RefProts interacting with at least one sPEPs (all
RefProts expressed in monocytes were used as background).

The figure 5 presents the visualization of the GO biological process (GO:BP) terms using
the REVIGO software (data from Table S5). Significant enrichments have been found for 757
GO:BP terms, most of which are related with metabolism (protein metabolic process, macro-
molecule metabolic process, regulation of metabolic process, regulation of mRNA metabolic
process, protein folding, proteolysis, ubiquitin-dependent catabolic process etc.), immunology
responses (immune response, immune system process, inflammatory response, antigen processing
and presentation, cytokine production etc.), cytoskeleton (cytoskeleton organization, regulation
of actin cytoskeleton organization, regulation of actin filament polymerization, endocytosis etc.),
signaling (protein phosphorylation etc.) as well as some other regulatory processes (apoptotic
process, response to stress, response to stimulus etc.).

2.3 90% of sPEPs are annotated with metabolic processes-related GO
terms

We then decided to exploit the topology of the network of sPEP-RefProt interactions to perform
in silico systematic annotation of the sPEPs. To that extent, we first merged the sPEP-RefProt
interactions (sPEPRI) network with the canonical protein-protein interactions (PPI) network
build as described in the methods section. The resulting network, designated hereafter as the
”merged network”, is a binary network containing thus sPEPs and RefProts. Two types of
interactions were considered then: experimentally identified interactions between RefProts as well
as predicted interactions between sPEPs and RefProts. We then identified overlapping clusters
and for each cluster, we got the Gene Ontology biological process (GO:BP) terms designating at
least half of the RefProts of the cluster. These latter were finally transferred to all the proteins
(RefProts and sPEPs) constituting the cluster. This method allowed us to annotate the sPEPs
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Figure 5: Summarized visualization of the GO:BP term enrichment analysis on in-
teracting RefProts.
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with GO:BP terms (Tables S6 and S7).
101 distinct GO:BP terms were used to annotate 3,251 sPEPs and a total of 13,907 annota-

tions (GO:BP) have been assigned to these sPEPs. The 1,142 remaining sPEPs did not received
any annotation, as the criterion to annotate their cluster(s) has not been met. The 50 most
common GO:BP terms are shown in Table 7.

Table 7: Top 50 GO:BP terms annotating sPEPs

Process family GO:BP term GO description #sPEPs

Metabolic process

GO:0080090 regulation of primary metabolic pro-
cess

1875

GO:0051171 regulation of nitrogen compound
metabolic process

1701

GO:0031323 regulation of cellular metabolic pro-
cess

1686

GO:0031326 regulation of cellular biosynthetic
process

27

GO:0044271 cellular nitrogen compound biosyn-
thetic process

24

GO:0031325 positive regulation of cellular
metabolic process

22

GO:1901362 organic cyclic compound biosyn-
thetic process

19

GO:0009889 regulation of biosynthetic process 15
GO:0044283 small molecule biosynthetic process 12
GO:0062012 regulation of small molecule

metabolic process
12

GO:0031324 negative regulation of cellular
metabolic process

7

Macromolecule
metabolic process

GO:0060255 regulation of macromolecule
metabolic process

2389

GO:0010604 positive regulation of macro-
molecule metabolic process

38

GO:0009059 macromolecule biosynthetic process 33
GO:0044260 cellular macromolecule metabolic

process
29

GO:0010556 regulation of macromolecule biosyn-
thetic process

22

GO:0010605 negative regulation of macro-
molecule metabolic process

11

GO:0043412 macromolecule modification 9

Nitrogen
compound
metabolic process

GO:0006139 nucleobase-containing compound
metabolic process

1194

GO:0090304 nucleic acid metabolic process 420
GO:0019219 regulation of nucleobase-containing

compound metabolic process
50

GO:0016070 RNA metabolic process 41
GO:0051173 positive regulation of nitrogen com-

pound metabolic process
35
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Process family GO:BP term GO description #sPEPs
GO:0034654 nucleobase-containing compound

biosynthetic process
28

GO:0051252 regulation of RNA metabolic pro-
cess

22

Protein metabolic
proces

GO:0036211 protein modification process 1728
GO:0019538 protein metabolic process 228
GO:0016485 protein processing 61
GO:0031293 membrane protein intracellular do-

main proteolysis
61

GO:0006508 proteolysis 12
GO:0051246 regulation of protein metabolic pro-

cess
11

Lipid metabolic
process

GO:0045540 regulation of cholesterol biosyn-
thetic process

61

Gene expression
GO:0010468 regulation of gene expression 413
GO:0006357 regulation of transcription by RNA

polymerase II
26

GO:0045893 positive regulation of transcription,
DNA-templated

7

Cell cycle GO:0007049 cell cycle 24

Response to
stimulus

GO:0036500 ATF6-mediated unfolded protein re-
sponse

61

GO:0033554 cellular response to stress 15
GO:0071310 cellular response to organic sub-

stance
12

Signaling

GO:0007165 signal transduction 981
GO:0035556 intracellular signal transduction 25
GO:0009966 regulation of signal transduction 22
GO:0023051 regulation of signaling 20
GO:0007166 cell surface receptor signaling path-

way
11

Cell
communication

GO:0010646 regulation of cell communication 20

Cellular component
organization

GO:0007040 lysosome organization 61
GO:0006996 organelle organization 53

Transport
GO:0060627 regulation of vesicle-mediated trans-

port
70

GO:0051049 regulation of transport 7
Biological
regulation

GO:0065009 regulation of molecular function 14

Cellular
localization

GO:0008104 protein localization 7

The figure 6 presents the visualization of the GO:BP terms using the REVIGO web in-
terface. These results show that sPEPs have been mainly annotated with terms related with
metabolic processes (nucleic acid metabolic process, protein metabolic process, regulation of
cellular metabolic process, regulation of macromolecule metabolic process etc.), stress response
(ATF6-mediated stress response), signal transduction and regulation of gene expression. It should
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be highlighted that these are major biological processes that are ubiquitous in eukaryotes, sug-
gesting the sPEPs may be major regulatory peptides.

Figure 6: Summarized visualization of the GO:BP terms used to annotate the sPEPs.
The size of the boxes are related to the number of sPEPs that have been annotated with the
term shown or a similar term.

56 distinct GO:BP terms used to annotate the sPEPs were related to metabolism (i.e. have
either ”inferred related to”, ”inferred is a” or ”inferred part” relation to the GO:BP term
”metabolic process” (GO:0008152) according to AMIGO [8], Table S8). More precisely, 82%
of the sPEP annotations are terms related to metabolism (12,401 / 15,090) and 90% of the
sPEPs have at least one GO:BP annotation term related to metabolism (2,924 / 3,251). This
result strongly suggests the importance of sPEPs in the metabolic processes.

2.4 sPEPs preferentially target the RefProts involved in the same bi-
ological processes as the RefProts encoded by their transcripts

Because the existence of sORFs that interact with the canonical protein encoded by their tran-
script, a growing number of scientists suggested that the co-expression from the same mRNA
could facilitate the functionalisation of sPEPs and their integration in cellular pathways related
to the main protein product of their transcript [26, 36]. Hence, we wondered whether sPEPs
were preferentially interacting with RefProts involved in the same biological processes as their
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own genes. To that extent we checked, for a list of GO terms, if there were more RefProts
annotated with the GO term among the RefProts interacting with the sPEPs encoded by the
genes annotated with the GO term than expected by chance (Fig. 7). GO terms used here were
those of the generic GO subset (a.k.a. GO slim, a cut-down versions of the GO containing a
subset of the terms that give a broad overview of the ontology content without the detail of the
specific fine grained terms), restricted to the BP branch.

Figure 7: For a certain GO:BP term, are there more RefProts encoded by CDS lo-
cated on genes annotated with the GO term among the RefProts interacting with
sPEPs encoded by sORFs located on genes associated with the GO term than ex-
pected by chance?

A significant enrichment has been found for 71% GO:BP terms (52 with a FDR lower than
0.05 among 73 terms tested), notably related to metabolism (protein folding, metabolic pro-
cesses etc.), cell cycle (mitotic cell cycle), cytoskeleton (cytokinesis,, cytoskeleton organization
etc.) and immune responses (inflammatory response etc.) (Fig. 8). It should be highlighted
that the highest odd ratio computed equals 22.76 for the cellular amino acid metabolic process
(GO:0006520, FDR = 10−22) and that odd ratio over 5 are computed mostly for terms related to
genetic expression and protein metabolism (mRNA metabolic process, protein catabolic process,
cellular amino acid metabolic process, ribosome biogenesis, cytoplasmic translation and gene si-
lencing by RNA) and terms related to the cytoskeleton organization (cytoskeleton organization,
establishment or maintenance of cell polarity) (Table 8 and S9).

For each of these GO:BP terms, we then wondered which are the annotations of the RefProts
interacting with the sPEPs from genes associated with the term. To that extent, defining the
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Figure 8: Summarized visualization of the GO:BP terms for which there are more
RefProts annotated with the term among the RefProts interacting with the sPEPs
encoded by genes annotated with the term. The size of the boxes are proportional to the
number of GO terms aggregated.
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Table 8: Top GO:BP terms ranked by decreasing odd ratio

GO ID GO term Size of the universea Size of the GO setb Number of sPEP interactorsc Intersectiond pval odd ratio FDR
GO:0006520 cellular amino acid metabolic

process
3981 49 307 31 2.43.10−23 22.8 1.61.10−22

GO:0042254 ribosome biogenesis 3981 105 448 74 3.77.10−48 22.3 6.87.10−47

GO:0002181 cytoplasmic translation 3981 67 510 48 4.65.10−29 18.8 3.40.10−28

GO:0016071 mRNA metabolic process 3981 418 1328 343 5.22.10−105 12.0 3.81.10−103

GO:0007163 establishment or maintenance of
cell polarity

3981 99 1637 86 1.54.10−21 9.9 8.64.10−21

GO:0022600 digestive system process 3981 16 190 4 5.82.10−3 6.8 9.65.10−3

GO:0030163 protein catabolic process 3981 400 1298 288 2.34.10−65 6.5 8.55.10−64

GO:0031047 gene silencing by RNA 3981 44 336 15 1.38.10−06 5.8 3, 46.10−6

GO:0007010 cytoskeleton organization 3981 541 1951 434 4.58.10−58 5.1 1.11.10−56

GO:0016192 vesicle-mediated transport 3981 787 2765 701 1.05.10−46 4.5 1.53.10−45

a: Size of the universe (i.e. all RefProts expressed in monocytes)
b: size of the GO set (i.e. all RefProts annotated with the GO term) (”Set1”)
c: Number of RefProts interacting with sPEPs encoded by a gene annotated with the GO term (”Set2”)
d: Number of RefProts annotated with the GO term and interacting with sPEPs encoded by a gene annotated with the GO term (i.e. intersection of sets b and c) (”Set1 inter Set2”)

”Set1” as the set of RefProts encoded by CDS located on gene annotated with the GO:BP term,
we looked over the same set of GO:BP terms for three types of enrichments:

• Enrichment in RefProts interacting with sPEPs [encoded by genes annotated with the GO
terms]. This set of RefProts has been defined as ”Set2”.

• Enrichment in RefProts interacting with sPEPs [encoded by genes annotated with the GO
terms], and being themselves annotated with the GO term. This set of RefProts has been
defined as ”Set1 inter Set2”.

• Enrichment in RefProts interacting with sPEPs [encoded by genes annotated with the GO
terms], but not being themselves annotated with the GO term. This set of RefProts has
been defined as ”Set1 - Set2”.

We noticed that significant enrichments were found for GO:BP terms related to similar bi-
ological processes as the RefProts interacting with the sPEPs from genes associated with the
term (Table S10). These results suggest that even RefProts that are not annotated with a cer-
tain GO:BP term but involved in near-cognate biological processes are preferentially interacting
with the same sPEPs as the RefProt actually annotated with the GO:BP term.

Finally, it has been shown that genes are able to produce polycistronic transcripts in Eu-
karyotes [34], notably in drosophila (e.g. the tarsal-less gene produces a polycistronic transcript
translated into sPEPs) and vertebrates [28, 29], thus more and more studies have been ques-
tioning the monocystonic organization of Eukaryotic genomes for the past few years. Hence, we
checked the proportion of sPEPs able to interact with the RefProt encoded by their transcript
and vice-versa. We observed that 6% (267/4,393) of the sPEPs with at least one interaction with
a RefProt are targeting their own RefProt and that 2% (93/3,981) of the RefProts with at least
one interaction with a sPEPs are interacting with their own sPEPs.

3 Limitations of the study

This study have been performed exclusively on human monocytes, and our findings have been
discussed in the scope of this particular species and cell type. In addition, it should be noticed
that the list of sPEPs in monocytes has been inferred from the list of sORFs identified by
ribosome profiling methods. Hence, as it has been previously highlighted, some of them may not
be translated as stable and functional peptides under normal conditions because the ribosome
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occupancy is not necessarily associated with an effective translation of a functional protein [24]
[17].

Finally, the interactions of sPEPs with RefProts have been inferred by a computational
method that is based on the detection of interface interaction. This method, based on mimicINT
has the great advantage to provide a comprehensive inference of putative sPEP-RefProt interac-
tions based solely on amino acid sequences. This is of particular interest as experimental data
are missing about sPEP biophysical properties (e.g. profiles of hydrophobicity) and structures.
However, it should be noticed that this method does not take into account the subcellular loca-
tion of RefProts and sPEPs nor the accessibility of the interaction interfaces for the interactors,
making it prone to over-estimation of interactions.

4 Conclusion

We first looked at the domain and SLiM usage by the sPEPs and noticed that most of the short
linear motifs and domains mediating interactions are involved in several fundamental regulatory
functions, such as metabolism, cytoskeleton organization or immunology processes.

Then, we investigated the topology of the sPEP-RefProt interaction network in order to
propose sPEP annotations based on cluster identification. This allowed us to annotate most of
the sPEPs with GO:BP terms related to metabolic processes, stress response, signal transduction
and regulation of the gene expression.

To our knowledge, this study is the first to present a network of sPEP-RefProt interactions
in H. sapiens as well as GO term annotations for human sPEPs. In addition, our results suggest
that most of the sPEPs are likely to be involved in many biological processes, both central to the
cell (such as protein, DNA and RNA metabolism, gene expression, or cytoskeleton organization)
and related to specialized biological functions (such as immunological responses).

Finally, we performed a functional analysis that suggests that 72% of the time sPEPs en-
coded by genes annotated with a particular biological process are preferentially interacting with
RefProts of the same process.

We think that these findings may be of major importance for the exploration of the regulation
of biological processes by sPEPs, which should be consider as a part of the cell proteome in the
future.

5 Methods

5.1 Collection of sPEPs identified in monocytes

The sequences of sPEPs have been collected from MetamORF [10] (https://metamorf.hb.univ-
amu.fr), a repository of unique short open reading frames identified by both experimental and
computational approaches we recently developed. Using the web interface, amino acid sequences
of all 10,475 sORFs identified in human monocytes by ribosome profiling have been downloaded
as fasta format (Fig. 1A). MetamORF provides classes for the registered ORFs, using an homo-
geneous nomenclature we previously described [10]. This nomenclature is based upon the ORF
length (sORF), transcript biotype (e.g. intergenic, ncRNA), relative positions (e.g. upstream,
downstream) and reading frames (alternative) information.
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5.2 Collection of RefProts expressed in monocytes

All reviewed sequences of proteins experimentally identified in monocytes according to the Hu-
man Proteome Atlas [43] (https://www.proteinatlas.org) have been downloaded from UniProtKB
[42] (https://www.uniprot.org/uniprotkb) as fasta format (Fig. 1B).

5.3 Prediction of sPEP-RefProt interactions (sPEPRIs)

The interactions between the sPEPs and the RefProts have been predicted using mimicINT,
a workflow for microbe-host protein interactions inference we recently developed [11]. Briefly,
mimicINT performs large-scale interaction inference between microbe and human proteins by
detecting putative molecular mimicry elements that can mediate the interactions with host pro-
teins: host-like short linear motifs (SLiMs, Fig. 1C) and globular domains (Fig. 1D). It exploits
these putative elements to infer the interactions with human proteins by using known templates
of domain-domain and domain-SLiM interactions (Fig. 1E). Because sPEPs and RefProts belong
to the same species, we may reasonably expect that human sPEPs display interfaces of interac-
tions that resemble structures of the RefProts at the molecular level. Based on this assumption,
interactions between sPEPs and RefProts have been inferred using mimicINT.

Identification of short linear motifs (SLiMs) on sPEPs. Occurrences of short linear
motifs (SLiMs) have been identified on sPEPs using the SLiMProb software [15] (SLiMSuite
v1.4.0) (parameters of SLiMProb: minregion = 10, iumethod = short, iucut = 0.4). To that
extent, classes of SLiMs registered in the Eukaryotic Linear Motif (ELM) database [21] with at
least one true positive instance in H. sapiens and a pattern probability lower than 0.01, along
with their regular expression, have been provided to SLiMProb. The disorder propensity of each
amino acid of the sPEP sequences has been computed by the IUPred [14] software (v1.0) via
the use of SLiMProb. We defined as general disordered propensity, the ratio of the number
of residues with a propensity greater than the selected threshold (0.4) over the length of the
sPEP. The functionality of the SLiMs has finally been assessed in a similar fashion as previously
proposed by Hagai et al. [18]. For each of the 10,475 sPEPs, we created a set of 10,000 shuffled
sequences, by randomly shuffling the content of the disordered regions between all the 10,475
sPEPs (Fig. S1). This shuffled set was then used to compare the number of occurrences of
SLiMs in the original sequences to their number in the 10,000 shuffled sequences, thereby assess-
ing the likelihood of each SLiM observed in the original sequences of sPEPs to occur by chance.
As highlighted by Hagai et al. [18], it may be hypothesized that the SLiMs that occur in the
original sequences but occur very rarely in the shuffled set are likely to be functional, whereas
the functionality of SLiMs that occur frequently in shuffled sequences cannot be inferred. All
SLiMs with an empirical probability computed as greater than 0.01 have been discarded.

Identification of domains on RefProts and sPEPs. Occurrences of domains have been
identified on the RefProts and on the sPEPs using the InterProScan software [20] (v5.41-78.0)
looking for Pfam signatures [25]. All occurrences with an e-value greater than 10−5 were dis-
carded.

Prediction of domain - SLiM interactions (DMIs) and domain - domain inter-
actions (DDIs). Templates for interactions between globular domains and SLiMs have been
collected from the Eukaryotic Linear Motif (ELM) database [21]. As the occurrences of domains
have been previously detected on RefProts and those of SLiMs on sPEPs, using these templates of
interactions allowed inferring the domain-SLiM interactions (DMIs). Templates for interactions
between globular domains have been collected from the three-dimensional interacting domains
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(3DID) database [27] as flat format. As the occurrences of domains have been previously de-
tected on both sPEPs and RefProts, using these templates of interactions allowed inferring the
domain-domain interactions (DDIs).

Scoring the domain - SLiM interactions (DMIs). In order to select the DMIs the more
likely to be functional, ”domain scores” have been computed in a similar fashion as described
by Weatheritt et al. [45] and all DMIs inferred using mimicINT and with a domain score lower
than 0.4 have been discarded.

5.4 Annotation of interactors based on network clustering

Merging the sPEPPI network with the canonical protein-protein interaction (PPI)
network. The sPEP-RefProt interactions (sPEPRI) network has been merged with the canon-
ical protein-protein interaction (PPI) network downloaded from MoonDB [35] (2021 update,
unpublished release) and restricted to the RefProt expressed in monocytes according to the Hu-
man Proteome Atlas [43]. For the sake of clarity, the resulting network is referred hereafter as
the ”merged interactome” and contains both sPEP-RefProt interactions and RefProt-RefProt
interactions.

Clustering of the ”merged interactome”. The largest connected component has been
extracted from the ”merged interactome” using python-igraph [39] (v0.9.1). This component has
been clustered with OCG [3] (default parameters) that aim to maximize the modularity of the
classes. Each cluster generated has then been annotated using Gene Ontology (GO) biological
process (BP) terms using a classical majority rule as previously described [9]. Briefly, the clusters
were annotated according to the BP GO annotations of its constituent proteins. A cluster was
annotated with a GO term if at least 50% of annotated RefProts in that cluster shared that GO
term. In such cases, all member RefProts and sPEPs inherited the annotation(s) of the cluster.
Both direct GO annotations and all parent terms were taken into account. Clusters that could
be annotated only to the root of the ontology were annotated ’unknown’.

5.5 Enrichment analysis

Enrichment analyses have been performed either using the gProfiler [33] R [38] (v3.6.0) pack-
age (parameters: correction method = ’gSCS’) or one-sided Fisher’s exact tests followed by
Benjamini-Hochberg procedure for multiple correction. False discovery rates (FDR) lower than
0.05 have been considered as significant.

5.6 Collection and visualization of Gene Ontology (GO) terms

Lists of GO terms and GO annotations of RefProts. Enrichment analyses using Gene
Ontology (GO) [2] [41] terms were performed either on the full set of terms or on the generic
GO subset as provided by the GO consortium (downloaded as obo format). The lists of genes
related to the GO terms have been collected from gProfiler [33] as gmt format.

Collection of GO terms based on Pfam accessions. Pfam [25] accessions have been
mapped to GO terms using mapping of GO terms to Pfam entries provided by Gene Ontology
(GO) [2] [41].
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Visualisation of GO terms. GO terms identified by mapping or enrichment analysis have
been visualized using the REVIGO software [37], which allows summarizing long lists of GO
terms by finding a representative subsets of the terms based on semantic similarity measures.

5.7 Data availability

Third party softwares and data are available on the editor’s website or using the links provided
by the authors in the original publications. The scripts used in this study are available on
GitHub (https://github.com/TAGC-NetworkBiology/InteractORF). The containerized environ-
ments and data are available on Zenodo.
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6 Supplementary data

6.1 SLiM likelihoods are assessed by Monte-Carlo simulations

Figure S1: SLiM likelihoods are assessed by Monte-Carlo simulations

An illustrative example of the shuffling procedure:
(A) In each original sPEP, SLiMs have been identified in disordered regions (in orange, in

the example of the sPEP with ID ORF27146, two occurrences of SLiM have been identified: a
PKA phosphorylation site as well as a NEK2 phosphorylation site).

(B) Disordered regions were shuffled randomly between all the sPEPs identified in monocytes

27

3. sPEP functions in monocytes have been assessed by a system approach based on
their interactions with canonical proteins – 3.3. mimicINT is of major interest to

explore the human sPEP-ome

157



and 10,000 artificial sequences have been generated. SLiMs have thus been identified on the
shuffled sequences. Finally, the likelihood of SLiMs to occur serendipitously has been assessed
by comparing the number of natural occurrences of SLiMs in the original sequences to their
number of occurrences in the shuffled sequences.

In the example, the MOD PKA 2 motif that occurs once in the original sequences, occurs
at least as many time in 5 of 10 shuffled sequences (grey circle). The MOD NEK2 1 motif that
occurs once in the original sequence, occurs at least as many time in 2 of 10 shuffled sequences
(pink circles). Finally, the empirical probability of occurrence of the SLiM is computed using
the following formula:

pval =
k + 1

N + 1

with:

• k the number of shuffled sequences in which the SLiM is observed at least as many times
as in the original sequence

• N the number of shuffled sequences (10,000)

In the example,

pvalMOD PKA 2 =
5 + 1

10 + 1
≈ 0.5

pvalMOD NEK2 1 =
2 + 1

10 + 1
≈ 0.3

6.2 Length of sPEPs depending on the presence of SLiMs or domains

Figure S2: The sPEPs harboring domains are the longest.
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6.3 List of supplementary data files

• Fasta file containing the amino acid sequences of the sPEPs identified in Monocytes (from
MetamORF)

• Fasta file containing the amino acid sequences of the RefProts expressed in Monocytes
(from UniProtKB)

Table S1: Domains used by sPEPs. This file includes the Pfam signatures, the number of
occurrences and of interactions mediated by occurrences of the domain as well as the mapping
to GO terms (.tsv file)

Table S2: Domains not mediating interactions used by sPEPs. This file includes the Pfam
signatures, the number of occurrences and of interactions mediated by occurrences of the domain
as well as the mapping to GO terms (.tsv file)

Table S3: SLiMs used by sPEPs. This file includes the ELM identifiers, the number of occurrences
and of interactions mediated by occurrences of the SLiM (.tsv file)

Table S4: SLiMs not mediating interactions used by sPEPs. This file includes the ELM identi-
fiers, the number of occurrences and of interactions mediated by occurrences of the SLiM (.tsv
file)

Table S5: Gene ontology biological processes annotations of the interacting RefProts (.tsv file)

Table S6: Gene ontology biological processes annotations of the sPEPs (.tsv file)

Table S7: Count of sPEPs for each Gene Ontology biological processes annotation (.tsv file)

Table S8: Count of sPEPs for each Gene Ontology biological processes annotation related to
metabolic process (GO:0008152) (.tsv file)

Table S9: Enrichments on RefProts interacting with [sPEPs encoded by genes annotated with a
GO term] and annotated by the same GO term for GO:BP terms in the GO generic subset (.tsv
file)

Table S10: GO:BP terms for which significant enrichments (FDR ¡ 0.05) on the various sets of
RefProts (.tsv file)
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4. Understanding of the
translational regulation by
uORFs may be improved by
mathematical modeling

4.1. Agent-based modeling may help deciphering
complex mechanisms

4.1.1. ICIER, a published TASEP model, partially explains the
translational regulation by a single uORF

The third objective of my thesis was to explore the mechanisms of translation by
the uORFs. Because of the diversity of uORF organization, the mechanism of uORF-
mediated resistance may vary and should be studied individually [7]. In 2018, Andreev
et al. [6] published initiation complexes interference with elongating ribosomes
(ICIER), a pioneer mathematical model to study the regulation of the translation
by uORFs. This model is based on the totally asymmetric simple exclusion process
(TASEP), a stochastic dynamical system of unidirectional particle movement through
a unidimensional lattice where each site can be occupied by no more than one particle,
and the probability of particle transition from one site to another is predefined [5,
6]. In 2020, the same team approximated it by a phenomenological deterministic
model based on similar assumptions [5]. This last one allowed a rigorous analysis and
admitted explicit solutions in limit cases, but failed to explain most of the variability
observed in Ribo-seq data, probably because of its relative simplicity.

The initiation complexes interference with elongating ribosomes (ICIER) model
aims at establishing the relationship between the flux of scanning ribosomes loaded
at the 5’UTR extremity of a transcript and those reaching the CDS. To do so, it models
the flux of scanning ribosome upstream and downstream of a single uORF depending
on its features [6]. In ICIER, ribosomes represent the particles and can have two states
that give them different dynamic properties: scanning or elongating (i.e. translating),
with possibilities of transition from one state to the other (Figure 4.1). The model is
based on the strong assumption that elongating ribosomes will obstruct the progres-
sion of scanning ribosomes, such obstruction which is relieved during stress due to
lower initiation at the uORF [6].

160



4. Understanding of the translational regulation by uORFs may be improved by
mathematical modeling – 4.1. Agent-based modeling may help deciphering complex

mechanisms

Figure 4.1.: Principle of the initiation complexes inference with elongating ribo-
somes (ICIER) model. Adapted from Andreev et al. (2018) [6]. Scanning ribosomes are

represented with blue σ and elongating ribosomes with red ϵ on the figure. The lattice is shown

as a black line. The uORF is represented in dark red. (A) ri n reflects the rate of 43S PIC loaded

at the 5’ end of the transcript, i.e. the ternary complex availability. Normal conditions: ri n = 0.1,

absolute stress: ri n = 0 (no ribosome loaded). (B) mσ is the probability to move forward for a

scanning ribosome, i.e. its reflects the speed of the scanning ribosome. If mσ = 0, the scanning

ribosome is stalling. (C) tσ>ϵ is the probability to initiate translation for a scanning ribosome, i.e.

for a scanning ribosome to turn into an elongating one. Leaky scanning: tσ>ϵ = 0 (no initiation),

Non-leaky initiation: tσ>ϵ = 1 (systematic initiation). (D) mϵ is the probability to move forward

for an elongating ribosome, i.e. it reflects the speed of the elongating ribosome. If mϵ = 0, the

elongating ribosome is stalling. Any downstream scanning ribosome that collides with an upstram

elongating ribosome dissociates from the transcript (bird symbol). (E) tϵ>σ is the probability to

reinitiate at the end of the translation, i.e. for an elongating ribosome to turn back into a scanning

one. No reinitiation: tϵ>σ = 0 (the ribosome leaves the transcript), systematic reinitiation: tϵ>σ = 1.

(F) rout reflects the rate of scanning ribosome reaching the end of the 5’UTR, i.e. of ribosomes

able to initiate translation at the CDS. If rout = 0, no scanning ribosome reaches the CDS, meaning

there is a total repression of the CDS translation.

Based on a literature review, Andreev et al. hypothesized that scanning ribosomes
would dissociate from mRNAs when upstream elongating ribosomes collide with them.
This hypothesis is based on the assumption that when moving ribosomes collide with
downstream ribosome complexes, they may either stay on the transcript or dissociate.
Based on existing evidence in the literature, they demonstrated that scanning and
elongating ribosomes are both able to queue upstream of an elongating ribosome,
whilst scanning ribosome dissociate from mRNA when the collision occurs with an
elongating ribosome upstream [6].

Exploiting the ICIER model, Andreev et al. were able to check how several important
uORFs features are affecting the translation of the CDS, notably the existence of an
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uORF in the 5’UTR, the uORF length (2 ≤ L ≤ 200), movement rates for elongating
ribosomes (0.2 ≤ mϵ ≤ 0.35), initiation efficiency (0.3 ≤ tσ>ϵ ≤ 0.9), delay at the start
codon after translation initiation before to move forward (0 ≤ δϵ ≤ 0.2), reinitiation
efficiency (0 ≤ tϵ>σ ≤ 0.055), scanning (0 ≤ Pσ ≤ 0.007) and elongating (0 ≤ Pϵ ≤ 0.007)
spontaneous dissociations as well as scanning ribosome size (6 ≤ Dσ ≤ 14). [6].

They notably demonstrated that (upon the hypothesis of non-reinitiation) a single
long uORF represses the translation of the CDS, which is de-repressed during stress. In-
deed, in absence of uORF and without reinitiation, the rout correlates nonlinearly with
ri n . Interestingly, at a near zero value of ri n , the rates ri n and rout begin to decrease
proportionally, which could be explained by changes in the likelihood of ribosome
collisions, as they reduce their flow. Over a certain uORF length, this relationship
becomes non-monotonous. In uORF-containing RNAs, levels of rout are increased
with ri n when it is high and this repression increases with uORF length. They explain
this phenomenon by the increasing incidence of collisions involving scanning and
elongating ribosomes within the uORF and the subsequent dissociation of scanning
ribosomes.

They also observed that a small decrease of the elongation rate (mϵ) in the uORF
strongly increases the maximum rout relatively to its basal level (defining the relative
rout as rout [ri n ]

rout [ri n=0.1] ), suggesting that stress resistance is increased as the elongation rate
decreases. However, they demonstrated also that the more slowly decoded uORFs
provide greater resistance to the stress, but at a cost of greater CDS repression under
normal conditions. By comparing with the scanning rate, they concluded that there
should be an optimal ratio of scanning to elongating ribosome velocities for the uORF
to provide stress-resistance. It should be noticed that Andreev et al. considered by
default in other simulations a probability of 0.3 that the ribosome moves during a
single tact. As average mammalian ribosomes move five codons per second during
elongation (a figure that is in accordance with the translocation reactions rate of 2-20
per second reported by Rundlet et al. [112]), a tact in the simulation would correspond
to 0.06 s.

The ICIER model demonstrated that increased leakiness of the uORF start elevates
the flow of ribosomes downstream of the uORF, a result expected as this is associated
with lower dissociation of ribosomes from the transcript at the end of the uORF. This
results in a reduced stress resistance, suggesting that uORFs with weaker initiation
contexts are less likely to provide stress resistance to the CDS. In addition, an increased
time spent at the start codon by the ribosome for starting translation reduces the in-
hibitory effect of the uORF and thus reduces stress resistance. Andreev et al. explained
this observation by the increased distance to the downstream scanning ribosomes
and thus decreased chances of collision.

Elevated reinitiation reduces the inhibitory effect of uORFs and their ability to
provide stress resistance. They concluded that a single uORF enabling reinitiation
to take place does not provide a stress resistance, a mechanism that would be very
different than those described for ATF4 and that involves a combination of several
uORFs with allowed reinitiation.
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According to Andreev et al., spontaneous dissociation of scanning ribosome is likely
to occur because of the unstable link between them and their transcript, although the
exact reasons of such dissociation remain to be elucidated. They demonstrated that
increased drop-off rates reduce both the inhibitory and stress-protective properties of
uORFs.

ICIER is the first advanced model of translational regulation by the uORFs that has
been proposed so far (to the best of my knowledge). However, it cannot make accurate
predictions of stress-resistance levels for specific mRNAs and struggles to explain
the stress-resistance observed in Ribo-seq data (positive correlation between scores
of certain uORF features are observed, but they appear weak and not statistically
significant). This does not necessarily invalidate the ICIER model but highlights the
necessity to pursue our efforts in the development of such models. In addition, it
only integrates mRNAs that harbor a single uORF, whilst the archetypal model of
ATF4/GCN4 involves two functional uORFs. I hence propose to develop an extended
model of ICIER to help tackling these issues.

4.1.2. Many parameters and uORF features may impact the
translation and should be considered in future models
of translational regulation by uORFs

As discussed, one fundamental additional parameter that is susceptible to deeply af-
fect the regulation of the translation is the number of uORFs harbored by the transcript
[32]. Hence, one may think it is of major importance to consider now the possibil-
ity to integrate several uORFs (including overlapping and nested ORFs) to new models.

While ICIER already integrates some of the most important features susceptible
to affect the translation, namely the uORF length, movement rates for elongating
ribosomes, initiation efficiency, delay at the start codon after translation initiation
before to move forward, reinitiation efficiency, scanning and elongating spontaneous
dissociations and the scanning ribosome size, all of these parameters must be set to a
constant value and do not take into consideration the local context of the ribosomes.

As an example, the efficiency of the initiation is known to be affected by the start
codon sequence and its local context. Indeed, uORFs starting with non-AUG codons
(including UUG and AUA) show a much lower translation initiation efficiency [88], sug-
gesting the importance of the start codon sequence in the initiation of the translation,
and consequently the regulation by the uORFs. Hinnebush et al. [54] also reported
that NUG codons are the most efficient for translation initiation whilst A(A/G)G are
the worst. Spealman et al. [131] demonstrated that AUG and near-cognate codons (i.e.
single nucleotide variants of AUG) have higher translation efficiency under certain
stress conditions. In addition, it should be highlighted that uORFs using alternative
start codons are usually not considered in studies that aim to decipher the regulation
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of the translation, whilst the difference of translational efficiency may be of major
importance in the regulation of the translation of the CDS.

In 1986, M. Kozak identified ACCATGG (where a purine (A/G) is in position -3, and
the AUG initiation codon is underlined) as the optimal sequence for initiation by
eukaryotic ribosomes [69], a sequence now designated as the "Kozak consensus" or
"Kozak sequence context". This context has been proved many times since then to
enhance the translation of CDS, and it has been reported more recently that the uORF
start codon plays a crucial role in controlling its translation [163]. In addition, uORFs
whose AUG codons better conform to the Kozak consensus have been reported to
repress more the translation of the CDS [54]. It should also be noticed that Kozak
sequence context of uORFs has evolved across eukaryotic clades and that uORFs with
canonical Kozak sequences context seem to have stronger suppressive effects on the
translation than non-canonical ones [163]. Surprisingly, Chew et al. [32] demonstrated
on contrary that uORFs do not have a distinct initiation sequence context that pro-
mote their translation but estimated that nearly 17 % of uORFs have a more favourable
initiation context than the median initiation context of CDSs. They also reported that
a more favourable initiation context sequence and a less stable secondary structure
correlate with an increased translation efficiency (TE) of uORFs [32]. It has also been
hypothesized that this context may even have a larger influence on non-canonical
start codons, at least when it comes to stabilizing the 43S PIC at the A/G in the -3
position and at the G in the +4 position [54, 109]. Unfavorable sequences near to the
start codon can also lead to leaky scanning [54], a mechanism that is favored in CDSs
by excessively short 5’UTRs (< 20 nt) [54]. Although the impact of Kozak consensus
on the initiation of uORFs is still debated, a growing body of evidence suggests that
the initiation codon sequence and its Kozak context are of major importance for the
initiation of the translation of uORFs. Hence, these information should ideally be
taken into consideration when modeling the translational regulation by uORFs.

Despite having been less studied than start codons, the stop codons may be of major
importance, as they are susceptible to influence reinitiation. Some uORFs inhibit
downstream translation primarily because ribosomes stall during the elongation or
termination, and create a roadblock to scanning ribosomes that bypassed the uORF
start codon [54]. In 1987, Kozak demonstrated that the efficiency of reinitiation is
progressively improved as the intercistronic sequence is lengthened in eukaryotic
ribosomes [68], suggesting an important role for the distance between an uORF and its
CDS for the efficiency of reinitiation [32]. Chew et al. [32] reported that the efficiency
of reinitiation had been observed to decrease as the distance between uORFs and
CDSs decreases. On contrary, Couso and Patraquim [36] stated that reinitiation can
occur if the initially translated ORF is no longer than 30 aa and if an additional ORF
is found approximately 100 to 200 nt downstream of the stop codon of the initially
translated ORF. This may be explained by the retention of the eIF3 factor that is facili-
tated by shorter uORFs and allows for reintiation to occur [54]. McGillivray et al. [84]
observed that regulatory uORFs are on average closer to the CDS (203 nt from the CDS
start codon in average) and located in shorter 5’UTRs. Chew et al. reported also that
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uORF lengths and the distances between uORFs and CDSs contributed significantly
towards specifying CDS translation efficiency [32]. Different translation termination
efficiencies have been noted and UAA allows a greater termination efficiency as well
as a more rapid ribosomal dissociation from the transcript (UAA is more efficient that
UAG being itself more efficient than UGA) [74]. Hence, stronger stop codons in uORF
are more susceptible to decrease the probability that ribosomes reinitiate translation
at a downstream ORF [74].

It is also known that elongation rates are not constant along the transcript (5-6
codons per second in average in mouse [122]). In particular, uORF mutations intro-
ducing suboptimal codons have been shown to slow down translational elongation
and impede downstream translation initiation [74]. By the way, the codon usage bias
is known to be the major determinant of translation elongation rates. The elonga-
tion rates are even generally not evenly distributed on synonymous codons and rare
codons are more likely to reduce the elongation rates, as ribosomes require more
residence time than commonly used codons, and this may even sometimes causes
ribosome stalling [135]. Elongation rate may be also affected by the hydrophobicity
and the charge of encoded amino acids [135]. Hence, an ideal model should also
includes variation in the elongation rate, primarily based on codon rarity, as well as
on biophysical properties of the encoded amino acids.

Frameshift, a mechanism by which a ribosome slip back one nucleotide and contin-
ues translation in the -1 reading frame; and stop codon readthrough, a mechanism
by which a stop codon is ignored by an elongating ribosome, have been described
in eukaryotes. Frameshift usually requires two cis-acting signals to happen (a hep-
tanucleotide and a short downstream RNA structure) [165]. This stresses out the
importance to integrate uORFs using alternative reading frames in future modeling.

Finally, mRNAs enriched with more optimal codons are both more stable and more
efficiently translated by the ribosome [74].

To conclude, three main mechanisms of regulations have been highlighted as having
a major impact on translation [84]: (i) translation reinitiation: the ribosome is able to
resume translation at a downstream ORF after the translation of a first ORF; (ii) leaky
scanning: the ribosome bypasses the translation of an ORF; and (iii) ribosome stalling:
the ribosome stalls at the start or stop codon of an ORF or during elongation.

As demonstrated, these mechanisms are dependent on many features, including no-
tably the ORF sizes, the distance between two successive ORFs, the uORF start codon
sequences and their local contexts (Kozak consensus), the stop codon sequences, the
translation rates, frameshifts and stop codon readthrough. All these features are thus
susceptible to greatly impact the translational efficiency of ORFs and CDSs and should
thus ideally be considered in the implementation of future models.
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4.1.3. Agent-based models (ABMs) have been used to solve
complex questions

Computer modeling can be seen as a mean of dynamic knowledge representation
that can form a basis for formal means of testing, evaluating and comparing what
is currently known by the scientific community [3]. However, the algorithmic imple-
mentation of so many parameters as the ones presented in the previous section is
challenging and computational procedural approaches and inductive models usually
struggle at modeling such complex systems. Fortunately, agent-based simulations
have proved to be efficient when it comes to studying autonomous agents (e.g. ri-
bosomes, molecules, cells, organisms, individuals etc.) with their environment (e.g.
transcript, cell, organism, building etc.). They provide an adequate tool to capture
the complexity and dynamics of large systems [19, 26]. Agent-based modeling is a
simulation technique which replicates decision-making entities, called agents [19].
Agent-based models (ABMs) are rule-based, discrete-event and discrete-time com-
putational methods that use computational objects that focuse on the rules and
interactions among the individual components (the agents) of a system. They are of
particular interest in the field of system biology because of their ability to encompass
multiple scales of process and spatial considerations [3, 15]. However, it should be
noticed that ABMs are not inductive models, i.e. they are not based on patterns of data,
but instead intend to reconstruct mechanisms of observed patterns of data, starting
with simple rules for behaviors and based on known or presumptive mechanisms [3].

Such models have notably been successfully used in the fields of sociology, economy,
finance, management sciences, robotics, security, building industry, town planning
and more recently anthropology and biology (including ecology, cellular and molecu-
lar biology as well as medicine) to study the participation of individuals’ behaviors
to consequences at the (eco-)system level. They have even been used by companies
for defining investment strategies and during decision-making processes [3, 19, 26,
59]. ABMs are based on the paradigm that individuals behave according to internal
laws as well as in response to their understanding of the (local) environment. An et
al. [3] describe ABMs has having the following properties: they have the ability to
integrate easily space (usually using grids), they utilize parallelism (differing local
conditions lead to different behavioral trajectories of the individual agents), they
integrate stochasticity (behaviors can be based on probabilities), they have a mod-
ular structure (the behavior of the model is dictated by the rules of its agents), they
reproduce emergent properties (as a consequence of previous points, they generate
systemic dynamics that could not have been reasonably inferred from examination of
the rules of the agents alone) and they can be constructed in the absence of complete
knowledge (the rules are defined as simple and verifiable as possible). Janssen et al.
stress out the emergence of patterns, structures and behaviours that were not explicitly
programmed into the models as a consequence of agent interactions [59] (the whole is
more than the sum of the system’s parts [108]). Finally, they represent the advantage to
be usually more intuitive to non-mathematicians that alternative modeling such as
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ordinary differential equations or partial differential equations and their variants [3],
and to allow integration of many more parameters [15]. In addition, such paradigm
allows to design expressive and realistic agents, but it has been reported to be difficult
to implement for non-computer scientists [26]. For instance, ABMs have already
been successfully implemented for studying intracellular trafficking, viral infections,
circulation of inflammatory cells in guts, systemic inflammation and sepsis, tumor
growth, angiogenesis, infectious diseases spreading or displacements of corpses by
ants (unpublished data and) [3, 63].

In ABMs, each agent individually assesses its situation and its environment and
makes decisions on the basis of internal rules (that may be updated as they evolve
or adapt to their environment) [19, 63]. A classic paradigm to formalise the internal
architecture of such complex agents is the BDI (Beliefs - Desires - Intentions) explored
by Bratman in 1987 [19, 26, 143]. The BDI approach represents the way agents can do
complex reasoning. It aims at disambiguate various concepts (those of belief, desire
and intention) and the logical relationships between them. A classic framework of
BDI is the procedural reasoning system (PRS). This last includes three main processes:
the perception (in which the agent acquires information from the environment), the
central interpreter (which helps the agent to deliberate its goals and then to select
the available actions) and the execution of intention (which represents the agent
reactions). Several extensions have been developed, such as allowing the model to
add to agents a set of beliefs (information it gets by perception or communications)
and intentions (what it wants to execute), and ways to manage the two sets. Such
approaches are very powerful, but remain computer scientist-oriented, as they require
high programming skills to develop bridges between the framework and the platforms,
and to write agents’ behaviours without a dedicated modeling language [26]. Last, the
scalability of the tools must be taken in consideration, as hundreds of agents (and re-
sulting interactions and environmental changes) must be manageable by the program.

Caillou et al. [26] clarify that, in the BDI approach, beliefs ("what it thinks") cor-
respond to the internal knowledge the agent has about the world. Desires are the
objectives the agent would like to accomplish ("what it wants"). Like the Belief base,
the Desire base is updated during the simulation and desires can be related by hi-
erarchical links, when a desire is created as an intermediary objective. Desires are
also ranked by priority, and these priorities may evolve during the simulation. Fi-
nally, intentions are what the agent has chosen to do ("what it is doing"). The current
intention will determine the selected plan and intentions can sometimes be put in
stand-by. The agent behaves according to two steps: its perception and the setting of
a plan. The perception is a function called at each iteration, where the agent can up-
date its bases of beliefs and desires. The plans are behaviors defined to reach specific
desires, that can be instantaneous or persistent, and that can be ranked by priority [26].

It is important to note that, according to An et al. [3], ABMs are usually not ap-
propriate if the starting point is a mass of raw data. Cap-dependent translation is a
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complex mechanism which involves numerous actors and events. Here, I propose
to combine the strengths of ABMs with the availability of large-scale data about the
sORFs registered in MetamORF. The rationale is to model translational mechanisms by
taking advantage of ABMs to study a complex system based on experimental literature
and the existing ICIER model; but to integrate also actual human transcripts with
their sORFs in the simulation (instead of using "artificial" transcripts). This led me to
develop agent-based modeling of uORF cis regulatory functions informed by exper-
imental data (ABMCisReg), an agent-based model of uORF cis regulatory functions
informed by experimental data.

4.1.4. Agent-based modeling allowed to implement a new
model of translational regulation by the uORFs

4.1.4.1. ABMCisReg is an ABM allowing to easily model uORF cis
regulation and taking into account novel features

In ABMCisReg, ribosomes were represented as agents, whilst transcripts (along with
their uORFs and CDSs) were representing their environment. Using a BDI paradigm
as describe above, I was able to model the complex interactions between agents and
their environments (e.g. recognition of an uORF start codon by a ribosome) as well
as among agents (e.g. collision between an upstream elongating ribosome and a
downstream scanning one). In the frame of a BDI model, the ribosome’s beliefs are
the following assessments (that can be answered with booleans): there is a start codon
at the current location, the stop codon of the ORF being translated has been reached,
there is already a ribosome occupying the next position and the CDS start codon
has been reached or is located upstream. Ribosome’s desires can be considered as
either translate (with the sub-desires: initiate translation, elongate and terminate
translation), search for a start codon, leave transcript or queue. Finally, the agent may
have the following intentions to accomplish its tasks: fix the 5’UTR of a transcript,
move forward, move backward, stall at position, initiate the translation (i.e. turn
into elongating ribosome), terminate the translation, reinitiate (i.e. turn back into a
scanning ribosome) and leave the transcript. The Figure 4.2 provides the decision tree
that is used by the agents to make decisions.

It should be noticed that in ABMCisReg, the system is updated using an asyn-
chronous process, from 3’ to 5’ end (i.e. from right to left). This means that the agents
located the nearest to the 3’ end (i.e. the most on the right on the lattice) perform their
action first (and consequently may update the environment before an upstream agent
takes information from its environment). For instance, considering agents located on
two consecutive places on the one-dimensional grid, if the downstream agent moves
forward (i.e. towards the right), then the place will be free for the upstream agent
during the same pseudo-time step.

Specific ABM software environments and toolkits have been developed (such as
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Figure 4.2.: Decision tree of the agent-based modeling of uORF cis regulatory func-
tions informed by experimental data (ABMCisReg).
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Repast, Swarm, MASON, NetLogo) and offer user-friendly environments for the devel-
opment of ABMs by non-computer scientists [3, 19, 26]. However, they show a limited
adaptability and fail to develop systems as complex as the cytoplasmic translation,
in particular when one is willing to make it adaptable for grid search1. Hence, ABM-
CisReg has been developed using object-oriented programming in Python (v3.5) to
tackle these issues. Docker and Singularity environments have been used in order
to ensure reproducibility and to facilitate deployment on high-performance clusters.
Statistical analyses have been performed with R and Snakemake was used to facilitate
grid search.

4.1.4.2. ABMCisReg could be improved in the future by implementing
novel features

Despite the implementation of many novel features in our multi-agents system (MAS),
it should be noticed that some features have not yet been integrated to our model at
the current stage.

As an example, elongation rates are still constants in our modeling, still this is some-
thing that can be easily improved. Tian et al. [135] recently developed RiboMIMO, a
deep learning based method that models the translation elongation rates of full-length
transcripts. Hence, I suggest to implement the outputs of this tool into ABMCisReg in
the future. As variations in elongation rates are susceptible to change the collisions
between elongating and scanning ribosomes, this may have a major impact on the
simulations. Pavlov et al. [100] recently developed a model that accounts for the local
codon context-dependent variation of peptide elongation times and RPF generation
biases. They demonstrated that a local context of five codons (including those at the
A, P and E sites) accounted for the ribosomal dwell time on each A-site codon of the
transcriptome. This finding could also be easilly integrated in ABMCisReg in the future.

It is important to keep in mind that RNA secondary structure may affect the trans-
lation [32], a parameter that has not been taken in consideration in this study. As
an example, the initiation at a start codon located in a suboptimal context (i.e. not
a Kozak sequence context) is facilitated by the downstream presence of a secondary
structure moderately stable (e.g. a stem-loop), making slower the initiation complex
[67]. Strong stem-loops just downstream of the start codon are also susceptible to
stall the scanning ribosome, increasing its stalling time and thus the probability of
leaky scanning through near-cognates or AUG triplets in poor contexts [54]. Recent
findings also suggest that secondary structures of RNAs affect elongation rates [135].
As a consequence, integration of secondary structures in ABMCisReg should be con-
sidered in the future. However, if stem-loops can now be predicted by softwares such

1Grid search is a technique used to determine the optimal hyperparameters for a model (e.g. to find
the best values for probabilities). It performs by running the model with all possible combinations
of parameters (provided as sets of discrete values instead of an unique one) and by checking how
well the model fits to the data (e.g. using metrics such as area under the curve).
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as SPOT-RNA [125], integration of such data in the model is still hard, as the effect
of the secondary structure on scanning and elongating rates has not been yet fully
elucidated.

Additionally, Schott et al. [122] demonstrated that the loading process of ribosomes
on novel transcript is susceptible to be progressive, i.e. that the transcript accumulates
progressively ribosomes after its export in the cytoplasm. This suggests that mRNAs
may benefit from recycling of ribosomal subunits and translation factors concentrated
in their vicinity. They also demonstrated that a newly transcribed mRNA cannot reach
its full potential after the first round of translation, but needs to build up a pool of
ribosomal subunits and translation factors that are concentrated in the vicinity of the
mRNA molecule [122]. As our model is based on a progressive loading of ribosomes
on the mRNA, this constitute an important limitation, and suggest we consider all
transcript as newly synthesized. A future improvement of ABMCisReg could consist in
using a finite pool of ribosomes in the vicinity, and ensure the conservation law (i.e. a
scanning ribosome leaving the transcript because of a collision, after the termination
of the translation or spontaneously, would be available for fixing again the transcript).

Finally, pepto-switches are mechanisms inhibiting downstream coding sequence
expression by blocking the ribosomes through direct or indirect small molecular ac-
tivation or interaction of the nascent peptide with the ribosomal complexes [147].
Such features are impossible to implement in models at the current stage, as it would
require to know exactly the function of all uORF-encoded peptides.

We also explicitly decided to omit the mechanisms of scanning-free translation
(usually expected to occur on transcript with longer 5’UTRs [11]). However, imple-
mentation of such translational process, for example through the integration of IRESs,
could change our understanding of the translational regulation. Indeed, IRESs have
been shown to be particularly involved in stress and apoptosis signalling [138]; and
databases such as the IRES Atlas [157] already register their location on the transcrip-
tome.

To conclude, the activity of uORFs varies considerably across cell types and cell
conditions [84], which complicates the development of global models of regulation
of the translation by uORFs, as different stress conditions are susceptible to trigger
different translational responses. It should also be kept in mind that processes of
translation initiation, elongation and termination at translated uORFs are maintained
by a selective pressure [74], and many of the processes and features evoked above are
likely to be also under selective pressure. Hence, I suggest that when the exploitation
of ABMCisReg will be advanced enough to identify clearer mechanisms of regulation
of the translation by the uORFs, it would be of particular interest to check if such
mechanisms can be also identified in other species. In particular, it should be noticed
that MetamORF provides information about sORFs identified in the mouse genome,
in the exact same format as for the human. This should make easier the application of

171



4. Understanding of the translational regulation by uORFs may be improved by
mathematical modeling – 4.1. Agent-based modeling may help deciphering complex

mechanisms

the ABMCisReg model to this particular species at first.
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The size and complexity of most eukaryotic proteomes have thus probably been greatly
underestimated so far [117], assuming that the complexity of an organism is dictated
by the increase of its proteome’s diversity. However, if the number of sPEPs was under-
estimated for historical reasons, the existence of artifacts in recent methods probably
caused the number of sPEPs to be overestimated [133]. Indeed, many sORFs were
identified during the past years, and MetamORF gathers information about 664,771
unique sORFs for H. sapiens. This repository of sORFs identified by complementary
methods has the advantage (i) to provide a repository of unique sORFs identified in
humans and mouse as comprehensive as possible and (ii) to give the opportunity to
the end-user biologists to select only the sORFs that have been identified by several
complementary methods (computational prediction, Ribo-seq and/or MS) and/or
identified in several distinct original studies.

Using a system approach, I was able to identify some of the key functions fulfilled
by putative sPEPs and to perform a large-scale annotation of peptides that may be
encoded by sORFs in human monocytes. To the best of my knowledge, this large-scale
interactome of sPEPs with canonical proteins is the first to be inferred. In addition to
the analyses I run, I expect it to be a resource of interest for further investigation. By
looking at the most commonly used interfaces of interactions and taking advantage of
the topology of the network for clustering and sPEP annotation, I provided clues that
sPEPs are likely to be involved in metabolic processes. The results suggest they are
able to take part to many pathways, in particular related to the metabolism of the cell.
Interestingly, annotations have been computed for some intergenic sORFs identified
by Ribo-seq, which suggest that even this class of sORFs may have trans functions (as-
suming they are actually translated into stable peptides). It is clear that future efforts
are required to prove that these peptides accumulate in the cell at significant levels
and more detailed functional studies, in particular experimental low-scale studies,
will be needed to validate the predicted functions. However, regarding this huge pool
of novel peptides, the big number of interactions predicted and the fact that functions
have already been demonstrated by multiple studies for some sPEPs, we may reason-
ably conclude that sPEPs (and consequently sORFs) are actual functional elements of
the genome. Although one may still argue about the real proportion being actually
functional, it is now for sure that studying sPEPs is relevant and should probably
bring a full set of interesting discoveries, with potential applications. Because much
more is known about canonical proteins (such as the SLiMs or domains mediating
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interaction), it makes sense to take advantage of this knowledge to study this novel
class of peptides. However, one must remain cautious, as it is also not unlikely that
some properties are specific to short peptides or even specifically sPEPs, and thus not
shared with canonical proteins. At the moment, such specificities have not yet been
identified, but if it came to be the case, then these properties would help scientists
making the difference between canonical proteins and sPEPs, other than based on
historical and semantic reasons.

One important topic which has been omitted in this thesis is the mechanisms by
which sPEPs are degraded. Life time of proteins and peptides is of major importance
in the regulation of homeostasis, as the degradation of proteins usually help to end
some particular pathways or signals. Indeed, given that many sPEPs experimentally
identified so far are though to function as regulators induced by specific conditions,
we may expect that mechanisms that downregulate their levels or activities when they
are no longer needed exist. These may notably involve binding of small molecules,
amino acid modifications or regulated proteolysis for instance [48].

Despite not being able to explain the process of regulation of the translation by
sORFs, the agent-based system I developed (ABMCisReg) should provide a solid and
easily-adaptable computational tool for studying it in the future. This tool mainly
remains to be exploited, and I expect that the concourse of experts in the fields of
sORF biology, translational regulation and ribosome biology will help mature this
model and find the most appropriate ranges of values for the parameters tested.

However, one must keep in mind that translational changes go hand in hand with
regulation of the transcription, mRNA export and stability, protein stability and degra-
dation, all of which determine the final protein output [122]. Disentangling the
contribution of each individual process has always been one of the greatest challenge
of biology, and the discovery of sORF regulatory functions brought a novel layer of
complexity.

Clearly, mechanisms of regulation of the translation by the uORFs remain cryptic,
and even the ATF4-like mechanism is largely debated and does not fit well to most
transcripts. It is clear that the number of uORFs does not success alone to explain
such complex regulation. In addition, they are so many parameters that are likely to
be important for this regulation that it is totally unlikely that a model will perfectly
explain the stress-resistant behavior of some CDS before a long time. Because uORFs
are likely to take part in the the regulation of protein levels during changes in the
cellular identity along development trajectories, it could also be of interest to look at
other conditions than stress/non-stress conditions, considering that the availability
of the ternary complex may also be affected by other parameters than the availability
of eIF2α.

I must also emphasize that methylation levels of the transcripts were not discussed
here, whilst it is known that methylation of the RNAs may slow down the scanning
rate, probably by affecting the translation of their ORFs. As an example, uORF2 of the
ATF4 mRNA has been reported to undergo specific demethylation following activation
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of the ISR [109, 115], a process that probably participates to the regulation of the
translation. Another point is that only cap-dependent mechanisms of translation
have been considered at the moment in this model. In the lack of evidence, we may
hypothesize that uORFs may also play a role in the regulation of cap-independent
translation processes. Additionally, other 5’UTR regulatory elements have been de-
scribed, despite better characterization is still required, in particular in eukaryotes. We
may notably cite the existence of IRESs as well as of 5’ terminal oligopyrimidine (5TOP)
motif that allows mTOR-dependent stimulation of the expression of proteins of the
translational machinery [54]. Viral mRNAs have also been reported to harbor stretches
of unstructured nucleotides in their 5’UTR that can bypass the requirement for the
m7-methylguanosine (m7G) cap and the eIF4F initiation factor [54]. For instance, m6A
modifications of mRNAs have been reported under cellular stress and shown to lead
to efficient translation under conditions of suppressed cap-dependent translation
[115].

In addition, termination at an uORF stop codon can elicit the same mRNA desta-
bilization evoked by the nonsense-mediated decay (NMD) pathway at premature
termination codons in ORFs [54], a mRNA degradation pathway that eliminates tran-
scripts containing premature termination codons and which is notably inactivated
during the ISR [119]. NMD has not been discussed in this manuscript, whilt sORF
probably play a role in activating this mechanism. As an example, uORFs in plants
have been shown to trigger NMD in a size-dependent manner. The uORFs encod-
ing sPEPs longer than 50 aa activate NMD responses, whereas shorter uORFs do not
activate such responses. However, not all uORF-containing RNAs are sensitive to
NMD and the features that distinguish those triggering NMD responses remain to be
determined [97].

Finally, other classes of sORFs have been omitted, whilst we now that 3’UTR se-
quences may change the structure of RNAs and consequently the fixation or translo-
cation rate of ribosomes. Because no model can reasonably account for so many
parameters, some particular cases will necessary not be explainable, and it is only
reasonable to look first for models that success at explaining the regulation for the
largest proportion of RNAs (or on contrary of specific cases).

So far, most studies on sORFs focused either on their cis or trans function. There is
an urgent need to check if these roles are connected, as a dual role for a single sORF
cannot be excluded [25, 163]. In particular, it has been demonstrated that regulatory
nascent peptides (identified in bacteria and eukaryotes), encoded by uORFs, have the
capacity of arresting their own translation, either at the elongation or the termination
step, by interacting with the ribosomal components [116, 167]. Translated uORFs
could also generate functional peptides that directly or indirectly regulate expression
of the CDS [132]. My findings suggest also that sPEPs are involved in RNA metabolism,
which makes them likely to take part in the regulation of the translation. It is thus
likely that (some) are playing both cis and trans regulatory functions, that may be
connected or not, and play a major role in the homeostasis of the cell. Because
I noticed that 6 % of the sPEPs are targeting their near-cognate CDS (i.e. the one
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harbored by their own transcript), I think this would be of major interest to perform
low-scale, advanced characterization of these particular sORFs at first. In addition, I
suggest that extensive characterization of the functions of sORFs encoded by the same
transcript and expressed at meaningful levels would be also of great importance to
identify if operon-like systems exist in eukaryotes.

Ultimately, experimental evidence and full functional characterization is the only
way to ascertain the translation and function of each individual sORF [10], a tremen-
dous task that will necessarily require to pursue our efforts on the study of sORFs and
their peptides in the future.

Last but not least, because of their involvement in fundamental cellular processes
and in the etiology of many diseases, I personally think that many biotechnological
applications related to sORFs and sPEPs are coming in a near future.

Gene editing methods (CRISPR-Cas9) have already been used successfully for the
development of stress-tolerant crops, by editing uORFs in order to control the transla-
tion of downstream ORFs. As another example, editing of an uORF of LsGCP2 which
encodes an enzyme involved in vitamin C biosynthesis in plants has been reported to
enhance oxidative stress tolerance and elevated ascorbate levels [137].

Beaudoin et al. [17] also reported the presence of many sORFs on mRNA vaccines
that have been recently developed in response to Covid-19 pandemic. Because the
number and nature of these sequences highly variate between the wild-type sequence
and those of mRNA vaccines (Moderna mRNA-1273 and Pfizer BNT162b2), we may
also wonder the impact on human health of the sORFs newly introduced in these
vaccines and their eventual sPEPs. We notably started a project in collaboration with
B. Nal-Rogier to address this question, by using a system approach similar to the one
described in this thesis (sPEPRI prediction with mimicINT etc.). Because these non
canonical sORFs vary between the vaccines, they may theoretically encode different
sPEPs, and thus interactions with canonical proteins may be lost, gained or get their
affinity modified. I would guess that these difference among vaccines (and between
the natural and the vaccine sequences) may (partially) explain differences of efficiency
as well as side effects and should thus be carefully considered in drug-development in
the future. In parallel, recent Ribo-seq data applied to SARS-CoV-2 found evidence of
23 novel proteins, beyond the 37 already annotated for the virus [133], suggesting we
may have missed many host-pathogen protein-protein interactions so far.

To conclude, sORFs editing and targeting may present application of particular
interest in many fields of the biology, including notably agronomy and health industry
[137], fields that cannot be dissociated, in particular regarding the emerging concept
of One Health. Because they represent a full novel class of potential drug targets and
seem to be involved in many (unrelated) diseases, I am personally convinced that
sORFs and their peptides will no longer be ignored for long, and that new classes of
drugs are going to result from their extensive study.
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A. Article: In depth exploration of
the alternative proteome of
Drosophila melanogaster

B. Fabre, S. Plaza and their colleagues recently optimized MS-based approaches to
identify sPEPs in D. melanogaster. In the frame of a collaborative project and using
the same computational tools as the ones described in chapter 3, I helped for the
functional characterization of 401 (yet unannotated) sPEPs by looking at the SLiMs and
domains they harbor. We notably noticed that most sPEPs contain disorder regions. In
addition, the majority of SLiMs retrieved belong to the post-translational modification
sites (MOD), ligand binding sites (LIG) and docking sites (DOC) class types. The SLiMs
the most represented suggested a possible role of sPEPs in cell cycle and autophagy.
Surprisingly, the SLiM class type targeting sites for subcellular localization (TRG) were
only identified in one single sPEP produced from an uORF. We also demonstrated
that sPEPs produced from dORFs are less susceptible than other to carry particular
functions based on domain prediction, and we suggested that the ORF itself might be
involved in the regulation of the translation, something that would be interesting to
explore in the near future but that is out of the scope of my thesis.

Fabre B, Choteau SA, Duboé C, Pichereaux C, Montigny A, Korona D, Deery MJ, Camus
M, Brun C, Burlet-Schiltz O, Russell S, Combier J, Lilley KS, Plaza S (2022). In depth
exploration of the alternative proteome of Drosophila melanogaster. Frontiers in Cell
and Developmental Biology, 10:901351. eCollection 2022.
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Recent studies have shown that hundreds of small proteins were occulted when protein-
coding genes were annotated. These proteins, called alternative proteins, have failed to be
annotated notably due to the short length of their open reading frame (less than 100
codons) or the enforced rule establishing that messenger RNAs (mRNAs) are
monocistronic. Several alternative proteins were shown to be biologically active
molecules and seem to be involved in a wide range of biological functions. However,
genome-wide exploration of the alternative proteome is still limited to a few species. In the
present article, we describe a deep peptidomics workflow which enabled the identification
of 401 alternative proteins in Drosophila melanogaster. Subcellular localization, protein
domains, and short linear motifs were predicted for 235 of the alternative proteins identified
and point toward specific functions of these small proteins. Several alternative proteins had
approximated abundances higher than their canonical counterparts, suggesting that these
alternative proteins are actually the main products of their corresponding genes. Finally, we
observed 14 alternative proteins with developmentally regulated expression patterns and
10 induced upon the heat-shock treatment of embryos, demonstrating stage or stress-
specific production of alternative proteins.

Keywords: alternative proteins, short open reading frame–encoded polypeptide, microprotein, peptidomics, mass
spectrometry

INTRODUCTION

Almost 20 years after the completion of the sequencing of the genomes of Saccharomyces cerevisiae,
Drosophila melanogaster, and Homo sapiens, precise gene annotation still remains challenging.
Initiatives such as the Human Proteome Project (HPP) (Omenn et al., 2021) or ProteomicsDB
(Lautenbacher et al., 2021) aim at defining the ensemble of proteins actually expressed in humans or
other organisms using mass spectrometry (MS) based approaches. These projects have reached
impressive milestones but they are centered around the protein database that is used to mine the
experimental MS data in order to identify expressed proteins (Brunet et al., 2020). So far, these
databases mainly comprise genes annotated in UniProtKB (Bateman et al., 2021). However, recent
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studies have suggested that hundreds of small yet to be annotated
proteins, might be expressed across the kingdom of life (Fabre
et al., 2021). These proteins, called alternative prot0065ins
(AltProts, or short open reading frame (ORF) encoding
polypeptides (SEPs) or microproteins), have failed to be
annotated notably due to the short length of their open
reading frame (less than 100 codons), alternative start codon
(other than AUG) or the enforced rule establishing that
messenger RNAs (mRNAs) are monocistronic (Brunet et al.,
2020). Almost two decades of pioneering work have
highlighted that AltProts can be produced from ORFs on long
non–coding RNA (lncRNA) or the different regions of mRNAs,
within the 5′ or 3′ untranslated regions or alternative frames in
canonical coding sequences (called uORFs, dORFs, and intORFs,
respectively) (Plaza et al., 2017). Databases such as OpenProt
(Brunet et al., 2019), sORFs.org (Olexiouk et al., 2018), SmProt
(Li et al., 2021), ARA-PEPs (Hazarika et al., 2017), PsORF (Chen
Y. et al., 2020), or MetamORF (Choteau et al., 2021) constitute
repositories predicting the existence of potentially thousands of
AltProts based mainly on ribosome footprints determined via
ribosome profiling experiments. However, in most cases, we still
lack unambiguous empirical evidence for the existence of most of
these predicted short proteins. Although ribosome profiling
approaches clearly established the binding of ribosome to
alternative ORFs, it is in fact difficult to deduce the productive
translation of the ORFs, resulting in the expression of stable
proteins (Patraquim et al., 2020). Mass spectrometry is generally
the method of choice for large scale identification of proteins and
peptides (Cassidy et al., 2021). MS data demonstrating the
genome-wide expression of AltProts are still limited to few
species (Fabre et al., 2021). The roles of only few alternative
proteins, less than 50 across all species, have been characterized to
date (Plaza et al., 2017; Wright et al., 2021). The alternative
proteins, whose function has been determined, seem to be
involved in a wide range of key biological processes (Plaza
et al., 2017; Wright et al., 2021). Due to their large spectrum
of functions, alternative proteins represent an attractive new
repertoire of molecules for drug development and agricultural
applications.

In an effort to assess the pervasive production of alternative
proteins in the model organism Drosophila melanogaster, we
describe here the development of a deep peptidomics workflow
combining different protein extraction methods, small protein
enrichment steps, state of the art mass spectrometry, and
optimized bioinformatics analysis using the well-curated
OpenProt database. We were able to identify 401 yet
unannotated alternative proteins, substantially increasing
(twice) the repertoire of alternative proteins in Drosophila
melanogaster. The majority of these proteins are produced
from alternative reading frames in the canonical coding
sequences (CDS), highlighting the fact that the proteome is
more complex than previously anticipated. AltProts produced
from different types of RNA (lncRNA or mRNA) or different
regions of mRNA (5′ or 3′ untranslated regions or alternative
frames within canonical CDS) have different amino acid
compositions, isoelectric points, predicted protein domains, or
disordered regions. Surprisingly, AltProts are predicted to be

localized mainly in the cell nucleus, mitochondria, or secreted.
We identified several AltProts for which the approximated
abundances were higher than their canonical counterparts,
suggesting that these AltProts are actually the main products
of their corresponding genes. Finally, we observed 14 AltProts
with developmentally regulated expression patterns and 10
induced upon the heat-shock treatment of embryos,
demonstrating stage, or stress specific production of alternative
proteins.

MATERIALS AND METHODS

Drosophila Collection and S2 Cell Culture
D. melanogaster adult flies and embryos were maintained and
collected as previously described (Fabre et al., 2019). S2 cells were
cultured as described in Montigny et al. (2021).

Protein Extraction and Alternative Protein
Enrichment
Several approaches were used to extract and enrich alternative
proteins:

1) Embryo (100 µl equivalent of embryo per replicate), adult flies
(10 adult flies per replicate), or S2 cell pellets (5 × 108 cells per
replicate) were resuspended in an SDS buffer (Tris 50 mM pH
7.5, 5% SDS), then immediately sonicated and boiled for
10 min at 95°C. A detergent compatible protein assay (Bio-
Rad) was used to measure the protein concentration. Loading
buffer (Tris 40 mM pH 7.5, 2% SDS, 10% glycerol, and 25 mM
DTT final concentration) was added to 100 µg of protein per
condition and samples were boiled for 5 min at 95°C. The
proteins were alkylated using chloroacetamide at a final
concentration of 60 mM for 30 min at room temperature in
the dark. The samples were loaded on an SDS-PAGE gel
(acrylamide concentration of 4% for the stacking gel and 12%
for the resolving gel). After protein migration, staining with
InstantBlue™ (Merck) was performed and bands were excised
between 15 kDa and the dye front (three bands for S2 cells and
two bands for embryos and adult flies). The proteins were then
digested over night at 37°C with trypsin (or glu-C or
chymotrypsin in the case of S2 cells) using in-gel digestion
as previously described (Fabre et al., 2016b). The resulting
peptides were injected on a Thermofisher Q Exactive plus (S2
cells samples only) or a Thermofisher Fusion (embryo and
adult flies samples only). Three biological replicates were
performed for each condition.

2) Embryo (200 µl equivalent of embryo per replicate) and adult
flies (50 adult flies per replicate) were lysed and proteins were
reduced and alkylated as described in the approach 1 and 1 mg
of protein were digested using in-gel digestion (trypsin for
adult flies, or trypsin, Glu-C, or chymotrypsin for embryos).
The resulting peptides were then separated by high pH reverse
phase fractionation as described in Fabre et al. (2017). Each
fraction was analyzed either on a Sciex TripleTOF 6600 (both
embryo and adult fly samples), a Thermofisher Q Exactive
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(embryo samples only), or a Thermofisher Fusion Lumos
(embryo samples only). Three biological replicates were
performed for each condition.

3) Embryos (100 µl equivalent of embryo per replicate) were
incubated at 37°C to induce heat-shock or maintained at 25°C
as described previously (Fabre et al., 2016c). The proteins were
extracted, reduced, and alkylated as described in protocol 1
and 100 µg were loaded on an SDS-PAGE gel (acrylamide
concentration of 4% for the stacking gel and 12% for the
resolving gel). After a short migration, each gel lane was cut in
three bands and in-gel digestion was performed with trypsin
as previously described (Fabre et al., 2016b).The resulting
peptides were injected on a Thermofisher Q Exactive. Three
biological replicates were performed for each condition.

4) Embryos (100 µl equivalent of embryo per replicate) staged
every 4.5 h as previously described (Fabre et al., 2016a) were
lysed in a buffer containing 20 mM HEPES pH 8, 150 mM
KCl, and 10 mM MgCl2 and proteins were first digested with
proteinase K and boiled for 10 min after the addition of
guanidine hydrochloride (GnHCl) at a 6 M final
concentration. The proteins were then reduced with 25 mM
dithiothreitol (DTT), alkylated with chloroacetamide at a final
concentration of 60 mM, and digested with trypsin, glu-C, or
chymotrypsin over night at 37°C. The peptides were desalted
on a C18 SepPak column (Waters), dried down using a speed-
vac, labeled with Tandem Mass Tag (TMT) 10-plex (Thermo
Scientific) according to the manufacturer’s instructions,
pooled and fractionated using the High pH Reversed-Phase
Peptide Fractionation Kit (Pierce). Each fraction was analyzed
on a Thermofisher Fusion Lumos. Three biological replicates
were performed for each condition.

5) 5 × 108 S2 cells were boiled at 95°C for 20 min in water and
sonicated. Then acetic acid and acetonitrile were added to
the sample both at a final concentration of 20 and 5%,
respectively. The samples were centrifuged at 20,000 g for
20 min at 4°C and the pellet was discarded. The supernatant
was dried using a speed-vac and proteins were resuspended
in 6 M GnHCl and 50 mM ammonium bicarbonate. A BCA
assay (Pierce) was used to measure the protein
concentration. The proteins were reduced in 5 mM
TCEP (tris 2-carboxyethylphosphine hydrochloride) for
1 h at 37°C and alkylated in 10 mM chloroacetamide for
30 min at RT in the dark. The samples were diluted with
50 mM ammonium bicarbonate at a final concentration of
GnHCl of 0.5 M. The proteins were digested with trypsin
(at a 1:50 trypsin to protein ratio) and resulting peptides
were desalted on a C18 Hypersep column (Thermo
Scientific) and dried down using a speed-vac. The
samples were injected on a Thermofisher Fusion. Two
biological replicates were performed.

6) 5 × 108 S2 cells were boiled at 95°C for 20 min in GnHCl lysis
buffer (6 M guanidine hydrochloride, Tris 50 mM pH 7.5, and
100 mM NaCl) and sonicated. The samples were centrifuged
at 20,000 g for 20 min at RT and the pellet was discarded.
Trifluoroacetic acid (TFA) was added to the supernatant at a
final concentration of 0.4% before loading the sample on a C8
column (Pierce) preconditioned with acetonitrile (ACN) and

equilibrated with 0.1% TFA. The column was washed twice
with 0.1% TFA and proteins were eluted with 75% ACN and
0.1% TFA. The samples were dried down using a speed-vac
and resuspended in 6 M GnHCl and 50 mM ammonium
bicarbonate. A BCA assay (Pierce) was used to measure the
protein concentration. The proteins were reduced in 5 mM
TCEP (tris 2-carboxyethylphosphine hydrochloride) for 1 h at
37°C and alkylated in 10 mM chloroacetamide for 30 min at
RT in the dark. The samples were diluted with 50 mM
ammonium bicarbonate at a final concentration of GnHCl
of 0.5 M. The proteins were digested with trypsin (at a 1:50
trypsin to protein ratio) and the resulting peptides were
desalted on a C18 Hypersep column (Thermo Scientific)
and dried down using a speed-vac. The samples were
injected on a Thermofisher Fusion. Three biological
replicates were performed.

7) 5 × 108 S2 cells were boiled at 95°C for 20 min in GnHCl lysis
buffer (6 M guanidine hydrochloride, Tris 50 mM pH 7.5, and
100 mM NaCl) and sonicated. The sample was centrifuged at
20,000 g for 20 min at RT and the pellet was discarded. The
supernatant was loaded on an ultrafiltration device with a
molecular weight cut-off of 30 kDa (Millipore) and the
fraction retained (above 30 kDa) was discarded. A BCA
assay (Pierce) was used to measure the protein
concentration. The proteins were reduced in 5 mM TCEP
(tris 2-carboxyethylphosphine hydrochloride) for 1 h at 37°C
and alkylated in 10 mM chloroacetamide for 30 min at RT in
the dark. The samples were diluted with 50 mM ammonium
bicarbonate at a final concentration of GnHCl of 0.5 M. The
proteins were digested with trypsin (at a 1:50 trypsin to
protein ratio) and resulting peptides were desalted on a
C18 Hypersep column (Thermo Scientific) and dried down
using a speed-vac. The samples were injected on a
Thermofisher Orbitrap Velos. One biological replicate was
performed.

Mass Spectrometry Analysis
Sciex TripleTOF 6600 and Thermofisher Q Exactive were
operated as described in Mata et al. (2017). The Thermofisher
OrbiTrap Fusion Lumos was used as in Geladaki et al. ( 2019).
The Thermofisher OrbiTrap Velos and Q Exactive plus were
operated as described in Menneteau et al. (2019). The
Thermofisher OrbiTrap Fusion was used as described in
Payros et al. (2021).

Mass Spectrometry Data Analysis
The raw files generated during this work and previous studies
(Wan et al., 2015; Wessels et al., 2016; Müller et al., 2020) were
analyzed using MaxQuant (Cox et al., 2014) version 1.6.15.0.
The minimal peptide length was set to 7. Trypsin/P, GluC, or
chymotrypsin were used as the digestive enzymes. Search
criteria included carbamidomethylation of cysteine as a
fixed modification, oxidation of methionine, and N-terminal
acetylation as variable modifications. Up to two missed
cleavages were allowed. The mass tolerance for the
precursor was set to 20 and 4.5 ppm for the first and the
main searches, respectively, and 20 ppm for the fragment ions
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for Thermofisher instruments. The mass tolerance for the
precursor was 0.07 and 0.006 Da for the first and the main
searches, respectively, and for the fragment ions was 50 ppm
and TOF recalibration was enabled for the Sciex TripleTOF
6600 instrument. The raw files were searched against the
OpenProt fasta Drosophila melanogaster database (release
1.6, Altprots, isoforms, and Refprots). For the identification
of RefProts, default MaxQuant settings were used (1% FDR
both at the protein and PSM levels). Regarding AltProts
identification, a minimum score of 70 was set for both
modified and unmodified peptides (corresponding to the
first quartile of the distribution of the score of RefProts
from an analysis of the raw files with MaxQuant default
settings). The candidates were filtered to obtain an FDR of
1% at the peptide level. Because alternative proteins are
generally shorter than canonical proteins, no FDR was set
at the protein level and no filter was applied to the number of
peptides per protein. A minimum sequence coverage of 70% of
the peptide sequence was required for the alternative protein
identification. MSMS spectra were manually inspected by two
independent operators. Peptides matching both a novel
predicted protein and a RefProt were discarded. As
implemented in OpenProt (Brunet et al., 2019), peptide
matching two AltProts, two novel isoforms or an AltProt,
and a novel isoform were assigned to both proteins in each
case. For quantification, the match between runs and iBAQ
modules of MaxQuant was enabled. Quantitative comparisons
between AltProts and RefProts were performed on samples
from the high pH reverse phase experiments only [protein
extraction and alternative protein enrichment protocol
number 2, and data from Müller et al. (2020)]. As iBAQ
represents an approximation of the absolute abundance of a
protein (Fabre et al., 2014) and given the low number of
observable peptides for AltProts, we considered that an
AltProt was more (or less) abundant than its corresponding
RefProt if the ratio between their iBAQ values was at least 10-
fold different. Otherwise, AltProt and RefProt were considered
to have similar expression levels. STRING v11.5 (Szklarczyk
et al., 2021) was used for network generation and GO term/
KEGG pathway analysis.

Confocal Microscopy
For imaging experiments, S2 cells were co-transfected using an
actin-GAL4 driver with UAS-CG34150-GFP and UAS-
AltProtCG34150-RFP or UAS-CG265z-GFP and UAS-
AltProtCG2650-RFP (both constructions encoding AltProts
also contain the start codons and sequence of the canonical
proteins). The cells were transfected with effectene (Qiagen)
according to manufacturer specification and as described in
Montigny et al. (2021). After 48 h of transfection, the cells
were fixed in 4% formaldehyde in phosphate buffer saline
(PBS) at room temperature for 30 min. They were rinsed three
times in PBS for 10 min. Nuclei were stained with DAPI and
samples were rinsed several times in PBS. Coverslides were
mounted in Prolong (Invitrogen) and images were acquired
using a SP8 Leica confocal microscope. Three biological
replicates were performed for each condition.

Bioinformatic Analyses
Detection of the AltProt and RefProt Domains
The RefProt domains have been collected from the InterPro
database (Blum et al., 2021). All domains identified on
UniProtKB reviewed proteins of Drosophila melanogaster
(Proteome identifier: UP000000803) have been recovered using
the EBI REST API.

The domains on AltProt sequences have been identified using
InterProScan (Jones et al., 2014) (v5.52-87.0) looking for
signatures in the Pfam database (Mistry et al., 2021). The
signatures with an e-value lower than 10−5 have been selected.
Pfam identifiers have been mapped to InterPro accessions using
the InterPro cross-references collected through the EBI
REST API.

Detection of the Short Linear Motifs
The classes of SLiMs have been downloaded from the Eukaryotic
Linear Motif (ELM) database (Kumar et al., 2020). The classes
with a pattern probability lower than 0.01 and having at least one
true positive instance detected in D. melanogaster in the ELM
database have been selected.

The short linear motifs (SLiMs) have then been detected in the
disordered regions of the AltProts using the IUPred2A (Mészáros
et al., 2018) and the Short Linear Motif Probability tool
(SLiMProb) of SLiMSuite (Edwards et al., 2020), using the
following SLiMProb parameters: iumethod = long, iucut = 0.2,
and minregion = 5.

Associations Between Short LinearMotifs and Domain
Usage and AltProt Classes
To check whether AltProt classes were preferentially associated
with SLiM or domain usage, chi-squared tests of independence
have been performed.

Short Linear Motifs and Domain Enrichments and
Depletions Among AltProt Classes
For each class type of motif (LIG, DOC, TRG, MOD, CLV, and
DEG), and for each class of AltProt (ncRNA, isoform, 5′UTR,
CDS, and 3′UTR), enrichment and depletion in AltProt with at
least one motif of the class type among the AltProt of the class
have been assessed, using one-sided Fisher’s exact tests. The
p-values computed have, then, been adjusted for multiple
comparisons using the Benjamini–Hochberg procedure.

For each class of motif, and for each class of AltProt
(ncRNA, isoform, 5′UTR, CDS, and 3′UTR), enrichment
and depletion in AltProt with at least one motif of the class
among the AltProt of the class have been assessed, using one-
sided Fisher’s exact tests. The p-values computed have then
been adjusted for multiple comparisons using the
Benjamini–Hochberg procedure.

Disorder regions (sequence of at least five amino acids) were
predicted using IUPred2A (Mészáros et al., 2018) using the long
disorder setting. The prediction of transmembrane helices and
signal peptides were performed using TMHMM—2.0 (Krogh
et al., 2001) and SignalP—5.0 (Almagro Armenteros et al.,
2019), respectively. DeepLoc (Almagro Armenteros et al.,
2017) was used to predict AltProts subcellular localization.
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RESULTS AND DISCUSSION

Genome-Wide Identification of Alternative
Proteins in Drosophila melanogaster
In order to identify new alternative proteins in Drosophila
melanogaster, we developed a customized peptidomics
workflow (Figure 1). We used a combination of protein
extraction and small proteins enrichment protocol as it was
previously shown to increase the number of AltProts identified

by mass spectrometry (Ma et al., 2016; Cardon et al., 2020).
Extensive fractionation, using high pH reverse-phase
chromatography, as well as specific enrichment of short
proteins, through SDS-PAGE, ultrafiltration, acid precipitation,
and reverse-phase chromatography, was employed to retrieve
AltProts from adult flies, 0–24 h embryos, and S2 cells (Figure 1).
We also re-analyzed MS data available in public repositories. In
total, 1,068 MS files were analyzed using optimized MaxQuant
parameters and the OpenProt predicted AltProts database

FIGURE 1 | Peptidomics workflow to identify alternative proteins inDrosophila melanogaster. Proteins were extracted from embryos, adult flies, or S2 cultured cells
using different extraction protocols. Alternative proteins were then enriched from the total protein pool and digested with trypsin (or other enzymes). The resulting
peptides were injected on different mass spectrometry platforms and the generated MS data, as well as datasets available from public repositories, were analyzed using
MaxQuant with the OpenProt database.

FIGURE 2 | Different classes of ORFs produce yet non-annotated alternative proteins. Hundreds of alternative proteins are produced from ORFs from novel
isoforms, ORFs located in the 5′UTR (uORF), coding sequence (intORF) or 3′UTR (dORF) of mRNAs, or from non-annotated ORFs on long non–coding RNAs (lncRNA).
The nomenclature of the different classes of ORFs was adapted from Mudge et al. (2021).
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(Figure 1). In total, 401 AltProts and 8,615 RefProts (including
267 RefProts containing less than 100 amino acids annotated in
UniProtKB) were identified (Figure 2 and Supplementary
Tables S1, S2). The identification scores obtained for the
AltProts were similar to the ones measured for a typical
proteomics analysis (median Andromeda score of 98.52 for
AltProts and 101.97 for RefProts) (Supplementary Figure
S1A). The majority of the AltProts identified here are short
proteins (88.8% of AltProts are less than 150 amino acids)
(Supplementary Figure S1B). Comparing the AltProts
identified to the ones with MS evidence in OpenProt and a
recent article (Wang et al., 2022), only two were common to
the three datasets, 29 were found in at least two datasets and 374
new AltProts were identified in this study (Supplementary
Figure S1C). The low overlap between the datasets might be
explained by the different sample types and extraction and
fractionation protocols used (Cardon et al., 2020). Amongst
the 401 non-annotated proteins identified, 30 were new
isoforms (Figure 2). As defined in OpenProt (https://www.
openprot.org/), we refer here as isoform (or novel isoform) to
any non-annotated proteins that share some homology with a
RefProt (either partially overlapping coding sequences, although
only isoform unique peptides are used for their identification).
Next, we looked at the RNA types and regions from which
AltProts are produced (Figure 2). We used a recently
suggested nomenclature (Mudge et al., 2021) to refer to the
types of ORFs encoding the AltProts (Figure 2). Surprisingly,
whereas pioneering studies identified non-coding RNA or
untranslated regions of mRNAs as the main sources of
AltProts (Plaza et al., 2017), the majority of AltProts identified
in our study are produced from mRNA and more particularly
from alternative reading frames in canonical CDS (intORFs).
With more than 300 AltProts produced from uORFs, intORFs, or

dORFs, our data advocate toward a model in which several
proteins can be produced from one mRNA in Drosophila
melanogaster (Figure 2). Of note, 52 AltProts are produced
from previously predicted long non–coding RNA (Figure 2),
including one AltProt encoded by a precursor of miRNA (pri-
miRNA) (Figure 2), supporting the idea that miPEPs (miRNA-
encoded peptides) are expressed in flies (Immarigeon et al., 2021;
Montigny et al., 2021). Regarding the sources of the production of
AltProts, and more particularly the chromosomes they are
produced from, a distribution similar to the predicted AltProts
distribution from OpenProt was observed (Supplementary
Figures S2A,B), although slight differences could be noticed.
The proportion of AltProts produced from the chromosomes 2R
and 3L was higher than expected contrary to the chromosomes
four and X where a lower proportion of AltProts was identified
(Supplementary Figures S2A,B). Interestingly, the proportion of
new isoforms and Altprots synthesized from uORFs and lncRNA
was more represented than expected (Supplementary Figures
S2C–H).

We next looked at the position of the start codon of the 401
AltProts identified. Surprisingly, only 16.7% of the AltProts
identified here are produced from the first predicted start
codon (Figure 3A). As expected, AltProts produced from
uORFs are synthesized from the first start codon more
frequently than AltProts produced from intORFs and dORFs
(45.7 versus 5.9% and 0%, respectively) (Figures 3B–D and
Supplementary Figure S3). Interestingly, new isoforms and
AltProts produced from lncRNA follow a pattern similar to
uORFs with 40 and 42.3% of these proteins being synthesized
from the first start codon (Figures 3B,E–F and Supplementary
Figure S3). These data highlight that, although the translation of
AltProts from the first ORF on an RNA is the most probable
(notably for AltProts produced from lncRNA), 334 of the new

FIGURE 3 | Alternative proteins are not mainly produced from the first predicted ORF. Distribution of the alternative proteins counts depending on the order of the
position of the predicted start codons for all the newly identified proteins (total) (A), isoforms (B), proteins identified fromORFs encoded by lncRNA (C), uORF (D), AltCDS
(E), or dORF (F) on mRNA.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 9013516

Fabre et al. Alternative Proteome of Drosophila melanogaster

A. Article: In depth exploration of the alternative proteome of Drosophila
melanogaster

183



proteins identified here are translated from further ORFs on
RNAs. Notably, 22 AltProts are synthesized from the 20th
predicted ORF or beyond (Figure 3A).

Structural Properties of Alternative Proteins
in Drosophila melanogaster
Next, the chemical characteristics of the AltProts identified were
investigated. First, we looked at the size distribution of the
AltProts depending on the type of ORF they are synthesized
from (Supplementary Figures S4A–C). As expected, isoforms
are longer than other AltProts (median length of 221.5 and 52
amino acids, respectively) (Supplementary Figures S4A–C).
Within AltProts, proteins produced from lncRNA are slightly
longer than the alternative proteins synthesized from mRNA
(median length of 67, 49, 52.5, and 44 for AltProts from lncRNA,
uORFs, intORFs, and dORFs, respectively) (Supplementary
Figures S4A–C).

Comparing the isoelectric point (pI) of the different classes of
AltProts revealed that isoforms have lower pI than other AltProts
(p < 9.04 × 10−5) (Supplementary Figure S4D). In addition,
AltProts produced from intORFs tend to have higher pI than the
other AltProts (p < 0.0013) (Supplementary Figure S4D). This
might be explained by the fact that the overall amino acid

composition of AltProts produced from intORFs differs from
other AltProts (Supplementary Figure S5). The former has more
arginine, alanine, and tryptophan and less asparagine, lysine, and
glutamic acid (p < 2.2 × 10−16) (Supplementary Figure S5). This
difference in the composition might point toward specific
functions of AltProts produced from intORFs.

We then performed a Gene Ontology (GO) analysis on the
host genes, from which the AltProts are produced, to gain some
insight into the possible functions of the newly discovered
proteins (Figure 4A). Interestingly, the most significant terms
enriched were cell development (FDR = 2.4 × 10−7) and cell
differentiation (FDR = 9.6 × 10−7), suggesting that the AltProts
identified in this study might have functions related to
developmental processes (Figure 4A and Supplementary
Figure S6). These pathways are mainly enriched in host genes
from AltProts produced from intORFs and dORFs
(Supplementary Figures S7, S8). No pathway was found
enriched in AltProts produced from uORFs or isoforms
(Supplementary Figure S9).

In order to dig deeper into the possible role of the AltProts of
Drosophila melanogaster, several prediction tools were used to
identify potential protein domains, disordered regions, or
subcellular localization signals. Looking at protein domains,
InterPro (Blum et al., 2021) predicted that 27 of the AltProts

FIGURE 4 | Identification of protein domains and short linear motifs in alternative proteins. (A). Gene Ontology term analysis of the host genes of the alternative
proteins identified. (B). Balloon plots showing the presence or lack of protein domain for the different types of ORFs, from which the AltProts are produced. The area is
proportional to the frequency. (C). Balloon plots showing the presence or lack of SLiMs for the different types of ORFs, fromwhich the AltProts are produced. The area is
proportional to the frequency. D-I. Counts of the different classes of SLiMs in the AltProts identified in this study (D) or identified from uORFs (E), intORFs (F), dORFs
(G), isoforms (H), or lncRNA (I). SLiM classes are targeting sites for subcellular localization (TRG), post-translational modification sites (MOD), ligand binding sites (LIG),
docking sites (DOC), degradation sites (DEG), and proteolytic cleavage sites (CLV).
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identified might have one or more protein domains (Figure 4B
and Supplementary Table S3). Analysis using the
TMHMM—2.0 (Krogh et al., 2001) and SignalP—5.0
(Almagro Armenteros et al., 2019) software identified possible
transmembrane domains and signal peptides for 33 and nine
AltProts, respectively. Interestingly, the AltProt IP_1410397
encoded by the host gene CG15784 had both a signal peptide
and a transmembrane domain predicted (both with probabilities
>0.8) in the first 30 amino acids of its sequence (Supplementary
Figure S10).

We next looked for the presence of short linear motifs
(SLiMs) in the AltProts identified. SLiMs are functional short
stretches of protein sequence that are generally involved in
protein–protein interactions (Hraber et al., 2020). A total of 684
SLiMs were mapped on 191 AltProts (Figures 4C,D and
Supplementary Table S4). Most of the SLiMs retrieved
belong to the post-translational modification sites (MOD)
(enriched in isoforms, Benjamini–Hochberg adjusted p-value
= 3.5 0.10−4, and odd ratio = 5.41), ligand binding sites (LIG)
(especially enriched in isoforms, Benjamini–Hochberg adjusted
p-value = 1.42 0.10−7, and odds ratio = 11.04), and docking site
(DOC) classes (47, 29, and 18% of the SLiMs identified,
respectively) (Figure 4D, Supplementary Figure S11A, and
Supplementary Table S4). The most represented SLiMs are
Polo-like kinase1 and four phosphosite motifs (MOD_PlK_1
and MOD_Plk_4, found on 64 and 100 AltProts, respectively),
cyclin N-terminal domain docking motifs
(DOC_CYCLIN_RXL_1, found on 38 AltProts), and Atg8
protein family ligand motifs (LIG_LIR_Gen_1, found on 51
AltProts) (Supplementary Figure S11A and Supplementary
Table S4), suggesting a possible role of these AltProts in
Drosophila cell cycle and autophagy. Importantly, isoforms
were the only class of AltProts which displayed a significant
enrichment in SLiMs (Supplementary Figures S11B,C and
Supplementary Table S5). Looking at each type of ORFs,
slight differences in SLiM classes could be observed (Figures
4E–I). The SLiM class targeting sites for subcellular localization
(TRG) were identified only on one AltProt produced from an
uORF (Figure 4E). It was surprising to notice that AltProts from
dORFs only have 20 SLiMs detected on 11 AltProts (Figure 4G).
In addition, this type of AltProt does not seem to bear any
protein domain and although all the SLiMs identified are from
the MOD and LIG classes, the number of SLiMs from these
classes detected is still lower than expected
(Benjamini–Hochberg adjusted p-value = 0.009 and 0.0006;
odds ratio = 0.35 and 0.17, respectively) (Supplementary
Table S5). These results suggest that most of the AltProts
produced from dORFs are less susceptible than other
AltProts to carry particular functions based on domain
prediction and that the ORF itself might be mainly involved
in the regulation of protein translation as recently proposed
(Wu et al., 2020).

Next, the IUPred2A software was used to predict disordered
regions within AltProts. Around 50% of the AltProts identified in
our study contained one or more predicted disordered region
(Supplementary Figure S12). A higher proportion of isoforms
(70%) and AltProts produced from uORFs (58.7%) and intORFs

(55.9%) tend to have disordered regions compared to lncRNA
(38.5%) or dORFs (26.1%) (Supplementary Figure S12). This is
in agreement with a recent report on plants, which also predicted
that numerous non-annotated short proteins might contain
disordered regions, transmembrane domains, or signal
peptides (Fesenko et al., 2021).

DeepLoc (Almagro Armenteros et al., 2017) was used to
predict the possible subcellular localization of Altprots. A
potential localization was assigned to 79 out of 401 with a
probability higher than 0.8 (Figure 5A and Supplementary
Table S5). Surprisingly, 35 of these AltProts were predicted
to be mitochondrial, 18 extracellular, and 17 nuclear
(Figure 5B and Supplementary Table S6). Only seven
Altprots are predicted to be cytoplasmic, one potentially
localized in the Golgi and one in the endoplasmic
reticulum (Figure 5B and Supplementary Table S6).
When comparing the predicted subcellular localization of
Altprots produced from mRNAs and their corresponding
RefProts, only 18% (12 out of 67) were concordant
(Supplementary Figure S13). In order to validate the
prediction from DeepLoc, the AltProt and RefProt of the
gene CG34150, tagged with a red fluorescent protein (RFP)
and a green fluorescent protein (GFP), respectively, were
transfected in S2 cells and co-expressed under the same
actin promoter. Confocal imaging revealed that, in
agreement with the DeepLoc prediction, both proteins are
colocalized in S2 cells (Figure 5C). Similarly, tagged versions
of the AltProt and RefProt of the gene CG2650, for which no
subcellular localizations were predicted in animal cells, were
also expressed in S2 cells (Figure 5D). Surprisingly,
colocalization could be observed in certain cells whereas
other cells showed different localization patterns between
the two proteins in the S2 cells within the same experiment
(Figure 5D). This might be indicative that the AltProt and
RefProt of CG2650 are colocalized under particular cellular
conditions (e.g. specific cell cycle stages. . .). These
experiments also showed that the two CG34150 and
CG2650 AltProts are expressed despite the presence of the
ATG of the canonical ORF, confirming peptide detection
observed in MS analysis.

Overall, these data corroborate previous observations in
humans suggesting that AltProts might have independent
functions or roles related to their corresponding RefProts
(Chen J. et al., 2020). Here, we identified 235 AltProts for
which at least a protein domain, a SLiM, or a subcellular
localization was predicted (Figures 4B,D, 5A). Although
further functional experiments would be necessary to better
understand the role of these AltProts, these predictions
provide first hints regarding the functions of the Altprots
identified in this study.

Alternative Proteins Are Not Necessarily
Less Abundant Than Canonical Proteins
We next wondered if AltProts can be more abundant than their
corresponding RefProts as previously shown for the human
alternative protein altMiD51 (Delcourt et al., 2018).
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Comparing the intensities measured for peptides from AltProts
and RefProts from total lysates and high pH reverse-phase
fractionation (no specific AltProts enrichment, see Material
and Methods section protocol 2 as well as data from Müller
et al. (2020), the peptides from the latter were slightly more
intense (1.96 fold difference of the average peptides intensities
measured for AltProts and RefProts, Supplementary Figure
S14A). This implies that some AltProts might be as abundant
as RefProts in Drosophila. The iBAQ values, which represent an
approximation of the abundance of a protein (Krey et al., 2014),
were used to compare the abundance of AltProts with the
abundance of their corresponding RefProts in total lysates and
high pH reverse-phase fractionation experiments (Figures 6A,B).
Out of the 39 pairs of AltProts/RefProts for which iBAQ values
were measured, 22 did not show any difference in abundance
between AltProts and RefProts expression levels (less than 10-
fold difference between the iBAQ values), whereas 11 AltProts
were more abundant (Figures 6A,B). Only six RefProts were
more abundant than their corresponding AltProts (Figures
6A,B). This trend was observed in two independent datasets
(Supplementary Figure S14B) and we did not observe any bias
based on the length of the AltProts (Supplementary Figure S15).
These data reveal that, in several cases, alternative proteins are

actually the main protein produced from their
corresponding genes.

Developmentally Timed and Stress-Specific
Production of Alternative Proteins
Next, the expression of AltProts was compared to monitor
potential changes between embryos and adult flies (Material
and Methods protocol 1 and 2, Figures 6C,D). All 14 AltProts
for which we obtained quantitative data in at least two biological
replicates were more abundant in one developmental stage
(Figures 6C,D). Three AltProts were identified both in
embryos and adult flies but were at least three times more
abundant in embryos (Figures 6C,D). The remaining 11
AltProts were identified only in one stage (Figures 6C,D),
suggesting that the expression of most of the AltProts
quantified here is developmentally timed. Four AltProts were
identified only in adult flies whereas seven were specific to
embryo samples, including two AltProts produced from
lncRNA (Figures 6C,D).

We also tested whether the expression of AltProts varies upon
stress. The embryos were treated with heat-shock at 37°C for up to
3 h or kept at 25°C and analyzed to identify alternative proteins.

FIGURE 5 | Prediction of alternative proteins subcellular localization. (A). Proportion of AltProts with or without predicted subcellular localization. (B). Proportion of
AltProts predicted to be localized in different organelles. (C). Confocal microscopy analysis of the co-expression of the AltProt (alt Protein) (with the sequence of the
RefProt before the AltProt starting codon) and RefProt (ref Protein) encoded by the CG34150 gene, tagged with RFP and GFP, respectively, in S2 cells (stained with
DAPI). (D). Confocal microscopy analysis of the co-expression of the AltProt (alt Protein) (with the sequence of the RefProt before the AltProt starting codon) and
RefProt (ref Protein) encoded by the CG2650 gene, tagged with RFP and GFP, respectively, in S2 cells (stained with DAPI).
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We were able to identify 22 AltProts in these samples, including
10 AltProts that were identified only in heat-shock–treated
embryos (Supplementary Table S7). These results
demonstrate that alternative proteins are produced under
specific developmental stages or stress conditions in D.
melanogaster.

CONCLUSION

Recent studies in humans suggested that the complexity of the
genome was underestimated (Brunet et al., 2021; Ouspenskaia et al.,
2021) and that many unannotated proteins might fulfill important
functions, related or not to canonical proteins (Plaza et al., 2017;
Chen J. et al., 2020). However, it is not clear whether this is specific to

human or whether this characteristic is present in every species since
we still lack deep analysis of this alternative proteome in many
species, including the model organismD. melanogaster. In flies, until
now, mainly data from ribosome profiling experiments were
available to annotate putative translated alternative sORF
(Aspden et al., 2014; Patraquim et al., 2020). In the present
study, we developed a deep peptidomics workflow which
combines several extraction methods and enrichment protocols
with mass spectrometry and dedicated bioinformatics analysis to
identify new alternative proteins in flies. We proved for the first time
the existence of 374 AltProts predicted in OpenProt (Figure 2),
significantly increasing the repertoire of not yet annotated proteins
in D. melanogaster. Many of these AltProts even escaped from
ribosome profiling experiments as they are encoded by alternative
frames within the annotated CDS. Contrasting with these results, we

FIGURE 6 | Alternative proteins can be more abundant than their corresponding canonical proteins and their expression is developmentally regulated. (A).
Comparison of the approximation of the relative abundance measured for each couple of canonical (RefProts) and alternative (AltProts) proteins for each type of ORF
using the intensity based absolute quantification approach (iBAQ). An AltProt/RefProt is considered more abundant than its counterpart if its iBAQ value is at least 10-fold
higher. (B). Graph shows the protein counts of AltProts are more abundant than RefProts, RefProts are more abundant than AltProts, and similar expression levels
between AltProts and RefProts. (C). Fold change between embryo and adult fly was calculated for each AltProt and normalized by the maximum intensity between the
two samples. An AltProt/RefProt is consideredmore abundant in a specific developmental stage if its intensity value is at least 3-fold higher. (D). Graph shows the protein
counts of AltProts are more abundant, or identified only, in embryo, or in adult flies.
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did not find many unannotated proteins with a coding sequence of
more than 100 codons, revealing that the annotation of proteins with
ORF of 100 codons or more is precise and reliable. On the other
hand, our study shows that many proteins of less than 100 amino
acids remain to be discovered, especially considering the fact that we
did not search for alternative proteins of less than 30 amino acids,
which are known to be expressed and functional in D. melanogaster
(Magny et al., 2013; Zanet et al., 2015; Immarigeon et al., 2021;
Montigny et al., 2021) and would require further investigation.
Interestingly, these AltProts are not necessarily produced from
the first predicted ORF on a RNA (Figure 3), one spectacular
result came from an AltProt being synthesized from the 134th
predicted ORF on the dumpy mRNA (Supplementary Table S1).
Another key observation is that more than 300 mRNAs actually
encode more than one protein (Figure 2). The main source of
production of AltProts in Drosophila melanogaster is alternative
frames in canonical coding sequences (intORFs) (Figure 2) possibly
a specificity of Drosophila in humans and mice; AltProts are
produced mainly from lncRNA (https://www.openprot.org/).
Through our peptidomics workflow we showed that 52 RNA,
previously described as non-coding, actually encode a protein and
should be reannotated as mRNA instead of lncRNA (Figure 2).
Regarding potential functions of the identified AltProts, protein
domain, SLiMs, or subcellular localization were predicted for 235 of
them (Figures 4B,C, 5A) pointing toward potential functions
for these small proteins. However, the lack of predicted protein
domains and low number of SLiMs identified on dORFs
implies that the AltProts produced from these ORFs might
not be functional. Fluorescence confocal microscopy
confirmed the colocalization of the CG34150 AltProt and
RefProt and showed that the CG2650 AltProt and RefProt
can colocalize under certain conditions (Figures 5C,D). The
comparison of the abundance (using the iBAQ value as an
approximation) of alternative and canonical proteins revealed
that AltProts are not necessarily less abundant and might
actually be the main product of several genes (Figures 6A,B
and Supplementary Figure S14B). This result rules out that
the AltProts identified in our study are transient and unstable
products of translation. These data suggest that it might be
worth reconsidering the phenotypes observed in certain
mutants in D. melanogaster as they might be mediated by
the mutation/deletion of the alternative protein rather than the
canonical one. Finally, several AltProts were identified in only
specific developmental stages or upon heat shock, implying
that their expression is finely tuned during D. melanogaster
development or under stress conditions (Figures 6C,D). These
proteins might have important functions during development
or heat-shock response, hence requiring further functional
investigation.
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Supplementary Figure legends: 

Supplementary Figure 1: Metrics of the different alternative proteins identified in Drosophila 

melanogaster. A. Andromeda score distribution for peptide spectrum matches of RefProts identified 

under default MaxQuant settings and AltProts using optimized parameters. B. Distribution of the amino 

acid length of the AltProts/Isoforms identified in this study. C. Venn diagram representing the overlap of 

AltProts/Isoforms identified in this study compared to AltProts/Isoforms with MS evidence in OpenProt 

and the 129 AltProts (out of the 410 small proteins they identified, 281 being already annotated in 

UniProtKB) identified by Wang et al. 2022. 

 

Supplementary Figure 2: Proportions of the different types of AltProts identified and predicted in 

Drosophila melanogaster. Distribution of the newly identified proteins depending on their chromosomal 

location (A), if they are AltPorts or new Isoforms (C), encoded by mRNA or lncRNA (E) and the location of 

their corresponding ORFs on mRNA (G). The similar distributions were obtained for predicted 

AltProts/Isoforms from OpenProt (respectively, B, D, F and H). 

 

Supplementary Figure 3: Distribution of the alternative proteins and isoforms start codon positions 

(Log2 transformed) depending on the types of ORFs they are produced from. 

 

Supplementary Figure 4: Alternative proteins produced from different classes of ORFs have different 

chemical properties. A. Distribution of the number of newly identified proteins in each type of ORF class 

and depending on their length in amino acids (a.a.). B-C. Distribution of the amino acid length of the 

AltProts/Isoforms identified for each type of ORF (B) and normalized by the total protein counts within 

each group (C). D. Repartition of the isoelectric point measured for the proteins identified in each type of 

ORF class. 

 

Supplementary Figure 5: Amino acids proportions obtained from the sequences of the proteins 

identified in each type of ORF class. 

 

Supplementary Figure 6: Gene Ontology term analysis of the host genes of the alternative proteins and 

isoforms identified in this study using STRING v11.5. 

 

Supplementary Figure 7: Gene Ontology term analysis of the host genes of the alternative proteins 

identified from intORFs using STRING v11.5. 

 

Supplementary Figure 8: Gene Ontology term analysis of the host genes of the alternative proteins 

identified from dORFs using STRING v11.5. 
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Supplementary Figure 9: Gene Ontology term analysis of the host genes of new proteins isoforms and 

alternative proteins identified from uORFs using STRING v11.5. 

 

Supplementary Figure 10: Probability of the presence of signal peptide and transmembrane domain 

within the first 70 amino acids of the AltProt IP_1410397 as predicted by SignalP - 5.0 and TMHMM - 

2.0, respectively. 

 

Supplementary Figure 11: Predicted domains and SLiMs on AltProts. A. Counts of the different SLiMs 

motifs in the AltProts identified in this study. B. Association plots showing the dependency between the 

presence or lack of protein domains for the different types of ORFs the AltProts are produced from. Blue 

color represents positive association and pink color represents negative association between the presence 

or absence of protein domains and the type of AltProt. C. Association plots showing the dependency 

between the presence or lack of SLiMs for the different types of ORFs the AltProts are produced from. 

Blue color represents positive association and pink color represents negative association between the 

presence or absence of SLiMs and the type of AltProt. 

 

Supplementary Figure 12: Distribution of the AltProts with at least one predicted disordered region 

predicted by IUPred2A and depending on the types of ORFs. 

 

Supplementary Figure 13: Proportion of AltProts with predicted subcellular localization similar or 

different compared to known subcellular localization of their corresponding RefProts. 

 

Supplementary Figure 14: A. Comparison of the distribution of peptide intensities (Log2 transformed) 

measured for RefProts and AltProts in protocol 2 from the material and methods section as well as data 

from Müller et al. B. Graph representing the Log2 ratio between the iBAQ value of AltProt and 

corresponding RefProts measured in our study and Müller et al for the CG14683, CG2059 and gw genes. 

 

Supplementary Figure 15: Graph representing the correlation (measured using the Pearson correlation 

coefficient) between the Log2 ratio of the iBAQ value of AltProt and corresponding RefProts and the 

AltProts amino acid length (Log2 transformed). 
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B. Article: Proteostasis in dendritic
cells is controlled by the PERK
signaling axis independently of
ATF4

In this project, our team notably demonstrated that dendritic cells (DCs) are displaying
high level of phosphorylation of eIF2α, mostly induced by an endoplasmic reticulum
stress. However, I showed in this study that steady state DCs do not display a chronic
integrated stress response-like response. I took advantage of available transcriptomic
data and ATF4-dependent, CHOP-dependent and chronic ISR-related gene signatures
to perform gene set enrichment analysis (GSEA). No significant enrichment has been
found in DCs for any of the gene lists, suggesting that neither CHOP nor ATF4 signature
can be preferentially detected in DCs compared to other immunological cell types. In
addition, it is to note that this study highlights the important role played by PERK and
GADD34 in the regulation of translational responses of DCs submitted to an ER stress.

Mendes A, Gigan JP, Rodriguez Rodrigues C, Choteau SA, Sanseau D, Barros D, Almeida
C, Camosseto V, Chasson L, Paton AW, Paton JC, Argüello RJ, Lennon-Duménil A,
Gatti E, Pierre P (2020). Proteostasis in dendritic cells is controlled by the PERK
signaling axis independently of ATF4. Life Science Alliance, 10.26508/lsa.202000865,
4(2):e202000865.

Supplementary data are available online at https://doi.org/10.26508/lsa.202000865.
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Andreia Mendes1,2,3,* , Julien P Gigan1,*, Christian Rodriguez Rodrigues1 , Sébastien A Choteau1,6 , Doriane Sanseau4,
Daniela Barros1,2,3, Catarina Almeida2,3 , Voahirana Camosseto1,3,4, Lionel Chasson1, AdrienneW Paton5, James C Paton5,
Rafael J Argüello1,4 , Ana-Maria Lennon-Duménil4, Evelina Gatti1,2,3,4 , Philippe Pierre1,2,3,4

In stressed cells, phosphorylation of eukaryotic initiation factor
2α (eIF2α) controls transcriptome-wide changes in mRNA trans-
lation and gene expression known as the integrated stress re-
sponse. We show here that DCs are characterized by high eIF2α
phosphorylation, mostly caused by the activation of the ER kinase
PERK (EIF2AK3). Despite high p-eIF2α levels, DCs display active
protein synthesis and no signs of a chronic integrated stress
response. This biochemical specificity prevents translation arrest
and expression of the transcription factor ATF4 during ER-stress
induction by the subtilase cytotoxin (SubAB). PERK inactivation,
increases globally protein synthesis levels and regulates IFN-β
expression, while impairing LPS-stimulated DC migration. Al-
though the loss of PERK activity does not impact DC development,
the cross talk existing between actin cytoskeleton dynamics;
PERK and eIF2α phosphorylation is likely important to adapt DC
homeostasis to the variations imposed by the immune contexts.
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Introduction

DCs are key regulators of both protective immune responses and
tolerance to self-antigens (Dalod et al, 2014). DCs are professional
APCs, equipped with pattern recognition receptors (PRRs), capable
of recognizing microbe-associated molecular patterns (MAMPs)
(Akira et al, 2006) and enhance their immunostimulatory activity
(Steinman, 2007). MAMPs detection by DCs triggers the process of
maturation/activation, which culminates in the unique capacity of
priming naı̈ve T cells in lymphoid organs. LPS detection by TLR4
promotes DCs maturation by triggering a series of signaling cas-
cades resulting in secretion of polarizing and inflammatory cyto-
kines, up-regulation of co-stimulatory molecules, as well as

enhanced antigen processing and presentation (Mellman, 2013). All
these functions are accompanied by major remodeling of mem-
brane trafficking and actin organization to favor both antigen
capture and migration to the lymph nodes (West et al, 2004;
Chabaud et al, 2015; Arguello et al, 2016; Bretou et al, 2017).

Upon activation by MAMPs, like LPS, a large augmentation of protein
synthesis, representing a two to fivefold increase above resting state,
occurs in DCs. This is required for the up-regulation of co-stimulatory
molecules at the cell surface and acquires T-cell immune-
stimulatory function (Lelouard et al, 2007; Reverendo et al, 2019).
The phosphorylation of eukaryotic initiation factor 2 (eIF2) is a
central hub for regulating protein synthesis during stress. In ho-
meostatic conditions, eIF2 mediates the assembly of the mRNA
translation initiation complex and regulates start codon recogni-
tion. During stress, phosphorylation of the α subunit of eIF2 (eIF2α)
on serine 51 is mediated by a group of four eIF2α kinases (EIF2AK1-
4), which specifically senses physiological imbalance (Arguello et al,
2016; Costa-Mattioli & Walter, 2020). Phosphorylation of eIF2α
converts eIF2 into an inhibitor of the GDP–GTP guanidine
exchange factor eIF2B, impairing the GDP–GTP recycling required
to form new translation initiation complexes (Yamasaki & Anderson,
2008). Consequently, increased eIF2α phosphorylation impacts cells in
twomainways: (i) By reducing the rate of translation initiation and thus
global protein synthesis levels; (ii) By favoring the translation of the
activating transcription factor 4 (ATF4) (Han et al, 2013; Fusakio et al,
2016) which in turn activates the transcription of genes involved in the
integrated stress response (ISR) (Costa-Mattioli & Walter, 2020).

The ISR protects cells from amino acid deprivation, oxidative, mito-
chondrial stressor viral infections, and is also incorporatedasabranchof
the ER unfolded protein response (UPR) upon PERK-activation. The ISR
comprises a negative feedback loop that causes eIF2α dephosphoryla-
tion, through the induction of GADD34 (also known as PPP1R15a), a
phosphatase 1 (PP1c) co-factor (Novoa et al, 2001; Harding et al, 2009).
Dephosphorylation of p-eIF2α by GADD34/PP1c complexes, and
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associated protein synthesis restoration, signal ISR termination,
and return to cellular homeostasis (Novoa et al, 2001). If stress persists,
long-term ATF4 expression promotes programmed cell death, through
the induction of the pro-apoptotic transcription factor CHOP (Marciniak
et al, 2004). ATF4 also regulates the expression of Rho GTPases and can
control cell motility (Pasini et al, 2016), whereas globular actin is part of
the PP1c/GADD34 complex and provides additional targeting specificity
for dephosphorylating p-eIF2α (Chambers et al, 2015; Chen et al, 2015).

The ISR can enter in a cross talk with specialized MAMPs sensing
pathways,which turnsonoramplifies inflammatory cytokinesproduction
in different cell types including DCs (Claudio et al, 2013; Reverendo et al,
2018). TLR activation in macrophages undergoing an ISR suppress CHOP
induction and protein synthesis inhibition, preventing apoptosis in ac-
tivated cells (Woo et al, 2009). Moreover, ATF4 binds interferon regulatory
factor-7 (IRF7) and prevents type-I IFN transcription (Liang et al, 2011).
Several key innate immunity signaling cascades are also believed to be
dependent for their signalosome assembly on the chaperoneHSPB8 and
the eIF2α kinase heme-regulated inhibitor (HRI/EIF2AK1) (Pierre, 2019).
Microbe-activated HRI was shown to mediate phosphorylation of eIF2α
and increase ATF4-dependent expression of HSPB8, thus amplifying
signal transduction and inflammatory cytokines transcription in mac-
rophages (Abdel-Nour et al, 2019).

We show here that DCs from spleen or derived from Fms-related
tyrosine kinase 3 ligand (Flt3-L) treated-BM cultures display high levels
of phosphorylated eIF2α. Using Cre/lox recombination to generate
mice specifically lacking GADD34 (PPP1R15a) or PERK (EIF2AK3) activity
in DCs, wedemonstrate that PERK-dependent eIF2α phosphorylation is
acquired during BMDC differentiation in vitro. PERK drives high eIF2α
phosphorylation in steady-state DCs with a low impact on protein
synthesis levels. We found that mRNA translation in DCs, differently to
what has been shown during chronic ISR (cISR) (Guan et al, 2017), is
mediated despite high p-eIF2α levels by an eIF4F-dependent mech-
anism. These features endow DC with increased resistance to acute ER
stress, preventing ATF4 induction in response to stressors such as the
bacterial subtilase cytotoxin (SubAB). We also found that LPS-activated
primary DCs rely on PERK and eIF2α phosphorylation to amplify type-I
IFN expression, but, conversely to macrophages, not to promote pro-
inflammatory cytokines transcription nor IL-1β secretion (Abdel-Nour
et al, 2019; Chiritoiu et al, 2019). GADD34 antagonizes PERK activity to
maintain functional protein synthesis levels in non-activated DCs and
upon stimulation with LPS, contributing directly to DC function by
modulating IFN-β expression. PERK activity impacts positively DC
migration speed, correlating with the regulation of p-eIF2α levels by
the synergistic action of GADD34 and actin cytoskeleton reorganization.
Thus, DCs require PERK and GADD34 activity to coordinate protein
synthesis, activation, type-I IFN production and migration capacity in
response to MAMPs and adapt their biochemical functions to the
variations encountered in their external environment.

Results

Steady-state DCs display high levels of eIF2α phosphorylation

Physiological levels of phosphorylated eIF2α (p-eIF2α) were
monitored in mouse spleen sections by immunohistochemistry. All

CD11c+ DC subsets expressing either CD8α (cDC1), CD11b (cDC2), or
B220 (plasmacytoı̈d DC, pDC), displayed high levels of eIF2α
phosphorylation (Fig 1A and B), strongly contrasting with other
splenocytes, such as B cells (Fig 1B lower panel). Splenocytes
isolation and flow cytometry based-quantification of eIF2α phos-
phorylation confirmed that DC subsets display higher levels of
p-eIF2α than T (CD3+/CD4+ or /CD8+) or B cells (Fig 1C). We next
evaluated p-eIF2α in BM-derived DCs differentiated in presence of
Flt3-Ligand (Flt3-L BMDC), encompassing the major cDC1, cDC2, and
pDC subsets in different proportions (circa 30%, 60%, and 10%,
respectively) with phenotypes equivalent to those of spleen DC
subsets (Brasel et al, 2000). Cell sorting and analysis of the different
populations by immunoblot confirmed that all DC subsets display
higher eIF2α phosphorylation in comparison with isolated primary
CD8+ T cells or MEFs stimulated or not with the ER-stress inducing
drug thapsigargin for 2 h (Fig 1D). Quantification of p-eIF2α/eIF2α
ratios indicated that steady-state DCs display two to four times
more p-eIF2α, than stressed MEFs, with the cDC1 population dis-
playing the highest ratio of phosphorylation (Fig 1D). We next
evaluated when eIF2α phosphorylation was acquired during DC
differentiation in vitro. Daily analysis of differentiating Flt3-L BMDCs
established that high p-eIF2α levels appear from 4 d of culture (Fig
1E), confirming that eIF2α phosphorylation is an integral part of Flt3-L
induced DC differentiation.

Given the dominant negative effect of p-eIF2α on translation
initiation, we monitored protein synthesis in the different DC
subsets. CD8+ T cells were used as a reference because in these
cells, p-eIF2α is barely detectable. We used puromycilation and
detection by flow cytometry (flow) to measure protein synthesis
level in splenocytes populations (Schmidt et al, 2009; Arguello et al,
2018). Despite higher eIF2α phosphorylation levels in all resting DC
subsets, mRNA translation is five to eight times higher than in
resting CD8+ T cells and close to the levels reached by these cells
upon CD3/CD28 stimulation (Fig 1F). We next monitored protein
synthesis every 2 d of culture to establish precisely the influence of
eIF2α phosphorylation during DC differentiation in vitro. We applied
flow cytometry and dimensionality reduction using t-distributed
stochastic neighbor embedding (tSNE) to visualize DC differentia-
tion and protein synthesis activity within the different subpopu-
lations over time (Fig 2A). We confirmed that protein synthesis
levels steadily increased with the appearance of all three DC
subsets, this despite high eIF2α phosphorylation. Noteworthy, the
cDC1 population that displays the most elevated level of eIF2α
phosphorylation is the DC subset endowed with the highest level of
protein synthesis. These observations suggest that steady-state
DCs have adapted their translation machinery to overcome the
dominant negative effect on translation initiation of eIF2α phos-
phorylation on Ser51, which is associated with the acquisition of the
DC phenotype.

eIF2B and eIF2A expression is up-regulated upon DC
differentiation

P-eIF2α inhibits translation initiation by forming a stable inhibitory
complex that reduces the guanidine exchange factor activity of
eIF2B. eIF2B is an enzymatic complex with a γ2ε2 sub-units core with
levels generally lower than those of its substrate eIF2. Thus, a
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Figure 1. Steady-state Flt3-L BMDCs and splenic DCs display remarkably high levels of eIF2α without inhibition of translation.
(A) Immunohistochemistry of mouse spleen with staining for CD11c (red) and p-eIF2α (green). Scale bar: 200 μm, magnification: 10×. Single color images are shown and
merged picture (right row), high level of p-eIF2α staining is mostly found co-localizing in cells positive for CD11c+ (DCs, white arrowheads). (B) Immunohistochemistry of
mouse spleen in the white pulp for CD11c (red), p-eIF2α (green), CD11b (blue), and B220 (turquoise). Scale bars: 50 μm, magnification: 40×. In the upper panel, magnified
areas show p-eIF2 detection in cDC2 (CD11c+/CD11b+) and cDC1 (CD11c+/CD11b−). In the lower panel, magnified areas show p-eIF2 detection in pDCs (B220+/CD11c+) and
in B cells (B220+ and CD11c−). (C) Relative p-eIF2α levels measured by flow in different mouse spleen populations. Statistical analysis was performed by Mann–Whitney
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partial eIF2α phosphorylation is sufficient to attenuate protein
synthesis initiation in most cells (Adomavicius et al, 2019). We
monitored, during Flt3-L BMDC differentiation, the expression of
the different eIF2B components. From day 2 in culture, all eIF2B
subunits levels were increased transcriptionally, and for eIF2Bε,
translationally as well (Fig 2B and C). A similar observation was
done with eIF2A, a factor involved, in place of eIF2, in the translation
of specialized cellular or viral mRNAs (Kim et al, 2011; Starck et al,
2016). The progression of the ratio eIF2Bε, and potentially of eIF2A,
over eIF2α expression and phosphorylation during differentiation
(Fig 2C) could therefore explain the progressive acquisition by
BMDCs of significant protein synthesis levels despite abundant
eIF2α phosphorylation.

Flt3-L BMDCs activation by LPS promotes eIF2α and eEF2
dephosphorylation

Complementary to p-eIF2α, phosphorylated translation elongation
factor 2 (eEF2) is a major repressor of translation in adverse growth
conditions, such as starvation, or accumulation of misfolded
proteins in the ER (Ryazanov, 2002; Lazarus et al, 2017). Like for
p-eIF2α (Fig 3A), the high levels of p-eEF2 present in steady-state
DCs (Arguello et al, 2018) were gradually decreased during
Escherichia coli LPS stimulation of TLR4-expressing cDC2 (Fig 3B).
eEF2 phosphorylation therefore parallels what is observed for eIF2α
in cDC1 and cDC2 (Fig 3A) and could be involved in the control of
protein synthesis levels upon DC activation. Given the rapidity and
intensity of eIF2α and eEF2 dephosphorylation upon activation, we
applied to cDC2 the SunRISE technique, a method for monitoring
translation elongation intensity using flow (Arguello et al, 2018).
cDC2 displayed a striking augmentation of translation intensity
upon LPS activation compared with the steady-state situation (T = 0
s), quasi doubling its level in 6 h (Fig 3C and D). Polysomes elon-
gation speed, indicated by the rate of puromycin staining decay
after harringtonine treatment (slope), was also increased (x2) by
LPS (Fig 3D). eIF2α and eEF2 dephosphorylation are correlated with
increased mRNA translation initiation and elongation allowing
protein synthesis to reach its maximum concomitantly to the
acquisition by DC of their full immune-stimulatory capacities
(Lelouard et al, 2007).

PPP1R15a (GADD34) controls eIF2α dephosphorylation in
activated DCs

The inducible PP1c co-factor PPP1R15a, known as GADD34, is key in
mediating p-eIF2α dephosphorylation in the resolution phase of
the ISR during the UPR (Novoa et al, 2001, 2003). Interestingly,
GADD34 induction was reported in inflammatory situations or upon

MAMPs stimulation of different immune cell subsets (Clavarino
et al, 2012b, 2016; Ito et al, 2015). In MEF, GADD34 expression is
necessary for the production of IFN-β upon concomitant sensing of
cytosolic dsRNA by RIG I-like-helicases and activation of protein
kinase RNA-activated (PKR)-dependent phosphorylation of eIF2α
(Clavarino et al, 2012a).

To further explore the importance of GADD34 in the control eIF2α
pathway in DC, we generated a novel transgenic mouse model with
floxed alleles for Ppp1r15a/Gadd34. This modification in the
Ppp1r15a gene allows, upon Cre recombinase expression, the de-
letion of the third exon that codes for the C-terminal PP1 interacting
domain of GADD34. This deletion creates a null phenotype for
GADD34-dependent eIF2α dephosphorylation (Harding et al, 2009)
(Fig S1A). Ppp1r15aloxp/loxp C57/BL6 mouse was crossed with an
Itgax-cre deleter strain (Caton et al, 2007) to specifically inactivate
GADD34 activity in CD11c-expressing cells, including all DC subsets.
Despite inducing a light splenomegaly, GADD34 inactivation had no
obvious consequences for splenocyte development in vitro and
in vivo (Fig S2). Flt3-L BMDCs derived from WT and Itgax-cre/
Ppp1r15aloxp/loxp (GADD34ΔC) mice were LPS-activated prior de-
tection of different translation factors by immunoblot (Fig 4A).
GADD34 inactivation prevented LPS-dependent eIF2α dephos-
phorylation; however, phosphorylation levels of the activator β
subunit of eIF2 (eIF2β), eEF2, and ribosomal S6 protein remained
unchanged, underlining GADD34 specificity for eIF2α (Fig 4A). eIF2β
phosphorylation is known to counteract p-eIF2α negative effect and
promotes mRNA translation (Gandin et al, 2016). However, in our
experimental setting, it was neither impacted by LPS activation nor
by the loss of GADD34 activity. eIF2β is, therefore, unlikely to in-
terfere with eIF2α regulation in DCs. Functional deletion of GADD34
inhibited translation initiation in both steady-state and LPS-
activated cDC2 (Fig 4B), and also reduced translating polysomes
speed in non-stimulated cells. GADD34 expression seems, there-
fore, to prevent protein synthesis inhibition linked to abundant
eIF2α phosphorylation in steady-state DCs. The amount of eIF2B
present in the DC seems, however, sufficient tomaintain a lower but
still active protein synthesis despite GADD34 inactivation and in-
creased p-eIF2α (Fig 4A).

In MEF, whereas induction of GADD34 transcription during ER
stress is ATF4 dependent (Walter & Ron, 2011), expression of GADD34
upon viral sensors activation is interferon regulatory factor 3 (IRF3)
dependent (Dalet al, 2017). We, therefore, inhibited the TANK-
binding kinase 1 (TBK1)/IKKε/IRF3 signaling axis to investigate if
it is also responsible of GADD34 induction in LPS-activated DCs.
Treatment with the TBK1 inhibitor (MRT67307, TBKin) (Clark et al,
2011) prevented LPS-dependent induction of GADD34mRNA (Fig 4C).
Ppp1r15a/GADD34 transcription is, therefore, also partially de-
pendent on the TBK1/IKKε signaling cascade in DC and not only on

test. **P < 0.01. (D) Levels of p-eIF2α and total eIF2α were measured in DC populations by immunoblot. Sorted steady-state Flt3-L BMDCs were compared with MEFs and
freshly isolated CD8α+ T cells stimulated or not with thapsigargin (Tg) for 2 h (200 nM). Ratio of p-eIF2α/eIF2α is quantified in the graph of the lower panel. (E) Levels of
p-eIF2α and total eIF2α were measured in bulk Flt3-L BMDCs during different days of BM differentiation in vitro. (F) Levels of protein synthesis were measured by
puromycilation and intracellular flow cytometry detection in different subsets of Flt3-L BMDCs and in CD8+ splenic T cells. Cells were incubated with puromycin 10 min
before harvesting and when indicated, cycloheximide (CHX, 10 μM) was added 5 min before puromycin. Steady-state Flt3-L BMDCs were directly compared with CD8+

splenic T cells either steady-state or stimulated overnight with anti-CD3 (10 μg/ml) and anti CD28 (5 μg/ml). Samples without previous incorporation of puromycin were
used as control. All data are representative of n = 3 independent experiments. Data in (F) represent mean fluorescence intensity ± SD of three independent experiments.
Statistical analysis was performed using unpaired t test (****P < 0.0001).
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the ATF4-dependent transcriptional axis. Importantly, protein
synthesis was reduced in GADD34ΔC cells (Fig 4B) and eIF2α
phosphorylation increased upon TBK1 inhibition in resting cells (Fig
4D). However, GADD34 mRNA expression levels were too low to
define if basal IKKε/TBK1/IRF3 signaling activity could promote
GADD34 mRNA expression in steady-state BMDCs. These results
suggest nevertheless that GADD34 transcription and translation is
regulated in both steady-state and activated DCs by the IKKε/TBK1/
IRF3 signaling cascade (Reid et al, 2016).

PERK mediates eIF2α phosphorylation in steady-state DCs

We next investigated the consequences of inactivating known
eIF2α kinases in steady-state Flt3-L BMDCs (Krishna & Kumar,
2018). We tested pharmacological and genetic inactivation of
PKR (EIF2AK2) and GCN2 (EIF2AK4) (Fig S3), without observing any
major disturbances in eIF2α phosphorylation levels. We next
turned toward the ER-stress kinase PERK (EIF2AK3) by crossing
PERKloxp/loxp mice with the Itgax-cre strain (Caton et al, 2007)
allowing for the deletion of the exons 7–9, coding for the kinase
domain (PERKΔK) in most CD11c-expressing cells (Fig S1B). PERK
protein synthesis levels were enriched in WT CD11c+ splenic DC
compared with other splenocytes (Fig 5A). PERK expression was
efficiently abrogated in Flt3-L BMDCs and to a relatively lesser
extent in spleen DCs isolated from animals bearing the floxed-
PERK alleles (Fig 5A). PERK inactivation did not impair DC devel-
opment in vitro nor in vivo (Fig S4) but decreased p-eIF2α levels by
60% in steady-state DCs (Fig 5B), whereas p-eEF2 levels remained
unchanged (Fig 5C). Interestingly, LPS stimulation induced eIF2α
dephosphorylation although PERK levels were increased upon
activation of WT Flt3-L BMDCs (Figs 4A and 5A). PERKΔK DCs did not
display any additional decrease in p-eIF2α levels, suggesting that
GADD34/PP1c activity requires functional PERK activity or high
p-eIF2α levels to be implemented in DCs. Conversely to GADD34-
deficient cells, PERK deletion increased translation initiation and
elongation rate as measured by SunRISE in both steady-state and
LPS stimulated cDC2 (Fig 5D). PERK is the EIF2AK responsible for
most eIF2α phosphorylation in Flt3-L BMDCs DCs and mirrors
GADD34 activity to regulate active protein synthesis at steady-
state and during DC activation.

DCs are insensitive to ISR induction by subtilase cytotoxin
(SubAB)

PERK is activated during DC development leading to intense eIF2α
phosphorylation at steady state, whereas these cells avoid
translational arrest, by expressing GADD34 and eIF2B, among other
potential compensatory biochemical mechanisms. We initiated a
search to identify the cause of PERK activation in DCs by testing if ER
stress triggers IRE1α and PERK activation during DC differentiation.
We monitored the splicing of XBP1 mRNA that reflects IRE1α
pathway activation (Walter & Ron, 2011) and found limited accu-
mulation of the spliced form of the XBP1mRNA (sXBP1) in the bulk of
differentiating DCs (Fig S5A). mRNA expression of other major
transcription factors induced during the UPR (Walter & Ron, 2011;
Han et al, 2013), such as ATF4 and ATF6, was found moderately
increased at day 7, whereas CHOP transcription remained

unaffected during differentiation. Because the induction of these
factors is mostly regulated at the posttranscriptional level, we
wondered if the constant PERK activity observed in DCs could in-
duce a chronic ATF4-dependent ISR in these cells. Recently,
translational and transcriptional programs that allow adaptation to
chronic ER stress have been described by Guan et al (2017). This cISR
operates via PERK-dependent mechanisms, which allow simulta-
neous activation of stress-sensing and adaptive responses while
allowing recovery of protein synthesis.

We took advantage of available transcriptomic data (GSE9810,
GSE2389) and of ATF4/CHOP-dependent gene (Han et al, 2013) to
perform a Gene Set Enrichment Analysis (GSEA) and define the
level of common gene expression found in DCs and potentially
shared with an artificially induced acute or cISR. GSEA was fol-
lowed by multiple testing correction (Subramanian et al, 2005)
using the BubbleGUM software, which allows statistical assess-
ment and visualization of changes in the expression of a pre-
defined set of genes in different conditions (Spinelli et al, 2015).
GSEA revealed no significant enrichment of ATF4- and CHOP-
dependent genes expression in the DC transcriptome (false
discovery rate [FDR] > 0.25) (Fig S6A and B). Acute ISR- and cISR-
dependent transcriptions, respectively, obtained after 1- or 16-h
treatments with thapsigargin (Guan et al, 2017) were also com-
pared with splenocyte transcriptomes. Again, no significant gene
enrichment could be detected during these analyses (Fig S6C and
D) (FDR > 0.25).

PERK- and p-eIF2α-mediated translational reprogramming
during cISR appears to bypass cap-mediated translation (Guan
et al, 2017). We, therefore, tested if protein synthesis in Flt3-L
BMDC was independent of 59 mRNA cap binding eIF4F complex,
composed of eIF4A, eIF4E, and eIF4G. We used 4EGI-1, an inhibitor of
eIF4F assembly (Moerke et al, 2007), and ROCA, an eIF4A inhibitor
(Iwasaki et al, 2019), to treat WT and PERK-deficient DCs and confirm
the dependency of their protein synthesis on eIF4F activity. Both
compounds had a profound inhibitory effect on DCs translational
activity (80% of reduction), irrespective of their subsets or acti-
vation state (Fig S5B and C). This level of inhibition indicates that DC
mostly depend on eIF4F-dependent cap-mediated translation, thus
again contrasting from cells undergoing cISR (Guan et al, 2017). DCs
have therefore adapted to the consequences of high eIF2α
phosphorylation to allow for translation of their specialized
transcriptome, without induction of acute or cISR and ATF4-
dependent transcriptional programs.

The lack of ATF4-dependent gene signatures in DCs when
compared with other CD45+ cell types made us to wonder whether
the high p-eIF2α levels observed at steady state could interfere
with DC capacity to respond to ER-stress. ER-chaperone BiP
(HSPA5, heat shock protein family A (Hsp70) member 5) is a key
component of the UPR. Accumulation of misfolded protein in the
ER-lumen causes BiP dissociation from IRE1α and PERK to induce
their dimerization and initiate the different signaling cascades
controlling the UPR. Flt3-L BMDCs were exposed to subtilase
cytotoxin (SubAB), a bacterial AB5 toxin, which by proteolytic
cleavage of BiP induces a strong UPR, including PERK-dependent
eIF2α phosphorylation (Paton et al, 2006). When WT and PERKΔK
DCs were submitted to SubAB treatment, a modest PERK-
dependent phosphorylation of eIF2α was observed in WT cells
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Figure 2. Protein synthesis is increased during in BMDCs differentiation.
(A) Levels of protein synthesis weremeasured every 2 d by flow cytometry during Flt3-L BMDCs differentiation in vitro (0, 2, 4, and 7 d). Cells were incubated during 10min
with puromycin, intracellularly stained with an α-puromycin antibody prior analysis. The same dimensionality reduction using t-distributed stochastic neighbor
embeding was applied to all samples. Macrophages (Macs) in black are gated as CD45+, CD11c+, CD11b+, F4/80+, and CD64+ cells; cDC1 in red express CD45+, CD11c+, MCHII+,
and CD24+; cDC2 in purple express CD45+, CD11c+, MHC II+, CD11b+, and Sirpα+; pDC in yellow express CD11cint and Siglec H+; cells negative for CD45 in gray are considered
as non-immune. (B) mRNA levels of eIF2Bε (Β5); eIF2Bγ (Β3), eIF2Bα (Β1), eIF2Bβ (Β2), eIF2Bδ (Β4), eIF2α (eIF2S1), and eIF2A measured by qRT-PCR in bulk Flt3-L BMDCs at
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(Fig 6A), with limited consequences on translation (Fig 6B). In
contrast to SubAB, thapsigargin treatment arrested translation
more efficiently and triggered stronger eIF2α phosphorylation by
PERK, but also by a different EIF2AK because p-eIF2α levels were
also increased in PERKΔK cells. Little ATF4 could be detected in the
cytosolic or nuclear fractions of control or toxin-treated DC (Fig 6C),
reflecting the modest induction of eIF2α phosphorylation (Fig 6D),
and confirming the limited impact of SubAB on ISR induction. The
efficacy of SubAB treatment was tested in MEFs, in which ATF4 was
strongly induced by the toxin and absent from control ATF4−/−

cell (Fig 6C). DCs are therefore unable to induce the ISR upon
SubAB treatment, despite the activation of other UPR branches, as
demonstrated by augmented IRE1α activity (Fig 6E), that is re-
sponsible for XBP-1 splicing and translation reduction through
IRE1-dependent decay of mRNA (RIDD) (Tavernier et al, 2017). BiP
mRNA levels were moderately augmented during DC differenti-
ation. However, the similar expression levels observed for DCs and
MEFs (Fig 6F) suggest that BiP transcriptional regulation is not
involved in the DC resistance to SubAB. The relatively high PERK
and GADD34 activity observed in steady-state DCs, together with

indicated days of differentiation and compared with control MEFs. (C) Levels of eIF2Bε, P-eIF2α, total eIF2α, and β-actin weremeasured in bulk Flt3-L BMDCs at indicated
days of differentiation in vitro. Quantification of the ratio eIF2Bε/P-eIF2α is shown on the right. All data are representative of n = 3 independent experiments. Data in (B)
represent Mean ± SD of three independent experiments. Statistical analysis was performed using Dunnett’s multiple comparison (*P < 0.05, **P < 0.01, and ***P < 0.001).

Figure 3. P-eIF2α and p-eEF2 levels are down-regulated upon LPS stimulation.
Flt3-L BMDCs were stimulated with LPS (100 ng/ml) for indicated hours. (A, B) Monitoring of p-eIF2α and (B) p-eEF2 by intracellular flow in CDC1 and cDC2. (C) Flow
detection of puromycin incorporation was performed on the cDC2 population. Total puromycinmean fluorescence intensity between steady-state and LPS activated cDC2
is shown for different time of harringtonine treatment. (D)Mean fluorescence intensity was plotted as a decay slope and establish the speed of translation elongation. All
data are representative of n = 3 independent experiments. Data represent mean ± SD of three independent experiments. (A, B, C, D) Statistical analysis was performed
using Dunnett’s multiple comparison (A, B, C, D) Mann–Whitney test (**P < 0.01 and ****P < 0.0001).
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Figure 4. GADD34 mediates eIF2α dephosphorylation and controls translation in DCs.
WT and GADD34ΔC BMDCs were stimulated with LPS (100 ng/ml) for the indicated times. (A) Levels of p-eIF2α, total eIF2α, p-eIF2β, total eIF2β, p-eEF2, total eEF2, P-S6,
and total S6 were detected by immunoblot (top left) and quantification is shown in the different panels. (B) The speed of translation elongation wasmeasured by SunRISE
after 3 h of incubation with LPS. Harringtonine (2 μg/ml) was added at different times up to 90 s prior incubation with puromycin during 10 min. Flow intracellular staining
was performed in cDC2 using an α-puromycin antibody. The total decay of puromycinmean fluorescence intensity between WT and GADD34ΔC in steady-state and upon
activation indicates that translation initiation and elongation speed is decreased in GADD34-deficient DCs. Flt3-L BMDCs were pretreated with 2 μM of the TBK1 inhibitor
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high eIF2B expression, and potentially eIF2A, would prevent a full
ISR induction, including translation arrest, ATF4 synthesis and
associated transcriptional response.

Importance of the ISR for PRRs signaling

In macrophages, p-eIF2α- and ATF4-dependent expression of HSPB8
is required for the assembly of PRR signaling adapters, such as
mitochondrial antiviral-signaling protein (MAVS), or TIR domain–
containing adapter protein inducing interferon-α (TRIF), but not of
myeloid differentiation primary response gene 88 (MyD88). HSPB8
seems necessary for TRIF and MAVS to be incorporated into protein
aggregates that constitute signalosomes for different innate im-
munity signaling pathways triggered by MAMPs (Abdel-Nour et al,
2019). Given the lack of ATF4 synthesis and the resistance of active
DCs to mount an acute ISR, we investigated their capacity to produce
pro-inflammatory cytokines and type-I IFN in a perturbed eIF2α-
phosphorylation context. Importantly, we have previously shown that
GADD34-deficient BM-derived and spleen DCs, have a reduced ca-
pacity to produce IFN-β (Clavarino et al, 2012b; Perego et al, 2018). IFN-β
and IL-6 mRNA expression were therefore quantified after 4 h of LPS
activation of WT and PERKΔK DCs. IL-6 transcription (Fig S7A) and
secretion (Fig 7A) remained unchanged. However, IFN-β secretion
was reduced by half in PERKΔK DCs (Fig 7A), whereas its tran-
scription remained surprisingly unaffected in mutant cells (Fig S7A),
suggesting that PERK activity is necessary for normal synthesis and
secretion of IFN-β independently of the activation of the TRIF-
dependent pathway downstream of TLR4.

We further investigated the importance of eIF2α-phosphoryla-
tion with respect to PERK activity using a pharmacological ISR
inhibitor (ISRIB) (Sidrauski et al, 2015), which prevents inhibition of
eIF2B by p-eIF2α and prevents translation inhibition, as shown here
for MEFs in different ISR-inducing conditions (Fig 7B). ISRIB should
prevent the induction of the ISR in activated DCs and interfere, as
reported for macrophages (Abdel-Nour et al, 2019), with TRIF sig-
naling and down-stream IFN-β expression. In our experimental
system, we used LPS and polyinosinic:polycytidylic acid (poly(I:C)) to
stimulate, respectively, TRIF-dependent TLR4 and TLR3 (Fitzgerald &
Kagan, 2020). IFN-β mRNA induction upon stimulation of DCs with
either LPS (Figs 7C and S7B) or poly(I:C) (Fig S7B) was not impaired by
ISRIB. IL-6 transcription which is believed to be mostly Myd88-
dependent was moderately decreased by ISRIB in LPS-activated
DCs and more acutely in BMDM (Fig S7B and C), confirming that cell-
specific mechanisms control the transcription of the IL-6 family of
cytokines during the ISR (Sanchez et al, 2019). Importantly, TRIF-
dependent expression of IFN-β upon LPS activation of BMDM was
not impacted by ISRIB treatment, whereas comparatively, poly I:C
activation of these cells was too inefficient to obtain statistically
reliable data (Fig S7C). We next tested if ISRIB treatment augments
IFN-β, IL-6, IL-10, and TNF secretion after 4 h of LPS stimulation in
BMDM (Fig 7D). This unchanged (DC) or augmented (BMDM) IFN-β

production observed in the presence of ISRIB confirms that TRIF-
dependent signaling does not require acute ISR induction nor ATF4-
dependent transcription to promote signalosomes assembly and
cytokines expression in DC and probably also macrophages. ISRIB
facilitates, however, the production of several cytokines upon acti-
vation, confirming that eIF2α phosphorylation decreases the efficacy
of cytokines mRNAs translation upon MAMPs detection.

Given the impact of ISRIB on cytokine secretion, we decided to
analyze further the response to LPS in cells inactivated for PERK
pharmacologically. Cytokines expression was monitored in LPS-
activated DCs in presence of the PERK inhibitor GSK2656157 (Axten
et al, 2013) (Fig 7C). GSK2656157 treatment decreased both IFN-β and
IL-6 secretion by 30–50% (Fig 7A). Over 4 h of treatment, no significant
changes in IL-6 mRNA expression was observed, whereas IFN-β
transcription was reduced (Fig S7D). These cytokines seem therefore
differently affected by alterations in DCs of PERK activity and of eIF2α
phosphorylation. IL-6 transcription is sensitive to ISRIB and requires
eIF2α phosphorylation. IFN-β transcription and secretion seems,
however, dependent on PERK activity, but surprisingly not on eIF2α
phosphorylation nor the ISR. We extended our analysis to IL-10 and
TNF secretion upon GSK2656157 treatment of LPS-stimulated Flt3L-
BMDCs (Fig 8A). These cytokines expression remained, however,
unaffected by ISRIB, but like for IFN-β and IL-6, their translation was
reduced upon PERK inhibition, suggesting a key role for PERK in
promoting cytokines translation in activated DCs.

PERK was recently proposed to control the caspase-1–
dependent proteolysis of pro- to mature IL-1β to allow its secretion
(Chiritoiu et al, 2019). Given the contrasting effects of PERK inac-
tivation on IFN-β and IL-6 expression, we examined how WT and
PERKΔK-DCs co-stimulated with LPS and ATP were promoting the
conversion and secretion of mature IL-1β (Fig 8B). Surprisingly, we
did not observe any impairment of IL-1β expression in PERKΔK-DCs,
but rather an increase by 25% of both IL-1βmRNA transcription and
mature IL-1β secretion compared with WT cells (Fig 8B). IL-1β se-
cretion was also monitored in presence of ISRIB and GSK2656157
(Fig 8C), whichmoderately reduced IL-1βmRNA transcription only in
LPS and ATP activating conditions, this without incidence onmature
IL-1β secretion. These results suggest that acute pharmacological
PERK inactivation has little effect on IL-1β processing and secretion,
whereas long-term inactivation favors this secretion potentially by
decreasing the inflammasome activation threshold, as previously
observed in autophagy deficient macrophages or DCs (Terawaki
et al, 2015). PERK inactivation in DCs is therefore not detrimental to
IL-1β processing but favors its production and secretion, which
could in turn increase IL1B mRNA transcription in a feed-back
positive loop (Ceppi et al, 2009).

Antigen presentation in PERK-deficient DCs

Given the impact of PERK inactivation in DC capacity to secrete type-I
IFN, we decided to investigate how it could also interfere with the

(MRT67307) for 1 h, before stimulation with LPS (100 ng/ml) for indicated times. (C) mRNA levels of GADD34 were measured by qRT-PCR and normalized to the
housekeeping gene (GAPDH) level. (D) Immunoblot detection of p-eIF2α, total eIF2α, P-IRF3, and total IRF3. Quantification is represented on the right. (A, B, C) Statistical
analysis was performed using the Wilcoxon test (A, C, B), and Mann–Whitney test (*P < 0.05 and ****P < 0.0001). (D) All data are representative of n = 3 independent
experiments except (D), n = 2.
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Figure 5. PERK is activated in steady-state DCs.
(A) Immunoblot detection of PERK and β-actin. Quantification is shown on the right. WT and PERKΔK Flt3-L BMDC treated or not with LPS (100 ng/ml) for 6 h were compared
with CD11c+ and CD11c− fractions of splenocytes. WT and PERK−/−MEFs were used as control. (B, C)WT and Flt3-L PERKΔK BMDCs were stimulated or not with LPS (100 ng/ml)
for 4 h. (B) Quantification of p-eIF2α/eIF2α ratio (immunoblot). (C) Quantification of p-eEF2/eEF2 ratio (immunoblot). (D) The speed of translation elongation was measured
using SunRISE in Flt3-L cDC2 after 4 h of incubation with LPS. The total decay of puromycin mean fluorescence intensity between WT and PERKΔK in steady-state and upon
activation is showed. All data are representative of n = 3 independent experiments. (B, C, D) Statistical analysis was performed using Wilcoxon test (B, C) and Mann–Whitney
test (D). Data in (D) represent mean fluorescence intensity ± SD of three independent experiments (**P < 0.01, ***P < 0.001, and ****P < 0.0001).
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processing and presentation of exogenous antigens. Surface levels of
MHC II and CD86 of WT and PERKΔK BMDC were monitored by flow to
establish the capacity of DC1 and DC2 subsets to activate in response
to LPS (Fig S8A). Our analysis indicated that WT and PERKΔK BMDC
responded equally well to LPS stimulation and did not display
differences in surface MHC II nor CD86 levels that could suggest an
impairment in their presentation capacity to T cells. We next
incubated Flt3-L BMDCs for 8 h with increasing concentrations of
hen egg lysozyme (HEL) in presence or not of the PERK inhibitor
GSK2656157, prior assaying processing and presentation by
measuring CD69 surface up-regulation and the production of IL-2
by the 3A9 (HEL 48-62 on I-Ak) specific T hybridoma (Fig S8B). We
found that PERK inhibition had no effect on the efficiency of MHC II
restricted processing and presentation of soluble antigens in vitro
and consequently did not interfere with the transport of MHC II
molecules.

PERK and actin polymerization coordinates p-eIF2α levels and
migration in DCs

Recently, the importance of globular actin in the formation of a
tripartite holophosphatase complex assembled with GADD34 and
PP1c to dephosphorylate eIF2α was revealed (Chambers et al, 2015;
Crespillo-Casado et al, 2017, 2018). Given the unusual regulation of
eIF2α phosphorylation in DCs, actin organization could impact this
pathway in a different setting than artificial ER stress induction.
Actin depolymerizing and polymerizing drugs, respectively,
Latrunculin A (Lat A) and Jasplakinoloide (Jaspk) had opposite
effects on eIF2α phosphorylation in Flt3-L BMDCs (Fig 9A). globu-
lar actin accumulation induced by Lat A was strongly correlated
with eIF2α dephosphorylation (Fig 9A and B), whereas actin poly-
merization induced by Jaspk resulted in a massive increase in eIF2α
phosphorylation, together with a reduction in protein synthesis (Fig
9A and C). We next tested the impact of the two drugs on WT and
PERKΔK Flt3-L BMDCs activated or not by LPS (Fig 9D). LPS activation
or Lat A treatment resulted in the same levels of eIF2α dephos-
phorylation (Fig 9D). In contrast, Jaspk dominated LPS effect and
strongly increased p-eIF2α levels in all conditions tested. PERK
inactivation decreased the levels of p-eIF2α, but had no obvious
consequences on the efficacy of the drugs because both induced
similar responses in WT and PERKΔK cells.

We tested the impact of actin remodeling and translation reg-
ulation on the acquisition by DC of their immune-stimulatory
phenotypes. Surface MHC II and co-stimulatory molecule CD86
expression were up-regulated by LPS stimulation but remained
unaffected by Jaspk treatment (Fig S9A). Similarly, transcription
levels of key cytokines such as IL-6 and IFN-β were insensitive to
this actin polymerizing drug (Fig S9B and C). However, whereas IL-6
secretion remained identical, IFN-β levels were found reduced by
Jaspk treatment, as expected from a situation in which GADD34
activity is reduced (Clavarino et al, 2012b). Interestingly, the IL-6
gene was described to bear an upstream uORF-dependent
translational regulation, which could allow IL-6 mRNA translation
upon high eIF2α-phosphorylation conditions induced by Jaspk
treatment (Sanchez et al, 2019). Taken together, these observations
suggest that extensive actin polymerization in DCs increases
strongly eIF2α phosphorylation, affecting protein synthesis and

ultimately controlling translationally specific cytokines expression,
similarly to what has been observed with Cdc42 or Wiskott–Aldrich
syndrome protein mutants (Pulecio et al, 2010; Prete et al, 2013).
These results further suggest that actin dynamics and its effect on
eIF2α phosphorylation could be key regulating factors for the
homeostasis and translation of specific mRNA encoding for pro-
teins generally secreted in a polarized fashion, such as type I IFNs,
or associated with cell migration (Pulecio et al, 2010; Prete et al,
2013). Finally, given the interplay between eIF2α phosphorylation
and actin polymerization, we wondered whether PERK-deficient
cells could display some migratory deficits. We used micro-
fabricated channels, which mimic the confined geometry of the
interstitial space in tissues (Heuze et al, 2013; Bretou et al, 2017), to
find that PERK-deficient cells were not able to increase their mi-
gration speed in response to LPS (Fig 9E), confirming the link be-
tween eIF2α phosphorylation and actin dynamics. PERK activity is,
therefore, necessary for DCs to acquire normal immune-stimulatory
and migratory activities, presumably by coordinating protein syn-
thesis and translation specific mRNAs with actin polymerization.

Discussion

We have previously proposed the existence of a strong causative
link between cell activation by TLR ligands and eIF2α phosphory-
lation, notably by virtue of strong GADD34 expression in most
transcriptomics studies performed on PAMP-activated DCs
(Clavarino et al, 2012b; Claudio et al, 2013; Reverendo et al, 2018). Our
present work suggests that steady-state DCs activate PERK-
mediated eIF2α phosphorylation to acquire their functional
properties during differentiation (Fig S8), but distinctly from known
ISR programs, normally induced upon acute or chronic ER stress
(Han et al, 2013; Guan et al, 2017).

To our knowledge, the level of p-eIF2α observed in primary DC
both in vivo and in vitro are unique in their amplitude. Although as
judged comparatively from experiments performed with artificial
induction of the different EIF2KAs, such p-eIF2α levels should be
inhibitory for global protein synthesis (Dalet et al, 2017). DCs have
acquired biochemical resistance, like high expression of eIF2B and
eIF2A, to compensate for the consequences of this developmental
PERK activation and to undergo high eIF2α phosphorylation,
whereas maintaining normal proteostasis.

ATF4’s role in controlling Ppp1r15a/GADD34 mRNA expression
and eIF2α dephosphorylation to restore protein synthesis during
stress has been extensively studied (Novoa et al, 2001). Despite high
eIF2α phosphorylation, the active translation observed in DCs does
not seem to allow ATF4 synthesis and consequently the activation
of a bona fide ISR in these cells. In contrast, GADD34 is functional in
non-activated DCs with IKKε/TBK1 activity required for its mRNA
transcription. This dependency of Ppp1r15a/GADD34 transcription
on IKKε/TBK1 confirms that the PPP1R15a gene belongs to a group of
genes directly induced by TLR or RLR signaling, as previously
suggested by genomic analysis of viral or poly (I:C)-stimulated cells
(Freaney et al, 2013; Lazear et al, 2013; Dalet et al, 2017). GADD34
protein expression is undetectable in DCs, without prior treatment
with proteasome inhibitors (Clavarino et al, 2012b), which is
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Figure 6. Flt3-L BMDCs are resistant to subtilase cytotoxin-induced integrated stress response.
WT and PERKΔK Flt3-L BMDCs were stimulated with thapsigargin (200 nM) and subtilase cytotoxin (SubAB, 250 ng/ml) for the indicated times. (A) Levels of p-eIF2α and
total eIF2α detected by immunoblot (left) and quantified (right). (B) Levels of protein synthesis measured by flow using puromycilation detection in cDC2. Cells were
incubated with puromycin 10 min before harvesting. The graph shows the total puromycin mean fluorescence intensity levels. (C) WT Flt3-L BMDCs, WT and ATF4−/− MEFs
were stimulatedwith subtilase cytotoxin (SubAB, 250 ng/ml) for 2 h. Both cytoplasmic (cyt) and nuclear (nuc) fractions were analyzed. Levels of p-eIF2α, total eIF2α, ATF4,
and HDAC1 (nuclear loading control) were revealed by immunoblot. (D) p-eIF2α quantification is represented in (D). (E) WT Flt3-L BMDCs were stimulated with subtilase
cytotoxin (SubAB, 250 ng/ml) for the indicated times. mRNA levels of spliced XBP1 were measured by qRT-PCR in bulk Flt3-L BMDCs. Raw data were normalized to total XBP1

PERK is active in steady-state DCs Mendes et al. https://doi.org/10.26508/lsa.202000865 vol 4 | no 2 | e202000865 12 of 22

B. Article: Proteostasis in dendritic cells is controlled by the PERK signaling axis
independently of ATF4

221



presumably indicative of an extremely fragile equilibriumbetween its
translation and active degradation. GADD34 mRNA translation, like
that of ATF4, is controlled through 59 upstream ORFs regulation,
which are normally bypassed upon general translation arrest to favor
the synthesis of these specific ISR molecules (Palam et al, 2011).
Interestingly, GADD34 mRNA has been recently shown to be also
actively translated in unstressed MEFs, albeit at much lower levels
than upon ER stress (Reid et al, 2016). Thus, in steady-state DCs,
GADD34 synthesis likely occurs in a high eIF2α-phosphorylation
context, despite relatively normal level of translation, whereas that of
ATF4 does not. The difference in the 59 upstreamORFs organization of
themRNAs coding for these twomolecules (Palamet al, 2011; Andreev
et al, 2015), could explain this difference, and how GADD34/PP1c
activity contributes to the maintenance of protein synthesis activity
by counteracting PERK in steady-state DCs.

Importantly, the PERK/eIF2α/GADD34 molecular trio sets the
physiological range for potential protein synthesis initiation available
in the different DC activation stage; however, the upward progression
triggered by LPS stimulation, from one level of protein synthesis to the
next, does not depend on this biochemical axis and is likely regulated
by other protein synthesis regulation pathways, like the mTORC1 or
casein kinase 2 pathways (Lelouard et al, 2007; Reverendo et al, 2019)
(Fig S10). Other mechanisms that contribute to escape PERK-mediated
eIF2α phosphorylation, including the eIF2B-independent and eIF3-
dependent pathway recently described to rescue translation during
chronic ER stress (Guan et al, 2017), do not seem to be used in the DC
context. Given the amount of eIF2A and eIF2B expressed by differ-
entiated DCs, these factors are likely to be sufficient to counteract
excessive eIF2α phosphorylation and maintain protein synthesis level
in DCs. This activity could be equivalent to the TLR-dependent acti-
vation of eIF2B through PP2A-mediated dephosphorylation of the
eIF2Bε-subunit, which prevents translation arrest in tunicamycin
treated macrophages (Woo et al, 2012).

These DC-specific mechanisms prevent the induction of the ISR
by the AB5 subtilase cytotoxin, which targets the ER chaperone BiP.
Independently of demonstrating that induction of acute eIF2α
phosphorylation by thapsigargin is not solely dependent on PERK
activation, our observations suggest that DCs could escape EIF2KA-
dependent translation arrest during exposure to different meta-
bolic insults relevant to the immune context. These situations can
include viral infection (Clavarino et al, 2012b), exposure to high
levels of fatty acids during pathogenesis, oxidative stress during
inflammation or amino acids starvation, mediated by amino
acid–degrading enzymes, such as arginase 1 or IDO, which are
induced during infection or cancer development (Munn et al, 2004;
Claudio et al, 2013). Importantly we could also show, which the ISR
induction is not necessary for DCs to drive the transcription of pro-
inflammatory cytokines in response to TRIF or MAVs dependent-
signaling (Abdel-Nour et al, 2019), nor the secretion of IL-1β
(Chiritoiu et al, 2019).

PERK activation is therefore required to regulate mRNA trans-
lation during DC differentiation and potentially also GADD34 syn-
thesis, which not only provides a negative feed-back to PERK, but

also is required for normal DC activation and cytokines expression
(Clavarino et al, 2012b; Perego et al, 2018). Although a role for the ISR
has been suggested to favor the survival of tissue associated DCs
(Tavernier et al, 2017), we could not detect any particular phenotype
impairing the development of DCs in the spleen of PERK-deficient
animals. A close examination of the functional capacity of DC in
vitro showed that although soluble antigen presentation was not
affected by PERK inactivation, it induced nevertheless an alteration
of IFN-β and cytokines production as well as of DC migratory ca-
pacity upon MAMPs activation. Interestingly, ROCK-induced acto-
myosin contractility in transformed fibroblasts enhances signaling
through PERK and ATF4 (Boyle et al, 2020), whereas PERK itself has
been shown to interact with filamin-A and to participate to F-Actin
remodeling in MEFs (van Vliet et al, 2017), suggesting that the mi-
gratory deficit observed in PERK-deficient DCs could be also de-
pendent on these interactions. This finding echoes with the
existence of a cross-talk between actin skeleton organization and
the main molecular actors involved in the ISR (Chambers et al, 2015;
Chen et al, 2015). We confirmed that globular actin synergizes with
the PP1c to dephosphorylate p-eIF2α, suggesting that the PERK/
GADD34 pathway could play an important role in regulating
translation in response to actin dynamics and possibly in coor-
dinating migration or interactions with T cells.

DCs therefore represent a model of choice for studying this
possibility, given their developmental regulation of eIF2α phos-
phorylation and their requirement for actin dependent-
phagocytosis and migration to perform their immune-stimulatory
function. The activation of PERK/GADD34 pathway in steady-state
DCs also underlines the importance of these molecules in ho-
meostatic condition, independently of obvious acute ER stress, for
the acquisition of specialized function. Clearly, the use of PERK-
deficient cells versus pharmacological inhibition creates some
discrepancies on how several biochemical functions in DCs are truly
affected directly by PERK loss or reduced eIF2α phosphorylation.
Our findings open nevertheless new pharmacological perspectives
for therapeutic immune intervention by targeting PERK, GADD34, or
eIF2α phosphorylation.

Materials and Methods

Cell culture

BM was collected from 6- to 9-wk-old female mice and differen-
tiated in DCs or macrophages during 7 d. The culture was kept at
37°C, with 5% CO2 in Roswell Park Memorial Institutemedium (RPMI)
(GIBCO), 10% FCS (Sigma-Aldrich), 100 U/ml penicillin, 100 U/ml
streptomycin (GIBCO), and 50 μM β-mercaptoethanol (VWR) sup-
plemented with Flt3-L, produced using B16-Flt3-L hybridoma cells
for DC differentiation or M-CSF for macrophages, as described
previously (Wang et al, 2013). For the migration assays, GM-CSF was
used instead of Flt3-L and cells were cultured during 10–12 d with

mRNA expression. (F) Levels of BiP mRNA expression measured by qRT-PCR during Flt3-L BMDCs differentiation and in MEFs stimulated with thapsigargin for 30 min.
Data are mean ± SD (n = 3). Statistical analysis was performed using Dunnett’s multiple comparison (*P < 0.05 and **P < 0.01).
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changes in the medium each 3 d. GM-CSF was obtained from
transfected J558 cells (Pierre et al, 1997). To obtain splenocytes,
spleens were collected and injected with Liberase TL (Roche) and
incubated 25 min at 37°C to disrupt the tissues. DC purification was
performed using a CD11c+ positive selection kit (Miltenyi), according
to the manufacturer’s instructions and CD8α+ T-cell isolation was
performed with a Dynabeads untouched mouse CD8 T cells kit from
Thermo Fisher Scientific. CD8α+ T where incubate overnight with anti-
CD3 (10 μg/ml) and anti-CD28 (5 μg/ml) antibodies, to mimic acti-
vation by APCs. MEFs used in this work, ATF4−/− andmatchedWT (129
SvEv) were a kind gift from Prof. David Ron (Cambridge Institute for
Medical Research). PERK KO−/− and matched WT were a kind gift from
Prof. Douglas Cavener (Penn State University). MEFs were cultured
in DMEM medium (GIBCO) with 5% FBS (Sigma-Aldrich) and 50 μM
2-mercaptoethanol. For the experimental assays, cells were plated
from 16 to 24 h before stimulation in six well plates, at 150,000 cells/ml
in 2 ml of the same medium. After stimuli, cells were treated with
trypsin–EDTA for 2 min at 37°C before washing to detach cells from the
wells.

Reagents

LPS (E. coli O55:B5), cycloheximide, puromycin, MRT67307,
GSK2656157, rocaglamide, and thapsigargin were purchased from
Sigma-Aldrich. Harringtonine is from ABCAM, Latrunculin A, and
Jasplakinolide are from Merck-Millipore. Low molecular weight
polyinosinic-polycytidylic acid (LMW poly(I:C)) was from InvivoGen.
SAR1 was kindly provided by Sanofi and Integrated Stress Response
Inhibitor (ISRIB) was a gift from Carmela Sidrausky and Peter Walter
(UCSF). Subtilase cytotoxin (Shiga toxigenic E. coli strains) was
purified from recombinant E. coli, as previously described (Paton
et al, 2004). 4EGI-1 was purchased by Bertin bioreagent. HEL and the
peptide HEL 46-61 were purchased from Thermo Fisher Scientific.

Flow cytometry analysis

Cell suspensions were washed and incubated with a cocktail of coupled
specific antibodies for cell surface markers in flow activated cell sorting
(FACS) buffer (PBS, 1% FCS, and 2 mM EDTA) for 30 min at 4°C. For Flt3-l
BMDCs, the antibodies usedwere CD11c (N418), SiglecH (551), CD86 (GL-1),
F4/80 (BM8), CD64 (X54-5/7.1) from BioLegend; Sirpα (P84), CD24 (M1/69),
and MHC II (M5/114.15.2) from eBioscience CD11b (M1/70) from BD Bio-
science. For splenic cells, the antibodies used were NKp46 (29A1.4), CD4
(RM4-5), CD3 (145-2C11), CD11c (N418), CD19 (eBio1D3), CD8α (53-6.7) from
eBioscience, BST2 (927), Ly6G, F4/80, Ly6C fromBioLegend; CD11b (M1/70),
B220 (RA3-6B2), andCD69 (H1.2F3) fromBDBiosciences. These antibodies
were used in combination with the LIVE/DEAD Fixable Aqua Dead Cell
Stain (Thermo Fisher Scientific). For intracellular staining, cells were next
fixed with BD Phosflow Fix Buffer I (BD Biosciences) during 10 min at
room temperature and washed with 10% Perm/wash Buffer I 1× (BD
Biosciences). Permeabilized cells were blocked during 109 with 10%
Perm/wash buffer 1×, 10% FCS, before staining with primary antibodies.
When the primary antibody was not coupled, cells were washed after
and blocked during 10 min with Perm/wash buffer 1×, 10% FCS, and 10%
of serum from the species where the secondary antibodywas produced.
Then, the incubationwith the secondary antibody was performed at 4°C
during 30 min. p-eIF2α(S51) was purchased from ABCAM and

p-eEF2(Thr56) from Cell Signaling and Deoxyribonuclease (DNAse I)
was purchased from Invitrogen. Data were acquired on an LSR-II/
UV instrument using FACS Diva software. The acquired data were
analyzed with FlowJo software (BD Biosciences).

Translation intensity and speed measurement

SUnSET technique tomeasure the intensity of protein synthesis was
used as previously described (Schmidt et al, 2009). Puromycin was
added in the culture medium at 12.5 μg/ml, and the cells were
incubated for 10 min at 37°C and 5% CO2 before harvesting. Cells
were washed with PBS before cell lysis and immunoblotting with
the anti-puromycin 12D10 antibody (Merck Millipore). For flow
cytometry (flow) cells were processed, as described below for the
intracellular staining, using the α-puromycin 12D10 antibody di-
rectly conjugated with Alexa 488 or A647 from Merck Millipore. The
SUnRISE technique was performed as described (Arguello et al,
2018). Samples were treated with 2 μg/ml of harringtonine at dif-
ferent time points (90, 60, 45, 30, 15, and 0 s) and then treated for 10
min with 12.5 μg/ml of puromycin. For the measurement of Cap-
dependent translation, the cells were treated with 4EGI-I (100 μM)
or rocaglamide (RocA-1) (100 nM) for 0.5, 1, 2, or 4 h. Cells were then
incubated for 15 min at 37°C and stained with the 12D10 antibody
(Merk-Millipore).

Gene expression analysis

Total RNA was extracted from the DCs using the RNeasy Mini Kit
(QIAGEN), including a DNA digestion step with RNAse-free DNAse
(QIAGEN), and cDNA was synthesized using the Superscript II Re-
verse Transcriptase (Invitrogen). Quantitative PCR amplification
was performed using SYBR Green PCR master mix (Takara) using 10
ng of cDNA and 200 nM of each specific primer on a 7500 Fast Real-
PCR system (Applied Biosystems). cDNA concentration in each
sample was normalized to GAPDH expression. The primers used for
gene amplification were the following: GADD34 (S 59-GACCCCTCC
AACTCTCCTTC-39, AS 59-CTTCCTCAGCCTCAGCATTC-39); IL-6 (S 59-CAT
GTTCTCTGGGAAATCGTG-39, AS 59-TCCAGTTTGGTAGCATCCATC-39); IFN-β
(S 59-CCCTATGGAGATGACGGAGA-39, AS 59-ACCCAGTGCTGGAGAAATTG-39);
IL-12 (S 59-GGAATGTCTGCGTGCAAGCT-39, AS 59-ACATGCCCACTTGCTGCAT-
39); ATF4 (S 59-AAGGAGGATGCCTTTTCCGGG-39, AS 59-ATTGGGTTCACT
GTCTGAGGG-39); CHOP (S 59-CACTTCCGGAGAGACAGACAG-39, AS 59-ATGA
AGGAGAAGGAGCAGGAG-39); PERK (S 59-CGGATTCATTGAAAGCACCT-39, AS
59-ACGCGATGGGAGTACAAAAC-39); XBP1 (S 59-CCGCAGCACTCAGACTATG-
39, AS 59-GGGTCCAACTTGTCCAGAAT-39); spliced XBP1 (S 59-CTGAGT
CCGCAGCAGGT-39, AS 59-AAACATGACAGGGTCCAACTT-39); GAPDH (S 59-
TGGAGAAACCTGCCAAGTATG-39, AS 59-GTTGAAGTCGCAGGAGACAAC-39);
IL1-β (S 59-TGATGTGCTGCTGCGAGAGATT-39, AS 59-TGCCATTTTGACAGTGA-
39); eIF2Bε (S 59-GAGCCCTGGAGGAACACAGG-39 AS 59-CACCACGTTGT
CCTCATGGC-39); BIP S (59-ATTGGAGGTGGGCAAACCAA-3’ AS 59-TCGCTG
GGCATCATTGAAGT-39).

GSEA

The GSEA was performed using published murine microarray
datasets accessible through the Gene Expression Omnibus re-
pository under the references GSE9810 (Robbins et al, 2008) and
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Figure 7. ISRIB does not inhibit cytokines expression in LPS activated DCs and Macrophages.
(A) IFN-β and IL-6 secretion was measured by Legendplex in WT and PERKΔK Flt3-L BMDCs stimulated with LPS during 4 h. (B) Protein synthesis was measured by
puromycilation and flow in MEFs treated with ISRIB and different the integrated stress response inducing drugs, thapsigargin (Tg), subtilase cytotoxin (SubAB), and
sodium arsenite for indicated times. (C, D) IFN-β, IL-6, IL-10, and TNF secretion was measured by Legendplex in (C) Flt3-L BMDCs and (D) M-CSF BMDM. Data are mean ± SD
(n = 3). Statistical analysis was performed using Wilcoxon test (*P < 0.05 and **P < 0.01).
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Figure 8. PERK inactivation and cytokines expression.
(A) IL-10 and TNF secretion was measured by Legendplex in Flt3-L BMDCs activated with LPS and treated or not with ISRIB or GSK2656157 for 4 h. (B) IL-1β mRNA
expression measured by qRT-PCR (left) and secretion by ELISA (right) in WT and PERKΔK Flt3-L BMDCs stimulated with LPS during 4 h and with ATP for the last 30 min of
treatment. (C) IL-1β mRNA expression measured by qRT-PCR (left) and secretion by ELISA (right) in Flt3-L BMDCs activated with LPS and treated with GSK2656157 and/or
ISRIB for 4 h and with ATP for the last 30 min of treatment. (A, B, C) Statistical analysis was performed using Dunnett’s multiple comparison (A, B) and Wilcoxon test (C).
Data are mean ± SD (n = 3). independent experiments (*P < 0.05, **P < 0.01, and ***P < 0.001).
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Figure 9. eIF2α phosphorylation levels are regulated by G-actin availability.
WT Flt3-L BMDCs were treated with Latrunculin A (50 nM) (Latrunc A) and Jasplakinolide (1 μM) (Jasp) for the indicated times. (A) Levels of p-eIF2α and total eIF2α
detected by immunoblot in Flt3-L BMDCs. (B) Globular actin levels were measured by flow cytometry intracellular staining using a fluorochrome coupled DNAse I protein
in cDC2 population from Flt3-L BMDCs. The graph shows total mean fluorescence intensity levels. (C) Levels of protein synthesis in cDC2 were measured by puromycilation
and flow intracellular staining. Cells were incubated with puromycin 10 min before harvesting. The graph shows total puromycin mean fluorescence intensity levels. WT
and PERKΔK Flt3-L BMDCs were treated with LPS (100 ng/ml), Latrunc A, and Jasp for 4 h. (D) Levels of p-eIF2α and total eIF2αmonitored by immunoblot in Flt3-L BMDCs.

PERK is active in steady-state DCs Mendes et al. https://doi.org/10.26508/lsa.202000865 vol 4 | no 2 | e202000865 17 of 22

B. Article: Proteostasis in dendritic cells is controlled by the PERK signaling axis
independently of ATF4

226



GSE2389 (Fontenot et al, 2005). Raw microarray data describing
CD8} + cDCs (DC1), CD11b+ cDC (DC2), pDC (plasmacytoid DCs), B
cells, NK cells, CD8+ T cells (Robbins et al, 2008), and CD4+ T cells
(Fontenot et al, 2005) in mice spleen were downloaded. For each of
these cell types, the hybridization was performed using Affymetrix
mouse 4302.0 gene chips. Microarray data were normalized by
Robust Multi-array Average algorithm (Irizarry et al, 2003) using the
oligo BioconductorR package (Carvalho & Irizarry, 2010). Normali-
zation consists of a background correction of raw intensities, a log2
transformation followed by quantile normalization to allow the
comparison of each probe for each array. Before data usage, the
absence of batch effect was assessed by Principal Component
Analysis using ade4R package (Bougeard & Dray, 2018).

GSEA was performed using publicly available gene signatures
reflecting an ISR state (Tables S1–S3). Lists of ATF4 and CHOP target
genes identified by ChIP-seq experiments (Han et al, 2013) have
been used to search for ATF4-dependent and CHOP-dependent
signatures in DCs (Tables S2 and S3). Lists of genes for which a
translational up-regulation after 1 h of thapsigargin (Tg) treatment
and congruent (both transcriptional and translational) up-
regulations after 16 h of Tg treatment (Guan et al, 2017) were
used to search gene expression signatures, respectively, of acute
and/or cISRs in DCs. GSEA was generated using BubbleGUM
(Spinelli et al, 2015). Briefly, GSEA pairwise comparisons are per-
formed for each probe and the multiple testing effects are cor-
rected using a Benjamini–Yekutieli procedure. The corrected
P-values are hence calculated based on a null hypothesis distri-
bution built from the permutations of the gene sets across all the
pairwise comparisons. In our analyses, 10,000 permutations of the
gene sets have been performed to compute the P-values. All results
with a FDR below the threshold of 0.25 have been considered as
significant.

Immunoblotting

Cells were lysed in RIPA buffer (25 mM Tris–HCl, pH 7.6, 150 mM NaCl,
1% NP-40; 1% sodium deoxycholate, 0.1% SDS) supplemented with
Complete Mini Protease Inhibitor Mixture Tablets (Roche), NaF (Ser/
Thr and acidic phosphatase inhibitor), Na3VO4 (Tyr and alkaline
phosphatase inhibitor) and MG132 (proteasome inhibitor). The
nuclear extraction was performed using the Nuclear Extract kit
(Active Motif) according with manufacturer’s instructions. Protein
quantification was performed using the BCA Protein Assay (Pierce).
Around 20 μg of soluble proteins were run in 4–20% acrylamide
gradient gels and for the immunoblot the concentration and time of
incubation had to be optimized for each individual antibody. Rabbit
antibodies against eIF2α, p-eEF2(Thr56), eEF2, eIF2B, p-IRF3 (ser396),
IRF3, p-S6, and PERK were purchased from Cell Signaling (ref 5324,
2331, 2332, 3592, 4947, 4302, 2211, and 3192, respectively). Rabbit
antibody against p-eIF2α(S51) was purchased from ABCAM (Ref
32157). Rabbit antibody against ATF4 was purchased from Santa Cruz

Biotechnology (sc-200). Mouse antibody against β-actin was pur-
chased from Sigma-Aldrich (A2228). Mouse antibodies against
HDAC1 and S6 were purchased from Cell Signaling (ref 5356, 2317,
respectively). Mouse antibody against puromycin was purchased
from Merck Millipore (MABE343). Mouse antibody against p-eIF2β
was a kind gift from David Litchfield (University of Western Ontario).
Mouse antibody against eIF2β was purchased from Santa Cruz
Biotechnology (sc-9978). HRP secondary antibodies were from
Jackson ImmunoResearch Laboratories.

Cytokine measurement

The IL-6, IFN-β, IL1-β, and IL-2 quantifications from the cell culture
supernatant were performed using the mouse Interleukin-6 ELISA
Kit (eBioscience), themouse IFN-β ELISA Kits (PBL-Interferon Source
or Thermo Fisher Scientific), the mouse IL1-β, and mouse IL2 un-
coated ELISA kits (Invitrogen) according to the manufacturer’s
instructions. Cytokine monitoring was also performed using
Legendplex 740150 (BioLegend).

Antigen presentation assays

Flt3-L-differentiated bmDC obtained from C3H/HeN were treated
with indicated concentration of HEL or with 5 μM of 46-61 HEL
peptide and incubated for 8 h with 100 nM of LPS in presence or not
of GSK2656157. DCs were fixed mildly with 0.25% PFA, 2 min, RT, and
prior quenching with 10 mM glycine. DCs were co-cultivated with
3A9 (HEL 46-61 on I-Ak) specific T hybridoma at 5:1 (T:DC) ratio for
18 h. CD69 up-regulation and IL-2 production was determined,
respectively, by cytometry and ELISA.

Immunohistochemistry

Spleens were snap frozen in Tissue Tek (Sakura Finetek). Frozen
sections (8 μm) were fixed with acetone permeabilized with 0.05%
saponin. The following antibodies were used for the staining: CD11c
(N418) from BioLegend (Ref 117301), p-eIF2α (Ser 52) from Invitrogen
(Ref 44-728G), CD11b (M1/70) from BD Biosciences, CD8α-biotin (53-
6.7) BioLegend (Ref 100703), and B220 (RA3-6B2) from Invitrogen (Ref
14-0452-81). Images were collected using a Zeiss LSM 510 confocal
microscope. Image processing was performed with Zeiss LSM
software.

Mice

Wild-type (WT) female C57BL/6 and C3H/HeN mice were purchased
from Janvier. PKR−/− C57BL/6 were a kind gift from Dr Bryan Wil-
liams (Hudson Institute of Medical Research) (Kumar et al, 1997).
PERKloxp/loxp mice were the kind gift of Dr Doug Cavener (Zhang et al,
2006) and purchased from Jackson Laboratories. GADD34ΔCloxp/loxp

mice were developed at the Centre d’Immunophénomique (CIPHE).

Quantification is shown on the right. (E) WT and PERKΔK GM-CSF BMDCs were treated with LPS (100 ng/ml) d—uring 30 min previous to 16 h of migration. The graph
represents instantaneous mean velocities of migration in 4 × 5-μm fibronectin-coated microchannels of at least 100 cells per condition. All data are representative of n = 3
independent experiments. (A, B, C) Statistical analysis was performed using Dunnett’s multiple comparison (A) and Mann–Whitney test (B, C). Data are mean ± SD (n = 3).
*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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PERKloxp/loxp and GADD34loxp/loxp were crossed with Itgax-Cre+ mice
(Caton et al, 2007) and backcrossed, to obtain stable homozygotic
lines for the loxp sites expressing Cre. For all studies, age-matched
WT and transgenic 6–9 wk females were used. All animals were
maintained in the animal facility of CIML or CIPHE under specific
pathogen–free conditions accredited by the French Ministry of
Agriculture to perform experiments on livemice. These studies were
carried out in strict accordance with Guide for the Care and Use of
Laboratory Animals of the European Union. All experiments were
approved by the Comité d’Ethique PACA and MESRI (approval
number APAFIS#10010-201902071610358). All efforts were made to
minimize animal suffering.

Preparation of microchannels and speed of migration
measurement

Microchannels were prepared as previously described (Vargas et al,
2016). For velocity measurements (carried out in 4-by-5 µm
microchannels), phase-contrast images of migrating cells were
acquired during 16 h (frame rate of 2 min) on an epifluorescence
Nikon Ti-E video microscope equipped with a cooled charge-
coupled device camera (HQ2; Photometrics) and a 10× objective.
Kymographs ofmigrating cells were generated and analyzed using a
custom program.

Statistical analysis

Statistical analysis was performed using GraphPad Prism Software.
The most appropriate statistical test was chosen according to each
data set. Mainly, we used Wilcoxon test, Mann–Whitney test, t test,
and multiple comparison with Dunnett’s correction. *P < 0.5, **P <
0.01, ***P < 0.001, and ****P < 0.0001.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000865.

Acknowledgements

We thank all the Centre d’Immunologie de Marseille-Luminy (CIML)
cytometry and Imaging core facilities for expert assistance. The labo-
ratory is supported by grants from La Fondation de l’Association pour la
Recherche sur le Cancer (ARC). The laboratory is “Equipe de la Fondation de
la Recherche Médicale” (FRM) sponsored by the grant DEQ20140329536. The
project was also supported by grants from l’Agence Nationale de la
Recherche (ANR), « ANR-FCT 12-ISV3-0002-01» and « INFORM Labex ANR-11-
LABEX-0054 », «DCBIOL Labex ANR-11-LABEX-0043 » and ANR-10-IDEX-0001-
02 PSL* and A*MIDEX project ANR-11-IDEX-0001-02 funded by the “Inves-
tissements d’Avenir” French government program. Grant from French Agency
for Research on AIDS and Viral Hepatitis (ANRS) ECTZ88500 “SMARTHCV” also
supported this project. The research is supported by the Ilı́dio Pinho
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