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Abstract
This dissertation presents four published articles in the field of data ethics
that extend our knowledge of fairness in machine learning and advance the
state of the art of privacy in data collection and transmission. This document
encompasses: (1) a general study of the trade-off between equal opportunity
and accuracy of machine learning classifiers along with the proof that these
objectives may oppose each other strongly; (2) the empirical proof that when
using causal discovery algorithms for fairness assessment, different algorithms
may lead to very different conclusions; (3) the proposal of a protocol for lon-
gitudinal data collection with guarantees inspired in local differential privacy;
and (4) the derivation of two optimal methods for padding transmitted data
to protect privacy against network observers.

Résumé en français

Cette thèse présente quatre articles publiés dans le domaine de l’éthique des
données qui élargissent nos connaissances sur l’équité dans l’apprentissage
automatique et l’état de l’art de la confidentialité dans la collecte et la trans-
mission des données. Ce document englobe (1) le calcul de la limite de Pareto
d’égalité des chances et de précision des classificateurs d’apprentissage au-
tomatique, la preuve que ces objectifs s’opposent radicalement pour certaines
distributions ; (2) la preuve empirique que lors de l’utilisation d’algorithmes
de découverte causale pour l’évaluation de l’équité, différents algorithmes
peuvent conduire à des conclusions très différentes ; (3) la proposition d’un
protocole de collecte de données longitudinales avec des garanties inspirées de
la confidentialité différentielle locale ; et (4) la dérivation de deux méthodes
optimales de remplissage des données transmises pour protéger la confiden-
tialité contre les observateurs du réseau.
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Chapter 1

Introduction

This dissertation explores four important challenges in the field of data ethics,
namely, (1) the trade-off between equal opportunity and accuracy of machine
learning classifiers, (2) the use of causal discovery algorithms for fairness
assessment, (3) the regular collection of private data using local differential
privacy frameworks, and (4) the use of padding schemes for data privacy
during transmission. The purpose of this dissertation is to contribute with
the development of theoretical insights and practical tools that can enrich
the state of the art of data privacy and fairness, and, as a consequence,
help society to better formalize and impose guarantees of fairness in machine
learning classifiers and privacy in data collection and transmission.

1.1 Domain: data ethics

Data ethics is a multidisciplinary field concerned with the correct manage-
ment of data, especially, the transparent and fair use of data as well as the
security and privacy guarantees of the systems that collect it. It is an in-
terdisciplinary domain that combines technology with human sciences, and
it is gaining massive attention and complexity in the last decades due to
the exponential increase in data collection and the digital transformation of
many human activities.

Data ethics is a domain of crucial importance nowadays because society is
facing a fast-paced digital transformation in which digital technologies deeply
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1.1. Domain: data ethics Chapter 1. Introduction

infiltrate and permeate numerous spheres of human life. This transforma-
tion is caused and accelerated by the growth in data acquisition and the
increased range of human activities that we digitalize. As estimated by the
International Data Corporation, the volume of digital data created each year
is growing exponentially, doubling every 3 years approximately [IDC20, Red21].
This trend is fueled by the continuous production of the semiconductor indus-
try and the steadily growing hardware capacity for data collection, storage,
transmission and processing, which doubles roughly every two years, a fact
known as Moore’s law. In parallel, digital platforms continue to influence
communication and social interactions, access to information, entertainment,
commerce and professions. With the raise of connected devices and personal-
ized content, digital technologies extract more and more utility from personal
data, making it a valuable resource for businesses and organizations, but they
also become more and more pervasive and intimate. As a consequence, it is
not reasonable nowadays to stop collecting or using data, but it is vital for
the benefit of society that data is used with ethical considerations and relying
on scientific research.

The research topis in data ethics range from philosophical aspects of big
data [Leo19] to technical developments, both theoretical and practical, for
ensuring the privacy, fairness and explainability of systems that use data,
especially machine learning models, giving birth to the subdomain of Ethical
Machine Learning, also known as Ethical Artificial Intelligence (Ethical AI).

Machine Learning (ML) is the main paradigm for processing large collections
of data. The success of machine learning comes, on one side, from the sim-
plification of data into a commodity that can be fed to a pipeline, and on
the other, from the flexibility of the models it produces. Indeed, ML models
can be used for applications requiring prediction, classification, data analysis,
artificial data generation, or a combination of them. But also, the unprece-
dented performance and flexibility of ML models comes often at the cost of
complexity and unexplainability of large models, to the point that they are
treated as input-output black boxes and this leaves the door open to two un-
expected important issues, privacy violations and systematic discrimination,
which are detailed below.

Privacy violations in this context are not limited to security, i.e., the correct

2



1.1. Domain: data ethics Chapter 1. Introduction

access management and encryption of the data by trusted parties, but also to
privacy on its own, meaning the correct alteration (also called anonymization
or sanitization) of the data before sharing it with untrusted parties by means
of non-injective functions, random noise and other information-destructive
methods, so that its new content is still useful for certain analyses but does
not reveal private information, making it safe even if disclosed.

Several privacy definitions have been proposed historically for the purpose of
publishing micro data, i.e., a table concerning one individual per row. In this
context, the data holder wants to share their micro-data database with either
data analyzers, the open public or clients from the industry in exchange for
money or services. The most prominent definitions had been k-anonymity,
t-closeness [LLV06] and l-diversity [MKGV07], but all of them were shown to be
weak against reidentification or attribute inference, making them mitigations,
rather than general solutions [Ngu14]. The key problem of these definitions
is that the methods that satisfy them are based mostly on deterministic
transformations, e.g. removing a column or collapsing rows into equivalence
classes, and this can reveal identities unexpectedly when crossing apparently
anonymized information from several sources. Indeed, some researchers de-
anonymized a very large fraction of the anonymized Netflix prize dataset
in 2008 by using information from another movie platform [NS08]. These
fundamental issues led to the development of a probabilistic framework for
privacy called differential privacy.

Differential privacy [Dwo06a] (DP) was a breakthrough because of its elegant
mathematical properties, which allow to quantify privacy loss (ϵ) in such a
way that the total privacy loss when crossing information from several sources
is always bounded by the sum of privacy losses of each individual source. This
key property, called compositionality, is not satisfied by any of the previous
definitions, which can be shown using quantitative information flow [G+23], a
framework that aims to unify and quantify information leakage for arbitrary
notions of secrets and privacy. DP introduced also the need for queries to
observe the data because it assumes that a trusted central server holds private
microdata and wants to provide a query service (an API) for computing
sanitized aggregations of the data instead of sharing the data itself. With
these queries, other new concepts appeared, e.g. query sensitivity and ϵ as an

3



1.1. Domain: data ethics Chapter 1. Introduction

inspection budget. DP dominates the literature of privacy, and researchers
advocate for its use [CD18]. DP is not enforced in the General Data Protection
Regulation (GDPR [Par16], an European Union regulation on information
privacy in the European Union and the European Economic Area, made
in 2016), and some authors [Hol19] sustain that there are semantic conflicts
between what DP guarantees and what GDPR mandates, though the main
argument is that DP protects against true identification but not against false
identification, meaning that, ideally, no attacker should be able to make any
inference about your personal data, even incorrect inferences. This argument
is debatable because it is logically impossible to prevent incorrect inferences
in general, e.g., anyone can (wrongfully) infer random data about anyone, so
it is absurd to require this, while it is reasonable to quantify protection as
protection against correct inferences.

It should be noted that DP was initially designed assuming that the central
server that holds the data is trusted, a perspective that is changing lately
for the large companies that collect data. The scandal of Cambridge An-
alytica [new18] rose concerns, beyond security, about the trust we can put
on organizations that collect data. This scandal showed the mechanisms
through which private information and digital platforms can be exploited to
transform users opinions and behaviors. At the individual level, the so-called
echo chamber or filter bubble [KR19], provides each user with a personalized
feed of content that makes them addicted to new content and makes their
opinions more extreme. At the global level, polarization becomes extreme
and democracy is undermined because the opinions of the population are
shaped by whoever is paying most for the information they receive.

These concerns led to increased interest in new definitions based on DP,
but which treat the user as the data holder and the server as the client,
so users sanitize their data before sending it to the untrusted central
server in exchange for personalized services or a statistical analysis at
the population level. These new definitions are local differential privacy
(LDP) [KLN+11] and distance-based or metric-based differential privacy (d-
privacy) [ABCP13], which generalizes in some sense both DP and LDP. The
latter is very appropriate, for example, for geolocation data [PBMB18, ABCP13,

BP22, SSL+23, SGCR22], in which it is relatively easy to generate false loca-
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1.1. Domain: data ethics Chapter 1. Introduction

tions by adding noise. From the perspective of the organizations that hold
data, with the introduction of LDP and d-privacy, most of the theory of
DP for sanitizing data before sharing has been adapted for the problem of
sanitizing before collecting it, and several LDP protocols have been pro-
posed [EPK14, DKY17, EFM+20, ACBX21, ACBX22].

DP has also been studied for machine learning in applications that include
using differentially private stochastic gradient descent for training neural net-
works [SCS13, FFMD22], possibly in a federated learning environment [GBJ+22],
using neural network bottleneck representations for creating anonymized rep-
resentations of the inputs [FPBD18], training ML models with fairness and pri-
vacy objectives simultaneously [TFVH21] and training predictive ML models
using locally sanitized private data [ACC+20].

Regarding discrimination by machine learning models, it can be the result of
biased data or inadequate models or training algorithms. Here, the term bias
denotes a systematic and unfair preference for or against a group of people,
denoted via a categorical feature called the sensitive attribute, which may or
not be present in the data, and data is biased if it is not representative of the
real-world population or if it reflects historical biases. If the training data is
biased, the model will most likely learn and reproduce these biases, causing
discrimination. But discrimination may occur from different sources. For
instance, a linear regression model might give more weight to certain features,
inadvertently amplifying biases present in the data. Also, a very simple model
might not be able to capture the complexity of a particular group of people
and an overly complex model might overfit the groups disparately, leading
to unfair predictions. Lastly, if the data is missing important features, or
contains features that are not relevant for the task, or contains undesired
proxies of the sensitive attributes, or is treated as cross-sectional when it is
longitudinal, disparity may arise. As in privacy, it has been shown that the
naïve solution of removing the sensitive attribute is insufficient to prevent
discrimination, e.g., a malicious advertiser can create highly discriminatory
ads without having access to sensitive attributes [SAV+18].

Examples of applications that incurred in forms of discrimination include
hiring [Reu18], facial recognition [BG18], general object recognition [new15] and
criminal scoring [LMKA16], some of which use black box models. Generally
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speaking, if a facial recognition system is trained primarily on images of
lighter-skinned individuals, it will be less accurate for people with darker
skin tones. Similarly, if a hiring algorithm is trained on historical hiring data
that favors certain demographic groups, it may perpetuate those biases by
recommending similar candidates. These unfortunate examples have made
society more and more aware of the importance of auditing automated digital
tools and the research on fairness in ML has been shaped (via examples and
datasets) and fueled (via grants and motivated researchers) by them, a fact
that has been stigmatized by some scholars [Och19]. It is important to note,
nevertheless, that discrimination by machines is often unintentional, that is,
biases emerge from the data or the models without the awareness nor the
intention of the developers.

Fairness makes also sense for other applications such as recommender sys-
tems [DCDAU22] and natural language processing [CPO19], especially regard-
ing gender bias. Even if we restrict to the simplest task of binary classifi-
cation, the diversity of scenarios in which discrimination can occur has pro-
duced a large set of (sometimes inconsistent) definitions of fairness [MZP21b],
of which the most prominent are arguably, statistical parity, conditional sta-
tistical parity, calibration and equal opportunity [HPS16].

Statistical parity is the most basic notion of fairness and it requires that the
proportion of positive predictions is the same for all groups. It is related to
the concept of quotas, i.e., policies requiring that a certain proportion of the
population is represented in a certain activity, and it can be shown, from
different approaches [GDBFL19, HPS16], that the best classifier that achieves
statistical parity corresponds to having a (well-calibrated) score and different
thresholds per group, chosen on the basis of having the same quantile across
groups. However, this classifier can result in a very low accuracy. For this
reason, the notions of equal opportunity (parity of true positive rate, TPR)
and equal odds (parity of TPR and TNR) were introduced [HPS16], as they
can be satisfied with higher accuracy levels and are still arguably fair in many
contexts.

The two fields, privacy and fairness, have been studied together recently
because they are both concerned with the correct management of data, and
they appear together in many real-world scenarios. For instance, in the afore-
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1.2. Challenges Chapter 1. Introduction

mentioned scandal of Cambridge Analytica [new18], not only the privacy of
the users was violated, but also the fairness of the elections, and the use of
profiles for targeted advertising can easily raise concerns about discrimina-
tion. On top of this, it was shown that the explanations for "why am I seeing
this ad?" lack transparency [AVG+18].

Some authors have investigated the trade-offs and incompatibilities between
fairness and differential privacy [PMK+20, CGKM19, Aga20], showing that some-
times it is simply impossible to achieve some notions of privacy, fairness and
model accuracy simultaneously. It has been also shown under certain condi-
tions that differential privacy has disparate (i.e., different on each sensitive
group) but bounded impact on model accuracy [BPS19, MPBT23, TFVHY21].
Pruning also has a disparate effect [TFKN22], however, local differential pri-
vacy does not [AMP23]. Moreover, even in the absence of decision vari-
ables, fairness and privacy are tied together conceptually, because it is also
important to measure the extent to which some subgroups are more sus-
ceptible to membership inference attacks than others [KYC+19, YKCT19].
Lastly, there are also attempts to connect causality with privacy and fair-
ness [TSD20, MZP20a, DRBB+23], especially using the causality framework of
Pearl [Pea09], and in general, there is great interest on studying the intersec-
tion of ethical concepts in machine learning.

In summary, the research in the domain of data ethics, including especially
fairness in ML and privacy guarantees in data collection and transmission,
has an enormous impact for society, and it has challenges related to the
interconnectedness and subjectiveness of different perceptions of fairness and
privacy.

1.2 Challenges

This dissertation explores the following challenges that arise in data ethics.
The common denominator of these challenges is that they are all motivated
by questioning some assumptions that are made in the literature and might
not always align with real-world scenarios. It is important to recognize the
value of these assumptions when they were first introduced. Thanks to some
of the simplifications introduced by these assumptions, the theory has been
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able to keep up with the fast-paced development of practical ML and the
growing complexity of ML models and datasets. While these assumptions
enable robust mathematical analysis and exact solutions and explanation, it
is important to acknowledge their limitations and implications, and search
for a balance between the rigor and the applicability of the results.

Challenge 1. In the field of fairness in ML, it can be shown that for data
distributions with a binary sensitive attribute in the input and a binary out-
put, when the input-output relationship is deterministic, the Bayes classifier
achieves equal opportunity and maximal accuracy at the same time. This
means that for deterministic data, the Pareto boundary of accuracy and op-
portunity difference degenerates to a single point, and ML models can be
trained with a double objective of fairness and accuracy without compro-
mising any of the two. For probabilistic (non-deterministic) data, however,
neither this claim nor the Pareto boundary have been studied, and they
should be, because in real life, the relationship between the input and the
output is better modeled as probabilistic because input data is just a partial
and incomplete representation of reality that does not capture all exogenous
factors that can affect the output.

Challenge 2. Also in the field of fairness in ML, most fairness notions that
are based on causality assume that the causal graph that explains the causal
relationships in the data is known. In practice, the causal graph is estimated
by means of causal discovery algorithms and there is a vast amount of these
algorithms from which to choose from. A detailed analysis of whether the
choice of the causal discovery algorithm affects the fairness conclusions is
missing.

Challenge 3. In the field of private data collection, particularly of longi-
tudinal data under local differential privacy, the existing algorithms provide
formal guarantees only under the assumption that the data is constant, and
not much is said of what they guarantee in absence of this assumption. The
community is missing definitions to analyze, capture and quantify the pri-
vacy guarantees without this assumption. Moreover, not all the existing tools
available for transversal data collection have been explored for longitudinal
data collection. Particularly, no longitudinal method based on local hashing
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exists and this lack of diversity may narrow-mind the development of future
algorithms.

Challenge 4. In the field of privacy in data transmission, padding files and
messages is a way of obfuscating the information an attacker may obtain
about the data based on its size. Recently, some authors [RR21] derived a
strategy for padding data while minimizing Shannon leakage (Shannon mu-
tual information) between the observations and the secrets. The assumption
that minimizing Shannon leakage is ideal for privacy applications has been
challenged in the last two decades by several scholars [PR18, Smi09] who ad-
vocate for the use of Rényi min-leakage over Shannon leakage because the
attacker associated to the former is realistic, whereas to the latter, it is not.
Therefore, an open problem is that of deriving a strategy for computing
padding schemes that minimize Rényi min-leakage.

1.3 Objectives, results and plan

The objective of this dissertation is to contribute to the community of re-
searchers in data ethics by providing theoretical as well as practical results
in unexplored areas of the domain, notably those described by Challenges 1,
2, 3 and 4 in Section 1.2. More precisely, this dissertation has four specific
objectives, each of which corresponds to a challenge and a chapter of this
manuscript. The diversity of topics covered in these 4 chapters is rooted at
the rich and complex variety of topics comprehended by data ethics, as well
as the wide scope of the main objective.

The 4 specific objectives are presented below, with a brief description of the
main results of the corresponding chapter. These chapters resemble their
papers of reference as much as possible, only with style changes to fit into
this manuscript, to avoid forcing their readers to reread different variants of
the same papers here. Chapter 3 is an exception to this, as it presents novel
content.

The first objective of this dissertation is to:

Objective 1. (For Challenge 1) Determine whether for all data distributions
it is possible to have a classifier that satisfies equal opportunity and non-

9
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trivial accuracy simultaneously, and if not, explain why by studying the
boundary of Pareto frontier between accuracy and opportunity difference.

This dilemma is heavily influenced by two contrasting results from the lit-
erature. On the one hand, for differentially private training algorithms, it
is impossible to guarantee that the output model satisfies these two condi-
tions [CGKM19]. On the other hand, the perfect model, whose prediction
matches the correct decision always (something that can only occur with
a deterministic input-output relationship), achieves both equal opportunity
and maximal accuracy [HPS16], hence, also non-trivial accuracy.

This objective is achieved in Chapter 2. In Chapter 2, we prove that for
certain distributions it is impossible to provide equal opportunity and non-
trivial accuracy guarantees simultaneously. This theorem is then refined with
necessary and sufficient conditions that characterize the data distributions
for which this extreme trade-off occurs. Although these conditions are very
severe to be found often in arbitrary datasets, they may still hold in practical
scenarios, and we illustrate this with an example. In this chapter, we also
provide an algorithm for visualizing the Pareto frontier between error and
opportunity difference and prove connections with existing ways of visualizing
and understanding the trade-off [HPS16].

Next, in Chapter 3, we turn our attention to causality for fairness, for which
there are arguments in favor [MZP20b] and against [HPS16] in the literature.
The objective of this chapter is to:

Objective 2. (For Challenge 2) Analyze the effect of using different causal
discovery algorithms (CDAs) for estimating causal graphs, especially when
these are then used for causal based fairness assessment.

This objective is achieved in our paper [BMP+23], and is reinforced with the
experiments of Chapter 3. In Chapter 3, we create several examples of very
simple distributions for which different CDAs disagree very probably and
drastically on their output graphs, a fact that has a dramatic impact on
causal based fairness assessment because the fairness conclusions are very
sensitive to the graph structure. For this reason, we conclude that causal
based fairness assessment should not be fully automated unless the causal
graph is known.

10
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In the next two chapters we turn our attention to privacy, which is mentioned
in Chapter 2 because of its impact on fairness [CGKM19] but is not directly
discussed in the previous chapters. We first take a look in Chapter 4 to
Challenge 3 about ensuring privacy for repeated collection of data from the
same population (also known as longitudinal data). The objective of this
chapter is to:

Objective 3. (For Challenge 3) Provide an alternative to existing proto-
cols [EPK14, DKY17] for longitudinal data collection with LDP guarantees that
has similar utility and privacy guarantees, but based on local hashing and
with a reduced number of memoized sanitizations of raw data.

In Chapter 4, we propose a protocol named LOLOHA for longitudinal cat-
egorical data collection with local differential privacy guarantees. LOLOHA
is based on local hashing instead of unary encoding, and for similar levels of
error and LDP guarantees for the first report, it provides increased privacy
on the users’ values, a notion of privacy that we defined for this specific set-
ting, because, as we prove, it is impossible to satisfy pure local differential
privacy for arbitrarily large windows of data collection.

Concluding the main body of the dissertation, we discuss the problem of
padding files to reduce the information an intruder may infer based on their
sizes during transmission. This is performed in Chapter 5, which has for
objective to:

Objective 4. (For Challenge 4) Propose an algorithm for designing padding
schemes that minimize Rényi min-entropy while also minimizing the average
bandwidth overhead and respecting given size constraints.

In Chapter 5, we do exactly this. We derive an algorithm for designing
padding schemes that enhance privacy of transmitted data at the expense
of some bandwidth overhead. In this context, padding is used to obfuscate
the information an attacker may obtain about the data based on its size,
assuming that each user is downloading a file out of a pool of publicly known
files. The main contribution is that our padding schemes minimize Rényi
min-entropy instead of Shannon entropy, which makes the attack model closer
to a real life attacker.
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Finally, Chapter 6 (discussion) presents the main results of each chapter
along with a critical analysis that justifies the relevance, limitations and
future work for each of them, and Chapter 7 (conclusion) summarizes more
concisely the whole manuscript.

1.4 Summary of contributions

The contributions of this dissertation are summarized below.

• We prove that for certain probabilistic distributions, no model can
achieve equal opportunity and non-trivial accuracy simultaneously. In
other words, for certain problematic distributions, all fair models have
accuracy lower or equal than that of a constant classification model.

• We characterize with a sufficient and necessary condition the scenarios
in which non-trivial accuracy and equal opportunity are compatible.

• We illustrate how incompatibility may arise in practice using the Adult
dataset and describe phenomena that should be addressed when inter-
preting the theoretical results of this paper in practical scenarios.

• We show and depict several algebraic and geometric properties about
the feasible region in the plane of opportunity-difference versus error.

• We provide an algorithm for computing all the vertices of the feasibility
region, including those that form the Pareto-optimal boundary of the
accuracy-fairness trade-off.

• We generate and provide minimal examples of distributions for which
different causal discovery algorithms disagree strongly on the output
graph. This complements our paper [BMP+23], in which its demon-
strated that slight differences between causal graphs may have signifi-
cant impact on fairness/discrimination conclusions.

• We add robustness to the conclusions based on these minimal examples
by running all the experiments repeatedly and considering the effect
of the sample size.

12
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• We propose the LOLOHA protocol for longitudinal frequency monitor-
ing of categorical data under LDP guarantees.

• We prove the longitudinal privacy and accuracy guarantees of LOLOHA
through theoretical analysis and compare it to existing protocols.

• We show the performance of LOLOHA numerically and experimen-
tally, using both real-world and synthetic datasets.

• We derive the algorithms that find the optimal padding schemes for the
Pareto frontier between bandwidth overhead and information leakage
in two different scenarios called PRP and POP (defined in Section 5.2).

• The code for these algorithms is publicly available at [PPS22]. It in-
cludes not only the algorithms we propose, but also the reimplementa-
tion of the algorithms of [RR21] to support flexible padding constraints,
multiple files having the same size and sparse matrix representations.

• We prove the correctness of the algorithms and test the implementa-
tions against brute-force solutions using small synthetic datasets.

• We compare our algorithms with an existing solution [RR21] that uses a
different attack model, and discuss how the two approaches are related
in terms of the private information leakage type that each attacker
represents.

1.5 List of publications

During my doctoral studies, I authored a total of 9 papers, 6 of which were
submitted and accepted for publication, 2 are under development and 1 is
just a short paper that implements an algorithm in Python. Although all of
these papers are related in one way or another with privacy, fairness or ethics
in computer science, only four of them are discussed in this dissertation to
maintain brevity and consistency. I was the only PhD student authoring
these four papers unless indicated otherwise. The exhaustive list of papers
is presented below.

1. On the impossibility of non-trivial accuracy in presence of
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fairness constraints [PPPV22]

This paper was presented by me at the conference AAAI 2022 (virtual)
and it was published in the proceedings. It covers some of the top-
ics discussed in Chapter 2. The abstract of this paper is omitted on
purpose as this paper is contained in the next one.

2. On the incompatibility of accuracy and equal opportu-
nity [PPPV23]

This journal article is an extension of the paper published in AAAI
2022, and it was published in the journal Machine Learning 2023 by
Springer. Chapter 2 presents the contents of this article.

Abstract. One of the main concerns about fairness in machine learn-
ing (ML) is that, in order to achieve it, one may have to trade off
some accuracy. To overcome this issue, Hardt et al. [HPS16] proposed
the notion of equality of opportunity (EO), which is compatible with
maximal accuracy when the target label is deterministic with respect
to the input features.

In the probabilistic case, however, the issue is more complicated: It has
been shown that under differential privacy constraints, there are data
sources for which EO can only be achieved at the total detriment of
accuracy, in the sense that a classifier that satisfies EO cannot be more
accurate than a trivial (i.e., constant) classifier [CGKM19]. In this paper,
we strengthen this result by removing the privacy constraint. Namely,
we show that for certain data sources, the most accurate classifier that
satisfies EO is a trivial classifier. Furthermore, we study the admissible
trade-offs between accuracy and EO loss (opportunity difference) and
characterize the conditions on the data source under which EO and
non-trivial accuracy are compatible.

3. Causal discovery for fairness* [BMP+23]

This paper was presented by me as invited talk at the NIPS workshop
on algorithmic fairness through the lens of causality and privacy, and
it was published in the proceedings of the conference. *For this paper,
I worked with two other PhD students (Ruta Binkytė and Karima
Makhlouf) who contributed to essential parts of the project. Chapter 3
contains an overview of this paper, but it is dedicated to additional
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observations that complement it.

Abstract. Fairness guarantees that the ML decisions do not result
in discrimination against individuals or minority groups. Identifying
and measuring reliably fairness/discrimination is better achieved using
causality which considers the causal relation, beyond mere association,
between the sensitive attribute (e.g., gender, race, religion, etc.) and
the decision (e.g., job hiring, loan granting, etc.). The big impediment
to the use of causality to address fairness, however, is the unavailability
of the causal model (typically represented as a causal graph). Existing
causal approaches to fairness in the literature do not address this prob-
lem and assume that the causal model is available. In this paper, we
do not make such an assumption, and we review the major algorithms
to discover causal relations from observable data. This study focuses
on causal discovery and its impact on fairness. In particular, we show
how different causal discovery approaches may result in different causal
models and, most importantly, how even slight differences between
causal models can have significant impact on fairness/discrimination
conclusions.

4. Frequency estimation of evolving data under local differential
privacy [APPG23]

I presented this paper at the conference EDBT 2023, and it was pub-
lished in the proceedings. It is detailed in Chapter 4.

Abstract. Collecting and analyzing evolving longitudinal data has be-
come a common practice. One possible approach to protect the users’
privacy in this context is to use local differential privacy (LDP) proto-
cols, which ensure the privacy protection of all users even in the case of
a breach or data misuse. Existing LDP data collection protocols such
as Google’s RAPPOR [EPK14] and Microsoft’s dBitFlipPM [DKY17] can
have longitudinal privacy linear to the domain size k, which is excessive
for large domains, such as Internet domains. To solve this issue, in this
paper we introduce a new LDP data collection protocol for longitudinal
frequency monitoring named LOngitudinal LOcal HAshing (LOLOHA)
with formal privacy guarantees. In addition, the privacy-utility trade-
off of our protocol is only linear with respect to a reduced domain
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size 2 ≤ g ≪ k. LOLOHA combines a domain reduction approach
via local hashing with double randomization to minimize the privacy
leakage incurred by data updates. As demonstrated by our theoretical
analysis as well as our experimental evaluation, LOLOHA achieves a
utility competitive to current state-of-the-art protocols, while substan-
tially minimizing the longitudinal privacy budget consumption by up
to k/g orders of magnitude.

5. Obfuscation padding schemes that minimize Rényi min-
entropy for privacy [SPPP23]

This paper was presented by Sebastian Simon and Cezara Petrui at
the conference ISPEC 2023, and it will be published in the conference
proceedings. Sebastian and Cezara are two bachelor students that I
met while being professor assistant at a computer programming course
at École Polytechnique. They were under my supervision during an
internship focused on this research project. The paper is presented
in Chapter 5 and proposes obfuscation padding schemes that keep a
balance between bandwidth increase and privacy against an attacker
measuring network traffic.

Abstract. Consider a set of users, each of which is choosing and
downloading one file out of a central pool of public files, and an attacker
that observes the download size for each user to identify the choice
of each user. This paper studies the problem of padding the files to
obfuscate the exact file sizes and minimize the expected accuracy of
the attacker, without exceeding some given padding constraints. We
derive the algorithm that finds the optimal padding scheme, prove its
correctness, and compare it with an existing solution that uses a similar
but different attack model. We also discuss how the two solutions are
related in terms of private information leakage.

6. Computing distributed knowledge as the greatest lower bound
of knowledge [PQRV21]

This paper was presented by Sergio Ramirez and published in the pro-
ceedings of the conference RAMiCS 2021. It characterizes the standard
notion of distributed knowledge of a group in lattice theory as the great-
est lower bound of the join-endomorphisms representing the knowledge
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of each member of the group. This framework is related with polariza-
tion and data ethics because it can be used to reason about opinions
and model the belief dynamics of a population.

Abstract. Let L be a distributive lattice and E(L) be the set of join
endomorphisms of L. We consider the problem of finding f⊓E(L)g given
L and f, g ∈ E(L) as inputs. (1) We show that it can be solved in time
O(n) where n = |L|. The previous upper bound was O(n2). (2) We
characterize the standard notion of distributed knowledge of a group as
the greatest lower bound of the join-endomorphisms representing the
knowledge of each member of the group. (3) We show that deciding
whether an agent has the distributed knowledge of two other agents can
be computed in time O(n2) where n is the size of the underlying set of
states. (4) For the special case of S5 knowledge, we show that it can
be decided in time O(nαn) where αn is the inverse of the Ackermann
function.

7. Counting and computing join-endomorphisms in lattices (re-
visited) [PQR+22]

This is a journal article under development that extends a paper pub-
lished in the proceedings of RAMiCS 2020 with the same title. The
article explores some properties of lattices and join-endomorphisms.
The relationship with data ethics is the same as the previous work in
this list, and Santiago Quintero participated in this paper as well.

Abstract. Structures involving a lattice and join-endomorphisms on it
are ubiquitous in computer science. We study the cardinality of the set
E(L) of all join-endomorphisms of a given finite lattice L. In particular,
we show forMn, the discrete order of n elements extended with top and
bottom, |E(Mn)| = n!Ln(−1) + (n + 1)2 where Ln(x) is the Laguerre
polynomial of degree n. We also study the following problem: Given
a lattice L of size n and a set S ⊆ E(L) of size m, find the greatest
lower bound ⊓E(L)S. The join-endomorphism ⊓E(L)S has meaningful
interpretations in epistemic logic, distributed systems, and Aumann
structures. We show that this problem can be solved with worst-case
time complexity in O(mn) for distributive lattices and O(mn + n3)

for arbitrary lattices. In the particular case of modular lattices, we
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present an adaptation of the latter algorithm that reduces its average
time complexity. We provide theoretical and experimental results to
support this enhancement. The complexity is expressed in terms of the
basic binary lattice operations performed by the algorithm.

8. Fast Python sampler of the von Mises Fisher distribution [PJ23]

This short article is available at INRIA’s HAL service. It implements a
method for sampling from the d-dimensional Von Mises Fisher distribu-
tion using NumPy, focusing on speed and readability. The implementa-
tion differs with those found online and in packages like TensorFlow in
that it skips the inversion of a matrix, thus saving some milliseconds,
especially when generating thousands of samples each from a VMF
distribution with different specified mean. The Von Mises Fisher dis-
tribution is related with data ethics because it can be used during the
training of neural networks for adding noise to the iterative updates of
stochastic gradient descent to achieve differential privacy with respect
to the training data.

Abstract. This paper implements a method for sampling from the d-
dimensional Von Mises Fisher distribution using NumPy, focusing on
speed and readability. The complexity of the algorithm is O(n d) for n
samples, which is theoretically optimal taking into account that n d is
the output size.

9. On the impact of local privacy on the learnability of causal
structures
This is a paper in development that studies a problem in the intersec-
tion between causality and privacy.

Abstract. Differential privacy is one of the most popular frameworks
to protect the sensitive information of the original data providers of a
data set. It is based on the application of controlled noise at the in-
terface between the server that stores and processes the data, and the
data consumers. Local differential privacy is a variant that allows data
providers to apply the privatization mechanism themselves on their
data individually. Therefore, it provides protection also in contexts in
which the server, or even the data collector, cannot be trusted. The
addition of noise, however, affects the utility of the data. In particular,
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it can distort the correlation between the individual components of the
data, thus hurting tasks such as causal-structure learning. In this pa-
per, we consider various well-known locally differentially private mech-
anisms and compare the trade-off between the privacy they provide,
and the accuracy of the causal structure produced by algorithms for
causal learning when applied to data obfuscated by these mechanisms.
Our analysis provides valuable insights into selecting appropriate local
differentially private protocols for causal discovery tasks. We hope that
our work will benefit researchers and practitioners by enabling them to
conduct causal discovery while preserving the privacy of users’ data.

19



Chapter 2

On the incompatibility of
accuracy and equal opportunity

During the last decade, the intersection between machine learning and social
discrimination has gained considerable attention from academia, industry,
and the public in general. A similar trend occurred before between machine
learning and privacy, and even the three fields have been studied together
recently [PMK+20, CGKM19, KR19, Aga20].

Fairness has proven to be harder to conceptualize than privacy, for which dif-
ferential privacy [Dwo06a] has become the de-facto definition. Fairness is sub-
jective and laws vary between countries. Even in academia, depending on the
application, the words fairness and bias have different meanings [Cra17]. The
current consensus is that fairness cannot be summarized into a unique univer-
sal definition, which has led to a wide range of fairness definitions [MZP21b],
and for the most popular definitions, several trade-offs, implementation dif-
ficulties, and impossibility theorems have been found [KMR17, Cho17]. One
such definition of fairness is equal opportunity [HPS16], which is one of the
most common group notions of fairness along with disparate impact, demo-
graphic parity, and equalized odds [PS22]. Equal opportunity is restricted to
binary classification tasks with binary sensitive attributes.

To contrast equal opportunity (EO) with accuracy, we borrow the notion of
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trivial accuracy from [CGKM19]. A non-trivial classifier is one that has higher
accuracy than any constant classifier. Since constant classifiers are indepen-
dent of the input, trivial accuracy determines a very low-performance level
that any correctly trained classifier should overcome. Yet, as shown in related
works [CGKM19, Aga20], under the simultaneous constraints of differential pri-
vacy and equal opportunity, it is impossible to have non-trivially accurate
classifiers.

In this chapter, we strengthen the result of [CGKM19, Aga20] by showing that,
even without the assumption of differential privacy, there are distributions
for which equal opportunity implies trivial accuracy. In particular, this is
possible when the data source is probabilistic, i.e., the correct label for a
given input is not necessarily unique.

Probability plays two different roles in this chapter. On the one hand, we
allow classifiers to be probabilistic, i.e., we allow the classification to be influ-
enced by controlled randomness for some inputs. This is needed because sat-
isfying equal opportunity typically requires a probabilistic predictor [HPS16],
but also because it has a practical justification. Namely, in some cases, ran-
domness is the only fair way to distribute an indivisible limited resource. For
instance, a parent with one candy and two children might throw a coin to
decide whom to give it to. This principle is even applied in decisions that
have a significant social impact such as the Diversity Visa Program to qual-
ify for a Green Card in the United States [Sta21], and the Beijing lottery for
getting a car license plate [Glo18].

On the other hand, we consider probabilistic data sources. This provides a
more general framework for studying the trade-off between fairness and ac-
curacy, as there are situations in which reality is more accurately represented
by a probabilistic model. For instance, the information carried by the input
may be insufficient to conclude definitely the yes-no decision, or there may
be constraints that force the decision to be different for identical inputs.

The analysis of this chapter is mostly theoretical and is limited to the notion
of equal opportunity, hence to distributions with binary targets and binary
sensitive attributes. On the other hand, the results are very general. For
instance, whenever we state a property about all predictors, it includes all
probabilistic classifiers without exception. Hence, our results hold for clas-
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sifiers that do not use the sensitive attribute for prediction, as well as for
those that use it to compensate existing biases, or take into account proxy
variables, or use multiple threshold mechanisms, or are based on causality,
or do not use machine learning at all.

The contributions of this chapter can be summarized as follows.

1. We prove that for certain probabilistic distributions, no predictor can
achieve EO and non-trivial accuracy simultaneously.

2. We explain how to modify existing results that assume deterministic
data sources to the probabilistic case:

(a) We prove that for certain distributions, the Bayes classifier does
not satisfy EO. As a consequence, in these cases, EO can only be
achieved by trading-off some accuracy.

(b) We give necessary and sufficient conditions for non-trivially accu-
rate predictors to exist.

3. We prove and depict several algebraic and geometric properties about
the feasibility region, i.e., the region containing all predictors in the
plane of opportunity difference versus error.

4. We determine necessary and sufficient conditions under which non-
trivial accuracy and EO are compatible.

5. We develop an algorithm that computes the Pareto-optimal boundary
of the accuracy-fairness trade-off, and more generally, the feasibility
region.

6. We illustrate how the incompatibility between EO and non-trivial ac-
curacy may arise in practice.

7. We discuss the distortion effect that arises when we use the above
algorithm on empirical distributions from sampled data.

For reproducibility, we published a repository [Pin22] with Python code for
generating the figures and algorithms mentioned in this chapter, including
Algorithms 1 and 2.

The rest of the chapter is organized as follows. Section 2.1 discusses related
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work. Section 2.2 recalls the preliminary notions that are used in the rest
of the document. Section 2.3 introduces the plane of error versus opportu-
nity difference and shows several geometric properties taking place in this
plane. Section 2.4 presents the impossibility result: for certain probabilistic
distributions, no predictor can achieve EO and non-trivial accuracy simul-
taneously. Section 2.5 compares deterministic sources against probabilistic
ones, and shows how to modify existing results that hold in the former case
to guarantee them in the latter. Section 2.6 presents algorithms for comput-
ing the Pareto-optimal frontier and all the vertices of the feasibility region in
the plane of error versus opportunity difference. Section 2.7 states the nec-
essary and sufficient conditions under which there exist predictors achieving
EO and non-trivial accuracy simultaneously. Section 2.8 shows an example of
the impossibility result arising in (a variant of) a real-life dataset. Section 2.9
discusses the distortion on the Pareto-optimal frontier when we compute and
evaluate it using empirical distribution from sampled data. Section 2.10
draws the conclusion.

The contents of this chapter were published in the Machine Learning journal
(Springer)[PPPV23]. A preliminary and partial version appeared in the pro-
ceedings of AAAI 2022 [PPPV22]. The differences with respect to the AAAI-
2022 version are that here, we study the Pareto-optimal boundary (Sec-
tion 2.6), the necessary and sufficient conditions (Theorem 19) that charac-
terize the impossibility between equal opportunity and non-trivial accuracy,
and we present a practical example based on the Adult dataset (Figure 2.9).

2.1 Related Work

This chapter contributes to the technical literature about equal opportunity
(EO) [HPS16], one of the most common group fairness notions [PS22]. For an
overview of when EO is appropriate and how EO relates to other fairness no-
tions, the reader is referred to the survey papers [MZP21b, PS22, CH20, MMS+21]

and the moral framework in [HLGK19].

This chapter is strongly related to the following two papers that consider
a randomized learning algorithm guaranteeing (exact) EO and also satisfy-
ing differential privacy: [CGKM19] shows that, for certain distributions, these
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constraints imply trivial accuracy. [Aga20] proves the same claim for any
arbitrary distribution and for non-exact EO, i.e., bounded opportunity dif-
ference. It also highlights that, although there appears to be an error in the
proof of [CGKM19], the statement is still correct. In contrast, in this chapter,
we prove the existence of particular distributions in which trivial accuracy
is implied directly from the (exact) EO constraint, without any differential
privacy assumption.

There are also several works that focus on the incompatibility of fairness
constraints. In [KMR17], it is shown that several fairness notions cannot hold
simultaneously, except for exceptional cases. Similarly, in [LCM18], it is shown
that the two main legal notions of discrimination are in conflict for some sce-
narios. In particular, when impact parity and treatment parity are imposed,
the learned model seems to decide based on irrelevant attributes. These
works reveal contradictions when different notions of fairness are imposed
together.

In contrast, [CDG18] show issues inherent to anti-classification, classification
parity, and calibration, separately, without inducing them simultaneously
with another fairness notion. Regarding equal opportunity in the COMPAS
case, they show that forcing equal and low false positive rates obliges the
system to decide almost randomly (trivially) for black defendants. Our work
presents theoretical scenarios in which this problem is even more extreme
and the system becomes trivial for both classes. As shown in our sufficiency
and necessary conditions, the extreme scenarios are characterized based on
six population statistics. In this sense, this chapter is also related to [SYT20],
which computes bounds on fairness and accuracy based on population statis-
tics.

Lastly, in comparison to the seminal paper on equal opportunity [HPS16],
this chapter uses a different geometric approach. Graphically, their analysis is
carried out using ROC curves of fixed predictors. In contrast, we plot directly
the error and the difference in opportunity of the two sensitive groups. In
Section 2.4, Figure 2.9, we depict side by side the two perspectives. In this
sense, we provide a complementary geometric perspective for analyzing equal
opportunity and accuracy together.
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2.2 Preliminaries

The notation described in this section is summarized in Table 2.1.

We consider the problem of binary classification with a binary protected fea-
ture. Protected features, also called sensitive attributes or sensitive features,
are input features that represent race, gender, religion, nationality, age, or
any other variable that could potentially be used to discriminate against a
group of people. A feature may be considered a protected feature in some con-
texts and not in others, depending on whether the classification task should
ideally consider that feature or not. For our purposes, we assume the simple
and fundamental case in which there is a single protected attribute that can
only take two values, e.g., man or woman, or, religious or non-religious.

Data Source

We consider an observable underlying statistical model consisting of three
random variables over a probability space (Ω, E ,P): the protected feature
A : Ω → {0, 1}, the non-protected feature vector X : Ω → Rd for some
positive integer d, and the target label Y : Ω → {0, 1}. We refer to this
statistical model as the data source.

The distribution of (X,A) is denoted by the measure π that computes for
each ((X,A)-measurable) event E ⊆ Rd × {0, 1}, the probability π(E)

def

:=

P[ (X,A)∈E ]. To reduce the verbosity of the discrete case, we denote
the probability mass function as π(x, a)

def

:= π({(x, a)}), i.e., π(x, a) =

P[X=x,A=a ].

The expectation of Y conditioned on (X,A) is denoted both as the function
q(x, a)

def

:= E[Y | X = x,A = a ] and the random variable Q
def

:= E[Y | X,A ] =

q(X,A). Importantly, the notation E[Y | X = x,A = a ] for defining q(x, a)

is not an expectation conditioned on the possibly null event (X = x,A = a).
Instead, it is syntactic sugar for the conditional expectation function. For-
mally speaking, the function q is not necessarily unique in the way it is
defined. It is defined almost everywhere uniquely, so that for any alterna-
tive conditional expectation function q′, we have q(X,A) = q′(X,A) almost
surely. Throughout this chapter, we prioritize studying the discrete case to
avoid this extreme level of formalism without losing rigor.
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The random variable Q plays the role of a soft target label because, since
q(x, a) = P[Y =1 |X=x,A=a ], then Y can be modeled as a Bernoulli ran-
dom variable with success probability Q.

The distribution of (X,A, Y ) is completely characterized by the pair (π, q),
hence we refer to this pair as the distribution of the data source. And we
distinguish two cases: the data source is probabilistic in general, but if Q ∈
{0, 1} (with probability 1), then it is said to be deterministic. This distinction
is crucial, because several statements hold exclusively in one of the two cases.

(X,A, Y ) Data source
X Non-protected feature vector in Rd

A Protected feature in {0, 1}
Y Target label in {0, 1}
Q, q Soft target label Q

def

:= E[Y | X,A ]

π Distribution of (X,A)

(π, q) Distribution of (X,A, Y )

Q̂, q̂ Predictor Q̂ = q̂(X,A) = E[ Ŷ | X,A ]

Ŷ Predicted label in {0, 1}
Q Set of all predictors
acc(Q̂) Accuracy of Q̂: P[ Ŷ=Y ]

oppDiff(Q̂) Opportunity difference of Q̂:
E[ Q̂ | Y = 1, A = 1 ]− E[ Q̂ | Y = 1, A = 0 ]

Table 2.1: The notation used in this chapter.

Classifiers and Predictors

Analogously to the data source, we model the estimation Ŷ as a Bernoulli
random variable with success probability Q̂ = q̂(X,A) for some ((X,A)-
measurable) function q̂. We refer to Ŷ as a (hard) classifier, and to Q̂ or q̂

as a (soft) predictor. Notice that Ŷ is deterministic when Q̂ ∈ {0, 1} (with
probability 1), in which case, Ŷ = Q̂ (with prob. 1). Hence, all deterministic
classifiers are also predictors.

The set of all soft predictors is denoted as Q. We highlight the following
predictors in Q:
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1. the two constant classifiers, 0̂ and 1̂, given by 0̂(x, a)
def

:= 0 and 1̂(x, a)
def

:=

1,

2. for each Q̂ ∈ Q, the 1/2-threshold classifier given by Q̂1/2
def

:= 1{Q̂ > 1/2} ,

3. the data source soft target Q, and

4. the Bayes classifier Q1/2 = 1{Q > 1/2} .

It is well known1 that the Bayes classifier Q1/2 has minimal error among all
predictors in Q, regardless of whether the data source is deterministic or not.

Evaluation Metrics

To refer to equal opportunity [HPS16], we introduce a continuous metric called
the opportunity difference. The opportunity difference of a predictor Q̂ ∈ Q
is defined as

oppDiff(Q̂)
def

:= (P[ Ŷ=1 |A=1, Y =1 ] − P[ Ŷ=1 |A=0, Y =1 ] ),

and a predictor Q̂ ∈ Q is said to satisfy equal opportunity if and only if
oppDiff(Q̂) = 0. Alternatively, the opportunity difference can be computed
using the formula in Lemma 1.

Lemma 1. For any predictor Q̂, and assuming P[Y =1, A=a ] > 0 for each
a ∈ {0, 1}, we have

P[ Ŷ =1 |Y =1, A=a ] =
E[ Q̂Q | A = a ]

E[Q | A = a ]
,

hence also

oppDiff(Q̂) =
E[ Q̂Q | A = 1 ]

E[Q | A = 1 ]
− E[ Q̂Q | A = 0 ]

E[Q | A = 0 ]
.

As an additional consequence, by considering the symmetric predictor 1− Q̂,
it is also true that

P[ Ŷ =0 |Y =1, A=a ] =
E[ (1− Q̂)Q | A = a ]

E[Q | A = a ]
.

1See for instance Chapter 3 of [Fuk13].
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Proof. Indeed, by applying repetitively the Bayes rule, we get

P[ Ŷ=1 |Y =1, A=a ] =
P[ Ŷ=1, Y =1, A=a ]

P[Y =1, A=a ]
=

P[A=a ]E[ Q̂Q | A = a ]

P[Y =1, A=a ]

=
E[ Q̂Q | A = a ]

P[Y =1 |A=a ]
=

E[ Q̂Q | A = a ]

E[Q | A = a ]
.

The second equality holds because (Y, Ŷ) ⊥ A | (Q, Q̂) and Y ⊥ Ŷ | (Q, Q̂),
which, destructuring the conditional independence notation, means that
for almost any q, q̂ ∈ [0, 1] (i.e., for all q, q̂ ∈ S for some set S with
P[ (Q, Q̂)∈S ] = 1), when conditioning on Q = q and Q̂ = q̂, we have Y ⊥ A

and Ŷ ⊥ A and Y ⊥ Ŷ.

The error and the accuracy of a predictor Q̂ ∈ Q are defined as

err(Q̂)
def

:= P[ Ŷ ̸=Y ],

acc(Q̂)
def

:= 1− err(Q̂).

As shown in Lemma 2, the error can also be computed as err(Q̂) =

E[Q+Q̂−2QQ̂ ].

Lemma 2. For every Q̂ ∈ Q,

err(Q̂) = E[ |Q̂−Y | ].

Proof. Notice that P[ Ŷ ̸=Y |Y =1 ] = P[ Ŷ=0 |Y =1 ] = E[ 1− Q̂ | Y = 1 ]

and P[ Ŷ ̸=Y |Y =0 ] = P[ Ŷ=1 |Y =0 ] = E[ Q̂ | Y = 0 ]. In both cases, we
may write P[ Ŷ ̸=Y |Y =y ] = E[ |Y − Q̂| | Y = y ].

Hence, marginalizing over Y we conclude P[ Ŷ ̸=Y ] = E[ |Y −Q̂| ].

As mentioned in the previous subsection, the maximal level of accuracy is
achieved by the Bayes classifier Q1/2. Moreover, as shown in Lemma 3 its
exact value is 1/2 + E[ |Q−1/2| ].

Lemma 3. (Bayes accuracy)

acc(Q1/2) = 1/2 + E[ |Q−1/2| ].

28



2.2. Preliminaries Chapter 2. Accuracy vs equal opportunity

Proof. Out of Lemma 2, we know err(Q1/2) = E[ ϵ ] where ϵ
def

:= |Q1/2 − Y |.
Let us condition on Q < 1/2 and Q ≥ 1/2 separately (whenever these events
have possible probabilities).

For Q < 1/2, we have E[ ϵ | Q < 1/2 ] = E[Y | Q < 1/2 ] = E[Q | Q < 1/2 ]

and Q = 1/2 − (1/2 − Q). For Q ≥ 1/2, we have E[ ϵ | Q ≥ 1/2 ] =

E[ 1− Y | Q ≥ 1/2 ] = E[ 1−Q | Q ≥ 1/2 ] and 1−Q = 1/2− (Q− 1/2).

These cases partition Ω and in both cases we have E[ ϵ ] = 1/2− E[ |1/2−Q| ].
It follows that err(Q1/2) = 1/2− E[ |Q−1/2| ].

This maximal level of accuracy is also achieved by the alternative Bayes
classifier given by 1{q(x, a) ≥ 1/2} (≥ instead of >). This is shown in
Lemma 5, which uses Lemma 4 to express the error of the predictor when Q

is exactly 1/2.

Lemma 4. (Conditioning on 1/2) Let Q̂ ∈ Q and consider the random vari-
able |Q̂− Y | of the error of Q̂ according to Lemma 2. If P[Q=1/2 ] > 0, then
E[ |Q̂− Y | | Q = 1/2 ] = 1/2.

Proof. Define r
def

:= E[ Q̂ ]. Let us condition on Y = 0 and Y = 1 sepa-
rately. For Y = 0, we have E[ |Q̂− Y | | Q = 1/2, Y = 0 ] = E[ Q̂ | Q = 1/2 ] =

E[ Q̂ ] = r, and for Y = 1, we have E[ |Q̂− Y | | Q = 1/2, Y = 1 ] = 1 −
E[ Q̂ | Q = 1/2 ] = 1− E[ Q̂ ] = 1− r.

Since it holds that P[Y =y |Q=1/2 ] = 1/2, we can compute the marginal as
E[ |Q̂− Y | | Q = 1/2 ] = (1/2)(r+1−r) = 1/2.

Lemma 5. (Alternative Bayes) The alternative Bayes classifier Q1/2 given
by 1{q(x, a) ≥ 1/2} (≥ instead of >) has also maximal accuracy.

Proof. We will prove that err(Q1/2) = err(Q∗
1/2). Following Lemma 2, let

ϵ
def

:= |Q1/2 − Y | and ϵ∗
def

:= |Q∗
1/2 − Y |.

Conditioned to Q ̸= 1/2 we have Q1/2 = Q∗
1/2 from their definitions, and

thus also E[ ϵ− ϵ∗ | Q ̸= 1/2 ] = 0. It suffices to check the complement event
Q = 1/2. Suppose P[Q=1/2 ] > 0. Conditioned to Q = 1/2, Lemma 4 implies
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that E[ ϵ− ϵ∗ | Q = 1/2 ] = 1/2− 1/2 = 0.

Hence, E[ ϵ ] = E[ ϵ∗ ], i.e., err(q1/2) = err(q∗1/2).

With regard to the error and the accuracy, we consider a minimal ref-
erence level of accuracy that should be outperformed intuitively by any
well-trained predictor. The trivial accuracy [CGKM19] is defined as τ

def

:=

max
{

acc(Q̂) : Q̂ ∈ Triv
}

, where Triv is the set of (trivial) predictors whose
output does not depend on X and A at all, and as a consequence is indepen-
dent of Y as well. In other words, Triv consists of all constant soft predictors
Triv

def

:= {((x, a) 7→ c) : c ∈ [0, 1]}. According to the Neyman-Pearson Lemma,
the most accurate trivial predictor is always hard, i.e., must be either 0̂ or 1̂.
Thus, τ is well-defined and can be computed as

τ = max {P[Y =0 ], P[Y =1 ]} = 1/2 + |E[Y ]− 1/2|. (due to Lemma 6)

Lemma 6. (Trivial error as an expectation)

τ = 1/2 + |E[Y ]− 1/2|.

Proof. The constant 0 predictor (0̂) has error E[Y ], while the constant 1

predictor (1̂) has error 1−E[Y ]. We can rewrite these quantities respectively
as 1/2 − (1/2− E[Y ]) and 1/2 + (1/2− E[Y ]), whose maximum is τ = 1/2 +

|1/2− E[Y ]|.

Lastly, a predictor Q̂ ∈ Q is said to be trivially accurate if acc(Q̂) ≤ τ , and
non-trivially accurate, or non-trivial otherwise. Notice that for a degenerated
data source in which the decision Y is independent of X and A, all predictors
are forcibly trivially accurate.

2.3 The Feasibility Region

In this section, we analyze the region M ⊆ [0, 1]× [−1,+1] given by

M
def

:= {(err(Q̂), oppDiff(Q̂)) : Q̂ ∈ Q},
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which represents the feasible combinations of the evaluation metrics (error
and opportunity difference) that can be obtained for a given source distribu-
tion (π, q). This region determines the tension between error and opportunity
difference. Figure 2.1 shows an example of the region M .

Figure 2.1: Region M for an arbitrary source distribution.

The results presented in this section assume that the data source is discrete,
and its range is finite. We will use the following vectorial notation to represent
both the distribution (π, q) and any arbitrary predictor Q̂ ∈ Q.

Definition 1. Suppose (X,A) can only take a finite number of outcomes
{(xi, ai)}ni=1 (each with positive probability) for some integer n > 0. In order
to represent π, q and any Q̂ ∈ Q respectively, let P⃗ , Q⃗, F⃗ ∈ Rn be the vectors
given by

P⃗i
def

:= P[X=xi, A=ai ], (Discrete π)

Q⃗i
def

:= P[Y =1 |X=xi, A=ai ], (Discrete q)

F⃗i
def

:= P[ Ŷ=1, X=xi, A=ai ]. (Discrete q̂)

For notation purposes, let also Q⃗(0), Q⃗(1) ∈ Rn be given by Q⃗
(a)
i

def

:= Q⃗i ·1{ai =
a} , and in order to match (as we will show in Lemma 7) the definition of
err(Q̂) and oppDiff(Q̂), let

err(F⃗ )
def

:= ⟨P⃗ , Q⃗⟩+ ⟨F⃗ , 1−2Q⃗⟩,

oppDiff(F⃗ )
def

:=
⟨F⃗ , Q⃗(1)⟩
⟨P⃗ , Q⃗(1)⟩

− ⟨F⃗ , Q⃗(0)⟩
⟨P⃗ , Q⃗(0)⟩

,

where ⟨ · , · ⟩ denotes the inner product ⟨u, v⟩ def

:= u1v1 + · · ·+ unvn. (End)
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Regarding Definition 1, we highlight four important remarks:

1. Q⃗ ∈ [0, 1]n, P⃗ ∈ (0, 1]n, ∥P⃗∥1 = 1 and F⃗ lies in the rectangular n-
dimensional box given by

0 ⪯ F⃗ ⪯ P⃗ ,

where ⪯ denotes the component-wise order in Rn, i.e., 0 ≤ F⃗i ≤ P⃗i for
each i ∈ {1, ..., n}. Moreover, from the definition of P⃗ and F⃗ , the ver-
tices of this rectangular box correspond precisely with the deterministic
predictors.

2. The vectorial definitions of error and opportunity difference correspond
to those of the non-vectorial case. Moreover, their gradients are con-
stant.

3. There is a one-to-one correspondence between the predictors q̂ ∈ Q
and the vectors F⃗ that satisfy 0 ⪯ F⃗ ⪯ P⃗ . Indeed, each predictor is
uniquely given by its pointwise values q̂(xi, ai) = F⃗i

P⃗i
and each vector

by its pointwise coordinates F⃗i = P⃗iq̂(xi, ai). This transformation pre-
serves all the evaluation metrics, a fact proved in Lemma 7, therefore

M = {(err(F⃗ ), oppDiff(F⃗ )) : 0 ⪯ F⃗ ⪯ P⃗}.

4. There is an inherent symmetry in the space of vectors F⃗ that satisfy
0 ⪯ F⃗ ⪯ P⃗ . This symmetry is detailed in Lemma 8.

Lemma 7. (Vectorial metrics) Using the notation of Definition 1, we have

err(Q̂) = err(F⃗ ),

oppDiff(Q̂) = oppDiff(F⃗ ).

Proof. For the error, we marginalize over (X,A). Notice

P[Y ̸=Ŷ |X=xi, A=ai ] =(1− q(xi, ai))q̂(xi, ai) + q(xi, ai)(1− q̂(xi, ai))

=(1− Q⃗i)
F⃗i

P⃗i

+ Q⃗i
P⃗i − F⃗i

P⃗i

=
Q⃗iP⃗i + F⃗i(1− 2Q⃗i)

P⃗i

.
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Thus, P[Y ̸=Ŷ, X=xi, A=ai ] = Q⃗iP⃗i + F⃗i(1− 2Q⃗i), and

err(Q̂) = P[ Ŷ ̸=Y ] =
n∑

i=1

P[ Ŷ ̸=Y,X=xi, A=ai ]

= ⟨P⃗ , Q⃗⟩+ ⟨F⃗ , 1−2Q⟩ = err(F⃗ ).

For opportunity difference, we also marginalize over (X,A). Notice that

P[ Ŷ=1, Y =1, X=xi, A=ai ] =P⃗i E[ Q̂Q | X = xi, A = ai ]

=P⃗i
F⃗i

P⃗i

Q⃗i = F⃗iQ⃗i,

hence P[ Ŷ=1, Y =1, X=xi, A=a ] = F⃗iQ⃗
(a)
i . In addition, we have that

P[Y =1, X=xi, A=a ] = P⃗iQ⃗
(a)
i and

P[ Ŷ=1 |Y =1, A=a ] =

∑n
i=1 P[ Ŷ=1, Y =1, X=xi, A=a ]∑n

i=1 P[Y =1, X=xi, A=a ]
=
⟨F⃗ , Q⃗(a)⟩
⟨P⃗ , Q⃗(a)⟩

.

Therefore,

oppDiff(Q̂) =P[ Ŷ=1 |Y =1, A=1 ]− P[ Ŷ=1 |Y =1, A=0 ]

=
⟨F⃗ , Q⃗(1)⟩
⟨P⃗ , Q⃗(1)⟩

− ⟨F⃗ , Q⃗(0)⟩
⟨P⃗ , Q⃗(0)⟩

= oppDiff(F⃗ ).

Lemma 8. (Metrics symmetry) Using the notation of Definition 1, we have

err(P⃗ − F⃗ ) = 1− err(F⃗ ),

oppDiff(P⃗ − F⃗ ) = −oppDiff(F⃗ ).

Proof. According to Lemma 7, opportunity difference is a linear transforma-
tion. Since linear transformations preserve scalar multiplication and vector
addition, it follows that oppDiff(P⃗ − F⃗ ) = oppDiff(P⃗ )− oppDiff(F⃗ ). More-
over, since oppDiff(P⃗ ) = 1− 1 = 0, then oppDiff(P⃗ − F⃗ ) = −oppDiff(F⃗ ).

According to the same lemma, the error is an affine transformation with
offset ⟨P⃗ , Q⃗⟩. Hence,

err(P⃗ − F⃗ ) = err(P⃗ )− err(F⃗ ) + ⟨P⃗ , Q⃗⟩
= 2⟨P⃗ , Q⃗⟩ − ⟨P⃗ , 1−2Q⃗⟩ − err(F⃗ )

= ⟨P⃗ , 1⟩ − err(F⃗ ) = 1− err(F⃗ ),
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because
∑n

i=1 P⃗i = 1.

We now make use of results from a different research area in mathematics
(geometry) to conclude the main properties of the region M .

Theorem 9. Assuming a discrete data source with finitely many possible
outcomes, the region M of feasible combinations of error versus opportunity
difference satisfies the following claims.

1. M is a convex polygon.

2. The vertices of the polygon M correspond to some deterministic pre-
dictors.

3. M is symmetric with respect to the point (1/2, 0).

Proof. The proof is based on the fact that affine transformations map poly-
topes into polytopes (See Chapter 3 of [Grü13]).

Assume the notation of Definition 1.

Part 1. In geometrical terms, M is the result of applying an affine transfor-
mation, i.e., a linear transformation and a translation, to the n-dimensional
polytope given by 0 ⪯ F⃗ ⪯ P⃗ .

Affine transformations are known to map polytopes into polytopes (See
Chapter 3 of [Grü13]), therefore M must be a 2-dimensional polytope, i.e.,
the region M is a convex polygon. In theory, this region may also be a 1-
dimensional segment, but this can only occur in the extreme case that Q = 1/2

(with probability 1).

Part 2. The vertices of a polytope, also called extremal points, are the
points in the polytope that are not in the segment between any two other
points in the polytope. It is known from geometry theory that affine map-
pings preserve collinearity, i.e., they map segments into segments, thus they
map non-vertices into non-vertices. As a consequence, the vertices of the
polygon M correspond to some vertices of the polytope 0 ⪯ F⃗ ⪯ P⃗ , that is,
to some deterministic classifiers.
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Part 3. Notice (Lemma 8) that

err(P⃗ − F⃗ ) = 1− err(F⃗ ),

oppDiff(P⃗ − F⃗ ) = −oppDiff(F⃗ ).

This implies that for each point (err(F⃗ ), oppDiff(F⃗ )) ∈ M , there is another
one, namely (err(P⃗ − F⃗ ), oppDiff(P⃗ − F⃗ )) ∈ M that is symmetrical to the
former w.r.t the point (1/2, 0). Geometrically, this means that the polygon
M is symmetric with respect to the point (1/2, 0).

The reader is invited to visualize the properties of M mentioned in Theorem 9
in Figure 2.1, which depicts the region M for a particular instance 2 of P⃗
and Q⃗.

2.4 Strong Impossibility Result

Contrasting with Figure 2.1 in the previous section, Figure 2.2 shows a data
source for which the constant classifiers are vertices of the polygon. Figure 2.2
was generated using the theory developed in this section, and it illustrates
the strong incompatibility that may occur in certain distributions. Namely,
among the predictors satisfying equal opportunity (those in the X-axis), the
minimal error is achieved by a constant classifier.

Figure 2.2: In this distribution, the
constant classifiers are vertices of the
polygon, thus the constraints of equal
opportunity and non-trivial accuracy
can not be satisfied simultaneously.

In other words, there are data sources for which no predictor can achieve
equal opportunity and non-trivial accuracy simultaneously. This is Theo-
rem 11.

2Namely, P=[0.267 0.344 0.141 0.248], Q=[0.893 0.896 0.126 0.207] and A=[0
1 0 1].
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Since Theorem 11 is our strongest result, we also show how to generalize it
to non-finite domains. For this purpose, and focusing on formality, we state
in Definition 10 very precisely, for which kind of domains it applies.

Definition 10. The essential range of a random variable S : Ω→ Rk is the
set

{s⃗ ∈ Rk : (∀ϵ > 0) P[ ∥S−s⃗∥<ϵ ] > 0}.
We call a set D ⊆ Rk an essential domain if it is the essential range of any
random variable.

Definition 10 excludes pathological domains such as non-measurable sets, the
Cantor set, or the irrationals. But it allows for isolated points, convex and
closed sets, finite unions of them, and countable unions of them as long as
the resulting set is closed. This includes typical domains, such as products
of closed intervals

∏n
i=1[li, ri], or the whole space Rn.

Theorem 11. For any essential domain X ⊆ Rd with |X | ≥ 2, there exists
a data source (X,A, Y ) whose essential range is X × {0, 1}2 and such that
the accuracy acc(Q̂) of any predictor Q̂ ∈ Q that satisfies equal opportunity
is at most the trivial accuracy τ ∈ [0, 1).

Proof. The proof is divided into four parts. We will (i) reduce the problem
into an algebraic one; (ii) find the linear constraints that solve the algebraic
problem when satisfied; (iii) provide an algorithm that generates vectors that
satisfy the linear constraints; and finally, (iv) convert the vectorial solution
back into a distribution (π, q) for the given domain.

Part 1. Reduction to an algebraic problem.

Partition the non-protected input space X into two non-empty sets X1,X2,
and the input space X × {0, 1} into three regions Rj:

R1 = X1 × {0}, R2 = X2 × {0}, and R3 = X × {1}.

For any distribution (π, q) for which these 3 regions have positive probabil-
ities, denote P⃗j

def

:= P[ (X,A)∈Rj ] > 0 and Q⃗j
def

:= P[Y =1 |(X,A)∈Rj ] for
j ∈ {1, 2, 3}. We search for constraints over P⃗ and Q⃗ that are feasible and
cause acc(Q̂) ≤ τ for any fair predictor Q̂ ∈ Q satisfying EO. The first such
constraint is
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C1. P⃗ , Q⃗ ∈ (0, 1)3.

That is, we require P⃗j to be positive, and Y to have at least some degree of
randomness in each region.

Given a reference predictor Q̂, let F⃗ ∈ [0, 1]3 be the vector given by F⃗j
def

:=

P[ Ŷ=1, (X,A)∈Rj ]. Lemma 7 shows that the accuracy and the opportunity
difference of any predictor Q̂ can be computed from P⃗ , Q⃗ and F⃗ as

acc(Q̂) = ⟨F⃗ , 2Q⃗−1⟩+ CQ⃗,

oppDiff(Q̂) =
F⃗3

P⃗3

− F⃗1Q⃗1 + F⃗2Q⃗2

P⃗1Q⃗1 + P⃗2Q⃗2

,

where CQ⃗

def

:= 1 − ⟨P⃗ , Q⃗⟩ is a constant and the operator ⟨·, ·⟩ denotes the
inner product explained in Definition 1. Since we are interested in relative
accuracies with respect to the trivial predictors, the constant CQ⃗ is mostly
irrelevant. For this reason, we let L(F⃗ ) ∈ [−1, 1] denote the non-constant
component of the accuracy L(F⃗ )

def

:= ⟨F⃗ , 2Q⃗−1⟩.

Both accuracy and opportunity difference are completely determined for any
predictor by the vectors P⃗ , Q⃗ and F⃗ as shown above. Moreover, both quan-
tities are linear with respect to F⃗ .

F⃗3

F⃗2

F⃗1

F⃗

F⃗ ∗

P⃗

Z⃗
Bayes

0⃗

Figure 2.3: In vectorial form, the predictors that satisfy equal opportunity
form a plane inside the rectangular box of all predictors.

Regarding equal opportunity, the constraint oppDiff(Q̂) = 0 forms a plane
in R3, depicted in Figure 2.3. This plane passes through the origin, is deter-
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mined by P⃗ and Q⃗, and contains all vectors F⃗ (restricted to 0 ≤ F⃗j ≤ P⃗j)
that satisfy

F⃗3(P⃗1Q⃗1 + P⃗2Q⃗2)− P⃗3(F⃗1Q⃗1 + F⃗2Q⃗2) = 0,

or equivalently, all vectors F that are normal to the vector
(−P⃗3Q⃗1,−P⃗3Q⃗2, P⃗1Q⃗1+P⃗2Q⃗2).

Regarding accuracy, the two constant predictors correspond to F⃗ = 0⃗ and
F⃗ = P⃗ , thus τ = CQ + max{L(⃗0), L(P⃗ )}. Importantly, both of them lie on
the equal opportunity plane.

The problem is now reduced to finding vectors P⃗ and Q⃗ such that all vectors
F⃗ in the equal opportunity plane satisfy L(F⃗ ) ≤ max{L(⃗0), L(P⃗ )}.

Part 2. Constraints for the algebraic solution.

To fix an orientation, let us impose these constraints:

C2. Among the constant predictors, the accuracy of F⃗ = P⃗ is higher than
that of F⃗ = 0⃗. This is L(P⃗ ) > 0 = L(⃗0).

C3. The Bayes classifier is located at (0, P⃗2, P⃗3) as in Figure 2.3. Alge-
braically this means Q⃗1 < 1/2 and Q⃗2, Q⃗3 > 1/2.

In order to derive the constraints that make the scalar field L maximal at P⃗
over the plane, consider the vector Z⃗ that lies on the plane and has minimal
Z⃗1 and maximal Z⃗2, i.e.

Z⃗
def

:= (0, P⃗2, P⃗3
P⃗2Q⃗2

P⃗1Q⃗1 + P⃗2Q⃗2

).

Since the gradient of L is given by 2Q⃗− 1 and has signs (−,+,+), then for
any vector F⃗ in the plane, there is F⃗ ∗ in the segment between P⃗ and Z⃗ such
that F⃗1 = F⃗ ∗

1 and L(F⃗ ∗) ≥ L(F⃗ ) (refer to Figure 2.3). This implies that the
L attains its maximal value on the segment between P⃗ and Z⃗. Hence, for
L to be maximal at P⃗ , it would suffice to have L(P⃗ ) > L(Z⃗). This can be
achieved by imposing, in addition,

C4. Q⃗3 + Q⃗1 ≥ 1, and

C5. P⃗1Q⃗1 + P⃗2Q⃗2 < P⃗3Q⃗1.

38



2.4. Strong Impossibility Result Chapter 2. Accuracy vs equal opportunity

because of the following equivalences and implications.

(Q⃗3+Q⃗1≥1)∧(P⃗1Q⃗1+P⃗2Q⃗2<P⃗3Q⃗1)

≡(1−2Q⃗1≤2Q⃗3−1)∧(P⃗1Q⃗1+P⃗2Q⃗2<P⃗3Q⃗1)

⇒(1−2Q⃗1)(P⃗1Q⃗1+P⃗2Q⃗2)<(2Q⃗3−1)P⃗3Q⃗1

≡(2Q⃗1−1)(P⃗1Q⃗1+P⃗2Q⃗2)+(2Q⃗3−1)P⃗3Q⃗1>0

≡(2Q⃗1−1)P⃗1+(2Q⃗3−1)P⃗3
P⃗1Q⃗1

P⃗1Q⃗1+P⃗2Q⃗2

>0

≡⟨2Q⃗−1, P⃗−Z⃗⟩ > 0

≡⟨2Q⃗−1, P⃗ ⟩ − ⟨2Q⃗−1, Z⃗⟩ > 0

Part 3. Solution to the constraints.

Algorithm 1 is a randomized algorithm that generates random vectors. We
will prove that the output vectors P⃗ and Q⃗ satisfy the constraints of the
previous parts of this proof, regardless of the seed and the random sampling
function, e.g., uniform. For corroboration and illustration, the distribution
in Figure 2.2 presented early was generated using this algorithm3.

Algorithm 1 Random generator for Theorem 11.
1: procedure VectorGenerator(seed)
2: Initialize random sampler with the seed
3: Q⃗1 ← random in (0, 1/2)

4: Q⃗2 ← random in (1/2, 1)

5: Q⃗3 ← random in (1− Q⃗1, 1)

6: P⃗3 ← random in (1/2, 1)

7: a← max{(1− P⃗3)Q⃗1, 1/2− P⃗3Q⃗3}
8: b← min{(1− P⃗3)Q⃗2, P⃗3Q⃗1}
9: c← random in (a, b)

10: P⃗2 ← (c−Q⃗1(1−P⃗3))/Q⃗2−Q⃗1

11: P⃗1 ← 1− P⃗3 − P⃗2

12: return P⃗ , Q⃗

Two immediate observations about Algorithm 1 are that the construction of
Q⃗ implies that constraints C3 and C4 are satisfied, and the construction of

3The algorithm’s output was P=[0.131 0.096 0.772] and Q=[0.274 0.858 0.891].
Also, A=[0 0 1] from the partition {R1, R2, R3}.
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P⃗ implies P⃗1 + P⃗2 + P⃗3 = 1. To prove the correctness of the algorithm, it
remains to prove that (i) a < b (otherwise the algorithm would not be well-
defined), that (ii) P⃗2 ∈ (0, 1) for constraint C1, and also that (iii) constraints
C2 and C5 are satisfied. For better readability, the algebraic proof of these
claims is moved to Lemma 12.

Part 4. Construction of the distribution.

Generate a pair of vectors P⃗ and Q⃗ using the algorithm of the previous part
(Part 3). The first goal is to partition X into X1 and X2 to generate the
regions R1, R2 and R3. The second goal is to define π in such a way that
P[ (X,A)∈Rj ] = P⃗j for each j ∈ {1, 2, 3}. The third and last goal is to define
q so that E[Q | (X,A) ∈ Rj ] = Q⃗j for each j. This can be done immediately
by letting q(x, a)

def

:= Q⃗j for all (x, a) ∈ Rj. Thus only the first two goals
remain.

For the first goal, since |X | ≥ 2, we may create a simple Voronoi clustering
diagram by choosing two different arbitrary points s1, s2 ∈ X , and letting
X1

def

:={s∈X :∥s−s1∥≤∥s−s2∥} and X2
def

:= X \ X1.

For the second goal, since X is an essential domain, there exists a random
variable S whose essential range is X . Notice that for each j ∈ {1, 2}, it holds
that P[S∈Xj ] ≥ P[ ∥S−sj∥<∥s1−s2∥/2 ] > 0. For each ((X,A)-measurable)
event E, let Ea

def

:= {x : (x, a) ∈ E}, and define π(E) as

P[ (X,A)∈E ]
def

:=
∑
a=0,1

P[X∈Ea, A=a ],

P[X∈E0, A=0 ]
def

:=
∑
j=1,2

P[S∈E0 |S∈Xj ]P⃗j,

P[X∈E1, A=1 ]
def

:= P[S∈E1 ]P⃗3.

This forces P[ (X,A)∈Rj ] = P⃗j for each j ∈ {1, 2, 3} as desired.

Lemma 12. Algorithm 1 is correct.

Proof. We will prove a < b, P⃗2 ∈ (0, 1) and the fulfillment of constraints C2
and C5.

Part 1. Proof that a < b.
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Recall a = max{(1− P⃗3)Q⃗1, 1/2− P⃗3Q⃗3} and b = min{(1− P⃗3)Q⃗2, P⃗3Q⃗1}.

1. Since Q⃗1 < 1/2 < Q⃗2 and P⃗3 ∈ (0, 1), then (1− P⃗3)Q⃗1 < (1− P⃗3)Q⃗2.

2. Since P⃗3 ∈ (1/2, 1), then (1− P⃗3)Q⃗1 < P⃗3Q⃗1.

3. Since P⃗3 ∈ (0, 1) and Q⃗3 ∈ (1/2, 1), then P⃗3(Q⃗2 − Q⃗3) < 1 · (Q⃗2 − 1/2),
or equivalently, 1/2− P⃗3Q⃗3 < (1− P⃗3)Q⃗2.

4. Since P⃗3 >
1

2(Q⃗1+Q⃗3)
then 1/2− P⃗3Q⃗3 < P⃗3Q⃗1.

Since the inequalities hold for all available choices for a and b, then, in general,
a < b holds.

Part 2. Proof that P⃗2 ∈ (0, 1).

We know c > Q⃗1(1− P⃗3) and c < Q⃗2(1− P⃗3). These inequalities imply that
c− Q⃗1(1− P⃗3) ∈ (0, Q⃗2 − Q⃗1), hence also that P⃗2 ∈ (0, 1).

Part 3. Constraint C2 is satisfied.

Since P⃗1 + P⃗2 = 1− P⃗3 and Q⃗2 > Q⃗1, then the term P⃗1Q⃗1 + P⃗2Q⃗2 is minimal
when P⃗1 = 1− P⃗3 and P⃗2 = 0. Thus,

P⃗1Q⃗1 + P⃗2Q⃗2 + P⃗3Q⃗3 ≥ (1− P⃗3)Q⃗1 + P⃗3Q⃗3

= Q⃗1 + P⃗3(Q⃗3 − Q⃗1)

> Q⃗1 +
Q⃗3 − Q⃗1

2

=
Q⃗3 + Q⃗1

2
≥ 1/2.

Part 4. Constraint C5 is satisfied.

Since b ≤ P⃗3Q⃗1, then P⃗2(Q⃗2−Q⃗1) < P⃗3Q⃗1−Q⃗1(1−P⃗3). From this inequality,
we may derive constraint C5 as follows.

P⃗2(Q⃗2 − Q⃗1) < P⃗3Q⃗1 − Q⃗1(1− P⃗3)

P⃗2Q⃗2 < (2P⃗3 − 1 + P⃗2)Q⃗1

P⃗2Q⃗2 < P⃗3Q⃗1 − P⃗1Q⃗1

P⃗1Q⃗1 + P⃗2Q⃗2 < P⃗3Q⃗1.
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Finally, to conclude this section we present Example 1, which shows that
there are many other scenarios, not necessarily those of Theorem 11, in which
EO and non-trivial accuracy are incompatible.

Example 1. Consider a data source (X,A, Y ) over {0, 1}3 whose distribution
is given by

x a π(x, a) q(x, a)

0 0 3/8 9/20

0 1 2/8 15/20

1 0 1/8 15/20

1 1 2/8 16/20

Then, (i) there are predictors satisfying equal opportunity, (ii) there are pre-
dictors with non-trivial accuracy, but (iii) there are no predictors satisfying
both. (End)

Figure 2.4: Example 1. One of the constant classifiers is Pareto-optimal.

Indeed, Figure 2.4 depicts the region M for Example 1. On the one hand,
the set of non-trivially accurate predictors corresponds to the area with an
error strictly smaller than the left constant classifier. On the other hand, the
set of equal opportunity predictors is (for this particular example) the closed
segment between the two constant classifiers. As claimed in Example 1 (and
depicted in Figure 2.4), these two sets are non-empty and do not intersect
each other.
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2.5 Probabilistic versus Deterministic Sources

In this section, we compare the tension between error and opportunity differ-
ence when the data source is deterministic and probabilistic. The motivation
for studying the probabilistic case is presented in the introduction. Particu-
larly, we show that some known properties that apply for the discrete case
may fail to hold for the probabilistic one, and under what conditions this
happens.

2.5.1 Deterministic Sources

Under the assumption that the data source is deterministic, there are some
important existing results showing the compatibility between equal opportu-
nity and high accuracy:

Fact 13. Assuming a deterministic data source, the Neyman Pearson lemma
[Fuk93] implies that if τ < 1, then there is always a non-trivial predictor, for
instance, the Bayes classifier Q1/2. Otherwise (degenerated case with τ = 1)
all predictors are trivially accurate.

Fact 14. Assuming a deterministic data source, the Bayes classifier Q1/2

satisfies equal opportunity necessarily [HPS16].

As a consequence, EO and maximal accuracy (thus also non-trivial accuracy)
are always compatible provided τ < 1, because the Bayes classifier satisfies
both. This is a celebrated fact and it was part of the motivations of [HPS16]

for defining equal opportunity, because other notions of fairness, including
statistical parity, are incompatible with accuracy.

2.5.2 Probabilistic Sources

If we allow the data source to be probabilistic, the results of the deterministic
case change. In particular, Fact 13 is generalized by Proposition 15 and
Fact 14 is affected by Proposition 16 and Example 1.

Analogous to τ for deterministic sources, we define a second reference value
τ ∗ ∈ [0, 1]. We let

τ ∗
def

:= max {P[Q≥1/2 ], P[Q≤1/2 ]} ,
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highlighting that (i) Q = q(X,A) is a random variable varying in [0, 1], (ii) τ
and τ ∗ are equal when the data source is deterministic, and (iii) the condition
τ = 1 implies τ ∗ = 1, but not necessarily the opposite.

As shown in Proposition 15, the equation τ ∗ = 1 characterizes the neces-
sary and sufficient conditions on the data source for non-trivially accurate
predictors to exist.

Particularly, in the deterministic case, we have τ ∗ = τ , and Proposition 15
resembles Fact 13.

Proposition 15. (Characterization of the impossibility of non-trivial accu-
racy)

For any arbitrary source distribution (π, q), non-trivial predictors exist if and
only if τ ∗ < 1.

Proof. The proof intuition is that if P[Q≥1/2 ] = 1, then predicting 1 for any
input is optimal, and vice versa.

We will prove that all predictors are trivially accurate if and only if τ ∗ = 1.

(⇐) Suppose τ ∗ = 1, i.e., P[Q≤1/2 ] = 1 or P[Q≥1/2 ] = 1.

In the former case, the Bayes classifier Q1/2 is the constant predictor (x, a) 7→
0, thus acc(Q1/2) ≤ τ necessarily. In the latter case, the alternative Bayes
classifier Q∗

1/2 (defined in Lemma 5) is the constant predictor (x, a) 7→ 1, thus
acc(Q∗

1/2) ≤ τ . According to Lemma 5, acc(Q1/2) = acc(Q∗
1/2), thus we may

conclude acc(Q1/2) ≤ τ as well.

It follows that acc(Q̂) ≤ acc(Q1/2) ≤ τ for all Q̂ ∈ Q because Q1/2 has
maximal accuracy in Q.

(⇒) Suppose that all classifiers, including the Bayes classifier Q1/2, are triv-
ially accurate, i.e., acc(Q1/2) = τ .

According to Lemmas 3 and 6 we may rewrite the known equality acc(Q1/2)−
τ = 0 as E[ |Q−1/2|−|E[Y ]−1/2| ] = 0. Using the reverse triangle inequality,
we conclude E[ |Q−E[Y ]| ] = 0, thus Q = E[Y ] is constant.

If E[Y ] ≤ 1/2, then P[Q≤1/2 ] = 1. If E[Y ] ≥ 1/2, then P[Q≥1/2 ] = 1. In
any case, we have τ ∗ = 1.
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Finally, in Proposition 16 and its proof, we show a simple family of proba-
bilistic examples for which equal opportunity and optimal accuracy (obtained
by the Bayes classifier) are not compatible. This issue does not merely arise
from the fact that the Bayes classifier is hard while the data distribution is
soft. Adding randomness to the classifier does not solve the issue. To jus-
tify this, and also for completeness, we considered the soft predictor Q and
showed that it also fails to satisfy equal opportunity.

Proposition 16. There are data sources for which neither the Bayes classi-
fier Q1/2 nor the predictor Q satisfies equal opportunity.

Proof. Fix any data source with P[A=a, Y =1 ] > 0 for each a ∈ {0, 1}, pick
an arbitrary ((X,A)-measurable) function c : Rd → (0, 1/2) and let

q (x, a)
def

:=

1/2− c(x) if a = 0

1/2 + c(x) if a = 1

for each (x, a) ∈ Rd × {0, 1}.

Since we know that Q1/2(x, a) = a, then the term
E[Q1/2(X,A) | A = a, Y = 1 ] can be reduced more simply into
E[A | A = a, Y = 1 ] = a. Therefore, the Bayes classifier satisfies
oppDiff(Q1/2) = 1− 0 > 0.

Regarding Q, we have E[Q | A = 1, Y = 1 ] = 1/2 + E[ c(X) | A = 1, Y = 1 ]

and E[Q | A = 0, Y = 1 ] = 1/2 − E[ c(X) | A = 0, Y = 1 ]. Notice from the
range of c, that E[Q | A = 1, Y = 1 ] ∈ (1/2, 1) and E[Q | A = 0, Y = 1 ] ∈
(0, 1/2). Hence oppDiff(Q) > 0.

Therefore, neither Q1/2 nor Q satisfy equal opportunity.

As a remark, notice that the data sources proposed in the proof of Proposi-
tion 16, contrast the extreme case Y = A because they allow some mutual
information between X and Y after A is known, as one would expect in a
real-life distribution. Nevertheless, there is an evident inherent demographic
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disparity in these distributions, and this can be the reason why equal oppor-
tunity hinders optimal accuracy for these examples.

2.6 Algorithms for the Pareto Frontier

In this section, we provide an algorithm for computing and depicting the
Pareto frontier that optimizes the trade-off between error and the absolute
value of opportunity difference (0 being EO). We consider (and aim at min-
imizing) the absolute value because we regard the difference in opportunity
as bias, independently of the sign.

Three algorithms are explained and compared: the brute force, the one we
propose, and the double-threshold method based on [HPS16]. The methods
are restricted to finite alphabets for the non-protected attributes, i.e., X =

{x1, ..., xn}, so the inputs (x, a) can only take a total of |X × {0, 1}| = 2n

values. For the convenience of the reader, we summarized them in Table 2.2.

Methodology Complexity Principle for finding the convex hull

Brute-force O(n 22n)
All corners correspond to determinis-
tic classifiers.

Proposed O(n log n)

Algorithm 2. The n partial derivatives
of error and opportunity difference are
constant.

Double-threshold O(n3 log n)
Algorithm 3. All corners correspond
to single-threshold classifiers in V .

Table 2.2: Comparison of methods for finding the Pareto frontier and the
feasibility region.

2.6.1 Brute-Force Algorithm

We begin by describing the brute-force algorithm for reference. The brute-
force algorithm will compute not only the points that determine the Pareto
frontier but all the vertices of the feasibility region M .

Recall that the set of all predictors forms a 2n-dimensional polytope that is
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mapped into the region M when error and opportunity difference are mea-
sured. We know that each vertex of the region M corresponds to a deter-
ministic classifier, or equivalently, to one of the 22n vertices of the polytope.

Therefore, it suffices to compute the error and opportunity difference for the
22n vertices of the polytope (first part), and then compute their convex hull
(second part).

Assuming that each classifier is represented with an array of length 2n, then
the runtime complexity for computing the first part is O(2n 22n). For the
second part, we may use Graham’s scan algorithm [Gra72] to find the ver-
tices of the convex hull. Since there are 22n points and Graham’s scan has
complexity O(N logN) where N is the number points, then the complexity
is O(22n log 22n) = O(2n 22n). Hence the complexity for the whole algorithm
(adding up the first and second parts) is O(4n 22n) = O(n 22n).

2.6.2 Proposed Method

The proposed method (Algorithm 2) also computes all the vertices of the
feasibility region M , but unlike the brute-force algorithm, it exploits greedily
a property that appears to be local (depending on a chosen predictor), but
in reality, is global (same for all predictors) in M .

For each predictor in the 2n-dimensional polytope, let us consider its taxicab
neighbors, i.e., the set of points that differ with it in at most one coordinate.
Since the measurement function from the polytope into M is linear, these
neighbors form a star in M around the given predictor (Figure 2.5).
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Figure 2.5: Feasibility region for a
particular data source showing the
Pareto frontier in red and the taxi-
cab neighbors ’ star around an arbi-
trary predictor.

Figure 2.6: Same scenario as in Fig-
ure 2.5, but showing a star around a
different arbitrary central predictor.
The segments of the two stars differ
exclusively in offset, not in slope or
length. We exploit this fact in Algo-
rithm 2.

Algorithm 2 Fast computation of the feasibility region vertices.

1: Letting αa
def

:= P[Y =1, A=a ] > 0 and n
def

:= |X |,
2: procedure Convex hull(α0, α1, Q)
3: R← [ ] ▷ Empty list of rays
4: for each (x, a) do ▷ 2n in total
5: sign← −1 + 2 · 1{a = 1}
6: y ← 1 ; θ ← arctan2( 1−2q(x, a), sign·q(x, a)/αa )

7: push tuple (θ, x, a, y) into R

8: y ← 0 ; θ ← ( θ + π mod (−π, π] )
9: push tuple (θ, x, a, y) into R

10: sort(R ) ▷ by angle in (−π, π]
11: V ← [] (empty list of classifiers)
12: Q̂← Bayes classifier Q1/2

13: for each ray (θ, x, a, y) in R do ▷ 4n in total
14: update q̂(x, a)← y

15: push a copy of Q̂ into V

16: return V ▷ classifiers that are vertices of M

The star consists of at most 4n rays (2n segments crossing the middle) that
represent the 2n degrees of freedom in the polytope. It reveals the possible
combinations of error and opportunity difference that we can obtain from
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a given predictor by modifying a single component, i.e., the decision for a
particular (x, a). In particular, when the central predictor is a vertex of the
region M , then two of the rays of the star will land on the two neighboring
vertices of the polygon.

The crucial fact exploited by Algorithm 2 is that the inclination and length
of the segments of the star are the same regardless of the chosen central
predictor. The only variation is the offset (compare Figures 2.5 and 2.6).
As a consequence, the 2n segments that form the star can be visited in
convenient order such that, starting from a vertex of the polygon M , all
the visited predictors are vertices (or lie collinearly between two consecutive
vertices) of the polygon.

More precisely, Algorithm 2 sorts the rays by angle, starts at the Bayes
classifier, and then visits each ray, updating the current classifier according
to the ray direction in the polytope. Each angle is computed in Line 6 using
the gradients of error and opportunity difference as the x and y arguments
respectively (derived from their definitions and Lemma 1). Both gradients
were divided by a factor of π(x, a) because the arctan2 function is indifferent
to linear scales, and this allows the whole Algorithm to become independent
of the distribution π(·, ·), except only for two population values, α0 and α1,
defined as αa

def

:= P[Y =1, A=a ].

The runtime complexity of Algorithm 2 is O(n log n) because of the sort in-
struction. All other instructions can be computed in linear time. Compared
with the complexity of the brute-force algorithm, the proposed method en-
ables the computation and visualization of the feasibility region M or the
Pareto boundary for data sources with large (but finite) n. Indeed, Fig-
ure 2.7 shows an example with n = 1000. Since the method computes all the
vertices exactly, the visualization may be zoomed in at any level of detail.

2.6.3 Double-Threshold Method

The following fact was shown by [HPS16]. It allows parametrizing all the
Pareto classifiers in a simple manner.

Fact 17. (Six parameters predictors) Any Pareto-optimal predictor Q̂ can be
written in terms of six parameters l0, l1, r0, r1, p0, p1 ∈ [0, 1] (la < ra, standing
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Figure 2.7: Pareto boundary (red) for a more elaborated example with
n = 1000 in which the O(n 22n) brute-force algorithm is inconceivable. The
feasibility region is guaranteed to be convex, and although its perimeter
looks like a curve, it is a high-resolution piecewise linear path. Also, unlike
Figures 2.5 and 2.6, the favored class is a = 0 and because of this, the Bayes
classifier and the Pareto curve lie in the bottom half.

for left and right thresholds) as

q̂(x, a)
def

:=


0 if q(x, a) ∈ [0, la)

pa if q(x, a) ∈ [la, ra]

1 if q(x, a) ∈ (ra, 1].

This holds both discrete (as we assume) and non-discrete X.

Following Fact 17, a straightforward algorithm to approximate the Pareto-
boundary consists of iterating over a large number of combinations of param-
eters, e.g., over a six-dimensional grid. This will produce a list of predictors
of which we can filter only those that are Pareto optimal (optimal with re-
spect to all other predictors in the list). The filtered predictors will form an
approximation of the Pareto boundary.

As shown in Fact 18, if we concentrate on finding only the vertices of the
Pareto-boundary and not all the points between them, the search space for
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the parameters can be reduced dramatically.

Fact 18. (Double threshold classifiers) For any vertex of the piecewise linear
Pareto-boundary, there is a corresponding predictor Q̂ (with that error and
opportunity difference combination) that can be written in terms of two
parameters t0, t1 ∈ [0, 1] as either q̂(x, a)

def

:= 1{q(x, a) > ta} , or q̂(x, a)
def

:=

1{q(x, a) ≥ ta} , or a combination of the two, e.g.

q̂(x, a)
def

:=

1{Q(x, 0) > t0} if a = 0

1{Q(x, 1) ≥ t1} if a = 1.

Proof. Let l0, l1, r0, r1, p0, p1 be the six parameters that define Q̂ according to
Fact 17. Since Q̂ is a vertex on the Pareto-boundary it is also a vertex of the
region M , and we know from Theorem 9 that the vertices of M correspond
to deterministic predictors. Therefore, Q̂ can only take values 0, 1, which
implies p0, p1 ∈ {0, 1}. This restriction makes one of the two thresholds la
or ra irrelevant for each a ∈ {0, 1} and the predictor can be rewritten for
each a ∈ {0, 1} as either q̂(x, a) = 1{q(x, a) ≥ la} or q̂(x, a) = 1{q(x, a) >
ra} .

For our particular case of interest in which the variable for non-protected
attributes X is discrete, q(x, a) can only take a finite number of values
r1, ..., rm ∈ [0, 1] with ri < ri+1. This makes the classifiers 1{q(x, a) > ri}
and 1{q(x, a) ≥ ri+1} equivalent. Therefore, we may unify all the possible
cases of Fact 18 without loss of generality using only strict inequalities:

q̂(x, a)
def

:= 1{q(x, a) > ta} ,

for two thresholds t0, t1 ∈ {q(x, a) | x ∈ X , a ∈ {0, 1}} ∪ {−1}. The special
value −1 is added to contain the particular case 1{q(x, a) ≥ 0} for which
no strict threshold rule would exist. This is implemented in the ‘candidates’
procedure in Algorithm 3.
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Algorithm 3 Computation of the feasibility region vertices

1: Letting αa
def

:= P[Y =1, A=a ] > 0 and n
def

:= |X |,
2: procedure Pareto vertices(α0, α1, Q, P )
3: V ← candidates(Q)

4: W ← [ (err(Q̂), oppDiff(Q̂)) | Q̂ ∈ V ] ▷ needs Q,P

5: I ← indices of convex hull of W , sorted clockwise
6: i← index in I with minimal x-coordinate ▷ Vi is Bayes
7: j ← first (or last) index in I with opposite y-sign to i

8: ▷ (first or last depends on the y-sign of Wi)
9: IPareto ← indices in I between i and j

10: return [ Vi | i ∈ IPareto ] ▷ Pareto vertices

11: procedure Candidates(Q)
12: T0 ← {Q(x, 0) | for each x} ∪ {−1} ▷ |T0| ≤ n+ 1

13: T1 ← {Q(x, 1) | for each x} ∪ {−1} ▷ |T1| ≤ n+ 1

14: V ← [ ] ▷ Empty list of threshold classifiers
15: for each t0 ∈ T0 do
16: for each t1 ∈ T1 do
17: push 1{q(x, a) > ta} into V

18: return V ▷ |V | ≤ (n+ 1)2

Algorithm 3, i.e., the ‘Pareto vertices’ procedure, computes the error and
opportunity difference for each threshold classifiers of interest (each classifier
in V ) and computes the convex hull to then filter the Pareto boundary. Since
|V | ≤ (n + 1)2, Algorithm 3 is polynomial. The exact complexity depends
on the implementation of the computation (err(Q̂), oppDiff(Q̂)) for a fixed
Q̂ ∈ V . Normally, this would take O(n) by literally implementing their
definition formulas for |X | = n, hence the complexity of Algorithm 3 is
O(n3 log n).

2.7 Necessary and Sufficient Conditions

In this section, we provide a necessary and sufficient condition (Theorem 19),
as well as a simple sufficient (but not necessary) condition (Corollary 20)
that guarantees that equal opportunity and non-triviality are compatible.
Finally, we discuss when and how a dataset may present this pathological
incompatibility.

Theorem 19 (Necessary and sufficient condition for compatibility). Let
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(X,A, Y ) be an arbitrary data source. Let Qa
def

:= E[Q | A = a ] =

E[Y | A = a ] be the output average for each group. Let also

Qsup
a

def

:= sup{q ∈ [0, 1] | ∃S E[Q | X ∈ S ∧ A = a ] ≥ q}, and

Qinf
a

def

:= inf{q ∈ [0, 1] | ∃S E[Q | X ∈ S ∧ A = a ] ≤ q}.

Then, equal opportunity and non-triviality are compatible if and only if

0 ≤ Q1Q
sup
0 (1− 2Qsup

1 ) ≤ Q0Q
sup
1 (2Qsup

0 − 1) , or

0 ≤ Q0Q
sup
1 (1− 2Qsup

0 ) ≤ Q1Q
sup
0 (2Qsup

1 − 1) , or

0 ≤ Q1Q
inf
0 (2Qinf

1 − 1) ≤ Q0Q
inf
1 (1− 2Qinf

0 ) , or

0 ≤ Q0Q
inf
1 (2Qinf

0 − 1) ≤ Q1Q
inf
0 (1− 2Qinf

1 ).

Proof. Recall the star of rays around each classifier explained in Section 2.6.2,
and consider the rays around the constant classifier 0̂ in the plane of error vs.
opportunity difference. For each (x, a) in the domain, consider the predictor
that maps everything to zero except (x, a) to one. The change in opportunity
difference with respect to 0̂ is ∆y = π(x, a) q(x,a)

Qa
(2a − 1), and the change in

error is ∆x = π(x, a)(1 − 2q(x, a)). Hence, the angle of this ray is given
by arctan2(∆y,∆x) = arctan2(q(x, a)(2a − 1), Qa(1 − 2q(x, a))). In order
to have an impossibility between EO and non-trivial accuracy, the constant
classifier 0̂ must have either minimal error among the classifiers satisfying
EO, or maximal error, in which case 1̂ is minimal. Geometrically, this means
that 0̂ must be part of the convex hull, which holds if and only if all the angles
of the rays departing from 0̂ lie in an interval of length at most π = 180°.

Q = 0

Q = 1/2, A = 1

Q = 1/2, A = 0

Q=1,
A=1
Q=1,
A=0

0̂

Qsup
1

Qsup
0

0̂

≤ 180°

All the rays for a = 1 satisfy ∆y ≥ 0 and their angles lie between those of Qinf
1

counter-clockwise to Qsup
1 . Similarly, all the rays for a = 0 satisfy ∆y ≤ 0 and

their angles lie between those of Qinf
0 clockwise to Qsup

0 . Therefore, checking
that all rays lie in an interval of at most π is equivalent to checking that
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the counter-clockwise angle from Qsup
0 to Qsup

1 is at most π, or the clockwise
angle from Qinf

0 to Qinf
1 is at most π. By replacing the values of ∆y and ∆x,

and considering separately the cases Qsup
0 ≤ 1/2, Qsup

1 ≤ 1/2, Qinf
0 ≥ 1/2, and

Qinf
1 ≥ 1/2, the four inequalities of the theorem statement are obtained.

From Theorem 19 we can derive a simpler condition for EO and non-trivial
accuracy to be compatible. It is only sufficient (i.e., not necessary), but it
is easier to check and can be used to verify that a data source (X,A, Y ) of
a particular application is not pathological for equal opportunity. It is valid
for discrete, continuous, and mixed data sources. Therefore, it may be used
as a minimal assumption for any research work on equal opportunity dealing
with probabilistic data sources.

Figure 2.8 summarizes the sufficiency condition in simple manner. The proof
consists of showing that when the 4 events highlighted in Figure 2.8 have
positive probabilities, then it is possible to use one of them to improve the
performance of the best constant classifier and another one to compensate
for equal opportunity.

Q < 1/2
A = 0

Q < 1/2
A = 1

Q = 1/2
A = 0

Q = 1/2
A = 1

Q > 1/2
A = 0

Q > 1/2
A = 1

Figure 2.8: Sufficiency condition: If the 4 blue events have positive proba-
bility, then equal opportunity and non-triviality are compatible.

Corollary 20 (Sufficient condition). For any given data source (X,A, Y ),
not-necessarily discrete, if for each a ∈ {0, 1},

P[Q>1/2, A=a ],P[Q<1/2, A=a ] > 0,

then equal opportunity and non-triviality are compatible. See Figure 2.8

Proof. According to Theorem 19, equal opportunity and non-triviality
are compatible if and only if none of its four inequalities hold. If
P[Q>1/2, A=a ] > 0 and P[Q<1/2, A=a ] > 0 for each a ∈ {0, 1}, then
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Qsup
1 > 1/2, Qsup

0 > 1/2, Qinf
1 < 1/2 and Qinf

1 < 1/2, which respectively violate
the four inequalities of Theorem 19. Therefore, compatibility is guaranteed.

An alternative proof of Corollary 20 that does not use Theorem 19 can be
found in the proceedings of AAAI 2022 [PPPV22].

Corollary 20 reveals an important property of the pathological distributions
in which EO and non-triviality are incompatible, namely, that they must
be already very biased in favor of either A = 0 or A = 1, and they are
highly probabilistic, meaning that the decision Y depends largely on external
information, e.g., noise. For instance, if P[Q>1/2, A=0 ] = 0, then for all
individuals in the class A = 0 the decision that minimizes error is Ŷ = 0,
regardless of their value of X; and the only explanation for individuals with
A = 0 and Y = 1 is external information not contained in X.

2.8 An example based on a real-life dataset

In this section, we show how the incompatibility may occur in practice with
a variant of a real-life dataset. A consequence of Corollary 20 is that real
world datasets should not incur an incompatibility between EO and non-
trivial accuracy if sufficient information about the output is captured in the
input features. However, the pathology may still arise when this property
is violated. To illustrate this phenomenon, we consider a variant of the
Adult dataset [DG17a], where we eliminate some features (thus making it
more probabilistic) and artificially reduce the rate of acceptance of the whole
population to put the disadvantaged class in a more critical position.

Figure 2.9 shows the Adult dataset after applying the following process: (1)
restricting the dataset to the 6 most relevant columns, (2) binarizing the
columns using the mean as a threshold, and (3) randomly decreasing the
probability of acceptance by 30% for both genders. The purpose of these
operations was to illustrate the incompatibility, nevertheless, they are not so
arbitrary. Indeed, the first two operations correspond to a simplification of
the data, e.g., to perform a simple manual analysis, and the third was applied
without direct use of the sensitive attribute (sex), meaning that no additional
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gender-specific bias was needed to derive the pathology. In other words, had
the acceptance rate been lower for both classes, a simplification of the dataset
into 6 binary columns would have sufficed to trigger the incompatibility.

More precisely, Figure 2.9 shows the feasibility region in the plane of error vs
opportunity difference (the geometric perspective introduced in this chapter)
as well as the associated ROC curve for a classifier (the geometric perspective
used in [HPS16]). The left plot shows the constant classifier at the extreme left,
on the convex hull of the feasibility region. The plot at the right is the ROC of
a standard scikit-learn[PVG+11] random forest classifier of 100 decision trees,
using a train-test split of 70%-30%. The parallel lines correspond to constant
levels of accuracy and based on the slope and the direction of the gradient,
it corroborates that accuracy is maximal at the left-bottom extreme point,
which corresponds to 0̂ with 0 false positives and 0 true positives. The code
for processing the dataset and generating the plots is available at [Pin22].

Figure 2.9: Adult dataset after simplification and reduction in acceptance
rate. EO and non-trivial accuracy become incompatible.

2.9 Distortion effect of empirical distributions

In many situations, we do not have at our disposal a perfect description of
the true data distribution, but only a dataset sampled from the distribution.
This is the case, for instance, in machine learning, where the training and the
testing are done on the basis of sets of samples. In this section, we discuss
how using an empirical distribution from samples may distort the estimation
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and the evaluation of opportunity difference and accuracy. This distortion
with respect to the true values is a consequence of the fact that an empirical
distribution is only an approximation of the true one.

Figure 2.10 shows this mismatch from two points of view on an artificial
dataset with N = 100 categories for X and n = 1000 samples. The dataset
was generated by taking samples from a distribution consisting of a fixed
categorical distribution for the 2N joint categories of X,A, and a binomial
distribution for Y |X,A whose parameter depends on the conditioning pair
X,A.

Figure 2.10 shows that when the empirical distribution of the dataset is used
instead of the true distribution of the data source, the resulting (empirical)
Pareto-optimal boundary obtained may mismatch the actual Pareto-optimal
boundary, meaning that some classifiers that are empirically deemed as op-
timal are not optimal, and vice versa.

More precisely, in the left plot of Figure 2.10 the axes represent the mea-
surements of the true error and opportunity difference, and the blue region
shows the true convex hull. The orange line represents the empirical Pareto-
optimal boundary, computed by applying the algorithms of Section 2.6 on
the empirical distribution. As we can see, this boundary does not delimit a
convex hull anymore, and it is at some distance from the true Pareto-optimal
boundary. In particular, the empirical Fair (max accuracy subject to EO)
and empirical Bayes predictors are not at the boundary of the true feasibility
region, thus they are suboptimal. Interestingly, the empirical Bayes classifier
has less accuracy than the empirical Fair.

Conversely, the right plot of Figure 2.10 depicts the empirical apparent truth
that a practitioner would observe in practice. Here, the axes are empirical
(apparent) measurements of error and opportunity difference, and the orange
area represents the empirical feasible region. The blue line represents the
empirical evaluation of the true Pareto-optimal boundary. As we can see, in
the empirical view the actual Bayes classifier and the fairest predictor appear
to be suboptimal.

Note that the classifiers that form the vertices of the orange convex hull in
the bottom plot are exactly the orange points in the top plot and, vice versa,
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the classifiers that form the vertices of the blue convex hull in the top plot
are exactly the blue points in the top plot.

Figure 2.10: True distribution vs empirical dataset. Top: the empirical
Pareto boundary mismatches the actual optimal boundary of error and op-
portunity difference. Bottom: using the dataset for measuring (apparent)
error and opportunity difference makes the optimal predictors in the Pareto
boundary to appear suboptimal.

The unavailability of the true distribution, which causes a mismatch between
the estimated error and opportunity difference and their true values, can have
other unexpected consequences. For instance, the left plot in Figure 2.11
shows an example in which the best empirical fair classifier has less error
and more opportunity difference than the empirical Bayes classifier. That
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is, for that particular data source and sampled dataset, training a model
towards maximal accuracy results in more fairness than training taking fair-
ness into account; conversely, training under the fairness constraint results in
higher accuracy than training in an unconstrained manner towards maximal
accuracy.

This distorting effect has a random nature from the sampling process and
is reduced as the number of samples increases, making the empirical mea-
surements closer to their real counterparts. The right plot in Figure 2.11
shows the result of computing the Pareto-optimal boundary on 100 different
datasets sampled independently from the same data source distribution of
N = 100 categories for X and n = 2500 samples. The plot shows that, on
average, the positions of the empirical Bayes classifier and the empirical Fair
classifier match the expected idea of the former having less error and more
opportunity difference and vice versa. The empirical Fair classifier has in-
deed on average an opportunity difference close to zero, suggesting that even
though there is no formal guarantee of achieving (true) equal opportunity us-
ing the Algorithms in this chapter on (empirical) datasets, one does expect
that, with an adequate number of samples, the empirical optimal classifiers
will be close to the true optimal ones.

Figure 2.11: Left: a scenario in which the best empirical fair classifier has
less error and more opportunity difference than the empirical Bayes classifier.
Right: empirical Pareto boundaries for 100 randomly sampled datasets.
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2.10 Conclusion

In this chapter, we extended existing results about equal opportunity [HPS16]

and accuracy from a deterministic data source to a probabilistic one. The
main result, Theorem 11, states that for certain probabilistic data sources,
no predictor can achieve equal opportunity and non-trivial accuracy simul-
taneously. We also characterized in Theorem 19 the conditions on the data
source under which EO and non-trivial accuracy are compatible and provided
a simple sufficient condition that ensures compatibility (Corollary 20).

The methods used in this chapter rely mostly on geometric properties of the
feasibility region in the plane of error vs opportunity difference, thus they
are tuned for the fairness notion of equal opportunity, which seeks equal
true positive rates TPR. A symmetric analysis can be carried out for equal
false positive rates using the same ideas. Since the notion of equal odds seeks
both equal true positive rates and equal false positive rates, our methodology
and results can be extended to equal odds. In particular, the impossibility
theorem holds also for equal odds. However, the geometric methodology that
we used was tuned for opportunity difference, they are therefore not directly
useful for analyzing statistical parity or individual fairness notions.

The next chapter is related with this one in that it also extends the results
and observations in [HPS16], in which apart from establishing the definition
of equal opportunity, the authors pose a theoretical argument against the use
of graphical/causal models for fairness. These models are nevertheless used,
so we investigate this and related issues about the use of causal models for
fairness (Problem 2) from a practical point of view in the next chapter.
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Chapter 3

Causal discovery for fairness

Causality plays a very important role in the evaluation of fairness criteria
because it is not the same to be discriminated while being part of a minority
group than to be discriminated because of it. For this reason, and despite the
abundance of non-causal notions of fairness (statistical parity [Dar71], equal
opportunity [HPS16], calibration [Cho17], etc.) [MZP21a], many recent fairness
criteria take causality into account [MZP20b].

(a) Model 1

race
recid.

age sex

priors

(b) Model 2

race
recid.

age sex

priors

Figure 3.1: Two hypothetical causal graphs for the Compas case.

For illustration, consider the two scenarios depicted in Figure 3.1 for the
Compas case, which consists of data from Broward County, Florida, initially
compiled by ProPublica [ALMK16] that was used to predict the two-year
violent recidivism, that is, whether a convicted individual would commit a
violent crime in the following two years (1) or not (0). The two models reflect
very different scenarios for fairness analysis. In the first causal model, the
probability of recidivism is directly affected by the race and the sex of the
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offender. If this model was to be the correct one, then it would be accurate to
say that recidivism is influenced directly by the individual’s race and sex, and
it would be mandatory for a prediction to be accurate to take into account
the individuals sex and race as a main factor. On the contrary, in the second
one, sex and race can still influence recidivism, but only through the total
score of prior crimes. In this case, an accurate predictor would not need to
use sex nor race as input, and these two attributes would only be needed if
an additional group fairness constraint is to be imposed. Overall, these two
models serve to highlight the importance of having an accurate causal graph,
since two different models have very different meanings for fairness analysis.

The main impediment to causal inference is the unavailability of the true
causal graph which indicates the causal relations between variables. Causal
graphs can be set manually by experts in the field, but are very often gen-
erated using experiments (also called interventions), which might be costly
or unfeasible. Alternatively, there are numerous causal discovery algorithms
(CDAs) in the literature that identify the causal graph based on data, a
process known as causal discovery or structure learning.

We showed that using different causal discovery algorithms (CDAs) may
lead to dramatic differences on fairness/discrimination conclusions [BMP+23],
which means that their outputs should not be trusted blindly. This idea can
be split conceptually into two separate factors, namely, that (1) causal graphs
produced by different CDAs may differ, and (2) these differences are critical
for causal based fairness notions. This chapter presents and complements the
idea in [BMP+23] by deepening in the first of these two assertions, including
additional results and algorithms.

3.1 Preliminaries

Causal discovery is about finding a graphical model that captures the causal
relationships between several random variables based on a sample dataset.
Ideally, the graphical model takes the form of a Directed Acyclic Graph
(DAG), in which an edge X → Y indicates that X causes Y , but it can
also take the form of a graph mixing directed and undirected edges. The
least informative case occurs when the output is an undirected graph, e.g., a

62



3.1. Preliminaries Chapter 3. Causal discovery for fairness

Markov field, as it does not reveal which variables are causing others.

3.1.1 CPDAGs and equivalence classes

Obtaining a DAG from observations is not always possible un-
fortunately, even for arbitrarily large sample sizes. Consider
the procedures x = normal(); y = (x+ normal())/

√
2 versus

y = normal(); x = (y+ normal())/
√
2, where normal is a random

number generator of normally distributed samples with mean 0 and stan-
dard deviation 1. Semantically, the two procedures are different because
in the former, y depends on x, suggesting a causal relation x→ y, while
the opposite occurs in the latter. But statistically, the two procedures are
the same. This is illustrated in Figure 3.2 (left), which depicts the first
procedure in blue and the second one in green. It is impossible to distinguish
them based on observations, no matter how large the sample is, because the
joint distributions they produce coincide.

Figure 3.2: Does X cause Y or vice-versa? In the first example (left), X → Y

in blue is indistinguishable from Y → X in green. In the second (right), they
are different, and the causal direction is identifiable under assumptions.

This observation is fundamental in the development of the theory of causal-
ity, and it creates a big debate for the use of causality for fairness [HPS16].
But there are cases in which it is indeed possible to distinguish between dif-
ferent causal graphs based on observations. In the aforementioned example,
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if the noise was uniform in [−1, 1] instead of normal, Figure 3.2 (right) is
produced, and the fact that the variance of Y given X = x depends on x

in the green case and does not in the blue one can be used under certain
model assumptions to infer the causal directions X → Y for the blue cloud
and Y → X for the green one. Without model assumptions, however, it is
impossible to have an algorithm that determines the causal order of two vari-
ables. For three variables, it is still not possible to distinguish the mediators
(◦ → ◦ → ◦ and ◦ ← ◦ ← ◦) and they can also not be distinguished from a
confounder (◦ ← ◦ → ◦). But it is possible to distinguish these three from a
so-called v-structure (◦ → ◦ ← ◦). This phenomenon led to the development
of equivalence classes of DAGs that can not be distinguished.

These equivalence classes of DAGs are determined by the following equiv-
alence relation: two DAGs are equivalent when (i) they have the same set
of v-structures and (ii) they can generate the same family of distributions
by modifying the model parameters, e.g. if the procedure that generates
the data is assumed to be a linear combination of normal random variables,
the joint distribution of the output follows necessarily a multivariate Gaus-
sian distribution regardless of the exact parameters that determine the linear
combinations. When the variables are all categorical or all continuous with
Gaussian joint distribution, these two conditions are equivalent and reduced
to just the first one. This assumption is widely used as it simplifies and
unifies the theory of equivalence classes of DAGs.

Moreover, from condition (1), each equivalence class can be represented as a
partially directed acyclic graph (PDAG), i.e., a graph of directed and undi-
rected edges without directed cycles, where the PDAG P corresponds to the
set of DAGs that agree with the directed edges of P and assume any direction
for the undirected edges without forming a cycle. Not all PDAGs represent an
equivalence class. Only those in which directing one of the undirected edges
introduces a directed v-structure are, in which case the PDAG is called a
complete PDAG (CPDAG). There is therefore a bijection between the set of
all CPDAGs and the set of equivalence classes of statistically indistinguish-
able DAGs. Non-extendable CPDAGs, i.e., CPDAGs with empty equivalence
class like X— Y —Z—X, whose arrows can not be directed without intro-
ducing either a v-structure or a cycle, are the only isolated exception to this
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rule, and depending on the author, they may or not be considered CPDAGs.

For instance {◦ → ◦, ◦ ← ◦} is an equivalence class of DAGs, because its
elements (DAGs) can not be distinguished, and it is represented with the
CPDAG ◦— ◦, or with a different notation, ◦ ↔ ◦. More examples include
{◦} and {◦ → ◦ ← ◦}, whose CPDAGs are their respective unique elements,
or {◦ ← ◦ → ◦, ◦ → ◦ → ◦, ◦ ← ◦ ← ◦} whose CPDAG is ◦— ◦— ◦.

An additional important property of this partition of the set of all DAGs is
that there are some model scoring functions such that the score is invariable
among DAGs in the same equivalence class, e.g., the BIC score [Hau88].

3.1.2 BIC and CG scores

The BIC score (Definition 21) is a regularized performance score that sum-
marizes in a single real number the extent to which a model is simple and
fits some data. In general terms, the BIC score is maximal when the sta-
tistical model is both simple and correct, or more technically, when it has
few parameters and a high likelihood for the given data. Depending on the
reference, the definition may appear multiplied by 2, −2 (minimization in
this case) or 1 (compare [Scr16, NC12, Sch78]).

Definition 21. (BIC score) Let X be an arbitrary domain endowed with
a metric and a measure, e.g., euclidean space with the continuous or the
discrete measure; let p̂Θ be a statistical model of dimension k consisting of
a collection {p̂θ : θ ∈ Θ ⊆ Rk} of dominated densities p̂θ; and let s =

(xi)
N
i=1 be a dataset of N i.i.d. samples xi ∈ X , so that p̂θ(s) = ΠN

i=1p̂θ(xi).
The BIC score is defined as BIC(p̂Θ, s)

def

:= ln p̂θ̂(s) − k
2
ln (N), where θ̂

def

:=

argmaxθ∈Θ p̂θ(s) is the maximum likelihood estimator of the parameters.

Therefore, the value of the BIC score (Definition 21) consists of the sum
between the log-likelihood of the model and a weighted regularization term
that penalizes models with large number of tunable parameters.

The technical reasoning behind the formulation of BIC score is driven by
the computation of

∫
Θ
p̂θ(s)dθ [NC12]. This term is the likelihood of the

statistical model p̂Θ with unknown parameters and assuming the (possibly
improper) uniform prior on θ. Using the first three terms of the second-
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order Taylor series expansion of ln p̂θ(s) around θ̂ yields ln
∫
Θ
p̂θ(s)dθ ≈ C +

BIC(s, p̂Θ), where C is a constant that depends on s and grows with k but
is bounded as n grows, so that it can be ignored for large values of n when
comparing two models. As a consequence, interpreting the approximation as
an equality, choosing a model with higher BIC score than other corresponds
to selecting the model p̂Θ with higher likelihood. Furthermore, since the BIC
score corresponds to a log-likelihood, it is decomposable as the sum of the
local BIC scores of each node w.r.t. its parents (directed and undirected
parents).

In practice, computing the BIC score for a given predictive model is not
straightforward when the target Y is continuous. When Y is categorical,
Definition 21 can be used directly because typically, the output of a categor-
ical model is a soft-probability vector, i.e., a categorical density. However,
when Y is continuous, the output is a single value X̂ = f(X) that estimates
E[ [| Y ] | X = x] rather than a density. Since Definition 21 cannot be used
directly anymore, Fact 22 is used as a proxy for the BIC score.

Fact 22. (BIC score proxy[Gir21, TK86]) Let f̂ be a model that estimates
E[ [| Y ] | X = x] as f̂(x). If the residuals of the true densities p(·|x) are nor-
mally distributed for each x, then asymptotically, maximizing the BIC score
of a density model that estimates both the mean and the variance of p(·|x)
is equivalent to maximizing BIC(f̂ , S)

def

:= −N ln
(

1
N

∑N
i=1 (yi − f̂(xi))

2
)
−

1
2
ln (N) · n_params(f̂).

More generally, for mixed scenarios involving both categorical and continuous
variables, the TETRAD and gCastle implementations use a score called Con-
ditional Gaussian (CG) score [ARC18] that makes extensive use of Gaussian
mixtures and is equivalent to the BIC score under the following assumptions.

A1. The continuous data were generated from a single joint (multivariate)
Gaussian mixture where each Gaussian component exists for a partic-
ular setting of the discrete variables.

A2. The instances in the data are independent and identically distributed.

A3. All Gaussian mixtures are approximately Gaussian.

It is also crucial in practice to have enough samples when conditioning on
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several categorical variables simultaneously, particularly when these variables
are parents of the same variable; this and A2 are the most relevant in the
all-discrete case. Regarding continuous variables, A1 implies implicitly lin-
earity and gaussianity of the residuals because of the nature of each Gaussian
component; this is the most relevant assumption in the all-continuous case.

The CG score implements the likelihood function as follows. For each node,
consider the set of that node along with its parents, and filter the contin-
uous and categorical variables separately. Then, consider a single discrete
model for all the discrete variables, and for each combination of the discrete
variables, consider a separate model for the joint density of the continuous
variables. This setting exposes explicitly all the density models needed in
the Definition 21 to compute the BIC score.

3.2 Causal discovery algorithms

3.2.1 GES

Greedy Equivalence Search (GES) [Chi02], described in this document as Al-
gorithm 4, consists of searching for a particular state over an abstract space
of states and transitions. The states are equivalence classes of DAGs (equiv-
alently CPDAGs) and the search objective is the state that maximizes BIC
score, hence as, the output of GES is not a single DAG, but an equivalence
class of DAGs represented as a CPDAG.

The transitions of the search space are given by the following rule: a transi-
tion from a state to another exists if and only if there are two DAGs, one on
each equivalence class, that differ only in the addition or removal of exactly
one edge. Hence, there are two types of transitions: forward (adding one
edge) and backward (removing one edge). The neighboring states for the
state P are represented with the variable neighbors.

Computing the neighboring states of a given state is carried out by find-
ing edges X → Y that can be added (or removed) in such a way that the
resulting PDAG can be extended, i.e., transformed into a DAG by decid-
ing the direction of the undirected edges, and then completed to obtain the
CPDAG that represents the equivalence class containing it. The completion
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Algorithm 4 GES algorithm.
Input: Dataset D of |V | variables.
Output: CPDAG P that maximizes BIC score.
P ← disconnected CPDAG of |V | nodes
score← 0

for phase ∈ [forward, backward] do
while True do

neighbors← {P ′ : P→P ′ is a phase-transition}
if |neighbors| = 0 then

break

P ′ ← argmaxP ′∈neighbors∆BIC(P,P ′,D)
∆score← ∆BIC(P,P ′,D)
if ∆score < 0 then

break

P ← P ′

Add ∆score to score

return P, score

algorithm is simple to implement from the definition of a completed PDAG
and is explained in [DT92, Chi02]. In contrast, the extension algorithm is
more complex. Briefly, letting NX denote the undirected neighbors of X,
one should find all pairs of variables (X, Y ) and sets of variables S ⊆ NY ,
such that after adding (removing) the edge X → X and setting the direc-
tions of S (also of NX ∩ NY when removing), the resulting PDAG can be
converted into a DAG by smartly deciding the direction of the undirected
edges. This algorithm was first introduced with missing details in [DT92],
then implemented by [Chi02], although [Gam21] found an error later.

The change in BIC score after following a transition can be computed using
a simple rule instead of fitting the whole global model on both states because
the BIC score can be decomposed as the sum of the local BIC scores of each
of its directed and undirected parents. Since there is a unique variable Y

whose parents change during a transition, then the global BIC score difference
corresponds exactly with the local BIC score difference for the model of Y and
its parents. This optimization corresponds to ∆BIC(P ,P ′,D) in Algorithm 4.

The greedy strategy of GES consists of repeatedly following the best forward
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transition at each state that it encounters until reaching a local maximum,
i.e., until the next state reduces the BIC score, (this is the forward phase in
Algorithm 4) and then, analogously (backward phase), repeatedly following
the best backward transition until a local maximum is reached. No special
rule exists to resolve ties for these arg-max operations, although they are
extremely unlikely to occur in practice.

The distinctive essential feature of GES is that its greedy technique, which
prunes the search space dramatically, is guaranteed to find the optimal state
of the whole space, provided that the data distribution matches the assumed
statistical model.

In practice, the score implemented in GES is the GC score which is guar-
anteed to be a proxy for BIC score only under the aforementioned assump-
tions A1, A2 and A3 (page 66). These assumptions may sound too strict,
but the empirical evidence of several articles shows that many implementa-
tions of GES performs well even when these assumptions do not hold ex-
actly [ARC18, Chi02, HB12]. This is the case for Tetrad’s fges[RZG+18] (written
in Java), the pcalg[KMC+12, HB12] library for R (written in C++ underneath),
and other Python implementations [Gam21, KG19]. The predictive models of
these implementations are therefore pre-configured to linear regression for
continuous variables.

3.2.2 PC

The Peter Spirtes and Clark Glymour (PC) algorithm [SGSH00] consists of
two main steps. The first, which accounts for most of the computational
costs, is to produce a skeleton graph G witch contains only undirected edges,
and the second consists of orienting the undirected edges of G to form a
CPDAG P .

As shown in Algorithm 5, the PC algorithm starts with the fully connected
graph and relies on conditional independence tests in order to either remove
or keep edges. For each edge X → Y and each subset Z of the neighbors of X
and Y , the algorithm checks whether X and Y are independent conditioned
on Z using a conditional independence test. The depth d represents the size
of the conditioning sets. During the first iteration, all pairs of vertices are
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Algorithm 5 PC algorithm.
Input: Dataset D, and significance level α.
Output: CPDAG P.
G← totally connected (undirected) skeleton
d← 0

while |adjG(X) \ Y | ≥ d for every pair of adjacent vertices X − Y in G do
for each adjacent pair X − Y in G do

if (|adjG(X) \ Y | ≥ d) then
for each Z ⊆ adjG(X) \ Y do

if |Z| = d and I(X,Y |Z) ≥ α then Remove edge X − Y in G

Save Z as the separating set of X − Y

break
d← d+ 1

P ← G as a partially directed graph
for each triple of vertices (X,C, Y ) with C ∈ adjP(X) and Y /∈ adjP(X) do

if C /∈ Z (separating set of X— Y ) then
orient X—C— Y as X → C ← Y in P

P ← completion of the extension of P return P

tested conditioning on the empty set ∅, i.e. d = 0. Thus, some edges will be
removed, and the algorithm will proceed only with the remaining edges in
the next iteration (d = 1). The size of the conditioning set, d, is incremented
after every iteration until d is greater than the size of the adjacent sets of
the testing vertices. Note that the graph at hand is updated at each test
after edge(s) deletion. Moreover and most importantly, the set of condition-
ing variables Z is stored as it is needed later to detect potential presence of
v-structures in the causal graph. If the conditional independence tests are
reliable, then PC finds the true skeleton graph [LHL+16]. An important ob-
servation of this first part of PC is that for high-dimensional sparse graphs,
the conditional independence tests are organized in a way that makes the
algorithm computationally efficient, since it only needs to test conditional
independencies up to order k − 1, where k is the maximum size of the adja-
cency sets of the nodes in the DAG at hand.

For the second part that orients the edges of G (as a PDAG) to form the
CPDAG P , PC considers all unshielded triples in G, i.e. triples of nodes
(X,C, Y ) such that X—C— Y and X��— Y , and orients it as a v-structure
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if and only if C /∈ Z (separating set of (X, Y )). After this, P is a PDAG,
possibly not yet a CPDAG, so as in GES, the algorithm finds the completion
of any extension of P . This step, can be performed equivalently by orienting
as many of the remaining undirected edges as possible by applying repeatedly
the rules shown in Algorithm 6 until no more edges can be oriented. The
PC-algorithm is proved to be efficient for sparse graphs. The main reason
for that is that, once and edge is deleted, the neighbors of a particular node
are dynamically updated when saving Z as the separating set of X— Y in
Algorithm 5 [LHL+16].

Algorithm 6 Orientation rules for PC.
Input: PDAG P.
Output: CPDAG (modified in-situ): completion of the extension of P.
while no more edges can be oriented do

for each (X,C, Y ) with X → C— Y and Y /∈ adjP(X) do
orient C— Y as C → Y in P ▷ Rule 1

for each chain X → C → Y do
orient X— Y as X → Y in P ▷ Rule 2

for each pair of chains X → C1 → Y and X → C2 → Y such that
C2 /∈ adjP(C1) do

orient X— Y as X → Y in P ▷ Rule 3
return P

The conditional independence tests have an α value (input of Algorithm 5) for
rejecting the null hypothesis of independence or conditional independence.
For continuous variables, PC uses tests of zero correlation or zero partial
correlation for independence or conditional independence, respectively. For
discrete or categorical variables, it uses either a chi-square or a g-square test
of independence or conditional independence. The default value of α is 0.01.
However, for discrete searches, using a value of 0.05 is also recommended1.

Spirtes et al. [SGSH00] provided three different heuristics of selecting the or-
der of conditional tests between variables. Depending on the heuristic, the
skeleton phase of the PC algorithm can be either dependent or independent
of the order at which the variables are present in the dataset [Tsa19]. The
first heuristic tests the variables in lexicographic order. That is changing

1https://cmu-phil.github.io/tetrad/manual/
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the order of the columns in the dataset results in a different order of how
the statistical tests are performed. The second heuristic, at the other hand,
relies on dependencies between the variable pairs. In other words, the tests
are performed on the pair of variables that are the least dependent. As for
the conditioning subsets, they are selected in a lexicographic order. Finally,
the third heuristic is based on the idea of performing the tests on the least
dependent pairs of variables while conditioning on the subsets that are most
dependent on either variable of the pair. Thus, it is clear that the heuristics
1 and 2 are order-dependent while heuristic 3 is not. In other word, the
generated causal graph when using heuristics 1 and 2 may change due to a
change in the order in which the variables appear in the dataset. However,
heuristic 3 is totally order-independent.

According to Spirtes et al. [SGSH00], the v-structure discovery of the PC
algorithm should always be applied first (in the orientation step of the al-
gorithm). However, the order of applying the rules shown in lines is not
predetermined. That is, these rules can be applied in any order. Thus, in
the finite sample size case, statistical errors exist and can result in a mis-
leading skeleton [Tsa19]. Colombo et al. proved by examples that different
variable orderings can lead to different orientations and consequently, affect-
ing the output of the step 2 of the PC algorithm even if the skeleton and
separating sets are order-independent [CM+14].

3.2.3 Direct LiNGAM

Direct Linear Non-Gaussian Acyclic Model [SIS+11] (LiNGAM) is a CDA
that, unlike the previously discussed algorithms, yields a unique directed
graph (DAG). The keywords in the name of the algorithm refer to the fact it
assumes that the input dataset comes from a joint distribution (X, Y, ..., Z)

that can be written as a linear combination (X, Y, ..., Z)T = A(X, Y, ..., Z)T+

B for some random vector B of independent non-Gaussian exogenous noise B
and some matrix A whose non-zero entries form an acyclic adjacency matrix.

Although the theory of CPDAGs tells that it is not possible to distinguish
whether X → Y or Y → X in general, with these assumptions, it is. Indeed,
there are statistical asymmetries in Figure 3.2 (right) between the blue and
green clouds of points. For example, in the blue cloud, the variance of Y |X =
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x is constant when varying x while the variance of X|Y = y is not when
varying y. A strictly stronger observation is that Y can be written as f(X)+

noise, where the noise is independent of X and f(x) = E[Y |X = x], but the
converse does not hold, as X can not be written as f(Y ) + noise unless the
noise amplitude depends on Y . So, being the first model more simple, and
the only one following the assumptions of LiNGAM (because f happens to
be linear as well), it outputs the causal direction X → Y . The exact opposite
occurs in the green cloud, so Y → X would be chosen.

Algorithm 7 Direct LiNGAM.
Input: Dataset with data columns X̄, Ȳ , ..., Z̄ representing k variables
X, Y, ..., Z, and threshold α > 0

Output: DAG with weights matrix WX→Y .
S ← [ ] Empty causal order list
while |S| < k do

X = argminX/∈S
∑

Y /∈S∪{X} I(X; rX̄→Ȳ )

Push X to the end of S
for Y /∈ S ∪ {X} do

Ȳ ← rX̄→Ȳ ▷ Remove the effect of X on Y

WX→Y ← 0 for all X, Y ∈ S

for Y ∈ S do
pa← {X : X precedes Y in S}
Wpa→Y ← linear coefficients (Y = f(pa))
Set small values in Wpa→Y to 0 (if abs.<α)

return W

In other words, for LiNGAM, the causation X → Y is strong when the pre-
diction residual Y − f(X) is independent or not sufficiently dependent on
X. A dependency score I(X, Y − f(X)) is used for this purpose. Mutual
information is a good candidate [HS13], although other metrics have been
proposed [Shi14]. LiNGAM extends the same analysis to more variables by
adding up or averaging scores over all the candidate parents, i.e., by con-
sidering I(X, Y − f(X)) + I(Z, Y − f(Z)) as the dependency score of the
child Y on the parents X and Z. Notice that, unlike PC, LiNGAM does
not threshold the dependency score to decide discretely for dependence or
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independence. Instead, it compares several scores between them, e.g., for two
variables, it will compare the independence score of X → Y versus Y → X.

LiNGAM (Algorithm 7) learns the causal graph in two steps. First, it finds a
causal order of the variables: an ordered list, where the first nodes are more
likely to be ancestors and the last, descendants. More precisely, we compute
the dependency scores of every variable X on all the other variables, and pick
the one with the lowest dependency score (the most independent) as the first
node in the list. Then, we subtract the effect of X on all the other variables,
and select the next variable using the same procedure.

After the order has been established, all arrows will necessarily go from nodes
that appear earlier to nodes that appear later in the list, or put informally,
from the most independent to the most dependent ones. Next, from all
such arrows, the algorithm proceeds to filter out those whose coefficient in
linear regression is smaller (in absolute value) than a threshold α. For this
comparison to be fair, the variables should be normalized. The coefficients
that were large enough are stored in a matrix W , setting 0 everywhere else.
This matrix represents a graph with weights on the arrows, and because of
the constraint on the arrows by the ordered list, it is a DAG.

3.3 NoTears and GOLEM

Non-combinatorial Optimization via Trace Exponential and Augmented la-
gRangian for Structure learning (NoTears) [ZARX18] is a CDA that avoids
the ad-hoc combinatorial problem of exploring the space of DAGs by con-
verting it into an optimization problem. The output of NoTears is a matrix
of weights whose non-zero entries form the adjacency matrix of a DAG, just
like Direct LiNGAM.

NoTears considers the optimization problem, for a given dataset D ∈ Rn×d of
n observations and d features, of finding the matrix W ∈ Rd×d that represents
a DAG and minimizes the linear predictions’ mean squared error ∥D −DW∥22
plus an ℓ1-regularization term. That is,

F (W )
def

:= min
W

1

2n
∥D −DW∥22 + λ∥W∥1,

subject to W representing a DAG, i.e., the matrix 1(W ̸= 0) must be the
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adjoint matrix of a DAG. The novelty introduced with NoTears is the use of
an alternative characterization of acyclicity that states that W represents a
DAG if and only if

h(W )
def

:= tr(eW◦W )− d = 0,

where tr(A) is the trace of the squared matrix A, i.e., the sum of the diagonal,
A ◦ B is the element-wise product of two matrices and eA denotes matrix
exponentiation.

Using the augmented Lagrangian method, the constrained problem can be
rewritten as the dual problem maxα∈R minW Lρ(W,α) with Lagrange multi-
plier α and step size ρ, and augmented Lagrangian

Lρ(W,α)
def

:= F (W ) +
ρ

2
|h(W )|2 + αh(W ).

This double optimization problem can be converted into a sequence of un-
constrained problems by means of dual ascent optimization: for a fixed
initial α, we find a minimizer Wα of Lρ(W,α), then ascend by updating
α ← α + ρ ∂

dα
(Lρ(W,α))|W=Wα , i.e., α + ρh(Wα), and repeat until conver-

gence.

It is worth noticing that the constraining set {W : h(W ) = 0} is a non-
convex set, hence NoTears inherits the difficulties of non-convex optimiza-
tion [ZARX18]. Also, it has been shown that the output of NoTears is sus-
ceptible to the scale of the data [KS22] and the authors of [LB14] point out
that if a linear model D = DW + ϵ is assumed, the term 1

2n
∥D −DW∥22

in F (W ) should be modified into 1
2n
∥(D −DW )Σ−1/2∥22, where Σ = cov(ϵ)

is the variance of the (unobservable) noise terms. This second problem is
addressed by the GOLEM algorithm.

Gradient-based Optimization of dag-penalized Likelihood for learning linEar
dag Models (GOLEM) [NGZ20] is a method based on NoTears, but with a
different choice for the loss term ∥D −DW∥22 in F (W ). The method proposes
to replace the loss term with two versions of the (negative) BIC score proxy
explained in Fact 22. Recall that this proxy score corresponds with BIC score
only under the assumption that model for the data is a linear combination
with Gaussian noise. In the first version, assuming equal variances (EV) of
the noise, the loss term becomes ℓEV

def

:= d
2
log(∥(D −DW )∥2)− log | det(I −

W )|. In the second, assuming non-equal variances (NV) of the noise, the
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loss term is modified by averaging over the d columns and becomes ℓNV
def

:=
1
2

∑d
i=1 log(∥(D −DW )i∥2) − log | det(I −W )|. By replacing the loss term

of NoTears ∥D −DW∥22 in F (W ) with these two losses, two different CDAs
are obtained: GOLEM-EV and GOLEM-NV. GOLEM-EV is also affected
by rescaling [RSW21], as ℓEV treats all columns on the same scale, but it has
better performance than GOLEM-NV on unscaled data.

3.4 Overview

In this section, we presented 5 popular causal discovery algorithms. There
are more CDAs in the literature, including, variants and extensions of
PC like FCI [SMR99], variants of Direct LiNGAM like the original ICA-
LiNGAM [SHH+06] and alternative CDAs based on alternative definitions of
causality like SBCN [BHMR17]. These are not considered in this chapter for
brevity, experimental consistency and because the selected ones are already
diverse in how they operate. For instance, the outputs of FCI and SBCN are
neither DAGs nor CPDAGs, so they are not suitable for a direct comparison
with the other algorithms. Table 3.1 summarizes the CDAs included in the
experiments.

Algorithm Output How it operates
GES CPDAG Model likelihood maximization
PC CPDAG Independence tests for colliders

Direct LiNGAM DAG Residual asymmetries
NoTears DAG Constrained optimization
GOLEM DAG Constrained optimization

Table 3.1: High level comparison of the CDAs included in the experiments.

It is important to notice from Table 3.1, that the CDAs can be categorized
based on the type of its output. The output of GES and PC is a CPDAG, and
they have in common that their approach for solving the problem is mostly
combinatorial and explicitly takes into account the space of CPDAGs, and
their correspondence to equivalence classes of DAGs. On the other hand,
the output of LiNGAM, NoTears and GOLEM is a DAG. DAGs have the
advantage that they provide a more rich and detailed structure, however, it
has been criticized that these structures do not correspond to actual causal
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relationships [KS22], and they can be attacked very easily [SZDK22] in the sense
that one can make simple modifications to the input dataset that change the
structure of the output DAG in targeted manner. These type of experimental
attacks are very important as they help to detect conceptual weaknesses in
the definitions.

3.5 Experiments

In this section we corroborate experimentally the main thesis of this chapter:
the causal graphs produced by different CDAs may differ significantly. To
do this, we provide synthetic data distributions that were specially crafted
to be very simple (to capture minimal scenarios) and such that when dif-
ferent CDAs are executed on datasets sampled from these distributions, the
outputs differ significantly and with high probability w.r.t. sampling noise.
Notice that the main paper [BMP+23] contains already several examples of real
datasets for which the CDAs have different outputs, but these are based on
relatively complex real world datasets, and they were not tested for NoTears
nor GOLEM. In particular, the models 1 and 2 shown in Figure 3.1 corre-
spond to the outputs of PC and GES respectively for the Compas dataset, a
fact that is very provocative on its own. In this section we find and present
far simpler examples in which the same phenomenon occurs.

The objective of this section is not to judge the correctness of any particu-
lar CDA, but to find and reveal explicitly simple distributions for which the
CDAs’ outputs differ. It is expected, from the different operation mecha-
nisms of the CDAs (see Table 3.1), that different CDAs produce similar but
not exactly the same causal graphs in all executions. Also, the output of
LiNGAM is a DAG, while the output of GES and PC is a CPDAG, so, it
is understandable that the outputs differ in general. However, in order to
better understand the practical and semantic difference between the CDAs,
it is crucial to have at hand simple examples for which the CDAs disagree.
This section is dedicated to these examples, as they are not available in the
literature.

Since the CDAs have conflicting assumptions, e.g., because the GES requires
the data to be (at least approximately) a linear combination of Gaussian ex-
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ogenous random variables while LiNGAM requires non-gaussian residuals, we
opted for a combination of normal and uniform exogenous distributions that
are combined linearly to produce the observed attributes. Concretely, for 3
normally (N1, N2, N3) and 2 uniformly (U1, U2) distributed random variables,
we searched among all linear combinations (matrices of size 5× 3) for those
that produce three random variables such that, when sampled, the CDAs
disagree very often. The choice of a linear model with just 5 exogenous
and 3 observed variables is simplistic on purpose to privilege the conceptual
understanding of the distributions that are produced.

Figure 3.3: Histograms of outputs of LiNGAM and GES for Example 23.

These distributions were obtained by means of a genetic search following the
procedure explained in what follows. Recall that a genetic search consists
of iterating three basic procedures: scoring candidate solutions, discarding
the ones that have low scores and combining the remaining to form new
candidates. In our experiments, the searches were executed with a population
size of 50 to 300 and a scoring function that seeks to privilege the cases in
which GES and LiNGAM report very distant causal graphs very often (for
many samples of fixed size). The experiments were run in Python using the
CDAs’ implementations of the library gCastle, with their default parameters.
As we found, for the following simple scheme, the two algorithms report
opposite results.

Example 23. Let
X1 = −2N1 + 0.1U1

X2 = −3.8N2 − 2.8U2

X3 = −0.4N3 + 1.8N1 + 3.8U2

where N1, N2, N3, U1, U2 are random variables with mean 0 and variance 1,
the first three of which are Gaussian and the remaining uniform. Then,
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the CDAs LiNGAM and GES have contradictory outputs (Figure 3.3). In
particular, for populations of 1000 samples, GES reports almost always that
X2 is a collider while LiNGAM reports also very often (at least 80% of the
times) the exact opposite. For LiNGAM, all arrows should be inverted and
X2 is a confounder. For this example, PC agrees with GES very often.

Figure 3.4: Histograms of outputs of GES and PC for Example 24.

Example 24. Defining N1, N2, U1, U2 as in Example 23, let

X1 = −2.6N1 + 3.4U1

X2 = −4.7N1 − 3.7U1

X3 = 2.7N1 − 3.4U1 + 1.1N2 + 0.4U2

Then, the outputs of GES and PC are different almost always (Figure 3.4).
According to PC, the CPDAG consists of a single undirected edge between
X1 and X2, whose possible DAGs are either setting X1 as causing X2 or
vice-versa. Nevertheless, according to GES, there is a collider, either in X1

or X3. In this example, PC reports the same output more than 90% of
the time while GES reports its two outputs around 60% and 40% of the time
respectively, meaning that for this particular distribution, the sampling noise
plays a significant role for GES.

The sample size of Examples 23 and 24 was set to 1000, which is large enough
to make sample size noise negligible for 3 variables. Indeed, Figure 3.5 shows
the effect of sample size on the output stability of several CDAs. For each
sample size and CDA and a fixed distribution, we ran 1000 times the CDA
on different samples of size 1000 and counted how often the most popular
output came out, a measure that reflects robustness of the output. This was
repeated for different distributions, including naturally Examples 23 and 24.
The main observations are that (1) approximately, the curves do not vary
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Figure 3.5: Output stability relative to sample size for selected distributions.

much when the sample size exceeds 200, and (2) for some distributions, the
tendency is increasing towards values above 90% but for some others, the
CDAs are not robust, as the frequencies approach values below or around
60% (as in the example shown in Figure 3.4).

Figure 3.6: Examples for NoTears and GOLEM versus LiNGAM.

Finally, the examples mentioned in this chapter are not limited to PC, GES
and LiNGAM. Example 25, along with its corresponding figures 3.6 and 3.7,
show the same issues for NoTears and GOLEM versus LiNGAM (and PC for
completeness). Overall, these distributions show contradictions between the
algorithms, and for some, the algorithms are very confident (with respect to
sampling noise) of opposite conclusions. Finding the examples for GOLEM
took significantly more time than the others (14 CPU hours) because it was
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Figure 3.7: Examples for NoTears and GOLEM versus PC.

the slowest of all the algorithms.

Example 25. With the same convention for N1, N2, N3, U1, U2 as in Ex-
amples 23 and 24, denote the vector of unobservable variables as Z

def

:=

[N1, N2, N3, U1, U2]
T , and let XL

def

:= MLZ and XR
def

:= MRZ be vectors of
three observed real random variables, where

ML
def

:=

−2.0 −2.0 0.4 0.0 3.4

−2.9 2.9 −3.7 3.2 0.7

−4.2 −4.2 0.0 2.0 −0.9

 , and

MR
def

:=

−0.7 −1.7 −4.8 −0.2 4.7

0.5 −2.9 −3.6 −4.8 −2.1
−0.6 4.4 −2.3 0.7 −4.2

 .

Then, the outputs of LiNGAM and NoTears are different almost always for
XL, and so are those of LiNGAM and GOLEM for XR. This is shown in
Figure 3.6, XL at the left and XR at the right. If we let instead

ML =

 3.9 4.2 0.0 0.0 0.0

−1.6 −1.8 4.7 −0.8 0.3

0.0 0.0 2.7 3.2 −4.0

 , and

MR =

−4.3 −3.6 4.1 1.1 4.0

−2.4 −1.7 −4.5 0.0 0.0

0.4 −3.7 0.0 4.3 −0.9

 ,
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then the same phenomenon happens with respect to PC (instead of
LiNGAM). Figure 3.7 shows this phenomenon (XL at the left and XR at
the right). Notice that the differences with PC are not merely of one being
a DAG and the other a CPDAG, which is expected and obvious, but true
changes in structure.

Perhaps the most interesting fact about these examples is that they are
very simple distributions, and the differences between the output graphs are
not simply missing edges (whose solution would be to modify a threshold
parameter), but also reversed edges and misidentification of v-structures.

3.6 Conclusion

This chapter complements the paper [BMP+23], which shows that differ-
ent CDAs can generate different causal graphs, and demonstrates how
slight differences between causal graphs may have significant impact on fair-
ness/discrimination conclusions. This is done by presenting some particular
selected examples of simple distributions for which the disagreement is very
high and very frequent between different CDAs, including some that were
not reviewed in [BMP+23]. As a consequence, the hypothesis that the choice
of the CDA has a critical impact on fairness conclusions is reinforced.

The main takeaway of the paper and this chapter is that causal based fair-
ness assessment should not be fully automated unless the causal graph is
known. In other words, CDAs should be used as tools for analysis but not
as analysts themselves. It is important to run several of them, varying their
parameters to understand which causal graphs are more likely to be correct,
and the sample size should be taken into account as a potential source of er-
ror. Finally, the distributions presented in this chapter are potentially useful
to understand more deeply the differences between the CDAs in practice as
they trigger contrasting outputs while being relatively very simple.

With this chapter, we conclude the study of fairness until the discussion
section. We now turn our attention into privacy, the second pillar of Ethical
AI studied in this dissertation.
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Frequency Estimation of Evolving
Data Under Local Differential
Privacy

Estimating histograms of evolving categorical data is a fundamental task in
data analysis and data mining that requires collecting and processing data
in a continuous manner. A typical instance of such a problem is the online
monitoring performed on software applications [BEM+17], for example for er-
ror reporting [GKG+09], to find commonly typed emojis [App17], as well as to
measure the users’ system usage statistics [DKY17]. However, the data col-
lected can contain sensitive information such as location, health information,
preferred webpage, etc. Thus, the direct collection and storage of users’ raw
data on a centralized server should be avoided to preserve their privacy. To
address this issue, recent works have proposed several mechanisms satisfying
Differential Privacy (DP) [Dwo06b, DMNS06, DR+14] in the distributed setting
in which an individual can directly randomize her own profile locally, referred
to as Local DP (LDP) [KLN+08, DJW13, DWJ13].

One of the strengths of LDP is its simple trust model: since each user per-
turbs her data locally, user privacy is protected even if the server is malicious.
For instance, some big tech companies have chosen to operate some of their
applications in the local model, reporting the implementation of LDP pro-
tocols to collect statistics on well-known systems such as Google Chrome
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browser [EPK14], Apple iOS/macOS [App17], and Windows 10 operating sys-
tem [DKY17].

Existing LDP protocols for frequency estimation typically focus on one-time
computation [FNNT22, ASZ19, WBLJ17, KBR16, KOV16, CMM21, BS15, BNST17].
However, considering both evolving data and the continuous monitoring to-
gether, pose a significant challenge under LDP guarantees. For instance, the
naïve solution in which an LDP computation is repeated, will quickly increase
the privacy loss leading to large values of ϵ due to the sequential composition
theorem in DP [DR+14]. To tackle this issue, most state-of-the-art solutions
relies on memoization [EPK14, DKY17, EFM+20, ACBX21, ACBX22].

Initially proposed by Erlingsson, Pihur, and Korolova [EPK14], the
memoization-based RAPPOR protocol allows a user to memorize random-
ized versions of their true data and consistently reuse it when the same true
value occurs. In addition, to improve privacy (e.g., minimize data change
detection and/or tracking), the RAPPOR [EPK14] protocol applies a second
round of sanitization to the memoized value. However, the longitudinal pri-
vacy protection of RAPPOR only works if the underlying true value never or
rarely changes (or changes in an uncorrelated fashion), which is unrealistic
for evolving data (e.g., the number of seconds an application is used) as the
privacy loss is proportional to the number of data changes, i.e., the domain
size k in the worst-case.

To address this issue, Ding, Kulkarni, and Yekhanin [DKY17] have pro-
posed a new LDP protocol named dBitFlipPM that improved memoization
by mapping several values to the same randomized value. More precisely,
dBitFlipPM partitions the original values into b ≤ k buckets (e.g., with equal
widths), which allows close values to be mapped to the same bucket. After-
wards, each user only samples d ≤ b buckets to minimize the number of bits
to be randomized. Note that these two steps contributes to the information
loss. Another limitation of dBitFlipPM is the possibility of detecting data
changes [XYH+22] on the fly since the true value will fall in a different bucket,
there will be a higher probability of changing the randomization of the d bits.
Even if this only indicates that the user’s value has changed, not what it was
or is [EPK14, DKY17], there are still some privacy implications with respect
to the type of inference an adversary can perform, especially if there are
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correlation patterns to be exploited [TKB+17, NV20]. Finally, dBitFlipPM’s
privacy loss can still be proportional to the number of bucket changes, i.e.,
the new domain size b in the worst case.

A different line of work has taken into account the infrequent data changes on
the user side, hereafter referred to as data change-based [JRUW18, EFM+19,

XYH+22, OWW22]. For instance, Joseph et al. [JRUW18] have proposed a new
LDP protocol THRESH for monitoring statistics (e.g., frequency) based on
two sub-routines: voting and estimation, which requires splitting the privacy
budget. The main idea of THRESH is to update through voting the global
estimate only when it becomes sufficiently inaccurate. However, privacy bud-
get splitting under LDP guarantees is suboptimal [WBLJ17, ACBX22, WXY+19,

ACBX21, NXY+16, EFM+20, ACABX21], which negatively impacts the data util-
ity. Moreover, the authors in [EFM+19, OWW22] proposed the sanitization
and report of data changes for frequency monitoring by assuming a limited
number of data changes and longitudinal Boolean data, though it can be
extended to larger domains. This leads to an accuracy that decays linearly
(or sub-linearly) in the number of data changes. Finally, in a recent work,
Xue et al. [XYH+22] have proposed a new LDP protocol DDRM (Dynamic
Difference Report Mechanism) based on difference trees. However, DDRM
assumes that the user’s private sequence exhibit continuity (i.e., do not fluc-
tuate significantly) and was mainly designed for longitudinal Boolean data.
Besides, DDRM requires a privacy budget allocation scheme that depends
on the number of data collections as well as to split the privacy budget when
extending to a larger domain (i.e., suboptimal).

Main contributions. In this chapter, we address the limitations of
memoization-based protocols [EPK14, DKY17, ACBX22, EFM+20] without im-
posing any restriction on the number of data changes and/or on the number of
data collections as in data change-based protocols [JRUW18, EFM+19, XYH+22,

OWW22]. More precisely, we propose a novel LDP protocol with formal pri-
vacy guarantees for longitudinal frequency estimation of evolving counter (or
categorical) data.

Our protocol, hereafter named LOngitudinal LOcal HAshing (LOLOHA),
combines a domain reduction approach through local hashing [BS15, WBLJ17]

with the memoization solution of RAPPOR using two rounds of sanitiza-
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tion [EPK14, ACBX22]. The main strength of LOLOHA is that the longitudi-
nal privacy-utility trade-off is linear only on the new (reduced) domain size
g, in which 2 ≤ g ≪ k is a tunable hyperparameter. This way, the worst-case
longitudinal privacy loss of LOLOHA has a significant k/g or b/g decrease
factor in comparison with RAPPOR and dBitFlipPM, respectively.

Indeed, LOLOHA can be tuned for strong longitudinal privacy by selecting
g = 2 (BiLOLOHA protocol). To maximize LOLOHA’s utility, we also
find the optimal g value (OLOLOHA protocol). Experimental evaluations
demonstrate the effectiveness of LOLOHA with respect to the quality of
frequency estimates, in addition to substantially minimizing the longitudinal
privacy loss.

We also show why LDP is generally impossible to achieve when data is lon-
gitudinal, which motivates a definition of privacy that better suits the longi-
tudinal scenario. This is in opposition with the common and mathematically
equivalent path in the literature of claiming a protocol to be LDP but as-
suming that the evolving data is uncorrelated or constant in time, which we
believe not be realistic in real-life deployments.

In summary, the main contributions of this chapter are three-fold:

• We propose the LOLOHA protocol for longitudinal frequency monitor-
ing under LDP guarantees.

• We prove the longitudinal privacy and accuracy guarantees of LOLOHA
through theoretical analysis and compare it to existing protocols.

• We show the performance of LOLOHA numerically and experimentally,
using both real-world and synthetic datasets.

Outline. The remainder of this chapter is organized as follows. First, in
Section 4.1, we provide the problem definition and review LDP and existing
longitudinal LDP protocols. Next, we present and analyze our LOLOHA
protocols in Section 4.2. In Section 4.3, we give a theoretical comparison
of LOLOHA and state-of-the-art LDP protocols before presenting and inter-
preting the experimental results in Section 4.4. Finally, in Section 4.5, we
review related work before concluding with future perspectives in Section 4.6.
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4.1 Preliminaries

In this section, we present the problem considered, and we review the LDP
privacy model and relevant protocols.

Notation. For denoting sets, we will use italic uppercase letters V , U , etc.,
and we write [1..n] = {1, . . . , n}. For a vector x (bold lowercase letters), xi

represents the value of its i-th coordinate. Finally, we denote randomized
protocols asM.

4.1.1 Problem Statement

We consider the situation in which a server collects data from a distributed
group of users while requiring the protection of privacy for each user, through
LDP. The server collects sanitized data over time from each member of the
group with respect to a fixed discrete random variable (e.g., daily usage of
a mobile application). Its objective is to estimate the true frequencies, or
histograms, of the random variable as well as its evolution over time. We
aim to provide the server with an optimized combination of two algorithms:
one for the users, who must sanitize locally their data before sending it,
and another for the server, which wants to aggregate data and perform the
estimation accurately.

Formally, there are n users U = {u1, . . . , un} and a random variable taking
values in a set V of size k with true frequencies {f(v)}v∈V , which may vary
over time. Each user u ∈ U , holds a private sequence of values v(u) =[
v
(u)
1 , v

(u)
2 , . . . , v

(u)
τ

]
, in which v

(u)
t represents the discrete value v ∈ V of user

u at time step t ∈ [1..τ ]. At each time step t, upon collecting the sanitized
values of all n users, the server will estimate a k-bins histogram {f̂(v)}v∈V
in a way that minimizes the Mean Squared Error (MSE) with respect to
{f(v)}v∈V . For all the algorithms presented hereafter, the estimation f̂(v) is
unbiased (i.e., E(f̂(v)) = f(v)). As a consequence, the MSE is equivalent to
the variance as:

MSE =
1

|V |
∑
v∈V

E
[(

f̂(v)− f(v)
)2]

=
1

|V |
∑
v∈V

V[f̂(v)].
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4.1.2 Local Differential Privacy

Privacy model. In this chapter, we use LDP (Local Differential Pri-
vacy) [KLN+08, DJW13, DWJ13] as the privacy model considered, which is
formally defined as follows.

Definition 26 (ϵ-Local Differential Privacy). A randomized algorithm M
satisfies ϵ-local-differential-privacy (ϵ-LDP), where ϵ > 0, if for any pair of
input values v1, v2 ∈ Domain(M) and any possible output x′ ofM:

Pr[M(v1) = x′] ≤ eϵ · Pr[M(v2) = x′].

In essence, LDP guarantees that it is unlikely for the data aggregator to
reconstruct the input data. The privacy loss ϵ controls the privacy-utility
trade-off for which lower values of ϵ result in tighter privacy protection. Sim-
ilar to central DP, LDP also has several fundamental properties, such as
robustness to post-processing and composition [DR+14].

Proposition 27 (Post-Processing [DR+14]). If M is ϵ-LDP, then f(M) is
also ϵ-LDP for any function f .

Proposition 28 (Sequential Composition [DR+14]). Let Mt be ϵt-LDP
mechanism, for t ∈ [τ ]. Then, the sequence of outputs [M1(v), . . . ,Mτ (v)]

is
∑τ

t=1 ϵt-LDP. Moreover, if M is an ϵ-LDP mechanism and v is a finite
sequence of k values, then the sequence of outputs [M(v1), . . . ,M(vk)] is
kϵ-LDP.

4.1.3 LDP Frequency Estimation Protocols

In this section, we review five state-of-the-art LDP frequency estimation
protocols, which are often used as building blocks for more complex tasks
(e.g., heavy hitter estimation [BS15, BNST17], machine learning [MABK+20],
and private frequency monitoring [DKY17, EPK14, ACBX22]).

Generalized Randomized Response (GRR)

The GRR [KBR16, KOV16] protocol generalizes the Randomized Response
(RR) technique proposed by Warner [War65] for k ≥ 2 while satisfying LDP.

88



4.1. Preliminaries Chapter 4. Longitudinal LDP

Fix a parameter ϵ > 0 and let p := eϵ

eϵ+k−1
∈ (0, 1) in which k = |V |. For each

v ∈ V , let η̸=v ∈ V be a uniform (i.e., exogenous noise) random variable over
V \ {v}. We letMGRR : V → V be the random variable given by:

MGRR(v; ϵ) :=

v, w.p. p

η ̸=v, w.p. 1− p.

This protocol satisfies ϵ-LDP, because p
q
= eϵ [KBR16], in which q := (1−p)/(k−1)

determines the probability of the response being any fixed noise value differ-
ent of v. To estimate the normalized frequency of v ∈ V , one counts how
many times v is reported, expressed as C(v), and then computes:

f̂(v) =
C(v)− nq

n(p− q)
, (4.1)

in which n is the total number of users. In [WBLJ17], it was proven that
Eq. (4.1) is an unbiased estimator (i.e., E(f̂(v)) = f(v)).

Local Hashing (LH)

LH protocols [WBLJ17] can handle a large domain size k by first using hash
functions to map an input value to a smaller domain of size g ≥ 2 (typically
g ≪ k), and then applying GRR to the hashed value.

Fix ϵ > 0 and let MGRR : [1..g] → [1..g] be the GRR mechanism with
parameter ϵ and assuming the input-output domain to be [1..g] instead of
V , so that the size is g instead of k. In local hashing, each user selects at
random a hashing function H from a family of universal hash functions, and
reports the pair ⟨H,MGRR(x; ϵ)⟩, in which x = H(v).

The hash values will remain unchanged with probability p = eϵ

eϵ+g−1
and

switch to any different fixed value in [1..g] with probability q = 1
eϵ+g−1

. This
means that for each hash value x ∈ [1..g], it holds that:

Pr[MGRR(H(v); ϵ) = x] =

p, if x = H(v)

q, otherwise.

Let ⟨Hu, xu⟩ be the report from user u ∈ U . The server can obtain the
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unbiased estimation of v ∈ V , with Eq. (4.1) by setting q = 1
g

and C(v) =

|{u ∈ U | Hu(v) = xu}| [WBLJ17].

The authors in [WBLJ17] describe two LH protocols that differ on how g is
selected: (1) Binary LH (BLH) that selects g = 2 and (2) Optimal LH (OLH)
that selects g = ⌊eϵ + 1⌉ (rounded to the closest integer).

Unary Encoding (UE)

UE protocols interpret the user’s input v ∈ V , as a one-hot k-dimensional
vector. More precisely, x = UE(v) is a binary vector with only the bit at the
position corresponding to v set to 1 and the other bits set to 0. The pertur-
bation function of UE protocols randomizes the bits from x independently
with probabilities:

∀i ∈ [k] : Pr[x′
i = 1] =

p, if xi = 1,

q, if xi = 0.
(4.2)

Afterwards, the client sends x′ to the server. The authors in [WBLJ17] de-
scribe two UE protocols that depend on the parameters p and q in Eq. (4.2):
(1) Symmetric UE (SUE) [EPK14], which selects p = eϵ/2

eϵ/2+1
and q = 1

eϵ/2+1

such that p + q = 1, and (2) Optimal UE (OUE), which selects p = 1
2

and
q = 1

eϵ+1
.

The estimation method used in Eq. (4.1) applies equally to both UE proto-
cols, in which C(v) represents the number of times the bit corresponding to
v has been reported. Last, both SUE and OUE protocols satisfy ϵ-LDP for
ϵ = ln

(
p(1−q)
(1−p)q

)
[WBLJ17].

4.1.4 Existing Longitudinal LDP Frequency Estimation
Protocols

For privately monitoring the frequency of values of a population, the simplest
way is that each user adds independent fresh noise to v in each data collection
t ∈ [1..τ ] following one of the LDP protocols described in the previous section.
However, this solution is vulnerable to “averaging attacks” in which an adver-
sary can estimate the true value from observing multiple randomized versions
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of it. To avoid this averaging attack, the memoization approach [EPK14] was
designed to enable longitudinal collections through memorizing a random-
ized version of the true value v and consistently reusing it [DKY17, ACBX21]

or reusing it as the input to a second round of sanitization (i.e., chaining two
LDP protocols) [EPK14, ACBX22, EFM+20]. The next four subsections describe
state-of-the-art memoization-based protocols.

RAPPOR Protocol

The utility-oriented version of RAPPOR [EPK14] is based on the SUE proto-
col, which encodes the user’s input v ∈ V as a k-dimensional bit-vector and
randomizes each bit independently. More specifically, for each value v ∈ V ,
the user encodes x = UE(v) and randomizes x as follows:

Step 1. Permanent RR (PRR): Memoize x′ such that:

∀i ∈ [k] : Pr[x′
i = 1] =

p1 =
eϵ∞/2

eϵ∞/2+1
, if xi = 1,

q1 =
1

eϵ∞/2+1
, if xi = 0,

in which p1 and q1 control the level of longitudinal ϵ∞-LDP for ϵ∞ =

ln
(

p1(1−q1)
(1−p1)q1

)
[EPK14]. This step is carried out only once for each value v ∈ V

that the user has. Thus, the value x′ shall be reused as the basis for all future
reports of v.

Step 2. Instantaneous RR (IRR): Generate x′′ such that:

∀i ∈ [k] : Pr[x′′
i = 1] =

p2, if x′
i = 1,

q2, if x′
i = 0.

This second step is carried out each time t ∈ [1..τ ] a user report the value
v. RAPPOR’s deployment selected p2 = 0.75 and q2 = 0.25 [EPK14, WBLJ17]

(i.e., also symmetric). The RAPPOR protocol that chains two SUE protocols
is referred to as L-SUE in [ACBX22, ACG+22]. We provide the calculation of
parameters p2 and q2 in the repository [PH22]. Note that ϵ∞ corresponds to an
upper bound for each value v as t→∞. The privacy guarantees of the IRR
step degrade according to the number of reports t ∈ [1..τ ] [EPK14, EFM+20].
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With two rounds of sanitization, each consisting of a transversal LDP pro-
tocol parametrized with p and q, the unbiased estimator in Eq. (4.1) is now
extended to [ACBX22, EPK14]:

f̂L(v) =

C(v)−nq2
(p2−q2)

− nq1

n(p1 − q1)
=

C(v)− nq1(p2 − q2)− nq2
n(p1 − q1)(p2 − q2)

, (4.3)

in which p1 and q1 are the parameters of the LDP protocol used in the first
step while p2 and q2 are the parameters of the LDP protocol used in the
second step.

In [ACBX22], it was proven that Eq. (4.3) is an unbiased estimator (i.e.,
E(f̂L(v)) = f(v)) and that for any value v ∈ V , the variance V of the
estimator f̂L(v) in Eq. (4.3) is:

V[f̂L(v)] =
γ(1− γ)

n(p1 − q1)2(p2 − q2)2
, where

γ = f(v) (2p1p2 − 2p1q2 + 2q2 − 1) + p2q1 + q2(1− q1).

(4.4)

In this chapter, we will use the approximate variance V∗, in which f(v) = 0

in Eq. (4.4), which gives:

V∗
[
f̂L(v)

]
=

(p2q1 − q2 (q1 − 1)) (−p2q1 + q2 (q1 − 1) + 1)

n(p1 − q1)2(p2 − q2)2
. (4.5)

Therefore, one can obtain the RAPPOR approximate variance
V∗[f̂RAPPOR(v)] by replacing the resulting p1, q1, p2, q2 parameters into
Eq. (4.5).

Optimized Longitudinal UE Protocol

The authors in [ACBX22] analyzed all four combinations between OUE and
SUE in both PRR and IRR steps. The optimized protocol named L-OSUE
chains the OUE protocol (PRR step) and the SUE protocol (IRR step).
Thus, for each value v ∈ V , the user encodes x = UE(v) and randomizes x as
follows:

Step 1. PRR: Memoize x′ such that:
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∀i ∈ [k] : Pr[x′
i = 1] =

p1 =
1
2
, if xi = 1,

q1 =
1

eϵ∞+1
, if xi = 0,

in which p1 and q1 control the level of longitudinal ϵ∞-LDP as eϵ∞ = p1(1−q1)
q1(q−p1)

[EPK14, ACBX22]. The value x′ shall be reused as the basis for all future
reports when the real value is v.

Step 2. IRR: Generate x′′ such that:

∀i ∈ [k] : Pr[x′′
i = 1] =

p2, if x′
i = 1,

q2 = 1− p2, if x′
i = 0,

in which p2 =
eϵ∞eϵ1−1

eϵ∞−eϵ1+eϵ∞+ϵ1−1
and x′′ is the report to be sent to the server.

Let ps = Pr[x′′
i = 1|xi = 1] = p1p2 + (1− p1)q2 and qs = Pr[x′′

i = 1|xi = 0] =

q1p2 + (1− q1)q2. For the first report, the L-OSUE protocol satisfies ϵ1-LDP
as eϵ1 = ps(1−qs)

(1−ps)qs
[ACBX22, EPK14].

Similar to RAPPOR, the estimated frequency f̂L-OSUE(v) that a value v ∈ V

occurs, can be computed using Eq. (4.3). One can also obtain the L-OSUE
approximate variance V∗[f̂L-OSUE(v)] by replacing the resulting p1, q1, p2, q2
parameters into Eq. (4.5).

Longitudinal GRR (L-GRR)

The L-GRR [ACBX22] protocol chains GRR in both PRR and IRR steps.
Therefore, for each value v ∈ V , the user randomizes v as follows:

Step 1. PRR: Memoize x′ such that:

x′ =

v, w.p. p1 = eϵ∞

eϵ∞+k−1
,

ṽ ∈ V \ {v}, w.p. q1 = 1−p1
k−1

,

in which p1 and q1 control the level of longitudinal ϵ∞-LDP as eϵ∞ =
p1
q1

[KBR16, ACBX22]. The value x′ shall be reused as the basis for all future
reports on the real value v.
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Step 2. IRR: Generate a report x′′ such that:

x′′ =

x′, w.p. p2,

x̃ ∈ V \ {x′}, w.p. q2 = 1−p2
k−1

,

in which p2 = eϵ∞+ϵ1−1
−keϵ1+(k−1)eϵ∞+eϵ1+eϵ1+ϵ∞−1

and x′′ is the report to be sent to
the server. Let ps = Pr [x′′ = v|v] = p1p2 + q1q2 and qs = Pr[x′′ = v|ṽ ∈
V \ {v}] = p1q2 + q1p2. For the first report, the L-GRR protocol satisfies
ϵ1-LDP since eϵ1 = ps

qs
[ACBX22].

The estimated frequency f̂L-GRR(v) that a value v occurs can also be ob-
tained using Eq. (4.3). Besides, one can compute the L-GRR approximate
variance V∗[f̂L-GRR(v)] by replacing the resulting p1, q1, p2, q2 parameters into
Eq. (4.5).

dBitFlipPM Protocol

The dBitFlipPM [DKY17] protocol was proposed to improve the memoization
solution of RAPPOR [EPK14] by mapping several true values to the same
noisy response at the cost of losing information due to generalization. This
is done by first partitioning the original domain V into b buckets (i.e., new
domain size 2 ≤ b ≤ k) using a function bucket : V → [1..b], such that
close values will fall into the same bucket. Next, each user randomly draws
d bucket numbers without replacement from [1..b], denoted by j1, j2, . . . , jd,
and fixes them for all future data collections. Then, for each v ∈ V , the user
sends a sanitized vector x′ = [(j1, xj1), . . . , (jd, xjd)] parameterized with the
privacy guarantee ϵ∞ as follows:

∀l ∈ [1..d] : Pr[xjl = 1] =

p = eϵ∞/2

eϵ∞/2+1
, if bucket(v) = jl

q = 1
eϵ∞/2+1

, if bucket(v) ̸= jl
.

In other words, users inform the server which bits are sampled as well as their
perturbed values, but the server does not receive any information about the
remaining b − d bits. The server can estimate the number of times each
bucket in [1..b] has been reported with Eq. (4.1) by replacing n with nd

b
as

each user only sampled d bits among b buckets.
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In contrast to RAPPOR, there is no second round of sanitization, which
means the user runs dBitFlipPM with ϵ∞-LDP for all b buckets, with ran-
domization applied to the d fixed bits j1, j2, . . . , jd and memoizes the re-
sponse. This approach adds uncertainty to the real value because multiple
(close) values will be mapped to the same bucket. The highest protection is
given when d = 1 [DKY17], which will minimize the chances (to some extent)
of detecting high data changes.

4.2 LOLOHA

In this section, we introduce our LOLOHA (Longitudinal Local Hashing)
protocol for frequency monitoring throughout time under LDP constraints,
and we analyze its utility and privacy.

The privacy analysis of longitudinal protocols requires special treatment be-
cause, since they are stateful, they cannot be modeled as mechanisms map-
ping values into values, but rather sequences into sequences. This makes
the LDP constraint too strong in the long term as shown in the following
theorem.

Theorem 29. (LDP cannot be satisfied when τ → ∞) Consider a ran-
domized longitudinal mechanism M⃗ : [1..n]τ → [1..m]τ mapping an input se-
quence X1, . . . , Xτ to an output sequence Y1, . . . , Yτ , for some positive integer
τ . For the sake of utility of each reported value Yt (0-LDP means total detri-
ment of utility), assume some negligible, but positive fixed α > 0 such that the
mechanism for generating Yt from Xt and the history X1, Y1, . . . , Xt−1, Yt−1

is not α-LDP. If τ ≥ ϵ/α then M⃗ is not ϵ-LDP.

Proof. Let y1 = argmaxy
maxx P (X1=x|Y1=y)
minx P (X1=x|Y1=y)

, and call x+
1 and x−

1 to the val-
ues that respectively maximize and minimize P (X1 = x|Y1 = y1). By the
minimal utility assumption, p(x+

1 |y1)
p(x−

1 |y1)
> eα.

Let y2 = argmaxy
maxx P (X2=x|Y2=y,Y1=y1,X1=x1)
minx P (X2=x|Y2=y,Y1=y1,X1=x1)

, and call x+
2 and x−

2 to the
values that respectively maximize and minimize P (X2 = x|Y2 = y, Y1 =

y1, X1 = x1). Since the output values of the mechanism are reported one
by one in temporal order, we have p(x1, x2|y1, y2) = p(x1|y1)p(x2|y2, y1, x1),
hence by the minimal utility assumption and the first step, p(x+

1 ,x+
2 |y1,y2)

p(x−
1 ,x−

2 |y1,y2)
=

95



4.2. LOLOHA Chapter 4. Longitudinal LDP

p(x+
1 |y1)p(x+

2 |y2,y1,x+
1 )

p(x−
1 |y1)p(x−

2 |y2,y1,x−
1 )

> e2α.

Repeating this process inductively yields three sequences yi, x+
i and x−

i of
length τ such that p(x+

1 ,...,x+
τ |y1,...,yτ )

p(x−
1 ,...,x−

τ |y1,...,yτ )
> eτα.

This makes it impossible for the mechanism to be ϵ-LDP for any τ ≥ ϵ/α.

For instance, assume that a user has a secret sequence v =

[1, 1, 1, 3, 1, 2, 1, 1, 3] (τ = 9 time steps), and reports M⃗(v) :=

[M(v1), . . . ,M(v9)], in which M is the memoization mechanism (1 7→
2; 2 7→ 2; 3 7→ 3) that reuses the sanitized report. The server receives
[2, 2, 2, 3, 2, 2, 2, 2, 3], hence some time-related patterns in the sequence are
exposed, but the memoization protects the uncertainty about the user actual
values. As the sequence size grows, the vectorized memoization mechanism
M⃗ that processes temporal data continues to protect the values indefinitely,
but fails to satisfy LDP. For this reason, we introduce the following relaxed
definition of privacy for longitudinal mechanisms.

Definition 30 (Longitudinal LDP). For a longitudinal memoizing mecha-
nism M : Aτ → Bτ , in which A = [1..k], let M⋆ denote a mechanism that
takes as input a permutation x of A and outputs M⋆(x) := x′′ by shuffling
the k entries of x, yielding x′, and letting x′′

i := M(x′
i) for each i = 1..k,

sequentially. M is said to be ϵ-LDP on the users’ values iffM⋆ is ϵ-LDP.

Definition 30 discards all information contained in time correlation by shuf-
fling the input and aggregates the total privacy loss after all input values
have been memoized. Moreover, Definition 30 corresponds to the total pri-
vacy budget that will be consumed for sanitizing all the values of the user.

Previous influential works, such as RAPPOR [EPK14] and
dBitFlipPM [DKY17], handle the negative consequences of Theorem 29
implicitly by assuming that the data values (or buckets) never change or
change in an uncorrelated manner. We consider the former to be unrealistic,
and the latter is insufficient to guarantee LDP, though it makes users
indistinguishable. In this chapter, we privileged Definition 30 over extreme
assumptions on the data to be able to explain at least what is actually being
protected by the mechanism when the assumptions do not hold. Hence, we
present long term guarantees in terms of LDP on the users’ values, but also,
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single-report LDP guarantees, as done in the literature, which are equivalent
to LDP assuming constant values.

4.2.1 Overview of LOLOHA

LOLOHA is inspired by the strengths of RAPPOR [EPK14] (double saniti-
zation to minimize data change detection) and dBitFlipPM [DKY17] (several
values are mapped to the same randomized value) protocols. More precisely,
LOLOHA is based on LH for the PRR step to satisfy ϵ∞-LDP (upper bound),
which significantly reduces the domain size. Thus, the user will uniformly
choose at random a universal hash function H that maps the original domain
V → [1..g], with g ≥ 2 typically much smaller than k = |V |. Indeed, given
a general (universal) family of hash functions H , each input value v ∈ V

is hashed into a value in [1..g] by hash function H ∈ H , and the universal
property requires:

∀v1, v2 ∈ V, v1 ̸= v2 : Pr
H∈H

[H(v1) = H(v2)] ≤
1

g
.

In other words, approximately k/g values v ∈ V can be mapped to the same
hashed value H(v) in [1..g] due to collision. After the hashing step, to satisfy
ϵ∞-LDP, the user invokes the GRR protocol to the hashed value x = H(v)

and memoizes the response x′ = MGRR(x; ϵ∞). Then, the value x′ will be
reused as the basis for all future reports on the hashed value x, which
supports all values in set XH = {v ∈ V | H(v) = x}. The intuition is that
the user only leaks ϵ∞ for each hashed value x ∈ [1..g] as they support all
values v ∈ V that collide to x = H(v). Notice that instead of memoization,
users could also pre-compute the mapping for each input value. These two
methods would be equivalent in terms of the functionality provided. An
implementation of LOLOHA is available in the multi-freq-ldpy Python
package [ACG+22].

Moreover, in contrast with the dBitFlipPM protocol in which only close
values are mapped to the same bucket, any two values in V can collide
with probability at most 1/g. Therefore, even if the user’s value changes
periodically, correlated or in an abrupt manner, there will still be uncertainty
on the actual value v. However, with only this PRR step, it would be possible
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to detect some of the data changes due to the randomization of a different
hash value. Therefore, LOLOHA also requires the user to apply a second
round of sanitization (i.e., IRR step) to the memoized values x′ with the
GRR protocol such that the first report satisfies ϵ1-LDP, for some chosen
positive ϵ1 < ϵ∞.

4.2.2 Client-Side of LOLOHA

Algorithm 8 displays the pseudocode of LOLOHA on the client-side, which
receives as input: the true sequence of values v = [v1, v2, . . . , vτ ] of the user
that is running the code, a universal family H of hash functions H : V →
[1..g], and the constants ϵ1, ϵ∞, with 0 < ϵ1 < ϵ∞, that represent respectively
the leakage of the first report and the maximal longitudinal leakage.

Algorithm 8 Client-Side of LOLOHA.
Input: User longitudinal values [v1, v2, . . . , vτ ], family H of hash func-
tions and constants 0 < ϵ1 < ϵ∞.
Output: None. Sends data to server during execution.

1: H←R H ▷ Hash function chosen at random
2: Send H.
3: ϵIRR ← ln

(
eϵ∞+ϵ1−1
eϵ∞−eϵ1

)
4: for each time t ∈ [1..τ ] do:
5: x← H(vt). ▷ Hash step
6: if x is not memoized then:
7: x′ ←MGRR(x; ϵ∞) over [1..g]. ▷ PRR step
8: Memoize output x′ for x.
9: else:

10: Get memoized output x′ for x.
11: end if
12: x′′

t ←MGRR(x
′; ϵIRR) over [1..g]. ▷ IRR step

13: Send x′′
t . ▷ Sanitized data

14: end for

Privacy analysis. The privacy guarantees of Algorithm 8 are detailed in
Theorems 31, 32 and especially 33.

Theorem 31. (Single report LDP of memoization)
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Let M : V → H × [1..g] denote the process of applying the hash and PRR
steps of LOLOHA to a single element v ∈ V , producing M(v) = (H, x′).
Then M is ϵ∞-LDP.

Proof. The parameters for the PRR step are p = eϵ∞

eϵ∞+g−1
and q = 1

eϵ∞+g−1
.

For any two possible input values v1, v2 ∈ V and any reported output (H, x′),
we have

Pr [(H, x′)|v1]
Pr [(H, x′)|v2]

≤ p

q
=

eϵ∞

eϵ∞+g−1

1
eϵ∞+g−1

= eϵ∞ .

Theorem 32. (Single report LDP of LOLOHA)
Let M : V →H × [1..g] denote the process of applying the hash, PRR, and
IRR steps of LOLOHA to a single element v ∈ V , producingM(v) = (H, x′′).
Then M is ϵ1-LDP.

Proof. Let (p1, q1) denote the parameters for the PRR step and (p2, q2), the
parameters for the IRR step. That is, p1 = eϵ∞

eϵ∞+g−1
, q1 = 1

eϵ∞+g−1
, p2 =

eϵIRR

eϵIRR+g−1
, and q2 = 1

eϵIRR+g−1
. If x′′ ̸= H(v), it must have changed during

either the PRR or the IRR step, and if x′′ = H(v), either it was not changed
during either step or it was changed during both. From this analysis, it can
be concluded that for each y ∈ [1..g], we have

Pr[x′′ = y] =

p1p2 + q1q2, if y = H(v),

p1q2 + q1p2, if y ̸= H(v).

Therefore, for any two possible input values v1, v2 ∈ V and any output
(H, x′′), we have,

Pr [(H, x′′)|v1]
Pr [(H, x′′)|v2]

≤ p1p2 + q1q2
p1q2 + q1p2

=
eϵ∞ · eϵIRR + 1 · 1
eϵ∞ · 1 + 1 · eϵIRR

.

Moreover, since eϵIRR = eϵ∞+ϵ1−1
eϵ∞−eϵ1

, then eϵIRReϵ∞ +1 = eϵ1(eϵIRR + eϵ∞). Hence,

Pr [(H, x′′)|v1]
Pr [(H, x′′)|v2]

≤ eϵ1 .
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Theorem 33. (Privacy protection as τ →∞)
The client-side of LOLOHA is gϵ∞-LDP on the users’ values.

Proof. The non-vectorized memoization mechanism (hash and PRR steps)
of LOLOHA is a function M : V → [1..g] that can memorize at most g

reports. For each separate individual report, we know that M satisfies ϵ∞-
LDP (Theorem 31). Therefore, by sequential composition of at most g results
(Proposition 28),M satisfies gϵ∞-LDP, and LOLOHA satisfies gϵ∞-LDP on
the users’ values.

The privacy guarantees of the IRR step (Theorem 32) degrade according to
the number of reports t ∈ [1..τ ] [EPK14, EFM+20]. If we let ϵt be the privacy
guarantee on the users’ values of Algorithm 8 for a fixed user using the data
in times [1..t], so that t = 1 matches exactly ϵ1 (Theorem 32), then we have
ϵ1 ≤ ϵ2 ≤ · · · ≤ ϵτ ≤ gϵ∞.

Besides, from Algorithm 8, one can remark that instead of leaking a new ϵ∞
for each v ∈ V , LOLOHA will only leak ϵ∞ for each hashed value x ∈ [1..g].
Therefore, unlike RAPPOR that has a worst-case guarantee of kϵ∞-LDP on
the users’ values, the overall privacy guarantee of our LOLOHA solution will
grow proportionally to the new domain size 2 ≤ g ≪ k, with worst-case
longitudinal privacy of gϵ∞-LDP on the users’ values.

4.2.3 Server-Side of LOLOHA

The server-side algorithm of LOLOHA is described in Algorithm 9, which
takes the reported values by n users and aggregates them to estimate the
frequencies of each v ∈ V at each point in time.

For large n, the estimations of Algorithm 9 are guaranteed to be close to the
true population parameters with high probability as explained in Proposi-
tion 34. Moreover, one can also compute the LOLOHA approximate vari-
ance V∗[f̂LOLOHA(v)] by replacing the server parameters in Algorithm 9 into
Eq. (4.5).

Proposition 34. (Asymptotic utility guarantee of LOLOHA)
Fix any arbitrary t ∈ [1..τ ]. For each v ∈ V , let f(v) be the true population
probability of producing the value v at time t, and let f̂(v) ∈ [0, 1] be the
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Algorithm 9 Server-Side of LOLOHA.
Input: Constants 0 < ϵ1 < ϵ∞, and for each user u ∈ U , a hash function
Hu : V → [1..g] and a sequence of hash values [x

′′(u)
1 , . . . , x

′′(u)
τ ].

Output: Matrix with estimations f̂LOLOHA(v)t for each v ∈ V at each
t ∈ [1..τ ].

1: Compute parameters:

ϵIRR ← ln
(

eϵ∞+ϵ1−1
eϵ∞−eϵ1

)
; n← |U |

p1 ← eϵ∞

eϵ∞+g−1
; q′1 ← 1

g

p2 ← eϵIRR

eϵIRR+g−1
; q2 ← 1

eϵIRR+g−1

2: for each time t ∈ [1..τ ] do:
3: for each v ∈ V do:
4: C(v)← |{u ∈ U | Hu(v) = x

′′(u)
t }|

5: f̂L(v)t ← C(v)−nq′1(p2−q2)−nq2
n(p1−q′1)(p2−q2)

▷ Eq. (4.3) with q′1.
6: end for
7: end for
8: return matrix [f̂L(v)t]t,v

estimation produced by Algorithm 9 for time t. For any β ∈ (0, 1), it holds
with probability at least 1− β that:

max
v∈V
|f̂(v)− f(v)| <

√
k

4nβ(p1 − q′1)(p2 − q2)
.

Proof. Fix v ∈ V , and let ∆ be the random variable given by ∆ := f̂(v) −
f(v) ∈ [−1, 1] be a random variable. Since f̂(v) is unbiased, we have E[∆] = 0

and V[∆] = V[f̂(v)]. We remark that for any δ, β ∈ (0, 1), among all random
variables ∆′ defined in [−1, 1] such that E[∆′] and Pr[|∆′| ≥ δ] = β, the one
with minimal variance is the random variable ∆∗ that concentrates a mass of
1−β at ∆′ = 0 and two masses of β/2 at −δ and δ. This random variable has
variance V[∆∗] = βδ2. Hence, for arbitrary δ ∈ (0, 1) and letting in particular
β := Pr[|f̂(v)− f(v)| ≥ δ], we conclude that V[f̂(v)] = V[|f̂(v)− f(v)|] ≥
V[∆∗] = Pr[|f̂(v)− f(v)| ≥ δ] · δ2. In other words,

Pr[|f̂(v)− f(v)| ≥ δ] ≤ V[f̂(v)]/δ2.
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Now, considering all v ∈ V simultaneously, we obtain
Pr[maxv∈V |f̂(v)− f(v)| ≥ δ] ≤ ∑

v∈V Pr[|f̂(v)− f(v)| ≥ δ] =

(1/δ2)
∑

v∈V V[f̂(v)]. By rewriting this equation in terms of confidence,
we conclude that with probability at least 1− β,

max
v∈V
|f̂(v)− f(v)| <

√∑
v∈V V[f̂(v)]/β.

Lastly, from Eq. (4.4) it can be concluded that V[f̂(v)] ≤ 1/4n(p1−q′1)(p2−q2)

because the product γ(1 − γ) is maximal at γ = 1/2. As a consequence,
maxv∈V |f̂(v)− f(v)| <

√
k/4nβ(p1−q′1)(p2−q2).

4.2.4 Selecting and Optimizing Parameter g

Binary LOLOHA (BiLOLOHA). Following Theorem 33, the strongest
longitudinal privacy protection of LOLOHA is when g = 2.

Optimal LOLOHA (OLOLOHA). To maximize the utility of LOLOHA,
we find the optimal g value by taking the partial derivative of V∗[f̂LOLOHA(v)]

with respect to g. Let ϵ1 = αϵ∞, for α ∈ (0, 1). This partial derivative is
a function in terms of ϵ∞ and α, or alternatively, in terms of a = eϵ∞ and
b = eαϵ∞ , and it is minimized when g equals (cf. development in reposi-
tory [PH22]):

g = 1+max

(
1,

⌊
1−a2+

√
a4−14a2+12ab(1−ab)+12a3b+1

6(a−b)

⌉)
, (4.6)

in which ⌊.⌉ means rounding to the closest integer. Fig. 4.1 illustrates the
optimal g selection with Eq. (4.6) by varying the longitudinal privacy guar-
antee ϵ∞ = [0.5, 1, . . . , 4.5, 5] and α ∈ {0.1, 0.2, . . . , 0.6}. From Fig. 4.1, one
can remark that in high privacy regimes (i.e., low ϵ values), the optimal g is
binary (i.e., our BiLOLOHA protocol with g = 2). As ϵ∞ or/and ϵ1 = αϵ∞
get(s) higher (low privacy regimes), the optimal g is non-binary, which can
maximize utility with a cost in the overall longitudinal privacy gϵ∞-LDP on
the users’ values, for g > 2.
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Figure 4.1: Optimal g selection for our OLOLOHA protocol by varying
the longitudinal ϵ∞ and first report ϵ1 = αϵ∞ privacy guarantees, for
α ∈ {0.1, 0.2, . . . , 0.6}.

4.3 Theoretical Comparison

In this section, we compare LOLOHA with the state-of-the-art protocols
described in the previous Section 4.1.4 from a theoretical point of view. Ta-
ble 4.1 shows a summary of the main characteristics of these protocols, ex-
cluding utility.

For the theoretical utility, numerical analysis is preferred over an analytical
one because the formulas of variance and approximate variance are exces-
sively complex. For L-OSUE and dBitFlipPM, the approximate variances
are 4eϵ1

n(e2ϵ1−2eϵ1+1)
and b

2dn sinh ( ϵ∞
2 )

respectively, but for the other protocols,

the formulas are provided only in the repository [PH22] since they are exces-
sively verbose for this document.

In order to evaluate numerically the approximate variance V∗ of LOLOHA
in comparison with state-of-the-art ones [EPK14, ACBX22], for each protocol,
we set the longitudinal privacy guarantee ϵ∞ (upper bound) and the first
report privacy guarantee ϵ1 = αϵ∞ (lower bound), for α ∈ (0, 1). This allows
to obtain parameters p1, q1, p2, q2 for each protocol, which are then used to
compute their approximate variance with Eq. (4.5).

Fig. 4.2 illustrates the numerical values of the approximate variance for
our LOLOHA protocols, RAPPOR [EPK14], and L-OSUE [ACBX22] with
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Protocol Comm. Server Privacy loss
bits per user run-time budget
per time step complexity consumption

LOLOHA ⌈log2 g⌉ n k g ϵ∞

L-GRR [ACBX22] ⌈log2 k⌉ n k ϵ∞

RAPPOR [EPK14] k n k k ϵ∞

L-OSUE [ACBX22] k n k k ϵ∞

dBitFlipPM [DKY17] d n b min(d+ 1, b) ϵ∞

Table 4.1: Theoretical comparison of the protocols.

n = 10000, ϵ∞ = [0.5, 1, . . . , 4.5, 5], and α ∈ {0.1, 0.2, . . . , 0.6}. From
Fig. 4.2, one can remark that all protocols have similar variance values
when α ≤ 0.3 with only a small difference when ϵ∞ is high. However,
in low privacy regimes, i.e., when ϵ∞ and α are high, BiLOLOHA is the
least performing protocol in terms of utility, accompanied by RAPPOR. In-
deed, our OLOLOHA protocol has a very similar utility as the optimized
L-OSUE [ACBX22] protocol, which indicates a clear connection also found
between their one-round versions [WBLJ17], i.e., OLH and OUE.
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Figure 4.2: Numerical values of the approximate variance V∗[f̂L(v)]

in Eq. (4.5) of our LOLOHA protocols, RAPPOR [EPK14], and L-
OSUE [ACBX22] varying the longitudinal ϵ∞ and first report ϵ1 = αϵ∞ privacy
guarantees, for α ∈ {0.1, 0.2, . . . , 0.6}.

Though not included in our analysis, the L-GRR protocol from [ACBX22] has
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shown to be very sensitive to k (a parameter on which its variance depends
on), leading to extremely high values that would obfuscate the curves of
the other protocols in Fig. 4.2. However, L-GRR is ideal when k is small,
which is the case for instance for binary attributes. Besides, we also did
not numerically compare our protocols with dBitFlipPM as it only has a
single round of sanitization. A proper comparison with dBitFlipPM would
be only considering the PRR step of our LOLOHA protocols. Therefore,
by comparing the approximate variances of double randomization protocols,
we can conclude that our LOLOHA protocols preserve as much utility as
state-of-the-art protocols [EPK14, ACBX22].

Moreover, from Table 4.1, LOLOHA has less communication cost than L-
UE and similar server time computation, which is advantageous for large-
scale system deployment to monitor frequency longitudinally. In addition,
one clear limitation of RAPPOR, L-OSUE, and L-GRR is that they do not
support even small data changes of the user’s actual data [DKY17], which
requires to invoke the whole algorithm again on the new value. Therefore,
following Definition 30 and Proposition 28, the overall privacy guarantee of
RAPPOR, L-OSUE, and L-GRR, for all user’s true value v ∈ V (assuming
the user’s value will change periodically) will grow proportionally to the
number of data changes, with worst-case longitudinal privacy of kϵ∞-LDP
on the users’ values.

On the other hand, with dBitFlipPM, its overall privacy guarantee for all
user’s true value v ∈ V (assuming the user’s value will change periodically)
will grow proportionally to the number of bits d or the number of bucket
changes, with worst-case longitudinal privacy of min(d+1, b)ϵ∞-LDP on the
users’ values (cf. Definition 30 and Proposition 28). However, there is a loss
of information due to both the generalization of the original domain size k to
b buckets and due to sampling only d bits. Besides, the dBitFlipPM protocol
is vulnerable to detecting high data changes (i.e., change of real bucket) as
there is no second round of sanitization (i.e., IRR step) [XYH+22]. This data
change detection problem is (to some extent) minimized when d is small.
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4.4 Experimental Evaluation

In this section, we present the setup of our experiments and the experimental
results of our LOLOHA protocols in comparison with the state-of-the-art.

4.4.1 Setup of Experiments

The main goal of our experiments is to study the effectiveness of our proposed
LOLOHA protocols on longitudinal frequency estimates through multiple
τ > 1 data collections. In particular, we aim to show that our LOLOHA
protocols (i) maintain competitive utility to state-of-the-art memoization-
based LDP protocols [EPK14, DKY17, ACBX22] while (ii) minimize longitudinal
privacy loss. With these objectives in mind, we run experiments using both
synthetic and real-world datasets.

Environment. All algorithms are implemented in Python 3 with Numpy
and Numba libraries. The codes we develop for all experiments are available
in the repository [PH22]. Since LDP algorithms are randomized, we report
average results over 20 runs.

Datasets. We use the following real and synthetic datasets.

• Syn. To simulate the deployment of [DKY17] to collect data every 6
hours, we generate a synthetic dataset with k = 360 (i.e., the number
of minutes in 6 hours), n = 10000 users, and τ = 120 data collections
(i.e., 4x over 30 days). For each user, the value at the first timestamp
follows a Uniform distribution. For each subsequent time, a change
can occur with probability pch = 0.25, with value following a Uniform
distribution too.

• Adult. This is a classical dataset from the UCI machine learning repos-
itory [DG17b] with n = 45222 samples after cleaning. We only selected
the “hours-per-week” attribute with k = 96. To simulate multiple data
collections, we randomly permuted the data τ = 260 times (i.e., 52
weeks over 5-years). Note that the real frequency remains the same,
but each user has a random private sequence.

• DB_MT. This dataset is produced by the folktables Python pack-
age [DHMS21] that provides access to datasets derived from the US
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Census. We selected the survey year 2018 and the “Montana” state,
which results in n = 10336 samples. To simulate τ = 80 counter data
collections, we selected all person record-replicate weights attributes1,
i.e., PWGTP1, ..., PWGTP80. The total number of unique values
among all columns is k = 1412.

• DB_DE. Similar to DB_MT, we selected the “Delaware” state, which
results in n = 9123, τ = 80, and k = 1234.

Methods evaluated. We consider for evaluation the following longitudinal
LDP protocols:

• RAPPOR. The utility-oriented protocol from [EPK14] based on SUE
(cf. Section 4.1.4).

• L-OSUE. The optimized L-UE protocol from [ACBX22] (cf. Sec-
tion 4.1.4).

• L-GRR. The optimized longitudinal protocol from [ACBX22] when k is
small (cf. Section 4.1.4).

• dBitFlipPM. The one-round randomization mechanism from [DKY17]

with d ∈ {1, b}, referred respectively as 1BitFlipPM and bBitFlipPM,
in which the former 1BitFlipPM is tuned for privacy and the latter
bBitFlipPM for utility (cf. Section 4.1.4)

• LOLOHA. Our protocols following Algorithm 8, which are BiLOLOHA
with g = 2 adjusted for privacy and OLOLOHA with g following
Eq. (4.6) tuned for utility.

Privacy metrics. We vary the longitudinal privacy parameter in the range
ϵ∞ = [0.5, 1, . . . , 4.5, 5] and ϵ1 = αϵ∞, for α ∈ {0.4, 0.5, 0.6}, to compare
our experimental results with numerical ones from Section 4.3 (with higher
visibility).

Performance metrics. To evaluate our results, we use the MSE averaged
by the number of data collection τ , denoted by MSEavg. Thus, for each time
t ∈ [1..τ ], we compute for each value v ∈ V the estimated frequency f̂L(v)t

1https://www.census.gov/programs-surveys/acs/microdata/documentation.
html.
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and the real one f(v)t and calculate their differences before averaging by τ .
More formally,

MSEavg =
1

τ

∑
t∈[1..τ ]

1

|V |
∑
v∈V

(
f(v)t − f̂L(v)t

)2
. (4.7)

We also assess the averaged longitudinal privacy loss for all users, denoted
by ϵ̌avg. More precisely, after the end of all data collections τ , we compute
for each user u ∈ U their overall longitudinal privacy loss ϵ̌

(u)
∞ and average

by n. For example, RAPPOR (and L-GRR and L-OSUE) leaks a new ϵ∞ in
each data change with ϵ̌∞ ≤ kϵ∞, while LOLOHA protocols leak a new ϵ∞
in each hash value change with ϵ̌∞ ≤ gϵ∞. More formally,

ϵ̌avg =
1

n

∑
u∈U

ϵ̌(u)∞ . (4.8)

Finally, for the dBitFlipPM protocol, we also evaluate the percentage of
users in which an attacker can identify all (bucket) data change points (i.e.,
worst-case analysis) due to different PRR reports throughout the τ data
collections.

4.4.2 Results

First, we compare the utility performance of our LOLOHA protocols with all
four state-of-the-art memoization-based protocols for frequency monitoring
under LDP guarantees, namely, RAPPOR [EPK14], L-OSUE [ACBX22], L-
GRR [ACBX22], and dBitFlipPM [DKY17], for d ∈ {1, b}. Fig. 4.3 illustrates
the MSEavg metric in Eq. (4.7) for all methods and all Syn, Adult, DB_MT,
and DB_DE datasets, by varying the longitudinal ϵ∞ and first report ϵ1 =

αϵ∞ privacy guarantees, for α ∈ {0.4, 0.5, 0.6}. On the one hand, since
k ≤ 360 for Syn and Adult datasets, when implementing dBitFlipPM, we
select b = k to estimate the same k-bins histogram as all other methods
in Figs. 4.3a and 4.3b. On the other hand, we select b = ⌊k/4⌋ bins for
both DB_MT (k = 1412) and DB_DE (k = 1234) datasets, but we did not
include the error metric of dBitFlipPM in Figs. 4.3c and 4.3d as the error is
five orders of magnitude higher due to histograms of different sizes (b < k).
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Fig. 4.3 shows that the experimental results with all datasets match the
numerical results of variance values from Fig. 4.2 for our LOLOHA proto-
cols, RAPPOR, and L-OSUE. More specifically, our OLOLOHA protocol
has similar utility to the optimized L-OSUE protocol, a relationship also
find between their one-round versions OLH and OUE in [WBLJ17]. In high
privacy regimes, all four protocols, i.e., RAPPOR, L-OSUE, BiLOLOHA,
and OLOLOHA have very similar utility. In low privacy regimes, L-OSUE
and OLOLOHA outperforms both RAPPOR and BiLOLOHA. The least per-
forming longitudinal LDP protocols are L-GRR and 1BitFlipPM, the former
due to high domain sizes k, as shown in [ACBX22], and the latter due to
sampling only a single d = 1 bit out of b ones. The bBitFlipPM protocol
outperforms all experimented longitudinal LDP protocols due to having only
a single round of sanitization (i.e., the PRR step) and by reporting all d = b

bits, which is consistent with [DKY17] (the larger d the greater the utility).

However, increasing the number of bits d the users must report negatively
impacts privacy, as each new input value has a high probability of generating
a new output value, which will be detected by the server. For instance, for
both dBitFlipPM protocols, for d ∈ {1, b}, Table 4.2 exhibits the percentage
of users in which all bucket changes were detected by the server due to
different PRR responses throughout τ data collections, for all Syn, Adult,
DB_MT, and DB_DE datasets. Remark that when d = 1, the protocol is
adjusted for privacy, thus being less vulnerable with respect to privacy with
only a small percentage (< 1%) of users that the server always detected a
different randomized output due to different input values. Besides, one can
note that the percentage of attacked users decreases as ϵ∞ gets higher when
d = 1. The intuition is that the probability of randomizing the single bit will
be smaller with high ϵ∞, thus generating the same report many times. On the
other hand, the bBitFlipPM protocol is tuned for utility, which increased the
probability of always generating a new randomized output due to new input
values and, thus leading to 100% of detection for all four datasets. Though
we only perform both extreme cases (lower d = 1 and upper d = b bounds),
one can picture the privacy-utility trade-off of dBitFlipPM for other d values
in between our results of Fig. 4.3 and Table 4.2.

We now analyze the longitudinal privacy guarantees of our LOLOHA proto-
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Table 4.2: Percentage of users in which the server detected all data change
points for dBitFlipPM, for d ∈ {1, b}, and all Syn, Adult, DB_MT, and
DB_DE datasets.

ϵ∞
d = 1 d = b

Syn Adult DB_MT DB_DE Syn Adult DB_MT DB_DE
0.5 0% 0% 0.0048% 0% 100% 100% 100% 100%
1.0 0% 0% 0.0044% 0% 100% 100% 100% 100%
1.5 0% 0% 0.0048% 0% 100% 100% 100% 100%
2.0 0% 0% 0.0039% 0% 100% 100% 100% 100%
2.5 0% 0% 0.0024% 0% 100% 100% 100% 100%
3.0 0% 0% 0.0024% 0% 100% 100% 100% 100%
3.5 0% 0% 0.0024% 0% 100% 100% 100% 100%
4.0 0% 0% 0.0019% 0% 100% 100% 100% 100%
4.5 0% 0% 0.0010% 0% 100% 100% 100% 100%
5.0 0% 0% 0.0010% 0% 100% 99.99% 100% 100%

cols in comparison with the state-of-the-art memoization-based LDP proto-
cols. Fig. 4.4 illustrates the ϵ̌avg metric in Eq. (4.8) for all methods and all
Syn, Adult, DB_MT, and DB_DE datasets, by varying the longitudinal ϵ∞
and first report ϵ1 = αϵ∞ privacy guarantees, for α ∈ {0.4, 0.5, 0.6}. Notice
that the results of dBitFlipPM protocols in Figs. 4.4a and 4.4b are with b = k

buckets and in Figs. 4.4c and 4.4d are with b = ⌊k/4⌋ buckets.

From Fig. 4.4, one can remark that all four LDP protocols, RAPPOR, L-
OSUE, L-GRR, and bBitFlipPM (when b = k in Figs. 4.4a and 4.4b), have
an averaged longitudinal privacy loss linear to the number of data changes
the users performed throughout the τ data collections. Fig. 4.4a presents
the smallest ϵ̌avg as both k = 360 and the change rate pch = 0.25 are small.
However, in a worst-case scenario in which the users change their values
significantly or τ → ∞, the overall privacy loss of RAPPOR, L-OSUE, L-
GRR, and bBitFlipPM can grow to values as large as kϵ∞ for all datasets.
Note that in Figs. 4.4a and 4.4b, naturally, setting b = k does not benefit from
the dBitFlipPM advantage for enhancing longitudinal privacy protection by
mapping several close values to the same bin, which leads to higher ϵ̌avg. In
contrast, in Figs. 4.4c and 4.4d, the longitudinal privacy loss of bBitFlipPM
protocols is lower than RAPPOR, L-OSUE, and L-GRR because b = ⌊k/4⌋
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(a) Syn dataset: k = 360, n = 10000, and τ = 120.
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(b) Adult dataset: k = 96, n = 45222, and τ = 260.
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(c) DB_MT dataset: k = 1412, n = 10336, and τ = 80.
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(d) DB_DE dataset: k = 1234, n = 9123, and τ = 80.

Figure 4.3: Averaged MSE for τ data collections in Eq. (4.7) by varying
the longitudinal ϵ∞ and first report ϵ1 = αϵ∞ privacy guarantees, for α ∈
{0.4, 0.5, 0.6}, on (a) Syn, (b) Adult, (c) DB_MT, and (d) DB_DE datasets.
The evaluated methods are: dBitFlipPM [DKY17], L-OSUE [ACBX22], RAP-
POR [EPK14], L-GRR [ACBX22], and our LOLOHA protocols.

buckets, but still significantly higher than our LOLOHA protocols.

Indeed, the privacy loss of our LOLOHA protocols depends only on the new
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(a) Syn dataset: k = 360, n = 10000, and τ = 120.
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(b) Adult dataset: k = 96, n = 45222, and τ = 260.
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(c) DB_MT dataset: k = 1412, n = 10336, and τ = 80.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
ε∞

0

50

100

150

200

250

ε̌ a
v
g

ε1 =0.4ε∞

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
ε∞

ε1 =0.5ε∞

bBitFlipPM L-OSUE OLOLOHA RAPPOR BiLOLOHA 1BitFlipPM L-GRR

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
ε∞

ε1 =0.6ε∞

(d) DB_DE dataset: k = 1234, n = 9123, and τ = 80.

Figure 4.4: Averaged longitudinal privacy loss for τ data collections in
Eq. (4.8) by varying the longitudinal ϵ∞ and first report ϵ1 = αϵ∞ privacy
guarantees, for α ∈ {0.4, 0.5, 0.6}, on (a) Syn, (b) Adult, (c) DB_MT, and
(d) DB_DE datasets. The evaluated methods are: dBitFlipPM [DKY17],
L-OSUE [ACBX22], RAPPOR [EPK14], L-GRR [ACBX22], and our LOLOHA
protocols.

domain size g ≥ 2, which is agnostic to k. For this reason, our BiLOLOHA
protocol with g = 2 leaked about 15 to 25 orders of magnitude less than the
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state-of-the-art LDP protocols considering the experimented τ values. These
are similar results achieved by the 1BitFlipPM protocol, which agrees with
the theoretical analysis in Table 4.1, although BiLOLOHA consistently and
considerably outperforms 1BitFlipPM in terms of utility loss (see Fig. 4.3).
Besides, since our OLOLOHA protocol has privacy loss depending on the
optimal g value in Eq. (4.6), which can be g > 2 in low privacy regimes, it only
resulted in about 2 to 5 order of magnitude less privacy loss than the state-of-
the-art LDP protocols, for the experimented τ value. More specifically, when
ϵ∞ is high and α = 0.6 (see Fig. 4.4d), OLOLOHA leaked about 2 orders of
magnitude less privacy loss than the bBitFlipPM protocol. However, as the
number of data collections τ → ∞, bBitFlipPM privacy loss will go to bϵ∞,
which is b/g times higher than the one from OLOLOHA with gϵ∞. Besides,
in practice, lower values of ϵ∞ and α ≪ 1 should be used to ensure strong
longitudinal privacy guarantees since the first ϵ1 = αϵ∞-LDP report. As
shown in Fig. 4.1, this will mean lower values of g, which will substantially
decrease the longitudinal privacy loss of OLOLOHA.

4.4.3 Discussion

In brief, we evaluated in our experiments the performance of our LOLOHA
protocols in comparison with four state-of-the-art memoization-based LDP
protocols [EPK14, DKY17, ACBX22] for frequency monitoring on different
datasets and varying different parameters. We now summarize the main
findings that help justify the many claims of this chapter.

More precisely, the conclusions we stated in Section 4.3 are based on the
analytical variances of the LDP protocols. To corroborate these conclusions,
our empirical experiments in Section 4.4.2, which measured the MSE metric,
do indeed correspond to the numerical results of the variances.

Furthermore, the main disadvantage of RAPPOR [EPK14] and the two others
optimized protocols from [ACBX22], (i.e., L-GRR and L-OSUE), is the linear
relation on k for the overall longitudinal privacy loss, i.e., kϵ∞, as each
data change needs to be memoized. Thus, for the monitoring of large-scale
systems (e.g., application usage, calories ingestion, preferred webpage, etc.),
the overall privacy loss of such protocols will be tremendous, being unrealistic
for private frequency monitoring.
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Even though the dBitFlipPM [DKY17] generalizes the original domain size k

to b buckets, there is still a linear relation on the new domain size b ≤ k

for the overall longitudinal privacy loss, i.e., bϵ∞, as each bucket change
needs to be memoized when the mechanism is tuned for utility. What is
more, this generalization naturally leads to loss of information and one has
to carefully choose the bucket numbers/width for the best privacy-utility
trade-off. Besides, the privacy-utility trade-off of dBitFlipPM also depends
on the number of bits d ≤ b each user samples. However, even when d = 1,
which offers the strongest protection [DKY17], in our experiments, the server
was still able to detect all bucket change of a small portion of users (see
Table 4.2). Hence, as one adjusts d for utility, i.e., 1 < d ≤ b, the higher the
attacker’s success rate to detect all user’s data changes will be.

The best choice for adequately balancing privacy and utility for frequency
monitoring is with our LOLOHA protocols, as the privacy loss is only linear
to the new (reduced) domain size 2 ≤ g ≪ k. Though we only experiment
with 80 ≤ τ ≤ 260 data collections in Section 4.4.2, in the worst case, this
represents a significant k/g decrease factor of privacy loss by our LOLOHA
protocols. Intuitively, LOLOHA can be tuned to satisfy the strongest lon-
gitudinal privacy protection by selecting g = 2 (i.e., our BiLOLOHA pro-
tocol). In this setting, there is loss of utility in the encoding step through
local hashing since the output is just one bit. For instance, even if this bit
is transmitted correctly after the two rounds of sanitization, the server can
only obtain one bit of information about the input (i.e., to which half of the
input domain the value belongs to [WBLJ17]). Nevertheless, from the analytic
variance analysis in Fig. 4.2 and empirical experiments in Fig. 4.3, LOLOHA
is optimal with g = 2 in high privacy regimes, i.e., low ϵ∞ values, which is
desirable for practical deployments.

As a limitation, users fix their randomly selected hash function H ∈ H

with our LOLOHA protocols (cf. Algorithm 8), which can be regarded as a
unique identifier in longitudinal data collection. However, this is a common
assumption of the LDP model, which assumes the server already knows the
users’ identifiers [BEM+17, WXY+19, EFM+19, EFM+20], but not their private
data. One way to counter this link between the user’s randomized report
and their identifier is to assume a trusted intermediate, such as a shuffler,
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that does not collude with the server, e.g., the Shuffle DP model [BEM+17,

EFM+19, EFM+20], which we let the investigation for future work.

4.5 Related Work

Differential privacy [DMNS06, Dwo06b, DR+14] has been increasingly accepted
as the current standard for data privacy. The central DP model assumes
a trusted curator, which collects the clients’ raw data and releases sani-
tized aggregated data. The LDP model [KLN+08, DJW13, DWJ13] does not
rely on collecting raw data anymore, which has a clear connection with the
concept of randomized response [War65]. In recent years, there have been
several studies on the local DP setting, e.g., for frequency estimation of
a single [WBLJ17, ASZ19, FNNT22, KBR16, KOV16, NV20, CMM21] and multi-
ple [ACABX21, VCS22, LTH+23] attributes; mean estimation [NXY+16, WXY+19],
heavy hitter estimation [BS15, BNST17], and machine learning [MABK+20,

ZT21].

As for locally differentially private monitoring, Erlingsson, Pihur, and Ko-
rolova [EPK14] proposed the RAPPOR algorithm for frequency monitoring
that is based on the memoization solution described in Section 4.1.4. The
recent study of Arcolezi et al. [ACBX22] generalizes this framework for op-
timally chaining two LDP protocols, proposing the L-GRR protocol that is
optimized for small domain size k and the L-OSUE protocol for higher k (see
Figs. 4.2 and 4.3). Moreover, Erlingsson et al. [EFM+20] formalize the privacy
guarantees of using two rounds of sanitization under both local and shuffle
DP guarantees. Naor and Vexler [NV20] also formalized the privacy guaran-
tees of chaining two LDP protocol as well as introduced a new Everlasting
privacy definition.

An alternative approach for memoization named dBitFlipPM has been pro-
posed by Ding, Kulkarni, and Yekhanin [DKY17], discussed in Section 4.1.4.
The dBitFlipPM protocol allows frequent but only small changes in the orig-
inal data since a high change (i.e., a different bucket) can be detected by
an attacker (cf. Table 4.2). Although an attacker that is able to iden-
tify a data change can still not infer the user’s actual data (controlled by
ϵ∞), the overall LDP guarantees can be highly reduced if these changes are

115



4.6. Conclusion and Perspectives Chapter 4. Longitudinal LDP

correlated [EPK14, DKY17, EFM+19]. For instance, the authors in [TKB+17]

performed a detailed analysis of Apple’s LDP implementation and examined
its longitudinal privacy implications. Naor and Vexler [NV20] also investi-
gated the trackability of RAPPOR following their new Everlasting privacy
definition.

LOLOHA leverages the best of RAPPOR and dBitFlipPM, which can in-
herently minimize these inference attacks. More precisely, on the one hand,
LOLOHA uses LH [WBLJ17] for domain reduction, which allows many val-
ues to collide (universal hashing property) and thus creates uncertainty
about the user’s actual value. Indeed, LH protocols are the least attack-
able LDP protocols in the recent studies of Arcolezi et al. [AGCP22] and
Emre Gursoy et al. [GLC+22] considering a Bayesian adversary. Besides that,
LOLOHA also has two rounds of sanitization following RAPPOR’s frame-
work, which can improve privacy to minimize data change detection. Finally,
another line of work for frequency monitoring under LDP is data change-
based [JRUW18, EFM+19, XYH+22, OWW22], motivated by the fact that, gener-
ally, users’ data changes infrequently. A similar idea was proposed much ear-
lier in the work of Chatzikokolakis, Palamidessi, and Stronati [CPS14], which
proposed a predictive mechanism for location-based systems to utilize privacy
budget only for new “hard” location points (i.e., with bad predictions). How-
ever, these approaches normally impose restrictions on the number of data
collections τ and on the number of data changes as their accuracy degrades
linearly or sub-linearly with the number of changes in the underlying data
distributions, which can limit their applicability and scalability to real-world
systems.

4.6 Conclusion and Perspectives

In this chapter, we study the fundamental problem of monitoring the fre-
quency of evolving data throughout time under LDP guarantees. We pro-
posed a new locally differentially private protocol named LOLOHA, which
is built on top of domain reduction to minimize longitudinal privacy loss up
to a k/g factor and double randomization to enhance privacy. Through the-
oretical analysis, we have proven the longitudinal privacy (Theorems 31, 32,
and 33) and accuracy guarantees (Proposition 34) of our LOLOHA protocols.
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In addition, through extensive experiments with synthetic and real-world
datasets, we have shown that our proposed LOLOHA protocols preserve com-
petitive utility as state-of-the-art LDP protocols [EPK14, DKY17, ACBX22] by
considerably minimizing longitudinal privacy loss (from 2 to 25 orders of mag-
nitude with the experimented τ values). As future work, we intend to identify
reasonable conditions of the input data (not constant as in [EPK14, ACBX22])
in which one can satisfy the standard ϵ-LDP definition. Besides, we intend to
identify attack-based approaches to longitudinal LDP frequency estimation
protocols (e.g., data change detection or correlated data) and to extend the
analysis of our LOLOHA protocols to the shuffle DP model.

In the next chapter, we discuss a different problem in which the server is
not collecting data but serving it, and the privacy is not in the contents
of the transmitted data, but on their sizes. Nevertheless, there are strong
conceptual connections between the two problems, e.g., there is also a trade-
off involving privacy and differential privacy is again excessively restrictive,
so a different notion of privacy based on attackers is used.

117



Chapter 5

Obfuscation padding schemes
that minimize Rényi min-entropy
for privacy

Consider a set of users, each of which is choosing and downloading one file out
of a central pool of public files, and an attacker that observes the download
size for each user and is willing to identify the choice of each user. The files
are public, but the choices are private. The objective is to pad the files with
some small overhead to obfuscate the information gained by the attacker
and reduce his chances of discovering the choices of the users. This chapter
studies the problem of minimizing the expected accuracy of the attacker by
padding the files without exceeding some given padding constraints.

On one extreme, if the files are not padded at all, the attacker might easily
map the observed download sizes with the original files; e.g., if there is just
one file of size 10.32Mb and the attacker observes that the network traffic of
some user corresponds to a file of size 10.32Mb, he will immediately know
what file was chosen. This can be prevented by padding several files to com-
mon sizes to obfuscate the information gained by the attacker. On the other
extreme, if all files are padded to a common size, this common size should
be large enough to cover the largest file in the set, and, as a consequence,
many small files will be padded excessively, increasing the bandwidth use.
The ideal solution lies between these two extreme cases. For this reason, this
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chapter considers the problem of maximizing privacy while respecting some
flexible padding constraints, like, for example, that no file can increase its
size more than 10%.

The attacker we consider makes just one attempt to re-identify the file, and
to maximize his chances, he will of course guess a file that has the maxi-
mum posterior probability given the observed (obfuscated) size. This model
of attack is known in literature as one-try attack [Smi09], and it has been
characterized in information-theoretic terms using Rényi min-entropy. More
specifically, entropy in general represents the (lack of) information content
of a discrete probability distribution, and Rényi min-entropy is a form of
entropy that emphasizes the highest probability value. The prior and pos-
terior entropies represent the probabilistic knowledge of the attacker before
and after he observes the obfuscated size, respectively. In particular, Rényi
posterior min-entropy is related to hypothesis testing and, as a measure, it
closely corresponds to the Bayes error. The difference between the prior and
posterior entropies represents how much the knowledge of the attacker (and
hence his probability of success) increases thanks to the observation, and it
is, therefore, a measure of the efficiency of the padding scheme. In literature
this difference is known as Rényi min-entropy leakage.

The padding problem considered in this chapter might also apply to equiv-
alent scenarios in which an attacker exploits time side-channel information.
For illustration, consider an intelligence service that is surveilling people en-
tering and exiting a building. They can use the time each user took inside to
infer the type of service he received, e.g., whether he was at the bank, shop-
ping, or at the cinema in the mall. In this case, the users can waste some
time inside the building on purpose to confuse the observer. Equivalently,
a server can delay its responses in a planned manner to prevent an attacker
from inferring the chosen type of request. More generally, an algorithm can
sleep on purpose to prevent leaking information about the input, as exploited
by timing attacks [Sch00, Son01].

Contributions

• We propose two algorithms that derive the optimal padding schemes,
one for the deterministic case, and one for the randomized case (PRP
and POP, defined in Section 5.2).

119



5.1. Related Work Chapter 5. Pading-based obfuscation

• We prove the correctness of the algorithms and test the implementa-
tions against brute-force solutions using small synthetic datasets.

• Likewise, we compare our algorithms with an existing solution [RR21]

that uses an attack model based on Shannon entropy, and discuss how
the two approaches are related in terms of the type of private informa-
tion leakage that each attacker represents.

• The code is publicly available at [PPS22]. It includes not only the al-
gorithms we propose, but also the reimplementation of the algorithms
of [RR21] to support flexible padding constraints, multiple files having
the same size, and sparse matrix representations.

5.1 Related Work

The model of attacker we use has been well investigated in the field of Quan-
titative Information Flow (QIF), which is a branch of security aimed at
studying inference attacks, namely attackers that try to infer the value of
the secret from related observations. The QIF theory actually formalizes a
variety of models, each of them characterized by parameters that represent
the capabilities and the goal of the attacker. For a detailed coverage of the
topic we refer to [AM+20].

This chapter is strongly related with the work of Reed and Reiter [RR21], in
which the authors consider the same problem with a different attack model,
based on Shannon entropy, and more specifically, on measuring the leakage
in terms of Shannon mutual information. Shannon mutual information is a
well known notion that has been shown to be very useful in several scientific
fields. In security and privacy, however, it does not seem the right notion
for modeling the attacker. Indeed, its operational interpretation corresponds
to an attacker that can try to guess the exact secret by making an unbound
number of attempts, and his objective is to minimize the expected number of
attempts before he identifies it correctly. This seems a less natural model of
attacker than those of QIF (and hence than the one we use, based on Rényi
min-entropy), and it also sometimes leads to conclusions that are contrary
to common sense. For a detailed discussion about this issue, refer to [Smi09].
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Reed and Reiter [RR21] propose three padding algorithms, called PrpSh,
PopSh and PwoD (padding without a distribution), for finding padding
schemes that minimize Shannon leakage under different bandwidth con-
straints. These algorithms do not support, however, multiple files having
the same size nor flexible padding constraints as defined in this chapter. We
re-implemented their algorithms with these additional details before compar-
ing them with our proposed solutions, and we explained in terms of attack
models and information leakage the core difference between them.

In [Deg21] they consider the BREACH/CRIME [GHP15] security attack in
which the attacker observes sizes and can also control a malicious script that
runs in the browser of the victim. By exploiting the greedy mechanism of
the Huffman encoder in the compression stage of the cookies, the attacker
is able to use repeatedly the size information to discover the cookie secret
and impersonate the victim. As they show, random gaussian padding can be
used and is better than uniform padding to reduce the attacker’s probability
of success from 1.0 to 0.0026. Although this chapter is more related with
security than privacy, it shows how important padding can be to obfuscate
information.

Lastly, one of the main conclusions in [WCM09] is that the optimal way to
reduce information obtained by an attacker that monitors traffic is to modify
the traffic patterns so that they are confused with other patterns. We draw
a similar conclusion formally in our problem (Proposition 36), proving that
it is optimal to pad messages to reach the sizes of other existing files.

5.2 Problem formalization

The collection of public files is denoted as E = {e1, e2, . . . , en}, where E is
sorted non-decreasingly by the sizes |ei| ∈ N. For the sake of generality, we
allow different files to have the same size, hence the set of file sizes S

def

:=

{|e| |e ∈ E} has m ≤ n unique elements, which we enumerate in increasing
order as S = {s1, s2, . . . , sm}.

A padding function or padding scheme is a function f : E → N respecting
f(ei) ≥ |ei| that tells to what size each file should be padded. The padding
constraints are expressed with the proposition ∀i, f(ei) ∈ [|ei|, bi], where each
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[|ei|, bi] = {|ei|, |ei|+ 1, ..., bi} is an integer interval.

The sequence of users with their respective choices is modelled as a sequence
of i.i.d. samples coming from the marginal distribution of the files. File ei is
chosen with frequency pi ∈ [0, 1], where

∑n
i=1 pi = 1. We let X be a random

variable satisfying P(X=ei)
def

:= pi, thus, a sequence of users with choices can
be represented as a sequence of i.i.d. choices following the distribution of X.

The attacker will predict, upon seeing a download of size z ∈ Im(f) (where
the image Im(f)

def

:= {z ∈ N | P(f(X)=z) > 0} denotes the set of possi-
ble outputs of f), that the secret value of X is the file ei that maximizes
P(f(ei)=z). To do this, he uses the public information he has access to and
the information he can infer. The files and their sizes before padding are
public, and he can determine the padding scheme by requesting each of the
files himself, possibly multiple times in case of a randomized padding scheme.
In addition, considering the worst-case scenario, we assume that he knows
or has estimated the frequencies pi with which files are chosen on average.
With this information, the attacker can always find a file ei that maximizes
P(f(ei)=z) for the observed z, and his expected probability of success is
therefore∑

z∈Im(f)

max
i∈[1..n]

P(X=ei ∧ f(X)=z) =
∑

z∈Im(f)

max
i∈[1..n]

pi · P(f(ei)=z). (5.1)

The objective is to find a padding function f : E → N that minimizes the
accuracy of the attacker while respecting the given padding constraints. In
addition, two scenarios are considered separately: per-object-padding (POP)
refers to the case when f is deterministic, hence the files are padded once
and forever; per-request-padding (PRP) refers to the case when the padding
is done on demand and f is probabilistic.

5.2.1 Presentation in terms of privacy leakage

The objective of minimizing the attacker accuracy can equivalently be pre-
sented in terms of minimizing privacy leakage. There are several definitions
for leakage I(|X|, f(X)) of a padding function f : E → N. Particularly, Rényi
min-entropy leakage [Smi09], which we call Rényi leakage in this chapter, is
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defined using Rényi min-entropy H∞ as follows:

I∞(f)
def

:= I∞(|X|, f(X)) = H∞(|X|)−H∞(|X| | f(X)), (5.2)

H∞(|X|) = − log2 max
z∈Im(f)

P(|X| = z), (5.3)

H∞(|X| | f(X)) = − log2
∑

z∈Im(f)

max
i∈[1..n]

(pi · P(f(ei) = z)). (5.4)

The importance of Rényi leakage in more general contexts can be found
in [PR18] and [Smi09]. Basically, Rényi leakage is a special case (α = ∞)
of a family of leakages Iα based on α-Rényi entropy Hα. Since Rényi-min
entropy H∞(|X|) is constant in regard to the padding-scheme, minimizing
Equation (5.2) is equivalent to maximizing Equation (5.4), which is in turn
equivalent to minimizing Equation (5.1). Therefore, Rényi leakage is in direct
one-to-one correspondence with the probability of success of the attacker.

Another important case (α = 1) is Shannon leakage, which is given by:
I(|X|, f(X)) =

∑
i,z pi P(f(ei)=z) log2

P(f(ei)=z)
P(f(X)=z)

. With some effort, this leak-
age can also be interpreted in terms of an attacker that we call Shannon
attacker. The Shannon attacker is assumed to have access to an oracle that
answers queries of the type “is the file in this set of files?” for each user, and
his objective is to find the right files using the minimal number of queries, as
in a 20Q game. Although the oracle assumption makes the Shannon attacker
unrealistic, defenses against him are useful against the Rényi attacker of this
chapter because, intuitively, the more queries the Shannon attacker needs,
the harder it is to guess the correct file in a single try.

For this particular application, the direct pragmatic connection between
Rényi leakage and a simple adversary success makes it more appealing than
the Shannon attacker. The same argument is used in [Che17], whose privacy
measure is closely related with ours. More generally in the privacy com-
munity, leakage functions are better described in terms of their associated
attacker rather than their information theoretic properties [ACPS12, Rom20].

5.2.2 Why not differential privacy?

Differential privacy [Dwo06a], is one of the most prevalent formalizations
of privacy. For this particular problem, a padding scheme f satisfies ϵ-
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differential privacy if and only if for all input files ei, ej ∈ E and all output
sizes z ∈ Im(f), we have P(f(e1)=z) ≤ exp(ϵ)P(f(e2)=z).

This notion of privacy represents an attacker whose success function is given
by how much more likely one input file is with respect to another one for a
given observation. However, this is excessively strong for the problem under
consideration. Indeed, as Theorem 35 shows, differential privacy can only be
achieved at the total detriment of bandwidth use.

Theorem 35. For any ϵ > 0, the padding scheme that satisfies ϵ-differential
privacy and minimizes bandwidth is the one that pads all input files to the
size of the largest one.

Proof. Fix ϵ > 0 and let ej
def

:= argmaxei∈E |ei| be the largest file in E. For
all sizes z < |ej|, we have P(f(ej)=z) = 0 because ej can not be padded to
smaller sizes than |ej|. Moreover, the differential privacy constraint forces
every other file ei ̸= ej to satisfy P(f(ei)=z) ≤ exp(ϵ)P(f(ej)=z) = 0 when-
ever z < |ej|. In other words, all files must be padded to sizes at least as
large as |ej|, i.e., P(f(X) ≥ |ej|) = 1. Among all the mappings f that have
this property, the one that minimizes bandwidth is the one that pads all
files exactly to the largest file size |ej|, and it satisfies ϵ differential privacy
trivially because it is a constant function.

Theorem 35 is the reason why we exclude differential privacy from the anal-
ysis and focus on the privacy notions discussed in the previous section. This
theorem is a direct consequence of the inevitable fact that padding can only
enlarge files and not reduce their sizes. Apart from putting in evidence the
abusive overhead required by differential privacy, this theorem also shows
that its parameter ϵ is irrelevant as a measure of privacy for the problem
under consideration, making it inappropriate.

5.2.3 Simplification of the output set

We conclude this section by proving that optimal padding functions always
map to sizes in S. This is a key-fact for the derivation of the algorithms and
their proofs. Intuitively, if a set of files can be padded to a common certain
size z, but can also be padded to z − 1, we can pad them to z − 1 and win
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some bandwidth without leaking any additional information. This forces the
optimal padding functions to always pad to the sizes z for which it is not
possible to pad to z − 1 without sacrificing privacy, which are precisely the
sizes in S. The same holds true for padding schemes that minimize Shannon
leakage, as shown in [RR21].

Proposition 36. For any padding-scheme f : E → N, there exists
a padding-scheme f ∗ : E → S such that I(f ∗) ≤ I(f). Moreover,
P(f ∗(X) ≤ f(X)) = 1, hence f ∗ uses less padding (bandwidth) than f .

Proof. Define f ∗ as the composition f ∗ def

:= g ◦ f , where g(z) = max{s ∈
S : s ≤ z}, that is, f ∗(X) = g(f(X)). The function g is defined only
for z ≥ minS and f ∗ is well-defined because the padding constraints
force P(f(X) ≥ minS) ≤ P(f(X) ≥ |X|) = 1. By definition, g(z) ≤ z,
thus P(f ∗(X) ≤ f(X)) = 1. Let us now show, regarding privacy leak-
age, that I(f ∗) ≤ I(f). Let I∗xs denote P(X=x ∧ f ∗(X)=s) and Ixz de-
note P(X=x ∧ f(X)=z). We will show that the accuracy of the attacker
(Eq. 5.1) is smaller or equal for f ∗ than for f . This can be expressed as∑

s maxx I
∗
xs ≤

∑
s

∑
z:g(z)=smaxx Ixz. On the left and right-hand sides, we

have summations on s ∈ S, so it suffices to prove that this inequality holds
for each fixed s. At each s ∈ S, since I∗xs =

∑
z:g(z)=s Ixz, the inequality

becomes maxx
∑

z:g(z)=s Ixz ≤
∑

z:g(z)=smaxx Ixz, which is necessarily true.

Indeed, letting x(s) def

:= argmaxx
∑

z:g(z)=s Ixz for the left-hand side, we have
for each z with g(z) = s that Ix(s)z ≤ maxx Ixz. □

Proposition 36 can be seen as an instance of the Data Processing Inequality,
which can be found as Theorem 8 of [ES11], or more generally for privacy
contexts in [MCPS12].

Corollary 37. A padding function that has minimal leakage must pad each
file to the size of another file in the initial set.

Having Corollary 37 in mind, the padding scheme f can be represented as
an obfuscation channel matrix P where pij = P(f(ei)=sj), in which case, the
problem can be specified as shown below, and the attacker accuracy becomes∑

j

max
i∈[1..n]

pi · pij. (5.5)
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Problem input: (1) A set E of n files {ei |i ∈ [1..n]} with fre-
quencies pi, sorted sizes |ei| and set of unique sizes S = {s1, ..., sm}.
(2) Padding constraints of the form ∀i, sli ≤ f(ei) ≤ sri , parametrized
with pairs of indices li, ri ∈ [1..m].

Desired output: A padding function f : E → S in the form of a
channel matrix pij = P(f(ei)=sj) that minimizes Rényi leakage I∞(f)

or equivalently Eq. (5.5). Depending on the problem variant, f must
be deterministic (POP) or randomized (PRP).

5.3 Algorithms

In this section, we derive the algorithms PopRe and PrpRe that minimize
the Rényi leakage (5.2) for the POP and PRP cases respectively. They
contrast those for Shannon mutual information minimization found in the
paper [RR21], denoted here as PopSh and PrpSh. The complexities of these
algorithms are summarized in Table 5.1.

Algorithm Minimizes WC Runtime complexity Memory
PopRe Rényi leakage O(n2 b̄) n b̄

PrpRe, PrpReBa Rényi leakage O(n b̄) n b̄

PopSh Shannon leakage O(n b̄) n b̄

PrpSh Shannon leakage O(iters · nm) nm

Table 5.1: Complexities, where b̄
def

:= (1/n)
∑n

i=1 ri−li+1 is the matrix average
band size. For practical reference, with reasonable padding constraints, if
the files are diverse with a large and spread spectrum of sizes, one expects
b̄≪ m ≈ n.

Algorithm PrpSh is an approximation algorithm and has a runtime complex-
ity that depends on the degree of accuracy imposed by the user and the limit
number of iterations iters allowed. Also, the complexities of the dynamic
programming algorithms correspond to the theoretical worst-case and might
overestimate the actual implementations. For instance, although PopRe has
two parameters varying in [1..n], not all combinations need to be calculated
in a top-down implementation.
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5.3.1 Per-object-padding scenario, PopRe

In this section we develop the algorithm that minimizes Rényi leakage in the
POP variation, in which the matrix P is constrained to pij ∈ {0, 1}. Before
describing the algorithm, we will prove Remark 38, which will be used as the
main update of the entries of the channel-matrix.
Remark 38. Let f be a Rényi
optimal padding-scheme and
ei be the file with the highest
associated frequency pi, and
assume that pij = 1 for some
j ∈ [1..m]. Then there exists
a padding-scheme f ∗ with the
same Rényi leakage such that
pkj = 1 for all k ∈ [1..n] such
that j ∈ [lk..rk].

...
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...

· · · s10 s11 s12s13 · · ·
1
1

1
1

1
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0
0 0 0
0 0 0

0 0
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0

...
e9
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e11
e12
...

· · · s10 s11 s12s13 · · ·
1

1
1
1
1
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0
0 0 0

0 0 0
0 0

0 0
0

Figure 5.1: Remark 38: if the file with
maximal frequency is e11 and the left ma-
trix (f) is optimal, the right one (f ∗) must
be as well.

Proof. We consider the padding-scheme f to be represented as the channel-
matrix between the secrets and the observables. When we want to minimize
(5.5) we sum over each column of the matrix P . In particular, on the column
j we have maxa∈[1..n](pa ·paj) = pi since pi is the highest frequency among the
frequencies of the files and pij = 1. Now, let us consider the padding-scheme
f ∗ whose matrix P ∗, consists on moving every 1 that we can to column j:

p∗ab =


pab if b ̸= j and a ∈ [1..n] such that j ̸∈ [la..ra]

1 if b = j and a ∈ [1..n] such that j ∈ [la..ra]

0 otherwise

On the column j of the matrix P ∗ we will still have maxa∈[1..n](pa · p∗aj) = pi
because the padding-scheme f ∗ preserves the maximum on column j. More-
over, on the rest of the columns, the maximum either decreases or stays the
same since we created more entries p∗ab = 0, which means that the product
pa · p∗ab = 0. However, we chose f to be the Rényi optimal padding-scheme
and with the remarks above, f and f ∗ give the same leakage. □

Figure 5.1 depicts an example of a sub-matrix of P as described in Remark 38.
In the figure, we have exactly one entry equal to 1 in each line because the
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Algorithm 10 Per-object-padding pseudocode. This implementation uses
recursion both for computation and reconstruction.

procedure Rényi POP ▷ Main function
memo← {} ▷ Empty map
pij ← 0 ▷ A matrix p full of zeros
renyi← Reconstruct(0, n)
return (p, renyi) ▷ Output matrix p and its Rényi leakage

procedure Reconstruct(a, b)
(renyi, k, a⋆, b⋆)← f(a, b)

for j = a⋆..b⋆ do pjk ← 1 end for
if a < a⋆ then Reconstruct(a, a⋆) end if
if b⋆ < b then Reconstruct(b⋆, b) end if
return renyi

procedure f(a, b)
if (a, b) ∈ memo then return memo[(a, b)] end if
if a = b then return (0,∞, a, b) end if
best← (∞,∞,∞,∞)

imax ← argmaxi=a..b pi
for k = limax ..rimax do

jmin, jmax ← range of files ejmin
..ejmax that can be padded to size sk

a⋆ ← max(a, jmin)

b⋆ ← min(b, jmax)

renyi← f(a, a⋆)[0] + pimax + f(b⋆, b)[0] ▷ Index [0] is the Rényi
component

this← (Rényi, k, a⋆, b⋆)
best← min(best, this) ▷ Lexicographic (compares first by Rényi)

(renyi, k, a⋆, b⋆)← best ▷ Unpack tuple
memo[(a, b)]← (renyi, k, a⋆, b⋆)
return (renyi, k, a⋆, b⋆)
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channel-matrix is stochastic, and we are in the POP case. Additionally, the
quantity in (5.5) represents the sum of the maximum over columns where each
1 counts for the frequency of the file. Then, the update does not increase
the (5.5) because the 1 with maximal frequency dominates its column, and
moving all possible 1’s above or below it does not increase Rényi leakage.

Using Remark 38 we can divide the padding problem into sub-problems that
minimize (5.5) and leverage dynamic programming: ∀a ≤ b ∈ [1..n], we
define

D[a][b] = min
P channel matrix

∑
j∈[1..m]

max
i∈[a+1..b]

(pi · pij),

i.e., D[a][b] gives the minimal leakage for the sub-problem that pads files
from ea+1 to eb, under the general constraints.

By convention, we consider D[i][i] = 0, which will be the base case. To
write the recurrence formula, we need to take the file eimax with maximum
frequency pimax , imax ∈ [a + 1, b]. We go through every size index k ∈ [1..m]

such that eimax can be padded to the size of sk, and we update the channel-
matrix according to Remark 38, i.e., add 1’s on k-th column if we can (taking
into consideration the padding constraints) and complete the lines that have
a fixed 1 with 0’s on the remaining entries. Then, we apply the recurrence on
the rows which are not updated, i.e., from a to a∗

def

:= max(a,maxi∈[1..n]{i|ri <
k}), and, respectively, from b∗

def

:= min(k, b) to b. Hence,

D[a][b] = pimax + min
k∈[limax ..rimax ]

(D[a][a∗] +D[b∗][b])

After applying the dynamic algorithm program with the aforementioned re-
currence, we get the minimization of (5.5) in D[0][n], from which we can
compute the minimal Rényi leakage. If we want to recover the channel-
matrix itself, in D[a][b] we pass on the index k for which the maximum
happens, as an argument. In case of a tie, we choose the smallest index
k ∈ {1, . . . , n} in order to reduce average padding. Hence, we know in each
sub-interval [a, b] what we pad everything to, so the information is enough
to recover the channel matrix. A pseudocode summarizing all the logic is
shown in Algorithm 10. A concrete optimized implementation can be found
in [PPS22].
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Figure 5.2: PopRe on a dataset of 6 files.

In Figure 5.2 we depict the
channel-matrix of the files with
sizes S = {1000, 1050, 1100,
1110, 1120, 1140} and asso-
ciated frequencies {22%, 5%,
23%, 12%, 18%, 20%}. As
shown in the visual representa-
tion of the padding-scheme in
the right, we observe that, for both of the existing padded sizes, there are
multiple files that are padded to the same element, making them indistin-
guishable for an attacker. Moreover, the blue bars on the graph indicate the
frequencies of the files, and the red bars, the maximum frequency among
the frequencies of the files padded to each specific size. The red bars are
effectively highlighting the terms of the sum (5.5).

5.3.2 Per-request-padding scenario, PrpRe

In this section, we treat the case of Per-Request-Padding and provide an
algorithm for finding the probabilistic channel-matrix P which minimizes the
Rényi leakage. We will look at the joint distribution matrix I with entries
Iij = pi · pij,∀i ≤ n, j ≤ m, for which

∑m
j=1 Iij = p1 for each i ∈ [1..n].

We proceed by finding iteratively, for each of the m columns, starting from
the last one, the Rényi optimal manner of setting the entries of I given the
padding constraints. Furthermore, we define the optimal distribution of pi
across the i-th row, 1 ≤ i ≤ n to be the way we fill in the entries pi1, . . . , pim
such as to obtain the minimum sum of the type (5.5) and preserve the relation
pi1 + ...+ pim = pi.

The proof of our algorithm requires us to consider sub-problems in which the
sequence (pi)1≤i≤n is updated at each step of the algorithm, thus being differ-
ent from the initial set of frequencies associated to each file. Hence, we rewrite
the problem as a more general one in terms of a budget sequence (bi)1≤i≤n of
length n (initialized as (pi)1≤i≤n), which dictates the remaining value to be
distributed across each row i, for i ∈ [1..n]. The general problem is “Given
a non-negative budget sequence (bi)

k
i=1 of length k ∈ [1..n], find a solution

matrix Ik×m that minimizes Equation (5.5), under the padding constraints
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for rows i ∈ [1..k], namely the set {[l1, r1], . . . , [lk, rk]} and
∑m

j=1 Iij = bi”.

We will design the algorithm to solve the general problem recursively by
returning the matrix I for the budget sequence {p1, . . . , pn} with n terms.
The recurrence relationship can be described using the following observation
that is used when creating the probabilistic channel-matrix for the padding-
scheme f :

Remark 39. The solution Ik×m for a given (bi)
k
i=1 that minimizes Rényi

leakage satisfies the recurrence relationship

Iij =


bi if j = m and i ∈ [1..k], |ei| = sm

bi − b′i if j = m and i ∈ [1..k − 1], |ei| ≠ sm,

m ∈ [li..ri]

I ′ij otherwise

where I ′(k−t)×(m−1) is the solution to the same minimization problem for the
sequence (b′i)

k−t
i=1 of length k − t, t = number of files from E which can be

padded to sm, such that for any i ∈ [1..k − t], it is defined as:

b′i =


max(bi − btmax , 0) if m ∈ [li..ri] and

btmax = max{bi||ei| = sm}
bi otherwise

Proof. If there are no files among {e1, . . . , ek} which can be padded to sm, we
set t = 0 and solve the minimization problem for the same budget sequence
and for the set of m− 1 sizes {s1, . . . , sm−1}.

If there are files that can be padded to sm, then due to the padding con-
straints, the element ei can only be padded to sm, so the entry Iim must
necessarily be equal to bi, for all i such that |ei| = sm. Let us denote by
T = {k − t + 1, . . . , k} the set of indices satisfying |ei| = sm,∀i ∈ T and
btmax = max{bi|i ∈ T}. Clearly, for every i ∈ T , Iij = 0,∀j ∈ {1, . . . , k − 1}.
On the m-th column of the matrix I, we have maxi∈[1..k] Iim ≥ btmax .

In order to minimize the sum (5.5) and taking into consideration that the
maximum entry on column m is at least btmax , we aim to distribute for every
i such that ei can be padded to sm and |ei| ̸= sm, a quantity equal to btmax
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(or, if bi < btmax , then we distribute the whole bi) on the entry Iim, so that
we preserve the maximum on this last column to be btmax . This way, we
can assure that, among the other columns, we’ll have to distribute a smaller
fraction of bi, which means that the maximum on each column between 1

and m− 1 will decrease, and so will (5.5).

The problem reduces to find the optimal sub-matrix I ′(k−t)×(m−1) to complete
the first k−t rows of I, and with the aforementioned remark, we can actually
consider I ′ to be the solution given the updated sequence (b′i)1≤i≤k−t which
is defined, for every i such that file ei that can be padded to sm, as either
0, if bi ≤ btmax , or as bi−btmax , if bi ≥ btmax . When we reconstruct the matrix
I, on the m-th column we will have the value I ′im+btmax or I ′im+bi (depending
on whether bi is smaller, respectively larger, than btmax).

Now, let us show that, for the sub-matrix I ′, we have 0’s on every entry of
the m-th column. By definition, I ′ must be a Rényi optimal solution for
the updated sequence of b′i’s. Using Proposition 36, there exists a Rényi
optimal padding-scheme f ′ which maps ei, i ∈ [1..k− t]→ {s1, . . . , sk−t}, for
any set of files {e1, . . . , ek−t} with the associated frequencies {b′1, . . . , b′k−t}.
Consequently, for every i ∈ [1..k − t],P(f ′(ei) = sm) = 0⇒ I ′im = 0. □

Algorithm 11 Per-request-padding pseudocode.
procedure Rényi PRP
∀i, bi ← pi ▷ budget array
I ← Joint prob. matrix of zeros
for j=m, m-1, ..., 1 do

tmax = argmax{i | |ei|=sj} bi
if btmax > 0 then

jmin, jmax ← range of files ejmin
..ejmax that can be padded to sj

for i = jmax, jmax − 1, ..., jmin do
I[i, j]← min(btmax , bi)

bi = bi − I[i, j]

P ← channel matrix after dividing each row i of I by pi
return P

Therefore, we have proved that the matrix I can be recursively expressed
using the sub-matrices obtained when we update the budget sequence ac-
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cordingly, at each step decreasing by 1 the number of columns and by at
least 1 the number of rows of the matrix returned from the algorithm, until
we reduce a problem to finding the Rényi optimal scheme for a budget se-
quence with a single element. Since we want to minimize (5.5) in the case of n
files with frequencies {p1, . . . , pn} and the associated set of sizes {s1, . . . , sm},
we proceed the induction on the number of rows and columns as described
in Remark 39 and eventually fill in all the entries of the solution In×m. The
channel-matrix P is then computed as pij = Iij/pi, and this is the output of
PrpRe.

This algorithm is presented in Algorithm 11 in the form of pseudocode, and
it is implemented in [PPS22] with some optimizations.

Bandwidth minimization

Once PrpRe has found a channel matrix that minimizes Rényi leakage, it is
still possible to use heuristics to search for other channel matrices with the
same (minimal) leakage but with less bandwidth use. We call PrpReBa to
be the algorithm that runs PrpRe and the bandwidth reduction heuristics
afterwards.

Let the list C of maximums on each column after running PrpRe, i.e., C =

{maxi∈[1..n] Iij|j ∈ [1..m]}, where Cj = maxi∈[1..n] Iij for every j ∈ [1..m].
Define a move to be a change in the matrix I performed on two of the
entries of the matrix at line i, for some i ∈ [1..n] such that (Iia, Iib) becomes
(Iia − α, Iib + α) while keeping the entries of I positive, i.e., α ≤ Iia.

Now, we will describe an update on the line i, which will consist of a series
of moves and will return a new matrix I∗. We start with I∗ to be the matrix
I, but with 0’s on the i-th line. Since the sum on row i is equal to pi, we
start with this quantity and go through the columns in order from j = 1 to
j = m. For each column, we set:

Iij =

Cj if Cj +
∑j−1

k=1 Iik ≤ pi

pi −
∑j−1

k=1 Iik otherwise
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5.4 Experiments and Comparison

Several experiments were carried out for three distinct purposes, namely, (1)
to test the correctness of the implementations against brute-force algorithms
for small sized problems, (2) to corroborate the direct link between Rényi
leakage and the success rate of an attacker and (3) to compare the runtime,
bandwidth and leakages of all the algorithms on a public dataset. The code
of all the experiments is available in [PPS22].

5.4.1 Brute-force tests for correctness

To complement and corroborate the theory developed in this chapter, all the
algorithms were tested against brute-force implementations for small datasets
(with at most 10 elements). More precisely, for each randomly generated
test case of file sizes and frequencies, we explored (exhaustively) all the POP
padding schemes satisfying the constraints, and chose among them, the ones
that minimized Rényi leakage, Shannon leakage or bandwidth, with the pur-
pose of comparing them with the solutions returned by our algorithms.

We ran ten thousand experiments (code available in [PPS22]), all corroborat-
ing that: among all POP schemes, PopRe achieves minimal Rényi leakage,
PopSh achieves minimal Shannon leakage, and PrpRe leaks at most the Rényi
leakage of PopRe.

5.4.2 Attacker test for illustration
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Figure 5.3: Attacker’s success conver-
gence.

We simulated the attacker de-
scribed in this chapter by Equa-
tion (5.1), who always guesses the
original file with maximum prob-
ability given the priors and the
padding scheme. Figure 5.3 shows
that as the number of user in-
creases, the success rate of the at-
tacker against the padding pro-
posed by PrpRe approaches the
expected theoretical minimal pos-
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sible success rate. This is a direct consequence of the law of large numbers
as well as the equivalence between minimizing the expected success of the
attacker (5.1) and the Rényi leakage, via Eq. (5.5).

5.4.3 Dataset tests for comparison

We used the dataset of NodeJS, proposed originally in [RR21]. This dataset
consists of a list of 423,450 JavaScript packages provided by NPM for browser
and nodeJS applications, each with its associated file size and access fre-
quency, as of August 2021. Taking into account the large number of files
and the availability of the access frequencies, we used the NodeJS dataset to
benchmark the algorithms.

We used two versions of the NodeJS dataset: the large NodeJS dataset is
the original dataset with 423,450 files, and the small consists of only the
1000 most frequently accessed files. The small NodeJS dataset allowed us to
benchmark and compare the algorithms with large complexity, which timed-
out on the large dataset. In all experiments, we parametrize the padding
constraints with a single constant c > 0 that represents the constraint |X| ≤
f(X) ≤ (1 + c) · |X|.
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Figure 5.4: Rényi and Shannon leakage on the small dataset.

Figure 5.4 depicts the variation of privacy leakage as a function of c on the
small dataset. The trend is approximately equal in the large dataset, except
that PopRe times out. The Rényi plot does not include PrpReBa to reduce
redundancy, as it coincides with PrpRe. In the figure, we can appreciate
the expected trend that larger c allows for more padding and less leakage
of privacy, both in Rényi and Shannon definitions. It can also be verified
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that the algorithms tuned to minimize Rényi leakage, have a very small (but
not minimal) Shannon leakage, and vice-versa. For instance, the differences
between PopRe and PopSh in both leakages are inferior to 2%. This is a
consequence of the information theoretical connection between the two types
of leakage.
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Figure 5.5: Bandwidth increase on the small (left) and large (right) datasets.
The top plots show expected values and the bottom plots show, in addition,
confidence intervals for a single random request. For each box, the body (Q1
and Q3 quartiles) corresponds to 50% confidence and the whisker (5% and
95% quantiles) to 90%.

The bandwidth increase generated by the padding of the files can be analyzed
in Figure 5.5. For reference, the average file size in the dataset, weighted by
frequency is 52.5 kb, so 1% increase, means around 5.3 additional kilobytes.
Several observations can be made out of Figure 5.5. First, as anticipated,
the larger the c, the larger the paddings on average. Second, the algorithms
do not pad as much as they are allowed. Instead, when 10% is allowed, the
optimal paddings lie at around 2% for the small dataset and 4% for the large
dataset. For this particular example, the algorithms used more of the avail-
able padding on the large than in the small dataset, but we did not explore in
depth in our experiments whether this pattern holds in general. Third, the
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improvements of PrpReBa over PrpRe can be corroborated, and estimated to
approximately 20% less bandwidth use with the same Rényi leakage. Lastly,
it appears empirically that the solutions that minimize Rényi leakage use less
padding on average than those that minimize Shannon leakage.

Furthermore, the box plots in Figure 5.5 show that the padding use (with
respect to the average file size) is most often below its average, meaning that
there are a few files that contribute significantly more than the others to
bandwidth excess. These files must be the largest, as they are the files for
which the additional bandwidth can be the largest compare, even possibly
exceeding the average file size. Note that the computation of confidence
intervals can not be made for privacy leakages (Figure 5.4), as they are global
guarantees of privacy that do not make sense for individual files.
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Figure 5.6: Runtime plots on small (left) and large (right) datasets. The
plots ignore the 7 additional seconds needed for JIT compilation.

Figure 5.6 depicts the runtime of the algorithms under analysis. We refer the
reader to Table 5.1 about the runtime complexities for a richer analysis of
the plots. The analysis could have been even richer, if we included confidence
intervals as in Figure 5.5, but we did not do it because of time constraints
(the execution of PopSh in the large dataset is in the order of several hours
of CPU time), and because the added value in this case is very little, as we
already have a theoretical derivation of the complexities.

The left plot in Figure 5.6 does not have a clear tendency of longer executions
for more relaxed padding constraints (higher c, thus also higher b̄), mean-
ing that for small datasets, all algorithms are suitable. In this regime, the
runtime is not yet affected significantly by the growth of b̄, possibly due to
large constants that are masked by the complexity class and implementation
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details, especially for PrpReBa. Nevertheless, the difference between PopRe
versus PrpRe and PopSh is already visible, and indeed, PopRe times out (sev-
eral hours) for the large dataset. The right plot highlights the scalability
of the algorithms. For all values of c plotted in this graph, the runtime for
PrpRe is under 7 seconds, which makes it the fastest algorithm. PrpReBa
peaks at c = 10% with around 3 minutes while PopSh needed 15 minutes. In
this regime, the effect of increasing b̄ via c on the runtime is clear.

5.5 Conclusion

We designed and proved the optimality of several algorithms (PopRe, PrpRe,
PrpReBa) that minimize the expected success rate of an attacker. The algo-
rithms were compared with existing solutions (PopSh, PrpSh) that consider
a different attack model. The comparison was done both numerically via
experiments and theoretically via privacy leakage.

Prioritizing scalability, we recommend using either PrpRe or PrpReBa for the
PRP problem, as they are much faster and provide protection against a more
reasonable attacker than the existing solutions (PopSh, PrpSh). Nevertheless,
for the POP problem, we recommend any of either the existing solution PopSh
or our algorithm PopRe that minimizes Rényi leakage, because even though
our attack model is more realistic, the complexity of PopSh makes it more
practical.

In general terms, the two attack models are correlated in the sense that
the optimizing against one of them results in a strong, though not optimal,
protection against the other one (with empirical differences of less than 2%).
In more detail, however, the Rényi attacker is more realistic than the Shannon
attacker, and the padding schemes that minimize Rényi leakage seem to
use less bandwidth in practice, making our proposed algorithms even more
appealing.

This chapter concludes the main body of the manuscript. In the next chapter
we discuss the main results of each chapter along with a critical analysis that
justifies the relevance, limitations and future work for each of them.
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Discussion and future work

In this section, we explain and discuss the main takeaways from Chapters 2,
3, 4 and 5 justifying their relevance and the prospects for future work.

In Chapter 2, we proved (Theorem 11) that for certain biased distributions
it is impossible to provide equal opportunity (EO) guarantees without de-
grading accuracy to trivial levels. This theorem improves the theoretical
understanding of the notion of equal opportunity and its impact on accu-
racy.

For other fairness notions like statistical parity (e.g., 50% women, 50% men),
the potential incompatibility between fairness and accuracy is less surprising
because it forces the promotion of candidates from all the protected groups,
which can hinder accuracy if there are no qualified candidates in one of them.
For EO, however, this result is counterintuitive because EO was designed to
improve its trade-off with accuracy on the first place.

The full potential of our Theorem 11 of incompatibility between accuracy
and equal opportunity can be appreciated in statistical learning theory by
rewriting it as Theorem 40 below.

Theorem 40. No machine learning training algorithm can guarantee for all
data distributions of (X,A, Y ) with P[A=a, Y =y ] > 0 for all a, y ∈ {0, 1},
that the trained model Q̂ satisfies probably and approximately1 as n → ∞,

1Meaning that any level of confidence < 1 and closeness > 0 can be guaranteed with a
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that oppDiff(Q̂) → 0 and err(Q̂) → α for some non-trivial value α < τ =

min{err(0̂), err(1̂)}.

Proof. Let’s assume from Theorem 11 that the population (X,A, Y ) follows a
distribution for which the feasibility region M is a polygon not containing any
combination of error and opportunity difference of the form (β, 0) with β < τ ,
which includes (α, 0). Let Q̂1, Q̂2, . . . be a stochastic sequence of predictors
obtained by training with a fixed learning algorithm on datasets of increasing
size. By means of contradiction, suppose that the error and opportunity
difference of this sequence approaches probably and approximately to the
combination (α, 0). Then, there are sequences of points in M that approach
(α, 0), making (α, 0) an accumulation point of M . Since the region M is
a convex set that contains its convex hull (this follows from Theorem 9), it
must be closed, hence it contains all its accumulation points, including (α, 0),
which contradicts the initial assumption.

This statement is similar in spirit to an existing fundamental theorem in sta-
tistical learning theory [Vap99] called the no-free-lunch theorem [SSBD14] for
ML, which states that for infinite domains, no single training algorithm can
guarantee probably approximately optimal classifiers. However, the causes
behind this fundamental theorem and Theorem 40 are very different. In our
result, the limitation arises from some particular highly biased distributions
for which the bias can not be fixed with any classifier. In the no-free-lunch
theorem for ML, the limitation comes from the combinatorial explosion in
the number of problems that should be solved using a single training algo-
rithm. Notice also that the no-free-lunch theorem is about not being able
to achieve maximal accuracy after the learning process, while our result is
about not being able to achieve a (merely) non-trivial level of accuracy rule
when EO is enforced.

We complemented our incompatibility result with sufficient and necessary
conditions that characterize the data distributions for which the incompati-
bility occurs. In addition, we also provided an algorithm for visualizing the
Pareto frontier between error and opportunity difference and proved con-
nections with existing ways of visualizing and understanding the trade-off.

sufficiently large (or larger) n
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This algorithm is designed for discrete distributions over populations with a
relatively small number of individuals, and it can find the most accurate clas-
sifier that satisfies EO, as well as enumerating all the deterministic classifiers
that lie on the Pareto-optimal boundary. The probabilistic classifiers in this
boundary are infinite, but they can all be expressed as linear combinations of
two consecutive optimal deterministic classifiers in the enumeration, hence
our algorithm does find all the classifiers in the Pareto frontier.

For larger and finite as well as infinite domains, an approximation algorithm
based on Algorithm 3 can be used (setting T0 and T1 to be 1D grids of [0, 1]
and assuming some estimators for error and oppDiff instead of the exact
values), and this would be very similar to the existing algorithm proposed
by [HPS16] from which Algorithm 3 was inspired. The key differences are
that their algorithm is tuned to find the optimal classifier as precisely as
possible, while our algorithm is tuned to find all (up to an approximation
grid) optimal classifiers with a certain level of precision.

The main limitation of these results is the extent to which the incompatibility
applies in real life settings. We detailed on how the theorem can have an
effect in practical scenarios by means of an example, but as we show, the
bias conditions are very strict, making our theorem a result of relatively low
practical impact (it is strong but rarely applies) but very high theoretical
interest.

Also, it is worth mentioning that our analysis focuses on exact equal oppor-
tunity. Nevertheless, the insights that we derived about the geometry of the
feasibility region can be used to deduce that, regarding approximate equal
opportunity, the incompatibility theorem does not hold anymore. More pre-
cisely, there is always compatibility in that case, unless the Bayes classifier
is constant, which is a pathological and dull scenario.

Taking into account that this work is comprehensive enough, we consider it
unnecessary to extend it further. Instead, future prospects and possibilities
could be to carry out the same analysis for different group fairness notions,
excluding exact statistical parity, a well studied [EGGL20, GDBFL19, BdBG+22,

GLR20] fairness notion, for which the classifier with minimal error is obtained
by thresholding the quantile of the individuals in their sensitive group, a
condition that reduces accuracy severely when a sensitive group is at great
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disadvantage with respect to the other.

In Chapter 3, we illustrated the strong dependency of the causal graph on
the choice of the causal discovery algorithm (CDA). This claim reinforces
the idea presented in [BMP+23], that fairness metrics that rely on the causal
graph depend on the choice of the CDA used for its estimation.

Causal based fairness notions are ideal for fairness assessment as they take
into account the actual causal effect of the sensitive attribute on the decision
instead of mere correlations. But most of these notions require the causal
graph that best describes the data generation process to be known. However,
causal graphs are not known in general for arbitrary populations and tasks,
and it could be a matter of debate between experts whether a given graph is
indeed the correct one. This is apparently one advantage of CDAs, compared
to experts, that they are unsupervised learning algorithms and select one
causal graph with the least subjectivity possible. But there are several CDAs
and parameters to choose, and as we show in Chapter 3, it can happen that
using one CDA or another leads to very different outputs.

The surprising fact shown in Chapter 3 is that this can happen with very
simple distributions, and the differences between the output graphs are not
simply missing edges (whose solution would be to modify a threshold pa-
rameter), but also reversed edges. These conflicts between the algorithms is
not very common, indeed the search for them required genetic algorithms,
but their existence questions the causal principles, and the use of causal vo-
cabulary for arbitrary graphical models, a fact that has been warned and
criticized before for models that produce DAGs [KS22].

The impact of the experiments in Chapter 3 is particularly intense if the
causal graph is used as input to a fairness assessment. As we showed
in [BMP+23] and supported with the experiments in this chapter, there is a
potential error propagation in this pipeline that can lead to a fairness miscon-
clusion. For this reason, we conclude that causal based fairness assessment
should not be fully automated unless the causal graph is known.

Although we provided a detailed technical overview on how several CDAs
work, and this serves as an explanation of why different CDAs may pro-
duce different causal graphs, it would be ideal to have a stronger conceptual
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framework to explain this phenomenon in detail. Meanwhile, as a practical
solution to the low level of trust that can be put on each CDA, we propose
to run several of them and decide whether there is consensus. Subsequent
studies could focus on how to proceed when there is no consensus between
the algorithms.

In Chapter 4, we proposed a protocol named LOLOHA that uses local hash-
ing for longitudinal categorical data collection with local differential privacy
guarantees. The protocol consists of a frequency estimation algorithm used
by a central server and a client-side sanitization algorithm used by each user.
The main property of LOLOHA is that it maps the private input data of
each user into a very small domain, which makes the collected information
very uninformative (protective) about the exact private values of the users.

LOLOHA has two crucial features. First, LOLOHA has increased privacy
on the users values with respect to state-of-the-art algorithms, while having
similar levels of error and LDP guarantees for the first report. Second, unlike
the existing longitudinal data collection protocols in the literature that rely
solely on unary encoding, LOLOHA stands out by using local hashing. As
a result, LOLOHA expands the diversity of techniques for longitudinal data
collection —a crucial aspect for fostering the development of future ideas in
the field.

The main caveat of LOLOHA is that local hashing allows the server to track
the users based on the hash salts that they use. To put it differently, the
server knows the sequence of reports sent by each user, but these reports are
guaranteed to be sanitized, so that the server can not ever be certain about
the true values. Even though the protocol guarantees LDP on the users’
values, which is a strong guarantee of privacy, tracking might be seen as a
privacy disadvantage by the users. As a result, an interesting area for further
investigation is how to modify the protocol to prevent tracking by combining
ideas from the Shuffle DP model [BEM+17, EFM+19, EFM+20, JGAP23].

Privacy on the users’ values is a notion of privacy that we defined for this
specific setting, because pure local differential privacy is too strong for regular
data collection. As we proved in Theorem 29, Chapter 4, it is impossible
to satisfy pure LDP in this setting. As a result, the main direction for
future work in this area is to find consensus on a single notion of privacy
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for longitudinal settings. This can be done by exploring more deeply the
definition we proposed, or proposing new ones.

We support our definition because the obfuscation of the data sequence of
each user is very strong, and extremely uninformative for small g, but we
acknowledge that attacks with sufficient external knowledge can infer some
entries about the memoization cache, and break the LDP guarantees. For
instance, if the attacker happened to knew your true value from external
sources for several days and observed the obfuscated data you reported, he
may use this knowledge to predict your true data in the future, although
never with 100% confidence, if you report similar obfuscated data again.

The discussion of what privacy notion suits best is not a simple one [Ngu14].
As shown in Chapter 4, even though local differential privacy theoretically
rich and very protective for the users, it is too strong to be used with streams
of data without losing utility all along. Alternative solutions that we did
not consider could be to let the user tune their actual privacy expecta-
tions [CKR21] versus the statistical quality incentives they may receive in
return [CGL15], or even to monetize them [LLMS14, BJP21, JP19]. It would be
interesting to explore a definition of LDP that takes some of these additional
dimensions into account, and to find its corresponding protocols.

Lastly, in Chapter 5, we proposed a method for designing padding schemes
that enhance privacy of transmitted data at the expense of some bandwidth
overhead. We consider a set of users, each of which is choosing and down-
loading one file out of a central pool of public files, and an attacker that
observes the download size for each user to identify the choice of each user.
Padding is used to obfuscate the information an attacker may obtain about
the data based on its size.

The main contribution of our work is that, unlike previous work that pro-
tected against an information theoretical attacker by minimizing Shannon
entropy, our padding schemes minimize Rényi min-entropy, which represents
a more practical attacker. Concretely, Rényi min-entropy corresponds to an
attacker who makes a guess about the private file of the user and wants
to maximize the probability of being correct, while Shannon entropy cor-
responds to an attacker that can ask binary questions about the file to an
oracle and wants to minimize the number of questions needed to guess the
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file with entire certainty. So, although both entropy measures are mathemat-
ically rich and correspond axiomatically to information attackers [ACM+16],
for its simplicity, our attacker is central in privacy research [CCPT20], and it
has been used as reference to report security/privacy attack tests in the real
world [CJT22].

We also proved that our padding schemes achieve the global minimum of
Rényi min-entropy, and tested this fact extensively as well with virtual ex-
periments.

Our analysis can be extended in two different ways. On the one hand, our
results are limited to the scenario in which each user downloads exactly
one file and the attacker measures very precisely the amount of transferred
data, which can be restrictive assumptions. In practice, data is split into
packets of fixed size and the attacker obtains information about the size of
the downloaded file indirectly, based on the number of transferred packets and
the time delays between them, so if a user makes two consecutive downloads,
the attacker will need the timing information of the packets to be able to
distinguish them. As a consequence, a future direction of this work would be
to explore the same problem under multiple downloads and exploiting timing
information.

On the other hand, our solution to the double minimization problem of leak-
age and bandwidth consists of setting a bandwidth constraint and minimizing
leakage. Conversely, the problem of setting a leakage constraint and mini-
mizing bandwidth could be studied as well, or more generally, the problem
of finding all Pareto optimal solutions.

Overall, this manuscript describes a variety of new results in the field of data
ethics, some related to fairness in machine learning with binary sensitive
features and binary outcomes (Chapters 2 and 3) and the others to the col-
lection and transmission of private data (Chapters 4 and 5). More precisely,
this manuscript presents general theoretical theorems, relevant observations
and proposes several algorithms with proofs of correctness and optimality.

We highlight the following claims as they are very general theorems or in-
teresting observations for the theory of fairness and privacy: Theorems 9,
19 and 11, Fact 18, Example 1 and the example of section 2.8 from Chap-
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ter 2; Theorem 29 (impossibility of LDP for regular data collection) from
Chapter 4; Theorem 35 (unsuitability of differential privacy for the padding
problem) from Chapter 5; and Examples 23, 24 and 25 from Chapter 3.

Regarding algorithms, this manuscript proposes several algorithms. Algo-
rithms 2 and 3, listed in Table 2.2, compute the Pareto boundary of accu-
racy and equal opportunity; Algorithms 8 and 9 define the LOLOHA pro-
tocol; and Algorithms 10 and 11 compute optimal padding schemes. All of
these algorithms are equipped with proofs of correctness and complexity. For
LOLOHA, we also prove the privacy-utility bounds, and for Rényi POP and
PRP algorithms we prove that bandwidth is minimized.

The chapters have some slight relationships, although they are not extensions
or particularizations of the others. For instance, Chapters 4 and 5 are about
privacy, they deal with inherent trade-offs between quality of service and
privacy, and they provide practical solutions.

All chapters have in common that they highlight the existence of unnoticed
properties in the theory and practice of data ethics. Chapters 2 and 3, which
are on fairness, are perhaps more provocative in this regard as they con-
tradict the intuition. Also, the first three chapters have an ethical baseline
trade-off: be it accuracy versus fairness, statistical precision of collected data
versus privacy, or network bandwidth versus privacy; and the last three chap-
ters propose a solution to an existing challenge: be it collecting data while
guaranteeing some privacy, padding files for privacy without increasing net-
work bandwidth over some thresholds, or deciding whether a causal graph is
trustable (by running several CDAs instead of choosing a single one).

146



Chapter 7

Summary

This dissertation explores four important challenges in the field of data ethics,
namely, the trade-off between equal opportunity and accuracy of machine
learning classifiers, the regular collection of private data, the leakage of infor-
mation during data transmission, and the use of causal discovery algorithms
for fairness assessment. Its goal is to contribute in the development of the-
oretical insights and practical tools that can foster the state of the art of
fairness in machine learning and privacy in data collection and transmission.

In Chapter 2, we proved a theorem that improves our theoretical under-
standing of the notion of equal opportunity and its impact on the accuracy
of machine learning models. We proved that for certain highly biased dis-
tributions it is impossible to provide equal opportunity guarantees without
degrading accuracy. This theorem was then refined, and we found necessary
and sufficient conditions that characterize the data distributions for which
this extreme trade-off occurs. Although these conditions are very severe to
be found in arbitrary datasets, they may hold in practical scenarios, and
we illustrated this with an example. We also provided an algorithm for vi-
sualizing the Pareto frontier between error and opportunity difference and
proved connections with existing ways of visualizing and understanding the
trade-off. Perhaps the same analysis could be carried out with other fairness
notions.

In Chapter 3, we illustrated the strong dependency of the causal graph on
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the choice of the causal discovery algorithm (CDA), reinforcing the idea that
causal based fairness metrics depend on the choice of the CDA used for the
estimation of the causal graph [BMP+23]. We created several examples of
very simple distributions for which different CDAs disagree very probably
and drastically on their outputs, a fact that has a dramatic impact on causal
based fairness assessment because the fairness conclusions are very sensitive
to the structure of the causal graph. For this reason, we conclude that causal
based fairness assessment should not be fully automated unless the causal
graph is known. Although we provided a detailed technical overview on how
several CDAs work, and this serves as an explanation of why different CDAs
may produce different causal graphs, it would be ideal to have a stronger
conceptual framework to explain this phenomenon in detail, and the challenge
of how to proceed when there is no consensus between the algorithms remains
open.

In Chapter 4, we proposed a protocol named LOLOHA for longitudinal cat-
egorical data collection with local differential privacy guarantees. LOLOHA
is based on local hashing unlike the main state-of-the-art protocols, which
are based on unary encoding, and it provides increased privacy on the users’
values while having similar levels of error and LDP guarantees for the first
report. Privacy on the users’ values is a notion of privacy that we defined for
this specific setting, because, as we prove, it is impossible to satisfy pure local
differential privacy for arbitrarily large windows of data collection. The main
future work in this area is to find consensus on a single notion of privacy for
longitudinal settings, and to find the protocols for it. This can be done by
exploring more deeply the definition we proposed, or proposing new ones.

In Chapter 5, we proposed a method for designing padding schemes that
enhance privacy of transmitted data at the expense of some bandwidth over-
head. In this context, one party is sending a file or a message from a known
set to another trusted party, and padding is used to obfuscate the information
an attacker may obtain about the data being shared based on its size. The
main contribution is that our padding schemes minimize Rényi min-entropy
instead of Shannon entropy, which makes the attack model closer to a real
life attacker. However, to apply our methods into a wider range of scenarios,
it is necessary to explore more complex cases in which several files are sent
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and timing information is used by the attacker.

In sum, this dissertation presents four published articles in the field of data
ethics that complement the state of the art of data privacy and fairness by
providing practical algorithms and theoretical insights.

Résumé général en français

Cette thèse explore quatre défis importants dans le domaine de l’éthique
des données, à savoir, (1) le compromis entre l’égalité d’opportunité et
l’exactitude des classificateurs d’apprentissage automatique, (2) l’utilisation
d’algorithmes de découverte causale pour l’évaluation de l’équité, (3) la col-
lecte régulière de données privées, et (4) la fuite d’informations lors de la
transmission de données. Son objectif est de contribuer au développement
de aperçus théoriques et d’outils pratiques qui améliorent notre connaissance
en matière d’équité dans l’apprentissage automatique et l’état de l’art en
matière de la confidentialité dans la collecte et transmission de données.

Pour le premier défi, nous avons prouvé un théorème qui améliore notre
compréhension théorique de la notion d’égalité d’opportunité (equal oppor-
tunity—EO) et de son impact sur l’exactitude des modèles d’apprentissage
automatique. Nous avons prouvé que pour certaines distributions fortement
biaisées, il est impossible de garantir l’EO sans dégrader l’exactitude. Ce
théorème a ensuite été affiné et nous avons trouvé des conditions nécessaires
et suffisantes qui caractérisent les distributions de données pour lesquelles ce
compromis extrême se produit. Bien que ces conditions soient très strictes
pour être trouvées dans des ensembles de données arbitraires, elles peuvent
être valables dans des scénarios pratiques et nous l’avons illustré avec un ex-
emple. Nous avons également fourni un algorithme pour visualiser la frontière
de Pareto entre l’erreur et la différence d’opportunité, et nous avons prouvé
des liens avec les méthodes existantes de visualisation et de compréhension
du compromis.

Pour le deuxième, nous avons illustré la forte dépendance du graphe causal
du choix de l’algorithme de découverte causale (CDA), renforçant l’idée que
les mesures de l’équité basées sur la causalité dépendent du choix du CDA
utilisé pour l’estimation du graphe causal. Nous avons créé plusieurs exem-
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ples de distributions très simples pour lesquelles différents CDAs divergent
très probablement et radicalement dans leurs résultats, un fait qui a un im-
pact dramatique sur l’évaluation de l’équité basée sur la causalité car les
conclusions en matière d’équité sont très sensibles au choix du CDA. Pour
cette raison, nous concluons que l’évaluation de l’équité basée sur la causal-
ité ne devrait pas être entièrement automatisée à moins que le graphe causal
ne soit connu. Bien que nous ayons fourni un aperçu technique détaillé du
fonctionnement de plusieurs CDAs différents, et que cela serve d’explication
à la raison pour laquelle différents CDAs peuvent produire différents graphes
causaux, il serait idéal d’avoir un cadre conceptuel plus solide pour expliquer
ce phénomène en détail, et le défi de savoir comment procéder lorsqu’il n’y a
pas de consensus entre les algorithmes reste ouvert.

Pour le troisième défi, nous avons proposé un protocole appelé LOLOHA pour
la collecte de données catégorielles longitudinales avec des garanties de confi-
dentialité différentielle locale (local differential privacy—LDP). LOLOHA est
basé sur le hachage local contrairement aux protocoles principaux de l’état
de l’art, qui sont basés sur le codage unaire, et il offre une confidentialité
accrue sur les valeurs des utilisateurs tout en ayant des niveaux d’erreur et
des garanties de LDP similaires pour le premier rapport. La confidential-
ité sur les valeurs des utilisateurs est une notion de confidentialité que nous
avons définie pour ce cadre spécifique, car, comme nous le prouvons, il est
impossible d’avoir de la LDP pure dans la collecte régulière de données. Le
principal travail futur dans ce domaine consiste à trouver un consensus sur
une seule notion de confidentialité pour la collecte longitudinal. Cela peut
être fait en approfondissant la définition que nous avons proposée ou en en
proposant de nouvelles.

En dernier, pour le quatrième défi, nous avons proposé une méthode pour
concevoir des schémas de remplissage qui améliorent la confidentialité des
données transmises au détriment d’une certaine surcharge de bande passante.
Dans ce contexte, une partie envoie un fichier ou un message d’un ensemble
connu à une autre partie de confiance, et le remplissage est utilisé pour mas-
quer les informations qu’un attaquant peut obtenir sur les données partagées
en fonction de leur taille. La principale contribution est que nos schémas
de remplissage minimisent la min-entropie de Rényi au lieu de l’entropie
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de Shannon, ce qui rend le modèle d’attaque plus proche d’un attaquant
réel. Cependant, pour appliquer nos méthodes à un plus large éventail de
scénarios, il est nécessaire d’explorer des cas plus complexes dans lesquels
plusieurs fichiers sont envoyés et des informations temporelles sont utilisées
par l’attaquant.
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plissage des données transmises pour protéger la
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