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École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
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Abstract

Deep Neural Networks (DNNs) have seen significant advances in recent years
and are nowadays widely used in a variety of applications. When it comes to
safety-critical systems, developing methods and tools to make these algorithms
reliable, particularly for non-specialists who may treat them as “black boxes” with
no further checks, constitutes a core challenge. The purpose of this thesis is to
investigate various methods that can enable the safe use of these technologies.

In the first part, we tackle the problem of identifying whether the prediction of
a DNN classifier should (or should not) be trusted so that, consequently, it would
be possible to accept or reject it. In this regard, we propose a new detector which
approximates the most powerful (Oracle) discriminator based on the probability
of classification error with respect to the true class posterior probability. Two sce-
narios are investigated: Totally Black Box (TBB), where only the soft-predictions
are available and Partially Black Box (PBB) where gradient-propagation to per-
form input pre-processing is allowed. The proposed detector can be applied to
any pre-trained model, it does not require prior information about the underlying
dataset and is as simple as the simplest available methods in the literature.

We address in the second part the problem of multi-armed adversarial at-
tacks detection. The detection methods are generally validated by assuming a
single implicitly known attack strategy, which does not necessarily account for
real-life threats. Indeed, this can lead to an overoptimistic assessment of the
detectors’ performance and may induce some bias in comparing competing detec-
tion schemes. We propose a novel multi-armed framework for evaluating detectors
based on several attack strategies to overcome this limitation. Among them, we
make use of three new objectives to generate attacks. The proposed performance
metric is based on the worst-case scenario: detection is successful if and only if all
different attacks are correctly recognized. Moreover, following this setting, we for-
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mally derive a simple yet effective method to aggregate the decisions of multiple
trained detectors, possibly provided by a third party. While every single detec-
tor tends to underperform or fail at detecting types of attack that it has never
seen at training time, our framework successfully aggregates the knowledge of
the available detectors to guarantee a robust detection algorithm. The proposed
method has many advantages: it is simple as it does not require further training
of the given detectors; it is modular, allowing existing (and future) methods to
be merged into a single one; it is general since it can simultaneously recognize
adversarial examples created according to different algorithms and training (loss)
objectives.



Résumé

Les réseaux de neurones profonds ont connu des progressions significatives ces
dernières années et sont aujourd’hui largement utilisés dans une variété d’applica-
tions. Lorsqu’il s’agit de systèmes critiques pour la sécurité, le développement de
méthodes et d’outils pour rendre ces algorithmes fiables constitue un défi central,
en particulier pour les non-spécialistes qui peuvent les traiter comme des "boîtes
noires" sans autre vérification. L’objectif de cette thèse est d’étudier différentes
méthodes qui peuvent permettre l’utilisation sécuritaire de ces technologies.

D’abord, nous devons identifier si la prédiction d’un classificateur devrait (ou
ne devrait pas) être fiable afin que il soit possible de l’accepter ou de la rejeter. A
cet égard, nous proposons un nouveau détecteur qui approxime le discriminateur
le plus puissant (Oracle) basé sur la probabilité d’erreur de classification calculée
par rapport à la vraie probabilité postérieure du classificateur. Deux scénarios
sont étudiés : Totally Black Box (TBB), où seules les soft-predictions sont dispo-
nibles et Partially Black Box (PBB) où la propagation du gradient est autorisée
pour effectuer le input pre-processing. Le détecteur proposé peut être appliqué à
n’importe quel modèle pre-trained, il ne nécessite pas d’informations préalables
sur le dataset et est aussi simple que les méthodes les plus basiques disponibles
dans la littérature.

Nous poursuivons en abordant le problème de multi-armed adversarial
example detection. Les méthodes de détection sont généralement validées en sup-
posant une seule stratégie d’attaque implicitement connue, ce qui ne réalise pas
nécessairement des menaces réelles. En effet, cela peut conduire à une évalua-
tion trop optimiste des performances des détecteurs et peut induire un certain
biais dans la comparaison des schémas de détection concurrents. Nous proposons
un nouveau framework multi-armed pour évaluer les détecteurs sur la base de
plusieurs stratégies d’attaques afin de surmonter cette limitation. Parmi celles-
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ci, nous utilisons trois nouvelles fonctions objectifs pour générer des attaques.
La mesure de performance proposée est basée sur le scénario du worst case : la
détection est réussie si et seulement si toutes les différentes attaques sont correc-
tement reconnues. De plus, en suivant ce framework nous dérivons formellement
une méthode simple mais efficace pour agréger les décisions de plusieurs détec-
teurs entraînés éventuellement fournis par une tierce partie. Alors que chaque
détecteur a tendance à sous-performer ou à échouer dans la détection de types
d’attaques qu’il n’a jamais vus au moment de l’entraînement, notre framework
permet d’agréger avec succès les connaissances des détecteurs disponibles pour
garantir un algorithme de détection robuste. La méthode proposée présente de
nombreux avantages : elle est simple car elle ne nécessite pas d’entraînement
supplémentaire des détecteurs donnés ; elle est modulaire, permettant aux mé-
thodes existantes (et futures) d’être fusionnées en une seule ; elle est générale car
elle peut reconnaître simultanément des exemples adverses créés selon différents
algorithmes et objectifs d’entraînement.
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CHAPTER1
Introduction

1.1 Motivation

Machine learning (ML) has rapidly become integral to various industries, includ-
ing healthcare, finance, transportation, and entertainment. The goal is to enable
machines to learn from data and make predictions or decisions without explicit
instructions using algorithms and statistical models. Even if ML has revolution-
ized how we process and analyze data, it poses new risks and challenges, par-
ticularly as these technologies are quickly being applied to critical systems, such
as autonomous driving vehicles or industrial robots, including–but not limited
to–classification and decision-making tasks.

Therefore, a major concern with ML is its safety or the possibility of unin-
tended consequences. Developing methods and tools to make these algorithms
reliable, particularly for non-specialists who may treat them as “black boxes” with
no further checks, constitutes a core challenge. Some of the risks associated with
using ML technologies include bias and discrimination in decision-making, vul-
nerabilities to cyber-attacks, and unintended outcomes due to poorly designed
or trained algorithms: according to the Washington Post, in 2021, Tesla vehicles
equipped with autopilot software were involved in 273 reported crashes, some of
which were fatal1; in 2014 the Amazon AI-based experimental hiring tool was
discovered to be biased against women2; in 2021 IBM’s Watson started provid-

1https://www.washingtonpost.com/technology/2022/06/15/tesla-autopilot-crashes/
2https://www.reuters.com/article/amazon-com-jobs-automation/insight-amazon-scraps-s

ecret-ai-recruiting-tool-that-showed-bias-against-women-idINKCN1MK0AH?edition-redirec
t=in

1

https://www.washingtonpost.com/technology/2022/06/15/tesla-autopilot-crashes/
https://www.reuters.com/article/amazon-com-jobs-automation/insight-amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idINKCN1MK0AH?edition-redirect=in
https://www.reuters.com/article/amazon-com-jobs-automation/insight-amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idINKCN1MK0AH?edition-redirect=in
https://www.reuters.com/article/amazon-com-jobs-automation/insight-amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idINKCN1MK0AH?edition-redirect=in


2 Chapter 1. Introduction

ing incorrect and several unsafe recommendations for the treatment of cancer
patients3.

Researchers and practitioners have made several efforts to improve the safety
of ML systems, including creating transparent and interpretable ML models,
devising resilient and secure algorithms, and considering ethical concerns during
the development and implementation of ML systems. In particular, Hendrycks et
al. [HCSS21] categorize the study of machine learning (ML) safety into four main
areas. Robustness, involving both long-tail and adversarial robustness. Long-tail
robust models are required to be resilient to long-tail events, i.e., events that
are harder to predict (e.g., 9/11, the financial crisis of 2008, and COVID-19),
and generally result in catastrophic outcomes. These events are characterized
by long-tail distributions, i.e., probability distributions whose tails are not
exponentially bounded [Asm03]. On the other hand, adversarial robustness
requires models to be resilient to carefully crafted and deceptive threats rather
than unpredictable ones. Monitoring highly correlated with anomaly detection,
i.e., detecting data instances that significantly deviate from the majority of data
instances [PSCvdH22]. One research topic in which anomaly detection is actively
studied is out-of-distribution detection (OOD) [HMD19], where the main goal
is to prevent errors by identifying potential drifts of the testing distribution.
Monitoring also concerns confidence calibration, i.e., the problem of predicting
probability estimates representative of the true correctness likelihood [GPSW17].
Alignment which, as the name implies, refers to aligning the objective functions
used to drive system behavior with human values. For instance, one definition of
fairness in machine learning considers discrimination against a specified sensitive
attribute in supervised learning [HPS16]. Systematic safety, which includes
cybersecurity and tools to help decision-makers handle ML systems in highly
uncertain, quickly evolving, turbulent situations [HCSS21].

3https://www.nytimes.com/2021/07/16/technology/what-happened-ibm-watson.html

https://www.nytimes.com/2021/07/16/technology/what-happened-ibm-watson.html
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PXpxq pY |Xpy|xq

gθpxq, θ P Θ

xi yi

x

yNature

Object

Algorithm

pyi

py

Loss

Figure 1.1: General Learning Problem [Vap95]. In light blue is the training
phase, and in red is the testing phase.

1.2 From the general learning problem to detection

1.2.1 The general learning problem

To help the comprehension of the next sections, we briefly recall in Fig. 1.1 the
general learning problem [Vap95]. As shown in Fig. 1.1, the general model consists
of three components: (i) the nature namely the fixed but unknown distribution
pX over a X Ď Rd, where X is also known as input space; (ii) the object namely
the fixed but unknown conditional distribution pY |X which returns an output
value y P Y (the concept) to every input vector x P X , where Y is the label space
that can be either discrete or continuous; (iii) the learning machine capable of
implementing a set of functions gθpxq, θ P Θ, where Θ is a set of parameters.
Classical machine learning aims to select the function that best approximates the
object’s output: given a training set of n i.i.d. observations tpxi, yiqu

n
i“1 drawn

according to pXY “ pXpY |X , we wish to identify a function gθ, namely the pre-
dictor (e.g., neural network), minimizing the empirical risk, i.e., the discrepancy
between the object’s response y to the input x and the response provided by
the learning machine. Based on this approach, if the object’s output and the
learning machine algorithm’s output are highly likely to be the same, we say the
predictor performs well. In general, this is called the philosophical instrumental-
ism approach (imitation of the object): science’s role is to predict the concept,
regardless of the law of nature. This is slightly different from the philosophical
realism approach (approximation of the object) where science’s role is to try to
approximate the object itself.
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1.2.2 Detection as hypothesis testing

After addressing the initial learning problem depicted in Fig. 1.1, we now pro-
ceed to the next phase by creating a decision rule that employs the acquired
distribution p

pY |X to resolve a specific detection task.
Detection problems are usually cast as binary (or M-ary) hypothesis testing.

Suppose it is given to us a random variable (r.v.) X following one of the two
probability density functions (pdf) p0 and p1 defined on a finite set X . The true
distribution is unknown to us, but we want to distinguish between the following
two hypotheses, i.e., H0: X „ p0 ” pX|Hp¨|0q (also known as null hypothesis); H1:
X „ p1 ” pX|Hp¨|1q. The objective of binary hypothesis testing is then to develop
a decision rule d : X Ñ t0, 1u for making the best guess about which hypothesis
is correct. This context can lead to four possible outcomes. Generally, when H1

is true, and we choose it, we refer to that situation as a detection. Likewise when
H0 is true but we select H1 we call that a false alarm (Type-I error); when H1

is true but we choose H0 we call that a miss (Type-II error). The decision rule
will partition the input space X , into two regions: X0 where the observations
are consistent with H0; X1 where the observations are consistent with H1. In
particular, if we characterize the probability of detection of d as

PDpdq
def
“ PrrX1|H1s “

ż

xPX1

P1pxqdx

and, likewise, the probability of false alarm of d as

PF pdq
def
“ PrrX1|H0s “

ż

xPX1

P0pxqdx,

we ideally would like to have PDpdq Ñ 1 and PF pdq Ñ 0. Clearly, the main
aspiration would be to derive a decision rule splitting the input space optimally,
e.g., if we suppose PrrH0s and PrrH1s to be known (a priori probabilities), the
optimal decision rule will be, for every x P X :

pH|Xp1|xq
X1

¡
X0

pH|Xp0|xq

PrrH1s pX|Hpx|1q
X1

¡
X0

PrrH0s pX|Hpx|0q. (1.1)
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That is, we assign to X1 all the samples for which the left side of Eq. (1.1) is
greater or equal than the left side; viceversa we assign to X0 all the samples for
which the left side of Eq. (1.1) is smaller than the right side. However, this ideal
scenario cannot occur when the two underlying distributions overlap. Thus, to
increase the detection probability, we must also allow for the probability of false
alarm to increase. This represents the fundamental tradeoff in hypothesis testing
and detection theory. We can rewrite Eq. (1.1) as follows

PrrH1s pX|Hpx|1q
X1

¡
X0

γ ¨ PrrH0s pX|Hpx|0q, (1.2)

where γ P R is the threshold regulating the tradeoff. We can assess the perfor-
mance of the proposed decision rule in terms of Receiver operating characteristic
(ROC) representing the upper boundary between achievable and un-achievable
regions in the (PF , PD)-square. The detectors’ goal will be to partition the input
space accordingly.

The main aim of this thesis is to explore the behavior of neural networks
when presented with input samples that are either ‘clean’ (or ‘natural’) but may
be wrongly classified (misclassification detection), as well as samples ‘adversarial’
that have been intentionally manipulated to deceive the model (adversarial
detection). Our objective is, therefore, to develop a decision rule that can
identify, during testing, when an input sample is likely to cause the network to
exhibit a specific behavior and make decisions based on this information.

1.3 Misclassification detection

The scheme in Fig. 1.2 refers to the setting of misclassification detection. The
goal of the detector is to check whether the prediction made by the classifier is
correct and accept or reject it accordingly. Let Epxq

def
“ 1rY ‰ gθpxqs denote the

error variable for a given x P X with respect to (w.r.t.) gθ, where 1rEs is the
indicator vector which outputs 1 if E is true and 0 otherwise. The idea is to model
the data distribution as a mixture of two pdfs, one representing the distribution
of the wrongly classified samples and the other of the correctly classified samples
(see upper left box of Fig. 1.2). More formally, pX|Epx|1q is the pdf truncated
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γ P R`

ř

ePt0,1u

PEpeqpX|Epx|eq

PE

pY |Xpy|xq

p
pY |Xpy|x; θq

xi yi

x

y

Object

Algorithm

pyiDetector
Accept
Reject

Figure 1.2: Misclassification Detection. Detector in cyan represents either Dα

or Dβ . The initial learning process is not shown, indicating that it will not be repeated.

to the error event tE “ 1u (i.e., the hard decision fails) and pX|Epx|0q is the pdf
truncated to the success event tE “ 0u (i.e., the hard decision succeeds). The
problem is therefore cast as in Section 1.2.2 by first identifying our hypothesis

H0 : X „ pX|Epx|0q

and
H1 : X „ pX|Epx|1q.

The most powerful (Oracle) discriminator at threshold γ P R is defined as

Dpx, γq “

$

&

%

1, if pX|Epx|1q ě γ ¨ pX|Epx|0q

0, otherwise,
(1.3)

where Dpx, γq “ 1 denotes the sample’s prediction is going to be rejected.
In Chapter 3, we will show that by applying Bayes theorem Eq. (1.3) can be
rewritten in terms of probability of classification error Pep¨q w.r.t. pY |X . Indeed
pE|Xp1|xq “ 1 ´ pY |Xpgθpxq|xq “ Pepxq and therefore

Dpx, γq “

$

&

%

1, if Pepxq ě γ1 ¨ p1 ´ Pepxqq

0, otherwise.
(1.4)

To conclude, in Chapter 3 we will present two practical detectors based on the
approximation of Pepxq. We recall the detector in Eq. (1.4) supposes to have
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access to all the involved distributions that are typically unknown. Consequently,
the practical detectors can rely only on the model posterior distribution p

pY |X

Dαpx, γq “

$

&

%

1, if Ginipxq ě γ1 ¨ p1 ´ Ginipxqq

0, otherwise.
(1.5)

and

Dβpx, γq “

$

&

%

1, if pPepxq ě γ1 ¨ p1 ´ pPepxqq

0, otherwise.
(1.6)

where Ginipxq
def
“

ř

yPY
p
pY |Xpy|x; θqp1´p

pY |Xpy|x; θqq is the probability of incorrectly

classifying the feature x if it was randomly labeled according to the model distri-
bution and pPepxq

def
“ 1 ´ p

pY |Xpgθpxq|x; θq is the probability of classification error
w.r.t. the predicted distribution.

The aforementioned detectors will be evaluated on either image or textual
datasets in two alternatives scenario depending on the amount of information
about the underlying classifier available. In the totally black box (TBB) we sup-
pose only the soft-predictions are available in the partially black box (PBB) the
gradient-propagation to perform input pre-processing is allowed. In particular,
input pre-processing is a common technique used to slightly modify some patterns
of an input sample in the direction of an objective loss to maximize/minimize.
The concept is the same as when training a neural network where the weights are
modified step-by-step to minimize the training loss. In our context, the modifica-
tion will affect the pixel of the images in the direction where the loss in Eqs. (1.5)
and (1.6) maximizes. This technique will show up to be particularly effective for
our goal.

1.4 Multi-armed adversarial attacks detection

We recall that adversarial examples are carefully crafted input patterns designed
to deceive a target classifier into making an incorrect decision while remaining as
similar as possible to the original sample. More formally, let us consider a natural
sample, denoted by x P X , along with its true label, y P Y . An attacker aims to
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γ P Rp
pKq

X|Zpx|zq

Berppq

Z

p
p1q

X|Zpx|zq

Berppq

Z

pY |Xpy|xq

p
pY |Xpy|x; θq

xi yi

xp1q

xpKq

Object

Algorithm

pyi

Aggregator
{Detector1

...
DetectorJ}

Natural
Adversarial

Figure 1.3: Multi-armed adversarial attacks detection. The double arrows mean
that the outputs are for each xpkq. Note that K,J P N but J can be different from K.
Berppq denotes the Bernoulli distribution of parameter p P r0, 1s. The initial learning
process is not shown, indicating that it will not be repeated.

deceive the model gθ by crafting an adversarial example, x1
ℓ P I Ď Rd, where I

is a held-out set of images that is distributed according to pXY but that was not
used during training. The symbol ℓ denotes the objective loss function ℓpx,x1

ℓ; θq

optimized by the attacker; ε is perturbation magnitude, and Lp, p P t1, 2,8u

is the norm constraint. The goal of the attack is to obtain an x1
ℓ such that

gθpx
1
ℓq ‰ gθpxq, in order to force the target model to make a prediction error.

As thoroughly investigated in [SZS`14], the adversarial generation problem is
difficult to tackle and it is commonly relaxed as follows

xℓ
1

” xℓ
1
pxq “ argmax

xℓ
1PRd : ∥xℓ

1´x∥păε

ℓpx,xℓ
1; θq, (1.7)

where x1
ℓ is updated iteration by iteration starting from an initial given value.

The scheme in Fig. 1.3 refers to the setting of multi-armed adversarial at-
tacks detection. In this case, the goal of the detector is to check whether the
input sample is natural or has been adversarially perturbed according to some
strategy. We refer to this setting as ‘multi-armed’ as in the classical detection
setting (i.e., ‘single-armed’) the methods are generally validated by assuming a
single attack strategy at a time. The proposed setting, as reported in Fig. 1.3,
considers the evaluation of multiple instances at the same time. Consequently,
in Chapter 4 we suggest an alternative framework for evaluating the performance
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of the existing state-of-the-art detectors when the attacks at the evaluation time
can be simultaneously crafted according to various algorithms and objective loss
functions. The detection will be successful if and only if all different attacks are
correctly recognized.

We provide a solution to the problem of multi-armed adversarial attack de-
tection in Chapter 5 by dealing with the following worst-case scenario. Assume
it is given a distribution for every attack strategy. We could group all such dis-
tributions in a set M “

␣

p
pkq

XZ : k P K
(

, where k P K represents the index and
Z “ t0, 1u indicates a binary space label for the adversarial example detection
task. At the evaluation time, the attackers select an arbitrary strategy i and then
sample an input x according to ppiq

X|Zpx|zq, where ppiq
X|Zpx|1q is the probability den-

sity function induced by the chosen attack i and ppiq
X|Zpx|0q “ pXpxq almost surely

is the probability distribution of the natural samples. The defender is asked to
choose between the following two hypotheses

H0 : X „ p
pkq

X|Zpx|0q for some k P K

and
H1 : X „ p

pkq

X|Zpx|1q for some k P K.

Moreover, suppose the defender has at her/his disposal a set of soft-detectors one
for each of the possible distributions in M,

Q “

!

q
pkq

pZ|u
: U ÞÑ r0, 1s

2
)

kPK
,

with u P U “ tglθpxq | x P Rdu denotes the space of logits. It is also important to
keep in mind that the defender does not know what the attacker’s strategy will
be. The optimal detector will be the one performing simultaneously well over all
the possible attacks in M. In Chapter 5 we will show that this can be formalized
as the solution to the following minimax problem

LpQ,xq “ min
q
pZ|u

max
kPK

E
q

pkq

pZ|u

”

´ log q
pZ|u

ı

, (1.8)

where the minimization is performed over all (detectors) distributions q
pZ|u, in-

cluding elements that are not part of the set Q. Thus, the optimal detector will
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be as follows

Dpx, γq “

$

&

%

1, if LpQ,xq ě γ

0, otherwise.
(1.9)

Notice that, Eq. (1.8) is not tractable computationally. Therefore, in Chapter 5,
we show how to derive a surrogate function that can be computationally opti-
mized.

The aforementioned detector will be evaluated in the context of multi-armed
adversarial attack detection (as well as in the ‘single-armed’ setting) by assuming
that a third party provides us with four simple supervised detectors (i.e., the
detectors in Q) each of them trained to detect a single specific kind of attack.
Indeed, in practical setting, besides not knowing the attack strategy, we also do
not have access to all the possible detectors which adds to the difficulty.

1.5 Plan of the thesis and contributions

Publications from this dissertation

The content of this dissertation is based on the following publications:

Part I is based on the results presented in DOCTOR: A Simple Method for
Detecting Misclassification Errors [GRG`21] (Chapter 3), that ap-
peared as Spotlight in the proceedings of the 35th Conference on Neural
Information Processing Systems (NeurIPS2021). Federica Granese, Marco
Romanelli, Daniele Gorla, Catuscia Palamidessi, Pablo Piantanida.

Part II is based on the results presented in: i) Mead: A Multi-Armed Ap-
proach for Evaluation of Adversarial Examples Detectors [GPR`22]
(Chapter 4), that appeared in the proceedings of the 33rd European
Conference on Machine Learning and Data Mining (ECMLPKDD2022).
Federica Granese, Marine Picot, Marco Romanelli, Francisco Messina,
Pablo Piantanida. ii) A Minimax Approach Against Multi-Armed
Adversarial Attacks Detection [GRGP23] (Chapter 5), that has been
submitted to the 36th IEEE Computer Security Foundations Symposium
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(CSF). Federica Granese, Marco Romanelli, Siddharth Garg, Pablo Pi-
antanida.

Other publications

Other works I have contributed to during my PhD (at the time I am writing the
thesis):

A) Works in Social Network Privacy/Utility and Differential-Privacy.
On the one hand, we studied how to control information propagation in
social networks. Users want to communicate and interact freely with their
peers. However, if misused, the information they spread can have harmful
consequences. There is, therefore, a trade-off between utility, i.e., reaching as
many intended nodes as possible, and privacy, i.e., avoiding the unintended
ones. In [GGP21], we adapt the basic framework of Backes et al. [BGMS17]
to include more realistic features, that in practice influence the way in which
information is passed around. More specifically, we consider: (a) the topic of the
shared information, (b) the time spent by users to forward information among
them, and (c) the user’s social behavior. Furthermore, we propose an enhanced
formulation of the utility/privacy policies, to maximize the expected number of
reached users among the intended ones, while minimizing this number among
the unintended ones, and we show how to adapt the basic techniques to these
enhanced policies. On the other hand, in cite [GJG`22], we look at the problem
of data protection. Differential privacy is nowadays one of the best established
and theoretically solid tools to ensure data protection. Intuitively, given a set
of databases, differential privacy requires that databases that only slightly differ
one from the other (e.g., in one individual record) are mapped to the obfuscated
values with similar probabilities; this provides privacy to the changed record
because statistical functions run on the database should not overly depend on
the data of any individual. In this work, we analyze to what extent final users
can infer information about the level of protection of their data when the data
obfuscation mechanism is a priori unknown to them.

Papers:
- Enhanced models for privacy and utility in continuous-time diffusion
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networks, that appeared in the proceedings of the International Journal of
Information Security [GGP21]. Federica Granese, Daniele Gorla, Catuscia
Palamidessi.
- On the (Im)Possibility of Estimating Various Notions of Differential
Privacy [GJG`22], that has been submitted to 36th IEEE Computer Security
Foundations Symposium. Daniele Gorla, Louis Jalouzot, Federica Granese,
Catuscia Palamidessi, Pablo Piantanida.

B) Additional works in Machine Learning. On the one hand, we propose
a new method (HAMPER) to detect adversarial examples by leveraging the
concept of data depths, a statistical notion that provides center-outward ordering
of points w.r.t. a probability distribution. In particular, the halfspace-mass
(HM) depth exhibits attractive properties such as computational efficiency,
which makes it a natural candidate for adversarial attack detection in high-
dimensional spaces. Additionally, HM is non-differentiable making it harder
for attackers to attack HAMPER via gradient based-methods directly. On the
other hand, inspired by the work in [GRG`21], we present a simple yet effective
hyperparameter free method to implement the rejection option for a pre-trained
classifier. The method is is lightweight since it does not require any re-training of
the network, and it is flexible since it can be used with any model that outputs
soft-probabilities.

Papers:
- A Halfspace-Mass Depth-Based Method for Adversarial Attack De-
tection, that has been accepted (with minor revision) to Transactions on Ma-
chine Learning Research (TMLR). Marine Picot‹, Federica Granese‹ , Guil-
laume Staerman, Marco Romanelli, Francisco Messina, Pablo Piantanida, Pierre
Colombo.
- Trusting the Untrustworthy: A Cautionary Tale on the Pitfalls of
Training-based Rejection Option, that has been submitted to 40th In-
ternational Conference on Machine Learning (ICML). Eduardo Dadalto Câ-
mara Gomes‹, Marco Romanelli‹ , Federica Granese, Siddharth Garg, Pablo Pi-
antanida.

‹Equal contribution.



CHAPTER2
Preliminaries

This chapter aims to recall the fundamental concepts necessary to understand
the thesis’ content. We indicate for each section which chapter of the thesis it is
related to.

2.1 Multiclass classification

In the following section, we begin by recalling some basic notions of machine
learning that will be useful in the course of Chapters 3 and 4.

2.1.1 Basic definitions

Let X Ď Rd be the (possibly continuous) feature space and let Y “ t1, . . . , Cu

denote the concept of the label space related to some task of interest. We denote
by pXY the unknown data distribution over X ˆY . A predictor gθ : X Ñ Y uses
the inferred model p

pY |Xpy|x; θq where y P Y and θ P Θ are the learnt parameters,

gθpxq
def
“ argmax

yPY
p
pY |Xpy|x; θq,

and tries to approximate the optimal (Bayes) decision rule g‹pxq
def
“

argmax
yPY

pY |Xpy|xq. Notice that p
pY |X can be interpreted as the prediction of

the class (label) posterior probability given a sample (e.g., p
pY |Xpy|x; θq ”

softmaxpxqy), while pY |X is the true (unknown) probability. In several practical
scenarios p

pY |X does not perfectly match pY |X and still gθ « g‹ (cf. [GPSW17]).

13
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2.1.2 Error variable

Let Epxq
def
“ 1 rY ‰ gθpxqs denote the error variable for a given x P X correspond-

ing to gθ, i.e., where we denote with 1rEs the indicator vector which outputs 1 if
the event E is true and 0 otherwise. Similarly, we can define the self-error variable
pEpxq

def
“ 1

“

pY ‰ gθpxq
‰

also corresponding to the inferred predictor gθ but based
on the prediction model p

pY |X of the class posterior probability. Notice that pEpxq

is observable since the underlying distribution is known. However, Epxq cannot
be observed and in general these binary variables do not coincide.

At this stage, it is convenient to introduce the notions of probability of clas-
sification error for a given x P X with respect to (w.r.t.) both the true class
posterior and the predicted probabilities:

Pepxq
def
“ E rEpxq|xs “ 1 ´ pY |X pgθpxq|xq , (2.1)

xPepxq
def
“ E

”

pEpxq|x
ı

“ 1 ´ p
pY |X pgθpxq|x; θq . (2.2)

Notice that xPepxq represents the probability of misclassification of the sam-
ple x with respect to the softmax probability p

pY |X , which can be interpreted
as the model’s approximation of nature pY |X . Such approximation is close
when the model is well-calibrated. Obviously, Pe‹

pxq ď Pepxq for all x P

X , where Pe‹
pxq corresponds to the minimum error of the Bayes classifier:

Pe‹
pxq “ 1 ´ pY |X pg‹pxq|xq. It is worth mentioning that, by averaging (2.1) over

the data distribution, we obtain the error rate of the classifier gθ. Although xPepxq

provides a valuable candidate to infer the unknown error variable Epxq, it is easy
to check that

max
␣

Pepxq,xPepxq
(

´ Pr
`

pY “ Y |x
˘

ď Pr
␣

pEpxq ‰ Epxq|x
(

ď Pr
`

pY ‰ Y |x
˘

,

(2.3)

which in particular implies that the error incurred in using pEpxq to predict Epxq

is lower bounded by the classification error per sample (2.1) [GRG`21].
Note that, Pepxq is not available in practical scenarios and the direct estima-

tion (e.g., based on pairs of inputs and labels) of the true class posterior prob-
ability pY |X cannot be performed. Notice that it is not possible to sample the
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Figure 2.1: The effects of FGSM. The (well known) demonstration of fast adver-
sarial example generation applied to GoogLeNet on ImageNet (from [GSS15]).

conditional pdf pY |X for each input x P X . As a matter of fact, it is well-known
that the application of direct methods for this estimation will lead to ill-posed
problems, as shown in [VI20].

2.2 Attacking neural networks

In the following section, we provide the background necessary to under-
stand Chapters 4 and 5. Note that this thesis is not fully devoted to studying the
adversarial problem. As such, we refer to the survey in [AHFD22] and references
therein for a comprehensive discussion of this topic.

2.2.1 Adversarial problem

Adversarial examples were first introduced in 2014 by Szegedy et al. [SZS`14] as
a counter-intuitive property of deep neural networks.

Let us consider a natural sample x P X together with its true label y P Y . An
attacker targets the model gθ by crafting a sample x1

ℓ P I Ď Rd according to an
objective loss function ℓpx,x1

ℓ; θq which is denoted by ℓ, perturbation magnitude
ε, and norm constraint Lp, p P t1, 2,8u. The goal of the attack is to obtain an x1

ℓ

such that gθpx1
ℓq ‰ gθpxq, in order to force the target model to make a prediction

error. An example is shown in Section 2.2.1).
Formally, Szegedy et al. [SZS`14] define the adversarial generation problem



16 Chapter 2. Preliminaries

as:

argmin
x1
ℓPI

||x ´ x1
ℓ||p

s.t. gθpx
1
ℓq ‰ y,

where I is a held-out set of images from the data distribution that the network was
not trained. As thoroughly investigated in [MMS`18], the adversarial generation
problem as above is difficult to tackle and it is commonly relaxed as follows

x1
ℓ ” x1

ℓpxq “ argmax
xℓ

1PI : ∥x1
ℓ´x∥păε

ℓpx,x1
ℓ, y; θq, (2.4)

where x1
ℓ is updated iteration by iteration starting from an initial given value

and ℓpx,x1
ℓ, y; θq is the objective of the attacker, representing a surrogate of the

constraint to fool the target classifier, i.e., gθpx1
ℓq ‰ y. The objective function ℓ

traditionally used is the Cross-Entropy (CE) [SZS`14, MMS`18]:

ℓACEpx,x1
ℓ, y; θq “ ´ log p

pY |Xpy|x1
ℓ; θq. (2.5)

2.2.2 Why do adversarial examples exist?

Although adversarial examples are easy to grasp, there is much speculation as
to why they exist. Below is a brief overview of the most popular hypotheses of
the moment. As a starting point, it is worth recalling that natural images are
believed to exist in a low-dimensional manifold embedded in a high-dimensional
space [CBB19].

Originally, Szegedy et al. [SZS`14] argued that adversarial examples represent
densely populated “pockets” in the input space with a low probability of being
observed and correctly classified. Later, Goodfellow et al. [GSS15] found the
existence of adversarial examples in the linear behavior of classifiers rather than
the non-linear behavior of classifiers in high-dimensional spaces.

The off-manifold assumption is supported by numerous papers (e.g., [CBB19,
FCSG17, MC17] to cite a few), and it is based on the idea that adversarial pertur-
bations push the sample off of the natural data manifold. Interestingly Feinmann
et al. [FCSG17] describe three different situations depending on the position of
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the adversarial example w.r.t. the decision boundary of the classifier and the
submanifold of the adversarial example’s class. The adversarial example in the
first scenario is close to the decision boundary but far from the submanifolds for
the original and new predicted classes; the adversarial example lies in the pocket
of the submanifold of the class assigned to the adversarial example in the second
scenario; in the third scenario, the adversarial example lies near both the decision
boundary and both submanifolds. Note that the off-manifold hypothesis may not
be the final explanation on the reason behind the adversarial phenomenon as sub-
sequent papers (e.g. [SHS19, XYF`22]) have shown the existence of on-manifold
adversarial examples.

As one of the most widely accepted hypotheses suggests, adversarial exam-
ples may be directly related to non-robust features, i.e., features that are highly
predictive but are brittle, making them incomprehensible to humans. According
to this hypothesis, adversarial vulnerabilities are caused by non-robust features,
and are not inherently related to standard training frameworks [IST`19]. For
example, consider the case of a classifier trained to distinguish dogs from cats.
In addition, suppose the two animals are differentiated based on the direction
of the hair rather and the shape itself (features). In this scenario, furry can be
considered a non-robust feature, whereas shape can be considered robust. Par-
ticularly, the authors demonstrate that training a non-robust classifier on the
original dataset based on exclusively robust features can achieve both good stan-
dard and robust accuracy, which is not the case when training the classifier using
non-robust features.

By following a different perspective, the dimpled manifold model is a new
mental model proposed in 2021 by Shamir et al. [SMB21] in which classifiers
place their decision boundaries right next to data manifolds and only slightly
curve around them. By going perpendicular to the manifold, adversarial examples
can then be found.

Even though there are several possible other explanations for the existence of
the adversarial examples (e.g., insufficient data [SST`18] and over-fitting [TG16]),
a definitive answer has not yet been found. We would like to highlight that these
assumptions are not necessarily mutually exclusive, suggesting (maybe) a unifying
theory.
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2.2.3 Crafting adversarial attacks

Over the years, a plethora of algorithms to generate adversarial samples has been
proposed and, overall, we can group them into two main categories: white-box
and black-box attacks.

White-box attacks
We talk about white-box attacks when the adversary knows everything about
the target model (its architecture and weights). Gradient-based attacks belong
to this category. They rely on finding the perturbation direction, i.e., the sign
of gradient at each pixel of the input, that maximizes the attacker’s objective
value. Examples of gradient-based attacks are the Fast Gradient Sign Method
(FGSM) [GSS15], the Basic Iterative Method (BIM) [KGB] and the Projected
Gradient Descent method (PGD) [MMS`18]. BIM and PGD can be seen as iter-
ative versions of FGSM (one-step perturbation). Unlike BIM, PGD attacks start
from a random perturbation in Lp-ball around the input sample. Another power-
ful attack is the Carlini-Wagner attack (CW) [CW17c], which directly minimizes
the additive noise constrained by a function which assure the misclassification
of the perturbed sample. We conclude the list of white-box attacks by mention-
ing the DeepFool attack (DF) [MFF16], which is an iterative method based on
a local linearization of the targeted classifier, and the resolution of the resulting
simplified adversarial problem.

Black-box attacks
In the case of black-box attacks, the adversary has no access to the internals of
the target model, hence it creates attacks by querying the model and monitoring
outputs of the model to attack. Examples of black-box attacks are the Square
Attack (SA) [ACFH20], which iteratively searches for a random perturbation,
and checks if it increases the attacker’s objective at each step; the Hop Skip
Jump attack (HOP) [CJW20] which estimates the gradient direction to perturb,
and the Spatial Transformation Attack (STA) [ETT`19] which transforms the
original samples by applying small translations and rotations to them.

It is worth to mention that there also exists gray-box attacks, i.e. when the
adversary knows the training data but not the internals of the model. These
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attacks rely on the transferability property of the adversarial examples: to cre-
ate attacks these methods build a substitute model that performs the same task
as the target model. A special class of attacks are the so-called adaptive at-
tacks [ACW18, TCBM20, CW17c, YBTV21] where attacks are specifically de-
signed to target a given defence. In this scenario, the attacker is supposed to
have full knowledge of both the targeted classifier and the underlying defence.

2.2.4 Protecting from adversarial attacks

Methods to defend deep models against adversarial attacks can be grouped into
two main families: methods that aim to increase the targeted model’s robustness
by re-training it [GSS15, MMS`18, PMB`22, XTG`20, TKP`18, AF21], and
methods engineered to detect adversarial examples at evaluation time [KFHD20,
MLW`18, FCSG17, XEQ18, MC17, LLLS18a]. The work in [AHFD22] provides a
recent and thorough survey about the state-of-the-art detection methods, which
fall under two main categories: supervised and unsupervised. Below is a brief
description of the methods analysed in the thesis.

Supervised methods
Detectors within this category extract features either directly from the tar-
geted network’s layer [KFHD20, FCSG17] or by using statistical tools [MLW`18,
LLLS18a]. To do so, both natural and adversarial examples are necessary. Gen-
erally, the adversarial samples are created according to a single fixed algorithm
and a given loss function, which are then also used to create the examples at
evaluation time.

Natural Scene Statistics (NSS) [KFHD20]. The approach is based on the hy-
pothesis that natural images possess certain regular statistical properties (i.e.,
natural scene statistics [SLSZ03, Rud94]) that are altered by adversarial pertur-
bations. Thus, by characterizing these deviations from the regularity of natural
statistics using NSS, it possible to determine whether the input is benign or
malicious.

Kernel Density and Bayesian Uncertainty (KD-BU) [FCSG17]. Using the
intuition that adversarial samples lie off the true data manifold, the method con-
sists in extracting two types of features: density estimates that are computed
starting from the logits of the network, and bayesian uncertainty estimates avail-
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able in dropout neural networks. The first metric is meant to check how far an
input sample is from the original manifold; the second one to identify if the input
sample lies in low-confidence regions of the input space.

Local Intrinsic Dimensionality (LID) [MLW`18]. The approach aims to ex-
plore the subspace surrounding adversarial examples. The local intrinsic dimen-
sionality directly measures the expansion rate of the local distance distribution
from a reference point to its nearest neighbors. The idea is that the expansion
of the adversarial subspace is higher than that of the normal data subspace and
hence the metric can be used to detect whether the input sample is adversarial
or not. Differently from the methods before, LID features of the input samples
are extracted at each output layer of the network of the pre-trained classifier.

Unsupervised methods
Methods falling under this category only rely on the features of natural samples
that can be extracted using different techniques.

Feature Squeezing (FS) [XEQ18]. In this approach, the model’s prediction on
the original sample is compared to its prediction on the sample after squeezing
(i.e., reducing the the color depth of images, and using smoothing to reduce
the variation among the pixels). If the original and squeezed inputs produce
substantially different outputs, the input is likely to be adversarial.

MagNet [MC17]. As in [FCSG17], the initial assumption is that the that
adversarial examples lie off the true data manifold. A detector consists of an
autoencoder that reconstructs input samples on the original manifold from in-
put samples. The sample is classified as an adversary if the reconstruction error
between the reconstructed input and the original exceeds a certain threshold.
An additional autoencoder is used to improve performance, which calculates the
Jensen’s divergence between the original and reconstructed conditional distribu-
tions.
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Misclassification Detection
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CHAPTER3
Doctor: A Simple Method for

Detecting Misclassification Errors

In this chapter we tackle the problem of identifying whether the prediction of a
classifier should (or should not) be trusted.

From the theoretical point of view, we derive the trade-off between two types
of error probabilities: Type-I, that refers to the rejection of the classification for
an input that would be correctly classified, and Type-II, that refers to the ac-
ceptance of the classification for an input that would not be correctly classified
(Proposition 1). The characterization of the optimal discriminator in Eq. (3.7) al-
lows us to devise a feasible implementation of it, based on the softmax probability
(Proposition 2).

From the algorithmic point of view, inspired by our theoretical analysis, we
propose Doctor a new discriminator (Definition 2), which yields a simple and
flexible framework to detect whether a decision made by a model is likely to be
correct or not. We distinguish two scenarios under wich Doctor can be deployed:
Totally Black Box (TBB) where only the soft-predictions are available, hence
gradient-propagation to perform input pre-processing is not allowed, and Partially
Black Box (PBB) where we further allow method-specific inputs perturbations.

From the experimental point of view, we show that Doctor outperforms com-
parable state-of-the-art methods (e.g., ODIN [LLS18], softmax response [GE17]
and Mahalanobis distance [LLLS18b]) on datasets including both in-distribution
and out-of-distribution samples, and different architectures with various express-
ibilities, under both TBB and PBB. A key ingredient of Doctor is to fully
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exploit all available information contained in the soft-probabilities of the predic-
tions (not only their maximum).

3.1 The Optimal Discriminator

3.1.1 Statistical model for detection

Given a data sample x P X and an unobserved random label y P Y drawn
from the unknown distribution pXY , we wish to predict the realization of the
unobserved error variable E def

“ 1rY ‰ gθpXqs. To this end, we will model the
data distribution as a mixture pdfs,

pXY px, yq ” pEp1qpXY |Epx, y|1q ` pEp0qpXY |Epx, y|0q,

where pXY |Epx, y|1q denotes the pdf truncated to the error event tE “ 1u (i.e.,
the hard decision fails) and pXY |Epx, y|0q is the pdf truncated to the success event
tE “ 0u (i.e., the hard decision succeeds). By taking the marginal of pXY over
the labels, we obtain: pXpxq “ pEp1qpX|Epx|1q ` pEp0qpX|Epx|0q. First, observe
that the problem at hand is to infer E from px, p

pY |Xq since Y is not observed.
Second, we further emphasize that in the present framework we assume that
there are no available (extra) samples for training a discriminator to distinguish
between pX|Epx|0q and pX|Epx|1q. It is worth mentioning that a well-trained
classifier would imply pEp1q ! pEp0q, since in that case we should have very few
classification errors. However, this also implies that it would be very unlikely to
have enough samples available to train a good enough discriminator.

3.1.2 Performance metrics and optimal discriminator

We aim to distinguish between samples for which the predictions cannot be
trusted and samples for which predictions should be trusted. We first state the
optimal rejection region, given by Eq. (3.1), where we suppose the existence of
an oracle who knows all the involved probability distributions.

Definition 1 (Most powerful discriminator). For any 0 ă γ ă 8, define the de-
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cision region:

Apγq
def
“

␣

x P X : pX|Epx|1q ą γ ¨ pX|Epx|0q
(

. (3.1)

The most powerful (Oracle) discriminator at threshold γ is defined by setting
Dpx, γq “ 1 for all x P Apγq for which the prediction is rejected (i.e., pE “ 1) and
otherwise Dpx, γq “ 0 for all x R Apγq for which the prediction is accepted.

In Proposition 1, we establish the characterization of the fundamental perfor-
mance of the most powerful (Oracle) discriminator by providing a lower bound on
the error achieved by any discriminator and show that this bound is achievable
by setting γ “ 1. Furthermore, we connect this result to the Bayesian error rate
of this optimal discriminator.

Proposition 1 (Performance of the discriminator). For any given decision region
A Ă X , let

ϵ0pAq
def
“

ż

A
pX|Epx|0qdx, and ϵ1pAc

q
def
“

ż

Ac

pX|Epx|1qdx , (3.2)

be the Type-I (rejection of the class prediction of an input x that would be correctly
classified) and Type-II (acceptance of the class prediction of an input x that would
not be correctly classified) error probability, respectively. Then,

ϵ0pAq ` ϵ1pAc
q ě 1 ´

›

›pX|E“1 ´ pX|E“0

›

›

TV
(3.3)

“ 1 ´
1

2

ż

X
|pX|E“1pxq ´ pX|E“0pxq|dx. (3.4)

Equality is achieved by choosing the optimal decision region A‹ ” Ap1q in Defi-
nition 1. If the hypotheses are equally distributed, the minimum Bayesian error
satisfies:

2Pr tDpXq ‰ EpXqu ě 1 ´
›

›pX|E“1 ´ pX|E“0

›

›

TV
. (3.5)

Equality is achieved by using the optimal decision region.

Expressions Eq. (3.4) and Eq. (3.5) provide lower bounds for the total error
of an arbitrary discriminator. The proof of this proposition is relegated to the
Supplementary material (Appendix A.1). Using Bayes we can rewrite Eq. (3.1)
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via the posteriors as:

Apγq “
␣

x P X : pE|Xp1|xqpEp0q ą γ ¨
`

1 ´ pE|Xp1|xq
˘

pEp1q
(

. (3.6)

From Eq. (3.6), it is easy to check that pE|Xp1|xq “ 1 ´ pY |X pgθpxq|xq “ Pepxq,

and hence, the decision region Apγq can be reformulated as:

Apγ1
q “

"

x P X :
Pepxq

1 ´ Pepxq
ą γ1

*

“

"

x P X : Pepxq ą
γ1

pγ1 ` 1q

*

, (3.7)

where γ1 def
“ γ ¨

pEp1q

pEp0q
and 0 ă γ1 ă 8. According to Eq. (3.7) and Proposi-

tion Proposition 1, the optimal discriminator is given by D‹px, γ1q “ 1, whenever
x P Apγ1q, and D‹px, γ1q “ 0, otherwise. The main difficulty arises here since the
error probability function of an input: x ÞÑ Pepxq is not known and in general
cannot be learned from training samples.

3.2 The Proposed Discriminator: Doctor

3.2.1 Doctor discriminator

We start by deriving an approximation to the unknown function x ÞÑ Pepxq which
can be used to devise the decision region in expression (3.7). First, we state the
following:

Proposition 2. Let pgpxq be defined by

1 ´ pgpxq
def
“

ÿ

yPY
p
pY |Xpy|x; θqPr

´

pY ‰ y|x
¯

“ 1 ´
ÿ

yPY
p2
pY |X

py|x; θq, (3.8)

for each x P X , which indicates the probability of incorrectly classifying a feature
x if it was randomly labeled according to the model distribution p

pY |X trained based
on the dataset. Then,

p1 ´
a

pgpxqq ´ ∆pxq ď Pepxq ď p1 ´ pgpxqq ` ∆pxq, (3.9)

where ∆pxq
def
“ 2

b

2 DKL

`

pY |Xp¨|xq}p
pY |Xp¨|x; θq

˘

and denotes the Kull-
back–Leibler (KL) divergence (further details are provided in Supplementary ma-
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terial Appendix A.1.2).

3.2.2 Discussion

It is worth emphasizing that expressions in (3.9) provide bounds to the unknown
function x ÞÑ Pepxq using a known statistics x ÞÑ 1 ´ pgpxq, which is based on
the soft-probability of the predictor. On the other hand, 0 ď pgpxq ď

a

pgpxq ď

1, for all x P X , which simply follows using the subadditive of the function t ÞÑ
?
t and the definition of pgpxq. By Markov’s inequality,

Pr
`

∆pXq ě εpηq
˘

ď η with εpηq “ 2
b

2EXY

“

´ log p
pY |XpY |X; θq

‰

{η, (3.10)

for any η ą 0, where EXY

“

´ log p
pY |XpY |X; θq

‰

in (3.10) is the cross-entropy risk.
The latter is expected to be small provided that the model generalizes well. Thus,
εpηq can be expected to be small for a desired confidence η ą 0. Interestingly,
(3.8) turns out to be related to the uncertainty of the classifier via the quadratic
Rényi entropy [vEH14]: ´ log2

`

pgpxq
˘

“ 2H2ppY |xq ď 2HppY |xq, where the latter
is the Shannon entropy, i.e., the self-uncertainty of the classifier.

3.2.3 From the theory to a practical discriminator

Our previous discussion suggests that pPepxq in (2.2) may be a valuable candidate
to approximate Pepxq in the definition of the optimal discriminator (3.7). On the
other hand, Proposition 2 suggests that 1´pgpxq can also be a valuable candidate
yielding another discriminator. These discriminators, referred to as Doctor, are
introduced below.

Definition 2 (Doctor). For any 0 ă γ ă 8 and x P X , define the following
discriminators:

Dαpx, γq
def
“ 1 rpgpxq ą γ ¨ pgpxqs , (3.11)

Dβpx, γq
def
“ 1

”

pPepxq ą γ ¨ p1 ´ pPepxqq

ı

. (3.12)

Notice that because of Definition 2 and (3.8), Dαpx, γq “ 1r1 ´
ř

yPY softmax2
pxqy ą γ ¨

ř

yPY softmax2
pxqys; similarly because of Definition 2

and eq. (2.2), Dβpx, γq “ 1r1 ´ maxyPY softmaxpxqy ą γ ¨ maxyPY softmaxpxqys.
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The performance of these discriminators will be investigated and compared to
state-of-the-art methods in the next section. In the Supplementary material
(Appendix A.2), we illustrate how Doctor and the optimal discriminator (Def-
inition 1) work on a synthetic data model that is a mixture of two spherical
Gaussians with one component per class.

3.3 Evaluation

3.4 Experimental Results

In this section we present a collection of experimental results to investigate the
effectiveness of Doctor, by applying it to several benchmark datasets. We pro-
vide publicly available code1 to reproduce our results, and we give further details
on the environment, the parameter setting and the experimental setup in the
Supplementary material (Appendix A.3). We propose a comparison with state-
of-the-art methods using similar information. Though we are not concerned with
the OOD detection problem, we are confident it is appropriate to compare Doc-

tor to methods which use soft-probabilities or at most the output of the latent
code, e.g., ODIN [LLS18], softmax response (SR) [GE17] and Mahalanobis dis-
tance (MHLNB) [LLLS18b]. Since we are focusing on misclassification detection,
it is expected that OOD samples should be also detected as classification errors.

Totally Black Box (TBB) and Partially Black Box (PBB). We ad-
dress two different scenarios with respect to the available information about the
network. In the TBB only the output of the last layer of the network is available,
hence gradient-propagation to perform input pre-processing is not allowed. In the
PBB we allow method-specific inputs perturbations. When considering Doctor

in PBB, for each testing sample x, we calculate the pre-processed sample rx by
adding a small perturbation:

rxα
“ x ´ ϵ ˆ sign

„

´∇x log

ˆ

1 ´ pgpxq

pgpxq

˙ȷ

,

rxβ
“ x ´ ϵ ˆ sign

«

´∇x log

˜

pPepxq

1 ´ pPepxq

¸ff

.

1https://github.com/doctor-public-submission/DOCTOR/

https://github.com/doctor-public-submission/DOCTOR/
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We will write directly rx when it is clear from the context which input pre-
processing we are referring to. In Supplementary material (Appendix A.3.2)
we further analyze the equations above. When ODIN or MHLNB are used, we
pre-process the inputs as in [LLS18] and in [LLLS18b], respectively.

3.4.1 Review of related methods

PBB. We compare Doctor (using input pre-processing and temperature scal-
ing) with ODIN and MHLNB. ODIN [LLS18] comprises temperature scaling and
input pre-processing via perturbation. Temperature scaling is applied to its scor-
ing function, which has fiprxq for the logit of the i-th class. Formally, given an
input sample x:

SODINprxq “ max
i“r1:Cs

exppfiprxq{T q
řC

j“1 exppfjprxq{T q
,

ODINprx; δ, T, ϵq “

$

&

%

out, if SODINprxq ď δ

in, if SODINprxq ą δ,

where rx represents a magnitude ϵ perturbation of the original x; T is the tem-
perature scaling parameter; δ P r0, 1s is the threshold value; in indicates the
acceptance decision while out indicates the rejection decision. Notice, however, γ
in Doctor and δ in ODIN, respectively, are defined over two different domains:
if δ denotes a probability, γ is a ratio between probabilities. Although ODIN
originally required tuning the hyper-parameter T with out-of-distribution data,
it was also shown that a large value for T is generally desirable, suggesting that
this gain is achieved at 1000. Anyway, in this framework, we notice an improve-
ment of ODIN in performance for low values of T . Thus we report the best results
obtained by ODIN considering the range of hyper-parameters values tested also
for Doctor (cf. Section 3.4.3). ENERGY [LWOL20] comprises the denominator
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of the softmax activation:

ESpxq “ ´T ¨ log
C
ÿ

j“1

exppfjpxq{T q,

ENERGYpx; ξ, T q “

$

&

%

out, if ´ ESpxq ď ξ

in, if ´ ESpxq ą ξ,

where ξ P R is the threshold value. Unlike all the methods considered in this
paper, MHLNB [LLLS18b] requires the knowledge of the training set Dn which
the pre-trained network was trained on to compute its empirical class mean pµc

for each class c and its empirical covariance pΣ:

pµc “
1

nc

ÿ

i: yi“c

fprxiq; pΣ “
1

n

ÿ

cPY

ÿ

@i: yi“c

pfprxiq ´ pµcqpfprxiq ´ pµcq
J,

where nc denotes the number of training samples with label c and fprxq the log-
its vector. As MHLNB directly uses the vector of logits, it does not comprise
temperature scaling. Given an input sample x:

Mprxq “ max
cPY

´pfprxq ´ pµcq
J
pΣ´1

pfprxq ´ pµcq,

MHLNBprx; ζ, ϵq “

$

&

%

out, if Mprxq ą ζ

in, if Mprxq ď ζ,

as mentioned above, rx represents a magnitude ϵ perturbation of the original x;
ζ P R` is the threshold value; in indicates the acceptance decision while out

indicates the rejection decision.
TBB. We compare Doctor (without input pre-processing and temperature

scaling) with MHLNB (without input pre-processing and with the softmax output
layer in place of the logits) and SR. Although both Doctor and SR have access
to the softmax output of the predictor, a fundamental difference is that, while
the former utilizes the softmax output in its entirety, the latter only uses the
maximum value, therefore discarding potentially useful information. As it will be
shown, this leads to better results for Doctor on several datasets (see Table 3.1).
We emphasize that, by setting T “ 1 and ϵ “ 0, ODIN reduces to softmax
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response [GE17] since SRpxq ” SODINpxq.

3.4.2 Detection of misclassification errors, experimental setup and
evaluation metrics

Before digging into the detailed discussion of our numerical results, we present
an empirical analysis of the behavior of Doctor, ODIN, SR and MHLNB when
faced with the task of choosing whether to accept or reject the prediction of a given
classifier for a certain sample. In Figure 3.1, we propose a graphical interpretation
of the discrimination performance, considering the labeled samples in the dataset
TinyImageNet and the ResNet network as the classifier. We separate correctly
and incorrectly classified samples according to their true labels in blue and in
red, respectively. We remind that the label information is not necessary for
the discriminators to define acceptance and rejection regions. Then, for each
sample we compute the corresponding discriminators’ output. These values are
binned and reported on the horizontal axis of Figure 3.1a and Figure 3.1b for
Dα, Figure 3.1c and Figure 3.1d for Dβ, Figure 3.1e for SR, Figure 3.1f for
ODIN, Figure 3.1g and Figure 3.1h for MHLNB. In each each plot, and according
to the corresponding discriminator, the bins’ heights represent the frequency of
the samples whose value falls within that bin. The intuition is that, if moving
along the horizontal axis it is possible to pick a threshold value such that, w.r.t.
this value, blue bars are on one side of the plot and red bars on the other, this
threshold would correspond to the optimal discriminator, i.e. the discriminator
that chooses the optimal acceptance and rejection regions.

In Figure 3.1g through Figure 3.1h, we observe that, for MHLNB, no matter
how well we choose the threshold value, it is hard to fully separate red and blue
bars both in TBB and PBB, i.e. the discriminator fails at defining acceptance
and rejection regions so that all the hits can be assigned to the first one and all
the mis-classification to the second one. The samples distribution for SR and
ODIN in Figure 3.1e and Figure 3.1f, respectively, does not look significantly
different from the one related to Dα and Dβ in TBB (Equation (3.11)). However,
the discrimination between samples becomes evident in PBB. This is shown in
Figure 3.1d for Dβ (eq. (3.11)) and even more in Figure 3.1b for Dα (eq. (3.11))
where, quite clearly, rightly classified samples are clustered on the left-end side of
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the plot and incorrectly classified samples tend to cluster on the right-end side.
This intuition is supported by the results in Table 3.1.

(a) Dα - TBB (b) Dα - PBB (c) Dβ - TBB (d) Dβ - PBB

(e) SR - TBB (f) ODIN - PBB (g) MHLNB - TBB (h) MHLNB - PBB

Figure 3.1: DOCTOR, ODIN, SR and MHLNB to split data samples in
TinyImageNet both under TBB and PBB. (a) - (b) show the results for expres-
sions (2.2); (c) - (d) show the results for (3.8); (e) shows the results for SR; (f) shows
the results for ODIN; (g) - (h) show the results for MHLNB. Histograms for wrongly
classified samples (red) and correctly classified samples (blue).

Datasets and pre-trained networks. We run experiments on both im-
age and textual datasets. We use CIFAR10 and CIFAR100 [Kri09], TinyIm-
ageNet [JWX17] and SVHN [NWC`11] as image datasets; IMDb [MDP`11],
AmazonFashion and AmazonSoftware [NLM19] as textual datasets. Note that,
for all the aforementioned datasets, we consider only the test set since we rely
on pre-trained models. Along the same lines of [LLS18], we use the pre-trained
DenseNet models [HLW16] for CIFAR10, CIFAR100 and SVHN. In addition,
we use a pre-trained ResNet model [HZRS16] for TinyImageNet, and BERT
[DCLT19, WDS`20] for the Amazon datasets and IMDb. The accuracy achieved
by the aforementioned networks on the test sets is showed in Table 3.1. According
to the invariant properties of the discriminator (see Def. 2) with respect to the
soft-probability of the underlying model, permutations of the posterior probabil-
ities vector, due different initialization of the models before the training, do not
change the output of Eq. (3.7), as it is a sum of squared values of the softmax
probabilities. This variety of models/datasets characterizes the performance of
the proposed method in scenarios with different accuracy levels.

Evaluation metrics. We will evaluate the performance according to Propo-
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sition (1) via the empirical estimates of Type-I and Type-II errors in expressions
(3.2). Throughout this section, when the model’s decision for a sample is correct
(hit) but is rejected by the discriminator, we refer to such event as false rejection;
when the model’s decision for a sample is not correct (miss) and is rejected by
the discriminator, we refer to such event as true rejection. Similarly, we refer to
a false acceptance when a miss is not rejected and to a true acceptance when a
hit is not rejected. More specifically, let Tm “ tpx1, y1q, . . . , pxm, ymqu „ pXY be
the testing set, where xi P X is the input sample, yi P t1, . . . , Cu is the true class
of xi, and m denotes the size of the testing set. With j P tα, βu:

FRjpγq “ tpx, yq P Tm : y “ gθpxq, Djpx, γq “ 1u, (3.13)

T Rjpγq “ tpx, yq P Tm : y ­“ gθpxq, Djpx, γq “ 1u, (3.14)

FAjpγq “ tpx, yq P Tm : y ­“ gθpxq, Djpx, γq “ 0u, (3.15)

T Ajpγq “ tpx, yq P Tm : y “ gθpxq, Djpx, γq “ 0u . (3.16)

We measure the performance of the test in terms of:

• FRR versus TRR. The false rejection rate (FRR) represents the prob-
ability that a hit is rejected, while the true rejection rate (TRR) is the
probability that a miss is rejected.

• AUROC. The area under the Receiver Operating Characteristic curve
(ROC) [DG06a] depicts the relationship between TRR and FRR. The per-
fect detector corresponds to a score of 100%.

• FRR at 95 % TRR. This is the probability that a hit is rejected when
the TRR is at 95 %.

3.4.3 Experimental results: comparison between different discrimina-
tors

Doctor: comparison between Dα and Dβ. We compare the discriminators
Dα and Dβ introduced in (3.11) to show how the AUROCs for CIFAR10, CI-
FAR100, TinyImageNet and SVHN change when varying the parameters T and
ϵ. It is observed that Dα is less sensitive to the selection of T : for all the datasets,
Dα outperforms Dβ achieving the best AUROCs by setting T “ 1. Contrary to
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Dα, Dβ is more sensitive to the value selected for T in the sense that small
changes may result in very different values for the measured AUROCs (cf. Ap-
pendix A.3.4). In contrast,the best results are obtained for the same epsilon
values of Dα and Dβ across all the datasets.

Comparison in TBB. We compare Doctor with MHLNB (without input
pre-processing and with the softmax output in place of the logits) and SR. It
is worth to emphasize that Dα does not coincide (in general) with SR since the
former consists in the sum of squared values of all probabilities involved in the
softmax. To complete the comparison, we include the results for both methods
in Table 3.1.

(a) CIFAR10 - PBB (b) CIFAR100 - PBB (c) Tiny - PBB (d) SVHN - PBB

Figure 3.2: ROC curves. Comparison between Dα (Tα “ 1 and ϵα “ 0.00035),
Dβ (Tβ “ 1.5 and ϵα “ 0.00035), ODIN (TODIN “ 1.3 and ϵODIN “ 0), MHLNB
(TMHLNB “ 1 and ϵMHLNB “ 0.0002) and ENERGY (TENERGY “ 1 and ϵENERGY “ 0).
Red dashed lines mark the 95% threshold of TRR.

Comparison in PBB. We compare Doctor with ODIN, MHLNB and
ENERGY. We keep the same parameter setting for all the methods. In the
case of Doctor and ODIN where temperature scaling is allowed, we test, for
each dataset, 24 different values of ϵ for each of the 11 different values of T , see
(Appendix A.3.4) for the set of ranges. In the case of MHLNB, which directly
uses the logits, we keep T “ 1 and we vary ϵ for each dataset. In the case of
ENERGY, where no perturbation is allowed, we keep ϵ “ 0 and we maintain
T “ 1 (as in [LWOL20]). According to our framework, no validation samples
are available; consequently, in order to be consistent across the datasets, we only
report the experimental settings and values for which, on average, we obtain
favorable results for all the considered domains (cf. Figure 3.2). In order to be
fair, we update ODIN’s parameters from those in [LLS18] to new values which
are more suitable to the task at hand (cf. plots in Appendix A.3.4).

Doctor’s performance compared to ODIN’s, MHLNB’s and ENERGY’s,
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are collected in Table 3.1 and in Figure 3.2. The results in the table show that
noise further improves the performance of Doctor (cf. PBB) up to 1% over
our previous experiments without noise (cf. TBB) in terms of AUROC. The
improvement is even more significant in terms of FRR at 95% TRR: a 4% decrease
is obtained in terms of predictions incorrectly rejected for Doctor when passing
from TBB to PBB . Note that only the softmax output is available when we
consider the pre-trained models for AmazonFashion, AmazonSoftware and IMDb
datasets; therefore, we cannot access any internal layer and test Doctor for
values of T which differ from the default value T “ 1. Consequently, temperature
scaling and input pre-processing cannot be applied in these cases and thus these
datasets cannot be tested in PBB. Moreover, even in TBB, these datasets cannot
be tested through MHLNB and ENERGY since the dataset on which the network
was trained is not available. We provide simulations on how the range of interval
for the different thresholds can affect the results in Appendix A.3.3.

Misclassification detection in presence of OOD samples. We evalu-
ate Doctor’s performance in misclassifcation detection considering a mixture of
both in (Dataset-in) and out-of-distribution (OOD) samples (Dataset-out),
i.e. input samples for which the decision should not be trusted. The results are
compared with ODIN. We test the two methods when one sample to reject out of
five (♣), three (♢) or two (♠) is OOD. The details of the simulations, the consid-
ered dataset, and the complete experimental results are relegated Appendix A.3.4.
In Table 3.2 we report an extract of the results for the PBB scenario in terms of
mean / standard deviation: Doctor achieves, and most of the time outperforms
ODIN’s performance. We emphasize that, even though Doctor is not tuned for
the OOD detection problem, it represents the best choice for deciding whether to
accept or reject the prediction of the classifier also on mixed data scenarios where
the percentage of OOD samples, as long as it is not dominant, can sensitively
vary.
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Table 3.1: Overall results for misclassification detection. For all methods, in
TBB, we set T “ 1 and ϵ “ 0; in PBB we set : ϵα “ ϵβ “ 0.00035, Tα “ 1, Tβ “ 1.5,
ϵODIN “ 0 and TODIN “ 1.3, ϵMHLNB “ 0.0002 and TMHLNB “ 1, ϵENERGY “ 0 and
TENERGY “ 1. In TBB, ODIN and SR coincide (T “ 1 and ϵ “ 0).

DATASET METHOD AUROCÒ% FRRÓ95%%

TBB PBB TBB PBB

CIFAR10
Acc. 95%

Dα 94 95.2 17.9 13.9

Dβ 68.5 94.8 18.6 13.4
ODIN 93.8 94.2 18.2 18.4

SR 93.8 - 18.2 -

MHLNB 92.2 84.4 30.8 44.6

ENERGY - 91.1 - 34.7

CIFAR100
Acc. 78%

Dα 87 88.2 40.6 35.7
Dβ 84.2 87.4 40.6 36.7

ODIN 86.9 87.1 40.5 40.7

SR 86.9 - 40.5 -

MHLNB 82.6 50 66.7 94

ENERGY - 78.7 - 65.4

Tiny
ImageNet
Acc. 63%

Dα 84.9 86.1 45.8 43.3
Dβ 84.9 85.3 45.8 45.1

ODIN 84.9 84.9 45.8 45.3

SR 84.9 - 45.8 -

MHLNB 78.4 59 82.3 86

ENERGY - 78.2 - 63.7

DATASET METHOD AUROCÒ% FRRÓ95%%

TBB PBB TBB PBB

SVHN
Acc. 96%

Dα 92.3 93 38.6 36.6
Dβ 92.2 92.8 39.7 38.4

ODIN 92.3 92.3 38.6 40.7

SR 92.3 - 38.6 -

MHLNB 87.3 88 85.8 54.7

ENERGY - 88.9 - 49.4

Amazon
Fashion
Acc. 85%

Dα 89.7 - 27.1 -

Dβ 89.7 - 26.3 -

SR 87.4 - 50.1 -

Amazon
Software
Acc. 73%

Dα 68.8 - 73.2 -

Dβ 68.8 - 73.2 -

SR 67.3 - 86.6 -

IMDb
Acc. 90%

Dα 84.4 - 54.2 -

Dβ 84.4 - 54.4 -

SR 83.7 - 61.7 -

Table 3.2: Misclassification detection in presence of OOD samples. Same
parameter setting as in Table 3.1 (PBB) for Dα, Dβ , ODIN, ENERGY; as in [LLS18]
for ODINOOD and as in [LLLS18b] for MHLNBWB. Results presented in terms of mean
/ standard deviation.

DATASET-
In

DATASET-
Out

AUROCÒ% FRRÓ95%%

Dα Dβ ODIN ODINood ENERGY MHLNBWB Dα Dβ ODIN ODINood ENERGY MHLNBWB

CIFAR10
♣

iSUN 95.4 / 0.1 95.1 / 0.1 94.6 / 0.1 89.6 / 0 92.4 / 0.1 54.5 / 0.1 14 / 0.5 13.5 / 0.4 17.2 / 0.3 38.9 / 0 32.2 / 0.1 92 / 0.1

Tiny (res) 95.2 / 0.1 94.9 / 0 94.6 / 0.1 89.6 / 0 92.3 / 0.1 56.2 / 0 14 / 0.4 14 / 0.5 17.8 / 0.4 38.9 / 0 32.2 / 0.1 90.3 / 0.2

CIFAR10
♢

iSUN 95.5 / 0.1 95.3 / 0.1 94.9 / 0.1 91.5 / 0 92.9 / 0 54.5 / 0.1 14.4 / 0.6 13.4 / 0.2 16.8 / 0.5 34/ 0.1 27 / 1 92 / 0.2

Tiny (res) 95.4 / 0.1 95 / 0.1 94.8 / 0.1 91.4 / 0 92.8 / 0 56.2 / 0.1 15 / 0.1 14.8 / 0.7 17 / 0.5 34.5 / 0.9 28.8 / 1.9 90 / 0.3

CIFAR10
♠

iSUN 95.6 / 0.1 95.6 / 0 95.4 / 0 93.5 / 0 93.6 / 0.1 54.6 / 0 15.1 / 0.1 13.6 / 0.5 16.1 / 0.2 30.6 / 0.4 25.1 / 0.2 92 / 0.2

Tiny (res) 95.5 / 0.1 95.2 / 0.1 95.1 / 0.1 93.2 93.5 / 0 56.2 / 0.2 14.7 / 0.3 14.8 / 0.5 17.1 / 0.4 31/ 0 25.6 / 0.3 90.2 / 0.1

3.5 Final remarks

Related work

Recent works have shown that the accuracy of a classifier and its ability to output
soft-predictions that represent the estimate of the true posterior can be totally
disjointed [GPSW17, KE16, KL15]. Furthermore, models often tend to be over-
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confident about their decision even when their predictions fail [HAB19, KHH20].
This motivates a novel research area that strives to develop methods to assess
when decisions made by classifiers should or should not be trusted. Although
the detection of OOD samples is a different (domain) problem, it is naturally
expected that samples from a distribution that is significantly different from the
training one cannot be correctly classified. In [LLS18], the authors propose a
method that increases the peakiness of the softmax output by perturbing the in-
put samples and applying temperature scaling [GPSW17, HVD15, Pla00] to the
classifier logits to detect in-distribution samples better. It is worth noticing that
this method requires additional information on the internal structure of the latent
code of the model. A very different approach [HSJK20, LLLS18b] tackles OOD
detection by using the Mahalanobis distance. Although this approach appears
to be more powerful, it also requires additional samples to learn the mean by
class and the covariance matrix of the in-distribution. In [DT18], classifiers are
trained to output calibrated confidence estimates that are used to perform OOD
detection. A related line of research is concerned with the problem of selective
predictions (aka reject options) in deep neural networks. The main motivation
for selective prediction is reducing the error rate by abstaining from prediction
when in doubt while keeping the number of correctly classified samples as high
as possible [GKS21, GE17, GE19]. The idea is to combine classifiers with rejec-
tion functions by observing the classifiers’ output, without supervision, to decide
whether to accept or reject the classification outcome. In [GE17], the authors
introduce softmax response, a rejection function which compares the maximum
soft-probability to a pre-determined threshold to decide whether to accept or
reject the class prediction given by the model.

Summary

We introduced a simple and effective method to detect misclassification errors,
i.e., whether a classifier’s prediction should or should not be trusted. We pro-
vided theoretical results on the optimal statistical model for misclassification
detection, and we presented our empirical discriminator Doctor. Experiments
on real (textual and visual) datasets–including OOD samples and comparison to
state-of-the-art methods– demonstrate the effectiveness of our proposed meth-
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ods. Whilst methods for ODD frameworks do not necessarily perform well in
predicting misclassification errors, our result advances the state-of-the-art, and
the main takeaway is that Doctor can be applied to both partially black-box
(PBB) setups and totally black-box (TBB) ones. In the latter, information about
the model’s architecture may be undisclosed for security reason when dealing with
sensitive data). Doctor uses all the information in the softmax output, which
results in equal or better performance with respect to the other methods: the
results in PBB, where we observe a reduction up to 4% in terms of predictions
incorrectly rejected with respect to the ones in TBB are particularly promising.
Moreover, Doctor does not require training data and, thanks to its flexibility,
it can be easily deployed in real-world scenarios. Currently, Doctor does not
exploit information across the layers yet. Only the soft-predictions are used. Be-
sides, the most important obstacle is the calibration of the threshold (γ) between
the desired fault rejection and acceptance rates, which would require additional
validation samples. However, quite often, the cost of collecting data for this op-
eration can be prohibitive, making it difficult or too expensive to perform such
calibration. As future work, we shall combine Doctor with other related lines of
research such as the extension to white-box incorporating additional information
across the different latent codes of the model. Moreover, we shall investigate the
possibility of combining the two proposed discriminators.



Part II

Multi-Armed Adversarial Attack
Detection
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CHAPTER4
Mead: A Multi-Armed Approach

for Evaluation of Adversarial
Examples Detectors

In this chapter we tackle the problem of adversarial attacks detection in a multi-
armed framework, i.e. when the attacks at the evaluation time can be simulta-
neously crafted according to a variety of algorithms and objective loss functions.

We propose Mead, a novel multi-armed evaluation framework for adversarial
examples detectors involving several attackers to ensure that the detector is not
overfitted to a particular attack strategy. The proposed metric is based on the
following criterion. Each adversarial sample is correctly detected if and only if all
the possible attacks on it are successfully detected. We show that this approach is
less biased and yields a more effective metric than the one obtained by assuming
only a single attack at evaluation time (cf. Section 4.3).

We make use of three new objective functions which, to the best of our knowl-
edge, have never been used for the purpose of generating adversarial examples at
testing time. These are KL divergence, Gini Impurity and Fisher-Rao distance.
Moreover, we argue that each of them contributes to jointly creating competitive
attacks that cannot be created by a single function (cf. Section 4.1).

We perform an extensive numerical evaluation of state-of-the-art (SOTA) and
uncover their limitations, suggesting new research perspectives in this research
line (cf. Section 4.4).

41
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4.1 Generating adversarial examples according to different

objectives

We recall the adversarial problem introduced in Section 2.2.1. Let us consider
a natural sample x P X together with its true label y P Y . An attacker tar-
gets the model gθ by crafting a sample x1

ℓ P Rd according to an objective loss
function ℓpx,x1

ℓ; θq which is denoted by ℓ, perturbation magnitude ε, and norm
constraint Lp, p P t1, 2,8u. The goal of the attack is to obtain an x1

ℓ such that
gθpx

1
ℓq ‰ gθpxq, in order to force the target model to make a prediction error. The

adversarial generation problem is commonly relaxed as follows

xℓ
1

” xℓ
1
pxq “ argmax

xℓ
1PRd : ∥xℓ

1´x∥păε

ℓpx,xℓ
1; θq, (4.1)

where x1
ℓ is updated iteration by iteration starting from an initial given value.

The objective function ℓ traditionally used is the Adversarial Cross-Entropy
(ACE) [SZS`14, MMS`18]:

ℓACEpx,xℓ
1; θq “ EY |x

“

´ log p
pY |XpY |x1

ℓ; θq
‰

, (4.2)

where the expectation is understood to be over the ground true conditional dis-
tribution of Y given x. Inspired by recent development in the fields of robustness
and misclassification detection [GRG`21, PMB`22, ZYJ`19], we include in our
study recently proposed objective functions which generate diversified adversarial
examples and that we briefly recall below.

• The Kullback-Leibler divergence (KL):

ℓKL px,xℓ
1; θq “ E

pY |x;θ

«

log

˜

p
pY |XppY |x; θq

p
pY |XppY |x1

ℓ; θq

¸ff

. (4.3)

• The Fisher-Rao objective (FR) [PMB`22]:

ℓFRpx,xℓ
1; θq “ 2 arccos

˜

ÿ

yPY

b

p
pY |Xpy|x; θqp

pY |Xpy|x1
ℓ; θq

¸

. (4.4)
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(a) Pre-trained classifier (b) Detector trained on ACE

(c) Pre-trained classifier (d) Detector trained on Gini

Figure 4.1: ACE vs. Gini Impurity. Decision boundary for the binary classifier
4.1a-4.1c: the decision region for class 1 is green, the decision region of class 0 is pink.
The natural testing samples belonging to class 0 are reported in blue, the corresponding
adversarial examples crafted using ACE (4.1a) and Gini Impurity (4.1c) in red. Decision
boundary of the detectors 4.1b-4.1d: B, the decision region of the natural examples;
Aℓ, reported in red shades, the decision region of the adversarial examples when the
detector is trained on data points crafted via ℓ P tACE, Giniu as objective. The darker
shades stand for higher confidence. The red points represent the adversarial examples
created with the opposite loss (respectively ℓ P tGini, ACEu).

• The Gini Impurity score (Gini) [GRG`21]:

ℓGinip¨,xℓ
1; θq “ 1 ´

d

ÿ

yPY
p2
pY |X

py|x1
ℓ; θq. (4.5)

Interestingly, Ginipxq corresponds to the function 1 ´
a

pgpxq presented
in Chapter 3.

4.2 A case study: ACE vs. Gini Impurity

In Figure 4.1 we provide insights on why we need to evaluate the detectors on
attacks crafted through different objectives. We create a synthetic dataset that
consists of 300 data points drawn from N0 “ N pµ0, σ

2Iq and 300 data points
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drawn from N1 “ N pµ1, σ
2Iq, where µ0 “ r1 1s, µ1 “ r´1 ´ 1s and σ “ 1. To

each data point x is assigned true label 0 or 1 depending on whether x „ N0

or x „ N1, respectively. The data points have been split between the training
set (70%) and the testing set (30%). We finally train a simple binary classifier
with one single hidden layer and a learning rate of 0.01 for 20 epochs. We attack
the classifier by generating adversarial examples with PGD under the L8-norm
constraints with ε “ 1.2 for the ACE attacks and ε “ 5 for the Gini Impurity
attacks to have a classification accuracy (classifier performance) of 50% on the
corrupted data points. In Figure 4.1a-4.1c we plot the decision boundary of the
binary classifier together with the adversarial and natural examples belonging
to class 0. As can be seen, ACE creates points that lie in the opposite decision
region with respect to the original points (Fig. 4.1a). Conversely, Gini Impurity
tends to create new data points in the region of maximal uncertainty of the
classifier (Fig. 4.1c). Consider the scenario where we train a simple Radial
Basis Function (RBF) kernel SVM on a subset of the testing set of the natural
points together with the attacked examples, generated with the ACE or the Gini
Impurity score depending on the case (Fig. 4.1b-4.1d). We then test the detector
on the data points originating with the opposite loss, Figure 4.1b and Figure 4.1d
respectively. The decision region of the detector for natural examples is in blue,
and the one for the adversarial examples is in red. The intensity of the color
corresponds to the level of certainty of the detector. The detector’s accuracy on
natural and adversarial data points decreases from 71% to 62% when changing to
the opposite loss in Fig. 4.1b, and from 87% to 63% in Fig. 4.1d. Hence, testing
on samples crafted using a different loss in Eq. (2.4) means changing the attack
and, consequently, evaluating detectors without considering this possibility leads
to a more biased and unrealistic estimation of their performance. When the
detector is trained on the adversarial examples created with both the losses, the
accuracy is 79.8% when testing on Gini and 66.3% when testing on ACE, which
is a better trade-off in adversarial detection performances.

The aforementioned losses will be included in the following section to de-
sign Mead, our multi-armed evaluation framework, a new method to evaluate
the performance of adversarial detection with low bias.
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4.3 Evaluation with a Multi-Armed Attacker

x A

ε “ 5 p “ 1

PGDACEpxq
All Attacks

PGDKLpxq

PGDFRpxq

PGDGinipxq

Perturbed
Examples

PGDℓpxq if
1 rfθ px1

ℓq ­“ ys

Adversarial
Examples

Sifter

y

γ

´

PGDKLpxq

PGDFRpxq

PGDGinipxq

DETECTOR

d

d

1

1

1

0

Adversarial decision:
the attacks are
all correctly
detected as
adversarial,

TP. Otherwise
FN, if d

outputs at
least one 0.

Natural decision:
the sample is

correctly
detected as
natural, TN.

Otherwise FP,
if d outputs 1.

Figure 4.2: Mead workflow: x is the natural example, ε “ 5 is the perturbation
magnitude, L1 is the norm. From the set of all the possible existing attacks A we
consider the ones using PGD. The sifter discards all the perturbed samples that do not
fool the classifier gθ. d is the detector.

The proposed evaluation framework, Mead, consists in testing an adversarial
examples detection method on a large collection of attacks grouped w.r.t. the Lp-
norm and the maximal perturbation ε they consider. Each given natural input
example is perturbed according to the collection of attacks. Note that, for every
attack, a perturbed example is considered adversarial if and only if it fools the
classifier. Otherwise, it is discarded and will not influence the evaluation. We
then feed all the natural and successful adversarial examples to the detector and
gather all the predictions. Finally, based on the detection decisions, we evaluate
the detector according to a worst-case scenario:
i) Adversarial decision: for each natural example, we gather all the successful
adversarial examples. If the detector detects all of them, then the perturbed
sample is considered correctly detected (i.e., it is a true positive). However, if the
detector misses at least one of them, the noisy sample is considered undetected
(i.e., it is a false negative).
ii) Natural decision: for each natural sample, if the detector does not detect it,
then the sample is considered correctly non-detected (i.e., it is a true negative);
otherwise it is incorrectly detected (i.e., it is a false positive).

Specifically, let Dm “ tpxi, yiqumi“1 „ pXY be the testing set of size m, where
xi P X is the natural input sample and yi P Y is its true label. Let d: X ˆ R Ñ
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t0, 1u be the detection mechanism and aℓ : X ˆ R ˆ t1, 2,8u Ñ X the attack
strategy according to the objective function ℓ P L within a selected collection
of objectives L as described in Section 4.1. For every considered Lp-norm, p P

t1, 2,8u, maximal perturbation ε P R, and every threshold γ P R1:

Tpε,ppγq “

!

px, yq P Dm : @ℓ P L tgθ
`

aℓpxq
˘

‰ yu ^ td
`

aℓpxq, γ
˘

“ 1u

)

(4.6)

FNε,ppγq “

!

px, yq P Dm : Dℓ P L tgθ
`

aℓpxq
˘

‰ yu ^ td
`

aℓpxq, γ
˘

“ 0u

)

(4.7)

TNε,ppγq “ tpx, yq P Dm : dpx, γq “ 0u (4.8)

Fpε,ppγq “ tpx, yq P Dm : dpx, γq “ 1u. (4.9)

In Fig. 4.2 we provide a graphical interpretation of Mead when the perturbation
magnitude and the norm are fixed.

4.4 Experiments

In this section, we assess the effectiveness of the proposed evaluation framework,
Mead. The code is available at https://github.com/meadsubmission/MEAD.

4.4.1 Experimental setting

Evaluation metrics.
For each Lp-norm and each considered ε, we apply our multi-armed detection
scheme. We gather the global result considering all the attacks and all the ob-
jectives. Moreover, we also report the results per objective. The performance is
measured in terms of the AUROCÒ% [DG06b] and in terms of FPRÓ95%%. The
first metric is the Area Under the Receiver Operating Characteristic curve and
represents the ability of the detector to discriminate between adversarial and nat-
ural examples (higher is better). The second metric represents the percentage of
natural examples detected as adversarial when 95 % of the adversarial examples
are detected, i.e., FPR at 95 % TPR (lower is better).

1With an abuse of notation, @ℓ P L stands for all the considered attack mechanisms for
specific values of ε, p within a collection of objectives L.

https://github.com/meadsubmission/MEAD
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CIFAR10 Mead ACE KL Gini FR

NSS AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

L1 Average 62.9 81.6 67.4 75.7 67.1 76.0 67.8 78.2 67.6 75.6
L2 Average 64.0 82.0 68.7 71.0 68.5 70.9 65.1 82.0 68.6 71.1
L8 Average 71.9 62.0 76.9 40.1 77.2 39.5 73.7 59.6 74.1 57.2
No norm 88.5 38.8 88.5 38.8 88.5 38.8 88.5 38.8 88.5 38.8

KD-BU AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

L1 Average 50.9 95.7 70.0 88.6 70.0 88.4 74.3 92.3 69.8 88.4
L2 Average 59.0 94.1 71.6 71.9 71.7 71.6 70.6 92.8 71.7 71.8
L8 Average 36.8 96.9 64.8 92.1 68.1 91.3 53.7 95.6 67.8 91.7
No norm 65.4 94.2 65.4 94.2 65.4 94.2 65.4 94.2 65.4 94.2

LID AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

L1 Average 50.8 95.4 69.6 82.1 69.4 82.9 88.9 49.9 69.1 83.7
L2 Average 63.5 83.1 73.7 70.1 73.4 70.7 82.5 61.3 73.2 71.3
L8 Average 53.8 90.8 75.7 56.8 79.9 57.6 71.3 79.7 82.0 51.4
No norm 88.0 58.1 88.0 58.1 88.0 58.1 88.0 58.1 88.0 58.1

FS AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

L1 Average 75.4 64.8 92.8 25.1 92.9 24.9 73.5 67.6 92.9 24.6
L2 Average 74.9 65.8 87.4 31.2 87.6 36.9 73.7 67.2 87.4 37.5
L8 Average 52.7 81.1 73.0 60.1 77.5 55.7 58.2 78.8 75.7 58.5
No norm 62.7 82.5 62.7 82.5 62.7 82.5 62.7 82.5 62.7 82.5

MagNet AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

L1 Average 49.6 93.7 49.8 93.5 49.7 93.3 50.1 93.2 49.1 93.8
L2 Average 50.9 93.1 52.3 89.6 52.3 89.4 50.5 93.3 51.8 91.4
L8 Average 78.0 46.1 79.2 44.6 80.2 44.1 79.2 44.6 80.0 44.6
No norm 79.9 45.7 79.9 45.7 79.9 45.7 79.9 45.7 79.9 45.7

Table 4.1: Average performance on CIFAR10 of all the detectors per objec-
tive and in Mead. The worst results among all the settings is in bold; the ones in
the single-armed setting is underlined. No norm denotes the group of attacks that do
not depend on the norm constraint.

MNIST Mead ACE KL Gini FR

NSS AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

L1 Average 96.8 9.4 97.0 8.2 97.1 8.6 97.4 7.0 97.1 8.1
L2 Average 90.3 26.5 90.7 25.8 90.8 25.4 91.4 23.7 90.6 26.5
L8 Average 88.7 23.5 89.5 23.5 89.5 23.6 90.0 23.6 89.8 23.5
No norm 87.1 57.8 87.1 57.8 87.1 57.8 87.1 57.8 87.1 57.8

KD-BU AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

L1 Average 45.6 95.7 59.9 93.0 59.3 93.1 61.4 92.7 58.9 93.3
L2 Average 50.3 94.8 59.9 93.0 59.7 93.1 59.3 93.2 59.8 93.0
L8 Average 34.1 96.7 42.8 96.0 44.7 95.8 48.6 95.3 44.9 95.8
No norm 76.0 88.2 76.0 88.2 76.0 88.2 76.0 88.2 76.0 88.2

LID AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

L1 Average 79.9 54.9 83.7 48.2 84.0 50.0 90.4 52.1 84.1 50.2
L2 Average 85.6 46.2 87.4 44.1 87.0 45.1 87.6 44.4 86.1 45.4
L8 Average 77.9 55.1 83.3 46.3 83.6 47.8 88.7 38.8 83.0 49.5
No norm 98.1 8.2 98.1 8.2 98.1 8.2 98.1 8.2 98.1 8.2

FS AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

L1 Average 79.8 66.8 83.4 57.6 83.5 57.1 83.2 53.0 83.4 57.4
L2 Average 73.5 69.0 75.6 65.0 75.5 65.4 74.5 67.0 74.7 65.7
L8 Average 76.4 63.5 80.8 54.6 80.2 54.6 79.0 58.7 80.4 58.2
No norm 61.5 85.9 61.5 85.9 61.5 85.9 61.5 85.9 61.5 85.9

MagNet AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

L1 Average 98.1 5.7 98.2 5.4 98.3 5.6 98.3 5.2 98.1 5.6
L2 Average 90.0 28.7 90.6 27.6 90.8 27.8 90.6 29.1 89.7 28.1
L8 Average 98.5 10.3 98.5 10.3 98.4 10.6 98.5 10.5 98.5 10.4
No norm 86.9 74.3 86.9 74.3 86.9 74.3 86.9 74.3 86.9 74.3

Table 4.2: Average performance on MNIST of all the detectors per objective
and in Mead. The worst results among all the settings is in bold; the ones in the
single-armed setting is underlined. No norm denotes the group of attacks that do not
depend on the norm constraint.
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Supervised Methods Unsupervised Methods
NSS KD-BU LID FS MagNet

AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

MNIST 90.7 29.3 51.5 93.9 85.4 41.1 72.8 71.3 93.4 29.8
CIFAR10 71.8 66.1 53.0 95.2 64.0 81.8 66.4 73.6 64.6 69.7

Table 4.3: Performances of each detection method under the Mead frame-
work on CIFAR10 and MNIST averaged over the norm-based constraint.
The best results among all the methods is in bold; the ones per type of detection
method (i.e. Supervised and Unsupervised) are underlined.

Datasets and classifiers.

We run the experiments on MNIST [LCB10] and CIFAR10 [Kri09]. The under-
lying classifiers are a simple CNN for MNIST, consisting of two blocks of two
convolutional layers, a max-pooling layer, one fully-connected layer, one dropout
layer, two fully-connected layers, and ResNet-18 for CIFAR10. The training pro-
cedures involve 100 epochs with Stochastic Gradient Descent (SGD) optimizer
using a learning rate of 0.01 for the simple CNN and 0.1 for ResNet-18; a mo-
mentum of 0.9 and a weight decay of 10´5 for ResNet-18. Once trained, these
networks are fixed and never modified again.

Grouping attacks.

We test the methods on the attacks presented in Section 2.2.3, and we present
them based on the norm constraint used to construct the attacks.Under the L1-
norm fall PGD with ε in t5, 10, 15, 20, 25, 30, 40u. Under the L2-norm fall PGD
with ε in t0.125, 0.25, 0.3125, 0.5, 1, 1.5, 2u, CW with ε “ 0.01, HOP with ε “ 0.1,
and DF which has no constraint on ε. Under the L8-norm fall FGSM, BIM and
PGD with ε in t0.0315, 0.0625, 0.125, 0.25, 0.3125, 0.5u, CW with ε “ 0.3125, and
SA with ε “ 0.3125 for MNIST and ε “ 0.125 for CIFAR10. Finally, ST is not
constrained by a norm or a maximum perturbation, as it is limited in maximum
rotation (30 for CIFAR10 and 60 for MNIST) and translation (8 for CIFAR10
and 10 for MNIST).

Detection Methods.

We tested detection methods introduced in Section 2.2.4. In the supervised case,
we train the detectors using adversarial examples created by perturbing the sam-
ples in the original training sets with PGD under L8-norm and ε “ 0.03125. In
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the unsupervised case, the detectors only need natural samples in the training
sets. They are tested on all the previously mentioned attacks, generated on the
testing sets.

4.4.2 Experimental results

In this section, we refer to single-armed setting when we consider the setup where
the adversarial examples are generated w.r.t. one of the objectives in Section 4.1.
We provide the average of the performances of all the detection methods on
CIFAR10 in Table 4.1 and on MNIST in Table 4.2. The detailed tables for each
detection method (i.e., NSS, LID, KD-BU, MagNet, and FS) and for each dataset
(i.e., CIFAR10 and MNIST) are reported in Appendix B.1.

Mead and the single-armed setting.

Table 4.1 shows a decrease in the performance of all the detectors when going
from the single-armed setting to Mead. NSS is the more robust among the su-
pervised methods when passing from the single-armed setting to the proposed
setting. Indeed, (cf Table 4.1), in terms of AUROCÒ%, it registers a decrease of
up 4.9 percentage points under the L1-norm constraint, 4.7 under the L2-norm
constraint, and 5.3 under the L8-norm constraint. This can be explained by the
fact that the network in NSS is trained on the natural scene statistics extracted
from the trained samples differently from the other detectors. In particular, these
statistical properties are altered by the presence of adversarial perturbations and
hence are found to be a good candidate to determine if a sample is adversarial
or not. By looking closely at the results for NSS in Table B.2, it comes out that
it performs better when evaluated on L8 norm constraint. Indeed, in this case,
the adversarial examples at testing time are similar to those used at training
time. Not surprisingly, the performance decreases when evaluated on other kinds
of attacks. Notice that, in the single-armed setting, all the supervised methods
turn out to be much more inefficient than when presented in the original papers.
Indeed, as already explained in Section 4.4.1, we train the detectors using adver-
sarial examples created by perturbing the samples in the original training sets
with PGD under L8-norm and ε “ 0.03125, and then we test them on a variety
of attacks. Hence, we do not train a different detector for each kind of attack seen
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at testing time. On the other side, the unsupervised detector MagNet appears to
be more robust than FS when changing from the single-armed setting to Mead.
Indeed, in terms of AUROCÒ%, it loses at most 2.2 percentage points (L8 norm
case). On average, FS is the unsupervised detector that achieves the best per-
formance on CIFAR10, while MagNet is the one to achieve the best performance
on MNIST.

Remark: Some single-armed setting results turn out to be worse than the corre-
sponding results in Mead (cf Table B.2-B.6 and Table B.8-B.12 in Appendix B.1).
We provide here an explanation of this phenomenon. Given a natural input sam-
ple x, let xℓ denotes the perturbed version of x according to some fixed norm p,
fixed perturbation magnitude ε and objective function ℓ between ACE, KL, Gini
and FR. Suppose gθpxACEq “ y, where y is the ground true label of x, this means
that xACE is a perturbed version of the natural example but not adversarial. As-
sume instead gθpxKLq ­“ y, gθpxGiniq ­“ y and gθpxFRq ­“ y. If at testing time the
detector is able to recognize all of them as being positive (i.e., adversarial), then
under Mead, xKL,xGini,xFR would be considered a true positive. This example,
counting as a true positive under Mead, would instead be discarded under the
single-armed setting of ACE, as xACE is neither a clean example nor an adversar-
ial one. Then, the larger amount of true positives in Mead can potentially lead
to an increase in the global AUROCÒ%.

Effectiveness of the proposed objective functions.

In Table B.1 and Table B.7, relegated to the Appendix, we report the averaged
number of successful adversarial examples under the multi-armed setting as well
as the details per single-armed settings on CIFAR10 and MNIST, respectively.
The attacks are most successful when the value of the constraint ε for every Lp-
norm increases. Generating adversarial examples using the ACE for each attack
scheme creates more harmful (adversarial) examples for the classifier than using
any other objective. However, using either the Gini Impurity score, the Fisher-
Rao objective, or the Kullback-Leibler divergence seems to create examples that
are either equally or more difficult to be detected by the detection methods.
For this purpose, we provide two examples. First, by looking at the results
in Table B.4, we can deduce that LID finds it difficult to recognize the attacks
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based on KL and FR objective functions but not the ones created through Gini.
For example, with PGD1 and ε “ 40, we register a decrease in AUROCÒ% of
9.5 percentage points when going from the single-armed setting of Gini to the
one of FR. Similarly, the decrease is 8.3 percentage points in the case of KL.
This behavior is even more remarkable when we look at the results in terms of
FPRÓ95%%: the gap between the best FPRÓ95%% values (obtained via Gini) and
the worst (via FR) is 30.7 percentage points. On the other side, the situation
is reversed if we look at the results in Table B.5 as FS turns out to be highly
inefficient at recognizing adversarial examples generated via the Gini Impurity
score. By considering the results associated to the highest value of ε for each
norm, namely ε “ 40 for L1-norm; ε “ 2 for L2-norm; ε “ 0.5 for L8-norm,
the gap between best FPRÓ95%% values (obtained via KL divergence) and the
worst (via Gini Impurity score), varies from a minimum of 41.7 (L8-norm) to
a maximum of 64.4 (L2-norm) percentage points. This example, in agreement
with Section 4.2, testify on real data that testing the detectors without taking
into consideration the possibility of creating attacks through different objective
functions leads to a biased and unrealistic estimation of their performances.

Comparison between supervised and unsupervised detectors.

The unsupervised methods find it challenging to recognize attacks crafted using
the Gini Impurity score. Indeed, according to Section 4.2, that objective func-
tion creates attacks on the decision boundary of the pre-trained classifier. Conse-
quently, the unsupervised detectors can easily associate such input samples with
the cluster of naturals. Supervised methods detect Adversarial Cross-Entropy
loss-based attacks more and, therefore, more volatile when it comes to other types
of loss-based attacks. Overall, by looking at the results in Table 4.3 on both the
datasets, most of the supervised and unsupervised methods achieve comparable
performances with the multi-armed framework, meaning that the current use of
the knowledge about the specific attack is not general enough. The exception to
this is NSS, which, as already explained, seems to be the most general detector.
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On the effects of the norm and ε.

The detection methods recognize attacks with a large perturbation more easily
than other attacks (cf Table B.2-B.6 and Table B.8-B.12). L8-norm attacks are
less easily detectable than any other Lp-norm attack. Indeed, multiple attacks
are tested simultaneously for a single ε under the L8 norm constraint. For ex-
ample, in CIFAR10 with ε “ 0.3125 and L8, PGD, FGSM, BIM, and CW are
tested together, whereas, with any other norm constraint, only one typology of
attack is examined. Indeed the more attack we consider for a given ε, the more
likely at least one attack will remain undetected. Globally, under the L8-norm
constraint, Gini Impurity score-based attacks are the least detected attacks. How-
ever, each method has different behaviors under L1 and L2. NSS is more sensitive
to Kullback-Leibler divergence-based attacks while MagNet is more volatile to the
Fisher-Rao distance-based attacks. As already pointed out, FS achieves inferior
performance when evaluated against attacks crafted through the Gini Impurity
objective, while the sensitivity of LID and KD-BU to a specific objective depends
on the Lp-norm constraint.

4.5 Final remarks

We introduced Mead a new framework to evaluate detection methods of ad-
versarial examples. Contrary to what is generally assumed, the proposed setup
ensures that the detector does not know the attacks at the testing time and
is evaluated based on simultaneous attack strategies. Our experiments showed
that the SOTA detectors for adversarial examples (both supervised and unsuper-
vised) mostly fail when evaluated in Mead with a remarkable deterioration in
performance compared to single-armed settings. We enrich the proposed evalua-
tion framework by involving three new objective functions to generate adversarial
examples that create adversarial examples which can simultaneously fool the clas-
sifier while not being successfully identified by the investigated detectors. The
poor performance of the current SOTA adversarial examples detectors should be
seen as a challenge when developing novel methods. However, our evaluation
framework assumes that the attackers do not know the detection method. As
future work we plan to enrich the framework to a complete whitebox scenario.



CHAPTER5
A Minimax Approach Against

Multi-Armed Adversarial Attack
Detection

In this chapter, we propose an aggregation framework to combine the expertise of
different adversarial examples detectors and address the problem of simultaneous
attack detection as highlighted in Chapter 4. This method can aggregate pre-
trained detectors without the need for additional training.

From a theoretical perspective, we revisit the multi-armed attack detection
problem formulated in Chapter 4 and formalize it as a minimax cross-entropy
risk. Based on this formulation, we derive a surrogate loss function and use it
to characterize our optimal soft-detector in Eq. (5.5), leading to our proposed
solution.

Empirical evaluations of our proposed solution on popular datasets, such as
CIFAR10 and SVHN, show that it leads to higher and more consistent perfor-
mance compared to the state-of-the-art (SOTA) in the simultaneous attack setup,
even when using simple detectors that individually perform worse than SOTA de-
tectors, as demonstrated in Section 5.2.

53
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5.1 Formalization of the Problem of Detecting multi-armed

Adversarial Attacks

In this section, we begin by formalizing the problem of multi-armed attacks as
proposed in Chapter 4. We then delve deeper into the topic of optimal detectors
and demonstrate how to apply our proposed solution to practical use-cases.

5.1.1 Statistical model

Let K be the countable set of indexes corresponding to each possible attack,
e.g., based on various attack algorithms and loss functions, as described in Sec-
tion 2.2.1. Let M “

␣

P
pkq

XZ : k P K
(

be the set of joint probability distributions
on X ˆ Z which are indexed with k, @k P K, where X is the input (feature)
space and Z “ t0, 1u indicates a binary space label for the adversarial example
detection task. At the evaluation time, the attacker selects an arbitrary strat-
egy k P K and then samples an input according to p

pkq

X|Zpx|z “ 1q which corre-
sponds to the probability density function induced by the chosen attack k where
p

pkq

X|Zpx|z “ 0q “ pXpxq almost surely corresponds to the probability distribution
of the natural samples. The learner is given a set of soft-detectors models:

Q “

!

q
pkq

pZ|u
: U ÞÑ r0, 1s

2
)

kPK
,

which have possibly been trained to detect attacks according to each strategy
k P K, e.g., qpkq

pZ|u
” p

pZ|Upz|u;ψkq with parameters ψk and u P U “ tglθpxq | x P Rdu

denotes the space of logits. The set of possible detectors Q is available to the
defender. However, the specific attack chosen by the attacker at the test time is
unknown. In the remainder of this section, we formally devise an optimal detector
that exploits full knowledge of the set Q.

5.1.2 A novel objective for detection under simultaneous attacks

Consider a fixed input sample x0 and let u0 “ glθpx0q. Clearly, the problem at
hand consists in finding an optimal soft-detector q‹

pZ|u0
that performs well simul-

taneously over all possible attacks in K. This can be formalized as the solution
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to the following minimax problem:

LpQ,x0q “ min
q
pZ|u0

max
kPK

E
q

pkq

pZ|u0

”

´ log q
pZ|u0

ı

, (5.1)

which requires to solve (5.1) for Q and for each given input sample x0. It is impor-
tant to note that the minimization is performed over all (detectors) distributions
q
pZ|u0

, including elements that are not part of the set Q.
That being said, the objective in Eq. (5.1) is not tractable computationally.

To overcome this issue, we derive a surrogate (an upper bound) that can be
computationally optimized. For any arbitrary choice of q

pZ|u0
, we have
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(5.2)

Proof of Eq. (5.2).
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Observe that the first term in (5.2) of the upper bound is constant w.r.t.
the choice of q

pZ|u0
and the second term is well-known as being equivalent to the

average worst-case regret [BRY98]. This upper bound provides a surrogate to
our intractable objective in (5.1) that can be minimized over all q

pZ|u0
. We can

formally state our problem as follows:

L̃pQ,x0q “ min
q
pZ|u0
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q
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,

(5.3)
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where the min is taken over all the possible distributions q
pZ|u0

; and Ω is a discrete
random variable with PΩ denoting a generic probability distribution whose prob-
abilities are pω1, . . . , ω|K|q, i.e., PΩpkq “ ωk; and DKLp¨}¨q is the Kullback–Leibler
divergence, representing the expected value of regret of q

pZ|U w.r.t. the worst-case
distribution in Q.

Proof of Eq. (5.3). The equality hold by noticing that
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and moreover,
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by choosing the random variable Ω̄ with uniform probability over the set of max-

imizers K “ argmaxkPK E
q
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pZ|u0

„

log

ˆ

q
pkq

pZ|u0

q
pZ|u0
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, zero otherwise.

The convexity of the KL-divergence allows us to rewrite Eq. (5.3) as follows:
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q
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Proof of Eq. (5.4). We consider a zero-sum game with a concave-convex map-
ping defined on a product of convex sets. The sets of all probability distri-
butions q

pZ|u0
and PΩ are two nonempty convex sets, bounded and finite di-

mensional. On the other hand,
`
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concave-convex mapping, i.e., PΩ Ñ EΩ
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is concave and
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is convex for every
`

PΩ, q pZ|u0

˘

. Then, by classical
min-max theorem [vN28] we have that Eq. (5.4) holds.

The solution to Eq. (5.4) provides the optimal distribution P ‹
Ω, i.e. the col-
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lection of weights tw‹
ku, which leads to our soft-detector [BRY98]:

pq ‹
pZ|u0

“
ÿ

kPK
w‹

k ¨ q
pkq

pZ|u0
, with P ‹

Ω “ argmax
tωku

Iu0pΩ; pZq, (5.5)

where Iu0p¨; ¨q denotes the Shannon mutual information between the random vari-
able Ω, distributed according to tωku, and the binary soft-prediction variable pZ,
distributed according to qpkq

pZ|u0
and conditioned on the particular test example u0.

Proof of Eq. (5.5). It is enough to show that
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for every random variable Ω distributed according to an arbitrary probability
distribution PΩ and each distribution qpΩq

pZ|u0
. We begin by showing that
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for any arbitrary distributions PΩ and q
pΩq
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. To this end, we use the following

identities:
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ě Iu0pΩ; pZq, (5.7)

where P
pZ denotes the marginal distribution of qpΩq

pZ|u0
w.r.t. PΩ and the last in-

equality follows since the KL divergence is positive. Finally, it is easy to check
that by selecting q

pZ|u0
“ P

pZ the lower bound in (5.7) is achieved which proves
the identity in expression (5.6). By taking the maximum overall probability dis-
tributions PΩ at both sides of expression (5.6) the claim follows.

From theory to our practical detector. According to our derivation
in Eq. (5.5), the optimal detector turns out to be given by a mixture of the
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|K| detectors belonging to the class Q, with weights carefully optimized to max-
imize the mutual information between Ω and the predicted variable pZ for each
detector in the class Q. Using this key ingredient, it is straightforward to devise
our optimal detector.

Definition 3. For any 0 ď γ ď 1 and a given x0 P X , let us define the following
detector D : Rd Ñ t0, 1u:

dpx0q
def
“ 1

”

q ‹
pZ|u0

pẑ “ 1|glθpx0qq ą γ
ı

, (5.8)

where 1 r¨s is the indicator function.

5.2 Experimental Results

We test our proposed solution by deploying it against the multi-armed adversar-
ial attacks framework introduced in Chapter 4, and by evaluating its detection
performance1.

In our empirical evaluation, we assume that a third party provides us with
four simple supervised detectors. Each of them is trained to detect a single spe-
cific kind of attack. This is a reasonable assumption, as many methods in the
literature can successfully detect at least one type of attack and fail at detect-
ing others. In addition, to emphasize the role played by the proposed method,
these detectors are merely shallow networks (3 fully-connected layers with 256
nodes each), which are only allowed to observe the logits of the target classifier
to distinguish between natural and adversarial samples. Due to their specifics,
these individual shallow detectors are bound to perform very poorly, i.e. much
worse than SOTA detectors, against attacks they have not been trained on, as
shown in Fig. 5.3. This aspect enhances the value of our solution, which attains
favorable performance by aggregating detectors that individually exhibit subpar
performance w.r.t. SOTA adversarial examples detection methods.

5.2.1 Evaluation framework

Evaluation setup: Mead. We consider all the attack algorithms mentioned
in Mead Chapter 4, and we group them by the corresponding norm and the

1The source code will be released upon acceptance of the paper this chapter is based on.
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perturbation magnitude. For each natural sample and each gradient-based at-
tack algorithm (i.e., FGSM, PGD or BIM), we create four adversarial exam-
ples, each corresponding to one of the loss functions described in Section 4.1.

Table 5.1: Mead. Each cell corresponds to attacks
simultaneously executed on the targeted classifier. At-
tacks created using all the losses in Section 4.1 are
marked with ‹. Attacks such as SA and DF are not de-
pendent on the choice for the loss but are equally con-
sidered as part of the multi-armed framework. Empty
cells correspond to combinations of perturbation mag-
nitude and norm constraint that are usually not con-
sidered in the literature.

L1 L2 L8 No norm

ε “ 0.01 - CW2 - -

ε “ 0.03125 - - PGDi‹,FGSM‹,BIM‹ -

ε “ 0.0625 - - PGDi‹,FGSM‹,BIM‹ -

ε “ 0.1 - HOP - -

ε “ 0.125 - PGD2‹ PGDi‹,FGSM‹,BIM‹,SA -

ε “ 0.25 - PGD2‹ PGDi‹,FGSM‹,BIM‹ -

ε “ 0.3125 - PGD2‹ PGDi‹,FGSM‹,BIM‹,CWi -

ε “ 0.5 - PGD2‹ PGDi‹,FGSM‹,BIM‹ -

ε “ 1 - PGD2‹ - -

ε “ 1.5 - PGD2‹ - -

ε “ 2 - PGD2‹ - -

ε “ 5 PGD1‹ - - -

ε “ 10 PGD1‹ - - -

ε “ 15 PGD1‹ - - -

ε “ 20 PGD1‹ - - -

ε “ 25 PGD1‹ - - -

ε “ 30 PGD1‹ - - -

ε “ 40 PGD1‹ - - -

No ε - DF - -

max. rotation “ 30

max. translation “ 8
- - - STA

Table 5.1 reports all the
attacks in the multi-armed
setting. Each cell corre-
sponds to a group of attacks
crafted according to the
algorithm (reported in the
cell), the associated norm
(indicated by the column
label) and perturbation
magnitude (indicated by
the row label) and one of
the considered four loss
functions. Thus, for ex-
ample, when we consider
L8 norm and ε “ 0.125,
the detector is evaluated on
4 ` 4 ` 4 ` 1 “ 13 simul-
taneous adversarial attacks.
Note that we discard the
perturbed examples that
do not fool the classifier
as, by definition, they are
neither natural nor adver-
sarial.

Evaluation metrics.
Following the evaluation
setup described above, for
each sample and for each
group of attacks corresponding to each cell in Table 5.1 we consider a detection
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successful, i.e. a true positive, if and only if all the adversarial attacks are
detected. Otherwise, we report a false negative. We use the classical definitions
of true negative and false positive for the natural samples detection. This means
that a true negative is a natural sample detected as natural, and a false positive
is a natural sample detected as adversarial. We measure the performance of
the detectors in terms of iq AUROCÒ% [DG06b] (the Area Under the Receiver
Operating Characteristic curve) which represents the ability of the detector
to discriminate between adversarial and natural examples (higher is better);
iiq FPR at 95 % TPR (FPRÓ95%%), i.e., the percentage of natural examples
detected as adversarial when 95 % of the adversarial examples are detected
(lower is better).

Datasets and pre-trained classifiers. We run our experiments on CI-
FAR10 [Kri09] and SVHN [NWC`11] image datasets. For both, the pre-trained
target classifier is a ResNet-18 models that has been trained for 100 epochs,
using SGD optimizer with a learning rate equal to 0.1, weight decay equal to
10´5, and momentum equal to 0.9. The accuracy achieved by the classifiers on
the original clean data is 99% for CIFAR10 and 100% for SVHN over the train
split; 93.3% for CIFAR10 and 95.5% for SVHN over the test split.

Detectors. The proposed method aggregates four simple pre-trained de-
tectors. The detectors are four fully-connected neural networks composed of 3
layers of 256 nodes each. All the detectors are trained for 100 epochs, using SGD
optimizer with a learning rate of 0.01 and weight decay 0.0005. They are trained
to distinguish between natural and adversarial examples created according to
the PGD algorithm, under L8 norm constraint and perturbation magnitude
ε “ 0.125 for CIFAR10 and ε “ 0.25 for SVHN. Each detector is trained on
natural and adversarial examples generated using one of the loss functions
mentioned in Section 4.1 (i.e., ACE Eq. (4.2), KL Eq. (4.3), FR Eq. (4.4), or
Gini Eq. (4.5)) to craft its adversarial training samples. We want to point out
that the purpose of this paper is not creating a new supervised detector but
rather to show a method to aggregate a set of pre-trained detectors. Moreover,
it is important to notice that either supervised and unsupervised methods can
be added to or pool of experts (cf. Appendix C.2.1), provided that they output a
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confidence on the input sample being or not an adversarial example. We further
expand on the selection of the ε parameter of the adversarial examples used at
training time in Appendix C.2.1 (cf. Tables C.3 and C.5).

NSS [KFHD20]. We compare the proposed method with NSS, which is
the best among the supervised SOTA methods against multi-armed adversarial
attacks (cf. Section 4.4). NSS characterizes the adversarial perturbations through
the use of natural scene statistics, i.e., statistical properties that can be altered
by the presence of adversarial perturbations. NSS is trained by using PGD
algorithm, L8 norm constraint and perturbation magnitude ε “ 0.03125 for
CIFAR10 and ε “ 0.0625 for SVHN. We further expand on the selection of the
ε parameter of the adversarial examples used at training time in Tables C.2
and C.4 and Appendix C.2.1.

On the optimization of Eq. (5.5). For the optimization of Eq. (5.5),
we rely on the SciPy [VGO`20] library, the optimize package, and the
minimize function which uses the Sequential Least Squares Programming
(SLSQP) algorithm to find the optimum. Further details can be found
in Appendix C.1.

5.2.2 Discussion

Figure 5.3: The shallow detectors are named after
the loss function used to craft the attacks they are
trained to detect. The SOTA method NSS outper-
forms all the individual shallow detectors. By ag-
gregating shallow models, we can achieve a detector
with comparable or better performance than SOTA.

We present the main exper-
imental results to show the
effectiveness of the proposed
method for adversarial attack
detection. Further discussion
on these results, as well as ad-
ditional experiments, can be
found in Appendix C.2.

The shallow detectors

Figs. 5.1 to 5.3 provides a
graphical interpretation of
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(a) (b)

(c)

Figure 5.1: Performance of the various detectors grouped by Lp-norm and
perturbation magnitude ε on CIFAR10. Each shallow detector is named after
the loss function used to craft the attacks they it is trained to detect. The plot shows
how our method consistently attains better performance than the single one on all the
different adversarial attacks, supporting the claim of optimality in Section 5.1.

the detection performance when ResNet18, trained on CIFAR10, is the target
classifier. The single detectors are named after the loss function used to craft
the adversarial examples on which each detector is trained along with the
natural samples. The main takeaway from Fig. 5.3 is the observation that,
when considered individually, the shallow detectors are clearly subpar w.r.t. the
state-of-the-art adversarial attacks detection mechanism. On the contrary, the
aggregation provided by our method results in detection performance comparable
to SOTA performance and, in some cases, outperforms well-established detection
mechanisms. Figure 5.1 sheds light on the fact that the mixture of experts
attained by our proposed method can consistently improve the detection of
adversarial examples over several multi-armed attacks mounted using different
norms and perturbation magnitudes.
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(a) Attacks crafted with PGD algo-
rithm, the FR loss, ε “ 40, and norm
constraint L1

(b) Attacks crafted with FGSM algo-
rithm, the FR loss, ε “ 40, and norm
constraint L8

(c) Ours against attacks crafted with
PGD algorithm, the FR loss, ε “ 40,
and norm constraint L1

(d) NSS against attacks crafted with
PGD algorithm, the FR loss, ε “ 40,
and norm constraint L1

Figure 5.2: Discrimination performances. In Fig. 5.2a and Fig. 5.2b, the accu-
racies of the detectors on natural and adversarial examples; in Fig. 5.2c and Fig. 5.2d
we show how the proposed method and NSS split the data samples. We report the
results for detecting adversarial examples in pink and the results for detecting natural
examples in blue.

One main takeaway of this paper is that, if we are provided with
generally non-robust detectors whose performance is good only against
a limited amount of attacks (as it is confirmed by Figs. 5.1 and 5.3),
we can successfully aggregate them through the proposed method to
obtain a consistently better detection.

In Fig. 5.2 we consider attacks crafted according to the PGD algorithm, the
FR loss, ε “ 40, and norm constraint L1 (cf. Figs. 5.2a, 5.2c and 5.2d), and
attacks crafted according to the FGSM algorithm, FR loss, ε “ 0.5, and L8
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norm in Fig. 5.2b. We also report the performance of the considered detectors in
terms of detection accuracy over the natural examples in blue and the adversarial
examples in pink. As we can observe, the individual detectors, which are named
after the loss functions ACE, FR, KL, and Gini, exhibit different behaviors for
the specific attack. In Fig. 5.2a, the Gini detector drastically fails at detecting
the attack as its accuracy plummets to 0% on the adversarial examples. In the
same way, the FR and KL detectors but mostly the ACE detector, perform
poorly against FGSM (cf. Fig. 5.2b). On the contrary, our method, benefiting
from the aggregation, obtains favorable results in both cases, confirming what
we had previously observed.

The histograms in Figs. 5.2c and 5.2d show how the method we propose and
NSS separate natural (blue) and adversarial examples (pink), respectively. The
values along the horizontal axis represent the probability of being classified as
adversarial, and the vertical axis represents the frequency of the samples within
the bins. The detection error is proportional to the area of overlap between the
blue and the pink histograms. Fig. 5.2c and Fig. 5.2d suggest that the proposed
method achieves lower detection error on the considered attack, as it is confirmed
in Table 5.2 where our proposed method attains 92.1 AUROCÒ%, while NSS only
achieves 76.1 AUROCÒ% and. Additional plots are provided in Appendix C.2.4.

In particular, the performance attained by the proposed method is consis-
tent across the larges part of the considered multi-armed adversarial attacks, as
confirmed in Table 5.2 and Fig. 5.3.

Evaluation of the proposed aggregator in Mead

On CIFAR10, our aggregator achieves maximum AUROC improvement w.r.t.
NSS is 79.5 percentage points and happens for attacks under L8-norm constraint,
ε “ 0.125 and PGD‹, FGSM‹, BIM‹, SA, i.e. when as many as 13 different simul-
taneous adversarial attacks are mounted. Similarly, for our proposed method the
maximum attained FPR at 95% TPR improvement w.r.t. NSS is 90.3 percentage
points and happens for attacks under L8-norm constraint, ε “ 0.5 and PGD‹,
FGSM‹, BIM‹, i.e., when as many as 12 different simultaneous adversarial attacks
are mounted. Our aggregator outperforms NSS in the case of the attacks with L1
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Table 5.2: Comparison between the proposed method and NSS on CIFAR10
and SVHN. The ‹ symbol means the perturbation mechanism is executed in parallel
four times starting from the same original clean sample, each time using one of the
objective losses between ACE Eq. (4.2), KL Eq. (4.3), FR Eq. (4.4), Gini Eq. (4.5).

CIFAR10 SVHN

NSS Ours NSS Ours

AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%%

Norm L1

PGD1‹

ε “ 5 48.5 94.2 62.1 87.1 40.2 91.3 76.9 79.0

ε “ 10 54.0 90.3 56.8 90.6 36.9 91.3 73.0 82.5

ε “ 15 58.8 86.8 69.3 84.4 35.6 91.3 78.9 72.5

ε “ 20 63.5 82.3 78.7 73.1 36.1 91.3 83.6 60.7

ε “ 25 67.7 77.2 87.1 50.8 37.8 91.3 87.0 48.6

ε “ 30 71.4 73.4 90.3 35.4 39.8 91.3 89.3 37.2

ε “ 40 76.1 67.3 92.1 26.4 43.1 91.3 92.6 20.0

Norm L2

PGD2‹

ε “ 0.125 48.3 94.3 63.9 85.4 40.8 91.3 80.2 74.5

ε “ 0.25 53.2 91.2 57.1 90.5 37.2 91.3 74.0 81.7

ε “ 0.3125 55.8 89.2 61.0 88.9 36.1 91.3 75.2 79.4

ε “ 0.5 63.3 82.6 79.4 73.2 35.9 91.3 82.5 64.4

ε “ 1 76.4 67.5 91.4 26.4 42.5 91.3 92.3 24.7

ε “ 1.5 81.0 63.0 91.9 24.2 46.3 91.3 94.1 7.5

ε “ 2 82.6 62.3 91.9 24.1 49.8 91.3 94.9 5.3

DeepFool
No ε 57.0 91.7 81.9 54.8 41.3 91.3 94.9 12.0

CW2
ε “ 0.01 56.4 90.8 53.4 92.2 41.0 91.3 54.2 92.0

HOP
ε “ 0.1 66.1 87.0 86.1 49.1 67.6 84.2 96.0 10.2

Norm L8

PGDi‹, FGSM‹, BIM‹

ε “ 0.03125 83.0 55.3 82.3 59.7 86.3 46.9 81.4 64.9
ε “ 0.0625 96.0 17.2 92.0 29.6 88.9 0.7 89.1 33.3
ε “ 0.25 97.3 0.6 95.9 8.8 51.6 88.9 92.3 16.4

ε “ 0.5 82.5 100.0 94.6 9.7 46.7 86.7 92.9 14.4

PGDi‹, FGSM‹, BIM‹, SA
ε “ 0.125 9.4 99.9 88.9 40.8 32.9 91.3 89.2 29.1

PGDi‹, FGSM‹, BIM‹, CWi
ε “ 0.3125 63.2 99.1 80.0 61.1 41.3 91.3 88.2 33.1

No norm

STA
No ε 88.5 38.8 82.7 52.4 91.2 0.2 90.2 23.2
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Table 5.3: Comparison between Ours and Ours+NSS on CIFAR10. The ‹

symbol means the perturbation mechanism is executed in parallel four times starting
from the same original clean sample, each time using one of the objective losses between
ACE Eq. (4.2), KL Eq. (4.3), FR Eq. (4.4), Gini Eq. (4.5). We focus only in the cases
in which the proposed method is outperformed from the corresponding competitors.

CIFAR10

Ours Ours+NSS

AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%%

Norm L2

CW2
ε “ 0.01 53.4 92.2 54.1 91.3

Norm L8

PGDi‹, FGSM‹, BIM‹

ε “ 0.03125 82.3 59.7 89.9 34.4
ε “ 0.0625 92.0 29.6 96.4 9.0
ε “ 0.25 95.9 8.8 96.7 3.5

No norm
STA
No ε 82.7 52.4 87.3 35.4

and L2 norm, regardless of the algorithm or the perturbation magnitude, and in
the case of L8 norm with large perturbations. However, for the attacks with L8

norm and small ε, although the proposed method’s performance is comparable to
that of NSS, we notice a slight degradation. To shed light on this, we remind that
individual detectors aggregated are based on the classifier’s logits; NSS, on the
other hand, extracts natural scene statistics from the inputs. This more sophis-
ticated technique makes NSS perform well when tested on attacks with similar ε
and the same norm as the ones seen at training time. Similar conclusions can be
drawn for the results on SVHN (cf. Table 5.2).

Table 5.3 shows the modularity of the proposed method when SOTA detec-
tion methods, NSS (a) and FS (b), are plugged in as a fifth detector. We test
Ours+NSS on the attacks on which our aggregator was outperformed by the
competitors. In all the cases, Ours+NSS outperforms “Ours” either in terms of
AUROC and FPR. In most of the cases, Ours+NSS is also better than the in-
dividual competitor. In Appendix C.2.1 we provide further insights on this by
showing that the same behavior is observed when we plug a SOTA unsupervised
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method as fifth detector in our pool.

Evaluation of the proposed aggregator in the non-simultaneous setting

In these experiments, we move from the simultaneous adversarial attack scenario
to one where the different detectors are aggregated to detect one single attack at a
time, as usually done in the literature. We report the complete results Table 5.4.
Crucially, these experiments show that ensemble detectors can also improve the
performance for specific attacks. In particular, we would like to draw attention
to the fact that we outperform NSS in the vast majority of the cases. Moreover,
we achieve a maximum gain of 82.8 percentage points in terms of AUROCÒ% (cf.
SA attack) and 97.6 percentage points in terms of FPRÓ95%% (cf. FGSM with
ε “ 0.5 attack). On the other side, the competitor outperforms our proposed
method only in a few cases, achieving a maximum gain of 5.9 percentage points
in terms of AUROCÒ% and 27.4 percentage points in terms of FPRÓ95%% (cf.
FGSM with ε=0.03125 attack in both the cases), and these gains are much lower
than those obtained by the proposed method.

5.3 Final remarks

We introduced a new method to tackle the multi-armed adversarial attacks in-
troduced in Mead Chapter 4. We formalized the multi-armed attack detection
problem as a minimax cross-entropy risk and derived a surrogate loss function.
Based on this, we characterized our optimal soft-detector, which results in a mix-
ture of experts, as the solution to a minimax problem. Our empirical results
show that aggregating simple detectors using our method consistently improves
detection performance. The achieved performance is comparable and, in a large
set of cases, better than the best state-of-the-art (SOTA) method in the multi-
armed attack scenarios. Our method has two key benefits: it is modular, allowing
existing and future methods to be integrated, and it is general, able to recognize
adversarial examples from various attack algorithms and loss functions. Addition-
ally, our aggregator can potentially be extended to aggregate both supervised and
unsupervised SOTA adversarial detection methods.

Limitations of the proposed method come from the fact it relies on a collec-
tion of detectors whose expertise is combined to obtain a more robust adversarial
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Table 5.4: The proposed method and NSS in the non-simultaneous setting.
The column names ACE, KL, FR, and Gini denote the loss function used to craft
the attacks. HOP, DeepFool, CW2, and STA attacks have already been considered
individually in Table 5.2.

CIFAR10
Ours AUROCÒ% (FPRÓ95%%) – NSS AUROCÒ% (FPRÓ95%%)

ACE KL FR Gini
PGD1
ε “ 5 66.2 (83.6) – 49.9 (93.5) 64.2 (85.7) – 49.6 (93.0) 63.0 (87.1) – 49.9 (93.3) 80.7 (58.4) – 50.3 (93.2)
ε “ 10 62.6 (87.5) – 56.9 (88.4) 62.3 (88.2) – 56.6 (88.3) 63.1 (86.5) – 57.0 (88.1) 86.9 (46.0) – 57.1 (88.8)
ε “ 15 74.2 (81.4) – 63.1 (83.0) 75.2 (80.6) – 62.8 (83.1) 75.3 (79.4) – 63.2 (82.5) 90.0 (31.1) – 63.5 (84.0)
ε “ 20 86.8 (65.3) – 68.5 (77.1) 87.5 (63.1) – 68.1 (77.3) 86.9 (63.3) – 68.7 (76.4) 91.7 (31.2) – 69.9 (77.6)
ε “ 25 93.9 (38.4) – 73.1 (71.1) 94.3 (36.2) – 72.7 (71.8) 93.7 (41.1) – 73.4 (70.9) 92.3 (28.9) – 75.0 (71.4)
ε “ 30 97.1 (12.3) – 77.1 (64.5) 97.2 (12.6) – 76.8 (65.1) 96.8 (15.9) – 77.4 (65.2) 92.6 (27.9) – 78.6 (67.3)
ε “ 40 98.9 (1.0) – 83.5 (52.7) 99.0 (1.0) – 83.3 (53.5) 98.8 (1.0) – 83.6 (52.7) 92.7 (27.4) – 80.1 (64.9)

PGD2
ε “ .125 67.9 (81.1) – 49.5 (93.8) 65.4 (84.3) – 49.1 (93.5) 63.9 (86.6) – 49.6 (93.5) 80.6 (58.4) – 49.5 (94.3)
ε “ .25 62.3 (87.5) – 55.9 (89.1) 62.1 (88.0) – 55.6 (89.2) 62.6 (87.6) – 55.8 (89.4) 86.7 (46.5) – 55.9 (89.8)

ε “ .3125 66.5 (86.1) – 59.4 (86.5) 67.0 (85.9) – 59.0 (86.6) 67.8 (84.8) – 59.3 (86.6) 88.4 (42.2) – 59.3 (87.7)
ε “ .5 86.4 (67.1) – 68.3 (77.4) 87.2 (64.5) – 68.0 (77.4) 86.7 (64.0) – 68.4 (77.2) 91.4 (31.4) – 69.0 (78.7)
ε “ 1 98.9 (0.9) – 84.4 (50.6) 98.9 (0.9) – 84.3 (50.5) 98.8 (0.9) – 84.7 (50.7) 92.5 (27.2) – 79.3 (66.8)

ε “ 1.5 99.2 (0.9) – 92.8 (28.7) 99.3 (0.9) – 92.7 (28.9) 99.3 (0.7) – 93.0 (27.3) 92.5 (27.2) – 79.5 (66.5)
ε “ 2 99.3 (0.8) – 96.8 (13.9) 99.3 (0.8) – 96.9 (13.1) 99.3 (0.9) – 95.9 (17.2) 92.5 (27.2) – 79.5 (66.5)

PGDi
ε “ .03125 99.1 (0.9) – 92.3 (31.0) 99.1 (0.9) – 92.1 (31.9) 99.0 (0.9) – 92.2 (30.7) 94.8 (21.5) – 89.0 (44.0)
ε “ .0625 99.3 (0.8) – 99.1 (3.3) 99.3 (0.8) – 99.1 (3.3) 99.3 (0.8) – 99.1 (3.6) 97.4 (8.0) – 98.1 (8.1)
ε “ .125 99.3 (0.7) – 99.7 (0.6) 99.3 (0.9) – 99.7 (0.6) 99.3 (0.8) – 99.6 (0.6) 97.3 (7.3) – 99.6 (0.6)

ε “ .25 99.3 (0.7) – 99.7 (0.6) 99.3 (0.9) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 97.1 (7.3) – 99.6 (0.6)

ε “ .3125 99.3 (0.9) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 97.1 (7.4) – 99.7 (0.6)

ε “ .5 99.3 (0.8) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 97.1 (7.3) – 99.6 (0.6)

FGSM
ε “ .03125 89.2 (47.5) – 94.1 (26.7) 91.3 (40.6) – 94.0 (27.0) 92.6 (34.1) – 96.8 (15.0) 90.7 (42.7) – 96.6 (15.3)

ε “ .0625 96.4 (18.5) – 99.4 (1.3) 96.2 (18.7) – 99.4 (1.4) 97.6 (10.3) – 99.6 (0.6) 97.4 (11.9) – 99.6 (0.6)

ε “ .125 99.3 (3.4) – 99.7 (0.6) 99.1 (4.3) – 99.7 (0.6) 99.3 (2.5) – 99.5 (0.6) 99.3 (2.4) – 99.5 (0.6)

ε “ .25 99.8 (0.6) – 99.7 (0.6) 99.7 (0.8) – 99.7 (0.6) 99.6 (1.1) – 97.9 (0.6) 99.6 (1.1) – 97.7 (0.6)

ε “ .3125 99.7 (0.9) – 99.7 (0.6) 99.7 (0.9) – 99.7 (0.6) 99.5 (1.5) – 95.8 (0.6) 99.5 (1.5) – 95.6 (0.6)

ε “ .5 99.0 (4.9) – 99.7 (0.6) 99.2 (2.7) – 99.7 (0.6) 99.2 (2.4) – 84.9 (100.0) 99.2 (2.4) – 84.8 (100.0)

BIM
ε “ .03125 98.3 (4.6) – 90.3 (37.7) 98.3 (4.4) – 90.2 (38.1) 97.8 (7.2) – 90.5 (37.0) 92.2 (32.6) – 88.2 (45.1)
ε “ .0625 99.4 (0.8) – 98.2 (7.5) 99.4 (0.9) – 98.2 (7.5) 99.4 (0.8) – 98.3 (7.3) 96.6 (13.1) – 97.3 (12.9)

ε “ .125 99.3 (0.9) – 99.6 (0.7) 99.3 (0.9) – 99.7 (0.7) 99.3 (0.8) – 99.6 (0.7) 97.8 (6.9) – 99.3 (1.9)

ε “ .25 99.3 (0.8) – 99.7 (0.6) 99.3 (0.9) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 97.4 (7.2) – 99.6 (0.6)

ε “ .3125 99.3 (0.9) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 99.3 (0.9) – 99.7 (0.6) 97.1 (7.4) – 99.7 (0.6)

ε “ .5 99.3 (0.8) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 96.3 (7.3) – 99.7 (0.6)

SA
ε “ .125 91.2 (39.6) – 9.4 (99.9) 91.2 (39.6) – 9.4 (99.9) 91.2 (39.6) – 9.4 (99.9) 91.2 (39.6) – 9.4 (99.9)

CWi
ε “ .3125 80.7 (60.8) – 64.6 (89.8) 80.7 (60.8) – 64.6 (89.8) 80.7 (60.8) – 64.6 (89.8) 80.7 (60.8) – 64.6 (89.8)
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detection. Such models could be potentially poisoned by a malicious actor, drasti-
cally reducing the aggregator’s reliability. We think this could have a potentially
severe societal impact if the proposed method happened to be deployed with no
additional checks on the quality of the available detectors.



70 Chapter 5. A Minimax Approach Against Mead



CHAPTER6
Conclusion of the Thesis

In this thesis, we have investigated how to formulate security problems as binary
hypothesis testing.

We first addressed the problem of misclassification detection. Given an input
sample and a pre-trained classifier, we want to understand whether the input
sample comes from the distribution of the correctly classified samples or the
incorrectly classified ones. Based on the soft-probabilities associated with the
example, the detector approximates the probability of the classifier outputting
the wrong class. The prediction will be rejected if the computed score exceeds
a certain threshold. Through simulations on image and text datasets, we have
demonstrated the superiority of the proposed detector over the SOTA techniques.
Furthermore, we distinguished two scenarios: the Totally Black-Box (TBB) sce-
nario, in which the detector has access only to the final soft-probabilities, and
the Partially Black-Box (PBB) scenario, in which the detector has access to the
logits and can perform input pre-processing.

We have then moved on to the problem of multi-armed adversarial attack de-
tection. In this case, the goal of the detector is to check whether the input sample
is natural or has been adversarially perturbed according to some strategy. We
refer to this setting as ‘multi-armed’ as in the classical (‘single-armed’) detection
setting the methods are generally validated by assuming a single attack strategy
at a time. We formalize the problem as a minimax cross-entropy risk. Based
on this formulation, we derive a surrogate loss function and use it to character-
ize our optimal soft-detector leading to our aggregator of detectors’ decisions.
Experimentally, we have shown: (i) the classical framework led to an overopti-
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mistic assessment of the detectors’ performance; (ii) the proposed aggregator of
detectors’ decisions represents a valid (and the first) solution to the multi-armed
setting.

The line of research we have pursued in this work offers many opportunities
for future work. For instance, as to the misclassification detection topic, we are
thoroughly studying how our framework adapts to the case of image segmen-
tation. In this context, the detector is asked to detect errors in the predicted
mask outputs from the pre-trained model. The analysis can be conducted either
by pixel or region. Interestingly, the results so far indicate that the proposed
detector can recognize when a region should be segmented but is not present in
the predicted mask. In particular, we are dealing with a critical safety system
like the one of medical diagnosis by performing simulations on datasets such as
Automated Cardiac Diagnosis Challenge [BLZ`18], and Brain Tumor Segmenta-
tion Challenge [MJB`15], to cite a few. Moreover, a straightforward extension of
the proposed method would be for regression tasks. Currently, the detector we
presented relies on the soft probability outputs from the classifier. Therefore, it
can not be used as it is also with regression models. A possibility in this sense
would be to quantize the output space and treat each of the bins into which the
space is divided as a possible class. Anyway, one issue in this sense would be how
to assign to each of the bins a probability.

A more ambitious goal would be to apply our detector aggregator to topics
beyond simultaneous adversarial attack detection. As long as the detector outputs
can be interpreted as a probability distribution across two categories, any existing
or future supervised or unsupervised method can be combined using our proposed
approach, making the aggregator a new ensemble technique. An example of this
extension is intrusion detection, where an improved detection framework is highly
desired, particularly with the use of ensemble learners [TL21].
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APPENDIX A
Appendix to Chapter 3

A.1 Proofs

The following section shows the proofs for Proposition (1), Proposition (2) and
Inequalities (2.3).

A.1.1 Proof of Proposition 1

We recall the definition of the total variation distance when applied to distribu-
tions P , Q on a set X Ď Rd and the Scheffé’s identity, Lemma 2.1 in [Tsy08]:

}P ´ Q}TV
def
“ sup

APBd

|P pAq ´ QpAq| “
1

2

ż

|pXpxq ´ qXpxq|dµpxq (A.1)

with respect to a base measure µ, where Bd denotes the class of all Borel sets on
Rd.

First of all, we prove the equality for γ “ 1. Let us denote with A‹ ” Ap1q

and A‹c ” Acp1q the optimal decision regions from (3.6). Let ϵ0pA‹q and ϵ1pA‹cq
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be the Type-I and Type-II errors, respectively. Then,

ϵ0pA‹
q ` ϵ1pA‹c

q “

ż

A‹

pX|Epx|0qdx `

ż

A‹c

pX|Epx|1qdx

“

ż

A‹

min
!

pX|Epx|0q , pX|Epx|1q

)

dx

`

ż

A‹c

min
!

pX|Epx|0q , pX|Epx|1q

)

dx

“

ż

X
min

!

pX|Epx|0q , pX|Epx|1q

)

dx

“ 1 ´
›

›pX|E“1 ´ pX|E“0

›

›

TV , (A.2)

where the last identity follows by applying Scheffé’s identity (A.1). From the last
identity in (A.2) and any decision region A Ď X , we have

1 ´
›

›pX|E“1 ´ pX|E“0

›

›

TV “

ż

X
min

!

pX|Epx|0q , pX|Epx|1q

)

dx

“

ż

A
min

!

pX|Epx|0q , pX|Epx|1q

)

dx

`

ż

Ac

min
!

pX|Epx|0q , pX|Epx|1q

)

dx

ď

ż

A
pX|Epx|0qdx `

ż

Ac

pX|Epx|1qdx

“ ϵ0pAq ` ϵ1pAc
q. (A.3)

It remains to show the last statement related to the Bayesian error of the test.
Assume that pEp1q “ pEp0q “ 1{2. By using the last identity in (A.2), we have

1

2

”

1 ´
›

›pX|E“1 ´ pX|E“0

›

›

TV

ı

“
1

2

ż

X
min

!

pX|Epx|0q, pX|Epx|1q

)

dx

“

ż

X
min

!

pXEpx, E “ 0q, pXEpx, E “ 1q

)

dx

“ EX

”

min
!

pE|Xp0|Xq, pE|Xp1|Xq

)ı

“
1

2

“

ϵ0pA‹
q ` ϵ1pA‹c

q
‰

” inf
D

Pr tDpXq ‰ Eu , (A.4)

where the last identity follow by the definition of the decision regions in (3.6).
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A.1.2 Proof of Proposition 2

We begin by showing that

|xPepxq ´ Pepxq| “

ˇ

ˇ

ˇ
E
“

1rpY ‰ gθpxqs
ˇ

ˇx
‰

´ E
“

1rY ‰ gθpxqs
ˇ

ˇx
‰

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

tyPY | y‰gθpxqu

“

p
pY |Xpy|x; θq ´ pY |Xpy|xq

‰

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

tyPY | y‰gθpxqu

ˇ

ˇ

ˇ
p
pY |Xpy|x; θq ´ pY |Xpy|xq

ˇ

ˇ

ˇ

ď
ÿ

yPY

ˇ

ˇ

ˇ
p
pY |Xpy|x; θq ´ pY |Xpy|xq

ˇ

ˇ

ˇ

ď 2
›

›

›
p
pY |Xp¨|x; θq ´ pY |Xp¨|xq

›

›

›

TV

ď 2

c

2KL
´

pY |x}p
pY |x

¯

, (A.5)

where } ¨ }TV denotes the Total Variation distance, KLp¨}¨q is the Kullback–Leibler
divergence and the last step is due to Pinsker’s inequality. On the other hand,

1 ´ pgpxq “ 1 ´
ÿ

yPY
p2
pY |X

py|x; θq

“ 1 ´ E
pY |X

”

p
pY |XppY |x; θq|x

ı

ě 1 ´ E
pY |X

„

max
yPY

p
pY |Xpy|x; θq

ˇ

ˇx

ȷ

“ 1 ´ max
yPY

p
pY |Xpy|x; θq

” xPepxq. (A.6)

Similarly,

pgpxq “
ÿ

yPY
p2
pY |X

py|x; θq “ p2
pY |X

py‹
|x; θq `

ÿ

y‰y‹

p2
pY |X

py|x; θq

ě max
yPY

p2
pY |X

py|x; θq

”

´

1 ´ xPepxq

¯2

, (A.7)
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where y‹ “ argmaxyPY ppY |Xpy|x; θq. By replacing expressions (A.6) and (A.7) in
(A.5) we obtained the desired inequalities, which concludes the proof.

A.1.3 Proof of Inequalities in (2.3)

The event can be decomposed as follows:

␣

pEpxq ‰ Epxq|x
(

”
␣

Y ‰ pY
(

X

!

␣

pY “ gθpxq
(

or
␣

Y “ gθpxq
(

|x
)

(A.8)

for all x P X . Thus,

␣

pEpxq ‰ Epxq|x
(

Ď
␣

Y ‰ pY |x
(

, (A.9)
␣

Y ‰ pY
(

X
␣

Y ‰ gθpxq
ˇ

ˇxu Ď
␣

pEpxq ‰ Epxq|x
(

, (A.10)
␣

Y ‰ pY
(

X
␣

pY ‰ gθpxq|x
(

Ď
␣

pEpxq ‰ Epxq|x
(

, (A.11)

which imply

Pr
`

t pEpxq ‰ Epxq|xu
˘

ď Pr
`

tpY ‰ Y u|x
˘

, (A.12)

Pepxq ´ Pr
`

tpY “ Y u|x
˘

ď Pr
`

t pEpxq ‰ Epxqu
ˇ

ˇx
˘

, (A.13)
xPepxq ´ Pr

`

tpY “ Y u|x
˘

ď Pr
`

t pEpxq ‰ Epxqu
ˇ

ˇx
˘

, (A.14)

for all x P X , where the last inequalities follows by noticing that PrpA X Bq ě

PrpAq´PrpBcq for arbitrary measurable sets A,B Ă X . This concludes the proof
of these inequalities.

A.2 Logistic Regression and Gaussian Model

Throughout this section we test Doctor in a controlled setting were all the
involved distributions are known. We refer to that setting as logistic regression
and Gaussian model since we collect data points from Gaussians distributions
and we test on the logistic regression setup.

A.2.1 Theoretical analysis

Let X “ Rd be the feature space and Y “ t´1, 1u be the label space. We focus
on a binary classification task in which X „ N pyµ, σ2Iq and Y „ UpYq, where
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µ P Rn is the mean vector, σ2 ą 0 is the variance and I is the identity matrix
and UpYq denotes the uniform distribution over Y . For a fixed θ P Rd, consider
fθ : X Ñ Y s.t. fθpxq “ signpsigmoidpxT θq ´ 1{2q. For a given x P X , we adapt
to the current setting the definition of Epxq in Chapter 3 as follows:

1 rY ­“ fθpxqs “ 1

„

Y ¨ sign
ˆ

sigmoid
`

xT θ
˘

´
1

2

˙

ă 0

ȷ

. (A.15)

Let us denote by 1 ry ­“ fθpxqs the realization of the random variable Epxq. We
can compute the probability of classification error Pepxq in (2.1) w.r.t. the true
class posterior probabilities:

Pepxq “ E
”

1 rY ­“ fθpxqs |x
ı

“
ÿ

yPY
1 ry ­“ fθpxqs ¨

pX|Y px|yqPY pyq

pXpxq

“
ÿ

yPY
1 ry ­“ fθpxqs ¨

1
2
N px; yµ, σ2Iq

1
2

ř

y1PY N px; y1µ, σ2Iq

“

ř

yPY 1 ry ­“ fθpxqs ¨ N px; yµ, σ2Iq
ř

yPY N px; yµ, σ2Iq
. (A.16)

Following (3.7), the decision region corresponding to the most powerful discrim-
inator for the logistic regression and the Gaussian model are given by

Apγq “

#

x P X :

ř

yPY 1 ry ­“ fθpxqs ¨ N px, yµ, σ2Iq
ř

yPY 1 ry “ fθpxqs ¨ N px, yµ, σ2Iq
ą γ

+

. (A.17)

We are now able to state the optimal discriminator for this setting.

Definition 4 (Optimal discriminator for the logistic regression and the Gaussian
model). For any 0 ă γ ă 8 and x P X , the optimal discriminator follows as:

D‹
px, γq

def
“ 1

«

ÿ

yPY
1 ry ­“ fθpxqs ¨ N px, yµ, σ2Iq ą γ ¨

ÿ

yPY
1 ry “ fθpxqs ¨ N px, yµ, σ2Iq

ff

.

(A.18)

Since we cannot analytically evaluate Proposition 1, we proceed numerically
in the next experiment.
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A.2.2 Experiments

Table A.1: Accuracy on the test
set: fθi for i “ 1, . . . , 8 represents
the i-th model in F , favg is the arith-
metic mean of the accuracy over
each fθi P F . The value f‹

avg rep-
resents the accuracy Bayesian clas-
sifier averaged on the test set cor-
responding to the 8 splits. We show
results for both standard deviations,
namely σ “ 2 and σ “ 4.

Classifier Accuracy%

σ “ 2 σ “ 4

fθ1 82 65

fθ2 83 77

fθ3 82 77

fθ4 82 76

fθ5 83 76

fθ6 81 66

fθ7 82 76

fθ8 83 83

favg 82 74

f‹
avg 83 78

In this section, we will numerically eval-
uate Proposition 1 via empirical estimates
of Type-I and Type-II errors in expres-
sions Eq. (3.2). Note that unlike Section 3.4,
in this case, all the involved distributions are
known, and hence it is also possible to com-
pute the true posterior distribution pY |X .

We adopt the same notation as in Sec-
tion 3.1.2 for Doctor, i.e., Dα, and Dβ ac-
cording to according to expressions Eq. (3.11).
D‹, as in Definition 4, denotes the optimal
discriminator.

Experimental setup and evaluation
metrics

Dataset. We create a synthetic dataset that
consists of 5000 data points drawn from N0

def
“

N pµ0, σ
2Iq and 5000 data points drawn from

N1
def
“ N pµ1, σ

2Iq, where µ0 “ r´1 ´ 1s,
µ1 “ r1 1s. We consider two values for sigma,
namely σ “ 2 and σ “ 4. These values pro-
duce two different distributions which will let
us showcase the advantages of Doctor. To each data point x is assigned as
class 0 or 1 depending on whether x „ N0 or x „ N1, respectively. The afore-
mentioned dataset is divided into a training set, i.e. Dn “ tpx1, y1q, . . . , pxn, ynqu

where n “ 6700, and a testing set, i.e. Tm “ tpxn`1, yn`1q, . . . , pxn`m, yn`mqu

where m “ 3300.
Training configuration. We use a linear classifier, with one hidden layer,

sigmoid activation function and binary cross entropy loss. The neural network
is trained with gradient descent considering learning rate r “ 0.1. Specifically,
we train our network for 5 epochs. We randomly split our dataset 8 times, each
time keeping n samples to train, and m to test. We consider the same model
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architecture (described above) for each split and we come up with 8 different
binary discriminators F “ tfθ1 , . . . , fθ8u.

Since in this example all the involved distributions are known, we compute
the optimal predictor, i.e., the Bayes classifier, and we denote it with f ‹. The
value f ‹

avg reported in Table A.1, represents its accuracy averaged on the test set
corresponding to the 8 splits.

Accuracy of trained networks. In Table A.1 the accuracy of f ‹ and the
models in F on the test set.

Evaluation metric. We consider the same metric as in Section 3.4.2.

Numerical evaluation of Proposition 1

To evaluate Proposition 1 we proceed in a Monte Carlo fashion by computing
Type-I and Type-II errors for each of the networks in F and then averaging over
the results. Schematically, consider any fθi P F and γ “ 1, we compute:

1. Ai
def
“ Aip1q as defined in Eq. (A.17) and its complement Ac

i .

2. For each classifier fθi P F , TE“1;θi
def
“ tpx, yq P Tm | y ­“ fθipxqu represents

the set of mis-classified test samples, and TE“0;θi
def
“ tpx, yq P Tm | y “

fθipxqu is the set of correctly classified test samples.

3. FRi
def
“ tpx, yq P TE“0;θi : x P Aiu, T Ri

def
“ tpx, yq P TE“1;θi : x P Aiu,

FAi
def
“ tpx, yq P TE“1;θi : x P Ac

iu and T Ai
def
“ tpx, yq P TE“0;θi : x P Ac

iu,
i.e. the set of false rejections, true rejections, false acceptances and true
acceptance, respectively.

4. ϵ0pAiq
def
“

|FRi|

|TE“0;θi
|
and ϵ1pAc

iq
def
“

|FAi|

|TE“1;θi
|
, i.e. Type-I and Type-II errors.

At the end of |F | iterations, we empirically estimate Type-I and Type-II errors
of Proposition 1 as follows

ϵ0pAq «
1

|F |

|F |
ÿ

i“1

ϵ0pAiq “ 0.0607 and ϵ1pAc
q «

1

|F |

|F |
ÿ

i“1

ϵ1pAc
iq “ 0.7389.

FRR versus TRR

We present the experimental results obtained by running experiments similar to
those described in Section 3.4 considering the experimental setup in A.2.2 in TBB.
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Table A.2: AUROCs: the values for Dα, Dβ , SR, and ODIN correspond to the
results for the thick lines in Fig. A.1. D‹ and ODIN‹ ” SR‹ are obtained using pY |X .

AUROC %

σ D‹ Dα Dβ SR ” ODIN SR‹ ” ODIN‹

2 76 70 70 70 76

4 79 78 78 70 76

In addition to the usual discriminators, we will consider the optimal discriminator
D‹, as in Definition 4.

Doctor: comparison between D‹, Dα and Dβ. Let us present the result
obtained with Doctor showing how D‹, Eq. (A.18), works compared to Dα and
Dβ in Eq. (3.11) when they have to decide whether to trust or not the decision
made by a classifier. We test the discriminators on the dataset constructed as
in Appendix A.2.2 by considering σ “ 2. Let us analyze Fig. A.1a: we apply each
discriminator to all the classifiers in F . The colored areas represent the obtained
ROCs. Inside each area, the mean ROC is represented by the thick line. Dα and
Dβ reach the same results as the colored areas, and the thick lines are overlapped.
For a given x P X , we recall that D‹ uses Pepxq Eq. (2.1) whilst Dα and Dβ uses
1´pgpxq Eq. (3.8) and pPepxq Eq. (2.2), respectively. D‹ always outperforms both
Dα and Dβ since it relies on the probability of classification error based on pY |X

while Dα and Dβ use p
pY |X .

Comparison between D‹, Dα, ODIN and SR. We conclude this section
by investigating how our competitors, namely ODIN and SR, work in this setting.

From now on, we will put ODIN ” SR to mean that the two methods coincide
(remember we set T “ 1 and ϵ “ 0 for all the simulations). We show the results
of the comparison in Fig. A.1: Fig. A.1b considers data points from N pyµ, 22Iq

whilst Fig. A.1c consider data points from N pyµ, 42Iq. If in Fig. A.1b we cannot
see an advantage in using Dα in place of SR, the situation is totally different
in Fig. A.1c, where D‹ and Dα clearly outperform the competitors. We would
like to recall that Doctor uses all the softmax output while SR only uses the
maximum value of the softmax output.
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(a) σ “ 2 (b) σ “ 2 (c) σ “ 4

Figure A.1: ROC curves for D‹, Dα and Dβ, respectively. We denote by SR‹

the softmax response method based on pY |X . Since in this case T “ 1 and ϵ “ 0,
SR ” ODIN as well as SR‹ ” ODIN‹. (a) We apply each discriminator to all the
classifiers in F . The obtained ROCs are represented by the colored areas. Inside each
area the mean ROC is represented by the thick line. Orange and red areas completely
overlap as well as the mean ROC. D‹ always outperforms both Dα and Dβ as expected.
In (b) D‹ and SR‹ overlap (as also Dα and SR), instead in (c) where σ “ 4 SR discards
useful information and indeed both D‹ and Dα outperform SR.

A.3 Supplementary Results of Section 3.4

A.3.1 Experimental environment

We run each experiment on a machine equipped with an Intel(R) Xeon(R) CPU
E5-2623 v4, 2.60GHz clock frequency, and a GeForce GTX 1080 Ti GPU. The
execution time for the execution the tests are the following (interval size 10000):

TBB. Dα: 12.5 s. Dβ: 13.6 s. SR: 15.9 s. MHLNB: 15.9 s.

PBB: Dα: 13 s. Dβ: 25.7 s. ODIN: 14.7 s. MHLNB: 32.22 s.

A.3.2 On the input pre-processing in Doctor

In the following we further study Doctor-specific input pre-processing tech-
niques allowed under PBB. We focus on Dβ since for Dα the reasoning is the
same. Formally, let x0 P X be a testing sample. We are looking for the minimum
way to perturb the input such that the discriminator value at x0 is increased:

r˚
“ min

r s.t. }r}8ďϵ
´ log

˜

pPepx0 ` rq

1 ´ pPepx0 ` rq

¸

,



Appendix A. Appendix to Chapter 3

or equivalently, we are looking to the sample rxβ
0 in the ϵ-ball around x0 which

maximize the discriminator value at rxβ
0 :

rxβ
0 “ x0 ´ ϵ ˆ sign

«

´∇x0 log

˜

pPepx0q

1 ´ pPepx0q

¸ff

.

Note that, because of Eq. (2.1)

´ log

˜

pPepx0q

1 ´ pPepx0q

¸

“ ´ log

˜

1 ´ p
pY |Xpgθpx0q|x0; θq

p
pY |Xpgθpx0q|x0; θq

¸

“ ´ logp1 ´ p
pY |Xpgθpx0q|x0; θqq ` logpp

pY |Xpgθpx0q|x0; θqq

“ ´ logp1 ´ p
pY |Xpgθpx0q|x0; θqq ´ log SODINpx0q.

A.3.3 On the effect the intervals considered for γ, δ and ζ have on the
AUROC computation

Let us consider the AUROC as a performance measure for the discriminators. The
computation of the AUROC of Dα, as well as those of ODIN and SR, heavily
depend on the choice of the range values for the decision region thresholds. In
the following paragraph, we will discuss how we chose these ranges, namely γ P

ΓDα or Dβ
Ď R, δ P ∆ODIN or SR Ď r0, 1s and ζ P ZMHLNB Ď R. In the experiments

of Section 3.4, we therefore proceed by fixing the aforementioned ranges as follows:

ΓDα

def
“

„

min
px,yqPTm

1 ´ pgpxq

pgpxq
, max

px,yqPTm

1 ´ pgpxq

pgpxq

ȷ

, (A.19)

ΓDβ

def
“

«

min
px,yqPTm

pPepxq

1 ´ pPepxq
, max

px,yqPTm

pPepxq

1 ´ pPepxq

ff

, (A.20)

∆ODIN
def
“

„

min
px,yqPTm

SODINpxq, max
px,yqPTm

SODINpxq

ȷ

, (A.21)

∆SR
def
“

„

min
px,yqPTm

SRpxq, max
px,yqPTm

SRpxq

ȷ

, (A.22)

ZMHLNB
def
“

„

min
px,yqPTm

Mpxq, max
px,yqPTm

Mpxq

ȷ

. (A.23)

Secondly, we fix the number of values to consider in ΓDα or Dβ
, ∆ODIN or SR and

ZMHLNB: we test the AUROCs for CIFAR10 for different values of the size of
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Table A.3: The effects of varying the number of thresholds.AUROCs and FRR
at 95% TRR obtained via Dα, Dβ , ODIN, SR and MHLNB for CIFAR10 considering
different size for ΓDα or Dβ

, ∆ODIN or SR and ZMHLNB in both TBB and PBB. The
column Interval size represents the number of equidistant values considered in the
sets defined in (A.19), (A.20), (A.21), (A.22) and in (A.23), respectively.

INTERVAL
SIZE METHOD

TBB PBB

AUROC
FRR

AUROC
FRR

(95 % TRR) (95 % TRR)

10

Dα 69.8 91.6 77.4 88.4

Dβ 50 69.7 79.8 86.2

ODIN 75.7 89.3 81.4 85.4

SR 75.7 89.3 - -

MHLNB 76.6 88.8 83.2 47.1

100

Dα 85.1 80.6 92.5 42.6

Dβ 61.8 63.4 94.1 13.8

ODIN 88 73.5 91.5 49.9

SR 88 73.5 - -

MHLNB 88.3 72.6 84.4 44.6

1000

Dα 91.3 53.1 94.7 13.8

Dβ 66.5 48.3 94.8 13.4

ODIN 92.5 28.9 94 18.3

SR 92.5 28.9 - -

MHLNB 92.2 35.3 84.4 44.5

10000

Dα 93.7 18.4 95.2 13.9

Dβ 68.5 18.6 94.8 13.4

ODIN 93.9 18 94.2 18.4

SR 93.9 18 - -

MHLNB 92.1 31 84.4 44.6

ΓDα or Dβ
, ∆ODIN or SR and ZMHLNB in both TBB and PBB scenarios. The results

are collected in Table A.3. Let us denote by I a generic interval between the ones
of Eq. (A.19), Eq. (A.20), Eq. (A.21), Eq. (A.22) and Eq. (A.23), throughout the
experiments we set the size of I to pmax I ´ min Iq ˚ 10000.

A.3.4 Additional plots and results

In the next sections, we show graphically the set of results obtained from the
experiments in Section 3.4.3. We first specify the range of values for the param-
eters T and ϵ considered throughout the experiments. For temperature scaling,
T is selected among t1, 1.1, 1.2, 1.3, 1.4, 1.5, 2, 2.5, 3, 100, 1000u, whilst for
input pre-processing, ϵ is selected among t0, .0002, .00025, .0003, .00035, .0004,

.0006, .0008, .001, .0012, .0014, .0016, .0018, .002, .0022, .0024, .0026, .0028,

.003, .0032, .0034, .0036, .0038, .004u.
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(a) CIFAR10
ϵ “ 0.0003

(b) CIFAR10
T “ 1

(c) CIFAR10
T “ 2

(d) CIFAR100
ϵ “ 0.0003

(e) CIFAR100
T “ 1

(f) CIFAR100
T “ 1.5

(g) TinyImageNet
ϵ “ 0.0006

(h) TinyImageNet
T “ 1

(i) TinyImageNet
T “ 1.1

(j) SVHN
ϵ “ 0.001

(k) SVHN
T “ 1

(l) SVHN
T “ 1.2

Figure A.2: The effect of varying T and ϵ. Comparison of AUROCs obtained via
Dα (in green) and via Dβ (in orange) for different values of T and ϵ.

Comparison Dα and Dβ

We include the plots for Doctor: comparison between Dα and Dβ (Sec-
tion 3.4.3). In Fig. A.2a, Fig. A.2d, Fig. A.2g and Fig. A.2j, we set ϵ

at its best value which is found to coincide in the case of Dα and Dβ.
In Fig. A.2b, Fig. A.2e, Fig. A.2h and Fig. A.2k we do the opposite and we set T
to its best value w.r.t. Dα whilst in Fig. A.2c, Fig. A.2f, Fig. A.2i and Fig. A.2l,
the value of T is chosen w.r.t. the best value for Dβ.

Comparison Dα, Dβ, ODIN and MHLNB

We conclude by showing in Fig. A.3 the test results obtained by varying T and
ϵ in PBB for all the methods. We present 4 groups of plots (one for each image
dataset) and in each plot we pick T from t1, 1.3, 1.5, 1000u (the values selected
for Dα, Dβ, ODIN and MHLNB Table 3.1) and we let ϵ vary.
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(a) CIFAR10
T “ 1

(b) CIFAR10
T “ 1.3

(c) CIFAR10
T “ 1.5

(d) CIFAR10
T “ 1000

(e) CIFAR100
T “ 1

(f) CIFAR100
T “ 1.3

(g) CIFAR100
T “ 1.5

(h) CIFAR100
T “ 1000

(i) TinyImageNet
T “ 1

(j) TinyImageNet
T “ 1.3

(k) TinyImageNet
T “ 1.5

(l) TinyImageNet
T “ 1000

(m) SVHN
T “ 1

(n) SVHN
T “ 1.3

(o) SVHN
T “ 1.5

(p) SVHN
T “ 1000

Figure A.3: Overall results when varying T and ϵ.

Misclassification detection in presence of out-of-distribution samples

We include in Table A.7 the results of all the simulations carried out for detect-
ing misclassification detection in presence of out-of-distribution samples. The
experimental setting is reported in Section 3.4.2.

A.3.5 Doctor for pure OOD detection

It is worth emphasizing that DOCTOR is not targeting OOD detection, which is
a rather different problem from the one investigated in this paper. So we did not
optimize an ad-hoc input perturbation for DOCTOR within the OOD detection
setup, i.e. we kept the same input perturbation proposed for the misclassification
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detection task. The baseline results reported in Table A.4 show that DOCTOR
is competitive for OOD detection as well since it can reach similar scores or
even outperform the baseline (e.g., the simulations with LSUN (CROP) show an
improvement of the results of 3.3% in terms of FRR %). We indicate the methods
together with their parameter setting. ODINOOD denotes the same parameter
setting as in [LLS18].

Table A.4: Doctor for pure OOD detection. We set : ϵα “ 0 and Tα “ 15,
ϵβ “ 0 and Tβ “ 1000, as in [LLS18] for ODINOOD. The baseline results reported below
show that DOCTOR is competitive for OOD detection as well since it can reach similar
scores or even outperform the baseline.

DATASET-
In

DATASET-
Out

AUROC % FRR % (95 % TRR)
Dα Dβ ODINood Dα Dβ ODINood

CIFAR10

iSUN 98.1 97.9 98.8 8 9.1 6.3
Tiny (res) 97.6 97.3 98.5 9.9 11.2 7.2

LSUN (crop) 98.6 98.2 98.2 5.4 6.9 8.7

Tiny (crop) 98.9 98.5 99.1 4.6 6.4 4.3

Doctor in presence of OOD samples that are similar to in-distribution
ones

We tested Doctor in pure OOD setting, considering CIFAR100 as in-
distribution and CIFAR10 as out-distribution. The results below show that
Doctor optimized as in the following paper outperforms ODIN (optimized as
described in [LLS18]) and ENERGY. This is particularly promising as it shows
that Doctor, without performing any training and without been particularly
optimized for OOD detection, can perform well on a wider variety of problems.

A.3.6 Some observations on the white-box scenario (WB)

It is worth clarifying the results in Table A.6 to motivate the performance ob-
tained using the Mahalanobis-based discriminator (MHLNB - WB) for the mis-
classification detection problem and the issues it raises. First of all, we emphasize
that given a network and an input sample Doctor only needs to access the logits
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Table A.5: Doctor for OOD detection of samples similar to the in-
distribution ones. Comparison of Dα with ENERGY and ODIN (parameter setting
as in [LLS18]).

DATASET-In DATASET-Out METHODS AUROC % FRR % (95 % TRR)

CIFAR100 CIFAR10
Dα (PBB) 76.8 64.2

ENERGY 73.3 76.4

ODIN (OOD) 70.5 79.5

Table A.6: White-box setting. Comparison of MHLNB (WB) and Dα (PBB).

DATASET-In METHODS AUROC % FRR % (95 % TRR)

CIFAR10
Dα (PBB) 95.2 13.9

MHLNB (WB) 49.5 97.3

CIFAR100
Dα (PBB) 88.2 35.7

MHLNB (WB) 51.6 94.9

output of the network in order to perform the detection. On the contrary, the
detector based on Mahalanobis distance consists of 3 steps:

• Estimation of the class mean and covariance matrix;

• Features extraction according to the Mahalanobis score function;

• Aggregation of the scores obtained layer by layer in order to obtain a deci-
sion a rule for the discriminator.

Clearly, the Mahalanobis distance-based method requires additional samples com-
pared to Doctor. Although estimating the mean and the covariance matrix
is possible by exploiting samples from the benchmark training set (e.g. CI-
FAR10, CIFAR100, ...), this method still needs additional (different from train-
ing) samples for learning the linear regressor intended to distinguish between
correctly (positive) and incorrectly (negative) classified samples. In order to
generate the negative samples, we consider the use of adversarial examples gener-
ated through Projected Gradient Descent Attack (magnitude of the perturbation
0.0031), which does not assume any knowledge about the test set.
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Table A.7: Misclassification detection in presence of OOD samples: overall
results. In PBB we set ϵα “ 0.00035 and Tα “ 1, ϵβ “ 0.00035 and Tβ “ 1.5,
ϵODIN “ 0 and TODIN “ 1.3. By ODINood, we mean ODIN with the parameter setting
as in [LLS18]. Since we proceed in a Monte Carlo fashion, the results are reported in
terms of mean / standard deviation. In TBB for by ODIN we report the results of SR,
since both methods coincide when T “ 1 and ϵ “ 0.

DATASET
(In)

DATASET
(Out) Scenario AUROC % FRR % (95 % TRR)

Dα Dβ ODIN ODINood Dα Dβ ODIN ODINood

CIFAR10
♣

iSUN
PBB 95.4 / 0.1 95.1 / 0.1 94.6 / 0.1 89.6 / 0 14 / 0.5 13.5 / 0.4 17.2 / 0.3 38.9 / 0

TBB 94.6 / 0 69.3 / 0.1 94.5 / 0.1 - 17.7 / 0.1 17.7 / 0.1 17.7 / 0 -

LSUN
(crop)

PBB 95.5 / 0.1 95.1 / 0 94.7 / 0 92.6 / 0 13.1 / 0.5 13 / 0.2 17.3 / 0 31.9 / 0.1

TBB 94.4 / 0.1 69.2 / 0.1 94.4 / 0 - 17.6 / 0.2 17.6 / 0.2 17.7 / 0.2 -

LSUN
(resize)

PBB 95.4 / 0.1 95.1 / 0 94.8 / 0 89.6 / 0 13.4 / 0.6 13.2 / 0.3 17 / 0.3 38.9 / 0

TBB 94.6 / 0.1 69.3 / 0.1 94.5 / 0.1 - 17.8 / 0.1 17.8 / 0.1 17.8 / 0.1 -

Tiny
(crop)

PBB 95.4 / 0 95.1 / 0.1 94.7 / 0 89.6 / 0 13.4 / 0.4 13 / 0.2 17.2 / 0.3 38.9 / 0

TBB 94.6 / 0 69.4 / 0.1 94.6 / 0 - 17.8 / 0.1 17.8 / 0.1 17.8 / 0.1 -

Tiny (res)
PBB 95.2 / 0.1 94.9 / 0 94.6 / 0.1 89.6 / 0 14 / 0.4 14 / 0.5 17.8 / 0.4 38.9 / 0

TBB 94.4 / 0.1 69.2 / 0 94.4 / 0 - 17.8 / 0.1 17.8 / 0.1 17.8 / 0.1 -

CIFAR100
♣

iSUN
PBB 86.5 / 0.2 85.8 / 0 85.6 / 0.2 79 / 0.1 45.3 / 1 46.1 / 0.5 46.8 / 1 65.9 / 0.4

TBB 85.6 / 0.1 82.7 / 0.1 85.5 / 0.1 - 46.9 / 0.4 46.8 / 0.4 46.8 / 0.4 -

LSUN
(crop)

PBB 89.1 / 0 88.5 / 0.1 88 / 0.1 80.6 / 0 35.6 / 0.4 35.7 / 0.2 39.9 / 0.3 65.1 / 0

TBB 87.9 / 0.1 84.9 / 0.1 87.7 / 0.1 - 39.8 / 0.6 39.8 / 0.6 39.8 / 0.6 -

LSUN
(resize)

PBB 86.8 / 0.1 86.2 / 0.1 86 / 0.1 79.1 / 0.1 44.4 / 0.9 44.4 / 0.6 45.3 / 0.3 65.4 / 0.3

TBB 85.8 / 0.1 82.9 / 0.1 85.7 / 0.1 - 45.9 / 0.5 45.8 / 0.5 45.8 / 0.5 -

Tiny
(crop)

PBB 88.4 / 0.1 87.8 / 0.1 87.6 / 0.1 81.8 / 0.1 38.2 / 0.4 37.8 / 0.9 40.6 / 0.5 63.4 / 0.1

TBB 87.2 / 0.1 84.2 / 0.1 87 / 0.1 - 42 / 0.6 42 / 0.6 42 / 0.6 -

Tiny (res)
PBB 86.8 / 0.1 86.3 / 0.1 85.9 / 0.1 79.2 / 0.1 44 / 0.1 43.6 / 0.2 45.9 / 1.2 65.8 / 0.3

TBB 85.9 / 0.2 83 / 0.2 85.8 / 0.2 85.8 / 0.2 45.7 / 1.3 45.7 / 1.3 45.7 / 1.3 -

CIFAR10
♢

iSUN
PBB 95.5 / 0.1 95.3 / 0.1 94.9 / 0.1 91.5 / 0 14.4 / 0.6 13.4 / 0.2 16.8 / 0.5 34/ 0.1

TBB 95 / 0 69.6 / 0 94.9 / 0.1 - 16.4 / 0.2 16.4 / 0.2 16.4 / 0.2 -

LSUN
(crop)

PBB 95.8 / 0.1 95.5 / 0.1 95 / 0.1 93.9 / 0.1 12.4 / 0.2 12.6 / 0.1 16.1 / 0.4 24.8 / 0.1

TBB 94.8 / 0.1 69.6 / 0.1 94.8 / 0.1 - 16.7 / 0.4 16.8 / 0.4 16.6 / 0.4 -

LSUN
(resize)

PBB 95.8 / 0 95.6 / 0 95.2 / 0 91.6 / 0 12.9 / 0.5 12.9 / 0.3 15.8 / 0.2 33.9 / 0

TBB 95 / 0 69.7 / 0.1 95 / 0.1 - 16.4 / 0.2 16.4 / 0.3 16.4 / 0.2 -

Tiny
(crop)

PBB 95.8 / 0.1 95.5 / 0.1 95.2 / 0.1 91.5 / 0 12.8 / 0.7 12.9 / 0.5 16 / 0 33.9 / 0

TBB 95 / 0.2 69.8 / 0.1 95 / 0.1 - 16.4 / 0.2 16.5 / 0.2 16.4 / 0.2 -

Tiny (res)
PBB 95.4 / 0.1 95 / 0.1 94.8 / 0.1 91.4 / 0 15 / 0.1 14.8 / 0.7 17 / 0.5 34.5 / 0.9

TBB 94.6 / 0.2 69.3 / 0.2 94.6 / 0.2 - 18.1 / 1 18.1 / 1.1 18 / 1 -

CIFAR100
♢

iSUN
PBB 84.8 / 0.1 84.4 / 0.2 84.6 / 0.1 80.8 / 0.2 53.6 / 1 51.2 / 0.2 51.3 / 0.1 63.5 / 0.3

TBB 84.1 / 0.1 81.2 / 0.1 84 / 0.1 - 52.5 / 0.5 52.5 / 0.5 52.5 / 0.5 -

LSUN
(crop)

PBB 89.9 / 0.1 89.6 / 0 89 / 0 84.1 / 0 35.2 / 0.7 35.4 / 0.2 39.3 / 0.1 62.2 / 0

TBB 88.7 / 0.1 85.7 / 0 88.5 / 0.1 - 38.8 / 0.5 38.8 / 0.5 38.8 / 0.4 -

LSUN
(resize)

PBB 85.3 / 0.3 85.1 / 0.2 84.9 / 0.1 81.1 / 0 51.6 / 0.9 48.8 / 1 49.2 / 0.7 63.3 / 0.1

TBB 84.6 / 0.2 81.8 / 0.2 84.6 / 0.1 - 50.6 / 0.8 50.7 / 0.8 50.6 / 0.8 -

Tiny
(crop)

PBB 88.2 / 0 88.1 / 0.2 87.7 / 0.1 84.8 / 0.1 41.2 / 0.3 40.2 / 0.6 42.3 / 0.4 59/ 0.2

TBB 87.7 / 0.1 84.7 / 0.1 87.5 / 0.1 - 41.8 / 0.5 41.8 / 0.5 41.8 / 0.5 -

Tiny (res)
PBB 85.4 / 0.2 84.8 / 0.2 85.1 / 0.3 81.2 / 0.1 51.8 / 1.6 52 / 0.8 50.4 / 0.9 63.3 / 0.2

TBB 84.8 / 0.1 81.9 / 0.1 84.7 / 0.1 - 51.4 / 0.5 51.4 / 0.5 51.4 / 0.5 -

CIFAR10
♠

iSUN
PBB 95.6 / 0.1 95.6 / 0 95.4 / 0 93.5 / 0 15.1 / 0.1 13.6 / 0.5 16.1 / 0.2 30.6 / 0.4

TBB 95.4 / 0.1 70 / 0.1 95.2 / 0.1 - 16.1 / 0.4 16 / 0.5 16 / 0.4 -

LSUN
(crop)

PBB 96.1 / 0.1 95.9 / 0.1 95.5 / 0.2 95.2 / 0.1 12.6 / 0.5 12.4 / 0.3 15.3 / 0.7 20.8 / 0.4

TBB 95.2 / 0.1 70 / 0.1 95.2 / 0.1 - 15.8 / 0.7 15.8 / 0.7 15.7 / 0.7 -

LSUN
(resize)

PBB 96 / 0 95.8 / 0 95.7 / 0 93.6 / 0 13.2 / 0.5 13 / 0.2 15.2 / 0.4 30.3 / 0.4

TBB 95.5 / 0.1 70.2 / 0.1 95.5/ 0.1 - 15.2 / 0.5 15.2 / 0.5 15.1 / 0.5 -

Tiny
(crop)

PBB 96 / 0.1 95.9 / 0.1 95.7 / 0 93.6 / 0 13.5 / 0.9 12.7 / 0.4 15.2 / 0.4 30.3 / 0.4

TBB 95.5 / 0.1 70.3 / 0 95.6 / 0 - 15.1 / 0.2 15 / 0.3 15 / 0.2 -

Tiny (res)
PBB 95.5 / 0.1 95.2 / 0.1 95.1 / 0.1 93.2 14.7 / 0.3 14.8 / 0.5 17.1 / 0.4 31/ 0

TBB 94.9 / 0.1 69.7 / 0.1 94.9 / 0.1 - 16.8 / 0.3 16.9 / 0.2 16.7 / 0.2 -

CIFAR100
♠

iSUN
PBB 83.3 / 0.1 83.1 / 0.1 83 / 0.2 82.6 / 0.2 57.8 / 0.3 57.1 / 1 56.8 / 0.8 60/ 0.4

TBB 82.6 / 0.2 79.7 / 0.2 82.5 / 0.2 - 58.3 / 1 58.4 / 1.1 58.4 / 1 -

LSUN
(crop)

PBB 90.6 / 0 90.7 / 0 89.9 / 0.1 87.5 / 0 35.9 / 0.2 34.6 / 0.2 38.5 / 0.4 56.1 / 0.2

TBB 89.4 / 0.1 86.2 / 0 89 / 0 - 39.4 / 0.1 39.4 / 0.1 39.4 / 0.1 -

LSUN
(resize)

PBB 83.6 / 0.2 83.8 / 0.1 83.6 / 0.2 83.2 / 0.1 55.8 / 0.4 54.2 / 0.7 54.1 / 0.6 59.6 / 0.8

TBB 83.2 / 0.1 80.4 / 0.1 83.2 / 0.1 - 55 / 0.6 55 / 0.7 55 / 0.6 -

Tiny
(crop)

PBB 88.3 / 0.1 88.5 / 0.1 88.1 / 0.1 87.7 / 0.1 43.2 / 0.5 41.5 / 0.7 42.9 / 0.4 54.3 / 0.1

TBB 87.8 / 0 84.7 / 0.1 87.5 / 0.1 - 43.7 / 0.2 43.7 / 0.2 43.7 / 0.2 -

Tiny (res)
PBB 83.8 / 0.1 83.8 / 0.1 83.9 / 0.2 83/ 0.2 57.9 / 0.5 56.6 / 0.9 55.6 / 1 61/ 0.6

TBB 83.6 / 0.1 80.7 / 0.1 83.5 / 0.1 - 55.5 / 0.8 55.5 / 0.8 55.5 / 0.8 -
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B.1 Additional results

In the following sections, we include results that, due to space limitations, were
not included in Section 4.4.2.

B.1.1 Additional Results on CIFAR10

Attack Rate

In Table B.1, we report the average number of successful attacks per natural
sample considered in Mead and in the single-armed settings.

As explained in Section 4.4.2, the attacks generated thanks to the Adversarial
Cross-Entropy seem to be the most harmful ones for the underlying classifier. It
is not surprising given that the Cross-Entropy was used as the loss to train the
classifier. Attacks generated through the maximization of the Kullback-Leibler
divergence, the Gini Impurity score, and the Fisher-Rao distance all seem to be
equally damaging.

NSS

In Table B.2, we report the performances of the NSS detector in CIFAR10.
NSS is, by far, the best performing method to detect adversarial examples

under the Mead framework that we consider in this paper. The decrease in per-
formances due to the worst-case scenario that we consider is up to 5.0 percentage
points in terms of AUROCÒ%. Under the single-armed setting, NSS is the most
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Avg. Num. of Successful Attack / Tot. Num. of Attack
Norm L1 Mead ACE KL Gini FR

PGD1
ε = 5 1.28 / 4 0.45 / 1 0.31 / 1 0.27 / 1 0.25 / 1
ε = 10 2.24 / 4 0.81 / 1 0.53 / 1 0.47 / 1 0.43 / 1
ε = 15 2.60 / 4 0.92 / 1 0.60 / 1 0.59 / 1 0.50 / 1
ε = 20 2.72 / 4 0.95 / 1 0.61 / 1 0.64 / 1 0.52 /1
ε = 25 2.76 / 4 0.95 / 1 0.61 / 1 0.67 / 1 0.53 / 1
ε = 30 2.80 / 4 0.95 / 1 0.62 / 1 0.68 / 1 0.54 / 1
ε = 40 2.80 / 4 0.95 / 1 0.62 / 1 0.70 / 1 0.54 / 1

Norm L2

PGD2
ε = 0.125 1.12 / 4 0.39 / 1 0.27 / 1 0.24 / 1 0.22 / 1
ε = 0.25 2.16 / 4 0.78 / 1 0.51 / 1 0.45 / 1 0.40 / 1
ε = 0.3125 2.40 / 4 0.86 / 1 0.56 / 1 0.54 / 1 0.45 / 1
ε = 0.5 2.68 / 4 0.93 / 1 0.60 / 1 0.64 / 1 0.50 / 1
ε = 1 2.76 / 4 0.94 / 1 0.61 / 1 0.70 / 1 0.52 / 1
ε = 1.5 2.76 / 4 0.94 / 1 0.61 / 1 0.70 / 1 0.52 / 1
ε = 2 2.76 / 4 0.94 / 1 0.61 / 1 0.70 / 1 0.52 / 1

DeepFool
No ε 0.48 / 1 0.48 / 1 0.48 / 1 0.48 / 1 0.48 / 1
CW2

ε = 0.01 0.95 / 1 0.95 / 1 0.95 / 1 0.95 / 1 0.95 / 1
HOP
ε = 0.1 0.41 / 1 0.41 / 1 0.41 / 1 0.41 / 1 0.41 / 1

Norm L8

PGDi, FGSM, BIM
ε = 0.03125 8.28 / 12 2.76 / 3 1.86 / 3 2.13 / 3 1.53 / 3
ε = 0.0625 8.52 / 12 2.85 / 3 1.89 / 3 2.22 / 3 1.56 / 3
ε = 0.25 8.88 / 12 2.85 / 3 1.98 / 3 2.31 / 3 1.71 / 3
ε = 0.5 9.24 / 12 2.85 / 3 2.13 / 3 2.31 / 3 1.92 / 3

PGDi, FGSM, BIM, SA
ε = 0.125 9.00 / 13 3.21 / 4 2.26 / 4 2.61 / 4 1.95 / 4

PGDi, FGSM, BIM, CWi
ε = 0.3125 9.88 / 13 3.79 / 4 2.99 / 4 3.25 / 4 2.73 / 4

No norm

STA
No ε 0.24 / 1 0.24 / 1 0.24 / 1 0.24 / 1 0.24 / 1

Table B.1: Average number of successful attacks per natural sample con-
sidered in the single-armed setting and Mead (CIFAR10). The results are
reported in the table together with the total number of attacks performed per natural
sample(Avg. / Tot.). No norm denotes the group of attacks that do not depend on the
norm constraint.

sensitive to the Kullback-Leibler divergence, even though the results are quite
similar amongst the different attack objectives.
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NSS Mead ACE KL Gini FR

Norm L1 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD1
ε = 5 48.5 94.2 49.9 93.5 49.6 93.0 50.3 93.2 49.9 93.3
ε = 10 54.0 90.3 56.9 88.4 56.6 88.3 57.1 88.8 57.0 88.1
ε = 15 58.8 86.8 63.1 83.0 62.8 83.1 63.5 84.0 63.2 82.5
ε = 20 63.5 82.3 68.5 77.1 68.1 77.3 69.9 77.6 68.7 76.4
ε = 25 67.7 77.2 73.1 71.1 72.7 71.8 75.0 71.4 73.4 70.9
ε = 30 71.4 73.4 77.1 64.5 76.8 65.1 78.6 67.3 77.4 65.2
ε = 40 76.1 67.3 83.5 52.7 83.3 53.5 80.1 64.9 83.6 52.7

L1 Average 62.9 81.6 67.4 75.7 67.1 76.0 67.8 78.2 67.6 75.6

Norm L2 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD2
ε = 0.125 48.3 94.3 49.5 93.8 49.1 93.5 49.5 94.3 49.6 93.5
ε = 0.25 53.2 91.2 55.9 89.1 55.6 89.2 55.9 89.8 55.8 89.4
ε = 0.3125 55.8 89.2 59.4 86.5 59.0 86.6 59.3 87.7 59.3 86.6
ε = 0.5 63.3 82.6 68.3 77.4 68.0 77.4 69.0 78.7 68.4 77.2
ε = 1 76.4 67.5 84.4 50.6 84.3 50.5 79.3 66.8 84.7 50.7
ε = 1.5 81.0 63.0 92.8 28.7 92.7 28.9 79.5 66.5 93.0 27.3
ε = 2 82.6 62.3 96.8 13.9 96.9 13.1 79.5 66.5 95.9 17.2

DeepFool
No ε 57.0 91.7 57.0 91.7 57.0 91.7 57.0 91.7 57.0 91.7
CW2

ε = 0.01 56.4 90.8 56.4 90.8 56.4 90.8 56.4 90.8 56.4 90.8
HOP
ε = 0.1 66.1 87.0 66.1 87.0 66.1 87.0 66.1 87.0 66.1 87.0

L2 Average 64.0 82.0 68.7 71.0 68.5 70.9 65.1 82.0 68.6 71.1

Norm L8 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGDi, FGSM, BIM
ε = 0.03125 83.0 55.3 88.5 42.3 89.6 39.9 87.5 47.8 89.3 39.8
ε = 0.0625 96.0 17.2 98.1 7.9 98.4 6.8 97.1 13.2 98.4 6.8
ε = 0.25 97.3 0.6 99.7 0.6 99.7 0.6 97.8 0.6 98.0 0.6
ε = 0.5 82.5 100.0 99.7 0.6 99.7 0.6 86.2 100.0 85.7 100.0

PGDi, FGSM, BIM, SA
ε = 0.125 9.4 99.9 9.4 99.9 9.4 99.9 9.4 99.9 9.4 99.9

PGDi, FGSM, BIM, CWi
ε = 0.3125 63.2 99.1 66.1 89.4 66.1 89.4 63.9 96.2 63.9 95.8
L8 Average 71.9 62.0 76.9 40.1 77.2 39.5 73.7 59.6 74.1 57.2

No norm AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

STA
No ε 88.5 38.8 88.5 38.8 88.5 38.8 88.5 38.8 88.5 38.8

No norm Average 88.5 38.8 88.5 38.8 88.5 38.8 88.5 38.8 88.5 38.8

Table B.2: Performances on NSS per objective and in Mead on CIFAR10.
The worst results among all the settings is in bold; the ones in the single-armed setting
is underlined. No norm denotes the group of attacks that do not depend on the norm
constraint.

KD-BU

In Table B.3, we show the result of our Mead framework as well as the single-
armed settings on CIFAR10, evaluated on KD-BU.

KD-BU seems to work poorly on Mead as well as on the single-armed setting.
For most settings, KD-BU is worst than a random detector. The decrease in
AUROCÒ% between the worst single-armed setting and Mead is up to 24.9
percentage points.
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KD-BU Mead ACE KL Gini FR

Norm L1 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD1
ε = 5 41.3 96.6 58.0 94.7 57.1 94.8 67.9 93.0 56.5 94.8
ε = 10 36.9 97.2 55.1 94.7 54.0 94.7 72.4 91.9 54.6 94.8
ε = 15 39.9 96.7 57.9 94.5 57.9 94.5 73.2 92.9 58.2 94.5
ε = 20 47.3 96.3 66.7 93.2 66.9 93.2 75.9 92.3 65.9 93.4
ε = 25 55.5 95.6 75.5 91.0 76.2 90.8 76.5 92.0 75.7 91.0
ε = 30 62.6 94.7 83.5 86.9 84.3 86.3 77.2 91.8 84.1 86.4
ε = 40 72.6 92.6 93.5 65.4 93.5 64.5 77.0 91.9 93.7 63.9

L1 Average 50.9 95.7 70.0 88.6 70.0 88.4 74.3 92.3 69.8 88.4

Norm L2 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD2
ε = 0.125 42.0 96.6 59.0 94.6 58.2 94.6 68.2 92.6 57.8 94.6
ε = 0.25 38.4 96.8 54.2 95.0 53.9 95.0 70.5 92.5 55.0 94.8
ε = 0.3125 38.6 96.8 55.1 94.7 55.8 94.6 72.9 92.0 55.6 94.6
ε = 0.5 47.9 96.2 66.8 93.2 67.8 92.9 75.4 92.4 67.0 93.1
ε = 1 74.2 92.1 94.4 58.1 94.6 55.7 77.1 91.8 94.7 57.3
ε = 1.5 80.1 90.1 99.0 0.0 99.2 0.0 77.1 91.9 99.3 0.0
ε = 2 81.3 89.7 99.8 0.0 99.9 0.0 77.1 91.9 99.8 0.0

DeepFool
No ε 67.1 94.0 67.1 94.0 67.1 94.0 67.1 94.0 67.1 94.0
CW2

ε = 0.01 53.0 95.1 53.0 95.1 53.0 95.1 53.0 95.1 53.0 95.1
HOP
ε = 0.1 67.3 94.0 67.3 94.0 67.3 94.0 67.3 94.0 67.3 94.0

L2 Average 59.0 94.1 71.6 71.9 71.7 71.6 70.6 92.8 71.7 71.8

Norm L8 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGDi, FGSM, BIM
ε = 0.03125 29.2 97.3 52.8 94.7 62.4 92.7 46.5 96.2 58.2 93.8
ε = 0.0625 35.2 96.9 67.1 91.7 74.8 88.7 52.3 95.7 75.0 89.0
ε = 0.25 45.1 96.4 84.4 84.8 83.5 86.6 65.0 94.5 81.8 88.5
ε = 0.5 43.1 96.6 77.4 90.7 79.5 89.2 68.0 94.1 83.4 88.3

PGDi, FGSM, BIM, SA
ε = 0.125 34.9 97.0 59.2 94.9 60.5 94.9 46.5 96.4 60.6 94.9

PGDi, FGSM, BIM, CWi
ε = 0.3125 33.2 97.1 47.8 95.8 47.7 95.8 43.8 96.4 47.7 95.9
L8 Average 36.8 96.9 64.8 92.1 68.1 91.3 53.7 95.6 67.8 91.7

No norm AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

STA
No ε 65.4 94.2 65.4 94.2 65.4 94.2 65.4 94.2 65.4 94.2

No norm Average 65.4 94.2 65.4 94.2 65.4 94.2 65.4 94.2 65.4 94.2

Table B.3: Performances on KD-BU per objective and in Mead on CI-
FAR10. The worst results among all the settings are shown in bold; the ones in the
single-armed setting is underlined. No norm denotes the group of attacks that do not
depend on the norm constraint.

LID

In Table B.4, we report the detection performances of the LID method under the
Mead framework and the different single-armed settings.

LID is quite sensitive to all the attacker’s objectives. Depending on the norm-
constraint and on the ε value, each one of the four objectives can be the most
harmful one. Moreover, this detection method is quite affected by the Mead set-
ting. Indeed, the decrease of performances in terms of AUROCÒ%due to the use
of the worst-case scenario is up to 28.9 percentage points compared to the worst
single-armed setting (value obtained under the L1-norm constraint for ε = 40).
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LID Mead ACE KL Gini FR

Norm L1 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD1
ε = 5 57.5 93.5 66.2 86.9 65.5 88.0 77.9 77.0 64.4 88.7
ε = 10 48.3 96.4 62.3 89.6 60.6 92.0 84.3 70.7 61.9 90.2
ε = 15 53.1 95.4 61.6 90.7 61.8 90.9 89.1 55.6 61.8 91.1
ε = 20 37.5 99.0 65.7 89.2 65.4 90.2 91.4 40.8 66.3 87.1
ε = 25 47.7 96.3 70.7 84.0 70.9 84.7 92.8 37.1 70.3 83.3
ε = 30 56.4 95.0 76.1 75.7 76.5 79.8 93.2 35.2 75.5 81.9
ε = 40 54.9 92.5 84.6 58.5 85.0 54.7 93.3 32.6 83.8 63.3

L1 Average 50.8 95.4 69.6 82.1 69.4 82.9 88.9 49.9 69.1 83.7

Norm L2 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD2
ε = 0.125 61.3 90.6 67.5 86.3 66.2 88.7 77.8 76.3 64.6 88.8
ε = 0.25 47.9 96.5 62.0 90.3 60.8 91.5 84.1 68.3 61.4 90.6
ε = 0.3125 49.7 95.8 60.8 91.5 60.5 91.5 87.4 60.3 61.9 88.8
ε = 0.5 47.6 97.9 66.1 87.7 65.6 91.2 91.0 49.2 65.9 88.9
ε = 1 65.2 84.1 86.0 50.6 86.3 48.9 93.4 32.5 85.2 55.9
ε = 1.5 77.0 56.2 94.0 20.0 93.9 19.8 93.5 31.5 93.1 21.7
ε = 2 81.5 46.4 96.3 11.9 96.3 12.2 93.4 31.8 95.0 15.2

DeepFool
No ε 70.9 86.9 70.9 86.9 70.9 86.9 70.9 86.9 70.9 86.9
CW2

ε = 0.01 61.6 92.5 61.6 92.5 61.6 92.5 61.6 92.5 61.6 92.5
HOP
ε = 0.1 72.2 83.6 72.2 83.6 72.2 83.6 72.2 83.6 72.2 83.6

L2 Average 63.5 83.1 73.7 70.1 73.4 70.7 82.5 61.3 73.2 71.3

Norm L8 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGDi, FGSM, BIM
ε = 0.03125 41.4 96.5 55.5 89.9 60.5 88.9 69.7 86.7 65.5 82.5
ε = 0.0625 58.4 83.9 76.7 59.0 78.6 57.0 83.6 59.2 87.1 44.8
ε = 0.25 58.0 89.5 88.4 27.0 92.1 41.7 77.7 70.9 93.0 20.6
ε = 0.5 58.6 86.7 90.3 25.7 93.6 19.2 76.3 74.3 91.8 23.9

PGDi, FGSM, BIM, SA
ε = 0.125 56.7 91.8 82.5 48.6 85.6 49.8 64.6 91.0 85.5 48.8

PGDi, FGSM, BIM, CWi
ε = 0.3125 49.5 96.1 60.5 90.7 68.7 88.8 56.0 96.0 68.8 87.9
L8 Average 53.8 90.8 75.7 56.8 79.9 57.6 71.3 79.7 82.0 51.4

No norm AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

STA
No ε 88.0 58.1 88.0 58.1 88.0 58.1 88.0 58.1 88.0 58.1

No norm Average 88.0 58.1 88.0 58.1 88.0 58.1 88.0 58.1 88.0 58.1

Table B.4: Performances on LID per objective and in Mead on CIFAR10.
The worst results among all the settings is in bold; the ones in the single-armed setting
is underlined. No norm denotes the group of attacks that do not depend on the norm
constraint.

FS

In Table B.5, we present the summary of the FS detection method.
FS is not quite affected by the Mead framework under the L1 and L2-norm

constraints. The reason why is explained in Section 4.4.2 in the remark of the
paragraph called Mead and the single-armed setting. However, under the
L8-norm constraint, our Mead framework is quite damaging, creating a de-
crease in terms of AUROCÒ%up to 6.5 percentage points and a maximal increase
in FPRÓ95%%of 5.3 percentage points. Under the single-armed setting, FS is
extremely sensitive to the attacks generated by maximizing the Gini Impurity
score.
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FS Mead ACE KL Gini FR

Norm L1 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD1
ε = 5 69.1 76.1 76.5 66.5 76.8 65.8 68.2 77.9 76.5 66.4
ε = 10 76.6 65.9 88.3 42.2 88.4 42.5 74.8 68.4 88.6 42.1
ε = 15 77.2 61.9 93.6 26.3 93.8 25.6 76.7 63.8 94.0 25.0
ε = 20 78.1 60.0 96.3 16.5 96.4 16.1 76.3 63.2 96.5 15.3
ε = 25 76.9 61.7 97.6 11.5 97.7 11.3 74.7 64.9 97.7 10.9
ε = 30 75.5 63.4 98.3 8.1 98.4 8.0 72.6 66.8 98.4 7.9
ε = 40 74.6 64.9 99.0 5.0 99.0 4.8 71.4 68.1 99.0 5.0

L1 Average 75.4 64.8 92.8 25.1 92.9 24.9 73.5 67.6 92.9 24.6

Norm L2 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD2
ε = 0.125 67.5 77.4 74.6 68.9 75.1 67.6 68.9 76.9 74.8 69.2
ε = 0.25 75.9 66.1 87.3 45.0 87.4 45.0 74.7 67.7 87.4 45.4
ε = 0.3125 77.0 64.1 90.7 35.5 90.9 34.8 76.1 65.7 90.9 35.3
ε = 0.5 77.6 61.4 96.2 17.0 96.3 16.6 75.7 64.6 96.3 16.5
ε = 1 74.7 65.0 99.0 4.8 99.0 4.6 71.2 67.9 98.9 5.0
ε = 1.5 74.5 65.1 99.3 3.4 99.3 3.5 71.1 68.0 98.9 4.9
ε = 2 73.7 65.2 99.3 3.6 99.3 3.6 71.1 68.0 98.7 5.7

DeepFool
No ε 66.0 78.2 66.0 78.2 66.0 78.2 66.0 78.2 66.0 78.2
CW2

ε = 0.01 86.7 46.3 86.7 46.3 86.7 46.3 86.7 46.3 86.7 46.3
HOP
ε = 0.1 75.7 69.0 75.7 69.0 75.7 69.0 75.7 69.0 75.7 69.0

L2 Average 74.9 65.8 87.4 31.2 87.6 36.9 73.7 67.2 87.4 37.5

Norm L8 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGDi, FGSM, BIM
ε = 0.03125 59.6 79.0 75.2 63.1 78.5 57.9 66.1 73.6 77.4 61.3
ε = 0.0625 53.7 80.3 71.9 63.8 76.3 59.5 60.2 77.1 77.2 57.6
ε = 0.25 49.4 83.2 72.8 60.0 78.2 53.9 55.2 81.6 76.8 53.8
ε = 0.5 54.1 78.8 82.7 39.9 86.4 36.5 57.2 78.2 78.6 52.3

PGDi, FGSM, BIM, SA
ε = 0.125 46.5 86.3 64.3 71.6 69.7 68.1 51.5 85.2 70.8 66.3

PGDi, FGSM, BIM, CWi
ε = 0.3125 52.7 79.3 71.1 62.2 75.7 58.2 58.9 77.2 73.4 59.9
L8 Average 52.7 81.1 73.0 60.1 77.5 55.7 58.2 78.8 75.7 58.5

No norm AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

STA
No ε 62.7 82.5 62.7 82.5 62.7 82.5 62.7 82.5 62.7 82.5

No norm Average 62.7 82.5 62.7 82.5 62.7 82.5 62.7 82.5 62.7 82.5

Table B.5: Performances on FS per objective and in Mead on CIFAR10.
The worst results among all the settings is in bold; the ones in the single-armed setting
is underlined. No norm denotes the group of attacks that do not depend on the norm
constraint.

MagNet

In Table B.6, we show the result of our Mead framework on CIFAR10, evaluated
on MagNet.

MagNet is an unsupervised detection method. In most cases, on CIFAR10, the
results using Mead are close to the worst results for the single-armed settings.
In other words, it seems that if an example generated using the worst loss is
detected (usually the Fisher-Rao objective), then the samples generated using all
the others are detected. The decrease in AUROCÒ% between the worst single-
armed setting and Mead is up to 1.8 percentage points.
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MagNet Mead ACE KL Gini FR

Norm L1 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD1
ε = 5 43.9 96.6 43.6 96.6 43.7 96.5 43.3 97.1 43.6 96.7
ε = 10 47.8 95.2 47.9 95.1 47.6 94.9 46.7 95.6 46.7 95.6
ε = 15 49.8 94.3 50.0 94.3 49.8 94.1 49.1 94.5 49.1 94.7
ε = 20 50.6 93.8 50.8 93.7 50.6 93.5 50.7 93.3 49.8 94.1
ε = 25 51.1 93.1 51.4 93.0 51.1 92.8 52.5 91.7 50.6 93.3
ε = 30 51.6 92.4 51.9 92.1 51.7 91.8 53.7 90.2 51.2 92.5
ε = 40 52.7 90.6 53.3 89.6 53.1 89.2 54.5 89.7 52.7 89.8

L1 Average 49.6 93.7 49.8 93.5 49.7 93.3 50.1 93.2 49.1 93.8

Norm L2 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD2
ε = 0.125 43.1 96.9 42.6 96.9 43.2 96.8 43.8 96.7 43.2 97.0
ε = 0.25 47.3 95.4 47.3 95.4 47.1 95.1 45.6 95.7 46.4 95.7
ε = 0.3125 48.7 94.8 48.8 94.7 48.7 94.5 47.4 95.0 48.0 95.1
ε = 0.5 50.6 93.8 50.7 93.6 50.5 93.4 50.5 93.3 49.9 94.2
ε = 1 53.0 90.1 53.7 88.7 53.6 88.4 54.4 89.6 53.3 88.8
ε = 1.5 55.3 88.3 59.3 79.2 59.1 78.8 54.5 89.5 59.2 80.9
ε = 2 56.9 88.2 67.2 64.4 67.2 64.0 54.5 89.5 63.7 79.3

DeepFool
No ε 51.1 94.7 51.1 94.7 51.1 94.7 51.1 94.7 51.1 94.7
CW2

ε = 0.01 50.5 94.7 50.5 94.7 50.5 94.7 50.5 94.7 50.5 94.7
HOP
ε = 0.1 52.2 93.8 52.2 93.8 52.2 93.8 52.2 93.8 52.2 93.8

L2 Average 50.9 93.1 52.3 89.6 52.3 89.4 50.5 93.3 51.8 91.4

Norm L8 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGDi, FGSM, BIM
ε = 0.03125 58.6 82.0 60.0 80.0 60.4 79.0 60.4 80.8 59.0 81.0
ε = 0.0625 74.6 51.2 76.8 48.0 79.4 46.2 77.1 48.2 78.8 47.0
ε = 0.25 97.0 5.2 98.2 3.6 98.7 3.4 97.7 4.1 98.7 3.4
ε = 0.5 98.0 3.5 99.0 2.2 99.2 2.0 98.6 2.6 99.2 2.1

PGDi, FGSM, BIM, SA
ε = 0.125 87.0 40.0 88.8 39.3 90.9 39.3 88.9 37.3 91.4 39.3

PGDi, FGSM, BIM, CWi
ε = 0.3125 52.6 94.5 52.5 94.5 52.5 94.5 52.6 94.5 52.6 94.5
L8 Average 78.0 46.1 79.2 44.6 80.2 44.1 79.2 44.6 80.0 44.6

No norm AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

STA
No ε 79.9 45.7 79.9 45.7 79.9 45.7 79.9 45.7 79.9 45.7

No norm Average 79.9 45.7 79.9 45.7 79.9 45.7 79.9 45.7 79.9 45.7

Table B.6: Performances on MagNet per objective and in Mead on CI-
FAR10. The worst results among all the settings are shown in bold; the ones in the
single-armed setting is underlined. No norm denotes the group of attacks that do not
depend on the norm constraint.

B.1.2 Additional Results on MNIST

Success of attacks

In Table B.7, we show the average and total numbers of successful attack per
settings (Mead, Adversarial Cross-Entropy, KL divergence, Gini Impurity score
and Fisher-Rao loss) on the MNIST dataset. We can observe the same behavior in
MNIST as in CIFAR10. The most harmful attacks for the classifier are the ones
generated according to the Adversarial Cross-Entropy. The attacks generated
thanks to the three other objectives have a similar strength.
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Avg. Num. of Successful Attack / Tot. Num. of Attack
Norm L1 Mead ACE KL Gini FR

PGD1
ε = 5 0.06 / 4 0.02 / 1 0.02 / 1 0.01 / 1 0.01 / 1
ε = 10 0.23 / 4 0.09 / 1 0.06 / 1 0.03 / 1 0.05 / 1
ε = 15 0.77 / 4 0.31 / 1 0.20 / 1 0.10 / 1 0.16 / 1
ε = 20 1.50 / 4 0.58 / 1 0.38 / 1 0.22 / 1 0.33 /1
ε = 25 2.03 / 4 0.73 / 1 0.48 / 1 0.33 / 1 0.48 / 1
ε = 30 2.35 / 4 0.80 / 1 0.54 / 1 0.42 / 1 0.59 / 1
ε = 40 2.67 / 4 0.85 / 1 0.58 / 1 0.54 / 1 0.70 / 1

Norm L2

PGD2
ε = 0.125 0.04 / 4 0.01 / 1 0.01 / 1 0.01 / 1 0.01 / 1
ε = 0.25 0.04 / 4 0.01 / 1 0.01 / 1 0.01 / 1 0.01 / 1
ε = 0.3125 0.05 / 4 0.01 / 1 0.01 / 1 0.01 / 1 0.01 / 1
ε = 0.5 0.07 / 4 0.02 / 1 0.02 / 1 0.01 / 1 0.02 / 1
ε = 1 0.29 / 4 0.12 / 1 0.08 / 1 0.04 / 1 0.06 / 1
ε = 1.5 0.99 / 4 0.40 / 1 0.26 / 1 0.13 / 1 0.21 / 1
ε = 2 1.75 / 4 0.63 / 1 0.44 / 1 0.28 / 1 0.40 / 1

DeepFool
No ε 0.97 / 1 0.97 / 1 0.97 / 1 0.97 / 1 0.97 / 1
CW2

ε = 0.01 0.74 / 1 0.74 / 1 0.74 / 1 0.74 / 1 0.74 / 1
HOP
ε = 0.1 0.99 / 1 0.99 / 1 0.99 / 1 0.99 / 1 0.99 / 1

Norm L8

PGDi, FGSM, BIM
ε = 0.03125 0.14 / 12 0.04 / 3 0.03 / 3 0.04 / 3 0.03 / 3
ε = 0.0625 0.38 / 12 0.13 / 3 0.08 / 3 0.09 / 3 0.07 / 3
ε = 0.125 2.07 / 12 0.79 / 3 0.46 / 3 0.45 / 3 0.37 / 3
ε = 0.25 7.41 / 12 2.62 / 3 1.50 / 3 1.70/ 3 1.60 / 3
ε = 0.5 8.85 / 12 2.90 / 3 1.76 / 3 2.20 / 3 1.99 / 3

PGDi, FGSM, BIM, CWi, SA
ε = 0.3125 9.73 / 14 4.34 / 5 3.17 / 5 3.51 / 5 3.34 / 5

No norm

STA
No ε 0.85 / 1 0.85 / 1 0.85 / 1 0.85 / 1 0.85 / 1

Table B.7: Average number of successful attacks per natural sample consid-
ered in the single-armed setting and Mead (MNIST). The results are reported
in the table together with the total number of attacks performed per natural sample
(Avg. / Tot.). No norm denotes the group of attacks that do not depend on the norm
constraint.

NSS

In Table B.8, we show the result of our Mead framework on MNIST, evalu-
ated on NSS. NSS is effective on MNIST, in particular when considering L8

threats. However, in this case, when ε “ 0.3125, the performances decrease. This
is not surprising as CWi and SA have different attack schemes from the ones
in PGD/FGSM/BIM. NSS also loses some of its effectiveness with L1 and L2



B.1. Additional results

NSS Mead ACE KL Gini FR

Norm L1 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD1
ε = 5 91.4 30.5 92.1 24.6 92.3 27.2 93.0 24.2 92.0 26.9
ε = 10 96.4 11.7 96.6 10.8 96.7 10.7 97.3 8.0 97.1 8.5
ε = 15 97.3 8.6 97.5 8.0 97.5 8.0 98.0 4.2 97.5 7.7
ε = 20 97.9 5.3 98.0 4.7 98.0 4.6 98.2 3.3 98.1 3.9
ε = 25 98.2 3.2 98.3 3.2 98.3 3.2 98.3 3.1 98.3 3.2
ε = 30 98.3 3.1 98.3 3.1 98.3 3.1 98.3 3.1 98.3 3.1
ε = 40 98.4 3.1 98.4 3.1 98.4 3.1 98.4 3.1 98.4 3.1

L1 Average 96.8 9.4 97.0 8.2 97.1 8.6 97.4 7.0 97.1 8.1

Norm L2 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD2
ε = 0.125 80.4 55.3 81.3 55.2 81.3 49.7 82.3 51.4 81.2 56.2
ε = 0.25 86.4 42.0 87.6 38.4 87.9 39.7 89.0 40.3 86.9 41.8
ε = 0.3125 88.7 33.8 89.8 33.1 90.1 32.5 90.9 32.7 89.1 37.6
ε = 0.5 92.6 21.7 92.9 20.6 93.1 22.2 94.7 17.5 93.2 20.9
ε = 1 96.8 10.0 96.9 9.2 97.0 9.0 97.5 7.0 97.2 8.1
ε = 1.5 97.5 8.1 97.6 7.5 97.6 7.1 98.0 4.5 97.6 7.3
ε = 2 98.0 4.6 98.1 4.1 98.1 3.5 98.1 3.7 98.1 3.3

DeepFool
No ε 97.8 4.8 97.8 4.8 97.8 4.8 97.8 4.8 97.8 4.8
CW2

ε = 0.01 66.9 81.9 66.9 81.9 66.9 81.9 66.9 81.9 66.9 81.9
HOP
ε = 0.1 98.3 3.1 98.3 3.1 98.3 3.1 98.3 3.1 98.3 3.1

L2 Average 90.3 26.5 90.7 25.8 90.8 25.4 91.4 23.7 90.6 26.5

Norm L8 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGDi, FGSM, BIM
ε = 0.03125 93.4 9.6 94.5 9.5 94.7 9.5 95.3 9.5 94.5 9.5
ε = 0.0625 92.5 9.6 93.2 9.6 93.6 9.6 93.5 9.6 93.3 9.6
ε = 0.25 92.2 9.6 93.1 9.6 93.2 9.6 93.7 9.6 93.5 9.6
ε = 0.5 91.5 9.6 92.5 9.6 92.3 9.6 93.8 9.6 93.0 9.6

PGDi, FGSM, BIM, CWi, SA
ε = 0.3125 73.9 79.0 74.2 79.1 73.5 79.6 73.7 79.4 74.3 79.2
L8 Average 88.7 23.5 89.5 23.5 89.5 23.6 90.0 23.6 89.8 23.5

No norm AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

STA
No ε 87.1 57.8 87.1 57.8 87.1 57.8 87.1 57.8 87.1 57.8

No norm Average 87.1 57.8 87.1 57.8 87.1 57.8 87.1 57.8 87.1 57.8

Table B.8: Performances on NSS per objective and in Mead on MNIST.
The worst results among all the settings is in bold; the ones in the single-armed setting
is underlined. No norm denotes the group of attacks that do not depend on the norm
constraint.

threats. Note that all the single-armed settings behave quite similarly: this is
probably due to the computation of the Natural Scene Statistics, which are not
meaningful for perturbed images. Therefore, it is not surprising that the decrease
in AUROCÒ% considering Mead is less than one percentage point compared to
the worst single-armed setting.
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KD-BU

In Table B.9, we show the result of our Mead framework on MNIST, evaluated
on KD-BU.

KD-BU Mead ACE KL Gini FR

Norm L1 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD1
ε = 5 45.2 95.7 60.9 92.5 56.6 93.8 61.5 92.4 52.8 94.6
ε = 10 46.4 95.6 58.3 93.3 59.9 92.9 59.2 93.2 59.4 93.0
ε = 15 45.5 95.7 58.3 93.4 59.3 93.0 59.7 93.0 58.2 93.4
ε = 20 45.5 95.7 59.7 93.1 58.7 93.3 61.3 92.7 59.6 93.1
ε = 25 45.8 95.7 60.3 93.0 60.2 92.9 61.7 92.7 60.5 92.9
ε = 30 45.7 95.7 60.8 92.9 60.4 92.9 62.9 92.3 60.3 93.0
ε = 40 44.8 95.8 61.2 92.8 60.2 93.0 63.5 92.3 61.2 92.8

L1 Average 45.6 95.7 59.9 93.0 59.3 93.1 61.4 92.7 58.9 93.3

Norm L2 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD2
ε = 0.125 43.0 96.0 59.8 92.8 58.1 93.4 55.8 94.0 56.0 94.0
ε = 0.25 44.1 95.9 60.4 92.6 57.7 93.5 56.0 94.0 60.6 92.6
ε = 0.3125 45.3 95.7 55.6 94.0 59.2 93.0 55.7 94.0 59.3 93.0
ε = 0.5 43.9 95.9 57.0 93.7 55.8 94.0 58.3 93.4 55.5 94.0
ε = 1 46.6 95.6 59.2 93.1 58.1 93.4 59.4 93.0 58.4 93.3
ε = 1.5 45.8 95.7 58.8 93.3 60.0 92.9 58.9 93.3 58.8 93.2
ε = 2 46.7 95.6 60.0 93.0 59.5 93.1 61.0 92.8 60.9 92.7

DeepFool
No ε 62.9 92.4 62.9 92.4 62.9 92.4 62.9 92.4 62.9 92.4
CW2

ε = 0.01 62.5 92.5 62.5 92.5 62.5 92.5 62.5 92.5 62.5 92.5
HOP
ε = 0.1 62.6 92.5 62.6 92.5 62.6 92.5 62.6 92.5 62.6 92.5

L2 Average 50.3 94.8 59.9 93.0 59.7 93.1 59.3 93.2 59.8 93.0

Norm L8 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGDi, FGSM, BIM
ε = 0.03125 34.5 96.7 42.0 96.1 44.0 95.9 48.1 95.4 42.9 96.0
ε = 0.0625 33.6 96.8 41.0 96.2 44.2 95.9 47.6 95.5 44.1 95.9
ε = 0.25 34.2 96.7 44.6 95.8 44.5 95.8 52.2 94.8 45.9 95.6
ε = 0.5 34.0 96.6 44.5 95.7 44.8 95.7 51.2 94.9 46.0 95.6

PGDi, FGSM, BIM, CWi, SA
ε = 0.3125 34.2 96.7 41.7 96.1 45.8 95.7 44.0 95.8 45.6 95.7
L8 Average 34.1 96.7 42.8 96.0 44.7 95.8 48.6 95.3 44.9 95.8

No norm AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

STA
No ε 76.0 88.2 76.0 88.2 76.0 88.2 76.0 88.2 76.0 88.2

No norm Average 76.0 88.2 76.0 88.2 76.0 88.2 76.0 88.2 76.0 88.2

Table B.9: Performances on KD-BU per objective and in Mead on MNIST.
The worst results among all the settings are shown in bold; the ones in the single-armed
setting is underlined. No norm denotes the group of attacks that do not depend on the
norm constraint.

The KD-BU method is the least effective one at detecting the adversarial
samples under the Mead framework. The decrease of AUROCÒ% can go up to
23 percentage points. Fisher-Rao and Adversarial Cross-Entropy-based attacks
seem to be the toughest to detect for KD-BU detectors.



B.1. Additional results

LID

In Table B.10, we show the result of our Mead framework on MNIST, evaluated
on LID.

LID Mead ACE KL Gini FR

Norm L1 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD1
ε = 5 88.1 41.5 89.6 36.1 88.6 41.7 88.4 39.3 87.5 46.9
ε = 10 83.2 48.8 86.8 41.9 87.1 41.3 89.4 35.7 86.9 42.1
ε = 15 83.1 48.8 84.3 41.9 84.2 46.5 87.1 42.3 83.7 49.8
ε = 20 77.7 57.7 83.8 47.2 84.6 46.6 90.1 35.5 84.5 47.8
ε = 25 78.5 58.7 83.0 51.9 83.5 56.8 91.4 32.4 83.6 51.2
ε = 30 74.3 65.6 80.8 57.4 81.8 56.8 92.7 29.1 82.7 54.9
ε = 40 74.5 63.5 77.5 60.8 78.4 60.1 93.8 26.5 80.1 58.9

L1 Average 79.9 54.9 83.7 48.2 84.0 50.0 90.4 52.1 84.1 50.2

Norm L2 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD2
ε = 0.125 87.7 47.7 88.0 47.5 87.6 47.4 86.8 46.7 86.8 49.1
ε = 0.25 88.0 40.5 89.1 45.2 87.9 49.2 88.1 45.2 88.0 44.6
ε = 0.3125 88.4 39.7 89.6 44.0 87.9 46.0 87.6 53.1 88.1 45.4
ε = 0.5 88.0 38.1 90.0 33.8 88.9 35.6 88.1 44.5 88.1 41.1
ε = 1 80.1 55.3 86.8 42.3 87.0 41.8 88.0 39.1 86.7 43.2
ε = 1.5 81.9 51.3 84.8 46.0 84.5 47.2 87.4 42.0 84.0 48.7
ε = 2 81.1 53.6 85.2 46.4 84.8 47.2 89.2 38.1 85.6 46.2

DeepFool
No ε 87.9 42.1 87.9 42.1 87.9 42.1 87.9 42.1 87.9 42.1
CW2

ε = 0.01 83.6 52.6 83.6 52.6 83.6 52.6 83.6 52.6 83.6 52.6
HOP
ε = 0.1 89.3 41.0 89.3 41.0 89.3 41.0 89.3 41.0 89.3 41.0

L2 Average 85.6 46.2 87.4 44.1 87.0 45.1 87.6 44.4 86.1 45.4

Norm L8 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGDi, FGSM, BIM
ε = 0.03125 87.5 44.1 89.8 34.5 87.6 45.3 89.5 40.0 86.9 46.7
ε = 0.0625 84.7 45.5 88.3 37.6 88.1 36.7 88.3 38.0 87.7 42.4
ε = 0.125 80.6 52.1 85.3 43.1 85.6 43.9 84.2 45.3 84.4 46.7
ε = 0.25 74.1 63.0 83.7 48.9 83.7 49.5 91.5 32.9 85.6 47.6
ε = 0.5 65.4 66.8 74.4 58.8 75.2 58.8 92.3 32.9 72.3 61.4

PGDi, FGSM, BIM, CWi, SA
ε = 0.3125 74.8 59.1 78.0 55.1 81.3 52.5 86.2 43.9 80.9 52.4
L8 Average 77.9 55.1 83.3 46.3 83.6 47.8 88.7 38.8 83.0 49.5

No norm AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

STA
No ε 98.1 8.2 98.1 8.2 98.1 8.2 98.1 8.2 98.1 8.2

No norm Average 98.1 8.2 98.1 8.2 98.1 8.2 98.1 8.2 98.1 8.2

Table B.10: Performances on LID per objective and in Mead on MNIST.
The worst results among all the settings are shown in bold; the ones in the single-armed
setting is underlined. No norm denotes the group of attacks that do not depend on the
norm constraint.

LID is quite effective in detecting STA. Contrary to the other methods, LID
has more difficulty detecting attacks with significant perturbations. The maxi-
mum decrease in AUROCÒ% considering Mead is slightly higher than 8 percent-
age points. Even if the results seem to be quite similar among the single-armed,
the LID-based detector trained on MNIST seems more vulnerable to the attacks
generated thanks to the Kullback-Leibler divergence on L1-norm-based attacks
and sensitive to the Fisher-Rao distance under L2 threats.
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FS

In Table B.11, we show the result of our Mead framework on MNIST, evaluated
on FS.

FS Mead ACE KL Gini FR

Norm L1 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD1
ε = 5 59.2 88.1 63.3 85.4 62.6 87.1 59.2 84.7 59.8 89.5
ε = 10 72.0 76.3 76.8 68.6 76.9 67.8 73.0 70.0 75.6 69.8
ε = 15 86.5 56.4 90.7 45.2 90.9 44.3 84.9 54.2 90.7 44.5
ε = 20 87.9 54.1 92.3 41.3 92.5 40.0 90.8 42.3 92.5 40.5
ε = 25 86.6 56.0 90.4 46.1 90.5 45.9 92.0 39.0 90.9 46.5
ε = 30 83.9 60.4 88.0 53.0 88.3 50.9 92.0 39.3 89.5 49.9
ε = 40 72.3 76.0 82.5 63.8 82.7 63.8 90.8 41.8 84.6 60.8

L1 Average 79.8 66.8 83.4 57.6 83.5 57.1 83.2 53.0 83.4 57.4

Norm L2 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD2
ε = 0.125 56.6 90.5 58.3 89.2 57.7 91.4 57.0 89.4 57.4 87.9
ε = 0.25 56.2 90.3 58.3 85.4 58.5 85.8 58.0 89.3 55.9 89.1
ε = 0.3125 57.1 88.1 60.3 85.6 60.1 86.6 60.8 86.2 57.7 91.3
ε = 0.5 59.5 85.4 62.9 82.7 62.4 85.4 64.0 81.7 60.5 85.9
ε = 1 76.9 67.1 80.2 62.8 80.2 62.5 76.4 64.5 79.6 61.0
ε = 1.5 89.2 47.0 92.9 33.3 93.1 33.2 86.9 47.2 92.8 35.5
ε = 2 88.8 50.7 92.4 40.5 92.7 39.1 91.2 41.7 93.2 36.3

DeepFool
No ε 88.3 52.0 88.3 52.0 88.3 52.0 88.3 52.0 88.3 52.0
CW2

ε = 0.01 68.6 81.7 68.6 81.7 68.6 81.7 68.6 81.7 68.6 81.7
HOP
ε = 0.1 93.4 36.6 93.4 36.6 93.4 36.6 93.4 36.6 93.4 36.6

L2 Average 73.5 69.0 75.6 65.0 75.5 65.4 74.5 67.0 74.7 65.7

Norm L8 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGDi, FGSM, BIM
ε = 0.03125 55.0 90.4 59.6 87.8 58.1 88.7 58.9 85.6 57.0 88.4
ε = 0.0625 62.8 83.5 68.4 76.0 67.4 75.9 64.3 80.5 67.2 76.0
ε = 0.25 96.7 17.9 98.6 6.7 98.7 5.7 96.7 17.4 99.2 3.4
ε = 0.5 82.2 60.0 91.9 37.7 91.9 37.1 90.2 43.9 93.0 34.4

PGDi, FGSM, BIM, CWi, SA
ε = 0.3125 85.1 65.8 85.7 64.8 85.0 65.7 84.9 66.1 85.7 64.9
L8 Average 76.4 63.5 80.8 54.6 80.2 54.6 79.0 58.7 80.4 58.2

No norm AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

STA
No ε 61.5 85.9 61.5 85.9 61.5 85.9 61.5 85.9 61.5 85.9

No norm Average 61.5 85.9 61.5 85.9 61.5 85.9 61.5 85.9 61.5 85.9

Table B.11: Performances on FS per objective and in Mead on MNIST.
The worst results among all the settings is in bold; the ones in the single-armed setting
is underlined. No norm denotes the group of attacks that do not depend on the norm
constraint.

Despite having trouble detecting attacks with a small maximal perturbation
ε, FS detectors are not that bad at detecting adversarial examples. The attacks
based on the Gini Impurity Score are the least detected ones among all the single-
armed settings. The decrease in terms of AUROCÒ% is, in that case, 8 percentage
points at most.



B.1. Additional results

MagNet

In Table B.12, we show the result of our Mead framework on MNIST, evaluated
on MagNet.

MagNet Mead ACE KL Gini FR

Norm L1 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD1
ε = 5 87.6 37.1 88.5 35.1 88.8 36.8 88.7 34.6 87.7 36.6
ε = 10 99.2 2.7 99.3 2.3 99.2 2.5 99.4 1.9 99.2 2.3
ε = 15 99.9 0.2 99.9 0.1 99.9 0.2 100.0 0.1 99.9 0.1
ε = 20 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0
ε = 25 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0
ε = 30 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0
ε = 40 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

L1 Average 98.1 5.7 98.2 5.4 98.3 5.6 98.3 5.2 98.1 5.6

Norm L2 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGD2
ε = 0.125 64.3 82.4 65.6 80.4 65.5 82.5 65.7 80.1 63.0 84.0
ε = 0.25 74.4 68.3 75.5 66.8 76.6 66.4 77.2 68.0 73.4 67.0
ε = 0.3125 79.7 61.1 81.0 56.7 82.0 56.5 81.9 61.3 78.4 57.1
ε = 0.5 90.8 32.2 91.9 30.8 91.9 31.0 91.7 32.2 91.0 31.1
ε = 1 99.1 3.1 99.6 1.6 99.5 1.7 98.2 8.4 99.5 1.8
ε = 1.5 99.8 0.3 100.0 0.1 100.0 0.1 99.5 1.6 100.0 0.1
ε = 2 99.9 0.1 100.0 0.0 100.0 0.0 99.7 0.4 100.0 0.0

DeepFool
No ε 99.4 1.1 99.4 1.1 99.4 1.1 99.4 1.1 99.4 1.1
CW2

ε = 0.01 92.8 38.3 92.8 38.3 92.8 38.3 92.8 38.3 92.8 38.3
HOP
ε = 0.1 99.9 0.0 99.9 0.0 99.9 0.0 99.9 0.0 99.9 0.0

L2 Average 90.0 28.7 90.6 27.6 90.8 27.8 90.6 29.1 89.7 28.1

Norm L8 AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

PGDi, FGSM, BIM
ε = 0.03125 100.0 0.1 100.0 0.0 100.0 0.0 100.0 0.1 100.0 0.0
ε = 0.0625 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0
ε = 0.25 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0
ε = 0.5 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

PGDi, FGSM, BIM, CWi, SA
ε = 0.3125 92.6 51.4 92.6 51.4 92.2 53.1 92.3 52.5 92.5 51.8
L8 Average 98.5 10.3 98.5 10.3 98.4 10.6 98.5 10.5 98.5 10.4

No norm AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%% AUROCÒ%% FPRÓ95%%%

STA
No ε 86.9 74.3 86.9 74.3 86.9 74.3 86.9 74.3 86.9 74.3

No norm Average 86.9 74.3 86.9 74.3 86.9 74.3 86.9 74.3 86.9 74.3

Table B.12: Performances on MagNet per objective and in Mead on
MNIST. The worst results among all the settings are shown in bold; the ones in
the single-armed setting is underlined. No norm denotes the group of attacks that do
not depend on the norm constraint.

MagNet is effective on MNIST. It is pretty close to the perfect detector for
L8 and L1 attacks. Anyway, the Fisher-Rao-based attacks are the most dis-
ruptive ones for such detectors. Similar to the CIFAR10 case, the results using
Mead are quite close to the worst single-armed setting case. The decrease in
AUROCÒ% between Mead and the worst single-armed setting is at most 0.5
percentage points.





APPENDIX C
Appendix to Chapter 5

C.1 On the optimization of Eq. (5.5)

The maximization problem in Eq. (5.5) is well-posed given that the mutual
information is a concave function of ω P Ω. Although from the theoretical
point of view, Eq. (5.5) guarantees the optimal solution for the average regret
minimization problem, in practice, we have to deal with some technical limi-
tations. For the optimization of Eq. (5.5), we rely on the SciPy [VGO`20]
library, package optimize, function minimize1 which uses the Sequential Least
Squares Programming (SLSQP) algorithm to find the optimum. This algorithm
relies on local optimization and is particularly straightforward when dealing with
non-linear equations and equality and inequality constraints, as in our case.
Overall, we obtained the satisfactory results provided in the paper by assign-
ing default values to all the parameters and by setting a uniform distribution
rω1, ω2, ω3, ω4s “ r.25, .25, .25, .25s as the initial point in the solutions space.

Although these results are satisfactory and confirm the value of the sound
theoretical framework, we propose in Section 5.1. We are well aware that, in
some cases, as in Fig. 5.2a, the proposed aggregation slightly underperforms in
terms of accuracy w.r.t. the best detector in the set of allowed detectors. In
this regard, we would like to raise a couple of points that are interesting for
practitioners and possible future research:

1. For each input sample, we solve one different optimization problem: al-
though the algorithm above always reaches the end with a success state,

1Therefore we invert the sign of the objective function.
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given the finite amount of iterations and the tolerance which decides the
stopping criterion, further sample-by-sample parameter optimization may
be required. At this time, we have not delved into the problem, and we
leave this for future research.

2. The hard decisions made by the single detectors only depend on the argmax

of their soft-probabilities. On the contrary, the optimization in Eq. (5.5)
considers the complete soft-probability distributions output by every single
detector. Indeed, although the hard decision on two randomly considered
samples can be right for both, often, the confidence in these decisions can
be very different (i.e., two correctly classified samples may have utterly
different associated soft probabilities). Further research on how differently
accurate detectors influence the optimization in Eq. (5.5) is left for future
work.

C.2 Supplementary Results of Section 5.2

In the following, we provide further discussions on the experiments in Section 5.2
that have not been included in the main chapter.

Experimental environment

We run each experiment on a machine equipped with an Intel(R) Xeon(R) Gold
6226 CPU, 2.70GHz clock frequency, and a Tesla V100-SXM2-32GB GPU.

Time measurements

Training 1 single detector in our method 1h45m10s
Evaluating the optimization in our method 1m35s (for one attack)

Training NSS 3m30s
Evaluating NSS 20s (for one attack)

On the largest set of simultaneous attacks (13 attacks):
Ours 1m35s * 13 „ 21m
NSS 20s * 13 „ 4m
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Figure C.1: The shallow detectors are named after the loss function used to craft the
attacks they are trained to detect. Overall, the SOTA methods NSS and FS outperform
all the individual shallow detectors. The aggregation we propose allows using the shallow
models to attain a detector whose performance is consistently comparable and, in many
cases, better than SOTA.

C.2.1 On the Mead framework

State-of-the-art detectors

Chapter 4 suggests NSS [KFHD20] and FS [XEQ18] as the most robust methods
in the simultaneous attacks detection scheme (i.e., Mead). We remind that NSS
is a supervised method that extracts the natural scene statistics of the natural
and adversarial examples to train a SVM. On the contrary, FS is an unsupervised
method that uses feature squeezing (i.e., reducing the color depth of images and
using smoothing to reduce the variation among the pixels) to compare the model’s
predictions.

In particular, we choose NSS as a method to compare for multiple reasons:

1. NSS achieves the best overall score in terms of AUROCÒ% and FPRÓ95%%
among the SOTA against simultaneous attacks (cf. Table 4.3).

2. NSS achieves the best score in terms of AUROCÒ% and FPRÓ95%% under
the L8 norm where the biggest group of simultaneous attacks are evaluated
(see Table 5.1). This is stressed in the plots in Fig. C.1. Moreover, FS
reaches better performance w.r.t. the proposed method only with PGD1
and PGD2 when the perturbation magnitude is small and in CW2.
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Table C.1: Comparison between Ours and Ours+FS on CIFAR10. The ‹

symbol means the perturbation mechanism is executed in parallel four times starting
from the same original clean sample, each time using one of the objective losses between
ACE Eq. (4.2), KL Eq. (4.3), FR Eq. (4.4), Gini Eq. (4.5). We focus only on the cases
in which the proposed method is outperformed by the corresponding competitors.

CIFAR10

Ours Ours+FS

AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%%

Norm L1

PGD1‹

ε “ 5 62.1 87.1 69.4 74.5
ε “ 10 56.8 90.6 76.8 64.5
ε “ 15 69.3 84.4 77.6 60.3

Norm L2

PGD2‹

ε “ 0.125 63.9 85.4 67.9 76.4
ε “ 0.25 57.1 90.5 76.0 64.7

ε “ 0.3125 61.0 88.9 77.2 62.9
CW2

ε “ 0.01 53.4 92.2 86.4 46.8

3. The case study for our aggregator in the experimental section is based on
supervised detectors as a consequence the comparison with a supervised
detector was a natural choice.

For the sake of completeness, the performances of NSS and FS under Mead

are given in Fig. C.1. As shown before for Ours+NSS, in Table C.1 we propose
an analysis of the performance of our method before and after adding the FS
unsupervised detection mechanism to the pull of available detectors, showing a
stark improvement in the latter case.

Attacks

We want to emphasize that, differently from the literature, we are the first to
consider a defense mechanism against the simultaneous attack setting in which
we detect attacks based on four different losses. More specifically, for each ‘clean
dataset’ (in our case CIFAR10 and SVHN):

• No. of adversarial examples generated with:
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Table C.2: Simultaneous attacks detection: NSS on CIFAR10. We train
NSS on natural and adversarial examples created with PGD algorithm and L8 norm
constraint. The perturbation magnitude ε is shown in the columns. We indicate in
bold the best result.

NSS
0.03125 0.0625 0.125 0.25 0.3125 0.5

AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%%

Norm L1

PGD1
ε = 5 48.5 94.2 47.7 94.7 46.6 95.6 46.8 95.5 47.0 95.4 46.5 95.6
ε = 10 54.0 90.3 53.4 90.8 51.6 94.3 50.4 94.9 50.4 94.9 50.9 94.7
ε = 15 58.8 86.8 58.1 87.4 55.8 92.8 53.8 94.2 53.2 94.4 54.5 93.7
ε = 20 63.5 82.3 62.7 82.7 60.1 90.7 57.4 93.2 56.7 93.6 58.2 92.3
ε = 25 67.7 77.2 66.8 78.4 64.0 87.8 61.0 92.0 60.1 92.6 61.9 90.6
ε = 30 71.4 73.4 70.5 73.5 67.6 83.7 64.4 90.4 63.4 91.4 65.4 88.2
ε = 40 76.1 67.3 75.3 68.0 72.6 75.4 69.4 87.2 68.5 88.9 70.4 83.4

Norm L2

PGD2
ε = 0.125 48.3 94.3 47.5 94.8 46.6 95.6 46.7 95.5 47.1 95.4 46.5 95.6
ε = 0.25 53.2 91.2 52.6 91.6 50.9 94.6 50.0 95.0 50.0 95.0 50.3 94.8

ε = 0.3125 55.8 89.2 55.2 89.9 53.3 93.7 51.7 94.6 51.5 94.7 52.3 94.3
ε = 0.5 63.3 82.6 62.6 83.0 60.0 90.7 57.4 93.2 56.7 93.5 58.2 92.4
ε = 1 76.4 67.5 75.7 67.8 73.1 75.0 70.1 86.7 69.2 88.5 71.0 83.0

ε = 1.5 81.0 63.0 80.5 62.7 78.5 63.5 76.2 80.7 75.6 83.2 76.9 74.4
ε = 2 82.6 62.3 82.1 61.6 80.6 62.5 78.6 78.5 78.1 81.2 79.1 72.1

DeepFool
No ε 57.0 91.7 56.7 91.7 55.6 93.6 54.6 94.1 54.2 94.3 54.7 94.0
CW2

ε = 0.01 56.4 90.8 55.9 90.9 54.5 93.7 53.4 94.3 53.0 94.5 53.6 94.1
HOP

ε = 0.1 66.1 87.0 65.1 88.2 63.0 91.3 61.2 92.6 60.8 92.9 61.6 92.1

Norm L8

PGDi, FGSM, BIM
ε = 0.03125 83.0 55.3 82.1 55.2 80.3 57.8 77.4 77.0 76.8 81.3 78.3 65.4
ε = 0.0625 96.0 17.2 94.6 17.4 94.9 19.2 94.3 21.6 94.4 21.1 94.4 21.1
ε = 0.25 97.3 0.6 94.7 5.9 96.5 2.5 96.9 1.7 97.2 1.1 96.7 2.1
ε = 0.5 82.5 100.0 80.4 100.0 81.9 100.0 82.2 100.0 82.4 100.0 82.0 100.0

PGDi, FGSM, BIM, SA
ε = 0.125 9.4 99.9 10.4 100.0 26.2 99.9 30.9 100.0 33.8 100.0 27.3 100.0

PGDi, FGSM, BIM, CWi
ε = 0.3125 63.2 99.1 62.7 99.0 61.9 99.3 60.9 99.5 60.5 99.5 61.2 99.4

No norm
STA
No ε 88.5 38.8 92.0 25.1 92.1 22.4 93.3 18.3 92.7 19.6 92.7 19.7

– L1 norm: 7 (no. of ε) * 1 (PGD algorithm) * 4 (no. of losses) = 28
(’adversarial datasets’)

– L2 norm: 7 (no. of ε) * 1 (PGD algorithm) * 4 (no. of losses) + 3
(CW2, HOP, DeepFool) = 31 (’adversarial datasets’)

– L8 norm: 6 (no. of ε) * 3 (PGD, FGSM, BIM algorithms) * 4 (no. of
losses) + 2 = 74 (’adversarial datasets’)

– No norm: 1 (’adversarial dataset’)

“ą For a total of 28 + 31 + 74 + 1 = 134 ’adversarial datasets’ for each
‘clean dataset’.

Moreover, it is interesting to notice that the experiments on CIFAR10 and SVHN
represent a satisfying choice to show that state-of-the-art detection mechanisms
struggle to maintain good performance when faced with the framework of simul-
taneous attacks. That said, we leave the evaluation of larger datasets as future
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Table C.3: Simultaneous attacks detection: the proposed method on CI-
FAR10. We train NSS on natural and adversarial examples created with PGD algo-
rithm and L8 norm constraint. The perturbation magnitude ε is shown in the columns.
We indicate in bold the best result.

Ours
0.03125 0.0625 0.125 0.25 0.3125 0.5

AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%%

Norm L1

PGD1
ε = 5 69.7 82.5 65.5 81.5 62.1 87.1 56.3 93.8 53.2 94.8 48.5 95.5
ε = 10 62.3 83.3 62.7 86.3 56.8 90.6 52.1 94.7 52.9 94.6 50.9 95.0
ε = 15 66.6 72.7 73.9 77.9 69.3 84.4 65.5 89.0 64.3 91.0 60.4 93.1
ε = 20 72.8 58.0 83.7 59.3 78.7 73.1 73.8 82.5 73.5 85.4 69.2 90.3
ε = 25 76.8 42.4 89.4 35.9 87.1 50.8 81.3 68.6 79.3 78.0 74.8 87.2
ε = 30 79.1 31.1 91.7 21.4 90.3 35.4 84.3 61.2 81.9 73.5 77.5 85.3
ε = 40 80.8 22.2 93.0 15.0 92.1 26.4 85.9 56.8 83.1 71.4 78.8 84.5

Norm L2

PGD2
ε = 0.125 71.3 80.8 67.0 80.2 63.9 85.4 56.2 93.8 53.8 94.7 48.6 95.5
ε = 0.25 63.1 83.4 62.8 86.7 57.1 90.5 52.3 94.6 52.6 94.7 49.9 95.2

ε = 0.3125 64.1 79.3 67.3 83.1 61.0 88.9 58.0 92.8 57.7 93.3 54.5 94.4
ε = 0.5 72.9 58.9 83.7 60.7 79.4 73.2 74.6 81.4 73.4 85.4 68.8 90.5
ε = 1 81.0 21.7 92.9 15.5 91.4 26.4 85.5 57.2 82.9 72.2 78.7 84.7

ε = 1.5 81.5 19.2 93.2 14.2 91.9 24.2 85.9 56.3 83.2 71.9 79.2 84.4
ε = 2 81.6 19.0 93.2 14.1 91.9 24.1 85.9 56.3 83.3 71.8 79.2 84.4

DeepFool
No ε 91.1 22.0 87.4 33.9 81.9 54.8 70.0 84.4 64.2 91.5 56.3 94.4
CW2

ε = 0.01 52.9 90.5 50.7 90.6 53.4 92.2 53.1 94.4 52.0 94.8 50.9 95.0
HOP

ε = 0.1 91.3 20.9 89.0 31.0 86.1 49.1 77.0 80.7 72.4 88.1 64.3 92.8

Norm L8

PGDi, FGSM, BIM
ε = 0.03125 67.2 77.3 77.8 65.2 82.3 59.7 78.0 72.1 73.7 83.8 64.1 92.2
ε = 0.0625 69.0 83.6 85.3 47.4 92.0 29.6 90.7 35.7 88.0 45.6 81.3 78.3
ε = 0.25 72.0 67.4 91.8 23.2 95.9 8.8 94.1 15.4 92.6 19.5 91.6 26.5
ε = 0.5 58.3 84.8 84.2 44.1 94.6 9.7 91.2 16.5 90.5 18.8 91.3 22.3

PGDi, FGSM, BIM, SA
ε = 0.125 69.0 79.1 84.1 41.9 88.9 40.8 86.6 52.3 85.4 60.4 80.7 79.0

PGDi, FGSM, BIM, CWi
ε = 0.3125 66.6 75.0 80.6 51.5 80.0 61.1 72.0 84.0 67.2 90.0 60.0 93.6

No norm
STA
No ε 84.8 33.8 85.0 41.5 82.7 52.4 72.9 77.7 70.2 81.7 63.1 92.1

work.

Simulations adversarial attack according to different ε

As discussed in Section 3.4, both NSS and the shallow detectors aggregated via
the proposed method are trained on natural and adversarial examples created
with PGD algorithm and L8 norm constraint. We show in Tables C.2 to C.5 the
results of the two methods according to ε P t.03125, .0625, .125, .25, .3125, .5u.

C.2.2 The proposed aggregator against the adaptive-attacks in the
Mead scenario

We present a new experimental setting to address the case in which also the
detectors are attacked at the same time as the target classifier, taking the cue
from [BHP`21, CW17a, TCBM20, CW17b]. It is important to note that, in the
spirit of the Mead framework, we are not simply considering a scenario in which
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Table C.4: Simultaneous attacks detection: NSS on SVHN. We train NSS on
natural and adversarial examples created with PGD algorithm and L8 norm constraint.
The perturbation magnitude ε is shown in the columns. We indicate in bold the best
result.

NSS
0.03125 0.0625 0.125 0.25 0.3125 0.5

AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%%

Norm L1

PGD1
ε = 5 37.9 89.3 40.2 91.3 37.2 89.2 4.9 35.5 0.3 8.5 0.0 3.1
ε = 10 33.7 89.3 36.9 91.3 34.6 89.2 6.0 35.5 0.4 8.5 0.0 3.1
ε = 15 31.9 89.3 35.6 91.3 34.4 89.2 7.6 35.5 0.5 8.5 0.1 3.1
ε = 20 31.5 89.3 36.1 91.3 35.7 89.2 9.5 35.5 0.6 8.5 0.1 3.1
ε = 25 32.8 89.3 37.8 91.3 38.2 89.2 11.7 35.5 0.9 8.5 0.1 3.1
ε = 30 34.5 89.3 39.8 91.3 40.6 89.2 14.1 35.5 1.2 8.5 0.1 3.1
ε = 40 37.9 89.3 43.1 91.3 43.4 89.0 16.4 35.5 2.2 8.5 0.3 3.1

Norm L2

PGD2
ε = 0.125 38.7 89.3 40.8 91.3 37.6 89.2 4.7 35.5 0.3 8.5 0.0 3.1
ε = 0.25 34.0 89.3 37.2 91.3 34.6 89.2 5.4 35.5 0.3 8.5 0.0 3.1

ε = 0.3125 32.6 89.3 36.1 91.3 34.1 89.2 6.1 35.5 0.4 8.5 0.0 3.1
ε = 0.5 31.4 89.3 35.9 91.3 35.4 89.2 8.9 35.5 0.5 8.5 0.1 3.1
ε = 1 37.4 89.3 42.5 91.3 42.9 89.2 16.0 35.5 2.1 8.5 0.3 3.1

ε = 1.5 40.0 89.3 46.3 91.3 46.5 88.4 17.2 35.5 2.8 8.5 0.6 3.1
ε = 2 42.1 89.3 49.8 91.3 50.5 88.0 18.7 35.5 3.2 8.5 0.8 3.1

DeepFool
No ε 38.1 89.3 41.3 91.3 39.7 89.2 9.2 35.5 0.8 8.5 0.1 3.1
CW2

ε = 0.01 37.9 89.3 41.0 91.3 39.5 89.2 9.3 35.5 0.8 8.5 0.1 3.1
HOP

ε = 0.1 66.8 82.3 67.6 84.2 60.3 84.6 16.4 35.5 2.7 8.5 0.7 3.1

Norm L8

PGDi, FGSM, BIM
ε = 0.03125 84.1 49.7 86.3 46.9 77.5 72.1 22.2 33.2 4.3 8.5 1.2 3.1
ε = 0.0625 87.4 0.2 88.9 0.7 87.5 0.6 33.7 16.8 7.4 6.8 2.5 2.7
ε = 0.25 16.7 89.3 51.6 88.9 52.0 85.1 35.4 0.1 8.4 0.1 3.0 0.1
ε = 0.5 4.1 89.3 46.7 86.7 46.0 84.6 35.4 0.1 8.4 0.1 3.0 0.1

PGDi, FGSM, BIM, SA
ε = 0.125 22.8 89.3 32.9 91.3 43.6 89.2 30.3 32.7 7.1 8.5 2.5 3.1

PGDi, FGSM, BIM, CWi
ε = 0.3125 4.7 89.3 41.3 91.3 40.8 89.2 12.7 35.5 1.7 8.5 0.4 3.1

No norm
STA
No ε 89.3 0.0 91.2 0.2 85.9 23.4 19.9 33.5 4.2 8.3 1.4 3.1

(a) Analysis AUROCÒ% (b) Analysis FPRÓ95%%

Figure C.2: Our method against the adaptive-attacks under Mead. We
consider the worst case scenario in Table C.6, i.e., when α “ 0.1.

a single adaptive attack is perpetrated on the classifier and detectors, but rather
multiple adaptive attacks are concurrently occurring. We extend the framework
to include two main cases: (i) for attacks on the classifier and the single detectors
individually; (ii) for attacks on the classifier and all the detectors simultaneously.

The tables with the complete results are Tables C.6 and C.7, where α is the
coefficient that controls the gradient’s speed of the attack against the detectors.
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Table C.5: Simultaneous attacks detection: the proposed method on SVHN.
We train NSS on natural and adversarial examples created with PGD algorithm and L8

norm constraint. The perturbation magnitude ε is shown in the columns. We indicate
in bold the best result.

Ours
0.03125 0.0625 0.125 0.25 0.3125 0.5

AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%%

Norm L1

PGD1
ε = 5 79.3 65.2 77.4 73.4 76.9 78.9 76.9 79.0 76.7 79.5 74.0 84.4
ε = 10 74.4 65.1 72.8 73.1 71.9 81.6 73.0 82.5 71.9 84.2 66.9 89.4
ε = 15 76.0 57.0 75.7 64.6 75.8 73.1 78.9 72.5 77.3 74.7 71.9 84.9
ε = 20 77.3 48.1 77.9 54.9 79.2 61.9 83.6 60.7 82.2 64.3 77.4 76.9
ε = 25 78.2 40.9 79.4 44.4 81.4 49.4 87.0 48.6 85.7 52.5 81.4 66.7
ε = 30 78.8 34.4 80.4 35.3 83.0 36.6 89.3 37.2 88.1 41.6 84.4 53.8
ε = 40 79.7 23.4 81.6 22.4 84.7 20.2 92.6 20.0 91.1 23.0 87.8 30.5

Norm L2

PGD2
ε = 0.125 82.2 61.7 80.6 68.4 80.3 72.4 80.2 74.5 80.1 73.5 79.7 75.5
ε = 0.25 75.7 63.6 74.0 71.7 73.3 80.3 74.0 81.7 72.6 82.8 67.8 89.0

ε = 0.3125 75.5 61.6 74.3 70.1 73.9 78.4 75.2 79.4 73.9 81.7 70.6 86.7
ε = 0.5 77.2 50.6 77.6 57.4 78.6 64.1 82.5 64.4 81.2 67.1 76.3 79.5
ε = 1 79.5 25.8 81.3 24.8 84.3 24.1 92.3 24.7 90.7 27.7 87.1 36.4

ε = 1.5 80.2 19.5 82.2 17.6 85.6 14.3 94.1 7.5 92.9 8.6 89.9 11.8
ε = 2 80.5 19.4 82.5 17.5 85.9 14.1 94.9 5.3 94.5 6.8 90.7 9.5

DeepFool
No ε 96.3 8.6 95.9 10.5 95.0 12.9 94.9 12.0 95.3 12.1 95.5 12.6
CW2

ε = 0.01 59.7 76.3 57.2 80.1 53.4 89.9 54.2 92.0 51.1 93.5 44.3 96.1
HOP

ε = 0.1 96.1 7.9 95.6 9.8 95.9 11.7 96.0 10.2 95.9 9.9 96.1 10.0

Norm L8

PGDi, FGSM, BIM
ε = 0.03125 74.3 60.0 75.8 60.3 77.8 62.6 81.4 64.9 80.1 67.1 76.7 75.5
ε = 0.0625 78.4 36.0 80.3 34.1 83.2 33.8 89.1 33.3 87.9 34.4 85.7 37.4
ε = 0.25 80.1 19.4 82.1 17.5 85.2 15.8 92.3 16.4 92.1 16.8 89.6 17.0
ε = 0.5 80.3 19.4 82.3 17.5 85.5 14.1 92.9 14.4 91.7 15.2 90.1 14.8

PGDi, FGSM, BIM, SA
ε = 0.125 78.9 29.0 80.8 28.1 83.8 28.7 89.2 29.1 88.4 28.9 86.8 28.4

PGDi, FGSM, BIM, CWi
ε = 0.3125 78.7 33.4 80.5 31.9 83.1 34.0 88.2 33.1 88.1 31.7 86.7 31.2

No norm
STA
No ε 94.7 14.5 93.3 16.8 89.9 23.1 90.2 23.2 91.0 22.4 91.1 22.4

We try many different values α “ t.1, 1, 5, 10u. The case where α is equal to 0
is added for completeness, and it corresponds to the case where only the target
classifier is attacked. We report in Fig. C.2 the comparison of the results between
case (i) and case (ii) on CIFAR10 and α “ 0.1, as this corresponds to the case
with the worst performances. As can be seen, the performances of our aggre-
gator improve when the detectors are attacked singularly. This is particularly
interesting for the setting we are dealing with. Indeed, our method is not a new
supervised adversarial detection method but a framework to aggregate detectors,
in this case, applied to the adversarial detection problem. Hence, it does not
propose solving the problem of finding a new robust method for adaptive attacks
but rather creating a mixture of experts based on the proposed sound mathemat-
ical framework. Thus, an attacker to successfully fool our method needs to have
the complete access to all the underlying detectors and also an up-to-the-date
knowledge of the detectors employed as the defender can always include a new
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Table C.6: The proposed method against the adaptive-attacks under Mead.
In the following setting, we attack each detector and the classifier once at a time. α is
the parameter to control the losses.

CIFAR10

α “ 0 α “ .1 α “ 1 α “ 5 α “ 10

AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%%

Norm L1

PGD1‹

ε “ 5 62.1 87.1 61.3 88.6 61.2 89.3 63.1 89.2 62.6 91.3
ε “ 10 56.8 90.6 53.1 94.5 54.4 93.9 60.0 91.0 60.6 91.9
ε “ 15 69.3 84.4 51.5 96.5 54.7 94.6 64.1 88.1 65.7 87.7
ε “ 20 78.7 73.1 53.4 96.8 55.9 94.9 66.7 84.1 69.4 82.7
ε “ 25 87.1 50.8 54.0 97.2 56.7 94.6 67.8 82.7 71.1 79.0
ε “ 30 90.3 35.4 54.5 97.1 56.6 94.4 68.9 81.1 71.9 78.4
ε “ 40 92.1 22.7 54.4 97.0 57.7 93.6 69.4 79.7 72.9 74.2

Norm L2

PGD2‹

ε “ 0.125 63.9 85.4 61.4 88.0 62.4 88.8 63.7 88.5 63.9 89.9
ε “ 0.25 57.1 90.5 52.9 94.2 55.0 93.6 60.6 89.7 61.5 90.3

ε “ 0.3125 61.0 88.9 51.6 95.7 54.1 94.7 62.2 87.8 63.7 87.9
ε “ 0.5 79.4 73.2 52.8 96.8 55.3 94.3 66.2 84.6 68.8 81.5
ε “ 1 91.4 26.4 52.7 96.8 57.3 93.4 69.0 78.3 72.1 74.4

ε “ 1.5 91.9 24.2 53.9 96.1 57.9 91.4 70.5 73.7 74.1 68.1
ε “ 2 91.9 24.1 54.6 94.6 59.3 88.5 72.3 67.8 75.6 62.7

Norm L8

PGDi‹, FGSM‹, BIM‹

ε “ 0.03125 82.3 59.7 45.3 96.2 46.0 96.4 54.5 91.4 57.4 89.3
ε “ 0.0625 92.0 29.6 44.3 96.2 49.8 93.8 59.7 82.4 64.3 76.4

ε “ 0.5 94.6 9.7 62.1 81.3 54.9 81.9 66.1 60.8 68.9 57.9
PGDi‹, FGSM‹, BIM‹, SA

ε “ 0.125 88.9 40.8 48.6 90.7 54.9 85.0 61.9 73.1 66.3 67.5
PGDi‹, FGSM‹, BIM‹, CWi

ε “ 0.3125 80.0 61.1 56.6 82.0 56.3 79.6 66.1 66.1 69.2 64.4

detection mechanism to the pool of the detectors.
To give more insights on the proposed aggregator under this setting, we train

a stronger version of the four shallow detectors where the detectors at training
time have seen the corresponding adaptive attacks generated through the PGD
algorithm. We report the results in Table C.8 where we focus on the group of
simultaneous attacks with L8 norm and ε “ 0.25 as this represents the worst
result of our method in Table C.7. If our method was only good as the best
among the detectors, we should expect similar results in Table C.8. In this case,
the only solution would be to train a better detector. However, the strength
of the aggregator is not just mimicking the performance of its parts
but rather creating a mixture of experts based on the proposed sound
mathematical framework. Therefore, we should expect better performances.
Indeed, this consistently holds as the method performs much better than the best
detector.
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Table C.7: The proposed method against the adaptive-attacks under Mead.
In the following setting, we attack all the detectors and the classifier together at the
time. α is the parameter to control the losses.

CIFAR10

α “ 0 α “ .1 α “ 1 α “ 5 α “ 10

AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%% AUROCÒ% FPRÓ95%%

Norm L1

PGD1‹

ε “ 5 62.1 87.1 61.2 90.4 63.6 86.8 65.8 83.9 66.3 83.2
ε “ 10 56.8 90.6 50.5 96.4 55.9 91.6 60.1 88.1 61.1 87.2
ε “ 15 69.3 84.4 47.3 97.6 53.8 92.3 62.0 84.9 63.7 83.7
ε “ 20 78.7 73.1 47.1 97.9 54.2 92.5 64.2 82.8 66.8 79.1
ε “ 25 87.1 50.8 47.8 98.0 55.0 92.1 66.5 79.5 68.8 77.2
ε “ 30 90.3 35.4 48.8 98.0 55.8 91.3 67.4 78.5 70.4 75.0
ε “ 40 92.1 22.7 49.1 98.0 56.8 90.5 68.6 77.4 72.5 71.6

Norm L2

PGD2‹

ε “ 0.125 63.9 85.4 62.4 88.5 65.0 86.2 66.9 82.9 67.2 81.1
ε “ 0.25 57.1 90.5 51.2 96.0 56.3 91.7 60.6 87.2 61.6 86.8

ε “ 0.3125 61.0 88.9 56.0 94.6 57.9 93.6 65.3 86.4 66.7 86.6
ε “ 0.5 79.4 73.2 46.8 97.8 54.6 91.3 64.5 82.4 66.8 79.5
ε “ 1 91.4 26.4 47.2 98.0 57.8 89.4 69.9 73.8 73.1 71.7

ε “ 1.5 91.9 24.2 47.5 97.6 59.9 86.9 73.2 68.7 76.5 63.1
ε “ 2 91.9 24.1 49.0 97.0 62.8 83.3 75.6 63.7 79.5 56.6

Norm L8

PGDi‹, FGSM‹, BIM‹

ε “ 0.03125 82.3 59.7 40.2 98.0 47.6 95.5 60.6 86.2 65.0 81.8
ε “ 0.0625 92.0 29.6 37.9 98.0 47.0 95.9 61.9 82.1 65.8 77.1
ε “ 0.25 95.9 8.8 36.5 96.4 47.4 97.7 62.5 92.6 65.4 90.8
ε “ 0.5 94.6 9.7 36.7 96.2 46.0 97.7 61.6 96.1 66.0 94.8

PGDi‹, FGSM‹, BIM‹, SA
ε “ 0.125 88.9 40.8 38.5 95.9 46.8 95.4 60.1 85.0 61.9 83.2

PGDi‹, FGSM‹, BIM‹, CWi
ε “ 0.3125 80.0 61.1 37.2 95.3 46.7 97.4 60.9 92.4 64.1 90.1

Table C.8: Comparison between the proposed method and the single detec-
tors (stronger version) against the adaptive-attacks. Norm L8 and ε “ 0.25
(i.e., attacks PGDi‹, FGSM‹, BIM‹).

CIFAR10 Ours ACE KL FR Gini

AUROCÒ% 54.6 35.7 30.6 26.3 36.2
FPRÓ95%% 73.0 96.5 97.0 97.4 99.6



C.2. Supplementary Results of Section 5.2

C.2.3 AutoAttack

Table C.9: The proposed
method on AutoAttack (Mead
setting). The attacks are APGD-
CE, APGD-DLR, FAB, SA.

CIFAR10

Ours

AUROCÒ% FPRÓ95%%

Norm L1

ε “ 5 57.1 88.4

ε “ 10 67.1 75.7

ε “ 15 72.2 66.7

ε “ 20 72.7 65.2

ε “ 25 72.8 65.6

ε “ 30 73.4 64.0

ε “ 40 73.6 64.0

Norm L2

ε “ 0.125 67.4 81.0

ε “ 0.25 58.0 89.0

ε “ 0.3125 58.1 88.8

ε “ 0.5 69.4 74.7

ε “ 1 75.1 61.6

ε “ 1.5 76.1 60.7

ε “ 2 76.1 60.5

Norm L8

ε “ 0.03125 75.7 61.0

ε “ 0.0625 76.0 60.7

ε “ 0.125 76.8 60.3

ε “ 0.25 76.8 60.0

ε “ 0.3125 78.6 57.6

ε “ 0.5 76.1 60.3

We present an application of AutoAt-
tack [CH20], a state-of-the-art evaluation tool
for robustness, redesigned for adversarial de-
tection evaluation and adapted to our simul-
taneous attacks framework. In its original
version, AutoAttack evaluates the accuracy of
robust classifiers. In so doing, [CH20] pro-
poses a multiple attacks framework to ensure
that at least one attack succeeds in producing
an adversarial example for each natural one.
In their context, it does not matter which at-
tack will succeed since any successful attack
would undermine the accuracy of the target
classifier in the same way. In our case, the
number of different successful attacks for each
natural sample will affect the detection qual-
ity since a detector is successful only if it can
detect all of them. Because of the above men-
tioned differences, it is impossible to deploy it
directly in our framework without any modi-
fications. A modified version of AutoAttack,
adapted to the evaluation of our proposed
method, has been implemented, and the re-
sults are presented below. While AutoAttack
suggests using different attack strategies, in
our case, we combine different attack strate-
gies matched with different losses to make the
pool of attacks more strong and more diversi-
fied.
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(a) PGD-L1-40-ACE (b) PGD-L1-40-KL

(c) PGD-L1-40-FR (d) PGD-L1-40-Gini

Figure C.3: In pink the results for the adversarial examples and in blue the ones for
the naturals. In this simulation, we consider a subset of the available detectors (ACE,
KL, FR). Under each plot, we indicate the tested attack configuration parameters:
algorithm-Lp-ε-loss.

C.2.4 Additional plots

The specific shape in the histograms depends on the set of considered detectors.
To shed light on this fact, we include the plots in Fig. C.3 in which we consider a
subset of the available detectors (ACE, KL, FR). These plots should be compared
with the ones in Fig. 5.2.
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Résumé : L’objectif de cette thèse est d’étudier
différentes méthodes qui peuvent permettre l’utilisa-
tion sécuritaire de technologies de IA.
D’abord, nous devons identifier si la prédiction d’un
classificateur devrait (ou ne devrait pas) être fiable
afin que il soit possible de l’accepter ou de la rejeter. A
cet égard, nous proposons un nouveau détecteur qui
approxime le discriminateur le plus puissant (Oracle)
basé sur la probabilité d’erreur de classification cal-
culée par rapport à la vraie probabilité postérieure du
classificateur. Deux scénarios sont étudiés : Totally
Black Box (TBB), où seules les soft-predictions sont
disponibles et Partially Black Box (PBB) où la propa-
gation du gradient est autorisée pour effectuer le in-
put pre-processing. Le détecteur proposé peut être
appliqué à n’importe quel modèle pre-trained, il ne
nécessite pas d’informations préalables sur le data-
set et est aussi simple que les méthodes les plus ba-
siques disponibles dans la littérature.
Nous poursuivons en abordant le problème de simul-
taneous adversarial example detection. Nous propo-
sons un nouveau framework multi-armed pour évaluer
les détecteurs sur la base de plusieurs stratégies
d’attaques. Parmi celles-ci, nous utilisons trois nou-

velles fonctions objectifs pour générer des attaques.
La mesure de performance proposée est basée sur
le scénario du worst case : la détection est réussie
si et seulement si toutes les différentes attaques sont
correctement reconnues. De plus, en suivant ce fra-
mework nous dérivons formellement une méthode
simple mais efficace pour agréger les décisions de
plusieurs détecteurs entraı̂nés éventuellement four-
nis par une tierce partie. Alors que chaque détecteur
a tendance à sous-performer ou à échouer dans
la détection de types d’attaques qu’il n’a jamais
vus au moment de l’entraı̂nement, notre framework
permet d’agréger avec succès les connaissances
des détecteurs disponibles pour garantir un algo-
rithme de détection robuste. La méthode proposée
présente de nombreux avantages : elle est simple car
elle ne nécessite pas d’entraı̂nement supplémentaire
des détecteurs donnés ; elle est modulaire, permet-
tant aux méthodes existantes (et futures) d’être fu-
sionnées en une seule ; elle est générale car elle peut
reconnaı̂tre simultanément des exemples adverses
créés selon différents algorithmes et objectifs d’en-
traı̂nement.

Title : Securing Machine Learning Algorithms

Keywords : Trustworthy AI, Binary Hypothesis Testing, Detection, Misclassification, Adversarial Examples

Abstract : This thesis aims to investigate various me-
thods that can enable the safe use of AI technologies.
In the first part, we tackle the problem of identifying
whether the prediction of a DNN classifier should (or
should not) be trusted so that, consequently, it would
be possible to accept or reject it. In this regard, we
propose a new detector which approximates the most
powerful (Oracle) discriminator based on the probabi-
lity of classification error with respect to the true class
posterior probability. The proposed detector can be
applied to any pre-trained model. It does not require
prior information about the underlying dataset and is
as simple as the simplest available methods in the li-
terature.
We address in the second part the problem of simul-
taneous adversarial example detection. We propose
a novel multi-armed framework for evaluating detec-
tors based on several attack strategies. Among them,
we make use of three new objectives to generate at-

tacks. The proposed performance metric is based on
the worst-case scenario: detection is successful if and
only if all different attacks are correctly recognized.
Moreover, following this setting, we formally derive
a simple yet effective method to aggregate the deci-
sions of multiple trained detectors, possibly provided
by a third party. While every single detector tends to
underperform or fail at detecting types of attack that
it has never seen at training time, our framework suc-
cessfully aggregates the knowledge of the available
detectors to guarantee a robust detection algorithm.
The proposed method has many advantages: it is
simple as it does not require further training of the
given detectors; it is modular, allowing existing (and
future) methods to be merged into a single one; it is
general since it can simultaneously recognize adver-
sarial examples created according to different algo-
rithms and training (loss) objectives.
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