\

Machine learning for timing estimation

Abderaouf Nassim Amalou

» To cite this version:

Abderaouf Nassim Amalou. Machine learning for timing estimation. Computer Science [cs]. Université
de Rennes, 2023. English. NNT: . tel-04406029v1

HAL Id: tel-04406029
https://hal.science/tel-04406029v1
Submitted on 19 Jan 2024 (v1), last revised 27 Mar 2024 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/tel-04406029v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

MATHS, TELECOMS NV Université
=>/\(=
i

de Rennes

BRETAGNE | SYSTEMES, ELECTRONIQUE

ROCTORAT DE

LUNIVERSITE DE RENNES

ECOLE DOCTORALE N°601
Mathématiques, Télecommunications, Informatique, Signal, Systemes,

Electronique
Spécialité : Informatique

Pa

« Abderaouf Nassim AMALOU »

« Machine Learning for timing estimation »

Theése présentée et soutenue a « Rennes », le « 12 décembre 2023» (date préliminaire)
Unité de recherche : « Univ. Rennes, INRIA, CNRS, IRISA»

Rapporteurs avant soutenance :

Claire PAGETTI Ingénieure de Recherche (HDR), ONERA Toulouse
Jalil BOUKHOBZA Professeur, ENSTA Bretagne

Composition du Jury :

Président :

Examinateurs : Olivier SENTIEYS Professeur, Université de Rennes
Smail NIAR Professeur, Université Polytechnique Hauts-de-France
Claire PAGETTI Ingénieure de Recherche, ONERA Toulouse
Jalil BOUKHOBZA Professeur, ENSTA Bretagne

Dir. de thése : Isabelle PUAUT Professeure, Université de Rennes

Co-dir. de thése : Elisa FROMONT Professeure, Université de Rennes

ACKNOWLEDGEMENT

En préambule de ce manuscrit de these, je souhaiterais adresser mes remerciements
les plus sincéres aux personnes qui m’ont apporté leur aide et ont ainsi contribué a

I’élaboration de ce modeste travail.

Je tiens a exprimer ma profonde gratitude envers mes encadrantes de these Pr. Isabelle
PUAUT et Pr. Elisa FROMONT, enseignantes-chercheuses a I'université de Rennes, qui
m’ont marqué au cours de ces trois années par leurs précieux conseils, leur écoute, leur
réactivité et leur disponibilité. La confiance qu’elles m’ont accordée et leur sens de la

pédagogie ont affirmé ma détermination et m’ont permis de mener a terme ce travail.

Je souhaiterais adresser mes profonds remerciements aux membres du jury qui m’ont

fait I'honneur d’accepter de juger ce travail.

Je suis particulierement reconnaissant envers les membres de I’équipe PACAP : Erven,
Pierre, Damien, Caroline, Anis, Camille, Pierre, Nicolas, Hugo, Antoine, Sara, Nicolas,
Aurore, Hector, ainsi que les membres de 1’équipe LACADOM : Alexandre, Tassadit,
Sébastien, Luis, Louis, Christine, Laurance, Véronique, Peggy, Romaric, Julien, Camille,

Lénaigue, pour tous les bons moments que nous avons passés ensemble.

J’aimerais adresser un remerciement particulier a Virginie Desroches et Gaelle Tworkowski

pour leur disponibilité, leur amabilité et leur gentillesse.

Je ne saurais terminer sans exprimer mes remerciements les plus chaleureux a toute
ma famille, en particulier a ma mere et mon pere, a ma soeur, a mon grand frére ainsi
qu’a ma belle-sceur, pour le soutien et les encouragements qu’ils m’ont apportés avec un

dévouement total.

Pour finir, je remercie tous mes amis et en particulier ma femme Manele, dont la

bienveillance et I’encouragement ininterrompus m’ont permis de mener a bien ce travail.

TABLE OF CONTENTS

Introduction

1

2

Background on Timing Estimation Using Machine Learning

1.1 Execution time estimation: a bird’s-eye view
1.1.1 Levels of execution time estimation
1.1.2 Execution time usages
1.1.3 Factors behind the variability of execution times
1.1.4 Execution time estimation techniques

1.2 WCET estimation techniques
1.2.1 Static techniques L
1.2.2 End-to-end measurements techniques
1.2.3 Hybrid techniques

1.3 Machine learningo
1.3.1 Regression-based machine learning algorithms
1.3.2 Deep learning techniques
1.3.3 Inputs used for ML-based timing models

1.4 Machine learning for execution time estimation
1.4.1 ACET estimation using ML
1.4.2 BCET estimation using ML
1.4.3 WCET estimation using ML

1.5 Conclusion s,

WCET Estimation Using Classical Machine Learning Techniques

2.1 The WE-HML approach
2.1.1 Learning the processor timing model (training)
2.1.2 Estimating the WCET of a target program
2.1.3 Automatic generation of training data
2.1.4 Supporting processors with data caches

2.2 Experimental setup Lo
2.2.1 Hardware and software environments
2.2.2 Benchmarks

2.2.3 Implementation of the training phase

5

19

25
25
25
26
27
30
32
33
35
36
38
39
45
52
26
29
29
60
61

63

TABLE OF CONTENTS

2.2.4 Implementation of the WCET estimation phase 75
2.3 Experimental results 76
2.3.1 Prediction of WCETSs of programs 76
2.3.2 Benefits of cache modeling L. 78
2.3.3 Comparison with a hybrid WCET estimation technique 79
2.3.4 Prediction of WCETSs of basic blocks 80
2.4 Conclusion 81
3 ACET Estimation: A Dive into LSTM and Transformers 83
3.1 New machine learning architectures for timing estimation 84
3.1.1 Motivation for context awerness 84
3.1.2 ACET estimation using LSTMs, CATREEN 86
3.1.3 ACET estimation using Transformers, ORXESTRA 89
3.2 Experimental setup 92
3.2.1 Datasets and benchmarks 92
3.2.2 Baselines. 95
3.2.3 Hardware and software setups 96
3.2.4 Setup for the learning phase, 97
3.3 Experimental results 97
3.3.1 Evaluation of the pretraining (for ORXESTRA and Transformers
vanillaonly)o o 98
3.3.2 Hyperparameters tuningo 99
3.3.3 Prediction results on the test dataset 100
3.3.4 Impact of the context size 102
3.3.5 Impact of the basic block size 103
3.3.6 Optimization effect on prediction 104
3.3.7 Inference throughput 105
3.4 Conclusion e 106

4 Towards Refined WCET Estimation: The Potential of Transformers XL107

4.1 The CAWET approach, 108
4.1.1 Overview of CAWET 109
4.1.2 Training phase using Transformers XL 110
4.1.3 Prediction phase 111

4.2 Experimental setup 115
4.2.1 Dataset and benchmarks o000 115
4.2.2 Context-agnostic baselines, 116
4.2.3 Hardware and software setups 117

6

TABLE OF CONTENTS

4.2.4 Setup for the learning phase 118

4.2.5 Setup for the prediction phase 119

4.3 Experimental results L 119
4.3.1 Quality of WCET predictions for the Cortex M4 119

4.3.2 Quality of WCET predictions for the Cortex M7 121

4.3.3 Impact of CAWET features (Cortex M4 and M7) 122

4.3.4 Quality of WCET predictions for the Cortex A53 123

4.4 Conclusion L 124

5 Conclusion and future works 125
5.1 Key contributions 125
5.2 Open issues and future perspectives 126
Bibliography 131

LIST OF FIGURES

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

1.12
1.13

1.14
1.15
1.16
1.17
1.18
1.19
1.20

2.1

2.2

2.3

24

2.5

Static timing analysis workflow. L. 33
Control flow graph for the code depicted in Listing 1.1. 34
IPET formulas for the CFG of Figure 1.2. 34
Hybrid timing analysis workflow. 36
Regression learning workflow. oo 40
Linear regression for execution time estimation example. 41
KNN example for execution time estimation. 43
Example of a random forest model for execution time estimation. 44
SVR example for execution time estimation. 44
An example of an artificial neuron. 45

An example of a deep neural network consisting of an input layer, hidden

layers, and an output layer. 46
An RNN unfolds through time. 47
An LSTM cell, represented by the different gates that compose it: Forget

gate, Input gate, and Output gate. 48
The Transformers architecture, as described in the original paper. 49
The Transformers XL architecture. o1
Masked language modeling on a simple example. 52
Basic block representation using one-hot-encoding example. 54
Word2vec architecture (CBOW and Skip-gram). 55
Assembly code embedding using Transformers’s attention matrix. 56
ITHEMAL architecture. 60
WE-HML training phase. 65
WE-HML WCET estimation phase. 66

An example illustrating data cache pollution simulation on a basic block in
5 steps. The process targets a data cache that employs a random replace-
ment policy. L 69
The introduction of cache pollution during both the training and estimation
(prediction) phases. 71
Statistics about instruction proportion in basic blocks used for training
(top), in our synthetic data and TACLeBench benchmarks (bottom). . .. 74

8

LIST OF FIGURES

2.6

3.1
3.2

3.3
3.4
3.5

4.1
4.2

4.3

5.1

ML-predicted WCETs versus observed execution times for binarysearch. . . 77
Inter Basic Blocks hardware dependencies. 86
Architecture of CATREEN. The input is a sequence of basic blocks con-

sisting of a sequence of instructions, which are themselves sequences of
operands/opcodes. The (grey) upper part of the figure shows the processing
of one such operand/opcode. CATREEN calculates (lower part) a timing

estimation for the last basic block in the input sequence. 88
ORXESTRA Transformers XL-based architecture. 90
Example of an execution trace, extracted from OZONE tool [72].. 94

Mean absolute cycle error (average number of cycle error) boxplot com-
parison of ITHEMAL (blue), CATREEN (orange), Transformers vanilla
(green), and ORXESTRA (red) for different processors (M4, M7, A53, A72)
and six Categories of basic blocks. The most left category represents basic
blocks with a size of 10 or less instructions (-<=10), while the most right
category includes basic blocks with a number of instructions exceeding 100

instructions (100<). Each subfigure represents a processor. 104

Overview of CAWET 109
A CFG example transformed into a SESE tree and annotated with cyclo-
matic complexity. 112
Example of the different steps for context generation, where the cyclomatic

complexity limit is set to 2 and the context size is set to 3 BBs. 113

Plot showing feature impacts on timing prediction for a basic block on
MSP430. 127

LIST OF TABLES

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
2.4

2.5
2.6

3.1

3.2

3.3
3.4

3.5

3.6

Comparative analysis of execution time estimation solutions. 32
Comparing static, measurement-based, and hybrid WCET solutions. 37
Representing a code snippet with static features [138].. 53
List of some PAPI performance counters [135]. 53
Summary of works conducted for estimating the execution time. 58
Experimented machine learning algorithms. 65
Properties of benchmarks. 72
Estimated WCET obtained by WE-HML versus MOET. 76
Improvement (decrease) of estimated WCET resulting from cache manage-

ment. e e e e 78
Comparison with hybrid method. 79

Pearson correlation score of Scikit-learn ML algorithms on basic blocks,
depending on the technique used for estimating the WCET of basic blocks

and pollution value. 80

Composition of the dataset for the finetuning phase, showing benchmarks,
each accompanied by a brief description, the number of programs, and the
total count of basic blocks retrieved per program. This dataset serves as
the training and testing of all competitors also. 95
Hyperparameters for deep learning architectures, including [THEMAL,
CATREEN, Transformers vanilla, and ORXESTRA, are presented. (NA:
Not Applicable). 96

Summary of the processors used and their micro-architectural features. . . 97

Perplexity scores obtained by ORXESTRA and the Transformers vanilla
in the pretraining phase. Lo oL 99

MAPE performance of ITHELAM, CATREEN, Transformers vanilla, and
ORXESTRA, for different learning hyperparameters (loss function, opti-

mizer, learning rate) for Cortex-M7. The lower, the better. 100
loss function, optimizer, and learning rate used for ITHEMAL CATREEN,
the Transformers vanilla, and ORXESTRA. 100

10

LIST OF TABLES

3.7

3.8

3.9

3.10

3.11

3.12

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Test results of Neural Networks (NN), ITHEMAL [130], CATREEN [8],
and ORXESTRA on various ARM Cortex targets: M4, M7, A53, and A72.
The results are based on the first test dataset, which includes a balance
between the number of small and large-sized BBs. Evaluation metrics: mean
absolute percentage error and Pearson correlation (Corr.). 101
Test Results: Mean Absolute Percentage Error (MAPE) on Different Tar-
gets (M4, M7, A53, and AT72) using the second test set. The Test Set is
specifically chosen to be within the prediction capabilities of Transformers
vanilla, ensuring a fairer comparison among models. 102

Impact of the context size (number of BB considered as context) on the

Mean Absolute Percentage Error of CATREEN. 102
Impact of the context size (number of BB considered as context) on the
Mean Absolute Percentage Error of ORXESTRA. 103

MAPE performance of ORXESTRA, CATREEN, ITHEMAL and Neural
Networks across various GCC optimization levels (00, O1, O2 and O3) and

architectural targets oo 105
The mean throughput over all processors, when treating 1000 BB for each
technique (with a batch size of 1 and batch size of 32). 105
The benchmarks used for training CAWET. 116
Selected TacleBench codes used to evaluate the quality of the predictions. . 116
Summary of the processors used and their micro-architectural features. . . 118
Comparison of WCET predictions for CAWET and a Neural Network (NN)
baseline on TacleBench programs for Cortex-M4. 120
Impact of the context size on the Mean Absolute Error (MAE) on TacleBench
programs for Cortex-M4. o 120
Comparison of WCET predictions for CAWET (vanilla) and a Neural Net-

work (NN) baseline for Cortex-M7. 121

Comparison of WCET predictions for CAWET and a Neural Network (NN)
baseline for Cortex-M7 when accounting for the static cache analysis results.122
RPE measures of CAWET predictions for Cortex-M4 and Cortex-M7 when
adding different features of CAWET: context accounting (A), peek-on mech-
anism (B), loop unrolling (C), and cache analysis (D). 123
Comparison of WCET predictions on Cortex A53 for: CAWET, a prob-
abilistic WCET solution, WE-HML, CAWET (vanilla), and a modified
CAWET to account for static cache analysis results. 123

11

RESUME

Les systemes embarqués sont des dispositifs électroniques contrdolés par un logiciel
pour effectuer des taches spécifiques. Ces taches vont de I'exploitation d’appareils pro-
grammables & la maison a la gestion des systemes dans les voitures et les avions. La
prévalence de ces systemes a considérablement augmenté, comme en témoignent les pro-
jections suggérant que le nombre de dispositifs Internet des objets (IoT) atteindra 50
milliards d’ici 2030 [4]. Au fur et a mesure que les nouvelles technologies évoluent, elles
présenteront inévitablement de nouveaux défis liés a la taille, au cotit et aux performances
de ces systemes embarqués. Par conséquent, les concepteurs de systemes doivent compren-
dre le comportement du logiciel embarqué en ce qui concerne ces contraintes. Cependant,
la complexité croissante des architectures matérielles, associée a une documentation in-
suffisante, complique la tache d’estimer les performances des logiciels. Les performances
peuvent étre des performances de pire en pire (WCETSs) dans les systémes en temps réel

ou les performances moyennes de cas dans ceux a usage général.

Dans les systemes a usage général, 'utilisation efficace des ressources est essentielle.
L’une des fagons d’améliorer les mesures de rendement, comme le temps d’exécution
moyen, est par le biais de transformations ou d’optimisations au niveau du code. Toutefois,
I’évaluation précise de ces optimisations nécessite la compréhension de divers facteurs,
y compris l'interaction entre les instructions du programme. Pour faciliter ce proces-
sus d’évaluation complexe, des outils spécialisés ont été concus pour quantifier le temps
d’exécution, en se concentrant spécifiquement sur l'impact des optimisations. Selon les
ressources disponibles, ces outils utilisent généralement soit des techniques de profilage
[135, 49] lorsque le matériel cible est accessible, soit des simulateurs de processeurs [19,
13, 3, 120], qui sont des outils logiciels qui émulent le comportement d’un processeur,
permettant ainsi I'analyse des performances et les tests de logiciel sans avoir besoin du

matériel réel.

Dans les systemes en temps réel, les taches viennent avec des délais spécifiques qui
doivent étre respectés pour considérer le systeme comme fonctionnant correctement. S’assurer
que les taches sont terminées a temps nécessite I’évaluation du WCET pour chaque tache.
Cette évaluation aide 'algorithme de planification a allouer des ressources afin que chaque
tache atteigne sa date limite, méme dans les scénarios les plus exigeants. Pour une esti-
mation précise de WCET), différentes méthodes peuvent étre employées, qui impliquent

généralement une considération simultanée du code de la tache et de 'architecture du

13

Résumeé

processeur qui ’exécute.

Les méthodes d’estimation WCET sont divisées en méthodes static, méthodes basées
sur la mesure de [’end-to-end et méthodes hybrides hybrid [170]. Static methods évalue
le WCET sans exécuter le programme. Dans la premiere phase, le programme est divisé
en blocs de base. Un bloc de base (BB) est une séquence d’instructions avec un point
d’entrée unique et un point de sortie unique. Le WCET de chaque BB est estimé grace
a la connaissance de I'architecture du processeur. Dans la deuxieme phase, les techniques
statiques calculent I'estimation WCET pour I’ensemble du programme en fonction de la
WCET de chaque BB dans le code. Pour cette deuxieme phase, Implicit Path Enumeration
Technique (IPET) [170, 117] est la classe de techniques la plus couramment utilisée.
IPET s’appuie sur la résolution d’'un probléeme d’optimisation linéaire généré a partir du
graphique de flux de controle du programme (CFG). Les méthodes statiques fournissent
une estimation safe WCET, qui est une limite supérieure de tout temps d’exécution

possible, a condition que 'estimation WCET de chaque bloc de base soit elle-méme siire.

End-to-end measurement-based méthodes sont des techniques empiriques qui ne né-
cessitent pas de connaissances détaillées du matériel. Ils lancent le programme sur une
série d’entrées, et les temps d’exécution résultants sont mesurés et recueillis. Le WCET
est ensuite estimé, soit en considérant le WCET comme la mesure la plus élevée, soit
par extrapolation en utilisant des techniques statistiques [30]. Par construction, lorsque
I’on utilise la mesure la plus élevée comme estimation WCET, ces techniques ne peuvent
que sous-estimer la WCET a moins que 'entrée et 1’état matériel résultant du chemin
d’exécution le plus long ne soient utilisés lors des tests [51]. Par conséquent, une marge de
sécurité est souvent ajoutée a l'estimation WCET pour atténuer le manque de confiance

dans les mesures.

Les méthodes Hybrid mélangent des approches statiques et basées sur la mesure. Dans
une grande majorité de ces techniques (par exemple, [BETT:06 a, 30, 157, 59]), mesures
sont utilisées pour estimer le WCET des blocs de base. Le WCET de I’ensemble du
programme est ensuite estimé en utilisant des méthodes de calcul telles que 'IPET.
L’avantage des techniques hybrides est qu’elles ne nécessitent pas de connaissance de

I’architecture tout en étant en mesure de trouver le chemin le plus long.

Néanmoins, les outils actuels pour 'estimation WCET, qu’ils soient statiques, end-
to-end ou hybrides, présentent chacun leur propre ensemble de défis. Les outils d’analyse
statique nécessitent une compréhension approfondie de la microarchitecture du processeur,
y compris des aspects tels que les caches [67], les pipelines [113] et les prédicteurs de
branches citeCOLI:00a. L’acquisition d’'une telle connaissance détaillée des microarchi-
tectures devient de plus en plus difficile, soit en raison de restrictions de propriété intel-

lectuelle, soit parce que la complexité des architectures modernes complique 1’élaboration

14

Résumé

de modeles de timing fiables et stirs. Les méthodes de bout en bout utilisent soit des outils
de profilage, soit des simulateurs de cycle précis. Alors que les outils de profilage peuvent
perturber la mesure des performances pendant leur fonctionnement, les simulateurs cycle
précis, bien que précis, sont intrinsequement riches en ressources et peuvent étre lents. Les
deux approches dans le cadre des méthodes end-to-end peuvent également manquer de
caractéristiques de sécurité cruciales. Pendant ce temps, les techniques hybrides souffrent
de problemes tels que la couverture complete du code! [111]. Compte tenu de ces défis, il
y a un besoin urgent de méthodes plus simples et plus efficaces pour la modélisation du
temps complexe des processeurs.

Au cours de la derniere décennie, le Machine Learning (ML) est rapidement devenu un
outil révolutionnaire dans de nombreux domaines, du secteur des véhicules autonomes aux
diagnostics améliorés dans les soins de santé. De méme, le réle de ML dans 'architecture
informatique a évolué d’un concept théorique a une technologie fondamentale, influencant
la conception, le controle et la simulation de divers composants du systeme. Historique-
ment, l'interaction entre ML et I'architecture informatique s’est largement concentrée sur
I’adaptation d’éléments architecturaux pour mieux servir les algorithmes ML tels que les
accélérateurs de réseaux neuronaux [36]. Cependant, la derniére décennie a marqué un
changement significatif vers une relation plus réciproque, car de plus en plus de travaux
appliquent avec succes ML a 'architecture de processeur et a la résolution de problemes
de conception de compilateur [mlsYS__survey2018, 32].

Compte tenu des défis croissants associés a la complexité du matériel et a la docu-
mentation limitée, cette these vise a automatiser la création de modeles de tim-
ing matériel. En tirant parti des techniques d’apprentissage automatique, I'objectif est
de prédire les performances des cas moyens et des cas les plus mauvais sans nécessiter
une documentation approfondie du processeur ciblé. Les solutions proposées fonctionnent
toutes en deux phases distinctes. Au cours de la phase d’apprentissage learning phase, le
timing des fragments de code est établi sur la base des mesures dans leurs divers "con-
texts d’exécution”, y compris les boucles et les dépendances entre les instructions. Dans
la phase inferring ultérieure, le modele de timing développé est appliqué pour calculer le
temps d’exécution de nouveaux fragments de code. Ces calculs sont censés étre informés
par le contexte d’exécution de chaque fragment de code, déterminé par exemple par une

analyse statique. Cette méthodologie offre trois avantages clés :

— Il fournit des estimations de temps raisonnablement précises et rapides.
— Il élimine la nécessité d’analyses statiques cotiteuses ou de simulations cycle-exactes.

— Il ne nécessite aucune connaissance détaillée de la microarchitecture du processeur.

1. Assurer une couverture compléte du code signifie vérifier que chaque partie du code du logiciel a
été exécutée et analysée, ne laissant aucune section non testée ou non vérifiée.

15

Résumeé

Bien que I'information de timing obtenue ne soit pas stire, elle a une valeur significative
pour l'estimation du timing dans les premiers stades du développement du systeme, des
systemes en temps réel a faibles niveaux de critique, des logiciels a usage général, ou des
optimisations de compilateur de guidage.

Alors que des recherches antérieures ont été menées sur la dérivation automatique de
modeles de timing en utilisant 'apprentissage automatique [21, 87], elle s’est concentrée
principalement sur le matériel simple avec un timing d’instruction constant et indépen-
dant du contexte. Cette these vise a ouvrir un nouveau terrain en introduisant la prise
de conscience du contexte dans ces techniques d’apprentissage automatique, étendant
ainsi leur applicabilité a des conceptions de matériel plus complexes. Spécifiquement, les
traces d’exécution d'un programme serviront de représentations contextuelles pour les
séquences d’instructions pour lesquelles il faudra estimer les temps de ’execution. En
tirant une analogie du domaine du traitement automatique du langage naturel (TAL),
ces traces d’exécution peuvent étre considérées comme des textes dans lesquels des in-
structions individuelles peuvent étre vues comme des mots. En traitant ces traces, nous
pouvons acquérir des connaissances précieuses sur les facteurs contextuels qui influent
sur le temps d’exécution des instructions (effets de pipeline, effets de cache et effets pré-
dicteurs de branches), en tirant parti des progres en TAL pour guider nos modeles. Cette
nouvelle approche promet d’améliorer I'exactitude des estimations des délais d’exécution
des programmes, ce qui peut a son tour conduire au développement de systemes intégrés

plus efficaces et fiables.

Contribution

Cette these introduit de nouvelles méthodologies a I'intersection entre ’apprentissage
automatique et I'estimation du temps d’exécution. Les trois contributions de cette these

sont les suivantes :

estimation WCET hybride a ’aide de apprentissage automatique pour les
architectures avec caches [7]. Notre proposition initiale est une nouvelle approche
hybride, WE-HML [7], congue pour améliorer I'estimation WCET. Cette méthode integre
de maniere distincte les considérations de la mémoire cache de données lors de la formation
d’une gamme de modeles d’apprentissage automatique fondamentaux. La formation utilise
des ensembles de données synthétiquement générés et est complétée par une technique

statique pour estimer le WCET global d'un programme.
Utilisation de la TAL dans ’estimation ACET. En nous tournant vers ACET,

nous explorons l'intégration des techniques de TAL pour capturer les dépendances entre

les séquences d’instruction. Nous enquétons sur diverses architectures d’apprentissage

16

Résumé

profond, y compris la mémoire a court terme [82] (comme publié dans le journal [8])
et Transformers [56, 43]. Nous avons constaté que Transformers XL [43] était le mieux
adapté pour contextualiser et estimer avec précision les temps d’exécution de blocs de

base.

Evaluation WCET en connaissance de contexte a ’aide de Transformers [6].
Sur la base du succes de 'application TAL dans I'estimation ACET, nous prenons le défi
d’identifier le contexte du pire des cas pour les blocs de base, conduisant a la conception de
CAWET [6]. Cette nouvelle solution identifie non seulement chaque contexte d’exécution
court pour un bloc de base donné, mais elle exploite également Transformers XL [43] pour
améliorer la précision de l'estimation WCET. En outre, nous avons intégré ces amélio-
rations dans un outil d’analyse statique, créant une méthodologie hybride qui atténue

considérablement les surestimations observées dans notre modele initial WE-HML.

Outline

Le reste de ce document est organisé comme suit :

Chapitre 1. Nous mettons les bases en présentant les concepts clés nécessaires a la
compréhension de ce document. Nous examinons les méthodes courantes pour estimer les
délais d’exécution dans les scénarios généraux et examinons des techniques spécialisées
pour I'estimation WCET. Ce chapitre sert également d’introduction a certaines techniques
de régression et d’apprentissage profond. Le chapitre se termine par un apercu des appli-

cations de pointe de 'apprentissage automatique pour I'estimation du temps d’exécution.

Chapitre 2. Ce chapitre a été le premier travail achevé au cours de cette these.
Il présente une nouvelle méthodologie hybride pour I'analyse WCET en utilisant des
techniques de base d’apprentissage automatique. Dans ce chapitre, nous accordons une
attention particuliere aux effets de mémoire, plus spécifiquement, aux comportements de

cache qui peuvent se produire dans des boucles ancrées lors de 'exécution de code.

Chapitre 3. Dans ce chapitre, nous nous aventurons dans le domaine du traitement
automatique du langage naturel (TAL), en explorant des techniques avancées d’apprentissage
automatique telles que LSTM et Transformers [165] pour estimer les temps d’exécution
moyens de cas de fragments de code. Nous accordons ici une attention particuliere au role
du contexte d’exécution dans ces estimations.

Chapitre 4. Nous revenons a l'estimation WCET, ou nous nous appuyons sur les
conclusions des chapitres précédents en améliorant le modele hybride du Chapitre 2 en
utilisant les modeles les plus efficaces identifiés dans le Chapitres refch3. Le défi de ce

chapitre est d’identifier le contexte d’exécution dans le pire des cas, ce qui est crucial pour

17

Résumeé

appliquer efficacement ces modeles d’apprentissage automatique dans ’estimation WCET
hybride.
Chapitre 5. Enfin, nous terminons la these avec un regard vers I’avenir, en discutant

des travaux futurs et des voies d’amélioration.

18

INTRODUCTION

Embedded systems are electronic devices controlled by software to perform specific
tasks. These tasks range from operating programmable appliances at home to managing
systems in cars and airplanes. The prevalence of these systems has increased significantly,
as evidenced by projections suggesting that the number of Internet of Things (IoT) devices
will reach 50 billion by 2030 [4]. As new technologies evolve, they will inevitably introduce
further challenges related to the size, cost, and performance of these embedded systems.
Therefore, system designers need to understand the embedded software’s behavior with
respect to these constraints. However, the increasing complexity of hardware architectures,
coupled with insufficient documentation, complicates the task of estimating software per-
formance. Performance may be a worst-case performance (Worst-Case Execution Times

- WCETSs) in real-time systems or average-case performance in general-purpose ones.

In general-purpose systems, efficient utilization of resources is crucial. One way to
enhance performance metrics, like average execution time, is through code-level trans-
formations or optimizations. However, accurately evaluating these optimizations requires
understanding various factors, including the interplay among program instructions. To
facilitate this complex evaluation process, specialized tools have been designed to quan-
tify execution time, specifically focusing on the impact of optimizations. Depending on
the available resources, these tools typically employ either profiling techniques [135, 49|
when the target hardware is accessible, or processor simulators [19, 13, 3, 120], which are
software tools that emulate the behavior of a processor, thereby enabling performance
analysis and software testing without the need for the actual hardware.

In real-time systems, tasks come with specific deadlines that need to be met to consider
the system as functioning correctly. Ensuring tasks are completed on time requires eval-
uating the WCET for each task. This evaluation helps the scheduling algorithm allocate
resources so that every task meets its deadline, even in the most demanding scenarios. For
accurate WCET estimation, various methods can be employed, which typically involve a
simultaneous consideration of both the task’s code and the architecture of the processor
executing it.

WCET estimation methods are divided into static methods, end-to-end measurement-
based methods, and hybrid methods [170]. Static methods estimate the WCET without
executing the program. In the first phase, the program is divided into basic blocks. A

Basic Block (BB) is a sequence of instructions with a single entry point and a single exit

19

Introduction

point. The WCET of each BB is estimated thanks to the knowledge of the processor
architecture. In the second phase, static techniques calculate the WCET estimate for the
whole program based on the WCET of each BB within the code. For this second phase,
Implicit Path Enumeration Technique (IPET) [170, 117] is the most commonly used class
of techniques. IPET relies on solving a linear optimization problem generated from the
program’s Control Flow Graph (CFG). Static methods provide a safe WCET estimate,
which is an upper bound of any possible execution time, provided that the WCET estimate

of each basic block is itself safe.

End-to-end measurement-based methods are empirical techniques that do not require
detailed knowledge of the hardware. They launch the program on a series of inputs, and the
resulting execution times are measured and gathered. The WCET is then estimated, either
by considering the WCET as the highest measurement or by extrapolating using statistical
techniques [30]. By construction, when using the highest measurement as WCET estimate,
these techniques can only underestimate the WCET, unless the input and the hardware
state resulting in the longest execution path are used during the tests [51]. Therefore, a
safety margin is often added to the WCET estimate to mitigate the lack of confidence in

the measurements.

Hybrid methods mix static and measurement-based approaches. In a vast majority
of these techniques (e.g., [100, 30, 17, 157, 59]), measurements are used to estimate the
WCET of basic blocks. The WCET of the whole program is then estimated using calcu-
lation methods such as IPET. The advantage of hybrid techniques is that they do not
require knowledge of the architecture while being able to find the longest path.

Nevertheless, current tools for WCET estimation, whether they are static, end-to-
end, or hybrid, each come with their own set of challenges. Static analysis tools demand
an in-depth understanding of the processor’s microarchitecture, including aspects like
caches [67], pipelines [113], and branch predictors [40]. Acquiring such detailed knowl-
edge of microarchitectures is becoming more difficult, either due to intellectual property
restrictions or because the complexity of modern architectures complicates the devel-
opment of reliable and safe timing models. End-to-end methods utilize either profiling
tools or cycle-accurate simulators. While profiling tools can disrupt performance mea-
surement during their operation, cycle-accurate simulators, though precise, are inherently
resource-intensive and can be slow. Both approaches within end-to-end methods may also
lack crucial safety features. Meanwhile, hybrid techniques suffer from issues like ensuring
complete code coverage? [111]. Given these challenges, there is a pressing need for more

straightforward and efficient methods for complex processor timing modeling.

2. Ensuring complete code coverage means verifying that every part of the software code has been
executed and analyzed, leaving no section untested or unchecked.

20

Introduction

During the past decade, Machine Learning (ML) has quickly become a revolution-
ary tool in many fields, from the autonomous vehicles sector to enhanced diagnostics in
healthcare [137, 106]. Similarly, ML’s role in computer architecture has evolved from a
theoretical concept to a foundational technology, influencing design, control, and simula-
tion across various system components [163]. Historically, the interplay between ML and
computer architecture largely focused on adapting architectural elements to better serve
ML algorithms like neural network accelerators [36]. However, the last decade has marked
a significant shift toward a more reciprocal relationship, as more and more works success-
fully apply ML to processor architecture and compiler design problem-solving [124, 169,
32].

Given the growing challenges associated with hardware complexity and limited docu-
mentation, this thesis aims at automating the creation of hardware timing models.
By leveraging machine learning techniques, the objective is to predict both average-case
and worst-case performance without requiring extensive documentation of the targeted
processor. The proposed solutions all operate in two distinct phases. During the learn-
ing phase, the timing for code snippets is established based on measurements in their
various "execution contexts', including loops and dependencies between instructions. In
the subsequent inferring phase, the developed timing model is applied to calculate the
execution time of new code snippets. These calculations are supposed to be informed by
the execution context of each code snippet, as determined through, for example, static

analysis. This methodology offers three key advantages:

— It provides reasonably accurate and fast timing estimations.
— It eliminates the need for costly static analyses or cycle-accurate simulation.

— It does not require detailed knowledge of the processor’s microarchitecture.

Although the obtained timing information is not provably safe, it holds significant
value for estimating timing in the early stages of system development, real-time systems
at low criticality levels (for example, DAL B and C in the aeronautic industry [20]),
general-purpose software, or guiding compiler optimizations.

While previous research has been conducted on the automatic derivation of timing
models using machine learning [21, 87|, it predominantly focused on simple hardware
with constant and context-independent instruction timing. This thesis aims to break new
ground by introducing context awareness into these machine learning techniques, thereby
extending their applicability to more complex hardware designs. Specifically, execution
traces of a program will serve as contextual representations for the instruction sequences
for which execution times need to be estimated. Drawing an analogy from the field of
Natural Language Processing (NLP), these execution traces can be thought of as texts

in which individual instructions can be seen as words. By processing these traces, we can

21

Introduction

gain valuable insights into the contextual factors that influence instruction execution time
(pipeline effects, cache effects, and branch predictor effects), leveraging advancements in
NLP to guide our models. This new approach promises to enhance the accuracy of program
execution time estimates, which in turn can drive the development of more efficient and

reliable embedded systems.

Contributions

This thesis introduces new methodologies at the crossroads of machine learning and

execution time estimation. The three contributions of this thesis are as follows:

Hybrid WCET estimation using machine learning for architectures with
caches [7]. Our initial proposition is a novel hybrid approach, WE-HML [7], designed
for improved WCET estimation. This method distinctively incorporates data cache mem-
ory considerations when training a range of foundational machine learning models. The
training utilizes synthetically generated datasets and is complemented with a static tech-

nique to estimate the overall WCET of a program.

Employment of NLP in ACET estimation. Shifting our focus toward ACET, we
explore the integration of NLP techniques to capture the dependencies between instruction
sequences. We investigate various deep learning architectures, including Long-Short Term
Memory [82] (as published in the paper [8]) and Transformers [56, 43]. We found that
Transformers XL [43] was the best suited for accurately contextualizing and estimating

basic block execution times.

Context-aware WCET estimation using Transformers [6]. Building on the
success of NLP application in ACET estimation, we take on the challenge of identifying
"worst-case context' for basic blocks, leading to the conception of CAWET [6]. This novel
solution not only identifies every short execution context for a given basic block, but it
also leverages Transformers XL [43] to enhance WCET estimation accuracy. Moreover, we
integrated these enhancements into a static analysis tool, creating a hybrid methodology

that significantly mitigates the overestimations observed in our initial WE-HML model.

Outline

The rest of this document is organized as follows:

Chapter 1. We lay the groundwork by introducing the key concepts necessary for
understanding this document. We review the prevalent methods for estimating execution

times in general scenarios and delve into specialized techniques for WCET estimation. This

22

Introduction

chapter also serves as a short introduction to some regression and deep learning techniques.
The chapter concludes with an overview of cutting-edge applications of machine learning

for execution time estimation.

Chapter 2. This chapter was the first work completed in the course of this thesis.
It presents a novel hybrid methodology for WCET analysis using basic machine learning
techniques. In this chapter, we pay close attention to memory effects, more specifically,

to cache behaviors that may arise within nested loops during code execution.

Chapter 3. In this chapter, we venture into the realm of Natural Language Process-
ing (NLP), exploring advanced machine learning techniques like LSTM and Transform-
ers [165] to estimate average-case execution times of code snippets. Here, we give special

emphasis to the role of execution context in these estimations.

Chapter 4. We return to WCET estimation, where we build upon the findings of the
previous chapters by enhancing the hybrid model from Chapter 2 using the most effective
models identified in Chapter 3. The challenge in this chapter is to pinpoint the worst-case
execution context, which is crucial for applying these machine learning models effectively
in hybrid WCET estimation.

Chapter 5. Finally, we conclude the thesis with a look ahead, discussing future work

and avenues for further improvement.

23

Introduction

Publications

Please note that for the following publications, the authors are arranged in order of
their contribution, with the principal contributor listed first.

Abderaouf N., AMALOU, Isabelle PUAUT, and Gilles MULLER. "WE-HML.:
Hybrid WCET Estimation Using Machine Learning for Architectures with Caches." The
27th International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 2021.

Abderaouf N., AMALOU, Elisa FROMONT, and Isabelle PUAUT. "CATREEN:
Context-Aware Code Timing Estimation with Stacked Recurrent Networks." The 34th
IEEE International Conference on Tools with Artificial Intelligence (ICTAI) IEEE, 2022.

Abderaouf N., AMALOU, Elisa FROMONT, and Isabelle PUAUT. "CAWET:
Context-Aware Worst-Case Execution Time Estimation Using Transformers." The 35th
Euromicro Conference on Real-Time Systems, (ECRTS 2023). Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik, 2023.

In progress

Hugo REYMOND, Abderaouf N., AMALOU, Hector CHABOT and Isabelle PUAUT.

"Worst-Case Execution Time and Energy Estimation in Low-Power Microprocessors using
Explainable ML."

Abderaouf N., AMALOU, Elisa FROMONT, and Isabelle PUAUT. "Interpretable,

Fast, and Accurate Context-Aware Basic Block Timing Prediction using Transformers."

24

CHAPTER 1

BACKGROUND ON TIMING ESTIMATION
USING MACHINE LEARNING

Over the past decade, the application of machine learning techniques to estimate
the execution time of programs has gained interest among researchers, yielding several
solutions. Each method stands out for its distinct features, including its domain of use, the
code level utilized to estimate its execution time, and the way timing is obtained. In this
chapter, we dive into various classifications of these techniques, providing a comprehensive
overview of their advantages and disadvantages. We conclude the chapter with an analysis
of the current state-of-the-art in timing estimation using machine learning and outline
potential future directions for research.

This chapter is organized as follows: first, a comprehensive overview of the context
surrounding execution time estimation, in general, is provided in Section 1.1, encompass-
ing different uses of execution time, factors that influence it, and the various techniques
for its calculation or estimation. Subsequently, a focused investigation into Worst-Case
Execution Time (WCET) estimation is conducted in Section 1.2. The utilization of ma-
chine learning techniques is introduced and further detailed in Section 1.3. The synergy
between machine learning and the estimation of execution time is evaluated through a
review of the existing literature in Section 1.4. Finally, Section 1.5 assesses the limita-
tions in current state-of-the-art methods, setting the stage for the specific challenges and

contributions addressed in this thesis.

1.1 Execution time estimation: a bird’s-eye view

1.1.1 Levels of execution time estimation

Execution time is a usual metric for assessing the performance of a program or a

system, and it can be understood at different levels.

Execution time of an instruction. At the lowest level, the execution time can refer
to the time taken to execute a single instruction in a program. This could be a simple

operation, such as an addition or a multiplication in a CPU. Microbenchmark tools can

25

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

be used for this purpose [2].

Execution time of a basic block (BB). A basic block is a code sequence with
no branch in, except at the entry, and no branch out, except at the exit. In other words,
if a single instruction is executed in the basic block, all the instructions are executed in
sequence. Therefore, the execution time of a basic block would be the total time taken
to execute all the instructions in the block. The basic block code level is widely used
in realtime systems for worst-case execution time estimation and compiler design, where
considering BB-level timing is a useful approach for understanding the performance char-

acteristics of a program and guiding optimization efforts.

Execution time of a workload, function, program, or application. These
terms are often used interchangeably to refer to larger units of execution. In each of
these terms, the execution time would refer to the total time taken to complete all the
operations, whether it is processing a workload, running a function, executing a program,
or operating an application. This is typically a more complex measure, as it must account
for various factors, such as function calls, control flow, resource usage, presence of multiple

tasks, and interactions between software and hardware components.

This thesis’s primary focus revolves around exploring program execution time. Specif-
ically, the time analysis of the basic block, which not only serves to determine the worst-
case execution time of programs in case of realtime applications, but also provides valuable

insights that can be leveraged for compiler optimization techniques.

1.1.2 Execution time usages

Execution time estimation can be approached from different perspectives and catego-

rized into average, best, and worst-case scenarios.

Average-case execution time (ACET). The average execution time is crucial for
assessing the typical (mean or average) duration required to complete a task. It considers
different inputs or different repeated execution scenarios to calculate the average. This

metric is important for compiler optimization and microarchitecture design [149].

Best-case execution time (BCET). The best-case execution time serves as a ref-
erence point in performance analysis, defined as the minimum time necessary for a task to
execute under optimal conditions. This metric is important for throughput analysis, aid-
ing in the identification of potential system bottlenecks. A thorough understanding of the
constraints and capabilities of the microarchitecture, obtained through BCET analysis,
enables more precise finetuning of optimization strategies. Consequently, this enhances

system throughput and overall efficiency [129].

26

1.1. Execution time estimation: a bird’s-eye view

Worst-case execution time (WCET). The worst-case execution time represents
the maximum time required for a task or module to complete. It indicates the worst-case
scenario and is crucial for determining timing constraints and ensuring system stability
under extreme conditions. In safety-critical systems and realtime applications, it is es-
sential to guarantee that the system meets its deadlines, even in worst-case scenarios.
Consider the collision avoidance system of an autonomous vehicle. Estimating the worst
execution time of the collision detection algorithm is vital to ensure that the system can
respond within the required time frame to avoid accidents. By accounting for the worst-
case execution time, designers can allocate sufficient processing resources and validate the

system’s ability to operate safely under all conditions (including the worst-case).

1.1.3 Factors behind the variability of execution times

Obtaining an accurate estimate of execution times is challenging due to interactions
between hardware and software components. Understanding these interactions and how
they affect the execution time variability is essential to improve the reliability and pre-
cision of timing estimation solutions. This Section focuses on explaining the key factors
that contribute to timing variability that are divided into two categories: hardware-related
factors [81] and software-related factors [128].

Hardware-related factors

Within a singular microarchitecture, execution time is subject to inherent variability
arising from numerous intrinsic factors. In the following, we explore the potential factors

contributing to this variability:

Memory hierarchy. Processors use various levels of cache memories to store fre-
quently accessed data and instructions. When a code is executed multiple times, the
cache may contain the required data/instruction, resulting in faster execution. However,
if the needed data/instructions are not found in the cache (cache miss), the program will
run slower (if there are no time anomalies [145]) because it has to rely on other types of
memory, which are usually slower. The size and organization of the memories (cache and
main memory), along with the code’s memory access patterns, influence the cache hit and

miss rates.

Pipeline dependencies. One source of the execution time variation is the pipeline,
which refers to the sequence of stages or operations through which an instruction is di-
vided, with each stage dependent on the completion of the previous one. The dependencies

within the pipeline can be summarized into three types:

27

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

Read-after-write (RAW). One operation needs to read data produced by a pre-
vious operation before it can start.

Write-after-write (WAW). Multiple operations want to write in the same memory
location, so they must be executed in a specific order.

Write-after-read (WAR). An operation needs to write data to a memory location

that a subsequent operation wants to read from, so it must wait until the read is finished.

Branch prediction. Processors utilize branch prediction techniques to minimize the
impact of conditional branches on program execution. If the processor’s branch prediction
mechanism accurately predicts the outcome of branches, it can maintain a high instruc-
tion throughput. However, if the predictions are incorrect, the processor may waste cycles
fetching and executing instructions that are ultimately discarded, leading to longer exe-
cution times. The effectiveness of branch prediction depends on the specific patterns of

conditional branches in the program.

Superscalar processors. A superscalar processor is a type of microprocessor that
can execute multiple instructions in parallel. It achieves this by having multiple execution
units, allowing it to process more than one instruction during a single clock cycle. Regard-
ing pipeline dependencies, superscalar processors face similar issues as other pipelined ar-
chitectures. The dependencies described above (RAW, WAW, and WAR) can cause stalls
and inefficiencies in instruction executions, affecting the execution time. To mitigate these
issues, superscalar processors use sophisticated techniques such as instruction reordering
and dynamic instruction scheduling.

Out-of-order processors. Out-of-order processors are an advanced type of micro-
processor that can execute instructions out of their original order as long as the data
dependencies are maintained. In out-of-order processors, a large instruction window and
a complex hardware structure are employed to detect and handle dependencies efficiently.
The processor maintains a buffer called the reorder buffer to keep track of the order of
the instructions in the original program sequence, ensuring that the instructions are com-
mitted to memory in the correct order (order of program instructions execution). When
it comes to pipeline dependencies, this kind of processor can effectively reduce stalls and
increase instruction throughput. By dynamically reordering instructions based on data
availability, they can maximize the utilization of execution units, leading to improved
performance and better overall efficiency.

CPU frequency scaling. Many modern processors employ dynamic frequency scal-
ing [158] (DVFS), where the CPU clock speed can be adjusted according to the workload.
If the processor detects a high demand for computational resources, it may increase its
clock speed to provide better performance. On the contrary, if the workload is low, it

may reduce the clock speed to save power. This variation in clock speed can affect the

28

1.1. Execution time estimation: a bird’s-eye view

execution time of a program, as a higher clock speed globally leads to faster execution.

Resource sharing. Improving system performance is critical, and sharing resources
is the key to achieving this. Multicore processors, which allow multiple tasks to run si-
multaneously, are a significant advancement. This not only boosts system performance
but also necessitates effective distribution of computing elements such as CPU cycles and
memory bandwidth across running programs. However, this also presents challenges, es-
pecially when running resource-intensive tasks simultaneously. This scenario can lead to
a shortage of available resources for each program, causing variations in execution times.
Additionally, interference during memory hierarchy access and cache coherence issues [23,

153] can also lead to inconsistent execution times.

Other factors. Other factors can also influence execution time, such as speculative
fetching [47], variable latency instructions [52] (e.g., square root, division), multi-
threading [14], and timing anomalies [145]. Additionally, the initial hardware state

can set off a domino effect [14], further affecting performance.

Software-related factors

Factors not related to the processor microarchitecture can influence the execution time

of programs. These software-related factors are:

Program inputs. Modifying the input of a program can affect its execution time.
Different inputs may lead to different control flows, data access patterns, and, therefore,
utilization of resources. For example, larger input sizes may require more memory or lead
to more loop iterations, resulting in longer execution times, even when the hardware and

software environment remains the same.

Compiler optimizations. The choice of compiler and its optimization settings can
impact the execution time of a program. A compiler can apply various optimizations
and changes to the program, such as loop unrolling, instruction scheduling, and constant
folding, to generate more efficient code. Different compiler versions or optimization levels
can result in different performance characteristics, affecting the execution times of the

program.

Operating system interferences. The way the operating system schedules pro-
cesses and assigns CPU time to processes can impact the execution time of a program.
The scheduling algorithm, priority levels, and interruptions can influence how much CPU
time is allocated to a specific program. If a program has lower priority or is competing
with other high-priority processes (such as I/O interruption), its execution time may be

longer.

These factors are crucial in determining the execution time of a task in different

29

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

scenarios. In an average case, it is essential to understand the common hardware state
(for example, since cache hits occur more frequently than cache misses [81], a situation
where the data is available in the cache can be considered as the average hardware state)
and the typical software state (considering the most commonly used program inputs).
Conversely, for the worst-case scenarios, it is necessary to identify the most unfavorable

conditions that the hardware and software can encounter while running a program.

1.1.4 Execution time estimation techniques

Techniques used for execution time estimation can be classified in general into four
categories: static analysis, measurement-based, simulation-based, and data-driven tech-

niques.

Static analysis techniques

Static analysis techniques rely mainly on assumptions about the code’s behavior com-
plemented by the expert’s knowledge to time a program. This approach involves an auto-
matic and detailed inspection of a program’s code without actually executing it. The aim
is to make time complexity estimates based on the number and types of operations, data
size, and control flow. A simple example would be to count the number of instructions and
match this to an execution time. More complex solutions use more advanced cost functions
for estimating the execution time of instructions as those provided by: Low-Level Virtual
Machine Microprocessor Code Analyzer (LLVM MCA) [12], Open Simple Analytic Com-
piler Architecture (OSACA) [109], Portable inference of port Mappings for out-of-order
processors by EVolutionary Optimization (PMEvo) [146], and Intel Architecture Code
Analyzer (IACA) [92]. These tools analyze the execution of input assembly code using
a static model of the processor and provide various statistics, such as throughput and

latency.

Measurement-based techniques

These techniques are centered on collecting data derived directly from an observation

of the system.

Profiling. Profiling is the practice of capturing various metrics during the execution
of a program to analyze its performance and behavior. These metrics range from CPU
usage and memory consumption to the frequency of specific operations. The insights
gathered not only help in optimizing the program itself but also serve as a foundation for
predicting the execution time of similar applications. Tools like the Performance Applica-

tion Programming Interface (PAPI) [135] and Perf [49] are widely used for this purpose,

30

1.1. Execution time estimation: a bird’s-eye view

offering a comprehensive suite of functionalities to monitor performance attributes. Al-
ternatively, hardware-based approaches, such as FPGA synthesis [136], can be employed

to gather precise performance data.

Hardware solutions (e.g., Joint Test Action Group JTAG). These solutions
involve dedicated hardware, such as JTAG interfaces, to capture hardware-level timing
information. They offer accurate estimates but often necessitate additional hardware sup-
port. An example is the J-Trace Pro trace solution from Segger [151], which is used to
connect to the JTAG interface of the target processor, alongside Ozone [71], a crossplat-
form debugger and performance analyzer. Ozone generates execution traces with a format

of one line per machine instruction, including other information such as the cycle counter.

Simulation-based techniques

Simulations construct a replica of the processor microarchitecture behavior and esti-
mate the execution time by running the simulated model under various scenarios. These
simulators, such as GEM5 [19], ARM cycle accurate [120], uops info Code Analyzer
(uiCA) [3], and simplescalar [13], can integrate heuristic simplifications (e.g., assuming
some parts of the processor microarchitecture functioning and incorporate real world data,

such as memory latency).

Data-driven techniques

Machine learning [126] presents a new paradigm for estimating execution time by lever-
aging historical data. Unlike traditional methods that depend on static models or broad
approximations, machine learning algorithms, particularly regression models, delve into
past code execution time records to predict future ones. These models excel in discern-
ing the intricate relationships between code attributes and their corresponding execution
times. For a comprehensive examination of related examples, refer to Section 1.3. It is

worth noting that this approach forms the central focus of this thesis.

Each technique offers its own advantages and limits. The appropriate choice depends
on a number of factors, including the available resources and the required precision of
the timing estimate. The summary of the advantages and limits of the four categories of

execution time estimation techniques is presented in Table 1.1.

31

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

Technique

Advantages

Limits

Static analysis

No need to execute code.

Inaccuracies due to simplification.

Controlled environment for scenar-
ios.

Portable across different hardware. Resource-intensive for complex
cases.
Measurement-
based Uses real system data. Can be invasive.
Captures complex behaviors. Limited by measurement scope.
Simulation-
based Emulates before implementation. Needs accurate models.

Simulations are slower than real ex-
ecution.

Data-driven

Handles complex behaviors.

Balances static assumptions with
real-world data.

Needs quality historical data.

Complexity can obscure interpreta-
tion.

Table 1.1 — Comparative analysis of execution time estimation solutions.

1.2 WCET estimation techniques

Estimating the ACET of a program is generally easier than determining its WCET.
The central limit theorem [107] simplifies the ACET estimation task by offering a sound
statistical basis. For instance, monitoring the execution time of a basic task on a simple
processor for 100 iterations can provide a reliable estimate of the average time needed for
execution. The actual average execution time can be approximated using the empirical

average obtained from these 100 observations (i.e., Equation 1.1).

100

_ 1

However, determining the WCET is inherently difficult, and its undecidability [99] is

rooted in the halting problem, a foundational issue in the theory of computation. Alan

(1.1)

Turing proved in 1936 that a general algorithm to determine whether a given program
(with a given input) halts or continues to run indefinitely cannot exist. This is known
as the halting problem, and it is undecidable. In the context of WCET, determining
the exact execution time would require knowing the maximum time a program takes for
any possible input. If we could determine this, we would also know if the program halts
for every possible input. But since the halting problem is undecidable, determining the

exact WCET is as well. Therefore, while we can estimate the WCET for many programs,

32

1.2. WCET estimation techniques

especially those with bounded loops and inputs, we cannot create a general method that
determines the WCET for all possible programs. Thus, to ensure the estimation is a

practical value, it is imperative that it remains both safe and precise.

Definition 1 Safety: An upper limit of the WCET of a task is considered safe if it is

greater than all possible execution times.

Definition 2 Precision: A WCET estimate for a task is considered precise if it is close
to the actual WCET.

When estimating the worst-case execution time, there are several techniques available
to provide safe and accurate predictions. These techniques can be classified into three main

categories: static techniques, end-to-end measurement techniques, and hybrid techniques
[171].

1.2.1 Static techniques

Static techniques [171] for WCET estimation process is depicted in Figure 1.1. It
involves transforming code into a Control Flow Graph (CFG). This graph represents
the potential execution paths of a program. For instance, Listing 1.1 and Figure 1.2
show, respectively, a C source code and its corresponding CFG that is extracted from
the compiled binary code. In Figure 1.2, nodes correspond to basic blocks, and edges
correspond to possible control flow between them. For example, the basic block then

contains the code for s=s+t[i]. Static techniques generally involve the following stages:

Extraction of

Source code flow facts

Y

Flow fact
transformation

Compile

Execution time

modeling
. - Cache analysis N Longest path
IRy GRS - Branch predictor 7 calculation
analysis

- Pipeline analysis

Figure 1.1 — Static timing analysis workflow.

Flow facts extraction and transformation. In this phase, various flow-related
details are extracted from either the source code (for example, user-specified maximum

loop iterations) or from the Control Flow Graph (CFG) extracted from the binary code.

33

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

Listing 1.1 — Example of C code

for (int i = 0; i < 100; i++)
if (t[i]>0) s = s + t[i];
else s = s — t[i];

DOAIHE

Figure 1.2 — Control flow graph for the code depicted in Listing 1.1.

Execution time modeling (HW abstraction). Also known as low-level analysis,
this step involves statically determining temporal information about the worst execution
time of each basic block. This is based on a model of the hardware architecture (which
requires detailed documentation on the processor). The determination of the WCET of a
basic block must take into consideration specific hardware elements such as pipelines [108,
113], cache memories [123, 68] and branch predictors [40]. These elements introduce vari-
ability in the execution time of instructions as discussed in Section 1.1.3, depending on
the path taken within the program. Abstract interpretation [161] is usually used in this
case to analyze the worst possible states without executing the program.

Longest path calculation (high-level analysis). This step employs algorithms
designed to efficiently identify the path with the longest execution time without enu-
merating all possible paths. The identified path serves as an estimate for the worst-case
execution time. The Implicit Path Enumeration Technique (IPET') [118] is commonly used
at this stage. It formulates the longest path problem as an integer linear problem. Using
the previous example (Figure 1.2 and Listing 1.1), we illustrate the WCET estimation
calculation on the example that computes the sum of the absolute value of 100 elements

stored in an array t using IPET.

Nstart = 1
Nor < 101
Nfor = Nstart—for T Nendif—for
Nfor = Nfor—if + Nfor—end
N = MNfor—if
N = Nifsthen + Nif—else

Figure 1.3 — IPET formulas for the CFG of Figure 1.2.

34

1.2. WCET estimation techniques

— First, the WCET of a basic block b denoted by wy is estimated by applying the
HW abstraction model. Then, the IPET technique estimates the longest path in the
program using integer linear programming: the goal is to maximize the following

quantity:

Wy X Ny
bebasic blocks

with n;, the number of executions of the basic block b.

— Constraints on variables n;, and ny_1, (the number of times the edge b — b”is taken,
b and b’ being basic blocks) model the execution flows (a basic block is entered as

many times as it is exited) and the maximum number of iterations for loops.

— Constraints are generated by the IPET technique, possibly with annotations for loop
bounds when the tool is not able to infer them automatically. An example of the
constraints for the previous program is given in Figure 1.3. Assuming for the sake
of illustration that the outcome of the learned timing model is a WCET of 10 cycles
for all basic blocks, except block then which executes in 20 cycles, the result of the
IPET calculation for the example is then nga = 1,10 = 101,155 = 100, nypen, =
100, nerse = 0, nenair = 100, ngqre = 1 and the WCET estimate is 5030 cycles.

For simplicity, we have assumed in this example that each basic block has a single,
context-independent WCET estimate. For architectures with caches, pipelines, and branch

predictors, this assumption is obviously no longer valid.

Despite the valuable contributions of static techniques in generating safe and deter-
ministic worst-case estimates (if the proposed HW model is precise enough), they often
produce conservative estimates, potentially leading to an overestimation of the execution
time. These methodologies are implemented in both commercial tools such as AiT [66],
and academic tools such as Heptane [78], Ottawa [15], Chronos [114], and SWEET [119].

1.2.2 End-to-end measurements techniques

End-to-end measurement techniques [53] for the estimation of WCET are based pri-
marily on real measurements captured during the program’s execution on the target hard-
ware platform. The amassed measurements serve as the basis for estimating the WCET.

Two notable measurement-based methodologies are:

Measurements with a safety margin. This approach requires running the program
under its worst-case input and processor conditions to obtain the maximum execution

time. The worst-case input refers to the input that results in the longest execution time,

35

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

while the unfavorable processor state might involve conditions like empty cache memo-
ries, flushed branch predictor, etc. Typically, a safety margin is added to the maximum

observed execution time to account for uncertainties and unforeseen scenarios.

Statistical analysis. Particularly the application of Extreme Value Theory (EVT)
[76], which plays a vital role in the estimation of measurement-based WCET. EVT special-
izes in analyzing timing measurements by concentrating on outliers—extreme deviations
from the median in probability distributions. In the context of WCET, EVT is particularly
adept at modeling the distribution of maximal observed execution times, thereby reveal-
ing crucial information about how the system—Dbe it a program or a processor—behaves
under extreme operational scenarios. This analytical approach is known as probabilis-
tic WCET (pWCET) estimates [31, 28]. Unlike traditional WCET estimates that give a
single deterministic value, pWCET provides a probability distribution.

1.2.3 Hybrid techniques

Hybrid techniques (e.g., [101]) integrate aspects of both static and measurement-based
methods to estimate the worst-case execution time, as illustrated in Figure 1.4. In this
approach, components of the static analysis process, such as flow facts extraction, trans-
formation, and longest path calculation, are retained. However, the hardware abstraction

phase is replaced with a measurement phase.

Source code

Compile

Static Analysis

Extraction of
flow facts

Flow fact
transformation

Measurement at BB
level

Y 1

1

Longest path !
calculation .

1

Static Analysis

1
1
1
1
Binary code :
1
1
1
1
1

Measurement-based timing

Figure 1.4 — Hybrid timing analysis workflow.

Examples of hybrid solutions for WCET estimation are Timeweaver [96] by Abslnt
and Rapitime [48] by Rapita. These solutions employ a combination of hardware-assisted
measurements, such as JTAG (Joint Test Action Group), and manual annotations, in-

cluding waypoints, tracepoints, and interest points. These measurements are performed

36

1.2. WCET estimation techniques

on code snippets to determine their WCET. The static tool provided by these solutions

then utilizes this information to estimate the WCET of the entire program.

Table 1.2 gives a high-level comparison of the three categories of techniques. Here,
we show the advantages and limits of each category. Aside from accuracy and safety, the
realtime systems community has increasingly emphasized two additional factors: perfor-
mance requirements and architectural complexity. The adoption of sophisticated hardware

architectures, often poorly documented due to intellectual property concerns, adds further

challenges to each of the primary estimation techniques.

Technique

Advantages

Limits

Static

Safe and sound for hard realtime
systems.

Provides an upper bound for the
WCET without executing the pro-
gram.

Can be overly pessimistic, leading
to overestimations.

Hardware modeling needed for
each new processor.

Requires detailed documentation
that might be unavailable.

End-to-end-based

Provides accurate (less pes-
simistic) estimates based on actual
program executions.

Captures the system’s dynamic be-
havior.

Might not cover the absolute
worst-case scenario, making them
unsuitable for hard realtime sys-
tems.

Measurements should be repeated
for each new program.

Hybrid

Aims to balance the safety of static
methods with the accuracy of end-
to-end-based methods.

Can provide more realistic WCET
estimates.

Their effectiveness depends on a
balance of static analysis and mea-
surement data.

Measurements at the BB level in
hybrid methods can raise code cov-
erage issues [111].

Table 1.2 — Comparing static, measurement-based, and hybrid WCET solutions.

Static techniques. Determining the WCET using static techniques, while being the

most secure approach, comes with its own set of challenges. These methods require de-
tailed hardware models, which in turn depend on comprehensive processor documentation.
However, even when such documentation is available, the increasing complexity of modern
hardware can lead to a phenomenon known as "state explosion" when using techniques like

abstract interpretation. This state explosion refers to the rapid growth of possible states

37

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

that the system can be in, making the analysis computationally infeasible. As a result,
applying static timing techniques becomes increasingly complicated on high-performance

processors.

End-to-end-based techniques. Even if we assume that we can identify the program
input that leads to the worst-case execution path, the hardware complexity makes it very
difficult to initialize the processor to an accurate worst-case state, especially for the entire

program.

Hybrid techniques. Hybrid methods afford the advantage of snippet-level measure-
ments, capturing processor complexities more effectively. Coupled with flow analysis, these
methods make the outcome independent of specific program inputs while offering some
guarantees regarding prediction accuracy. This positions hybrid techniques as a relevant
choice for complex processors with limited documentation if the problem of code coverage
is solved. However, expecting users to procure both the processor and measurement hard-
ware is far from ideal. This becomes even more evident when considering that the chosen
processor might not have the resources or the required capabilities to support the realtime
application. In this context, machine learning emerges as a promising solution. Not only
can it mitigate the need for users to invest in expensive processors and measurement tools,
but it also addresses the challenges of measurement code coverage [111]. Delving into a
hybrid WCET estimation using a machine learning approach will be a primary focus of

this document.

1.3 Machine learning

Machine learning [126] is a subdomain of artificial intelligence that has been widely
adopted in many fields as an alternative approach to solve different problems. The rel-
evance of machine learning arises from its strong ability to learn relationships between
data, operating on what we call a model that learns from real world examples instead of
relying on hard-coded rules.

Machine learning algorithms depend on various criteria, such as the degree of super-
vision provided (a.k.a supervised or unsupervised learning) or the way data are provided
to the algorithm (e.g., reinforcement learning). In this thesis, we will focus on supervised

learning.

Supervised learning. In supervised learning, the training process utilizes both input
features and corresponding output targets to generate a model capable of predicting
outputs for new, unseen inputs. Depending on the type of output, these models can
be termed as regression for continuous numerical outputs or classification for discrete or

categorical ones.

38

1.3. Machine learning

In supervised learning, our main interest lies in learning a model that links data
X = {xo,x1, ...,z } (where x; is a feature of X) to a continuous label y, In the context of
our study, this involves mapping the characteristics of a basic block to its execution time.
Such a learning approach is termed regression. We define a regression model Fpurameters(X)

as follows:

Yy = Fparameters(X) + E(X) (12)

Here, parameters denote the parameters of the regression model, acquired during
the training phase on datasetyaim ((X1,41), vy (Xg, yk)). Additionally, E is typically con-

ceptualized as the discrepancy between the true value y and the output of the model

Fparameters .

1.3.1 Regression-based machine learning algorithms

The process of training a regression machine learning model unfolds through several
sequential stages, which are illustrated in Figure 1.5. It begins with data collection and
cleaning. The cleaned data is then segregated into three distinct subsets: a training set
datasety.q;n (1a), a validation set dataset,q;q (1b), and a testing set dataseties (1c). The
training set is integral for the calibration of the model’s weights (Step 2a), primarily under
the guidance of a loss function. Conversely, the validation and test sets are reserved solely
for the evaluation of the model’s predictive accuracy and robustness (Step 2b for validation
and Step 5 for testing on unseen data). Following the initial training phase (Step 3a), the
model’s performance is assessed using the validation set (Step 3b). Should the model
underperform, adjustments are made to the hyperparameters (Step 3c), and the model
undergoes retraining and subsequent reevaluation. This cycle continues until satisfactory
performance metrics are obtained, indicative of the model’s accuracy and efficacy with
the chosen hyperparameters!. Once satisfactory performance metrics are achieved (Step
4), the optimized model is ready for deployment on new, unseen data or the predefined
testing dataset (Step 5). This step serves to identify any instances of overfitting that may
have happened during the training sessions on the training dataset, ensuring the model’s
generalizability and reliability in real world scenarios.

To tune the weights of a regression model, several loss functions exist. In this thesis,

we have considered the following ones (as a reminder, y; is the ground truth value and

1. Hyperparameters are parameters that are not directly learned from the data. Instead, they are set
prior to the training process and influence the behavior and performance of the model. For example: the
number of neurons in a neural network.

39

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

Datasety|iq
1b

0 ! 3b
Data acquisition Datasetyrain 1 Regression Evaluation
and cleaning 1a 2a! model training
T 3c
Datasettest

Hyperparameters
e.g., loss
1c function

5
Evaluation

Test
scores

Training
scores

Figure 1.5 — Regression learning workflow.

Farameters(Xi) is the prediction):
— Mean Squared Error (MSE), defined as:

1 N

MSE = N Z(yz - Fparameters(Xi))2 (13)
=1

— The Mean Absolute Percentage Error (MAPE), defined as:

100 N v F, arameters X’L
MAPE = —= %" i = Frorameters(X:) (1.4)
i=1 Y;

— The Symmetric Mean Absolute Percentage Error (sSMAPE), defined as:

100 N |yz - Fparameters (XZ)|

SMAPE = — (1.5)
N ; (|yz‘ + |Fparameters(Xi)D /2
— The Root Mean Squared Logarithmic Error (RMSLE), defined as:
1N
RMSLE = N > (log(y; + 1) — log(Fparameters(Xi) + 1))? (1.6)
i=1

The MAPE function is employed to assess the model’s accuracy on the validation
(training scores in Figure 1.5) and testing datasets (testing scores in Figure 1.5). Mean-
while, the Pearson correlation coefficient r is used to evaluate the linear relationship be-
tween the predictions and the ground truth. The Pearson correlation coefficient is given

by:

_ Z(Fparametem(Xi) - F) * (yl - g)
\/Z(Fparameters(Xi) - F)Q * Z(yl - 'g)Q

r

(1.7)

40

1.3. Machine learning

Where F represents the mean of all predictions.

In the following, we only present the regression models that will be used in the chapters

detailing our contributions.

Linear Regression (LR) [69]. Linear regression is the most basic regression al-
gorithm. It assumes a linear relationship between the input variables X and an output
variable y. Ordinary Least Squares (OLS) is a type of linear regression that aims to min-
imize the sum of the squared residuals, i.e., the differences between the observed and
predicted values. The resulting model is defined by the equation y = a.X + b, where a
is a vector of weights for each element of X and b represents the bias. The values of a
and b are estimated by the algorithm. An illustration of linear regression application in
estimating execution time is presented in Figure 1.6. In this example, y symbolizes the ex-
ecution time corresponding to a basic block, with z; denoting the number of instructions
in the basic block, and x5 representing the associated memory usage. From a graphical
perspective, this linear regression model is represented by a plane that best fits the data
points engaged during the parameter training phase. The resulting model serves as an
analytical tool to analyze the linear relationships between the input variables and the
output. Additionally, it can be directly employed to deduce the execution time based on

the number of instructions and memory accesses.

Execution time

Nb instructions

Figure 1.6 — Linear regression for execution time estimation example.

Capturing the relationship between the input variables X and the corresponding out-
put y can be challenging when using a linear model, especially when it is aimed at mini-

mizing errors solely on the training set. This approach may result in poor generalization

41

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

to unseen test data. To address these limitations, various extensions to traditional linear

regression have been developed, including:

Polynomial Regression. An extension of linear regression that includes the powers
of the input variables to model nonlinear relationships within a linear framework. For
example, y = By + B1.X + Bo. X2+ ... + B4. X1+ E(X)

Ridge Regression [84]. Ridge Regression is an extension of linear regression that
incorporates a regularization term. Its primary objective is to create a model that gen-
eralizes well to new, unseen data by constraining the model’s complexity. It does this
by adding a penalty based on the size of its parameters. The main idea is to not let
any parameter become too dominant. The strength of this penalty is controlled by a
value called A. The modified loss function for Ridge Regression is defined as l05S,gjusted =
Loss [(Fparameters(Ti) — Yi)] + A Z;‘:l(weightsj)? Where n is the number of features, and
A is the regularization parameter.

Lasso Regression [162]. Lasso Regression is another variation of linear regres-
sion. What is unique about Lasso is that it can completely remove some features (or
parameters) if they are not that helpful. This makes the model simpler and easier to
understand. It uses a different kind of penalty than Ridge, focusing on the absolute
values of the parameters. Like Ridge, the strength of the penalty is controlled by a
value called A. The modified loss function for Lasso Regression is given by [05Sagjusted =
Loss [(Fparameters(Ti) — yi)] + A X7 [weights;|. Where n is the number of features, and

A is the regularization parameter.

K-Nearest Neighbors (KNN) Regressor [102]. The K-Nearest Neighbors (KNN)
regression algorithm estimates the value of a target variable by taking the average of the
values of its K nearest neighbors. These neighbors are identified based on a distance metric,
such as Euclidean distance, which is specified as a hyperparameter. Figure 1.7 illustrates
this concept. In the example, we aim to predict the execution time of an unidentified point,
denoted by a red dot. Using a specific distance metric, we identify 5 nearest neighbors (or
5 basic blocks) with known execution times. The predicted execution time for the red dot

can be calculated in two ways. The execution time is either the average:

F(distance) = % Zf:l Yi

or, each output y; can be weighted by the distance d;:

Zle diyi
F(distance) = Zk 4
i=1%

In both formulas, y; represents the execution time of the i-th nearest neighbor, £ is

the number of neighbors, and d; is the distance from the unidentified point to the i-th

42

1.3. Machine learning

nearest neighbor. The latter formula assigns more weight to neighbors that are closer to

the point in question, thereby potentially improving the prediction accuracy.

() Datapoint with known execution time

(O Datapoint with unknown execution time

Nb memory access
’:l o “\
h N
o
b

Nb instructions

Figure 1.7 — KNN example for execution time estimation.

Decision trees [141]. They can be understood through their hierarchical structures,
which arrange data in a tree-like form. In a decision tree, every internal node tests a
specific feature, while the branches extending from it indicate the various possible values
for that feature. The leaves of the tree serve as the predictions. When the model is used for
prediction, it assesses new data by following the tree’s branches according to the feature
values of the input. Several techniques extend the concept of the decision tree to create

more robust and higher-performing models, including;:

Random Forest Regressor (RF) [42]. Random Forest is an ensemble method
that combines a multitude of decision trees to make a prediction. In the context of re-
gression, the final prediction is the average of the predictions of all the individual trees. It
handles nonlinear relationships well and is robust to outliers. Figure 1.8 shows an example
of multiple decision trees, where each tree gives a prediction of the execution time that

will be averaged in the end with the predictions of the other trees.

eXtreme Gradient Boosting (XGBoost) [34]. XGBoost is an ensemble learn-
ing algorithm, similar in concept to Random Forest, but with a key difference in its
approach to model construction. While Random Forest builds decision trees indepen-
dently, XGBoost employs a sequential method that combines multiple trees to create a
more accurate and robust predictive model. This can be metaphorically described as a
collaborative effort of a "team of experts", where each subsequent decision tree focuses on
correcting errors made by the preceding trees in the sequence. This iterative refinement

makes XGBoost highly effective for a wide range of machine learning tasks.

43

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

Forest

Decision tree 1

| NB Mem < 3 |
Decision tree 2
[| NB inst < 6 |
Decision tree 3
NBinst < 14
Time = 10 NB inst >= 29
NB inst >= 23

DTime2=16 l l

Time = 16

Time = 40

DTime2=16

DTime3=22

Figure 1.8 — Example of a random forest model for execution time estimation.

Support Vector Regression (SVR) [39] While the Support Vector Machine (SVM)
algorithm is traditionally known for classification tasks, it can be adapted for regression
through a variant known as Support Vector Regression (SVR). Similar to its classifica-
tion counterpart, SVR aims to identify a hyperplane—or multiple hyperplanes in higher-
dimensional spaces—that best represents the underlying relationship between the input
variables and a continuous output variable, as illustrated in Figure 1.9. In contrast to
SVM, where the goal is to maximize the margin between distinct classes, SVR seeks to
closely fit the data points within a defined tolerance or "epsilon margin" e. Specifically, the
algorithm aims to find a function f(X) such that the deviation from each actual target
value y; in the training data is no greater than e. This enables SVR to produce a model

that is both accurate and tolerant to small fluctuations in the data.

, Hyperplan
Margin
Q
£
=
c
Re]
S
o
Q
X
L
Nb instructions

Figure 1.9 — SVR example for execution time estimation.

44

1.3. Machine learning

Deep Learning Models [80]. These models consist of interconnected neurons, with
each neuron holding a function that combines inputs to produce an output. Their flex-
ibility allows them to solve a wide range of problems using various architectures, which
determine the layout of neuron connections in the network. Details about how these mod-

els are provided in the next Section.

1.3.2 Deep learning techniques

Deep neural networks (DNNs), also known simply as artificial neural networks, are
graphs of computational units called artificial neurons. Neurons receive weighted input

signals. They produce an output signal using an activation function.

Bias WO

X1 W1

>
X2 _/— —> Y

“ {7
Inputs ~ Weights Weighted Actlvgtlon Output
sum function

Figure 1.10 — An example of an artificial neuron.

Artificial neuron. Figure 1.10 illustrates an artificial neuron, with three input vari-
ables denoted as X = {1, x2,z3}. These inputs are each associated with a corresponding
link weight W = {wy, ws, ws}. Additionally, the model incorporates a bias term repre-
sented by the weight wy. The output y of this neuron is computed as the weighted sum
of its inputs, mathematically expressed as y = (X7, w;x;) + wy. To make predictions,
this output y is subsequently evaluated against a predefined threshold value. Specifically,
y is transformed into an activation signal using either a threshold function or a nonlin-
ear activation function. This activation signal serves as the input to subsequent layers of

neurons in a neural network, if applicable.

Multi-Layer Perceptron. A common graph architecture consists of layers of neu-
rons that form a complete bipartite graph between two consecutive layers: this is called a
Multi-Layer Perceptron? (MLP), which is composed of three main parts (see Figure 1.11):

an input layer, hidden layers, and an output layer.

Input layer. The input layer is the entry point for data into the neural network.

It directly receives the raw data or features. Each node in this layer corresponds to one

2. A perceptron is the simplest form of a neural network, consisting of a single neuron or layer.

45

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

Input layer Hidden layer Output layer

Figure 1.11 — An example of a deep neural network consisting of an input layer, hidden
layers, and an output layer.

feature (or attribute) of the data. Essentially, it represents the initial data that you want
to process or make predictions on.

Hidden layers. The hidden layers are where the magic of neural networks happens.
These are called "hidden" because they are not directly exposed to inputs or outputs. These
layers transform the data from the input layer through a series of weighted connections
and activation functions. As the data moves through the hidden layers, the network learns
and captures intricate patterns and relationships within the data.

Output layer. The output layer provides the final prediction from the network. It
translates the complex processing done in the hidden layers into understandable predic-

tions.

Forward propagation. When data is provided to the network, the outputs of all
neurons in the first layer can be calculated by applying the previous formula (weighted
sum plus bias) followed by the activation function. With the output from the first layer, we
can calculate the output of the second layer, and so on, until we reach the final output.
In this way, information is propagated throughout the network from the inputs to the
outputs. This process is called "forward propagation'. This is the same procedure used to
make a prediction for a new input after the network has been trained.

Backpropagation of the gradient. During training, the output predicted by the
model is compared with the expected output, and the resulting error is calculated using
the loss function. This error is then propagated backward layer-by-layer, and the weights
(corresponding to each graph edge) are updated based on their contributions to the error.
We call this process "backpropagation". The process is repeated for all the examples
(samples) or on a set of examples called batch in the training dataset. One pass through
the entire dataset to train the neural network is referred to as one epoch, the dataset can
be seen several times as the neural network can be trained for tens, hundreds, or even

thousands of epochs to improve the model’s training accuracy sequentially.

46

1.3. Machine learning

In the following, we present some important architectures of deep learning models that

will be useful to understand this document and are better suited for temporal data types
such as program codes.

® ®
. e
1 1 1 1 1

Xt X0 X1 X2 Xt

MO M1

Figure 1.12 — An RNN unfolds through time.

Recurrent Neural Networks (RNN) [127]. RNNs are a specialized type of deep
neural network tailored for sequence-based problems where the context or chronological
order matters. Unlike Multi-Layer Perceptron, which allows data to flow in only one
direction—from the input layer, through the hidden layers, to the output layer—RNNs
facilitate the cyclic flow of information. This means an output from one step can influence
the input of the next, making them capable of tasks where the sequence or context of
input data is critical, as shown in Figure 1.12.

The left illustration of Figure 1.12 represents a basic RNN, while the right one shows
the same RNN unfolded over time. For illustration, consider a basic block in assembly
language comprising a sequence of instructions with inherent interdependencies. For in-
stance, within a BB, we have the following instructions [LOAD R1], [ADD R1, R2|, and
[STORE R2]. At t=0, the "LOAD" instruction is processed as an input, depicted by Xj.
The network processes X to produce two results: hg, the outcome from processing Xy,
and My, indicating the memory or state after this instruction’s processing. Next, at t=1,
the register "R1" (from the LOAD instruction) is recognized as X;. The network processes
X1 and integrates it with M, to generate outputs h; and M;. By t=3, "R1" becomes the
input, which, when combined with the state M,, can help the RNN detect the dependency
on "R1". The procedure follows, with each step’s memory capturing the results of preced-
ing processing stages, efficiently tracing the instruction dependencies within the network.
Each state from a previous timestep, illustrated as M _), is conserved and combined with
the input of the forthcoming timestep, X;. Such RNN configurations can be invaluable

for analyzing and predicting the execution time of basic blocks.

Long Short-Term Memory (LSTM) Networks [82]. LSTM are an enhanced

version of RNNs designed to address the long-term memory limitations of traditional

47

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

/ Cell State \
Memory . - , Memory

Ciq T »| x >+ T > C
I
A A —
-1 - ! Y ,
Input gate I . tanh !
------------- Lo :
1 '
. . ' , ! Output gate O
! SignB o
Forget gate F; 'y 1 . '
1 : :
| :
Concat ! .
Hidden state \ Xtand Hyq: . ’ R .) . Hidden state
Hiq N— | ~----- . A Hy
Input Xt

Figure 1.13 — An LSTM cell, represented by the different gates that compose it: Forget
gate, Input gate, and Output gate.

RNNs (as RNNs tend to forget long-term dependencies due to the vanishing and exploding
gradient problem [82]). An LSTM cell (Figure 1.13) features two types of memory: short-
term memory H,; and long-term memory C;. LSTM are mainly composed of three neural
network blocks, each with a specific role, termed as gate. Each gate is a neural network
that has a specific objective:

1. Forget gate: The first gate which determines which observations should be forgot-
ten or removed from long-term memory;

2. Input gate: Which decides how much new information should be added to the
memory cell C; —also representing the actual output of the model at each step—;

3. Output gate: Which updates the short-term memory H;.

To better understand the LSTM, we give the following analogy about a library. Imagine
an LSTM as a library where books are being processed. C; represents the actual collection,
H,; represents book recommendations, which depend on the demands of library-goers in
the previous days, and X; represents the demands of the library-goers for the actual day.

Each gate will be represented by a librarian as follows:

— Forget gate (Librarian for old books): This librarian manages the collection of old
books (previous information). He decides which books are outdated or no longer
needed and removes them from the shelves, and keeps the books that are still relevant,
using the actual demands information X; and historical demands list during previous
days H;.

— Input gate (Librarian for new arrivals): This librarian is in charge of new book
arrivals (incoming information). He assesses the value of each new book and decides
which ones to add to the collection, depending on their relevance and the existing

collection. Finally, he updates the shelves with new valuable books.

— Output gate (Librarian for lending): Based on the available collection (current state

48

1.3. Machine learning

of memory cell C;) and the demands of the library-goers (new inputs X;), this li-
brarian decides which books to recommend H;. This information is used the next

day by other librarians to make decisions.

Outputs
Probabilities

Linear

Add & Norm <q

Feed Forward

H
H
: N Add & Norm < ' 5
H P Add & Norm v A 1 8
N H g
: HH Multi-Head Nx H g
H Feed Forward H E Attention =
H L A A H
5 e
Nx -
B8 > Add & Norm P Add&Norm <
H
£ A P A__
w Multi-Head [Masked Multi-
1 Attention Head
v Attention
t 0 T -
\ oL H o Lk] v
| J\ $,

A Enconding

I Input Embedding I H IOu(pu! Embeddingl

H '
H '
H '
H '
H l ' 1
! Positional ®_> v H
+ ro + =

1 Enconding [<_® Positional !
H I A :
' [!

'

' *._.._._.I e +._.._._.._._.._.:

Inputs Outputs

Figure 1.14 — The Transformers architecture, as described in the original paper.

Transformers [164]. The Transformers, introduced by Vaswani et al. in 2017, has
marked a significant shift in the paradigm of sequential data treatment, outclassing the
performances of traditional RNNs and LSTMs. One of the defining characteristics of
Transformers is their ability to process the entire input sequence simultaneously. This
global perspective allows Transformers to capture long-range sequences and all data de-
pendencies more effectively. Instead of relying on recurrent connections like their prede-
cessors, Transformers employ an attention mechanism. This mechanism can be visualized
as a spotlight, emphasizing specific portions of the input sequence, enabling the model to
concentrate on the most pertinent information.

Figure 1.14 depicts the Transformers architecture, which is primarily composed of two
components: the encoder and the decoder. While the decoder is responsible for sequence
generation, it falls outside the purview of this document. Our focus will be on the encoder.
To simplify the explanation of how encoders work, we will explain two major components:
positional encoding and self-attention mechanism.

Positional encoding. Unlike traditional sequential models that process inputs step-
by-step, the encoder in the Transformers takes in the entire sequence simultaneously.
However, this poses a challenge: without any inherent notion of sequence order (as there

is no step-by-step processing), how does the model differentiate between the positions of

49

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

elements in the sequence? This is where positional encoding comes in. It provides the
model with a unique signature for each position in the sequence, ensuring that the model
can recognize the order of elements using this signature. For illustration, consider a simple
assembly instruction: MOV R2, R3. Initially, each word is transformed into embeddings,
yielding the following:

MOV: [0.1,0.9,0.3], R2:[0.8,0.4,0.2], R3:[0.7,0.6,0.5]

Subsequently, positional encodings—vectors formulated to be combined with word
embeddings—are appended to these initial embeddings. For the sake of simplicity, we can

consider the positional encodings as follows:
Position 1: [0.01,0.01,0.01], Position 2: [0.02,0.02,0.02], Position 3: [0.03,0.03,0.03]
After addition, the modified embeddings are:
MOV: [0.11,0.91,0.31], R2:[0.82,0.42,0.22], R3:[0.73,0.63,0.53]

These refined embeddings are then fed into the model, allowing it to discern that
"MOV R2 R3" and "MOV R3 R2" are distinct instructions due to the differing register
orderings (which is important for handling register dependencies problems), despite the

identical word set.

Attention mechanism. The encoder contains multiple self-attention layers, as in-
dicated by "N" in Figure 1.14. These layers allow the model to weigh the significance
of distinct parts of the sequence differently, enabling it to focus on the most relevant
parts at any given time. Consequently, as we move through the layers of the encoder,
each one captures a progressively more abstract representation of the input, resulting in

a comprehensive and multi-faceted understanding of the entire sequence.

Context fragmentation problem. Transformers have a shortcoming when it comes
to handling exceptionally long sequences. Due to memory limitations, a Transformers
model is constrained by a fixed maximum input length. Sequences exceeding this limit
must be divided into smaller fragments that conform to the model’s input size constraints.

This fragmentation disrupts the model’s understanding of the sequential context.

Transformers XL [43]. Transformers XL, as illustrated in Figure 1.15, marks a
significant advancement in Transformers architectures by addressing the challenge of con-
text fragmentation. One of its standout features is its capacity to 'recall" or remember
previously treated fragments of data. Instead of processing each fragment in isolation,

Transformer XL integrates information from previous fragments, using this accumulated

50

1.3. Machine learning

Outputs
Probabilities

Linear

Add & Norm

Feed Forward

Add & Norm
A

Nx

Relative Multi-
Head Attention

Ql K! I
— +
Old Memory S New Memory
+

\
N
t (—@ Positional

Input Embedding

Inputs

Enconding

Figure 1.15 — The Transformers XL architecture.

knowledge as a foundation when interpreting new data. This continuity is facilitated by a
technique known as the "recurrence mechanism", which is somewhat akin to the workings
of RNNs or LSTMs. In Figure 1.15, the "Old Memory" represents retained information,
while the "New Memory" captures the latest processed data. As data flows through Trans-
formers XL, these two components interact, ensuring a holistic understanding of sequences

and interconnecting even distant pieces of information.

Training effectively a Transformers. Training a Transformers efficiently usually

involves two phases: pretraining and finetuning.

1. Pretraining [62]: The pretraining phase is a critical step in training Transformers
models, especially in the context of language modeling. During this stage, the model
is trained on a voluminous corpus of text data in a self-supervised way, enabling it
to grasp the linguistic structure, semantics, and more intricate language patterns.
One prevalent approach to pretraining is Masked Language Modeling (MLM) [57].
In this method, a specific proportion of the input tokens are randomly masked, and
the model is trained to predict these masked tokens based on their surrounding
context. For instance, Figure 1.16 illustrates this concept with the sentence "MOV
~ Constant, Adress," where the model aims to predict the masked words
"Register" and "Branch" based on the adjacent tokens?®. This practice enables the

model to develop robust language representations in the hidden layer of the neural

3. In Natural Language Processing, a "token" refers to an individual piece of text such as a word, a
number, or punctuation.

51

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

network.

2. Finetuning: After the pretraining phase, the Transformers model acquires a foun-
dational understanding of the domain-specific language and structure. However, to
tailor the model for specialized tasks—such as execution time estimation—a finetun-
ing phase is necessary. This process entails additional training on a smaller labeled
dataset that is pertinent to the specific targeted task. During this finetuning phase,
the model refines its generalized domain knowledge to suit the nuances and require-

ments of the targeted application.

Prediction Register Branch

Figure 1.16 — Masked language modeling on a simple example.

1.3.3 Inputs used for ML-based timing models

The categorization of machine learning techniques usable for timing estimation can be
based on the representation of the code to analyze (extracted static attributes, dynamic
attributes, or embedding representations of code). In the following sections, we delve into

each level and category.

Extracted static features a.k.a. "handcrafted features"

Some machine learning methodologies focus on feature extraction from code or system
attributes believed to have an impact on execution time [138]. These extracted features
can encompass architectural variables (e.g., cache size, memory bandwidth) or instruction-
level specifics (e.g., number of arithmetic operations, memory access operations, or branch-
ing operations). Traditional methods of feature engineering * can be applied to select these
attributes. Table 1.3 provides an illustrative example of static features that might be har-
vested from a given program. For instance, the occurrence frequency of each instruction

within the code can serve as a distinguishing characteristic of the program.

4. Feature engineering is the process of selecting, transforming, or creating relevant input variables
(features) to enhance the performance of machine learning models.

52

1.3. Machine learning

Feature

Value

ft1
ft2
ft3
ft4
ft5
ft6
ft7
ft8
ft9
ft10

Number of instructions
Number of add instructions
Number of sub instructions
Number of mult instructions
Number of div instructions
Number of load instructions
Number of store instructions

Number of comparisons

Number of conditional branches
Number of unconditional branches

Table 1.3 — Representing a code snippet with static features [138].

Extracted dynamic features

Performance counter-based techniques leverage hardware performance counters to col-

lect fine grained information about the system’s behavior during program execution [138].

These techniques capture events such as cache hits, branch mispredictions, or memory ac-

cesses. By incorporating performance counter data as input, machine learning models

can learn from the underlying hardware behavior and improve estimation accuracy in

some cases. Table 1.4 presents an example of the performance counters that PAPI [135]

provides.

Counter

Description

PAPI_TOT_CYC
PAPI_TOT __INS
PAPI_BRI_TKN
PAPI_BRI NTK
PAPI_BR_MSP

PAPI_LD_INS
PAPI_SR_INS
PAPI_L1_DCM
PAPI_L1_ICM
PAPI_FP_INS
PAPI_VEC_INS
PAPI_RES_STL
PAPI_LD_INS
PAPI_SR_INS
PAPI_TLB_DM
PAPI_TLB_IM
PAPI_TOT_CACHES
PAPI_TOT_INS_ I

Total cycles
Total instructions
Branch instructions taken
Branch instructions not taken
Branch mispredictions
Load instructions executed
Store instructions executed
Level 1 data cache misses
Level 1 instruction cache misses
Floating-point instructions executed
Vector/SIMD instructions executed
Cycles stalled on resource contention
Load instructions executed
Store instructions executed
Data Translation Lookaside Buffer (TLB) misses
Instruction TLB misses
Total cache accesses
Total instructions completed

Table 1.4 — List of some PAPI performance counters [135].

23

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

Embedding representations of code

An alternative strategy in machine learning focuses on directly learning code represen-
tations. Instead of manually extracting features, which can be tedious and error-prone,
this method allows the machine learning model to automatically capture the essential
features and characteristics of the code. Techniques like Word2Vec [133] or Bidirectional
Encoder Representations from Transformers (BERT) [54] are employed to transform code
snippets or entire program structures into continuous vector representations, often re-
ferred to as embeddings. These embeddings, once generated, serve as input for machine
learning algorithms. They offer a comprehensive view of the code, capturing both its local
nuances and broader structures. This holistic understanding allows the model to recognize
intricate relationships and dependencies within the programming constructs, leading to
more accurate and insightful predictions.

In the literature, we can find different techniques to embed codes:

One-hot encoding. One-hot encoding is a foundational method for converting cat-
egorical variables into binary vectors. In this approach, each distinct category within a
variable is represented as an individual binary feature. Specifically, each category is con-
verted into a binary vector whose length matches the total number of categories. In this
vector, all elements are set to "0", except for a single "1" that marks the presence of the
category in question. For instance, as illustrated in Figure 1.17, a vocabulary table is uti-
lized to construct a lookup table, where each row represents an ARM assembly instruction

as a binary vector.

id Instruction id Add | Sub | Mul | Div | Mov ... |Store
1 Add 1 1 0 0 0 0 |0.0| O
2 Sub 2 0 1 0 0 0 [0.0| O
3 Mul 3 0 0 1 0 0 (0.0 O
4 Div 4 0 0 0 1 0 (0.0 O
5 Mov 5 0 0 0 0 1 0.0 O
0 0 0 0 0 |0..1 0
N Store N 0 0 0 0 0 |0.0]| 1
N = Vocabulary size One hot encoding

Figure 1.17 — Basic block representation using one-hot-encoding example.

Word2Vec [133]. Developed by Google, Word2Vec is a method that transforms
words into numerical vectors, essentially giving each word a unique numerical fingerprint
based on its context and meaning. It utilizes neural networks and is grounded in the idea
that words appearing frequently together in texts are likely to have related meanings.

Two primary strategies are employed in Word2Vec: Continuous Bag of Words (CBOW)
and Skip-Gram. Both are visualized in Figure 1.18. To understand them better, consider

the following sentence in natural language, "The cat sat on the mat".

o4

1.3. Machine learning

CBOW. CBOW predicts the embedding of a target word based on the surrounding
words. For instance, given the surrounding words "The", "cat", "on", "the", it tries to predict
the embedding of the word "sat". This method, depicted on the left side of Figure 1.18, is
particularly effective for capturing the general context around a word.

Skip- Gram. Skip-Gram operates in the opposite manner to CBOW. Given the tar-
get word, it predicts the embeddings of the surrounding words. For example, starting
with the word "sat", Skip-Gram would predict the embeddings of surrounding words like
"The", "cat", "on", "the". This method, shown on the right side of Figure 1.18, is adept at

understanding the specific contexts in which a word can appear.

In short, while CBOW uses context to predict a word’s embedding, Skip-Gram uses
a word to predict the context embeddings. In this document, the focus will be on the
usage of CBOW. The rationale for this choice, especially when dealing with assembly
code, is that CBOW tends to be more efficient with larger datasets. Assembly code, being

low-level and verbose, often results in extensive datasets.

W2 W1 Wt Wieq We2
The cat sat on the mat.

Input \—'—‘ Output

Window Projectio
skip-gra

Wt-2
Projection

CBOW
W1 Output Input

O~ O

W1

Wi Wi+

Wis2 Wis2

68 oo

CBOW Skip-gram

Figure 1.18 — Word2vec architecture (CBOW and Skip-gram).

Transformers. BERT [57] is a specific model based on the Transformers architecture.
One of its standout features is its ability to capture the context and relationships between
different parts of a sequence. This ability is especially valuable for generating good embed-
dings using attention mechanisms. Building on the capabilities of BERT, techniques like
CodeBert [65] and PalmTree [115] have been successfully developed to create embeddings
specifically for code. Figure 1.19 provides a visual representation of this attention mecha-
nism in action for the input "MOV R2, #1, BR 0xF124". The resulting attention matrix
showcases how different parts of the code influence each other, preserving the relational
information between instructions. Such embeddings, rich in contextual information, prove
invaluable for various tasks related to code, including generating new code, annotating
existing code, or even correcting errors. In our case, we will use it to represent the basic

blocks and estimate their execution time.

95

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

| mov R2 # BR | OxF124

MoV 02 0.1 04 0.2 0.1

R2 0.1 02 03 06 0.1

03 0.1 05 0.1 02

Attention Matrix

BR 0.1 0.1 03 02 03

OxF124 | 0.1 0.1 0.1 0.2 03

i

Transformer Encoder

to ottt

Input [CLs] MoV R2 0xF124

Figure 1.19 — Assembly code embedding using Transformers’s attention matrix.

1.4 Machine learning for execution time estimation

Table 1.5 provides a summary of the works conducted for estimating execution time
based on different scenarios: average, best, and worst cases. It includes information about
the code level abstraction (source, intermediate, or binary), measurement tools used to
capture the execution time, machine learning methods employed, types of inputs utilized,

and dataset sizes. In general, we can make the following observations:

— Most studies depicted in the table concentrate on source code for analysis without
any consideration of compiler effect. Linear regression (LR) and neural networks
(NN) emerge as commonly employed ML algorithms and more sophisticated ones
like LSTM and Transformers are rarely used.

— Reviewing the execution time measurement tools reveals a noteworthy inclination

towards software (SW) measures, which is problematic due to the probe effect®.

However, some studies incorporate hardware (HW) measures or simulations.

— The variation in dataset sizes is also important, with "small" dataset sizes being

predominant, reflecting possible limitations in data acquisition in this field.

5. Probe effect refers to the phenomenon where the act of observing or measuring a system alters the
behavior of that system.

o6

LG

Case Code level ab- | Measurement tool ML algorithm Inputs Dataset size
straction

Average | Source code SW measures LR, NN Performance counters | Small
and compiler settings

Average | intermediate rep- | SW measures LSTM MLIR instruction and | Huge

resentation auxiliary HW input

Average | None SW measures LR, SVR, KNN Input data features and | Small
performance counters

Average | Source code SW measures LR, SVR, RF Extracted features and | Small
performance counters

Average | Source code SW measures LR, SVR, RF Performance counters Small

Average | Binary HW measures LR, RF, XGBoost, NN Performance counters | Huge
and static features from
LLVM-MCA

Average | Source code SW measures LR, NN Performance counters Small

Average | Source code SW measures LR, SVM, NN Instructions Small

Average | Source code SW measures SVM, NN Static features of CNNs | Medium

Average | Source code SW measures LR, NN, SVM, RF, XGBoost | Static features of CNNs | Medium

Best Binary SW measures GNN Instructions Huge

Best Binary SW measures LSTM Instructions Huge

Best Binary SW measures Transformers Instructions Huge

Worst Source SW measures LR, SVR, RF Type of instructions Small

Worst Source GEMS5 simulator LR, SVR, RF Type of instructions Medium

Worst Source HW/SW measures LR, RF, SVR, KNN Type of instructions Small

Worst Source HW/SW measures NN Type of instructions Small

Worst Source Static analysis WEKA: LR, SVR, RF, NN Type of instructions Small

UOWDULISD IWY UOUNIITI 4O BUIULDI) dUIYIDIT ¥

8¢

Paper | Case Code level ab- | Measurement tool ML algorithm Inputs Dataset size
straction

[73] Worst | IR SW measures and | LR Type of instructions Small
GEMS5 simulator

[131] | Worst Source SimpleScalar simulation | SVR Type of instructions Small

[132] | Worst Source Chronos and Sim- | SVR, NN Type of instructions Small
pleScalar simulation

[154] | Worst | Source GEMS5 Simulation LR, NN, SVR ? Medium

[11] Worst Source SW measures NN Function parameters Large

Table 1.5 — Summary of works conducted for estimating the execution time.

buruavary auryonpy burs)) uouvwigsy bunul] uo punosbyong — 1 1eydey) ¢ rred

1.4. Machine learning for execution time estimation

In the following, we will discuss the most relevant works, categorizing them according
to the execution time scenario they address (ACET, BCET, and WCET).

1.4.1 ACET estimation using ML

Most of the research on average-case scenarios focuses on improving compilation per-
formance and uses basic machine learning techniques such as linear regression, support
vector machine regressors, and /or random forest regressors. One notable work in this area
is presented by Huang et al. [85]. They employ polynomial regression to predict program
execution time based on static features such as loop counts, branch counts, and variable
values. In addition to considering static features, some researchers have focused solely
on using performance counters for execution time estimation. The work [10] proposes a
methodology that solely relies on performance counters. By analyzing them, the authors
aim to predict the execution time and evaluate the effectiveness of compiler optimizations.
Another relevant study by Marcos Amaris et al. [9] explores the use of machine learning
techniques for execution time prediction on GPUs. They utilize a combination of perfor-
mance counters, such as the number of cache accesses and main memory accesses, along
with static features of the application, including the number of basic blocks and threads.

The authors employ LR, SVR, and RF algorithms to accurately predict execution time.

1.4.2 BCET estimation using ML

In the field of best-case execution time, research is primarily focused on estimating
the execution throughput of x86 architectures. ITHEMAL [129] is one of the pioneering
works that introduced RNN models for time estimation. ITHEMAL utilizes a hierarchical
multiscale LSTM layer to accurately forecast the throughput of basic blocks. The RNN
LSTM-based module of ITHEMAL captures intricate relationships among instructions
within the same basic block. Figure 1.20 illustrates the architecture of the LSTM models
used in ITHEMAL. Initially, the basic block is divided into instructions, and each instruc-
tion is further separated into operations or operands. These components are assigned a
fixed number (a predefined token from a dictionary). This simplifies the process of em-
bedding using word2vec [133]. The embedding of each instruction component is handled
by the first LSTM layer. The second layer, on the other hand, focuses solely on the final
representation of the entire instruction to create a representation of a basic block. The
basic block representation is then passed to a feedforward layer to predict the throughput.
BHive [37] is the dataset used to train ITHEMAL. This dataset consists of isolated basic
blocks that are prepared under optimal conditions to measure processor performance (re-

moving branching, ensuring that memory accesses are handled at the first level of cache,

29

Part , Chapter 1 — Background on Timing Estimation Using Machine Learning

etc.). The isolated basic block is then executed repeatedly until it reaches steady-state
behavior. DeepPM [156], in the same fashion as ITHEMAL, predicts the execution time
of a basic block in isolation using a simplified Transformers architecture. The lack of de-
tails on the paper and the unavailability of the code made the description of this work

infeasible.

Execution
time

Feed
forward

hB
ho LSTM LSTM LSTM

hi1 hi2 hi3

ho LST™M LSTM LSTM ho LST™M LSTM LSTM ho LSTM LSTM LSTM
D

J

J

Op S D Op S D Op S

L J L J L

~ ~ ~

Instruction 1 Instruction 2 Instruction 3

L

~

Basic block

Figure 1.20 — ITHEMAL architecture.

1.4.3 WCET estimation using ML

In the worst-case scenario, two types of approaches can be distinguished. The first
employs machine learning for end-to-end program measurement. Notable works in this
category, such as those by Gustafsson et al. [73] and Bonenfant et al. [21], rely on an
intermediate code representation to extract program attributes. These attributes are then
employed in trained machine learning models to estimate the WCET. The second ap-
proach is presented by the work of Thomas Huybrechts [87, 90]. Huybrechts introduced a
hybrid methodology. This strategy uses both static and machine learning-based methods,
aiming for a reasonable blend of computational efficiency and predictive accuracy. In this
framework, the source code is partitioned into segments called "hybrid blocks", character-
ized by single entry and exit points® and ranging from individual instructions to entire
functions. Machine learning-based estimations are conducted for each of these blocks, and
the outcomes are integrated statically to form a composite WCET estimate. This hybrid
approach is incorporated into the Code Behavior fRAmework (COBRA) tool [89], an
open-source platform designed for various resource optimization tasks, including WCET

analysis, scheduler tuning, and multicores performance enhancement. Preliminary results

6. Unlike the definition of a basic block, which is a sequence of instructions without any branching in
the middle, hyper blocks can have these branches within them. Thus, a hyperblock is a subgraph of basic
blocks where one can enter from a single point and exit from a single point.

60

1.5. Conclusion

indicate that this hybrid methodology substantially mitigates the analytical overhead as-
sociated with static and measurement-based techniques while maintaining WCET predic-
tions that closely approximate actual values. It is worth noting, however, that this method
does not account for compiler effects, as it operates directly on source code features for
basic block WCET prediction.

1.5 Conclusion

The background provided delved into different execution time estimation methods,
with machine learning being a prevalent tool across average-case, best-case, and worst-
case scenarios. Various algorithms, ranging from linear regression to advanced ones like
LSTM, highlight the progressive nature of "machine learning for timing estimation".

WCET estimation stands out due to its critical role in real-time systems. Huybrechts’
hybrid approach [88, 91, 87], which merges static analysis and machine learning, is note-
worthy. While it seeks a balance between computational efficiency and prediction accuracy,
its focus on source code features over compiler effects could be a drawback.

The summary of related studies in Table 1.5 showed that many works overlook hard-
ware complexity and the interplay between instruction sequences and hardware (pipeline
and cache effects). This oversight can introduce bias and inaccuracies when training ma-
chine learning models, especially when it is applied at the source or intermediate code
stages (therefore ignoring the compiler optimization effects). Moreover, the precision of
machine learning predictions can be compromised by the often limited size of training
datasets. These observations prompt two unresolved questions: Can machine learning
methods be tailored to work efficiently with modern processors, especially given the in-
creasing prevalence of these processors? And how can machine learning models be trained
to account for instruction dependencies to yield more accurate timing estimates?

In conclusion, leveraging machine learning for execution time estimation is a promising
approach. However, careful consideration of the challenges, including hardware complexity,
limited training data, and the need for precise modeling of interactions between instruction
sets and hardware, is crucial for the successful application of machine learning in this
domain. This document will therefore focus on addressing these challenges and exploring
new solutions to enhance the accuracy of machine learning-based execution time code

estimation.

61

CHAPTER 2

WCET ESTIMATION USING CLASSICAL
MACHINE LEARNING TECHNIQUES

In this chapter, we introduce WE-HML, a novel hybrid approach for Worst-Case Ex-
ecution Time (WCET) estimation. WE-HML stands for Worst-Case Execution Time
Estimation using a Hybrid Machine Learning-based technique). This marks the first at-
tempt in this thesis to combine machine learning with WCET estimation, specifically
through the use of traditional machine learning methods such as linear regression, ran-
dom forest, or neural networks. It serves as a foundational work, laying the foundations

for the subsequent research in this document.

The WE-HML method uses machine learning in its two main phases: learning and
WCET estimation. In the learning phase, machine learning models are trained using
timing data from different basic blocks to predict WCET. These predictions account
for varying execution contexts. During the WCET estimation phase, the trained models
calculate the WCET for each basic block of a program, considering cache effects. The
program’s overall WCET is then determined using an adapted IPET approach.

The main contribution of this research is the development of a novel hybrid WCET
estimation technique tailored for single-core processors. This technique relies on a machine
learning-derived timing model for the processor’s core and accounts for processor cache
behavior, requiring minimal information about the processor’s memory hierarchy. This
work was accepted and published at RTCSA 2021:

"Abderaouf N., AMALOU, Isabelle Puaut, and Gilles Muller. "WE-HML: Hybrid
WCET Estimation Using Machine Learning for Architectures with Caches." The 27th

International Conference on Embedded and Real-Time Com