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RÉSUMÉ

Les systèmes embarqués sont des dispositifs électroniques contrôlés par un logiciel
pour effectuer des tâches spécifiques. Ces tâches vont de l’exploitation d’appareils pro-
grammables à la maison à la gestion des systèmes dans les voitures et les avions. L’utilisation
de ces systèmes a considérablement augmenté, comme en témoignent les projections sug-
gérant que le nombre de dispositifs Internet des objets (IoT) atteindra 50 milliards d’ici
2030 [4]. Au fur et à mesure que les nouvelles technologies évoluent, elles présenteront in-
évitablement de nouveaux défis liés à la taille, au coût et aux performances de ces systèmes
embarqués. Par conséquent, les concepteurs de systèmes doivent comprendre le comporte-
ment du logiciel embarqué en ce qui concerne ces contraintes. Cependant, la complexité
croissante des architectures matérielles, associée à une documentation insuffisante, com-
plique la tâche d’estimer les performances des logiciels. Les performances peuvent être
des performances de pire case du temps d’exécution (WCETs) dans les systèmes en temps
réel ou les performances moyennes dans ceux à usage général.

Dans les systèmes à usage général, l’utilisation efficace des ressources est essentielle.
L’une des façons d’améliorer les performances, comme le temps d’exécution moyen, est par
le biais de transformations ou d’optimisations au niveau du code. Toutefois, l’évaluation
précise de ces optimisations nécessite la compréhension de divers facteurs, y compris
l’interaction entre les instructions du programme. Pour faciliter ce processus d’évaluation
complexe, des outils spécialisés ont été conçus pour quantifier le temps d’exécution,
en se concentrant spécifiquement sur l’impact des optimisations. Selon les ressources
disponibles, ces outils utilisent généralement soit des techniques de profilage [134, 49]
lorsque le matériel cible est accessible, soit des simulateurs de processeurs [19, 13, 3,
120], qui sont des outils logiciels qui émitent le comportement d’un processeur, permet-
tant ainsi l’analyse des performances et les tests de logiciel sans avoir besoin du matériel
réel.

Dans les systèmes en temps réel, les tâches à executer viennent avec des délais spé-
cifiques qui doivent être respectés pour considérer le système comme fonctionnant cor-
rectement. S’assurer que les tâches sont terminées à temps nécessite l’évaluation du
WCET pour chaque tâche. Cette évaluation aide l’algorithme de planification à allouer
les ressources nécessaires afin que chaque tâche atteigne sa date limite, même dans les
scénarios les plus défavorable. Pour une estimation précise de WCET, différentes méth-
odes peuvent être employées, qui impliquent généralement une considération simultanée
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Résumé

du code de la tâche et de l’architecture du processeur qui l’exécute.

Les méthodes d’estimation WCET sont divisées en méthodes statiques, méthodes
basées sur la mesure et méthodes hybrides hybrid [169]. Les méthodes statiques éval-
uent le WCET sans exécuter le programme et ceci en deux phases. Dans la première
phase, le programme est divisé en blocs de base. Un bloc de base (BB) est une séquence
d’instructions avec un point d’entrée unique et un point de sortie unique. Le WCET de
chaque BB est estimé grâce à la connaissance de l’architecture du processeur. Dans la
deuxième phase, les techniques statiques calculent l’estimation WCET pour l’ensemble
du programme en fonction de la WCET de chaque BB dans le code. Pour cette deuxième
phase, Implicit Path Enumeration Technique (IPET) [169, 117] est la classe de techniques
la plus couramment utilisée. IPET s’appuie sur la résolution d’un problème d’optimisation
linéaire généré à partir du graphique de flux de contrôle du programme (CFG). Les méth-
odes statiques fournissent une estimation sûre de WCET, qui est une limite supérieure de
tout temps d’exécution possible, à condition que l’estimation WCET de chaque bloc de
base soit elle-même sûre.

Méthodes à base de mesures, ces méthodes sont des techniques empiriques qui ne
nécessitent pas de connaissances détaillées du matériel. Ils lancent le programme sur une
série d’entrées, et les temps d’exécution résultants sont mesurés et recueillis. Le WCET
est ensuite estimé, soit en considérant le WCET comme la mesure la plus élevée (la valeur
maximal observée), soit par extrapolation en utilisant des techniques statistiques [30]. Par
construction, lorsque l’on utilise la mesure la plus élevée comme estimation WCET, ces
techniques ne peuvent que sous-estimer la WCET à moins que l’entrée et l’état matériel
résultant du chemin d’exécution le plus long ne soient utilisés lors des tests [51]. Par
conséquent, une marge de sécurité est souvent ajoutée à l’estimation WCET pour atténuer
le manque de confiance dans les mesures.

Les méthodes Hybrid mélangent des approches statiques et basées sur la mesure. Dans
une grande majorité de ces techniques (par exemple, [30, 156, 59]), des mesures sont
utilisées pour estimer le WCET des blocs de base. Le WCET de l’ensemble du programme
est ensuite estimé en utilisant des méthodes de calcul telles que l’IPET. L’avantage des
techniques hybrides est qu’elles ne nécessitent pas de connaissance de l’architecture tout
en étant en mesure de trouver le chemin le plus long.

Néanmoins, les outils actuels pour l’estimation WCET, qu’ils soient statiques, à base de
mesures ou hybrides, présentent chacun leur propre ensemble de défis. Les outils d’analyse
statique nécessitent une compréhension approfondie de la microarchitecture du processeur,
y compris des aspects tels que les caches [67], les pipelines [113] et les prédicteurs
de branches [40]. L’acquisition d’une telle connaissance détaillée des microarchitectures
devient de plus en plus difficile, soit en raison de restrictions de propriété intellectuelle, soit
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parce que la complexité des architectures modernes complique l’élaboration de modèles de
timing fiables et sûrs. Les méthodes de bout en bout utilisent soit des outils de profilage,
soit des simulateurs de cycle précis. Alors que les outils de profilage peuvent perturber la
mesure des performances pendant leur fonctionnement, les simulateurs à cycle, bien que
précis, sont intrinsèquement riches en ressources et peuvent être lents. Les deux approches
dans le cadre des méthodes end-to-end peuvent également manquer de caractéristiques
de sécurité cruciales. Pendant ce temps, les techniques hybrides souffrent de problèmes
tels que la couverture complète du code 1 [111]. Compte tenu de ces défis, il y a un besoin
urgent de méthodes plus simples et plus efficaces pour la modélisation du temps complexe
des processeurs.

Au cours de la dernière décennie, l’apprentissage automatique ou le Machine Learning
(ML) est rapidement devenu un outil révolutionnaire dans de nombreux domaines, du
secteur des véhicules autonomes aux diagnostics dans les soins de santé. De même, le rôle
de ML dans l’architecture informatique a évolué d’un concept théorique à une technologie
fondamentale, influençant la conception, le contrôle et la simulation de divers composants
du système. Historiquement, l’interaction entre ML et l’architecture informatique s’est
largement concentrée sur l’adaptation d’éléments architecturaux pour mieux servir les al-
gorithmes ML tels que les accélérateurs de réseaux neuronaux [36]. Cependant, la dernière
décennie a marqué un changement significatif vers une relation plus réciproque, car de
plus en plus de travaux appliquent avec succès ML à l’architecture de processeur [32].

Compte tenu des défis croissants associés à la complexité du matériel et à la docu-
mentation limitée, cette thèse vise à automatiser la création de modèles de timing
matériel. En tirant parti des techniques d’apprentissage automatique, l’objectif est de
prédire les performances dans le cas moyen et dans le pire cas (WCET) sans nécessiter
une documentation approfondie du processeur ciblé. Les solutions proposées fonctionnent
toutes en deux phases distinctes. Au cours de la phase d’apprentissage learning phase, le
timing des fragments de code est établi sur la base des mesures dans leurs divers "contexts
d’exécution", y compris les boucles et les dépendances entre les instructions. Dans la phase
d’inférence inferring, le modèle de timing développé est appliqué pour calculer le temps
d’exécution de nouveaux fragments de code. Ces calculs sont censés être informés par le
contexte d’exécution de chaque fragment de code, déterminé par exemple par une analyse
statique. Cette méthodologie offre trois avantages clés :

— elle fournit des estimations de temps raisonnablement précises et rapides.

— elle élimine la nécessité d’analyses statiques coûteuses ou de simulations cycle-
exactes.

1. Assurer une couverture complète du code signifie vérifier que chaque partie du code du logiciel a
été exécutée et analysée, ne laissant aucune section non testée ou non vérifiée.
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— elle ne nécessite aucune connaissance détaillée de la microarchitecture du processeur.

Bien que l’information de timing obtenue ne soit pas sûre, elle a une valeur significative
pour l’estimation du timing dans les premiers stades du développement du système, des
systèmes en temps réel à faibles niveaux de criticité, des logiciels à usage général, ou pour
le guidage des optimisations de compilateur.

Alors que des recherches antérieures ont été menées sur la dérivation automatique
de modèles de timing en utilisant l’apprentissage automatique [21, 87], ces recherches
se sont concentrées principalement sur des processeurs matériels simples avec un tim-
ing d’instruction constant et indépendant du contexte. Cette thèse vise à ouvrir un
nouveau terrain en introduisant la prise de conscience du contexte dans ces techniques
d’apprentissage automatique, étendant ainsi leur applicabilité à des processeurs plus com-
plexes. Spécifiquement, les traces d’exécution d’un programme serviront de représenta-
tions contextuelles pour les séquences d’instructions pour lesquelles il faudra estimer les
temps de l’execution. En tirant une analogie du domaine du traitement automatique du
langage (TAL), ces traces d’exécution peuvent être considérées comme des textes dans
lesquels des instructions individuelles peuvent être vues comme des mots. En traitant ces
traces, nous pouvons acquérir des connaissances précieuses sur les facteurs contextuels
qui influent sur le temps d’exécution des instructions (effets de pipeline, effets de cache
et effets prédicteurs de branches), en tirant parti des progrès en TAL pour guider nos
modèles. Cette nouvelle approche promet d’améliorer l’exactitude des estimations des
délais d’exécution des programmes, ce qui peut à son tour conduire au développement de
systèmes intégrés plus efficaces et fiables.

Contribution

Cette thèse introduit de nouvelles méthodologies à l’intersection entre l’apprentissage
automatique et l’estimation du temps d’exécution. Les trois contributions de cette thèse
sont les suivantes :

estimation WCET hybride à l’aide de l’apprentissage automatique pour les
architectures avec caches [7]. Notre proposition initiale est une nouvelle approche
hybride, WE-HML [7], conçue pour améliorer l’estimation WCET. Cette méthode intègre
de manière distincte les considérations de la mémoire cache de données lors de la formation
d’une gamme de modèles d’apprentissage automatique fondamentaux. La formation utilise
des ensembles de données synthétiquement générés et est complétée par une technique
statique pour estimer le WCET global d’un programme.

Utilisation de la TAL dans l’estimation du temps d’exécution moyen. En
nous tournant vers temps d’exécution moyen, nous explorons l’intégration des techniques
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de TAL pour capturer les dépendances entre les séquences d’instruction. Nous enquêtons
sur diverses architectures d’apprentissage profond, y compris la mémoire à court terme
[82] (comme publié dans le journal [8]) et Transformers [56, 43]. Nous avons constaté que
Transformers XL [43] était le mieux adapté pour contextualiser et estimer avec précision
les temps d’exécution de blocs de base.

Évaluation WCET en connaissance de contexte à l’aide de Transform-
ers [6]. Sur la base du succès de l’application TAL dans l’estimation temps d’exécution
moyen, nous prenons le défi d’identifier le contexte du pire des cas pour les blocs de
base, conduisant à la conception de CAWET [6]. Cette nouvelle solution identifie non
seulement chaque contexte d’exécution court pour un bloc de base donné, mais elle ex-
ploite également Transformers XL [43] pour améliorer la précision de l’estimation WCET.
En outre, nous avons intégré ces améliorations dans un outil d’analyse statique, créant
une méthodologie hybride qui atténue considérablement les surestimations observées dans
notre modèle initial WE-HML.
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INTRODUCTION

Embedded systems are electronic devices controlled by software to perform specific
tasks. These tasks range from operating programmable appliances at home to managing
systems in cars and airplanes. The prevalence of these systems has increased significantly,
as evidenced by projections suggesting that the number of Internet of Things (IoT) devices
will reach 50 billion by 2030 [4]. As new technologies evolve, they will inevitably introduce
further challenges related to the size, cost, and performance of these embedded systems.
Therefore, system designers need to understand the embedded software’s behavior with
respect to these constraints. However, the increasing complexity of hardware architectures,
coupled with insufficient documentation, complicates the task of estimating software per-
formance. Performance may be a worst-case performance (Worst-Case Execution Times
- WCETs) in real-time systems or average-case performance in general-purpose ones.

In general-purpose systems, efficient utilization of resources is crucial. One way to
enhance performance metrics, like average execution time, is through code-level trans-
formations or optimizations. However, accurately evaluating these optimizations requires
understanding various factors, including the interplay among program instructions. To
facilitate this complex evaluation process, specialized tools have been designed to quan-
tify execution time, specifically focusing on the impact of optimizations. Depending on
the available resources, these tools typically employ either profiling techniques [134, 49]
when the target hardware is accessible, or processor simulators [19, 13, 3, 120], which are
software tools that emulate the behavior of a processor, thereby enabling performance
analysis and software testing without the need for the actual hardware.

In real-time systems, tasks come with specific deadlines that need to be met to consider
the system as functioning correctly. Ensuring tasks are completed on time requires eval-
uating the WCET for each task. This evaluation helps the scheduling algorithm allocate
resources so that every task meets its deadline, even in the most demanding scenarios. For
accurate WCET estimation, various methods can be employed, which typically involve a
simultaneous consideration of both the task’s code and the architecture of the processor
executing it.

WCET estimation methods are divided into static methods, end-to-end measurement-
based methods, and hybrid methods [169]. Static methods estimate the WCET without
executing the program. In the first phase, the program is divided into basic blocks. A
Basic Block (BB) is a sequence of instructions with a single entry point and a single exit
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point. The WCET of each BB is estimated thanks to the knowledge of the processor
architecture. In the second phase, static techniques calculate the WCET estimate for the
whole program based on the WCET of each BB within the code. For this second phase,
Implicit Path Enumeration Technique (IPET) [169, 117] is the most commonly used class
of techniques. IPET relies on solving a linear optimization problem generated from the
program’s Control Flow Graph (CFG). Static methods provide a safe WCET estimate,
which is an upper bound of any possible execution time, provided that the WCET estimate
of each basic block is itself safe.

End-to-end measurement-based methods are empirical techniques that do not require
detailed knowledge of the hardware. They launch the program on a series of inputs, and the
resulting execution times are measured and gathered. The WCET is then estimated, either
by considering the WCET as the highest measurement or by extrapolating using statistical
techniques [30]. By construction, when using the highest measurement as WCET estimate,
these techniques can only underestimate the WCET, unless the input and the hardware
state resulting in the longest execution path are used during the tests [51]. Therefore, a
safety margin is often added to the WCET estimate to mitigate the lack of confidence in
the measurements.

Hybrid methods mix static and measurement-based approaches. In a vast majority
of these techniques (e.g., [100, 30, 17, 156, 59]), measurements are used to estimate the
WCET of basic blocks. The WCET of the whole program is then estimated using calcu-
lation methods such as IPET. The advantage of hybrid techniques is that they do not
require knowledge of the architecture while being able to find the longest path.

Nevertheless, current tools for WCET estimation, whether they are static, end-to-
end, or hybrid, each come with their own set of challenges. Static analysis tools demand
an in-depth understanding of the processor’s microarchitecture, including aspects like
caches [67], pipelines [113], and branch predictors [40]. Acquiring such detailed knowl-
edge of microarchitectures is becoming more difficult, either due to intellectual property
restrictions or because the complexity of modern architectures complicates the devel-
opment of reliable and safe timing models. End-to-end methods utilize either profiling
tools or cycle-accurate simulators. While profiling tools can disrupt performance mea-
surement during their operation, cycle-accurate simulators, though precise, are inherently
resource-intensive and can be slow. Both approaches within end-to-end methods may also
lack crucial safety features. Meanwhile, hybrid techniques suffer from issues like ensuring
complete code coverage 2 [111]. Given these challenges, there is a pressing need for more
straightforward and efficient methods for complex processor timing modeling.

2. Ensuring complete code coverage means verifying that every part of the software code has been
executed and analyzed, leaving no section untested or unchecked.
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During the past decade, Machine Learning (ML) has quickly become a revolution-
ary tool in many fields, from the autonomous vehicles sector to enhanced diagnostics in
healthcare [136, 106]. Similarly, ML’s role in computer architecture has evolved from a
theoretical concept to a foundational technology, influencing design, control, and simula-
tion across various system components [162]. Historically, the interplay between ML and
computer architecture largely focused on adapting architectural elements to better serve
ML algorithms like neural network accelerators [36]. However, the last decade has marked
a significant shift toward a more reciprocal relationship, as more and more works success-
fully apply ML to processor architecture and compiler design problem-solving [124, 168,
32].

Given the growing challenges associated with hardware complexity and limited docu-
mentation, this thesis aims at automating the creation of hardware timing models.
By leveraging machine learning techniques, the objective is to predict both average-case
and worst-case performance without requiring extensive documentation of the targeted
processor. The proposed solutions all operate in two distinct phases. During the learn-
ing phase, the timing for code snippets is established based on measurements in their
various "execution contexts", including loops and dependencies between instructions. In
the subsequent inferring phase, the developed timing model is applied to calculate the
execution time of new code snippets. These calculations are supposed to be informed by
the execution context of each code snippet, as determined through, for example, static
analysis. This methodology offers three key advantages:

— It provides reasonably accurate and fast timing estimations.
— It eliminates the need for costly static analyses or cycle-accurate simulation.
— It does not require detailed knowledge of the processor’s microarchitecture.

Although the obtained timing information is not provably safe, it holds significant
value for estimating timing in the early stages of system development, real-time systems
at low criticality levels (for example, DAL B and C in the aeronautic industry [20]),
general-purpose software, or guiding compiler optimizations.

While previous research has been conducted on the automatic derivation of timing
models using machine learning [21, 87], it predominantly focused on simple hardware
with constant and context-independent instruction timing. This thesis aims to break new
ground by introducing context awareness into these machine learning techniques, thereby
extending their applicability to more complex hardware designs. Specifically, execution
traces of a program will serve as contextual representations for the instruction sequences
for which execution times need to be estimated. Drawing an analogy from the field of
Natural Language Processing (NLP), these execution traces can be thought of as texts
in which individual instructions can be seen as words. By processing these traces, we can
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gain valuable insights into the contextual factors that influence instruction execution time
(pipeline effects, cache effects, and branch predictor effects), leveraging advancements in
NLP to guide our models. This new approach promises to enhance the accuracy of program
execution time estimates, which in turn can drive the development of more efficient and
reliable embedded systems.

Contributions

This thesis introduces new methodologies at the crossroads of machine learning and
execution time estimation. The three contributions of this thesis are as follows:

Hybrid WCET estimation using machine learning for architectures with
caches [7]. Our initial proposition is a novel hybrid approach, WE-HML [7], designed
for improved WCET estimation. This method distinctively incorporates data cache mem-
ory considerations when training a range of foundational machine learning models. The
training utilizes synthetically generated datasets and is complemented with a static tech-
nique to estimate the overall WCET of a program.

Employment of NLP in ACET estimation. Shifting our focus toward ACET, we
explore the integration of NLP techniques to capture the dependencies between instruction
sequences. We investigate various deep learning architectures, including Long-Short Term
Memory [82] (as published in the paper [8]) and Transformers [56, 43]. We found that
Transformers XL [43] was the best suited for accurately contextualizing and estimating
basic block execution times.

Context-aware WCET estimation using Transformers [6]. Building on the
success of NLP application in ACET estimation, we take on the challenge of identifying
"worst-case context" for basic blocks, leading to the conception of CAWET [6]. This novel
solution not only identifies every short execution context for a given basic block, but it
also leverages Transformers XL [43] to enhance WCET estimation accuracy. Moreover, we
integrated these enhancements into a static analysis tool, creating a hybrid methodology
that significantly mitigates the overestimations observed in our initial WE-HML model.

Outline

The rest of this document is organized as follows:

Chapter 1. We lay the groundwork by introducing the key concepts necessary for
understanding this document. We review the prevalent methods for estimating execution
times in general scenarios and delve into specialized techniques for WCET estimation. This
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chapter also serves as a short introduction to some regression and deep learning techniques.
The chapter concludes with an overview of cutting-edge applications of machine learning
for execution time estimation.

Chapter 2. This chapter was the first work completed in the course of this thesis.
It presents a novel hybrid methodology for WCET analysis using basic machine learning
techniques. In this chapter, we pay close attention to memory effects, more specifically,
to cache behaviors that may arise within nested loops during code execution.

Chapter 3. In this chapter, we venture into the realm of Natural Language Process-
ing (NLP), exploring advanced machine learning techniques like LSTM and Transform-
ers [164] to estimate average-case execution times of code snippets. Here, we give special
emphasis to the role of execution context in these estimations.

Chapter 4. We return to WCET estimation, where we build upon the findings of the
previous chapters by enhancing the hybrid model from Chapter 2 using the most effective
models identified in Chapter 3. The challenge in this chapter is to pinpoint the worst-case
execution context, which is crucial for applying these machine learning models effectively
in hybrid WCET estimation.

Chapter 5. Finally, we conclude the thesis with a look ahead, discussing future work
and avenues for further improvement.
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Chapter 1

BACKGROUND ON TIMING ESTIMATION

USING MACHINE LEARNING

Over the past decade, the application of machine learning techniques to estimate
the execution time of programs has gained interest among researchers, yielding several
solutions. Each method stands out for its distinct features, including its domain of use, the
code level utilized to estimate its execution time, and the way timing is obtained. In this
chapter, we dive into various classifications of these techniques, providing a comprehensive
overview of their advantages and disadvantages. We conclude the chapter with an analysis
of the current state-of-the-art in timing estimation using machine learning and outline
potential future directions for research.

This chapter is organized as follows: first, a comprehensive overview of the context
surrounding execution time estimation, in general, is provided in Section 1.1, encompass-
ing different uses of execution time, factors that influence it, and the various techniques
for its calculation or estimation. Subsequently, a focused investigation into Worst-Case
Execution Time (WCET) estimation is conducted in Section 1.2. The utilization of ma-
chine learning techniques is introduced and further detailed in Section 1.3. The synergy
between machine learning and the estimation of execution time is evaluated through a
review of the existing literature in Section 1.4. Finally, Section 1.5 assesses the limita-
tions in current state-of-the-art methods, setting the stage for the specific challenges and
contributions addressed in this thesis.

1.1 Execution time estimation: a bird’s-eye view

1.1.1 Levels of execution time estimation

Execution time is a usual metric for assessing the performance of a program or a
system, and it can be understood at different levels.

Execution time of an instruction. At the lowest level, the execution time can refer
to the time taken to execute a single instruction in a program. This could be a simple
operation, such as an addition or a multiplication in a CPU. Microbenchmark tools can
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be used for this purpose [2].

Execution time of a basic block (BB). A basic block is a code sequence with
no branch in, except at the entry, and no branch out, except at the exit. In other words,
if a single instruction is executed in the basic block, all the instructions are executed in
sequence. Therefore, the execution time of a basic block would be the total time taken
to execute all the instructions in the block. The basic block code level is widely used
in realtime systems for worst-case execution time estimation and compiler design, where
considering BB-level timing is a useful approach for understanding the performance char-
acteristics of a program and guiding optimization efforts.

Execution time of a workload, function, program, or application. These
terms are often used interchangeably to refer to larger units of execution. In each of
these terms, the execution time would refer to the total time taken to complete all the
operations, whether it is processing a workload, running a function, executing a program,
or operating an application. This is typically a more complex measure, as it must account
for various factors, such as function calls, control flow, resource usage, presence of multiple
tasks, and interactions between software and hardware components.

This thesis’s primary focus revolves around exploring program execution time. Specif-
ically, the time analysis of the basic block, which not only serves to determine the worst-
case execution time of programs in case of realtime applications, but also provides valuable
insights that can be leveraged for compiler optimization techniques.

1.1.2 Execution time usages

Execution time estimation can be approached from different perspectives and catego-
rized into average, best, and worst-case scenarios.

Average-case execution time (ACET). The average execution time is crucial for
assessing the typical (mean or average) duration required to complete a task. It considers
different inputs or different repeated execution scenarios to calculate the average. This
metric is important for compiler optimization and microarchitecture design [148].

Best-case execution time (BCET). The best-case execution time serves as a ref-
erence point in performance analysis, defined as the minimum time necessary for a task to
execute under optimal conditions. This metric is important for throughput analysis, aid-
ing in the identification of potential system bottlenecks. A thorough understanding of the
constraints and capabilities of the microarchitecture, obtained through BCET analysis,
enables more precise finetuning of optimization strategies. Consequently, this enhances
system throughput and overall efficiency [129].
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Worst-case execution time (WCET). The worst-case execution time represents
the maximum time required for a task or module to complete. It indicates the worst-case
scenario and is crucial for determining timing constraints and ensuring system stability
under extreme conditions. In safety-critical systems and realtime applications, it is es-
sential to guarantee that the system meets its deadlines, even in worst-case scenarios.
Consider the collision avoidance system of an autonomous vehicle. Estimating the worst
execution time of the collision detection algorithm is vital to ensure that the system can
respond within the required time frame to avoid accidents. By accounting for the worst-
case execution time, designers can allocate sufficient processing resources and validate the
system’s ability to operate safely under all conditions (including the worst-case).

1.1.3 Factors behind the variability of execution times

Obtaining an accurate estimate of execution times is challenging due to interactions
between hardware and software components. Understanding these interactions and how
they affect the execution time variability is essential to improve the reliability and pre-
cision of timing estimation solutions. This Section focuses on explaining the key factors
that contribute to timing variability that are divided into two categories: hardware-related
factors [81] and software-related factors [128].

Hardware-related factors

Within a singular microarchitecture, execution time is subject to inherent variability
arising from numerous intrinsic factors. In the following, we explore the potential factors
contributing to this variability:

Memory hierarchy. Processors use various levels of cache memories to store fre-
quently accessed data and instructions. When a code is executed multiple times, the
cache may contain the required data/instruction, resulting in faster execution. However,
if the needed data/instructions are not found in the cache (cache miss), the program will
run slower (if there are no time anomalies [144]) because it has to rely on other types of
memory, which are usually slower. The size and organization of the memories (cache and
main memory), along with the code’s memory access patterns, influence the cache hit and
miss rates.

Pipeline dependencies. One source of the execution time variation is the pipeline,
which refers to the sequence of stages or operations through which an instruction is di-
vided, with each stage dependent on the completion of the previous one. The dependencies
within the pipeline can be summarized into three types:
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Read-after-write (RAW). One operation needs to read data produced by a pre-
vious operation before it can start.

Write-after-write (WAW). Multiple operations want to write in the same memory
location, so they must be executed in a specific order.

Write-after-read (WAR). An operation needs to write data to a memory location
that a subsequent operation wants to read from, so it must wait until the read is finished.

Branch prediction. Processors utilize branch prediction techniques to minimize the
impact of conditional branches on program execution. If the processor’s branch prediction
mechanism accurately predicts the outcome of branches, it can maintain a high instruc-
tion throughput. However, if the predictions are incorrect, the processor may waste cycles
fetching and executing instructions that are ultimately discarded, leading to longer exe-
cution times. The effectiveness of branch prediction depends on the specific patterns of
conditional branches in the program.

Superscalar processors. A superscalar processor is a type of microprocessor that
can execute multiple instructions in parallel. It achieves this by having multiple execution
units, allowing it to process more than one instruction during a single clock cycle. Regard-
ing pipeline dependencies, superscalar processors face similar issues as other pipelined ar-
chitectures. The dependencies described above (RAW, WAW, and WAR) can cause stalls
and inefficiencies in instruction executions, affecting the execution time. To mitigate these
issues, superscalar processors use sophisticated techniques such as instruction reordering
and dynamic instruction scheduling.

Out-of-order processors. Out-of-order processors are an advanced type of micro-
processor that can execute instructions out of their original order as long as the data
dependencies are maintained. In out-of-order processors, a large instruction window and
a complex hardware structure are employed to detect and handle dependencies efficiently.
The processor maintains a buffer called the reorder buffer to keep track of the order of
the instructions in the original program sequence, ensuring that the instructions are com-
mitted to memory in the correct order (order of program instructions execution). When
it comes to pipeline dependencies, this kind of processor can effectively reduce stalls and
increase instruction throughput. By dynamically reordering instructions based on data
availability, they can maximize the utilization of execution units, leading to improved
performance and better overall efficiency.

CPU frequency scaling. Many modern processors employ dynamic frequency scal-
ing [157] (DVFS), where the CPU clock speed can be adjusted according to the workload.
If the processor detects a high demand for computational resources, it may increase its
clock speed to provide better performance. On the contrary, if the workload is low, it
may reduce the clock speed to save power. This variation in clock speed can affect the
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execution time of a program, as a higher clock speed globally leads to faster execution.
Resource sharing. Improving system performance is critical, and sharing resources

is the key to achieving this. Multicore processors, which allow multiple tasks to run si-
multaneously, are a significant advancement. This not only boosts system performance
but also necessitates effective distribution of computing elements such as CPU cycles and
memory bandwidth across running programs. However, this also presents challenges, es-
pecially when running resource-intensive tasks simultaneously. This scenario can lead to
a shortage of available resources for each program, causing variations in execution times.
Additionally, interference during memory hierarchy access and cache coherence issues [23,
152] can also lead to inconsistent execution times.

Other factors. Other factors can also influence execution time, such as speculative
fetching [47], variable latency instructions [52] (e.g., square root, division), multi-
threading [14], and timing anomalies [144]. Additionally, the initial hardware state
can set off a domino effect [14], further affecting performance.

Software-related factors

Factors not related to the processor microarchitecture can influence the execution time
of programs. These software-related factors are:

Program inputs. Modifying the input of a program can affect its execution time.
Different inputs may lead to different control flows, data access patterns, and, therefore,
utilization of resources. For example, larger input sizes may require more memory or lead
to more loop iterations, resulting in longer execution times, even when the hardware and
software environment remains the same.

Compiler optimizations. The choice of compiler and its optimization settings can
impact the execution time of a program. A compiler can apply various optimizations
and changes to the program, such as loop unrolling, instruction scheduling, and constant
folding, to generate more efficient code. Different compiler versions or optimization levels
can result in different performance characteristics, affecting the execution times of the
program.

Operating system interferences. The way the operating system schedules pro-
cesses and assigns CPU time to processes can impact the execution time of a program.
The scheduling algorithm, priority levels, and interruptions can influence how much CPU
time is allocated to a specific program. If a program has lower priority or is competing
with other high-priority processes (such as I/O interruption), its execution time may be
longer.

These factors are crucial in determining the execution time of a task in different
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scenarios. In an average case, it is essential to understand the common hardware state
(for example, since cache hits occur more frequently than cache misses [81], a situation
where the data is available in the cache can be considered as the average hardware state)
and the typical software state (considering the most commonly used program inputs).
Conversely, for the worst-case scenarios, it is necessary to identify the most unfavorable
conditions that the hardware and software can encounter while running a program.

1.1.4 Execution time estimation techniques

Techniques used for execution time estimation can be classified in general into four
categories: static analysis, measurement-based, simulation-based, and data-driven tech-
niques.

Static analysis techniques

Static analysis techniques rely mainly on assumptions about the code’s behavior com-
plemented by the expert’s knowledge to time a program. This approach involves an auto-
matic and detailed inspection of a program’s code without actually executing it. The aim
is to make time complexity estimates based on the number and types of operations, data
size, and control flow. A simple example would be to count the number of instructions and
match this to an execution time. More complex solutions use more advanced cost functions
for estimating the execution time of instructions as those provided by: Low-Level Virtual
Machine Microprocessor Code Analyzer (LLVM MCA) [12], Open Simple Analytic Com-
piler Architecture (OSACA) [109], Portable inference of port Mappings for out-of-order
processors by EVolutionary Optimization (PMEvo) [145], and Intel Architecture Code
Analyzer (IACA) [92]. These tools analyze the execution of input assembly code using
a static model of the processor and provide various statistics, such as throughput and
latency.

Measurement-based techniques

These techniques are centered on collecting data derived directly from an observation
of the system.

Profiling. Profiling is the practice of capturing various metrics during the execution
of a program to analyze its performance and behavior. These metrics range from CPU
usage and memory consumption to the frequency of specific operations. The insights
gathered not only help in optimizing the program itself but also serve as a foundation for
predicting the execution time of similar applications. Tools like the Performance Applica-
tion Programming Interface (PAPI) [134] and Perf [49] are widely used for this purpose,
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offering a comprehensive suite of functionalities to monitor performance attributes. Al-
ternatively, hardware-based approaches, such as FPGA synthesis [135], can be employed
to gather precise performance data.

Hardware solutions (e.g., Joint Test Action Group JTAG). These solutions
involve dedicated hardware, such as JTAG interfaces, to capture hardware-level timing
information. They offer accurate estimates but often necessitate additional hardware sup-
port. An example is the J-Trace Pro trace solution from Segger [150], which is used to
connect to the JTAG interface of the target processor, alongside Ozone [71], a crossplat-
form debugger and performance analyzer. Ozone generates execution traces with a format
of one line per machine instruction, including other information such as the cycle counter.

Simulation-based techniques

Simulations construct a replica of the processor microarchitecture behavior and esti-
mate the execution time by running the simulated model under various scenarios. These
simulators, such as GEM5 [19], ARM cycle accurate [120], uops info Code Analyzer
(uiCA) [3], and simplescalar [13], can integrate heuristic simplifications (e.g., assuming
some parts of the processor microarchitecture functioning and incorporate real world data,
such as memory latency).

Data-driven techniques

Machine learning [126] presents a new paradigm for estimating execution time by lever-
aging historical data. Unlike traditional methods that depend on static models or broad
approximations, machine learning algorithms, particularly regression models, delve into
past code execution time records to predict future ones. These models excel in discern-
ing the intricate relationships between code attributes and their corresponding execution
times. For a comprehensive examination of related examples, refer to Section 1.3. It is
worth noting that this approach forms the central focus of this thesis.

Each technique offers its own advantages and limits. The appropriate choice depends
on a number of factors, including the available resources and the required precision of
the timing estimate. The summary of the advantages and limits of the four categories of
execution time estimation techniques is presented in Table 1.1.
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Technique Advantages Limits
Static analysis

No need to execute code.
Portable across different hardware.

Inaccuracies due to simplification.
Resource-intensive for complex

cases.

Measurement-
based Uses real system data.

Captures complex behaviors.
Can be invasive.
Limited by measurement scope.

Simulation-
based Emulates before implementation.

Controlled environment for scenar-
ios.

Needs accurate models.
Simulations are slower than real ex-

ecution.

Data-driven
Handles complex behaviors.
Balances static assumptions with

real-world data.

Needs quality historical data.
Complexity can obscure interpreta-

tion.

Table 1.1 – Comparative analysis of execution time estimation solutions.

1.2 WCET estimation techniques

Estimating the ACET of a program is generally easier than determining its WCET.
The central limit theorem [107] simplifies the ACET estimation task by offering a sound
statistical basis. For instance, monitoring the execution time of a basic task on a simple
processor for 100 iterations can provide a reliable estimate of the average time needed for
execution. The actual average execution time can be approximated using the empirical
average obtained from these 100 observations (i.e., Equation 1.1).

t̄ = 1
100

100∑
i=1

ti (1.1)

However, determining the WCET is inherently difficult, and its undecidability [99] is
rooted in the halting problem, a foundational issue in the theory of computation. Alan
Turing proved in 1936 that a general algorithm to determine whether a given program
(with a given input) halts or continues to run indefinitely cannot exist. This is known
as the halting problem, and it is undecidable. In the context of WCET, determining
the exact execution time would require knowing the maximum time a program takes for
any possible input. If we could determine this, we would also know if the program halts
for every possible input. But since the halting problem is undecidable, determining the
exact WCET is as well. Therefore, while we can estimate the WCET for many programs,
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especially those with bounded loops and inputs, we cannot create a general method that
determines the WCET for all possible programs. Thus, to ensure the estimation is a
practical value, it is imperative that it remains both safe and precise.

Definition 1 Safety: An upper limit of the WCET of a task is considered safe if it is
greater than all possible execution times.

Definition 2 Precision: A WCET estimate for a task is considered precise if it is close
to the actual WCET.

When estimating the worst-case execution time, there are several techniques available
to provide safe and accurate predictions. These techniques can be classified into three main
categories: static techniques, end-to-end measurement techniques, and hybrid techniques
[170].

1.2.1 Static techniques

Static techniques [170] for WCET estimation process is depicted in Figure 1.1. It
involves transforming code into a Control Flow Graph (CFG). This graph represents
the potential execution paths of a program. For instance, Listing 1.1 and Figure 1.2
show, respectively, a C source code and its corresponding CFG that is extracted from
the compiled binary code. In Figure 1.2, nodes correspond to basic blocks, and edges
correspond to possible control flow between them. For example, the basic block then
contains the code for s=s+t[i]. Static techniques generally involve the following stages:

Compile

Execution time
modeling

- Cache analysis 
- Branch predictor

analysis 
- Pipeline analysis

Flow fact
transformation

Extraction of 
flow facts

Longest path
calculation WCET

Source code

Binary code

Figure 1.1 – Static timing analysis workflow.

Flow facts extraction and transformation. In this phase, various flow-related
details are extracted from either the source code (for example, user-specified maximum
loop iterations) or from the Control Flow Graph (CFG) extracted from the binary code.
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Listing 1.1 – Example of C code
f o r ( i n t i = 0 ; i < 100 ; i++)

i f ( t [ i ] >0) s = s + t [ i ] ;
e l s e s = s − t [ i ] ;

start for if

then

else

endif end

Figure 1.2 – Control flow graph for the code depicted in Listing 1.1.

Execution time modeling (HW abstraction). Also known as low-level analysis,
this step involves statically determining temporal information about the worst execution
time of each basic block. This is based on a model of the hardware architecture (which
requires detailed documentation on the processor). The determination of the WCET of a
basic block must take into consideration specific hardware elements such as pipelines [108,
113], cache memories [123, 68] and branch predictors [40]. These elements introduce vari-
ability in the execution time of instructions as discussed in Section 1.1.3, depending on
the path taken within the program. Abstract interpretation [160] is usually used in this
case to analyze the worst possible states without executing the program.

Longest path calculation (high-level analysis). This step employs algorithms
designed to efficiently identify the path with the longest execution time without enu-
merating all possible paths. The identified path serves as an estimate for the worst-case
execution time. The Implicit Path Enumeration Technique (IPET) [118] is commonly used
at this stage. It formulates the longest path problem as an integer linear problem. Using
the previous example (Figure 1.2 and Listing 1.1), we illustrate the WCET estimation
calculation on the example that computes the sum of the absolute value of 100 elements
stored in an array t using IPET.

nstart = 1
nfor ≤ 101
nfor = nstart→for + nendif→for
nfor = nfor→if + nfor→end
nif = nfor→if
nif = nif→then + nif→else

Figure 1.3 – IPET formulas for the CFG of Figure 1.2.
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— First, the WCET of a basic block b denoted by wb is estimated by applying the
HW abstraction model. Then, the IPET technique estimates the longest path in the
program using integer linear programming: the goal is to maximize the following
quantity:

∑
b∈basic blocks

wb × nb

with nb the number of executions of the basic block b.

— Constraints on variables nb and nb→b’ (the number of times the edge b → b’ is taken,
b and b’ being basic blocks) model the execution flows (a basic block is entered as
many times as it is exited) and the maximum number of iterations for loops.

— Constraints are generated by the IPET technique, possibly with annotations for loop
bounds when the tool is not able to infer them automatically. An example of the
constraints for the previous program is given in Figure 1.3. Assuming for the sake
of illustration that the outcome of the learned timing model is a WCET of 10 cycles
for all basic blocks, except block then which executes in 20 cycles, the result of the
IPET calculation for the example is then nstart = 1, nfor = 101, nif = 100, nthen =
100, nelse = 0, nendif = 100, nstart = 1 and the WCET estimate is 5030 cycles.

For simplicity, we have assumed in this example that each basic block has a single,
context-independent WCET estimate. For architectures with caches, pipelines, and branch
predictors, this assumption is obviously no longer valid.

Despite the valuable contributions of static techniques in generating safe and deter-
ministic worst-case estimates (if the proposed HW model is precise enough), they often
produce conservative estimates, potentially leading to an overestimation of the execution
time. These methodologies are implemented in both commercial tools such as AiT [66],
and academic tools such as Heptane [78], Ottawa [15], Chronos [114], and SWEET [119].

1.2.2 End-to-end measurements techniques

End-to-end measurement techniques [53] for the estimation of WCET are based pri-
marily on real measurements captured during the program’s execution on the target hard-
ware platform. The amassed measurements serve as the basis for estimating the WCET.
Two notable measurement-based methodologies are:

Measurements with a safety margin. This approach requires running the program
under its worst-case input and processor conditions to obtain the maximum execution
time. The worst-case input refers to the input that results in the longest execution time,
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while the unfavorable processor state might involve conditions like empty cache memo-
ries, flushed branch predictor, etc. Typically, a safety margin is added to the maximum
observed execution time to account for uncertainties and unforeseen scenarios.

Statistical analysis. Particularly the application of Extreme Value Theory (EVT)
[76], which plays a vital role in the estimation of measurement-based WCET. EVT special-
izes in analyzing timing measurements by concentrating on outliers—extreme deviations
from the median in probability distributions. In the context of WCET, EVT is particularly
adept at modeling the distribution of maximal observed execution times, thereby reveal-
ing crucial information about how the system—be it a program or a processor—behaves
under extreme operational scenarios. This analytical approach is known as probabilis-
tic WCET (pWCET) estimates [31, 28]. Unlike traditional WCET estimates that give a
single deterministic value, pWCET provides a probability distribution.

1.2.3 Hybrid techniques

Hybrid techniques (e.g., [101]) integrate aspects of both static and measurement-based
methods to estimate the worst-case execution time, as illustrated in Figure 1.4. In this
approach, components of the static analysis process, such as flow facts extraction, trans-
formation, and longest path calculation, are retained. However, the hardware abstraction
phase is replaced with a measurement phase.

Static Analysis

Measurement-based timing

Compile Flow fact
transformation

Extraction of 
flow facts

Longest path
calculation WCET

Source code

Binary code Measurement at BB
level

Static Analysis

Figure 1.4 – Hybrid timing analysis workflow.

Examples of hybrid solutions for WCET estimation are Timeweaver [96] by AbsInt
and Rapitime [48] by Rapita. These solutions employ a combination of hardware-assisted
measurements, such as JTAG (Joint Test Action Group), and manual annotations, in-
cluding waypoints, tracepoints, and interest points. These measurements are performed
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on code snippets to determine their WCET. The static tool provided by these solutions
then utilizes this information to estimate the WCET of the entire program.

Table 1.2 gives a high-level comparison of the three categories of techniques. Here,
we show the advantages and limits of each category. Aside from accuracy and safety, the
realtime systems community has increasingly emphasized two additional factors: perfor-
mance requirements and architectural complexity. The adoption of sophisticated hardware
architectures, often poorly documented due to intellectual property concerns, adds further
challenges to each of the primary estimation techniques.

Technique Advantages Limits
Static

Safe and sound for hard realtime
systems.
Provides an upper bound for the

WCET without executing the pro-
gram.

Can be overly pessimistic, leading
to overestimations.
Hardware modeling needed for

each new processor.
Requires detailed documentation

that might be unavailable.

End-to-end-based
Provides accurate (less pes-

simistic) estimates based on actual
program executions.
Captures the system’s dynamic be-

havior.

Might not cover the absolute
worst-case scenario, making them
unsuitable for hard realtime sys-
tems.
Measurements should be repeated

for each new program.

Hybrid
Aims to balance the safety of static

methods with the accuracy of end-
to-end-based methods.
Can provide more realistic WCET

estimates.

Their effectiveness depends on a
balance of static analysis and mea-
surement data.
Measurements at the BB level in

hybrid methods can raise code cov-
erage issues [111].

Table 1.2 – Comparing static, measurement-based, and hybrid WCET solutions.

Static techniques. Determining the WCET using static techniques, while being the
most secure approach, comes with its own set of challenges. These methods require de-
tailed hardware models, which in turn depend on comprehensive processor documentation.
However, even when such documentation is available, the increasing complexity of modern
hardware can lead to a phenomenon known as "state explosion" when using techniques like
abstract interpretation. This state explosion refers to the rapid growth of possible states
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that the system can be in, making the analysis computationally infeasible. As a result,
applying static timing techniques becomes increasingly complicated on high-performance
processors.

End-to-end-based techniques. Even if we assume that we can identify the program
input that leads to the worst-case execution path, the hardware complexity makes it very
difficult to initialize the processor to an accurate worst-case state, especially for the entire
program.

Hybrid techniques. Hybrid methods afford the advantage of snippet-level measure-
ments, capturing processor complexities more effectively. Coupled with flow analysis, these
methods make the outcome independent of specific program inputs while offering some
guarantees regarding prediction accuracy. This positions hybrid techniques as a relevant
choice for complex processors with limited documentation if the problem of code coverage
is solved. However, expecting users to procure both the processor and measurement hard-
ware is far from ideal. This becomes even more evident when considering that the chosen
processor might not have the resources or the required capabilities to support the realtime
application. In this context, machine learning emerges as a promising solution. Not only
can it mitigate the need for users to invest in expensive processors and measurement tools,
but it also addresses the challenges of measurement code coverage [111]. Delving into a
hybrid WCET estimation using a machine learning approach will be a primary focus of
this document.

1.3 Machine learning

Machine learning [126] is a subdomain of artificial intelligence that has been widely
adopted in many fields as an alternative approach to solve different problems. The rel-
evance of machine learning arises from its strong ability to learn relationships between
data, operating on what we call a model that learns from real world examples instead of
relying on hard-coded rules.

Machine learning algorithms depend on various criteria, such as the degree of super-
vision provided (a.k.a supervised or unsupervised learning) or the way data are provided
to the algorithm (e.g., reinforcement learning). In this thesis, we will focus on supervised
learning.

Supervised learning. In supervised learning, the training process utilizes both input
features and corresponding output targets to generate a model capable of predicting
outputs for new, unseen inputs. Depending on the type of output, these models can
be termed as regression for continuous numerical outputs or classification for discrete or
categorical ones.
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In supervised learning, our main interest lies in learning a model that links data
X = {x0, x1, ..., xn} (where xi is a feature of X) to a continuous label y, In the context of
our study, this involves mapping the characteristics of a basic block to its execution time.
Such a learning approach is termed regression. We define a regression model Fparameters(X)
as follows:

y = Fparameters(X) + E(X) (1.2)

Here, parameters denote the parameters of the regression model, acquired during
the training phase on datasettrain ((X1, y1), ..., (Xk, yk)). Additionally, E is typically con-
ceptualized as the discrepancy between the true value y and the output of the model
Fparameters.

1.3.1 Regression-based machine learning algorithms

The process of training a regression machine learning model unfolds through several
sequential stages, which are illustrated in Figure 1.5. It begins with data collection and
cleaning. The cleaned data is then segregated into three distinct subsets: a training set
datasettrain (1a), a validation set datasetvalid (1b), and a testing set datasettest (1c). The
training set is integral for the calibration of the model’s weights (Step 2a), primarily under
the guidance of a loss function. Conversely, the validation and test sets are reserved solely
for the evaluation of the model’s predictive accuracy and robustness (Step 2b for validation
and Step 5 for testing on unseen data). Following the initial training phase (Step 3a), the
model’s performance is assessed using the validation set (Step 3b). Should the model
underperform, adjustments are made to the hyperparameters (Step 3c), and the model
undergoes retraining and subsequent reevaluation. This cycle continues until satisfactory
performance metrics are obtained, indicative of the model’s accuracy and efficacy with
the chosen hyperparameters 1. Once satisfactory performance metrics are achieved (Step
4), the optimized model is ready for deployment on new, unseen data or the predefined
testing dataset (Step 5). This step serves to identify any instances of overfitting that may
have happened during the training sessions on the training dataset, ensuring the model’s
generalizability and reliability in real world scenarios.

To tune the weights of a regression model, several loss functions exist. In this thesis,
we have considered the following ones (as a reminder, yi is the ground truth value and

1. Hyperparameters are parameters that are not directly learned from the data. Instead, they are set
prior to the training process and influence the behavior and performance of the model. For example: the
number of neurons in a neural network.
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Figure 1.5 – Regression learning workflow.

Fparameters(Xi) is the prediction):

— Mean Squared Error (MSE), defined as:

MSE = 1
N

N∑
i=1

(yi − Fparameters(Xi))2 (1.3)

— The Mean Absolute Percentage Error (MAPE), defined as:

MAPE = 100
N

N∑
i=1

∣∣∣∣∣yi − Fparameters(Xi)
yi

∣∣∣∣∣ (1.4)

— The Symmetric Mean Absolute Percentage Error (sMAPE), defined as:

SMAPE = 100
N

N∑
i=1

|yi − Fparameters(Xi)|
(|yi| + |Fparameters(Xi)|) /2 (1.5)

— The Root Mean Squared Logarithmic Error (RMSLE), defined as:

RMSLE =

√√√√ 1
N

N∑
i=1

(log(yi + 1) − log(Fparameters(Xi) + 1))2 (1.6)

The MAPE function is employed to assess the model’s accuracy on the validation
(training scores in Figure 1.5) and testing datasets (testing scores in Figure 1.5). Mean-
while, the Pearson correlation coefficient r is used to evaluate the linear relationship be-
tween the predictions and the ground truth. The Pearson correlation coefficient is given
by:

r =
∑(Fparameters(Xi) − F̄ ) ∗ (yi − ȳ)√∑(Fparameters(Xi) − F̄ )2 ∗ ∑(yi − ȳ)2

(1.7)
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Where F̄ represents the mean of all predictions.

In the following, we only present the regression models that will be used in the chapters
detailing our contributions.

Linear Regression (LR) [69]. Linear regression is the most basic regression al-
gorithm. It assumes a linear relationship between the input variables X and an output
variable y. Ordinary Least Squares (OLS) is a type of linear regression that aims to min-
imize the sum of the squared residuals, i.e., the differences between the observed and
predicted values. The resulting model is defined by the equation y = a.X + b, where a

is a vector of weights for each element of X and b represents the bias. The values of a

and b are estimated by the algorithm. An illustration of linear regression application in
estimating execution time is presented in Figure 1.6. In this example, y symbolizes the ex-
ecution time corresponding to a basic block, with x1 denoting the number of instructions
in the basic block, and x2 representing the associated memory usage. From a graphical
perspective, this linear regression model is represented by a plane that best fits the data
points engaged during the parameter training phase. The resulting model serves as an
analytical tool to analyze the linear relationships between the input variables and the
output. Additionally, it can be directly employed to deduce the execution time based on
the number of instructions and memory accesses.

Ex
ec

ut
io

n 
tim

e

Nb instructions

Nb memory access

Figure 1.6 – Linear regression for execution time estimation example.

Capturing the relationship between the input variables X and the corresponding out-
put y can be challenging when using a linear model, especially when it is aimed at mini-
mizing errors solely on the training set. This approach may result in poor generalization
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to unseen test data. To address these limitations, various extensions to traditional linear
regression have been developed, including:

Polynomial Regression. An extension of linear regression that includes the powers
of the input variables to model nonlinear relationships within a linear framework. For
example, y = β0 + β1.X + β2.X

2 + . . . + βd.Xd + E(X)
Ridge Regression [84]. Ridge Regression is an extension of linear regression that

incorporates a regularization term. Its primary objective is to create a model that gen-
eralizes well to new, unseen data by constraining the model’s complexity. It does this
by adding a penalty based on the size of its parameters. The main idea is to not let
any parameter become too dominant. The strength of this penalty is controlled by a
value called λ. The modified loss function for Ridge Regression is defined as lossadjusted =
Loss [(Fparameters(xi) − yi)] + λ

∑n
j=1(weightsj)2. Where n is the number of features, and

λ is the regularization parameter.
Lasso Regression [161]. Lasso Regression is another variation of linear regres-

sion. What is unique about Lasso is that it can completely remove some features (or
parameters) if they are not that helpful. This makes the model simpler and easier to
understand. It uses a different kind of penalty than Ridge, focusing on the absolute
values of the parameters. Like Ridge, the strength of the penalty is controlled by a
value called λ. The modified loss function for Lasso Regression is given by lossadjusted =
Loss [(Fparameters(xi) − yi)] + λ

∑n
j=1 |weightsj|. Where n is the number of features, and

λ is the regularization parameter.

K-Nearest Neighbors (KNN) Regressor [102]. The K-Nearest Neighbors (KNN)
regression algorithm estimates the value of a target variable by taking the average of the
values of its K nearest neighbors. These neighbors are identified based on a distance metric,
such as Euclidean distance, which is specified as a hyperparameter. Figure 1.7 illustrates
this concept. In the example, we aim to predict the execution time of an unidentified point,
denoted by a red dot. Using a specific distance metric, we identify 5 nearest neighbors (or
5 basic blocks) with known execution times. The predicted execution time for the red dot
can be calculated in two ways. The execution time is either the average:

F(distance) = 1
k

∑k
i=1 yi

or, each output yi can be weighted by the distance di:

F(distance) =
∑k

i=1 diyi∑k

i=1 di

In both formulas, yi represents the execution time of the i-th nearest neighbor, k is
the number of neighbors, and di is the distance from the unidentified point to the i-th
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nearest neighbor. The latter formula assigns more weight to neighbors that are closer to
the point in question, thereby potentially improving the prediction accuracy.
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Figure 1.7 – KNN example for execution time estimation.

Decision trees [140]. They can be understood through their hierarchical structures,
which arrange data in a tree-like form. In a decision tree, every internal node tests a
specific feature, while the branches extending from it indicate the various possible values
for that feature. The leaves of the tree serve as the predictions. When the model is used for
prediction, it assesses new data by following the tree’s branches according to the feature
values of the input. Several techniques extend the concept of the decision tree to create
more robust and higher-performing models, including:

Random Forest Regressor (RF) [42]. Random Forest is an ensemble method
that combines a multitude of decision trees to make a prediction. In the context of re-
gression, the final prediction is the average of the predictions of all the individual trees. It
handles nonlinear relationships well and is robust to outliers. Figure 1.8 shows an example
of multiple decision trees, where each tree gives a prediction of the execution time that
will be averaged in the end with the predictions of the other trees.

eXtreme Gradient Boosting (XGBoost) [34]. XGBoost is an ensemble learn-
ing algorithm, similar in concept to Random Forest, but with a key difference in its
approach to model construction. While Random Forest builds decision trees indepen-
dently, XGBoost employs a sequential method that combines multiple trees to create a
more accurate and robust predictive model. This can be metaphorically described as a
collaborative effort of a "team of experts", where each subsequent decision tree focuses on
correcting errors made by the preceding trees in the sequence. This iterative refinement
makes XGBoost highly effective for a wide range of machine learning tasks.
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Figure 1.8 – Example of a random forest model for execution time estimation.

Support Vector Regression (SVR) [39] While the Support Vector Machine (SVM)
algorithm is traditionally known for classification tasks, it can be adapted for regression
through a variant known as Support Vector Regression (SVR). Similar to its classifica-
tion counterpart, SVR aims to identify a hyperplane—or multiple hyperplanes in higher-
dimensional spaces—that best represents the underlying relationship between the input
variables and a continuous output variable, as illustrated in Figure 1.9. In contrast to
SVM, where the goal is to maximize the margin between distinct classes, SVR seeks to
closely fit the data points within a defined tolerance or "epsilon margin" e. Specifically, the
algorithm aims to find a function f(X) such that the deviation from each actual target
value yi in the training data is no greater than e. This enables SVR to produce a model
that is both accurate and tolerant to small fluctuations in the data.
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Figure 1.9 – SVR example for execution time estimation.
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Deep Learning Models [80]. These models consist of interconnected neurons, with
each neuron holding a function that combines inputs to produce an output. Their flex-
ibility allows them to solve a wide range of problems using various architectures, which
determine the layout of neuron connections in the network. Details about how these mod-
els are provided in the next Section.

1.3.2 Deep learning techniques

Deep neural networks (DNNs), also known simply as artificial neural networks, are
graphs of computational units called artificial neurons. Neurons receive weighted input
signals. They produce an output signal using an activation function.

Sum(Xi*Wi) + Wo

W1X1

W2
X2

W3X3

Y

W0

Inputs Weights OutputActivation
function

Weighted
sum

Bias

Figure 1.10 – An example of an artificial neuron.

Artificial neuron. Figure 1.10 illustrates an artificial neuron, with three input vari-
ables denoted as X = {x1, x2, x3}. These inputs are each associated with a corresponding
link weight W = {w1, w2, w3}. Additionally, the model incorporates a bias term repre-
sented by the weight w0. The output y of this neuron is computed as the weighted sum
of its inputs, mathematically expressed as y = (∑n

i=1 wixi) + w0. To make predictions,
this output y is subsequently evaluated against a predefined threshold value. Specifically,
y is transformed into an activation signal using either a threshold function or a nonlin-
ear activation function. This activation signal serves as the input to subsequent layers of
neurons in a neural network, if applicable.

Multi-Layer Perceptron. A common graph architecture consists of layers of neu-
rons that form a complete bipartite graph between two consecutive layers: this is called a
Multi-Layer Perceptron 2 (MLP), which is composed of three main parts (see Figure 1.11):
an input layer, hidden layers, and an output layer.

Input layer. The input layer is the entry point for data into the neural network.
It directly receives the raw data or features. Each node in this layer corresponds to one

2. A perceptron is the simplest form of a neural network, consisting of a single neuron or layer.
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Input layer Hidden layer Output layer

Figure 1.11 – An example of a deep neural network consisting of an input layer, hidden
layers, and an output layer.

feature (or attribute) of the data. Essentially, it represents the initial data that you want
to process or make predictions on.

Hidden layers. The hidden layers are where the magic of neural networks happens.
These are called "hidden" because they are not directly exposed to inputs or outputs. These
layers transform the data from the input layer through a series of weighted connections
and activation functions. As the data moves through the hidden layers, the network learns
and captures intricate patterns and relationships within the data.

Output layer. The output layer provides the final prediction from the network. It
translates the complex processing done in the hidden layers into understandable predic-
tions.

Forward propagation. When data is provided to the network, the outputs of all
neurons in the first layer can be calculated by applying the previous formula (weighted
sum plus bias) followed by the activation function. With the output from the first layer, we
can calculate the output of the second layer, and so on, until we reach the final output.
In this way, information is propagated throughout the network from the inputs to the
outputs. This process is called "forward propagation". This is the same procedure used to
make a prediction for a new input after the network has been trained.

Backpropagation of the gradient. During training, the output predicted by the
model is compared with the expected output, and the resulting error is calculated using
the loss function. This error is then propagated backward layer-by-layer, and the weights
(corresponding to each graph edge) are updated based on their contributions to the error.
We call this process "backpropagation". The process is repeated for all the examples
(samples) or on a set of examples called batch in the training dataset. One pass through
the entire dataset to train the neural network is referred to as one epoch, the dataset can
be seen several times as the neural network can be trained for tens, hundreds, or even
thousands of epochs to improve the model’s training accuracy sequentially.
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In the following, we present some important architectures of deep learning models that
will be useful to understand this document and are better suited for temporal data types
such as program codes.
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Figure 1.12 – An RNN unfolds through time.

Recurrent Neural Networks (RNN) [127]. RNNs are a specialized type of deep
neural network tailored for sequence-based problems where the context or chronological
order matters. Unlike Multi-Layer Perceptron, which allows data to flow in only one
direction—from the input layer, through the hidden layers, to the output layer—RNNs
facilitate the cyclic flow of information. This means an output from one step can influence
the input of the next, making them capable of tasks where the sequence or context of
input data is critical, as shown in Figure 1.12.

The left illustration of Figure 1.12 represents a basic RNN, while the right one shows
the same RNN unfolded over time. For illustration, consider a basic block in assembly
language comprising a sequence of instructions with inherent interdependencies. For in-
stance, within a BB, we have the following instructions [LOAD R1], [ADD R1, R2], and
[STORE R2]. At t=0, the "LOAD" instruction is processed as an input, depicted by X0.
The network processes X0 to produce two results: h0, the outcome from processing X0,
and M0, indicating the memory or state after this instruction’s processing. Next, at t=1,
the register "R1" (from the LOAD instruction) is recognized as X1. The network processes
X1 and integrates it with M0 to generate outputs h1 and M1. By t=3, "R1" becomes the
input, which, when combined with the state M2, can help the RNN detect the dependency
on "R1". The procedure follows, with each step’s memory capturing the results of preced-
ing processing stages, efficiently tracing the instruction dependencies within the network.
Each state from a previous timestep, illustrated as M(t−1), is conserved and combined with
the input of the forthcoming timestep, Xt. Such RNN configurations can be invaluable
for analyzing and predicting the execution time of basic blocks.

Long Short-Term Memory (LSTM) Networks [82]. LSTM are an enhanced
version of RNNs designed to address the long-term memory limitations of traditional
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Figure 1.13 – An LSTM cell, represented by the different gates that compose it: Forget
gate, Input gate, and Output gate.

RNNs (as RNNs tend to forget long-term dependencies due to the vanishing and exploding
gradient problem [82]). An LSTM cell (Figure 1.13) features two types of memory: short-
term memory Ht and long-term memory Ct. LSTM are mainly composed of three neural
network blocks, each with a specific role, termed as gate. Each gate is a neural network
that has a specific objective:

1. Forget gate: The first gate which determines which observations should be forgot-
ten or removed from long-term memory;

2. Input gate: Which decides how much new information should be added to the
memory cell Ct —also representing the actual output of the model at each step—;

3. Output gate: Which updates the short-term memory Ht.
To better understand the LSTM, we give the following analogy about a library. Imagine

an LSTM as a library where books are being processed. Ct represents the actual collection,
Ht represents book recommendations, which depend on the demands of library-goers in
the previous days, and Xt represents the demands of the library-goers for the actual day.
Each gate will be represented by a librarian as follows:

— Forget gate (Librarian for old books): This librarian manages the collection of old
books (previous information). He decides which books are outdated or no longer
needed and removes them from the shelves, and keeps the books that are still relevant,
using the actual demands information Xt and historical demands list during previous
days Ht.

— Input gate (Librarian for new arrivals): This librarian is in charge of new book
arrivals (incoming information). He assesses the value of each new book and decides
which ones to add to the collection, depending on their relevance and the existing
collection. Finally, he updates the shelves with new valuable books.

— Output gate (Librarian for lending): Based on the available collection (current state
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of memory cell Ct) and the demands of the library-goers (new inputs Xt), this li-
brarian decides which books to recommend Ht. This information is used the next
day by other librarians to make decisions.
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Figure 1.14 – The Transformers architecture, as described in the original paper.

Transformers [163]. The Transformers, introduced by Vaswani et al. in 2017, has
marked a significant shift in the paradigm of sequential data treatment, outclassing the
performances of traditional RNNs and LSTMs. One of the defining characteristics of
Transformers is their ability to process the entire input sequence simultaneously. This
global perspective allows Transformers to capture long-range sequences and all data de-
pendencies more effectively. Instead of relying on recurrent connections like their prede-
cessors, Transformers employ an attention mechanism. This mechanism can be visualized
as a spotlight, emphasizing specific portions of the input sequence, enabling the model to
concentrate on the most pertinent information.

Figure 1.14 depicts the Transformers architecture, which is primarily composed of two
components: the encoder and the decoder. While the decoder is responsible for sequence
generation, it falls outside the purview of this document. Our focus will be on the encoder.
To simplify the explanation of how encoders work, we will explain two major components:
positional encoding and self-attention mechanism.

Positional encoding. Unlike traditional sequential models that process inputs step-
by-step, the encoder in the Transformers takes in the entire sequence simultaneously.
However, this poses a challenge: without any inherent notion of sequence order (as there
is no step-by-step processing), how does the model differentiate between the positions of
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elements in the sequence? This is where positional encoding comes in. It provides the
model with a unique signature for each position in the sequence, ensuring that the model
can recognize the order of elements using this signature. For illustration, consider a simple
assembly instruction: MOV R2, R3. Initially, each word is transformed into embeddings,
yielding the following:

MOV: [0.1, 0.9, 0.3], R2: [0.8, 0.4, 0.2], R3: [0.7, 0.6, 0.5]

Subsequently, positional encodings—vectors formulated to be combined with word
embeddings—are appended to these initial embeddings. For the sake of simplicity, we can
consider the positional encodings as follows:

Position 1: [0.01, 0.01, 0.01], Position 2: [0.02, 0.02, 0.02], Position 3: [0.03, 0.03, 0.03]

After addition, the modified embeddings are:

MOV: [0.11, 0.91, 0.31], R2: [0.82, 0.42, 0.22], R3: [0.73, 0.63, 0.53]

These refined embeddings are then fed into the model, allowing it to discern that
"MOV R2 R3" and "MOV R3 R2" are distinct instructions due to the differing register
orderings (which is important for handling register dependencies problems), despite the
identical word set.

Attention mechanism. The encoder contains multiple self-attention layers, as in-
dicated by "N" in Figure 1.14. These layers allow the model to weigh the significance
of distinct parts of the sequence differently, enabling it to focus on the most relevant
parts at any given time. Consequently, as we move through the layers of the encoder,
each one captures a progressively more abstract representation of the input, resulting in
a comprehensive and multi-faceted understanding of the entire sequence.

Context fragmentation problem. Transformers have a shortcoming when it comes
to handling exceptionally long sequences. Due to memory limitations, a Transformers
model is constrained by a fixed maximum input length. Sequences exceeding this limit
must be divided into smaller fragments that conform to the model’s input size constraints.
This fragmentation disrupts the model’s understanding of the sequential context.

Transformers XL [43]. Transformers XL, as illustrated in Figure 1.15, marks a
significant advancement in Transformers architectures by addressing the challenge of con-
text fragmentation. One of its standout features is its capacity to "recall" or remember
previously treated fragments of data. Instead of processing each fragment in isolation,
Transformer XL integrates information from previous fragments, using this accumulated

50



1.3. Machine learning

Linear

Softmax

Relative Multi-
Head Attention

Add & Norm

Input Embedding

Feed Forward

Add & Norm

+

Outputs
Probabilities

Nx

Positional
Enconding

Q K V

Inputs

+Old Memory New Memory

Figure 1.15 – The Transformers XL architecture.

knowledge as a foundation when interpreting new data. This continuity is facilitated by a
technique known as the "recurrence mechanism", which is somewhat akin to the workings
of RNNs or LSTMs. In Figure 1.15, the "Old Memory" represents retained information,
while the "New Memory" captures the latest processed data. As data flows through Trans-
formers XL, these two components interact, ensuring a holistic understanding of sequences
and interconnecting even distant pieces of information.

Training effectively a Transformers. Training a Transformers efficiently usually
involves two phases: pretraining and finetuning.

1. Pretraining [62]: The pretraining phase is a critical step in training Transformers
models, especially in the context of language modeling. During this stage, the model
is trained on a voluminous corpus of text data in a self-supervised way, enabling it
to grasp the linguistic structure, semantics, and more intricate language patterns.
One prevalent approach to pretraining is Masked Language Modeling (MLM) [57].
In this method, a specific proportion of the input tokens are randomly masked, and
the model is trained to predict these masked tokens based on their surrounding
context. For instance, Figure 1.16 illustrates this concept with the sentence "MOV
___ Constant, ___ Adress," where the model aims to predict the masked words
"Register" and "Branch" based on the adjacent tokens 3. This practice enables the
model to develop robust language representations in the hidden layer of the neural

3. In Natural Language Processing, a "token" refers to an individual piece of text such as a word, a
number, or punctuation.
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network.

2. Finetuning: After the pretraining phase, the Transformers model acquires a foun-
dational understanding of the domain-specific language and structure. However, to
tailor the model for specialized tasks—such as execution time estimation—a finetun-
ing phase is necessary. This process entails additional training on a smaller labeled
dataset that is pertinent to the specific targeted task. During this finetuning phase,
the model refines its generalized domain knowledge to suit the nuances and require-
ments of the targeted application.

[CLS] MOV [MASK] Constant [MASK] Adress

Register BranchPrediction

Input

Figure 1.16 – Masked language modeling on a simple example.

1.3.3 Inputs used for ML-based timing models

The categorization of machine learning techniques usable for timing estimation can be
based on the representation of the code to analyze (extracted static attributes, dynamic
attributes, or embedding representations of code). In the following sections, we delve into
each level and category.

Extracted static features a.k.a. "handcrafted features"

Some machine learning methodologies focus on feature extraction from code or system
attributes believed to have an impact on execution time [137]. These extracted features
can encompass architectural variables (e.g., cache size, memory bandwidth) or instruction-
level specifics (e.g., number of arithmetic operations, memory access operations, or branch-
ing operations). Traditional methods of feature engineering 4 can be applied to select these
attributes. Table 1.3 provides an illustrative example of static features that might be har-
vested from a given program. For instance, the occurrence frequency of each instruction
within the code can serve as a distinguishing characteristic of the program.

4. Feature engineering is the process of selecting, transforming, or creating relevant input variables
(features) to enhance the performance of machine learning models.
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Feature Value
ft1 Number of instructions
ft2 Number of add instructions
ft3 Number of sub instructions
ft4 Number of mult instructions
ft5 Number of div instructions
ft6 Number of load instructions
ft7 Number of store instructions
ft8 Number of comparisons
ft9 Number of conditional branches
ft10 Number of unconditional branches

Table 1.3 – Representing a code snippet with static features [137].

Extracted dynamic features

Performance counter-based techniques leverage hardware performance counters to col-
lect fine grained information about the system’s behavior during program execution [137].
These techniques capture events such as cache hits, branch mispredictions, or memory ac-
cesses. By incorporating performance counter data as input, machine learning models
can learn from the underlying hardware behavior and improve estimation accuracy in
some cases. Table 1.4 presents an example of the performance counters that PAPI [134]
provides.

Counter Description
PAPI_TOT_CYC Total cycles
PAPI_TOT_INS Total instructions
PAPI_BRI_TKN Branch instructions taken
PAPI_BRI_NTK Branch instructions not taken
PAPI_BR_MSP Branch mispredictions
PAPI_LD_INS Load instructions executed
PAPI_SR_INS Store instructions executed

PAPI_L1_DCM Level 1 data cache misses
PAPI_L1_ICM Level 1 instruction cache misses
PAPI_FP_INS Floating-point instructions executed

PAPI_VEC_INS Vector/SIMD instructions executed
PAPI_RES_STL Cycles stalled on resource contention
PAPI_LD_INS Load instructions executed
PAPI_SR_INS Store instructions executed

PAPI_TLB_DM Data Translation Lookaside Buffer (TLB) misses
PAPI_TLB_IM Instruction TLB misses

PAPI_TOT_CACHES Total cache accesses
PAPI_TOT_INS_I Total instructions completed

Table 1.4 – List of some PAPI performance counters [134].

53



Part , Chapter 1 – Background on Timing Estimation Using Machine Learning

Embedding representations of code

An alternative strategy in machine learning focuses on directly learning code represen-
tations. Instead of manually extracting features, which can be tedious and error-prone,
this method allows the machine learning model to automatically capture the essential
features and characteristics of the code. Techniques like Word2Vec [132] or Bidirectional
Encoder Representations from Transformers (BERT) [54] are employed to transform code
snippets or entire program structures into continuous vector representations, often re-
ferred to as embeddings. These embeddings, once generated, serve as input for machine
learning algorithms. They offer a comprehensive view of the code, capturing both its local
nuances and broader structures. This holistic understanding allows the model to recognize
intricate relationships and dependencies within the programming constructs, leading to
more accurate and insightful predictions.

In the literature, we can find different techniques to embed codes:

One-hot encoding. One-hot encoding is a foundational method for converting cat-
egorical variables into binary vectors. In this approach, each distinct category within a
variable is represented as an individual binary feature. Specifically, each category is con-
verted into a binary vector whose length matches the total number of categories. In this
vector, all elements are set to "0", except for a single "1" that marks the presence of the
category in question. For instance, as illustrated in Figure 1.17, a vocabulary table is uti-
lized to construct a lookup table, where each row represents an ARM assembly instruction
as a binary vector.

id Instruction
1 Add
2 Sub
3 Mul
4 Div
5 Mov
... ...
N Store

id Add Sub Mul Div Mov ... Store
1 1 0 0 0 0 0...0 0
2 0 1 0 0 0 0...0 0
3 0 0 1 0 0 0...0 0
4 0 0 0 1 0 0...0 0
5 0 0 0 0 1 0...0 0
... 0 0 0 0 0 0...1 0
N 0 0 0 0 0 0...0 1

N = Vocabulary size One hot encoding

Figure 1.17 – Basic block representation using one-hot-encoding example.

Word2Vec [132]. Developed by Google, Word2Vec is a method that transforms
words into numerical vectors, essentially giving each word a unique numerical fingerprint
based on its context and meaning. It utilizes neural networks and is grounded in the idea
that words appearing frequently together in texts are likely to have related meanings.

Two primary strategies are employed in Word2Vec: Continuous Bag of Words (CBOW)
and Skip-Gram. Both are visualized in Figure 1.18. To understand them better, consider
the following sentence in natural language, "The cat sat on the mat".
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CBOW. CBOW predicts the embedding of a target word based on the surrounding
words. For instance, given the surrounding words "The", "cat", "on", "the", it tries to predict
the embedding of the word "sat". This method, depicted on the left side of Figure 1.18, is
particularly effective for capturing the general context around a word.

Skip-Gram. Skip-Gram operates in the opposite manner to CBOW. Given the tar-
get word, it predicts the embeddings of the surrounding words. For example, starting
with the word "sat", Skip-Gram would predict the embeddings of surrounding words like
"The", "cat", "on", "the". This method, shown on the right side of Figure 1.18, is adept at
understanding the specific contexts in which a word can appear.

In short, while CBOW uses context to predict a word’s embedding, Skip-Gram uses
a word to predict the context embeddings. In this document, the focus will be on the
usage of CBOW. The rationale for this choice, especially when dealing with assembly
code, is that CBOW tends to be more efficient with larger datasets. Assembly code, being
low-level and verbose, often results in extensive datasets.
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Figure 1.18 – Word2vec architecture (CBOW and Skip-gram).

Transformers. BERT [57] is a specific model based on the Transformers architecture.
One of its standout features is its ability to capture the context and relationships between
different parts of a sequence. This ability is especially valuable for generating good embed-
dings using attention mechanisms. Building on the capabilities of BERT, techniques like
CodeBert [65] and PalmTree [115] have been successfully developed to create embeddings
specifically for code. Figure 1.19 provides a visual representation of this attention mecha-
nism in action for the input "MOV R2, #1, BR 0xF124". The resulting attention matrix
showcases how different parts of the code influence each other, preserving the relational
information between instructions. Such embeddings, rich in contextual information, prove
invaluable for various tasks related to code, including generating new code, annotating
existing code, or even correcting errors. In our case, we will use it to represent the basic
blocks and estimate their execution time.
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Figure 1.19 – Assembly code embedding using Transformers’s attention matrix.

1.4 Machine learning for execution time estimation

Table 1.5 provides a summary of the works conducted for estimating execution time
based on different scenarios: average, best, and worst cases. It includes information about
the code level abstraction (source, intermediate, or binary), measurement tools used to
capture the execution time, machine learning methods employed, types of inputs utilized,
and dataset sizes. In general, we can make the following observations:

— Most studies depicted in the table concentrate on source code for analysis without
any consideration of compiler effect. Linear regression (LR) and neural networks
(NN) emerge as commonly employed ML algorithms and more sophisticated ones
like LSTM and Transformers are rarely used.

— Reviewing the execution time measurement tools reveals a noteworthy inclination
towards software (SW) measures, which is problematic due to the probe effect 5.
However, some studies incorporate hardware (HW) measures or simulations.

— The variation in dataset sizes is also important, with "small" dataset sizes being
predominant, reflecting possible limitations in data acquisition in this field.

5. Probe effect refers to the phenomenon where the act of observing or measuring a system alters the
behavior of that system.
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[165] Average Source code SW measures LR, NN Performance counters
and compiler settings

Small

[46] Average intermediate rep-
resentation

SW measures LSTM MLIR instruction and
auxiliary HW input

Huge

[18] Average None SW measures LR, SVR, KNN Input data features and
performance counters

Small

[9] Average Source code SW measures LR, SVR, RF Extracted features and
performance counters

Small

[10] Average Source code SW measures LR, SVR, RF Performance counters Small
[149] Average Binary HW measures LR, RF, XGBoost, NN Performance counters

and static features from
LLVM-MCA

Huge

[60] Average Source code SW measures LR, NN Performance counters Small
[137] Average Source code SW measures LR, SVM, NN Instructions Small
[24] Average Source code SW measures SVM, NN Static features of CNNs Medium
[25] Average Source code SW measures LR, NN, SVM, RF, XGBoost Static features of CNNs Medium
[158] Best Binary SW measures GNN Instructions Huge
[129] Best Binary SW measures LSTM Instructions Huge
[154] Best Binary SW measures Transformers Instructions Huge
[105] Worst Source SW measures LR, SVR, RF Type of instructions Small
[104] Worst Source GEM5 simulator LR, SVR, RF Type of instructions Medium
[87] Worst Source HW/SW measures LR, RF, SVR, KNN Type of instructions Small
[90] Worst Source HW/SW measures NN Type of instructions Small
[21] Worst Source Static analysis WEKA: LR, SVR, RF, NN Type of instructions Small
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[73] Worst IR SW measures and
GEM5 simulator

LR Type of instructions Small

[130] Worst Source SimpleScalar simulation SVR Type of instructions Small
[131] Worst Source Chronos and Sim-

pleScalar simulation
SVR, NN Type of instructions Small

[153] Worst Source GEM5 Simulation LR, NN, SVR ? Medium
[11] Worst Source SW measures NN Function parameters Large

Table 1.5 – Summary of works conducted for estimating the execution time.
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1.4. Machine learning for execution time estimation

In the following, we will discuss the most relevant works, categorizing them according
to the execution time scenario they address (ACET, BCET, and WCET).

1.4.1 ACET estimation using ML

Most of the research on average-case scenarios focuses on improving compilation per-
formance and uses basic machine learning techniques such as linear regression, support
vector machine regressors, and/or random forest regressors. One notable work in this area
is presented by Huang et al. [85]. They employ polynomial regression to predict program
execution time based on static features such as loop counts, branch counts, and variable
values. In addition to considering static features, some researchers have focused solely
on using performance counters for execution time estimation. The work [10] proposes a
methodology that solely relies on performance counters. By analyzing them, the authors
aim to predict the execution time and evaluate the effectiveness of compiler optimizations.
Another relevant study by Marcos Amaris et al. [9] explores the use of machine learning
techniques for execution time prediction on GPUs. They utilize a combination of perfor-
mance counters, such as the number of cache accesses and main memory accesses, along
with static features of the application, including the number of basic blocks and threads.
The authors employ LR, SVR, and RF algorithms to accurately predict execution time.

1.4.2 BCET estimation using ML

In the field of best-case execution time, research is primarily focused on estimating
the execution throughput of x86 architectures. ITHEMAL [129] is one of the pioneering
works that introduced RNN models for time estimation. ITHEMAL utilizes a hierarchical
multiscale LSTM layer to accurately forecast the throughput of basic blocks. The RNN
LSTM-based module of ITHEMAL captures intricate relationships among instructions
within the same basic block. Figure 1.20 illustrates the architecture of the LSTM models
used in ITHEMAL. Initially, the basic block is divided into instructions, and each instruc-
tion is further separated into operations or operands. These components are assigned a
fixed number (a predefined token from a dictionary). This simplifies the process of em-
bedding using word2vec [132]. The embedding of each instruction component is handled
by the first LSTM layer. The second layer, on the other hand, focuses solely on the final
representation of the entire instruction to create a representation of a basic block. The
basic block representation is then passed to a feedforward layer to predict the throughput.
BHive [37] is the dataset used to train ITHEMAL. This dataset consists of isolated basic
blocks that are prepared under optimal conditions to measure processor performance (re-
moving branching, ensuring that memory accesses are handled at the first level of cache,
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Part , Chapter 1 – Background on Timing Estimation Using Machine Learning

etc.). The isolated basic block is then executed repeatedly until it reaches steady-state
behavior. DeepPM [155], in the same fashion as ITHEMAL, predicts the execution time
of a basic block in isolation using a simplified Transformers architecture. The lack of de-
tails on the paper and the unavailability of the code made the description of this work
infeasible.
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Figure 1.20 – ITHEMAL architecture.

1.4.3 WCET estimation using ML

In the worst-case scenario, two types of approaches can be distinguished. The first
employs machine learning for end-to-end program measurement. Notable works in this
category, such as those by Gustafsson et al. [73] and Bonenfant et al. [21], rely on an
intermediate code representation to extract program attributes. These attributes are
then employed in trained machine learning models to estimate the WCET. The sec-
ond approach is presented by the work of Thomas Huybrechts [87, 90]. Huybrechts in-
troduced a hybrid methodology. This strategy uses both static and machine learning-
based methods, aiming for a reasonable blend of computational efficiency and predictive
accuracy. In this framework, the source code is partitioned into segments called "hy-
brid blocks", characterized by single entry and exit points 6 and ranging from individ-
ual instructions to entire functions. Machine learning-based estimations are conducted
for each of these blocks, and the outcomes are integrated statically to form a com-
posite WCET estimate. This hybrid approach is incorporated into the Code Behavior
fRAmework (COBRA) tool [89], an open-source platform designed for various resource

6. Unlike the definition of a basic block, which is a sequence of instructions without any branching in
the middle, hyper blocks can have these branches within them. Thus, a hyperblock is a subgraph of basic
blocks where one can enter from a single point and exit from a single point.
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1.5. Conclusion

optimization tasks, including WCET analysis, scheduler tuning, and multicores perfor-
mance enhancement. Preliminary results indicate that this hybrid methodology substan-
tially mitigates the analytical overhead associated with static and measurement-based
techniques while maintaining WCET predictions that closely approximate actual val-
ues. It is worth noting, however, that this method does not account for compiler ef-
fects, as it operates directly on source code features for basic block WCET prediction.
In this thesis, we will concentrate on research that operates at the binary
level because such studies encompass all the essential temporal information
required for precise performance evaluation. Additionally, we will use research
that is open source like ITHEMAL [129].

1.5 Conclusion

The background provided delved into different execution time estimation methods,
with machine learning being a prevalent tool across average-case, best-case, and worst-
case scenarios. Various algorithms, ranging from linear regression to advanced ones like
LSTM, highlight the progressive nature of "machine learning for timing estimation".

WCET estimation stands out due to its critical role in real-time systems. Huybrechts’
hybrid approach [88, 91, 87], which merges static analysis and machine learning, is note-
worthy. While it seeks a balance between computational efficiency and prediction accuracy,
its focus on source code features over compiler effects could be a drawback.

The summary of related studies in Table 1.5 showed that many works overlook hard-
ware complexity and the interplay between instruction sequences and hardware (pipeline
and cache effects). This oversight can introduce bias and inaccuracies when training ma-
chine learning models, especially when it is applied at the source or intermediate code
stages (therefore ignoring the compiler optimization effects). Moreover, the precision of
machine learning predictions can be compromised by the often limited size of training
datasets. These observations prompt two unresolved questions: Can machine learning
methods be tailored to work efficiently with modern processors, especially given the in-
creasing prevalence of these processors? And how can machine learning models be trained
to account for instruction dependencies to yield more accurate timing estimates?

In conclusion, leveraging machine learning for execution time estimation is a promising
approach. However, careful consideration of the challenges, including hardware complexity,
limited training data, and the need for precise modeling of interactions between instruction
sets and hardware, is crucial for the successful application of machine learning in this
domain. This document will therefore focus on addressing these challenges and exploring
new solutions to enhance the accuracy of machine learning-based execution time code
estimation.
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Chapter 2

WCET ESTIMATION USING CLASSICAL

MACHINE LEARNING TECHNIQUES

In this chapter, we introduce WE-HML, a novel hybrid approach for Worst-Case Ex-
ecution Time (WCET) estimation. WE-HML stands for Worst-Case Execution Time
Estimation using a Hybrid Machine Learning-based technique). This marks the first at-
tempt in this thesis to combine machine learning with WCET estimation, specifically
through the use of traditional machine learning methods such as linear regression, ran-
dom forest, or neural networks. It serves as a foundational work, laying the foundations
for the subsequent research in this document.

The WE-HML method uses machine learning in its two main phases: learning and
WCET estimation. In the learning phase, machine learning models are trained using
timing data from different basic blocks to predict WCET. These predictions account
for varying execution contexts. During the WCET estimation phase, the trained models
calculate the WCET for each basic block of a program, considering cache effects. The
program’s overall WCET is then determined using an adapted IPET approach.

The main contribution of this research is the development of a novel hybrid WCET
estimation technique tailored for single-core processors. This technique relies on a machine
learning-derived timing model for the processor’s core and accounts for processor cache
behavior, requiring minimal information about the processor’s memory hierarchy. This
work was accepted and published at RTCSA 2021:

"Abderaouf N., AMALOU, Isabelle Puaut, and Gilles Muller. "WE-HML: Hybrid
WCET Estimation Using Machine Learning for Architectures with Caches." The 27th
International Conference on Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA). IEEE, 2021."

Hypotheses

In this subsection, we outline the hypotheses and operating assumptions that form the
foundation of the WE-HML technique.
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— WE-HML is particularly well-suited for applications requiring intermediate levels of
safety assurance, such as those falling within the DAL B and C categories in the
aeronautics industry [20]. These applications often run on complex processors for
which creating a reliable timing model is challenging, rendering traditional static
WCET estimation methods impractical. While some level of pessimism in WCET
estimates is tolerated for these systems, missing a deadline is considered acceptable
if it occurs rarely.

— In terms of methodology, WE-HML learns the WCET for each basic block under
varying execution contexts. Specifically, these contexts take into account the level
of data cache pollution generated by the concurrent execution of other code within
the same loop nest. A unique advantage of WE-HML lies in its minimal reliance
on detailed knowledge of the memory hierarchy, simplifying its implementation and
application.

— In our approach, a sequence of instructions executed consecutively is broadly cate-
gorized as a basic block. This categorization allows us to incorporate the effects of
branching into the WCET estimates for the generated basic blocks.

The remainder of this chapter is structured as follows. Section 2.1 provides a compre-
hensive introduction to the WE-HML technique. Section 2.2 outlines the experimental
methodology employed for evaluating WE-HML on an ARM Cortex-A53 processor. Sec-
tion 2.3 then presents the results obtained from these experiments. Finally, Section 2.4
provides a critical discussion of the findings and explores the limitations of WE-HML.

2.1 The WE-HML approach

WE-HML operates in two phases. The first phase, where machine learning algorithms
are trained using measurements on a variety of basic blocks, is described in Section 2.1.1.
The second phase estimates the WCET of programs using a modified IPET calculation
method and is discussed in Section 2.1.2. Section 2.1.3 details the automatic generation
of training data, and the support of caches is elaborated in Section 2.1.4.

2.1.1 Learning the processor timing model (training)

The training phase is executed once for each target architecture with the primary
objective of learning the processor timing model, as depicted in Figure 2.1. WE-HML
incorporates five machine learning algorithms, and our evaluations utilized algorithms
from the Scikit-learn library [138, 70]. Initial experiments guided our focus toward the
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top five algorithms that demonstrated the most promising outcomes. These algorithms
are listed in Table 2.1, with comprehensive details provided in Chapter 1, page 38.

These algorithms are trained on basic blocks that are automatically generated, as
detailed in Section 2.1.3. The automatic generation of basic blocks aims to cover a large
variety of code structures in real codes. Once trained, each ML algorithm can estimate the
WCET of any basic block in programs, including basic blocks never encountered during
the training phase. The ML algorithm captures the impact of the contents of a generated
basic block on its WCET.

Figure 2.1 – WE-HML training phase.

The ML algorithms learn from the values of numerical quantities, called features. For
the scope of this chapter, the features used are handcrafted. The considered features
in WE-HML are a vector of proportions of each type of machine instruction (e.g., add,
sub) to the number of instructions in the considered basic block (#specific_instr

#instrs ). When an
instruction type has different addressing modes that impact the instruction timing (i.e.,
memory vs. register operands), each variant is a different entry in the vector. Encoding
instruction types as proportions allows the construction of a timing model
independent of the length of basic blocks. For the same reason, the WCET estimate
of a basic block is also encoded as a proportion of cycles to the number of instructions in
the basic block ( W CET

#instrs
). Features and normalized WCET estimates are both represented

as floating-point values.
For instance, for Cortex-A53 we used these features:
[add, and, asr, b, bcc, bcs, beq, bge, bgt, bhi, bic, bl, ble, bls, blt, bne, cmn, cmp,

eor, ldm, ldr, ldrb, ldrh, ldrsh, lsl, lsr, mov, movcc, movcs, moveq, movge, movgt,

movhi, movle, movls, movlt, movne, movw, mul, mvn, nop, orr, push, rsb, rsblt, smulbb,

smull, stm, str, strb, strh, sub, sxtb, sxth, ubfx, umull, uxtb, uxt]

2.1.2 Estimating the WCET of a target program

The WCET estimation phase for a target program is shown in Figure 2.2. First,
basic blocks, their associated features, and the program’s Control Flow Graph (CFG)
are extracted from the program’s binary code. The learned timing model is then used to
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Table 2.1 – Experimented machine learning algorithms.

Algorithm
Random Forest (RF)
Neural Network (NN)
Gradient Boosting (GB)
Support Vector Machine Regressor (SVR)
Ridge Regression (RR)

compute a WCET estimate for each basic block. The CFG and the WCET estimates are
then fed back to a WCET estimation tool that implements the IPET [117] for estimating
the WCET of the entire program. In our WE-HML prototype, we have modified the IPET
implementation of the Heptane open-source software [78].

Figure 2.2 – WE-HML WCET estimation phase.

In Section 2.1.4, we show how to extend this simple formulation to take data caches
into account.

2.1.3 Automatic generation of training data

Contrary to existing works that utilize machine learning algorithms for WCET esti-
mation [86, 5], which often depend on a limited set of benchmarks for training, we take
a more expansive approach. Drawing inspiration from [166], we employ a large dataset
of automatically generated basic blocks to train the machine learning algorithms. This
approach provides a diverse and comprehensive set of code snippets.

The WE-HML code generator is designed to create C source code for basic blocks using
a predefined grammar. This source code is then compiled into binary. The generated basic
blocks are diverse, with randomly determined numbers of statements and variables. The
code incorporates all standard basic types—such as char, short, int, and long—both in
their signed and unsigned variants, as well as arrays of these types. These types are selected
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based on user-provided proportions, ensuring diversity in the training data. Additionally,
the generator includes a broad collection of common C operations, covering arithmetic
and logical operations to shift-and-rotate, array indexing, and various boolean operations.

Each generated basic block starts by declaring a set of variables and subsequently
performs a series of randomly selected operations on them. By design, the generated
code is free of runtime exceptions, such as out-of-bounds array accesses. While the code
may include if statements to encompass branching instructions, the generator ensures
that there is no data-dependent execution. All conditional branches are designed to be
predictable, with if statement conditions always set to true. It is worth noting that the
WE-HML definition of a "basic block" slightly diverges from the conventional compiler
domain definition. In WE-HML, a basic block can contain branching instructions to enable
the timing estimation of such operations. An example of a WE-HML-generated basic block
is provided in Listing 2.1. The provided C code represents a basic block that operates on
an array named array_0 and various variables, encompassing conditional assignments,
arithmetic operations, and bitwise shifts. Notably, all conditions, contingent upon the
comparison between the variables one and zero, are met to guarantee the full execution
of the code.

Listing 2.1 – Example of generated basic block
array_0 [ 2 3 3 ] = ( one > zero ) ? var_5 : var_4 ;
var_3 = array_0 [ array_index ] − var_3 ;
array_0 [ 1 6 4 ] = var_3 << smal l_int ;
i f ( one > zero ) {

var_1 = var_5 % 65497 ;
var_6 = var_6 >> 2 ;
++var_3 ;
array_0 [ 1 4 6 ] = −array_0 [ array_index ] ;
var_1 = array_0 [ array_index ] ∗ array_0 [ 1 4 0 ] ; }

The WE-HML code generator outputs C code, making it architecture-agnostic. As a
result, it is suitable for WCET estimation across various processor targets. Details on
the experimental conditions, implemented to minimize bias during the training of ML
algorithms on automatically generated code, can be found in Section 2.2.

2.1.4 Supporting processors with data caches

The memory hierarchy significantly impacts the execution time of a basic block. When
the instruction/data caches contain no information (cold cache), or when dirty data have
to be copied back into memory, the execution time of a basic block is much longer than
when the cache contains useful information loaded previously (warm cache). Therefore,
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not considering the memory hierarchy during WCET estimation amounts to evaluating
only the cold cache scenario, which may result in highly pessimistic WCET estimates.
In what follows, we propose a method to consider the data caches when estimating the
WCET of basic blocks.

Unlike traditional static cache analysis methods [123, 68, 77] that demand detailed
knowledge of the cache architecture and the program’s memory access patterns, WE-HML
employs a learning-based approach. In this approach, data cache effects are explicitly con-
sidered during training, where the WCET of a basic block is measured and learned under
an instrumented state of the cache. This allows WE-HML to more accurately estimate the
cache’s impact on the execution time of a basic block during the prediction phase. Specif-
ically, WE-HML introduces the concept of cache pollution value to account for variable
data cache conditions within a loop nest. In general, a loop nest consists of several basic
blocks. When a basic block b is executed multiple times within a loop nest, its execution
time can be influenced by other basic blocks (denoted as bothers) in the same loop nest,
which can multiply the memory accesses.

During the training phase of WE-HML, we artificially simulate the memory
accesses of bothers for each basic block b in our dataset. This is done by varying a hy-
perparameter called the pollution factor p, which is used to simulate a factor number of
accesses. For the size of the accessed data, we chose arbitrarily to take the size of the
data accessed by the basic block b, represented by x bytes, which we want to subject to
a certain pollution factor. In this context, if b accesses x bytes of data, a pollution value
of p suggests that p ∗ x bytes could be accessed within the loop nest, independently from
b, potentially ejecting its data from the cache. Our observations indicate that a higher
pollution value corresponds to an increased execution time for b.

Listing 2.2 demonstrates the code used for the execution of a basic block under the
influence of cache pollution. It initiates by clearing the cache. It then repeatedly executes
a basic block BB(), measuring its execution time within the loop controlled by nb_iter.
The repetitive executions serve dual purposes:

— Capturing the processor’s inherent timing variability, especially as the pollution
code’s introduction is random.

— Measuring, though without absolute guarantees, the worst-case pollution situations
impacting b in loop nests.

After each execution, and as a precaution, the instruction cache and branch predictor are
flushed between tests using invalidate_brPred_icache since its pollution effect is not cur-
rently accounted for. Finally, a function pollute(p*x) is called to simulate cache pollution
by writing p*x random bytes.
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Listing 2.2 – Executing a basic block with cache pollution
f lush_caches ( ) ;
for ( i = 0 ; i < nb_iter ; i++) {

// Monitor exec . o f BB ( read c y c l e counter )
cnt_read(&tb ) ;
BB( ) ;
cnt_read(&ta ) ;
// save execu t ion time i t e r a t i o n i = ( ta − t b )
inva l idate_brPred_icache ( ) ;
p o l l u t e (p∗x ) ; // Write randomly p∗x b y t e s

}

The sequence for two iterations of Listing 2.2 is shown in Figure 2.3, which offers a
visual representation detailing the process of cache pollution on a basic block b, symbolized
as BB() when subjected to a specified pollution factor p. Initially, at the first iteration of
the loop, the basic block b encounters cache misses, as illustrated in Step 1 (cold cache).
Following the execution of BB(), data is subsequently loaded into the cache (entering
warm cache state), as shown in Step 2. Transitioning to Step 3, a pollution code then
simulates extra cache accesses, drawing p ∗ x bytes from an array that aligns with the
L1 cache’s dimensions (polluting the cache). As the process progresses to the next loop
iteration in Step 4, the effects of the simulated pollution become evident. Specifically, in
the Figure 2.3 example, b undergoes partial cache misses due to the disruptions caused
by the simulated pollution, a phenomenon further emphasized in Step 5.
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Figure 2.3 – An example illustrating data cache pollution simulation on a basic block in
5 steps. The process targets a data cache that employs a random replacement policy.
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The pollution code aids in understanding the impact of cache levels on the execution
time of the basic block under investigation. This understanding is achieved without the
need for detailed specifications of the cache architecture—only the size of the L1 cache,
which can be easily determined experimentally, is required.

Once the dataset for each basic block is prepared for every pollution factor, training
of the machine learning model can start. As illustrated in the upper section of Figure 2.4,
each dataset is used to train "ML model X" (machine learning algorithm X), producing
multiple instances of the model, each corresponding to a specific pollution level.

During the estimation phase, depicted in the bottom section of Figure 2.4 is di-
vided into two primary parts. The left segment, termed "estimation of maximum pollution
value", outlines the process to determine pollution values for each basic block, starting
with the control flow graph (CFG). The current approach to estimating the pollution
value is conservative. It accounts for all accesses within a loop nest, meaning if there are
several paths in a loop, the accesses from all paths are aggregated, ensuring safety but
possibly overestimating pollution values. Another conservative aspect is recognizing loops
as the sole source of cache reuse, overlooking reuse from function calls. Presently, cache
pollution is only calculated for loop nests that consist of a function call tree with a depth
greater than one. Benchmarks not adhering to this criteria are excluded. In such cases,
the highest pollution factor is utilized.

The right segment, labeled "BB WCET Estimation", depicts the method to obtain two
WCET predictions for each BB. These predictions stem from two cache conditions: cold
and warm. For the cold cache scenario, the highest pollution factor is applied, signifying
the BB’s run during the initial loop iteration. In contrast, for the warm cache scenario,
the pollution factor nearest to the statically assessed cache pollution value is chosen.
Both these factors are incorporated into a static WCET tool to derive the program’s final
WCET estimate.
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Figure 2.4 – The introduction of cache pollution during both the training and estimation
(prediction) phases.

2.2 Experimental setup

In this Section, we detail the experimental setup used to evaluate WE-HML for the
Raspberry Pi 3 B+ platform. The hardware and software environments are first intro-
duced (Section 2.2.1). The programs used for evaluating the quality of predictions are
presented (Section 2.2.2). We then detail the learning and prediction phases of WE-HML
(Sections 2.2.3 and 2.2.4).

2.2.1 Hardware and software environments

The Raspberry Pi 3 B+ utilizes a Broadcom BCM2837 SoC, featuring a 1.2 GHz 64-
bit quad-core ARM Cortex-A53 processor with a 2-wide superscalar architecture [141].
It is equipped with a dedicated L1 cache and a 512 KiB shared L2 cache. Timing data
are gathered using the processor’s built-in cycle counter, accessed through the cnt_read
function (as shown in Listing 2.2). The single-instruction requirement for reading this
counter ensures negligible measurement overhead.

The device operates on Raspbian Lite, a lightweight version of the Linux operating
system (Kernel version 4.19), optimized to minimize system-induced timing variations.
Following the methodology of Bate et al. [16], we have configured the operating system to
maintain a constant processor frequency of 800 MHz, thereby eliminating the variability
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introduced by Dynamic Voltage Frequency Scaling (DVFS).
To further minimize timing noise attributable to the operating system, the code is

compiled and executed as Linux kernel modules. Execution is confined to a specifically
designated core (core 3), which is isolated from user tasks using the Linux isolcpus utility.
To ensure a consistent starting point for each test, the instruction cache is invalidated
and the data cache is pre-filled with dirty data, thereby establishing a cold cache state at
the onset of each experiment.

2.2.2 Benchmarks

The quality of WCET predictions of programs was evaluated on 13 benchmarks from
the TACLeBench benchmark suite [64]. Benchmarks using floating-point numbers were
discarded because execution in kernel mode does not support floating-point values. We also
excluded the benchmarks using emulated instructions and the benchmarks reaching the
limits of the prototype (using recursion or having complex call graphs not yet supported
by cache pollution computation, as detailed in Section 2.2.4). Table 2.2 gives the main
characteristics of each benchmark: a brief description, the maximum depth of loop nesting
found in the code, and the number of basic blocks. Each benchmark comes with input
values that exercise the longest execution path.

Table 2.2 – Properties of benchmarks.

Name Description Nest. #BB
binarysearch Binary search in an array 1 24
bsort Bubble sort algorithm 2 33
countnegative Basic counting on arrays 2 34
crc Cyclic redundancy codes 1 30
expint Exponential integral function 2 30
fdct Fast discrete cosine transform. 1 10
fir Finite impulse response filter 2 16
h264_dec H.264 block decoding functions 5 165
insertsort Insertion sort 2 10
jfdctint Discrete-cosine transformation 1 12
matrix1 Generic matrix multiplication 3 35
ns Search in 4-dimension array 4 19
petrinet Petri net simulation 1 170

Compiler optimizations were disabled when compiling the benchmarks to facilitate
the provision of flow information during WCET analysis (if optimizations were allowed,
the flow information, for example, the loop bounds, would then have to be transformed
manually according to the optimizations applied by the compiler, which is error-prone
[112, 45, 63]). Consideration of compiler-optimized code is left for future work.
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The original code for the benchmarks expint and ns contained a long piece of code
executed in one single loop iteration. As Heptane, the tool we have modified for WCET
estimation, does not include any detection of such an infeasible path [74], it considers that
this path is executed at all iterations, resulting in highly overestimated WCETs. Since we
aim at estimating the quality of WE-HML and not the quality of Heptane, the code of
these two benchmarks was restructured to avoid this very long, infeasible path.

2.2.3 Implementation of the training phase

We generated a set of 15,000 basic blocks to train the machine learning (ML) al-
gorithms. These basic blocks encompass all the instructions that the gcc compiler can
produce for the ARM Cortex-A53 (ARMv8) processor without optimizations. Due to the
lack of official documentation on the instruction set generated by gcc, we validated the
comprehensiveness of our basic blocks by ensuring all instructions used in benchmark
tests are represented.

The training phase involved ten different pollution values, as shown in Figure 2.4.
These values are powers of two, ranging from 1 to 512, yielding 10 distinct versions of
each evaluated ML algorithm—one for each pollution level. The upper limit of 512 was
determined empirically based on an extensive analysis of the impact of pollution on a
wide array of basic blocks.

The quality of the timing model is highly dependent on the representativeness of the
training data. To minimize bias, we took several precautionary measures:

— We carefully calibrated the code generator’s parameters to yield a balanced mix of
instruction types that closely mimic real world code without being overly specific to
any particular benchmark. Additionally, we tuned the settings to produce a variety
of basic block sizes, ranging from very small to considerably larger ones. Figure 2.5
represents as a box-and-whisker plot the proportion of the ARM instructions in the
generated code (at the top) and benchmarks (at the bottom), respectively.

— To prevent underestimation of execution times during the training phase—a po-
tential issue especially with branch instructions—we flushed the branch prediction
tables between each timing measurement. This process is detailed in Listing 2.2.
Moreover, introducing pollution code aimed to maximize basic block execution times
in the presence of cache pollution within loops.

— A known limitation of our training data in this early work is that it focuses solely
on the proportions of instructions rather than their order of execution within each
basic block. This was a deliberate choice to expedite both the training and prediction
phases.
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Figure 2.5 – Statistics about instruction proportion in basic blocks used for training (top),
in our synthetic data and TACLeBench benchmarks (bottom).
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We implemented two variants to estimate the WCET of basic blocks from the set of
collected measurements:

— The WCET estimate is set to the largest observed execution time (MOET). For this
technique, each basic block is executed a sufficiently large number of times (1000 in
our experiments) to cover at best the possible timings.

— The WCET is determined using measurement-based probabilistic timing analysis
[29, 30]. This approach aims to exclude outliers in measurements that arise from
operating system noise, targeting an exceedance probability of 10−3. We employed
Extreme Value Theory (EVT), specifically the Generalized Extreme Value (GEV)
theory, to derive the WCET from a collection of measurements. It’s crucial that the
timing samples satisfy the three conditions necessary for applying EVT: stationar-
ity, short-term independence, and long-term independence [147]. Out of the 15000
generated basic blocks, only 10000 met these three applicability conditions [143],
based on a commonly-used significance level of 5%.

For both techniques, 80% of the basic blocks were used for training and cross-validation,
and 20% for testing.

Executing the 15000 basic blocks to obtain the timing samples for the 10 pollution
values required approximately 36 hours, using a single Raspberry Pi 3B+ board. We do
not consider the duration of the training phase to be an issue since it has to be performed
only once per architecture and could be easily executed in parallel on several boards.
Training, executed on a Linux virtual machine running on a DELL Latitude 7400 with
an 8-core Intel i7 processor, took around 62 minutes in total for the 5 ML algorithms.

2.2.4 Implementation of the WCET estimation phase

WCET estimation is implemented by modifying the open-source IPET-based static
WCET estimation tool Heptane [78]. Heptane was modified to calculate the pollution
value for each basic block. Then, the IPET calculation step of Heptane is modified to
use the ML-predicted WCET values for basic blocks instead of the values predicted by
static analysis as in the original Heptane. Two WCET estimates for each basic block are
predicted, one estimate with a cold cache and a second with a warm cache, using the
statically predicted cache pollution value. The original calculation step of the Heptane is
then applied using these two WCET estimates.
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2.3 Experimental results

The quality of WE-HML is evaluated from different points of view. First, we eval-
uate the quality of the WCET predictions of entire programs (Section 2.3.1). Then we
evaluate the benefit of accounting for caches (Section 2.3.2). WE-HML is then compared
with a cache-agnostic measurement-based hybrid technique in Section 2.3.3. Finally, a
detailed analysis of the quality of WCET predictions at the basic block level is given in
Section 2.3.4.

2.3.1 Prediction of WCETs of programs

Table 2.3 reports the WCET estimated by WE-HML (with cache modeling) on the
benchmarks, using the 5 selected ML algorithms. The estimated WCETs are compared
with the maximum observed execution time (MOET) of each benchmark, obtained by
taking the maximum timing of 1000 executions, all using the inputs that trigger the
worst-case execution path. The predicted WCET values in Table 2.3 are obtained by the
ML models trained with pWCET-10−3 values for basic blocks. The rightmost column
gives the overestimation factor, calculated as the ratio between the estimated WCET and
the MOET. The estimated WCET used to calculate the overestimation factor is the one
depicted in bold face in the Table 2.3, calculated by the less pessimistic ML technique.

Table 2.3 – Estimated WCET obtained by WE-HML versus MOET.

Benchmark RF NN GB SVR RR MOET Over-
estimation
factor

binarysearch 7358 11728 7117 12622 13517 2568 2.77
bsort 3362849 5251155 4463131 9555110 10225058 358380 9.38
countnegative 102506 99415 108291 79818 87545 29720 2.69
crc 277623 329852 298225 289192 302788 66867 4.15
expint 27704 35933 28353 60420 61358 6122 4.52
fdct 26193 40328 29084 34523 37461 8877 2.95
fir 40565 50510 37570 82433 87648 7646 4.91
h264_dec 2941623 3649120 3405644 4126177 4506618 426327 6.9
insertsort 12293 15322 12095 16858 18584 3042 3.98
jfdctint 31969 40103 35706 38910 41611 8070 3.96
matrix1 65679 102079 65911 95697 106144 21380 3.07
ns 190940 183002 185426 367042 370772 22018 8.31
petrinet 77039 175362 92620 157400 167268 3329 23.15

We observe that the estimated WCETs are never lower than MOETs. We also observe
that no ML algorithm consistently outperforms the others on all benchmarks. The lowest
estimated WCETs are most of the times computed by RF (8 times out of 13) and GB
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2.3. Experimental results

(3 times). The ML algorithm that computes the largest WCET estimates the most often
is RR (9 times). Petrinet is by far the most overestimated benchmark of the others. The
overestimation factor varies between 2.77 and 9.38.

We observe that benchmarks with deeply nested loops suffer from the most important
WCET overestimations. This comes from the way caches are accounted for in WE-HML,
which is by construction pessimistic: (i) we consider that every memory access within a
loop nest may pollute the cache; (ii) the referenced addresses within a loop nest are not
computed (only their number), thus the same address may be counted several times; (iii)
the impact of pollution is evaluated by searching for the references having the largest
impact.

A more detailed analysis is now given for the benchmark binarysearch. This benchmark
is sufficiently simple to make sure that the pessimism of WCET estimates only comes from
our technique: this example has obvious worst-case input, constant loop bounds, and no
infeasible path. Figure 2.6 depicts the MOET and ML-predicted WCET for all selected
ML algorithms.
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Figure 2.6 – ML-predicted WCETs versus observed execution times for binarysearch.

For binarysearch, the smallest WCET estimate is obtained by GB followed tightly by
RF, and the highest is obtained by RR. The pessimism for such an application with a
loop nesting level of 1 is moderate.

Using lower exceedance probability. Although we did not observe any underes-
timated WCET estimates using WE-HML, one may wish to change the way the WCET
of basic blocks is estimated during training by using a lower exceedance probability. Ex-
periments with a probability of 10−6 resulted in an augmentation of 35% of estimated
WCETs, on average, for all benchmarks.
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WE-HML WCET prediction duration. As far as the duration of WCET estima-
tion is concerned, we observed WCET prediction durations of around thirty seconds for
most programs. This duration looks very reasonable to us for our nonoptimized code for
WCET estimation (call of a Python script for each basic block, parameter passing using
files, deserialization of the ML algorithm for each basic block). We observed that RF is
by far the most time-consuming ML algorithm (but also one of the most accurate ML
algorithms). The other algorithms are comparatively much faster.

2.3.2 Benefits of cache modeling

One of the benefits of WE-HML is to account for caches by predicting two different
WCETs per basic block: one for its first execution (cold cache) and one for the next ex-
ecutions (warm cache). Table 2.4 gives for all benchmarks the improvement of WCET
estimates obtained by accounting for caches in WE-HML, compared to the WCET esti-
mation technique that systematically considers a cold cache (hereafter W_nocache). The
improvement, expressed as a percentage, is calculated by the formula W _nocache−WEHML

W _nocache
.

Table 2.4 – Improvement (decrease) of estimated WCET resulting from cache manage-
ment.

RF NN GB SVR RR Avg
binarysearch 74% 70% 78% 61% 62% 69%
bsort 69% 69% 64% 27% 32% 52%
countnegative 85% 87% 86% 0% 87% 62%
crc 88% 91% 89% 90% 90% 90%
expint 80% 82% 82% 65% 68% 75%
fdct 76% 79% 77% 77% 78% 78%
fir 51% 69% 65% 37% 41% 53%
h264_dec 72% 81% 73% 73% 74% 75%
insertsort 81% 89% 86% 84% 85% 85%
jfdctint 77% 80% 78% 73% 75% 77%
matrix1 84% 84% 86% 81% 81% 84%
ns 58% 68% 63% 21% 28% 48%
petrinet 0% 0% 0% 0% 0% 0%

As expected, the numbers show a significant improvement brought by cache manage-
ment (65% on average for all ML algorithms and all benchmarks). The Petrinet benchmark
does not benefit at all from cache management: its code contains a loop, but the amount
of data accessed in the loop is so big that even when considering caches, all the cache is
considered as polluted by our analysis (and is actually polluted at runtime). Petrinet be-
haves similarly to nsichneu, with a slightly lower volume of accessed data and, therefore,
a bit of cache reuse detected. The benchmarks that benefit most from cache support are
the ones with deeper loop nests and a low volume of data accessed in the loop nest.
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2.3.3 Comparison with a hybrid WCET estimation technique

This section compares WE-HML with a cache-agnostic hybrid technique that uses the
highest measurement for each basic block for WCET estimation. We did not compare with
static WCET estimation since there is no publicly available description of the processor
we are targeting, and most importantly, because we are specifically targeting processors
reaching the limits of static WCET estimation.

Comparing WE-HML with measurement-based hybrid approaches [100, 95] on a large
set of benchmarks is difficult because such techniques have to automatically introduce
instrumentation code in the benchmark under study to measure the execution time of
small code snippets. Since introducing instrumentation code is a time-consuming task,
as a preliminary experiment, we performed a comparison on one program only, using
manual instrumentation. The program, given in Listing 2.3, implements edge detection in
an image. Only the main (and longest to execute) basic block was instrumented to limit
the cost of insertion of instrumentation.

Listing 2.3 – Edge detection program
void edge ( char in [T ] [ T] , char out [T−1] [T−1]) {

for ( i =0; i<T−1; i++) {
for ( j =0; j<T−1; j++) {

a1=in [ i ] [ j ]− in [ i +1] [ j +1] ;
a1=(a1+(a1>>31)) ^(a1>>31) ;
a2=in [ i ] [ j +1]− in [ i +1] [ j ] ;
a2=(a2+(a2>>31)) ^(a2>>31) ;
out [ i ] [ j ] = a1+a2 ;

}}}

The hybrid technique used as a baseline measures the execution time of basic blocks
and then applies IPET with the largest observed value, with no attempt to account for the
different execution contexts of basic blocks. This technique corresponds to the technique
described by Kirner et al. in [100] with instrumentation at the basic block level.

Table 2.5 – Comparison with hybrid method.

BB first BB next WCET estimated MB−Hybrid
W CET estimated

(cycles) (cycles) (cycles)
WE-HML RF 2160 227 76605568 3.10
WE-HML NN 3247 269 91026704 2.61
WE-HML GB 2595 263 87089720 2.73

WE-HML SVR 2381 283 114662216 2.07
WE-HML RR 2660 286 112299136 2.11

MB-Hybrid 451 NA 237379792 -

Table 2.5 presents a comparison of the WCET estimates obtained using WE-HML with
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different machine learning algorithms and the MB-Hybrid method. For each algorithm,
the table provides the WCET for the first execution time (iteration) of a basic block (BB
first) and subsequent iterations (BB next). The fourth column presents the overall WCET
estimated using IPET, and the final column provides the ratio MB−Hybrid

W CET estimated
, which offers

a comparative measure of the MB-Hybrid method’s estimate against the estimates from
the WE-HML.

From the results in Table 2.5, several observations can be made:

— The cache-agnostic hybrid methods, as anticipated, provide more pessimistic WCET
estimates compared to the WE-HML approach. On average, the WCET estimates
from these hybrid methods are approximately 2.5 times higher than those from
WE-HML.

— Among the WE-HML algorithms, the Random Forest (WE-HML RF) method pro-
vides the lowest WCET estimate, while the Support Vector Regression (WE-HML
SVR) method yields the highest.

It is worth noting that WE-HML offers the advantage of not requiring code instru-
mentation, and it effectively addresses the code coverage issue.

2.3.4 Prediction of WCETs of basic blocks

WCET prediction at the program level obviously depends on the ability of the ML
algorithms to predict WCETs at the basic block level. This ability to predict the WCET
of basic blocks is evaluated in Table 2.6 by analyzing the Pearson correlation score of
the ML algorithm (or the coefficient of determination) as provided by Scikit-learn [138].
The higher the score, the better the prediction, with the best possible value of 1. The
scores are given for the two different ways of calculating the WCETs of basic blocks from
measurements that are later used for training (MOET and pWCETs with an exceedance
probability of 10−3, see Section 2.2.3), and then per pollution values (1, 16, 512).

Table 2.6 – Pearson correlation score of Scikit-learn ML algorithms on basic blocks, de-
pending on the technique used for estimating the WCET of basic blocks and pollution
value.

MOET pWCET 10−3
Algorithm 1 16 512 1 16 512
RF 0.070 0.484 0.828 0.728 0.431 0.883
NN 0.073 0.461 0.831 0.725 0.410 0.877
GB 0.080 0.482 0.830 0.735 0.426 0.884
SVR 0.077 0.467 0.827 0.722 0.415 0.874
RR 0.076 0.467 0.827 0.722 0.415 0.874
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2.4. Conclusion

We observe that training the ML algorithms using the MOET of basic blocks may
lead to very low Pearson correlation scores. Our examination of the training data suggests
that the presence of infrequent but exceptionally high-timing outliers in the measurements
could be attributed to activities from the operating system. Probabilistic techniques, such
as pWCET at a threshold of 10−3, are inherently more resilient to these outliers. By design,
they can disregard such anomalies if they are sufficiently rare. In our observations, the
learning scores across different algorithms were consistent under similar conditions. While
pWCET at a threshold of 10−6 exhibited marginally improved Pearson correlation scores
compared to pWCET at 10−3, it resulted in considerably higher WCETs—averaging a
35% increase across the benchmarks.

The best scores are observed for the configurations with a low pollution value and
for those with the highest pollution value, which is expected since the execution times in
these situations have low variability. With intermediate pollution values, the scores are
lower. The worst scores are obtained with pollution values 2, 4, and 8, and then the scores
improve when the pollution value increases. With small pollution values (2, 4, 8, 16), the
high variability of timings comes from the fact that it is harder to exercise the worst-case
cache collisions by randomly writing to memory.

2.4 Conclusion

In this chapter, we introduced a novel hybrid WCET estimation technique called
WE-HML. This approach leverages machine learning (ML) algorithms to estimate the
WCET of basic blocks, thus mitigating the need for in-depth architectural knowledge.
Unlike existing ML-based WCET estimation methods, WE-HML takes into account data
caches and operates directly at the machine code level. The experimental results reveal
that, while no single ML algorithm consistently outperforms others across all benchmarks,
WE-HML generates WCET predictions that consistently exceed actual observed execution
times. Moreover, the incorporation of cache modeling improves the average accuracy of
our WCET estimates by 65% when compared to a cache-agnostic counterpart. It is worth
noting that the majority of WCET estimates for the tested benchmarks fall within a range
of seconds.

While the initial results are promising, several avenues for improvement exist:

Oversimplified code characterization. The current feature set used for learning
and predicting WCET overlooks critical timing-related information derived from ma-
chine code (e.g., dependencies between registers and data access). This lack of considera-
tion compromises the model’s ability to provide timing estimates that accurately capture
pipeline behavior and cache effects, especially those related to spatial locality. Moreover,
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the machine learning algorithms in use are not naturally equipped to account for the
sequential order of machine instructions within a basic block, indicating a need for a more
refined approach.

Dissimilarity in basic block sizes. The sizes of basic blocks used during the train-
ing phase are not consistent with those encountered during the prediction phase. This
poses a challenge to the precision of WE-HML. Our choice of longer instruction sequences
during training was a strategy to offset measurement noise stemming from our reliance on
software-based measurements. Fortunately, the integration of real world basic blocks ex-
tracted from program benchmarks, coupled with advanced hardware measurement meth-
ods such as JTAG [151], could solve these issues and enhance the accuracy and reliability
of our technique.

In the following chapters, we will investigate advanced ML techniques that can effec-
tively account for instruction dependencies. We will also employ hardware measurement
solutions on real programs to extract execution times for actual basic block sizes while
minimizing probe effects.
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Chapter 3

ACET ESTIMATION: A DIVE INTO LSTM
AND TRANSFORMERS

Recent research has leveraged machine learning to estimate the worst-case execution
time (WCET) of software [88, 91, 22, 7]. Although these approaches address early-stage
WCET estimations and code coverage challenges [111], they often overlook instruction
sequencing and register dependencies, leading to overly pessimistic predictions.

We aim to improve the accuracy of machine learning models by considering not only
the dependencies between instructions within a basic block but also the context created by
code executed before the BB. In this chapter, our focus is directed toward the average-case
execution time (ACET) of basic blocks (BB).

We present two new models, CATREEN and ORXESTRA. CATREEN, which stands
for "Context-Aware code Timing estimation with stacked REcurrEnt Networks", leverages
the power of stacked LSTM [82] layers, capitalizing on their ability to capture long-term
sequential dependencies. This makes it adept at understanding the relationships between
instruction sequences. On the other hand, ORXESTRA, which stands for "cOntext-awaRe
eXEcution Time eStimation using TRAnsformers", employs the Transformers XL [43]
architecture. The Transformers XL is renowned for its self-attention mechanism, enabling
it to discern the significance of different parts of an input sequence, thus offering a precise
understanding of the context.

Both CATREEN and ORXESTRA estimate the execution time of a basic block b

by focusing on its preceding sequence of basic blocks. This approach ensures that the
models account for the hardware’s state, including the pipeline, cache hierarchy, and
branch prediction, providing a comprehensive understanding of the execution dynamics
influenced by prior instructions.

CATREEN has been published at ICTAI 2022:

"Abderaouf N., AMALOU, Elisa FROMONT, and Isabelle PUAUT. "CATREEN:
Context-Aware Code Timing Estimation with Stacked Recurrent Networks." The 34th
IEEE International Conference on Tools with Artificial Intelligence (ICTAI) IEEE, 2022."
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Hypotheses

We outline the assumptions and conditions under which our proposed models are
evaluated and operated.

— We consider the execution context size as a hyperparameter and limit our focus to
a specific number of basic blocks. This constraint on the number of basic blocks is
intentional, as including all executed basic blocks could add unnecessary complexity
and computational overhead without substantially enhancing the accuracy of our
timing estimates.

— This chapter’s estimation phase concentrates on execution scenarios where the se-
quence of executed basic blocks is known, meaning the context is predefined for
specific inputs. For more general scenarios, where the execution trace is typically
not predetermined, the discussion is deferred to the final chapter 4. We will intro-
duce a methodology for determining the execution context (sequence of BBs) in
worst-case scenarios to estimate the WCET.

The structure of this chapter is outlined as follows. Section 3.1 offers an in-depth pre-
sentation of our machine learning models, focusing on their neural architecture details.
Section 3.2 describes the baselines, the training dataset, and the experimental method-
ology for evaluating LSTM-based and Transformers-based timing models. A comparative
performance evaluation against existing state-of-the-art techniques is elaborated in Sec-
tion 3.3. Finally, Section 3.4 provides a conclusive analysis of our findings.

3.1 New machine learning architectures for timing
estimation

This section provides motivation for context awareness Subsection 3.1.1 and in-depth
details on machine learning architectures used for average time estimation. First, the
LSTM-based model called CATREEN is detailed in Subsection 3.1.2, followed by the
solution that employs Transformers XL called ORXESTRA architectures 3.1.3.

3.1.1 Motivation for context awerness

The primary reason for the need to consider execution context lies in the increased
complexity of modern processors. This complexity, arising mainly from integrating various
hardware accelerators designed to reduce program execution time, renders machine learn-
ing timing models based solely on extracted static features simplistic and prone to error.
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3.1. New machine learning architectures for timing estimation

The cohabitation of these components makes the timing modeling of a processor diffi-
cult and sometimes unpredictable. Let us take, for example, a processor architecture with
an N-stage pipeline, data and instruction caches, and a branch predictor. The pipeline
allows the execution of a new instruction to start without waiting for the previous one
to finish as long as there are no register dependencies. The cache memory is a small,
fast memory that stores copies of instructions/data from frequently used locations in the
main memory. Finally, the branch predictor allows the processor to speculate about
the outcome of a conditional branch (e.g., fill in the pipeline with the instructions of the
predicted branch direction) to accelerate the execution.

These components introduce dependencies between successive instructions, making the
timing of a sequence of instructions dependent on its execution context. This is illustrated
in Figure 3.1, the left top square represents a C code snippet delimited by two comments
//Start and //End, and the right boxes represent the machine instructions after compila-
tion, separated into basic blocks (BB). The binary code in our example is made of 3 BBs
denoted in the figure as BB1, BB2, and BB3.

Regarding the effect of pipelines, the execution time of a BB depends on the BB
executed before, which defines the level of parallelism between the successive BBs. For
example, the execution time of BB3 must consider that BB2 has been executed before.
Plain arrows in Figure 3.1 show all pairs of BBs concerned by this effect.

As far as the branch prediction is concerned, if the branch predictor successfully
predicts the outcome of the branch instruction contained in BB1 (the "bgt" instruction,
which means: branch if i is greater than 9), the first instructions of BB2 are executed
before the result of the comparison is known. This makes the timing of BB2 dependent
on the previous execution of BB1. Similarly, in the case of an incorrect branch prediction,
the timing of BB3 depends on BB1. Dashed arrows depict these effects.

Regarding the effect of caches on our example, if the variable i is loaded in the cache
in basic block BB1 and is not evicted from the cache when BB3 is executed, the execution
time of BB3 is reduced, making the timing of BB3 dependent on the previous execution
of BB1. Dotted arrows depict these cache-related effects in the figure.

Precisely estimating the timing of basic blocks requires accounting for all these intra-
and inter-BB dependencies.

Building upon existing work such as ITHEMAL [129], which utilizes hierarchical mul-
tiscale Long Short-Term Memory [82] (LSTM) layers to predict the throughput of isolated
basic blocks (BBs), we introduce two machine learning models specifically designed for
context-aware code timing estimation CATREEN and ORXESTRA.

Unlike ITHEMAL, which isolates each BB using a dynamic binary instrumentation
tool [27] and repetitively executes it to measure its best-case performance, our models
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estimate the execution time of BBs within their respective "execution contexts." Specifi-
cally, we consider the sequence of instructions executed immediately before the BB under
study. This context-aware approach offers a more accurate reflection of a BB’s actual exe-
cution time, as it captures timing nuances that arise from hardware-software interactions
in sequences extending beyond individual BBs.

 .BB2:
ldr r2, [fp, #-20] //load var1
ldr r3, [fp, #-24] //load var2
sub r3, r2, r3     
str r3, [fp, #-28] //store var3

 .BB1: //Start
ldr r3, [fp, #-8]  //load i
cmp r3, #9         
bgt .BB3 //goto .BB3

 .BB3:
ldr r3, [fp, #-8]  //load i
add r3, r3, #1     //i++
str r3, [fp, #-8]  //store i
b   .BB1           //goto .BB1

Legend
Pipeline influence

Data Cache influence 

Branch Predictor influence

Assembly code after compiling the C code

C code motivating 
example

int main(void) {
//Declarations
 //Start
 for(i=0; i<10; i++){
     var3 = var1 - var2;
 } //End
}

Compiler

Figure 3.1 – Inter Basic Blocks hardware dependencies.

3.1.2 ACET estimation using LSTMs, CATREEN

CATREEN leverages a stacked recurrent neural network architecture to predict the
execution time of a basic block b (the basic block under analysis) given its execution con-
text (sequence of basic blocks executed before b). By considering the execution history of
basic blocks, CATREEN naturally accounts for the state of the hardware when executing
the basic block (pipeline, cache hierarchy, and branch prediction).

Long Short-Term Memory [82] (LSTM) is a special kind of recurrent neural network,
capable of learning long-term dependencies [83] in the sequences. LSTM architectures
have mechanisms called gates that are trained to choose whether or not to keep particu-
lar sequential information (more details about LSTM’s inner functions can be found on
page 47). These architectures are, for example, extensively used in domains such as natu-
ral language processing [167] [146], where the context of a word in a sentence is useful for
learning its characteristics. Figure 3.2 represents the overall architecture of CATREEN.
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CATREEN estimates the execution time of a basic block within a sequence of basic blocks
in a similar way that an LSTM would process a paragraph in natural language to predict,
for example, the sentiment (positive or negative) of a given sentence in this paragraph.
The analogy is as follows: an instruction represents a word. An instruction comprises an
opcode and one or more operands, which can be treated as letters that constitute this
word. A set of instructions will form a basic block (a sentence), and a sequence of basic
blocks will represent a paragraph.

Architecture of CATREEN. The architecture of CATREEN comprises five layers,
depicted in Figure 3.2 from top to bottom. The first layer is a tokenization and embedding
layer that preprocesses the assembly language, extracted from the machine code and
generates inputs that are understandable by the next layers. The next three layers are
the central layers of CATREEN. They are LSTM layers: one to process an instruction
(Instruction Layer in the Figure), one to process a basic block (BB layer in the figure),
and one to process a sequence of basic blocks (Sequence Layer in the figure). Finally,
we create a sort of weak connection to save the basic block under analysis (last BB in
the sequence) and concatenate it with the formed context, and send it to a dense layer
that is used to predict the final timing output (timing a basic block in the context of the
previously executed basic blocks). More details on each layer are given below.

Data preparation for CATREEN (tokenziation). In order for the LSTM to
properly interpret basic blocks, an encoding of machine code into a sequence of integers
is needed, where each integer represents an index (token) in a predefined dictionary. This
is performed as follows. We preprocess the raw data (assembly code) by encoding each
basic element of an instruction (opcode and operand) with a unique number (token), with
a special treatment given to the operands:

— All immediate operands (constants) are encoded with the same token value.
— All address operands are encoded with the same token value.
— Addressing modes using registers are differentiated by assigning a distinct token value

per pair (register number, addressing mode) with the addressing modes supported by
the considered architecture (e.g., for the ARM targets, direct access, indirect access,
and indirect access with offset).

The reason for implementing these rules is to reduce the sequence length, given that we
know LSTM models struggle with processing very long sequences [97].

For example, consider the following sequence of ARM instructions:
MOVEQ R3, #0x0 ; LDR R3, [R3] ; BL 0x080008DC ; STR R3, [R3, #0x0166];
MOVGT R3, #0x0230 ;
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Figure 3.2 – Architecture of CATREEN. The input is a sequence of basic blocks consist-
ing of a sequence of instructions, which are themselves sequences of operands/opcodes.
The (grey) upper part of the figure shows the processing of one such operand/opcode.
CATREEN calculates (lower part) a timing estimation for the last basic block in the input
sequence.

The final output of the encoding for the considered sequence of instructions is:[19, 500,
380, 999, 28, 500, 501, 999, 65, 381, 999, 35, 500, 502, 999, 20, 500, 999]. Where 999 is
a separator between instructions.

In order to be suitable inputs for LSTM layers, each token is again encoded into a
distinct fixed-size vector of floats within the interval [-1,1] using word2vec [132].

LSTM layers of CATREEN. Since we do not, a priori, know what is the length
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of the sequences (i.e., how many basic blocks they contain) nor the basic blocks length
(i.e., how many instructions they contain) nor even the length of the instructions (i.e.,
how many operands they contain), we model these data with LSTM, which are suited to
variable-length sequences. Three levels of LSTM are used for that purpose:

— The Instruction Layer (in green in figure 3.2) is the first LSTM layer in CATREEN.
It takes as input a sequence of embedded code operands/opcodes (i.e., an instruc-
tion). We loosely denote the length of the sequence of operands/opcodes by O (resp.
I and B in the subsequent layers) even though it differs from one instruction to
another. Each LSTM layer processes the entire sequence of embedded tokens from
an instruction (indexed by t ∈ [0..O − 1]) and produces a single final output rep-
resentation at t = O − 1 for the entire instruction. The outputs (instructions) are
treated one by one by the next LSTM layer (BB layer, for the Basic Block layer).
The selected hidden size per layer is given in Section 3.3.2.

— The BB layer (in blue in figure 3.2) processes the sequence (of length I) of embedded
instructions in a basic block and produces a representation for each basic block.
Again, all representations of a basic block are treated one element by one by the
next LSTM layer (Sequence layer).

— Finally, the Sequence Layer (in red in figure 3.2) processes the sequence of S basic
blocks within a sequence. Similarly to the other LSTM layers, it produces at the end
a representation of the sequence or what we call Context. With the value of Context
concatenated to the value of the BB under analysis (that we save from the previous
layer BBs) are then given as inputs to a fully connected linear layer connected to
a single output which produces an estimate of the execution time of the last basic
block of the sequence given the execution history.

3.1.3 ACET estimation using Transformers, ORXESTRA

Our second model, ORXESTRA, uses Transformers XL (TXL) [44] to predict per-
formance. Transformers, introduced in [164], are machine learning neural architectures
initially developed for natural language processing (e.g., language translation, text sum-
marization, text-to-speech, ...). They use self-attention mechanisms that allow the model
to learn how to weigh different parts of the (potentially sequential) input data. This
weighting scheme, in turn, allows the model to capture dependencies between the ele-
ments of a sequence (e.g., it allows the model to take into account contexts). The original
Transformers architecture [163] has a fixed-length context window (as explained in 1.3.2
and may struggle with sequential data containing long-term dependencies. Dai et al. then
introduced a variation called Transformers XL [44] to address this limitation. The TXL ar-
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chitecture (detailed in 1.3.2) uses memory-augmented attention to retain better and make
use of the information from earlier in the sequence. This makes it more suitable than
the original Transformers for handling assembly code, which often involves long code se-
quences, and thus, to account for long-term dependencies between the code elements in
order to perform our timing estimation task.

Architecture of ORXESTRA

Average execution time estimation 
of BBUA executed after the context input

Transformer
for context

Transformer
   for BBUA  

Feed forward

BB1BB2BB6BB7

Sentence piece tokenizer

Context

BB7
Tokens

Local attention matrix 
(BBUA)

Global attention matrix
(context)

BB under analysis (BBUA)

BB1
Tokens

BB2
Tokens

BB6
Tokens

BB7
Tokens

Figure 3.3 – ORXESTRA Transformers XL-based architecture.

ORXESTRA’s architecture, as depicted in Figure 3.3, consists of several components.

Tokenization. At ORXESTRA core, it utilizes a tokenizer called Sentencepiece [103].
The Sentencepiece algorithm progressively merges characters and sequences of characters,
thereby generating a vocabulary of subword units based on observed statistical patterns.
To illustrate, let’s consider the same example as in Subsection 3.1.2:

MOVEQ R3, #0x0 ; LDR R3, [R3] ; BL 0x080008DC ; STR R3, [R3, #0x0166];
MOVGT R3, #0x0230 ;

After applying Sentencepiece, the sequence is segmented into the following subwords:

MOV_ EQ R3, #0x_ 0 LDR R3 [R3] BL 0x_ 0800_ 08DC STR R3 [R3_ #0x_
0166 ] MOV_ GT R3 #0x_ 0230

Although this new sequence may be longer than one derived using a fixed vocabu-
lary, it effectively addresses the challenge of out-of-vocabulary (OOV)[122] 1. In contrast

1. OOV in machine learning can result in issues such as reduced generalization, information loss,
cascading errors, and domain adaptation challenges
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to using a fixed dictionary, which creates unknown tokens for newly encountered words,
Sentencepiece ensures that the binary programs written in the target instruction set will
always be able to tokenize it, enabling efficient processing by the Transformers. As the
tokenization generated by Sentencepiece is longer, it severely disadvantages LSTM mod-
els, which cannot process sequences longer than 200 tokens at a time (as empirically
demonstrated in the work described in [97]). Therefore, for CATREEN, we prefer to stick
with traditional tokenization (fixed dictionary), adding any missing words to the dictio-
nary when encountered, while for ORXESTRA, we will use Sentencepiece to be able to
account for addresses and access memory.

Attention matrix generation. The entire ORXESTRA’s system uses two Trans-
formers XL, each serving a specific purpose. The first Transformers, displayed on the
right side of the figure, focuses on creating an embedding representation of the execution
context. The second Transformers, depicted on the left side of the figure, takes care of
processing the basic block under analysis (BBUA), as it holds the main information to
predict the execution time.

When these two Transformers operate, they produce an attention matrix (i.e., a weigh-
ing matrix of size #token × #token) with a fixed size of #token = 512. Essentially, when
a context or a BBUA is presented as input, it is divided into smaller segments of 512
tokens. Thanks to the TXL memory mechanism, the system retains information from the
previously processed 512 tokens while continuing to process longer sequences. Padding
is applied at the beginning of each token sequence in order to obtain a sequence with a
size that is a multiple of 512. ORXESTRA generates an attention matrix when process-
ing the context (called here the global attention matrix), and a local attention matrix for
the BBUA. These two matrices are concatenated and provided as input to a subsequent
feedforward (multi-layer perceptron) neural network (top of the figure). This network
estimates the final average execution time (AET) associated with the BBUA.

Training of ORXESTRA

Training ORXESTRA consists of two main stages: pretraining each TXL (in practice,
the same pretrained model is used twice for the two TXL) and finetuning the entire
architecture. CATREEN, on the other hand, is only finetuned.

Pretraining. During the pretraining phase, the TXL is first trained using a self-
supervised learning approach. Self-supervised pretraining is a technique often used in
machine learning to leverage unlabeled data in order to "initialize" the weights of an
(often large) neural network and help it learn better data representation to solve the
final task. Training for this final task often involves a much smaller set of labeled data
than the number of data used during the pretraining phase. A supervised learning task is
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designed from the unlabeled data. For example, in NLP, a standard pretext task consists of
predicting a (randomly chosen) "masked" word in a sequence, also called masked language
modeling (MLM) as explained with example in 51 of this document. In our working
context, our goal for this pretraining phase is to enable the model to understand the
structure of assembly instructions presented in a textual format. This is achieved by
masking random operations or operands within the instruction sequence and training
the model to predict them as output in a self-supervised training scheme. By doing so,
we can leverage a very large (unlabeled) dataset consisting of thousands of disassembled
binary programs to learn a rich representation of assembly code (i.e., to have a relevant
initialization of the weights of our TXL) that can be used for the final training phase.

Finetuning. In the finetuning stage, ORXESTRA is trained to predict the execution
time of individual BB in context. This phase employs a specific set of programs, a target
processor, and a measurement tool. The execution times of basic blocks are measured (to
obtain the training labels), and the corresponding instruction sequences are tokenized. To
construct the training dataset, each BB’s median execution time is considered, along with
the tokenized BB itself and its associated context. The context size, which represents the
number of basic blocks, serves as a hyperparameter.

3.2 Experimental setup

The experimental setup for this chapter begins with Section 3.2.1, where we discuss the
dataset sources and their compositions that are instrumental in training and evaluating
our two proposed machine learning models, CATREEN and ORXESTRA. Following this,
Section 3.2.2 provides insights into the baseline methodologies that serve as benchmarks
for comparing the effectiveness and performance of our models. Section 3.2.3 outlines the
hardware and software configurations used. Finally, Section 3.2.4 delves into the details
of our learning setup, including a list of relevant hyperparameters.

3.2.1 Datasets and benchmarks

As stated before, training ORXESTRA involves two primary steps: pretraining and
finetuning. In the pretraining phase, which learns the structure of machine code, a large
dataset of programs from CodeNet [139] is used. This dataset contains about 900,000 C
programs obtained from public submissions on competitive programming websites. These
programs undergo cross-compilation to the target architecture (using the -O0, -O1, -O2,
or -O3 optimization option randomly) and are disassembled using the GNU binary tool
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objdump. We extract relevant information such as addresses and identification of BBs from
the textual output of objdump. It is important to note that the programs themselves are
not executed during this process; they are used as a form of natural language data. The
pretraining dataset is further utilized by Sentencepiece, which undergoes its own learning
phase to produce a model capable of tokenizing our data.

To finetune ORXESTRA and train CATREEN, a varied set of publicly available pro-
grams is employed, namely The Algorithms 2, MiBench [75], and Polybench [173]. Basic
blocks and their respective contexts are extracted from these programs with a few modifi-
cations to obtain relevant data. For example, all instances of printf and system calls, which
introduce redundant BBs and can potentially lead to creating an unbalanced dataset and
overfitting problems during training, are eliminated from these programs. In Table 3.1, a
summary of each benchmark suite is provided, including the number of programs in each
dataset and the total count of unique basic blocks 3 encountered during the execution of
each program.

Ground truth timing generation

To acquire the timing values (labels) required for the finetuning phase of CATREEN
and ORXESTRA, we utilize either a hardware-based or a software-based approach, de-
pending on their availability. The hardware solution is preferred when available, owing
to its minimal interference with execution (known as the "probe effect"). In both cases,
we conduct 1000 execution time measurements for each basic block, preceded by cache
warming (achieved by running the program 20 times).

Hardware-based timing instrumentation uses the Joint Test Action Group (JTAG) in-
terface for the hardware solution and utilizes the J-Trace Pro trace solution from Segger
[151]. This allows us to connect to the JTAG interface of the target processors, specifically
the Cortex-M4 and Cortex-M7 in our case. To generate execution traces, we use Ozone
[72], a cross-platform debugger and performance analyzer, in conjunction with J-Trace
Pro. These traces provide valuable information such as the cycle counter value, instruc-
tion address, opcode, operands, and corresponding assembly code for each instruction.
Figure 3.4 shows a snippet of an execution trace extracted using the tool.

The software-based approach employs code instrumentation to measure the execution
time (reading the cycle counter register before and after executing a basic block as it was
done in Chapiter 2 page 67) of individual basic blocks within a program. For each basic
block, annotations are used to obtain maximum loop iteration, allowing us to map the
execution time with the iteration number automatically. The execution trace, along with

2. Available here: https://github.com/TheAlgorithms/C
3. By "unique basic blocks," we mean a basic block that is unique in both its context and its compo-

sition.
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Address OperandsOpcodeCycle Count   

Figure 3.4 – Example of an execution trace, extracted from OZONE tool [72].

the corresponding assembly code for the timed basic block, is acquired using the GNU
Debugger (GDB), where we unroll the whole program and save each executed assembly
instruction.

Data preprocessing

To generate the final dataset, the execution trace is processed in several steps. First,
to mitigate the impact of outliers, the median value of multiple execution timings for each
BB is used as the ground truth timing. Both CATREEN and ORXESTRA are trained
using a normalized timing value, calculated as this median value divided by the number
of instructions in the BB. Subsequently, sequences of BBs are assembled for training;
the prefix sequence leading up to the last BB represents its context. For instance, in
CATREEN, if a sequence consists of [BB0, BB1, BB2, BB3], BB3 is the basic block under
analysis, while [BB0, BB1, BB2] serves as its context. In the case of ORXESTRA, the
context generation needs the basic block under analysis, so we add it into its context, which
will be, in this case, formed by [BB0, BB1, BB2, BB3]. Then, tokenization is performed
for each model.

3.2.2 Baselines

CATREEN and ORXESTRA are compared to three context-agnostic timing predic-
tors.

The first context-agnostic competitor is a Multi-Layer Perceptron (MLP) regressor,
loosely referred to as a Neural Network (NN) similar to the one used in WE-HML in
Chapter 2. Although not a naive approach, the neural network follows a feed-forward
architecture that does not incorporate context information and further requires a fixed-
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Dataset name Description Nb. of programs Nb. of BB

The Algorithms

Collection of open-source
implementations of a variety
of algorithms implemented
in C

200 12123

PolyBench [173]

A collection of benchmarks
containing static control parts.
The purpose is to uniformize
the execution and monitoring
of kernels

30 11224

MiBench [75]
A free, commercially
representative embedded
benchmark suite

14 8324

Total - 244 31671

Table 3.1 – Composition of the dataset for the finetuning phase, showing benchmarks,
each accompanied by a brief description, the number of programs, and the total count of
basic blocks retrieved per program. This dataset serves as the training and testing of all
competitors also.

size input. Our NN implementation uses 233 static features of the basic blocks as input,
basically the proportion of different machine instruction types (e.g., MOV, ADD, LDR).
We use a greedy search algorithm to determine the optimal hyperparameters for the
NN, including its number of hidden layers, the optimizer, the learning rate, and the loss
function. Based on the validation dataset, the best parameters are: hidden layer sizes set
to 512, 256, 128; learning rate set to "adaptive" with initialization at 0.001, and use of
"adam" solver. These hyper-parameters are coherent with what was used in [7].

Our second context-agnostic baseline is ITHEMAL [129] (we explained how it works in
detail on page 59), which uses LSTMs for execution time prediction. We re-implemented
ITHEMAL from the original paper, porting the tokenization and embedding step of ITHE-
MAL to the ARM instruction set. Additionally, we created a tuned version of the model’s
hyperparameters that we used during experimentation to fit the new data better.

The third context-agnostic baseline is a re-implementation of BERT [54] (the encoder
of a Transformers), here called "Transformers vanilla". The implementation is based on the
work PALMTREE [116], which demonstrates the superiority of the BERT Transformers to
learn how to represent a basic block compared to other embedding like word2vec [132], in-
struciton2vec [110] and asm2vec [58]. This approach involves pretraining BERT, similarly
to ORXESTRA, using the masked language modeling task specifically designed for ARM
assembly code. It takes a single basic block as input and predicts its timing hence without
considering the execution context information. Our objective with this competitor is to
compare ORXESTRA with a Transformers model that performs similarly to ITHEMAL
to assess the influence of context awareness on the same type of neural architecture.
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In Table 3.2, we present a summary of the architecture hyperparameters used by all
competing models. To facilitate a fair comparison, the context size parameter is kept
consistent for both ORXESTRA and CATREEN. The hyperparameters for CATREEN
and ITHEMAL were chosen based on the specifications provided in ITHEMAL’s original
paper [129]. Similarly, the parameters for ORXESTRA and Transformers vanilla were
primarily influenced by the PALMTREE study [116].

Hyperparameter ITHEMAL CATREEN Transformers vanilla ORXESTRA
Embedding size 512 512 512 512

Feed forward
structure and size 128 256, 256 512, 256, 128 512, 256, 128

Number of layers 2 LSTMs 3 LSTMs 6 4
Number of attention

head NA NA 8 4

Memory length NA NA NA 1024

Table 3.2 – Hyperparameters for deep learning architectures, including ITHEMAL,
CATREEN, Transformers vanilla, and ORXESTRA, are presented. (NA: Not Applica-
ble).

The loss function, optimizer, and learning rate parameters will be finetuned and dis-
cussed in Subsection 3.3.2

3.2.3 Hardware and software setups

Our experiments encompass a variety of Arm processors, summarized in Table 3.3.
The Cortex-M4 processor features a simple in-order pipeline with three stages and no
cache. This processor enables us to validate our method on a deterministic processor with
precise timing measurements obtained through the JTAG interface. The more advanced
Cortex-M7 processor possesses a 6-stage in-order pipeline, data and instruction caches,
and a branch predictor. The Cortex-A53 processor, hosted in a Raspberry Pi 3 features an
8-stage in-order pipeline, two levels of data and instruction caches, and a branch predictor.
The Cortex-A72 processor, hosted in a Raspberry Pi 4 differs from the A53 through its out-
of-order pipeline. Since the Cortex-A53 and Cortex-A72 lack a JTAG interface, we rely on
reading the cycle counter register for timing measurements as explained in Section 3.2.1.

3.2.4 Setup for the learning phase

PyTorch was used to implement our model and the baseline ones. ORXESTRA was
trained on a Tesla V100 GPU. Each setting target (processor) required two days for
ORXESTRA training: 1,5 days for pretraining and 0,5 days to finetune the model. The
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Table 3.3 – Summary of the processors used and their micro-architectural features.

Target M4 M7 A53 A72
ARMv 7 7e 8 8
Board STM32F4 STM32F7 RPi3 RPi4
Measurement tool JTAG JTAG Software Software
OS? Baremetal Baremetal Linux Linux
Pipeline/#stages In-order/3 In-order/6 In-order/8 Out-of-order
Branch predictor Yes Yes Yes Yes
Cache memory No L1 L2 L2
Replacement policy No Random Random Random

perplexity[33] 4 score was chosen as the value to optimize during pretraining (see Equa-
tion 3.1). All the datasets (even in the pretraining phase) are split into training (70%),
validation (10%), and test (the rest) sets containing different BBs. The MAPE (Mean
Absolute Percentage Error, see Equation 40) is used to assess the performance of each
model. It evaluates how far (as a percentage) the prediction is from the true timing.

Perplexity(D) = N

√√√√ N∏
i=1

1
P (wi)

(3.1)

Where:

— N is the total number of events or words in the dataset.

— wi represents the ith event or word in the dataset.

— P (wi) is the probability assigned to event wi by the probability model. It is the
estimated likelihood of observing event wi based on the model.

3.3 Experimental results

Following standard evaluation methodologies for language models, —ORXESTRA un-
dergoes two main types of evaluations: intrinsic evaluation and extrinsic evaluation.

For ORXESTRA, the intrinsic evaluation is conducted right after the pretraining
phase. This stage involves assessing the model using specific unsupervised learning metrics,
in our case, the perplexity score. The findings of this initial evaluation are presented in
Section 3.3.1. CATREEN, on the other hand, does not undergo a pretraining phase and
is, therefore not part of this intrinsic evaluation.

Before delving into extrinsic evaluation, an essential step of hyperparameter tuning
is carried out for both models. Here, we finetune hyperparameters such as the loss func-

4. Perplexity is a measure of how well a probability model predicts a sample or a sequence of events.
A lower perplexity indicates a better model fit to the data.
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tion, learning rate, and optimizer. The details of this tuning process are outlined in Sec-
tion 3.3.2.

Subsequently, extrinsic evaluation is conducted for both ORXESTRA and CATREEN.
This part of the evaluation focuses on their performance in real world tasks, specifically
predicting BB average execution times. The mean absolute percentage error metric serves
as the key performance indicator, and results are detailed in Section 3.3.3.

Further analyses are performed to examine the impact of various factors on the models:

— The effect of context size on timing estimates for both models is discussed in Sec-
tion 3.3.4.

— The scalability of the models, particularly when estimating timing for large basic
blocks, is examined in Section 3.3.5.

— The influence of code optimization techniques on timing estimations is explored in
Section 3.3.6.

Lastly, Section 3.3.7 provides insights into the processing throughput for each model.
This section offers estimates on the number of instructions that can be processed per
second for the purpose of timing estimation.

3.3.1 Evaluation of the pretraining (for ORXESTRA and Trans-
formers vanilla only)

In the intrinsic evaluation experiment, both ORXESTRA and the Transformers vanilla
were evaluated using the same dataset. This evaluation assesses their performance in a
masked language modeling task, specifically in recovering the masked operation/operand.
The perplexity values for each model are provided in Table 3.4. The best results in the
table are highlighted in bold. A lower perplexity score indicates that the language model
is better at predicting masked words.

Target M4 M7 A53 A72
Transformers vanilla 24.1 26.4 25.3 25.7
ORXESTRA 19.2 23.1 22.2 21.8

Table 3.4 – Perplexity scores obtained by ORXESTRA and the Transformers vanilla in
the pretraining phase.

The results clearly indicate that ORXESTRA outperforms the Transformers vanilla
across all targets. This observation is not surprising, as Transformers XL, unlike Trans-
formers vanilla, exhibits superior memory capabilities for handling long sequences. In
contrast, Transformers vanilla is limited by the restricted number of tokens that can be
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processed, which restricts its ability to capture dependencies beyond its specified con-
text length. This hard sequence segmentation leads to context fragmentation, inefficient
optimization, and, ultimately, a decline in performance.

3.3.2 Hyperparameters tuning

As often discussed in research papers using recurrent neural networks (e.g., [125, 93]),
tuning hyperparameters is of utmost importance to guarantee the training convergence
and the generalization to new data. However, this tuning phase is computationally expen-
sive; thus, only a limited number of configurations can be tested. We show in the following
how we have tuned (on validation data) our learning hyperparameters and how this can
drastically improve the performance (in terms of MAPE) of ORXESTRA, Transformers
vanilla, CATREEN and our closest competitor, ITHEMAL.

To reduce the hyperparameter exploration space, we did not tune the architecture of
the models since we started with ITHEMAL (for LSTM) and PALMTREE (for Trans-
formers) as the base architecture. We have studied the impact of three learning hyperpa-
rameters:

— The optimization algorithm, by comparing two optimizers: standard Stochastic Gra-
dient Descent (SGD), used in ITHEMAL [129] and ADAM optimizer [98] widely
used in deep learning.

— The learning rate. ITHEMAL uses an adaptable learning rate with an initial value
of 10−1 which decreases by a factor of 1.2 every epoch after the first two epochs.
We consider that 10−1 is a high learning rate, so we chose to explore lower values.
However, a low learning rate considerably increases the training time. Thus, we
have explored only three learning rates: two constant values 10−3 and 10−4, and an
adaptive value that starts from 10−2 and decreases at each epoch by a factor of 10
until 10−4).

— The loss function, by comparing two regression losses: the one used in ITHEMAL
(Mean Absolute Percentage Error) and the symmetric Mean Absolute Percentage
Error loss function [38] which is neutral regarding under or over-forecasting and
seemed more appropriate. Their formulas can be found on page 39 of this document.

The sensitivity of our models and competitors to hyperparameter tuning for the
Cortex-M7 dataset is shown in Table 3.5.

Overall, the validation (training scores) results reported in Table 3.5 show that ORXES-
TRA generally outperforms the other models for both MAPE and sMAPE, the ADAM
optimizer, with its adaptive learning rate adjustments, consistently yields lower error rates
across models. A slower learning rate of 10−4 further ensures a more reliable convergence
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Loss function MAPE sMAPE
Optimizer SGD ADAM SGD ADAM
Learning Rate 10−3 10−4 adapt 10−3 10−4 adapt 10−3 10−4 adapt 10−3 10−4 adapt
ITHEMAL 37.2% 25.6% 39.9% 18,2% 15,2% 17,1% 26.4% 19.8% 27% 19.1% 18.1% 18.8%
CATREEN 17.9% 16.9% 17.7% 15.8% 14.6% 14.9% 18.7% 16.9% 17.3% 15.7% 14.3% 15.1%
Transformers vanilla 17.8% 17.2% 17.6% 14.1% 12.8% 16.3% 17.0% 16.9% 17.5% 14.9% 14.9% 15.6%
ORXESTRA 16.8% 15.8% 16.9% 13.1% 12.6% 15.7% 17.2% 16.7% 17.6% 16.1% 14.0% 15.3%

Table 3.5 – MAPE performance of ITHELAM, CATREEN, Transformers vanilla, and
ORXESTRA, for different learning hyperparameters (loss function, optimizer, learning
rate) for Cortex-M7. The lower, the better.

during training. ITHEMAL is consistently the poorest performer, and it is also shown
that the hyperparameter selection, as done in the original version of ITHEMAL (MAPE,
SGD, adaptative learning rate), is sub-optimal for our data, and we manage to improve
it accuracy on validation data by 162, 5%. We can conclude that the hyperparameter se-
lection greatly impacts the model performance (i.e., the error estimated on the validation
set). In the next sections, we use ORXESTRA, Transformers vanilla, CATREEN and
ITHEMAL with their best-found hyperparameters as summarized in Table 3.6.

Hyperparameter ITHEMAL CATREEN Transformers vanilla ORXESTRA
Loss function MAPE sMAPE MAPE MAPE

Optimizer "Adam" "Adam" "Adam" "Adam"
Learning rate 10−4 10−4 10−4 10−4

Table 3.6 – loss function, optimizer, and learning rate used for ITHEMAL CATREEN,
the Transformers vanilla, and ORXESTRA.

3.3.3 Prediction results on the test dataset

We generated two distinct test sets for extrinsic evaluation purposes. The first test
set consists of 500 BBs with fewer than 50 instructions and 500 BBs with more than
50 instructions. The second test set (a subset of the first one) is created specifically for
all the BBs whose timing can be successfully predicted by the Transformers vanilla. To
accommodate the limitations of Transformers vanilla, which cannot handle BBs with token
sequence sizes exceeding their capacity, we purposefully collected a second test set of BBs
with sizes smaller than those in the first test set. This adjustment was essential to ensure
a fair comparison between the models.

In Table 3.7, we use the first test dataset, and thus we do not provide the results for the
Transformers vanilla (which could only perform predictions on the second test dataset).
The results include the Mean Absolute Percentage Error (MAPE), where lower percent-
ages indicate better model performance. The best results in the table are highlighted in
bold. Additionally, the Pearson correlation score is utilized as another evaluation metric
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to estimate how correlated the predictions are with the ground truth. In this case, higher
scores indicate better model performance.

Target M4 M7 A53 A72
Scores MAPE Corr. MAPE Corr. MAPE Corr. MAPE Corr.

Neural Networks 26.4% 0.93 22.7% 0.92 38.4% 0.89 16.7% 0.98
ITHEMAL 14.4% 0.90 17.6% 0.90 10.1% 0.98 11.4% 0.98
CATREEN 8.8% 0.99 13.3% 0.96 8.5% 0.99 10.4% 0.98

ORXESTRA 7.8% 0.99 9.6% 0.98 5.2% 0.99 6.9% 0.99

Table 3.7 – Test results of Neural Networks (NN), ITHEMAL [129], CATREEN [8], and
ORXESTRA on various ARM Cortex targets: M4, M7, A53, and A72. The results are
based on the first test dataset, which includes a balance between the number of small
and large-sized BBs. Evaluation metrics: mean absolute percentage error and Pearson
correlation (Corr.).

Table 3.7 shows that ORXESTRA obtains better MAPE performance than all other
techniques for all the target architectures. The second best-performing model is CATREEN,
which, like ORXESTRA, considers the execution context of BBs. The worst-performing
model is the Neural Network this shows the importance of accounting for the sequential
information. The context-agnostic techniques, ITHEMAL and, as shown in Table 3.8 for
the second test set, the Transformers vanilla are positioned after the context-aware tech-
niques. The correlation is high for all models and better for the model designed to process
sequential data.

The complexity of the target architecture plays a role in the final results, although
its influence varies depending on the measurement method employed. When measuring
timings on Cortex M4 and M7 using JTAG, we observe that errors on M7 are higher
than for Cortex M4. This discrepancy is due to the deterministic nature of the Cortex
M4 architecture, while M7 incorporates a cache with a random replacement policy, which
introduces timing variability. However, this observation does not hold for more sophis-
ticated architectures such as Cortex A53 and A72. For these processors, measurement
methods involving software instrumentation were necessary, which introduced additional
cycles into the measurements. The insertion of measurement instruments disrupts the exe-
cution, particularly affecting memory plans and cache behavior. As a result, the data (and
in particular, the timing labels) obtained for these processors are slightly less accurate
compared to processors with a JTAG interface. Consequently, making a direct comparison
between these architectures is challenging.

Table 3.8 reports the results obtained on the second dataset. We can notice that the
trends observed in the previous table 3.7 remain consistent.
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Target M4 M7 A53 A72
Scores MAPE MAPE MAPE MAPE

ITHEMAL 10.0% 14.4% 12.1% 13.0%
CATREEN 9.6% 14.5% 10.3% 11.8%

Transformers vanilla 9.1% 13.8% 13.5% 13.3%
ORXESTRA 8.7% 6.8% 6.1% 7.5%

Table 3.8 – Test Results: Mean Absolute Percentage Error (MAPE) on Different Targets
(M4, M7, A53, and A72) using the second test set. The Test Set is specifically chosen to
be within the prediction capabilities of Transformers vanilla, ensuring a fairer comparison
among models.

3.3.4 Impact of the context size

In the previous paragraph, we evaluated the importance of context awareness to make
accurate timing predictions. However, an important question arises: how much context is
necessary? To explore this, we conducted investigations on CATREEN and ORXESTRA
for the different target architectures. Experimental results are reported in Table 3.9 and
Table 3.10 respectively. The best results in the table are highlighted in bold.

Target M4 M7 A53 A72
None 13.0% 26.1% 36.3% 18.2%

1 12.5% 15.2% 21.0% 18.4%
3 8.8% 15.5% 8.5% 10.4%
6 9.3% 13.3% 12.5% 15.5%
20 10.2% 14.2% 9.5% 11.4%

Table 3.9 – Impact of the context size (number of BB considered as context) on the Mean
Absolute Percentage Error of CATREEN.

Target M4 M7 A53 A72
None 12.5% 24.5% 34.6% 13.3%

1 11.9% 14.6% 20.5% 13.1%
3 7.8% 14.5% 22.9% 14.5%
6 8.8% 9.6% 5.2% 6.9%
20 9.2% 13.7% 8.3% 8.8%

Table 3.10 – Impact of the context size (number of BB considered as context) on the
Mean Absolute Percentage Error of ORXESTRA.

The results highlight the importance of context in timing estimates. Both CATREEN
and ORXESTRA, when deprived of context, produce estimates akin to standard neural
networks. As the context size grows, the prediction errors diminish. Yet, there’s a limit
to this improvement. For ORXESTRA, errors stabilize after including 3 BBs for the M4

102



3.3. Experimental results

architecture and 6 BBs for other processors. For CATREEN, most processors stabilize
at 3 BBs, but M7 needs 6 BBs. This plateau in error reduction can be attributed to the
inherent constraints of LSTM architectures. Overly long contexts can overload the context
vector, making it less effective within the set hyperparameters of both models.

3.3.5 Impact of the basic block size

Figure 3.5 displays the prediction errors (in mean absolute error 5) for the six sets of
500 BBs in the test dataset: 500 BBs with less than 10 instructions (in the left), 500 BBs
with a number of instructions between 10 and 20, 500 BBs with a number of instructions
between 20 and 30, 500 BBs with a number of instructions between 30 and 40, 500 BBs
with a number of instructions between 40 and 50, 500 BBs with a number of instructions
between 50 and 100, and 500 BBs with more than 100 instructions (in the right). We
observe that ORXESTRA exhibits a lower error trend across BBs of different sizes for
all architectures. CATREEN demonstrates low error rates when predicting larger-sized
BBs than smaller-sized ones. On the other hand, ITHEMAL exhibits a consistent trend,
as we observe that there is a significant increase in error when predicting long BBs (es-
pecially those with more than 100 instructions). In terms of ORXESTRA errors, it is
worth noting that average errors tend to be lower for the more complex architectures,
such as Cortex A53 and A72. Conversely, processor architectures that strictly adhere to
an in-order pipeline can result in high errors for ORXESTRA. To understand the fac-
tors contributing to smaller errors in the more complex architectures, we examined the
standard deviation of execution times for basic blocks (BBs) in the initial test set. The
obtained results for each architecture were as follows: M4 - approximately 252 cycles (due
to the absence of a cache), M7 - approximately 113 cycles, A53 - approximately 83 cycles,
and A72 - approximately 64 cycles. This indicates that the reduction in error can be at-
tributed to the inherent nature of the processor. Superscalar and out-of-order architectures
have the ability to rearrange the order of instruction execution, thereby mitigating delays
caused by instruction dependencies and resulting in less variability in execution times. The
variability in estimates significantly impacts the predictive capabilities of ORXESTRA.

3.3.6 Optimization effect on prediction

In this experiment, we want to use different GCC optimization levels (O0, O1, O2, O3)
to compile and generate the test dataset. This allows for an investigation into how sensitive
the models are to changes in optimization levels. The goal is to answer the question: are

5. Mean Absolute Error: MAE = 1
n ∗

∑i=n
1 |predictioni − truthi|
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Figure 3.5 – Mean absolute cycle error (average number of cycle error) boxplot comparison
of ITHEMAL (blue), CATREEN (orange), Transformers vanilla (green), and ORXESTRA
(red) for different processors (M4, M7, A53, A72) and six Categories of basic blocks. The
most left category represents basic blocks with a size of 10 or less instructions (-<=10),
while the most right category includes basic blocks with a number of instructions exceeding
100 instructions (100<). Each subfigure represents a processor.

the models robust enough to maintain performance across different optimization levels?
Table 3.11 gives the results of this experimentation, and we observe that:

— ORXESTRA: Consistently outperforms the other models across all targets and op-
timization levels.

— It is evident that Neural Networks exhibit the highest error in results, making
them the most sensitive to compiler optimization. ITHEMAL consistently outper-
forms Neural Networks and occasionally surpasses CATREEN. ITHEMAL shows
high variability in MAPE scores, contrary to CATREEN and ORXESTRA, making
ITHEMAL not only influenced by the model hyperparameters setting as discussed
in Section 3.3.2 but also by the optimization level used to compile the testing data.

— Optimization Levels: The optimization levels do not seem to consistently impact
error rates across different models and targets, which is interesting. Additionally, it
is worth noting that the error rates for each model do not vary significantly when
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changing the optimization levels, indicating a level of robustness in the models’
performances across different optimization settings.

Target M4 M7 A53 A72
Optimization O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3
Neural Networks 28.1% 23.2% 21.9% 26.4% 21.1% 19.9% 28.3% 22.7% 25.2% 40.4% 37.1% 38.4% 18.2% 17.1% 16.4% 16.7%
ITHEMAL-tuned 14.1% 14.5% 14.5% 14.4% 18.2% 18.2% 17.7% 17.6% 9.1% 11.0% 10.6% 10.1% 12.2% 12.3% 11.5% 11.4%
\CATREEN 8.9% 8.2% 8.9% 8.8% 13.4% 13.1% 12.8% 13.3% 9.7% 9.7% 9.2% 8.5% 11.1% 11.4% 10.8% 10.4%
\ORXESTRA 7.6% 7.7% 7.7% 7.8% 8.9% 8.2% 9.9% 9.6% 6.2% 6.1% 6.3% 5.2% 7.9% 7.2% 7.4% 6.9%

Table 3.11 – MAPE performance of ORXESTRA, CATREEN, ITHEMAL and Neural
Networks across various GCC optimization levels (O0, O1, O2 and O3) and architectural
targets

3.3.7 Inference throughput

Table 3.12 displays the instruction rate per second achieved by each machine learning
model. Interestingly, this time is found to be independent of the complexity of the tar-
get processor architecture, so we report the average over all processors. The throughput
calculation is based on the 1000 basic blocks utilized in the previous experiments (the
first test set). To ensure a fair comparison, we present the results in the first column with
a batch size of 1, followed by the results with a batch size of 32 in the second column
for all techniques. Notably, neural networks demonstrate the highest execution speed, de-
spite their lower accuracy. Transformers Vanilla, which does not consider the execution
context, follows closely. ORXESTRA, which processes this context, provides a better ex-
ecution speed compared to LSTM-based networks (ITHEMAL and CATREEN), which
require sequential processing of each instruction. Consequently, CATREEN is the slowest
among them due to the additional context processing involved.

Throughput Instruction/second
Batch size 1 32

Neural Networks 5131 162140
ITHEMAL 1627 45379
CATREEN 1356 32644

Transformers vanilla 3809 112468
ORXESTRA 2691 74172

Table 3.12 – The mean throughput over all processors, when treating 1000 BB for each
technique (with a batch size of 1 and batch size of 32).
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3.4 Conclusion

In this chapter, we delineated the capabilities of CATREEN and ORXESTRA, two
distinct machine learning-based timing predictors. CATREEN leverages Long Short-Term
Memory (LSTM) networks to estimate the average execution time of a program’s basic
blocks, taking into account the execution context informed by the sequence of previously
executed basic blocks. In contrast, ORXESTRA employs the Transformers XL architec-
ture for timing prediction, while also considering the execution context.

The experimental findings suggest comparative advantages, particularly favoring ORXES-
TRA, whose timing accuracy predictions are 28% superior to the context-aware CATREEN
and are executed 98% faster. However, despite the promising results, there are several ar-
eas of potential improvement in this study that warrant further investigation. Below, we
outline the key limitations and suggest areas for future enhancement:

— Context size limitations: Performance degradation when dealing with a large
number of basic blocks is a concern. Further research is needed to ascertain whether
this limitation is attributed to the dimensions of our Transformers XL and LSTMs
network. If a larger network size can deliver improved accuracy, then leveraging
parallel GPU-based training would become crucial.

— Context representation: Currently, the context is represented as a sequence of
basic blocks (BBs). Other, more efficient representations should be explored, notably
graph neural networks, which could process a control flow graph and ensure a more
accurate representation of a BB’s context.

— Random cache replacement policy: The unpredictable nature of a random cache
replacement policy poses challenges for accurate execution time prediction. A possi-
ble countermeasure could be the integration of performance counters to track cache
activities. By selecting a representative set of executions based on distinct cache
miss ranges, we could more accurately capture the average memory access patterns,
thereby refining our estimates related to execution time variability.

By systematically addressing these identified limits and incorporating the aforemen-
tioned solutions, the performance and practical applicability of ORXESTRA and CATREEN
in real world computational settings are expected to be substantially enhanced.
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Chapter 4

TOWARDS REFINED WCET ESTIMATION:
THE POTENTIAL OF TRANSFORMERS XL

In the previous chapter, we introduced two novel machine learning techniques, ORXES-
TRA and CATREEN, designed to accurately account for instruction-level dependencies
both within a basic block and in relation to previously executed basic block sequences.
This context is a crucial input for our context-aware models.

In this chapter, we propose CAWET, a novel Hybrid WCET Technique that employs
Machine Learning (HT-ML). CAWET is an acronym for Context-Aware Worst-case ex-
ecution time Estimation using Transformers. It leverages the Transformers XL advanced
machine learning algorithm [44], similar to ORXESTRA from Chapter 3. Since ORXES-
TRA has shown superior performance over CATREEN in both accuracy and execution
speed, we have adapted it to predict the worst-case execution time of basic blocks. Unlike
other HT-ML methods that focus solely on static features, CAWET considers the internal
dependencies within each BB and the context surrounding it when estimating its WCET.
This is performed by treating the sequence of instructions in a BB as natural language,
where the timing of a BB depends not only on its instructions sequence but also on the
sequence of BBs executed before it.

Hypotheses

This section presents the assumptions guiding the functioning of our proposed tech-
nique, i.e., CAWET.

— In this chapter, our primary focus is on the estimation phase; our objective is to
determine the worst possible context, i.e., the sequence of previously executed basic
blocks leading to the worst-case execution time of the target basic block. In the
training phase, we only retrain the Transformers XL to predict the WCET estima-
tion.

— Similar to Chapter 3, we treat the size of the execution context as a hyperparame-
ter. We limit our analysis to a predetermined number of basic blocks, as excessive
numbers can result in the path explosion problem during the search for all possible
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contexts of the target basic block.

— CAWET can estimate the WCET for basic blocks in complex architectures with
limited documentation. It can capture pipeline and some cache effects during the
estimation of the basic block’s WCET, making it also ideal (as WE-HML) for aero-
nautics applications in DAL B and C categories [20].

The rest of this chapter is organized as follows. Section 4.1 presents the CAWET HT-
ML technique. The experimental methodology for evaluating it is detailed in Section 4.2,
and experimental results are given in Section 4.3. We conclude in Section 4.4. The main
content of this chapter has been published at ECRTS 2023:

"Abderaouf N., AMALOU, Elisa FROMONT, and Isabelle PUAUT. "CAWET:
Context-Aware Worst-Case Execution Time Estimation Using Transformers." The 35th
Euromicro Conference on Real-Time Systems, (ECRTS 2023). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2023."

4.1 The CAWET approach

CAWET consists of two main stages: training and deployment (or estimation). As in
all systems using Transformers, the Transformers model is first pretrained in the learning
phase to comprehend the vocabulary (in our context, assembly language). Then, the
model is finetuned using extensive measurements on various basic blocks extracted from
real codes. In this finetuning stage, the model learns how to calculate the WCET of each
basic block by considering the context surrounding the block (previously executed BBs).
During the estimation stage, the WCET of each BB is determined for all bounded-length
contexts leading to the BB, extracted from the program’s CFG. The maximum timing
estimate for these contexts is then selected as the WCET of the basic block and used
by IPET to calculate the WCET of the overall program. CAWET is easy to deploy,
as the training has to be done only once. Consideration of pipeline effects is performed
automatically due to consideration of the execution context of all basic blocks. CAWET is
evaluated on processors of varied complexity, including the cortex-M4, the more advanced
cortex-M7 that features a cache, and the even more sophisticated cortex-A53. The quality
of the WCET estimates produced by CAWET is compared to those produced by WE-
HML, the HT-ML technique closest to CAWET [7], on 13 programs from the TACLeBench
benchmark suite [64]. Our results show that CAWET produces better estimates than its
competitors on more diverse architectures.

CAWET is a hybrid context-aware WCET estimation technique that predicts an in-
context WCET of individual basic blocks and then uses the predictions to calculate the
overall program’s WCET. A high-level overview of CAWET is given in Section 4.1.1.
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The two main phases of CAWET, training (using Transformers XL) and prediction (i.e.,
deployment), are then respectively presented in Sections 4.1.2 and 4.1.3.

4.1.1 Overview of CAWET

CAWET consists of two main stages: training and deployment (or estimation). Both
stages operate on individual basic blocks (BB) and account for the execution context
of the BB under study (i.e., the sequence of BBs executed before it). CAWET relies
on Transformers XL, originally used in natural language processing, for their ability to
learn long-term dependencies between words. In CAWET, the language under study is
a sequence of BBs, each composed of a sequence of assembly instructions. The overall
structure of CAWET is depicted in Figure 4.1.
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Figure 4.1 – Overview of CAWET

In the training phase (left block of Figure 4.1), the Transformers model is first pre-
trained on real programs to learn the vocabulary of the language it will process (in our
context, assembly language) as it is usually done for large language models [55]. Then,
the model is finetuned using extensive measurements on a large set of BBs extracted from
real code. In this finetuning stage, the model learns how to calculate the WCET of each
BB by considering the context surrounding it (i.e., previously executed BBs).

During the estimation stage (right block of Figure 4.1), the WCET of each BB is deter-
mined. Since there might be different execution paths leading to the BB under study, the
prediction operates on the set of contexts corresponding to these paths, with care taken to
avoid combinatorial explosion, as further explained in Section 4.1.3. The prediction phase
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first computes the list of contexts of the BB under study (BB number 8 in the Figure).
The result in the example is a list of 4 contexts, made of the sequence of BBs executed
before BB 8: (1, 4, 5), (1, 2, 3), (3, 4, 5), and (3, 6, 7). The timing of BB 8 is estimated for
each context. The maximum timing estimate is then selected as the WCET of the BB
and used by IPET to calculate the WCET of the overall program.

4.1.2 Training phase using Transformers XL

Transformers are neural network architectures originally designed for natural language
processing, which can perform tasks such as language translation, text summarizing, and
text-to-speech. It was first proposed in [164], and one of its main advantages is using self-
attention mechanisms that enable the model to weigh different parts of the input data
when making predictions. However, as defined in [164], the original Transformers architec-
tures have a fixed-length context window and may struggle to handle sequential data with
long-term dependencies. To address this limitation, Transformers XL (TXL) [44] were in-
troduced. A TXL is a variation of the Transformers architecture that uses a so-called
memory-augmented attention to better remember and utilize information from earlier in
the sequence. We use a TXL architecture in CAWET because it improves the ability of
the Transformers to handle long-term dependencies, which is necessary for handling long
sequences of code.

Estimating the WCET of a given BB given its context is performed by first processing
the context (formed by the BB executed before the analyzed BB as well as the analyzed
BB), followed by processing the BB under analysis. This results in two embedding matrix
representations (a global attention matrix for the context and a local attention matrix
for the BB under analysis) that are then concatenated. The resulting embedding repre-
sentation is given as input to a fully connected layer, producing a single scalar value (the
timing estimate for the analyzed BB).

The training of a TXL consists of two stages (pretraining and finetuning). During the
pretraining stage, the TXL is trained to learn the structure of assembly instructions in text
format using self-supervised learning. This classical self-supervised learning phase [55] is
achieved by masking random operations or operands in the sequence and (pre)training the
model to reconstitute (i.e., predict) them as output. To perform this pretraining phase,
thousands of disassembled binary programs are used without needing labeled information.
Details about the hyperparameters of the TXL architecture are provided on the Page 96.

In the finetuning stage, a set of programs, the target processor, and a measurement
tool are required. BBs execution time is measured using the measurement tool. Then, the
instruction sequences are tokenized using Sentencepiece [103], a well-known tokenization
technique trained in our work on the target assembly instructions. The training dataset
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for the finetuning stage is then built using the maximum observed timing of each BB, the
tokenized BB, and its context. Contexts have a maximum size; the context size, expressed
as a number of basic blocks, is a hyperparameter of the Tranformer-XL.

4.1.3 Prediction phase

CAWET predicts the WCET of BBs by considering their different execution contexts
and retaining the largest one. The results from CAWET can then be integrated into a
static WCET estimation tool. In this section, we first introduce the foundational concepts
and notations upon which CAWET is built. Following that, we delve into the specifics
of context generation. We then outline how the WCET of a BB is derived from the
predictions, culminating in the final calculation of the program’s overall WCET.

Concepts and notations

The concepts and notations used in CAWET are standard concepts used in compilers.
They are illustrated in Figure 4.2, which will be reused later to illustrate how CAWET
works.

Definition 3 (SESE regions, SESE trees.) A Single Entry Single Exit (SESE) re-
gion, as defined in [94], is a sub-graph of a CFG that can only be entered by one edge and
exited by one edge. A property of SESE regions is that they can be arranged into a tree,
and constructed in linear time [94].

An example of CFG (with 7 BBs numbered from 1 to 7), and its SESE regions is
depicted in Figure 4.2 (A). The dotted arrow in the figure represents the back edge of the
loop whose body is composed of BB 5 and 6. The SESE tree that corresponds to the CFG
is depicted in Figure 4.2 (B). The rationale behind using SESE regions is to have subsets
of the CFG that are simple enough to explore all paths exhaustively, with the overall
objective of avoiding combinatorial explosion when generating the possible contexts of a
BB.

Definition 4 (Cyclomatic complexity.) Cyclomatic complexity is a software metric
that measures the number of independent paths through a program or a CFG [61]. It can be
thought of as the number of unique paths that can be taken through the code. It is calculated
using the following formula: Cyclomatic_complexity(CFG) = edges − nodes + 2

The cyclomatic complexity will be used during the prediction phase to decide which
paths leading to a BB are worth exploring. The cyclomatic complexity of the SESE regions
in our example is displayed in Figure 4.2 (B).
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Figure 4.2 – A CFG example transformed into a SESE tree and annotated with cyclomatic
complexity.

Context generation

For each basic block, we aim to identify the potential preceding sequences of basic
blocks that could be executed. However, determining all possible paths in a graph can
be computationally intensive. To mitigate this challenge, we employ a divide-and-conquer
approach leveraging the program’s SESE tree. In the example of Figure 4.2, the root SESE
region (SESE 1) represents the entire CFG. Each tree level represents a sub-SESE region
(e.g., SESE 2 and SESE 3 are the children of SESE 1), with smaller and thus simpler
sub-graphs.

To limit the complexity, CAWET performs an exhaustive path exploration only for
the SESE regions that are simple enough (based on their Cyclomatic Complexity, CC) to
allow a full path exploration. SESE selection is performed using a top-bottom traversal of
the SESE tree, and the SESE regions with a value of CC strictly higher than a threshold
are filtered out. Path exploration for the selected regions uses Depth-First Search [159]
(DFS) to enumerate all possible paths 1. We ensure, by construction, that the chosen SESE
covers the entire input code. i.e., in situations where a SESE node cannot be analyzed
due to its high CC value, we analyze all its children. Additionally, basic blocks that do
not belong to any region in the tree are included to ensure complete code coverage.

This process is illustrated in Figure 4.3 step 1 using the CFG and SESE in Figure 4.2

1. DFS traversal ignores loop back-edges. Loop management is described later in this Section.
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as an example, with a CC threshold of 2. In this example, the SESE regions 2 and 3 are
selected, and their paths are fully explored (step 2 in Figure 4.3).
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Figure 4.3 – Example of the different steps for context generation, where the cyclomatic
complexity limit is set to 2 and the context size is set to 3 BBs.

Management of loops As explained above, the enumeration of paths in SESE regions
ignores the back edges of loops. Therefore, all paths in a given loop are explored only
for one iteration. Obtaining the execution context of any BB to be executed after a loop
requires considering several loop iterations. This is achieved in CAWET using (virtual)

113



Part , Chapter 4 – Towards Refined WCET Estimation: The Potential of Transformers XL

unrolling: the context of a loop is composed of several iterations of the loop body (from
zero to the loop’s maximum number of iterations).

As the path followed may differ across iterations, generating all possible contexts may
lead to a combinatorial explosion. This issue is addressed by restricting the number of
BBs added by the unrolling process for the loop body to a fixed value, the hyperparameter
context size of CAWET. In the presence of nested loops, the context of the inner loops
is generated first, to be further used to generate the context for outer loops. This is
performed using a bottom-up traversal of the loop nesting tree of every CFG 2.

The result of the loop unrolling process on our example is given in Figure 4.3 step
3, for SESE 3. Three contexts are generated, corresponding respectively to 1, 2, and 3
executions of the loop. Note that, at this step, the size of the contexts of SESE regions
may be longer than the context size hyperparameter.

Per BB context generation The execution traces for the different SESE regions, after
loop unrolling, are used to generate the context list of every basic block, as depicted in
Figure 4.3 step 4. The size of each context is limited to the context size hyperparameter
of CAWET.

In some cases, the initial nodes of some SESE sub-regions are smaller than the context
size hyperparameter. To address this issue, we look for the preceding SESE region or BB
to access the end of its traces. The peeked-on edges are shown in the SESE tree from
Figure 4.3; they can easily be found by looking at the end of the traces of all the BB that
occur before this trace. The obtained information can then be used as context for the
start nodes of the current SESE region, provided we can find a region before the current
one.

As an example, Figure 4.3 step 5 shows that the context of BB 5 can be augmented
by peeking at the execution trace of SESE 2.

Basic Block WCET estimation and program WCET calculation

After generating all possible limited-size contexts for each BB, we move on to estimat-
ing its WCET. This involves predicting the execution time of the BB under study for all
its contexts. In an architecture without a cache, the maximum estimated time is selected
as the worst-case scenario. If the target architecture includes a cache, we keep track of
the two highest estimated execution values to account for cache effects. The largest value
typically signifies the initial execution of the basic block within a loop, which tends to
be longer. In contrast, other values might indicate subsequent, potentially shorter, execu-

2. A loop nesting tree is a tree data structure used to represent nested loops. Each node in the tree
represents a loop, and the edges between the nodes represent the nesting relationship between the loops.
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tions of the same block. Due to a limited context size, predicted timing values might be
overly optimistic. To address this, we explore a technique in later sections that incorpo-
rates static cache analysis, adding its overhead to CAWET’s timing values. Subsequently,
the WCET of BBs is integrated into a static WCET estimation tool, using established
methods like IPET [171], to determine the program’s overall WCET.

4.2 Experimental setup

In this section, we detail the experimental setup employed to assess CAWET. The
datasets for pretraining and finetuning are provided in Section 4.2.1 and they are con-
sistent with the one utilized in Chapter 3. For finetuning, while the dataset remain the
same, the labels employed in this chapter represent the maximum observed execution time
of the basic block. Meanwhile, the testing dataset, derived from TacleBench, aligns with
the one referenced in Chapter 2. Section 4.2.2 introduces the context-agnostic baselines
against which CAWET’s performance is benchmarked. Subsequent sections, namely Sec-
tion 4.2.3, Section 4.2.4, and 4.2.5, elucidate the software/hardware environments and the
configurations for both the learning and prediction phases of CAWET.

4.2.1 Dataset and benchmarks

For CAWET, which uses Transformers XL [43], pretraining and finetuning are essential
steps. The information in this subsection is redundant with that of Chapter 3 (training
ORXESTRA) and Chapter 2 (testing on Taclebench [64] programs), but for a clear un-
derstanding of this chapter, we decided to duplicate them while adding the information
specific to CAWET.

We have pretrained CAWET on a large number of BBs in order for the Transformers
to learn the assembly language under study, using CodeNet [139]. CodeNet is a collection
of solutions submitted by the public to competitive programming websites. It contains
approximately 900,000 C programs, which we cross-compile to the target architecture
and disassemble using GNU binary utilities using objdump. The textual format produced
by objdump, after some basic parsing (e.g., extraction of addresses, separation of BBs)
allows the creation of a large pre-training set. This pretraining set is also used to build
a vocabulary model with Sentencepiece [103]. Once the model (Sentencepiece model) has
been trained, it is then used to tokenize any binary programs written with the target
instruction set. To finetune CAWET on basic blocks with their context, we have used
a diverse and publicly available set of programs: The Algorithms 3, MiBench [75] and

3. Available here: https://github.com/TheAlgorithms/C
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Polybench [173]. Table 4.1 gives a short description of each benchmark suite, the number
of programs it contains, and the total number of BBs encountered when executing the
programs.

Table 4.1 – The benchmarks used for training CAWET.

Dataset name Description Nb. of programs Nb. of BB

The Algorithms Collection of open-source implementations
of a variety of algorithms implemented in C 200 12123

PolyBench A collection of benchmarks containing static control parts.
The purpose is to uniformize the execution and monitoring of kernels 30 11224

MiBench A free, commercially representative embedded benchmark suite 14 8324
Total 244 31671

Table 4.2 – Selected TacleBench codes used to evaluate the quality of the predictions.

Name Description
bs Binary search in an array

bsort Bubble sort algorithm
countnegative Basic counting on arrays

crc Cyclic redundancy codes
expint Exponential integral function
fdct Fast discrete cosine transform.
fir Finite impulse response filter

h264 dec H.264 block decoding functions
insertsort Insertion sort
jfdctint Discrete-cosine transformation
matrix1 Generic matrix multiplication

ns Search in 4-dimension array
petrinet Petri net simulation

To validate the quality of the WCET predictions provided by CAWET, we use a subset
of the codes from the TacleBench benchmark suite [64] whose characteristics are given in
Table 4.2. We chose these codes because: (i) the programs are analyzable by static WCET
estimation tools, and in particular, they contain loop-bound annotations; (ii) they come
with input data known to trigger the worst-case execution paths; (iii) they are used in our
closest competitor WE-HML [7], allowing us to compare CAWET with this work. Note
that the selected TacleBench programs were not used during any of the two steps of the
training phase.

4.2.2 Context-agnostic baselines

CAWET is evaluated by comparing it to two context-agnostic WCET predictors. The
first is a Multi-Layer Perceptron regressor, loosely referred to as a Neural Network (NN),
which we train under the same conditions as the finetuning step of CAWET (same dataset,
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same loss function). Although not a naive approach, the Neural Network is a feed-forward
architecture that does not incorporate sequential information and requires a fixed-size
input. Our implementation of the NN employs a total of 233 static features of the ba-
sic blocks as input, including the proportion of different machine instruction types (e.g.,
MOV, ADD, LDR). We used a greedy search algorithm to determine optimal hyperpa-
rameters for the NN, including the number of hidden layers, optimizer, learning rate, and
loss function. Based on the validation dataset, the ideal parameters were determined to
be hidden layer sizes=(512, 256, 128), learning rate=’adaptive’, learning rate init=0.001,
solver=’adam’..

The other baseline CAWET is compared with is WE-HML [7], a hybrid ML-based
WCET estimation technique presented in Chapter 2. One of the best-performing ML
algorithms of [7] (Neural Network trained to account for cache effects) is used. CAWET
is compared to WE-HML for the Cortex A53 processor only, a processor for which the
results of WE-HML were available.

4.2.3 Hardware and software setups

For training and validating CAWET, accurate timing values are essential. The method-
ology to gather these values must avoid any interference with the program’s execution,
also known as the probe effect. In this process, we remind how we set up the measurement
process at each Chapter of this document:

Chapter 2. We measure synthetically generated C code, often referred to as basic
blocks, using software instrumentation. However, these measurements are subject to op-
erating system interferences, which necessitated the use of a probabilistic method to filter
the unwanted noise for each basic block measurement.

Chapter 3. Whenever available on the target processor, we utilize a hardware-based
measurement solution (JTAG) and operate on bare metal. This ensures precise measure-
ments for each basic block, eliminating the noise that could be introduced by the operating
system. If software instrumentation is employed, we insert measurement code both be-
fore and after the completion of a basic block. By leveraging annotations on maximum
loop iterations combined with GDB (the GNU Debugger), we can match each execution
time to its corresponding basic block. Both JTAG and GDB are also used to retrieve the
execution context.

In this Chapter. We build upon the measurement protocol from Chapter 3, ex-
tracting 1,000 measurements for each basic block. We observe that the variability is less
pronounced compared to one encountered in Chapter 2. This is because we either use
JTAG, which avoids the probe effect issues, or we employ more refined instrumentation
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where we measure instruction blocks that are smaller than those synthetically generated in
Chapter 2, thereby avoiding noises. In this case, we use the maximum observed execution
time for each basic block (the maximum from 1,000 of measurements).

Our experiments encompass various Arm processors, the features of which are sum-
marized in Table 4.3. It includs the Cortex-M4, Cortex-M7, and Cortex-A53. We focus
initially on the Cortex-M4 for its deterministic nature before moving to the more advanced
Cortex-M7 and then the Cortex-A53. Notably, in contrast to Chapter 3, we exclude the
out-of-order Cortex-A72 processor from our study. The definition of context in such pro-
cessors differs, as it can encompass both the preceding and succeeding basic blocks due
to their ability to buffer and reorder instructions.

Table 4.3 – Summary of the processors used and their micro-architectural features.

Target Measurement solution OS? Pipeline/#stages Branch predictor Cache memory and proprieties
Cortex-M4 Hardware (JTAG) Baremetal In-order/3 No No

Cortex-M7 Hardware (JTAG) Baremetal In-order/6 Yes Yes data and instruction cache,
L1, random replacement policy

Cortex-A53
(also used in [7]) Software Linux In-order/8 Yes Yes data and instruction cache,

L2, random replacement policy

4.2.4 Setup for the learning phase

PyTorch was used to implement the learning models, which were then trained on
a Tesla V100 GPU. Each setting (processor) required two days for CAWET training:
1,5 days for pre-training and 0,5 days to fine-tune the model. To avoid underestimating
execution times, we employed the Root Mean Squared Logarithmic Error (RMSLE) loss
function provided in Equation 4.1, which tends to penalize underestimations more heavily
than overestimations. The main reason why we did not do it in Chapter 2 is because we
used Scikit-learn [138], which offers a variety of regression algorithms, but it does not
provide the flexibility to customize the loss function (as the loss function is hardcoded in
the library). We also incorporated an additional penalty during training for predictions
that underestimated the execution time, according to Equation 4.2. We artificially modify
the target value in the loss when the prediction is too low. When computing the loss, this
is done by increasing the target with the predicting error (target − prediction) 4.

RMSLE(target, predict) =
√

(log (target + 1 ) − log (predict + 1 ))2 (4.1)

UsedTarget =

 target if target ≤ prediction

target + (target − prediction) if target > prediction
(4.2)

4. The goal is to make our machine learning model minimize underestimation of the predicted WCET.
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4.2.5 Setup for the prediction phase

The CFG, the SESE tree, and the loop tree are generated by the Heptane WCET
estimation tool [79]. These structures are used to construct the list of contexts for each BB.
Then, we predict the WCET for each BB using CAWET. Finally, we employ Heptane’s
IPET to determine the overall WCET of the program.

To create the contexts, we opted for a cyclomatic complexity of 5, as this value has been
shown empirically to generate paths within a reasonable amount of time (less than five
minutes to generate traces for each basic block in the 13 programs previously described
in Table 4.2). Since the best context size varies across different architectures, we only
considered a fixed number N of consecutive basic blocks, where N corresponds to the
number of pipeline stages of the target architecture.

4.3 Experimental results

The quality of WCET predictions for the Cortex M4 and Cortex M7 architectures is
evaluated in Sections 4.3.1 and 4.3.2. The effect of the different features of CAWET on
the quality of the predictions is studied in Section 4.3.3. Finally, CAWET is evaluated in
Subsection 4.3.4 on a more complex processor, the Cortex-A53, using a software measure-
ment method and an operating system, allowing us to compare the WCET predictions of
CAWET with those of WE-HML [7] from Chapter 2.

4.3.1 Quality of WCET predictions for the Cortex M4

Table 4.4 compares the WCET predictions of the selected TacleBench programs on
the deterministic cache-less architecture Cortex M4. WCET predictions of BBs are either
obtained by CAWET or by the context-agnostic Neural Network (NN) baseline described
in Section 4.2.2. The table gives for the two techniques both the WCET prediction in
cycles and the Relative Percentage Error RPE defined as RPE = (P redict−Actual)

Actual
∗ 100. A

context size of 3 BB is used.
The results show that CAWET is twice less pessimistic than the NN baseline on

average, using the Mean Absolute Error 5 on the RPE (i.e., Error = RPE). This can be
explained by the fact that (i) Neural Networks do not consider the ordering of instructions
in BBs (ii) Neural Networks are context-agnostic. We also observe that neither CAWET
nor the NN baseline underestimates the WCET since all RPE are positive.

Impact of the context size. Table 4.5 shows the considered context size’s impact
on the prediction quality. Four values are considered: 0 (no context), 1 BB as context, 3

5. Mean Absolute Error: MAE = 1
n ∗

∑i=n
1 |Errori|
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Table 4.4 – Comparison of WCET predictions for CAWET and a Neural Network (NN)
baseline on TacleBench programs for Cortex-M4.

Benchmark Maximum observed
execution time (Cycles)

NN
estimations

(Cycles)

NN
RPE
(%)

CAWET
estimations

(Cycles)

CAWET
RPE
(%)

bs 140 307 119.2 272 94.3
bsort 317279 414882 30.7 374712 18.1

countnegative 9638 14047 45.7 12858 33.4
crc 78496 102005 29.9 92872 18.3

expint 5683 7758 36.5 5727 0.7
fdct 7308 10557 44.4 8606 17.7
fir 6882 10844 57.5 7490 8.8

h264_dec 573752 661037 15.2 607918 5.9
insertsort 3125 3964 26.8 3898 24.7
jfdctint 7761 11454 47.5 9968 28.4
matrix1 440243 577831 31.2 564921 28.3

ns 28444 45026 58.2 34367 20.8
petrinet 3283 4159 26.7 3592 9.4

Avg. MAE - - 43.80 - 23.8

BBs as context, and 20 BBs as context.

Table 4.5 – Impact of the context size on the Mean Absolute Error (MAE) on TacleBench
programs for Cortex-M4.

Benchmark Context 0 Context 1 BB Context Pipeline size (3) Context 20 BB
bs 104,2% 97,6% 94,3% 117,9%

bsort 22,4% 27,6% 18,1% 34,2%
countnegative 47,3% 38,9% 33,4% 46,2%

crc 19,6% 11,1% 18,3% 19,3%
expint 21% 15,9% 0,7% 21,6%
fdct 39,2% 28,4% 17,7% 38,2%
fir 34,5% 31,6% 8,8% 39%

h264_dec 30,2% 22,1% 5,9% 30,9%
insertsort 15,5% 25,6% 24,7% 27,4%
jfdctint 34,6% 31,9% 28,4% 41,9%
matrix1 36,1% 33,3% 28,3% 53,4%

ns 45,7% 33,8% 20,8% 41,3%
petrinet 11% 17,2% 9,4% 16%

Avg. MAE 35,5% 31,9% 23,8% 40,6%

The results show that, on average, the error is minimal when the context size is 3 BBs.
Accounting for the execution context of BBs is beneficial to the quality of the predictions
up to a context size of 3. Taking into account larger context sizes results in much higher
error values. One possible explanation for these higher error values is that the context
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vector is being disrupted by extensive information that cannot be processed efficiently
with the current TXL architecture. In future works, we plan to examine this phenomenon
more closely, which will require substantial computing resources.

4.3.2 Quality of WCET predictions for the Cortex M7

The Cortex M7 processor is more complex than the Cortex M4. It features a 6-stage in-
order pipeline, data, and instruction caches with random cache replacement and a branch
predictor. Table 4.6 evaluates WCET predictions produced by CAWET and the baseline
NN for the Cortex M7, using a context size of 6 for CAWET.

Table 4.6 – Comparison of WCET predictions for CAWET (vanilla) and a Neural Network
(NN) baseline for Cortex-M7.

Benchmark Maximum observed
execution time (Cycles)

NN
estimations

(Cycles)

NN
RPE
(%)

CAWET
estimations

(Cycles)

CAWET
RPE
(%)

bs 140 307 119.3 280 100.0
bsort 191406 464616 142.7 376784 96.9

countnegative 6956 15874 128.2 13904 99.9
crc 47476 98473 107.4 88668 86.8

expint 3592 8260 130.0 7140 98.8
fdct 4957 12044 143.0 9341 88.4
fir 4625 10856 134.7 9132 97.4

h264_dec 362349 779905 115.2 706162 94.9
insertsort 1760 4188 138.0 3414 94.0
jfdctint 4011 11877 196.1 10215 154.7
matrix1 301866 660739 118.9 644668 113.6

ns 21253 46004 116.5 41167 93.7
petrinet 1595 3741 134.5 3342 109.5

Avg. MAE - - 132.7 - 102.2

The results show that even with no explicit support for caches, CAWET never underes-
timates compared to the Maximum observed execution time (the max of 1000 executions)
and is again more precise than the NN baseline. It should also be noted that the average
MAE, both for CAWET and NN, is, as one would expect, higher for the more complex
Cortex M7 than for the very simple Cortex M4, showing that the tight timing analysis of
complex processors is harder to achieve than the analysis of simpler ones.

Since the context size in CAWET is limited, the reuse of code/data (with instruc-
tion/data caches) may not be fully taken into account by the model. We thus modified
CAWET to add a cache miss penalty to the WCET of a BB when the static cache anal-
ysis of Heptane cannot guarantee a cache hit. The same procedure is applied to the NN
baseline, and the results are reported in Table 4.7.

121



Part , Chapter 4 – Towards Refined WCET Estimation: The Potential of Transformers XL

Table 4.7 – Comparison of WCET predictions for CAWET and a Neural Network (NN)
baseline for Cortex-M7 when accounting for the static cache analysis results.

Benchmark Maximum observed
execution time (Cycles)

NN
estimations

(Cycles)

NN
RPE
(%)

CAWET
estimations

(Cycles)

CAWET
RPE
(%)

bs 140 537 283.6 516 268.6
bsort 191406 840959 339.4 699961 265.7

countnegative 6956 33552 382.3 26997 288.1
crc 47476 184152 287.9 166025 249.7

expint 3592 14528 304.5 12764 255.3
fdct 4957 34861 603.3 20076 305.0
fir 4625 18088 291.1 16554 257.9

h264_dec 362349 1281479 253.7 1403042 287.2
insertsort 1760 6040 243.2 7105 303.7
jfdctint 4011 34044 748.8 19663 390.2
matrix1 301866 2021791 569.8 1249975 314.1

ns 21253 97870 360.5 76205 258.6
petrinet 1595 5813 264.5 6372 299.5

Avg. MAE - - 398.1 - 289.6

The integration of cache analysis results into CAWET and NN leads to more pes-
simistic WCETs for both techniques. Two factors explain this additional pessimism: (i) the
static cache analysis for random cache replacement is inherently pessimistic; (ii) CAWET
already captures parts of the cache behavior due to its use of the execution contexts for
BBs. Thus, the impact of some cache misses may be counted twice.

4.3.3 Impact of CAWET features (Cortex M4 and M7)

In this section, we analyze the effect of different features of CAWET on the Relative
Percentage Error (RPE): context accounting, peek-on mechanism, loop management, and
using Heptane’s cache analysis. Our study involves a comparison of the impact of each
feature, starting with context accounting (A), followed by the peek-on mechanism (B),
loop unrolling (C), and finally, applying cache analysis (D). The results in Table 4.8 show
that incorporating the context (A) provides the most significant improvement to CAWET,
while the effects of peeking (B) and loop enrolling (C) are less substantial. Additionally,
we can see that adding the cache analysis (D) in Cortex M7 has a considerable impact on
the predictions, with a significant increase in pessimism.
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Table 4.8 – RPE measures of CAWET predictions for Cortex-M4 and Cortex-M7 when
adding different features of CAWET: context accounting (A), peek-on mechanism (B),
loop unrolling (C), and cache analysis (D).

Feature(s) \Optimization Cortex-M4 RPE (%) Cortex-M7 RPE (%)
None 35.5 142.5

A 25.2 130.2
A+B 24.9 126.1

A+B+C 23.8 102.2
A+B+C+D NA 288.0

Table 4.9 – Comparison of WCET predictions on Cortex A53 for: CAWET, a probabilistic
WCET solution, WE-HML, CAWET (vanilla), and a modified CAWET to account for
static cache analysis results.

Benchmark MOET
(Cycles)

pWCET10−3

RPE (%)
WE-HML
RPE (%)

Vanilla CAWET
RPE (%)

CAWET
with cache analysis

RPE (%)
bs 2568 43.8 177.1 97.0 122.8

bsort 358380 60.4 838.3 18.6 21.3
countnegative 29720 6.3 168.5 70.2 169.6

crc 66867 64.2 315.2 53.8 86.5
expint 6122 1.0 352.5 29.0 80.3
fdct 8877 1.2 195.0 25.5 52.2
fir 7646 -13.6 391.4 31.1 114.9

h264_dec 426327 120.4 590.0 76.5 88.4
insertsort 3042 75.8 297.6 29.6 40.2
jfdctint 8070 51.1 296.1 44.4 57.5
matrixl 21380 5.8 207.1 223.9 236.6

ns 22018 -0.3 731.1 108.6 119.5
petrinet 3920 30.7 1865.3 2.3 30.8

Avg. MAE - 36.5 494.2 62.4 93

4.3.4 Quality of WCET predictions for the Cortex A53

The objectives of these experiments are twofold: (i) evaluate the WCET predictions
produced by CAWET for a more complex processor than the Cortex M7; (ii) be able to
compare CAWET to WE-HML [7], the related work closest to CAWET, that targets this
architecture. We re-use the very same experimental conditions as in WE-HML: software
measurements of execution times, and execution on top of an operating system. The max-
imum measured BB execution time is used alongside its context to train CAWET. We
have collected 1000 measurements for each studied benchmark and kept the maximum
execution time observed as a reference value to calculate the RPE. On the thousand mea-
surements collected, we have also applied the probabilistic WCET technique as described
in [142], where we set the probability to 10−3 to provide another reference point than the
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MOET.
Table 4.9 shows the Maximum Observed Execution Times (MOET) and Relative Per-

centage Error (RPE) for all considered techniques: probabilistic WCET estimation, WE-
HML, Vanilla CAWET, and CAWET modified with the results of static cache analysis.
On all benchmarks but one (matrix1), CAWET is much less pessimistic than WE-HML
(even for the modified CAWET). This is due to the significant pessimism introduced by
WE-HML to account for caches (WE-HML evaluates cache effects by generating the worst
possible cache pollution in loops regardless of the actual accesses performed in the loop).

Compared to the probabilistic technique, we observe that the pWCET is sometimes
unsafe. This may come from rare outliers (due, for example, to the presence of an operating
system) that are considered as WCET and that pWCET (smartly) ignores because they
are sufficiently rare. It may also happen when pWCET is less pessimistic than CAWET.
However, in general, pWCET techniques may miss the worst-case execution path in pro-
grams, whereas CAWET, a hybrid technique, will not.

4.4 Conclusion

In this chapter, we introduced CAWET: a hybrid approach that estimates the worst-
case execution time of individual basic blocks within a program. Our approach uses static
techniques to identify the longest execution path and Transformers XL [43] to predict the
WCET of each basic block. By incorporating the execution context of preceding basic
blocks, CAWET effectively captures the complexity of the processor’s microarchitecture
pipeline and partial cache effects, eliminating the need for explicit modeling of the target
processor. Empirical evaluations conducted on the TacleBench benchmarks for various
processors revealed that CAWET consistently avoids underestimating execution times,
presenting a less pessimistic outlook compared to its competitors. While challenges re-
main, such as the need for extended context to enhance prediction accuracy and reduce
pessimism (ensuring comprehensive cache effects and branch predictor considerations),
CAWET offers a promising solution for predicting worst-case execution times for complex
processors that are not well-documented.
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Chapter 5

CONCLUSION AND FUTURE WORKS

This document introduces novel methods for estimating worst-case execution time
(WCET) and average-case execution time (ACET) in complex computer architectures
with limited documentation. The key contributions of this thesis are summarized in Sec-
tion 5.1, while Section 5.2 outlines prospective research directions.

5.1 Key contributions

Below is a concise summary of our key contributions:

Hybrid methodology for enhanced WCET estimation (WE-HML). As a pre-
liminary work during this thesis, we introduced WE-HML [7], a method designed to es-
timate WCET on modern processors where detailed knowledge of their inner workings
is not always available. WE-HML is a hybrid technique: it uses WCET static methods
to estimate the longest path, while basic machine learning techniques help to estimate
the WCET of individual basic blocks. A unique feature of WE-HML is that it works
directly on binary code, offering more precise learning than methods that rely on source
or intermediate code. It is trained on a vast collection of automatically generated pro-
grams, ensuring quality learning. Additionally, WE-HML has a special way of accounting
for data caches; training data considers the worst effects of caches, which is crucial for
accurate WCET estimation. However, despite its initial promise, the approach tends to
overestimate execution times. A contributing factor to these pessimistic estimations was
the machine learning model’s reliance on static features, which failed to account for the
dependencies between instruction sequences within individual basic blocks.

Incorporation of Natural Language Processing (NLP) techniques for ACET
estimation. As a pivot to refine our techniques, we transitioned our focus from worst-
case scenarios to average-case execution times. The motivation behind this shift is to
simplify the integration of NLP techniques for capturing intricate dependencies between
instruction sequences. We tested various deep learning architectures such as LSTM [82],
BERT [54], and Transformers XL [43] to evaluate their capability for contextualizing
basic block execution times. Among these, Transformers XL distinguished themselves as
the most accurate model for the task.
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Context-aware WCET estimation using Transformers (CAWET). Building
upon the successful integration of NLP techniques for average-case scenarios, a pressing
question emerged: "How can one identify the worst-case context for a given basic block
and then employ Transformers XL to estimate its WCET?" Addressing this inquiry, our
third contribution—designated as CAWET—introduces a new mechanism to automati-
cally identify every feasible execution context leading into a specific basic block. CAWET
enhances the accuracy of WCET estimation by considering all possible short contexts.
Taking advantage of the capabilities of Transformers XL, we integrated these findings
into a static WCET analysis tool to create another hybrid methodology for estimating
WCET. This enhanced tool effectively mitigates the overly pessimistic estimations of our
initial WE-HML model, thereby increasing our approach’s overall accuracy and applica-
bility.

5.2 Open issues and future perspectives

We have presented various methods for estimating both worst-case and average-case
execution times. As we look ahead, we provide short-term and medium-term recommen-
dations to further improve these approaches.

Future works in the short-term

Toward explainable models. Machine learning models such as neural networks of-
fer powerful capabilities for estimating WCET and ACET. However, their inherent "black-
box" nature poses the challenge of understanding the decision-making process. This lack
of transparency can be a roadblock when these models are employed in crucial tasks
such as WCET estimation, where understanding the rationale behind predictions is es-
sential for identifying errors or anomalies in our models. This is where the concept of
"explainability" gains importance [133]. Explainability in machine learning is like a clear
window into how a model thinks. It helps us understand why a model makes a certain
decision. This not only builds trust in the model’s results but also lets the user spot any
problems or biases in how it is working. As a first attempt, with a colleague from the
NOP CominLab project [1] (Safe and Efficient Intermittent Computing for a Battery-
less IoT), we proposed a new ecosystem called WORTEX: WORst-case execution Time
and Energy consumption estimation using eXplainable machine learning. Our proposed
machine learning-based technique aims to improve timing and energy model interoper-
ability. Figure 5.1 provides an illustrative example in which we employ the SHAP [121]
(SHapley Additive exPlanations) technique to quantify the contributions of each static
feature to the execution time for neural networks timing model. Specifically, this visual-
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ization highlights how the presence of memory-access instructions (values different from
0) significantly influences the execution time. Conversely, their absence (values equal to
0) leads to a reduction in execution time. This behavior aligns well with the operational
characteristics of the MSP430 processor, where any memory access operation is intrinsi-
cally more time-consuming compared to instructions that do not require memory access.
However, explaining the decisions of more complex models like LSTM (CATREEN) and
Transformers XL (ORXESTRA), especially when applied to the timing estimation of pro-
cessors with limited documentation, presents new challenges. A significant limitation is
the absence of a clear ground truth for the interpretations, given that many processors are
protected by intellectual property rights. This limitation underscores the potential value
of porting our solution to open-source instruction sets, such as RISC-V. By doing so, we
can validate our explanations in a more transparent environment, setting a precedent for
future works in this domain.

Figure 5.1 – Plot showing feature impacts on timing prediction for a basic block on
MSP430.

Future works in the medium-term

Increasing context size. In Chapter 3, we have noticed a trend: as the context
size increases (referring to the number of basic blocks executed immediately before the
target basic block whose execution time is being estimated), there comes a point where
the error score also starts to rise. Even though we have pushed our available GPU to its
memory limits and utilized the most extensive possible network configurations for both
LSTM and Transformers, we believe that this setup might not be adequate for learning
a large context. Moreover, this could lead to the loss of important dependencies and
information, including cache effects and branch predictor history. As a starting point for
solving this limitation, we recommend delving into a larger set of learnable parameters
(larger LSTMs and Transformers), potentially by using multiple GPUs. This approach
could help us consider more basic blocks, thereby offering a more precise understanding
of cache effects and branch predictors.
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However, it is worth noting that an execution trace (sequence of basic blocks) can
become excessively large, potentially exceeding the processing capacity of even the larger
LSTM or Transformer models. It might be more meaningful if the context, formed by the
preceding "N" basic blocks, is substituted with the control flow graph that contains the
basic block whose execution time we aim to estimate. A promising direction is the use
of graph-based machine learning architectures [172]. These architectures should naturally
treat the Control Flow Graph (CFG) of the program in question alongside the basic block
under analysis. The question that we leave open is how to integrate both the CFG and
the target basic block into our prediction models to be able to capture a more compre-
hensive view of the execution context and potentially lead solutions like CATREEN and
ORXESTRA to more accurate ACET and WCET predictions.

These proposals remain hypothetical, and nothing can be guaranteed until we evaluate
whether our models can effectively accommodate more context.

Machine learning for timing estimation in multicores. Existing works [26, 41]
have utilized machine learning to predict contention 1 in multicore processors. In our case,
predicting the WCET in such systems already contradicts the hypothesis behind the
WCET estimation of a task, which is supposed to represent the worst execution time of
a task in isolation. However, it is more realistic to consider the nature of multicore pro-
cessors, especially since many of today’s processors, even embedded ones, are multicores.
A future direction to extend this work to multicore systems lies in extending the notion
of "context awareness" to account for activities that execute concurrently on other cores.
Importantly, how can this be addressed while working with processors that have limited
documentation?

A prospective approach might involve building on methodologies from prior works like
WE-HML. Here, machine learning could be trained to understand various factors, such as
the influence of other cores and cache pollution. Techniques such as [35] could be employed
to simulate these conditions during the training phase. For predicting the timing, tools
such as StAMP [50] might be considered to profile interference to estimate the inter-core
interference factor.

However, some questions are still open:

Cache pollution in multicores. How can the cache pollution, as done in the WE-
HML approach, be effectively adapted to multicore systems? How can we distinguish
between pollution coming from a loop nest and that caused by interference from other
cores?

Interference artificial simulation. When simulating inter-core interference by

1. Contention refers to the measurable delay or performance degradation caused by multiple cores
competing for shared resources.
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initiating parallel memory accesses on other cores, how can we ensure that this simulation
accurately represents real-world scenarios?

Training challenges. Finetuning Transformer XL took time. Is there a more effi-
cient solution to train the Transformers XL without needing to duplicate them for each
pollution factor and for each inter-core interference factor?
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Titre : l’apprentissage machine pour l’estimation du temps

Mot clés : Processeur complexe, Temps d’exécution pire/moyen cas, Apprentissage automa-

tique

Résumé : L’estimation du temps d’exécution
des programmes est une tâche clé mais diffi-
cile, rendue encore plus complexe par la crois-
sance de la complexité et l’insuffisance de
la documentation des architectures de pro-
cesseurs modernes. Bien que les méthodes
traditionnelles comme les simulateurs précis
au cycle soient exactes, elles sont également
longues et nécessitent une compréhension
approfondie de l’architecture du processeur.
Pour aborder ces limitations, une nouvelle ap-
proche basée sur les données et utilisant des
techniques d’apprentissage automatique a été
développée. Cependant, bien que les mo-
dèles d’apprentissage automatique existants
offrent des estimations rapides, ils sont princi-
palement adaptés à des architectures simples

avec des temps d’instruction constants. Ce
document vise à développer de nouvelles mé-
thodes d’apprentissage automatique pour des
processeurs complexes et non documentés
en introduisant la prise en compte du contexte
dans les modèles de timing basés sur l’ap-
prentissage automatique. Une approche no-
vatrice traitant les séquences d’instructions
comme un langage naturel et emploie des al-
gorithmes d’apprentissage automatique avan-
cés tels que les réseaux Long Short-Term
Memory et les Transformers. Ceci permet au
modèle de prendre en compte des caracté-
ristiques complexes telles que les effets de
cache et de pipeline, améliorant la précision
pour les temps d’exécution moyens et pires
cas.

Title: Machine Learning for timing estimation

Keywords: Complex processor, Worst/Average-case-execution time, Machine learning

Abstract: Estimating program execution time
is a key but challenging task, further com-
plicated by the growing complexity and in-
sufficient documentation of modern processor
architectures. While traditional methods like
cycle-accurate simulators are precise, they
are time-consuming and demand an in-depth
understanding of the processor’s architecture.
A new data-driven approach utilizing machine
learning techniques has been developed to
address these limitations. However, while ex-
isting machine learning models offer rapid es-
timations, they are primarily tailored for sim-
pler architectures with constant instruction

timings. This document aims to develop new
machine-learning methods for complex, un-
documented processors by introducing con-
text awareness into timing models based on
machine learning. A novel approach treats
instruction sequences like natural language
and employs advanced machine learning al-
gorithms such as Long Short-Term Memory
networks and Transformers. This allows the
model to consider complex features such as
cache and pipeline effects, improving the ac-
curacy for both worst-case and average-case
execution times.
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