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Thèse présentée et soutenue à Palaiseau, le 27/09/2023, par

BERTRAND MARCHAND

Composition du Jury :

Christian Komusiewicz
Professeur, Friedrich-Schiller-Universität Jena Président

Marie-France Sagot
Directrice de recherche, INRIA Rapporteure

Peter Stadler
Professeur, Universität Leipzig Rapporteur

Michal Ziv-Ukelson
Professeure, Ben Gurion University Rapporteure

Julien Baste
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Abstract

RNAs are one of the fundamental building blocks of life, along with DNA and proteins. If they are
mostly known as a mere intermediate in the synthesis of proteins (messenger RNAs), they may also
act directly as RNA to perform a wide variety of functions (catalysis, expression regulation…). For
these non-coding RNAs, the folded structures they adopt are crucial.

Both RNA sequences and structures display an inherently combinatorial nature: sequences are words
over A,U,G,C, while structures mainly consist of A-U, G-C and G-U base-pairs. Several fundamental
computational problems involving functional RNAs are therefore naturally expressed in the language
of discrete mathematics. Such problems include RNA folding (what is the preferred structure of a
sequence?), RNA Design (how do I find a sequence that would fold into a given structure?) or RNA
EneRgy BaRRieR (is there a feasible transition between two structures?). Some of these fundamental
problems areNP-hard, but still need to be solved by RNA bioinformaticians in practice, either to better
understand biological systems or for the development of RNA therapeutics (e.g. COVID19 vaccines).
These potential applications, combined with the ever-increasing amount of sequencing data available,
mean there is a dire need for efficient methods.

The philosophy of this PhD thesis is to explore the possibility of applying parameterized algorith-
mics, a relatively recent and very dynamic field of algorithmic research, to hard structural RNA bioin-
formatics problems. A particular focus is given to graph formulations and graph width measures as
parameters.
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Résumé

Les ARNs (Acides Ribo-Nucléiques) constituent, avec l’ADN et les protéines, l’un des blocs élémen-
taires sur lesquels sont construits tous les systèmes biologiques. Si ils sont surtout connus comme
étant de simples intermédiaires dans la synthèse de protéines (ARNs messagers), ils peuvent aussi agir
directement en tant qu’ARN, et remplir alors des rôles très variés (catalyse, régulation de l’expression
de gènes…). Pour ces ARNs dits non-codants, la structure de repliement qu’ils adoptent est cruciale.

À la fois les séquences et les structures d’ARN présentent un aspect intrinsèquement combinatoire:
les séquences sont des mots sur l’alphabet A,U,G,C, tandis que les structures sont principalement
constituées de paires de bases A-U, G-C et G-U. Plusieurs problèmes fondamentaux impliquant les
ARNs non-codant sont par conséquent naturellement exprimés dans le language des mathématiques
discrètes. Ces problèmes incluent le repliement (Quelle est la structure préférentielle d’une séquence
donnée ?), le design d’ARN (Comment trouver une séquence se repliant selon une structure spécifiée
en entrée ?) ou le calcul de barrières d’énergie (Y’a-t-il une transition entre deux structures suscep-
tible de survenir spontanément ?). Certains de ces problèmes fondamentaux sont NP-difficile, mais
les bioinformaticiens de l’ARN doivent tout de même les résoudre quotidiennement, soit pour mieux
comprendre les systèmes biologiques naturels, soit pour le développement de thérapies à base d’ARN
(dont les vaccins contre le COVID19 sont un exemple). Étant donné également les quantités toujours
plus grandes de données de séquençage à traiter, il y a un besoin croissant de méthodes algorithmiques
efficaces pour les problèmes mentionnés ci-dessus.

La philosophie de cette thèse de doctorat est d’explorer les possibilités d’application de l’algorithmie
paramétrée, un domaine relativement récent et très dynamique de la recherche algorithmique, à des
problèmes difficiles de bioinformatique des ARNs. Une attention particulière est donnée aux formu-
lations en termes de graphes, et à des paramètres de largeurs de graphes.



3

Acknowledgements/Remerciements

I would like to start by thanking all members of the Jury for accepting to evaluate this PhD thesis,
for their helpful comments on both the manuscript and the defense, and for their thought-provoking
questions. Special thanks go of course to the reviewers Marie-France Sagot, Peter Stadler and Michal
Ziv-Ukelson (particularly given the reviewing windowmatching almost exactly with summer holiday
times); and to Christian Komusievicz for his service as president of the Jury, which involved a trip
using both Deustsche Bahn and SNCF to come physically for the occasion.

Then, my most special thanks go to Laurent and Yann, for their guidance, patience and dedication
throughout these three years. This PhD has been an exceptionnally fulfilling and transformative ex-
perience for me. I owe it to them, and to the quality of the interactions we had over these three years.
They are examples to follow, both from a research perspective, and in how they care about the people
they work with.

My path towards research in Computer Science has not been linear. Therefore, I want also to
thank them for their openmindedness when considering a PhD application from an R&D engineer
with an unusual profile, and giving it a go. The same goes for the PhD selection committee of EDIPP
for the year 2020, whose composition I do not precisely know, which allocated me a scholarship.

To continue, I would like to thank all the people I haveworkedwith during these three years, especially
the members of the Amibio team I overlapped with: Hua-Ting, Sarah, Sebastian, Taher, and Théo.
Whether by coming to the office or by turning on Discord/Zoom, it has always been a pleasure ! Many
thanks as well to Aïda and Manuel for welcoming me in Sherbrooke for a research internship, that I
liked so much I decided to stay for a post-doc. Speaking of Québec, warm thanks to Vlad, for being so
welcoming, for so many discussions, including advice on both post-docs and (a geographically wide
set of) restaurants.

To say that I do not regret leaving the private sector for Computer Science research is an under-
statement. A primary argument for this is the genuine aspect of both research discussions and informal
meetings with the nice people that make up this community. In this spirit, I would like to thank many
people I dicussed with at some point during the PhD, such as the members Benasque community, the
partners of the DECRyPteD ANR, my fellow supervisors of exercise sessions for CSE201 and INF411
at École Polytechnique, and the participants and organizers of the conferences and summer schools I
took part in.

I also want to express my gratitude to the people who made this manuscript better by proof-reading
it and making comments. This is adressed to Laurent and Yann of course, but also my brother Lilian,
my friends François, Guillaume, and Julien, and my life-partner Gabrielle.

Merci également à toutes celleux qui on fait le trajet jusque Palaiseau pour venir assister à la soute-
nance de cette thèse: Alexis F, Alexis M, Emmanuel, Alain, François, Guillaume, Julien, Laurie, Lucie,
Mélanie, Raphaël, Thomas, ainsi que mes parents, mes frères, et Gabrielle. Merci aussi à celles et ceux
qui, sans parvenir à venir à la soutenance, ont ensuite pris part à la célébration: Annabelle, Brigitte



4

pour son montage de la chanson, Camille, Charlotte, Dimiri, Élodie, Johann, Marie-Thècle et Yaëlle,
Nam et Théophile.

Pour finir, et sur une note plus personnelle, j’aimerais remercier ma famille et mes ami.e.s pour leur
soutien dans cette aventure. Ce soutien a pris des formes multiples, allant de la simple disponibil-
ité pour discuter de tout et de rien autour d’une bière ou au pied d’un mur d’escalade, à l’expression
d’un enthousiasme vis-à-vis de cette idée saugrenue de retourner en recherche. Plus particulièrement,
merci à mes parents et à mes frères d’être ce refuge de bienveillance et de gentillesse. Merci à ma ma-
man pour son exemple de professionalisme, et d’abnégation pour faire grandir un projet auquel on
croît.

Et enfin, parce que quand nous sommes tous les deux tout semble tellement plus facile, merci, pour
tout, à ma partenaire de vie Gabrielle.



5

Eh approche
Écoute, hoche

la tête si t’accroche
pour ta famille et tes proches

va grapher dans la roche !

Revisite de Gravé dans la roche (Sniper) par
un collectif composé notamment de

Brigitte, Élodie, Gabrielle, Guillaume,
Johann et Julien.



6

Contents

1 Introduction 9
1.1 RNA bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 RNA basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 RNA structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.3 Energy models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.4 Computational problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.4.1 RNA folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.4.2 RNA design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.1.4.3 Structure-sequence alignment . . . . . . . . . . . . . . . . . . . . . 24
1.1.4.4 RNA barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Parameterized algorithmics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2.1 Philosophy and basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2.2 Parameterized intractability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.2.3 Width parameters: the example of treewidth . . . . . . . . . . . . . . . . . . . 32
1.2.4 Parameterized algorithmics in bioinformatics . . . . . . . . . . . . . . . . . . 40

List of publications 43

2 tRee diet: reducing the treewidth to unlock parameterized algorithms in RNA bioin-
formatics 44
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Statement of the problem(s) and results . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3 Algorithmic Limits: Parameterized Complexity Considerations . . . . . . . . . . . . . 50

2.3.1 Graph-Diet: practical solutions seem unlikely . . . . . . . . . . . . . . . . . . 50
2.3.2 Lower Bounds for Tree-Diet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 FPT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.1 For general tree-decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.2 For path decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Proofs of concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.5.1 Memory-parsimonious unbiased sampling of RNA designs . . . . . . . . . . . 61
2.5.2 Structural alignment of complex RNAs . . . . . . . . . . . . . . . . . . . . . . 63

2.6 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.6.1 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.6.2 Backbone Preservation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



7

3 Automated design of dynamic programming schemes for RNA folding with pseudo-
knots 68
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Definitions and main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3 Minimal representative expansion of a fatgraph . . . . . . . . . . . . . . . . . . . . . 74

3.3.1 Treewidth and tree decompositions . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.2 Helices of length 5 are sufficient to obtain generalizable tree decompositions . 77

3.4 Interpreting the tree decomposition of a fatgraph expansion as a DP algorithm . . . . 80
3.4.1 Canonical form of fatgraphs tree decompositions . . . . . . . . . . . . . . . . 80
3.4.2 Automatic derivation of dynamic programming equations in a base pair-based

energy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.3 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.5.1 More realistic energy models . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5.2 Integration with classic DP algorithms for MFE structure prediction . . . . . 93
3.5.3 Partition functions and ensemble applications . . . . . . . . . . . . . . . . . . 94

3.6 Automated (re-)design of algorithms for specific pseudoknot classes . . . . . . . . . . 95
3.7 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Models and methods for pseudoknotted structure-sequence alignment 99
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1.1 Covariance models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.1.2 LiCoRNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Evaluating the quality of a pseudoknotted structure-sequence alignment methods . . 107
4.2.1 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Formulation of pseudoknotted covariance models . . . . . . . . . . . . . . . . . . . . 112
4.3.1 Rewriting InfeRNAl and LiCoRNA differently . . . . . . . . . . . . . . . . . . 112
4.3.2 Pseudoknotted covariance models . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.3 Aligning sequences to a pseudoknotted covariance model . . . . . . . . . . . 118

4.4 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Independent set reconfiguration and RNA kinetics 124
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.2 Preliminary results and notations . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Connection with Directed Pathwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.2 Directed pathwidth⇔ Bipartite independent set reconfiguration . . . . . . . 134



8

5.4 Lemmata: algorithmic building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.4.2 Separation lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.4.3 Merge Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5 Parameterized algorithms for bipartite independent set reconfiguration . . . . . . . . 150
5.5.1 An XP algorithm in ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.6 RNA case: bipartite circle graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.6.1 RNA basics and arboricity parameter . . . . . . . . . . . . . . . . . . . . . . . 152
5.6.2 An XP algorithm for Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.7 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.7.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.7.2 Random bipartite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.7.3 random RNA instances (bipartite circle graphs) . . . . . . . . . . . . . . . . . 160

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6 Conclusion 162

Appendices 168
A Appendices to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.1 Editing Trees before the Diet . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.2 Pseudo-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.3 Correctness of the rejection-based sampling of RNA designs . . . . . . . . . . 170
A.4 Lower bound for the min. alignment cost from simplified models . . . . . . . 173

B Appendix to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
C Appendix to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
D Appendices to Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

D.1 Directed pathwidth definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
D.2 Mixed MIS in bipartite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
D.3 Delayed proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
D.4 Making an interval representation nice . . . . . . . . . . . . . . . . . . . . . . 184
D.5 Proof of Proposition 9: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
D.6 Re-derivation of Tamaki’s algorithm for directed pathwidth . . . . . . . . . . 186
D.7 Commitment lemma - shortest non-expanding extensions (SNEKFEs) . . . . . 186
D.8 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
D.9 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

D.9.1 Internally pruned trees of prefixes . . . . . . . . . . . . . . . . . . . 188
D.9.2 Invariant and correctness . . . . . . . . . . . . . . . . . . . . . . . . 188
D.9.3 Signature analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

D.10 Detailed RNA reconfiguration example . . . . . . . . . . . . . . . . . . . . . . 191



Chapter 1

Introduction

Thepurpose of this chapter is to give the reader prerequisite elements of structural RNA bioinformatics
and parameterized complexity. A particular focus is given to structured RNAs, and the computational
problems that emerge when studying them. The originality of this thesis is to attempt to tackle them
with parameterized approaches based on width measures, which are also introduced here.

Organization. This introduction is roughly split in two, with the first half covering RNA bioin-
formatics, and the second parameterized algorithmics. Some of the most technical content has been
isolated in gray-shaded boxes, that may be skipped in a first reading. Almost all paragraphs have
names, with those of this color indicating a higher level heading (∼ sub-sub-section), potentially
containing several paragraphs whose titles are typeset with that color.

1.1 RNA bioinformatics

1.1.1 RNA basics

Ribo-Nucleic Acid (RNA). RNA is a category of biopolymers, and one of the most fundamental
building blocks of life. It constitutes one of the great families of modular biological macro-molecules,
along with DNA or proteins. In virtually any life form, it is one of the carriers of genetic information,
and even the only carrier in the case of RNA viruses (HIV, SARS-COV2,…). However, as we shall see
in more depth in this section, it also assumes a variety of other roles (catalysis, gene regulation,…)
thanks to its structural properties. This versatility, along with the existence of the RNA-based life
forms mentioned above, have even led to the hypothesis of an “RNA world” as a potential origin of
life [1]. From a more applicative point of view, in medical research, the functional flexibility of RNA
is being exploited with the development of RNA therapeutics [2, 3], of which RNA vaccines [4] are an
example.

Basic structure. From a biochemical point of view, an RNA molecule consists of an oriented chain
of molecular units called nucleotides. 4 different units are allowed, denoted by A,U,G,C (Adenine,

9
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RNA polymerase

5’
3’

DNA TTGCAACGAT

3’
AACGUUGCGUA

5’

RNA transcript

3’
5’

Figure 1.1: RNAmolecules (often also called RNA transcripts) are synthesized fromDNA by amolecular complex
called RNA polymerase. As it travels along the DNA on one of its strands, it appends to the RNA transcript the
complement of the nucleotide it reads on the strand. All nucleotide strands are oriented, as denoted by the 5’
and 3’ at their extremities. These denominations originate from the fine biochemical structure of nucleic acids.
Synthesis and reading of nucleic acids occur in a specific direction only (3’ to 5’ and 5’ to 3’, respectively)

Uracil, Guanine and Cytosine). The variable part of a nucleotide is called its base. Nucleotides also
have a constant part, identical in A,U,G and C, composed of a sugar and a phosphate group. Crucially,
it is through this constant part that nucleotides are connected to form an RNA molecule, leaving the
bases free to interact (potentially with bases from other nucleotides).

RNAs are synthesized as copies (or transcripts) of portions of DNA, by a molecular machinery
called RNA polymerase that travels along one DNA strand. This process, called transcription, is illus-
trated on Figure 1.1. DNA is indeed famously composed of two complementary nucleotide strands
forming a double helix. Each strand is a sequence of four possible nucleotides (A,T,G,C), and each
nucleotide is paired up with a complementary nucleotide on the other strand. An Adenine (A) is al-
ways paired with a Thymine (T), and a Guanine (G) with a Cytosine (C). A-T and G-C constitute the
so-called Watson-Crick base-pairs, consisting of hydrogen bonds connecting the two molecules. This
structure is illustrated on Figure 1.2 (left).

As one may have noticed, Uracil (U) replaces T in RNA strands, compared to DNA. Importantly, U
can still pair upwith A to form aWatson-Crick base-pair. Actually, it can domore, and also pair upwith

G to form a G-U base pair, traditionally called wobble pair1. An RNA transcript being a single strand,
it can therefore fold onto itself to allow for such base-pairs to form between its nucleotides. These
nucleotides being brought together in space by chemical bonds, the result is a potentially complex
3D structure. A simple example, along with an illustration of all possible base-pairs, is given on
Figure 1.2 (right). These folded structures or conformations, often abstracted as graphs, play a
central role in all the computational problems studied in this PhD thesis.

1Actually, all pair-wise interactions (A-A,G-A,…) are virtually possible [5]. But it is G-U,A-U,G-C that is usually retained
as the canonical RNA base-pair set [6].
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DNA

Watson-Crick 
base-pairs Watson-Crick + G-U 

RNA

Figure 1.2: (left) DNA molecules are composed of two complementary strands of nucleotides. Each nucleotide
of a strand is paired up with a complementary nucleotide on the other strand, following the Watson-Crick base
pairs (A-T, G-C). (right) An RNA molecule is a single strand of nucleotides. Watson-Crick base-pairs can still
form between nucleotides of the strand, as well as G-U base-pairs. The formation of these base-pairs is what
may give complex spatial conformations to RNAmolecules. This structure is of critical importance to functional
RNAs (i.e., RNAs that act directly as such in biological systems).

Functional RNAs. RNA is mostly known for its role in the “central dogma of molecular biology”
(Figure 1.3 (b), black arrows) as messenger RNA, a simple intermediate in the synthesis of proteins.
In a nutshell, the portion of DNA coding for a protein is first transcribed as a messenger RNA, before
being translated into proteins by the ribosomes.

But some RNA transcripts are never translated into proteins, and take up a biological function

directly as RNAs. Generically dubbed non-coding RNA or functional RNA2, they constitute in fact
most (if not the overwhelming majority) of RNA transcripts in complex organisms [8]. Their roles
are extremely varied (Figure 1.3, green arrows), ranging from chemical reaction catalysis to gene
regulation and aspects of protein synthesis. Famous example include transfer RNAs (responsible for
fetching amino-acids corresponding to a given codon in protein synthesis), riboswitches [9] (which can
control the expression of a gene depending on the presence of a specific chemical) or ribozymes [10]
(catalysis). The ribosomes themselves, where proteins are synthesized, are composed of ribosomal
RNA, with RNA chains of thousands of nucleotides.

ncRNA families. Acommon feature to non-coding RNAs is that their functions critically depend on
the adoption by the molecule of one or several structural conformations. This results in evolutionary
pressure towards structure conservation, and therefore a restriction of possible genetic mutations to

2To be precise, the question of what fraction of non-coding RNA (i.e., RNA not translated into proteins) is functional
RNA (i.e., has an actual biological role) is still a matter of debate [7].
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DNA

mRNA

Proteins

transcription

translationinvolved in

maturation

various other roles 
e.g. gene regulation

ribozymes
(catalyzing various reactions)

rRNA
tRNA

Figure 1.3: RNAs are intermediates in the synthesis of proteins (black arrows), but not only: they act directly
as RNAs for a variety of functions, in which the conservation of their folded 3D structure, more than their
sequence, is critical. Examples include transfer RNA (tRNA) and ribosomal RNA (rRNA), both involved in protein
synthesis, as well as ribozymes (catalysis) or riboswitches (gene regulation).

an exploration of a set of compatible sequences. A good example of structure-preserving mutation is
a substitution of one or both ends of a base-pair with another set of compatible nucleotides (e.g.A-U
to G-C or G-U). For a base-pair (i, j), such a mutation of site j to keep a base-pair with a mutated site
i is typically called compensatory mutation.

Considering a basic model for mutations, consisting in point-wise mutations (a nucleotide replaced
by another), insertions and deletions, a practical way of representing a set of nucleotide sequences
originating from a common ancestor is a multiple-sequence alignment (MSA). In a multiple sequence
alignment, all input sequences are possibly augmented with gap symbols (usually `-') to represent
insertions/deletions of nucleotides. When aligning RNA sequences that are variants of the same struc-
tured RNA, the alignment is usually annotated with a consensus structure, which makes compensatory
mutations apparent. An example of MSA is given on Figure 1.4, along with secondary structure an-
notation and examples of compensatory mutations. Different sequences corresponding to the same
ncRNA are called homologs. The RFAM database [11] (https://rfam.org/) is a collection of such
families of homologs, along with curated MSAs. As of version 14.9 (November 2022), it counts 4108
families. Its data constituted one of the main testing ground for the algorithms developed in this PhD
thesis.

Computational questions. When studying the structural properties of RNA, several questions
naturally come up.

https://rfam.org/
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compensatory mutations

consensus structure

Figure 1.4: Example of a multiple sequence alignment with consensus structure annotation. This particular
example is a subset of the seed alignment of the rfam family RF01852 (transfer RNA). Columns with compen-
satory mutations preserving the consensus structure are highlighted. This alignment picture was generated
using Jalview [12].

- Folding: The most immediate is perhaps the prediction of the (set of) preferred structure(s) of a
given RNA, which is known as the folding problem [13]. To solve it algorithmically, one must
enumerate a class of structures, and output the most stable one for the input sequence, i.e. the
one with the lowest free energy.

- Design: Conversely, for instance in medical applications, the question may come up of designing
a sequence that folds preferably in a prescribed structure [14]. The algorithmic task is to find
a sequence (over {A,U,G,C}) of low energy for the input structure, and ideally also of higher
energy for alternative structures.

- Kinetics: From a more dynamical point of view, one may also wonder whether an RNA molecule
reliably always folds the same way, or is likely to transition between several structures of com-
parable stability. This raises questions of kinetics and energy barriers [15]. Algorithmically, it
involves exploring sets of reconfiguration pathways to identify feasible ones.

- Alignment: As touched upon above, a fundamental task in the study of ncRNAs is the clustering
of sequences into families of homologs. To decide whether an input sequence belongs to a given
ncRNA family, the computational question is whether it aligns well with the family, in a way
that preserves the consensus structure (Figure 1.4). A first step is typically to compute alignments
of pairs of sequences, which consists in finding a mapping between the positions of the two
sequences.

RNA bioinformatics emerged as a field to try and provide efficient methods to tackle such questions.
To state them more precisely, and review existing approaches from the literature (along with their
limitations), one needs to define energy models and some classes of structures. This is the purpose
of the next section. The computational complexity of the questions formulated above will typically
depend on the choice of energy model and class of structures to restrict the search to.
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1.1.2 RNA structures

The biochemical properties of RNAs induce constraints and preferences as to the sets of base-pairs
adopted by a sequence. This section defines structural units typically used when discussing RNA
structures, as well as a hierarchy of classes of structures of increasing complexity.

Notations: sequence and list of base-pairs. An RNA sequence S is an element of {A,U,G,C}∗.
Throughout this document, structured RNA will typically be denoted by (S,A), with S a sequence of
length N and A a set of pairs (also called arcs) (i, j) such that 0 ≤ i, j ≤ N − 1. (S,A) will also be
called arc-annotated sequence. Given a sequence S, the sub-sequence corresponding to an interval of
positions going from i to j (both included) is noted S[i . . . j].

Hierarchical folding. The folding process of RNA is recognised to have a hierarchical aspect [6].
As a primary structure, the backbone of the sequence itself is never broken during the lifespan of an
RNA molecule. Secondary and tertiary structural elements then come on top. The overall picture is
that secondary elements form at a faster timescale, and are more stable, than tertiary elements.

This hierarchical aspect gives a natural way of defining classes of structures of increasing com-
plexity. However, some discussion may arise as to what patterns count as secondary or tertiary. A
prominent example is the case of pseudoknots, as discussed further down.

Secondary structures. We adopt in this thesis the following definition for secondary structures.

Definition 1 (Secondary structures). A set A of base-pairs is a secondary structure if each posi-
tion is involved in at most one base-pair.

Note that in this definition, a secondary structure may exhibit crossings, i.e. there can be two base-
pairs (i, j) and (k, l) such that i < k < j < l or k < i < l < j. Such base-pairs are also said to be in
conflict or to form a pseudoknot. An illustration of a crossing is given on Figure 1.6 (a).

It is quite typical in the literature to designate as RNA secondary structures what is here called
conflict-free secondary structures. The difference is whether pseudoknots are considered as tertiary
structure elements or not. Considering this wider definition of secondary structure is not unheard
of ([16]) and is justified by the indications that pseudoknots occur with high prevalence in natural
RNAs [17]. It is mainly for computational reasons, as we shall see in the next section, that crossings
are typically excluded from structure sets.

Notations: non-crossing base-pairs relations. If two base-pairs (i, j) and (k, l) do not cross,
then either one is nested in the other (e.g. i < k < l < j) or they are one after the other (e.g.
i < j < k < l). We adopt the following notations for these two settings: we write (k, l) ⊂ (i, j) if

Notation 1.
nested (⊂)
and parallel
base-pairs (∥)

i < k < l < j (nesting) and (i, j) ∥ (k, l) if i < j < k < l (parallel).
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Figure 1.5: A conflict-free secondary structure is a set of base-pairs involving at most one nucleotide at a time
and no crossings. It can be represented as an outer planar graph (top left), non-crossings chords of a circle
(center) or a well-parenthesized string (bottom). As the main class of RNA structures studied and represented
in the literature, its structural elements have standard names (helices, bulges, stacks, hairpins), sketched on the
right.

Conflict-free secondary structures. The most studied class of RNA structures in the literature
is undoubtedly conflict-free secondary structures. Thanks to the absence of conflicts, each base-pair
naturally defines an inside and an outside, which makes this class of structures very practical to work
with from an algorithmically. A lot of foundational algorithmic results for RNA Bioinformatics are
set within this class [18, 19, 20], as we shall review in the next section.

Thanks to the absence of crossings, conflict-free secondary structures may be represented in a dot-
bracket notation, i.e a string composed of well-nested parentheses () representing base-pairs, and dots
‘.’ for unpaired positions. An example of a dot-bracket notation is given on Figure 1.5, along with
other possible representations for conflict-free secondary structures, as outer planar graphs and non-
crossing sets of chords of a circle. The standard nomenclature for some structural elements (bulge,
hairpin, helix…) are also given.

Pseudoknotted secondary structures. When a secondary structure exhibits pseudoknots, as in
the example on Figure 1.6 (b), several parenthesis systems ((),[],{}…) are needed to represent base-
pairs. As we shall see, taking pseudoknots into account drastically increases the computational com-
plexity of many problems. Indeed, it removes the possibility of formulating algorithms as Dynamic
Programming scheme over intervals of the input sequence. Famous pseudoknotted patterns found in
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a b

pseudoknot

conflict

Figure 1.6: (a) Illustration of the definition of crossing base-pairs. (b) A pseudoknotted secondary structure (solid
edges) and additional tertiary interactions (dashed edges). A possible dot-bracket notation is also displayed. The
potential additional tertiary interactions could correspond to non-canonical pairing, that could involve already
paired nucleotides, putting the graph outside the class of secondary structures.

natural RNAs include “H-type” pseudoknots ({[}] pattern) or “kissing hairpins” ({[}{]} pattern).
See margin for illustrations.

[ ]{ }
H-type

[ ]{ } { }
kissing hairpins

Tertiary structure. Nucleotides in RNA molecules have also been shown to form so-called “non-
canonical” interactions [5], with evidence that they play a critical role in the adoption of the full
conformation [21]. As displayed on Figure 1.6 (b) with dotted edges, non-canonical interactions may
involve nucleotides that are already part of a base-pair. Examples include base-pairs such as G-A, or
interactions involving more than two nucleotides (multiplets) [22, 5].

Formally, within this thesis, a “tertiary structure” is any arbitrary set of base-pairs, because the
only defining constraint for secondary structures of having only one base-pair per nucleotide is lifted.
However, a reasonable practical assumption is that any nucleotide is not involved in more than a few
base-pairs, which is the case in standard nomenclatures for non-canonical base-pairs [5, 23].

Lack of computational tools. As we shall cover in Section 1.1.4, taking pseudoknots into account
generally increases the complexity of RNA bioinformatics problems. This is true in particular for
folding and structure-aware alignment. A consequence is that pseudoknots remain challenging to
take into account in practical Bioinformatics projects. For instance, pseudoknotted families in the
Rfam [11] database are still partially curated manually. When it comes to folding, the most popular
software programs [24, 25, 26] do not support pseudoknots. One could also mention studies of RNA-
RNA interactions [27], which require computational tools capable of taking crossing into accounts.
This PhD thesis is in part motivated by the need to develop algorithmic methods capable of
taking pseudoknots into account.
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1.1.3 Energy models

RNA structure and Boltzmann distribution. RNAs adopt their folded structures through the for-
mation of base pairs, chemical bonds that bring nucleotides together in space. These base pairs form
spontaneously, as they lower the free energy of the molecule, making it more stable. The probability
for an RNA to adopt a given structure S depends on this free energy E(S) following, in the thermo-
dynamic equilibrium, a Boltzmann distribution P(S) ∝ e−βE(S). The structure having minimum free
energy is then the most probable. A multitude of energy models, associating a set of base pairs to an
energy, are used in RNA bioinformatics, with various levels of complexity.

This section reviews classic energy models for RNA structures. Combined with the structure
classes defined in Section 1.1.2, it will allow us to state the computational complexity of classic RNA
structural bioinformatics problems in Section 1.1.4.

Base-pair - or “Nussinov” - model. As a very basic rule of thumb, the more base-pairs a structure
has, the more stable it is. This is captured by a simple energy model associating a weight of −1 to
every base-pair, as defined below.

Definition 2 (Nussinov model). GivenA a set of base-pairs over an RNA sequence S, the Nussi-
nov energy associated to it is:

E#bps(A) =
∑

(i,j)∈A

−1 = −|A|

Thename of this model stems fromNussinov’s seminal algorithm [18], capable of producing, given
a sequence S as input and in time O(|S|3), a conflict-free secondary structure S minimizing E#bps. It
will be explained in more detail in Box 1, page 21.

Weighted base-pairs. A slight generalization of this model, accounting for the fact that some base-
pairs have a higher energetic contribution compared to others (G-C is stronger than A-U and G-U) is a
weighted base-pairs model.

Definition 3 (weighted base-pairs model). Given A a set of base-pairs over an RNA sequence
S, and negative weights wGC, wAU and wGU, the weighted base-pairs energy associated to it is:

Ew-bps(A) =
∑

(i,j)∈A

wS[i]S[j]

Nussinov’s algorithm can easily be modified to support this model with the same complexity.
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Turner energymodel. The twomodels defined above can be applied to any of the structure classes
of the previous section. However, it is widely accepted that they miss out on critical energy contri-
butions: stacking energies between two nested base-pairs (i, j) and (i + 1, j − 1). Stacking terms
encourage the formation of perfect stacks of base-pairs called stems, which gives rise to much more
realistic structures.

Of lesser importance, but also ignored by base-pair models, are energetic contributions of the
composition of loops and bulges (see Figure 1.5 (right)). Taking both into account yields the Turner
energy model [28], the gold standard of RNA energy models. Let us start with the stacking energy
model, easily defined in terms of base-pairs only:

Definition 4 (stacking energy model). Given A a set of base-pairs over a sequence S, and
weights wxy,zt for every possible nucleotide combination in two stacked base-pairs (x, y) and
(z, t):

Estacking(A) =
∑

(i,j)∈A s.t. (i+1,j−1)∈A

wS[i]S[j],S[i+1]S[j−1]

In order to formulate the Turner energy model, let us give a definition for loops in sets of base
pairs. Indeed, the Turner energy model consists in the stacking model augmented with loop energy
terms. Using Notation 1, it reads:

Definition 5 (loop in an RNA structure A). A loop of A is a set of base-pairs {(ik, jk)}0≤k≤p
such that:

• ∀k ∈ [1, . . . , p], (ik, jk) ⊂ (i0, j0)

• ∀k, l ∈ [1, . . . , p], (ik, jk) ∥ (il, jl)

• for any other base-pair (x, y) ∈ A such that (x, y) ⊂ (i0, j0), ∃k such that (x, y) ⊂ (ik, jk)

In other words, a loop consists of an overarching base-pair (i0, j0) containing a (potentially empty)
set of parallel base-pairs {(ik, jk)}1≤k≤p. The nucleotide content c(`) of a loop is then

c(`) = S[i0 . . . i1] ∪

 ⋃
1≤k≤p−1

S[jk . . . ik+1]

 ∪ S[jp · · · j0]

p is called the order of a loop. The definition of a loop is illustrated on Figure 1.7. Note that stacked
base-pairs, as in Definition 4, are particular examples of loops (with p = 1).

Given this definitions, the Turner energy model is formulated as such:
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i0 j0i1 j1 ip jp
. . .

Figure 1.7: Illustration of the definition of a loop.

Definition 6 (Turner energy model). For S a set of base-pairs, and a weight function w associ-
ating contributions to nucleotide contents of loops, the Turner energy is:

ETurner(A) =
∑
ℓ loop

w(c(`))

Values of w(c) for a nucleotide content c have reference tabulated values up to a certain loop
size. For large loop sizes, and p > 2 (multiloops), some simplifying extrapolation approximations are
standard [19]. The rationale behind them is both the difficulty of tabulating the corresponding energy
contributions experimentally, and the acceleration they allow in folding algorithms (see section 1.1.4).

In the case of pseudoknot-free secondary structures (Figure 1.5), loops, bulges and stacks consti-
tute a full coverage of the set of faces delineated by the structure taken as an outerplanar graph (as
one can see from the coloring on Figure 1.5 (right)).

Turner extensions for pseudoknots. In the case of pseudoknotted structures, the Turner en-
ergy is still defined, but the coverage property described above does not verify. Some extensions
of the Turner energy model with pseudoknot-specific terms (such as pseudoknot creation penalties)
have been developed, particularly in the context of folding algorithms [29, 30, 31] (see Section 1.1.4.1
below). However, the Turner model still constitutes the core of these models, with stacking terms
(Definition 4) being typically considered as the main qualitative difference with respect to weighted
base-pairs models.

1.1.4 Computational problems

As argued above, the study of functional RNAs immediately suggests several fundamental computa-
tional problems. This section defines formally some of them, which have constituted the targets for
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Rna folding conflict-free PK sec tertiary
Nussinov (Def. 3) P - [18] & Proposition 1 [32]
Stacking (Def. 4)
Turner (Def. 6) P [19] NP-hard [33, 34]

structure class C

energy model E

Table 1.1: The hardness of RNA folding depends on the class of structures we restrict the search to, and on
which energy model is optimized for.

algorithmic developments in this PhD thesis. For each of them, a review of results from the literature,
such as hardness proofs or classic algorithms, is given. Computational hardness, as we shall see, cru-
cially depends on the choice of structure class (among the possibilities described in section 1.1.2) and
energy model (section 1.1.3).

1.1.4.1 RNA folding

A central hard problem in RNA bioinformatics is RNA folding, the task of finding the minimum-free
energy structure for an input sequence. We formally state it below.

Problem 1 (RNA folding).
Input: Sequence S ∈ {A,U,G,C}∗
Output: A set A of base-pairs within a class of structure C, minimizing an energy function E

The computational complexity of RNA folding is summarized on Table 1.1, depending on the
choices of C and E . A lot of the references cited in this Table are foundational results in RNA bioin-
formatics.

Nussinov’s algorithm. One of these seminal results is Nussinov’s dynamic programming algo-
rithm for RNA folding in the weighted base-pair energy model and conflict-free secondary struc-
tures [18]. It is a prime example of a dynamic programming (DP) strategy applied to an RNA bioinfor-
matics problem. Given the ubiquity of such approaches in the field, we provide a short presentation
of Nussinov’s algorithm in Box 1.

Weighted base-pairs model and pseudoknots. Perhaps surprisingly, RNA folding remains
polynomial in the weighted base-pair energymodel for all structure classes (first line of Table 1.1). The
pseudoknotted case is handled with a reduction to maximumweightedmatching on the “compatibility
graph” of a sequence, as formulated below.

Definition 7 (compatibility graph). Given a sequenceS, the compatibility graphGC(S) is a graph
where each nucleotide is a vertex, and two nucleotides (i, j) are connected if

(S[i], S[j]) ∈ {(A, U), (U, A), (G, C), (C, G), (G, U), (U, G)}
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Box 1. (Nussinov’s algorithm [18])
As any dynamic programming approach (see [35]), it relies on the definition of sub-problems connected
together by recursive equations. Intuitively, problems are cut into sub-problems that are solved indepen-
dently and then merged into a global solution. In the context of RNA bioinformatics, sub-problems often
correspond to intervals [i, j] of an input sequence S. Solutions to these sub-problems are stored (cached)
in a DP table c so that they are computed only once. In the case of Nusinov’s algorithm, c[i, j] contains
the minimum possible energy value Ew-bps(A) over all possible conflict-free secondary structures A for
the sub-sequence S[i . . . j]. Defined this way, it verifies the following:

c[i, j] = min


0 if j − i ≤ θ (terminal case)
mink∈[i+θ,j]

(
wS[i]S[k] + c[i+ 1, k − 1] + c[k + 1, j]

)
(base-pair creation)

c[i+ 1, j] (i unpaired)

With θ an enforced minimum possible distance between the two ends of a base-pair (usually θ ≃ 3 − 5).
These equations may then be solved with either a bottom-up iteration over intervals of growing sizes (i.e.,
over sub-problems with an ordering that guarantees c[i+1, j], c[i+1, k−1] and c[k+1, j] are computed
before c[i, j]) or a top-down memoization approach (i.e., a recursive implementation with caching). The
overall complexity is O(n2) in space, and O(n3) in time.
To be specific, the recursive relations above are a weighted generalization of the original formulation
of Nussinov’s algorithm, which intended to minimize E#bps. The only difference is the use of weights
dependent on the base-pair which is created. Other early works containing similar recursive relations for
weighted energy models include [36].

Associated grammar. A graphical representation of the dynamic programming scheme above could
be:

c

i j
=

∅
i k

c c

j i+ 1 j

c

This decomposition scheme relies on the fact that, when a conflict-free secondary structure is not empty,
then either the first position in the sequence is paired to some k, or it is unpaired. When it is paired to
some k ∈ [i + θ, j], no other base-pair can cross (i, k). This decomposition scheme can directly be seen
as production rules for a grammar producing legal structures. Writing structures in dot-bracket notation,
it reads:

S → ε | (S)S | .S

With ε a terminal (empty) symbol. For the sake of simplicity, these production rules do not include the
restriction that the two ends of a base-pair must be distant of at least θ nucleotides. One could modify
these rules to produce sequences, as such:

S → ε | aSbS | aS

with a, bwith values in {A, U, G, C}. a and b are required to be compatible in the middle rule. The derivation
tree of a sequence yields a structure compatible with the output sequence. Nussinov’s algorithm can then
be seen as figuring out themaximum-weight parsing tree for this grammar and an input sequence. As such,
it is a specialization of the CYK algorithm [37, 38] for context-free grammar parsing.



CHAPTER 1. INTRODUCTION 22

The core idea behind the polynomial algorithms of [32] for RNA folding in weighted base-pairs
models is then given in the following proposition. It only covers the pseudoknotted secondary struc-
ture case. To include tertiary interactions, the compatibility graph can be augmented with additional
gadgets, and the matching generalized to “2-matchings”. The reader is referred to [32] for details.

Proposition 1 ([32]). RNA folding is polynomial for weighted base-pair energy models restricted
to pseudoknotted secondary structures.

Proof of Proposition 1. In a secondary structure (Definition 1), each nucleotide is paired-up with at
most one other nucleotide. A secondary structure over a sequence S therefore corresponds to
a matching of the compatibility graph GC(S). A secondary structure A minimizing Ew-bps =∑

(i,j)∈AwS[i]S[j] can therefore be found by finding a maximum-weight matching on theGC(S). This
can be done in polynomial time, for instance using Edmonds’ blossom algorithm [39].

By definition, a weighted base-pair energy model misses out on stacking. The algorithm of Propo-
sition 1 may therefore output structures with a lot of isolated base-pairs, which is considered highly
unrealistic. Nonetheless, before looking at the complexity of RNA foldingwith a more complete
energy model, we describe below a strategy to slightly increase the potential of Proposition 1 for
producing realistic structures.

Choosing weights. Note that in Proposition 1, the weight of a base-pair (i, j) does not have to
be only depending on its nucleotide content (S[i], S[j]). It can be position-dependent, which allows
to potentially include any kind of extra information we might have on nucleotide affinity, beyond
the pure free-energy contributions of base-pairing. Examples include thermodynamic base-pairing
probabilities (see digression about their computation in Box 2) or experimental structure-probing data
(such as SHAPE [40, 41]).

Box 2. (Digression: computing base-pair probabilities)
In the thermodynamic equilibrium, the probability of a sequence S adopting a certain structureA is given
by the Boltzmann distribution:

P(A, S) = 1

Z
e−E(A,S)

where E(A, S) is the energy associated to the structure-sequence pair (A, S). This probability space
consisting of structures is also often called the Boltzmann ensemble. Given this probability distribu-
tion, one may for instance wonder about the probability that a certain base-pair (i, j) occurs, pS(i, j) =∑

A s.t (i,j)∈A P(A, S)

Interestingly, the dynamic programming schemes used for RNA folding, such as Nussinov’s (Box 1) and
Zuker’s algorithm can be modified to compute these base-pair probabilities in polynomial time [20], using
a variant of the Inside/Outside algorithm [42]. This foundational result is for instance used in the tool
LoCaRNA [43], capable of simultaneous alignment and folding of a set of input sequences.
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Zuker’s algorithm. However, the gold standard of RNA energy models is undoubtedly the Turner
model. A central algorithmic result regarding RNA folding is therefore Zuker’s algorithm [19],
which can solve RNA folding for the Turner energy model and conflict-free secondary structures.
Several reference implementations exist [24, 44, 26], making it a usual starting point for any RNA
structural investigations.

Algorithmic strategy and complexity. Similarly to Nussinov’s algorithm, the algorithmic strat-
egy of Zuker’s algorithm is dynamic programming over the intervals of the input sequence. As it
handles a more complex energy model, it unsurprisingly uses several dynamic programming tables,
and simplification hypotheses to keep the complexity low. These hypotheses are described below. As
for the details of the dynamic programming equations, the reader is referred to [24].

As mentioned above (Definition 6), the standard simplifications to the Turner energy model in-
volve especially multi-loops. Specifically, for a multi-loop ` = {(ik, jk)}0≤k≤p (p > 2), the energy
contribution is simplified to:

w(`) = a+ b · p+ c · |j0 − i0|

Where |j0 − i0| takes into account the number of unpaired nucleotides in the loop. With this simpli-
fication, Zuker’s algorithm uses O(n2) space and O(n4) in time. To further reduce the complexity,
a standard practice is to impose a constant upper bound onto the length of 2-loops (bulges), yielding
O(n3) time complexity.

Hardness and tractable sub-cases. However, RNA folding does become hard when considering
both pseudoknots and realistic energy models [33]. In fact the stacking energy model (Definition 4) is
enough to prove hardness, with a simple reduction from Bin PacKing.

Given the biological importance [17] of pseudoknots, several approaches have been developed to
tackle tractable sub-cases of RNA foldingwith pseudoknots and realistic energy models [16, 29, 30,
45]. All of these approaches are dynamic programming schemes, with sub-problems indexed by sets of
positions in the input sequence (and therefore, complicated generalizations of Nussinov’s algorithm,
Box 1). Tomake RNA folding tractable, they restrict the exploration to a certain set of pseudoknotted
patterns. Each of themwas developedwith either themotivation of including a specific pseudoknotted
pattern into the search space, or expanding this space as much as possible while maintaining a given
complexity.

RNA foldingwithin this PhD thesis. Chapter 3 presents a method allowing to specify a finite
set of pseudoknotted patterns (e.g, [{]} or [<{][}{][}{][}>]) and automatically derive a set of
dynamic programming solving RNA folding for these patterns. Where themethodsmentioned above
([16, 29, 30, 45]) are the result of a tedious hand derivation of dynamic programming equations, the
method of Chapter 3 re-derives some of them automatically. In addition, if a pseudoknotted pattern
is not covered by an existing method, or covered with prohibitive complexity, it can derive tailored
dynamic programming equations to solve RNA folding restricted to this pattern.



CHAPTER 1. INTRODUCTION 24

1.1.4.2 RNA design

Informally, RNA design is the problem of producing RNA sequences capable of performing prescribed
functions. In the context of this PhD thesis, we are concerned with structural RNA design, namely
the task of finding, given a structure, a sequence that preferentially folds according to it. We state it
formally below.

Problem 2 (RNA design).
Input: a set of base-pairs A from a structure class C
Output: A sequence S such that ∀A′ ̸= A ∈ C, E(A, S) < E(A′, S)

Where E is an energy model and C a structure class. To be precise, this version of RNA design is
also known in the literature as inverse folding [46], or negative RNA design, as opposed to positive
RNA design [47, 48, 49]. In a nutshell, positive design only asks to find a sequence with an energy
smaller than a given threshold for the input structure. It does not require (contrary to our definition
above) that all alternative structures are less energetically favorable.

Computational hardness. A problem close to RNA design, namely RNA design extension, has
been proved NP-hard in [14], with C restricted to conflict-free secondary structures and E limited to
the Nussinov energy model (Definition 2), i.e. the simplest possible choices. In RNA design exten-
sion, in addition to a structureA, a partial assignment of the sequence is given (i.e., constraints of the
form S[i] = x for x ∈ {A,U,G,C}), restricting the set of possible outputs. Although this problem is
really close to RNA design (and perhaps closer in spirit to practical design settings), the complexity
of RNA design is strictly speaking still open. It is also interesting to note that this hardness result is
surprisingly recent (∼ 2018) for such a central computational biology problem.

Practical relevance and current solutions. Given the versatility of RNA molecules in biological
systems, it is not surprising that RNAdesign hasmany potential applications, e.g. in pharmaceutics [2,
50, 51] or synthetic biology [52]. Because of this importance of RNA design, many (mostly heuristic)
tools have been developed to tackle it [53, 54, 49, 55, 44, 48, 56, 57, 58, 59]. One could also cite the
online “serious game” EteRNA (https://eternagame.org/), that crowdsources the resolution of
RNA design instances through gamification.

RNA designwithin this PhD thesis. Chapter 2 develops structure-simplifying techniques that we
argue could provide a speedup of [48], a sampling-based technique for RNA design. The idea is
that the structure simplification would greatly accelerate the production of sequences, while being
compensated by a rejection mechanism to remain correct.

1.1.4.3 Structure-sequence alignment

Informally, the StRuctuRe-Seence Alignment problem takes as input an arc-annotated sequence
(Q,A) (the “query”) and a plain sequence T (the “target”), and asks whether T is a potential homolog

https://eternagame.org/
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of Q. More precisely, it looks for the most parsimonious mutation scenario transforming Q into T
while keeping a maximal compatibility with A. Another way of stating it is that the StRuctuRe-
Seence Alignment problem is the computation of an edit distance between a folded RNA and a
plain sequence. In practice, the task is to figure out the best possible mapping between Q and T ,
where “best” measures structure and sequence conservation. It is formally stated below. Beforehand,
we first quickly define a notion of monotonous mapping between two sequences.

Definition 8 (monotonous mapping). Given two sequences Q and T , a monotonous mapping µ
from Q to T is a function µ : {1 . . . |Q|} → {1 . . . |T |} ∪ {⊥} such that ∀i, j ∈ [1 . . . |Q|] with
µ(i) ̸=⊥ and µ(j) ̸=⊥, µ(i) < µ(j).

In the definition above and the problem statement below, µ(i) =⊥ denotes the deletion of nu-
cleotide i in Q. This nucleotide is not mapped anywhere in the target sequence.

Problem 3 (StRuctuRe-Seence Alignment).
Input: Arc-annotated sequence (Q,A), plain sequence T
Output: µ monotonous mapping from Q to T , minimizing:

score(µ) =
∑

(i,j)∈A

γ2(i, j, µ(i), µ(j)) +
∑

i s.t µ(i) ̸=⊥

γ1(i, µ(i)) +
∑

gap g⊂Q

λQ|g|+ cQ

+
∑

gap g⊂T

λT |g|+ cT

Where:

• γ2 measures structure conservation. It rewards the mapping of the ends of a base-pair onto
compatible nucleotides, and penalizes deletion (one of the ends has value ⊥) or mapping onto
incompatible nucleotides.

• γ1 measures sequence conservation. It rewards the mapping of a nucleotide onto the same nu-
cleotide. Note that it does not handle the deletion case (⊥), which is taken into account by the
gap terms below.

• A gap g in the query, informally denoted by g ⊂ Q in the formula above, is a set of consecutive
positions that are all deleted, i.e. mapped to ⊥. An affine cost is associated to this gap, with
parameters λQ and cQ. |g| is the number of consecutive deleted positions.

• A gap g in the target is made up of the positions in T [µ(i − 1) + 1 . . . µ(i + 1) − 1] for two
consecutive positions i, i + 1 of the query, such that µ(i) ̸=⊥, µ(i + 1) ̸=⊥ and µ(i + 1) >
µ(i) + 1. As for gaps in query, an affine cost is also associated to this gap, with parameters λT

and cT .
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Figure 1.8: Illustration of the definition of StRuctuRe-Seence Alignment. An arc-annotated sequence Q
is mapped onto a plain sequence T by an application µ. The task is to find the best mapping µ according to a
scoring scheme that takes into account both structure and sequence conservation. Gaps in the query (deletions)
and in the target (insertions) are also penalized.

Thedefinition of StRuctuRe-SeenceAlignment is illustrated on Figure 1.8. Note that an align-
ment ofQ and T can be built from µ in a straightforward way: deletions (i such that µ(i) =⊥) induce
gap symbols in the target sequence, while insertions (µ(i+ 1) > µ(i) + 1) induce them in the query.

Computational hardness. Table 1.2 sums up important hardness and algorithmic results for
StRuctuRe-Seence Alignment. As for RNA folding, including pseudoknots into the picture
makes the problem intractable. Note that [60], where hardness was proven, states the problem as the
computation of an edit distance between RNA structures, which might be of independent interest to
the reader.

Practical importance, current solutions, and their limits. StRuctuRe-SeenceAlignment is
the computational workhorse underlying homology search, that is to say the search for occurrences
of a given structured RNA in sequence databases. The leading tool for such a task in the absence of
pseudoknots is InfeRNAl [61], which represents queries as covariance models (defined in Chapter 4).
It is the tool at the core of Rfam [11], which regroups detected homologs into families. Because
InfeRNAl cannot take pseudoknots into account, pseudoknotted families in Rfam have to be partially
curatedmanually. When expanding them, the crucial homology search step does not take pseudoknots
into account, which may lead to both missed hits and false positive hits. The overall result is an
underestimation of the prevalence and importance of pseudoknotted functional RNAs. Algorithms for
pseudoknotted StRuctuRe-Seence Alignment do exist [62], but are currently too computationally
expensive to be used in practice.
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StRuctuRe-Seence Alignment conflict-free PK sec tertiary
Nussinov (Def. 3)
Turner (Def. 6) P [61, 62] NP-hard [60]

structure class C

energy model E

Table 1.2: Like RNA folding, StRuctuRe-Seence Alignment becomes hard when pseudoknots are included
into the picture.

StRuctuRe-Seence Alignmentwithin this PhD thesis. The method presented in Chapter 2
suggests a hierarchical approach to pseudoknotted homolog search. It allows indeed to simplify
an input arc-annotated sequence while losing a minimum amount of information. These simpli-
fied models can then be used to quickly filter out uninteresting sequences, so that the full (expen-
sive) model is only run to refine results. Then, in Chapter 4, we show an empirical evaluation
of LiCoRNA (https://licorna.lri.fr/, implementation of [62]) for pseudoknotted StRuctuRe-
Seence Alignment, and suggest a generalization of covariance models to the pseudoknotted case.

1.1.4.4 RNA barrier

Compared to the problems defined above, the RNA EneRgy BaRRieR problem takes a more dynamic
view of RNA structures. Indeed, given two possible folded structures for a sequence, it asks whether
there is a feasible spontaneous transition between the two. A spontaneous transition is one that
would occur from thermal fluctuations only. In physical terms, the question is whether the two input
structures are separated by an unreachable energy barrier or not. From Arrhenius’ law, the energy
barrier is indeed what dictates the transition rate between two conformations, with an exponential
dependence. With barrier(A1 → A2) the energy barrier between two structures A1 and A2, it
reads:

P (A1 → A2) ∝ e
−barrier(A1→A2)

RT

With R a constant and T the temperature.

Problem statement. In the statement below, structures are taken as sets of base-pairs. Therefore,
for two structures A and B, A∆B = 1 (symmetric difference) means that B is obtained from A by
either adding or removing a single base-pair.

Problem 4 (RNA EneRgy BaRRieR).
Input: Two structures L and R from a class C, a sequence S, and a threshold k
Output: If it exists, a sequence of structuresA0 = L, . . . , Ap = R in C such that ∀i ∈ [0 . . . p−1],
Ai+1∆Ai = 1 and ∀i ∈ [0 . . . p], E(Ai) ≤ E(L) + k.

Note that the energy upper bound is given with respect to the starting point. An example of
instance and solution to this problem is given on Figure 1.9 (left).

https://licorna.lri.fr/
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Figure 1.9: (left) Example of an instance of RNA EneRgy BaRRieR, and a possible optimal schedule. The barrier
is here equal to 2, measured as the energy difference between the starting point and the culminating energy
along the reconfiguration. (right) The ultimate purpose of computing barriers is often to get a quantitative idea
of the conformational landscape of an RNA sequence. In this picture, the barrier influences the width of the
arrows (easiness of transition) between structures. The lower the barrier, the easier a transition is.

Computational hardness. TheRNA EneRgy BaRRieR problem is already NP-hard for conflict-free
secondary structures as C and the Nussinov energy model (Definition 2) [63], i.e. the simplest possible
choices.

Practical importance. RNA molecules are synthesized linearly by the RNA polymerase, i.e. nu-
cleotide by nucleotide in a given order (see Figure 1.1). It is therefore reasonable to believe that RNA
molecules are either initially synthesized with an empty “all-open” structure, or folded as a result of
progressive “co-transcriptional” folding [64]. Given that RNA molecules also have a limited life-span,
the set of structures they adopt is necessarily limited to a landscape region reachable with a low energy
barrier starting from this initial fold. One of the ultimate goal is to be able to predict, as a function of
time, the continuous change in probability of adopting the different structures in that region [65] (or,
equivalently, concentrations for these structures as a function of time).

Current approaches. Given the practical importance of RNA EneRgy BaRRieR, it is not surprising
that many frameworks [66] and heuristic tools [67, 68] have been developed to get a grasp of RNA
energy landscapes. Many of them rely on an exploration of sets of suboptimal structures [69, 70],
i.e. having low energy, but not as low as the minimum-free energy (MFE) structure. Once important
points in the conformational landscape have been identified, the energy barrier is what determines
the amount of transitioning between the points, as illustrated on Figure 1.9 (right).

RNA EneRgy BaRRieR within this PhD thesis. Chapter 5 connects the RNA EneRgy BaRRieR
problem with independent set reconfiguration on bipartite graphs and the problem of computing the
directed pathwidth of an associated graph (these notions are defined in Chapter 5). Given these con-
nections, it formulates parameterized algorithms for it (section 1.2, below).
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1.2 Parameterized algorithmics

The originality of this PhD thesis is that it tackles the RNA bioinformatics problems defined above
with techniques from parameterized algorithmics [71], a relatively recent and very dynamic field of
algorithm research. Its philosophy and basic definitions are given in sections 1.2.1 and 1.2.2.

A specific kind of parameterized algorithmics based on width parameters (especially treewidth)
was used in this PhD thesis. Section 1.2.3 will introduce this notion.

1.2.1 Philosophy and basic definitions

Parameterized complexity and algorithms: philosophy. When dealing with an NP-hard prob-
lem, it is often the case that it contains tractable sub-cases. For instance, MaxCut is NP-hard in general
but polynomial on planar graphs. Parameterized algorithmics generalizes this idea, by formulating
algorithms whose complexities depend on multiple parameters such that, when the parameter(s) have
low value(s), the algorithm is tractable.

But it does more than that: it distinguishes between several kinds of behaviors with respect to
the parameter, and provides a hardness theory to decide between them. To state these concepts more
precisely, let us start with the following definition, taken from [71]:

Definition 9 (Parameterized problem). A parameterized problem is a language L ⊆ Σ∗ × N.
For an instance (x, k) ∈ Σ∗ × N, k is called the parameter.

For instance, x might be a graph, and k an integer characteristic computable from the graph (its
maximum degree, the number of times a specific pattern appears…). In other cases, the parameter
k could be part of the problem specification, such as the number of colors in a ColoRing problem,
or the number of parts to divide the graph into in a partitioning problem. A classic example of a
parameter is also the size of the output solution, such as k when wondering if the graph contains a
k-clique. The question parameterized algorithmics asks is then whether one can design algorithms
whose run-time is low when the parameter is low. More precisely, we want the complexity of the
algorithms to be polynomial when k is fixed. The definitions below distinguish two cases for such a
complexity, depending on whether the degree of the polynomial depends on k.

Polynomial algorithms for fixed parameter: XP and FPT. An algorithmwith a complexity that
is polynomial for a fixed value of k, but for which the degree of the polynomial depends on k is said
to be XP:

Definition 10 (slicewise-polynomial: XP). An algorithm is said to run in time XP for parameter
k if its complexity has an upper bound of the form f(k) ·ng(k) for f, g two computable functions.

The name “slice-wise polynomial” stems from the fact that for each “slice” of problem correspond-
ing to a given value of k, the algorithm complexity is a different polynomial. When the polynomial
degree is the same for all parameter values, we are in the much more favorable FPT case:
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Definition 11 (fixed-parameter tractability: FPT). An algorithm is said to run in time FPT for
parameter k if its complexity has an upper bound of the form f(k) · nc, for f a computable
function.

To illustrate these definitions, we will consider the CLIQUE problem, defined below, as a running
example.

Problem 5 (Clie).
Input: graph G, integer k
Question: Does G contain a k-clique?

In Box 3, we give two parameterizations for Clie, one yielding an FPT algorithm (maximum
degree ∆ of the input graph) and one yielding an XP algorithm (k). The next section will present a
hardness theory (the W -hierarchy) allowing to provide evidence that an FPT algorithm for a given
parameterized problem is unlikely to exist.

Box 3. (Parameterizations for Clie)
Consider the following algorithm for Clie (from [71]), with∆ the maximum degree of the input graph:

1. If ∆ < k − 1 output no.

2. Else, for each vertex v, test whether it is part of a k-clique by checking if its neighborhood contains
a k-clique. To do so, check all O(2∆) subsets ofN(v), and check in O(∆2) whether it is a clique or
not.

The overall run-time of the algorithm is O(2∆ · ∆2 · n). It is therefore an FPT algorithm for Clie
parameterized by ∆.

Another algorithm for Clie is a straightforward iteration over all k subsets in O(nk), along
with a O(k2) test for each of them to see if it is a clique. This constitutes an XP algorithm for Clie.
As we shall see in Section 1.2.2, Clie is in fact W[1]-hard with k as a parameter, which is considered
convincing proof that it does not allow for an FPT algorithm with this parameterization.

1.2.2 Parameterized intractability

Parameterized complexity comes with a hardness theory to rule out FPT or XP algorithmswhen study-
ing a parameterized problem. We start this section by presenting Para-NP-hardness, which rules out
XP and FPT. Then, we move on to W[1]-hardness, which allows distinguishing between XP and FPT.

Excluding XP and FPT: Para-NP-hardness.

Definition 12 (Para-NP-hardness). A parameterized problem is Para-NP-hard if it is NP-hard
for a fixed value of the parameter.
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For example, consider the ColoRing problem, which takes as input a graph G and an integer
k, and asks whether G admits a proper coloring with less than k colors. That is to say, a coloring
assigning different colors to connected vertices. It is already NP-hard to decide whether a graph G
admits a proper 3-coloring. ColoRing parameterized by the number of colors is therefore Para-NP-
hard. The existence of an XP algorithm for coloring parameterized by k, i.e. running in time bounded
by f(k) · ng(k), is therefore ruled out, unless P=NP.

Parameterized reductions. Just like in NP-hardness theory, reductions between problems allow
distinguishing polynomial from NP-hard problems, it is here a notion of parameterized reduction that
is at the basis of distinguishing FPT from XP. The definition is given below. It is such that it transfers
fixed-parameter tractability: if there is a parameterized reduction from A to B and B is FPT, then so
is A.

Definition 13 (parameterized reduction). Let A,B ⊆ Σ∗ × N be two parameterized problems.
A parameterized reduction from A to B is an algorithm A that, given an instance (x, k) of A,
outputs an instance (x′, k′) of B, such that:

1. (x, k) yes-instance⇔ (x′, k′) yes-instance.

2. k′ ≤ g(k) for some computable function g

3. A runs in FPT time with respect to k

Conversely, if we have good reasons to believe that there is no FPT algorithm for A, then this
impossibility is transferred to B. The role played by the class NP in NP-hardness theory is here taken
up by a hierarchy of classes of parameterized problems called theW -hierarchy, whichwe now present.

Ruling out FPT: W -hierarchy. The W -hierarchy is a hierarchy of computational classes indexed
by an integer t, {W [t] | ∀t > 0}, with W [0] = FPT. Its precise definition, in terms of Weighted
CiRcuit Satisfiability, is beyond the scope of this manuscript. Details can be found in [71]. The
classes of most interest to the algorithm designer are W [1] and W [2], for which there are natural
complete problems. The fundamental hypothesis underlying parameterized complexity is then:

FPT ̸= W [1]

As other fundamental working hypotheses in computational complexity, it is not formally proven.
It is widely believed to be true, in part because of the following result, which is the starting point of
a lot of parameterized reductions:

Theorem 1 ([71]). Clie parameterized by the solution size is W [1]-complete.
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The assumption that FPT ̸= W [1] is therefore also supported by the fact that we do not know of
any no(k) algorithm for Clie (with k the solution size) despite decades of research involving this
fundamental problem.

Parameterized reductions within this PhD thesis. All chapters of this PhD thesis except
Chapter 3 involve Para-NP-hardness proofs and parameterized reductions. Some of them use
restricted versions, which are still W [1]-complete, namely Multi-ColoRed Clie and Clie on
regular graphs, which we briefly introduce before closing this section.

Multi-ColoRed Clie consists in asking, given a partition (X1, . . . , Xk) of the vertices of
the graph as input, whether it contains a k-clique with one vertex in each Xi.

Problem 6 (Multi-ColoRed Clie).
Input: graph G, integer k, partition (X1, . . . , Xk) of V
Question: DoesG allow for a k-clique containing exactly one vertex in eachXi, for 1 ≤ i ≤ k?

We refer below as “multicolored clique” to a k-clique having one vertex in each part Xi of a parti-
tion. As for regular graphs, they simply are graphs in which all vertices have the same degree. The
combination of both, Multi-ColoRed Clie on regular graphs is stillW [1]-complete parameterized
by the solution size. Parameterized reductions from Clie to these restricted versions are given in
Box 4. These proofs can also be found in [71], but we include them here for self-completeness and
illustration purposes.

1.2.3 Width parameters: the example of treewidth

So far, the examples of parameterizations we have seen are the solution size (k when looking for a
k-clique) or the maximum degree of a graph. However, this PhD thesis focuses on the application
to structural RNA bioinformatics of another kind of parameters, namely graph widths. This section
provides a primer of structural graph theory, from which graph widths stem. It focuses mainly on
treewidth, the most studied and well understood of these parameters, and also the one that is mostly
used in this PhD thesis.

Structural graph theory: philosophy. When confronted with an NP-hard problem on graphs
in practice, it is of paramount importance to investigate whether we are solving the problem in its
full generality, or if we are in fact only looking at instances with a specific structure that could be
exploited algorithmically. The goal of structural graph theory is to describe and characterize such
potential structural restrictions [72]. A particularly useful idea in that context is that of separation,
i.e. the possibility of breaking down graphs into small pieces, which may be handled separately.

Graph decompositions, such as tree decompositions (defined below) are data structures describing
these small pieces and how they connect together. The associated width (an integer) is intuitively
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Box 4. (Multi-ColoRed Clie on regular graphs)
Let us start with the reduction from Clie to Clie on regular graphs. Given a graph G = (V,E) and
an integer k, the purpose is to build a regular graph G′ and an integer k′ such that G has a k-clique if and
only ifG′ has a k′ clique. Recall that a regular graph is one in which all vertices have the same degree. To
start with, note that the case k ≤ 2 (does G have an edge?) is trivial for Clie. We therefore restrict our
attention to k ≥ 3.
Let us note d the maximum degree of G, and d(u) the degree of a vertex u ∈ G. G′ consists of d copies
of G, as well as vertex sets Vu, for each u ∈ V . |Vu| = d − d(u), and each copy of the d copies of u are
connected to each vertex in Vu. This construction is illustrated on the drawing below for a simple graph.

0
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3

4

G

V0 V1 V3 V4 G′

We argue that G′ has a k clique if and only if G has a k clique. The “if” part is straightforward as G′

contains copies of G. For the “only if” part, note that the vertices in the sets {Vu}u∈V are not involved in
any triangle, and therefore in no k-clique (for k ≥ 3). The cliques of G′ are therefore only the cliques in
the copies ofG. For k′ = k, we do have the equivalence of k-clique containment in both graphs. G′ being
of O(|V |2) size, the reduction is polynomial, and all conditions of a parameterized reduction are met.

From Clie on regular graphs toMulti-ColoRed Clie. We now formulate a parameterized
reduction fromClie on regular graphs toMulti-ColoRed Clie on regular graph, both parameterized
by k. Consider therefore a regular graph G = (V,E), and call r the common degree value of all of its
vertices. The purpose is to build G′ = (V ′, E′), and give a partition (X1, . . . , Xk) of V ′, such that G
contains a k-clique if and only if G contains a multicolored clique. Let us build G′ as follows. V ′ is
composed of k sets V1, . . . , Vk of cardinality |V |. We further denote V as {u1, . . . , un} and each Vi as
{ui

1, . . . , u
i
n}. Now, for i ̸= j, (ui

k, u
j
l ) ∈ E′ if and only if (uk, ul) ∈ E. Crucially, no edges internal to

any Vi are added. We illustrate the transformation below.
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Now, given a k-clique {ui}i∈I with I = (i1, . . . , ik) in G, a multicolored k-clique in G′ is simply
{uj

ij
}1≤j≤k . Conversely, a multicolored k-clique in G′, {uj

ij
}1≤j≤k yields a clique {uij}1≤j≤k in G.
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either the size of these pieces, or that of their interfaces. Let us now put these concepts into more
precise terms through the definition of treewidth and tree decompositions.

Treewidth and tree decompositions: definitions. Treewidth is an integer quantifying the tree-
likeness of a graph. It is the smallest possible width of a tree decomposition of a graph, which is in
short a “tree of bags of vertices” with certain properties:

Notation 2
(vertex
subtree).
Tu = {t ∈
T | u ∈ Xt}

Definition 14 (Tree decomposition). Given a graph G = (V,E), a tree decomposition T is a
tuple (T, {Xt}t∈T ) with T a tree, and ∀t ∈ T , Xt a set of vertices of the graph, such that:

1. ∀u ∈ V , the set Tu = {t ∈ T | u ∈ Xt} must be a connected sub-tree of T .

2. ∀(u, v) ∈ E, Tu and Tv must intersect.

The width w(T ) of a tree decomposition T of G is maxt∈T |Xt| − 1, the size of its biggest bag minus
one. The treewidth tw(G) of a graph G is the minimum possible width of a tree decomposition of
G. The “minus one” in the definition of the width of a decomposition is there so that trees have a
treewidth of 1. Examples of graphs along with optimal tree decompositions are given on Figure 1.10.

Tree decompositions and separators. To better understand why the definition above is a good
way to characterize “tree-like” graphs, we formulate and prove here a basic result on the separating
properties of tree decomposition. To simplify the exposition, we state below the essence of the result,
and present the formal details in Box 5.

Property 1. The intersections of adjacent bags in a tree decomposition of a graph G are separators
of G.

Where a separator is a set of vertices that disconnects the graph when removed. Property 1 gives us
an intuitive reason why tree decompositions can be useful algorithmically. Given an edge (i, j) of the
tree decomposition with S = Xi ∩Xj a separator of G, we can indeed imagine solving a problem on
each component ofG \S, and combine the result through the interface S = Xi ∩Xj of size bounded
by tw(G).

Dynamic programming on tree decompositions. Thanks to the separating properties defined
above, an extremely wide variety of combinatorial optimization problems can be solved efficiently
on graphs of bounded treewidth. This variety has been made particularly apparent by the following
(much celebrated) theorem. It is stated here informally, the interested reader can find more details
in [71]
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Figure 1.10: Examples of graphs and possible optimal tree decompositions for them. (top) A tree has treewidth
1, i.e. allows for a tree decomposition with bags of size 2. They correspond to its edges, connected following
the tree structure. (bottom) A slightly more complicated graph, of treewidth 3. The fact that it contains a clique
of size 4 gives us a lower bound of 3 on its treewidth, hence this tree decomposition is optimal.
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Box 5. (Adjacent bag intersections are separators)

Let us start with a formal definition for a separator in a graph G.

Definition 15 ((a, b)-separator). Given a graph G = (V,E), S ⊆ V , and a, b ∈ V , S is an (a, b)-
separator if a and b are in two different connected components of G \ S.

Given this definition, S is said to be a separator of G if ∃a, b ∈ V such that S is an (a, b)-separator.

Much like any (non-leaf) vertex of a tree separates it in several parts when removed, we prove
now a very useful basic result: the intersections of the bags of a tree decomposition are, in the general
case, separators of the graph. To state the result, we introduce the following notation: given an edge
(i, j) of T , we write Ti→j and Tj→i the two sub-trees obtained when removing edge (i, j). Ti→j is the
one containing j, and Tj→i contains i. This definition is illustrated on the figure below.

i j

Ti→jTj→i

We then write V (Ti→j) and V (Tj→i) for the unions of the bags corresponding to these subtrees (e.g.
V (Ti→j) =

⋃
t∈Ti→j

Xt). With these notations, we have:

Property 2 (bag intersections are separators). Given T = (T, {Xt}t∈T ) a tree decomposition of a
graphG and (i, j) an edge of T , if V (Ti→j)\V (Tj→i) ̸= ∅ and V (Tj→i)\V (Ti→j) ̸= ∅ thenXi∩Xj

is a separator of G.

Proof. Let a ∈ V (Ti→j)\V (Tj→i) and b ∈ V (Tj→i)\V (Ti→j). By definition of a tree decomposition, Ta

and Tb (Notation 3) are connected sub-trees of T , and therefore a /∈ Xi ∩Xj and b /∈ Xi ∩Xj . If a and b
are not in the same connected component inG, then they are not in the same components ofG\(Xi∩Xj)
and we are done.
Otherwise, let P = (s0, . . . , sp), with s0 = a and sp = b, be any path between a and b. We show that P
necessarily intersects Xi ∩Xj . Let t be the largest integer in [0 . . . p] such that st ∈ V (Ti→j) \ V (Tj→i).
By definition of a, b and P , 0 ≤ t < p. Therefore st+1 ∈ V (Tj→i). But since (st, st+1) is an edge of G,
their two sub-trees Tst and Tst+1 must intersect. st+1 must therefore intersect be present in both Xi and
Xj to “reach” towards st.
Thus, any path P between a and b must intersect Xi ∩Xj . When removing it, all paths are cut, and since
a /∈ Xi and b /∈ Xj , a and b are indeed in two different components of G \ (Xi ∩ Xj). Xi ∩ Xj is a
separator of G.
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Theorem 2 (Courcelle’s theorem [73]). Any graph problem expressible in Monadic Second Order
Logic (MSOL) is FPT by the treewidth of the input graph.

This encompasses pretty much any classic graph problem. However, due to the impractical com-
plexity it typically yields (with towers of exponential [74]), this theorem should only be regarded as
a theoretical classification tool. Practical FPT algorithms parameterized by treewidth are typically
rather designed by hand, and consist in dynamic programming over (rooted) tree decompositions.
Box 6 gives an example of such an algorithm, for Maximum Independent Set. It applies the typical
strategy of “considering all possible solution assignments” to the intersection between two bags, and
then merging sub-solutions given an assignment.

Computing treewidth. Algorithms such as the one presented in Box 6 work with a tree decompo-
sition of the input graph G. How to compute such a tree decomposition must therefore be addressed,
and the complexity of doing so taken into account. This is especially important considering the hard-
ness of computing treewidth exactly:

Theorem 3 ([76]). Given a graph G and an integer k, it is NP-hard to decide whether tw(G) ≤ k.

However, when the purpose is to show that a given problem is FPT by treewidth, we are usually
saved by the following result.

Theorem 4 ([77]). Given a graphG and an integer k, deciding whether tw(G) ≤ k, and outputting
a tree decomposition of width ≤ k if the answer is yes, can be done in kO(k3) · n

For instance, the algorithm of Box 6 solves MIS in a time FPT in the width of a given a tree decom-
position. This is not exactly the same as being given only the graph, without a tree decomposition.
Thanks to Theorem 4, we know that adding the computation of an optimal tree decomposition to
the complexity does not change the fixed-parameter tractability. To avoid the double exponential
of kO(k3), one could also use a constant-factor approximation to treewidth with single-exponential
(2O(k)nO(1)) FPT complexity [78, 79].

Note that the landmark result ofTheorem 4 ([77]) was very recently improved to kO(k2)nO(1) [80].

Practical treewidth computation. In practice though, when implementing treewidth-based ap-
proaches, we typically use one of the numerous existing heuristics [81]. Several optimized exact
solvers, such as [82], also exist. Most are an output of the PACE 2017 challenge on treewidth solv-
ing [83].

Obstacles to having small treewidth. To gain a better intuition of the limitations imposed on
graphs by bounding treewidth, we describe here some useful tools when looking for treewidth lower
bounds. This will become handy in Chapters 2 and 3 of this thesis. Let us start with the clique.
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Box 6. (An FPT algorithm by tw(G) for Maximum Independent Set)
Let us first recall the definition of Maximum Independent Set:

Problem 7 (Maximum Independent Set).
Input: a graph G = (V,E), an integer k
Question: Is there S ⊆ V such that |S| ≥ k and ∀u, v ∈ S, (u, v) /∈ E?

To obtain a better complexity, the algorithm below relies on the notion of nice tree decomposition [75]. It
typically greatly simplifies the formulation of such algorithms, even reducing their complexity.

Definition 16 (nice tree decomposition). A nice tree decomposition T = (T, {Xt}t∈T ) of a graph
G = (V,E) contains an empty root R, and 3 kinds of bags:

• “introduce”: X with exactly one child Y such that X = Y ∪ {u} for some u ∈ V .

• “forget”: a bag X with exactly one child Y such that Y = X ∪ {u} for some u ∈ V .

• “join”: a bag X with exactly two children Y1, Y2 with the same content.

Any tree decomposition T of a graph G can be turned nice in linear time [75]. A set S containing no
internal edges is called an independent set (IS). Imagine now that you are given a nice tree decomposition
of G of width w (see the paragraph below about “computing treewidth”), and designate any random bag
as its root. Each non-root bagXi in the tree decomposition now has a well-defined parent P , and children
Y1, . . . , Yℓ. We also call Ti the sub-tree-decomposition rooted at Xi, and Vi = V (Ti) the vertices it
contains. We can now define the following dynamic programming table, with S ⊆ Xi ∩ P :

c[Xi, S] = maximum size of an IS of G[Vi] containing S

If S is an IS, and c[Xi, S] = −∞ otherwise. Recursive relations for c depend on whether X is an “intro-
duce”, “forget”, or “join” node. Taking the notations of Definition 16 let us start with the join node:

c[X,S] = c[Y1, S] + c[Y2, S]− |S|

Where the −|S| avoid double counting of the cardinality of S. For a “forget” node (i.e., such that Y =
X ∪ {u}):

c[X,S] = max(c[Y, S ∪ {u}], c[Y, S])

The two cases correspond to deciding whether u is part of the candidate solution or not. Last, for an
introduce node (X = Y ∪ {u}):

c[X,S] = c[Y, S ∩ Y ] + |S ∩ {u}|

As ∀Xi, |Xi ∩ P | = |S| ≤ w, this table has O(n · 2w) entries. Since the recursive equations always only
involve a constant number of cases, we get the same complexity for the algorithm run-time, which is FPT
in w. Combined with the fact that computing the treewidth ofG is FPT by tw(G) (Theorem 4), we get the
result. Full proofs for the recursive equations can be found in [71] and [75].
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Property 3. If G is a graph, T a tree decomposition of G, and C a clique of G, then there is a bag
of T containing C .

Proof. The proof is by induction on k = |C|, starting at 2 (edges). Supposing the property is true for
cliques of size k − 1, consider G, C , T as above such that |C| = k. Suppose no bag of T contains C
entirely, and pick v ∈ C . |C \ {v}| = k − 1 is a clique, and must be contained in some bag X , by
induction hypothesis. Let P be the shortest path in T towards the closest bag containing {v}, that
we denote Y . All edges of C must be represented in T , so all vertices in C \ {v} must all be present
in P , up to Y included. Y therefore contains C .

But we can do better than this. Treewidth is indeed fundamentally connected to the notion of
minor :

Definition 17 (minor). A graph H is a minor of a graph G if it can be obtained from G through
a sequence of vertex deletions, edge deletions, and edge contractions.

A nice introduction to graph minor theory is [84]. The basic property connecting minors and
treewidth is then the following:

Property 4. If H is a minor of G, then tw(H) ≤ tw(G)

Proof. Let us handle the three cases of vertex deletion, edge deletion and edge contraction, given a
tree decomposition T of G:

• vertex deletion of u: delete any occurrence of u in T

• edge deletion: no modification needed.

• edge contraction of u into v: replace all occurrences of u by occurrences of v.

The result is a valid tree decomposition of H of lower width.

Finding cliques as minors, or any other graph of large treewidth (such as a grid) can therefore also
be useful to find lower bounds to the treewidth of a graph. It also implies that the class of graphs
of treewidth smaller than a given value is minor closed. By the Robertson-Seymour theorem [85], it
implies that having bounded treewidth is characterized by a finite set of excluded minors. Treewidth
plays actually a central role in the 20-paper long proof of this theorem, the so-called graph minor
project. This characterization of bounded treewidth in terms of a finite set of excluded minors will be
used in Chapter 2, along with the fact that testing whether a graph contains a fixed minor or not can

be done in polynomial time [86]3.
3The reader might wonder why this does not help how to decide tw(G) ≤ k in polynomial-time, the catch is the

evolution of the number of minors to test as a function of k, which grows very quickly.
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canonical interactions only including non-canonical interactions

Figure 1.11: Histogram of treewidth values over all RNA-only structures in the PDB database [88]. The data
consists of 5 760 non-redundant graphs, each corresponding to a “chain” of a PDB entity. The nucleotide chains
and their base pairs were extracted using the DSSR tool [22]. Empty structures (treewidth=1, no base-pairs)
have been removed. On each of these graphs, 4 standard treewidth heuristics from the LibTW library [89]
(min-degree, min-fill-in, lex-BFS, max-cardinality-search) were launched, as well as an exact solver [82]. A
time-out of one minute was given to the exact solver. Results in blue correspond to graphs for which an exact
result was found within the time-out. Results in yellow are graphs for which the exact solver exceeded the
time-out, and for which the best width result out of the 4 heuristics was taken. Non-canonical interactions are
non Watson-Crick or G-U connections between nucleotides [5]. When taking them into account, a nucleotide
may be involved in more than one base-pair.

Treewidth in RNA bioinformatics. Is treewidth a good parameterization for structural RNA
bioinformatics? Figure 1.11 shows a histogram of treewidth values for RNA structures in the PDB
database. The graph corresponding to an RNA structure simply consists in a vertex per nucleotide,
and an edge for each base-pair and backbone link. Given that these graphs can contain thousands
of vertices, these treewidth values are quite reasonable. It is therefore not surprising that there has
been attempts to exploit it algorithmically. Results in that respect include [62, 87] (for StRuctuRe-
Seence Alignment) and [48] (for RNA design).

Treewidth and tree decompositions in this PhD thesis. Treewidth and tree decompositions
constitute one of the central concepts in this PhD thesis. Chapter 2 presents results related to the
reduction of a treewidth of a graph through the deletion of a minimal number of edges. The purpose
was to unlock the full potential of the algorithms mentioned above. Chapter 3 uses tree decomposi-
tions as a way to automatically generate dynamic programming equations for RNA folding. Chap-
ter 4 generalizes covariance models, a statistical model for families of structured homologs, thanks to
treewidth-based algorithms for maximum inference.

1.2.4 Parameterized algorithmics in bioinformatics

Did you say NP-hard?. Parameterized algorithmics holds the promise that, when studying impor-
tant problems, NP-hardness may not be the end of the story. It opens up the possibility of expanding
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the scope of exact solving when instances have special structure.
Bioinformatics is a vast and ideal playground for parameterized algorithmics. Whether it is for

RNA topics or other fields (such as phylogenetics [90, 91, 92]), many hard natural problems emerge
from natural fundamental questions. Yet, actual biological data may exhibit simpler structures than
the constructions used in NP-hardness reductions, which can be quantified in parameterizations.
Historically, bioinformatics has played a major role in the development of parameterized algorith-
mics [93, 94]. A review of application areas of parameterized algorithmics within bioinformatics may
be found in [95].

Parameterized RNA algorithmics. However, when it comes to applications to structural RNA
bioinformatics, the only examples prior to this PhD are, to the author’s knowledge, [58, 59, 62, 96, 48,
87, 97, 63]. In addition, note that some of these works, such as [63], do not explicitly state things in
terms of parameterized algorithms, even though it is a way of describing the algorithms they develop.
This surprising under-representation of RNA topics in applications of parameterized algorithmics,
compared to other bioinformatics fields, is one of the main motivations for this PhD thesis.
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Organization of this PhD thesis

Outline. Overall, the chapters of this thesis cover the following topics:

• Chapter 2 addresses the problem of removing a minimal number of edges in a graph to reach
a target treewidth value. The resulting algorithm allows for the computation of hierarchies
of simplifications of RNA structures. This could enable a hierarchical filtering approach for
pseudoknotted homolog search, and a rejection-based acceleration of the algorithm of [48] for
RNA design. It is based on [98], which is the journal version of [99].

• Chapter 3 explores the possibility of using tree decompositions as an automated generation tool
for dynamic programming schemes tackling the RNA folding problem. It provides a frame-
work that, given the specification of a family of structures as a pseudoknotted conflict pattern
(fatgraph), generates a dynamic programming scheme that solves RNA folding restricted to
this family. Interestingly, the computational complexity of the generated scheme is directly
connected to the treewidth, and therefore minimized. It is based on the journal version of [100],
which has been accepted but not published at the time of this writing.

• Chapter 4 focuses on methods and algorithms for ncRNA homolog search. It presents in par-
ticular a set of benchmark experiments for quantifying the added value of pseudoknot-aware
alignments for StRuctuRe-Seence Alignment, such as [62]. It also gives possible formula-
tions for pseudoknotted covariance models, based on tree decompositions. They can be seen both
as extensions of [62] to include the features of InfeRNAl, the current pseudoknot-free state
of the art solution, and as applications of the theory developed in Chapter 3. This is the only
chapter that is not based on published materials.

• Chapter 5 is an account of a parameterized algorithmics study of the RNA EneRgy BaR-
RieR problem. It introduces two parameters for the problem, namely the range of allowed en-
ergy values and the smallest number of hairpin loops in the two input structures. XP algorithms
are formulated for both parameters. Interesting connections are drawn with a width parame-
ter called directed pathwidth, as well as independent-set reconfiguration and scheduling problems.
Many questions on this topic remain open, making these newly-drawn connections all the more
interesting. This chapter is based on the journal version of [101], and has yet to be submitted.

Thesis by articles. Except for Chapter 4, all chapters in this thesis are based on published articles.
A complete list of publications written as part of this PhD is given on the next page, along with their
relationships to the chapters of this thesis.
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Chapter 2

tRee diet: reducing the treewidth to
unlock parameterized algorithms in
RNA bioinformatics

This chapter is based on:

BertrandMarchand, Yann Ponty, and Laurent Bulteau. Tree diet: reducing the treewidth to unlock
FPT algorithms in RNA bioinformatics. Algorithms for Molecular Biology, 17(1):1–17, 2022

↪→ conference version (WABI ’21): https://drops.dagstuhl.de/opus/volltexte/2021/14360/pdf/LIPIcs-
WABI-2021-7.pdf

↪→ journal version (published): https://almob.biomedcentral.com/articles/10.1186/s13015-022-
00213-z

Abstract

As touched upon in the introduction, treewidth-based algorithms have an extremely wide range of
applicability, underlined byCourcelle’s theorem. Unsurprisingly, many Bioinformatics problems lends
themselves to this approach, including RNA design and StRuctuRe-Seence Alignment. Their
time/space complexities depend critically on the treewidth of the input graphs, and these algorithms
can typically only be run in practice up to a threshold treewidth value.

In order to extend their scope of applicability, this chapter introduces the TRee-Diet problem, i.e.
the removal of a minimal set of edges such that a given tree-decomposition can be slimmed down
to a prescribed treewidth tw′. The rationale is that the time gained thanks to a smaller treewidth in
a parameterized algorithm compensates the extra post-processing needed to take deleted edges into
account.
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The core result is an FPT dynamic programming algorithm for TRee-Diet, using 2O(tw)n time and
space. It is complemented with parameterized complexity results regarding smaller parameters (e.g.,
NP-hardness when tw′ or tw − tw′ is constant). A C++ prototype for our FPT algorithm in tw has
been implemented. It allows to demonstrate potential applications to difficult instances of selected
RNA-based problems: RNA design, StRuctuRe-Seence Alignment, and search of pseudoknotted
RNAs in genomes, revealing very encouraging results.
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2.1 Introduction

Parameterized algorithmics in bioinformatics. Graphmodels and parameterized algorithms are
found at the core of a sizable proportion of algorithmic methods in bioinformatics addressing a wide
array of subfields, spanning sequence processing [104], structural bioinformatics [105], comparative
genomics [106], phylogenetics [107], and further examples that can be found in a review by Bulteau
and Weller [108].

Within RNA bioinformatics. RNA bioinformatics is no exception, with the prevalence of the
secondary structure, an outer planar graph [109], as an abstraction of RNA conformations, and the
notable utilization of graph models to represent complex topological motifs called pseudoknots [110],
inducing the hardness of several tasks, such as structure prediction [111, 112, 113], structure align-
ment [114], or structure/sequence alignment [62]. Such motifs are functionally important and con-
served, as witnessed by their presence in the consensus structure of 336 RNA families in the 14.5
edition of the RFAM database [115]. Moreover, methods in RNA bioinformatics [116] are increasingly
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considering non-canonical base pairs and modules [117, 118], further increasing the density of RNA
structural graphs and outlining the need for scalable algorithms.

Parameterized complexity: philosophy. As outlined in Chapter 1, a parameterized complexity
approach can be used to circumvent the frequent NP-hardness of relevant problems. It generally
considers one or several parameters, whose values are naturally bounded (or much smaller than the
input size) within real-life instances. Once relevant parameters have been identified, one aims to
design a Fixed Parameter Tractable (FPT) algorithm, having polynomial complexity for any fixed value
of the parameter, and reasonable dependency on the parameter value.

Treewidth. The treewidth (section 1.2.3) is a classic parameter for FPT algorithms, and intuitively
captures a notion of distance of the input to a tree. It is popular in bioinformatics due to the existence of
efficient heuristics [119, 81] for computing tree-decompositions of reasonable treewidth. Given a tree-
decomposition, many combinatorial optimization tasks can be solved using dynamic programming
(DP), in time/space complexities that remain polynomial for any fixed treewidth value. Resulting
algorithms remain correct upon (almost) arbitrary modifications of the objective function parameters,
and can be adapted to study statistical properties of search spaces through changes of algebra.

FPT ̸=practical. Unfortunately, the existence of a parameterized (or FPT) algorithm does not nec-
essarily imply that of a practically-efficient implementation, even when the parameter takes low typ-
ical values. Indeed, the dependency of the complexity on the treewidth may be prohibitive, both in
terms of time and memory requirements. This limitation is particularly obvious while searching and
aligning structured RNAs, giving rise to an algorithmic problem called RNA structure-sequence align-
ment [120, 121, 62], for which the best known exact algorithm is inΘ(n.mtw+1), with n the structure
length, m the sequence/window length, and tw the treewidth of the structure (inc. backbone). Such
a complexity becomes impractical for structures having a treewidth higher than ≳ 4, which repre-
sent 50 to 60% of known RNA structures, as shown by Figure 1.11 in Chapter 1, based on a broad
analysis of structures found in the PDB database. Similar complexities hold for problems that can be
expressed as (weighted) constraint satisfaction problems, with m representing the cardinality of the
variable domains. Such frameworks are frequently used for molecular design, both in proteins [122]
and RNA [123], and may require the consideration of tree-widths as high as 20 or more [124].

Core idea of this Chapter. In this chapter, we investigate a pragmatic strategy to increase the
practicality of parameterized algorithms based on the treewidth parameter [77]. We put our instance
graphs on a diet, i.e. we introduce a preprocessing that reduces their treewidth to a prescribed value
by removing a minimal cardinality set of edges. As discussed previously, the practical complexity
of many algorithms greatly benefits from the consideration of simplified instances, having lower
treewidth. Moreover, specific countermeasures for errors introduced by the simplification can some-
times be used to preserve the correctness of the algorithm. For instance, for searching structured RNAs
using RNA structure-sequence alignment [120], an iterated filtering strategy could use instances of
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Figure 2.1: General description of our approach and rationale. Starting from a structured instance, e.g. an
RNA structure with pseudoknots, our tree-diet/path-diet algorithms extract simplified tree/path decomposi-
tions, having prescribed target width tw′. Those can be used within existing parameterized algorithms to yield
efficient heuristics, a posteriori approximations or even exact solutions.

increasing treewidth to restrict potential hits, weeding them early so that a – costly – full structure is
reserved to (quasi-)hits. This strategy could remain exact while saving substantial time. Alternative
countermeasures could be envisioned for other problems, such as a rejection approach to correct a
bias introduced by simplified instances in RNA design. An overview of our approach is sketched on
Figure 2.1

Chapter outline. After stating our problem(s) in Section 2.2, we study in Section 2.3 the parame-
terized complexity of the GRaph-Diet problem, the removal of edges to reach a prescribed treewidth.
We propose, in Section 2.4, a practical Dynamic Programming FPT algorithm for TRee-Diet, along
with possible further optimizations for Path-Diet, two natural simplifications of the GRaph-Diet
problem, where a tree (resp. path) decomposition is provided as input and used as a guide. Finally, we
show in Section 2.5 how our algorithm can be used to extract hierarchies of graphs/structural models
of increasing complexity to provide alternative sampling strategies for RNA design, and speed-up the
search for pseudoknotted non-coding RNAs. We conclude in Section 3.7 with future considerations
and open problems.

2.2 Statement of the problem(s) and results

Reminder: tree decompositions. As introduced in section 1.2.3, a tree-decomposition T (over a set
V of vertices) is a tree whose nodes are subsets of V , known as bags. The bags containing any v ∈ V
induce a (connected) subtree of T . A path-decomposition is a tree-decomposition whose underlying
tree T is a path. The width of T (denoted w(T )) is the size of its largest bag minus 1. An edge
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Figure 2.2: Illustrations for the GRaph-Diet and TRee-Diet problems. Given a graph G on the left (treewidth
3), an optimal solution for GRaph-Diet, with target treewidth 2, yields the tree-decomposition in the middle
(edge ah is lost). On the other hand, any 1-tree-diet for the tree-decomposition on the right loses at least 3
edges.

{u, v} is visible in T if some bag contains both u and v, otherwise it is lost. T is a tree-decomposition
of G if all edges of G are visible in T . The treewidth of a graph G is the minimum width over all
tree-decompositions of G.

Problem 8 (GRaph-Diet). Given a graph G = (V,E) of treewidth tw, and integers tw′ < tw,
find a tree-decomposition over V of width at most tw′ losing a minimum number of edges from
G.

A tree-diet of T is any tree-decomposition T ′ obtained by removing vertices from the bags of T .
T ′ is a d-tree-diet if w(T ′) ≤ w(T )− d.

Problem 9 (TRee-Diet). Given a graph G, a tree-decomposition T of G of width tw, and an
integer tw′ < tw, find a (tw − tw′)-tree-diet of T losing a minimum number of edges.

Note that for TRee-Diet, T does not have to be optimal, so the width tw of the input tree decom-
position might be larger than the actual treewidth of G, thus TRee-Diet can be used to reduce the
width of any input decomposition. We define BinaRy-TRee-Diet and Path-Diet analogously, where
T is restricted to be a binary tree (respectively, a path). An example of an instance of GRaph-Diet
and of TRee-Diet are given in Figure 2.2.

Reminder: parameterized complexity. The basics of parameterized complexity, introduced in
section 1.2 can be loosely defined as follows (see [93] for the formal background). A parameter k for
a problem is an integer associated with each instance which is expected to remain small in practical
instances (especially when compared to the input size n). An exact algorithm, or the problem it solves,
is FPT if it takes time f(k)poly(n), and XP if it takes time ng(k) (for some functions f, g). Under
commonly accepted conjectures (see for instance [71] for details), W[1]-hard problems may not be
FPT, and Para-NP-hard problems (NP-hard even for some fixed value of k) are not FPT nor XP.
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Parameter Source treewidth Target treewidth Difference
Problem tw tw′ d = tw − tw′

GRaph-Diet
FPT Para-NP-hard Para-NP-hard*

via MSO tw′ = 2 d = 1
Theorem 5 EDP(K4) [125] Theorem 6

TRee-Diet
XP Para-NP-hard

O∗((6∆)tw) FPT open d = 1
Theorem 11 Theorem 8

BinaRy-TRee-
XP openDiet FPT

Path-Diet
O∗(12tw) XP

Theorem 11 O∗(twd)

Para-NP-hard
tw′ = 1

Theorem 7 W[1]-hard
Theorem 9

Theorem 12

Table 2.1: Parameterized results for our problems. Algorithm complexities are given up to polynomial time
factors (O∗ notation),∆ denotes the maximum number of children in the input tree-decomposition, and “EDP”
stands for Edge-Deletion Problem, as defined further down. (*) see Theorem 6 statement for a more precise
formulation.

2.2.1 Our results

Our results are summarized in Table 2.1. Although the GRaph-Diet problem would give the most
interesting tree-decompositions in theory, it seems unlikely to admit efficient algorithms in practice
(see Section 2.3).

Tree-diet. Thus we focus on the TRee-Diet relaxation, where an input tree-decomposition is given,
which we use as a guide/restriction towards a thinner tree-decomposition. Seen as an additional
constraint, it makes the problem harder (the case tw′ = 1 becomes NP-hard, Theorem 7, although
for GRaph-Diet it corresponds to the Spanning TRee problem and is polynomial). With parame-
ter tw however, it does help reduce the search space. In Theorem 11 we give an O((6∆)tw∆2n)
Dynamic Programming algorithm, where ∆ is the maximum number of children of any bag in the
tree-decomposition. This algorithm can thus be seen as XP in general, but FPT on bounded-degree
tree-decompositions (e.g., binary trees and paths). This is not a strong restriction, since the input tree
may safely and efficiently be transformed into a binary one (see Supplementary Section A.1 for more
details). Moreover, the duplications of bags which are used in the conversion may only decease the
number of lost edges incurred by TRee-Diet.

We also consider the case where the treewidth needs to be reduced by d = 1 only, this without
constraining the source treewidth. We give a polynomial-time algorithm for Path-Diet in this set-
ting (Theorem 12) which generalizes into an XP algorithm for larger values of d, noting that an FPT
algorithm for d is out of reach by Theorem 9. We also show that the problem is Para-NP-hard if the
tree degree is unbounded (Theorem 8).
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Figure 2.3: A graph G (left) with treewidth 3. Deleting edge cd gives treewidth 2, implying that G ∈
Treewidth2+ 1e. However, if one contracts edge cd, then the resulting graph (right) has treewidth 3, and
deleting any single edge does not decrease the treewidth. This example shows that the graph family Treewidth
2+1e is not minor-closed.

2.3 Algorithmic Limits: Parameterized Complexity Considerations

GRaph-Diet as minimum edge deletion . GRaph-Diet can be seen as a special case of the Edge
Deletion PRoblem (EDP) for the family of graphs H of treewidth tw′ or less: given a graph G,
remove as few edges as possible to obtain a graph in H. Such edge modification problems are more
often parameterized by the number k of edited edges (see [126] for a complete survey). Given our
focus on increasing the practicality of treewdith-based algorithms in bioinformatics, we restrict our
focus to treewidth related parameters tw, tw′ and d = tw − tw′.

Para-NP-hardness with tw′. Considering the target treewidth tw′, we note that EDP is NP-hard
when H is the family of treewidth-2 graphs [125], namely K4-free graphs, hence the notation
EDP(K4). It follows that GRaph-Diet is Para-NP-hard for the target treewidth parameter tw′.

2.3.1 Graph-Diet: practical solutions seem unlikely

Applying Courcelle’s theorem and minor testing. For a combination of the parameters tw′

and k, we could imagine graph minor theorems (such as Courcelle’s theorem, Theorem 2) yielding
parameterized algorithms “for free”, as it is often the case with treewidth-based problems.

For tw’+k?. In this respect, GRaph-Diet corresponds to deciding if a graphG belongs to the family
of graphs having treewidth tw′, augmented by k additional edges, denoted as Treewidth-tw′+ke since
its introduction by Cai [127]. If this family were minor-closed, polynomial minor-free-testing [84, 86]
would yield an FPT algorithm. However, this is not the case: for some graphs in the family, an edge
contraction yields a graph G′ not in Treewidth-tw′+ke, as illustrated by Figure 2.3.

For tw. Regarding the source graph treewidth tw, the vertex deletion equivalent of GRaph-Diet,
where one asks for a minimum subset of vertices to remove to obtain a given treewidth, is known as
a TReewidth ModulatoR. This problem has been better-studied than its edge-deletion counterpart
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[128], and has been shown to be FPT for the treewidth [129]. For the edge-deletion version (GRaph-
Diet), we can use an optimization variant of Courcelle’s Theorem [71, Thm. 7.12] to show that the
problem is FPT for tw. However, this is a purely theoretical result as the running-time of such ”black-
box” algorithms typically involve towers of exponentials on the treewidth parameter.

Theorem 5. GRaph Diet is FPT for the treewidth.

Proof. We formulate GRaph Diet as a Monadic Second-Order Logic (MSO) formula as follows: given
a graph G = (V,E), an integer tw′ and a set X of edges, let φtw′(G,X) be true iff G[E \ X] has
treewidth tw′. Clearly φtw′ can be expressed as an MSO formula, since both G[E \X] and ”being of
treewidth tw′” can be expressed in MSO [73]. Thus, by Arnborg et al. [130], there exists an algorithm
that, givenG of treewidth tw, finds a setX of minimum size satisfying φtw′(G,X) in time ftw′(tw)·n.
Writing g(tw) = maxtw′≤tw ftw′(tw), this yields an algorithm for GRaphDiet running in time atmost
g(tw) · n.

Impracticality of GRaph-Diet. Overall, even though GRaph Diet is FPT for the treewidth, ”prac-
tical” exact algorithms seem out of reach. Indeed, any algorithm for GRaph-Diet can be used to
compute the TReewidth of an arbitrary graph, for which current state-of-the-art exact algorithms
require time in twO(tw3) [77]. We thus have the following conjecture, which motivates the TRee-Diet
relaxation of the problem.

Conjecture 1. GRaph-Diet does not admit algorithms with single-exponential running time for
the treewidth.

On a related note, it is worth noting that Edge Deletion to other graph classes (interval, permuta-
tion, …) does admit efficient algorithms when parameterized by the treewidth alone [131], painting a
contrasted picture.

Finally, for parameter d, any polynomial-time algorithm for constant d would allow to compute
the treewidth of any graph in polynomial time. Since treewidth is NP-hard we have the following
result.

Theorem 6. There is no XP algorithm for GRaph-Diet with parameter d unless P= NP.

Proof. We consider the decision version of GRaph-Diet where a bound k on the number of deleted
edges is given. We build a Turing reduction from TReewidth: more precisely, assuming an oracle for
GRaph-Diet with d = 1 is available, we build a polynomial-time algorithm to compute the treewidth
of a graph G. This is achieved by computing GRaph-Diet(G, tw, d = 1, k = 0) for decreasing values
of tw (starting with tw = |V |): the first value of tw for which this call returns no solution is the
treewidth ofG. Note that this is not a many-one reduction, since several calls to GRaph-Diet may be
necessary (so this does not precisely qualify as an NP-hardness reduction, even though a polynomial-
time algorithm for GRaph-Diet(G, tw, d = 1, k = 0) would imply P=NP).
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Figure 2.4: Reduction for Theorem 8 showing that TRee-Diet is NP-hard even for d = 1, from a graph G (left)
with k = 3 and n = 3 to a graph G′ (right, given by its tree-decomposition of width N + n+ 1): a 1-tree-diet
for G′ amounts to selecting a k-clique in the root bag, i.e. in G.

2.3.2 Lower Bounds for Tree-Diet

Ruling out tw’ and d. Parameters tw′ and dwould be the most interesting in practice, since param-
eterized algorithms would be efficient for small diets or small target treewidth. However, we prove
strong lower-bounds for TRee-Diet on each of these parameters, leaving very little hope for parame-
terized algorithms (we thus narrow down the possible algorithms to the combined parameter tw′+d,
i.e. tw, see Section 2.4). Only XP for parameter d when T has a constant degree remains open (cf.
Table 2.1).

Theorem 7. TRee-Diet and Path-Diet are Para-NP-hard for the target treewidth parameter tw′

(NP-hard for tw′ = 1).

Proof. By reduction from the NP-hard problem Spanning CateRpillaR TRee [132]: given a graphG,
doesG have a spanning tree C that is a caterpillar? GivenG = (V,E) with n = |V |, we build a tree-
decomposition T ofG consisting of n−1 bags containing all vertices (the width of the decomposition
is therefore n−1) connected in a path. Then (G, T ) admits a tree-diet to treewidth 1 with n−1 visible
edges if, and only if,G admits a caterpillar spanning tree. Indeed, the subgraph ofGwith visible edges
must be a graph with pathwidth 1, i.e. a caterpillar [133]. With n − 1 visible edges, the caterpillar
connects all n vertices together, i.e. it is a spanning tree.

Theorem 8. TRee-Diet is Para-NP-hard for parameter d. More precisely, it is W[1]-hard for
parameter ∆, the degree of T , even when d = 1.
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Proof. By reduction from Multi-ColoRed Clie (Given a graph G, an integer k and a partition of
the vertices of G into k sets, is there a clique in G containing exactly one vertex from each of the k
sets?). Consider a k-partite graph G = (V,E) with V =

⋃k
i=1 Vi. We assume that G is regular (each

vertex has degree δ and that each Vi has the same size n (Multi ColoRed Clie isW[1]-hard under
these restrictions [134, 135]). Let L := δk −

(
k
2

)
and N = max{|V |, L + 1}. We now build a graph

G′ and a tree-decomposition T ′: start with G′ := G. Add k independent cliques K1, . . . ,Kk of size
N + 1. Add k sets of N vertices Zi (i ∈ [k]) and, for each i ∈ [k], add edges between each v ∈ Vi and
each z ∈ Zi. Build T using 2k+1 bags T0, T1,i, T2,i for i ∈ [k], such that T0 = V , T1,i = Vi ∪Ki and
T2,i = Vi ∪Zi. The tree-decomposition is completed by connecting T2,i to T1,i and T1,i to T0 for each
i ∈ [k]. Thus, T is a tree-decomposition ofG′ with∆ = k and maximum bag size n+N +1 (vertices
of V induce a size-3 path in T , other vertices appear in a single bag, edges of G appear in T0, edges
of Ki in T1,i, and finally edges between Vi and Zi appear in T2,i). The following claim completes the
reduction:

T has a 1-tree-diet losing at most L edges from G′ ⇔ G has a k-clique.

⇐ Assume G has a k-clique X = {x1, . . . , xk} (with xi ∈ Vi). Build T ′ by removing each xi
from bags T0 and T1,i. Then T ′ is a 1-tree-diet of T . There are no edges lost by removing xi from T1,i

(since xi is not connected to Ki), and the edges lost in T0 are all edges of G adjacent to any xi. Since
X forms a clique and each xi has degree δ, there are L = kδ −

(
k
2

)
such edges.

⇒ Consider a 1-tree-diet T ′ of T losing L edges. Since each bag T1,i has maximum size, T ′
must remove at least one vertex xi in each T1,i. Note that xi ∈ Vi (since removing xi ∈ Ki would
loose at least N ≥ L+ 1 edges). Furthermore, xi may not be removed from T2,i (otherwise N edges
between xi and Zi would be lost), so xi must also be removed from T0. LetK be the number of edges
in G[{x1 . . . xk}]. The total number of lost edges in T0 is δk −K . Thus, we have δk −K ≤ L and
K ≥

(
k
2

)
: {x1, . . . , xk} form a k-clique of G.

Theorem 9. Path-Diet is W[1]-hard for parameter d.

Proof. By reduction from Clie. Given a δ-regular graph G with n vertices and m edges and an
integer k, consider the trivial tree-decomposition T of G with a single bag containing all vertices of
G (it has width n − 1). Then (T , G) has a k-tree-diet losing δk −

(
k
2

)
edges if and only if G has a

k-clique. Indeed, such a tree-diet T ′ would remove a set X of k vertices from G and losing δk −
(
k
2

)
edges, so X induces

(
k
2

)
edges and is a k-clique of G. Any instance G, with parameter k, of clie

can therefore be transformed into an equivalent instance (T , G) of Path-diet, with parameter d = k.
Since it qualifies as a parameterized reduction, Path-Diet is W[1]-hard.
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2.4 FPT Algorithm

2.4.1 For general tree-decompositions

We describe here a O(3twn)-space, O(∆tw+2 · 6twn)-time dynamic programming algorithm for the
TRee-Diet problem, with ∆ and tw being respectively the maximum number of children of a bag in
the input tree-decomposition and its width. On binary tree-decompositions (where each bag has at
most 2 children), it yields a O(3twn)-space O(12twn)-time FPT algorithm.

Coloring formulation. We aim at solving the following problem: given a tree-decomposition T
of width tw of a graph G, we want to remove vertices from the bags of T to reach a target width tw′

while losing as few edges from G as possible. We tackle the problem through an equivalent coloring
formulation: our algorithmwill assign a color to each occurrence of a vertex in the tree decomposition.
We work with three colors: red (r), orange (o), and green (g). Green means that the vertex is kept in
the bag, while orange and red means removal of the vertex. An edge is thus visible within a bag when
both its ends are green. It is lost if there is no bag where it is visible. To ensure equivalence with the
original problem, the colors will be assigned following local rules, which we now describe.

Definition 18. A coloring of vertices in the bags of the decomposition is said to be valid if it
follows the following rules:

• A vertex of a bag not present in its parent may be green or orange (R1)

• A green vertex in a bag may be either green or red in its children (R2)

• A red vertex in a bag must stay red in its children (R3)

• An orange vertex in a bag has to be either orange or green in exactly one child (unless
there is no child with this vertex), and must be red in the other children (R4)

These rules are summarized in Figure 2.5 (a).

Rules rationale. When going down the tree, a green vertex may only stay green or permanently
become red. As for orange vertices, they are locally absent but “may potentially be found further
down the tree”, while red vertices are removed from both the current bag and its entire subtree. An
immediate consequence of these rules is therefore that the green occurrences of a given vertex form
a (possibly empty) connected subtree. (R4) in particular is crucial to this connectivity: if an orange
vertex could become orange in several children, it would be able to turn green in several disconnected
subtrees. Figure 2.5 (b) shows an example sketch for a valid coloring of the occurrences of a given
vertex in the tree-decomposition. A vertex may only be orange along a path starting form its highest
occurrence in the tree, with any part branching off that path entirely red. It ends at the top of a
(potentially empty) green subtree, whose vertices may also be parents to entirely red subtrees.



CHAPTER 2. REDUCING THE TREEWIDTH TO UNLOCK PARAMETERIZED ALGORITHMS 55

Formulations equivalence . We will now more formally prove the equivalence of the coloring
formulation to the original problem. Let us first introduce two definitions. Given a valid coloring C of
a tree-decomposition ofG, an edge (u, v) ofG is said to be realizable if there exists a bag in which both
u and v are green per C. Given an integer d, a coloring C of T is said to be d−diet-valid if removing
red/orange vertices reduces the width of T from w(T ) to w(T )− d.

Proposition 2. Given a graphG, a tree-decomposition T of width tw, and a target width tw′ < tw,
The TRee-Diet problem is equivalent to finding a (tw − tw′)-diet-valid coloring C of T allowing
for a number of realizable edges in G as large as possible.

Proof. Given a (tw− tw′)-tree-diet of T specifying which vertices are removed from which bags, we
first show how to obtain a valid coloring C for T incurring the same number of lost (unrealizable)
edges. Let us denote by T ′ the tree decomposition of width tw′ obtained by applying the diet to T .
To start with, a vertex u is colored green in the bags where it is not removed. By the validity of T ′
as a decomposition, this set of bags forms a connected subtree, that we denote T g

u . We also write
Tu for the subtree of bags containing u in the original decomposition T . If T g

u and Tu do not have
the same root, then u is colored orange on the the path in T from the root of Tu (included) and the
root of T g

u (excluded). Vertex u is colored red in any other bag of Tu not covered by these two cases.
The resulting coloring follows rules (R1-4) and induces the same set of lost/non-realizable edges as
the original (tw − tw′)-tree-diet. Conversely, an equivalent (tw − tw′)-tree-diet is obtained from a
(tw − tw′)-diet-valid coloring by removing red/orange vertices and keeping green ones. If a given
vertex has no green occurrences, it is entirely removed from the tree decomposition and all its edges
are lost (it becomes an isolated vertex). We may add it back to the tree decomposition by introducing
a new bag containing only this vertex, which we connect arbitrarily to the tree decomposition.

Decomposition of the search space and sub-problems. Based on this coloring formulation,
we now describe a dynamic programming scheme for the TRee-Diet problem. We work with sub-
problems indexed by tuples (Xi, f), with Xi a bag of the input tree decomposition and f a coloring
of the vertices of Xi in green, orange or red (in particular, f−1(g) denotes the green vertices of Xi,
and similarly for o and r).

Let us introduce some notations before giving the definition of our dynamic programming table.
Given an edge (u, v) ofG, realizable when coloring a tree-decomposition T ofGwith C, we write T g

uv

the subtree of T in which both u and v are green. We denote by Ti the subtree of the decomposition
rooted at Xi, and C(i, f) the d-diet-valid colorings of Ti agreeing with f on i, with d = tw − tw′.
Our dynamic programming table is then defined as:

c(Xi, f) =


max
C∈C(i,f)

∣∣∣∣∣
{
Edges (u, v) of G, realizable within Ti colored with C
such that T g

uv is entirely contained strictly below Xi

}∣∣∣∣∣
if f assigns green to at most tw′ + 1 vertices

−∞ otherwise
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Figure 2.5: (a) Color assignation rules for vertices, when going down-tree. (b) Sketch of the general pattern our
color assignation rules create on Tu, the subtree of bags containing a given vertex u. Looking at it top-down:
any orange part may only be a path starting at the root of the sub-tree. Some red sub-trees may branch off from
it. On the sketch, at the end of the orange path, the vertex turns green. This top-most green vertex is at the
root of a green sub-tree, with potential red sub-trees branching off from it.

Thecell c(Xi, f) therefore aggregates all edges realizable strictly belowXi. Aswe shall see through
the recurrence relation below and its proof, edges with both ends green in Xi will be accounted for
above Xi in T .

We assume w.l.o.g that the tree-decomposition is rooted at an empty bag R. Given the definition
of the table, the maximum number of realizable edges, compatible with a tree-diet of (tw− tw′) to T ,
can be found in c(R, ∅).

The following theorem presents a recurrence relation obeyed by c(Xi, f) :

Theorem 10. For a bag Xi of T , with children Y1, ...Y∆, we have:

c(Xi, f) = max
m:f−1(o)→[1..∆]

 ∑
1≤j≤∆

(
max

f ′
j∈compatible(Yj ,f,m)

c(Yj , f
′
j) +

∣∣count(f, f ′j)∣∣
)

with

• m: a map from the orange vertices in Xi to the children of Xi. It decides for each orange
vertex u, which child, among those which contain u, will color u orange or green; If there are
no orange vertices in Xi, only the trivial empty map is considered.

• compatible(Yj , f,m): the set of colorings of Yj compatible with f on Xi and m;

• count(f, f ′j): set of edges of G involving two vertices of Yj green by f ′j , but such that one of
them is either not in Xi or not green by f .

Note that compatible(Yj , f,m)may contain colorings f ′j that colour too many vertices in Yj in green
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to reach target width tw′. In that case c(Yj , f ′j) = −∞.
Theorem 10 relies on the following separation lemma for realizable edges under a valid coloring

of a tree-decomposition. Recall that we suppose w.l.o.g that the tree-decomposition is rooted at an
empty bag.

Lemma 1. An edge (u, v) of G, realizable in T under C, is contained in exactly one set of the form
count(C|P , C|X) with X a bag of T and P its parent, C|P , C|X the restrictions of C to P and X ,
respectively, and “count” defined as above. In addition, X is the root of the subtree of T in which
both u and v are green.

Proof. Given, in a tree-decomposition, a bag P colored with f , with a child X colored with h, a more
precise definition for count(f, h) is:

count(f, h) =

{
(u, v) ∈ E

∣∣∣ h(u) = h(v) = g and
(u /∈ P or f(u) ̸= g or v /∈ P or f(v) ̸= g)

}
Now, given a realizable edge (u, v), in a tree-decomposition T colored with C, the set of bags

in which both u and v are green forms a connected subtree of T . This subtree has a root, or lowest
common ancestor, that we denote R(u,v). Since we assumed T to be rooted at an empty bag, R(u,v) is
not the root of T , and has a parent. We call this parent P(u,v). Clearly, (u, v) belongs to the “count
set” associated to the edge (P(u,v))→ (R(u,v)) of T , while for any other edgeX → Y of T , the colors
of u and v cannot verify the conditions to belong to the associated “count set”.

Proof of Theorem 10.

≤ Let us more concisely use RE↓(Ti, C, G) to denote the set of edges (u, v) ofG, realizable under
the (tw− tw′)-diet-valid coloring C of Ti, such that T g

uv is entirely contained strictly below Xi.
We have, if f contains enough red/orange vertices to reduce the size of Xi to target size:

c(Xi, f) = max
C∈C(i,f)

|RE↓(Ti, C, G)|

By definition, c(Xi, f) is themaximumnumber of realizable edges in the subtree-decomposition
rooted at Xi, such that all green-green occurrences of the edge occur strictly below Xi, and
under the constraint that f colors Xi. Let C be a coloring for Ti realizing the optimum
c(Xi, f). Its restrictions to Y1 . . . Y∆ yield colorings f ′1 . . . f ′∆. Likewise, its restrictions to the
subtree-decompositions T ′1 . . . T ′∆ rooted at Y1 . . . Y∆ yield colorings C′1 . . . C′∆ compatible with
f ′1 . . . f

′
∆. C′1 . . . C′∆ cannot be better than the optimal, so ∀j, |RE↓(T ′j , C′j , G)| ≤ c(Yj , f

′
j)

Let (u, v) be an edge of RE↓(Ti, C, G). Per Lemma 6, either (u, v) ∈ count(f, f ′j) for some j
(if Yj is the root of T g

uv) and (u, v) /∈ ∪jRE↓(T ′j , C′j , G) or (u, v) ∈ count(f, f ′j) and ∃j such
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that (u, v) ∈ RE↓(T ′j , C′j , G). Therefore:

c(Xi, f) = |RE↓(Ti, C, G)| =
∑

1≤j≤∆

[
|RE↓(T ′j , C′j , G)|+ count(f, f ′j)

]
≤

∑
1≤j≤∆

(
c(Yj , f

′
j) + count(f, f ′j)

)
and, a fortiori

c(Xi, f) ≤ max
m:f−1(o)→[1...∆]

∑
1≤j≤∆

max
f ′
j∈compatible(Yj ,f,m)

(
c(Yj , f

′
j) + count(f, f ′j)

)

≥ Conversely, given f , let m be an assignation map for orange vertices and f ′1 . . . f
′
∆ colorings

of Y1 . . . Y∆ compatible with f and m, and let C′1 . . . C′∆ be colotings of T ′1 . . . T ′∆ realizing the
optima c(Y1, f ′1) . . . c(Y∆, f ′∆). The union of C′1 . . . C′∆ and f is a coloring C for Ti, the subtree-
decomposition rooted atXi, which can not be better than optimal (|RE↓(Ti, C, G)| ≤ c(Xi, f)).
As before, an edge (u, v) either belongs to ∪jcount(f, f ′j) or to ∪jRE↓(T ′j , C′j , G) but not both.
In any case, it belongs to RE↓(Ti, C, G). Therefore:∑

1≤j≤∆

(
c(Yj , f

′
j) + count(f, f ′j)

)
=

∑
1≤j≤∆

(
|RE↓(T ′j , C′j , G)|+ count(f, f ′j)

)
= |RE↓(Ti, C, G)|
≤ c(Xi, f)

This is true for any choice of m, f ′1 . . . f
′
∆, therefore:

max
m:f−1(o)→[1...∆]

∑
1≤j≤∆

max
f ′
j∈compatible(Yj ,f,m)

(
c(Yj , f

′
j) + count(f, f ′j)

)
≤ c(Xi, f)

which concludes the proof.

Dynamic programming algorithm. The recurrence relation of Theorem 10 naturally yields a dy-
namic programming algorithm for the TRee-Diet problem, as stated below:

Theorem 11. There exists aO(∆tw+2 ·6tw ·n)-time,O(3tw ·n)-space algorithm for the TRee-Diet
problem, with∆ the maximum number of children of a bag in the input tree-decomposition, and tw
its width.
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Proof of Theorem 11. Given the coloring formulation and Proposition 2, and given the sub-problems
and c(Xi, f)-table definitions, withR the (empty) root of the tree-decomposition, c(R, ∅) is indeed the
maximum possible number of realizable edges when imposing a (tw− tw′)-diet to T . The recurrence
relation of Theorem 10 therefore lends itself to a dynamic programming approach, over the tree-
decomposition T following leaf-to-root order, for the problem.

It is reasonable to assume the number of bags in a tree decomposition to be linear in n (this is for
instance the case for a nice tree decomposition [75, 71], or for a tree decomposition obtained from an
elimination ordering, see [136, 119]). Therefore, the number of entries to the table is O(3twn), given
that a bag X may be colored in 3|X| ways, and that the maximum size of X is tw + 1. For a given
entry Xi, one must first enumerate all possible choices of m : f−1(o) → [1...∆], map assigning one
child of Xi to each orange vertex in Xi. There are O(∆tw+1) possibilities for m in the worst case, as
|f−1(o)| ≤ tw + 1. Then, for each child Yj , one must enumerate all possible colorings f ′j compatible
with f . Possibilities for f ′j(u) depend on the color by f :

• if u /∈ Xi → f ′j(u) = o or g

• if f(u) = g→ f ′j(u) = g or r

• if f(u) = o→ f ′j(u) = o or g if m[u] = j or f ′j(u) = r otherwise.

• if f(u) = r→ f ′j(u) = r

Overall, as there are at most ∆ children, tw + 1 vertices in each child, and 2 possibilities (see enu-
meration of cases above) of color for each vertex in a child, yielding a total number of compatible
colorings bounded by O(∆ · 2tw+1). Multiplying these contributions, the overall time complexity of
our algorithm is therefore O(∆tw+2 · 6tw · n).

Corollary 1. BinaRy-TRee-Diet (∆ = 2) admits an FPT algorithm for the tw parameter.

A pseudo-code implementation of the algorithm, using memoization, is included in Supplementary
Section A.2

2.4.2 For path decompositions

Path decompositions. Let us start by defining path decompositions.

Definition 19. A path decomposition of a graph G is a tree decomposition T = (T, {Xt}t∈T
such that T is a path.

A path is a tree with only vertices of degree ≤ 2. Like treewidth, the pathwidth of a graph G is the
smallest possible width of a path decomposition of G.
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Figure 2.6: Five cases where two vertices are deleted in the same bag with d = 1. Bags are points in the line, and
an interval covering all bags containing v is drawn for each v (with an equivalent coloring, see Proposition 2).
Cases (a) to (d) can be safely avoided by applying the given transformations. In the example for case (e), however,
it is necessary to delete both vertices u and v form a central bag. It is sufficient to avoid cases (a) and (b) in
order to obtain an XP algorithm for d.

Path-Diet. In this context of path decompositions, we note that the number of removed vertices per
bag can be limited to at most 2d without losing the optimality. More precisely, we say that a coloring
C is d-simple if any bag has at most d orange and d red vertices. We obtain the following result, using
transformations given in Figure 2.6.

Proposition 3. Given a graph G and a path-decomposition T , if C is a d-diet-valid coloring of T
losing k edges, then T has a d-diet-valid coloring that is d-simple, and loses at most k edges.

Proof of Proposition 3. Consider such a coloring C with a maximal number of green vertices. We show
that it is d-simple. Assume the path-decomposition T is rooted in bagX1 and eachXi is the parent of
Xi+1. Pick i to be the smallest index so that at least d+1 vertices in Xi are colored red by C, assume
any such i exists. Then one of these vertices, say u, is not colored red inXi−1 (either because i = 1, or
it is not in Xi−1, or it is orange or green in Xi−1). Consider C′ obtained by C and coloring u green in
Xi. Then C′ satisfies local rules R1 through R4 (a green vertex may be absent, green or orange in the
parent bag, and a red vertex may be green in the parent bag). Furthermore, it is d-diet-valid since it
still removes at least d (red) vertices inXi. Overall C′ is another d-diet-valid coloring with more green
vertices: a contradiction, so no such i exist (and no bag has d + 1 red vertices). The same argument
works symmetrically for orange vertices. Overall, C is d-simple.

Together with Proposition 2, this shows that it is sufficient to restrict our algorithm to d-simple col-
orings. (See also Figure 2.6). In particular, for any set Xi, choosing which ≤ d vertices are orange
and which ≤ d are red, among the total of n vertices, is enough to fix a coloring. The number of
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such colorings is therefore bounded by O(tw2d). Applying this remark to our algorithm presented in
Section 2.4.1 yields the following result:

Theorem 12. Path-Diet can be solved in O(tw2dn)-space and O(tw4dn)-time.

2.5 Proofs of concept

Implementation. We now illustrate the relevance of our approach, and the practicality of our al-
gorithm for TRee-Diet, by using it in conjunction with FPT algorithms for three problems in RNA
bioinformatics. We implemented in C++ the dynamic programming scheme described in Theorem 11
and Supplementary Section A.2. Its main primitives are made available for Python scripting through
pybind11 [137]. It actually allows to solve a generalized weighted version of TRee Diet, as explained
in Supplementary Section A.2. This feature allows to favour the conservation of important edges (e.g.,
RNA backbone) during simplification, by assigning them a much larger weight compared to other
edges. Our implementation is freely available at https://gitlab.inria.fr/amibio/tree-diet.

Execution time. The execution time of this implementation on elements of the data set used for Fig-
ure 1.11 (all RNA-only structures of the PDB database) is represented on Figure 2.7, for input treewidth
values of up to 7. It shows that our tree-diet method is applicable with reasonable run-times (≲ 1
hour) for all structures of width ≤ 7. The proofs-of-concepts presented in this section involve how-
ever instances with treewidth of up to 9, in the case of RNA design, for which the run-time also stays
reasonable.

2.5.1 Memory-parsimonious unbiased sampling of RNA designs

speeding up RNAPond. As a first use case for our simplification algorithm, we strive to ease the
sampling phase of a recent method, called RNAPond [123], addressing RNA negative design. The
method targets a set of base pairs S, representing a secondary structure of length n, and infers a set
D ofm disruptive base pairs (DBPs) that must be avoided. It relies on aΘ(k · (n+m)) time algorithm
for sampling k random sequences (see Supplementary Section A.3 for details) after a preprocessing in
Θ(n ·m · 4tw) time and Θ(n · 4tw) space. Here, the input consists of a graph G = ([1, n], S ∪D) and
a tree decomposition T of G, having width tw. In practice, the preprocessing largely dominates the
overall runtime, even for large values of k, and its large memory consumption represents the main
bottleneck.

Rejection sampling. This discrepancy in the complexities/runtimes of the preprocessing and sam-
pling suggests an alternative strategy: relaxing the set of constraints to (S′,D′), with (S′ ∪ D′) ⊂
(S∪D), and compensating it through a rejection of sequences violating constraints in (S,D)\(S′,D′).
The relaxed algorithm would remain unbiased, while the average-case time complexity of the rejec-
tion algorithm would be in Θ(k · q · (n + m)) time, where q represents the relative increase of the

https://gitlab.inria.fr/amibio/tree-diet
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Figure 2.7: Run-time of the tree-diet algorithm on all RNA-only structures of the PDB database, versus the size
(length of the RNA string) of these structures. The data set consists of RNA structures from the PDB [138] with
structure graphs extracted with DSSR [22], limited to structures of treewidth ≤ 7. Structures are colored by
their original treewidth. Here, we have asked the algorithm to reduce the treewidth by 2.

partition function (≈ the sequence space) induced by the relaxation. The preprocessing step would
retain the same complexity, but based on a (reduced) treewidth tw′ ≤ tw for the relaxed graph
G′ = ([1, n], S′ ∪ D′).

These complexities enable a trade-off between the rejection (time), and the preprocessing (space),
which may be critical to unlock future applications of RNA design. Indeed, the treewidth can be
decreased by removing relatively few base pairs, as demonstrated below using our algorithm on pairs
inferred for hard design instances.

Practical evaluation. We considered sets of DBPs inferred by RNAPond over two puzzles in the
EteRNA benchmark. The EteRNA22 puzzle is an empty secondary structure spanning 400 nts, for
which RNAPond obtains a valid design after inferring 465 DBPs. A tree decomposition of the graph
formed by these 465 DPBs is then obtained with the standard min-fill-ordering heuristic [81], giving
a width of 6. The EteRNA77 puzzle is 105 nts long, and consists in a collection of helices interspersed
with destabilizing internal loops. RNApond failed to produce a solution, and its final set of DBPs
consists of 183 pairs, for which the same heuristic yields a tree decomposition of width 9. We further
make both tree decompositions binary through bag duplications (see Supplementary Section A.1),
giving an FPT runtime to our algorithm, while potentially lowering the number of lost edges.

Executing the tree-diet algorithm (Theorem 11) on both graphs and their tree decompositions, we
obtained simplified graphs, having lower treewidth while typically losing few edges, as illustrated and
reported in Figure 2.8. Remarkably, the treewidth of the DBPs inferred for EteRNA22 can be decreased
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Figure 2.8: (Left) Target secondary structure (blue BPs), full set of disruptive base pairs (DPB; top) inferred
by RNAPond on the Eterna77 puzzle, and subsets of DBPs (bottom) cumulatively removed by the tree-diet
algorithm to reach prescribed treewidths. (Right) Number of BPs retained by our algorithm, targeting various
treewidth values for the EteRNA22 and EteRNA77 puzzles.

to tw′ = 5 by only removing 5 DBPs/edges (460/465 retained), and to tw′ = 4 by removing 4 further
DBPs (456/465). For EteRNA77, our algorithm reduces the treewidth from 9 to 6 by only removing 7
DBPs.

Speed-up estimate. Rough estimates can be provided for the trade-off between the rejection and
preprocessing complexities, by assuming that removing a DBP homogeneously increases the value
of the partition function Z by a factor α := 16/10 (#pairs/#incomp. pairs). The relative increase
in partition function is then q ≈ αb, when b base pairs are removed. For EteRNA22, reducing the
treewidth by 2 units (6→4), i.e. a 16 fold reduction of the memory and preprocessing time, can be
achieved by removing 9 DBPs, i.e. a 69 fold expected increase in the time of the generation phase. For
EteRNA77, the same 16 fold (tw′ = 9→ 7) reduction of the preprocessing time/space can be achieved
through an estimated 4 fold increase of the generation time. A more aggressive 256 fold memory
gain can be achieved at the expense of an estimated 1 152 fold increase in generation time. Given
the large typical asymmetry in runtimes and implementation constants between the computation-
heavy preprocessing and, relatively light, generation phases, the availability of an algorithm for the
tRee-diet problem provides new options, especially to circumvent memory limitations.

2.5.2 Structural alignment of complex RNAs

Structural homology is often posited within functional families of non-coding RNAs, and is founda-
tional to algorithmic methods for multiple RNA alignments [115], considering RNA base pairs while
aligning distant homologs. In the presence of complex structural features (pseudoknots, base triplets),
the sequence-structure alignment problem becomes hard, yet admits XP solutions based on the
treewidth of the base pair + backbone graph. In particular, Rinaudo et al. [62] describe aΘ(n.mtw+1)
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algorithm for optimally aligning a structured RNA of length n onto a genomic region of length m. It
optimizes an alignment score that includes: i) substitution costs for matches/mismatches of individual
nucleotides and base pairs (including arc-breaking) based on the RIBOSUM matrices [139]; and ii) an
affine gap cost model [140]. We used the implementation of the Rinaudo et al. algorithm, implemented
in the LicoRNA software package [141, 142].

Impact of treewidth on the structural alignment of a riboswitch. In this case study, we used
our tree-diet algorithm to modulate the treewidth of complex RNA structures, and investigate the
effect of the simplification on the quality and runtimes of structure-sequence alignments. We consid-
ered the Cyclic di-GMP-II riboswitch, a regulatory motif found in bacteria that is involved in signal
transduction, and undergoes conformational change upon binding the second messenger c-di-GMP-
II [143, 144]. A 2.5Å resolution 3D model of the c-di-GMP-II riboswitch in C. acetobutylicum, pro-
posed by Smith et al. [145] based on X-ray crystallography, was retrieved from the PDB [88] (PDBID:
3Q3Z). We annotated its base pairs geometrically using the DSSR method [146]. The canonical base
pairs, supplemented with the backbone connections, were then accumulated in a graph, for which we
heuristically computed an initial tree decomposition T4, having treewidth tw = 4.

We simplified our the initial tree decomposition T4, and obtained simplified models T3, and T2,
having width tw′ = 3 and 2 respectively. As controls, we included tree decompositions based on the
secondary structure (max. non-crossing set of BPs; T2D) and sequence (T1D). We used LicoRNA to
predict an alignment aT ,w of each original/simplified tree decomposition T onto each sequence w of
the c-di-GMP-II riboswitch family in the RFAM database [115] (RF01786). Finally, we reported the
LicoRNA runtime, and computed the Sum of Pairs Score (SPS) [147] as a measure of the accuracy of
aT ,w against a reference alignment a⋆w:

SPS(aT ,w; a⋆w) =
|MatchedCols(aT ,w) ∩MatchedCols(a⋆w) |

|MatchedCols(a⋆w) |
,

using as reference the alignment a⋆w between the 3Q3Z sequence and w induced by the manually-
curated RFAM alignment of the RF01786 family.

Results. The results, presented in Figure 2.9, show a limited impact of the simplification on the
quality of the predicted alignment, as measured by the SPS in comparison with the RFAM alignment.
The best average SPS (77.3%) is achieved by the initial model, having treewidth of 4, but the average
difference with simplifiedmodels appears very limited (e.g., 76.5% for T3), especially when considering
the median. Meanwhile, the runtimes mainly depend on the treewidth, ranging from 1h for T4 to
300ms for T1D . Overall, T2D seems to represent the best compromise between runtime and SPS,
although its SPS may be artificially inflated by our election of RF01786 as our reference (built from
a covariance model, i.e. essentially a 2D structure). Finally, the difference in number of edges (and
induced SPS) between T2D and T2, both having tw = 2, exemplifies the difference between the TRee-
Diet and GRaph-Diet problems, and motivates further work on the latter.
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Figure 2.9: Impact on alignment quality (SPS; Left) and runtime (Right) of simplified instances for the RNA
sequence-structure alignment of the pseudoknotted c-di-GMP-II riboswitch. The impact of simplifications on
the quality of predicted alignments, using RFAM RF01786 as a reference, appears limited while the runtime
improvement is substantial.

Exact iterative strategy for the genomic search of ncRNAs. In this final case study, we consider
an exact filtering strategy to search new occurrences of a structured RNA within a given genomic
context. In this setting, one attempts to find all ε-admissible (cost≤ ε) occurrences/hits of a structured
RNA S of length n within a given genome of length g ≫ n, broken down in windows of length κ.n,
κ > 1. Classically, one would align S against individual windows, and report those associated with
an ε−admissible alignment cost. This strategy would have an overall Θ(g · ntw+2) time complexity,
applying for instance the algorithm of [62].

Our instance simplification framework enables an alternative strategy, that incrementally filters
out unsuitable windows based on models of increasing granularity. Indeed, for any given target se-
quence, the min alignment cost cδ obtained for a simplified instance of treewidth tw − δ can be
corrected (cf Supplementary Section A.4) into a lower bound c⋆δ for the min alignment cost c⋆0 of the
full-treewidth instance tw. Any window such that c⋆δ > ε thus also obeys c⋆0 > ε, and can be safely
discarded from the list of putative ε-admissible windows, without having to perform a full-treewidth
alignment. Given the exponential growth of the alignment runtime for increasing treewidth values
(see Figure 2.9-right) this strategy is expected to yield substantial runtime savings.

Application: twister ribozyme. We used this strategy to search occurrences of the Twister ri-
bozyme (PDBID 4OJI), a highly-structured (tw = 5) 54nts RNA initially found in O. sativa (Asian
rice) [10]. We targeted the S. bicolor genome (sorghum), focusing on a 10kb region centered on the
2,485,140 position of the 5th chromosome, where an instance of the ribozyme was suspected within
an uncharacterized transcript (LOC110435504). The 4OJI sequence and structure were extracted from
the 3D model as above, and included into a tree decomposition T5 (73 edges), simplified into T4 (71
edges), T3 (68 edges) and T2 (61 edges) using the tree-diet algorithm.

We aligned all tree decompositions against all windows of size 58nts using a 13nts offset, and
measured the score and runtime of the iterative filtering strategy using a cost cutoff ε = −5. The
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Figure 2.10: Corrected costs associated with the search for structured homologs of the Twister ribozyme in
chromosome 5 of S. bicolor, using simplified instances of various treewidth (A). Gray areas represent scores
which, upon correction, remain below the cutoff, and have to be considered for further steps of the iterated
filtering. Canonical base pairs of the ribozyme (PDBID 4OJI; B), mapped onto to the best hit (C) and second best
hit (D) found along the search colored depending on their support in the target sequence (Red: incompatible;
Purple: unstable G-U; Blue: stable).

search recovers the suspected occurrence of twister as its best result (Figure 2.10.C), but produced hits
(cf Figure 2.10.D) with comparable sequence conservation that could be the object of further studies.
Regarding the filtering strategy, while T2 only allows to rule out 3 windows out of 769, T3 allows to
eliminate an important proportion of putative targets, retaining only 109 windows, further reduced to
15 windows by T4, 6 of which end up as final hits for the full model T5 (cf Figure 2.10.A). The search
remains exact, but greatly reduces the overall runtime from 24 hours to 34 minutes (42 fold!).

2.6 Conclusion and discussion

We have established the parameterized complexity of three treewidth reduction problems, motivated
by applications in Bioinformatics, as well as proposed practical algorithms for instances of reasonable
treewidths. The reduced widths obtained by our proposed algorithm can be used to obtain: i) sensi-
tive heuristics, owing to the consideration of a maximal amount of edges/information in the thinned
graphs; ii) a posteriori approximation ratios, by comparing the potential contribution of removed edges
to the optimal score obtained of the thinned instance by a downstream FPT/XP algorithm; iii) substan-
tial practical speedups without loss of correctness, e.g. when partial filtering can be safely achieved
based on simplified input graphs.

2.6.1 Open questions

Regarding the parameterized complexity of GRaph-Diet and TRee-Diet, some questions remain open
(see Table 2.1): an FPT algorithm for TRee-Diet (ideally, with 2O(tw) · n running time), would be the
most desirable, if possible satisfying the backbone constraints. The existence of such an algorithm is
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not trivial. In particular, it is perhaps worth noting that it is not implied by the existence of an FPT
algorithm for gRaph-diet with the input treewidth as a parameter (5). Indeed, in comparison to the
latter, tRee-diet subtly restricts the search space to tree decompositions that are subsets of the input
tree decomposition. It follows that the result of gRaph diet for a graph G may substantially differ
from the result of tRee-diet given a tree decomposition T ofG as input. We also aim at trying to give
efficient exact algorithms for gRaph diet in the context of RNA (we conjecture this is impossible in
the general case). Finally, we did not include the number of deleted edges in our multivariate analysis:
even though in practice it is more difficult a priori to guarantee their small number, we expect it can
be used to improve the running time in many cases.

2.6.2 Backbone Preservation.

In two of our applications, the RNA secondary structure graph contains two types of edges: those rep-
resenting the backbone of the sequence (i.e., between consecutive bases) and those representing base
pair bonds. In practice, we want all backbone edges to be visible in the resulting tree-decomposition,
and only base pairs may be lost. This can be integrated to the TRee-Dietmodel (and to our algorithms)
using weighted edges, using the total weight rather than the count of deleted edges for the objective
function. Note that some instances might be unrealizable (with no tree-diet preserving the backbone,
especially for low tw′). In most cases, ad-hoc bag duplications can help avoid this issue. The design of
pre-processing methods, involving bag duplications or other operations on tree decompositions, and
aimed at ensuring the existence of a backbone-preserving tree-diet will be the subject of future work.
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Abstract

Although RNA secondary structure prediction is a textbook application of dynamic programming (DP)
and routine task in RNA structure analysis, it remains challenging whenever pseudoknots come into
play. Since the prediction of pseudoknotted structures byminimizing (realistically modelled) energy is
NP-hard, specialized algorithms have been proposed for restricted conformation classes that capture
the most frequently observed configurations. To achieve good performance, these methods rely on
specific and carefully hand-crafted DP schemes.

In contrast, we generalize and fully automatize the design of DP pseudoknot prediction algo-
rithms. For this purpose, we formalize the problem of designing DP algorithms for an (infinite) class
of conformations, modeled by (a finite number of) fatgraphs, and automatically build DP schemes
minimizing their algorithmic complexity. We propose an algorithm for the problem, based on the
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tree-decomposition of a well-chosen representative structure, which we simplify and reinterpret as
a DP scheme. The algorithm is fixed-parameter tractable for the tree-width tw of the fatgraph, and
its output represents a O(ntw+1) algorithm (and even possibly O(ntw) in simple energy models) for
predicting the MFE folding of an RNA of length n. We demonstrate, for the most common pseudoknot
classes, that our automatically generated algorithms achieve the same complexities as reported in the
literature for hand-crafted schemes.

Our framework supports general energy models, partition function computations, recursive sub-
structures and partial folding, and could pave the way for algebraic dynamic programming beyond
the context-free case.
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3.1 Introduction

RNA folding. The function of non-coding RNAs is, to a large extent, determined by their struc-
ture. Structure prediction algorithms therefore play a crucial role in biomedical and pharmaceutical
applications. The basis to determine more complex 3D structures of RNA molecules is set by first
accurately predicting their 2D or secondary structures. There exist various RNA folding algorithms
that predict an optimal secondary structure as minimum free energy structure of the given RNA se-
quence in suitable thermodynamic models. In the most frequently used methods, this optimization
is performed efficiently by a dynamic programming (DP) algorithm, e.g. mfold [24], RNAfold [25],
RNAstructure [26]. A recent alternative to predictions based on experimentally determined energy
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PK pattern(s) of  interest (e.g. 3D models)
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for full Turner model
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Input Fatgraph(s)
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Figure 3.1: Given a finite number of arbitrary fatgraphs, a dynamic programming scheme for folding (restricted
to the family of structures specified by the fatgraphs) is derived from canonical tree decompositions of minimal
representative expansions of the helices, for each fatgraph. The workflow gives an overview of the steps of
the algorithm. Each step is described in more details in the subsequent sections and figures: see Figure 3.2 for
fatgraphs, Figure 3.5 and Section 3.3 for a detailed version of the canonical tree decomposition, Figure 3.8 for
a detailed view of the compact skeleton of the tree decomposition.

parameters are machine learning approaches that train models on known secondary structures, e.g.
CONTRAfold [148], ContextFold [149], MXfold2 [150].

Pseudoknotted RNA folding. However, the most frequently used algorithms (including all of the
above ones) optimize solely over pseudoknot-free structures [151], which do not contain crossing base
pairs. Although pseudoknots (PK) appear in many RNA secondary structures, they have been omitted
by initial prediction algorithms due to their computational complexity [152], and the difficulty to score
individual conformations [153]. Nevertheless, many algorithms have been proposed to predict at least
certain pseudoknots. These methods are either based on exact DP algorithms such as pknots-RE [30],
NUPACK [29], gfold [16], Knotty [45] or they use heuristics that don’t guarantee exact solutions, e.g.
HotKnots [154], IPknot [155, 150], Hfold [156].
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Designing dynamic programming algorithms. Owing to the hardness of PK prediction, efficient
exact DP algorithms are necessarily restricted to certain categories of pseudoknotted structures. The
underlying DP schemes are designed manually, guided by design to either i) support structures that
are frequently observed in experimentally resolved structures (declarative categories); or ii) support
the largest possible set of conformations, while remaining within a certain complexity (complexity-
driven). For most categories, essentially declarative ones, there exists one or several helix arrange-
ments, either observed in experimentally-determined structures or implicitly characterized by graph-
theoretical properties (3 non-crossing [157], topologically bounded [16]) that need to be captured.
A detailed overview of pseudoknot categories is given in [158]. Similar situations occur for RNA-
RNA interactions [27], possibly including several RNA molecules. Interestingly, when more than two
RNA strands are considered, existing algorithms restrict the joint conformation to crossing-free in-
teractions [159], further motivating an, ideally-automated, design of algorithms beyond the case of
pseudoknot-free secondary structures.

Tree decompositions as automation tool. The paradigm of tree decompositions (TD) represents
an appealing candidate automating such a design task. TDs organize the vertices of a graph into a
tree-like structure that represent all vertices and edges, augmented with a notion of consistency. A TD
can then be re-interpreted as DP schemes for a wealth of graph problems involving local constraints
(coloring, independent sets, covers…) [75] and complex pattern matching problems in Bioinformat-
ics [62]. The complexities of such exact algorithms are typically exponential on a parameter called
the treewidth, which can be minimized to obtain an optimal TD in time only exponential on the
min treewidth itself [77]. However, TD-based approaches typically start from a single input graph,
whereas folding prediction requires DP schemes that generalize to collections of structures of un-
bounded cardinalities. This led us to the following question, at the foundation of this work:

Can tree decompositions be used to infer structure prediction algorithms that work for entire
classes of conformations?

Results. In this work, we answer positively to that question. We consider popular classes of pseu-
doknotted structures, described as fatgraphs [160, 16, 161, 162], an abstraction of RNA conformations
related to RNA shapes [163] or shadows [157, 16]. We formalize the principles underlying the de-
sign of DP folding algorithms including pseudoknots and, at the same time, give a formulation of the
computational problem corresponding to the design of DP algorithms. We show how to leverage tree-
decompositions, computed on a minimal expansion of the input fatgraph, to automatically derive DP
schemes that use as little indices as possible. Our methodology leads to a generalization of algorithms
underlying LiCoRNA [164] and gfold [16] and represents a parameterized algorithm based on the
treewidth (tw) of the underlying fatgraph.

gfold generalization. For example, our method automatically derives optimally efficient recur-
sions of a gfold-like prediction algorithm covering the four pseudoknot types of 1-structures (cf
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Table 3.2) Moreover, it enables highly complex implementations, like a prediction algorithm for 2-
structures. Notably, this was never implemented for gfold, since it requires the generation of recur-
sions for 3472 fatgraphs—virtually impossible to conduct “by hand”.

Chapter organization. In Section 3.2, we state our problem and define its input structure abstrac-
tion, the fatgraph. Then, we describe helix expansions of the fatgraph and their tree decompositions
(Section 3.3). By minimal helix expansions and a derivation of the tree decomposition to its canonical
form, we automatically derive a DP scheme for the folding of pseudoknotted structures (Section 3.4),
using a number of indices equal to the treewidth. Figure 3.1 outlines the fundamental algorithm.
Section 3.5, discusses extensions to combine multiple fatgraphs, include recursive substructure, and
cover realistic energy models. Section 3.6 discusses the application of our methods to the design of
concrete pseudoknot folding algorithms. We demonstrate the re-design of gfold for 1-structures, as
well as the novel design of 2-structure prediction and interesting novel algorithms between 1- and
2-structures (e.g. predicting 5-chains in O(n7)).

3.2 Definitions and main result

Notations and definitions. Wedefine an RNA sequence S as aword of lengthn over the nucleotides
A,C,G andU ; moreover an RNA secondary structure (potentially, with pseudoknots) ω of S as a set of
base pairs (i, j) between sequence positions i and j (in 1, ..., n), such that there is at most one base pair
incident to each position. A diagram is a graph of nodes 1,…,n (the positions), connecting consecutive
positions by directed edges (i, i+ 1) and moreover connecting positions by arcs, visualizing the arc-
annotation of the sequence. Typically this is represented drawing the backbone linearly and the arcs
on top. RNA secondary structures are naturally interpreted as diagrams. One of our central concerns
is the crossing configuration of arcs in a diagram. We define two arcs (i, j) and (i′, j′) in a diagram
as crossing iff i < i′ < j < j′ or i′ < i < j′ < j. Naturally, this leads to the notion of a conflict
graph consisting of all the arcs of a diagram and connecting crossing arcs by a conflict edge. Given a
potentially conflicted set of base pairs, the associated RNA structure graph is the diagram consisting
of one vertex per nucleotide, backbone links, and one arc per base pair.

Fatgraphs and their expansions. A fatgraph [160, 16, 161, 162] is an abstraction of a family of
pseudoknotted RNA structures displaying a specific conflict structure. It is typically represented as a
band diagram (see Figure 3.1 and Figure 3.2), in which each band may represent a helix of arbitrary
size, including bulges. An arc-annotation is said to be an expansion of a fatgraph if collapsing nested
arcs and contracting isolated bases yields the band diagram of a fatgraph. Given a finite number of
fatgraphs, we say a structure is a recursive expansion of these fatgraphs if decomposing the structure
into conflict-connected components, collapsing nested arcs and contracting isolated bases only yields
members of the given fatgraph set. For the purpose of this presentation (where we do not explicitly
study structure topology), we moreover identify fatgraphs with their diagrams.
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Figure 3.2: (a) Diagram of a secondary structure with two crossing helices (H1 green, H2 blue). (b) fatgraph
corresponding to the above structure such that helices are collapsed into bands and form the shadow of the
structure.

gfold connection. To make the connection to gfold [16] explicit, recursive expansions of fat-
graphs are equivalently understood in terms of the shadows of a structure. The shadow of an RNA
structure (or equivalently, its diagram) is defined in [16] as the diagram obtained by, firstly, remov-
ing all unpaired bases and non-crossing structures and, secondly, contracting all stacks (i.e., pairs of
arcs between directly consecutive positions) to single arcs. Then, the class of recursive expansions
of a set of input fatgraphs Γ is the class of structures, where the shadows of their conflict-connected
components are in Γ.

Problem definitions. In this chapter, we consider a class of RNA folding problems in which the
search space is restricted to recursive expansions of a user-specified finite set of fatgraphs. For the
sake of simplicity, we first describe minimizing energy in a simple free-energy model E , where the
energy of a sequence/structure is obtained by summing the contributions of individual base pairs;
moreover, we present the method initially without recursive insertions. Only later, in Section 3.5, we
extend to the full problem in realistic energy models.

Problem 10 (Fatgraph MFE folding).
Input: Collection of fatgraphs γ1, . . . , γp, sequence S
Output: Minimum Free Energy (MFE) arc-annotation for S according to a free-energy model E ,
restricting the search to recursive expansions of the input fatgraphs.

Specifically, we solve the problem of automatic design of such pseudoknot prediction algorithms
based on an input set of fatgraphs.

Definition 20 (Fatgraph algorithm design problem).
Input: Collection of fatgraphs γ1, . . . , γp
Output: A Dynamic-Programming algorithm that, given any sequence S, solves the Fatgraph
MFE folding problem over γ1, . . . , γp and S.
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Treewidth parameterization. Defining the treewidth of a fatgraph as the treewidth of its minimal
expansion (see Section 3.3.2), our main result, stated in Algorithm 1, is the existence of an effective
algorithm for the Fatgraph MFE-folding problem, parameterized by the maximum treewidth tw of the
input fatgraphs. More precisely, it consists of an FPT preprocessing of the input fatgraphs, yielding
an XP Dynamic-programming algorithm accepting any input sequence and solving the Fatgraph MFE
folding problem (see Figure 3.1).

Algorithm 1 Pseudocode for the recursive fatgraph folding problem.
Input: Finite number of fatgraphs γ1, . . . , γp, sequence S, base-pair based energy model E
Output: Best-scoring arc-annotation for S, in the class specified by the fatgraphs
1: for each fatgraph γi do
2: Compute minimal expansion Gi of fatgraph γi . Linear time; see Section 3.3.2
3: Find min. width tree decomposition T for Gi . FPT in tw using exact tree dec.

algorithm [77]
4: Transform T into a canonical form tree dec T ′ . Polynomial time; see Section 3.4.1
5: Compute skeleton of T ′ . Linear time; see Section 3.4.1
6: Derive corresponding DP scheme . Linear time; see Section 3.4.2
7: end for
8: Run all DP schemes to find MFE arc-annotation of S . XP in tw O(ntw+1); See Section 3.5

Main result. The following result is the main result of our paper. A refined version is Theorem 16
in Section 3.4.3.

Theorem 13 (Main result). Algorithm 1 solves the fatgraph folding problem in O(ntw+1), where
tw is the maximum treewidth of the input fatgraphs.

As detailed with Theorem 16, the complexity can also be O(ntw) in certain cases, depending on the
choice of energy model and the fatgraphs under consideration. Since the number of indices used by
the DP equation is minimized, the resulting complexities could be seen as optimal within a family of
simple DP algorithms. However, a characterization of such a non-trivial family of algorithms would
be beyond the scope of this work, and we leave formal proofs of optimality to future work, as briefly
discussed in Section 3.7.

3.3 Minimal representative expansion of a fatgraph

Representative expansion: philosophy. Our approach builds on the concept of tree decompo-
sition, which we want to leverage to derive decomposition strategies within dynamic programming
(DP) schemes. A key challenge is in the fact that tree decompositions are computed for concrete
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graphs, whereas our objective is to find an algorithm whose search space includes all possible recur-
sive expansions of an input fatgraph. Fortunately, we find that expanding every helix of a fatgraph
to length 5 (i.e., 5 nested BPs) yields a graph which is representative of the fatgraph. Namely, its op-
timal tree decomposition, having treewidth tw, trivially generalizes into a tree decomposition for any
further expansion, retaining treewidth tw. This tree decomposition can finally be reinterpreted into
a DP scheme that exactly solves the MFE folding problem in O(ntw+1) complexity (and sometimes
even O(ntw) for simple energy models).

3.3.1 Treewidth and tree decompositions

Let us recall the definition of tree decompositions (Definition 14 in Chapter 1, page 34)

Definition (Tree decomposition). Given a graph G = (V,E), a tree decomposition T is a tuple
(T, {Xt}t∈T ) with T a tree, and ∀t ∈ T , Xt a set of vertices of the graph, such that:

1. ∀u ∈ V , the set Tu = {t ∈ T | u ∈ Xt} must be a connected subtree of T .

Notation 3
(vertex
subtree).
Tu = {t ∈
T | u ∈ Xt}

2. ∀(u, v) ∈ E, Tu and Tv must intersect.

The width of a tree decomposition is the size of its biggest bag minus one, i.e. maxi∈V (T ) |Xi| − 1.
The treewidth of a graph G is then the minimum possible width of a tree decomposition of G.

Reminder: treewidth and tree decompositions. Let us recall a few facts about treewidth, from
Chapter 1, Section 1.2.3. Intuitively, the lower the treewidth, the closerG is to being a tree. Treewidth
is NP-haRd to compute [76], but fixed-parameter tractable: there is a O(f(w) · n) algorithm [77] de-
ciding whether tw(G) ≤ w given G. Many polynomial heuristics are also known to yield reasonable
results [81], and optimized exact solvers have been developed [82, 119]. Notoriously, a wide vari-
ety of hard computational problems can be solved efficiently when restricted to graphs of bounded
treewidth [165, 71], including in bioinfomatics [48, 166, 164]. Such is the case of pseudoknotted
structure-sequence alignment, using the algorithm presented in [164]. The method presented in this
paper can actually be seen as a generalization of this algorithm, allowing to perform “pseudoknotted
motif -sequence alignment”, with a motif describing a family of structures.

Minors and treewidth. We will rely in the remainder of this section on some well known-
properties for treewidth, which we recall here. First, taking any minor of G (Definition 17, page 39
and [84]), i.e. performing any sequence or edge contractions, edge deletions and vertex deletions on
G can only lower its treewidth (Property 4, page 39). Second, degree-2 vertices can be contracted into
their neighbors without changing the treewidth, as quickly stated below. This implies in particular
that any bulge in a helix of an RNA structure graph is inconsequential with respect to treewidth.

Proposition 4. If u is a degree-2 vertex ofGwith neighbors {v, w}, andGv←u is the graph obtained
by contracting u into v in G then tw(G) = tw(Gv←u)
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Proof. To start with,Gv←u is a minor ofG, therefore tw(Gv←u) ≤ tw(G). Then, given an optimal tree
decomposition T for Gv←u, since (v, w) is an edge of this graph, there has to be a bag X containing
both vertices. If tw(Gv←u) = 1, thenX = {v, w} and can be split into two bags {v, u} and {u,w} to
obtain a tree decomposition forG. If tw(Gv←u) ≥ 2, then we can simply connect a new bag {u, v, w}
and connect it to X to obtain again a valid tree decomposition for G of the same width. Therefore
tw(G) ≤ tw(Gv←u) and we have the equality.

Safe separators. Proposition 2 (page 36 in Chapter 1) established that the intersection of two ad-
jacent bags in a tree decomposition is generally a separator (Definition 15) of the graph. Here, we
import from [167] a converse result, essentially stating that turning a separator into a clique and re-
cursively decomposing the components associated to it is a way to build (non-necessarily optimal)
tree decompositions. It takes the form of an inequality valid for any separator S of G. The set of
connected components obtained by removing S in G is denoted CG(S).

Proposition 5. If S is a separator of G, then

tw(G) ≤ max
C∈CG(S)

tw(G[C ∪ clique(S)])

with G[C ∪ clique(S)] the subgraph of G induced by C ∪ S augmented by edges making S a
clique. In case of equality, we say that S is safe.

Proof. Consider, for each C ∈ CG(S), a tree decomposition TC of G[C ∪ clique(S)]. Since these
graphs contain S as a clique, each TC must have a bag XC containing S entirely. Consider now the
following tree decomposition for G: make a bag out of S, and connect XC for each C to it. The
resulting tree decomposition is valid for G, and its width is the left-hand-side of the inequality.

Minimal separators. To write down the proofs of the following section in a smoother fashion, we
restrict (w.l.o.g) tree decompositions to be such that any intersection of two adjacent bags is aminimal
separator of the graph.

Definition 21 (minimal separator). A separator S of a graph G is minimal if ∀u ∈ S, S \ {u} is
not a separator of G.

In other words, “minimality” is meant with respect to inclusion. The existence of optimal decom-
positions such that all bag intersections are minimal separators is easily seen when defining tree de-
compositions in terms of triangulations and chordal graphs [82, 168]. In this framework, the treewidth
of a graphG is the minimum possible maximum clique size in a chordal completion ofG. The bags of
the decomposition are the maximal cliques of the chordal completion (“clique-tree”), and intersections
of adjacent bags are minimal separators. For completeness, we formulate this result in the following
proposition:
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Proposition 6. Given a graph G, there always exists an optimal tree decomposition such that, for
any two adjacent bags X and Y :

1. X ∩ Y is a minimal separator of G.

2. |X ∩ Y | ≤ tw(G)

Proof. Denoting ω(H) the maximum clique size of a graph H , we have [168]:

tw(G) = min
H chordal completion of G

ω(H)

The tree decomposition corresponding to a particular chordal completion H of G is the “clique-tree”
ofH . Bag intersections are then minimal separators ofG (item 1), and no two bags contain exactly the
same vertices (hence item 2). We refer the reader to [168] for full definitions and justifications.

3.3.2 Helices of length 5 are sufficient to obtain generalizable tree decompositions

Helices. Given an RNA graph (with one vertex per nucleotide and one edge per base pair and back-
bone link, see Figure 3.3 (a)), we call perfect helix a set of directly nested base pairs, resulting in the
subgraph depicted on Figure 3.3 (b). We call the number of nested base pairs its length, and denote it
with l. With a slight abuse of language, we call such a subgraph a helix, even for general graphs. Using
the notations of Figure 3.3 (b), {u1, v1, uℓ, vℓ} are called the extremities of the helix. Throughout the
remainder of the article, helices will be often proven to be replaceable, as a subgraph, by one of two
small graphs on 4 vertices. These two graphs are the clique on 4 vertices and a 4-cycle augmented
with one (and only one) of the possible two chords. To simplify the exposition, we simply denote
them by ⊠ and �.

Closing an helix with a clique. One situation where ⊠ will appear is when we prove that, some-
times, the 4 extremities can be connected into a clique without loss of generality. The graph we obtain,
an helix closed by a clique, has treewidth 4, which will be an important threshold in our structural
results below. We state this fact in the following lemma. Let us denote byH∗l the graph corresponding
to a helix of length l, with the extremities connected as a clique.

Lemma 2. For l = 2, tw(H∗l ) = 3, while for l ≥ 3, tw(H∗l ) = 4.

Proof. For l = 2, H∗l is simply the clique on 4 vertices, and which has a width of 3. For l ≥ 3, a
clique on 5 vertices can be obtained as a minor by contracting the internal part of the helix to one
vertex, which ends up being connected to all 4 extremities, which already form a clique. Therefore,
tw(H∗l ) ≥ 4. To obtain the equality, we recursively build a tree decomposition of width ≤ 4, starting
with l = 2 which we already described. Given a tree decomposition of width ≤ 4 for H∗l , there
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has to be a bag X containing all 4 extremities {u1, v1, ul, vl} (see Figure 3.3 (b)). We introduce two
new bags: X ′ = {u1, v1, ul, vl, vl+1} introducing a new vertex vl+1, andX ′′ = {u1, v1, ul, vl+1, ul+1}
introducing ul+1. We connectX ′ toX andX ′′ toX ′. By doing so, we respect the subtree connectivity
property for all involved vertices, and build a tree decomposition capable of representing H∗l+1.

Main structural result. Our main structural result is to show that the treewidth of a graphG does
not increase when extending a helix past a length of 5. Its proof relies on the following inequality,
involving the graphs G⊠ and G�, obtained from G by replacing a helix H with either ⊠ or �, (see
Figure 3.3 (c)) .

Lemma 3. Given a graph G and a helix H of length l ≥ 3 in G, we have:

tw(G⊠)− 1 ≤ tw(G�) ≤ tw(G) ≤ max(4, tw (G⊠))

Proof. To start with, by noticing that the 4 extremities of the helix form a separator S between the
inside and the outside of it, we get by Proposition 5 that tw(G) ≤ max(H ∪ clique(S), G⊠). The
graph H ∪ clique(S) does not depend on G, and consists of a helix with the 4 extremities forming
a clique. With l ≥ 2, it turns out that this graph has treewidth 4, per Lemma 2, hence the inequality.

Next, we notice that G� is a minor of G when l ≥ 3. This can be seen by contracting the helix
according to the pattern outlined on Figure 3.3 (d) by the green areas (each green area is contracted
to the extremity it contains). Therefore, tw(G�) ≤ tw(G).

Finally, let us note thatG⊠ andG� only differ by 1 edge, and removing a single edge from a graph
can only decrease its treewidth by atmost 1. Indeed, suppose that tw(G�) < tw(G⊠)−1, and consider
an optimal tree decomposition T for G�. Let us denote by u and v the two extremities of the helix
not connected in G�. If the subtrees of bags containing respectively u and v do not intersect, then
one can just add v to all bags of the tree decomposition, to represent the edge (u, v) while increasing
the width by ≤ 1. Therefore tw(G⊠)− 1 ≤ tw(G�) and the inequality is complete.

Helix extensions and treewidth. Through the introduction of G⊠ and G� as the two possible
graphs to which G is equivalent in terms of treewidth, Lemma 3 already contains the essence of
Theorem 14, which will be the basis for generalizing tree decompositions of minimal expansions of a
fatgraph to arbitrary helix lengths.

Theorem 14. If H is a helix in G of length l ≥ 5, then extending the helix to have length l + 1
does not increase the treewidth.

Proof. Let us distinguish two cases depending on the treewidth of G. For both of them, we consider
an optimal tree decomposition T of G and show how to modify it into a valid tree decomposition for
the extended version of G:

If tw(G) ≤ 3 then there has to be a pair i, j (i ≤ j) of indices ∈ [1, l] such that |i− j| > 1 and no
bag contains both an element from{ui, vi} and {uj , vj}. I.e. the occurrences of {ui, vi} and {uj , vj}
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in the tree decomposition are completely separated by some edge (X,Y ) of the tree decomposition.
Indeed, if ∀i, j ∈ [1, l] there is some edge between {ui, vi} and {uj , vj} represented, then contracting
uk, vk together ∀k would yield a clique on 5 vertices, which is forbidden if tw(G) ≤ 3.

Given such a pair i, j of indices, let us denote S = X∩Y the separator associated to that edge. By
Proposition 6, S can be assumed to be inclusion minimal, and therefore to contain exactly 2 vertices
uk and vk′ such that |k − k′| ≤ 1 and i ≤ k, k′ ≤ j. Such a separator is depicted on Figure 3.3(c), as
well as on Figure 3.7. On this latter Figure, we also depict the re-writing we perform: we introduce
two new vertices x and y to the X-side of the separator, as well as intermediary bags between Y and
X that will gradually transform uk, v

′
k into x and y. To be specific, we introduce S as a bag betweenX

and Y , and connect it toX through the series of bags S∪{x}, S∪{x, y}\{uk}, S∪{x, y}\{uk, v′k} in
the case (w.l.o.g) that k ≤ k′. In addition, all occurrences of uk inX and beyond in the subtree rooted
at X and directed away from S are replaced with x and those of v′k with y. Since |S| ≤ tw(G), such
a re-writing does not increase the treewidth, while representing all necessary edges for an extension
of the helix by one level.

If tw(G) ≥ 4, then we first look for a pair i, j verifying (as above) that some edge (X,Y ) of the
tree decomposition completely separates {ui, vi} from {uj , vj}, although this time with no guarantee
of finding one. If we do find one, we apply the same transformation as above.

In the case where no such pair i, j exists, we argue that the four extremities of the helix form a
safe separator of G. i.e. tw(G) = max(4, tw(G⊠)). An optimal tree decomposition for G can then
be obtained from a tree decomposition G⊠, and a tree decomposition of an helix closed by a clique,
connected through a bag in which the separator forms a clique. The helix can then simply be extended
by changing the part of the tree decomposition representing the helix.

By Lemma 3, we have tw(G) ≤ max(4, tw(G⊠)). Since tw(G) ≥ 4, it reduces to tw(G) ≤
tw(G⊠). We now use the fact that edges connecting {ui, vi} and {uj , vj} for all i, j are represented
in the tree decomposition to show that G⊠ is a minor of G, and therefore tw(G) = tw(G⊠)

If there is an edge connecting ui to vj or vi to uj for |j − i| > 1 represented in the tree decompo-
sition, then we obtainG⊠ through the contraction scheme represented on Figure 3.3. If ∀i, j the edge
connecting {ui, vi} and {uj , vj} is (ui, uj) or (vi, vj), then w.l.o.g we are in one of the two situations
colored in orange on Figure 3.3. By contracting the orange parts into the extremity they contain, we
get G⊠ as a minor of G.

Minimal representative expansion. Since bulges in a helix only consist of vertices of degree
exactly 2, combining Proposition 4 with Theorem 14 implies that the treewidth of any expansion of
a given fatgraph is always smaller than or equal to the treewidth of a minimal expansion where all
bands are helices of length exactly 5. As for gaps in between the extremities of an helix, arguments
similar to the proof of Theorem 14 can show that going from a gap of length 0 to an arbitrary length
does not increase the treewidth of a fatgraph expansion. Overall, we formally define the minimal
expansion of a fatgraph as:
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Definition 22 (Minimal representative expansion of a fatgraph). Given a fatgraph γ, its minimal
representative expansion consists of:

• A perfect helix of length 5 for each band.

• No gap between the extremities of two helices

Such a minimal representative expansion is illustrated in Figure 3.8 (a). For visual clarity, gaps
have been kept between consecutive helices, but one can see that the corresponding extremities have
the same labels. Given a fatgraph, this RNA structure graph contains all necessary information for
formulating DP equations decomposing all RNA structures compatible with the fatgraph. Interest-
ingly, the two graphsG⊠ andG� that emerge in the proof of Lemma 3, as well as the separators they
are associated to (see Figure 3.3 (c)), are reminiscent of two typical decomposition strategies used
into dynamic programming for RNA folding. They suggest, for each helix in a graph, two possible
“canonical representations” in terms of tree decomposition, which will be elaborated on in the next
section.

3.4 Interpreting the tree decomposition of a fatgraph expansion as a
DP algorithm

Generating DP schemes: overview. Starting with a tree decomposition for a minimal represen-
tative expansion of a given fatgraph, we first describe in this section how to represent it in a canonical
form, with each helix represented either in one of two different ways, respectively related to G� and
G⊠. The resulting tree decomposition can be further compressed into a skeleton, where bags within
individual helices are compressed into a single bag. This tree can then be interpreted as a dynamic
programming scheme, in which helices are generated by specializing dynamic programming subrou-
tines. In a sense, the tree decomposition yields automatically a decomposition strategy usable for
dynamic programming, of the kind that was hand-crafted in previous approaches [16, 29].

3.4.1 Canonical form of fatgraphs tree decompositions

Canonical form: definition. Let us recall this additional definition for the sake of presentation:
Given an edge e = (X,Y ) of a tree decomposition T , we call the X − side of T the connected
component of T \ e containing X .
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Figure 3.3: (a) minimal expansion of a fatgraph, with every helix of length 5, and no unpaired base. The associ-
ated graph consists of one vertex per base, and one edge per base pair and backbone link. (b) A helix of length
l in an RNA graph, as per the latter definition. (c) Given a helix in a graph G, the treewidth ofG is either equal
to tw(G⊠) or tw(G�). Each case is associated with a type of separator that can be used to extend the helix, or
insert bulges, without changing the treewidth. (d)The dotted line represents a “hop-edge” which, if represented
in a given tree decomposition of G, can be used to obtain G⊠ as a minor of G, showing that the helix is in the
“clique” case.
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Figure 3.4: The two types of canonical representations for the helices of a graph completion G and associated
dynamic programming schemes. (Left) In the Diagonal case, only the sequence positions of external (resp. inter-
nal) anchors are provided. Internal ones are obtained as the base case of an energy model-dependent dedicated
dynamic programming scheme, propagating values for anchors in S along the way. (Right) In the clique case,
all four anchors delimiting the helix have known position. Again, a dedicated dynamic programming algorithm
is used to optimize over all possible contents for the helix, while accounting for associated free-energies.

Definition 23 (canonical form). A tree decomposition of an expansion G of a fatgraph is in
canonical form if, for each helix H of length l, either:

• Clique case: H is represented by a root bag that contains its 4 extremities , connected to
a sub-tree-decomposition Tl recursively defined as

T⊠
0 = ∅

T⊠
l = {u1, v1, ul, vl}
→ {u1, v1, ul, vl−1, vl}
→ {u1, v1, ul−1, ul, vl−1} → T⊠

l−1

• Diagonal case: Helix H is represented by a linear series of bags starting with X1 =
S∗ ∪ {u1, v1}, finishing with X2l+2 = S∗ ∪ {ul, vl}, and such that for 1 < k < l + 1:

X2k = S∗ ∪ {u2k−1, v2k−1, u2k}

and
X2k+1 = S∗ ∪ {v2k−1, u2k, v2k}.

The definition above is illustrated by Figure 3.4. A canonical tree decomposition for a minimum
expansion of a fatgraph is also presented on Figure 3.5. It was obtained through the processing rou-
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tine that we describe in Algorithm 2, applicable to any (optimal or not) tree decomposition. It can
therefore use a sub-optimal tree decomposition obtained from a polynomial heuristic [165] instead of
an exponential solver, if the latter is to time-consuming (although [82] is empirically quite efficient
on RNA structure graphs).

Figure 3.5: Canonical tree decomposition of the fatgraph given in Figure 3.1. White boxes represent the bags
of the tree decomposition. Number in the bags correspond to the indices of the helices in the fatgraph where
number on the bottom are kept while traversing the branch of the decomposition tree. Colored frames indicate
the distinct helices (H0 to H4) of the structure. The tree decomposition was computed with the optimal solver
[82], which we noticed is particularly efficient on RNA structure graphs.

Making tree decompositions canonical. Algorithm 2 essentially follows the dichotomy of the
proof of Theorem 14. We state its correctness, run-time and proof below.

Theorem 15. Given G the structure graph of a minimal expansion of a fatgraph γ, and T a tree
decomposition of G, Algorithm 2 outputs a canonical tree decomposition for G, having same width
as T , in time O(NH · n3), where NH is the number of helices in γ.
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Figure 3.6: Sketch of an helix subgraph, in a minimal representative expansion of a fatgraph, along the annota-
tion of vertices used in Algorithm 2. There is a slight abuse in using these same labels for each of the helices in
the main for loop of Algorithm 2.

Algorithm 2Algorithm for re-writing a tree decomposition into a canonical one in which every helix
of the input graph is represented in a canonical way. A representation of an helix as a subgraph in
a minimal representative expansion, along with the notations (ui, vj…) used in this pseudo-code can
be found on Figure 3.6. With a slight abuse of notation, we re-use these variables for each helix.
Input:Tree decomposition T for the minimal expansion G of a fatgraph γ.
Output:A tree decomposition of G in canonical form.
1: if width(T ) ≤ 3 then . “Diagonal case” only
2: for helix H in fatgraph γ do . ∃i, j s.t. ui, vi completely separated from uj , vj in T
3: Find an edge (X,Y ) of T and i, j such that 0 ≤ i, j ≤ 4, |i− j| > 1

and X ∩ Y separates ui, vi on the X-side from uj , vj on the Y-side
4: ∀i′ ∈ [0 . . . 4], replace ui′ with u1 and vi′ with v1 in all bags of the X-side of T
5: ∀j′ ∈ [0 . . . 4], replace uj′ with u4 and vj′ with v4 in all bags of the Y -side of T
6: Insert between X and Y the “diagonal” canonical representation for H ,

with constant part S = (X ∩ Y ) \ {uk, vk}i≤k≤j

7: end for
8: else
9: for helix H in fatgraph γ do

10: if ∃ i, j and (X,Y ) edge of T s.t X ∩ Y separates ui, vi on the X-side from uj , vj on the Y -side
then

11: . “Diagonal case”
12: ∀i′ ∈ [0 . . . 4], replace ui′ with u1 and vi′ with v1 in all bags of the X-side of T
13: ∀j′ ∈ [0 . . . 4], replace uj′ with u4 and vj′ with v4 in all bags of the Y -side of T
14: Insert between X and Y the “diagonal” representation for H ,

with constant part S = (X ∩ Y ) \ {uk, vk}i≤k≤j

15: else . “Clique case”
16: ∀i, j there is always an edge connecting ui, vi to uj , vj represented T

→ use these edges to get a tree decomposition for G⊠
17: Attach a tree decomposition for an helix closed by a clique to the bag

containing the clique on the 4 extremities of H
18: end if
19: end for
20: end if
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Figure 3.7: Representation of the local rewriting of a tree decomposition next to a separator S separating to
base pairs (ui, vi) and (uj , vj), in order to extend a helix by one unit, through the introduction of new vertices
x and y. This is used in Theorem 14, in what corresponds in Section 3.4 to the “diagonal” case.

Proof. Concerning the run-time, enumerating all pairs 1 ≤ i < j ≤ l) is quadratic in the length of the
helix under consideration, which isO(n) in a general graph, while testing a given edge for separation
of ui, vi and uj , vj takes O(n) (through breadth-first search) for each of the O(n) edges of the tree
decomposition.

As for its correctness: it essentially follows the dichotomy of Theorem 14. If width(T ) ≤ 3, then
there has to be a pair of indices i, j such that {ui, vi} is separated from {uj , vj} by an edge (X,Y ) of
the tree decomposition. If it is not the case, contracting (uk, vk) ∀k yields a K5-minor, which is not
possible with a width of 3. We therefore get a separator as depicted in blue on Figure 3.7, which forms
the “constant part” of the diagonal-case helix representation. The replacement of vertex occurrences
on both sides of the separator does not increase the width, while representing all edges of the graph.

If width(T ) ≥ 4, if a separator as above is found (but this time, no guarantee to find one), then
we apply the same transformation. Otherwise, we use the extra edges represented in the tree de-
composition to modify it into a tree decomposition of G⊠, as in the proof of Theorem 14. There is
then necessarily a bag containing all four extremities of the helix, to which a tree decomposition
representing the inside of the helix can be attached.

Skeleton of a decomposition. Note that in a canonical tree decomposition, all vertices and edges
internal to a helix of a graph are represented in the canonical sub-tree-decomposition associated to
it. All bags outside of these canonical blocks only consist of extremities of helices, or other vertices
outside of helices. Ignoring these internal parts, to focus on a more compact “skeleton” of canoni-
cal tree decompositions will be the first step towards automatically deriving dynamic programming
equations.
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Definition 24 (skeleton). The skeleton of a canonical tree decomposition for a graph G, is de-
fined as follows:

• All sub-tree-decompositions representing a helix in the “clique” case are replaced with a
unique bag containing all extremities of the helix

• All sub-tree-decompositions representing a helix in the “diagonal” case are contracted to
contain their first and last bags only, denoted as S ∪ {u1, v1} and S ∪ {ul, vl} in Defini-
tion 23.

Figure 3.8 (b) gives an example of such a skeleton.

3.4.2 Automatic derivation of dynamic programming equations in a base pair-
based energy model

Deriving DP schemes. Given the skeleton of a representative minimal expansion of a fatgraph γ,
we describe here how to formulate DP equations for the corresponding folding problem. We initially
restrict our exposition to a base-pair based model, further named weighted-bps model, as defined in
Section 1.1.3 (Definition 3, page 17). We recall that in this model, the free-energy of a structure S is
given by:

Ew-bps(S) =
∑

(i,j)∈S

wS[i]S[j]

wS[i]S[j] being the contribution of a base-pair (i, j) to the free-energy (or negative log-odd to produce
max-likelihood structures).

DP table definitions. Essentially, we introduce two DP tables for each helix, and one “transitional”
tables for non-helix bags. The variables indexing these tables are called anchors. These integer vari-
ables each represent a separation point between consecutive (half-)helices. Taken together, a full set
of anchors (a, b, c, . . .) partitions the sequence into a set of disjoint intervals [a, b[, [b, c[. . ., each asso-
ciated with one half-helix, i.e. one of the subsequences that form a helix. Helix tables will account for
the free-energy contributions of concrete base-pairs, while transitional tables will instantiate anchors
in a way that remains consistent with previous assignments. Indeed, owing to the definition of a valid
tree decomposition, a skeleton is guaranteed to:

1. Feature each anchor in some bag;

2. Represent each pair of consecutive anchors in at least one bag;

3. Propagate anchor values, such that the anchor values within helix tables remain consistent.
This implies that non-helix bags can simply propagate previously-assigned anchors, possibly
assigning values to novel anchors (if any and constrained to remain consistent with the se-
quential order) to explore all possible partitions of the input RNA sequence.
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Figure 3.8: (A) Minimal representative length-5 expansion of the fatgraph shown in Figure 3.1. Anchor variables
are highlighted in green. We introduce one such variable per gap between helices. (B) Skeleton of the tree
decomposition. White boxes represent transitional bags, introducing/propagating indices, while colored boxes
represent helices in the fatgraph (H0 to H4) with associated indices in the input structure. Red letters indicate
tables of the dynamic programming algorithm. Green indices are novel indices, absent from a bag’s predecessor.
(C) DP equations derived from the compact skeleton, involving the anchor variable defined above, and following
the rules described in Section 3.4.2.
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Helix tables will predict concrete sets of base pairs and account for their associated free-energy. In
order to both prevent the double pairing of certain sequence positions, and to avoid ambiguity, we
require (and enforce in the DP rules) that an anchor x, separating the consecutive halves of two helices
H and H ′, implies the pairing of position x to the other half of H ′, and the pairing of some position
x′ < x as part of H . In other words, a helix H delimited by anchors i, i′, j′, and j must pair position xyi i′ j′ j

i to some position x ∈]j′, j[, and j′ to some position y ∈]i, i′[, implicitly leaving both regions ]y, i′[
and ]x, j[ unpaired.

Helix table 1: “Clique” cases. In the skeleton, each bag representing a helix in the “clique” case
is associated to the following tables, where i, i′ + 1, j′, and j + 1 represent the values of the anchors
delimiting the helix. The increments on i′ and j are here to ensure the presence of gap of length ≥ 1
between two base pairs belonging to different helices. (see also Figure 3.8 (c) for an example of how
anchor values are passed to C⊠ with a decrement of −1 for the same reason).

Recursive relations. A first table C ′⊠ holds the minimal free-energy of a helix delimited by i, i′, j′,
and j, such that position i is paired to some x ∈]j′, j[ and j′ to some position y ∈]i, i′[. The idea is
here to iteratively move the anchor from j to j−1, implicitly leaving position j unpaired, until a base
pair (i, j) is formed. Once a base pair is created, we transition to another table C⊠ which optimizes
over helices like C ′⊠, but additionally allows position i to be left unpaired. Those two tables can be
filled owing to the following recurrences:

C ′⊠[i, i
′, j′, j] = min


C ′⊠[i, i

′, j′, j − 1] if j′ < j

C⊠[i+ 1, i′, j′, j − 1] + wS[i]S[j] if (i < i′) ∧ (j′ < j)

wS[i]S[j] if j = j′

+∞ if no case applies

and

C⊠[i, i
′, j′, j] = min



C ′⊠[i, i
′, j′, j − 1] if j′ < j

C⊠[i+ 1, i′, j′, j] if i < i′

C⊠[i+ 1, i′, j′, j − 1] + wS[i]S[j] if (i < i′) ∧ (j′ < j)

wS[i]S[j] if j = j′

+∞ if no case applies

where wS[i]S[j] denote the free-energy contribution of the base pair (i, j) in the input RNA sequence.

Helix tables 2: “Diagonal” cases. In the skeleton bags representing the diagonal cases, we need
to associate a different table to each helix. Indeed, each “diagonal” case associates, to a helix H , a set
S of indices, dubbed the constant anchors, whose values remain unchanged during the construction
of H . We focus on the case where (i, j) represents the value of the outermost anchor pair (i.e., [i, j]
represents the full span of H), leaving to the reader the symmetric case starting from the innermost
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pair. Note that, in the skeleton, we kept two bags for a “diagonal case” helix. Yet they are associated
to a single table, since the helix is created by incrementing two indices only, such that the initial pair
of extremities “becomes” the other pair. We need this second bag to know how to map index values to
the children tables {Mk}k. This value mapping at the end of a diagonal case is illustrated on Figure 3.9.

Recursive relations. Namely, let the cell DH [i, j | S] (resp. D′H [i, j | S]) represent the minimum-
free energy achieved by the set of helices in the subtree of H , when H is anchored at (i, j) without
commitment to form base pairs for neither i nor j (resp. where i is committed to form a pair with
some position x ≤ j′). We have:

D′H [i, j | S] = min
{
D′H [i, j − 1 | S] if j − 1 > i ∧ ∀s ∈ S, j − 1 ̸= s

DH [i+ 1, j − 1 | S] + wS[i]S[j] if ∀s ∈ S, (i+ 1 ̸= s) ∧ (j − 1 ̸= s)

and

DH [i, j | S] = min


DH [i+ 1, j | S] if i+ 1 < j ∧ ∀s ∈ S, i+ 1 ̸= s

D′H [i, j − 1 | S] if j − 1 > i ∧ ∀s ∈ S, j − 1 ̸= s

DH [i+ 1, j − 1 | S] + wS[i]S[j] if ∀s ∈ S, (i+ 1 ̸= s) ∧ (j − 1 ̸= s)∑
k Mk[Ik] with Ik := ({i, j + 1} ∪ S) ∩Ak

where Ak denotes the anchors values needed for the k-th child of the diagonal bag.

Transitional tables: Non-helix bags. The general case consists of passing the values of relevant
variables onward to the diagonal and clique tables, possibly assigning/propagating anchors that ap-
pear in the bag for the first time, i.e. anchors that are not found in the parent bag. Let IP be the
anchors of the parent bag of M in the tree decomposition, we have:

M [IP ] = min
Values for

anch. in I\IP

#child.∑
k=1


Mk[Ik] if k-th child trans.
C ′⊠[i, i

′ − 1, j′, j − 1] if clique at (i, i′, j′, j)
D′Hk

[i, j − 1 | Sk] if diagonal at (i, j′)

where Ik denotes the anchor values from I needed for the k-th child of the bag, and S represents the
constant anchors of the k-th child, assumed to be a diagonal.

Automated C code generation. Figure 3.8 shows an example of output to our pipeline, with au-
tomatically generated LaTeX equations for the dynamic programming scheme inferred from the tree
decomposition. Figure 3 gives other examples of such automatically generated equations. But our
implementation, available freely at https://gitlab.inria.fr/bmarchan/auto-dp, is also capa-
ble of automatically generating C code implementing these equations. The automatically generated

https://gitlab.inria.fr/bmarchan/auto-dp
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*.c files corresponding to all of the examples of Figure 3 are available in the Supplementary Mate-
rial of [100]. In the current state, they are only meant as a prototype demonstration. Developments
towards generation of fully functional code, including the extensions presented in the next Section,
will be the subject of future work.

3.4.3 Complexity analysis

Complexity of generated DP scheme in BP model. Let w⊠, w� and w′ be the maximum width
of a clique, diagonal and transitional bag (i.e. its size minus one; or 0 if no bag exist for a given type) in
a canonical tree decomposition T of a fatgraph γ. Note that w⊠ is always 4, but we keep this notation
for consistency. In the following theorem, γ is a fatgraph with |γ| helices and T is a canonical tree
decomposition for γ. The DP scheme obtained from T as described in the previous section is called
the DP scheme inferred from T .

Theorem 16. In the BP energy model, the DP scheme inferred from T yields an algorithm for the
Fatgraph MFE Folding problem with O(|γ| · nmax(w⊠,w�,w′+1)) time and O(|γ| · nmax(w⊠,w�,w′))
space complexity.

Proof. The complexity of the DP scheme inferred from T (presented in the previous section for a
base-pair based model) depends on the complexities of filling each of the tables corresponding to
helices. C⊠[i, i′, j′, j] and C ′⊠[i, i

′, j′, j] take O(n4) to fill, using either a memoization procedure or
a bottom-up iteration of all possible values for i, i′, j′, j. It is equal to the space complexity thanks
to the finite number of cases in their recursive equations. A similar analysis holds for C�[i, j | S]
and C ′�[i, j | S], except that the number of indices is |S| + 2. Since the maximum size of a bag in
a diagonal-case representation is |S| + 3, we indeed have w� = |S| + 2. For transitional bags, the
situation is slightly different. The indices of the table are the intersection with the parent bag in the
tree decomposition, whose number is bounded by w′. The space complexity of the corresponding DP
table is therefore O(ntw′

). But there is also a minimization over all possible values for the variables
not present in the parent bag, incurring a linear factor for each of them. Overall, for a transitional B
of maximum size w′ + 1, the complexity of filling the matrix is O(w′ + 1) (O(n|B\P |) for each of the
O(n|B∩P |)) entries. As for the number of tables, it is at most twice the number of bags in T , which
is linear in the number of helices in γ. The overall time complexity is therefore given the DP table
of most expensive filling cost, O(|γ| · nmax(w⊠,w�,w′+1)). The same holds for the space complexity,
yielding O(|γ| · nmax(w⊠,w�,w′)).

Metric mismatch. Since tree decompositions are typically chosen to minimize their width tw :=
max(w⊠, w�, w′), then the precise resulting complexity may depend on the choice of an optimal tree
decompositions. Indeed, it could be that tw = w′, yielding a O(ntw+1) algorithm or, conversely,
w′ < tw − 1 would imply a complexity of O(ntw). In other words, in the base pair model, the
algorithm induced by the choice of an arbitrary tree decomposition T may be suboptimal by a linear
factor.
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Exploring the space of tree decompositions. Fortunately, it is possible to work around this issue,
and obtain a O(ntw) DP algorithm anytime a suitable canonical fatgraph decomposition exists. To
find such a decomposition, we explore the space of all possible canonical tree decompositions, through
an enumeration of all possible representations for each helix. This is formalized in the theorem below
(note that this is purely meant as a feasibility result, we do not expect this approach to be optimal in
terms of complexity; indeed we conjecture that this subproblem is FPT for the treewidth of γ). We use
the same notations as above by calling w′(T ) the maximum width of a transitional bag of a canonical
tree decomposition.

Theorem 17. Let G be a minimal expansion of a fatgraph γ with nH helices. If there exists an
optimal canonical tree decomposition T of G such that w′(T ) ≤ tw(G)− 1, then such a T can be
found in 2O(|γ|

2) · f(tw) time.

Proof. The space of all possible canonical tree decomposition can be iterated over by deciding, for
each helix, whether it is in the “clique” or “diagonal” case. If it is in the diagonal case, one must in
addition decide what is the “constant part” of the representation of the helix. Any set S such that
{u1, v1, u5, v5}∪S separates the graph into at least 3 connected components, one being the inside of
the helix, is an eligible candidate. This process corresponds to deciding, for each helix, what separator
cuts out the inside of the helix from the rest of the graph. When such a decision is made, a canonical
tree decomposition can be obtained by computing canonical tree decompositions for the connected
components associate to the separator, and connecting them together (in the spirit of Proposition 5).
When there are no helices left, an optimal tree decomposition of the graph is computed in time f(tw).
It yields the transitional bags in between helix representations. Given that S is only composed of
helix extremities, it is chosen among ≤ |γ| vertices. We consider therefore an upper bound of 2|γ| for
the number of possible choices of S in the diagonal case, and an upper bound of |γ| for the number
of connected components associated to a separator, the overall time of exploring all canonical tree
decompositions is bounded byO((|γ| ·2|γ|)|γ| ·f(tw)) ⊆ 2O(|γ|

2) ·f(tw) . If an optimal canonical tree
decomposition T such that w′(T ) ≤ tw(G)− 1 exists, then it corresponds to a particular assignation
of separators to each helix as outlined above, and it will be one of the tree decompositions explored
by the iteration.

3.5 Extensions

Current limitations. The DP scheme, as stated above, only supports conformations that consist of
a single pseudoknot configuration, indicated by a fatgraph. Moreover, it forces the first position of
the sequence to always form a base pair. Finally, it considers an energy model that is fairly unrealistic
in comparison with the current state of the art. In this section, we briefly describe how to extend this
fundamental construction in several directions. This enables us to solve the stated algorithm design
problem (Def. 20) and consequently the associated folding problem in complex energy models, and
discuss the consequences on the complexity.
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3.5.1 More realistic energy models

Reminder: stacking and Turnermodels. For the sake of simplicity, we illustrated in Section 3.4.2
the generation of a dynamic programming algorithm within a fairly simple base-pair based energy
model. However, the procedure can be adapted to capture more complex energy models found in the
literature. This includes stacking base pairs models (Definition 4), which we recall are defined as:

Estacking(A) =
∑

(i,j)∈A s.t (i+1,j−1)∈A

wS[i]S[j],S[i+1]S[j−1]

for a structure S, and with wS[i]S[j],S[i+1]S[j−1] the energy of base pair (i + 1, j − 1) stacking onto
(i, j).

Turner model. In the Turner model, also called nearest-neighbor model, any pseudoknot-free
structure S is decomposed into loops. As defined in Chapter 1 (Definition 5), A loop is rooted at a base
pair (i0, j0), and delimited by a set of base pairs {(ik, jk)}1≤k≤p ⊂ S such that ∀k, (ik, jk) ⊂ (i0, j0)
and ∀k, k′ ∈ [1 . . . p], (ik, jk) ∥ (ik′ , jk′). A loop `, with nucleotide content c(`) is then assigned a Using Nota-

tion 1free-energy contribution w(c(`)) that depends on the nucleotide content of base pairs, and unpaired
regions between adjacent base pairs. The overall free energy of a structure in the Turner model is
then defined as

ETurner(S) =
∑
ℓ loop

w(c(`))

Finally, we recall that the the Turner model usually uses affine linear models for multiloops (p ≥ 2),
and interior loops (p = 1), the latter based on loop length and asymmetry.

Adapting our framework for the stacking and Turner models. Both of those models can be
captured by a modified versions of the dynamic programming algorithm presented in Section 3.4.2. In
the stacking model, it suffices to duplicate the cliques (resp. diagonal) matrices to keep track of (i, j)
being directly enclosed (⊥) or not ( ̸⊥) within a base pair (i+ 1, j − 1). This results in a replacement
(C⊠, C ′⊠) with (C⊠,⊥, C

′
⊠,⊥, C⊠, ̸⊥, C

′
⊠, ̸⊥) (resp. (DH , D′H) into (DH,⊥, D

′
H,⊥, DH, ̸⊥, D

′
H, ̸⊥)), and

the inclusion of suitable energy contributions for the ⊥ cases, the only ones likely to form stacking
pairs. The time complexity remains identical, up to a constant, to that of the BP energy model.

A consideration of the full Turner model is more involved, but can be achieved in O(n3) through
an enumeration of all possible loops, as shown by Lyngsoe et al [169], by exploiting the linear inter-
polation of loops beyond a certain length threshold. Adapting the recurrence to consider all possible
helix expansions of cliques and diagonals will result in a O(n) time overhead for all cliques and di-
agonals, leading to an increased time complexity in O(|γ| · nmax(w⊠+1,w�+1,w′+1)), or equivalently
O(|γ| · ntw+1). A summary of the complexity of solving each type of recursive equation (clique, diag
and transitional) depending on the energy model is given in Table 3.1.
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Space complexity. Perhaps a more intuitive way of interpreting our treewidth-based framework is
to look at the space complexity of the schemes it generates. It is the same regardless of the model, and
directly dependent on the treewidth of the minimal expansion of the fatgraph under consideration, as
stated below.

Lemma 4. The space complexity of the generated DP schedule isO(|γ|ntw), regardless of the energy
model.

Proof. The set of indices of a table is the intersection of the corresponding bag with its parent bag.
Both bags have size at most tw + 1, and they are distinct, so their intersection has size at most tw.
Each index runs in the range [0, n], so the size of each table is at most ntw . The number of tables is
bounded by the number of bags in the tree decomposition of γ, which is itself in O(|γ|).

3.5.2 Integration with classic DP algorithms for MFE structure prediction

Disjunction over several fatgraphs. Firstly, let us note that alternative fatgraphs can easily be
considered, without significant overhead, by adding a disjunctive rule at the top level of the DP
scheme, such as

MFEPK :=
p

min
i=1

rootγi [∅]

where rootγi is the top level case of the DP scheme for fatgraph γi.The associated conformation space
then consists of the union of all pseudoknotted structures compatible with one of the fatgraphs.

Enriching classic schemes with fatgraphs. Fatgraphs usually represent a structural module
rather than a complete RNA conformation. The role of the framework presented in this chapter is
therefore primarily to supplement the classic DP scheme for 2D structure energy-minimization with
additional constructs, enabling the consideration of pseudoknots. Towards that goal, one needs to ac-
cess MFEPK(i, j), the MFE achieved over a region [i, j] by a conformation compatible with one of the
input fatgraphs. In other words, one needs to be able to prescribe the span of the fatgraph occurrence,
i.e. the values (i, j) of its extremal anchors (a, a′) within the dynamic programming.

Adding a virtual overarching base-pair. To ensure this possibility, one simply needs to connect
the first and last positionswithin theminimal fatgraph completionG = (V,E), i.e. resulting in a graph
G′ := (V,E∪{(a, a′)}). Since each arc of the input graph is represented in a valid tree decomposition,
we know that any tree decomposition for G′ features a bag B including both a and a′, possibly in
conjunction with additional anchors S := {k1, k2, . . .}. Moreover, since a tree decomposition is
unordered, it can be re-rooted to start with B, and preceded by a root node restricted to anchors
(a, b), without adverse consequences complexity-wise. This yields the following entry point for the
DP of a fatgraph γ:

MFEγ(i, j) := min
i<k1<k2<...<j

MB[i, k1, k2, . . . , j]
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Energy model Diagonal tables Clique tables Transitional tables
C�[i, j|S] C⊠[i, i′, j′, j] MX [IX ]

BP-based model O
(
n|S|+2

)
O
(
n4
)

O
(
n|I|
)

BP+stacking O
(
n|S|+2

)
O
(
n4
)

|
Full Turner O

(
n|S|+3

)
O
(
n5
)

|

Table 3.1: While the space complexity of the generated DP schemes is always bounded by O(ntw) (Lemma 4),
the run-time complexity of filling-up the DP tables C� and C⊠ depends on the choice of energy model. As for
the table corresponding to a transitional bag X with indices I , the cost of filling it is O(ntw+1) irrespectively
of the energy model.

which can be used within a classic, pseudoknot-oblivious, DP schemes for MFE structure prediction.
Complexity-wise, it can be shown that the additional base pair can at most increase by 1 the treewidth
(and frequently leaves it unchanged).

Recursive substructures. Recursive substructures consist of secondary structures/occurrences of
fatgraphs that are inserted, both in between and within helices, usually through recursive calls to the
(augmented) 2D folding scheme.

Splitting common helix anchors. To allow arbitrary sub-structures to be inserted in the gaps
between consecutive helices, one can again modify the minimal helix expansion to distinguish the
anchors a, b associated with consecutive helices (instead of merging them into a single anchor in our a b

initial exposition). By connecting a and b, one ensures their simultaneous presence in a tagged bag
B, whose DP recurrence is then augmented to include an energy contribution MFESS(a+ 1, b− 1).

Substructure insertion. To enable the insertion of substructures within a helix requires modifica-
tions to the helix clique/diagonal rules that are very similar to the ones enabling support for the Turner
energy model. Assuming the presence of a base pair (i, j), an insertion can indeed be performed by
delimiting a region [i, k] (resp. [k, j]) of arbitrary length, leading to an overall MFE of MFESS(i, k)+δ,
where δ is the free-energy contributed by the rest of the helix (e.g., to include additional terms asso-
ciated with multiloops).

3.5.3 Partition functions and ensemble applications

Uniqueness and unambiguity. For ensemble applications of our DP schemes, such as computing
the partition function [170] and statistical sampling of the Boltzmann ensemble [171], it is impera-
tive for the DP scheme above to be complete and unambiguous [172]. Fortunately, both properties
are already guaranteed by our DP schemes. Indeed, intuitively: the completeness is ensured by the
exhaustive investigation of all possible anchor positions, i.e. all possible partitions; the unambiguity
is guaranteed by the invariant that assigning a position x to a given anchor (within a transitional or
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Complexities
Type Fatgraph Treewidth Full Turner All others

H-type ([)] 4 O
(
n5
)

O
(
n4
)
(*)

Kissing hairpins ([)(]) 4 O
(
n5
)

O
(
n4
)

“L” [16] ([{)]} 5 O
(
n6
)

O
(
n6
)

“M” [16] ([{)(]}) 5 O
(
n6
)

O
(
n6
)

4-clique ([{<)]}> 5 O
(
n6
)

O
(
n6
)

5-clique ([{<A)]}>a 5 O
(
n6
)

O
(
n6
)

5-chain ({[)(][)}] 6 O
(
n7
)

O
(
n7
)

Table 3.2: Table listing pseudoknot classes, corresponding treewidth and resulting complexity of the folding
algorithm. For H-type pseudoknots beneath the Turner model, marked as (*), an iterated computation over
canonical tree decompositions is required to achieve the complexity (see Theorem 17). For the H-type and kiss-
ing hairpins cases, we are in the specific case where the most complex routine is the alignment of a “clique case”
helix, which is done in O(n4) despite a treewidth of 4. These examples are detailed in the Appendix, Figure 3.
The DP equations for each of these examples have been automatically generated by a Python implementation
of our pipeline, freely available at https://gitlab.inria.fr/bmarchan/auto-dp.

diagonal bag), leads x to be paired within the (half-)helix immediately to its right. Choosing different
values for x thus induces different innermost/outermost base pairs for the associated helix, leading to
disjoint sets of structures.

From these two properties, we conclude that the partition function for a fatgraph (or several,
possibly recursively and/or within a ± realistic energy model) can be obtained through the simple
change of algebra pioneered by McCaskill [170] in the pseudoknot-free case. Namely, replace the
(min,+,∆G) terms into (

∑
,×, eβ∆G), with β = RT being the Boltzmann constant multiplied by

some absolute temperature.

3.6 Automated (re-)design of algorithms for specific pseudoknot
classes

Automated re-derivation of gfold. Our pipeline for automated generation of DP folding equa-
tions given a fatgraph has been implemented using Python and Snakemake [173]. The implementa-
tion is freely available at https://gitlab.inria.fr/bmarchan/auto-dp. Since the algorithms in
[16] have been described in terms of a finite number of fatgraphs (called irreducible shadows in the
paper), one can directly apply our method to obtain an efficient algorithm that covers the same class
as gfold, namely 1-structures that are recursive expansions of the four fatgraphs of genus 1 corre-
sponding to simple PK ’H’ ([)], kissing hairpin ’K’ ([)(]), three-knot ’L’ ({[)}] and ’M’ ([{)(]})
(here, represented in dot-bracket notation, i.e. corresponding opening and closing brackets correspond

https://gitlab.inria.fr/bmarchan/auto-dp
https://gitlab.inria.fr/bmarchan/auto-dp
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to arcs). The maximum complexity of O(n6) of the four fatgraphs (see Table 3.2) implies that the
automatically derived algorithm covers the class of 1-structures in O(n6) time—the same complexity
as hand-crafted gfold. Note that [16] used declarative methods in their algorithm design only to the
point of generating grammar rules, which without further optimization yield O(n18) (after applying
algebraic dynamic programming; ADP [174]). In contrast, our method obtains the optimal complexity
in fully automatic fashion.

Beyond this re-design of gfold, remarkably our method is equally prepared to automatically
design a DP algorithm with optimized efficiency for 2-structures, which are based on all genus 2 fat-
graphs. This is remarkable, since the implementation of a practical algorithm has been considered in-
feasible [16] due to the large number of genus 2 shadows (namely, there are 3472 shadows/fatgraphs),
whose grammar rules would have to be optimized by hand. In contrast, due to full automation, our
method directly handles even the large number of fatgraphs of genus 2 and yields an efficient, com-
plexity optimized, DP scheme.

Other automated derivations of famous schemes. Recall that we cover all other pseudoknot
classes that are recursive expansions of a finite number of fatgraphs (in the same way as we cover the
design of prediction algorithms for 1- and 2-structures). In this way, among the previously existing
DP algorithms, we cover the class of Dirks&Pierce (D&P) [29], simply by specifying the H-type
as single input fatgraph. Consequently, we automatically re-design the D&P algorithm in the same
complexity of O(n5). Even more interestingly, we can design algorithms covering specific (sets of)
crossing configurations. This results in an infinite class of efficient algorithms that have not been
designed before. Again the complexity of such algorithms is dominated by the most complex fatgraph;
where results for interesting ones are given in Table 3.2. Most remarkably, we design an algorithm
optimizing over recursive expansions of kissing hairpins in O(n4), whereas CCJ [175, 45], which was
specifically designed to cover kissing hairpins, requires O(n5).

A special case, which further showcases the flexibility, is the extension of existing classes by spe-
cific crossing configurations. For example, extending D&P by kissing hairpin covers a much larger
class while staying in the same complexity. Extending 1-structures by 5-chain yields a new algorithm
with a complexity below of 2-structures (namely onlyO(n7) instead ofO(n8) [16]). The complexity of
5-chain is remarkably low, when considering that previously described algorithms covering this con-
figuration take O(n8) (e.g., gfold’s generalization to 2-structures and a hypothetical blow-up of the
Rivas and Eddy algorithm [30] to 6-dimensional instead of 4-dimensional DP matrix elements—both
of which have never been implemented).

3.7 Conclusions and discussion

Overview. In this work, we provided an algorithm that takes a family of fatgraphs, i.e. pseudo-
knotted structures, and returns DP equations that efficiently predict arc annotations minimizing the
free energy. The DP equations are automatically generated based on an expansion of the fatgraph,
designed to capture helices of arbitrary length. The DP tables in the equations use a number of indices
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smaller than or equal to the treewidth of the minimal expansion. This very general framework recov-
ers the complexity of prior, hand-crafted algorithms, and lays the foundation for a purely declarative
approach to RNA folding with pseudoknots.

Perspectives. In addition to the extensions described in Section 3.5, this work suggests perspectives
that will be explored in future work.

Algebraic dynamic programming. Indeed, the choice of an optimal decomposition/DP scheme
for the input fatgraph can be seen as the automated design of an optimal table strategy in the context
of algebraic dynamic programming [176, 177, 174]. This would enable extensions to multiple context
free grammars or tree grammars when describing the problem in the ADP framework.

RNA–RNA interactions. Our automated design of pseudoknot folding algorithms could naturally
be extended to RNA–RNA interactions, since the joint conformation of two interacting RNA sequences
can be seen as a pseudoknot when concatenating the two structures [178]. More ambitiously, cate-
gories of pseudoknots inducing an infinite family of fatgraphs, e.g. as covered by the seminal Rivas &
Eddy algorithm [30], could be captured by allowing the introduction of recursive gapped structures
in prescribed parts of the fatgraph. This could be addressed by adding cliques to the minimal com-
pletion graph which would ensure the availability of the relevant anchors in some bags of the tree
decomposition, allowing to score such non-contiguous, recursive substructures.

Optimality. Another avenue for future research includes a proof of optimality, in term of poly-
nomial complexity, for the produced DP algorithms. Of course, it would be far too ambitious (and
erroneous) to expect our DP schemes to be optimal within general computational models. However,
it may be possible to prove optimality within a formally-defined subset of DP schemes, e.g. by con-
tradiction since the existence of a better algorithm would imply the existence of a tree decomposition
having smaller width. More precisely, given a fatgraph γ, one could imagine that a DP scheme (with
DP tables indexed by anchor variables as is typically the case) capable of exploring all recursive ex-
pansions of γ would in particular induce a decomposition of the minimal representative expansion of
γ, from the parsing of this structure by the DP grammar. If this decomposition can be reinterpreted
as a tree decomposition, then the treewidth of the minimal expansion would become a lower bound
on the number of indices to use in such a DP scheme.
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Figure 3.9: Derivation of DP equations from a skeleton, starting from the canonical tree decomposition of a
length-5 expansion for a simpleH-type fatgraph. On the left-hand-side, special emphasis is given to explaining
how values are mapped at the end of a diagonal case. Extra tables C ′

⊠ and D′
H , needed to ensure unambiguity

of the DP scheme, are omitted for the sake of simplicity without adverse consequences to correctness.



Chapter 4

Models and methods for pseudoknotted
structure-sequence alignment

Abstract

When studying non-coding RNAs, we primarily expect structure conservation rather than strict se-
quence conservation. In other words, we expect to see sequence variability insofar that it conserves
compatibility with a structure thought to guarantee the RNA’s function. In particular, compensatory
mutations on both ends of a base-pair are to be expected (e.g., GC→AU). Still, it could be the case that
some portions of sequence are perfectly conserved across members of a non-coding RNA family.

Practical problems involving nc-RNAs may then consist in (1) building consensus models for ho-
molog sequences, i.e. compact mathematical representations of the variability of sequences within a
family, and (2) deciding whether a new sequence is part of a family, given a consensus model for
the family (membership problem). The latter problem is akin to the StRuctuRe-Seence Align-
ment problem mentioned in previous chapters. InfeRNAl [61] provides a concrete solution to these
problems for pseudoknot-free secondary structures, using covariance models [179] as consensus mod-
els for ncRNA families. It has been used to build Rfam, a database counting more than ∼ 4000 RNA
families, and the central reference for ncRNA data. However, the problem of building consensus mod-
els for pseudoknotted families, with a fast enough solution to the membership problem, is still open.

After reviewing the theory behind InfeRNAl, this chapter presents experimental evaluation re-
sults for LiCoRNA, an implementation of [62] capable of taking pseudoknots into account. However,
the consensus model of LiCoRNA, which simply consists in an arc-annotated secondary structure,
misses some features with respect to InfeRNAl, namely position-dependent statistics and stacking
terms. Therefore, we also present in this chapter a formulation of pseudoknotted covariance models. A
salient feature is its use of a treewidth-based algorithm for the membership problem.

99
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4.1 Introduction

Consensus models. In this chapter, we call consensus model any method capable of modeling the
variability of sequences within a ncRNA family. By ncRNA family, we mean a set of sequences sharing
a consensus structure, thought to be descendants of a common ancestor and to have a similar biological
function. When building a consensus model for a ncRNA family, a typical starting point is a trusted
multiple-sequence alignment of sequences in the family, along with secondary structure annotation,
such as the one depicted on Figure 1.4 page 13 in Chapter 1. In the methods presented in this chapter,
a typical choice will be the manually curated seed alignments of Rfam.

Covariance models [179] are the state-of-the-art consensus model solution for pseudoknot-free
ncRNA families. They are implemented by InfeRNAl, and are used to build Rfam. Since the last
section of this chapter consists in generalizing them to pseudoknots, we recall their definition below.

4.1.1 Covariance models

covariance models: definition. A covariance model [179, 61] is a statistical model of RNA se-
quence generation. It contains nodes arranged in a binary tree, the guide tree, which follows the tree
of a conflict-free secondary structure. When representing a ncRNA family, this structure is the con-
sensus structure of the family, thought to be adopted by all sequences in the family. An example of a
covariance model, and the corresponding consensus secondary structure, is given on Figure 4.1.

There are 8 different nodes in a covariance model, as shown in the left column of Table 4.2. The
most important ones are MATP, MATL, MATR and BIF, as they are in direct correspondence with the
structural motifs of a consensus secondary structure. Each node contains a set of states, divided into
a main set (outside of the brackets in Table 4.2) and a split set (inside the brackets in Table 4.2. Each
state is connected to other states, in a directed way. All edges between states are between neighboring
nodes of the guide tree. If u is the parent of v in the guide tree, withM(u) the main set of states of u,
S(u) its split set and M(v) the main set of v, then the set of connections between states contains:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
( ( ( ( ( . . . . . ) ) ) ( ( ( . . . ) ) ) . ) )

root

MATP1 25

MATP2 24

MATR 23

BIF

BEGL

MATP3 13

MATP4 12

MATP5 11

MATL6

MATL7

MATL8

MATL9

MATL10

BEGR

MATP14 22

MATP15 21

MATP16 20

MATL17

MATL18

MATL19

ML D

IL

MP ML MR D

IL IR
115

6

Figure 4.1: Sketch of the structure of an example of covariance model [179], with the corresponding secondary
structure drawn on the bottom left. A covariance model is composed of nodes, corresponding to structural
motifs in the secondary structure. These nodes contain states, corresponding to non-terminal symbols in the
associated stochastic context-free grammar.
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node structural motif states
MATP base-pair MP, ML, MR, D, [IL, IR]
MATL left bulge ML, D, [IL]
MATR right bulge MR, D, [IR]
BIF multi-loop B
ROOT guide tree root S, [IL, IR]
BEGL stem start S
BEGR stem start S, [IL]

Figure 4.2: Possible nodes in the guide of a covariance model, along with their state composition. States sur-
rounded by [ ] constitute the split set of the node. The other states are its main set.

• {m→ s | m ∈M(u) and s ∈ S(u)}

• {IL→ IR} within a node u such that S(u) contains two elements IL and IR.

• {s→ m | s ∈ S(u) and m ∈M(v)}

• {m→ m′ | m ∈M(u) and m′ ∈M(v)}

Examples of state connections between two different nodes are shown in Figure 4.1. Each directed
edge between two states is weighted with a transition probability, usually in the form of a log-odds
score. These probabilities are such that the sum of the out-going probabilities of a state sum to 1. The
only exception to this rule is the bifurcation state B, which transitions with probability 1 to both of
the S states (in BEGL and BEGR) it is connected to.

Sequence emission. Each state starting with M (MP,ML,MR) and I (IL,IR) is also associated with
symbol emission probabilities. The overall picture is that, in a sequence of states starting at the root
following the transition probabilities mentioned above, symbols are emitted whenever such a state
is visited. Emitted symbols collectively form an RNA sequence, whose overall emission probability
quantifies its likeliness to be a member of the ncRNA families. To make things more precise, let us
describe the associated grammar rules.

Stochastic context-free grammar. Formally, a covariance model is a stochastic context-free
grammar. Each of the state described above is associated to exactly one non-terminal symbol. The
S state in a root node is the start symbol. Let us write down some of the production rules of such a
grammar, starting with an MP state, associated with a base-pair (i, j):

MPij
pij(a,b)−−−−−−−→

p(MPij→V )
a · V · b

With a and b terminal symbols, i.e. elements of {A,U,G,C}, emitted with probability pij(a, b). V
is one of the possible successors of MPij . For example, on Figure 4.1, the successors of MP5,11 are
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IL5,11, IR5,11, ML6 and D6. Symbol emission and transition to a successor state are independent, i.e.
the emission of symbols a and b together with a transition to successor state V occurs with probability
pij(a, b) · p(MPij → V ). The rules are similar for ML and MR states, with emission only to the left and
right, respectively.

The production rule associated with a bifurcation state BIFij , corresponding to an interval [i, j] in
the consensus structure, with successor states Sik and Skj , is the following:

BIFij = Sik · Skj

While the production rule for a start state Sij is simply:

Sij −−−−→
p(S→v)

V

Finally, the production associated with an insert state ILk is:

ILk
p

ILk
(a)

−−−−→ a · ILk | V

For V a successor of ILk. “Self-loop” transitions onto ILk occur with probability p(ILk → ILk).
Alternately, transition to a successor state V occurs with probability p(ILk → V ). In any case,
symbol emission of a occurs with probability pILk(a).

Parameter-learning. Starting from amultiple-sequence alignment with consensus structure anno-
tation, we describe here how the parameters of a covariance model are learned. The overall strategy
is a maximum-likelihood estimation, typically using a Dirichlet prior allowing for a simple estimation
of probabilities from event counts. The first step is to build the guide tree. A simple rule to do so
unambiguously is to consider that columns with < 50% of gap symbols contain symbols originating
from match states, whereas columns with ≥ 50% of gap symbols were emitted by insert states. The
columns associated to match states, combined with the consensus secondary structure, yield the guide
tree. Once the guide tree is built, each sequence in the alignment is an example of sequence of states,
combined with symbol emissions at the match and insert states. A simple strategy for estimating
symbol emission probabilities is then to use Dirichlet priors [180].

Maximum-likelihood parsing. Given a sequence S and a covariance model, membership in the
ncRNA family is decided by the probability of the most-likely scenario (state transitions and symbol
emissions) for the covariance model to generate S. The sequence of states then directly yields an
alignment of the input sequence to the covariance model.

This score is computed through dynamic programming over the guide tree. Concretely, each entry
M [v, i, j] of the DP table contains the maximum log-likelihood that a sequence of states ~s starting at
v generates S[i : j]. This likelihood can be expressed as:

ll(~s, S) = logP (~s) + logP (S | ~s)
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For an MP state v, the recursive equation of M reads:

M [v, i, j] = logP (v emits S[i], S[j]) + max
w∈succ(v)

[M [w, i+ 1, j − 1] + log p(v → w)] (4.1)

A similar equation holds for ML, MR, IL and IR states. For all the other states except B (i.e.S and D),
the equation is also similar, but without the emission term. The equation for a bifurcation state (B) is
the only one with a marginalization over some position. With b a bifurcation state, and S1, S2 its left
and right successors, it reads:

M [b, i, j] = max
i≤k≤j

(M [S1, i, k] +M [S2, k, j])

RFAM [11]. InfeRNAl [61, 180], an implementation of the covariance models described above, is at
the basis of the construction of Rfam. Starting from a manually-curated and trusted seed alignment, it
builds a covariance model (command cmbuild). Then, the rfamseq [11] database is scanned for good
hits of the covariance model, in the sense of the maximum-likelihood score defined above (command
cmsearch). Finally, all hits and seed sequences are aligned with the covariance model, thanks to
the backtrace of the dynamic programming scheme described above. This yields a full alignment for
the entire family. (command cmalign). The rest of this chapter is devoted to the design and
benchmark of techniques capable of including pseudoknots into this pipeline.

4.1.2 LiCoRNA

LiCoRNA is an implementation of the treewidth-based algorithm described in [62] for StRuctuRe-
Seence Alignment, and freely available at https://licorna.lri.fr/. In this subsection, we
succinctly review both the definition of StRuctuRe-Seence Alignment and the algorithm of [62].
Within this chapter, this problem is seen as the membership problem for a consensus model that
simply consists of a pseudoknotted arc-annotated sequence.

Problem definition. As formalized into Problem 3, the task is to find a monotonous mapping (Def-
inition 8) µ from an arc-annotated sequence (Q,A) onto a plain sequence T , minimizing:

score(µ) =
∑

(i,j)∈A

γ2(i, j, µ(i), µ(j))+
∑

i s.t µ(i) ̸=⊥

γ1(i, µ(i))+
∑

gap g⊂Q

λQ|g|+cQ+
∑

gap g⊂T

λT |g|+cQ

where γ2 rewards base-pair conservation, and γ1 rewards sequence conservation. A gap g ⊂ Q is a
consecutive set of positions in Q all sent to ⊥ (deleted), with |g| the number of deleted nucleotides.
As for a gap g ⊂ T , it is the subsequence corresponding to the interval ]µ(i) : µ(i + 1)[ of T , when
µ(i+1) > µ(i)+1. Note that double gaps are forbidden (if i and j are the bounds of a gap inQ, then
µ(j) = µ(i) + 1).

In order to present the algorithm of [62], we first define the notion of structure graph, which is
central to its presentation.

https://licorna.lri.fr/
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Definition 25 (structure graph). Given a setA of arcs over positions [1 . . . N ], the structure graph
G(A) = (V,E) is the graph with vertex set V = [1 . . . N ] and edge set: E = A ∪ {(i, i + 1) |
i ∈ [1 . . . N − 1]}

Treewidth-based algorithm. The algorithm presented in [62] uses the classic strategy of dynamic
programming over a tree decomposition of the structure graph ofA. The recursive equations are quite
similar to the example in Box 6, with a table c indexed by a bag identifier i and a partial mapping µ.
This partial mapping is restricted to P ∩X , with X the bag identified by i and P its parent bag.

Precisions for optimal complexity. Without loss of generality, we work with binary tree de-
compositions. We also require a symmetric difference of at most one element between two adjacent
bags. Both of these properties can be achieved from an arbitrary tree decomposition through bag
duplications, without increasing the width [75].

We also adopt the convention that, instead of writing µ(i) =⊥ (deletion), we use µ(i) = µ(m)
withm the largest position< i such that µ(m) ̸=⊥. To guarantee the existence ofm, virtual positions
0 and |Q|+1 are added left and right ofQ, and likewise for T (0 and |T |+1), such that µ(0) = 0 and
µ(|Q|+ 1) = |T |+ 1.

Recursive equations. In the following, µ+ denotes a mapping onX (bothX ∩P andX \P ). The
set of mappings onX agreeing with a partial mapping µ onX∩P is written comp(µ). Last, Y1 . . . , Yℓ

are the children bags of X , with identifiers i1, . . . , iℓ, and µ+
Yj∩X is the restriction of µ+ on X ∩ Yj .

With the precisions described above, ` = 2 and |X \ P | = 1. As for the convention that if i ∈ Q
is deleted, then µ(i) = µ(m), the mapped value of the last non-deleted position, it allows to easily
compute comp(µ).

The recursive equation used by [62] is then:

c[i, µ] = min
µ+∈comp(µ)

 ℓ∑
j=1

c[ij , µ
+
Yj∩X ] + lcost(µ+)


Where lcost must distribute the terms of the score function over the tree decomposition. For-

mally, lcost contains the following terms:

• γ2(i, j, µ
+(i), µ+(j)) for any (i, j) ∈ A such thatX is the root of the subset of bags containing

both i and j (which must be a tree)1.

• when X is the closest to the root among the bags containing i:
1Following phylogenetics terminology, this root is often informally called the LCA of i and j, for lowest common an-

cestor.



CHAPTER 4. PRACTICAL TREEWIDTH-BASED STRUCTURE-SEQUENCE ALIGNMENT 106

– γ1(i, µ
+(i)) if µ+(i) ̸=⊥

– λQ if µ(i) =⊥

• and when X is the closest bag to the root containing both i and i+ 1:

– and λT (µ
+(i+ 1)− µ+(i)) + cT if µ(i+ 1) > µ(i)

– cQ if µ(i) ̸=⊥ while µ(i+ 1) =⊥ (query gap opening)

Complexity analysis. The recursive equation above allows solving StRuctuRe-Seence Align-
ment using dynamic programming. It yields an XP algorithm with respect to treewidth.

Proposition 7 ([62]). StRuctuRe-Seence Alignment can be solved inO(n ·mtw+1), with tw
the treewidth of the structure graph associated to A, n = |Q| and m = |T |.

Proof. Number of entries to c: There are n possibilities of i and mtw possibilities for µ (mapping
≤ tw positions into a set of cardinality m). This gives us a space complexity of n ·mtw .
Time complexity: For each one of these entries, one must minimize over µ+ ∈ comp(µ). As there
is at most one new vertex k when going from P to X , choosing µ+ just consists in choosing µ(k)
among ≤ m possibilities. Overall, the time complexity is indeed bounded by O(n ·mtw+1).

Features and limitations. Themain feature of LiCoRNA is its ability to take pseudoknots and even

non-canonical interactions2 into account. Combined with the fact that natural RNA structure have
reasonable treewidth (Figure 1.11, page 40), it shows that treewidth is a smooth and natural way to
expand StRuctuRe-Seence Alignment to the pseudoknot case.

Limitations. In our definition of StRuctuRe-Seence Alignment, the score function does not
take stacking into account, as the mapping of each base-pair is evaluated independently of the others.
To include stacking, one would need, for two nested base-pairs (i, j) and (i+1, j−1) inA, to attribute
an extra reward when both are conserved, i.e. mapped onto compatible nucleotides. In addition, recall
that StRuctuRe-Seence Alignment instances mainly come up in ncRNA homolog search, when
scanning a window over a sequence database to identify new members of a given ncRNA family. In
that context, a simple arc-annotated sequence (Q,A) will, by design, fail to take into account the
precise statistical sequence variability of the family. Both of these features are included in InfeRNAl,
the current state of the art solution for pseudoknot-free ncRNA homolog search. These limitations
therefore need to be addressed into formulate a true pseudoknotted extension of it.

2Non-canonical interactions are just additional arcs in A. They might increase the treewidth, but otherwise seamlessly
integrate into the framework.
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Rest of this chapter. In spite of the limitations of LiCoRNA, we present in the next section a nu-
merical evaluation of its capacity to create high quality alignments for pseudoknotted ncRNA families.
The purpose is to get a quantitative sense of what is missed when not taking pseudoknots into account.
Afterwards, and to conclude the chapter, we give a possible formulation for pseudoknotted covariance
models. It uses a treewidth-based algorithm to align sequences onto the states of a multiple-context
free grammar [181, 16].

4.2 Evaluating the quality of a pseudoknotted structure-sequence
alignment methods

4.2.1 Evaluation methodology

Purpose and overview. The purpose of this numerical evaluation is to assess the capability of
LiCoRNA to create better quality alignments than InfeRNAl for pseudoknotted ncRNA families. The
experiments were run on data from pseudoknotted Rfam families. It consisted in evaluating several
tools for structure-aware alignment for two different tasks: realigning seed sequences to see if the seed
alignment is recovered (Experiment 1) and mapping arc-annotated seed sequences onto full sequences
(Experiment 2). More details, including which metrics the different tools were evaluated upon, are
given below.

selection of RFAM families and tools. Rfam [11] is the reference database for non-coding RNAs.
It regroups sequences into families of homologs. For each of these families, a manually-curated seed
alignment, with consensus secondary structure annotation, is given. It is used as a basis for building
a covariance model, which is used (through InfeRNAl) to find candidate members of the family and
build a full alignment out of them.

Family selection. Our study focused on Rfam families with pseudoknotted consensus structures.
Among these pseudoknotted families, we selected those with at least 10 sequences in the seed align-
ment.

Alignment tools. In addition to LiCoRNA and InfeRNAl, we will also look at the performances of:

- LoCaRNA [43], a tool capable of simultaneous alignment and folding from a set of unaligned,
plain sequences.

- The Smith-Waterman algorithm [182], and more precisely its Rust-bio [183] implementation.

We will also refer below to Rfam as an “alignment method”. When we do so, we mean that we simply
take the seed alignment and reduce it to an alignment of the sequences we are interested in.
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Experiments. Starting from pseudoknotted ncRNA families in Rfam, we conduct the two follow-
ing experiments. One of them consists in realigning the seed alignments of each family with various
methods including LiCoRNA, to see if we recover the same quality as the manually curated versions
available on Rfam. The other consists in aligning structure-annotated seed sequences with plain se-
quences from the full set. To give more details:

• (Experiment 1) realigning seed alignments. For each pseudoknotted family, pairs of seed
sequences are aligned using one of them as query (annotated by the consensus structure) and
the other as target. 15 sequences were selected in each family with cd-hit [184], which selects
a set of representative sequences from an input alignment. Therefore, Experiment 1 consisted
in computing 15× 14 = 210 pair-wise alignments with each methods.

• (Experiment 2) aligning seed sequences into full sequences For each pseudoknotted family,
seed sequences are used as queries ( annotated by the consensus structure) and full sequences
as targets. As for Experiment 1, 15 seed sequences and 15 full sequences were selected us-
ing cd-hit [184], resulting in 225 pair-wise alignments to compute for each family and each
alignment method.

Computing environment and restrictions. Numerical experiments were launched on the Core
Cluster of the Institut Français de Bioinformatique (IFB) (ANR-11-INBS-0013). Themost time consum-
ing tool to run was undoubtedly LiCoRNA. In fact, the results presented in this section are restricted
to Rfam families for which more than 80% of the pair-wise LiCoRNA alignments were computed given
∼ 3 weeks of computation on 300 cores of the IFB cluster, and a 6 giga-bytes memory limit for each
individual alignment computation. In addition, to get more reasonable run-times, the maximum in-
sertion gap length (i.e., the max possible value of µ(i + 1) − µ(i)) when aligning Q and T with
LiCoRNAwas bounded to max(4, ||Q| − |T ||).

Metrics. When aligning an arc-annotated sequence (Q,A) onto a plain sequence T , we implicitly
predict a structure on T , composed of the base-pairs of A mapped onto compatible nucleotides in
T . In the case of Experiment 1, the seed alignment consensus structure gives us a “ground truth”
structure for each target T . This allows us to use classic statistical metrics for evaluating alignment
tools, namely sensitivity and positive predictive value. We denote CS(T ) the consensus structure
restricted to base-pairs with nucleotides compatible in T .

Sensitivity and PPV. In statistics, sensitivity is the proportion of true positives in cases predicted
as positives. In our case, it is the proportion of predicted base-pairs that are true base-pairs of the
target, as per the consensus structure:

sensitivity =
# correctly predicted bps

|CS(T )|

with
predicted bps = {(i, j) ∈ A | (µ(i), µ(j)) ∈ {(A, U), (G, U), (G, C)}}
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and correctly predicted bps = {predicted bps} ∩ CS(T ). As for the positive predictive value (PPV),
it is the proportion of cases predicted as positives that are true positives. In other words:

PPV =
#correctly predicted bps

#predicted bps

AFI. Contrary to the quantities above, the Average Fractional Identity (AFI) does not stem from
statistics. It compares two alignments, with the rationale that we will compare the alignments com-
puted by the different methods to the Rfam reference. Formally, it is the proportion of identical
columns in the two alignments. If the two sequences being aligned are S1 and S2, an identical column
is when character number i of S1 is aligned with character j of S2 in both alignments. It is also called
the sum-of-pairs-scores (SPS) in the literature [185]. In our experiments, it was computed using the
implementation provided by [186].

BPCI. When aligning an arc-annotated sequence (Q,A) onto a plain sequence T , the base-pair
conservation index (BPCI) is the proportions of base-pairs of A that are mapped onto compatible
nucleotides in T . If µ is the mapping corresponding to the alignment:

BPCI(A, T, µ) = 1

|A|
× |{(i, j) ∈ A | (µ(i), µ(j)) ∈ {AU,UA,GC,CG,GU,UG}}|

Given an arc-annotated sequence (Q,A) aligned with a plain sequence T , we distinguish three
different BPCI values, corresponding to different categories of base-pairs in A. Indeed, given that
Rfam annotates pseudoknots with letters (A-a,B-b…) on a “base” conflict-free structure, we distin-
guish pseudoknotted base-pairs from non-pseudoknotted base-pairs using this criteria. This gives
rise to BPCIPK and BPCIno-PK, the proportions of conserved pseudoknotted (resp. non-pseudoknotted)
base-pairs when mapping (Q,A) onto T . As one might expect, when InfeRNAl is used to build the
full Rfam alignment, the “pseudoknotted base-pairs” defined above are exactly the base-pairs that are
not taken into account.

Nucleotide match. Finally, the “nucleotide match” metric is a pure measure of sequence conserva-
tion. Given an alignment of two sequences S1 and S2, it is simply the proportion of aligned symbols
S1[i] and S2[j] such that S1[i] = S2[j].

4.2.2 Results

Experiment 1 results interpretation. The results of Experiment 1 are summarized on Table 4.1.
A graphical representation (scatter plots) is also given on Figure 4 and Figure 5 in Appendix C. We
list below what we identify as take-away messages for these results. The overall picture is contrasted,
and suggests that to truly evaluate the importance of taking pseudoknots into account in homolog
sequence alignment and search, other experiments may be needed.
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Experiment 1 AFI sensitivity PPV nucl. match BPCI BPCINO-PK BPCIPK
LiCoRNA 0.74± 0.19 0.72± 0.19 0.82± 0.18 0.62± 0.12 0.90± 0.06 0.91± 0.06 0.85± 0.16
LocARNA 0.79± 0.12 0.70± 0.16 0.86± 0.12 0.59± 0.13 0.83± 0.10 0.84± 0.09 0.79± 0.20

Rfam 1.00± 0.00 0.92± 0.05 1.00± 0.00 0.55± 0.15 0.89± 0.07 0.88± 0.07 0.92± 0.14
Smith-Waterman 0.83± 0.09 0.56± 0.21 0.73± 0.19 0.66± 0.10 0.73± 0.15 0.72± 0.15 0.80± 0.19

Table 4.1: Summary of the results of Experiment 1. A full graphical representation of these results is given in
Appendix C, on Figure 4. Values are the average obtained over the selected families with each method, plus or
minus the standard deviation. For each metric, the method obtaining the best result is highlighted in gray. For
AFI and PPV, Rfam (i.e., simply taking the seed alignment) yields a value of 1 by definition. For AFI, the second
highest value of 0.83 for Smith-Waterman is remarkable, as it means that a pure sequence-based method yields
an alignment that is more similar to the seed alignment than structure-based approaches. Another surprising
result is the fact that, whereas LiCoRNA is the best method in terms of overall BPCI and BPCINO-PK, it is not
as good for pseudoknotted base-pairs. A potential explanation for both these facts would be that, in Rfam,
pseudoknots are primarily aligned based on sequence similarity. A more thorough analysis of the results is
provided in the main text.

1. Except for BPCI values, LiCoRNA and LocARNAhave similar performances on all other met-
rics. This is surprising because LocARNA does not take pseudoknots into account. A tentative
explanation would be that, by taking into the base-pairing probabilities (Box 2, page 22 of Chap-
ter 1), it may indirectly account for pseudoknotted base-pairs.

2. Apart from Rfam, which by definition has an AFI value of 1, the Smith-Waterman alignments
are the closest to the seed alignments per the AFI metric. This points towards a high amount
of sequence-based aligning in the seed alignments of pseudoknotted families in Rfam. One pos-
sible explanation is that, since InfeRNAl cannot take pseudoknots into account, the only way it
may achieve some form of pseudoknot conservation is through strong sequence conservation.
It may then be that, through iterations of the manual curation of seed alignments, such a pattern
emerged as the most performing.

3. In terms of proportions of conserved base-pairs, i.e. BPCI values, LiCoRNA conserves over-
all as much (and even slightly more) base-pairs as the seed alignment. However, this
surprisingly stops being true when restricting the analysis to pseudoknotted base-pairs
(BPCIPK). This means that optimizing for the score function of LiCoRNA does not yield the seed
alignment of Rfam. A possible interpretation is that, when manually-curating seed alignments
in Rfam, special care is taken to yield alignments compatible with pseudoknots. It would ap-
pear here that in fact, when globally optimizing for base-pair conservation (pseudoknotted and
non-pseudoknotted alike) and sequence mapping, pseudoknots of the consensus structure for
these families are not as robust as expected.

Experiment 2 results interpretation. The results of Experiment 2 are summarized on Table 4.2.
Full graphical representations (scatter plots) of these results can be found on Figures 6, 7, 8 and 9 in
Appendix C. We comment here on two salient aspects of these results.
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Experiment 2 nucl. match BPCI BPCINO-PK BPCIPK
LiCoRNA 0.58± 0.11 0.92± 0.06 0.93± 0.06 0.84± 0.15
LocARNA 0.55± 0.13 0.83± 0.13 0.84± 0.12 0.79± 0.17
InfeRNAl 0.67± 0.10 0.90± 0.11 0.90± 0.11 0.90± 0.17

Smith-Waterman 0.48± 0.10 0.43± 0.17 0.41± 0.17 0.49± 0.22

Table 4.2: Summary of the results of Experiment 2. A full graphical representation is given on Figures 6,7,8
and 9 in Appendix C. As Table 4.1, the values are average scores of the selected set of Rfam families, along
with their standard deviation , for each tool. Surprisingly, LiCoRNA achieves the highest BPCI values except
when restricting the scope to pseudoknotted base-pairs. Another unexpected result is that InfeRNAl achieves
a higher nucleotide match score than Smith-Waterman. A common tentative explanation to both of these
facts would be that, when it comes to pseudoknotted base-pairs, the manually-curated seed alignment and
consensus structure annotation are built based mostly on sequence conservation. When optimizing instead for
a combination of both sequence and structure conservation, these base-pairs do not prove as robust as non-
pseudoknotted ones.

1. LiCoRNA obtains the best BPCI scores, except for pseudoknotted base-pairs. The situa-
tion is similar to that of Table 4.1. Wemay therefore put forward the same tentative explanation,
namely that pseudoknotted base-pairs in Rfam are annotated based mostly on sequence conser-
vation. They turn out to be less robust then non-pseudoknotted base when optimizing for a
combination of structure and sequence conservation.

2. InfeRNAl obtains a higher nucleotide match score than Smith-Waterman. This high nu-
cleotide conservation score is consistent with the point made above, that InfeRNAl primarily
uses sequence conservation to align pseudoknots. In doing so, it is more likely to conserve pseu-
doknotted base-pairs that have been annotated in accordance with this sequence conservation.

Conclusion: a contrasted picture. Our results do not clearly highlight the added value of taking
pseudoknots into account when aligning putative members of pseudoknotted ncRNA families. Part
of the difficulty may stem from the fact that, even though seed alignments are manually curated, they
are still influenced by the inability of InfeRNAl to take pseudoknots into account. Indeed, our results
point toward a qualitative annotation difference between pseudoknotted and non-pseudoknotted base-
pairs. It seems that pseudoknot annotation is strongly based on sequence conservation. Then when
using the seed alignment as a basis for a covariance model, and running InfeRNAl to build the full
alignment, pseudoknots are conserved only as a result of strong sequence conservation.

Pseudoknotted covariance models. A more complete set of experiments, that might be able to
highlight better the importance of taking pseudoknots into account, should allow for the tweaking of
the seed alignment and its consensus structure. In combination, ideally, onewould use a pseudoknotted
generalization of infernal, which should allow to build “full sets” of sequences of better quality for
pseudoknotted ncRNAs. In the latter, “quality” could be for instance measured in terms of increased
covariation for pseudoknotted base-pairs, and higher overall statistical likelihood of family members
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compared to other sequences.
The next section gives a tentative formulation of such pseudoknotted covariance models. It consists

in generalizing the stochastic context-free grammars underlying InfeRNAlwith multiple context-free
grammars [181], and using a LiCoRNA-like treewidth-based algorithm for aligning sequences onto
them.

4.3 Formulation of pseudoknotted covariance models

4.3.1 Rewriting InfeRNAl and LiCoRNAdifferently

We start by writing the score functions of InfeRNAl and LiCoRNA into a common framework. This
will allow to write down a score function corresponding to a pseudoknotted version of covariance
models. Interpretations in terms of stochastic grammar, and the question of maximum likelihood
inference with a treewidth-based algorithm, will be addressed later sections.

Re-writing InfeRNAldifferently. Sequence emission in InfeRNAl is the combination of the sam-
pling of a state sequence and symbol emission at the states of that sequence equipped with emission
probabilities (match and insert states). When aligning a sequence S with the covariance model (with
equations such as Equation 4.1), we ask for the sequence of states ~s that maximizes:

scoreInfeRNAl(~s) = logP (~s) + logP (~s emits S)

with, if ~s = [s0 . . . st], logP (~s) =
∑t−1

i=0 logP (si → si+1). As for the probability that ~s emits S,
let us define µ(i, ~s) in order to express it. With i a covariance model position (e.g., the i in a state like
MPij), µ(i, ~s) is the position in the sequence S that i is aligned with, depending on the state sequence
~s (in particular the amount of insert states it has). With this notation:

logP (~s emits S) =
∑

i s.t. si=MPkl

logP (MPkl emits S[µ(k,~s)], S[µ(l, ~s)])

+
∑

i s.t. si=MLk,ILk or MRk

logP (si emits S[µ(k,~s])

Notation
4. δ (dele-
tion) and η
(presence of
gap)

New variables. For any position i of the covariance model, let us introduce δ(i), a binary variable
indicated whether i is deleted (δ(i) = 1) or not δ(i) = 0. In addition, for two consecutive positions
i, i + 1, we introduce η(i, i + 1), a binary variable indicating whether an insertion has taken place
between i and i+ 1.

Notations. Recall that a covariance model is a tree of nodes, with each node containing inter-
connected states. Given a node a, we write∆(a) the set of variables δ(i), for any position i belonging
to the node. For instance∆(MATPij) = {δ(i), δ(j)}. Likewise, we write I(a) (for “insert”) for the set
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of η variables in the split set of a, i.e. corresponding to the insert states belonging to a. In addition, the
tree of nodes (guide tree) is called T , with edge set E(T ). With these notations, the InfeRNAl score
simply reads:

scoreInfeRNAl(~s) =
∑

a→b∈E(T )

sc(∆(a), I(a),∆(b)) + logP (~s emits S)

with sc a score contribution consisting of transition probabilities within the states of a and into the
states of b. Examples of how state sequences correspond to assignments of δ and η variables is given
on Figure 4.3 For two stacked base-pairs (i, j) and (i+ 1, j − 1), it reads: i ji+ 1 j − 1

sc (δ(i), δ(j), δ(i+ 1), δ(j − 1), η(i, i+ 1), η(j − 1, j))

Score contributions per helix. One way to define “helices” in InfeRNAl is to say that they are the
pieces found between start, end, and bifurcation nodes. These nodes (BEGL, BEGR, BIF) only consist
of single states (e.g., B for a bifurcation node). The transition between a BIF node and a “begin” node
for another helix is deterministic. This architecture cuts off any scoring dependencies across helices,
so that scoreInfeRNAl may also be seen as a sum of scores over helices. WithH the set of helices, and
each helix H ∈ H seen as a path of nodes:

scoreInfeRNAl(~s) =
∑
H∈H

 ∑
a→b∈E(H)

sc(∆(a), I(a),∆(b)) + logP (~s ∩H emits S[H,~s])

 (4.2)

Where S[H,~s] is the portion of sequence aligned with helixH , given ~s. The only interaction between ~s: state se-
quencehelices is the fact of choosing “which parts of the sequence S” aligns withH , which needs to be done

in a consistent way across helices. In the notations originally used for LiCoRNA, it corresponds to
guessing µ. The consistency then corresponds to µ being monotonous (µ(i) ≤ µ(i′) for i < i′).

Rewriting LiCoRNAdifferently. Let us recall the cost function that LiCoRNA optimizes for:

score(µ) =
∑

(i,j)∈A

γ2(i, j, µ(i), µ(j))+
∑

i s.t µ(i) ̸=⊥

γ1(i, µ(i))+
∑

gap g⊂Q

λQ|g|+cQ+
∑

gap g⊂T

λT |g|+cQ

where µ : [1 . . . |Q|]→ [1 . . . |T |] ∪ {⊥} and µ(i) =⊥ means that position i is deleted. By restricting
µ to non-deleted positions, and using the variables δ and η to signal deletions and gaps, we can write:

scoreLiCoRNA(µ, η, δ) =
∑
i,j∈A

scbp(δ(i), δ(j)) +
∑

i s.t. (δ(i),δ(i+1))=(0,1)

cQ

+
∑

i s.t. η(i,i+1)=1

λT · (µ(i+ 1)− µ(i)) + cT

+
∑

i s.t. δ(i)=1

λQ + scseq(µ, S)
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IL IR

MP ML MR D

IL IR
i j

k l

δ(i) = 0, δ(j) = 0
η(i, k) = 0

η(j, l) = 0

δ(k) = 0, δ(l) = 0

ML DMP MR

IL IR

MP ML MR D

IL IR
i j

k l

δ(i) = 0, δ(j) = 0

η(i, k) = 1 η(j, l) = 1

δ(k) = 0, δ(l) = 1

Figure 4.3: A sequence of states in a covariance may be specified by binary variables δ and η, associated to
each position of the consensus structure. δ(i)means “is position i deleted?” while η(i, k)means “is there a gap
between i and k?”. In the example shown above, k = i+1 and l = j−1, but separate letters were kept for clarity.
The score function of both InfeRNAl and LiCoRNAmay be expressed in terms of these variables, allowing for
the development of a pseudoknot-aware covariance model (or a stacking-aware LiCoRNA, depending how you
look at it).

With scbp accounting for the deletion (partial or complete) of base-pairs, and scseq(µ, S) accounting

for any sequence-related term, i.e. γ1 and some γ2 terms from the original formulation.

4.3.2 Pseudoknotted covariance models

Overview of the structure. To describe the overall structure of our formulation of pseudoknotted
covariance models, we first describe a way to partition a structure graph G(A) into helices, when A
is an arbitrary pseudoknotted secondary structure. Each base-pair and each unpaired position will
belong to one helix, and the overall score function will be, as for InfeRNAl, a sum over helix-wise
terms.

Partition into helices. Given A a (non-empty) pseudoknotted structure and G(A) its structure
graph (Definition 25), we first partition the base-pairs, unpaired positions, and “backbone edges” be-
tween positions into helices {H1, . . . , Hp} as follows. Let bp1, bp2 be two base-pairs of A, and x an
unpaired position of A.

• If bp1 ⊂ bp2 or bp2 ⊂ bp1 and they are in conflict with the same sub-set ofA, then they belong
to the same helix. This relationship defines equivalence classes, which are starting point for
helices.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 4.4: Example of a partition of a pseudoknotted structure into helices, so that unpaired positions and
edges between consecutive positions are also assigned to an helix. For base-pair, the equivalence relation that
defines these helices is to be (1) nested and (2) crossing the same set of other base-pairs. The score function of
pseudoknotted covariance models will then be expressed as a sum of terms corresponding to each helix.

• Let y and z be the closest paired positions of x in G(A), such that y < x < z, and bpy , bpz the
corresponding base-pairs. If y (resp. z) does not exist, then x is assigned to the helix containing
bpz (resp. bpy). If bpy and bpz belong to the same helix, then x also belongs to that helix. If
they do not belong to the same helix, then we simply choose to assign it to the helix containing
bpy .

• Finally, we assign the “backbone edges” between consecutive positions to helices. If two neigh-
boring positions belong to the same helix, then so does the edge connecting them. If they do
not, we arbitrarily assign the edge to the left position.

An example of such a partition of a pseudoknotted structure into helices is given on Figure 4.4. The
core idea of our formulation of pseudoknotted covariance models is that these helices are treated
exactly like in InfeRNAl. In particular, each of them is associated with a “directed path of nodes”,
starting with a “begin” node and followed by a succession of MATP, MATL or MATR. These nodes contain
the same states as in InfeRNAl, connected in the same way.

Conflict-connected components. Thedescription of themultiple context-free grammar associated
with such crossing sets of helices requires defining conflict-connected components. Quite simply, two
helices are in the same component if they cross, i.e. if the base-pairs they contain cross. In this de-
composition, helices that do not cross any other correspond to a context-free grammar, just like in
InfeRNAl. Only the non-trivial connected components need new grammar rules. Such a decomposi-
tion is illustrated on Figure 4.5. The components themselves form a tree, with conflicted components
informally corresponding to multiple “parallel” helices. This tree is a generalization of the guide tree
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of standard covariance model. We call it the generalized guide tree.

Associated stochastic grammar. Given a pseudoknotted secondary structure A, and its decom-
position into helices and conflicted-components described above, we give here a description of the
multiple context-free grammar associated to it.

To start with, non-conflicted helices just correspond to standard context free grammar rules. We
give here a description of rules for conflicted-components. Let C be such a component, containing
helices H1, . . . , Hp. Recall that C is simply seen as a “big node” in the generalized guide tree. Its
grammar therefore simply starts with a “begin” non-terminal symbol BC . Then, to each helix Hi is
associated a pair of symbolsBL

i , B
R
i . ToBC is associated one deterministic production rule producing

a succession of BL
i , B

R
i symbols following the conflict pattern of H1 . . .Hp. An example is given in

the margin. Then, for each helix Hi, we have the rule:
[ ]{ }
H-type

BC →
BL

1 BL
2 BR

1 BR
2(BL

i , B
R
i )→ (AL

i S
L
i , S

R
i A

R
i )

AL
i andAR

i are “anchor variables” that will be used once all of the helices in C have been “generated”.
They mark the potential “holes” of the component, in which sub-structures will be inserted (for ex-
ample, on Figure 4.5, the start symbol of the purple sub-structure, starting with base-pair 14-20, will
be connected to one of these “anchor variables” of the orange structure). As for SL

i and SR
i , they are

simply a regular “start state” S that has been split in a left and right part. All states from the standard
covariance model representation are split this way. For instance, the rule applying to an MP state is:(

MPLij , MPRij
) pij(a,b)−−−−−−−→

p(MPij→V )

(
a · V L, V R · b

)
A similar split applies to all rules of the stochastic context-free grammar associated to a covariance
model. Finally, when the “end” symbol of each helix is reached, some of the anchor variables may
be used as a starting point for sub-structures. On the example given on Figure 4.5, the purple helix
grammar rules would start from AR

H , with H the 7-8/21-22 helix. If a “hole” is bordered by two of
these anchors, we arbitrarily associate the starting of the substructure to the left one.

Terminology. For a pseudoknotted secondary structure A, the set of nodes, states and grammar
rules described above, combined with transition and emission probabilities, is a pseudoknotted covari-
ance model associated to A.

Score function. Given a pseudoknotted covariance model associated to A, and a sequence S, we
use the variables µ, δ, η defined in the previous subsections to explore the set of state successions and
emissions producing S. The score function on µ, δ, η is then simply the same as InfeRNAl. With H
the set of helices in A, and each helix H ∈ H seen as a path of nodes:

scorepkcm(µ, δ, η) =
∑
H∈H

 ∑
a→b∈E(H)

sc(∆(a), I(a),∆(b)) + logP (~s ∩H emits S[H,~s])

 (4.3)
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BP2 24
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IL IR
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Figure 4.5: Example of the structure of a pseudoknotted covariance model. Each helix is represented with
a succession of InfeRNAl-like nodes (MATP,MATL,MATR), containing the same states, and connected the same
way. Conflicted helices, here depicted “in parallel” require grammar rules acting on couples of symbols, making
the corresponding grammar a multiple context-free grammar [181, 16]. The score function of a pseudoknotted
covariance model is essentially the same as the one of InfeRNAl (Equation 4.2). The originality is the LiCoRNA-
like treewidth-based algorithm for the alignment problem.



CHAPTER 4. PRACTICAL TREEWIDTH-BASED STRUCTURE-SEQUENCE ALIGNMENT 118

With ~s a set of states, specified by µ, δ, η, and S[H,~s] the part of the sequence aligned with H given
µ, δ, η. Recall that ∆(a) and I(a) are respectively the set of δ and η variables associated to node a.

To flesh it out a little bit more, let us see the terms involved for two perfectly stacked base-pairs i, j
and k, l (k = i+ 1 and l = j − 1). We write the overall contribution sci,j,k,l

stack
:

sci,j,k,l

stack
= scseq(S, δ(i), δ(j), µ(i), µ(j)) + scs⃗(δ(i), δ(j), η(i, k), η(l, j), δ(k), δ(l))

+ scgap(µ(i), µ(k), η(i, k)) + scgap(µ(j), µ(l), η(j, l))

With scseq that depends on which state among MP, ML, MR, D is selected for (i, j), and how likely it
is that the corresponding characters in S (at positions µ(i), µ(j)) are then generated. The (binary)
variables δ(i), δ(j) specify which of the four states is chosen. scs⃗ scores the likeliness of transitioning
among the states of the 2 base-pairs, and the insert states in between. A pictorial representation of
such terms, for all possible transitions (up to symmetries) between MATP, MATL and MATR nodes is
given on Table 4.3. In the “variable graph” column, each µ, δ, η variable corresponds to a vertex, and
two vertices are connected if they appear together in a scoring term.

4.3.3 Aligning sequences to a pseudoknotted covariance model

Augmented structure graph. Aligning sequences onto a pseudoknotted covariance model
(PKCM) will be done through dynamic programming over a tree decomposition. Compared to
LiCoRNA, which works with a tree decomposition over the structure graph G(A) of the consensus
structureA, aligning a PKCM involves a tree decomposition of an augmented structure graphG+(A).

Where G(A) can be seen as a graph with one vertex per µ(i) variable, for i any consensus
position, G+(A) takes as vertices all µ, δ and η variables. Two variables are connected if they need
to be scored together by a term in the cost function scorepkcm. This graph construction is akin to
cost function networks [187] or constraint networks [188], i.e. networks of variables in which edges
represent dependence.

Another way of constructing it, given a pseudoknotted secondary structure A, is to first de-
compose A into helices H1, . . . , Hp. In turn, each helix H is decomposed into structural elements
(base pairs, left bulge and right bulge) following an InfeRNAl-like representation (MATP, MATL or
MATR). The transitions between each of these elements are replaced the corresponding sub-graphs
on the right column of Figure 4.3. The resulting graph G+(A) contains G(A) as a sub-graph, when
selecting µ variables only.

Distinguishing vertices: heavy and light. When guessing the optimal assignment of (µ, δ, η),
each µ(i) has a domain of possible values of size m with m = |S|, the size of the input sequence,
whereas δ(i) and η(i, k) are binary variables. Vertices corresponding to µ variables are therefore
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transition state graph variable graph

MATP→MATP
ML DMP MR

MP ML MR D

IL IR

µ(i) µ(j)

µ(k) µ(l)

η(l, j)

δ(j)δ(i)

η(i, k)

δ(l)δ(k)

MATP→MATL
ML D

MP ML MR D

IL IR

µ(i) µ(j)

µ(k)

η(l, j)

δ(j)δ(i)

η(i, k)

δ(k)

MATL→MATL
ML D

ML D

IL

µ(i)

µ(k)

δ(i)

η(i, k)

δ(k)

MATL→MATP
ML DMP MR

ML D

IL

µ(i)

µ(k) µ(l)

δ(i)

η(i, k)

δ(l)δ(k)

MATL→MATR
DMR

ML D

IL

µ(i)

µ(l)

δ(i)

η(i, k)

δ(l)

Table 4.3: Within an helix, the different possible transitions between MATP, MATL and MATR nodes give rise
to different terms in the overall scoring function. A crucial feature is accounting for stacking effects in the
MATP → MATP transition. In the right column, variables that appear together in a scoring term are connected
by an edge. A dotted edge indicates a connection to the next µ variable. These graphs are valid for both
InfeRNAl and pseudoknotted covariance models, as the scoring function is the same (the difference being the
potential conflicts of helices).
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said to be heavy, and vertices corresponding to δ and η variables are said to be light. Given a tree
decomposition T ofG+(A), we definew

light
(resp. w

heavy
) to be themaximumnumber of light vertices

(resp. heavy) in a bag of T , minus 1. The complexity of aligning a sequence S onto a PKCM depends
on the following graph-theoretical result:

Theorem 18. There is a constant c such that, for any A a pseudoknotted secondary structure and
G(A) its structure graph, there is a tree decomposition T of G+(A) such that:

• w
heavy

(T ) = tw(G(A))

• w
light

(T ) ≤ c · tw(G(A))

Proof. Let us start with a tree decomposition T of G(A), and augment T with light vertices until it
represents G+(A). Throughout this proof, we simply denote tw(G(A)) by tw. Let us first consider
the case of stacked base-pairs (i, j) and (k, l). For each such stack, the edges originally represented
by T are:

µ(i) µ(j)

µ(k) µ(l)

However, given the possibility of alternatively representing tree decompositions as chordal comple-
tions [168], i.e. the addition of edges so that every cycle of length ≥ 4 has a chord, we know that T
must represent one of the edges (µ(k), µ(j)) or (µ(i), µ(l)). Let us assume w.l.o.g it is (µ(k), µ(j)).
For “free” we now have the graph denoted by (1) below:

µ(i) µ(j)

µ(k) µ(l)

(1)

→

µ(i) µ(j)

µ(k) µ(l)

δ(j)δ(i)

δ(l)δ(k)

(2)

→

µ(i) µ(j)

µ(k) µ(l)

η(l, j)

δ(j)δ(i)

η(i, k)

δ(l)δ(k)

(3)
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Let us start adding light vertices. Our purpose is to first start representing edges ofG+(A) for all
stacks at once, while keepingw

light
under control, andw

heavy
unchanged. ∀i, and for every occurrence

of µ(i) in a bag, we start by adding δ(i) to that bag. The overall cost is that w
light

go from 0 to tw,

while w
heavy

stays constant at tw. For each stack, T now represents the graph depicted above as (2).

Next, for all consecutive positions i, k, we add η(i, k) to each bag where both µ(i) and µ(k) are
present. Since there can be at most tw+1

2 pairs (µ(i), µ(k)) present in a given bag, the cost is an aug-
mentation ofw

light
from tw to 3tw+1

2 . We get the graph the graph depicted above as (3). The only thing

missing is to turn the six light vertices in the center a clique. We apply a similar transformation for
each of the missing edges. Consider for example (δ(i), δ(l)). If there is no bag containing both, then
there must be a bag intersection S = X ∩Y of two adjacent bagsX and Y such that S is a (δ(i), δ(l))
separator (Proposition 2, page 36 in Chapter 1). S must contain δ(k) and δ(j). Since |S| ≤ tw, there
can be at most tw/2 stacks for which S separates δ(i), δ(l). Therefore, by augmenting all bags (in-
cludingX and Y ) between the occurrences of δ(i) and those of δ(l)with (for instance) δ(i), and doing
so for each stack only increases w

light
by a factor of 1.5. Doing so for edges (δ(i), δ(l)), (δ(i), η(l, j)),

(δ(k), η(l, j)), (δ(j), η(i, k)), (δ(l), η(i, k)) and (η(i, k), η(l, j)) increases therefore w
light

by a factor

of
(
3
2

)6.
After this process, all necessary edges for all stacked base-pairs are represented in T . We still have

w
heavy

= tw, while w
light
≤
(
3
2

)6 · 3tw+1
2 . We apply similar transformations to represent all edges in

G+(A), i.e. also covering the other cases of Table 4.3. Each new potentially incurs a constant-factor
increase to w

light
, while w

heavy
stays constant.

Complexity statement. Through dynamic programming over a tree decomposition ofG+(A), we
argue that we can align an input sequence S with a PKCM (i.e., finding optimal µ, δ, η for scorepkcm)
in the following complexity:

Theorem 19. Given a tree decomposition T of G+(A), the complexity of aligning a sequence S of
length m onto a pseudoknotted covariance model with n nodes is O(2wlight(T ) · n ·mwheavy(T )+1)

Proof. Much like the LiCoRNA algorithm, a table c[X, (µ, η, δ)] is filled. X is a bag of T with par-
ent P and children Y1, . . . , Yℓ, and (µ, η, δ) are partial assignments to the vertices in P ∩ X . With
(µ+, η+, δ+) assignments over the full set X (which can be assumed to have only at most one extra
element with respect to P ), we have a recursive equation of the form:

c[X, (µ, η, δ)] = max
(µ+,η+,δ+)∈comp(µ,η,δ)

[
ℓ∑

i=1

c[Yi, (µ
+, η+, δ+) ∩ Yi] + lcost((µ+, η+, δ+), S)

]
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With:

• comp is a set of compatible assignments for {u} = P \X , given the constraint µ, η, δ.

• lcost evaluates any term of the cost function for which X is the highest bag in T containing
all variables involve in the term. Such a bag must exist, as the variables in question form a clique
in G+(A).

The complexity analysis is similar to that of LiCoRNA. The minimization is over at most 4 ·m values,

while there are ≤ 2

w

light ·m

w

heavy entries in the table.

Combining Theorems 18 and 19 yields the following Corollary. In its statement, m is the length
of a given sequence and n the number of in the pseudoknotted covariance model.

Corollary 2. There is a constant c such that, for any sequence S and any pseudoknotted covari-
ance model P with consensus structure A, the complexity of aligning S on P is O(2c·tw(G(A)) · n ·
mtw(G(A))+1)

In particular, the degree of the polynomial does not increase with respect to LiCoRNA. For a
conflict-free secondary structure, by choosing a simple tree decomposition that follows the guide

tree, we do recover InfeRNAl and its O(n3) complexity3.

4.4 Conclusion and perspectives

In this chapter, we discussed methods for pseudoknotted structure-sequence alignment, with the
long-term purpose of enabling efficient pseudoknotted homolog search. Reaching that goal should
allow for a better support of pseudoknotted families in Rfam, the reference database for ncRNAs. The
need for manual curation of these families could then be lifted, and the ability to annotate a wider
variety of pseudoknotted ncRNAs increased.

However, our numerical evaluation of LiCoRNA, a treewidth-based tool for pseudoknotted
StRuctuRe-Seence Alignment, on Rfam data shows the difficulty of outlining the added
value of taking pseudoknots into account. Part of this difficulty might come from taking seed
alignments of Rfam as a reference. Another difficulty in our experiment is the prohibitive computa-
tional cost of LiCoRNA, which required computing time on a cluster to be evaluated, when all other
tools could be run on a laptop. A fuller set of experiments should allow for the tweaking of seed
alignments, and find ways to accelerate pseudoknotted StRuctuRe-Seence Alignment. For the
former, an idea would be to use a pseudoknotted equivalent of InfeRNAl, which could then replace it

3conflict-free secondary structures have treewidth 2.
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in any part of the Rfam pipeline for pseudoknotted families.

Formulating such a pseudoknotted covariance model, based on tree decompositions, and gen-
eralizing InfeRNAlwith a multiple context-free grammar was carried out in the second part of this
chapter. A natural next step is therefore the implementation, optimization (such as a refinement of
the c constant in Theorem 18) and evaluation of pseudoknotted covariance models.

We conclude this chapter with a note regarding a strategy for accelerating the dynamic pro-
gramming procedure of Theorem 19 with TRee-Diet (Chapter 2). In the proofs of concept of
Chapter 2, the reduced-width models were applied to a hierarchical filtering of a sequence data-base.
We explain here briefly how they could also accelerate individual instances of alignment.

Applying tree-diet to Theorem 19. Consider A a pseudoknotted secondary structure, and A′ a
reduced model with smaller treewidth (A′ ⊂ A). Let cA′ [X, (µ, η, δ)] be an entry of the dynamic
programming table of Theorem 19, with A′ as consensus structure. Let also OPT be the maximum
possible value of cA′ [X, (µ, η, δ)] when (µ, η, δ) are variable. If R = A \ A′, then let us note Cmax

R
the maximum possible contribution of the base-pairs inR to the score function. If

cA′ [X, (µ, η, δ)] < OPT− Cmax
R

then there is no need in computing the same entry in cA, as we know it will not be the optimal
assignment. Bounds on the variables may for instance be inferred this way, hopefully reducing the
practical complexity of the overall alignment problem.
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Abstract

In this paper, we study the Independent Set (IS) reconfiguration problem in graphs, and its applica-
tions to RNA kinetics. An IS reconfiguration is a scenario transforming an IS L into another IS R,
inserting/removing one vertex at a time while keeping the cardinalities of intermediate sets as large
as possible. We focus on the bipartite variant where only start and end vertices are allowed in inter-
mediate ISs. Our motivation is an application to the RNA energy barrier, a classic hard problem from
bioinformatics, which asks, given two RNA structures given as input, whether there exists a recon-
figuration pathway connecting them and staying below an energy threshold. A natural parameter for
this problem would be the difference between the initial IS size and the threshold (barrier).

We first show the para-NP hardness of the problem with respect to this parameter. We then
investigate two new parameters, the cardinality range ρ and a measure of arboricity Φ. ρ denotes the
maximum allowed size difference between an IS along the reconfiguration and a maximum IS, while
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Φ is a measure of the amount of “branching” in the two input RNA structures. We show that bipartite
IS reconfiguration is XP for ρ in the general case, and XP for Φ in the sub-case of bipartite graphs
stemming from RNA instances.

We give two different routes yielding XP algorithms for ρ: The first is a direct O(n2)-space,
O(n2ρ+2.5)-time algorithm based on a separation lemma;The second builds on a parameterized equiv-
alence with the directed pathwidth problem, leading to aO(nρ+1)-space,O(nρ+2)-time algorithm for
the reconfiguration problem through an adaptation of a prior result by Tamaki [189]. This equivalence
is an interesting result in its own right, connecting a reconfiguration problem (which is essentially
a connectivity problem within a reconfiguration network) with a structural parameter for an auxiliary
graph. For Φ, our O(nΦ+1)-algorithm stems from seeing the problem as an instance of minimum
cumulative-cost scheduling, and relies on a merging procedure that might be of independent interest.
These results improve upon a partial O(n2ρ+2.5)-algorithm that only applied to the RNA case. We
also demonstrate their practicality of these algorithms through a benchmark on small random RNA
instances.
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5.1 Introduction

Reconfiguration problems. Reconfiguration problems informally ask whether there exists, be-
tween two configurations of a system, a reconfiguration pathway entirely composed of legal intermedi-
ate configurations, connected by legalmoves. In a thoroughly studied sub-category of these problems,
configurations correspond to feasible solutions of some optimization problem, and a feasible solution
is legal when its quality is higher than a specified threshold.

Examples and complexity. Examples of optimization problems forwhich reconfiguration versions
have been studied include Dominating Set, VeRtex CoveR, ShoRtest Path or Independent Set,
which is our focus in this article. As for legal moves, for problems with vertex subsets as solutions
(informally seen as “tokens” placed on the graph), typical choices are token sliding (TS), token jumping
(TJ) and token addition removal (TAR). In these models, tokens may only respectively slide on edges
(TS), be transferred to another position (TJ) or be removed/added one at a time (TAR).

Depending on the choice of problem and reconfiguration model (e.g. TS, TJ or TAR),complexities
range from polynomial (see [190] for examples) to NP-complete (for bipartite independent set recon-
figuration in the TAR model [191]), and even PSPACE-complete for many of them [191, 192, 193].
Such computational hardness motivates the study of these problems under the lens of parametrized
complexity [194, 195, 196, 192], in the hope of identifying tractable sub-regimes. Typical parameters
considered by these studies focus on the value of the quality threshold (typically a solution size bound)
defining legal configurations and the length of the reconfiguration sequences.

Directed pathwidth. Directed pathwidth, originally defined in [197] and attributed to Robertson,
Seymour and Thomas, represents a natural extension of the notions of pathwidth and path decom-
positions to directed graphs. Like its undirected restriction, it may alternatively be defined in terms
of graph searching [198], path decompositions [199, 200] or vertex separation number [201, 189]. An
intuitive formulation can be stated as the search for a visit order of the directed graph, using as few
active vertices as possible at each step, and such that no vertex may be deactivated until all its in-
neighbors have been activated. Although an FPT algorithm is known for the undirected pathwidth
[202], it remains open whether computing the directed pathwidth admits a FPT algorithm. XP algo-
rithms [189, 201] are known, and have been implemented in practice [203, 204].

RNAenergy barrier. As explained in Chapter 1, RNAs are single-stranded biomolecules which fold
onto themselves into 2D and 3D structures through the pairing of nucleotides along their sequence [6].
Thermodynamics then favors low-energy structures, and the RNA energy barrier problem (Problem 4,
Chapter 1 page 27) asks, given two structures, whether there exists a re-folding pathway connecting
them that does not go through unlikely high-energy intermediate states [63, 15].

Kinetics as reconfiguration and scheduling. Interestingly, the problem falls under the wide um-
brella of reconfiguration problems described above, namely the reconfiguration of solutions of opti-
mization problems (here, energy minimization). An important specificity of the problem is that the
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probability of a refolding pathway depends on the energy difference between intermediate states and
the starting point rather than the absolute energy value. Another aspect is that since some pairings
of the initial structure may impede the formation of new pairings for the target structure, it induces a
notion of precedence constraints, and may therefore also be treated as a scheduling problem, as carried
out in [205, 206].

Problem statement. In our work, we focus on independent set reconfigurations under the token
addition removal (TAR) model, with only vertices from the start or end ISs (L and R) are allowed
within intermediate ISs. This amounts to considering the induced subgraph G[L ∪ R], bipartite by
construction. We write α(G) for the size of a maximum independent set of G (recall that α(G) can
be computed in polynomial time on bipartite graphs).

Problem 11 (BipaRtite Independent Set ReconfiguRation (BISR)).
Input: Bipartite graph G = (V,E) with partition V = L ∪R; integer ρ
Parameter: ρ
Output: True if there exists a sequence I0 · · · Iℓ of independent sets of G such that

• I0 = L and Iℓ = R;

• |Ii| ≥ α(G)− ρ, ∀i ∈ [0, `];

• |Ii△ Ii+1| = 1, ∀i ∈ [0, `− 1].

False otherwise.

The vertices of L and R will typically respectively be called “start” and “end” vertices. We further
assume that when a bipartite graph G is given, a specification of which side is L (the “start” set) and
which is R (the “end” set) is given. When we explicitly need to state which sets are the “start” and
“end” sets, we will write GL→R.

“range” definition. Figure 5.1 shows an example of an instance of BISR and a possible reconfig-
uration pathway. We introduce the cardinality range (or simply range) ρ = max1≤i≤ℓ α(G) − |Ii|
as a natural parameter for this problem, since it measures a distance to optimality. As mentioned
above, another natural parameter for RNA kinetics is the barrier, denoted k, and defined as k =
max1≤i≤ℓ |L| − |Ii|. Intuitively, k measures the size difference from the starting point rather than
from an “absolute” optimum. Note that k = ρ− (α(G)−|L|), so one has 0 ≤ k ≤ ρ. Both parameters
are obviously similar for instances where L is close to being a maximum independent set, which is
generally the case in RNA applications, but in theory the range ρ can be arbitrarily larger than the
barrier k.

Our results. We first prove that in general, the barrier k may not yield any interesting parameter-
ized algorithm, since BISR is Para-NP-hard for this parameter. We thus focus on two other parame-
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Figure 5.1: Example of a bipartite independent set reconfiguration from L (blue) to R (red). Selected vertices
at each step have a filled background. All intermediate ISs have size at least 3, and the optimal IS has size 5, so
this scenario has a range of 2; it can easily be verified that it is optimal.

terizations, the range ρ, as defined above and illustrated in Figure 5.1, and the arboricity Φ in the case
of RNA instances, as illustrated on Figure 5.7.

Regarding ρ. For the range ρ, we prove that BISR is in XP by providing two distinct algorithmic
strategies to tackle it. Our first algorithmic strategy stems from a parameterized equivalence we draw
between BISR parameterized by ρ and the problem of computing the directed pathwidth of directed
graphs. It is obtained by defining a directed graph from a maximum matching of the input bipartite
graph. Within this equivalence, ρ maps exactly to the directed pathwidth. This allows to apply XP
algorithms for DiRected Pathwidth to BISR while retaining their complexity, such as the O(nρ+2)-
time,O(nρ+1)-space algorithm from Tamaki [189] (with n = |V |). This equivalence between directed
pathwidth and bipartite independent set reconfiguration is itself an interesting result, as it connects
a structural problem, whose parameterized complexity is open, with a reconfiguration problem of the
kind that is routinely studied in parameterized complexity [194, 195, 196, 192].

The other algorithmic strategy for BISR parameterized by ρ is more direct, and runs with a time
complexity of O(n2ρ√nm) (m = |E|) but using only O(n2) space. It is an example of the “bounded
search-tree” technique [71], enabled by a separation lemma. This lemma involves, if it exists, a mixed
maximum independent set of G containing at least one vertex from both parts of the graph. In the
specific case of bipartite graphs arising from RNA reconfiguration, we improve the run-time of the
subroutine computing a mixed MIS to O(n2) (rather than O(

√
nm)), with a dynamic programming

approach.

Regarding Φ. As for the arboricity Φ, we also show membership in XP of BISR restricted to RNA
instances, through dynamic programming over the sub-trees of T (S) for one of the input structures S
(see Figure 5.7). This XP algorithmwe present involves seeing the problem in terms of cumulative cost-
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((((...((((((((........)))))))).....))))

((((((((.........)))))(((.......)))..)))
((((....)........)))

A B

Figure 5.2: (A) Example of two RNA structures, and the corresponding value for the arboricity Φ. Within this
work, we consider only “conflict-free” secondary structures that can be seen as well-parenthesized strings. Φ
is then the number of “terminal” pairs of matching parentheses, highlighted by gray shading. (B) Example of
a conflict bipartite graph associated to two input secondary structures. The arcs (base-pairs) of both structures
are the vertices of the graph, and two vertices are in conflict if the corresponding arcs are not nested in one
another. By “RNA instances of BISR”, we mean instances of BISR in which the bipartite graph is such a conflict
graph of two RNA structures.
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optimal scheduling [207]. In particular, we develop amerge procedure for combining optimal solutions
on disjoint graphs into an optimal solution for the union of the graphs. We believe this merge pro-
cedure and its associated concepts (canonical solutions, preferability criteria) can be of independent
interest.

Benchmark results. Finally, we present benchmark results for all algorithms, on random instances
of general bipartite graphs as well as instances of the RNA EneRgy BaRRieR problem. The approach
based on directed pathwidth yields reasonable solving times for RNA strings of length up to ∼ 150
nucleotides.

Outline of this chapter. To start with, Section 5.2 presents some previously known results related
to BISR, and some notations and definitions we will use throughout the article. Then, Section 5.3
shows that BISR is equivalent to the computation of directed pathwidth in directed graphs. Section 5.4
presents the separation lemma and merge procedure on which our direct XP algorithm in ρ and our
XP algorithm in Φ are based. The related concepts of canonical schedule and preferability between
schedules are also introduced in this section. Section 5.5 and Section 5.6 build on the technical results
of Section 5.4 to present our direct XP algorithm parameterized by ρ and our algorithm XP in Φ in
the RNA case. To finish, Section 5.7 explains some optimizations specific to RNA reconfiguration
instances, and presents our numerical results.

5.2 Preliminaries

5.2.1 State of the art

Computational hardness. BipaRtite Independent Set ReconfiguRation was proven NP-
complete in [191], through the equivalent k-VeRtex CoveR ReconfiguRation problem. Formulated
in terms of RNAs (RNA EneRgy BaRRieR), and restricted to secondary structures (i.e., the subset of
bipartite graphs that can be obtained in RNA reconfiguration instances), it was independently proven
NP-hard in [63]. To the authors’ knowledge, its parameterized complexity remains open.

General independent set reconfiguration. Independent set reconfiguration in an unrestricted
setting (allowing vertices which are outside from the start or end independent sets, i.e. in possibly
non-bipartite graphs) when parameterized by the minimum allowed size of intermediate sets has been
proven W[1]-hard [194, 192], and fixed-parameter tractable for planar graphs or graphs of bounded
degree [195]. Whether this more general problem is in XP for this parameter remains open. We note
that in this setting, parameter ρ seems slightly less relevant since it involves computing a maximal
independent set in a general graph (i.e. testing if there exists a reconfiguration from ∅ to ∅ with range
ρ is equivalent to deciding if α(G) ≥ ρ).
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Heuristics. Given the great practical importance of RNA EneRgy BaRRieR (See Chapter 1, Sec-
tion 1.1.4.4) in Bioinformatics (BISR in the RNA case), several heuristics [65, 208] have been devel-
oped for it. In this paper, we assess the potential of parameterized algorithmics for the development
of efficient exact algorithms for the problem, starting with a simple energy model (corresponding to
BipaRtite Independent Set ReconfiguRation).

Exact algorithms. As for exact algorithms for BISR, the closest precedent is an algorithm by
Thachuk et al. [15]. It is restricted to RNA secondary structure conflict graphs, and additionally to
conflict graphs for which both parts L and R are maximum independent sets of G. In this restricted
setting, although it is not stated as such, [15] provides an XP algorithm with respect to the barrier
parameter k which then coincides with the range parameter ρ that we introduce. In this paper, we
extend this line of study by showing the Para-NP-hardness of BISR for k in the general setting. We
further show that generalizing k into ρ allows to retain membership in XP.

Bounded Φ case. Recent unpublished work [206, 205] describe polynomial-time algorithm for re-
stricted input versions of BISR. More precisely, within RNA instances of BISR, they tackle the Φ = 1
case, called “bipartite permutation graphs” in [206] and “convex bipartite partial orders” in [205]. The
specialization of XP algorithm we describe for Φ yields a O(n3) algorithm in that case, improving
over the O(n6 logn) of [206].

5.2.2 Preliminary results and notations

Restriction to the monotonous case. A reconfiguration pathway for bipaRtite independent
set ReconfiguRation is called monotonous or direct if every vertex is added or removed exactly
once in the entire sequence. The length of a monotonous sequence is therefore necessarily: ` =
|L∪R| = |L|+|R|. Theorem 2 from [191] tells us that ifG, ρ is a yes-instance of bipartite independent
set reconfiguration, then there exists a monotonous reconfiguration between L and R respecting the
constraints. We will therefore restrict without loss of generality our study to this simpler case. In the
more restricted set studied in [15], this was also independently shown.

Hardness for the barrier parameter. In the general case where L is not necessarily a maximal
independent set, the range and barrier parameters (respectively ρ and k = ρ − (α(G) − |L|) may
be arbitrarily different. The following result motivates our use of parameter ρ for the parameterized
analysis of BISR.

Proposition 8. BISR is Para-NP-hard for the energy barrier parameter k (i.e., NP-hard even for a
constant value of k, here with k = 0).

Proof. We use additional vertices in R to prove this result. Informally, such a vertex may always be
inserted first in a realization: it improves the starting IS from |L| to |L|+1, so the lower bound on the
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rest of the sequence is shifted from |L| − k to |L| − (k − 1), effectively reducing the barrier without
simplifying the instance. Thus, we build a reduction from the general version of BISR: given a bipartite
graph G with parts L and R and an integer ρ, we construct a new instance G′ with parts L′ = L and
R′ equal toR∪NR and ρ′ = ρ. NR is composed of |L|− (α(G)−ρ) isolated vertices (we can assume
without loss of generality that this quantity is non-negative, otherwise (G, ρ) is a trivial no-instance),
completely disconnected from the rest of the graph.

Note that α(G′) = α(G)+ |NR| = |L|+ρ, so the barrier in (G′, ρ′) is k = ρ− (α(G′)−|L|) = 0.
A realization for (G, ρ) can be transformed into a realization for (G′, ρ) by inserting vertices fromNR

first, and conversely, vertices fromNR can be ignored in a realization for (G′, ρ) to obtain a realization
for (G, ρ). Therefore, since BISR is NP-Complete, it is also Para-NP-hard w.r.t the barrier k.

5.2.3 Definitions

Licit sets and permutations. The following definitions and notations will be used throughout the
chapter. They allow to link, at an intermediary step along a reconfiguration, the set of processed
vertices to the current independent set and its size. We first start with the central definition of licit
subset and licit permutation. It uses the following notation: given a subset X of vertices, we define
I(X) = (L \ X) ∪ (R ∩ X) = L∆X . Intuitively, in a bipartite graph G with sides L and R, I(X)
is the independent set obtained after processing the vertices of X , starting from L (L ∩X removed,
R ∩X added).

Definition 26 (licit subset). Given a bipartite graph G with sides L and R, and X ⊆ L ∪R We
say that X is licit if I(X) is an independent set.

Permutation formulation. An equivalent representation of a monotonous reconfiguration path-
way I0 . . . Iℓ from L to R for a graph G is a permutation S of L ∪ R. We will also use the term of
schedule. The i-th vertex of the permutation is the vertex that is processed (i.e. added or removed)
between Ii−1 and Ii (this formulation lightens the representation of a solution, from a list of vertex
sets to a list of vertices). We write P ⊑ S if P is a prefix of S, and V (P ) (or simply P if the context
is clear) for the set of vertices appearing in P . The search space of BISR is made of licit permutations,
which we formally define below:

Definition 27 (licit permutation). A permutation S is licit if V (P ) is licit for each prefix P of S

Note that S is licit if and only if ∀r ∈ R, the neighborhood N(r) of r in G appears before r in S.

Balance δ and ρ-realizations. Given a subset X of vertices, we write δ(X) = |L∩X| − |R ∩X|.
With this quantity, |I(X)| = |L|−δ(X). δ(X) is called the balance ofX , as it corresponds to the size
difference between the initial IS L and the current IS I(X). Then, S is a permutation (or schedule) of
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barrier k if S is licit and for each prefix P ⊑ S, δ(V (S)) ≤ k. Equivalently, S is a ρ-realization if S is
licit and such that for each prefix P ⊆ S, |I(P )| ≥ α(G)− ρ (i.e. δ(V (P )) ≤ ρ+ |L| − α(G)). This
is consistent with the fact that ρ = k + α(G)− |L|.

Budget. Finally, given a bipartite graph G and a licit permutation S for G, we write bg(S) for the
barrier of S, i.e.

bg(S) = max
P⊑S
|I(P )| − |L| = max

P⊑S
δ(P )

The budget of a graphG is the best possible budget of a licit permutation ofG. Denoting by L(G) the
set of licit permutations of G:

bg(G) = min
S∈L(G)

bg(S)

A related quantity is the best possible range of a graphG, which we write ρ(G). It verifies ρ(G) =
bg(G) + α(G)− |L|. Note that with these definitions, the BISR problem can be equivalently defined
as deciding, given a graph G and an upper-bound ρ, whether ρ(G) ≤ ρ.

5.3 Connection with Directed Pathwidth

We first present a parameterized reduction from bipartite independent set reconfiguration to an input-
restricted version, on bipartite graphs allowing for a perfect matching. Then, this version of the prob-
lem is shown to be simply equivalent to the computation of directed pathwidth on general directed
graphs.

5.3.1 Definitions

Parameterized reduction. In this section, we provide a definition of directed pathwidth, and then
prove its parameterized equivalence to the bipartite independent set reconfiguration problem. We
say two problems P1 and P2 are parametrically equivalent when there exists both a parameterized
reduction from P1 to P2 and another from P2 to P1. The notion of parameterized reduction is also
touched upon in Chapter 1, Section 1.2.1. In this chapter, we simply use the fact that a sufficient
condition to obtain a parameterized reduction [71] from problemP to problemQ is to have a function
ϕ from instances of P to instances ofQ such that (i) ϕ(x) is a yes-instance ofQ⇔ x is a yes-instance
of P , (ii) ϕ can be computed in polynomial time (iii) the parameter of x and the parameter of ϕ(x) are
equal.

Interval representation. Our definition of directed pathwidth relies on interval embeddings. Al-
ternative definitions can be found, for instance in terms of directed path decomposition or directed
vertex separation number [198, 189, 201].
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Definition 28 (Interval representation). An interval representation of a directed graph H as-
sociates each vertex u ∈ H with an interval Iu = [au, bu], with au, bu integers. An interval
representation is valid when (u, v) ∈ E ⇒ au ≤ bv . I.e, the interval of u must start before the
interval of v ends. Ifm,M are such that ∀u,m ≤ au, bu ≤M , we define the width of an interval
representation as maxm≤i≤M |{u|i ∈ Iu}| − 1

Definition 29 (directed pathwidth). The directed pathwidth of a directed graph H is the min-
imum possible width of a valid interval representation of H . We note this number dpw(H).

A proof of the equivalence of this definition with other formulations of directed pathwidth is given
in the Appendix (Proposition 14).

Nice interval representation. An interval representation is said to be nice when no more than one
interval bound is associated to any given integer, and the integers associated to interval bounds are
exactly [1 . . . 2 · |V (H)|]. Any interval representation may be turned into a nice one without changing
the width by introducing new positions and “spreading events”. See Appendix D.4 for more details.

Directed graph from perfect matching. Given a bipartite graph G allowing for a perfect match-
ing M , we construct an associated directed graph H in the following way: the vertices of H are the
edges of the matching, and (l, r)→ (l′, r′) is an arc of H iff (l, r′) ∈ G. Alternatively, H is obtained
fromG,M by orienting the edges ofG from L toR, and then contracting the edges ofM . We will de-
note this graphH(G,M), and simply call it the directed graph associated toG,M . Such a construction
is relatively standard and can be found in [209, 210], for instance.

5.3.2 Directed pathwidth⇔ Bipartite independent set reconfiguration

Perfect matching case. Our main structural result regarding directed pathwidth is the following.
Its proof relies on interval representations, with the intuition that the number of open intervals at a
given position is the number of dependencies that have been lifted, but not compensated for yet.

Proposition 9. Let G be a bipartite graph allowing for a perfect matching M . Then G allows for
a ρ-realization iff dpw (H(G,M)) ≤ ρ.
Conversely, given any directed graph H , there exists a bipartite graph G allowing for a perfect
matching M such that H = H(G,M) and G allows for a ρ-realization iff dpw(H) ≤ ρ.

Proof. We start with the first statement, the equivalence between dpw(H(G,M)) ≤ ρ and the ex-
istence of a ρ-realization for G. First note that, since G allows for a perfect matching, we have
|L| = |R|, and by König’s theorem, if K is a minimum vertex cover of G, |K| = |L| = |R|. Since
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α(G) = |L|+ |R| − |K| we have α(G) = |L| = |R|. I.e. L and R are maximum independent sets of
G.

⇒ If G allows for a ρ-realization, then ∃P ordering of the vertices of G such that every prefix
Xi of P verifies |I(Xi)| = |L| − δ(Xi) = α(G) − δ(Xi) ≥ α(G) − ρ. Therefore δ(Xi) =
|Xi ∩ L| − |Xi ∩R| ≤ ρ.
Consider a vertex (l, r) of H(G,M), with (l, r) an edge of M . We associate to (l, r) the in-
terval [a(l,r), b(l,r)] where a(l,r) is such that P [a(l,r)] = l. i.e, it corresponds to the step in the
reconfiguration where l is removed. Likewise, b(l,r) is such that P [b(l,r)] = r.
For any edge (l, r)→ (l′, r′) of H , necessarily (l, r′) ∈ G, which implies that in the reconfigu-
ration sequence, l has to be removed before r′ is added. l appears therefore earlier than l in P ,
and a(l,r) ≤ b(l′,r′). The intervals we have defined therefore form a valid interval representation
of H .
In addition, the intervals intersecting a given position i correspond to pairs (l, r) where, at step
i, l has already been removed while r is yet to be added.
Since the decrease in independent set size incurred by the removal of l is compensated by the
addition of its match r, the number of intervals intersecting position i is exactly δ(Xi), the
imbalance of the i-prefix of P , which by hypothesis is ≤ ρ.

⇐ Suppose the directed graphH(G,M) associated toG,M has directed pathwidth≤ ρ. Consider
an optimal nice interval representation for H .
In this representation, a vertex (l, r) of H is associated to an interval [a(l,r), b(l,r)]. Thanks to
the structure of nice interval representation, we simply define a permutation P of L ∪R with,
∀(l, r) P [a(l,r)] = l and P [b(l,r)] = r.
If (l, r′) is an edge of G, with r the match of l and l′ the match of r′, then the construction
above ensures that l is before r′ in P . For two matched vertices, this is also immediate. Then,
as for two matched vertices l, r, the removal of l is compensated by the addition of r, for any
prefix Xi of P , the imbalance δ(Xi) is exactly the number of intervals intersecting position i.
By assumption, we therefore have δ(Xi) ≤ ρ and P is a ρ-realization.

For the second part of the statement, given a directed graph H , we construct a bipartite graph G
with sides L,R allowing for a perfect matching M in the following way: for each vertex u ∈ H we
introduce two vertices (lu, ru) in G. We assign lu to L and ru to R, connect lu and ru and add the
edge to the matching M . We now add an edge from lu to rv in G for any (u, v) ∈ E(H). G now
verifies H = H(G,M), and by the result above, dpw(H) ≤ ρ iff G allows for a ρ-realization.

The first half of Proposition 9 is a parameterized reduction from an input-restricted version of
bipaRtite independent set ReconfiguRation to directed pathwidth. The restriction is on bipartite
graphs allowing for a perfect matching. The second half is a parameterized reduction in the other
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direction. In both cases, the parameter value is directly transferred, which allows to retain the same
complexity when transferring an algorithm from one problem to the other.

Non-perfect-matching case. In the case where G does not allow for a perfect matching, we con-
struct G′ allowing for a perfect matching M ′, and such that ρ(G) = ρ(G′) = dpw(H(G′,M ′)). G′
is obtained from G through the addition of new vertices. Specifically, with a bipartite graph G with
sidesL,R, a maximummatchingM ofG, and the setU of unmatched vertices inG, we extendGwith
|U | new vertices in two sets NL, NR, giving a new graph G′, with sides L′ = L ∪NL, R

′ = R ∪NR,
in the following way (M ′ is initialized to M ):

• For each u ∈ L ∩U , we introduce a new vertex r(u) ∈ NR, connect it to all vertices of L′, and
add the edge (u, r(u)) to M ′.

• Likewise, for each v ∈ R ∩ U , we introduce l(v) ∈ NL, connect it to all vertices of R′ and add
(v, l(v)) to M ′.

Note that M ′ is a perfect matching of the extended bipartite graph G′.

Proposition 10. With G,G′ defined as above, we have that G allows for a ρ-realization iff G′

allows for a ρ-realization.

Proof. First note that by König’s Theorem, α(G′) = |M ′| = |M | + |U | = α(G), so it suffices to
ensure that any realization forG can be transformed into a realization forG′ where independent sets
are lower-bounded by the same value, and vice versa.

Let P be any ρ-realization ofG, then P ′ = NL ·P ·NR is a ρ-realization forG′, withNL andNR

laid out in any order. Indeed, P ′ satisfies the precedence constraint, and any intermediate set I in P ′

satisfies one of the following cases: L ⊆ I , R ⊆ I , or I is an intermediate set from P , so in any case
it has size at least α(G)− ρ = α(G′)− ρ.

Conversely, because of the all-to-all connectivity between NL and R and between L and NR, a
realization for G′ needs to have NL before any vertex from R, and have NR after all vertices from L.
Without loss of generality, it is therefore of the form NL · P · NR with P a realization of G, and G
allows for a ρ-realization.

The construction above in fact yields a parameterized reduction from bipaRtite independent set
ReconfiguRation to its input-restricted version on bipartite graphs allowing for a perfect matching.
This input-restricted version is in turn parametrically equivalent to directed pathwidth by Proposi-
tion 9. Hence the following corollary:

Corollary 3. BipaRtite Independent Set ReconfiguRation is parametrically equivalent to
DiRected Pathwidth

It allows to import algorithmic results for DiRected Pathwidth and apply them to BipaRtite
Independent Set ReconfiguRation. In particular:
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Corollary 4. There exists a O(nρ+1)-space, O(nρ+2)-time XP algorithm for BipaRtite Indepen-
dent Set ReconfiguRation.

Proof. Application of the algorithm from [211]. See also Section 5.7.1 for more details.

An implementation and a benchmark of this algorithm in the context of RNA kinetics is presented
in Section 5.7.

Limitations. The high space-complexity of [211] may hinder the practicality of the algorithm, and
the ρ parameterization may not necessarily be adapted to the RNA kinetics context. This is why we
also explored direct algorithms parameterized by ρ for the problem, presented in Section 5.5, and
another parameterization (arboricity) in Section 5.6. They rely on the technical elements presented in
the following section, regarding the role of mixed maximum independent sets (i.e., intersecting both
L and R) inG as separators and the problem of optimally merging optimal solutions for disconnected
instances.

5.4 Lemmata: algorithmic building blocks

This section introduces our main technical results, which are the building blocks of the algorithms we
propose for BipaRtite Independent Set ReconfiguRation. They consist of a separation lemma and
a merge procedure.

5.4.1 Definitions

Separators inBISR instances. Weuse the permutation representation of reconfiguration scenarios,
i.e. licit permutations of vertices (Definition 27). It will allow us to define separators, i.e. splitting points
in BISR instances, which will enable a divide and conquer approach.

Licit subset combination. First note that the intersection, as well as the union, of two licit set of
vertices are licit:

Property 5. Given X,Y two licit subsets of a graph G, both X ∩ Y and X ∪ Y are licit subsets.

Proof. Let us check that I(X∩Y ) = L\(X∩Y )∪(R∩X∩Y ) is indeed an independent set. Consider
r ∈ R and suppose r ∈ I(X ∩ Y ). Then r ∈ R ∩ X ∩ Y , and since X is licit, r ∈ X ∩ R implies
N(r)∩I(X) = ∅ and thereforeN(r) ⊂ L∩X . Likewise,N(r) ⊂ L∩Y . ThereforeN(r) ⊂ L∩X∩Y
and I(X ∩ Y ) does not contain N(r). Likewise, consider ` ∈ L, and suppose ` ∈ I(X ∩ Y ). Then
` ∈ L\ (X ∩Y ), so either ` ∈ L\X or ` ∈ L\Y . SinceX and Y are licit, eitherN(r)∩ (R∩X) = ∅
orN(r)∩ (R∩Y ) = set. In any case,N(`)∩ I(X ∩Y ) = ∅ and I(X ∩Y ) is indeed an independent
set.
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Let us now check that I(X ∪ Y ) is also an independent set. In a similar fashion, consider r ∈
I(X ∪ Y ) ∩ R. r ∈ R ∩ (X ∪ Y ) implies r ∈ R ∩ X or r ∈ R ∩ Y , which implies since X and Y
are licit N(r) ∩ (L \ X) = ∅ or N(r) ∩ (L \ Y ) = ∅, i.e. N(r) ⊆ X or N(r) ⊆ Y . In any case,
N(r) ∩ (L \ (X ∪ Y )) = ∅.

To finish, consider ` ∈ I(X ∪ Y ) ∩ L. We have ` ∈ L \ (X ∪ Y ), so ` /∈ X and ` /∈ Y . Since X
and Y are licit, N(`) ∩X = ∅ and N(`) ∩ Y = ∅, so I(X ∪ Y ) ∩N(`) = R ∩ (X ∪ Y ) ∩N(`) = ∅,
and I(X ∪ Y ) is indeed and independent set.

Permutation sub-sampling. In order to define separators, we describe here some notations useful
for re-ordering operations in permutations. Given a realization P of G and a set of vertices X , we
write P ∩X for the sub-sequence of P consisting of the vertices of X , without changing the order. Notation 5.

P∩X andP \
X

Likewise, P \X denotes the sub-sequence of P consisting of vertices not in X .

Definition of separators. A mixed maximum independent set I of G is an independent set of G
of maximum cardinality containing at least a vertex from both parts. Note that not every bipartite
graph contains such a set. Separators are licit subsets whose processing leads to mixed maximum
independent sets.

Definition 30 (separator). A separator X is a subset ofL∪R such that I(X) is amixedmaximum
independent set of G.

Separators and inversions. When otherwise specified, a bipartite graphG has sides L andR, and
the independent set reconfiguration goes from L to R. In the proofs below however, it will be useful
to also consider the instance of BISR in which R is reconfigured into L. To differentiate both, given
a graph G, we write GL→R (resp. GR→L) or the instance of BISR in which L is reconfigured into R
(resp. R into L). Likewise, we write IL→R(X) = (L \X) ∪ (R ∩X) to denote the independent set
obtained by processingX starting fromL, while IR→L = (R\X)∪(L∩X) is the result of processing
X starting from R. Interestingly, a separator for GL→R is then also a separator for GR→L.

Property 6. Let X be a separator of GL→R. Then Y = G \X is a separator of GR→L

Proof. IR→L(Y ) = (R\Y )∪(L∩Y ) = (R\(G\X)∪(L∩(G\X))) = (R∩X)∪(L\X) = IL→R(X),
which is a mixed maximum independent set of GL→R (same graph as GR→L)

Preferability and canonical schedules. The two technical results presented in this section,
Lemma 5.4.2 (separation Lemma) andTheorem 20 (merging procedure) are expressed in terms of a no-
tion of preferability and canonical schedules. The preferability order relation allows to choose between
different schedules equivalent in terms of barrier, while a canonical schedule is the “most preferable”.
These two notions are defined in the following paragraphs.
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Figure 5.3: Illustration of the definition of pref−i(S) and suff−i(S)

level-specific budgets. Formally, given a schedule S for a graphG, and−1 ≥ −i ≥ |L|−α(G), we
define `S(−i) as the smallest strictly positive integer, if it exists, such that δ(S≤ℓS(i)) = −i. Likewise,
for i such that −1 ≥ −i ≥ |R| −α(G) we define rS(−i) as the largest integer < |S|, if it exists, such
that δ(S≤rS(−i)) + |R| − |L| = i. We then write

pref−i(S) = bg(S≤ℓS(−i))

and
suff−i(S) = bg(S≥rS(−i))− δ(rS(−i))

. The corresponding prefixes and suffixes are denoted by Pref−i(S) and Suff−i(S). If `S(−i) does
not exist, then pref−i(S) = +∞, and likewise for rS(−i) and suff−i(S). Informally, these quantities
are “the budget needed to reach level −i” in the forward and reverse directions. These definitions are
illustrated in Figure 5.3. Note that upon inverting the start setL and final setR, then `S(−i), Pref−i(S)
and pref−i(S) become rS(−i), Suff−i(S), suff−i(S) and vice-versa. To be more precise, given S a
schedule, i.e. an order on vertices, let us denote by←−S its reverse schedule, with opposite order. Then,
we have:

Pref−i(S) =
←−−−−−−
Suff−i(

←−
S )

and
pref−i(S) = suff−i(

←−
S )

Based on these quantities, we define a partial order on schedules for G:

Definition 31 (preferability). Given S and S′ two schedules for a bipartite graphG, we say that
S is preferable to S′ (denoted S ≼ S′) if bg(S) ≤ bg(S′) and ∀i, pref−i(S) ≤ pref−i(S′) and
suff−i(S) ≤ suff−i(S′). In the case of an equality for all criteria, S ≼ S′ if ∀i, `S(−i) ≤ `S′(−i)
and rS(−i) ≥ rS′(−i).

Finally, we say that S is strictly preferable to S′ if S ≼ S′ and S′ ̸≼ S
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Remark that this relation is neither total nor antisymmetric (there are pairs S, S′ with either both
S ≼ S′ and S′ ≼ S′ or both S ̸≼ S′ and S′ ̸≼ S′), but it is easily seen to be transitive from the
definition. We are mostly interested in the search of global optimums, as formulated below.

Definition 32 (canonical solution). A schedule S that is preferable to any other schedule S′ for
G is called a canonical solution for G.

The notion of preferability gives us a simple criteria to choose between different schedules with the
same overall budget. This will be exploited algorithmically in our dynamic programming approach to
the bipartite independent set reconfiguration problem in the case for bipartite circle graphs, presented
in Section 5.6.

5.4.2 Separation lemma

Modularity. Lemma 5.4.2 (below) on which our algorithm XP in ρ is based is proved using the
following “modularity” property of the balance functions. Interestingly, it is almost the same property
(sub-modularity), on a different quantity (the in-degrees of vertices) on which rely the XP algorithm
for directed pathwidth [189].

Lemma 5 (modularity). Given licit subsets X and Y , we have:

|I(X)|+ |I(Y )| = |I(X ∪ Y )|+ |I(X ∩ Y )|

and
δ(X ∪ Y ) + δ(X ∩ Y ) = δ(X) + δ(Y )

Proof. We have I(X) = (L \X) ∪ (R ∩X). Therefore, |I(X)| = |L \X| + |R ∩X| = |L| − |L ∩
X|+ |R∩X|. Furthermore, |(X ∪Y )∩L| = |(X ∩L)∪ (Y ∩L)| = |X ∩L|+ |Y ∩L|− |X ∩Y ∩L|,
and likewise for R. The result stems from a substraction of one equation to the other, and an addition
of |L|. As for the second part, it comes from the definition δ(X) = |L| − |I(X)|.

Separation lemma. Based on this “modularity”, the following separation lemma is shown by “re-
shuffling” a solution into another one going through a mixed MIS.

Lemma 6 (separation lemma). Let X be a separator of G. If S is a schedule for G, then (S ∩X) ·
(S \X) ≼ S.

Proof. Let us write S′ = (S ∩X) · (S \X), and start by showing bg(S′) ≤ bg(S). Let ρ′ ⊑ S′. We
first introduce the following notation: given a prefix ρ′ of S′ with (S ∩X) ⊑ ρ′, we write remX(ρ′)
for the smallest prefix ρ of S such that V (ρ∪X) = V (ρ′). This definition is illustrated on Figure 5.4.
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• if ρ′ ⊑ (S∩X), then ∃ρ ⊑ S such that ρ′ = ρ∩X , and δ(ρ′) = δ(ρ∩X) = δ(ρ)+δ(X)−δ(ρ∪
X) (by the modularity property, Lemma 5). δ(X) is the smallest possible value for δ, therefore
δ(X)− δ(ρ ∪X) ≤ 0 and δ(ρ′) ≤ δ(ρ) ≤ bg(S).

• else if (S ∩X) ⊑ ρ′, then let ρ = remX(ρ′). We have

δ(ρ′) = δ(ρ ∪X) = δ(ρ) + δ(X)− δ(ρ ∩X)︸ ︷︷ ︸
≤0

≤ bg(S)

Let us now prove that ∀i ∈ [1 . . . α(G) − |L|], pref−i(S′) ≤ pref−i(S), and in the case of equality
`S′(−i) ≤ `S(−i). Let us first note that, since δ(X) reaches the minimum possible value for δ over
all licit subsets, we have ∀σ ⊑ (S \ X), δ(σ) ≥ 0 (otherwise, σ ∪ X would be a licit subset with
δ(σ ∪X) < δ(X)). In addition, remark that since δ(X) = |L| − α(G), Pref−i(S′) ⊑ S ∩X . Given
these elements, let ρ′ ⊑ Pref−i(S′), and ρ ⊑ S the smallest prefix of S such that ρ′ = ρ∩X . We have
δ(ρ) = δ(ρ′)+δ(ρ \X)︸ ︷︷ ︸

≥0

, so δ(ρ′) ≤ δ(ρ). It simply remains to show that ρ ⊑ Pref−i(S) to get δ(ρ′) ≤

pref−i(S). Let therefore τ be a strict prefix of ρ. We indeed have δ(τ) = δ(τ ∩X)︸ ︷︷ ︸
>−i

+ δ(τ \X)︸ ︷︷ ︸
≥0

> −i.

Therefore overall pref−i(S′) = max
ρ′⊑Pref−i(S′)

δ(ρ′) ≤ pref−i(S). In addition, δ(τ) > −i ∀τ ⊑ ρ

with ρ ̸= τ implies, when pref−i(S) < +∞, `S(−i) ≥ `S′(−i).
As for suff−i(S′), we have suff−i(S′) = pref−i(

←−
S′). By Property 6, Y = G \ X is a separator

for GR→L, and
←−
S′ = (

←−
S ∩ Y ) · (

←−
S \ Y ). Per the arguments above, pref−i(

←−
S′) ≤ pref−i(

←−
S ) and

`←−
S′(−i) ≤ `←−

S
(−i). Overall, suff−i(S′) = pref−i(

←−
S′) ≤ pref−i(

←−
S ) = suff−i(S), and in the case of

equality, rS′(−i) ≤ rS(i).

Therefore, if G allows for a mixed independent set, any optimal schedule can be assumed to
go through this independent set. A schedule that reaches IS cardinality α(G) is said to be simple.
Lemma 6 thus yields the following:

Corollary 5. Any graph G has a simple optimal schedule.

Corollary 6. For any schedule S of a bipartite graph G, ∃S′ simple such that S′ ≼ S

Proof. EitherG does not allow for a mixedMIS, in which caseα(G) = max(|L|, |R|) and any schedule
is simple, or G allows for a mixed MIS and we can apply Lemma 5.4.2 to S.

This separation result will be used in Section 5.5. We now turn to another algorithmic building
block, that is a merge procedure for combining solutions for disjoint graphs into a global optimal.
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5.4.3 Merge Procedure

Merging problem. Given two independent graphs G1 and G2, and two optimal orderings S1 and
S2, it is natural to ask whether it is always sufficient to simply interlace S1 and S2 to get an optimal
solution G, or if a rearrangement of S1 and/or S2 may be required.

In this section, we answer this question by showing that not only is rearranging is necessary in
some cases, but figuring out the optimal rearrangement is NP-hard (Lemma 7). However, we also
show that interlacing is enough when the two input schedules are in canonical form, as defined in
Definition 32. The merging procedure can then be done in linear time, as shown in Theorem 20.

Related work. A similar merge procedure had already been designed in [207] for the cumulative
cost-optimal scheduling problem, of which BipaRtite Independent Set ReconfiguRation is an in-
stance. However, the corresponding “canonical form”, strictly-optimal schedules, was not adaptable to
algorithmic application, described in Section 5.6. The unpublished pre-prints [212, 205] also claimed to
derive a merge procedure for the same problem. However, the merge (“combine”) procedure of [212]
relies on an unproven Observation (Observation 5.5 in [212]). Even if this Observation was correct,
the merge procedure presented here achieves a better (linear) complexity. As for [205], it is unclear
(in a similar fashion as [207]) how it could adapt to our algorithmic application.

Lemma 7. Given two bipartite graphs G1 and G2, S1 and S2 optimal schedules for G1 and G2

respectively, and an integer k, the problem of deciding whether bg(G1 ∪G2) ≤ k is NP-hard.

Proof. We prove the NP-hardness by reduction from the barrier problem. Given therefore a bipartite
graphG with n vertices and an integer k′, we buildG1, G2, S1, S2 and k as follows. G1 consists ofG
augmented with a (n+1, n+1)-biclique B1, such that the n+1 left vertices of B1 are dependencies
of all the right vertices of G. Additionally, one left vertex b1 is added as a dependency of all the right
vertices of G. G2 consists of a single biclique with n+ 1 left vertices and k′ + 1 right vertices.

Let S1 start with B1, followed by b1, and a simplistic schedule for G, consisting of all the left
vertices of G followed by all the right vertices of G. As B1 is a biclique, bg(G1) ≥ n + 1 and S1 is
optimal. As for S2, the only possible schedule consists of all its left vertices followed by all of its right
vertices.

We will now show that bg(G1 ∪G2) ≤ n+1 if and only if bg(G) ≤ k′. To start with, if G admits
a schedule S with bg(S) ≤ k′, then B1 · B2 · b1 · S is a n + 1-schedule for G1 ∪ G2 (with B1, B2 in
any order in which all left vertices are before the right vertices) and bg(G1 ∪G2) ≤ n+ 1.

In the other direction, if bg(G1∪G2) ≤ n+1, thenB1 is necessarily scheduled first, as scheduling
any part ofB2 beforeB1 would increase the baseline by a strictly positive amount and yield an overall
budget > n+ 1. Likewise, scheduling any part of {b1} ∪G before B2 would yield a barrier > n+ 1.
Therefore, an optimal schedule is necessary of the same form as beforeB1 ·B2 ·b1 ·S for some schedule
S of G. If it has barrier ≤ n+ 1, then necessarily bg(S) ≤ k′, concluding the proof.
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lumps: small non-breakable units. The merge procedure will exploit an interesting aspect of
canonical solutions: they start with the shortest way, if possible, to get the budget below the original
baseline. This is illustrated by the following lemma.

Definition 33. A licit subset X of a graph G is a lump if:

1. δ(X) < 0

2. ∀X ′ ⊊ X licit, we have δ(X ′) ≥ 0

Moreover, a lump X is harmless if its budget bg(X) is minimal among all lumps, and |X| is
minimal among all lumps with this budget.

In other words, when ordering lumps according to the lexicographic order over (bg(X), |X|), a
harmless lump is an absolute minimum.

Property 7. A lump X induces a connected subgraph of G.

Proof. Suppose G[X] is composed of two components induced by X1 ⊊ X and X2 ⊊ X . Both are
licit, so by the definition of a lump, δ(X1) ≥ 0 and δ(X2) ≥ 0. However δ(X) = δ(X1)+ δ(X2) < 0,
hence a contradiction.

Lemma 8. If S is a simple schedule for a bipartite graph G and X is a lump of G admitting
an optimal schedule SX such that bg(SX) ≤ min(pref−1(S), bg(S)), then S′ := SX · (S \X) is
preferable toS. It is moreover strictly preferable if either bg(SX) < pref−1(S) or |X| < |Pref−1(S)|.

Proof. We first recall the following notation: given a prefix ρ′ of S′ with SX ⊑ ρ′, we write remX(ρ′)
for the smallest prefix ρ of S such that V (ρ∪X) = V (ρ′). Conversely, we also define for a prefix ρ of
S addX(ρ) as the smallest prefix ρ′ of S such that V (ρ ∪X) = V (ρ′). Note that addX and remX are
monotonous under the prefix relation. These definitions are illustrated in Figure 5.4. Note also that for
any prefix ρ of S, ρ′′ = remX(addX(ρ)) is the smallest prefix σ of S such that V (σ∪X) = V (ρ∪X),
so in particular ρ′′ ⊑ ρ. For any such pair ρ, ρ′ with V (ρ ∪X) = V (ρ′), we show that δ(ρ′) ≤ δ(ρ).
Indeed, δ(ρ′) = δ(ρ∪X) = δ(ρ)+ δ(X)− δ(ρ∩X) (per the modularity of δ, Lemma 5). Since ρ∩X
is licit (by Property 5) by the definition of lump we have δ(ρ ∩X) ≥ δ(X) and δ(ρ′) ≤ δ(ρ).

We can now show that S′ is preferable to S, starting with bg(S′) ≤ bg(S). Consider a prefix ρ′ of
S′. If ρ′ ⊑ SX , then δ(ρ′) ≤ bg(X) ≤ bg(S). Otherwise, SX ⊑ ρ′, and δ(ρ′) ≤ δ(remX(ρ′)) ≤ bg(S).

Then, we have pref−1(S′) = bg(SX) ≤ pref−1(S) by assumption. To continue, for i such
that pref−i(S) < +∞, we have pref−i(S′) ⊑ addX(pref−i(S)) (indeed, δ(addX(pref−i(S))) ≤
δ(pref−i(S)) = −i, so addX(pref−i(S)) is some prefix, not necessarily smallest, of S′ with balance
no more than −i). Thus, for any ρ′, SX ⊑ ρ′ ⊑ Pref−i(S′), we have δ(ρ′) ≤ δ(remX(ρ′)) and
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S X X

ρ

ρ′′ = remX(ρ′)

S′ X

ρ′ = addX(ρ)

addX

remX

Figure 5.4: Illustration of the definitions of addX and remX , used in the proofs of Lemmas 5.4.2 (only addX ),8
and 10. They apply to a typical situation encountered in these Lemmas: a schedule S is shuffled so that a
licit set X is processed first. The new schedule S′ is valid since X is licit. The purpose of addX and remX is
then to draw connections between prefixes of S and corresponding prefixes in S′, in order to infer bounds on
bg(S′), pref−i(S

′) or suff−i(S
′).

remX(ρ′) is a prefix of remX(addX(Pref−i(S′))) so δ(remX(ρ′)) ≤ pref−i(S′). Overall, any prefix of
pref−i(S′) has balance at most max(bg(SX), pref−i(S)) and bg(SX) ≤ pref−1(S′) ≤ pref−i(S′) so
pref−i(S′) ≤ pref−i(S).

To finish, consider if it exists an i such that suff−i(S) < +∞. By the existence of a licit subset X
with δ(X) < 0 and of Suff−i(S), we have the existence of a mixed maximum independent set in G.
As S is simple, it does reach this minimal balance, and there is ρ ⊑ S such that δ(ρ) = |L| − α(G),
the lowest possible value for δ. A useful consequence is that we must have X ⊆ ρ, as otherwise,
δ(X ∩ ρ) ≥ 0 (by definition of lump), and when reshuffling we would obtain δ(ρ ∪ X) = δ(ρ) +
δ(X) − δ(X ∩ ρ) ≤ δ(ρ) − 1, which is not possible by minimality of δ(ρ) over licit subsets. As a
consequence ∀i, Suff−i(S′) = Suff−i(S) and suff−i(S′) = suff−i(S).

Overall, S′ = SX · S \X is indeed preferable to S. Note also that if bg(SX) < pref−1(S), then
pref−1(S′) < pref−1(S), and if |X| < |Pref−1(S)∥, then `S′(−1) < `S(−1): in both cases, S′ is
strictly preferable to S.

Canonical solutions start with lumps. Lemma 8 is akin to the “commitment lemma” of [211]
and Lemma 4.6 of [212]. However, in this paper, we link this result to newly-introduced notions of
preferability (Definition 31) and canonicity (Definition 32). This is the case in particular of Lemma 10.
It relies itself on the following existence result for lumps, essentially saying that a balanced licit set
can always be reduced to a lump.
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Lemma 9. If X is a licit set with δ(X) < 0, then either X is a lump or there is a lump Y ⊊ X
with bg(Y ) ≤ bg(X).

Proof. The proof is by induction on |X|. Pick X ′ ⊆ X licit and minimal-by-inclusion under the
condition δ(X ′) < 0. Per the minimality criteria, X ′ is a lump. If bg(X ′) ≤ bg(X), we are done.

If bg(X ′) > bg(X), consider S an optimal schedule for X , and ρ the largest prefix of S such that
δ(ρ∩X ′) = bg(X)+1: such a prefix exists, since any schedule ofX ′ (and in particular S∩X ′) reaches
balance bg(X) + 1 at some point. Let also σ denote the suffix of S corresponding to ρ, i.e. such that
S = ρ·σ. Consider now the set Y ′ = ρ\X ′. We have δ(ρ) = δ(Y ′)+δ(ρ∩X ′) = δ(Y ′)+(bg(X)+1)
and δ(ρ) ≤ bg(X) so δ(Y ′) ≤ −1. Overall, Y ′ ∪X ′ is a licit set (= ρ ∪X ′) with balance ≤ −2. In
addition, bg(Y ′ ∪X ′) ≤ bg(X) with the schedule S′ = ρ · (σ ∩X ′). The definitions of ρ,X ′, Y ′, σ
and their relations to one another are illustrated in Figure 5.5

Then, Z = V (Pref−1(S′)) yields a licit subset with δ(Z) < 0 and Z ⊊ Y ′ ∪ X ′ (as δ(Z) = −1
while δ(S′) = −2). Therefore |Z| < |X|, and we can apply the induction hypothesis to it: Z is either
a lump or contains one. In either case, there is a lump strictly included in X .

Lemma 10. If G is a bipartite graph for which there exists an optimal schedule S with
pref−1(S) < +∞, then a canonical schedule SC for G necessarily starts with a harmless lump
X = V (Pref−1(SC)).

Proof. We first show that X = V (Pref−1(SC)) is indeed a lump. By Lemma 9, since X is licit and
δ(X) < 0, either it is a lump or there exists a lump Y ⊆ X with |Y | < |X| and bg(Y ) ≤ bg(X) =
pref−1(SC) ≤ bg(G). Applying Lemma 8 to SC and Y would yield a schedule strictly preferable to
SC , which is not possible. X is therefore indeed a lump.

Finally, X is indeed harmless. Otherwise, there would exist a lump Y such that bg(Y ) < bg(X)
or |Y | < |X| if bg(X) = bg(Y ). By Lemma 8, SY · (S \Y ), with SY an optimal schedule for Y would
be strictly preferable to the canonical schedule S, which is not possible.

Harmless lumps may start canonical schedule. The merge procedure will need both the fact
that (1) one can find harmless lumps at the beginning of canonical schedules (Lemma 10) and (2) one
can put any harmless lump at the beginning of a canonical schedule. This latter point is the subject
of the following Lemma. It will also allow to show that a canonical schedule always exists for any
instance of BISR.

Lemma 11. If X is a harmless lump of G with optimal schedule SX , and SC a canonical schedule
for G \X , then SX · SC is a canonical schedule for G
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X ′ X ′Y ′

bg(X)

0

δ(Y ′ ∪X ′) < −1
δ(X) < 0

Z

X ′ X ′

δ(X ′) < 0
0

bg(X)
bg(X ′)

ρ σ ∩X ′

ρ ∩X ′ σ ∩X ′

X ′ X ′ X ′Y ′

δ(X) < 0

bg(X)

0

ρ σ

Figure 5.5: Illustration of the objects used in the proof of Lemma 9. The purpose is to show that, given a licit set
X such that δ(X) < 0, if it is not a lump itself, a smaller licit set with negative balance Z ⊊ X can be found.
The induction hypothesis can then be applied to Z to show that it contains a lump.
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Proof. Let SG be a schedule for G. We will prove that SX · SC ≼ SG.
Let us first apply Corollary 6 to get S′G simple and preferable to SG. We can then apply Lemma 8

to S′G and X . The only criteria to verify is bg(SX) ≤ min(pref−1(S′G), bg(S′G)). Since X is a licit
subset with δ(X) < 0, α(G) ≥ |I(X)| ≥ |L|, and since S′G is simple, pref−1(S′G) < +∞. By
Lemma 9, there exists a lump Y in V (Pref−1(S′G)) with bg(Y ) ≤ pref−1(S′G). As X is a harmless
lump, bg(SX) ≤ bg(Y ) ≤ pref−1(S′G) = min(bg(S′G), pref−1(S′G)). In addition, if bg(SX) = bg(Y ),
we know that |SX | ≤ |Y |.

By Lemma 8, SX · (S′G \ X) ≼ S′G ≼ SG. Let us know replace S′G \ X by SC , a canonical
schedule for G \ X , and show that we obtain a schedule preferable to SX · (S′G \ X). We have
Pref−1(SX · SC) = SX = Pref−1(SX · (S′G \X)), and ∀i ∈ [−2, . . . , |L| − α(G)]:

Pref−i(SX · SC) = SX · Pref−i+1(SC)

and
Pref−i(SX · (S′G \X)) = SX · Pref−i+1(S

′
G \X)

Given thatSC is canonical forG\X , it is preferable toS′G\X . Therefore ∀i, pref−i(SC) ≤ pref−i(S′G\
X), with Pref−i(SC) shorter in case of equality.

As for Suff−i(SX · SC) for any i ∈ [−1, . . . , |R| − α(G)], we have from the definition of a lump

Suff−i(SX · SC) = Suff−i(SC)

and
Suff−i(SX · (S′G \X)) = Suff−i(S′G \X)

As above, since SC is canonical, suff−i(SC) ≤ suff−i(S′G \ X) with Suff−i(SC) shorter in case of
equality, and the same goes for SX · SC and SX · (S′G \X).

Finally,

bg(SX · SC) = max (bg(SX),−1 + bg(SC))

≤ max
(
bg(SX),−1 + bg(S′G \X)

)
= bg(SX · S′G \X)

Overall, SX · SC ≼ SG and is therefore a canonical schedule.

Corollary 7 (existence of a canonical solution). There always exists a canonical schedule for a
given bipartite graph G

Proof. ConsiderS a simple optimal schedule forG. If pref−1(S) < +∞, then ∃p ⊑ S such that δ(p) <
0. By Lemma 9, either p is a lump or it contains a lumpX with bg(X) ≤ bg(Y ) ≤ pref−1(S) ≤ bg(S).
Let us pick X harmless. By Lemma 11 with SX an optimal schedule for X , and by induction, we get
a canonical schedule for G.
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If suff−1(S) < +∞, then pref−1(
←−
S ) < +∞. With the analysis above, we get a canonical schedule

for GR→L which can be reversed into a canonical schedule for G.
If none of the cases above apply, and because S is simple, then necessarily |L| = |R| and G does

not allow for any mixed-MIS. In that case, suff−i(S) = pref−i(S) = +∞∀i and any optimal schedule
is canonical.

Lemma 12. Let (G1, G2) be two disjoint bipartite graphs and (S1, S2) canonical solutions for
(G1, G2) respectively. If pref−1(S1), pref−1(S2), suff−1(S1) and suff−1(S2) are all equal to +∞
then both schedules S1 · S2 and S2 · S1 are optimal and canonical.

Proof. First, let us note that pref−1(S1) = pref−1(S2) = suff−1(S1) = suff−1(S2) = +∞ implies
δ(G1) = δ(G2) = 0, by definition of pref−1 and suff−1.

Then, G1 (resp. G2) cannot allow for a mixed independent set of size > |L1| = |R1| (resp. |L2| =
|R2|), as it would imply by Lemma 6 the existence of an optimal schedule with pref−1(S1) < +∞
(resp, pref−1(S2) < +∞). As a consequence,Themaximum independent sets ofG are exactlyL1∪L2,
L1 ∪R2, R1 ∪ L2 and R1 ∪R2.

Both L1 ∪R2 and R1 ∪L2 are mixed maximum independent sets. Consider therefore an optimal
(and therefore, canonical) schedule S for G. By Lemma 6 both S1 · (S \ G1) and S2 · (S \ G2) are
preferable to S and canonical. Replacing S \G1 by S2 and S \G2 by S1 does not increase the budget,
which is equal to max(bg(S1), bg(S2)). Since the budget is the only criteria for preferability in this
case, both S1 · S2 and S2 · S1 are canonical.

Merge theorem. The followingTheorem is themain result of this section, and essentially states that
a canonical (and therefore optimal) solution forG = G1∪G2 can be obtained by interleaving canonical
solutions for two disjoint graphs G1 and G2. This suggests the merging procedure implemented
by Algorithm 3, where Pref−1(S1), Pref−1(S2), Suff−1(S1) and Suff−1(S2) are treated as “canonical
blocks”, i.e. are not broken up in the interleaving process.

Theorem 20 (merge algorithm). IfG1 andG2 are two disjoint bipartite graphs and S1 and S2 two
canonical solutions for G1 and G2 respectively, then Algorithm 3 yields a canonical solution for G
in O(|S1|+ |S2|).

Proof. Run-time: Given a schedule S, pref−1(S) and suff−1(S) and (if they exist)
Pref−1(S), Suff−1(S) can be computed in O(|S|) by a simple iteration over S that keeps track
of the budget.
Correctness: We prove the correctness by induction, with the base case being when S1 = ∅ or
S2 = ∅.

In the general case, if min(pref−1(S1), pref−1(S2)) < +∞, consider (w.l.o.g) that
(pref−1(S1), `S1(−1)) ≤lex (pref−1(S2), `S2(−1)), with ≤lex denoting the lexico-graphic order.



CHAPTER 5. INDEPENDENT SET RECONFIGURATION AND RNA KINETICS 149

By Lemma 10 applied toG1 and S1, Pref−1(S1) is a harmless lump ofG1. It is therefore a lump of
G. Let us prove it is also harmless in G. To that end, note that lumps are connected (Property 7), so a
lump of G is either a lump of G1 or G2. Therefore (pref−1(S1), `S1(−1)) ≤lex (pref−1(S2), `S2(−1))
indeed implies that Pref−1(S1) is of minimal budget among lumps of G, and shorter than Pref−1(S2)
in case of budget equality.

Since by the induction hypothesis MeRge(S1 \ Pref−1(S1), S2) is canonical, Pref−1(S1) ·
MeRge(S1 \ Pref−1(S1), S2) is canonical by Lemma 11

The case min(suff−1(S1), suff−1(S2)) < +∞ (lines 10-16) is treated with the same arguments,
given the symmetry of pref and suff when inverting L and R, namely ∀S suff−1(S) = pref−1(

←−
S ).

As for the justification of the concatenation if none of the conditions above apply, it is brought by
Lemma 12.

Algorithm 3 Merge procedure for canonical schedules. ≤lex denotes the lexicographic order, applied
here to couples of integers.
Input: S1, S2 canonical solutions for G1, G2 (disjoint graphs)
Output: a canonical solution S for G = G1 ∪G2

1: function MeRge(S1, S2):
2: . If first or last canonical blocks exist: recurse
3: if min(pref−1(S1), pref−1(S2)) < +∞ then
4: if (pref−1(S1), `S1(−1)) ≤lex (pref−1(S2), `S2(−1)) then
5: return Pref−1(S1) ·MeRge(S1 \ Pref−1(S), S2)
6: else
7: return Pref−1(S2) ·MeRge(S1, S2 \ Pref−1(S2))
8: end if
9: end if

10: if min(suff−1(S1), suff−1(S2)) < +∞ then
11: if (suff−1(S1), rS1(−1)) ≤lex (suff−1(S2), rS2(−1)) then
12: return MeRge(S1 \ Suff−1(S1), S2) · Suff−1(S1)
13: else
14: return MeRge(S1, S2 \ Suff−1(S2)) · Suff−1(S2)
15: end if
16: end if
17: . If no first or last canonical block exist: simply concatenate
18: return S1 · S2

19: end function
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5.5 Parameterized algorithms for bipartite independent set reconfig-
uration

In this section, we apply the technical results of the previous section to the design of XP algorithms
for BISR. For example, Lemma 6 is used to formulate a O(n2)-space, O(n2ρ)-time algorithm for BISR,
described in Section 5.5.1. As for Lemma 20, it allows to build a O(nΦ+1) algorithm for BISR when
restricted to bipartite circle graphs, described in Section 5.6. Bipartite circle graphs constitute a sub-
case of interest to RNA kinetics, as we shall see in more details in Section 5.7.

5.5.1 An XP algorithm in ρ

Overall strategy. Lemma 6 allows for a divide-and-conquer approach: if we identify a separatorX
in G, i.e. a licit subset of G such that I(X) is a mixed independent set, then we may independently
solve the problem of finding a ρ-realization from L to I(X) and then from I(X) to R. If no solution
is found for one of them, then the converse of Lemma 6 implies that no ρ-realizations exists for G.
The algorithm presented in this section is based on this approach.

Algorithm details. We present here a direct algorithm for BipaRtite Independent Set Recon-
figuRation, detailed in Algorithm 4. The main function Realize is recursive. Its sub-calls arise
either from a split with a mixed MIS I (in which case it is called on a smaller graph but with the same
parameter), or from the loop over all possible starting points in the case where no separator is found
(lines 13-18), in which case the parameter does reduce. The overall runtime is dominated by this loop,
and is analyzed in Proposition 11 below.

Mixed MIS algorithm. The sub-routine allowing to find, if it exists, a maximum independent set
intersecting both L and R is based on concepts from matching theory [213], namely the Dulmage-
Mendelsohn decomposition [214, 213], as well as the decomposition of bipartite graphs with a perfect
matching into elementary subgraphs [213](part 4.1). Its full details are described in the full version of
the article.

Proposition 11. Algorithm 4 runs inO(|V |2ρ
√
|V ||E|) time, while usingO(|V |2) space, where ρ

is the difference between the minimum allowed and maximum possible independent set size, along
the reconfiguration.

Proof. Let us start with space: throughout the algorithm, one needs only to maintain a description of
G and related objects (independent set I , maximummatchingM , associated directed graphH(G,M))
for which O(|V |2) is enough.

As for time, letC(n1, n2, ρ) be the number of recursive calls of the function Realize of Algorithm 4
when initially called with |L| = n1, |R| = n2, and some value of ρ. We will show by induction that
C(n1, n2, ρ) ≤ (n1 + n2)

2ρ. Since each call involves one computation of a maximum matching, this
will prove our result.
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Algorithm 4 XP algorithm for BipaRtite Independent Set ReconfiguRation
Input: bipartite graph G (with sides L and R), integer ρ
Output: a ρ-realization for G, if it exists
1: function Realize(G, ρ):
2:
3: if ρ < 0 then return ⊥ . // Terminal cases:
4: end if
5: if L ∪R = ∅ then return ∅
6: end if
7: if ∃` ∈ L s.t N(`) = ∅ then return Realize(G \ {`}, ρ− 1) · `
8: end if
9: if ∃r ∈ R s.t N(r) = ∅ then return r · Realize(G \ {r}, ρ− 1)

10: end if
11:
12: I = MixedMIS(G) . // Trying to find a separator
13: if I ̸=⊥ then
14: S = (L \ I) ∪ (R ∩ I)
15: return Realize(G[S], ρ)· Realize(G[V \ S], ρ)
16: else
17: for (`, r) ∈ L×R do . // loop over all start-end possibilities
18: if Realize(G \ {`, r}, ρ− 1)̸=⊥ then
19: return ` · Realize(G \ {`, r}, ρ− 1) · r
20: end if
21: end for
22: end if
23: end function
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Given (n1, n2, ρ), suppose therefore that ∀(n′1, n′2, ρ′) ̸= (n1, n2, ρ) with n′1 ≤ n1, n
′
2 ≤ n2, ρ

′ ≤
ρ we have C(n′1, n

′
2, ρ
′) < (n′1 + n′2)

2ρ′

1. If G allows for a mixed maximum independent set, the instance is split into two smaller
instances, yielding C(n1, n2, ρ) = C(n′1, n2, ρ) + C(n′′1, n

′′
2, ρ) with n′1 + n′′1 = n1 and

n2 = n′2 + n′′2 . And C(n1, n2, ρ) ≤
(
(n′1 + n′2)

2ρ + (n′′1 + n′′2)
2ρ
)
≤ (n′1 + n′′1 + n′2 + n′′2)

2ρ ≤
(n1 + n2)

2ρ.

2. else, we have the following relation: C(n1, n2, ρ) = n1n2 · C(n1 − 1, n2 − 1, ρ − 1). Which
yields:

C(n1, n2, ρ) = n1n2 · C(n1 − 1, n2 − 1, ρ− 1)

≤ n2 · n2(ρ−1) by induction hypothesis
≤ n2ρ

The exponential part (O(n2ρ)) of the worst case complexity of Algorithm 4 is in fact tight, as it is
met with a complete bi-clique Kn,n with sides of size n. Indeed, in this case, no mixed MIS is found
in any of the recursive calls.

5.6 RNA case: bipartite circle graphs

5.6.1 RNA basics and arboricity parameter

RNA EneRgy BaRRieRproblem. As touched upon in Chapter 1, RiboNucleic Acids (RNAs) are bio-
polymers composed of four possible nucleotides, which can therefore be represented as strings over
an alphabet Σ := {A, C, G, U}. Importantly, these strings may fold on themselves to adopt one or
several conformation(s), also called structures. For a string of length N , a conformation is typically
described by a set S of base pairs (i, j), with 1 ≤ i < j ≤ N . Then, a standard class of conforma-
tions to consider in RNA bioinformatics are conflict-free secondary structures (Definition 1.5), which
are pairwise non-crossing (∄(i, j), (k, l) ∈ S such that i ≤ k ≤ j ≤ l, in particular, they involve
distinct positions). Due to this non-crossing property, secondary structures are in bijection with well-
parenthesized strings, as illustrated in Figure 5.6 (B).

Problem statement. In this section, we more precisely work on the problem of finding a reconfig-
uration pathway between two secondary structures (i.e conflict-free sets of base pairs). The reconfigu-
ration may only involve secondary structures, and remain of energy as low as possible. We work with
the simple energy model (E#-bps) consisting of the opposite of number of base pairs in a configuration
(−Nbps). We recall here the statement of RNA EneRgy BaRRieR:
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Problem (RNA EneRgy BaRRieR).
Input: Secondary structures L and R; Energy barrier k ∈ N+

Output:True if there exists a sequenceS0 · · ·Sℓ of secondary structures such that (1)S0 = L andSℓ = R;
(2) |Si| ≥ |L| − k, ∀i ∈ [0, `] and (3) |Si△Si+1| = 1, ∀i ∈ [0, `− 1]. False otherwise.

Problem motivation. Since the number of secondary structures available to a given RNA grows
exponentially with n, RNA energy landscapes are notoriously rugged, i.e. feature many local minima,
and the folding process of an RNA from its synthesis to its theoretical final state (a thermodynamic
equilibrium around low energy conformations) can be significantly slowed down. Consequently, some
RNAs end up being degraded before reaching this final state. This observation motivates the study of
RNA kinetics, which encompass all time-dependent aspects of the folding process. In particular, it is
known (Arrhenius law) that the energy barrier is the dominant factor influencing the transition rate
between two structures, with an exponential dependence.

BISR on circle graphs. Two arcs (i, j) and (k, l) are said to be in conflict or crossing if i ≤ k ≤ j ≤ l
or k ≤ i ≤ l ≤ j (i.e., when there is not one of them nested in the other). It simply means that they
cannot be both present at the same time in an RNA secondary structure.

To capture this constraint in reconfiguring RNA secondary structures, we define the conflict graph
G(L,R) as having L ∪ R as vertices, and an edge connecting two arcs if they are in conflict. L and
R being two valid secondary structures, the graph is bipartite. More generally, a valid secondary
structure is then an independent set of G(L,R). Reconfiguring L into R while minimizing energy
along the way then consists in solving BISR on G(L,R). The following proposition characterizes the
set of bipartite graphs that emerge from this construction, as bipartite circle graph. A circle graph is
an intersection-graph of chords of a circle.

Proposition 12. The RNA eneRgy baRRieR problem as defined above is BISR restricted to bipartite
circle graphs

Proof. Given L and R two well-nested arc sets (i.e., two RNA secondary structures) over [1 . . . n],
denoted L = {(li, ri)} and R = {bj , ej}. Consider a circle with n regularly-spaced positions on it,
and the set of chords L ∪ R. The associated circle graph (chord-intersection graph) is exactly the
conflict-graphG(L,R). There is then an exact correspondence between independent sets ofG(L,R)
and valid secondary structures composed of arcs from L and R.

Conversely, given a bipartite circle graph, its two sides L andR yield two well-nested arc sets that
can be seen as RNA secondary structures. The correspondence is highlighted on Figure 5.6.

Arboricity (Φ). Given an RNA secondary structure S (a set of well-nested base-pairs) the arboricity
Φ of S is the number of “terminal” base-pairs, i.e. the number of base-pairs that do not contain any
nested base-pair. A formal definition is given below.
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((.....)(((.....))))

((((....)........)))

Figure 5.6: Conflict bipartite graph (D) associated with an instance of the RNA EneRgy-BaRRieR problem, con-
sisting of an initial (A) and final (B) structure, both represented as an arc-annotated sequence (C). The sequence
of valid secondary structures, achieving minimum energy barrier can be obtained from the solution given in
Figure 5.6.

Notations for base-pair relations. We use here Notation 1 for base-pair relations, which we recall
here. Given two base-pairs (i, j) and (k, l), we write (k, l) ⊂ (i, j) if (k, l) is nested in (i, j), i.e. if
i < k < l < j. One may see this notation as “the interval [k, l] is a proper subset of the interval [i, j]”.
For two non-conflicting base-pairs, if no one of them is nested in the other, we write (i, j) ∥ (k, l),
which means either i < j < k < l or k < l < i < j.

Definition 34. The arboricity Φ(S) of a set of well-nested base-pairs is:

Φ(S) = |{(i, j) ∈ S | ∄(k, l) ∈ S with (k, l) ⊂ (i, j)}|

When seeing an RNA secondary structure as a set of well-parenthesized strings (Figure 5.6.A
for instance), it is the number of matching opening/closing parenthesis symbols that only have dots
between them.

Separating inside and outside sub-instances. Given L and R two well-nested arc sets, and ` =
(i, j) an element ofL. ` defines naturally “inside” and “outside” sub-instances inL andR, that are only
connected through N(`), the elements of R in conflict with `. Formally these “inside” and “outside”
sub-instances are (Lℓ

IN, R
ℓ
IN) and (Lℓ

OUT, R
ℓ
OUT) with Lℓ

IN = {`′ ∈ L | `′ ⊂ `}, Rℓ
IN = {`′ ∈ R |

`′ ⊂ `}, Lℓ
OUT = {`′ ∈ L | ` ⊂ `′ or ` ∥ `′} and Rℓ

OUT = {`′ ∈ R | ` ⊂ `′ or ` ∥ `′} Note that
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{`}, Lℓ
IN, L

ℓ
OUT form a partition of L, and N(`), Rℓ

IN, R
ℓ
OUT form a partition of R.

5.6.2 An XP algorithm for Φ

Dynamic programming table. The algorithm we present in this Section (Algorithm 5) is based on
dynamic programming, using a memorization strategy. There is therefore a table in which solutions
to partial instances are stored. Given L,R input secondary structures to the RNA EneRgy BaRRieR
problem, the indices to this table are sets of the form {`, `1 . . . `p}, with ` ∈ L∪ {(1, N)} and `i ∈ L,
such that ∀i `i ⊂ `, and ∀i ̸= j, `i ∥ `j . The reason (1, N) is a possible value for ` is that it
defines an interval to which partial instances are restricted. Originally, there is no restriction and

` = (1, N). The partial instance associated to such a set is L′, R′ with L′ = Lℓ
IN ∩

[ ⋂
1≤i≤p

Lℓi
OUT

]
and

R′ = Rℓ
IN ∩

[ ⋂
1≤i≤p

Rℓi
OUT

]
. We also denote these structures by L(`, `1, . . . , `p) and R(`, `1, . . . , `p).

Informally, seeing L as a tree structure, the arcs {`, `1, . . . , `p} define a “sub-tree” of L. ` sets the
root of this sub-tree, while `1 . . . , `p cut out some branches. Let us write

ST (L) =
{
(`, `1, . . . , `p) ∈

(
L ∪ {(1, N)}

)
× Lp | ∀i `i ⊂ ` and ∀i ̸= j `i ∥ `j

}
for the set of all such “sub-trees”, i.e. the set of all indices to the dynamic programming table.

Lemma 13. Given an RNA structure L of arboricity Φ, |ST (L)| = O(n
Φ+1

Φ! )

Proof. Let us start by noting that in an RNA structure, each arc is either terminal or contains a terminal
arc nested in it. The set {`i}1≤i≤p being composed of arcs mutually not nested in one another, each
of them contains (or is) a different terminal arc. As there are less than Φ terminal arcs in total, given

`, there are less than
(
n
Φ

)
possibilities for `1 . . . `p. Multiplied by the number of possibilities for `,

we get an upper bound of (n+ 1) ·
(
n
Φ

)
= O(n

Φ+1

Φ! ).

Theorem 21. Algorithm 5 outputs a canonical (and therefore optimal) schedule in time O(n
Φ+2

Φ! ).

Proof. Run-time The initial call to schedule(L,R) corresponds to the entry ` = (1, N) and
{`1 . . . `p} = ∅. Then, consider a call of schedule on two structures L(`, `1, . . . , `p), R(`, `1, . . . , `p)

respectively equal to Lℓ
IN ∩

[ ⋂
1≤i≤p

Lℓi
OUT

]
and Rℓ

IN ∩

[ ⋂
1≤i≤p

Rℓi
OUT

]
, for (`, `1, . . . , `p) ∈ ST (L). The

recursive calls to the “inside” and “outside” of some `′ ∈ L′ (line 14-15) will give rise to the instances
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Try each ` ∈ L

`

N(`)

L`
OUT, R

`
OUT L`

IN, R
`
IN

Canonical schedule
SOUT

Schedule
(or look-up
in DP table)

Canonical schedule
SIN

Schedule
(or look-up
in DP table)

Merge(SIN, SOUT) · ` ·N(`)

Figure 5.7: Illustration of Algorithm 5. Given a sub-instanceL,R (bordered by gray ovals, top figure), each ` ∈ L
is tried (middle figure), yielding two smaller sub-instances corresponding to the outside and inside of ` (bottom
left and right figures). After solving each sub-instance independently, using the DP-table for memorization,
a solution is obtained for (L,R) by merging both solutions and appending ` and all its neighborhood (which
were not part of any sub-instance). Here the arboricity is 3 (there are 3 minimal arcs in L), so any border uses
at most 4 arcs, giving the upper bound of

(
n
4

)
on the number of sub-instances



CHAPTER 5. INDEPENDENT SET RECONFIGURATION AND RNA KINETICS 157

corresponding to the elements of ST (L) (`′, {`i | `i ⊂ `′}) (inside) and (`, `′, {`i | `i ∥ `′}) (outside).
By induction, all recursive calls to schedule are of these forms, and the indices to the memorization
table are elements of ST (L). Conversely, any element (`, `1, . . . , `p) of ST sees its corresponding
instance L(`, `1, . . . , `p), R(`, `1, . . . , `p) emerge in some recursive call (e.g., taking the inside of ` in
the first recursive call and then the outside of `1 . . . `p). Their number is smaller than O(n

Φ+2

Φ! ) by
Lemma 13. Let now us call c(L,R) the computational cost of schedule(L,R), and i(L,R) the “inter-
nal” cost of schedule, i.e. of all lines of Algorithm 5 except lines 18-19 (recursive calls). Given ` ∈ L,
we write Lℓ

IN, R
ℓ
IN and Lℓ

OUT, R
ℓ
OUT the sub-instances composed of arcs strictly inside or outside of `.

Then, we have:
c(L,R) = i(L,R) +

∑
ℓ∈L

c(Lℓ
IN , Rℓ

IN ) + c(Lℓ
OUT , R

ℓ
OUT )

Which, by induction, given the discussion above, allows to show that:

c(L,R) =
∑

(ℓ,ℓ1,...,ℓp)∈ST (L)

i (L(`, `1, . . . , `p), R(`, `1, . . . , `p))

i(L,R) is O(n2) (linear meRge for each ` ∈ L), which yields O(n
Φ+2

Φ! ) overall.
Correctness By Corollary 7, a canonical schedule S for G exists. Some element ` ∈ L is neces-

sarily processed last, such that S = S′ · ` ·N(`). When ` is considered as part of the for loop line 17
of Algorithm 3, the candidate solution is S′′ · ` ·N(`), with S′′ = meRge(SIN , SOUT ). Sequence S′′ is
canonical by induction and the correctness of meRge (Theorem 20). Thus, S′′ ≼ S′ and the candidate
solution is preferable to S, and therefore canonical.

5.7 Benchmarks

In this section, we report benchmark results for all of our algorithms. We first explain some details
about the algorithm we implemented for directed pathwidth. Then, we present a general benchmark
of Algorithm 4 and the directed pathwidth approach, on random (Erdös-Rényi) bipartite graphs. Last,
we compare Algorithm 5 with the directed pathwidth approach on bipartite circle graphs, i.e. RNA
instances.

Code availability. The code used for our benchmarks, including a Python/C++ implementation of
our two algorithms, is available at https://gitlab.inria.fr/bmarchan/bisr-dpw (Algorithm 4 and directed
pathwidth algorithm [211]) and https://gitlab.inria.fr/bmarchan/barrier-subtree (for Algorithm 5).

5.7.1 Implementation details

Directed pathwidth. We implemented and used an algorithm from Tamaki [189], with a runtime of
O(nρ+2). This algorithm was originally published in 2011 [189]. In 2015, H.Tamaki and other authors

https://gitlab.inria.fr/bmarchan/bisr-dpw
https://gitlab.inria.fr/bmarchan/barrier-subtree
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Algorithm 5 XP algorithm in Φ for BipaRtite Independent Set ReconfiguRation
Input: bipartite circle graph G (with sides L and R)
Output: a canonical schedule for G
Global variable: Dynamic programming table M : (L,R) → S, storing input/output pairs for
schedule.
1: function schedule(L,R):
2: if (L,R) is in M.keys() then . If already computed then return;
3: return M [(L,R)];
4: end if
5: M [(L,R)] = L ·R . Initializing M [(L,R)] with a simple value
6: if L = ∅ then
7: return M [(L,R)]
8: end if
9: if ∃r ∈ R such that N(r) = ∅ then

10: M [(L,R)] = r · schedule(L,R \ {r})
11: return M [(L,R)]
12: end if
13: for ` in L do
14: SIN = schedule(LIN , RIN ) . ` defines an inside and an outside
15: SOUT = schedule(LOUT , ROUT )
16: S′ = meRge(SIN , SOUT ) · ` ·N(`)
17: if S′ ≼ M [(L,R)] then . If S′ is preferable to M [(L,R)]
18: M [(L,R)] = S′

19: end if
20: end for
21: return M [(L,R)]
22: end function
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Figure 5.8: (top panel) Average run-time (seconds, log-scale) of our algorithms on random Erdös-Rényi bipartite
graphs, with a probability of connection such that the average degree of a vertex is 5 (i.e p = 5/n). (bottom
panel) Average parameter value of generated instances, as a function of input size.

described this algorithm as “flawed” in [201], and replaced it with another XP algorithm for directed
pathwidth, with a run-time of O( mn2ρ

(ρ−1)!).
Upon further analysis from our part, and discussionswithH. Tamaki and the corresponding author

of [201], it appears a small modification allowed to make the algorithm correct. In a nutshell, the
algorithm involves pruning actions, and these need to be carried out as soon as they are detected. In
[189], temporary solutions were accumulated before a general pruning step. With this modification,
the analysis presented in [189] applies without modification, and yields a time complexity ofO(nρ+2).
The space complexity is unchanged at O(nρ+1). For completeness, a detailed re-derivation of the
results of [189] is included in the full version of the article.

Mixed-MIS algorithm implementation. On Figure 5.8, the “m-MIS”-curve, corresponds to our
mixed-MIS-based algorithm inO(n2ρ

√
|V ||E|). Compared to the algorithm presented in Algorithm 4,

a more efficient rule is used in the non-separable case: we loop over all possible r ∈ R and addN(r)·r
to the schedule (instead of a single vertex ` ∈ L).

5.7.2 Random bipartite graphs

Benchmark details. Figure 5.8 shows, as a function of the number of vertices, the average exe-
cution time of both our algorithms (top panel), as well as the distribution of parameter values (ρ -
bottom panel), on a class of random bipartite graphs. These graphs are generated according to an
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Figure 5.9: (left) Execution time of Algorithm 5 on pairs of randomRNA secondary structures. Points are colored
as a function of the smallest arboricity Φ between the two structures. As expected, exact computing the energy
barrier between the structures tends to become more expensive for larger values of Φ. (right) Comparison
with a scatter plot of the execution times of Algorithm 5 and our implementation of [211] (directed pathwidth
algorithm), on randompairs of RNA secondary structures. The color of the points denote the arboricity (Φ) value
while the size is the directed pathwidth (range ρ). Surprisingly, the execution time of the directed pathwidth
algorithm, whose complexity is O(nρ+2), does not correlate with the value of ρ. It suggests the existence of a
structural property of directed graphs emerging from RNA instances making [211] faster.

Erdös-Rényi distribution (each pair of vertices has a constant probability p of forming an edge). We
use a connection probability of d/n, dependent on the number of vertices. It is such that the average
degree of vertices is d. The data of our benchmark (Figure 5.8) has been generated with d = 5.

Comments on Figure 5.8. The difference in trend between the execution times of the two algo-
rithms is quite coherent with the difference in their exponents (nρ+2 vs. n2ρ+2.5).

5.7.3 random RNA instances (bipartite circle graphs)

Benchmark details. Figure 5.9 shows the average execution time of Algorithm 5 on random RNA
instances, and compares it with the directed pathwidth algorithm (right panel). Random instances
are generated according to the following model: two secondary structures L,R are chosen uniformly
at random (within the space of all possible secondary structure). Base pairs are constrained to occur
between nucleotides separated by a distance of at least θ = 1 (left panel) and θ = 3 (right panel).

Random secondary structure generation. The random RNA secondary structure of Figure 5.9
are obtained by uniform sampling of well-parenthesized strings of a given length N . Two parame-
ters control the probability distributions: the minimal distance θ between an opening bracket and its
corresponding closing bracket and the probability ppb of being base-paired.
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5.8 Conclusion

Motivated by the development of exact parameterized algorithms for the RNA EneRgy BaRRieR prob-
lem, we studied several parameterizations for BipaRtite Independent Set ReconfiguRation. For
the range ρ of possible cardinalities for the independent sets along the reconfiguration as a parameter,
we give a directO(n2)-space,O(n2ρ+2.5)-time algorithm (Algorithm 4), and a indirectO(nρ+1)-space,
O(nρ+2)-time algorithm [211] through an equivalence with directed pathwidth.

In the case of RNA instances, i.e.BISR on bipartite circle graphs, we additionally study an arboricity
parameter denoted Φ, that should intuitively be much smaller than the size of instances on natural
RNA structures. For this parameter, we also provide an XP algorithm, with complexity O(n

Φ

Φ! ) in
space and O(n

Φ+2

Φ! ) in time. This algorithm involves a novel merge procedure for optimal solutions of
disjoint instances of mimimum cumulative-cost scheduling, which may be of independent interest.

The fixed-parameter tractability of BipaRtite Independent Set ReconfiguRation restricted to
bipartite circle graphs, with respect to ρ,Φ and ρ+Φ remains open. It implies that the fixed-parameter
tractability of directed pathwidth (i.e. ρ for BISR on general instances) also remains open. We never-
theless hope that this newly-drawn connection between a width parameter (directed pathwidth and
a reconfiguration problem (BISR), may help shed new light onto this problem. In that respect, com-
bining [215] and [200] to try to formulate an “obstacle theory” for directed pathwidth might be an
interesting avenue.



Chapter 6

Conclusion

This PhD thesis has explored the possibility of applying parameterized algorithmics, especially graph
width parameters, to structural RNA bioinformatics. In this conclusion, we give an account of the
contributions, open problems, and research perspectives left to explore. This account is organized
around two research axes. The first concerns treewidth, and the different ways it may be used to put
pseudoknots into the picture. This axis encompasses Chapters 2, 3, and 4. The second axis is about the
connections between directed graph parameters, scheduling problems, and kinetic aspects of RNA. It
is connected to Chapter 5.

Axis 1: working with pseudoknots thanks to treewidth

Smooth parameterization of pseudoknots. Our analysis of treewidth values of RNA structures
in the PDB database [138] in Chapter 1 (Figure 1.11, page 40) shows that the vast majority of
pseudoknotted structures have reasonable treewidth (≲ 10). In other words, natural pseudoknotted
RNA structures, taken as graphs, are not so far from being trees. It gives a smooth quantification
of the complexity of RNA structures, starting at the base case treewidth= 2, which corresponds to
conflict-free structures. Given the deep connections of treewidth with dynamic programming [73],
an algorithmic design technique that has been used extensively in RNA bioinformatics [18, 24, 20],
treewidth seems to be a very natural tool for the development of algorithms capable of handling
pseudoknots.

Chapters 2, 3 and 4 are developments along this research direction. More precisely, Chapters 2 and
4 pave the way towards the development of efficient solutions for pseudoknotted homolog search, an
open technological problem prior to this PhD thesis. As for Chapter 3, it adopts a slightly different
viewpoint on treewidth. Indeed, it reinterprets tree decompositions as dynamic programming schemes
for RNA folding, or more generally as multiple context-free grammars for pseudoknotted RNAs.

The next two sub-sections describe these two themes in more details, starting with pseudoknotted

162
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homolog search.

Towards pseudoknotted ncRNA search

This thesis contributes tomaking efficient pseudoknotted homolog search closer to reality in twoways.
First, the results of Chapter 2 allow to compute hierarchies of structuralmodels of increasing treewidth,
with each level containing a maximal number of base-pairs given its treewidth. This hierarchy can
be used for hierarchical filtering with existing treewidth-based methods for StRuctuRe-Seence
Alignment [62], the computational problem at the core of homolog search. Second, Chapter 4 gives
a possible formulation for pseudoknotted covariance model. They can be seen as both a pseudoknotted
generalization of InfeRNAl, and a generalization of the algorithm of [62] to include stacking terms and
position-specific scores. The alignment complexity is parameterized by the treewidth of the consensus
structure, and recovers the O(n3) complexity of InfeRNAl for treewidth= 2. We now comment on
the results of each chapter in a bit more detail, starting with Chapter 2.

Chapter 2 - Reducing treewidth to unlock FPT algorithms. Chapter 2 presents practical meth-
ods for reducing the treewidth of a graph while removing a minimum amount of edges. The core
result is an FPT algorithm for TRee-Diet, the problem of reducing the width of a given tree decompo-
sition while keeping as many edges as possible in the input graph. It was implemented (available at
https://gitlab.inria.fr/amibio/tree-diet), and proofs-of-concepts of applications to RNA
design and homolog search, were discussed in Chapter 2. Let us summarize the intuition behind the
hierarchical filtering approach that it enables for homolog search. LetA be a set of base-pairs, andA′
a reduced model of lower treewidth. In a nutshell, if aligning a query arc-annotated sequence (Q,A′)
with a target T yields an optimal score of OPT(Q(A′), T ), then:

OPT(Q(A), T ) ≤ OPT(Q(A′), T ) + gain(A′ → A)

With gain(A′ → A) the best possible score contribution of the base-pairs in A \ A′. In other words,
an upper bound for the quality of T as a candidate hit for the full model is obtained from a cheaper
computation with a reduced model. In the case of homolog search, where a large set of targets T
are tested as a “window” is slid on a sequence database, it allows to filter out some positions. In the
equation above, the query model could also be a pseudoknotted covariance model (as described in
Chapter 4).

Open problem - GRaph Diet for RNA graphs. In Chapter 2, algorithms were developped for
TRee-Diet, but graph simplifications preserving more edges could potentially be obtained by solving
GRaph-Diet, the direct problem of minimal edge removal to reduce the treewidth of an input graph
G. For general graphs, we conjecture (Conjecture 1) that no practical algorithms can be obtained. But
the question remains open for special classes of graphs. For instance, RNA structure graphs always
have a 3D embedding in which each edge has a specific distance (depending on its chemical nature).
They are also Hamiltonian, per the existence of a “backbone” for the molecule. As a starting point, we

https://gitlab.inria.fr/amibio/tree-diet
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saw in Chapter 2 that solving GRaph Diet on a graph implies in particular being able to compute its
treewidth (Theorem 6). The question of whether treewidth can be computed more efficiently on such
a graph class compared to the general case would therefore be a first step.

Perspective - expanding the scope of TRee-Diet. To finish, note that the TRee-Diet algorithm
can be applied to any tree decomposition and graph. This should be taken asmotivation for developing
more treewidth-based algorithms in Bioinformatics. Outside of bioinformatics, a notable example
of treewidth application the computation of marginals in constraint networks [216]. The question
of whether a tRee-diet-like approach could be applied in such context is an interesting research
direction. A related task, the learning of constraint networks of bounded treewidth is mentioned in
the literature [217, 218].

Chapter 4 - Evaluating pseudoknotted alignment methods, and designing new ones. Chap-
ter 4 first presents benchmark results for LiCoRNA (an implementation of [62], available at https:
//licorna.lri.fr/). The purpose was to evaluate the capacity of LiCoRNA , a pseudoknot-aware
StRuctuRe-Seence Alignmentmethod, to produce good quality seed alignments for pseudoknot-
ted Rfam families. The contrasted results hint at the possibility that Rfam, based on InfeRNAl, aligns
pseudoknots based mostly on sequence conservation. These difficulties could be overcome by formulat-
ing a fully-featured pseudoknotted generalization of InfeRNAl, which we develop in a second part of
the chapter. We call this generalization pseudoknotted covariance models. They are based on multiple
context-free grammars as a generalization of the context-free grammars underlying InfeRNAl, and a
treewidth-based LiCoRNA-style algorithm for aligning sequences onto the model.

Perspective - implementation and evaluation of PKCMs. A clear research perspective is the
implementation and benchmark of pseudoknotted covariance models. A critical point is to achieve
good practical performance for the alignment of an input sequence onto a model. Indeed, the
treewidth-based algorithm for doing so runs in O(f(tw) · ntw+1), with f an exponential function
and tw the treewidth of the consensus structure. The base case is O(n3), which corresponds to the
complexity of this problem for covariance models. Such a complexity was actually considered heavy
in the early development of covariance models, and InfeRNAl only became competitive after a series
of optimizations [180, 61]. Similar optimizations will therefore have to be applied to our case as well,
if we want to reach competitive run-times. The speed-up of individual alignment instances with a
tree diet approach (Chapter 2), as outlined at the end of Chapter 4, could be part of the answer. Then,
a comprehensive benchmark experiment should include the possibility of fetching new hits for each
pseudoknotted ncRNA family, and assess whether they form a more coherent set compared to the
current composition of the family.

Pseudoknotted grammar generation

Chapter 3 - Automated DP scheme generation for RNA folding. This thesis also explored the
possibility of using tree decompositions as a grammar generation tool. In Chapter 3, we developed this

https://licorna.lri.fr/
https://licorna.lri.fr/
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way a framework that takes as input a pseudoknotted pattern, and outputs a set of dynamic program-
ming equations that solve the RNA folding problem restricted to this pattern. The pattern is specified
as a conflicted set of bands, also called fatgraph. Each band in this fatgraph is to be thought of as an
helix, i.e. a succession of well-nested base-pairs, of arbitrary size. The key result is that a tree decom-
position of a minimal representative expansion of a fatgraph, where each helix has length 5, can be put
into a canonical form, generalizable to any tree decomposition in the family. A dynamic programming
scheme, i.e. the definitions of dynamic programming tables and recursive relations connecting them,
can then be inferred from the structure of the canonical tree decomposition. Importantly, the time
complexity of the generated scheme is linked to the width of the tree decomposition. The complexity
of famous hand-designed DP schemes [29, 16] is then recovered automatically.

Perspective - Automated code generation. Chapter 3 presented some prototype automated code
generation from the decomposition of a fatgraph. Examples of missing features include stacking en-
ergy terms and the possibility of ensemble applications, i.e. sampling in the Boltzmann distribution.
To implement a full efficient pipeline for automated code generation with these features is a clear
direction for future work.

Open problem - Optimality. Even though the DP schemes we generate match the complexities of
hand-written schemes, it would be nice to prove some form of general optimality. A first step would
be space optimality, i.e. that the DP schemes we output use as few indices as possible. A rough idea
for proving such a result would be to show that any DP scheme covering the language of structures
specified by a fatgraph could be used to get a tree decomposition for these structures, and in particular
for theminimal representative expansionwe use in our framework. The intuition is then that the width
of that decomposition would correspond to the largest number of indices of any of the DP table, and
therefore could not be smaller than the treewidth. Generating a DP scheme with our method, starting
with an optimal tree decomposition, would reach that lower bound and therefore be space-optimal.

Perspective - Connection with graph grammars. One of the characterizations of treewidth is
through hyperedge-replacement grammars [219]. In short, a hyper-edge replacement grammar (HRG)
is a graph grammar, and graphs of treewidth ≤ k are exactly the graphs obtained by HRGs when
bounding the “cardinality” of a rule by k [220, 221]. Such a connection raises the question of whether
a grammar of RNA structures of bounded treewidth could be formulated. This could be seen as gener-
alizing the framework of Chapter 3, where such a grammar would be able to explore all fatgraphs of a
treewidth smaller than a threshold. Potential applications could be an algorithm for RNA folding that
explores all structures below a certain treewidth value.

Axis 2 - directed width parameters, reconfiguration and RNA kinetics

This PhD thesis also explored the possibility of applying parameterized algorithmics for the exact
computation of RNA energy barriers. This time, the width parameter it is connected to is directed
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pathwidth, a width measure for directed graphs. This work also highlighted interesting connections
with a class of scheduling problems (minimum cumulative-cost scheduling) and independent set recon-
figuration. A lot of parameterized complexity questions remain open, calling for future work.

Chapter 5 - Parameterized algorithmics for independent set reconfiguration and RNA
kinetics. The RNA EneRgy BaRRieR problem asks, given two conflict-free secondary structures L
and R, how to transform L into R with a series of arc addition and removals. The constraints are
that at any point along the reconfiguration, the arcs must be crossing-free, and that the number of
arcs should be maximized at all times. By taking the conflict-graph of arcs in L∪R, we get a bipartite
graph G in which a valid structure is an independent set. The RNA EneRgy BaRRieR problem is then
a bipartite independent set reconfiguration on G.

We formulate in Chapter 5 two XP algorithms parameterized by ρ, the maximum allowed dis-
tance to α(G), the MIS size of G. One of them stems from a connection with directed pathwidth,

which measures how close a directed graph is from being a DAG1. More precisely, the energy
barrier between L and R is the directed pathwidth of an auxiliary graph, obtained from a maximum
matching of G.

We also define and look at an arboricity parameter, denoted Φ, and equal to the minimum
number of hairpin loops in L or R. For that parameter we also find an XP algorithm. It involved
solving the non-trivial problem of merging optimal solutions for two disconnected instances into
one global optimal solution. This problem had also been set in a context of minimum cumulative-cost
scheduling [207], where our solution could potentially find other applications.

Open Problem - directed pathwidth. Our first open problem is whether RNA EneRgy BaRRieR is
FPT by ρ or not. Interestingly, the RNA EneRgy BaRRieR problem parameterized by ρ comes down
exactly to the question “Is dpw(H) ≤ ρ?” for H an auxiliary graph built from a maximum matching
of a bipartite circle graph (the conflict graph G). Whether “Is dpw(H) ≤ ρ?” is FPT by ρ or not for
general graphs is an important open problem in directed structural graph theory [197, 211]. Answering
this open question in the positive would therefore yield an FPT sub-case of directed pathwidth, which
would be interesting in itself. On the contrary, proving W [t]-hardness (for some t) would imply the
same for directed pathwidth, and would be a major result.

Open problem - parameterization by Φ. The questions of whether RNA EneRgy BaRRieR is FPT
when parameterized byΦ, and by the combinationΦ+ρ, are also open. From an RNA structure point
of view, given the tendency of natural structures to form stacks (stems), Φ is particularly relevant.

Perspective - more realistic energy models. One shortcoming of our approach is the restriction
to a simple “number of base-pairs” energy model. Although generalization of all our algorithms to

1Directed Acyclic Graph
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the weighted case is possible, the inclusion of stacking would get us significantly closer to realism.
One first step in that research direction would be ignore isolated base-pairs, and treat each potential
stacking as one unit.

Final word

In a context of increased use of Machine Learning approaches in Bioinformatics in general, this thesis
arguably shows that exploring exact solutions for textbook problems is still relevant. It is a motivation
for keeping in touch with recent developments in algorithmic research, to see if they can shed new light
on well-studied problems. Parameterized algorithmics is particularly promising in that respect, with
width parameters still being a matter of current research [222]. As an example of recent important
development, the 2017 PACE challenge (https://pacechallenge.org/), a treewidth solver compe-
tition, gave rise to the algorithm of [82], which was used extensively to compute tree decompositions
in this PhD work. On an another topic, one can also not exclude the development in the upcoming
years of algorithmic techniques for directed pathwidh, which would have direct applications in RNA
kinetics. Taking the opposite view, bringing concrete hard Bioinformatics problems to theoreticians
can help motivate targeted theoretical developments. For instance, whereas there is no clear consen-
sus as to what width measure is best for directed graphs, the connection we drew between directed
pathwidth and RNA kinetics may help single out one with more applicative potential, making it in-
teresting in itself.

https://pacechallenge.org/
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Figure 1: Left: A graph and a path-decomposition whose optimal 1-tree-diet loses an edge (ad). However,
duplicating the bag abcd (right) yields a tree-decomposition with a lossless 1-tree-diet.

A Appendices to Chapter 2

A.1 Editing Trees before the Diet

Any tree decomposition can be transformed into a binary one through the duplications of bags having
more than 2 children. To do so in practice, one will, as long as the tree decomposition is not binary,
apply the following transformation:

1. Find a bag X with children Y1, . . . , Y∆ and ∆ > 2.

2. Introduce a new bagX ′ with the same content asX and locally modify the tree decomposition
in the following way: X will now have Y1 and X ′ as children, while X ′ will have Y2 · · ·Y∆.

When it is no longer possible to apply this transformation, the tree decomposition is binary. For each
bag having originally∆ > 2 children in the decomposition,∆−1 new bags have been introduced. In
total, with Nbags the original number of bags in the decomposition, strictly less than Nbags new bags
have been introduced (each new bag is associated to an edge of the original tree decomposition).

This transformation is in fact the first step towards obtaining a nice tree decomposition [75, 71].
A question that arises then is what impact these modifications may have on the output of TRee-

Diet, when applied to the tree decomposition given as input. We argue that duplication operations
(as used above to get a binary tree decomposition) can only improve the solution, i.e decrease the
number of lost edges. Indeed, within the coloring formulation of the problem, new bags yield new
opportunities for an edge to be represented, with both its end-points green in some bag. See Figure 1
for an illustration.

More generally, any operation on the input tree decomposition that does not suppress any of the
original bags can only improve the solution to the TRee Diet problem. We do not tackle here the
problem of finding the best edition operations to apply onto a tree decomposition given as input to
TRee Diet, which is an a priori difficult task.

A.2 Pseudo-code

Algorithm 6 and 7 present a pseudo-code of our dynamic programming algorithm for TRee Diet, with
a memoization approach. The C++/pybind11 [137] implementation is available at https://gitlab.
inria.fr/amibio/tree-diet.

https://gitlab.inria.fr/amibio/tree-diet
https://gitlab.inria.fr/amibio/tree-diet
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Note that the implementation allows to solve a more general weighted version of TRee Diet,
where each edge is given a weight, and the objective is to find a (tw − tw′)-diet of the input tree
decomposition preserving a set of edges of maximum total weight.

In the context of RNA applications, this feature allows to favour as much as possible preservation
of the backbone of RNA molecules, i.e. edges between consecutive nucleotides along the string, by
assigning them a weight greater than the number of non-backbone edges.

Edge weights are passed to the function in the form of a dictionary/map W associating a real
weight to each edge. Within Algorithm 6, the only place where it is taken into account is the the count
function, which computes the weight of edges accounted for by the bag that is currently visited.

A.3 Correctness of the rejection-based sampling of RNA designs

A recent method for RNA design, called RNAPond [48], implements a sampling approach to tackle
the inverse folding of RNA. Targeting a secondary structure S of length n, it performs a Boltzmann-
weighted sampling of sequences and, at each iteration, identifies Disruptive Base Pairs (DBPs) that
are not in S, yet are recurrent in the Boltzmann ensemble of generated sequences. Those base pairs
are then added to a set D of DBPs, and excluded in subsequent generations through an assignment of
non-binding pairs of nucleotides, outside of B := {(G, C), (C, G), (A, U), (U, A), (G, U), (U, G)} .

At the core of the method, one finds a random generation algorithm which takes as input a sec-
ondary structure S and a set D of DBPs. The algorithm generates from the set WS,D of sequences
w ∈ {A, C, G, U}n which are: i) compatible with all (i, j) ∈ S, i.e. (wi, wj) ∈ B; and ii) incompatible
with all (k, l) ∈ D, i.e. (wk, wl) /∈ B. The algorithm then enforces a (dual) Boltzmann distribution
over the sequences inWS,D:

∀w ∈ WS,D : P(w | D, S) = e−β.Ew,S

ZS,D
with ZS,D :=

∑
w′∈WS,D

e−β.Ew′,S (1)

where β > 0 is an arbitrary constant akin to a temperature. Yao et al. describe an algorithm which
generates k sequences inΘ(k(n+|D|)) time, after a preprocessing inΘ(n.|D|.4tw) time andΘ(n.4tw)
space, where tw is the treewidth of the graph having edges in S ∪ D.

The discrepancy in the preprocessing and sampling complexities suggests an alternative strategy,
utilizing rejection on top of a relaxed sampling. Namely, we consider a rejection algorithm, which
starts from a relaxation (S′,D′) of the initial constraints (S′ ∪ D′ ⊂ S ∪ D), and iterates Yao et
al.’s algorithm to generate sequences in WS′,D′ ⊃ WS,D , rejecting those outside of WS,D , until k
suitable ones are obtained. The rejection algorithm generates a given sequence w ∈ WS,D on its first
attempt with probability p := e−β.Ew,S/ZS′,D′ and, more generally, after r rejections with probability
(1− q)r p with q := ZS,D/ZS′,D′ . The overall probability of emitting w is thus

p ·
∑
r≥0

(1− q)r =
p

q
=

e−β.Ew,S

ZS,D
= P(w | D, S).
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Algorithm 6 Dynamic programming algorithm for TRee-Diet.
Input: Tree-decomposition T , graph G, target width tw′, edge weights W
Output: Maximum total weight of a set of realizable/non-lost edges in a (tw − tw′)-diet of T
Side product: A filled table c[Xi, f ], ∀Xi bag and f coloring of Xi

1: function optim_num_Real_edges(Xi, f,G, tw′,W ):
2: if c[Xi, f ] already computed then
3: return c[Xi, f ];
4: end if
5: if |f−1(o) ∪ f−1(r)| ≤ (|Xi| − tw′ − 1) then
6: . //not enough removals
7: c[Xi, f ] = −∞
8: return c[Xi, f ]
9: end if

10: if Xi == leaf then
11: c[Xi, f ] = 0
12: return c[Xi, f ]
13: end if
14: int ans = −∞;
15: for m ∈ orange_maps(Xi, f) do
16: int ans_m = 0;
17: for Yj ∈ Xi.children do int ans_j = −∞;
18: for f ′j ∈ compatible(f,m,Xi, Yj) do int val = 0;
19: val += count(f, f ′j ,W );
20: val += optim_num_real_edgesYj , f ′j , G, tw′;
21: if val ≥ ans_j then ans_j = val;
22: end if
23: end for
24: ans_m += ans_j
25: end for
26: if ans_m ≥ ans then
27: ans = ans_m;
28: end if
29: end for
30: c[Xi, f ] = ans return c[Xi, f ]
31: end function
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Algorithm 7 Backtracking procedure for TRee-Diet.
Input:Tree-decomposition T , graph G, target width tw′, table c, edge weights W
Output:Optimal (tw − tw′)-diet-valid coloration for T
1: function optimal_coloRing(Xi, f,G, tw′, c):
2: if Xi == leaf then return ∅;
3: end if
4: coloring C = ∅;
5: for m ∈ orange_maps(Xi, f) do
6: int ans_m = 0;
7: coloring best_fjs = [];
8: for Yj ∈ Xi.children do
9: int best_valj = −∞;

10: int best_fj = ∅;
11: for f ′j ∈ compatible(f,m,Xi, Yj) do
12: int val = 0;
13: val += count(f, f ′j ,W );
14: val += c[Yj , f

′
j ];

15: if val ≥ best_valj then
16: best_valj = val;
17: best_fj = f ′j ;
18: end if
19: end for
20: ans_m += best_valj;
21: best_fjs.add(best_fj);
22: if ans_m == c[Xi, f ] then
23: C+ = [f ′j for f ′j in best_fjs];
24: C+ = [optimal_coloringYj , f ′j , G, tw′, c for f ′j in best_fjs];
25: break . // break loop over m
26: end if
27: end for
28: end for
29: end function
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In other words, our relaxed generator coupled with the rejection step, represents an unbiased algo-
rithm for the Boltzmann distribution of Eq. (1) overWS,D .

Meanwhile, the average-case complexity can be impacted by the strategy. Indeed, the relaxed
instance (S′,D′) can accelerate the preprocessing due to a reduced treewidth tw′ ≤ tw. The rejection
step only increases the expected number of generations by a factor q := ZS′,D′/ZS,D , representing
the inflation of the sequence space, induced by the relaxation of the constraints. Overall, the average-
case time complexity of the rejection algorithm is in Θ(n · |D′| · 4tw′

+ k · q · (n + |D′|)) time and
Θ(n · 4tw′

) space. This space improvement is notable when tw′ < tw, and could be key for the
practical applicability of the method, especially given that memory represents the bottleneck of most
treewidth-based DP algorithms.

A.4 Lower bound for the min. alignment cost from simplified models

Here, we justify the filtering strategy described in Section 2.5.2. Namely, we formally prove that, given
a structured RNA S and a targeted genomic region w, a lower bound for the minimal alignment cost
of S and w can be obtained from the minimal alignment cost of some S′ ⊆ S and w. If this lower
bound for S′ ⊆ S is higher than the specified cutoff ε, then there is no need to align w to the full
model S, as the resulting cost is guaranteed to stay above the selection cutoff ε.

Let S be an arc-annotated sequence of length m (Si denotes the ith character of S), w be a target

(flat) sequence of length m, and µ : [1, n]→ [1,m] ∪ {⊥} represents an alignment2. We consider the
following cost function, adapted from eciteRinaudo2012, which quantifies the quality of an alignment
µ for S and w:

C(S,w, µ) =
∑

i unpaired in S,

k:=µi

γ(Si, wk) +
∑

(i,j)∈S,
(k,l):=(µi,µj)

φ(Si, Sj , wk, wl)

+
∑

g∈gaps(S)

λq(g) +
∑

g∈gaps(w)

λT (g)

where

• γ(a, b) returns the substitution cost which penalizes (mismatches) or rewards (matches) the sub-
stitution of a into b (set to 0 and handled in gaps if b =⊥);

• φ(a, b, c, d) returns a base pair substitution cost, penalizing (arc breaking) or rewarding
(conservation or compensatory mutations) the transformation of nucleotides (a, b) into nu-
cleotides/gaps (c, d) (set to 0 and handled in gaps if (c, d) = (⊥,⊥));

• λS and λT penalize gaps introduced by µ respectively in S and w (affine cost model).
2An alignment µ is subject to further constraints, notably including some restricted form of monotonicity, when repre-

sented as a function. However, those constraints are reasonably intuitive and we omit them in this discussion for the sake
of simplicity.
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Given this definition, consider a simplified model S′ ⊂ S, associated with a minimal cost

c′ := min
µ

C(S,w, µ)

and denote by c⋆ the minimal cost of the full model S, we have the following inequality.

Proposition 13.

c′ −
∑

i unpaired in S,′

paired in S

max
b

γ(Si, b) +
∑

(i,j)∈S\S′

min
a,b

φ(Si, Sj , a, b) ≤ c⋆ (2)

Proof. For any alignment, we have, per the definition of C(S,w, µ):

C(S,w, µ) = C(S′, w, µ)−
∑

i unpaired in S,′

paired in S,

and k:=µi

γ(Si, wk) +
∑

(i,j)∈S\S′

s.t. (k,l):=(µi,µj)

φ(Si, Sj , wk, wl).

Minimizing over all alignment µ, one obtains

min
µ

C(S,w, µ) = min
µ

C(S′, w, µ)−
∑

i unpaired in S,′

paired in S,

and k:=µi

γ(Si, wk) +
∑

(i,j)∈S\S′

s.t. (k,l):=(µi,µj)

φ(Si, Sj , wk, wl).

Independently minimizing each term of the right-hand-side, we obtain a first lower bound

c⋆ ≥ c′ −max
µ

∑
i unpaired in S,′

paired in S,

and k:=µi

γ(Si, wk) +min
µ

∑
(i,j)∈S\S′

s.t. (k,l):=(µi,µj)

φ(Si, Sj , wk, wl).

further coarsened by an independent optimization of the elements in the sums

c⋆ ≥ c′ −
∑

i unpaired in S,′

paired in S

max
µ

γ(Si, wk) +
∑

(i,j)∈S\S′

min
µ

φ(Si, Sj , wk, wl)

= c′ −
∑

i unpaired in S,′

paired in S

max
a

γ(Si, a) +
∑

(i,j)∈S\S′

min
a,b

φ(Si, Sj , a, b).
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Figure 2: (a) Histogram of alignment scores obtained by aligning the full structure (tw = 5)model of the Twister
ribozyme (pdb-id: 4OJI) with κ·n-sized windows in a 10kb region of the 5th chromosome of S. bicolor. A vertical
line is positioned at the ε threshold. (b;c;d) Corrected alignment scores obtained for reduced-treewidth models
for each window, plotted against the corresponding score of the full model. The corrected alignment score
indeed acts as a lower bound to the full-model score (points above the y = x red line), allowing an iterative
filtering strategy.

where the last line is obtained by considering the worst-case contributors to nucleotides and base
pairs substitutions. Importantly, the right-hand side no longer depends on µ any more, and can be
used to easily computed a corrected score/lower bound.

The corrected expression, shown in the left hand side of Equation (2) allows, when lower than
a cutoff ε, to safely discard w as a potential hit for the full model S. This corrected score is plotted
in Figure 2.10A, allowing for a gradual reduction of the search space for ε-admissible hits. We show
in Figure 2 the corrected scores obtained for simplified structures S′ of various treewidths, plotted
against the scores of the full target structure.

B Appendix to Chapter 3

This Appendix to Chapter 3 contains detailed examples of dynamic programming scheme generation,
on Figure 3.

C Appendix to Chapter 4

This Appendix to Chapter 4 contains full benchmark data for LiCoRNA, on Figures 4, 5, 6, 7, 8 and 9.

D Appendices to Chapter 5

D.1 Directed pathwidth definition
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Figure 3: Minimal representative expansions and final equations for the examples of Table 3.1. The equations
have been automatically generated, and the pipeline code is freely available at https://gitlab.inria.fr/
bmarchan/auto-dp. In particular, the optimal tree decompositions were computed using an exact algorithm
proposed by Tamaki [82].

https://gitlab.inria.fr/bmarchan/auto-dp
https://gitlab.inria.fr/bmarchan/auto-dp
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nucleotide match

Figure 4: Comparison of AFI, sensitivity, PPV and nucleotide match values between the different methods, for
Experiment 1, i.e. the alignment of pairs of seed sequences from pseudoknotted Rfam families. Each point
in the scatter plot is one pseudoknotted Rfam family. The overall picture is contrasted, but a rough hierar-
chy of the tools may be given for each metric. For AFI, Smith-Waterman≳ LocARNA> LiCoRNA. In terms
of PPV, LiCoRNA≃ LocARNA> Smith-Waterman. For both AFI and PPV, comparing to the Rfam alignment is
pointless as all values would be equal to 1 for the seed alignment. For sensitivity, Rfam> LiCoRNA≃ LocARNA>
Smith-Waterman. Finally, in terms of nucleotide match (sequence conservation) Smith-Waterman> LocARNA
≃ LiCoRNA > Rfam. More interpretation of these results is given in the main text.
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BPCIPK

BPCI BPCINO-PK

Figure 5: Comparison of BPCI values obtained for Experiment 1 with LiCoRNA, Rfam,LocARNA and
Smith-Waterman.
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nucleotide match

Figure 6: Nucleotide match results for Experiment 2.
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BPCINO-PK

Figure 7: BPCINO-PK results for Experiment 2.
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Figure 8: BPCIPK results for Experiment 2.
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Figure 9: BPCI results for Experiment 2.
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Proposition 14. Definition 29 is equivalent to the definition of directed pathwidth from [203] in
terms of vertex separation number, reading:

dpw(H) = min
σ permutation of V

max
ρ⊑σ
|N−1(σ)| (3)

for a graph H = (V,E), σ an ordering of its vertices, and ρ a prefix of an ordering σ.

Proof. Given an optimal ordering σ optimizing Equation 3, i.e. the definition of directed pathwidth
from [203], and a vertex u ∈ V , define two integers au, bu as follows:

• au is the position in σ of the first vertex v such that u → v ∈ E. If no such vertex exist, then
au = bu (see below)

• bu is the position in σ at which u appears.

Given this definition, for any edge u → v, au ≤ bv , and I = {[au, bu] | u ∈ V } is therefore a valid
interval embedding for H . Let us note w(I) the maximum number of intervals intersecting a given
position (i.e. the width of the embedding), and show that w(I)− 1 = dpw(H).

Let ρm be a prefix of σ such that |N−1(ρm)| = dpw(H). For any u ∈ N−1(ρm)|, by the definition
of au, bu, we must have au ≤ |ρm|| and bu ≥ |ρm|. To these vertices whose intervals intersect position
|ρm| must be added the last element of ρm, resulting in w(I)− 1 ≥ dpw(H)

Conversely, let i be the position intersecting the most intervals of I . Without loss of generality,
we choose it such that it is the end of an interval bu for some u. By definition of au, bu, the prefix
ρ of length bu is such that |N−1(ρ)| ≥ w(I) − 1 and therefore dpw(H) ≥ w(I) − 1. Overall
dpw(H) = w(I)− 1.

In the other direction, given an optimal interval embedding {[au, bu]} of H . An ordering σ can
be obtained by taking the vertices in order of increasing bu value. By similar arguments as above, the
width of the interval embedding minus 1 is the directed pathwidth of H .

D.2 Mixed MIS in bipartite graphs

Our Divide-and-Conquer strategy to the BISR problem relies on the computation of maximum inde-
pendent sets containing at least one vertex in each part of the input bipartite graph.

We informally callmixed bipartite maximum independent set (Mixed-MIS) the problem of deciding
whether an input bipartite graphG has a maximum independent set intersecting both of its parts. It is
trivially polynomial, as one may check for each pair (l, r) ∈ L×R, whether I ′ ∪{l, r} is a maximum
independent set of G; with I ′ maximum independent set of G′, and G′ obtained from G by removing
l, r as well as their neighborhoods.

As a maximum independent set of a bipartite graph may be derived from a maximum matching,
this simple strategy yield a O(|V |2 ·

√
|V ||E|) algorithm for our Mixed-MIS problem.

We present here a more efficient strategy, based on a decomposition taking place in two rounds.
It results into Algorithm 8. The first round is based on the Dulmage-Mendelsohn decomposition of
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bipartite graphs. It yields a partition of the vertices of G into three sets D,A,C , defined as such:
for each vertex v of D, there exists a maximum matching in which v is not matched, A = N(D) is
the union of the neighborhoods of the vertices of D, and C = V \ (D ∪ A) contains the remaining
vertices. D,A,C verify the following result:

Theorem 22 (Dulmage-Mendelsohn decomposition, Proposition 2.1 of [214], theorem 3.2.4 of
[213]). Given G bipartite graph and D,A,C defined as above, we have that:

a. – D is the intersection of all maximum independent sets of G.

– A is the intersection of all minimum vertex covers of G.

– the subgraph G[C] induced by C has a perfect matching, which may be deduced from
restricting any maximum matching of G to C .

b. In addition, D may be computed from any maximum matching M of G using the following
characterization ([214], lemma 2.2): D = W where W is composed of the vertices left un-
matched byM , as well as all vertices connected to an unmatched vertex through an alternating
path of even length.

This decomposition may allow to conclude in some cases (see Algorithm 8). In general, however,
a second round of decomposition is needed. In this second round, the set C , which allows for a
perfect matchingM , is further decomposed into elementary sub-graphs (section 4.1 of [213], theorem
4.1.1 and exercise 4.1.5) and [223]. It consists in computing the strongly connected components of a
directed graph H(M,C) associated to M and C (same construction as in Section 5.3). The vertices
of H are the edges of the matching, and (l, r) → (l′, r′) iff l is connected to r′ in C . The strongly
connected components ofH constitute a decomposition ofG into elementary sub-graphs. A bipartite
graph is elementary iff the sides L,R are the only minimum vertex covers/maximum independent
sets [213](theorem 4.1.1). If it is not elementary, then a mixed maximum independent set may be
obtained by ordering the elementary sub-graphs {(Li, Ri)}1≤i≤p along a topological order induced
by H(C,M). Any set of the form (∪i≤tRi) ∪ (∪i>tLi) for some t > 1 is then a mixed maximum
independent set of C .

The discussion above results in Algorithm 8, whose run-time is dominated by the computation of
maximum matching in O(

√
|V ||E|).

D.3 Delayed proofs

D.4 Making an interval representation nice

Let {(au, bu) | u ∈ V } be an interval representation for a directed graph H with vertex set V . We
explain here how to turn it into a nice interval representation:

If an integer n is such that au0 = · · · = aul
= bv0 = · · · = bvp = n, we may modify the

representation as such:



185

Algorithm 8 Mixed bipartite maximum independent set
Input: a bipartite graph G with sides L and R. We suppose w.l.o.g that |L| ≥ |R|.
Output: If it exists, a Maximum Independent Set I of G intersecting both L and R.
1: M = MaximumMatching(G) . O(

√
|V | · |E|)

2:
3: I = MaximumIndependentSet(G, M ) . O(|E|)
4: if (I ∩ L ̸= ∅) and (I ∩R ̸= ∅) then
5: return I
6: end if . // Now |I| = max(|L|, |R|) and I = L or I = R
7:
8: D,A,C = coaRseDulmageMendelsohn(M,G) . O(|E|)
9: if |L| > |R| then

10: if R \A ̸= ∅ then
11: .//A is the intersection of all minimum vertex covers
12: pick r ∈ R \A
13: G′ = G \ {r ∪N(r)}
14: M ′ = MaximumMatching(G′)
15: I ′ = MaximumIndependentSet(G′,M ′)
16: return I ′ ∪ {r}
17: else
18: return ⊥; . // Not possible, L is the only MIS
19: end if
20: else if |L| = |R| then
21: . // L and R are two MIS. So necessarily D = ∅, A = ∅, C = G
22: {(Li, Ri)}1≤i≤p = fineDulmageMendelsohn(M,C) . O(|V |2)
23: if p=1 then
24: return ⊥
25: else
26: . Topological sort of the SCCs of H
27: s=TopologicalSoRt({(Li, Ri)}) . O(|V |+ |E|)
28: (Li, Ri) = s[0] . // first in topological sort
29: return Ri ∪ (∪j ̸=iLj)
30: end if
31: end if
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• Interval bounds associated to integers> n are increased by p+ l−1, to make room for “spread-
ing” au1 . . . auℓ

, bv1 . . . bvp .

• ∀i, aui is set to n+ i and bvi to l + i.

None of these modifications change the way intervals intersect one another, leaving the width un-
changed. The representation is then “packed” into [1 . . . 2.|V (H)|] by taking the interval bounds in
order and setting them to their final position.

D.5 Proof of Proposition 9:

D.6 Re-derivation of Tamaki’s algorithm for directed pathwidth

For completeness, we include here a re-derivation of the results of [189], with the slight modification
mentioned in the main text related to pruning. It results in an algorithm with a O(nρ+2) complexity,
slightly different from the O(nρ+1) announced in [189]. The re-derivation follows the same strategy
as in the original article, and re-uses most of the notations.

D.7 Commitment lemma - shortest non-expanding extensions (SNEKFEs)

Notations and definitions. In a directed graph, d–(u) denotes the in-degree of a node u. We work
with layouts of vertices, i.e. ordered sequences of vertices, not necessarily containing all vertices. A
partial layout σ is called feasible/valid if ∀ prefix p of σ we have d–(p) = |N–(p)| ≤ k. A partial
layout which is completable into a valid full layout (for the entire digraphG) is called strongly feasible
or just completable into a full solution. An extension τ of σ is a valid partial layout with σ as one of its
prefixes. A shortest non-expanding extension of σ is an extension τ such that d–(τ) ≤ d–(σ) and ∀ρ
s.t.V (σ) ⊊ V (ρ) ⊊ V (τ), d–(ρ) > d–(σ). In the rest of this note, we will write SNEKFE for shortest
non-expanding extension.
Lemma 1 - Commitment Lemma - shortest non-expanding extensions. If σ is completable into
a full solution, and τ is a SNEKFE of σ, then τ is also completable into a full solution.

In fact, a more general version is true: ρ could be allowed to be equal in d– to τ before rising again.
The proof relies on the fact that, for any two subsets X,Y of vertices of G:

d–(X ∪ Y ) + d–(X ∩ Y ) ≤ d–(X) + d–(Y )

Proof. If σ is completable into a full solution, then ∃F such that σ · F is a valid layout for G. Let us
reshuffle F into (τ \ σ) ·F ′. Within both parts, the ordering of elements is the same as in F . τ ·F ′ is
now a complete layout for G. Is it valid ?

Consider a prefix P of τ · F ′. If P is contained within τ , d–(P ) ≤ k by the validity of τ .
Else, if P contains some of F ′, then P = P ′ ∪ τ for P ′ a certain prefix of σ · F . As for P ′ ∩ τ ,

which we call ρ it verifies V (σ) ⊂ V (ρ) ⊂ V (τ) and therefore d–(ρ) ≥ d–(σ) ≥ d–(τ) by definition
of a SNEKFE, with the equality only potentially happening if ρ = σ or ρ = τ .
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We therefore have:

d–(P ) = d–(P ′ ∪ τ)

≤ d–(P ′) + d–(τ)− d–(ρ)

≤ d–(P ′) ≤ k

τ · F ′ is therefore a valid complete layout for G, and τ is completable into a full solution.

Let us now describe more precisely what SNEKFEs might look like. We show that they can only
be of three types, and formalize it into the next lemma. Its proof relies on the fact that, by adding a
single vertex u to a partial layout σ, we may only decrease d–(σ) by at most 1, since d–(σ) = |N–(σ)|.
We obtain this decrement of 1 if u is a predecessor to a vertex of σ, and does not introduce any new
predecessor itself when added.
Lemma 2 - SNEKFE types. a SNEKFE τ of a partial layout σ may only be of three types:

• type-(i): single-vertex “decreasing” extension: τ = σ ·u for some vertex u and d–(σ ·u) = d–(σ)−1

• type-(ii): single-vertex “non-decreasing” extension: τ = σ · u for some vertex u and d–(σ · u) =
d–(σ)

• type-(iii): several vertices “shortcut” extension: τ adds strictly more than one vertex to σ and
d–(τ) = d–(σ).

Proof. For single vertex extensions, the two possible types follow from the observation above that the
addition of one vertex to a layout can only decrease d– by at most 1.

For SNEKFEs composed of more than one vertex, observe that if d–(τ) < d–(σ), then by consid-
ering the prefix ρ of τ obtained by removing just 1 vertex to τ , we would have d–(ρ) ≤ d–(τ) + 1 ≤
d–(σ). This stems from the observation above that d– may only decrease by at most 1 when adding a
vertex. ρ would be a non-expanding extension of σ shorter than τ , yielding a contradiction.

D.8 Algorithm

In this section, we restrict ourselves to a pure description of the algorithm, delaying the justification
of its correctness and complexity to the “Analysis” section below.
Tree of prefixes (trie). We will build a tree of prefixes of all possible layouts. We prune the tree
during its construction thanks to the commitment lemma, as justified in the next section. We call Si

the ith level of the tree of prefixes. I.e. the elements of the tree of length i. S0 = {∅}.
Algorithm. Si+1 is generated in the following way given Si:

For each σ ∈ Si:

1. We generate all feasible immediate extensions to σ and add them to the tree. I.e the node σ now
has the following children set: {σ · u s.t d–(σ · u) ≤ k}
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2. If some of these immediate extensions verify d–(σ · u) ≤ d–(σ), then they are SNEKFEs of σ.
In that case, we do the following:

a. We choose 1 arbitrarily and prune the others.
b. If the chosen element verifies d–(σ · u) = d–(σ) − 1 (the only possibility if d–(σ · u) <

d–(σ)), then we in addition look for a prefix η of σ verifying d–(η) = d–(σ · u) and
d–(ρ) > d–(η) ∀ρ s.t. η ⊑ ρ ⊑ σ · u, ρ ̸= η, ρ ̸= σ · u.
If such an η is found, then any part of tree branching off the path from η to σ ·u is removed.
Note that this might shorten the overall loop over σ ∈ Si.

End Algorithm

D.9 Analysis

This section will be composed of three parts. In the first one, we define an invariant property (“in-
ternally pruned”) for trees of prefixes of layouts of vertices. In the second one, we show that, in the
algorithm presented in the previous section, the tree of prefixes verifies the invariant at all times,
and prove the correctness of the algorithm. Finally, in the third part, we analyze the size of trees of
prefixes verifying the invariant, proving that each level Si of such a tree has a size ≤ nk, yielding a
complexity analysis of the algorithm.

D.9.1 Internally pruned trees of prefixes

Definition - Internally pruned. A tree T of prefixes of layouts of vertices (such as the one used in the
algorithm in the previous section) is said to be internally pruned if for all pairs (σ, τ) of nodes of T such
that τ is a shortest non-expanding extension of σ, all nodes on the path from τ (included) to σ (excluded)
in T have degree exactly 2. I.e. there are no sub-parts of the tree rooted on the path from τ (included) to
σ (excluded)

We use the term “internally” to emphasize the fact that, in a context where we apply the definition
of “internally pruned” to a partially constructed T within the algorithm of the previous section, More
(“external”) pruning of the tree might be achieved further in the construction of the tree, as new
SNEKFEs are discovered (see below for the justification of why new SNEKFEs are indeed discovered
at step 2.b of the algorithm).

D.9.2 Invariant and correctness

Lemma 3 - Invariant. Throughout the execution of the algorithm presented in the previous section, the
tree T of prefixes of layouts of vertices remains “internally pruned” at all times

Proof. The tree T starts off with one node for the empty sequence. It is therefore internally pruned.
Suppose now that the tree of prefixes T is internally pruned at an intermediate step in the algo-

rithm, then the next building step always consists in considering a leaf σ and executing step 1. and 2.
of the algorithm. Several cases may arise:
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• If all of the immediate extensions are such that {d–(σ) < d–(σ ·u) ≤ k}, then no new SNEKFEs
are generated when adding them to the tree. (if σ · u is a SNEKFE of some η up the tree, then
σ is shorter and also non-expanding). After the addition of the immediate extension, the tree is
therefore still internally pruned.

• If one of these immediate extensions verifies d–(σ · u) = d–(σ) but none of them verify d–(σ ·
u) < d–(σ), then one of these extensions is a SNEKFE of σ, and is kept while the others are
pruned. However, this is the only SNEKFE introduced by the extension. Therefore, the pruning
of immediate extensions other than the selected one is enough to keep the tree internally pruned.

• If one of the immediate extensions verifies d–(σ · u) = d–(σ) − 1, then one of the immediate
extensions is selected and the others are pruned, as in the previous case. However, in addition,
σ · u might be a new shortest non-expanding extension of a node η up the tree.
If this is the case, then there is only one such η, per the definition of shortest non-expanding
extensions.
We argue that the conditions used in the algorithm indeed detect such an η.
If σ ·u is a SNEKFE of η, then the conditions described in the algorithm (that d–(σ ·u) = d–(η),
and d–(ρ) > d–(η) for any ρ on the path from η to σ · u) are verified.
Conversely, if the conditions are verified, then suppose η has a shorter non-expanding exten-
sions τ . τ cannot be on the path from η to σ · u as that would imply d–(τ) > d–(η). Since τ
is shorter than σ · u, τ has been generated in a previous step of the algorithm. At this point,
step 2.b of the algorithm would have pruned the path to σ, which cannot be visited, leading to
a contradiction.
Therefore, the potentially newly introduced SNEKFE is detected, and the corresponding pruning
is carried out, leaving the tree internally pruned

Therefore, after each extension of the tree throughout the algorithm, the tree remains internally
pruned.

We quickly finish this sub-section with a proof of correctness of the algorithm.
Lemma 4 - correctness. If the graphG allows for a full k-feasible solution, then there is such a solution
among the leaves of the tree of prefixes T generated by the algorithm.

Proof. Denote the set of full solutions S, and suppose all solutions are absent from T .
∀σ ∈ S, there is some (possibly empty) prefix of σ in T .
We pick σ ∈ S allowing for the largest prefix η ∈ T , i.e:

σ = argmax
σ′∈S

[
max

η⊑σ′,η∈T
|η|
]

Take η the largest prefix of σ belonging to T . If the path from η to σ has been pruned, it is because
η is on the path from η′ to τ , with τ shortest non expanding extension of η′, and τ is not a prefix of σ.
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The path from η to σ is pruned only when τ is visited. Hence τ ∈ T , otherwise, the path from
Per the commitment lemma, τ is the prefix of a full solution σ′′. But |τ | > |η|, contradicting the

choice of σ.

D.9.3 Signature analysis

We show here that, at any point in the algorithm, thanks to the pruning, ∀i, |Si| = O(nk).
Definition - signature . Consider σ ∈ Si for some i, within the internally pruned tree generated by
the algorithm, valid partial layout. We call signature of σ the set of vertices obtained from V (σ) by
removing, given any pair (η, ρ) of prefixes of σ such that ρ is a SNEKFE of η, all vertices in ρ \ η.

Given σ ∈ Si, its signature can be easily computed by looking at the path from the root to σ: any
vertex chosen out of several available possibilities is part of the signature, while any vertex that was
the only possibility at the point of its choosing isn’t.
Lemma 5 - Same signature same sequence. If sgn(σ) = sgn(τ) within the pruned tree of layouts
and |τ | = |σ| then σ = τ

Proof. When starting at the root and building τ and σ by going down the tree, at every node, there
are two cases:

• Either the next move is part of a SNEKFE. In this case there are no choices to be made, the added
vertex is not part of the signature, and is the same for σ and τ .

• Or the next move is not part of a SNEKFE. In this case, several choices are possible, and the next
added vertex will be part of the signature. Since the signatures of σ and τ are the same, the
same vertex is added to σ and τ .

At the end of this process, σ and τ are therefore identical.

Lemma 6 - overall strictly decreasing = SNEKFE only. Consider τ ∈ Si for some i partial valid
layout, and σ a prefix of τ such that:

• d–(σ) > d–(τ)

• For any ρ such that σ ⊑ ρ ⊑ τ , ρ ̸= τ , we also have d–(ρ) > d–(τ).

Then, the suffix τ \ σ of τ corresponding to σ can be entirely partitioned into SNEKFEs. In particular,
none of its elements are part of the signature of τ .

Proof. We prove the lemma by induction on the length of the suffix τ \σ. If |τ \σ| = 1, then τ = σ ·u
and d–(τ) = d–(σ)− 1. τ is a type-(i) SNEKFE of σ and the lemma is true.

If |τ \σ| > 1 and we assume the lemma true ∀l < |τ \σ|, then let us distinguish two cases related
to the first element v of τ \ σ:

• if σ ·v is a type-(i) or type-(ii) SNEKFE of σ, then we apply the induction hypothesis to the suffix
τ \ (σ · v) of τ and we have the result.
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• else, if d–(σ · v) > d–(σ), we know, since d–(τ) < d–(σ) and the d–-curve only decreases by
steps of −1, that there must exist ρ such that d–(ρ) = d–(σ), σ ⊑ ρ ⊑ τ , and d–(ρ′) > d–(σ)
for any ρ′ such that σ ⊑ ρ′ ⊆ ρ (ρ is the shortest prefix of τ which contains σ and has the
same d– value). ρ is then a type-(iii) SNEKFE of σ by Lemma 4, and we may apply the induction
hypothesis to τ \ σ

Lemma 7 - Signature size. ∀σ ∈ Si for some i partial layout of vertices, |sgn(σ)| ≤ d–(σ)

Proof. The proof is by induction on |σ|. Suppose |sgn(σ)| ≤ d–(σ), and consider the extension σ · u,
where u is a vertex.

• If σ ·u is not a SNEKFE of σ, then |sgn(σ ·u)| = |sgn(σ)∪{u}| = |sgn(u)|+1 ≤ d–(σ)+1 ≤
d–(σ · u)

• If σ is a type-(ii) SNEKFE of σ, then sgn(σ) = sgn(σ · u) and d–(σ · u) = d–(σ).

• If σ · u is a type-(i) SNEKFE of σ, then consider η, the closest node (up the tree) such that
d–(η) < d–(σ·u), and η·v its successor on the path to σ·u. We have d–(η) < d–(σ·u) ≤ d–(η·v),
by definition of η. The path from η · v to u is either a type-(iii) SNEKFE or overall-decreasing.
Therefore sgn(σ · u) = sgn(η · v). and |sgn(σ · u)| = |sgn(η)|+ 1 ≤ d–(η) + 1 by induction
hypothesis, and |sgn(σ · u)| ≤ d–(σ · u).

In particular, ∀σ partial layout, d–(σ) ≤ k. Since two different elements of Si need different
signatures, we get the following corollary:
Corollary. ∀i, at any point in the algorithm, |Si| = O(nk)

The overall complexity of the algorithm is therefore O(nk+O(1)). More precisely, it is O(nk+2).
(there are n levels of the tree to fill, ≤ nk nodes per level and O(n) work per node to generate the
next level).

D.10 Detailed RNA reconfiguration example

We provide in Figure 10 the intermediate sets of base pairs, and associated RNA secondary structures,
for our running example, described in Figures 5.1.
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Figure 10: Optimal (min barrier) refolding scenario between two RNA secondary structures. In each interme-
diate state, the conflict graph is given, featuring the selected independent set of base pairs (filled nodes), and
the corresponding secondary structure.
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Titre : Algorithmie paramétrée exacte pour la bioinformatique structurale des ARNs

Mots clés : ARN, agorithmie paramétrée, graphes, largeur arborescente

Résumé : Les ARNs (Acides Ribo-Nucléiques)
constituent, avec l’ADN et les protéines, l’un des
blocs élémentaires sur lesquels sont construits tous
les systèmes biologiques. Si ils sont surtout connus
comme étant de simples intermédiaires dans la
synthèse de protéines (ARNs messagers), ils peuvent
aussi agir directement en tant qu’ARN, et remplir
alors des rôles très variés (catalyse, régulation de
l’expression de gènes...). Pour ces ARNs dits non-
codants, la structure de repliement qu’ils adoptent est
cruciale.

À la fois les séquences et les structures d’ARN
présentent un aspect intrinsèquement combinatoire:
les séquences sont des mots sur l’alphabet A,U,G,C,
tandis que les structures sont principalement
constituées de paires de bases A-U, G-C et G-U.
Plusieurs problèmes fondamentaux impliquant les
ARNs non-codant sont par conséquent naturellement
exprimés dans le language des mathématiques
discrètes. Ces problèmes incluent le repliement
(Quelle est la structure préférentielle d’une séquence
donnée ?), le design d’ARN (Comment trouver
une séquence se repliant selon une structure

spécifiée en entrée ?) ou le calcul de barrières
d’énergie (Y’a-t-il une transition entre deux structures
susceptible de survenir spontanément ?). Certains
de ces problèmes fondamentaux sont NP-difficile,
mais ls bioinformaticiens de l’ARN doivent tout
de même les résoudre quotidiennement, soit
pour mieux comprendre les systèmes biologiques
naturels, soit pour le développement de thérapies à
base d’ARN (dont les vaccins contre le COVID19
sont un exemple). Étant donné également les
quantités toujours plus grandes de données de
séquençage à traiter, il y a un besoin croissant
de méthodes algorithmiques efficaces pour les
problèmes mentionnés ci-dessus.

La philosophie de cette thèse de doctorat
est d’explorer les possibilités d’application de
l’algorithmie paramétrée, un domaine relativement
récent et très dynamique de la recherche
algorithmique, à des problèmes difficiles de
bioinformatique des ARNs. Une attention particulière
est donnée aux formulations en termes de graphes,
et à des paramètres de largeurs de graphes.

Title : Exact Parameterized Algorithmics for structural RNA bioinformatics

Keywords : RNA, parameterized algorithmics, graphs, treewidth

Abstract :
RNAs are one of the fundamental building blocks
of life, along with DNA and proteins. If they are
mostly known as a mere intermediate in the synthesis
of proteins (messenger RNAs), they may also act
directly as RNA to perform a wide variety of functions
(catalysis, expression regulation...). For these non-
coding RNAs, the folded structures they adopt is
crucial.

Both RNA sequences and structures display an
inherently combinatorial nature: sequences are words
over A,U,G,C, while structures mainly consist of
A-U, G-C and G-U base-pairs. Several fundamental
computational problems involving functional RNAs
are therefore naturally expressed in the language
of discrete mathematics. Such problems include
RNA FOLDING (what is the preferred structure of
a sequence ?), RNA DESIGN (how do I find a

sequence that would fold into a given structure
?) or RNA ENERGY BARRIER (is there a feasible
transition between two structures ?). Some of these
fundamental problems are NP-hard, but still need
to be solved by RNA bioinformaticians in practice,
either to better understand biological systems or for
the development of RNA therapeutics (e.g. COVID19
vaccines). Combined with the ever-increasing amount
of sequencing data available, there is a dire need for
efficient methods.

The philosophy of this PhD thesis is to explore the
possibility of applying parameterized algorithmics,
a relatively recent and very dynamic field of
algorithmic research, to hard structural RNA
bioinformatics problems. A particular focus is given
to graph formulations and graph width measures as
parameters.
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