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General introduction
Ever increasing demands for higher transmission data rates in mobile communication
with more and more connected devices has led to development of novel technologies
that have improved capabilities to meet the demands of network provider and end
users. Figure 1 shows the evolution off mobile communication from First Generation
(1G) of mobile communications to Fourth Generation (4G) of mobile communica-
tions. 1G offered analogue voice and it evolved to digital voice in Second Generation

Figure 1: Evolution of Mobile Communication

(2G) which offered low speed data and some other services such as text messaging.
4G presented an Internet Protocol (IP) based network which provided high speed
internet. Next generation of mobile communications is expected to support following

• More and more devices need to be connected to network.

• Requirements of even higher data rates of end user.

• More reliable communication with lower latency.

• Cope up with issues of congestion in spectrum.

• Requirement of diverse Quality of Services (QoS).

New techniques currently being investigated by researchers should be able to handle
a large amount of data from Internet of Things (IoT) and its applications. These
techniques are required to support large number of connected devices while ensuring
Quality of Services (QoS) for the end users. It is expected of the forthcoming
mobile communication generations to achieve higher data rates, support massive
connectivity with lower latency and better coverage regions. The Cisco Annual
Internet Report [1], predicts for 2023 that there will be 5.3 billion global internet
users with 3.6 global devices and connections per capita. This report further predicts
that number of devices/connections by 2023 will be almost 30 billion of which 45
percent will be mobile devices. These stats predict more challenges for researcher
in mobile communications.

cr2i
Texte surligné 
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Fifth Generation (5G) of mobile communication focuses on three main areas as
can be seen by 5G capabilities pyramid in figure 2, which includes enhanced Mobile
Broadband (eMBB) for higher data rate, massive Machine-Type Communications
(mMTC) for more number of connected users and Ultra-Reliable Low Latency Com-
munications (URLLC) for user specific QoS.

Figure 2: Pyramid of 5G Capabilities

In order to support these requirements, numerous technologies such as Machine-
to-Machine (M2M) and Device-to-Device (D2D) communication, Cloud-based Ra-
dio Access Networks (CRAN), Wireless Network Virtualization (WNV), millimeter
Wave (mmWave), and Massive Multiple-Input Multiple-Output (MIMO) etc have
been recognized by researchers in the industry. Beside these technologies, Multiple
Access (MA) techniques are considered as core aspect in physical layer. MA tech-
niques have evolved significantly in previous mobile communication generations. By
looking at the capabilities that are to be offered by 5G in figure 2, MA techniques for
5G need to be worked upon. Non-orthogonal Multiple Access (NOMA) has become
a potential candidate for 5G mobile communication, due to the fact that it is able
to accommodate multiple users in same radio resource.

Inspired by the above discussion we have worked on optimization of resource allo-
cation in a communication system for 5G mobile communication. We have worked
on NOMA as MA techniques for 5G, since NOMA is divided into Code Domain
NOMA and Power Domain NOMA, we particularly focused on Sparse Code Multi-
ple Access (SCMA) which is code domain NOMA technique. We discuss in detail
the SCMA technique, where the main challenges are designing of efficient codebooks
for each SCMA user and complexity of decoding algorithms at the receiver ends. We
have worked on encoded SCMA systems and showed that the Bit Error Rates (BER)
for SCMA user can be improved by introduction of feedback from error correcting
decoder to SCMA decoder.

We make use of principles of power domain NOMA to reduce the complexity
of SCMA decoder. We have proposed a hybrid inference cancellation technique,
which decodes SCMA users based on different power levels. Finally, we optimize
the power allocation to SCMA users in order to have certain QoS. This work focuses
on following two major areas:

cr2i
Texte surligné 
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• Reliable and Less Complex Joint Decoding in SCMA.

• Guarantee a QoS using power allocation for a Target Bit Error Rate (BER)
in SCMA.

In the first chapter we briefly explain NOMA, its different domains along with its
basic principles. We have discussed SCMA with some discussion on design of code-
books and detailed explanation on message passing algorithm at SCMA decoding.
In the second chapter, we have studied about the feedback in an encoded SCMA to
improve BER results and later we propose a low complexity SCMA decoder with
hybrid interference cancellation and followed by message passing algorithm. In the
last chapter, we have formulated optimization of power allocation for the model,
proposed in chapter two, to further improve the BER results of SCMA users with
same low decoding complexity.
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Chapter 1

Introduction

In this chapter we discuss in detail NOMA as a multiple access technique. We
explain two different domains of NOMA, i.e. code domain NOMA and power domain
NOMA. We explain SCMA in detail and as already mentioned in introduction that
there are two main challenges in SCMA i.e. designing efficient codebooks for users
and complexity of decoding algorithms. We briefly explain the design of codebooks
and discuss in detail the message passing decoding algorithm. Later in this chapter,
we discuss about the optimization of resource allocation and challenges faced in
optimization.
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1.1 Background and motivation 9

1.1 Background and motivation
Multiple Access techniques can be rendered as one of the basic block of wireless
mobile communication. The choice of MA techniques for a mobile communication
effects the system throughput of mobile users, their latency and their utilization of
available resources [2]. 5G mobile communication is expected to provide massive
connectivity with higher data rates and low latency as compared to 4G as shown
in figure 1.1 Therefore MA techniques have to be reviewed for 5G in order for it;

Figure 1.1: Moving from 4G to 5G

to have these capabilities as compared to 4G. NOMA has become one of the key
potential candidate for MA in 5G systems, with main advantages listed as follows

• High spectrum efficiency
One of the main key performance indicator (KPI) in a wireless communication
network is its spectrum efficiency. NOMA allows multiple users to occupy same
resource block (RB) [3], which results in higher spectrum efficiency in NOMA
to further increase the system overall throughput.

• Low latency
It has been shown in [4] that NOMA has remarkably brought down the physical
layer latency and greatly enhanced the reliability for URLLC.

• Massive connectivity
Due to non-orthogonal characteristics, NOMA is able to serve multiple users
in each RB, contrary to conventional OMA. Due to this fact, NOMA is able
support massive number of users as it is required by future 5G communication
systems.

• Fairness-throughput tradeoff
Contrary to conventional power allocation strategies, NOMA is based on Multi-
user Detection (MUD) which aims to control power allocation of interfering
users. Due to this power allocation schemes in NOMA, it is able to offer good
tradeoff between system throughput and fairness among users.

• Power consumption from end user’s perspective
Battery capacity has always been a concern for the end users, so the power
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10 Introduction

consumption for the end user has to be optimized. NOMA is able to offer
Energy-Efficient Power Allocation in an uplink scenario [2].

• Compatibility
NOMA can be employed with existing OMA techniques, such as in SCMA mul-
tiple users have their unique codebooks, and share same Orthogonal Frequency-
Division Multiplexing (OFDM) layer. Moreover, power domain NOMA ex-
ploits the power dimension thus it can be made compatible with existing OMA
techniques.

• Limitations in number of users transmitting simultaneously in OMA
There is no interference among OMA users ideally, but in reality OMA requires
the use of frequency reset, which results in spectrum usage. There are limita-
tions in number of users transmitting simultaneously and data that is being
transmitted [5].

Inspired by the advantages mentioned above, along with an another fact that
unlike OMA, NOMA exploits the coding techniques or difference in power of users
to allow presence of controlled interference [6] and due to huge volumes of recent
research in NOMA, this thesis is based on optimization of resource allocation for
certain Quality of Service (QoS) for users in an SCMA system.

1.2 Introduction to Multiple Access Techniques
It is prudent in a communication system that multiple users can access the chan-
nel simultaneously to transmit and receive information. In wireless communication,
several techniques have been used to facilitate multiple users to access the chan-
nel concurrently. One of the reasons behind, allowing multiple users to access the
channel at same time is to enhance the capacity of the network. Multiple access
techniques can be broadly divided in Orthogonal Multiple Access (OMA) and Non-
orthogonal Multiple Access (NOMA)[7].

OMA mitigates the collision in transmission of multiple users by maintaining an
orthogonality in time, frequency or code domain which has been demonstrated in
Second Generation (2G) and Third Generation (3G) of mobile communication. Time
Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA),
Code Division Multiple Access (CDMA) or Orthogonal Frequency Division Multiple
Access (OFDMA) allow users to access same channels where theoretically they do
not have interference among each other. In TDMA, multiple users are scheduled in
distinct time slots that are non-overlapping, whereas in FDMA, each of the multiple
users utilizes frequency channel made by a division of complete spectrum. On the
other hand, CDMA uses orthogonal and pseudo-noise (PN) sequences for each of
multiple users which enables them to be multiplexed and transmitted or received
over entire frequency spectrum. In Long Term Evolution (LTE) a more robustious
multiple access technique that is OFDMA is used, which is a mixed flavor of time
and frequency domain. In OFDMA different users are allocated a group of orthogo-
nal sub-carriers at distinct time slots. Spatial Division Multiplexing Access (SDMA)
is an OMA technique that is used when the transceivers are furnished with multiple

cr2i
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1.2 Introduction to Multiple Access Techniques 11

antennas. To summarize, OMA techniques can be pictured as FDMA for first gen-
eration (1G) mobile communication, moving on to 2G where TDMA/FDMA were
used. Later on, CDMA was incorporated in 3G and as already discussed, OFDMA
is employed in 4G and 5G. All the above mentioned techniques used to minimize the
effect of Multiple Access Interference (MAI) have users being allocated orthogonal
resources in terms of time, frequency, code or spatial domain.

These conventional OMA techniques limit the capacity of communication system
by allocating resources in terms of time, space, frequency or code to each the users.
Moreover, these OMA protocols lack the ability to provide massive connectivity.
Contrary to conventional OMA, NOMA is able to provide higher multi-user sum
rate, capacity and spectral efficiency (SE) [8]. NOMA techniques have the ability
to accommodate multiple users over same radio resources with minimal amount of
MAI. It is also able to provide users with higher effective bandwidth [9] and provide
overloading i.e. more number of users as compared to numbers of resource blocks
(RB). Two main advantages of NOMA as compared to OMA can be observed in
figure 1.2 are

• Increase in spectral efficiency.

• Higher Data Rate.

It can be seen in figure 1.2 that within same available resources in terms of time,
frequency or code; OMA is able to support less number of users as compared to
NOMA. During an available resource slot when NOMA serves multiple users, it
is able to distinguish between them on basis of different power allocation in power
domain NOMA or in terms of different codes for code domain NOMA. This improves
spectral efficiency of the system. It can also be proved mathematically that NOMA
outperforms OMA in terms of data rate for users connected to a communication
system.

Figure 1.2: Resources Allocation between OMA and NOMA

cr2i
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12 Introduction

As seen in figure 1.2, resources allocated to each user in case of OMA are well
separated in terms of time, frequency or code etc, whereas NOMA allocates same
resources to different users experiencing different channels. Power is allocated de-
pending on channels conditions, which make the basis of their detection at receiver
end. NOMA does the Superposition Coding (SC) of multiple users in code domain
where each user has its own unique sparse codebook or in power domain based on
the channel gain differences of each user. Consequently, Multiple User Detection
(MUD) is applied to distinguish between interfering signals [10, 11]. For power do-
main NOMA, Successive Interference Cancellation (SIC) is applied for MUD [12].
A comparative study between NOMA and OMA was done in [13] and it was con-
cluded that NOMA has superior spectral-power efficiency as compared to OMA.
Overloading in NOMA provides massive connectivity, besides its higher spectral ef-
ficiency, high user fairness and low latency make it potential candidate of Multiple
Access (MA) technique for 5G [14]. To support NOMA as a potential candidate
for MA techniques for 5G, numerous forms of NOMA have been proposed by the
telecommunication industry[15]. Some advantages that support NOMA as a poten-
tial candidate for MA techniques for 5G are shown in figure 1.3

Figure 1.3: Advantages of NOMA

1.3 Non-orthogonal Multiple Access
An idea of non-orthogonal communication can be dated back as early as 90s [16]. In
the modern epoch, many NOMA techniques have been intensively studied [17–23].
NOMA can be divided into two broad domains [7] based on multiplexing i.e. power
domain NOMA and code domain NOMA.

1.3.1 Power Domain Non-orthogonal Multiple Access

The fundamental principle of power domain NOMA is that the difference in power
among the multiple users simultaneously accessing the channel is exploited, these
users are multiplexed together using superposition coding at the transmitted side
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1.3 Non-orthogonal Multiple Access 13

and SIC is applied at receiver end to cancel out inter user interference (IUI) [9]. The
power domain NOMA includes basic NOMA relying on a SIC receiver [24], NOMA
in Multiple Input Multiple Output (MIMO) systems [25], Cooperative NOMA [26]
etc.

1.3.2 Code Domain Non-orthogonal Multiple Access

The code domain NOMA methods include Sparse Code Multiple Access (SCMA)
[27–31], Low Density Spreading sequence (LDS) [32–34], Pattern Division Multiple
Access (PDMA) [35], Successive interference cancellation Amenable Multiple Ac-
cess (SAMA) [36], Interleave Division Multiple Access (IDMA)[37], LDS-CDMA[37],
LDS-OFDM[37] etc, which takes advantage of spreading/coding to distinguish be-
tween users at the receiver end.

1.3.3 Basic Principles of Non-orthogonal Multiple Access

As already discussed that Superposition Coding (SC) is done at the transmission
end of NOMA whereas depending on whether power domain NOMA or code domain
NOMA is employed, SIC or joint MUD is done at the receiver end. In this section
we briefly introduce SC and SIC. Later in this section we discuss basic system model
for uplink and downlink NOMA.

1.3.3.1 Superposition Coding and Successive Interference Cancellation

Basically, the word superpose means to add, so superposition coding means to add
the signals at the transmission of NOMA. Whereas SIC is employed at the recep-
tion end of NOMA, where receiver, while decoding one user, treats the data of all
remaining users as noise. In this subsection, SC and SIC concepts are explained for
the downlink NOMA.

In downlink NOMA, users around the Base Station (BS) can be ordered depend-
ing on their channel conditions. A user with a better channel quality is referred to as
a strong user, whereas weak user is one, having poor channel quality as compared to
the strong one. Users ordered w.r.t. their respective channel gains, get the allocated
transmit powers according to their channel gains. Power allocation is done while
aiming for efficient successive interference cancellation and to have fairness among
user. In order to meet these two criteria, normally more power is allocated to weak
user having poor channel conditions and lesser proportion of power is allocated to
strong user having good channel conditions. This results in reduction of interference
while decoding weak user.

To illustrate the SC process, suppose there are J users in a downlink NOMA. A
portion of transmit power i.e. aj of total available power P is allocated to each of J
users, depending on their channel gains. For example in figure 1.4, a constellation
diagram of 2− user i.e. J = 2 NOMA system is shown. Each of two users has four
point Quadrature Amplitude Modulation (4-QAM) complex symbols. Composite
constellation is formed from the superposition coding of symbols of these 2 users. In
the figure 1.4, two users are sub-scripted as m and n. Constellation points of user m
are depicted by red squares while for each of them, blue circles are the constellation
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14 Introduction

Figure 1.4: Superposition coding constellation of 2 users NOMA using 4-QAM

points for user n in the complex plane around each constellation point of user m. It
can be observed that user m has been allocated fairly a larger proportion of total
transmit power P as compared to user n. Conventionally, it can be deduced that
user m has a bad channel as compared to user n. At the end of superposition coding
the 16 blue circles are the actual constellation points that are transmitted. While
decoding the user m i.e. a weak user there will be some amount of interference
from user n i.e. a strong user. While at the decoding part of NOMA system, SIC
exploits this difference in amplitude of SC signal to improves its efficiency.

Figure 1.5: Successive interference cancellation decoding in Downlink NOMA

For the downlink NOMA, as illustrated in figure 1.5, it is 2 − user NOMA,
user close to the base station is called as Near user (NU) and it has better channel
conditions, as already discussed, lesser fraction of power is allocated to this NU. It
performs SIC to combat IUI from the Far User (FU). It removes the interference due
to FU to finally detect its own signal. For the Uplink scenario, SIC receiver takes
an advantage of difference in amplitude of SC signal, because of different power and
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1.3 Non-orthogonal Multiple Access 15

channel gains, to decode each user one after the other. First of all, it decodes the
user having highest received signal power, removes it from the received signal and
decodes the remaining users in same order until the last signal is left without any
interference noise from other users, as shown in figure 1.6. Some existing practical
technologies use the advantages of SIC, such as CDMA [38].

Figure 1.6: J-user SIC receiver

1.3.3.2 Downlink NOMA

In downlink NOMA, the BS transmits the SC data of all users, where each user has
different transmitted power depending on its channel conditions. Downlink NOMA
system can be observed in figure 1.7, where a single BS is transmitting a SC symbol
of user 1 and user 2, on the same frequency band. For J users,

SCsignaldownlink =
J∑

j=1

√
αj × Pxj (1.1)

where αj denotes power allocation coefficient of each user j and
∑J

j=1 αj = 1. P is
total power transmitted from the BS. The signal received at each of J users can be
represented as

yj = hj

J∑
i=1

√
αi × Pxi + nj (1.2)
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16 Introduction

where hj is the complex channel coefficient between each user j and the BS. nj is
the additive white Gaussian noise (AWGN) with zero mean and σ2 variance, i.e.
nj ∼ CN (0, σ2

j ). In figure 1.7, 2 users are shown, i.e. J = 2 so equation 1.1 and 1.2
become as:

SCsignaldownlink =
√

α1 × Px1 +
√
α2 × Px2 (1.3)

yj = hj

2∑
i=1

√
αi × Pxi + nj

y1 = h1 × (
√

α1 × Px1 +
√

α2 × Px2) + n1,

y2 = h2 × (
√

α1 × Px1 +
√

α2 × Px2) + n2

(1.4)

Figure 1.7: 2-Users Downlink NOMA

We have assumed in figure 1.7 that user 1 is the strong user i.e. it has a better
channel conditions as compared to the weak user i.e. user 2, so |h1|2 ≥ |h2|2.
BS transmits a superposition coded signal of both the users with power coefficient
of each user in accordance to their respective channel conditions. The weak user
i.e. user 2 is allocated a higher portion of transmission power as compared to
strong user i.e. user 1 so α2 ≥ α1. This is crucial for performing SIC operation at a
specific receiver. When the power coefficient of the user with lower channel gain is
higher, it results in stronger interference signal from weakuser at strong user. This
strong user is able to suppress the interference from weak user. The classical order
of SIC decoding is in the top to down order of channel gain of each user, strong user
to weak user. In figure 1.7 user 1 decodes the message of user 2 before decoding
its own message, then its performs the interference cancellation of user 2 from its
received signal and finally decodes its own message. Whereas user 2 decodes its
own message straight away with performing any interference cancellation. For an
efficient SIC procedure at user 1 following condition is to be respected,

α2P |h1|2 − α1P |h1|2 ≥ γ (1.5)
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1.3 Non-orthogonal Multiple Access 17

where γ is the least amount of power difference that is needed to differentiate between
signal that is to be decode and remaining signals that are treated as noise. If there
are J users, where user 1 has highest channel gain and the last user i.e. user J has
lowest channel gain then to apply SIC at any user i, equation 1.5 would be

αJP |hi|2 −
J−1∑
j=i

αjP |hi|2 ≥ γ (1.6)

As a result of an efficient SIC, data rates that can be achieved by each of these
2 users are as follows

R1 = log2

(
1 +

α1P |h1|2

σ2
1

)
R2 = log2

(
1 +

α2P |h2|2

α1P |h2|2 + σ2
2

) (1.7)

A general equation for rate of user j in a J user NOMA system is

Rj = log2

(
1 +

αjP |hj|2∑j−1
i=1 αiP |hj|2 + σ2

j

)
(1.8)

1.3.3.3 Uplink NOMA

In uplink NOMA, the BS receives signals of each of the users with different received
powers. SIC is performed at the BS. 2 users uplink NOMA is shown in figure 1.8
where BS receives the signal from these 2 users at different received power levels.
For J users,

SCsignaluplink =
J∑

j=1

√
αj × Pxj (1.9)

where αj denotes power allocation coefficient of each user j and
∑J

j=1 αj = 1. P
is the maximum transmitted power of each user j . The signal received at BS is
represented as

y =
J∑

i=1

hi

√
αi × Pxi + n0 (1.10)

where hi is the complex channel coefficient between each user j and the BS. n0

is the additive white Gaussian noise (AWGN) with zero mean and σ2 variance, i.e.
n0 ∼ CN (0, σ2

j ). For 2 users in figure 1.8, i.e. J = 2 so equation 1.9 and 1.10
become as:

y =
2∑

i=1

hi

√
αi × Pxi + n0

y =
√

α1Ph1x1 +
√

α2Ph2x2 + n0

(1.11)
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18 Introduction

Figure 1.8: 2-Users Uplink NOMA

In figure 1.8 it is assumed that user 1 is the strong user having higher channel
gain as compared to user 2 which is a weak user with a lower channel gain. Math-
ematically, |h1|2 ≥ |h2|2. Power allocation coefficients are assigned to each user in
such a way that received signal power of user 1 is higher as compared to that of
user 2. Since user 1 already has a higher channel gain as compared to user 2, so
to provide fairness in the system, power allocation coefficient of user 1 is reduced
to level where it has a minimum value but still respecting the criteria that received
signal power for user 1 at BS is higher than that of user 2. SIC is applied at BS
after receiving the superposed signal of both the users. Signal of user 1 is supposed
to be the strongest signal received at the BS so it is decoded first and as a result it
faces an interference from user 2. User 1 is decoded and SIC process is applied to
received signal, so that user 2 is effectively decoded with any interference noise from
other user. If there are J users, the users are decoded in order of their respective
received signal power, which is likely the order of their channel gains. The user with
highest received signal power is decoded first in the presence of noise interference
from all the other users. SIC process is applied, then the user with second highest
received signal power is decoded. Consequently, user with the lowest received power
is decoded at the end, does not experience the interference noise from any other
users. For an efficient SIC process at user 1 following criteria is to be respected

α1P |h1|2 − α2P |h2|2 ≥ γ (1.12)

where γ is the least amount of power difference that is needed to differentiate
between signal of interest and remaining signals of non-interest that are treated as
interference noise. For J users NOMA system, where user 1 has highest channel
gain and the last user i.e. user J has lowest channel gain then to apply SIC at any
user i, equation 1.12 would be

αiP |hi|2 −
J∑

j=i+1

αjP |hj|2 ≥ γ (1.13)

Achievable data rate for each of these users comes out to be
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R1 = log2

(
1 +

α1P |h1|2

α2P |h2|2 + σ2

)
R2 = log2

(
1 +

α2P |h2|2

σ2

) (1.14)

For any user j in a J user NOMA system

Rj = log2

(
1 +

αjP |hj|2∑J
i=j+1 αiP |hi|2 + σ2

)
(1.15)

1.4 Sparse Code Multiple Access
Sparse Code Multiple Access (SCMA) is considered as one of the promising key
candidates for code domain NOMA [39]. [40] shows that SCMA can attain bet-
ter link level performance in comparison to other NOMA techniques, it shows that
SCMA outperforms Multi-User Shared Access (MUSA), and PDMA in Rayleigh
fading channels. SCMA takes an advantage of sparsity in its codebooks to mitigate
IUI while serving multiple users. Emergence of SCMA has been greatly motivated
by Low Density Signature based Code-Division Multiple Access (LDS-CDMA) [41],
since LDS-CDMA is the most basic code-domain NOMA technique [39,42]. One of
the main differences between LDS-CDMA and SCMA is that the bit to constellation
mapping and spreading are intrinsically combined in SCMA as compared to LDS-
CDMA. Another main difference between them, which gives SCMA an edge over
LDS is, its constellation shaping gain which is due to fact that multi-dimensional
constellation are used for generating sparse codebooks in SCMA [43].This constel-
lation shaping gain results in higher spectral efficiency of SCMA in comparison to
other code domain NOMA techniques such as LDS-OFDM and LDS-CDMA [43].
Performance of SCMA using codebooks generated by using multi-dimensional con-
stellation was compared to LDS using Quadrature Phase Shift Keying (QPSK) was
studied in [43], which concludes that LDS is outperformed by SCMA in terms of
Block Error Rate (BLER). [44] makes a comparison between Power Domain (PD)
NOMA and SCMA, and concludes the SCMA has superior performance in terms of
sum rate in heterogeneous cellular networks. Moreover, [45, 46] shows that SCMA
performs better in terms of throughput and lesser average access delay as compared
to PD-NOMA, it also shows that SCMA is also better than LTE random access pro-
cedure when massive number of Internet of Things (IoT) devices are trying to gain
access. [47] shows that uplink grant-free multiple access can be provided to SCMA
users. This grant-free multiple access results in reduction of signalling overhead and
in latency as well. [48] introduces a multi-user SCMA (MU-SCMA) technique to
employ in downlink 5G, it makes a comparison between Multi-User MIMO (MU-
MIMO) in terms of channel robustness and comes to conclusion that MU-SCMA is
more robust to variation in channel quality as compared to MU-MIMO. In regards
comparison between these two, [49] shows that MU-SCMA is has the capability to
achieve higher sum rate as compared to MU-MIMO.

Figure 1.9 shows an LDPC encoded SCMA system for J users using K resource
blocks for transmission. LDPC encoder is used to encode the data bits from each user
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Figure 1.9: LDPC encoded SCMA system

j = 1, ..., J . Data bits of each user djmo
|mo = 1, ...,m are encoded to bjno

|no = 1, ..., n
having a code rate R = m/n. At the output of LDPC encoder block, each log2(M)
are grouped together for the input of SCMA encoder. SCMA encoder has codebook
of each user of size K×M , so it maps log2(M) grouped input encoded bits onto K-
dimensional complex codeword of size M , which is sparse vector of N < K non-zero
entries. The mapping of this grouped data is done as f : Blog2(M) → χ, x = f(b)
where χ ⊂ CK . At the output of SCMA encoder, N dimensional constellation point
is mapped onto K dimensional complex codeword. As already discussed above
in this section, SCMA combines the bit to constellation mapping and spreading,
so here it can be seen that incoming encoding bits are mapped to K-dimensional
complex codeword which is a sparse vector. Fig. 1.9 shows that all the assigned
codewords from respective j users are summed up i.e. SC process is done. At the
output of SCMA encoder block, these complex codewords of each user are signaled
via Rayleigh fading channel prior to SC process. All these symbols after Rayleigh
fading channel are superposed and additive white Gaussian noise (AWGN) is added.
The received signal after SC can be expressed as:

y =
J∑

j=1

diag(hj)xj + n (1.16)

where xj = (x1j, ..., xKj)
T represents the SCMA codeword of layer j, hj = (h1j, ..., hKj)

T

is the Rayleigh fading channel vector of layer j and n is the additive white Gaussian
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noise.
At the receiver end SCMA decoder performs MUD using message passing algo-

rithm (MPA) and finally received stream of each user is fed to LDPC decoder to
recover input stream of each user j.

1.4.1 Codebooks

Codebooks hold paramount importance in SCMA. Design of codebooks is one of the
key challenges faced in SCMA. As the name suggests, these codebooks are sparse;
which aids MUD at the receiver end, moreover codebooks generated for SCMA users
are based on multi-dimensional mother constellation which equips SCMA with shap-
ing gains [50]. Shaping gain of SCMA improves its spectral efficiency as compared to
that of LDS. The first step in designing the codebooks for user in SCMA is designing
the Mother Constellation (MC) and then applying user specific operations such as
phase rotation, complex conjugation or dimensional permutation [51] to MC. One
of the design objective for MC is to maximize the normalized Minimum Euclidean
Distance (MED) in order to improve the performance of SCMA. In [52, 53] MC is
proposed based on star-QAM to maximize MED. [54] uses spherical codes to min-
imize Peak to Average Power Ratio (PAPR) as well as enhancing the performance
of system by maximizing MED. While much of work has been done on maximizing
MED for MC, some authors such as [55] propose maximizing MED of superimposed
codewords to enhance BER performance, i.e. to increase MED between codewords
of users utilizing the same resource block.

Generally, the main goal in designing the codebooks is maximizing MED of MC
to improve performance but it comes at a cost of lower energy diversity, since mutual
dependency of MED and energy diversity of MC. So for the optimum design of MC
a trade off balance is done between MED and energy diversity.

We briefly discuss the idea of designing the codebooks, since codebooks are
generated using multidimensional mother constellation so mother constellation can
be created using QPSK constellation in two forms such as [56]

QPSK1 =

[√
2
2

−
√
2
2

−
√
2
2

√
2
2√

2
2

√
2
2

−
√
2
2

−
√
2
2

]
(1.17)

QPSK2 =

[
0 −1 0 1
1 0 −1 0

]
(1.18)

Phases of four constellation points in QPSK1 are 45°, 135°, 225° and 315°. Similarly,
phases of the constellation points in QPSK2 are as 0°, 90°, 180° and 270°. From
figure 1.10 it can be seen that each of these constellation can be achieved from the
rotation of other constellation. The QPSK constellation C after rotation angle φ
can be written as

C =

[
− sin (φ+ π

4
) − cos (φ+ π

4
) cos (φ+ π

4
) sin (φ+ π

4
)

cos (φ+ π
4
) − sin (φ+ π

4
) sin (φ+ π

4
) − cos (φ+ π

4
)

]
(1.19)

Euclidean distance between these points is to be maximized so Euclidean distance
of all the points with remaining points is calculated. Calculating the distance in
abscissa or ordinate will result in same distance so,
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Figure 1.10: Constellation diagram for QPSK1 and QPSK2

∆1 =
(
− cos (φ+

π

4
) + sin (φ+

π

4
)
)

+
(
cos (φ+

π

4
) + sin (φ+

π

4
)
)

+
(
sin (φ+

π

4
) + sin (φ+

π

4
)
)

= 4 sin
(
φ+

π

4

)
(1.20)

∆2 =
(
cos (φ+

π

4
) + cos (φ+

π

4
)
)

+
(
sin (φ+

π

4
) + cos (φ+

π

4
)
)

= 3 cos
(
φ+

π

4

)
+ sin

(
φ+

π

4

) (1.21)

∆3 =
(
sin (φ+

π

4
)− cos (φ+

π

4
)
)

(1.22)

Sum function of the point of projection of C on a single coordinate axis can be
written by adding equations 1.20,1.21 and 1.22 as

f(φ) = 6 sin (φ+
π

4
) + 2 cos (φ+

π

4
) (1.23)

The optimization problem for maximizing the sum distance can be written as

argmax
φ∈(0,π

4
)

f(φ) = argmax
φ∈(0,π

4
)

(
6 sin (φ+

π

4
) + 2 cos (φ+

π

4
)
)

(1.24)
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From the equation 1.24 optimum angle of rotation φ is calculated at φ = 0.4636
and constellation C can be written as

C =

[
−0.9486 −0.3162 0.3162 0.9486
0.3162 −0.9486 0.9486 −0.3162

]
(1.25)

C in equation 1.25 is normalized to get mother constellation which is multi-dimensional
constellation. Once multi-dimensional mother constellation has been designed user
specific operations such as phase rotation, complex conjugation or dimensional per-
mutation are used to obtain unique codebooks for each users.
Example of codebooks used
Codebooks that are used for J = 6 SCMA users in K = 4 frequency layers, in this
dissertation are presented below [57]

CB1 =


0 0 0 0

−0.1815− 0.1318j −0.6351− 0.4615j 0.6351 + 0.4615j 0.1815 + 0.1318j
0 0 0 0

0.7851 −0.2243 0.2243 −0.7851



CB2 =


0.7851 −0.2243 0.2243 −0.7851

0 0 0 0
−0.1815− 0.1318j −0.6351− 0.4615j 0.6351 + 0.4615j 0.1815 + 0.1318j

0 0 0 0



CB3 =


−0.6351 + 0.4615j 0.1815− 0.1318j −0.1815 + 0.1318j 0.6351− 0.4615j
0.1392− 0.1759j 0.4873− 0.6156j −0.4873 + 0.6156j −0.1392 + 0.1759j

0 0 0 0
0 0 0 0



CB4 =


0 0 0 0
0 0 0 0

0.7851 −0.2243 0.2243 −0.7851
−0.0055− 0.2242j −0.0193− 0.7848j 0.0193 + 0.7848j 0.0055 + 0.2242j



CB5 =


−0.0055− 0.2242j −0.0193− 0.7848j 0.0193 + 0.7848j 0.0055 + 0.2242j

0 0 0 0
0 0 0 0

−0.6351 + 0.4615j 0.1815− 0.1318j −0.1815 + 0.1318j 0.6351− 0.4615j



CB6 =


0 0 0 0

0.7851 −0.2243 0.2243 −0.7851
0.1392− 0.1759j 0.4873− 0.6156j −0.4873 + 0.6156j −0.1392 + 0.1759j

0 0 0 0


1.4.2 Message Passing Algorithm

Message passing algorithm is an iterative procedure which has an ability to solve
various optimization problem while respecting the constraints involved. As it can be
referred by its name, it works on simple massage passing but an iterative procedure is
involved, makes it a time consuming and complex process. Message passing between
the nodes can be represented by a factor graph.
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For MUD at the receiver end of SCMA, massage passing algorithm can exploit
the sparsity in the codewords received by SCMA encoder to achieve near optimal
performance. [58] shows that the complexity of MPA is lower than that of Max-
imum A-posterior Probability (MAP). Still MPA quite complex when it comes to
implementation due the fact MPA decodes in an iterative manner and numerous ex-
ponential computations are involved in computing the Log Likelihood Ratio (LLR)
for each user. [59] presents an idea that computations in logarithmic domain can
lower the computational complexity in algorithm similar to MPA. To cater this prob-
lem of exponential computation in MPA, logarithmic domain computation can be
performed.

To visualize message passing between function nodes and variable nodes, factor
graph is used. We suppose, an SCMA system where six users i.e. J = 6 are
transmitting over four resource block elements i.e. K = 4. Function nodes represents
the resource blocks and variable node represent the users in figure 1.11. Connections

Figure 1.11: Factor Graph Representation of SCMA System

between function nodes and variable node are also depicted in Figure 1.11. Each
user is connected to 2 resource blocks and each resource block is serving 3 users. For
example, user1 is connected to resource block 1 and resource block 2. Factor graph
can be represented by following matrix

F =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 (1.26)

Matrix 1.26 shows the connection between each user j and resource block. The
value Fij = 1 shows user j is connected to resource block i and that respective
user j transmits a codeword to the resource block i. Message passing algorithm is
explained in the forthcoming section, exponential functions can be removed using
logarithmic domain operations and subsequently multiplication will be replaced by
addition operations.

1.4.2.1 Initialization

Factor graph of function nodes and variable nodes are initialized by some values for
each of these nodes. Since each user j in the SCMA system can transmit any of the

cr2i
Texte surligné 
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1.4 Sparse Code Multiple Access 25

M codewords from its own codebook, so there is equal prior probability for each
codeword i.e. 1/M . Each variable node in the factor graph is initialized with this
probability as shown in figure 1.12

Figure 1.12: Initialization of Factor Graph

Similarly, each function node is equipped with likelihood ratio. We assume that
the channel coefficient matrix H and received vector y are known at the receiver.
The likelihood function Υk for each function node can be calculated with help of
equation 1.27,

Ψk(y,m, h) = abs

(
yk −

∑
l⊂ζ,mu=1:K

hl,muCl,mu

)
∀ k = 1, .., K (1.27)

where ζ is the set of users connected to resource k and Cl,mu is the codeword trans-
mitted by user l. Finally, likelihood function Υk at each function node is,

Υk = exp(
−Ψ2

k

2σ2
) ∀ k = 1, .., K (1.28)

where σ2 is variance of additive white Gaussian noise. Each function node is ini-
tialized with this likelihood function. Once, all nodes in factor graph have been
provided with initial probability as seen in figure 1.12, message passing between the
nodes is commenced.

1.4.2.2 Message passing between function nodes and variable nodes

The initial message passed from each variable node (VN) to its connected function
node (FN) is as follows,

Γ(v → f) =
1

M
(1.29)
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1.4.2.3 From Function node to Variable node

After the initial message has been sent from variable node to its neighbouring func-
tion nodes, it is now the function node that passes an updated information back to
its neighbouring variable nodes. In the case of resource block f1 i.e. connected to
users v1, v2 and v3 as seen in figure 1.13.

(a) Passing extrinsic information from v2
and v3 to v1

(b) Passing extrinsic information from v1
and v3 to v2

(c) Passing extrinsic information from v1
and v2 to v3

Figure 1.13: Message Passing from FNs to VNs

FN f1 passes the extrinsic information to v1 that it has received from v2 and v3 as
observed in figure 1.13a. Similarly, it passes messages to v2 received from v1 and v3
and also passes messages to v3 received from v1 and v2 as shown in figure 1.13b and
figure 1.13c respectively. Likewise, all the function nodes sent an extrinsic message
to their neighboring node, received from other neighboring nodes. This message
passing from FNs to VNs can be represented by

Γ(fk,mu → vl,mu) =
M∑
i=1

M∑
j=1

Υk(mu, i, j)× Γ(vl′1,i
→ fk,mu)× Γ(vl′2,j

→ fk,mu)

∀ mu = 1 : M,k = 1 : K

(1.30)

where l ⊂ ζ and l
′
1, l

′
2 ⊂ ζ − {l} with l

′
1 ̸= l

′
2 where ζ is the set of users connected to

k-th resource. As already been discussed in this section, to reduce the complexity
of MPA, computation are done in logarithmic domain. So in log domain the multi-
plication sign between a priori information at respective resource block i.e. Υk and
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extrinsic information, is replaced by an addition operation. Moreover, the summa-
tion part in equation 1.30 i.e.

∑M
i=1

∑M
j=1 can be solved using Jacobian logarithm

ln(ea1 + ...+ ean) = a∗ + ln(e−|a1−a∗| + e−|a2−a∗| + ...+ e−|an−a∗|) (1.31)

where a∗ = max(a1 + ...+ an).

1.4.2.4 From Variable node to Function node

After messages have been passed from FNs to their neighbouring VNs, now VNs
send an updated message to their respective neighboring FNs as shown in figure
1.14.

(a) Passing extrinsic information from f2
to f1

(b) Passing extrinsic information from f1
to f2

Figure 1.14: Message Passing from VNs to FNs

For example in figure 1.14, user v1 is connected to resource blocks f1 and f2.
User v1 send to f1 its own a priori message as well as message it has received from it
other neighbouring FN i.e. f2 as can be seen in figure 1.14a. Similarly it will send a
message to f2 as seen in figure 1.14b. In short, message passing from VNs to FNs is
a normalized guess swap. Normalization is done to respect the fact that probability
lies within valid range.

Γ(vh,j,mu → fh,j,mu) =
1
M

× Γ(fh′
,j,mu

→ vh,j,mu)∑M
mu=1 Γ(fh′ ,j,mu

→ vh,j,mu)

∀ j = 1 : J,mu = 1 : M

(1.32)

where h ⊂ ϱ and h
′ ⊂ ϱ−{h} and ϱ is set of resource blocks connected to each j-th

user. Equation 1.31 is solved in logarithmic domain for Log-MPA where multipli-
cation is replaced by an addition operation and summation in the denominator is
converted log sum exponential (LSE).

As observed in figure 1.11 user 1 is not directly connected to user 6 so the iter-
ative procedure of passing messages between neighbouring FNs and VNs continues
until information from node 1 has been passed onto node 6. Iterative procedure
makes sure that every node receives information from every other node in factor
graph.
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1.4.2.5 LLR calculation

Once iterative procedure has been completed, symbol level LLR is calculated for
each VNs.

Qj,mu =
1

M
+ Γ(fh,j,mu → vh,j,mu)

+Γ(fh′ ,j,mu
→ vh,j,mu) ∀ j = 1 : J,mu = 1 : M

(1.33)

where h ⊂ ϱ and h
′ ⊂ ϱ−{h} and ϱ is set of resource blocks connected to each j-th

user
Using equation 1.33 bit level LLR is calculated for each bit transmitted.

LLRb
i1
= loge

exp(LLRs1
i ) + exp(LLRs2

i )

exp(LLRs3
i ) + exp(LLRs4

i )
(1.34)

LLRb
i2
= loge

exp(LLRs1
i ) + exp(LLRs3

i )

exp(LLRs2
i ) + exp(LLRs4

i )
(1.35)

where LLRb is the bit level LLR and LLRs is the symbol level LLR computed in
equation 1.33 i.e. for i-th instant of transmission, LLRsn

i = Qj,mu for sn,mu =
1, ...,M . Figure 1.15 shows BER results for SCMA system with Log-MPA decoder
when 6 users are transmitting over Rayleigh fading channels
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Figure 1.15: The BER performance over Rayleigh fading channels with Log-MPA
Decoder
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1.4.3 Complexity

The main challenges in SCMA lies in designing multi-dimensional constellation
which are the basis of codebook design for each users, and complexity in receivers
of SCMA. MPA has been applied at the receiver SCMA to exploit the sparsity in
codebooks to attain near maximum likelihood performance in numerous literature
such as [60]. But the computational complexity of MPA is quite high due to fact
that it has to perform numerous exponential computation, it has to handle extrinsic
information and probabilities of the signal. To cater this issue of exponential com-
putation, as already discussed in section 1.4.2 logarithmic domain calculation are
performed. Mainly, the complexity of MPA is proportional to Mdf because there are
Mdf possible combination of SCMA codewords, where M is the size of codebook and
df is degree of SC signal of a resource block i.e. number of users connected to a RB.
[61] has introduced expectation propagation to make the complexity of MPA propor-
tional to Mdf instead of Mdf . [62] used SIC process to provide initial values of LLR
to MPA to reduce the complexity of it. In [63] a posteriori probability of SCMA
codeword is updated to lower the complexity of MPA. Another factor effecting the
complexity of MPA is number of iterations. There needs to be sufficient number of
message passing between FNs and VNs i.e. number of iterations so that message
is propagated among all nodes. [64] proposed the reduction in number of massage
passing. In [65], some reduction in complexity has been proposed by introducing
Cluster MPA (CMPA) applying MPA on sub-graphs. It also proposes codebook
design with lower number of projection resulting in reduction of complexity. Since
M is the size of codebook, [66, 67] propose reduction in number of message passing
to reduce the complexity of MPA aided by SCMA codebook design. Shuffled MPA
(S-MPA) in [68] proposes shuffling of information among FNs and VNs which results
in achieving the convergence quickly.

1.5 Optimization of resource allocation

Generally, time slots, available bandwidth and transmit power etc. are referred
as resources in a wireless communication system. Fully utilizing these resources
depending on the available information or in order to achieve a target is termed as
optimization of resource allocation. For example resource allocation can be done on
the basis of Channel State Information (CSI) i.e. available information or resource
allocation can be done to achieve certain data rate requirement i.e. to achieve a
target or desired Quality of Service (QoS). Beside allocation of resources in order to
achieve a target or resource allocation based on available information, there are some
common objectives while doing resource allocation and those includes maximizing
the sum rate for each user, minimizing the sum transmit power for each users,
etc. Some of these common objectives, for optimization of resource allocation are
discussed in forthcoming section.
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1.5.1 Sum Rate maximization

Data rates for users in a NOMA systems for a downlink NOMA and uplink NOMA
are already defined by equation 1.8 and equation 1.15 respectively. Sum rate max-
imization for NOMA means that the rates of all individual users is maximized.
Normally, this sum rate maximization is done subject to some constraints like, each
user user should have a minimum data rate etc.

For a J users downlink NOMA system , the channel gain for each users is assumed
to be in order such that user 1 has the highest channel and user J has the lowest
one i.e. |h1|2 ≥ |h2|2 ≥ ... ≥ |hJ |2. Sum rate maximization for downlink NOMA can
defined as,

max

J∑
j=1

log2

(
1 +

αjP |hj|2∑j−1
i=1 αiP |hj|2 + σ2

j

)
Subject to

C1 → log2

(
1 +

αjP |hj|2∑j−1
i=1 αiP |hj|2 + σ2

j

)
≥ Rj

C2 →αJP |hi|2 −
J−1∑
j=i

αjP |hi|2 ≥ γ

C3 →
J∑

j=1

αj ≤ 1

C4 →
(
∑J

j=1Rj)
2

J
∑J

j=1R
2
j

= FI

(1.36)

where C1 is the constraint showing maximization of sum rate is to be done, respect-
ing the criteria that every user j must have a rate greater than equal to Rj or we can
say that Rj is minimum data rate requirement for each user. Constraint C2 is same
as mentioned in equation 1.6, i.e. it is the criteria for an efficient SIC where γ is the
minimum amount of power difference is required in order to differentiate between
signal that is to be decode and remaining signals that are treated as noise. C3 is the
total transmit power constraint for the BS. Power constraint in a downlink NOMA
is total power budget that is available at the BS [69–71], C4 is Jain’s fairness index
[72] constraint, where FI is the target fairness index. More, this value is closer to
one, more the rates of each users are closer to each other. It can be noted in equation
1.36 that

∑j−1
i=1 αiP |hj|2 is inter user interference for user j.

From equation 1.36 it can be seen that sum rate maximization is a constraint
optimization problem. Similarly for J users uplink NOMA system , where |h1|2 ≥
|h2|2 ≥ ... ≥ |hJ |2. Sum rate maximization for uplink NOMA can defined as
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max
J∑

j=1

log2

(
1 +

αjP |hj|2∑J
i=j+1 αiP |hi|2 + σ2

)
Subject to

C1 → log2

(
1 +

αjP |hj|2∑J
i=j+1 αiP |hi|2 + σ2

)
≥ Rj

C2 →αiP |hi|2 −
J∑

j=i+1

αjP |hj|2 ≥ γ

C3 →
J∑

j=1

αj ≤ 1

C4 →
(
∑J

j=1Rj)
2

J
∑J

j=1 R
2
j

= FI

(1.37)

where C1 → C4 constraints are same as that mentioned for downlink NOMA in
equation 1.36. Moreover,

∑J
i=j+1 αiP |hi|2 is the inter user interference for user j

in equation 1.37. In an uplink NOMA configuration, individual power constraint
of each user is the maximum transmit power of each user which is restricted by it
power amplifier [73–75]. Constraint C3 in equation 1.37 is the transmit controlled
power of each user.

1.5.2 Sum Power Minimization

One of the design objective while allocating resources to NOMA system is minimiza-
tion of transmit power from the BS in a downlink case, or minimization of control
transmit power of each user for an uplink NOMA system. It can be represented by

min
J∑

j=1

pj

Subject to

C1downlink → log2

(
1 +

αjP |hj|2∑j−1
i=1 αiP |hj|2 + σ2

j

)
≥ Rj

C1uplink → log2

(
1 +

αjP |hj|2∑J
i=j+1 αiP |hi|2 + σ2

)
≥ Rj

C2 → pj ≤ pj+1 where |hj|2 ≥ |hj+1|2

(1.38)

where constraints C1downlink and C1uplink are minimum data requirements for
downlink and uplink NOMA systems respectively, and constraint C2 ensures the
user having a bad channel condition is allocated higher share of power as compared
to user with higher channel gain.
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1.5.3 Minimum Data Rate

Since 5G is expected to have massive connectivity, i.e. more users and devices
connected. Users having diverse data requirements needs to be connected. From
sensor network to users requiring multimedia communication, data rate requirements
are different. Minimum data rate constraint is required to guarantee, for each user
j, QoS meaning that minimum data rate constraint for user j i.e. Rj

min ensures that
data rates needs of each user j is respected. Power allocation strategy with target
data rate has been studied in [76]. Minimum data rate constraint for user j can be
stated as

Rj(v)
min
j (v) (1.39)

where v is a resource allocation variable, for example it can be power allocation.

1.5.4 Outage Probability Requirement

The reliability of transmission cannot be guaranteed if the channel is degraded and
channel conditions become really worse, consequently outage may occur because the
achievable data rate is less than the target data rate [77,78]. In this case the outage
cannot be avoided even if error correcting codes that are applied, are powerful.
To avoid the outage, achievable data rate should be greater than target data rate,
probability of such an event E for user j can be defined as

Pr(Ej) = Pr(Ra
j ≥ Rt

j) (1.40)

where Ra
j is the achievable data rate and Rt

j is the target data rate for user j. Thus
the outage probability for user j can be defined as

Proutj = 1−
j∏

i=1

Pr(Ei) (1.41)

where
∏j

i=1 Pr(Ei) is product of probability of an event in equation 1.40 where
outage does not occur for all users decoded prior to user j, including that of user j
as well. From equations 1.40 and 1.41 it can be observed that outage probability is
dependent on whether target data rate is greater than or less than equal to achievable
data rates. As already discussed in section 1.5.3 that both of these depend on
resource allocation policies. Consequently, the probability of outage can also be
tuned by resource allocation. This idea can be put forward simply in absence of SIC
decoding, i.e. there is no ordering of the users, and they are not decoded one after
the other, outage probability for user j can be defined as

Proutj (v) = Pr(Rt
j(v) ≥ Ra

j (v)) (1.42)

where v is any resource allocation variable which can be tuned to change target
data rates and achievable data rates for user j. Rt

j and Ra
j is target data rate and

achievable data rate for user j respectively. Outage probability has been studied to
improve the performance of NOMA in [79,80].
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In a more practical scenarios having imperfect CSI, outage probability is a ro-
bust tool while allocating resources in a NOMA system to enhance its performance.
Instead of having knowledge of CSI at each instant, outage probability requires the
information of modeled CSI at transmitter. Resource allocation is performed so that
user j has an outage probability less than endurable outage probability P̂ r

out

j .

Proutj ≤ P̂ r
out

j (1.43)

1.5.5 Maximizing spectral efficiency and energy efficiency

Spectral efficiency and energy efficiency (EE) maximization for NOMA uplink has
been studied in [81]. SE for a J user uplink NOMA can be defined as [81]

SEj = 2log2

(
1 +

αjP |hj|2∑J
i=j+1 αiP |hi|2 + σ2

)
(1.44)

and EE for the same NOMA can be defined as [81]

EEj =
SEj

2(ωαjP + Pc)
(1.45)

where ω is inverse of efficiency of amplifier and Pc is the circuit power consumption.
In equation 1.44 and 1.44 both SE and EE respectively are function power allo-

cated, so a power allocation strategy can be adopted to maximize the SE and EE
of a NOMA system.

1.5.6 Target BER constraint

An important constraint to guarantee the QoS for a user j in a NOMA system is
the target BER constraint for that user. BER analysis for NOMA has been studied
in [82, 83]. Performance in terms of bit error rate in presence of SIC errors for
uplink NOMA is studied in [84]. In case of perfect and imperfect SIC, BER for the
downlink NOMA is investigated in [85]. Resource allocation is performed so that
user j has a BER less than an accepted BER.

BERout
j ≤ ˆBER

out

j (1.46)

where ˆBER
out

j is target BER for user j. This target BER constraint is discussed in
detail for SCMA NOMA system in later chapter.

1.6 Issues and challenges in Optimization of Re-
source Allocation

NOMA schemes available in the literature provides several advantages to handle
multiple users. These advantages include but not limited to improvements in sim-
ple implementation, spectral efficiency and massive connectivity etc. For instance,
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the spectral efficiency is improved when multiple user share same resource since
NOMA techniques uses either code-domain multiplexing or power domain multi-
plexing. Similarly, these techniques support massive connectivity. These advan-
tages of NOMA schemes make it promising candidates for 5G. However, there are
still many problems and challenges associated to these schemes which are required
to be addressed [24],[86] and [87]. Some of these key challenges are listed below:

• Codebooks design

• Resource allocation/Power allocation

• Error propagation specifically in case of SIC decoding

• Hardware complexity

• Receiver design

• Decoding complexity

Resource allocation is one of the most important areas in NOMA to obtain
full potential of the communication system [88]. In literature, resources allocation
for NOMA systems are studied for different performance parameters like sum rate
maximization [73, 89–91], maximizing fairness [92, 93]and energy efficiency [90, 94].
There are many challenges associated with the resource allocation. For example, the
receiver’s ability of interference cancellation is related to the accuracy of allocation
of the power in power-domain NOMA. Whereas, the accuracy of power allocation
directly impact the throughput. An optimal scheme for resource allocation needs to
searched through the entire available solutions which will cause more complexity of
the system.

The capability of interference cancellation in power domain NOMA is directly
linked with the power allocation scheme. Since some of NOMA techniques are
based on power domain user multiplexing, power allocation also directly affects the
achievable capacity of the other users. The capabilities of base station to control the
overall user throughput and rate-fairness can be improved through proper adjust-
ment of the power allocation with defined maximum power constraints. This is also
called dynamic power allocation. However, the optimization of resource allocation
with these power constraints are required high computational resources. The main
challenges lie in fair resource allocation dynamically allocating users and to have
balance among traffic in network and resource block [95]. Moreover, some resource
allocation algorithms address jointly the rate allocation, power allocation and user
scheduling. They also address SIC decoding criteria which results in non-convex
optimization problem and thus high computational complexity is required for these
algorithms [96].

In power domain NOMA schemes, the user which has the best channel conditions
is decoded first at the receiving side through SIC detection. Thus, the successful
estimation of the signal with high power dictates the success of the main signal
reception. However, the presence of timing offset and carrier frequency offset make
channel estimation of NOMA systems quite complex. Therefore, error propagation
is highly likely in the process of SIC detection [97,98]. In other words, once the error
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occurs in SIC detection, it is highly probable that the decoding of information of
other users will also be erroneous. Highly robust solutions are required to overcome
this issue in order to improve the quality of the transmission. In case of small
number of users, one potential solution to compensate the propagation error is to
use stronger codes and increased block length. This solution might be suitable for
small number of users but it is not efficient for the case where the number of users
are high [99]. Nonlinear detection techniques can also be used if performance of some
users is degraded [100]. Besides these available solutions to handle error propagation
of simple NOMA systems, the detail analysis of imperfect SIC impact of NOMA is
still an open problem.

The receiver complexity is also an important issue in NOMA schemes. Numerous
message passing is the main reason behind the complexity of the receiver. As men-
tioned above, the propagation error may degrade the performance of a SIC based
receiver. Similarly, the complexity of MPA based receivers may also increase for
the very high connectivity of 5G. The complexity of MPA based receivers can be
reduced by using some approximate solutions like Gaussian approximation. Gaus-
sian approximation of the interference in fact provides the Gaussian distribution
of interference-plus-noise. This approximation shows more accurate results if the
number of connections are high, which is exactly required in 5G.

1.7 Contribution of Thesis
Challenges in optimization of resource allocation have already been discussed in
section 1.6. Both the power domain NOMA and code domain NOMA have their
own advantages and disadvantages regarding complexity and reliability of the system
at shown in figure 1.16. The complexity and reliability increases from power domain
NOMA to code domain NOMA.

Figure 1.16: Complexity and reliability of code domain NOMA and power domain
NOMA

The main aim of this work is to provide less complex and reliable detection to
guarantee a QoS for all users. Following figure 1.17 shows the aims and contributions
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of this work. Less complex and more reliable detection is achieved using power
domain and code domain NOMA where a compromise is made between Complexity
and Reliability in detection. Whereas to guarantee a QoS for a target BER, power
allocation is done for each user.

Figure 1.17: Complexity and reliability of code domain NOMA and power domain
NOMA

As discussed, the major challenge is complexity at the receiver end of SCMA.
Taking the advantage SIC as simple process, it is used to decode the user with
best channel conditions, thus reducing df to df − 1 so eventually the complexity
of a MPA process which is proportional to Mdf becomes proportional to Mdf−1.
Another challenge discussed, is the error propagation of SIC, to cater this error
propagation we have proposed a hybrid interference cancellation (HIC) i.e. the
receiver decides on basis of a threshold value that either soft SIC or hard SIC is
performed. Since both soft and hard SIC have their own advantages, so based on a
threshold value the receiver chooses between the two of them, in order to minimize
the error propagation. To further improve the performance in terms of BER, a
feedback from LDPC decoder has been proposed in the second chapter.

In the last part of the thesis, we propose the expressions for target BER for
users decoded by Log-MPA decoding and the strong user decoded in presence of
interference noise from weak users. We have used the sorting of channels for the
SCMA users so analytical BER expression are derived for sorted channel using
ordered statistics. Since one of the user in each RB i.e. strong user is being decoded
using interference cancellation process where Gaussian approximation is considered
and remaining users are decoded using Log-MPA so BER expressions for both the
scenarios are proposed. Target BER is defined in terms of allocated power in last
chapter, so that allocated power can be tuned to achieve the target BER. The
contributions of this thesis can be summarized as follows and can be seen in figure
1.18

• Reliable and Less Complex Joint decoding for SCMA.

– Reliability: We propose feedback from LDPC to Log-MPA.

– Less Complex: We propose HIC-Log MPA Decoder.

• Guarantee a QoS for target BER in SCMA.
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– We derive the BER expressions for SCMA in case of interference cancel-
lation.

– We compute BER expression for single and multiple users.

– Modification is done in BER expression under sorted channel conditions.

– For a final target BER at output of joint decoder, we compute an inter-
mediate BER

– We propose power allocation for weak and strong users.

Figure 1.18: Contributions of thesis

1.8 Thesis Layout
The remaining of this manuscript is organized as follows:

• Chapter 2: In this chapter a complete uplink NOMA digital chain is dis-
cussed with a feedback from LDPC decoder, moreover low complexity hybrid
interference cancellation with log-MPA is discussed to reduced the complexity
of receiver in SCMA.

• Chapter 3: This chapter discusses the power allocation in uplink NOMA for
a target BER under sorted channels where ordered statistics is considered.

• General conclusion and future work: In this chapter, the obtained results
are summarized and various possible future research directions are identified.
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Chapter 2

Enhancing the performance of SCMA
system

This chapter is focused on improving the performance of SCMA system in terms
of output BER for each user and to reduce the complexity of SCMA receivers us-
ing joint hybrid interference cancellation (HIC) and MPA. First, SCMA system is
implemented with LDPC decoder and feedback from output of LDPC decoder is
introduced to improve the results in terms of BER for each user. In second part
of this chapter, HIC algorithm is proposed which is used to decode the strongest
user in each resource block either with hard decoding or soft decoding depending on
the values of a threshold and remaining users are decoded with MPA, resulting in
reduced complexity of MPA.
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2.1 Introduction

In this chapter, we discuss LDPC encoded SCMA systems. We briefly demonstrate
the effect of number of message passing on output BER results of SCMA users.
Similarly, we show the effects on BER of LDPC encoded user by number of iterations
in LDPC decoder. LDPC encoded SCMA systems have been studied in literature
such as in [101]. We have introduced an idea of feedback from LDPC decoder to
Log-MPA decoding to improve the results in terms of BER for SCMA users. Initial
values of LLR to Log-MPA are updated by LDPC decoder but this comes at a cost
of increased computational complexity.

In the second part of this chapter, we propose the amalgamation of interference
cancellation techniques with Log-MPA. SIC with Log-MPA has been studied in
literature as well [62]. We propose a mix of hard and soft decoding for strong user
for interference cancellation. The choice of hard or soft decoding is based on a
value of threshold. This hybrid interference cancellation with Log-MPA decoding,
significantly reduces the complexity of the system which has been shown in results
section.

The chapter is organized as follows. Firstly, some preliminaries are given in
Section 2.2 which includes some definitions. The improvement in BER performance
with a feedback from LDPC is discussed in section 2.3. Reduction in complexity
with HIC-Log MPA has been proposed in section 2.4. Complexity analysis for this
system has been discussed and finally section 2.5 gives a brief conclusion.

2.2 Preliminaries

Definition 1. Probability Mass Function (PMF) is the probability distribution of a
discrete random variable.

Definition 2. A conditional probability p(X|Y ) is the probability of event X occur-
ring when Y is true.

Definition 3. If x is a function of number of variables, then marginalization with
respect to a specific variable results in x with respect to that variable.
For example x(y1 + y2 + ...+ yj + ...+ yJ), x is function of J number of variable y
Then
x(yj) =

∑
y1
...
∑

yj−1
+
∑

yj+1
...
∑

yJ
x(y1 + ...+ yJ)

x(yj) =
∑

∼yj
x(y1 + ...+ yJ)

where ∼ yj means that it is a summation with respect to all variables of function
except xj

Theorem 4. (Bayes’ theorem) Conditional probability in definition 2 can mathe-
matically be represented as
p(X|Y ) = p(Y |X)p(X)

p(Y )

where p(Y ) ̸= 0
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2.3 Improvement in BER of SCMA
In this section, simulation results of uncoded SCMA system with different number
of iterations are presented first, to compare them with LDPC encoded SCMA. Then
LDPC encoded SCMA is presented and results show an improvement in terms of
BER. Finally, in this section feedback from LDPC decoder is introduced at SCMA
decoder to further enhance the performance of SCMA system.

2.3.1 Classical uncoded SCMA

We consider an uplink classical uncoded SCMA system.

2.3.1.1 System Model

A J-user uplink SCMA system is considered, where these J users are transmitting
over K resources through Rayleigh fading channels with AWGN noise in figure 2.1.
K-dimensional codebooks of size M are used for J users. Every user has its own
unique sparse codebook. Every log2(M) bits of each user j (j ∈ J) are grouped
together and mapped onto K dimensional complex codeword of size M such as
Blog2(M) → xj where xj ∈ χj ⊂ CK

Figure 2.1: J-user uncoded SCMA system

Received signal at resource block k, yk can be written as

yk =
∑
j∈ζk

hk,jxk,j + nk∀k = 1, ..., K (2.1)

where ζk represents the users connected to resource block k.

2.3.1.2 SCMA Decoding

Based on assumption of ideal channel estimation multi-user SCMA decoding is based
on MAP algorithm 1

The codeword for user xj can be found using operation 4 in algorithm 1. But this
operation is marginal product of functions (MPF) problem, which involves numerous
calculations. Despite of high optimum performance of MAP, it suffers with higher
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Algorithm 1 MAP detection algorithm for SCMA

1: maximization of joint a posterior pmf

X̂ = argmaxX∈χJ
K
p(X|y) where χJ

K all possible symbols and

X̂ = (x1 + x2 + ...+ xJ)

2: maximization of marginal a posterior pmf w.r.t xj by definition 8

x̂j = argmaxi∈χj p(i|y)
x̂j = argmaxi∈χj

∑
X∈χJ

K
xj=i

p(X|y)

3: Using Baye’s Rule in theorem 4

p(X|y) = p(y|X)p(X)
p(y)

∝ p(y|X)p(X)

p(X) =
∏J

j=1 p(xj)

p(y|X) =
∏K

k=1 p(yk|X)

4: ζk is the set of users connected to resource block k

x̂j = argmaxi∈χj

∑
X∈χJ

K
xj=i

∏J
j=1 p(xj)

∏K
k=1 p(yk|X)

x̂j = argmaxi∈χj

∑
X∈χJ

K
xj=i

∏J
j=1 p(xj)

∏K
k=1 p(yk|xz, z ∈ ζk)

5: Calculation of likelihood function p(yk|xz, z ∈ ζk)

p(yk|xz) = exp
(

|yk−
∑

j hk,jxk,j |2

2σ2

)
∀ j, z ∈ ζk
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computational complexity. Moreover, increasing the number of users leads to an
exponential increase in the number of operations. An iterative Log-MPA discussed
in subsection 1.4.2 can effectively be used to solve this problem using factor graphs.
J users in an uplink SCMA systems are decoded using Log-MPA and the results are
discussed in next subsection.

2.3.1.3 Numerical Simulation Results

After the input from each user has been mapped onto a codeword from its respective
codebook, it is signalled through Rayleigh fading channel and AWGN is added. At
reception we assume perfect channel estimation condition. Simulation parameters
are mentioned in table 2.1

Table 2.1: Simulation Parameters for Log-MPA decoding

Parameter Value
Number of users (J) 6
Number of resource block (K) 4
Number of iterations (It) 1,2,3 and 5
Number of users connected to a resource block (dj) 3
Number of resource blocks occupied by each user (dk) 2
Maximum number of bits transmitted by each user 106

Number of signal in each SCMA frame 104

Codebooks Used Refer to subsection 1.4.1

Figure 2.2 shows the average BER of all 6 users under Rayleigh fading channels.
It can be observed that, for an increase in number of iterative message passing there
is an improvement in performance of SCMA in terms of BER. The BER results for
1 iteration are poor as compared to higher number of iterations due to the fact that
during 1st iteration of message passing, a specific user connected to a resource block
in figure 1.11 receives the extrinsic information only from the other two users which
are sharing the same resource block. With more iterations of message passing, a
specific users receives extrinsic information from those users as well, which are not
directly sharing the resource block with this specific user, resulting in an improved
BER results. [102] states that 5 iterations are required at least for MPA to achieve
optimum performance in a Rayleigh fading channel.
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Figure 2.2: Average BER for J = 6 users with different number of iterations of
message passing.

2.3.2 LDPC encoded SCMA

In this section LDPC encoded uplink SCMA is considered as shown in figure 2.3.

2.3.2.1 System Model

Similarly to that in section 2.3.1.1, J users are transmitting through Rayleigh fading
channels with AWGN added using K resource blocks. From figure 2.3, n number
of incoming bits bj of user j are first encoded into m number of encoded bits bej by
LDPC such that code rate user j is Rj = n/m. Later every log2(M) encoded bits
i.e. every log2(M), bej bits are grouped together and mapped onto K dimensional
complex codeword of size M such as Blog2(M) → xj where xj ∈ χj ⊂ CK . Received
signal at each resource block can be represented by equation 2.1

2.3.2.2 SCMA LDPC Decoding

We assume a perfect channel estimation. SCMA decoding is based on Log-MPA
decoding in subsection 1.4.2 followed by LDPC decoding. Log-MPA provides bit
level LLR at its output. These LLR values are converted to likelihood of bits being
0 or 1 as shown in figure 2.4. SCMA encoder maps log2(M) incoming bits onto the
codewords from codebook of each user, so at the decoding end Log-MPA returns
symbol level LLR. This symbol level LLR needs to be converted into bit level LLR
at the input of LDPC decoder.

Similar to message passing algorithm, LDPC is also based on belief propaga-
tion between n variable nodes and m check nodes. For k iterations, LDPC decoder
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Figure 2.3: J-user LDPC encoded SCMA system

Figure 2.4: Symbol Level LLR to bit level LLR

performs a horizontal step calculation and vertical step calculation until conver-
gence or maximum number of allowed iterations. During the initialization process,
µn = loge

Pr(bn=0)
Pr(bn=1)

is provided to LDPC decoder to start the iterative process. Once
iterative procedure is initiated, bit level LLR αk

nm is sent from variable node n to
check node m, and bit level LLR βk

mn is sent from check node m to variable node n.

Using equations 1.34,1.35 initialization is done for LDPC decoding, such that
α
(0)
nm = µn = [LLRb

i1
LLRb

i2
]. For k − th iteration

β(k)
mn = 2tanh−1

 ∏
n′∈N,n′ ̸=n

tanh
α
(k−1)

n′m

2

 [horizontal, step] (2.2)

α(k)
nm = µn +

∑
m′∈M,m′ ̸=m

β
(k)

m′n
[vertical, step] (2.3)

Once convergence is achieved or maximum number of iteration have been reached,
at each variable node n, a posteriori LLR is calculated as

γk
n = µn +

∑
m′∈M,m′ ̸=m

β
(k)

m′n
(2.4)

Based on LLR value γk
n in equation 2.4 hard decision is made. [103] has presented

a method to reduce the implementation complexity of LDPC decoder. LLR values
at the output of Log-MPA are used by LDPC decoder using the algorithm 2
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Algorithm 2 SCMA detection by Log-MPA followed by LDPC decoding

1: Variable definition

LLRb
ix : Bit level Log- likelihood ratio for x bit.

L
b∈(0,1)
ix

: Likelihood for x bit being b = 0 or b = 1.
Imax : maximum number of iterations for LDPC Decoder
iter : is the number of iteration for LDPC Decoder
n: variable node
m: check node

2: Calculation of Bit Level LLR values at output of Log-MPA

Referring to equation 1.34,1.35 bit level LLR are calculated as

LLRb
i1
= loge

exp(LLR
s1
i )+exp(LLR

s2
i )

exp(LLR
s3
i )+exp(LLR

s4
i )

LLRb
i2
= loge

exp(LLR
s1
i )+exp(LLR

s3
i )

exp(LLR
s2
i )+exp(LLR

s4
i )

3: Initialization for LDPC Decoding

Likelihoods of first bit and second bit are calculated

Lb=1
i1

= 1
1+exp(LLRb

i1
)

and Lb=0
i1

= 1− Lb=1
i1

Lb=1
i2

= 1
1+exp(LLRb

21
)

and Lb=0
i2

= 1− Lb=1
i2

q0mn = Lb=0
n

q1mn = Lb=1
n

δqmn = q0mn − q1mn

4: while success == 0 || iter ≤ Imax do
5: Horizontal Step ∀n,m

δrmn =
∏

n′∈N,n′ ̸=n δqmn′

r0mn = 1
2(1−δrmn)

r1mn = 1
2(1+δrmn)

6: Vertical Step ∀n,m
q0mn = Lb=0

n × (
∏

m′∈M,m′ ̸=m δr0
m′n

)

q1mn = Lb=1
n × (

∏
m′∈M,m′ ̸=m δr1

m
′
n
)

q0mn = q0mn

q0mn+q1mn

q1mn = q1mn

q0mn+q1mn

7: Calculating a posteriori probabilities

qbn = ηn × Lb
n × (

∏
m∈M δrbmn)∀ b = 0 and 1

8: end while
9: RETURN for ALL Users LLR = loge

q1n
q0n
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2.3.2.3 Numerical Simulation Results

Bits of each users are encoded by LDPC decoder with a code rate for a simulation
and different code rates for different simulations in figure 2.5, followed by SCMA
encoding, then signaled through Rayleigh fading channels with AWGN added. At
reception with perfect CSI, Log-MPA is used for MUD and then LDPC decoder is
used to decode the encoded bits with fixed number of iterations. Results in terms
of BER are shown in figure 2.5 with different code rates. It is observed that the
performance of LDPC is greatly enhanced in terms of BER as compared to BER
results for Log-MPA detection in uncoded SCMA system. As seen in figure 2.2 even
with optimum number of iterations (5 iterations) BER = 10−3 is achieved at Eb/N0
of 14dB and in comparison to it, LDPC encoded SCMA with different code rates,
enables each user to achieve the same BER for Eb/N0 less than 5dB. Simulation
parameters for results in figure 2.5 are mentioned in table 2.2

Table 2.2: Simulation Parameters for Log-MPA decoding followed by LDPC decod-
ing with different code rates

Parameter Values for 2.5 Values for 2.6
Number of users (J) 6 6
Number of resource block (K) 4 4
Number of iterations for Log-MPA (It) 5 5
dj 3 3
dk 2 2
Number of uncoded bits in one SCMA frame 103 103

Code rate for LDPC decoder (R) 0.4, 0.5 and 0.6 0.5
Number of iterations for LDPC Decoder 10 5, 7 and 10

BER results for LDPC encoded SCMA users with different number of iterations
for LDPC encoder are shown in figure 2.6. Simulation parameters for these results
are mentioned in table 2.2. With fixed number of iterations for Log-MPA, more the
iterations for LDPC are increased, better are the results in terms of BER.

2.3.3 LDPC encoded SCMA with Feedback

We have proposed an LDPC encoded SCMA system with feedback. If LDPC decoder
after maximum number of allowed iterations is not able to decode the output of each
user such that check is not validated by parity check matrix, it sends a feedback to
Log-MPA decoder. An LDPC encoded SCMA with feedback is shown in figure 2.7.

2.3.3.1 System Model

System model is the same as that for LDPC encoded SCMA in subsection 2.3.2.1.
Incoming bits from each user are encoded by LDPC at a code rate R = n/m and in
case check is not validated by parity check matrix at the LDPC decoder, a feedback
is adapted to serve as an extrinsic information to Log-MPA decoder.
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Figure 2.5: BER results LDPC coded SCMA with code rates of R = 0.4 , R = 0.5
and R = 0.6 for iter = 10 for LDPC decoder.
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Figure 2.6: BER results LDPC coded SCMA with code rates of R = 0.5 and for
iter = 5, 7 and 10 for LDPC decoder.

2.3.3.2 SCMA LDPC Decoding with Feedback

Feedback from LDPC decoder to Log-MPA in SCMA decoder is continuation of
algorithm 2. Feedback for Log-MPA from LDPC decoder is proposed in algorithm
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Figure 2.7: LDPC encoded SCMA with feedback.

3. During operation 4 in algorithm 3 when the conditions become true, then extrinsic
information is calculated from the difference of LLR at output of LDPC and that
at the input of LDPC (LLR at input of LDPC is from the output of Log-MPA from
SCMA decoder refer to figure 2.7). Both Log-MPA and LDPC are based on belief
propagation but in earlier one, probabilities of symbols are passed, in the developed
model whereas in the later one, bit probabilities are passed. So after calculation
of extrinsic information, it calculated at symbol level using following equation from
[104].

LLRi = loge
Pr(y|s = si)∑M

k=1,k ̸=i Pr(y|s = sk)
(2.5)

At this stage extrinsic information is calculated for all users, but each resource
block has some of the users connected to it. At operation 6 of feedback algorithm,
extrinsic information is adjusted for each resource block depending on the specific
users connected to this resource block. Finally, the initial values for Log-MPA are
updated.

2.3.3.3 Numerical Simulation Results

Simulation results of Log-MPA decoding followed by LDPC decoding in presence of
feedback from LDPC decoder and without feedback, for code rates in both scenarios
as R = 1/2, are shown in figure 2.8.

It is observed that a gain of 0.5dB is achieved in presence of feedback. Maximum
number of iterations for LDPC decoding with feedback and without feedback are the
same. An expected improvements in results in terms of BER is due to the fact that
initial values from LDPC in terms of feedback improved the accuracy of Log-MPA.
Simulation parameters for results of simulation in figure 2.8 are mentioned in table
2.3
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Algorithm 3 Feedback to Log-MPA by LDPC decoder

1: Variable definition

∗B: denotes a value for bit
∗S: denotes a value for symbol
λ : LLR from LDPC
Λ : LLR from Log-MPA
ε : extrinsic value
ξk : extrinsic value for resource block k
j: j-th user
bx: x-th bit
Imax : maximum number of iterations for LDPC Decoder
iter : is the number of iteration for LDPC Decoder
n: variable node
m: check node

2: Initialization
λj,B
n = loge

q1n
q0n

from operation 9 of algorithm 2
Λj,B

n is calculated from operation 2 algorithm 2

3: Continuation of Algorithm 2

4: if success = 0&& iter = Imax then
5: Calculate extrinsic Information for Log-MPA

εj,Bn = λj,B
n − Λj,B

n

Prj,b=1
n = 1

1+exp(εj,Bn )

Prj,b=0
n = 1− Prj,b=1

n

εj,Si = loge
Prj,b1n ×Prj,b2n+1∑

b1
′ ̸=b1 & b2

′ ̸=b2
Prj,b1

′
n ×Prj,b2

′
n+1

where b1, b2, b1
′ and b2

′ ∈ {0, 1}

6: Extrinsic Information for each Resource Block
ξk =

∑
l∈ζ εl ∀ k where ζ is set of users connected to resource block k

7: end if
8: RETURN initial values for Log-MPA

Υupdated
k = (

−Ψ2
k

2σ2 ) + ξk refer to equation 1.28
Γupdated
j,k = exp(ξj,k) refer to equation 1.29
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Figure 2.8: BER results Log-MPA and LDPC decoding, with and without feedback.

Table 2.3: Simulation Parameters for Log-MPA decoding followed by LDPC with
feedback to Log-MPA

Parameter Value
Number of users (J) 6
Number of resource block (K) 4
Number of iterations for Log-MPA (It) 5
Number of iterations for LDPC Decoder 10
Number of users connected to a resource block (dj) 3
Number of resource blocks occupied by each user (dk) 2
Maximum number of bits transmitted by each user 106

Number of uncoded bits in one SCMA frame 103

Codebooks Used Refer to subsection 1.4.1
Code rate for LDPC decoder (R) 0.5

2.4 Low complexity Hybrid Interference Cancella-
tion for Log-MPA

In this section we propose a novel joint HIC Log-MPA technique to improve the
complexity of SCMA decoder. Based on power measurements we define a threshold
value as a criterion to choose between soft or hard SIC decoding followed by LDPC
decoder at the end, to achieve a target BER with low complexity. SIC decoding for
a specific user considers signal from remaining users as noise, so it is dependant on
SINR. When SINR is greater than the threshold, we prove that SIC is not effective.
For MUD in SCMA, Log-MPA is used and its complexity is dependent on number
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users connected to each resource block. HIC performs the interference cancellation
by decoding the strongest user by hard decoding or soft decoding. LLR values of
remaining users are sent to Log-MPA resulting in reduction of overloading factor,
i.e. the number of users connected to each RB are reduced that consequently lowers
the complexity of Log-MPA.

2.4.1 System Model

We consider a J-user sharing K resource blocks in an uplink SCMA systems where
each user has its own K-dimensional codebook of size M . Every user transmits
log2M encoded LDPC bits to SCMA encoder. LDPC encoder maps n input data bits
to m output encoded bits with code rate R = n/m. SCMA encoders maps encoded
input of each user to K-dimensional complex codeword from respective codebook of
that user. This K-dimensional codeword is a sparse vector with N < K non-zero
entries. Overloading factor λ = J/K defines the efficiency of SCMA. Number of
users connected to each resource block can be mathematically defined as dj = J×N

K
.

So there are dj overlapping signals in each resource block, which results in M
J×N
K

possible combinations of codewords at each resource block (codeword selection from
each codebook is dependent on log2M incoming encoded bits). After bit to constel-
lation map and spreading by SCMA encoder, the signal is sent through Rayleigh
fading channel and AWGN is added. We assume that channel gains |h|2 are ordered
such as |hJ |2 > |hJ−1|2 > ... > |h1|2 in figure 2.9. After multiplexing the signal
received y can be written as

y =
J∑

j=1

diag(hj)xj + n (2.6)

where the codeword of user j is represented by xj = (x1j, ..., xKj)
T , and hj =

(h1j, ..., hKj)
T is the channel and n is AWGN modeled for each real and imaginary

part, by a Gaussian complex random variable with zero mean value and variance
equal to N0

2
. In the model J users are transmitting to a common base station as

shown in figure 2.9.
At the receiver, an overlapping signal of dj users in frequency as well as time do-

main is received. After the estimation of Received Signal Strength Indicator (RSSI)
and Reference Signal Received Power (RSRP), it makes a comparison between RSR-
P/RSSI measurements for a threshold value. Based on these values, a receiver is
able to choose between MUD for dj over-lapping signals in resource block or hard
decoding for the signal of strongest user. Finally, LDPC decodes the encoded bits
of each user. In following section we will briefly mention SIC and LDPC for this
model.

2.4.2 Low density parity check (LDPC)

Reconstructed signals at the output of SCMA decoder suffers decoding errors and
SCMA decoder alone is not able to achieve the target BER. Error correcting codes
such LDPC are used to correct the stream of each user in order to achieve the target
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Figure 2.9: J-users uplink

BER. As already discussed in section 2.3.2, the performance of LDPC improves with
number of iterations demonstrated in figure 2.6 or with an increase in code rate as
seen in figure 2.5. In this section we use fixed code rate for each user to correct
errors in the stream of each user.

2.4.2.1 Regular LDPC

During the encoding part LDPC encoder maps n data bits from its input to m
encoded bits at its output with code rate R = n/m. At the reception end, LDPC
decoder aims to recover, n data bits for each user from the noisy encoded data.
dc is the number of neighbours of a Check Node (CN) and dv is the number of
neighbours of a Variable Node (VN). Message information of the jth output bit is
denoted by Variable Node (V Nj) and CN is the parity check with dc bits. Sum-
Product Algorithm (SPA) can be used for LDPC decoding [105]. In SPA, a soft
decision is passed between VNs and CNs. LDPC based on SPA can be divided into
two steps, i.e. first step is initialization and second one is iterative message passing
between CNs and VNs. SPA is explained as follows
Initialization: A priori log probability LLR is calculated for each VN, by the decoder
as follows

LLR(V Nk) = log

(
P (yk|xk = 0)

P (yk|xk = 1)

)
(2.7)

with perfect CSI knowledge and considering Gaussian noise, LLR can be calculated
as

Lk = LLR(V Nk) =
2.yk
σ2

(2.8)

where σ2/2 is noise variance. Iterative message passing between VN and CN are as
follow.
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Iteration
CN proceeding: Each check node CNi computes messages in this step, to be sent
to V Nj from it’s Ni variable node neighbours except V Nj as

Li→j =

Ni−j∏
k=1

sign(Lk→i)minNi−j. (|Lk→i|)) (2.9)

VN proceeding: Similar to CN proceeding, in this step each variable node V Nj

computes messages to be sent to CNi from it’s Ni check node neighbours except
CNi as following

Lj→i =

Nj−i∑
k=1

Lk→j + Lj (2.10)

where Ni is the check node neighbours of V Nj except CNi. Algorithm 4 is Sum-
Product algorithm for LDPC decoding.

2.4.2.2 LDPC Convergence: Density Evolution

The number of errors while decoding stream of each user, increases as received signal
becomes more and more noisy. While there are more errors, LDPC decoding becomes
more complex and greater number of iterations are required. Density evolution can
be used to find number of iterations, as a function of level of noise power, required
for the convergence of LDPC.
Same Gaussian distribution function is used to model each VN (Li→j). As per [106]
variance is twice the mean for a memoryless output-symmetric channel. So assuming
memoryless output-symmetric channel only variance or mean needs to be updated
iteratively. Φ function : ϕ(x) = −ln

(
tanh(x

2
)
)
. Probability density function is same

for every VN [107]. Variance at each loop l is

µV N(l) = µ0 + (dv − 1) ∗ µCN(l − 1)

µCN(l) = Φ−1(1− (1− Φ(µV N(l)))dc−1)
(2.11)

Using a recurring function variance for each loop l in equation 2.11 can be written
as

µCN(l + 1) = f
(
µCN(l)

)
(2.12)

where recurring function f is

f(x) = Φ−1
(
1− (1− Φ(µ0 + (dv − 1).x))dc−1

)
(2.13)

Number of iterations required to decode the signal successfully
If y = d + n is received with n as an AWGN added and d = [d1, d2, · · · , dn] as an
LDPC codeword having normalized power i.e. σd = 1. Then LDPC decoder can
decode without errors, the transmitted codeword d after infinite iterations for the
limit f(xl) = xl of equation 2.12 which give the lower bound of SNR = xl. Initial
condition SNR = µ0 define the number of iterations required to decode the signal
successfully. In the sequel, until the codeword is decoded successfully or maximum
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Algorithm 4 SPA

1: Variable definition

∗T : Transpose
H: parity check matrix
Imax : maximum number of iterations for LDPC Decoder
iter : is the number of iteration for LDPC Decoder

2: Initialization
Li = LLR(V Ni) =

2×yi
σ2 ∀VN

γj,i = Li ∀ i, j
3: while HzT ̸= 0 || iter ≤ Imax do
4: for j = 1 : m do
5: for i ∈ Bj do

δj,i = log
1+

∏
i′∈Bj,i

′ ̸=i tanh(γj,i′/2)

1−
∏

i′∈Bj,i
′ ̸=i tanh(γj,i′/2)

6: end for
7: end for
8: for i = 1 : n do
9: for j ∈ Ai do

γj,i =
∑

j′∈Ai,j′ ̸=j δj′,i + Li

10: end for
11: end for
12: for i = 1 : n do

ρi =
∑

j∈Ai
δj,i + Li

zi =

{
1 ρi ≤ 0

0 ρi > 0

13: end for
14: end while
15: RETURN ρi, zi
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number iterations are performed, the loop iteration of message passing between CN
and VN is done.
Density Evolution (DE) is used to define the performance of LDPC. SNR threshold
is obtained using DE in [108], [109] and GA is done to formulate BER expression.
Error Probability Pe can be estimated as

Pe = 0.5erfc

(√
µV N(l))

2

)
(2.14)

LDPC always converge for limit value xl estimated in [108] if µ0 ≥ xl. The Table
2.4 gives xl values for different LDPC configurations.

Table 2.4: LDPC convergence limits for different values dv,dc

LDPC (3,6) (16,32) (256,512) (64,192) (128,512)
Limit value 0.868 0.616 0.602 0.488 0.454

If Pe is the target BER at the output of LDPC decoder, ε is the difference
between limit xl and the value µV N(l) at iteration l = Nε, then lower bound of
iteration Nε for iterative LDPC decoding to achieve this target BER is

Nε ≥
ln(ε)

ln

(
df

dx

)
x=µ0

(2.15)

where ε = |xl − µV N(l)| and µV N(l) = 2× erfc−1(2× Pe)
2.

2.4.3 SIC decoding

Once all the J users in an uplink NOMA have been allocated power, the signal
received is written as

y =
J∑

j=1

√
pj|hj|xj + n (2.16)

We also assume that CSI referring to channel properties is perfectly available at
transmitter side (closed-loop from reference signal) [110, 111].We assume that that
pJ |hJ |2 > pJ−1|hJ−1|2 > ... > p1|h1|2 without loss of generality so that the de-
coding order is in order of decreasing received power index. SIC receiver decodes
the strongest signal first while treating all other signals as noise. Equation 2.16
is for uplink NOMA where received signal depends on channel attenuation as well
as power of the transmitter. Whereas in downlink NOMA, SIC is performed at
each individual user having one channel coefficient, so ordering is done while con-
sidering only channel attenuation. But in Uplink direction, channel coefficient and
the transmitted power of each user contribute to the received power. Supposing
that for each frequency layer k, there are dj user have an overlapping signal i.e.
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[d1, d2, · · · , da−1, da, da+1, · · · , dj]. In order to decode the message of user a, SIC
successively subtracts dtha+1, ..., dthj users interference from received signal y on fre-
quency layer k as

y −
dj∑

i=a+1

√
pi|hi|xi =

da∑
i=1

√
pi|hi|xi + n (2.17)

This successive subtraction makes, SIC a time consuming process. More often, noise
and interference are seen as Gaussian noise (central limit theorem):

y =
√
pJ |hJ |xJ +

dJ−1∑
i=1

√
pi|hi|xi + n

y =
√
pJ |hJ |xJ + γk

(2.18)

where γk =
∑dJ−1

i=1

√
pi|hi|xi + n is the equivalent noise for user-J ′s decoding at

frequency layer k. SIC faces error propagation while implementation, i.e. if the
first signal is decoded with errors, this error will propagate to remaining users while
performing successive subtraction. This is a major challenge while performing in-
terference cancellation. High latency is another issue faced by SIC. From equations
2.17 and 2.18, user J is the first one to be decoded since we have also assumed that
pJ |hJ |2 > pJ−1|hJ−1|2 > ... > p1|h1|2 , followed by decoding of user J − 1 thus user
1 is decoded at the end. This decoding of one user after the other, brings higher
latency to the system.

2.4.4 HIC decoding

Hybrid Interference Cancellation model does the interference cancellation using ei-
ther of hard or soft decoding. A threshold value is used to decide between the hard
or soft decoding. In each resource block, if SINR is greater than or equal to the
threshold, then the strongest signal is decoded using hard decoding and the remain-
ing signals (dj−1 users) are decoded with SIC decoder. Else if SINR in that resource
block is lower than the threshold, it results in only SIC decoder being used to decode
dj users as shown in figure 2.10.

Figure 2.10: Joint HIC-Log MPA decoding

During the initialization of HIC, irrespective of whether hard or soft decoding
is to be done, the euclidean distances Γ(k,m) are calculated between the received
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signal at layer frequency k and all possible expected received codewords (from 1 to
m) as shown in figure 2.11.

Ψk(y,m, h) =
|(yk −

√
pk,jhk,jxk,m,j)|2

2× σeq

(2.19)

where k represents the frequency layer, j is the strongest received signal consid-
ered in the k-th frequency layer, m the length of SCMA codeword and σeq =∑dj−1

i=1

√
pi|hi|2 +N0 with N0 representing the power of white additive noise.

Figure 2.11: Euclidean Distances at the decoder

Hard decoding process is easier for a perfectly known channel so

Γk,m,h = |(yk −
√
pk,jhk,jxk,m,j)|2 (2.20)

2.4.4.1 Threshold Estimation

In order to define the threshold value for choosing between hard or soft decoding,
we suppose

Υk,m =
√
pk,m,J |hk,m,J |xk,m,J ∀ k = 1, .., K& m = 1, ...,M (2.21)

where J is the best received signal user. By equation 2.19 and equation 2.20, to define
a criteria between hard or soft decoding, only SINR measurements are available. In
order to find this threshold, euclidean distance between all possible outputs the
estimated soft symbol is calculated as following

Γk,m = |Υk,m − x̂k,j|2 ∀ k = 1, .., K& m = 1, ...,M (2.22)

For M possibilities in each frequency layer k, for the SINR of the reconstructed
signal, we suppose that it is the minimum Γk,m i.e. SINRdj = min(Γk,m). We also
define a threshold value Γ to achieve a target BER after LDPC decoder, for which
Hard decoding can be done for the strongest signal if the following inequalities are
satisfied

Γk,m ⩾ Γ (2.23)

Estimation of Γ has been discussed in later subsection 2.4.5.4. Once the interfer-
ence cancellation has been done, the LLR values are sent to LDPC decoder, where
equation 2.15 states the lower bound of iterations Nε for an iterative LDPC decoder
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to converge and achieve a target probability of error.
Algorithm 5 is used to choose between hard or soft estimation, where DK,M is the
decision matrix initialized as zero matrix. Points where equation 2.23 is satisfied,
the value of Dk,m is set equal to 1. After updating of this decision matrix, its values
are used to choose either hard or soft estimation.

Algorithm 5 HIC algorithm

1: initialization
2: x̂k,j , Υk , σeq , DK,M = 0
3: for k=1 to K do
4: for m=1 to M do
5: Γk,m = |Υk,m − x̂k,j|2
6: end for
7: end for
8: while Γk,m ⩾ Γ do
9: Dk,m == 1

10: end while
11: P(K,1) = SumrowDK,1 =

∑M
i=1DK,i

12: Q(K−2,M) = SumcolDK−2,M =

[∑
i=1,4Di,M∑
i=2,3Di,M

]
13: for k=1 to K do
14: if P(k,1) ⩾ 1 and sum(Q(l,M) == 2) = 1 then
15: FIND all i for which Dk,i == 1
16: Q(l,i) == 2 for same i
17: perform SIC operation using Hard estimation
18: else
19: perform SIC operation using Soft estimation
20: end if
21: end for

2.4.4.2 Numerical Results

We assume that J = 6 users are connected to K = 4 frequency layers. At each
layer there are dj = 3 users connected. Each user is connected according factor
graph matrix 2.24. We have assumed the channels of each user is such that |hJ |2 >
|hJ−1|2 > ... > |h1|2, so for each frequency layer the channels for the users are such
as|hdj |

2 > |hdj−1|2 > ... > |h1|2. According to matrix 2.24, all J = 6 users are
connected in a way such user 5 and user 6 are the last users in their respective
frequency layers. For example, user 5 is last user in frequency layer 1 and 4 where
user 6 is the last user in frequency layer 2 and 3. Consequently, user 5 and user 6
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are the considered as the strongest user in their respectively frequency layer.

F =


0 1 1 0 1 0
1 0 1 0 0 1
0 1 0 1 0 1
1 0 0 1 1 0

 (2.24)

We also assume that pJ |hJ |2 > pJ−1|hJ−1|2 > ... > p1|h1|2 holds for these two users,
i.e. user 5 and user 6 for SNR is greater than Γ. All six users are transmitting
through Rayleigh fading channel and AWGN noise is added. The magnitude of h
is Rayleigh probability distribution, which means two Gaussian random variables
with zero mean and equal variance. At the reception end, perfect knowledge of
channel properties has been assumed (perfect equalization). Simulation parameters
for figure 2.12 and 2.13 are shown in table 2.5

Table 2.5: Simulation Parameters for Log-MPA decoding followed by LDPC decod-
ing with different code rates

Parameter Value
Number of users (J) 6
Number of resource block (K) 4
Number of iterations for Log-MPA (It) 5
Maximum of iterations for LDPC Decoder 200
Number of users connected to a resource block (dj) 3
Number of resource blocks occupied by each user (dk) 2
Maximum number of bits transmitted by each user 106

Number of encoded bits in one SCMA frame 256
Codebooks Used Refer to subsection 1.4.1
Code rate for LDPC decoder (R) 0.5
Threshold Value Γ 2.1 dB (equation 2.47)

Figure 2.12 shows that best performance in terms of BER among all six users is
that of, user 5 and user 6 for both Log-MPA decoding as well as in case of HIC-Log
MPA decoding, since user 5 and user 6 are the strongest users in their respective
resource blocks. For HIC-Log MPA decoding once user 5 and user 6 are decoded
using either Hard or Soft decoding, remaining users in each frequency layer are
decoded by Log-MPA.

Simulation results for average BER for all six users can be seen in figure 2.13. It
is obvious from the figure that there is slight degradation in performance in terms
of BER, but as reduction in complexity be discussed in next subsection 2.4.5, this
degradation is shadowed by gain in terms of complexity. Cause of this slight degra-
dation is the error propagation during interference cancellation. The strongest user
in each frequency layer is decoded with some errors and while perform interference
cancellation these errors propagate. But in figure 2.12 it is observed that there are
no errors for the strong users, this is due to error correcting code used. LDPC de-
coder at the end of the digital chain, is able to correct these errors.The strongest
signal is efficiently recovered by LDPC decoder at SNR = 8 dB.
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Figure 2.12: BER results for all users with HIC-Log MPA and Log-MPA
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Figure 2.13: Average BER results for all users with HIC-Log MPA and Log-MPA.

HIC is a combination of hard and soft decoding depending on value of threshold.
Figure 2.14 compares it, purely to Soft SIC and to Hard SIC followed by Log-MPA.
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Since only the strongest user is decoded using interference cancellation technique
so there can be a scenario if no threshold is considered then this strong user is
decoded using either soft decoding only or hard decoding only. In this case, for
both hard decoding only or soft decoding only, this strongest user is decoded with
many errors. Although these errors get corrected by the LDPC decoder, so it does
not effect the strong user itself in terms of BER. But the interference cancellation
is done before LDPC decoder and decoding errors in strong user are propagated to
remaining users. The classic example can be user 2 and results are shown in figure
2.14. Error propagated while interference cancellation results in degradation but
the proposed HIC choose between hard and soft decoding to further minimize the
decoding errors in strongest user resulting in less error propagation while performing
interference cancellation.
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Figure 2.14: Soft Vs Hard Decoding for User 2.

To find out number of iteration Nε for LDPC decoder to converge and achieve
a target BER, equation 2.15 refer to lower bound of number of iterations. If LDPC
is not able to converge after Nε iterations then user cannot be decoded and as
the channel index decreases, BER increases. Figure 2.15 shows BER values for a
different values of SNR with different number of iterations for a regular LDPC(3,6)
with efficiency of 1/2.

2.4.5 Complexity Analysis

We have proposed a low complexity model for SCMA decoding, in this section we
discuss about the complexity of our proposed model. We discuss the complexity of
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Figure 2.15: BER versus SNR for different iterations loop of a regular LDPC(3,6)

HIC and LDPC in forthcoming subsections. Later we discuss the total complexity
of the receiver as a whole. As already stated in section 2.4.4.1 we also discuss
Γ estimation in this section. We conclude this section with simulations results
regarding complexity.

2.4.5.1 HIC Decoding Complexity

As already mentioned HIC model is composed of both hard or soft decoding, where
it chooses between the two depending on threshold value. We discuss the complex-
ity of HIC for hard decoding complexity and successive interference cancellation
complexity. Performing hard decoding for a specific user, we use Gaussian Approxi-
mation (GA) and consider the remaining user as Gaussian noise. Since in our model
decreasing user channel index has been considered, so while decoding last user J ,
equation 2.16 is written as

y =
√
pJ |hJ |xJ +

J−1∑
j=1

√
pj|hj|xj + n =

√
pJ |hJ |xJ + I (2.25)

where I is the remaining users’ interference and noise. Using equation 2.19 we
estimate the LLR values in each frequency layer for the best received signal. Thus the
complexity of hard decoding in log domain for the strongest user in each frequency
layer is

M ×K × 3 (2.26)

Depending on the value of Γ and respecting inequality 2.23 if hard decoding is done.
The remaining dj −1 superposed signals have their LLR values sent to SIC decoder.
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If hard decoding is not done, for successive interference cancellation complexity
model we assume that noise power and equalization is estimated. For each frequency
layer, log complexity is dj + 1 additions and dj + 2 multiplications for one user and
for M-uple message decoding (considering dj interfering users per frequency layer,
since hard decoding is not done). So complexity for SIC initialization is estimated
as

Mdj × dj ×K × (2dj + 3) (2.27)

For each layer k and for each message of each user, marginal probability is computed.
Thus Marginal probability complexity at each iteration for SIC is

dj ×Mdj+1 ×K + J ×M × log2(M)× (2M + 1) (2.28)

Complexity for extrinsic estimation is ((2 + dj)M + log2(M)) J . SIC complexity per
symbol with Niter number of message passing iterations, is as follows

Mdj × dj ×K × (2dj + 3) + [(2 + dj)M + log2(M)] J+

Niter

[
dj ×Mdj+1 ×K + J ×M × log2(M)× (2M + 1)

] (2.29)

If in case threshold value is satisfied and hard decoding is done for strongest signal
then complexity of this hard decoding is found by using equation 2.26. After the
strong signal has been decoded, the complexity of HIC can be found using equation
2.29 by replacing dj with dj − 1 since strongest signal has already been decoded. To
find total complexity of HIC, both complexities are simply added as

M ×K × 3+

Mdj−1 × (dj − 1)×K × (2dj + 1) + [(1 + dj)M + log2(M)] J+

Niter

[
(dj − 1)×Mdj ×K + J ×M × log2(M)× (2M + 1)

] (2.30)

2.4.5.2 LDPC Complexity

For a LDPC(m,n) encoder where n is the number of VN and n−m is the number
of CN, then using SPA algorithm, complexity can be expressed as following [112]

• Initialization 3n operations (multiplication and division)

• CN Update : (2dc − 1 + n.dv).(n−m) operations

• VN Update : dv.n operations

• Hard comparison : n operations

where dc is the number of neighbours of a Check Node (CN) and dv is the number
of neighbours of a Variable Node (VN). The complexity of LDPC while decoding
single LDPC stream with target Pe is expressed as

4n+Nε [2 (dc − 1 + ndv) (n−m) + ndv] (2.31)

where Nε is the number of iterations required by LDPC to converge.
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2.4.5.3 Complete Receiver Complexity

The global complexity receiver is given by equations 2.29, 2.30 and 2.31. On the
receiver end of the model, if SIC of HIC-Log MPA is executed to decode the users,
their respective complexity are represented by equations 2.29 and 2.30 , then decod-
ing is done by LDPC decoder to recover the stream of each user. The difference in
complexity between SIC and HIC-Log MPA is given by

∆HIC−MPA =M × J − 3×M ×K

+Mdj−1 × (2dj + 1)× (dj − 1)×K ×
[
M × dj

dj − 1
× 2dj + 3

2dj + 1
− 1

]
+Niter × (dj − 1)×Mdj ×K ×

[
dj

dj − 1
×M − 1

]
(2.32)

where M is the size of codebook of each user, K is the number of frequency layers,
dj is number superimposed signals in each frequency layer and Niter is the number
of message passing.

2.4.5.4 Γ estimation

Even when the complexity of HIC-Log MPA is lower to that of SIC, LDPC becomes
more complex since it need more iterations to converge. So we intend to find the
values for which joint decoder has a complexity lower as compared to SIC, based on
SNR and SINR power levels. We consider that ratio of global power of the received
SC coded SCMA codebooks to noise, is considered as SNR and power of one SCMA
block over noise is referred to as SINR. For a target BER, Nε is the required number
of iterations for an LDPC decoder referring to equation 2.14. For a frequency layer
k.

SNRk =
P k
T

Nk
0

(2.33)

where P k
T is the cumulative power of all user at frequency layer k on the receiver

side and Nk
0 is the noise power at frequency layer k. We can say P k

j = αk
j × P k

T ,
where αk

j is the fraction of power for user j of the receiver at frequency layer k.
Using the assumption in section 2.4.3, without loss of generality, we assume that
αdj ≥ αdj−1 ≥ · · · ≥ α1 for dj interfering signal in each frequency layer k (for the sake
of simplicity k has been omitted, αk

j is written as αj). When yk =
∑

i∈dj xi + nk is

received for each resource block k, with SNRk =
Pk
T

Nk
0

or for simplicity SNR = PT

N0
. SIC

algorithm aims to recover the information of each user by successive cancellation.
For i1 user the received signal can be written as

y(i1) = xi1 +
∑

i∈dj ,i ̸=i1

xi + n (2.34)

SINR for user i1 among dj users is

SINRi1 =
Pi1

N0 +
∑

i∈dj ,i ̸=i1
Pi

(2.35)
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Using Pj = αj × PT , equation 2.26 can be written as

SINRi1 =
αi1

1/SNR +
∑

i∈dj ,i ̸=i1
αi

(2.36)

Since
∑

i∈dj αi = 1 so αi1 +
∑

i∈dj ,i ̸=i1
αi = 1 so

SINRi1 =
αi1

1/SNR + 1− αi1

(2.37)

Our goal is to find a threshold value Γ for which if SINRi1 ≥ Γ then HIC-MPA
decoding is used, otherwise SIC decoding is processed. When HIC-log MPA is
followed by LDPC, the complexity is

4n+
ln
(
xi − 2erfc−1(2× Pe)

2)
ln

((
df

dx

)
x=SINRdj

) ×

[2 (dc − 1 + n.dv) . (n−m) + dv.n]

(2.38)

whereas complexity of MUD followed by LDPC decoder is

4n+
ln
(
xi − 2erfc−1(2× Pe)

2)
ln

((
df

dx

)
x=SNR

) ×

[2 (dc − 1 + n.dv) . (n−m) + dv.n]

(2.39)

Equation 2.37 shows the relation of SINR to SNR. For a defined target BER i.e. Pe

at a given SNR, when a LDPC(m,n) encoder is used the complexity depends on αdj

∆LDPC = [2 (dc − 1 + n.dv) . (n−m) + n.dv]

×
(
Nε(SINRdj)−Nε(SNR)

) (2.40)

And for target BER

∆LDPC = [2 (dc − 1 + n.dv) . (n−m) + n.dv] .ln
(
xl − 2.erfc−1(2.Pe)

2)

×


1

ln

((
df

dx

)
x=SINRdj

) − 1

ln

((
df

dx

)
x=SNR

)


(2.41)

SINR threshold gives a value for which HIC-Log MPA and LDPC joint decoder have
a complexity lower than that of MUD and LDPC decoder. The complexity of joint
HIC-Log MPA and LDPC is less than that of MUD and LDPC if

∆LDPC(dj ,SNR,n,m) <
n

log2(M)
∆HIC−MPA (2.42)
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Figure 2.16: Number of LDPC iterations required to reach a target BER of 10−5

after MUD decoding

where n is the length of the LDPC codeword.This inequality can be used to find the
value Γ where MUD is more complex as compared to HIC-Log MPA.

Using table 2.4 of convergence limits of LDPC and equation 2.14, iteration re-
quired by a LDPC decoder to reach a target BER are shown in figure 2.16. In
this figure, with a target BER=10−5 when SNR increases from 1.5 to 2.5 dB the
number of iterations required by LDPC decoder drops from 30 to 9 iterations while
if SNR is further increased from 2 to 5.5 dB the same number of iterations drop
from 30 to 9 iterations. For the same target BER equal to 10−5 and black dotted
line in figure2.16 shows that Gaussian noise is added to one and only one LDPC
code y = d + n is the case after interference cancellation for each user using SIC
decoding. In the same figure, the solid red line is an approximation function for
certain number of iterations of LDPC decoder with to respect SNR values in dB.

Nε(SNRdB) =
59.46

SNR1.75
dB

(2.43)

In our model when the decoder receives dj users simultaneously, for a k frequency
layer with AWGN noise added i.e. yk =

∑
i∈dj xi + nk, only the strongest received

signal is aimed to be decoded by HIC-Algorithm. Using equations 2.28 and 2.29,
considering Gaussian Approximation, an upper bound of number of iterations re-
quired by LDPC decoder for convergence for user dj for certain error probability Pe

can be expressed as a function of SINR

Nε(SINRdB) =
59.46

SINR1.75
dB

(2.44)

Nε is number of iterations for LDPC and it is computed using equation 2.43 from
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SNR if SIC is used or using equation 2.44 if HIC-Log MPA decoding is used. For
a target BER= 10−5, for LDPC decoder the difference of complexity is computed
using

∆LDPC(dj ,SNR,n,m) = ∆Nε. [2 (dc − 1 + n.dv) . (n−m) + n.dv] (2.45)

The threshold Γ is computed using inequality 2.42 and equation 2.45

Numerical value of Γ from a simulation view point

For a specific case if we take Niter = 10 and consider LDPC encoded streams where
n = 512 and M = 4, then regarding complexity of HIC-Log MPA and of SIC, prior
one needs 2,456,576 operations and later one needs 10,773,504 operations. The dif-
ference in complexity among SIC and HIC-Log MPA equals ∆HIC−MPA = 8316928
operations. For a target BER of Pe = 10−5 to achieve same complexity between HIC-
Log MPA and SIC, number of iteration required by LDPC for each of these decoding
technique is different. As per inequality 2.42 and equation 2.45, ∆Nε the difference
in required iterations for LDPC convergence for these techniques is ∆Nε = 16,
meaning if Nε(SINRdB) is the number of iterations as a function of SINR(dB) for
HIC-Log MPA and Nε(SNRdB) is the number of iterations as a function of SNR(dB)
for SIC, ∆Nε = Nε(SINRdB)−Nε(SNRdB) = 16. When Nε(SINRdB) is smaller than
Nε(SNRdB)+16, then joint complexity of HIC-Log MPA followed by LDPC decoder
is less than the joint complexity of SIC followed by LDPC decoder for a target BER
of Pe = 10−5. For this target BER, equations 2.43 as function of SNR and equation
2.44 as function of SINR give the value of Nε where at receiver end, SNR is estimated
using RSRP measurement gives and RSSI measurement gives an estimation of SINR.

To have complexity of HIC-Log MPA lower than that of SIC, ∆Nε in equation
2.45 should be lower than 16. Using equations 2.37 and 2.40 minimum value of αdj

is computed for a certain Nε. From figure 2.16 it is obvious that for SNR = 4 dB,
number of iterations required by LDPC is Nε(SNRdB) = 5. Since our aim is to have
∆Nε ≤ 16 so Nε(SINRdB) ≤ 21. For minimum value of α for strongest user, this
value can be achieved is αdj ≥ 0.8 from figure 2.17. Where the exact value of α for
strongest user is αdj = 0.8419 using equations 2.37 and 2.44.

For higher values of SNR, Γ reach an asymptote as expected. In figure 2.17, for
values of SNR ≤ 2.1dB the number of iterations Nε > 16 (for only one user). For
higher values of SNR, in case of multi-users, the asymptote is given by interference
10× log10(1− α) of the other users. The limit value of α for Pe = 10−5 is given by
the following equation:

10× log10(1− α) = 1.75

√(
59.46

16

)
= 2.1173 dB (2.46)

Γ threshold value as a function of SNR (SNR elaborate SIC complexity) can be
estimated from figure 2.18 for a target BER Pe = 10−5. The asymptotic value of
figure 2.18 is 2.11, so

Γ = 2.11 dB (2.47)
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Figure 2.17: Number of LDPC iterations required to reach a target BER of 10−5 for
the strongest signal after HIC-Log MPA decoding.
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Figure 2.18: Γ value depends on SINR to have the same complexity between HIC-
MPA and MUD when SNR=4dB

Complexity of demodulation process is impacted by threshold value Γ, moreover
it is also taken into account to define the power allocation of the strongest user.
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Figure 2.19: α value from SINR to have the same complexity between HIC-MPA
and MUD when SNR= 4 dB

During the transmission part, both the power of noise RSRP and reception power of
each user RSSI are used to compute the threshold on the controller. Consequently,
controller imposes the level power for each user. Once the value of threshold has
been taken into account, either of HIC-Log MPA or MUD is executed, respecting
equation 2.23:

• if SINRdj < Γ, classical MUD detection is done. The complexity of MUD is
defined by equation 2.29;

• if SINRdj ≥ Γ, then Gaussian detection is done for user dj and HIC-MPA is
computed for other users. The complexity of MUD is defined by equation 2.30.

2.4.5.5 Complexity Simulation Results

Factor graph matrix 2.24 depicts which users being connected to which frequency
layer. If Fjk = 1, then user j is transmitting its SCMA codeword to k-th frequency
layer. If we suppose y1 is the received signal at frequency layer k = 1 then accord-
ing to equation 2.1, y1 = x1

2 + x1
3 + x1

5 + n1 (h has been dropped here for sake of
simplicity). Received power at first frequency layer is P 1,r = P 1,r

2 +P 1,r
3 +P 1,r

5 since
its user 2, 3 and 5 are connected to this frequency layer. For all the users at all
frequency layers, received power of respective j-th user connected at k-th frequency
layer, is P k,r

j = αj × P k,r.

We make a comparison of simulation complexity among optimal and non-optimal
values of for x5. We restrict maximum number of iteration for a LDPC decoder



i
i

“output” — 2023/1/22 — 22:54 — page 71 — #85 i
i

i
i

i
i

2.4 Low complexity Hybrid Interference Cancellation for Log-MPA 71

as Nε,max = 200. Since |hJ |2 > |hJ−1|2 > ... > |h1|2 so user 5 is considered as a
strongest user in frequency layer 1. Same comparison and threshold values are used
for strongest user at remaining frequency layers, without loss of generality. SNR for
frequency layer 1 is defined as

SNR1 =
P 1,r
2 + P 1,r

3 + P 1,r
5

N0

=
P 1,r

N0

(2.48)

SINR for user 5 can be written as

SINR1
5 =

P 1,r
5

N0 + P 1,r
2 + P 1,r

3

(2.49)

computing above equation in terms of α

SINR1
5 =

α5

α2 + α3 +
1

SNR1

(2.50)

Once user 5 has been decoded and interference cancellation is done. It leads to
y15 = y1 − x̂5 = x2 + x3 + n. For remaining two users, SINR for user 3 can be is
written as

SINR1
3 =

P 1,r
3

N0 + P 1,r
2

=
α3

α2 +
1

SNR1

(2.51)

To improve the complexity, it can be assumed that hard decoding is done for user 3
at frequency layer 1, as well where SINR1

3 ≥ Γ. This condition is satisfied when

α3 ≥ Γ

(
α2 +

1

SNR1

)
(2.52)

For hard decoding to be performed for first strongest user i.e. user 5 and second
strongest user i.e. user 3 at frequency layer 1, SINR1

5 ≥ Γ and SINR1
3 ≥ Γ needs to

be satisfied. The condition when these two inequalities are satisfied is

α5 ≥ Γ(1 + Γ)

(
α2 +

1

SNR1

)
(2.53)

If both inequalities 2.52 and 2.53 are satisfied, then HIC-Log MPA is used for user
3 and user 5. To find out α2 since α2 = 1− α3 − α5 then

α2 =
1− Γ(Γ+2)

SNR

1 + Γ(Γ + 2)
(2.54)

for SNR ≥ Γ(Γ + 2). If SNR=10 dB then Γ = 2.11 dB and α5 = 0.8419, for these
values x5 can be decoded with a target BER Pe = 10−5 at SNR =10 dB. For the
same values of SNR and Γ, values of α for remaining user can be computed as

• α2 = 0.0646.

• α3 = 0.0935.
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Figure 2.20: LDPC complexity after interference cancellation versus SNR for optimal
Γ = 2.1 dB
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Figure 2.21: LDPC complexity after interference cancellation versus SNR for optimal
Γ = 2.1dB

Figure 2.20 shows the number of iterations required for the strongest user i.e.
user 5 being decoded using classical MUD and HIC-Log MPA at different levels of
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SNR. As expected, a difference of 2.1 dB among SNR and SINR makes HIC-Log
MPA more efficient in terms of complexity.
Figure 2.21 depicts the drop in complexity at a lower level of SNR between HIC-log
MPA and MUD. This drop is given for 2.3 dB (1/SNR + 2.1 dB).

If non-optimum values are choose for α for dj users at frequency layer 1

• α2 = 0.0646.

• α3 = 0.1935,

• α5 = 0.7419.

still respecting α2 + α3 + α5 = 1. Then the value of α5 = 0.7419 can be used to
find the value of Γ = 3.1 and referring to equation 2.47 this value of Γ is considered
as non-optimal value. A difference of 4 dB can be seen in figure 2.22 for decoding
process before strongest received signal is decoded using hard decoding.
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Figure 2.22: Comparison of HIC-MPA and MUD in terms of complexity for Γ=3.1
dB

Figure 2.23 shows that, the decoder complexity drops for values when RSSI of
the strongest signal is greater than 4.8 dB .

2.5 Conclusion
In this chapter, we have initially discussed the classical SCMA with Log-MPA de-
coder and LDPC encoded SCMA with joint Log-MPA decoder followed by LDPC
decoder. Firstly we, proposed a feedback mechanism from LDPC decoder to Log-
MPA to improve the performance of SCMA system in terms of BER as compared
to conventional encoded SCMA system with joint Log-MPA and LDPC decoder.
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Figure 2.23: LDPC complexity to reach BER = 10−5 for non optimal Γ = 3.1 dB

We made the feedback from LDPC adaptable so that the LLR values from LDPC
decoder can be used at input of Log-MPA. Bit level LLR from output of LDPC
decoder were converted to Symbol level LLR to make LLR values accessible by Log-
MPA. Numerical results depict that introduction of feedback to Log-MPA decoder
from LDPC decoder show an improvement in performance gain by an improved BER
results for all users in an SCMA model and have been published in [113].

In the second part of the chapter, we have proposed a HIC-Log MPA to lower the
complexity the LDPC encoded uplink SCMA system. We defined a threshold value,
based on which the SCMA decoder is able to choose between MUD or HIC-Log
MPA detection. The number of iterations of message passing to decode errorless
signal and capacity of detection is facilitated by GA and DE. We present an idea
that complexity of HIC-Log MPA decoder decreases as compared to MPA at higher
values of SNR. Interference cancellation of any user in conventional LDPC encoded
SCMA system is done after error correction of complete SCMA signal of that user
at LDPC decoder, which brings latency to the system. In our proposed technique,
interference cancellation is done at each instant without using LDPC decoder so
that remaining users do not have to wait for interference cancellation of signal after
this signal has been corrected by LDPC. This instantaneous interference cancellation
improves the latency of the system. We proposed optimal values for strong users
aiming to reduce the global complexity of SCMA system for a target BER. Results
have been published in [114].



i
i

“output” — 2023/1/22 — 22:54 — page 75 — #89 i
i

i
i

i
i

Chapter 3

Power Allocation for a target BER

This chapter deals with the problem of power allocation for target BER. The
global digital chain proposed in chapter 2, consists of joint HIC-Log MPA decoding
followed by a LDPC decoder. In case the strongest user in each resource block is
being decoded by HIC we defined power allocation for this user to achieve a target
BER and for remaining users we present a power allocation scheme to achieve a
target BER after LDPC decoder.
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3.1 Introduction
In this chapter, we discuss the error probabilities for users in an SCMA system.
Based on multi-dimensional codebooks, bit to constellation mapping in SCMA is
done and codebook for each user is based on multi-dimensional mother constella-
tions so first of all we discuss the BER for a single user using multi-dimensional
constellation. Moreover, the strong user in each frequency is decoded considering
Gaussian Approximation, so intrinsically this user is treated as a single user. We
extend the discussion to define the analytical BER for multiple users using multi-
dimensional constellation. Once the strong user has been decoded and interference
cancellation has been performed remaining users are decoded using Log-MPA so
analytical BER expression for multiple users using multi-dimensional constellations
can be used.

After the BER for a single user and multiple users using multi-dimensional con-
stellations have been discussed, we discuss the power allocation to achieve a target
BER for the users in SCMA system. The channels have been sorted considering
near users and far users. Near user has better channel conditions and is consider
as strong user while far users are considered as weak users. Due to the sorting of
channels, ordered statistics are considered and BER expressions to calculate power
allocation have been modified accordingly.

This chapter is organized such that section 3.2 discusses some basic definitions.
Section 3.3 discusses error probabilities for uncoded SCMA system based on single
users and multiple users scenarios where both are using multi-dimensional constella-
tion. BER expressions have been derived for AWGN and Rayleigh fading channels.
In section 3.4 expressions for power allocation for SCMA user have been formu-
lated while considering ordered statistics. Simulations results are shown later in the
section. Finally, a brief conclusion is given at the end of this chapter.

3.2 Preliminaries
Definition 5. For a random variable X, the cumulative distribution function (CDF),
in statistics and probability theory, calculated at x is the probability that X will take
a value less than or equal to x. CDF of X at x is given by
FX(x)=Pr(X ≤ x)

Definition 6. For a continuous random variable X which has an absolutely contin-
uous cumulative distribution function (CDF) i.e. FX(x). The function fx(X) is the
probability density function (PDF) of X defined by
fx(X) = dFX(x)

dx
if FX(x) is differentiable at x

Definition 7. Q is a function such that Q (x) is the probability that a standard
normal (Gaussian)) random variable takes a value larger than x. It is defined as
Q (x) = 1√

2π

∫∞
x

e−u2/2 du

Definition 8. erf is the Gauss error function defined by
erf z = 2√

π

∫ z

0
e−t2 dt

erfc is complementary error function defined by
erfc z = 1− erf z
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3.3 Error Probability analysis for uncoded SCMA
system

In this section, we derive the error probability expression for an uncoded classical
SCMA deploying Log-MPA at SCMA decoder. Since SCMA users have codebooks
generated by a multi-dimensional constellation, we first study a single user using
multi-dimensional constellation and derive error probability expressions for this user
in an AWGN and Rayleigh Fading channels. We extend the idea to multiple users
employing multi-dimensional constellations and finally error probability expressions
for SCMA users are discussed.

3.3.1 Single user using multi-dimensional constellations

Before presenting the idea of BER expressions for users in an Uplink SCMA, we
present error probability of a single user using multi-dimensional constellations, later
generalizing it for multiple users using multi-dimensional constellations. Since the
codebooks of SCMA are based on multi-dimensional constellations, error probability
expressions for multiple users using multi-dimensional constellations can be used for
SCMA.
Firstly, we consider one user communication over AWGN channel with no inter-
symbol interference. The message transmitted by this single user is represented by
a vector x such that x = [x(1), x(2) · · ·x(K)]t such that it is a K-th dimensional
complex constellation set. With additive white Gaussian noise added, the received
vector can be represented as

y = x + n (3.1)

where y has same dimensions as x and n = [n(1), n(2) · · ·n(K)]t with its each
component is i.i.d and has 0 mean and variance σ2 is N0. Using ML detection, the
received signal is estimated as

x̂ = argmin
x∈χ

||y − x|| (3.2)

where χ is the K-th dimensional complex constellation set. To find the error of
probability, without loss of generality, it is assumed that xa is transmitted. Using
the CDF of a normal Gaussian random variable, the Piece wise Error Probability
(PEP) received vector y closer to symbol xb as compared to symbol xa is calculated
by [99]

Ps{xa → xb} = Q

√ ||xa − xb||2
2N0

 (3.3)
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where Q (x) = 1√
2π

∫∞
x

e−u2/2 du is the Gaussian Function [115] .We suppose ∆ =
xa − xb then equation 3.3 becomes

Ps{xa → xb} = Q

√ ||∆||2
2N0


(3.4)

For k-th dimension, dimension wise distance can be represented as δk = |xa[k]−xb[k]|
so ∆ can be represented as

||∆||2 =
K∑
k=1

||δk||2 (3.5)

Using above equation, PEP in equation 3.4 can be written as

Ps{xa → xb} = Q

√∑K
k=1 ||δk||2
2N0

 (3.6)

Using the identity for Q (x) below [116]

Q (x) =
1

2
erfc

(
x√
2

)
(3.7)

Equation 3.6 can be written as follows which gives PEP for a single user using
multi-dimensional constellations in an AWGN channel.

Ps{xa → xb}AWGN =
1

2
erfc

√∑K
k=1 ||δk||2
4N0

 (3.8)

Following figure 3.1 shows analytical SER using above equation for AWGN channel.

Rayleigh fading channel
For single user communication through Rayleigh fading channel, equation 3.1 can
be written as

y = diag(h)x + n (3.9)

where h = [h(1), h(2) · · ·h(K)]t is the Rayleigh fading channel. ML detection for
the transmitted signal is as

x̂ = argmin
x∈χ

||y − diag(h)x|| (3.10)

using the CDF of a normal Gaussian random variable, the conditional PEP for
received vector y closer to symbol xb as compared to symbol xa is calculated by

Ps{xa → xb|h} = Q

√ ||diag(h)∆||2
2N0

 (3.11)
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4 5 6 7 8 9 10 11 12 13 14

SNR(dB)
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Figure 3.1: SER results for single user using multi-dimensional constellations for
AWGN Channel.

Downlink Configuration
PEP for a single user is conditioned over h, to find unconditional PEP at the over
all dimensions such that k ∈ K, it is average over the PDF of |h|. We have Rayleigh
fading channel whose PDF is given by [117]

fX(x) → f(x, σ) =
x

σ2
exp

(
−x2

2σ2

)
(3.12)

If ω = |h| and σh is the scale parameter of Rayleigh Distribution or it can be
considered at rms value,

f(ω, σh) =
ω

σ2
h

exp

(
−ω2

2σ2
h

)
(3.13)

Then unconditional PEP can be written as

Ps{xa → xb} =

∫ ∞

0

ω

σ2
h

exp

(
−ω2

2σ2
h

)
× 1

2
erfc

(
ω
∑K

k=1 δk√
4N0

)
dω (3.14)

Ps{xa → xb} =
1

2

∫ ∞

0

ω

σ2
h

exp

(
−ω2

2σ2
h

)
× erfc

(
ω
∑K

k=1 δk√
4N0

)
dω (3.15)

Solving integral in equation 3.15 gives [118]

Ps{xa → xb}Rayleigh =
1

4

1− σh

∑K
k=1 δk√

4N0 + (σh

∑K
k=1 δk)

2)

 (3.16)
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gives PEP of signal user using multi-dimensional constellations in a Rayleigh Fading
channel in downlink configurations.
Uplink Configuration
Approximation for Gaussian Function Q is give by [119]

Q (x) ≈ 1

12
exp−x2/2+

1

6
exp−2x2/3 (3.17)

Using equation 3.17, conditional PEP for single user in equation 3.11 can be written
as

Ps{xa → xb|h} ≈ 1

12
exp

(
−
∑K

k=1 ||γk||2

4N0

)
+

1

6
exp

(
−
∑K

k=1 ||γk||2

3N0

)
(3.18)

where for k-th dimension, dimension wise distance is represented as δk = |xa[k] −
xb[k]| and γk = hkδk. Unconditional PEP for above equation can be found by taking
expectations of h on both sides of the equation. Using derivations in [120]

Ps{xa → xb}Rayleigh ≈ 1

12

K∏
k=1

1

1 + ||δk||2
4N0

+
1

6

K∏
k=1

1

1 + ||δk||2
3N0

(3.19)

4 6 8 10 12 14 16 18 20

SNR(dB)
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Figure 3.2: SER results for single user using multi-dimensional constellations for
Rayleigh Fading Channel (Uplink).

Figure 3.2 shows analytical SER using equation 3.19 for Rayleigh Fading Channel
in an uplink configuration.
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3.3.2 Multiple users using multi-dimensional constellations

We extend the case of a single user using multi-dimensional constellations to multiple
users using multi-dimensional constellations. We suppose that there are J users
transmitting using K dimensional complex constellations over AWGN channel with
no inter-symbol interference. The message transmitted by each user is represented
by vector x such that x = [x(1), x(2) · · ·x(K)]t. With additive white Gaussian noise
added, the received vector can be represented as

y =
J∑

j=1

xj + n (3.20)

PEP received vector y closer to xb as compared to xa is calculated by

Ps{xa → xb} = Q

√∑K
k=1 ||

∑J
j=1 δj,k||2

2N0

 (3.21)

where δj,k = xk
j,a−xk

j,b is the dimension wise distance. Using the identity in equation
3.7, PEP for multiple users using multi-dimensional constellations in an AWGN
channel can be written as

Ps{xa → xb}AWGN =
1

2
erfc

√∑K
k=1 ||

∑J
j=1 δj,k||2

4N0

 (3.22)

Rayleigh fading channel
We suppose the same case that there are J users transmitting using K dimensional
complex constellations over Rayleigh fading channel with no inter-symbol interfer-
ence. The message transmitted by each user is represented by vector x such that
x = [x(1), x(2) · · ·x(K)]t. With additive white Gaussian noise added, the received
vector can be represented as

y =
J∑

j=1

hjxj + n (3.23)

Using the CDF of a normal Gaussian random variable, the conditional PEP received
vector y closer to xb as compared to xa is calculated by

Ps{xa → xb|h} = Q

√ ||h∆||2
2N0

 (3.24)

where ∆ = xa − xb, for multiple users J using K dimensional constellation

Ps{xa → xb|hj, 1 ≤ j ≤ J} = Q

√∑K
k=1 ||

∑J
j=1 hj,kδj,k||2

2N0

 (3.25)
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where δj,k = xk
j,a − xk

j,b is the dimension wise distance.

Let γk =
∑J

j=1 hj,kδj,k ∀K then equation 3.25 can be written as

Ps{xa → xb|hj, 1 ≤ j ≤ J} = Q

√∑K
k=1 ||γk||2
2N0

 (3.26)

Approximation for Gaussian Function Q is given by [119]

Q (x) ≈ 1

12
exp−x2/2+

1

6
exp−2x2/3 (3.27)

which becomes more accurate as the value of x increases.Using the approximation
in equation 3.27, equation 3.26 can be written as

Ps{xa → xb|hj, 1 ≤ j ≤ J} ≈ 1

12
exp

(
−
∑K

k=1 ||γk||2

4N0

)
+

1

6
exp

(
−
∑K

k=1 ||γk||2

3N0

)
(3.28)

Unconditional PEP for above equation can be found by taking expectations of h on
both sides of the equation. Using derivations in [120]

Ps{xa → xb}Rayleigh ≈ 1

12

K∏
k=1

1

1 +
∑J

j=1 ||δj,k||2

4N0

+
1

6

K∏
k=1

1

1 +
∑J

j=1 ||δj,k||2

3N0

(3.29)

Gives the equation approximation for pairwise error probability for multiple users
using multi-dimensional constellations in a Rayleigh fading channel.

3.3.3 BER for J users in an Uplink SCMA

We consider that for J users transmitting over K frequency layers in an uplink
SCMA. Each user has its own codebook of size K × M , where log2(M) incoming
bits of each user is mapped onto K dimensional codeword of size M . After the
SCMA encoder, signal is transmitted over Rayleigh fading channel with AWGN
noise added which is distributed according to CN (0, N0). The received signal at
frequency layer k can be represented as

yk =
∑
j∈ζk

hk,jxk,j + nk∀k = 1, · · · , K ∀j = 1, · · · , J (3.30)

where ζk represents the users in frequency layer k. With power allocation above
equation can be written as

yk =
∑
j∈ζk

√
pjhk,jxk,j + nk∀k = 1, · · · , K ∀j = 1, · · · , J (3.31)

PEP at symbol level, given for AWGN channel and Rayleigh Fading Channel for
SCMA users can be given by equations 3.3 and 3.11 respectively
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Ps{xa → xb}AWGN = Q

√∑K
k=1 ||

∑
j∈ζk δj,k||

2

2N0

 (3.32)

Ps{xa → xb}AWGN =
1

2
erfc

√∑K
k=1 ||

∑
j∈ζk δj,k||

2

4N0

 (3.33)

Ps{xa → xb|hj, 1 ≤ j ≤ J}Rayleigh = Q

√∑K
k=1 ||

∑
j∈ζk

√
pjhj,kδj,k||2

2N0

 (3.34)

where in equations 3.33 and 3.34, δj,k = xk
j,a − xk

j,b is the dimension wise distance.
To find unconditional PEP, using equation 3.29, equation 3.34 can be written as

Ps{xa → xb}Rayleigh ≈ 1

12

K∏
k=1

1

1 + Λk

4N0

+
1

6

K∏
k=1

1

1 + Λk

3N0

(3.35)

where Λk =
∑

j∈ζk ||
√
pjδj,k||2 with ζk is the set of users connected to k-th frequency

layer.

Union Bound
MJ possible combinations of symbols that can be transmitted by J users. The
average SER for j-th user is upper bounded by as [115]

P j
s ≤ 1

MJ

MJ∑
a=1

MJ∑
b=1
b ̸=a

Ps{xa → xb} (3.36)

Since P{xa → xb} in equation 3.33 and 3.34 is dependent on dimension wise distance
i.e. δj,k = xk

j,a − xk
j,b so using minimum value of dimension wise distance δmin

j,k and
number of times n, δmin

j,k is repeating, approximation of equation 3.36 can be written
as [121]

P j
s ≈ n

MJ
Ps{xa → xb}δj,k=δmin

j,k
(3.37)

Using the union bound, average bit error of SCMA can be found as

P j
b ≤ 1

MJ × J log2(M)

∑
xa

∑
xb ̸=xa

Ps{xa → xb} (3.38)

3.3.4 Simulation Results

In this section we have assumed equal power allocation for all SCMA users. Sim-
ulation results for BER using Log-MPA for AWGN Channel and union bounds for
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Table 3.1: Simulation Parameters AWGN and Rayleigh Channels

Parameter Value
Number of users (J) 6
Number of resource block (K) 4
Number of iterations for Log-MPA (It) 5
Number of users connected to a resource block (dj) 3
Number of resource blocks occupied by each user (dk) 2
Maximum number of bits transmitted by each user 106

Codebooks Used Refer to subsection 1.4.1

BER in AWGN Channel are shown in figure 3.3. Simulation parameters can be
observed in table 3.1. Union bound of BER for AWGN channel can be found using
equation 3.38 where Ps{xa → xb} from equation 3.33 is used in this equation. For
initial values of Eb/N0 i.e. 4dB union bound is not that tight but at higher values
of Eb/N0 the values of union bound coincide with BER values for Log-MPA.

4 6 8 10 12 14 16

Eb/N0(dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

log-MPA

Union Bound (3.38)

Figure 3.3: BER results for SCMA in AWGN Channel

Similarly, with equal power allocation for each user in SCMA systems, analytical
bounds and simulation results for SER using Log-MPA for AWGN channel are shown
in figure 3.4. Union bound is simulated using equation 3.36 where the value Ps{xa →
xb} is used from equation 3.33. Green curve in figure 3.4 represents equation 3.37.
The approximation 3.37 shows much low error probability for Eb/N0 from 4dB to
14dB.

Simulation results for BER of SCMA system using Log-MPA decoder for Rayleigh
fading channel as well BER found using union bound are shown in figure 3.5. BER
of union bound is calculated from equation 3.38 where the value of Ps{xa → xb} is
used from equation 3.35. The bound is quite tight for higher values of Eb/N0, thus
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Figure 3.4: SER results for SCMA in AWGN Channel

the bound is sufficient for expressing the bit error probability of SCMA users.
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Figure 3.5: BER results for SCMA for Rayleigh Fading Channel

Figure 3.6 shows SER for SCMA user with Log-MPA decoding in a Rayleigh
fading channel with equal power allocation for each user in SCMA systems. Analyt-
ical SER from approximation in equation 3.35 is asymptotically tight and coincides
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with SER at Eb/N0=20dB which is due to the fact that approximation of Gaussian
Function Q in equation 3.27 is accurate for higher input values.

4 6 8 10 12 14 16 18 20

Eb/N0(dB)
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Approx. (3.35)

Figure 3.6: SER results for SCMA for Rayleigh Fading Channel

3.4 Power Allocation for Target BER in SCMA

In this section we propose the power allocation for joint HIC-Log MPA decoder with
LDPC decoder. We propose a power allocation scheme where criteria in inequality
2.23 is met and strong user in each frequency layer is hard decoded and interfer-
ence cancellation is performed for the remaining user to be decoded using Log-MPA.

We define the connections of users to their respective frequency layer accord-
ing to factor graph matrix 2.24 and such that for J users, channel gains are as
|hJ |2 > |hJ−1|2 > · · · > |h1|2, so that last user in each frequency layer is strong user.
By factor graph 2.24 we observe that user 5 or user 6 are the strong users in each
frequency layer.

3.4.1 Power Allocation for users

In this section we discuss power allocation for target BER for all dj users in each
k-th frequency layer.
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3.4.1.1 For strong users in each frequency layer

We use Gaussian Approximation to consider all users in a frequency layer other than
the strongest user (in same frequency layer) as Gaussian noise. So that

y =
√
pJ |hJ |xJ +

J−1∑
j=1

√
pj|hj|xj + n =

√
pJ |hJ |xJ + Iλ (3.39)

where Iλ is the remaining users’ interference and noise. Power Allocation for this
strong user can be done:

• Using the method described in section 3.3.1 and since we consider other users
as noise.

Piece-wise error probability for the strong user can be written as [115]

Ps{xa → xb|h} = Q

(√
||h∆||2
Var(Iλ)

)
(3.40)

where Var(.) stands for variance and ∆ = xa−xb. From equation 3.39 we can define

Var(Iλ) =
J−1∑
j=1

σ2
j + σ2

n (3.41)

where σ2
j is variance of each user from its Rayleigh Fading channel with an at-

tribute of power allocated to this respective user while σ2
n is the variance of white

additive Gaussian Noise that is N0. As already mentioned that channels have been
sorted such that |hJ |2 > |hJ−1|2 > · · · > |h1|2 so we need to find variance of each
|hJ−1|2 · · · |h1|2 in order to find the analytical BER for last user i.e. user J .
Unsorted Channels
|h|2 is squared Rayleigh Distribution. If we defined a random variable X as Rayleigh
Distribution to find square of Rayleigh Distribution, we defined a random variable
Y such that

Y = g(X) = X2 (3.42)
where X = {x|x > 0} and Y = {y|y > 0} and using inverse X = g−1(Y ) =

√
y.

Using Jacobian
dX

dY
=

1

2
√
Y

(3.43)

PDF of Rayleigh Distribution is defined by equation 3.12 by

fX(x) =
x

σ2
h

exp

(
−x2

2σ2
h

)
(3.44)

PDF of Y can be defined by transformation technique

fY (y) =fX(g
−1(y))

∣∣∣∣dxdy
∣∣∣∣

=

√
y

σ2
h

exp

(
−√

y2

2σ2
h

)∣∣∣∣ 1

2
√
y

∣∣∣∣
=

1

2σ2
h

exp

(
−y

2σ2
h

) (3.45)
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For λ = 1
2σ2

h
equation 3.45 becomes as,

fY (y) = λ exp (−λy) (3.46)

Equation 3.46 is PDF of exponential distribution [122]. So the square of Rayleigh
Distribution is an exponential distribution which can also be seen in figure 3.7.
We define Rayleigh Fading channel with zero mean and unit variance such that
h ∼ CN (0, 2σ2

h) so that scale parameter σh = 1/
√
2 and the mean and variance of

Rayleigh Distribution are σh

√
π
2

and σ2
h

(
4−π
2

)
respectively [123]. In equation 3.46

which represents the PDF of exponential function, mean and variance of exponential
functions are 1

λ
and 1

λ2 respectively [122]. So mean and variance of each |h|2 can be
written as

mean(|h|2) = 1

λ
= 2σ2

h

var(|h|2) = 1

λ2
= (2σ2

h)
2

(3.47)

when σh = 1/
√
2, mean and variance of |h|2 becomes equal to one.
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Figure 3.7: QQ Plot of |h|2 Data versus Exponential

Sorted Channels
The values of mean and variance in equation 3.47 can be used in case if channels
have not been sorted. When the channels have been sorted such as |hJ |2 > |hJ−1|2 >
· · · > |h1|2, ordered statistics are to be considered. It can be seen from figure 3.8
and 3.9. In figures 3.8a and 3.9a for 1st user and J-th user respectively, are almost
similar, which depicts that the channels are not sorted. The channels for each user
are quite similar. Figures 3.8b and 3.9b for 1st user and J-th respectively, show that
mean of PDF for user J is higher than the mean of PDF for user 1, shows that the
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Figure 3.8: PDF and CDF for channel for user 1

channels are sorted as |hJ |2 > |hJ−1|2 > · · · > |h1|2.
To find out variance of |h2| (exponential distribution) of remaining users, |hJ−1|2 · · · |h1|2
ordered statistics are considered. PDF of |hj|2 for j-th user such that j < J is given
by [124].

f(j)(x) =
J !

(j − 1)!(J − j)!
fX(x)[1− FX(x)]

J−j[FX(x)]
j−1 (3.48)

where f denotes PDF and F denotes CDF. So the variance of |hj|2 is

Var(|hj|2) =
∫ ∞

−∞
(x− E(X))2

J !

(j − 1)!(J − j)!
fX(x)[1− FX(x)]

J−j[FX(x)]
j−1 dx

(3.49)
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Figure 3.9: PDF and CDF for channel for user J

From [125], the variance of j-th order of statistics can then be estimated as

Var(|hj|2) ≈
j(J − j + 1)

(J + 1)2(J + 2)

1

f(F−1( j
J+1

))2
(3.50)
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In each frequency layer, there are dj = 3 users so in each frequency layer |h3|2 >
|h2|2 > |h1|2. While last user i.e. U3 is to be decoded so variance of |h|2 from
remaining 2 users can be found using equation 3.50

Var(|h2|2) ≈ 0.0500× 1

f(F−1(0.50))2

Var(|h1|2) ≈ 0.0375× 1

f(F−1(0.25))2

(3.51)

For |h|2 being Exponential random variable, its PDF and CDF is given by [122]

fX(x) = λ exp (−λx) (3.52)

FX(x) = 1− exp (−λx) (3.53)
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Figure 3.10: PDF and CDF sorted and unsorted exponential distributions

Figure 3.10 also shows PDF and CDF plots for exponential distribution in equa-
tion 3.52 and 3.53. It shows that channels have been sorted according |hJ |2 >
|hJ−1|2 > · · · > |h1|2.
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Gaussian Approximation and transition from equation 3.18 to equation
3.19
Since we have assumed Gaussian Approximation to consider all users in a frequency
layer other than the strongest user (in same frequency layer) as Gaussian noise.
Thus we consider a single user using multi-dimensional constellations in different
frequency layer so we can use equation 3.19 to compute the PEP for the strong
users. We have to modify the expression by considering the following

• Sorting of the channel of each user

• Interference noise from remaining user in same frequency layer

• Power allocation coefficient

To modify the expression in equation 3.19, we look into detail how this equation is
derived from equation 3.18. Recalling equation 3.18

Ps{xa → xb|h} ≈ 1

12
exp

(
−
∑K

k=1 ||γk||2

4N0

)
+

1

6
exp

(
−
∑K

k=1 ||γk||2

3N0

)

where for k-th dimension, dimension wise distance is represented as δk = |xa[k] −
xb[k]| and γk = hkδk. If h ∼ CN (0, 1), then each frequency layer k, γ{xa → xb} =
h(xa − xb) so that ||γk||2 can be shown as exponential random variable from QQ
plot in figure 3.11.
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Figure 3.11: QQ Plot of γ2 Data versus Exponential

When h has zero mean and unit variance, the mean of exponential random variable
||γk||2 is ||δk||2 as per [120], so equation 3.18 can be written as
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Ps{xa → xb}Rayleigh ≈ 1

12

K∏
k=1

1

1 + ||δk||2
4N0

+
1

6

K∏
k=1

1

1 + ||δk||2
3N0

When Rayleigh Channel is sorted in each frequency layer such as |h3|2 > |h2|2 > |h1|2
since dj = 3, h no more has zero mean and unit variance. In order to check if γ{xa →
xb} = h(xa−xb) in each frequency layer is still an exponential random variable after
sorting channel, QQ plot is used. We check frequency layer 1 where user 2, user 3 and
user 5 are connected. Channels are ordered such as |h5|2 > |h3|2 > |h2|2. Figure 3.12
shows the QQ plots, which clearly indicates that after sorting of channel,||γk||2 is
no more an exponential random variable. Since exponential distribution is a special
case of gamma of distribution, so we check if after sorting h the variable ||γk||2 is a
gamma random variable.
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(a) QQ Plot of User2 γ2 Data versus Ex-
ponential
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(b) QQ Plot of User3 γ2 Data versus Ex-
ponential
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(c) QQ Plot of User5 γ2 Data versus Ex-
ponential

Figure 3.12: QQ Plot of γ2 Data (h does not has zero mean and unit variance)
versus Exponential

In figure 3.13 the QQ plot clearly, indicates that after sorting of channels for each
user in a frequency layer, ||γk||2 can be treated as gamma random variable. We have
computed the mean for ||γk||2 as
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mean(||γk||2) = var(hj,k)× ||δj,k||2 (3.54)

Monte Carlo method has been used for all frequency layers and checking codewords
of users connected to that frequency layer with sorted Rayleigh fading channel.
Table 3.2 shows that different hundreds of runs prove the validity of equation 3.54
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(a) QQ Plot of User2 γ2 Data versus
Gamma
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(b) QQ Plot of User3 γ2 Data versus
Gamma
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(c) QQ Plot of User5 γ2 Data versus
Gamma

Figure 3.13: QQ Plot of γ2 Data (h does not has zero mean and unit variance)
versus Gamma

For strongest user i.e. dj-th user (last user) in each frequency layer, PEP can be
written as

P dj
s {xa → xb}Rayleigh ≈ 1

12

∏
k∈ϱdj

1

1 +
ηdj,k

4ωdj,k

+
1

6

∏
k∈ϱdj

1

1 +
ηdj,k

3ωdj,k

(3.55)

where

• ηdj ,k = pdj × var(hdj ,k)× ||δdj ,k||2

• ωdj ,k = N0 +
∑dj−1

i=1 pi × var(|hi,k|2)
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Table 3.2: Monte Carlo method to check validity of equation 3.54

Parameter Mean Median Variance
(µ− var(h)× |δ|2) for runs=100 −2.0905e−07 7.3947e−06 1.4367e−08

(µ− var(h)× |δ|2) for runs=300 3.1582e−07 7.3754e−06 1.6729e−08

(µ− var(h)× |δ|2) for runs=500 7.4675e−07 7.4728e−06 1.9543e−08

• ϱdj is the frequency layers to which dj-th user is connected.

Only var(hdj ,k) and var(|hi,k|2 is to be calculated in equation 3.55. Variance of
sorted squares Rayleigh distribution i.e. |h|2 can be found using equation 3.50 where
PDF and CDF of exponential distributions are defined by equation 3.52 and 3.53 re-
spectively. Nevertheless, the summation of variance of all sorted channels is number
of channels multiplied by unit variance. For example, for three users in a frequency
layer have similar channel when unsorted, and variance of each channel is one. When
the channels are sorted, the summation of variance of these channels is three times
variance of each channel when unsorted i.e. three times one. It can be observed
from figure 3.14 when the channels are sorted, the variance of this channel for the
first user is lower than that of last users. Same can be observed while comparing
figure 3.8b and 3.9b. It is observed for sorted channels that for 500 runs for 3 users
in a frequency layers, var(h1) ≈ 0.33, var(h2) ≈ 0.83 and var(h3) ≈ 1.83. Similarly
for 5 users in a frequency layers var(h1) ≈ 0.20, var(h2) ≈ 0.45, var(h3) ≈ 0.78,
var(h3) ≈ 1.28 and var(h3) ≈ 2.28.
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Figure 3.14: Variance of sorted Channels for different number of users
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Union bound for BER for dj-th user for the sorted channel, can be written using
equation 3.38 and 3.55 can be written as

P
dj
b ≤ 1

M × log2(M)

∑
xa

∑
xb ̸=xa

P dj
s {xa → xb}Rayleigh (3.56)

We suppose α is power allocation coefficient for each user such that pj = αj×pT ,
with pj is the controlled transmit power for each user j and pT is total controlled
transmit power, such that

∑
i∈dj αi = 1. If α3 is coefficient of power for the strong

user i.e. last user (dj-th user) in each frequency layer then 1 − α3 is distributed
among remaining users in respective frequency layer. Since channel for remaining
users is also sorted, each of these users have different channel gain and variance so
we cannot calculate the power allocation for the strong user using equations 3.55
and 3.56 unless we have the exact values for α1 for the weaker users i.e. user 1 and
α2 for user 2. (ωdj ,k in equation 3.55 cannot be calculated with knowledge of α1 and
α2)

3.4.1.2 Power Allocation for remaining users in each frequency layers

By assuming that user 5 and user 6 are strongest users and power of each user is
equally divided on two frequency layers, then according to function mapping 2.24
Users other than the strongest user are decoded using Log-MPA decoding. After
removal of the strongest user in each resource block, we have J ′ = 4 in K = 4
frequency layers. Users in each frequency layers are according to following figure.
And factor graph matrix in 2.24 is transformed as

Figure 3.15: Remaining Users connected to Frequency Layers

F =


0 1 1 0
1 0 1 0
0 1 0 1
1 0 0 1

 (3.57)

For the first 2 users power coefficients α1 + α2 = 1 − α3 = ϑ. Equation 3.38 union
bound for 1st user and 2st user can be written as

P j′

b ≤ 1

MJ ′ × J ′log2(M)

∑
xa

∑
xb ̸=xa

Ps{xa → xb} (3.58)
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where

Ps{xa → xb}Rayleigh ≈ 1

12

K∏
k=1

1

1 + Λk

4N0

+
1

6

K∏
k=1

1

1 + Λk

3N0

(3.59)

with Λk =
∑

j′∈ζk ||
√
αj′δj′,k||2 with ζk is the set of users connected to k-th frequency

layer and j′ ∈ J ′.
We find the minimum value of ϑ for which target BER is achieved for the first and
second users. We check for different values ϑ and for each value α1 and α2 are
defined based on CSI as follow

α1 =
|h2|2

|h1|2
× (ϑ− α1) (3.60)

so

α1 =
|h2|2

|h1|2 + |h2|2
× ϑ (3.61)

and
α2 = ϑ− α1 (3.62)

At a certain SNR level, to reach the final target BER for SCMA users at output of
LDPC decoder, we have to take into account an improvement in terms of BER by
LDPC decoder. The target BER at output of SCMA decoder has to be lower than
final target BER.

3.4.1.3 Approach for calculating power allocation coefficient of each
users

In this subsection, we summarize the method adopted for calculating power alloca-
tion coefficient for each user.

• For a final target BER, an intermediate target BER is defined at output of
SCMA decoder

• Minimum value of ϑ is iteratively calculated for intermediate target BER at
specific SNR at output of SCMA decoder

• α3 is set to 1− ϑ

• Inequality in 2.23 i.e. Γk,m ⩾ Γ is checked

• If the inequality is satisfied, we proceed further with LDPC decoding

• Else if the inequality is not satisfied, target BER cannot be reach at given
SNR. Either SNR has to be increased or value of BER has to be lowered.



i
i

“output” — 2023/1/22 — 22:54 — page 97 — #111 i
i

i
i

i
i

3.4 Power Allocation for Target BER in SCMA 97

3.4.2 Simulation Results

Before power allocation for a target BER for SCMA users, we observe the results of
Log-MPA decoding of SCMA system with J = 6 users with equal power allocation
in K = 4 frequency layers when channels are sorted such as |h3|2 > |h2|2 > |h1|2
for each frequency layer of SCMA since there are dj = 3 users in each frequency
layer. Users are connected according factor graph matrix in 3.63. Since user 5 and
user 6 are the last users in their respective frequency layers so we observe in figure
3.16 that they are best performing users under sorted channels. Similarly, user 1
and user 2 are the weakest users in respectively frequency layers so they are worst
performing users in 3.16 under condition of channel sorting.

4 6 8 10 12 14 16

Eb/No(dB)

10-5

10-4

10-3

10-2

10-1

100

B
E

R

User 1

User 2

User 3

User 4

User 5

User 6

Figure 3.16: J = 6 SCMA user in sorted channels with Log-MPA decoding with
sorted channels and equal power allocation

F =


0 1 1 0 1 0
1 0 1 0 0 1
0 1 0 1 0 1
1 0 0 1 1 0

 (3.63)

3.4.2.1 Target BER=10−5

We defined a target BER=10−5 to achieve for each user at the output of LDPC
decoder. In order to achieve this BER, we need to define an intermediate target
BER at output HIC-Log MPA decoder. We make use of abacus in figure 3.17 to
find an intermediate BER. At the abscissa, BER for different values of Eb/N0 for
an SCMA decoder is defined. While ordinate represents the BER values at output
of LDPC decoder. We can simply say that abscissa and ordinate represents values
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at input and output LDPC decoder, respectively. It is observed in figure 3.17 that
to achieve BER=10−5 at output of LDPC decoder, SCMA decoder needs to achieve
BER around 10−1. This abacus relates input and output BER at LDPC decoder
block for different coder rates, i.e. 0.4 and 0.5 where each LDPC decoder has 10
numbers of iterations. Figure 3.18 shows intermediate target BER and final target
BER at their respective blocks in an LDPC encoded SCMA system.
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Figure 3.17: Abacus for input and output BER at LDPC decoder block

After an intermediate BER has been defined, we move onto to step 2 mentioned in
section 3.4.1.3. We compute the value ϑ in order to compute α for power allocation
coefficient for first and second user in each frequency layer.

Figure 3.18: Intermediate Target BER at output of SCMA decoder and final BER
at output of LDPC decoder
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3.4.2.2 Power allocation for first two users in each frequency layer

For this step we assume that the last user (strong user) in each frequency layer has
been removed by interference cancellation. These two users in each frequency lay-
ers are to be decoded using Log-MPA. As mentioned in equation 3.61 and 3.62 that
power allocation to each of these users is according to their channel gains. From fac-
tor graph matrix 3.57 it can be seen that it is user 1,2,3 and 4 that are the remaining
users after interference cancellation of strongest user in each frequency layer. We
intend to calculate the value of Eb/N0 for which the final target BER=10−5 or in-
termediate target BER=10−1 can be achieved.
It can be seen from figure 3.19 that feasible values of ϑ and Eb/N0 for intermediate
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Figure 3.19: Values of ϑ for different values of Eb/N0 for BER=10−1

target BER=10−1 are for values of Eb/N0 greater than 12dB. In order to illustrate
mathematically, for instance, we defined to achieve this target at Eb/N0=16dB
Target BER=10−5 at Eb/N0=16dB
The aim is to minimize the value ϑ so that remaining fraction of power can be
allocated to strong user. Value of ϑ to achieve intermediate BER=10−1 can be
computed of by plotting BER for different values of ϑ. Figure 3.20 shows BER
results for J ′ = 4 users for different values of ϑ. For each value of ϑ; the values of
α1 and α2 in each frequency layers are calculated according to 3.61 and 3.62. As
power allocation is done according to channel gains so all the remaining four users
have almost same BER values at different Eb/N0.

When the value of ϑ is set to the maximum i.e. equal to one, it is observed in
figure 3.20a that BER for J ′ = 4 users, the intermediate target BER=10−1 can be
achieved at Eb/N0=11dB. Similarly, when the value of ϑ is decreased to 0.8 the same
target is achieved at higher values of Eb/N0 in figure 3.20b. The aim is to achieve
this value of BER at Eb/N0=16dB. It is observed in figure 3.20d that for value of
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(b) ϑ = 0.8

4 6 8 10 12 14 16

Eb/No(dB)

10-2

10-1

100

B
E

R

User 1

User 2

User 3

User 4

(c) ϑ = 0.6
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(d) ϑ = 0.4

Figure 3.20: Power allocation for first two user in each frequency layer with different
values of ϑ at output of SCMA decoder

ϑ less than 0.4, we can achieve the intermediate target BER at Eb/N0=16dB.
Average BER values for all remaining four users is plotted in figure 3.21. It can be
confirmed from this figure that intermediate target BER can be achieved for ϑ less
than 0.4 at Eb/N0=16dB.

In order to find relatively accurate value of ϑ for BER=10−1 at output of SCMA
decoder at Eb/N0=16dB, equation 3.58 can be written as

10−1 ≤ 1

MJ ′ × J ′log2(M)

∑
xa

∑
xb ̸=xa

Ps{xa → xb} (3.64)

where

Ps{xa → xb}Rayleigh ≈ 1

12

K∏
k=1

1

1 + Λk

4N0

+
1

6

K∏
k=1

1

1 + Λk

3N0

(3.65)

ϑ is divided among each of two users according to their channel gains so Λk =∑
j′∈ζk ||

√
ϑδj′,k||2 in equation 3.65 with ζk is the set of users connected to k-th

frequency layer and j′ ∈ J ′. Similarly Eb/N0=16dB gives the value of N0 for above
equation as well. The only unknown value in equation 3.64 and 3.65 is ϑ. Solving
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Figure 3.21: Average BER for J = 1 → 4 user at output of SCMA decoder

these equations gives the its value as ϑ ≥ 0.36
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Figure 3.22: ϑ values for first 2 users in each frequency layer at Eb/N0=16dB
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Figure 3.23: BER for J ′ = 4 users at output of LDPC decoder with ϑ = 0.36

When equations 3.64 and 3.65 are plotted graphically in figure 3.22 for different
values of ϑ, it can be seen the BER=10−1 is achieved at ϑ ≥ 0.36. After ϑ has been
computed, power coefficient α1 and α2 are computed according to equations 3.61
and 3.62. Results for BER at output of LDPC decoder for user 1 to user 4 with
ϑmin = 0.36 can be seen in figure 3.23.It can be seen that with the calculated value
of ϑ the final target BER at Eb/N0=16dB is achieved for J ′ = 4 of SCMA.

3.4.2.3 Power allocation for last user (strong user) in each frequency
layer

After minimum value of ϑ has been calculated, the value α3 is calculated as

α3 = 1− ϑmin = 0.64 (3.66)

with value of α3 in equation 3.66, since it is greater than 0.62, the threshold value
2.23 is satisfied. With power allocation coefficient for strong user, it is hard decoded,
considering remaining users as Gaussian noise. Equation 3.55 is used to compute
BER for user 5 and user 6 in their respective frequency layers. Actual BER and
analytical BER, using expression in 3.55 for these strong user; when they are hard
decoded while considering other users as Gaussian noise is given by figure 3.24.
It can be seen in this figure that intermediate target BER is well achieved before
Eb/N0=16dB.
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Figure 3.24: Hard decoding for user 5 and user 6 with α3 = 0.64

Finally, we check for all six user under the calculated power allocation coefficient and
results are shown in figure 3.25. Slight degradation can be seen for the BER results
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Figure 3.25: Joint HIC-Log MPA decoding for J = 6 users with LDPC decoder with
optimized power allocation
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for user 1 and user 2 which to due the fact the error propagation has occurred during
interference cancellation.Although user 5 and user 6 seem to have to almost zero
BER at Eb/N0=16dB but these BER results are depicted after error correction from
LDPC decoder whereas interference cancellation is done prior to LDPC decoding of
these users to avoid higher latency in the system.

3.5 Conclusion
In this chapter at the beginning, we have discussed error probabilities for a single user
using multi-dimensional constellations for AWGN and Rayleigh Fading Channel.
This idea has been extended to multiple users using multi-dimensional constellations
for same channels as in case of a single user. Error probabilities for SCMA system
have been derived based on these ideas, but these error probabilities formulations
do not take into account the ordered statistics.

We have formulated the BER expression for the strong user while considering
Gaussian Approximation. Interference noise from the weak users and ordered statis-
tics have been taken into consideration to derive an expression for single user (strong
user) in an SCMA system. For the remaining users, we have defined error probability
expressions to find minimum total power required by these weak users. Simulation
results are in coherence with mathematical formulations. While comparing results
of this optimized power allocation in figure 3.25 with same HIC-Log MPA decoding
in figure 2.12 where both the systems have same computational complexity, it can
been seen that BER results for user 1 and user 2 have improved with optimized
power allocation. A certain QoS has been guaranteed for all the users in SCMA
system with optimized power allocation.
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General conclusion
It is quite evident that forthcoming generations of mobile communication will be
asked for massive connectivity with higher data rates and low latency for connected
devices. Multiple Access techniques are the important aspect of physical layer, and
it has to be researched upon as well in order to meet these objectives for future
mobile communication. Over the course of this work, multiple access technique
which is able to allocate users in a non-orthogonal way have been studied. NOMA
has emerged as a potential candidate for 5G mobile communication.This thesis has
been focused on SCMA that is code domain NOMA. SCMA has been presented in
order to understand its implementation to cope with frequency bandwidth limitation
and improve spectral efficiency. For the encoding part of SCMA, a lot of research
is being done for the design of unique sparse codebooks for SCMA users. While
for decoding part of SCMA is also, under a lot of investigation in order to improve
implementation complexity, to achieve better BER results etc.

As proof of concept, we have implemented a feedback in an LDPC encoded
SCMA system to improve the BER results, and also worked on reducing the com-
plexity of SCMA systems. We have also proposed a low complexity power allocation
scheme for uplink SCMA. Target BER can be achieved by implementing an efficient
decoder like LDPC. In this thesis, LDPC complexity is estimated to face with noise
and SCMA interference and an abacus has been assessed to correlate target BER
with SCMA output BER. The main results of the thesis are summarized below:

• First chapter provides a brief introduction on NOMA scheme, particularly fo-
cusing on SCMA. Some basic domains of NOMA have been discussed. More-
over, basic principles of NOMA have also been mentioned. Whereas codebooks
design is concerned, we give an overview of an idea about the generation of
codebooks. We also discuss in detail the message passing algorithm in SCMA
decoding. Some of design objectives for NOMA and optimization of resource
allocation in NOMA have been explained. Finally issues and challenges in
optimization of resource allocation have also been discussed in detail.

• In the second chapter, we briefly discuss the classical SCMA which is using Log-
MPA decoder for its decoding part and we also discuss encoded SCMA using
LDPC decoding where users are decoded by Log-MPA followed LDPC decoder.
A feedback from LDPC decoder has been proposed to improve the BER results.
In this chapter we have also proposed HIC-Log MPA decoder to decrease
the complexity of LDPC encoded uplink SCMA. HIC is hybrid interference
cancellation technique which chooses between hard or soft decoding based on
the value of a threshold. The threshold value is defined to choose between
the two. Complexity simulations in this chapter show that HIC-Log MPA
has improved results in terms of complexity as compared to MPA decoding.
Moreover, interference cancellation is done at each instant which improves the
latency of the system.

• In the third chapter, analytically defining the BER for SCMA users has been
studied first. The idea of single and multiple users using multidimensional con-
stellation has been extended to SCMA users. Optimization of power allocation
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for target BER has been proposed for HIC-Log MPA discussed in chapter 2.
BER expressions are derived for SCMA user in presence of interference noise
from other users and order statistics are consider while deriving these expres-
sions. Simulation results depict that HIC-Log MPA with same low complexity
as compared to MPA is able to achieve target BER with proposed optimized
power allocation.

Future prospects
Based on the study and results obtained in this dissertation, following are some
problems that can be considered in future works.

• Third chapter of this thesis is just a proof of concepts. The work undertaken
deserves to be consolidated through a parametric study taking into account
different code rates and number of iterations for LDPC, different QoS for each
user, different modulation order can be considered as well and the abacus can
be enriched to have in depth detail of BER expression at different decoding
blocks of LDPC encoded HIC-Log MPA.

• The work in this thesis has relied on assumption of perfect channel estimation.
Perfect estimation of CSI in real time scenarios is difficult to realize as it
requires more and more pilot signals to be sent in order to have more accurate
channel estimation which results in reduction of spectral efficiency. So the
impact of imperfect CSI needs to be addressed. System overhead is significant
while requiring CSI at the transmitter end. Investigating imperfect CSI for
optimization of power allocation for each user would be interesting for future
perspectives.

• Imperfect SIC for power allocation has been studied in [126]. Error propaga-
tion during interference cancellation would be more realistic approach during
successive interference cancellation.

• Joint user clustering and power allocation optimization may be worth investi-
gating for an uplink HIC-Log MPA SCMA system.

• Machine learning and deep learning are promising methods to optimize re-
source allocation. Few research has been carried out for deep learning in
resource allocation in NOMA. [127] uses deep enforcement learning to solve
sub carrier allocation problem with constraint of QoS and cellular power con-
straint. It will worth studying deep enforcement learning solve problems of
optimization in resource allocations.

• This study is based on single cell scenario. In realistic scenarios such as multi-
cell scenario there presence of inter-cell interference. It would be interesting to
investigate optimization of resource allocation for proposed model in multi-cell
scenario to handle inter-cell interference.
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