
HAL Id: tel-04400904
https://hal.science/tel-04400904

Submitted on 17 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0
International License

Identification and Simulation of Physical Systems with
Structured Deep Learning and Inductive Knowledge

Steeven Janny

To cite this version:
Steeven Janny. Identification and Simulation of Physical Systems with Structured Deep Learn-
ing and Inductive Knowledge. Artificial Intelligence [cs.AI]. INSA Lyon, 2024. English. �NNT :
2024ISAL0001�. �tel-04400904�

https://hal.science/tel-04400904
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

N◦ d’ordre NNT : 2024ISAL0001

Thèse de Doctorat de l’INSA LYON,

membre de l’Université de Lyon

École doctoral 512
Informatique et Mathématique de Lyon (infomaths)

Spécialité de doctorat :
Informatique

Soutenue publiquement le 16 Janvier 2023, par :
Steeven Janny

Identification and Simulation of Physical Systems with Structured

Deep Learning and Inductive Knowledge

Devant le jury composé de :

Gallinari Patrick Professeur des Universités, Rapporteur

Univ. Sorbonne, Paris, France

Di Meglio Florent Maître de Conférence, HDR Rapporteur

Ecole des Mines de Paris, France

Mansard Nicolas Directeur de Recherche CNRS, Examinateur

Univ. Paul Sabatier, Toulouse, France

Habrard Amaury Professeur des Universités, Examinateur

Univ. Jean Monnet, Toulouse, France

Thuerey Nils Professor, Examinateur

Technical University of Munich, Munich, Germany

Digne Julie Directrice de Recherche CNRS, Co-Directrice de thèse

INSA Lyon, Villeurbanne, France

Nadri Madiha Maître de Conférence, Co-Directrice de thèse

Univ. Claude Bernard, Villeurbanne, France

Wolf Christian Principal Scientist, NaverLabs Europe Co-Directeur de thèse

NaverLabs Europe, Meylan, France

Steeven Janny, Identification and Simulation of Physical Systems with Structured Deep Learning

and Inductive Knowledge, ©2023

Département FEDORA – INSA Lyon - Ecoles Doctorales

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

CHIMIE CHIMIE DE LYON

https://www.edchimie-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr

M. Stéphane DANIELE
C2P2-CPE LYON-UMR 5265
Bâtiment F308, BP 2077
43 Boulevard du 11 novembre 1918
69616 Villeurbanne
directeur@edchimie-lyon.fr

E.E.A. ÉLECTRONIQUE, ÉLECTROTECHNIQUE,

AUTOMATIQUE

https://edeea.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Bâtiment Direction INSA Lyon
Tél : 04.72.43.71.70
secretariat.edeea@insa-lyon.fr

M. Philippe DELACHARTRE
INSA LYON
Laboratoire CREATIS
Bâtiment Blaise Pascal, 7 avenue Jean Capelle
69621 Villeurbanne CEDEX
Tél : 04.72.43.88.63
philippe.delachartre@insa-lyon.fr

E2M2 ÉVOLUTION, ÉCOSYSTÈME,

MICROBIOLOGIE, MODÉLISATION

http://e2m2.universite-lyon.fr
Sec. : Bénédicte LANZA
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
secretariat.e2m2@univ-lyon1.fr

Mme Sandrine CHARLES
Université Claude Bernard Lyon 1
UFR Biosciences
Bâtiment Mendel
43, boulevard du 11 Novembre 1918
69622 Villeurbanne CEDEX
sandrine.charles@univ-lyon1.fr

EDISS INTERDISCIPLINAIRE SCIENCES-SANTÉ

http://ediss.universite-lyon.fr
Sec. : Bénédicte LANZA
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
secretariat.ediss@univ-lyon1.fr

Mme Sylvie RICARD-BLUM
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
(ICBMS) - UMR 5246 CNRS - Université Lyon 1
Bâtiment Raulin - 2ème étage Nord
43 Boulevard du 11 novembre 1918
69622 Villeurbanne Cedex
Tél : +33(0)4 72 44 82 32
sylvie.ricard-blum@univ-lyon1.fr

INFOMATHS INFORMATIQUE ET MATHÉMATIQUES

http://edinfomaths.universite-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
Tél : 04.72.43.80.46
infomaths@univ-lyon1.fr

M. Hamamache KHEDDOUCI
Université Claude Bernard Lyon 1
Bât. Nautibus
43, Boulevard du 11 novembre 1918
69 622 Villeurbanne Cedex France
Tél : 04.72.44.83.69
hamamache.kheddouci@univ-lyon1.fr

Matériaux

MATÉRIAUX DE LYON

http://ed34.universite-lyon.fr
Sec. : Yann DE ORDENANA
Tél : 04.72.18.62.44
yann.de-ordenana@ec-lyon.fr

M. Stéphane BENAYOUN
Ecole Centrale de Lyon
Laboratoire LTDS
36 avenue Guy de Collongue
69134 Ecully CEDEX
Tél : 04.72.18.64.37
stephane.benayoun@ec-lyon.fr

MEGA MÉCANIQUE, ÉNERGÉTIQUE,

GÉNIE CIVIL, ACOUSTIQUE

http://edmega.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Tél : 04.72.43.71.70
Bâtiment Direction INSA Lyon
mega@insa-lyon.fr

M. Jocelyn BONJOUR
INSA Lyon
Laboratoire CETHIL
Bâtiment Sadi-Carnot
9, rue de la Physique
69621 Villeurbanne CEDEX
jocelyn.bonjour@insa-lyon.fr

ScSo ScSo*

https://edsciencessociales.universite-lyon.fr
Sec. : Mélina FAVETON
INSA : J.Y. TOUSSAINT
Tél : 04.78.69.77.79
melina.faveton@univ-lyon2.fr

M. Bruno MILLY
Université Lumière Lyon 2
86 Rue Pasteur
69365 Lyon CEDEX 07
bruno.milly@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

Felicia coming out of a particle accelerator.

figures from history.fnal.gov

history.fnal.gov

Abstract

Recent technological progress is supported by the generalization of numerical tools for sim-

ulating, controlling, and observing physical systems. Yet, by focusing on more and more

complex phenomena, our conventional tools are falling short of meeting the growing expec-

tations of engineers, whether in terms of accuracy or computation time.

Data-driven approaches, in particular neural networks, offer promising alternatives to

address these new challenges. These models can capture complex, nonlinear relationships

in physical systems, and shift the burden from manual derivation of tedious mathematical

formulas towards large-scale data collection. However, these methods often sacrifice stabil-

ity, robustness, precision, and more generally guarantees classically offered by traditional

approaches.

In this thesis, we propose combining the fields of physics, deep learning, and control the-

ory to propose new hybrid methods, taking advantage of the expressivity of neural networks,

while relying on inductive biases from physics. We describe theoretical tools (discussed in

Part 1) related to the simulation of dynamical systems and connect them to neural network

design. In a second time (Part 2), we leverage these insights to design control algorithms

and simulation techniques addressing the resolution of complex problems related to partial

differential equations. Finally, in Part 3, we focus on larger-scale simulations such as fluid

dynamics and counterfactual reasoning.

Our work has been presented at scientific conferences in the field of artificial intelligence

and control theory. By bridging the gap between physics and machine learning, we believe

that this paves the way toward a new generation of methods for the simulation and control of

physical systems.

i

Résumé

Les progrès technologiques de notre époque sont soutenus par la disponibilité croissante

d’outils numériques pour simuler, contrôler et observer les systèmes physiques. En se concen-

trant sur des phénomènes de plus en plus complexes, nos outils conventionnels ne parvien-

nent pas à répondre aux attentes croissantes des ingénieurs, que ce soit en termes de précision

ou de temps de calcul.

Les approches data-driven, en particulier les réseaux de neurones, offrent des alternatives

prometteuses pour résoudre ces problèmes. Ces types de modèles capturent des relations

complexes et non linéaires dans les systèmes physiques et déplacent la charge de modélisation

vers celle de la collecte de données. Cependant, ces nouvelles méthodes sacrifient souvent les

critères de stabilité, de robustesse et de précision et plus généralement les garanties offertes

par les approches traditionnelles.

Nous proposons de combiner les domaines de la physique, de l’apprentissage profond

et de la théorie du contrôle pour proposer de nouvelles méthodes hybrides, tirant parti de

la puissance des réseaux de neurones, tout en s’appuyant sur des biais inductifs issus de la

physique. Ce manuscrit présente nos travaux dans ce domaine. En particulier, il décrit des

outils théoriques (abordés dans la partie 1) liés à la simulation de systèmes dynamiques et

les connecte à la conception de réseaux neuronaux. Dans un deuxième temps (Partie 2), nous

exploitons ces connaissances pour concevoir des algorithmes de contrôle et des techniques de

simulation impliquant la résolution de problèmes complexes liés aux équations aux dérivées

partielles. Enfin, dans la troisième partie, nous abordons des problèmes de simulation à plus

grande échelle tels que la dynamique des fluides et le raisonnement contrefactuel.

Nos travaux ont été présentés lors de conférences scientifiques dans le domaine de

l’intelligence artificielle et de la théorie du contrôle. En construisant un pont entre la physique

et l’apprentissage automatique, nous croyons fermement que cette direction de recherche peut

contribuer à une nouvelle génération de méthodologies pour la simulation et le contrôle des

systèmes physiques.

iii

Acknowledgements

Acknowledgements will be added here after the defense

v

vi

Contents

Abstract i

Résumé iii

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xv

Acronyms xvii

1 Introduction 1

1.1 A New Hope: Data-driven models for physics and control 1

1.2 The Physics Menace: Limitations of physics for models and simulations 2

1.3 Control Theory Strikes Back: Theoretical tools to interact with real world 4

1.4 The Return of Deep Learning: Hybrid approach to physics problems 7

1.5 Attack of the Ph.D.: organization of the manuscript 8

I State of the art 10

General remarks 11

2 Neural networks for system identification 13

2.1 The Lord of the Physics: an introduction to dynamical systems 13

2.2 One Training Method to Rule Them All . 19

2.3 The Fellowship of the Dynamical Systems . 23

2.4 The Two Approaches: hybrid models . 28

2.5 The Return of Physics . 33

2.6 Take-home messages . 34

3 Deep Learning for intuitive physics 35

3.1 Learning the solution from PDE operator . 36

3.2 Learning the solution from sparse observations 39

vii

CONTENTS CONTENTS

3.3 Learning the solver for grid-based data . 44

3.4 Learning the solver for mesh-based simulations 51

3.5 Large scale datasets for physics . 54

3.6 Take-home messages . 55

II Foundations for Robust Simulations using Observer Theory 58

General remarks 59

4 Learning Reduced Nonlinear State-Space Models 61

4.1 Context . 61

4.2 Problem statement and preliminary results . 63

4.3 Modeling and learning . 66

4.4 Experimental results . 69

4.5 Conclusion . 74

4.6 Post-scriptum: taking a step back . 74

5 Deep-KKL 79

5.1 Context . 79

5.2 Prediction via embedding into an output-dependent uniform contraction 81

5.3 A possible solution via KKL . 84

5.4 Learning KKL with deep networks . 86

5.5 Numerical simulations . 88

5.6 Conclusion . 91

5.7 Post-scriptum: taking a step back . 92

III Differential equations for simulation and control 96

General remarks 97

6 Output tracking via contraction theory 99

6.1 Context . 99

6.2 An introduction to contraction theory . 100

6.3 Preliminaries . 103

6.4 Main results . 104

6.5 Simulations . 110

6.6 Conclusions . 112

6.7 Post-scriptum: taking a step back . 112

7 Space and time continuous simulation 115

7.1 Context . 115

7.2 Continuous solutions from sparse observations 117

7.3 Experimental results . 123

viii

CONTENTS CONTENTS

7.4 Conclusion . 126

7.5 Post-scriptum: taking a step back . 127

IV Scaling up: large-scale learning of complex physics phenomena 130

General remarks 131

8 Turbulent fluid dynamics with mesh transformers 133

8.1 Context . 133

8.2 The Eagle dataset and benchmark . 135

8.3 Learning unsteady airflow . 137

8.4 Experiments . 140

8.5 Conclusion . 144

8.6 Post-scriptum: taking a step back . 145

9 Filtered-CoPhy 147

9.1 Context . 147

9.2 The Filtered-CoPhy benchmark . 149

9.3 Unsupervised learning of counterfactual physics 152

9.4 Experiments . 156

9.5 Conclusion . 159

9.6 Post-Scriptum: taking a step back . 159

10 Final remarks 163

10.1 Theoretical insights for more principled models 163

10.2 Physics and deep learning for robotics . 164

10.3 Neural simulators for faster engineering . 164

Bibliography 167

V Appendices 193

A Appendix of chapter 4 195

A.1 Proof of proposition 4.2 . 195

A.2 Model details . 195

A.3 Dataset details . 196

B Appendix of chapter 5 197

B.1 Proof of Proposition 5.1 . 197

B.2 Proof of Theorem 5.1 . 197

B.3 Proof of Proposition 5.2 . 198

B.4 Proof of Proposition 5.3 . 199

C Appendix of chapter 6 201

C.1 Proof of Proposition 6.1 . 201

ix

CONTENTS CONTENTS

C.2 Proof of Proposition 6.2 . 202

C.3 Model details . 203

D Appendix of chapter 7 205

D.1 Proof of proposition 7.1 . 205

D.2 Comparison of upper bounds in Proposition 7.1 206

D.3 Proof of proposition 7.2 . 207

D.4 Model description . 208

D.5 Baselines and datasets details . 210

D.6 More results . 212

E Appendix for chapter 8 219

E.1 Dataset details . 219

E.2 Model details . 222

E.3 More results . 224

F Appendix for chapter 9 233

F.1 Further details on dataset generation . 233

F.2 Performance evaluation of the de-rendering module 237

F.3 Comparison with the Transporter baseline . 239

F.4 Details of model architectures . 242

F.5 Additional quantitative evaluation . 246

F.6 Experiments on real-world data . 247

F.7 Qualitative evaluation: more visual examples . 248

x

List of Figures

1.1 Introduction: Sand simulation . 3

1.2 Introduction: Qualitative comparison of turbulence models 4

1.3 Introduction: Block diagram of control theory 5

1.4 Introduction: Overviews of publications during the Ph.D. 9

2.1 SOTA: Lorenz Attractor . 14

2.2 SOTA: Latent Dynamics . 18

2.3 SOTA: Neural ODE . 20

2.4 SOTA: Finite Elements Networks . 23

2.5 SOTA: Deep Koopman operator . 25

2.6 SOTA: Hybrid dynamics . 30

2.7 SOTA: Physics-guided training . 32

3.1 SOTA: Physics-Informed Neural Networks . 37

3.2 SOTA: Competitive PINN . 39

3.3 SOTA: DeepONet . 41

3.4 SOTA: DINo . 43

3.5 SOTA: DeepFluid . 46

3.6 SOTA: PhyDNet . 47

3.7 SOTA: Object-level visual reasonning . 50

3.8 SOTA: Encode-Process-Decode . 53

4.1 Canonical state-space: Model overview and training pipeline 67

4.2 Canonical state-space: Qualitative results . 70

4.3 Canonical state-space: Comparison with the GRU baseline 71

4.4 Canonical state-space: Ablation study on compression 74

5.1 Deep-KKL: Model overview . 82

5.2 Deep-KKL: Qualitative results . 88

5.3 Deep-KKL: Noise robustness . 89

5.4 Deep-KKL: Generalization to OOD . 90

5.5 Deep-KKL: Evaluation on noisy setup . 93

xi

LIST OF FIGURES LIST OF FIGURES

6.1 Contractive control: Model overview . 107

6.2 Contractive control: Steady state generator . 110

6.3 Contractive control: Qualitative results on output tracking 111

7.1 Continuous solution: Model overview . 117

7.2 Continuous solution: Model implementation 122

7.3 Continuous simulation: Qualitative results on Eagle 126

8.1 Eagle: Teaser . 134

8.2 Eagle: Snapshots from the dataset . 136

8.3 Eagle: Model overview . 138

8.4 Eagle: Qualitative results . 141

8.5 Eagle: Locality of reasoning . 143

8.6 Eagle: Impact of cluster size . 144

9.1 Filtered-CoPhy: Dataset overview . 150

9.2 Filtered-CoPhy: Impact of temporal frequency 151

9.3 Filtered-CoPhy: Derendering module overview 152

9.4 Filtered-CoPhy: Model overview . 156

9.5 Filtered-CoPhy: Qualitative results . 158

D.1 Continuous solution: Caveat MaGNeT . 211

D.2 Continuous solution: Quantitative results on Shallow-Water 213

D.3 Continuous solution: Qualitative results for time continuity 214

D.4 Continuous solution: Ablations . 216

D.5 Continuous solution: Attention maps . 217

D.6 Continuous solution: Parameter study . 218

E.1 Eagle: Down-sampling from raw simulation 221

E.2 Eagle: Mesh to grid conversion . 222

E.3 Eagle: K-number maps . 225

E.4 Eagle: Detailed metrics . 226

E.5 Eagle: Example on Cylinder Flow . 227

E.6 Eagle: Example on Scalar-Flow . 228

E.7 Eagle: Example on Eagle . 229

E.8 Eagle: Failure cases . 230

F.1 Filtered-CoPhy: Threshold parameter . 235

F.2 Filtered-Cophy: Sanity check . 235

F.3 Filtered-CoPhy: Dataset balance . 236

F.4 Filtered-CoPhy: Reconstruction task . 238

F.5 Filtered-CoPhy: Coefficients sweep . 239

xii

LIST OF FIGURES LIST OF FIGURES

F.6 Filtered-CoPhy: Comparison with Transporter 240

F.7 Filtered-CoPhy: Static keypoints . 242

F.8 Filtered-CoPhy: Keypoints consistency . 243

F.9 Filtered-CoPhy: Effect of the do-operation . 248

F.10 Filtered-CoPhy: Real-world dataset . 249

F.11 Filtered-CoPhy: Examples from BlockTower-CF 250

F.12 Filtered-CoPhy: Examples from Balls-CF . 251

F.13 Filtered-CoPhy: Examples from Collision-CF 252

xiii

List of Tables

4.1 Canonical state-space: Quantitative results . 72

5.1 Deep-KKL: Description of system used for evaluation 87

5.2 Deep-KKL: Quantitative results . 88

5.3 Deep-KKL: Different state size . 92

6.1 Contractive control: Quantitative results . 111

7.1 Continuous simulation: Space continuity . 125

7.2 Continuous simulation: Time continuity . 127

8.1 Eagle: Comparison with existing datasets . 135

8.2 Eagle: Quantitative results . 141

8.3 Eagle: Ablations . 142

8.4 Eagle: Generalization to unseen geometries 144

9.1 Filtered-CoPhy: Quantitative results . 156

9.2 Filtered-CoPhy: Comparison with copying baselines 156

9.3 Filtered-CoPhy: Ablation on coefficients . 157

9.4 Filtered-Cophy: Ablation on CoDy . 159

9.5 Filtered-CoPhy: Ablation of the filters . 159

D.1 Continuous solution: Time extrapolation . 212

D.2 Continuous solution: Generalization to unseen grid 215

D.3 Continuous solution: Ablation on interpolation module 215

E.1 Eagle: Mesh-downsampling . 231

F.1 Filtered-CoPhy: Sanity check . 235

F.2 Filtered-CoPhy: Reconstruction task . 237

F.3 Filtered-CoPhy: Number of coefficients . 238

F.4 Filtered-CoPhy: Comparison with Transporter 240

F.5 Filtered-CoPhy: Model details . 244

F.6 Filtered-CoPhy: MOT metrics . 247

xv

Acronyms

AI Artificial Intelligence

CF Counterfactual

CNN Convolutional Neural Network

FEM Finite Element Method

FVM Finite Volume Method

GNN Graph Neural Network

GRU Gated Recurrent Unit

INR Implicit Neural Representation

KKL Kazantzis-Kravaris/Luenberger

LES Large Eddies Simulation

LSTM Long-Short Term Memory

MLP Multi-Layer Perceptron

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PINN Physics-Informed Neural Network

RANS Reynolds-Averaged Navier-Stokes

RK Runge-Kutta

RL Reinforcement Learning

RNN Recurrent Neural Network

sim2real Simulation to Real

UAV Unmanned Aerial Vehicle

Throughout the manuscript, we used three symbols to indicate:
ß An example or a remark.

@ [Paper name] A work we want to highlight and explain in more detail.

gProof: A mathematical proof. ■

xvii

Chapter 1
Introduction

1.1 A New Hope: Data-driven models for physics and control

According to Ernest Rutherford, science is either physics or stamp collecting. This

provocative maxim (Rutherford won a Nobel prize in chemistry) emphasizes the

tremendously difficult purpose of physics: explaining the behavior of the world through

mathematics. Supported by centuries of research and discoveries, the field has achieved sig-

nificant successes, providing fundamental laws explaining most everyday phenomena. Today,

it ventures into exploring profound concepts such as the origin of the universe and the nature

of matter.

Physics plays a prominent role in many fields, aiding in developing tools to not only

understand but also interact with the world. By collaborating with control theory and math-

ematics, it provides methods to build controllers for regulating the temperature of supercom-

puters, design optimized airplane profiles, and accelerate vaccine discovery. Yet, as physicists

delve into more and more advanced problems, explicit approaches for physical modeling and

control start to hit their limitations. The trade-off between model precision and complexity

hinders engineers from effectively mastering new phenomena, such as plasma stabilization

in nuclear fusion, or meeting the growing expectations for fast and accurate fluid simula-

tions. Nowadays, engineers require new, sophisticated tools that overcome the limitations of

conventional physics and control methods.

In contrast, modern data-driven approaches, in particular neural networks, offer a fresh

perspective to automatically interpret physics by learning from large-scale datasets. They may

discover complex interactions neglected by handcrafted models, learn shortcuts to accelerate

computationally expensive simulations, or predict inputs to drive a system toward a chosen

configuration. However, deep learning is still in its early stages and has primarily focused

on tasks such as computer vision and natural language processing, which, although complex,

have different requirements from physics and control problems.

1

The Physics Menace: Limitations of physics for models and simulations Introduction

Thus, the situation is the following: on one side of the spectrum stand engineers and

physicists seeking new ways to interact with the world, while being limited by conventional

tools. On the other side, deep learning provides powerful tools to extract complex behavior

from large datasets, but it falls short of meeting industrial-grade requirements, such as long-

horizon accuracy in physics simulation and stability guarantees for controllers.

Our goal is to bridge the gap between both domains. We propose to draw inspiration

from physics and control tools to guide deep learning-based models toward more effectively

addressing physics-related problems. Throughout the manuscript, we distill insights from

control theory to enhance the ability of neural networks to tackle tasks related to dynamical

systems. Our goal is to explore the spectrum between traditional and data-driven methods

by introducing (a) new architectures of neural networks for physics simulation and control,

rooted in prior knowledge from both fields, and (b) large-scale datasets tailored for deep

learning of physics-oriented tasks that will benefit the community.

1.2 The Physics Menace: Limitations of physics for models and simulations

Physics has provided a comprehensive mathematical framework to describe the phenomena

surrounding us. Certainly, captivating research areas and recent discoveries persist within the

domain, e.g. quantum gravity or fundamental particles. Nonetheless, we currently possess a

rich set of physics equations at our disposal, empowering engineers to simulate the behavior

of the world. For instance:

ß Most of the components of a high-speed train (TGV) are derived from simulations: the

shape of the locomotive minimizes friction according to the Navier-Stokes equations, the

brakes efficiently cool down thanks to the heat equation, and the design of joints between

cars results of a simulation problem. The rail network is also guided by signals emitted as

waves, obeying the Maxwell equations.

Yet, despite our knowledge of natural processes, we are facing more and more challenges

in understanding increasingly complex physics systems. These difficulties mainly stem from

technical and/or human limitations, in particular when physics phenomena are beyond what

can reasonably be addressed with a human brain. Such situations may arise from three dif-

ferent sources:

1. Incomplete modeling of physics results from an oversimplification of the world. De-

signing a model requires neglecting or approximating certain phenomena, either because

they are too complex, or because we believe they are insignificant. This necessarily leads

to Simulation to Real (sim2real) gaps.

ß Modeling the dynamics of granular materials is extremely difficult due to the enor-

mous number of particles involved. Thus, computing analytic equations of the interac-

2

The Physics Menace: Limitations of physics for models and simulations Introduction

Figure 1.1: Sand simulations – are surprisingly difficult to model due to the enormous number of

interactions to account for when simulating the system (drawing from the New York Times, Randall

Munroe).

tions by hand is merely impossible, as we are limited by the complexity we can handle.

Behaviors may also be neglected voluntarily to simplify the model, e.g. most kinematic

models in robotics neglect plays in the joints.

2. Numerical errors and instabilities may appear when discretizing and numerically solv-

ing equations, and arise independently from the quality of the model. The transition

from a continuous equation to a discrete solution is not trivial: algorithms must be

carefully designed to maintain physical properties while preventing numerical instabili-

ties. Moreover, the success of a simulation heavily depends on the spatial and temporal

resolution to limit approximation errors.

ß Fluid mechanics is an infamous example of challenging simulations, due to the fail-

ure of simple numerical solvers to maintain mass conservation in the discrete solution.

More advanced numerical solvers with smaller discretization schemes are necessary to

obtain good results.

3. Computational limitations often impede accurate simulations due to the inherent com-

plexity and scale of the problem at hand. Even with an accurate model and a trustworthy

numerical solver, the computation power required to solve the task within an acceptable

delay may not always be available.

ß Model Predictive Control (MPC) is a popular control algorithm leveraging a dynamical

model to estimate optimal inputs for tracking a user-defined trajectory. However, it

involves a demanding non-convex optimization process, thus advocating for simple

models and fast algorithms for real-time and on-board implementation.

We illustrate some of these challenges in figure 1.2, where we conduct a simulation of

a 2D air flow onto a cone. We used the same spatial and temporal discretization scheme

for all simulations, yet with different physics models: from the simplest Reynolds-Averaged

Navier-Stokes (RANS) with Spalart–Allmaras equation for turbulence, to the most accurate

Large Eddies Simulation (LES). The precision of the simulations evolves with the accuracy of

3

Control Theory Strikes Back: Theoretical tools to interact with real world Introduction

La
rg

e
Ed

dy
Si

m
ul

at
io

n
(L

ES
)

D
et

ac
he

d
Ed

dy
Si

m
ul

at
io

n
(D

ES
)

R
A

N
S

+
k-

ϵ
R

A
N

S
+

Sp
al

ar
t–

A
llm

ar
as

Time
M

od
el

ac
cu

ra
cy

Figure 1.2: Qualitative comparison of turbulences models – in these 2D simulations, the air is ex-

pelled from a nozzle onto a cone at 10 m s−1. We used the same spatial and temporal discretization

but changed the turbulence model. The RANS equations are augmented with two different turbulence

models: Spalart-Allmaras (one equation) or k− ϵ (two equations) and produce relatively smooth air-

flows. In contrast, the more accurate LES model exhibits additional vortices and a significantly more

intricate flow. However, this result comes at the cost of increased computation time: the RANS simu-

lations were completed in approximately 30 minutes, whereas the LES on the same machine required

about one hour

the models. However, accuracy comes at the price of computation time: the LES experiment

required twice as much time as the one using RANS and Spalart-Allmaras.

Consequently, merely understanding the laws of physics is not enough to achieve accurate

simulations. Engineers must grapple with errors, approximations, and the risk of instabilities.

To be able to interact with the real world despite these limitations, control theory proposes to

leverage mathematical analysis of the behavior of physical systems to not only address model

uncertainties but also to encompass efficient command policies and measurement techniques.

1.3 Control Theory Strikes Back: Theoretical tools to interact with real world

If you had the chance to steer a modern commercial drone1, you probably noticed how pleas-

ant and simple they are to control for a beginner. Despite their amazing agility, drones remain

stable, even during windy flights. Commands are responsive, with a relatively small learn-

ing curve, and some drones encompass vision-based features, allowing you to keep objects in

sight while moving almost freely in the air.

All these features (and many others) are powered by control theory: a branch of engineer-

1otherwise, we highly recommend the experience.

4

Control Theory Strikes Back: Theoretical tools to interact with real world Introduction

Observation
Objective Controller

Real system

Model

Observer

input

prediction

observation

state estimate

Database of

observations

parameters

x

y
z

x

y
z

Figure 1.3: Block diagram from Control Theory – the controller computes the inputs for the real

system in order to track some user-defined reference signal. This is achieved by considering a state

estimate provided by an observer leveraging noisy observations as well as predictions from a model to

approximate the complete state of the system. The parameters of the model are given by a system

identification phase relying on a dataset of observations.

ing and mathematics dealing with the behavior of dynamical systems and aiming to regulate,

monitor, and optimize their performance. This discipline has been deeply ingrained in various

applications, from early cruise control systems in automobiles to sophisticated flight control

mechanisms in modern aircraft. In essence, control theory enables us to design systems that

can handle uncertainties and disturbances while operating efficiently and robustly. The area of

research is very rich and active but could be roughly clustered into three categories, pictured

in figure 1.3:

1. System identification/modeling consists of designing a (parametric) mathematical

model of the temporal evolution of the physical system, which usually takes the form of

an ordinary or partial differential equation. The model can be designed from physical

considerations, or be purely parametric (hence, neural networks). The system identifica-

tion step identifies the parameters of this model via a handful of measurements gathered

from the system.

2. Observers retrieve and track the complete state of a system from partial and/or noisy

measurements. Common techniques, such as Kalman filtering or the Luenberger ob-

server (Kalman, 1960; Luenberger, 1971) leverage a dynamical model (gathered from the

system identification step above) and fuse its prediction to the sensor outputs to achieve

real-time state reconstruction.

3. Controllers produce inputs to drive the system towards some reference signals or en-

sure stability. A good controller must be robust to different sources of uncertainties

(electronic, mechanical vibrations, etc.) and external perturbations (wind, etc.) while

guaranteeing the stability of the system.

Despite the strengths of control theory in dealing with uncertainties, its reliance on math-

ematical analysis limits its practical usage. Industrial implementations often resort to simple

linearized models and PID controllers instead of more advanced theoretical frameworks, lead-

5

Control Theory Strikes Back: Theoretical tools to interact with real world Introduction

ing to potential performance gains left untapped. On the other hand, simpler algorithms hin-

der the exploration of complex dynamical systems that require advanced tools. Consequently,

we face the following limitations:

• Handling complex physics: many control algorithms assume properties on the system

of interest, such as stationarity, time-invariance, or linearity of dynamics, but real-world

systems exhibit time-dependent and non-linear behaviors. Simple workarounds such

as linearization provide limited approximations and may be very sensible to external

perturbations.

ß The dynamics of chemical reactions can be highly non-linear and time-dependent

which greatly complicates the design of controllers. In practice, the behavior of the sys-

tem changes drastically with temperature and pressure, limiting the domain of validity

of a linearized model.

• Complex implementation: techniques addressing non-linear systems are complicated.

The implementation of sophisticated control algorithms often involves analytic design

and fine-tuning, which can be time-consuming and require expertise. The process may

also involve challenging mathematical derivations to achieve satisfactory performance,

especially for non-linear systems.

ß Designing a robust control system for a humanoid robot capable of walking and

navigating through different environments requires advanced control algorithms and

parameter tuning to ensure stability and adaptability. Boston Dynamics© robots are

good examples. They are driven by a distributed system, where each link is controlled

by its own specifically designed controller. The complete robot requires a tremendous

amount of work to design, implement, and tune each controller in order to plan its

behavior with this hierarchical control algorithm.

• High-Dimensional Data: traditional control methods are best suited for small-scale

systems with a limited number of variables. As the state-space dimensionality increases,

computational complexity grows accordingly, making traditional control less practical

for high-dimensional systems.

ß Nuclear fusion requires stabilizing plasma into a precise shape using powerful

magnetic fields which must be modulated dynamically. The physical state describ-

ing the system comprises parameters describing the plasma shape (in 3D) and physical

quantities characterizing each magnetic field generator. Up to now, stabilization is ap-

proached using dozens of PID controllers which struggle to maintain stability after a

couple of seconds.

Control theory has succeeded in overcoming the weaknesses of physics modeling, thus

enabling interaction with the world, and is widely used in industrial applications. However,

6

The Return of Deep Learning: Hybrid approach to physics problems Introduction

the increasing complexity of engineering tasks highlights the limitations of analytical methods,

which motivates the use of data-driven techniques.

1.4 The Return of Deep Learning: Hybrid approach to physics problems

We have drawn an alarming picture so far: on one hand, physics simulations suffer from poor

scalability to large-scale problems and struggle to retrieve physics laws in complex phenom-

ena. In practice, the use of simulation is limited by computation time, while accuracy relies

on our capacity to manually derive an accurate model of the system. On the other hand, the

usability of control theory is limited due to mathematical obstacles and thus falls short of

addressing new challenges.

The interest of these communities in the promises of deep learning is thus reasonable:

neural networks offer impressive performance, competitive computation time, and the ability

to extract reasoning patterns from data. Deep learning, control, and physics already met at the

end of the 20th century, and many recent works find inspiration from older research dating

from this period of limited computational power. This regain of interest may be explained by

the shift of focus enabled by modern deep learning techniques. Eventually, the limitations of

physics and control mentioned above derive from the same constraint:

For advanced problems, there are physical quantities, mathematical objects, and theoretical elements

that we do not want to compute nor model by hand.

By focusing on data collection rather than complex modeling, data-driven methods shift

the burden from manual derivation of tedious mathematical formulas toward large-scale data

collection and let the algorithm extract necessary information on its own by detecting and

exploiting regularities in the data. This approach is particularly beneficial when dealing with

high-dimensional data or complex interactions. Neural networks, being numerically efficient,

can also provide faster solutions compared to conventional methods.

However the interplay is reciprocal, and deep learning-based models have their weak-

nesses. They are known to generalize poorly to out-of-distribution inputs and are vulnerable

to perturbations. Even within the training distribution, neural networks can occasionally

exhibit singularities for specific inputs, and lead to erroneous predictions. Moreover, the com-

munity lacks theoretical results on confidence bounds. When used as auto-regressive models

(e.g. to iteratively forecast the temporal evolution of a system), neural networks suffer from er-

ror accumulation and occasional instabilities, causing prediction errors to explode for certain

inputs. We believe that, by incorporating principles from physics and control and leveraging

structured reasoning and comprehensive analysis of dynamical systems, we can enhance the

robustness, reliability, and performance of our deep learning-based models.

The cooperation between the fields of control, physics, and deep learning offers incredible

7

Attack of the Ph.D.: organization of the manuscript Introduction

potential to address the complex challenges that engineers and researchers face today. Apart

from the purely scientific interest of this field of research, it also benefits from strong inter-

ests from industry, which is already working on hybrid models for simulation, control, and

observation of physical systems.

1.5 Attack of the Ph.D.: organization of the manuscript

Our work is driven by the Ansatz that merging deep learning with control theory and physics

will lead to discoveries and improvements for each field. This combination presents excit-

ing opportunities but also requires to clearly define the expectations and objectives for each

project.

After a review of the state-of-the-art in Part I, we explore technically simpler yet fun-

damental questions in the realm of control theory. Part II of the manuscript discusses the

properties that a data-driven model must possess to accurately simulate dynamical systems

from a fundamental perspective. This part of our work addresses issues related to control

theory and is thus focused on providing provably good performance or properties.

Related papers:

▶ Learning Reduced Nonlinear State-Space Models: an Output-Error Based Canonical Ap-

proach. Steeven Janny, Quentin Possamaï, Laurent Bako, Madiha Nadri, Christian Wolf.

(2022). In IEEE Conference on Decision and Control (CDC).

▶ Deep KKL: Data-Driven Output Prediction for Non-Linear Systems. Steeven Janny, Vin-

cent Andrieu, Madiha Nadri, Christian Wolf, (2021). In IEEE Conference on Decision and

Control (CDC).

In part III, we shift towards practical applications for physical simulation. Our focus is on

resolving differential equations in a continuous manner, a requirement arising in many situ-

ations. In particular, we present a new hybrid control algorithm relying on deep learning for

solving a very complex partial differential equation problem. We then expand our work to the

general case of solving physics problems in a continuous manner using discrete observations.

Related papers:

▶ Deep Learning-Based Output Tracking via Regulation and Contraction Theory. Samuele

Zoboli2, Steeven Janny2, Mattia Giaccagli2. (2023).In International Federation of Automatic

Control (IFAC) World Congress

▶ Everything, Everywhere, All at Once: Continuous Solutions to PDEs from Sparse Ob-

servations. Steeven Janny, Julie Digne, Madiha Nadri, Christian Wolf. (2023). Under

review

Finally, by focusing on the deep learning community, we identified a lack of large-scale

2equal contribution

8

Attack of the Ph.D.: organization of the manuscript Introduction

Control Deep Learning

Physics

Deep KKL: Data-driven Output Pre-
diction for Non-Linear Systems

Conference on Decision and Control (CDC) 2021

Deep learning-based output tracking
via regulation and contraction theory

International Federation of Automatic Control (WC) 2023

Learning Reduced Nonlinear State-Space Mod-
els: an Output-Error Based Canonical Approach

Conference on Decision and Control (CDC) 2022

Filtered-CoPhy: Unsupervised Learning
of Counterfactual Physics in Pixel Space

International Conf. on Learning Representation (oral) 2022

Eagle: Large-scale Learning of Turbulent
Fluid Dynamics with Mesh Transformers

International Conf. on Learning Representation (poster) 2023

Everything, Everywhere, All at Once: Continuous
Solutions to PDEs from Sparse Observations

Under review at Neural Information Processing Systems 2023

Figure 1.4: Overviews of publications during the Ph.D. – our work lies at the frontier of three research

fields: physics, control theory, and deep learning. During this thesis, we have explored the spectrum

of transversal approaches between domains, on one hand by bringing deep learning techniques to the

automatic control community, and on the other hand by addressing physics simulation challenges via

large-scale neural networks.

datasets and high-capacity models for simulating physical phenomena. To address this gap,

we introduced a new fluid mechanics dataset and a novel, faster simulation structure. Addi-

tionally, we explored the concept of causality, crucial in physics, and introduced a new task,

benchmark, and model for learning counterfactual physics. These contributions are presented

in Part IV.

Related papers:

▶ Eagle: Large-Scale Learning of Turbulent Fluid Dynamics with Mesh Transformers.

Steeven Janny, Aurélien Bénéteau, Madiha Nadri, Nicolas Thome, Julie Digne, Christian

Wolf. (2023). In International Conference on Learning Representation (ICLR), Poster.

▶ Filtered-CoPhy: Unsupervised Learning of Counterfactual Physics in Pixel Space. Steeven

Janny, Fabien Baradel, Natalia Neverova, Madiha Nadri, Greg Mori, Christian Wolf.

(2022). In International Conference on Learning Representation (ICLR), Oral.

Across our work, we covered a wide spectrum of the field, collaborating with many fel-

low researchers coming from different fields. Consequently, researchers in deep learning

might find the task addressed in the first parts of the manuscript relatively accessible, yet the

automatic control community will be interested in the theoretical foundations required for

integrating our models into their applications. As we progress, the tasks we tackle become

more and more intricate and require high-capacity models trained on large-scale settings.

These tools exhibit greater computational power, albeit at the expense of reduced analytical

tractability. However, they enable us to achieve performance difficult to match with conven-

tional approaches.

9

Part I

State of the art

10

General remarks

During the 1,074 days since the start of this PhD, the arXiv platform received 1,312 AI-

related3 submissions mentioning “physics” in the title, 1,014 mentioning “simulation”,

and 343 mentioning “dynamical systems” (with potential overlaps). To be more representative,

one might also take into account submissions from physics mentioning AI (“deep learning”:

1,249, “neural network”: 2,187). The domain holds an exponentially growing amount of work

that needs to be classified and clusterized for these bibliographic chapters. To address this

task, we propose to distinguish two categories:

Chapter 2 : Neural networks for system identification

TLDR; This chapter discusses the identification of dynamical system using data-driven

approaches. In particular, we focus on identifying general-purpose dynamical

models that can be used for any downstream task, such as simulation or control.

After a short introduction to dynamical systems, we present different techniques

to (1) enforce properties to the learned dynamics, (2) train continuous dynamical

models, (3) embed inductive priors, and (4) retrieve analytic equations using

data.

Chapter 3 : Deep Learning for intuitive physics

TLDR; This chapter focuses on goal-oriented methods addressing intuitive physics with

an emphasis on simulation tasks. Conversely to the previous chapter, we relax

the requirement for an explicit dynamical model, which can simply be entangled

in the neural network. These methods are less restricted in their design, and

are tailored to achieve good performance on a given task. We discuss hybrid

techniques for learning intuitive physics with different approaches depending

on the type and amount of prior knowledge available for training.

3in cs.AI, cs.CV, cs.LG and cs.NE

11

Chapter 2
Neural networks for system identification

2.1 The Lord of the Physics: an introduction to dynamical systems

2.1.1 State-space representation

We shall start this chapter following the tradition of research papers in control theory,

and without further ado, consider a non-linear dynamical system of the form

ṡ(t) = f
(
s(t)

)
, ∀t ∈ R+. (2-1)

This equation is called the state-space representation and models the dynamics of a physical

system. It takes the form of an Ordinary Differential Equation (ODE) over a state variable

s(t) ∈ Rn depending on time t. To understand why ODEs appear in most physical systems,

one might think about the conservation principle. Every closed system must admit physical

quantities that remain constant, regardless of the transformations it undergoes. These con-

servation laws are central in physics, and state that energy, momentum, or charge (as well as

exotic quantities from quantum mechanics) cannot vary in time. The evolution of a physical

system can be described by studying the flow of these quantities as they transform from one

form to another. An ODE fulfills this purpose by expressing the time derivative of the state ṡ

as the results of flows encapsulated in the dynamic function, or simply dynamics, f .

Solving equation (2-1) forward in time from the initial condition s(t=0) provides the

temporal behavior of the system, also called trajectory s(t), t ⩾ 0. Of course, the more complex

the system, the more challenging it is to solve the ODE.

ß In best-case scenarios, the dynamics is linear, i.e. ṡ = As where A is a constant matrix.

Then the general solution of the ODE is

s(t) = s(t=0)eAt. (2-2)

This solution exhibits different behaviors according to the eigenvalues of A. If all eigenvalues

13

The Lord of the Physics: an introduction to dynamical systems Neural networks for system identification

Q
c (t)

T
h
(t)

T
v
(t
)

(a)

Q
c(t
)

Q
c
(0)

Q
c
(0)

(b)

Figure 2.1: Lorenz Attractor – (a) Behavior of a simulated trajectory using the Lorenz system for

climate (σ=10, ρ=28, β=8/3) in the phase plane. The trajectory exhibits a "strange attractor" behavior,

resembling the shape of a butterfly. It oscillates between two equilibrium points, creating an intricate

pattern. (b) Evolution of the Qc variable from two initial conditions very close to each other. As time

increases, the trajectories start diverging, showcasing the chaotic behavior.

have negative real parts, the exponential converges to a constant (zero if real parts are strictly

negative) as time increases, and the system is said to be stable. The smaller the eigenvalues,

the faster the system converges. Conversely, if at least one eigenvalue has a positive real

part, the exponential diverges towards infinity, and the system is unstable.

The linear form is convenient for analysis, but very rare in nature. Most systems require

non-linear dynamics to truly represent the real world, such as saturation, hysteresis, or dead

zone. This makes studying stability much more challenging. Consequently, many industrial

applications linearize the dynamics near a setpoint s∗ by defining the matrix of the dynamics

as the jacobian of f at this point. However, the linearized dynamics is, by construction, only

accurate in a small region near s∗.

ß The Lorenz dynamics (Lorenz, 1963) is a good example of a seemingly simple system yet

very challenging to work with. It was introduced by Edward Lorenz as a simplified model

of the climate and involves three state variables

Q̇c(t) = σ
(
Th(t)−Qc(t)

)
,

Ṫh(t) = ρQc(t)− Th(t)−Qc(t)Tv(t),

Ṫv(t) = Qc(t)Th(t)− βTv(t),

(2-3)

with σ, ρ, β ∈ R are positive parameters and s =
(

Qc Th Tv

)⊤
is the state variable (Qc:

rate of convection, Th: horizontal temperature and Tv: vertical temperature). This system

is famous for its chaotic nature (see figure 2.1), characterized by its sensibility to initial

conditions (the so-called butterfly effect). Interestingly, the trajectories of this system exhibit a

strange attractor resembling a butterfly.

A physical system may also accept an external signal called the control input u(t). In

14

The Lord of the Physics: an introduction to dynamical systems Neural networks for system identification

that case, the system is said to be non-autonomous and the command appears as input in the

dynamics f (s, u). This signal is used to steer the system toward a wanted behavior, such as

stabilization, reference tracking, regulation, etc. However, the inputs may be restricted on

magnitude, or may not act on all state variables, making some states unreachable (referred as

the reachability property). In that case, the system is said to be non controllable.

Finally, we usually do not have access to the complete state s(t) but rather to some indirect

measurements y(t) obtained from sensors that may or may not be directly related to the state.

This is modeled using a second equation added to the dynamical model{
ṡ(t) = f

(
s(t), u(t)

)
,

y(t) = h
(
s(t)

)
.

(2-4)

The relation between the state and the observed variable is modeled by the observation function

h. These observations can vary from simple quantities such as position/velocity measure-

ments, voltages, and temperatures, to more intricate data. For instance, images from a camera

often hold a lot of may information to reconstruct the state, but are difficult to exploit, as this

information is entangled in the pixels. In that case, since the complete state is not directly

measured, we leverage an observer algorithm to estimate the state from the observations. The

Kalman filter is a popular example of observer.

ß The Luenberger observer (Luenberger, 1964) operates on linear systems ṡ = As + Bu with

linear observation y = Cs. It copies the dynamics of the true system and adds a correction

term related to the observation{
˙̂s = Aŝ + Bu + L(y− ŷ),

ŷ = Cŝ.
(2-5)

The constant matrix L is chosen so that the error e = s− ŝ converges to zero, which can be

achieved by setting L to stabilize the dynamics of ė = (A− LC)e, i.e. A− LC Hurwitz.

For a comprehensive review on observer design, see Bernard et al. (2022). However, the physi-

cal state may not be always retrievable from an observation. It may require a temporal window

of measurements (estimating velocities from images), or be simply impossible, (estimating the

torque of a motor from the voltage). In that case, we say that the system is not observable.

Ordinary differential equations are suitable for modeling physical quantities that depend

on a single variable, typically time. However, they have limitations when it comes to capturing

the behavior of fields or distributed systems that involve multiple dimensions. To address this,

we turn to Partial Differential Equations (PDEs). In general, a PDE is formulated as

ṡ(x, t) = f (s, u, t, x,∇s, ...,∇(n)s). (2-6)

Here, the equation involves a vector field s(x, t) depending on a time variable t and a spatial

variable x. The dynamic of the system is not only dependent on the state s but also on its

15

The Lord of the Physics: an introduction to dynamical systems Neural networks for system identification

partial derivatives with respect to x, denoted by the spatial gradient operator ∇s|ij = ∂si
∂xj

where si is the ith component of s and xj is the jth spatial coordinate. Note that one can cast a

PDE problem into an ODE by introducing an extended state s =
[
s(x1)

⊤ s(x2)⊤ . . .
]⊤

built

from a set of discrete evaluation points {x1, x2, . . .}.

2.1.2 Contribution of data-driven approaches

The state-space representation (equation (2-4)) is a very common and general framework and

many algorithms for simulation and control are described within this setup. In this chapter,

we focus on data-driven approaches for building and identifying parametric models of the

dynamics. Specialized models (e.g. for simulation) will be discussed in the next chapter.

The conventional way of building a dynamical model relies on ab initio principles. In that

case, interactions within the system are modeled from the fundamental laws of physics and

involve parameters, such as diffusion coefficients, lengths, constants for motor power, etc. This

identification step typically uses a dataset of N measured trajectories with the corresponding

inputs D =
{
(yn[k], un[k] | n ∈ J1, NK

}
sampled at K discrete time instants t1, t2, · · · , tK. For

an ab initio model, identification consists in solving an optimization problem, minimizing the

distance between the ground truth observations and the predictions from the model.

During the early ages of machine learning for system identification, trajectories were ap-

proached as discrete time series. The simplest data-driven methods is the Auto-Regressive model

with eXternal inputs (ARX) and takes the form of a linear equation with two matrix parameters

(A, B):

y[k] = A
[
y[k−1]⊤ y[k−2]⊤ · · · y[k−ℓ]⊤

]⊤
+ B

[
u[k]⊤ u[k−1]⊤ · · · u[k−ℓ+1]⊤

]⊤
,

(2-7)

with y[k] = y(tk). ARX depends on a hyper-parameter ℓ corresponding to the temporal ob-

servation horizon. This model is very simple, but also very versatile and easy to identify by

solving a least mean square problem. Note that ARX only involves observations and com-

mands, hence the notion of state is not explicitly used. The temporal evolution is assumed to

be causal, but non-markovian. The linear equation might be replaced by a non-linear para-

metric function for better performances (so-called Non-linear ARX models), yet at the cost of

a more complicated identification step. For instance, Multi-Layer Perceptrons (MLPs) trained

with gradient descent are a possibility. Finding the appropriate horizon can be related to finite-

time observability properties, which corresponds to the smallest number of past observations

required to reconstruct the state.

The notion of state is introduced with Recurrent Neural Networks (RNNs) (Rumelhart

et al., 1985), where the state variable usually corresponds to as a hidden memory vector z.

The discrete dynamical equation leverages two weight matrices Wz, Wv and one bias vector b

z[k + 1] = tanh
(
Wzz[k] + Wvv[k] + b

)
(2-8)

16

The Lord of the Physics: an introduction to dynamical systems Neural networks for system identification

Historically, this model was designed for sequential aggregation of time series into a single

vector. The hidden memory is initialized to an arbitrary value (typically zero) and is updated

step-by-step using the input sequence
{

v[0], v[1], ...
}

. RNNs can be stacked into layers by

connecting the hidden memory to the input of the next unit. Yet, it is known for suffering from

vanishing gradients for long sequences, hence recent applications leverage more advanced

designs such as Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and

Gated Recurrent Unit (GRU) (Cho et al., 2014).

The RNN shares many similarities with the state-space representation of dynamical sys-

tems. Indeed, equation (2-8) can be seen as:

• A non-autonomous dynamical system in discrete time, with z[k] being the state variable

and v[k] being the input control. In that case, the RNN can be used auto-regressively

to forecast a trajectory of the memory vector. One might retrieve the observation with

another projection network, such as an MLP.

• The observer of an autonomous dynamical system where the observation is the input

of the RNN v[k] = y[k] and the state estimate is z[k]. In that case, the RNN resembles

the Luenburger observer (equation (2-5)), if we omit the hyperbolic tangent. The term

Wvv[k] can be seen as a correction term for the dynamics z[k+1] = tanh
(
Wzz[k] + b

)
.

The relation between dynamical systems and recurrent neural networks has been studied

since the early stages of deep learning (Funahashi and Nakamura, 1993; Draye et al., 1996)

but also more recently (Chang et al., 2019a) for identification purposes (Wang and Chen, 2006;

Schmidt et al., 2020) of potentially partially observed systems (Bhat and Munch, 2022) or

control (Fang and Chow, 2005; Pan and Wang, 2011; Chow and Fang, 1998).

2.1.3 Latent Dynamics

Recurrent neural networks rely on the idea that there exists a latent space, generally of higher

dimension than the observation, in which the dynamics becomes markovian. However, RNNs

are arguably a rigid framework that might not be suited for all usage (Janny et al., 2021; Bein-

tema et al., 2021). Thus a large body of work proposes more flexible structures to incorporate

prior knowledge or enforce some properties. We can derive these models from a general

framework which we refer to as latent dynamics (see figure 2.2)

s[k] = eθ

(
y[k], · · · , y[k−ℓ], u[k], ..., u[k−1], · · · , u[k−ℓ+1]

)
, (2-9)

s[k+1] = fθ

(
s[k], u[k]

)
,

y[k] = hθ

(
s[k]
)
.

(2-10)

where eθ , fθ and hθ are arbitrary functions with parameters θ. This framework can be inter-

preted in two different ways:

17

The Lord of the Physics: an introduction to dynamical systems Neural networks for system identification


u[k−1]

u[k−2]
...

u[k−h+1]

 ,


y[k]

y[k−1]
...

y[k−h]

 eθ fθ

u[k]

hθ ŷ[k+1]
s[k] s[k+1]

Past

Observations
Latent Dynamics

Future

Observations

Figure 2.2: Latent Dynamics – is widely employed in system identification and encompasses a diverse

set of neural network architectures. These models emulate the standard structure of a state-space

model, where the system is observed solely through a measurement variable y. To capture information

from past observations, an encoder is employed to transform the input into a latent state vector s,

which exhibits flexible dynamics within the latent space. Subsequently, this latent state can be decoded

back into the observation space using the observation function.

1. From a deep learning point of view, the couple of functions (eθ , hθ) can be seen as an

auto-encoder (more precisely, a trans-coder) where s is the latent representation. The

internal function fθ is an auto-regressive model updating the latent state representation.

2. From a control theory point of view, equation (2-9) is a state observer using a finite

horizon of previous observations to retrieve the state representation in latent space. The

rest of the framework is directly a state-space model with its observation function.

Note that for a RNN in observer mode (inputs are the observation), the equation (2-9) involv-

ing the state observer is not used since the latent memory is initialized at zero. The dynamics

of the RNN must converge to the correct state using solely the window of observation. The

success of this setup is tied to the contraction property, which will be discussed in Chapter 5.

@ Deep state-space models Modeling a dynamics in a learned latent space is a very common

practice in system identification. This approach has become ubiquitous in large-scale learn-

ing and the control community has built on this setup, leading to numerous variations of the

same framework (Masti and Bemporad, 2018; Beintema et al., 2021; Rangapuram et al., 2018;

Beintema et al., 2021; Gedon et al., 2021; Klushyn et al., 2021; Zhao et al., 2022).

Most general implementations model the encoder either with MLPs (for 1D observations),

or with Convolutional Neural Networks (CNNs) (for 2D). One might also leverage conven-

tional state observers (Forgione et al., 2022), such as a Kalman filter (Ruchti et al., 1993; Revach

et al., 2022). The dynamics and observation function fθ , hθ (equation (2-10)) can also be mod-

eled with MLPs, or any relevant structure for enforcing some properties or incorporate prior

knowledge. We will present different examples in section 2.3.

The set of parameter θ can be identified from the dataset D of discrete trajectories and

inputs by optimizing different losses corresponding to the desired behavior of the system. For

simplicity, let x[i|j] =
[

x[i]⊤ · · · x[j]⊤
]⊤

for all i < j and | · | an adequate norm. The most

18

One Training Method to Rule Them All Neural networks for system identification

frequent training objectives are

• The trans-coding loss focuses on the behavior of eθ and hθ . This term encourages the

model to maintain consistency in the latent space:

Ltranscode = ∑
y,u∈Dd

K

∑
k=0

∣∣∣∣y[k]− hθ

(
eθ

(
y[k|k−h], u[k−1|k−h+1]︸ ︷︷ ︸

s[k]

))∣∣∣∣. (2-11)

• The observation forecasting loss supervises the model end-to-end by computing the

error between the next observation in time and the prediction from the model. The loss

below is limited to a single prediction step but might be extended to longer trajectories,

as this tends to improve the robustness of the model against error accumulation.

Lforecasts = ∑
y,u∈Dd

K

∑
k=0

∣∣∣∣y[k + 1]− hθ ◦

s[k+1]︷ ︸︸ ︷
fθ

(
eθ

(
y[k|k−h], u[k−1|k−h+1]

)︸ ︷︷ ︸
s[k]

, u[k]
)∣∣∣∣, (2-12)

where hθ ◦ fθ(·) = hθ

(
fθ(·)

)
.

• The dynamics loss ensures that the forecasted states in the latent space correspond to

the state estimates from the encoder. The functions eθ and fθ are highly related, in the

sense that the encoder corresponds to a state observer for the learned dynamics. This

loss adds supervision over this relationship.

Ldynamics = ∑
y,u∈Dd

K

∑
k=0

∣∣∣∣
s[k+1]︷ ︸︸ ︷

eθ

(
y[k+1|k−h+1], u[k|k−h]

)
− fθ

(
eθ

(
y[k|k−h], u[k−1|k−h+1]

)︸ ︷︷ ︸
s[k]

, u[k]
)∣∣∣∣. (2-13)

For an in-depth presentation, see for instance Masti and Bemporad (2018); Beintema et al.

(2023). These losses can be combined with different weights and minimized using gradient

descent. Other terms may appear to regularize different aspects of the dynamics. The latent

dynamics framework is flexible and can be tailored to various problems. For instance, dynam-

ics modeling in video analysis can leverage CNN-based functions fθ (Beintema et al., 2021),

while graph neural networks can be employed for tackling particle physics (Sanchez-Gonzalez

et al., 2020). The adaptability of this approach enables its application to diverse domains and

problem settings.

2.2 One Training Method to Rule Them All

2.2.1 Solvers for ODE-based problems

So far we have described data-driven methods for identifying discrete-time systems. In that

case, the practical implementation of the dynamics and the training criterion are easier and

19

One Training Method to Rule Them All Neural networks for system identification

5 0 5
Input/Hidden/Output

0

1

2

3

4

5
De

pt
h

(a)

5 0 5
Input/Hidden/Output

0

1

2

3

4

5

De
pt

h

(b) (c)

Figure 2.3: Neural ODE – (a) Residual neural networks can be seen as the flow of a time-continuous

ODE evaluated at fixed points in time (black dots), (b) Neural ODE, using a different numerical solver,

enables querying the dynamics at intermediate points, leading to improved flow estimation. (c) Fore-

casted trajectory of a damped pendulum using RNN and Neural ODE. Both models are trained from

non-uniformly sampled noisy state observations. Neural ODE produces smoother results and better

time extrapolation (figures from Chen et al. (2018)).

can be derived readily from the equations. However, there are many advantages to targeting

continuous-time dynamics. At first glance, nature appears to be continuous (omitting quan-

tum mechanics) and most of the laws of physics are described in continuous time. Moreover,

a larger set of the bibliography in control theory and physics is dedicated to continuous time

systems rather than discrete time. Hence, more algorithms and methods are available.

However, training a neural network to model a continuous-time state-space representa-

tion is not straightforward. It raises two important questions: (1) how can we implement a

continuous model numerically? and (2) how can we train it from a discrete set of observa-

tions D? A possibility is to draw inspiration from discretization schemes for ODEs. The most

popular method is the first-order Runge-Kutta (Euler) method (Euler, 1824)

s(t+δ) = s(t) + δ
∂s
∂t

+ O(δ2) ≈ s(t) + δ fθ(s, u, t), (2-14)

where δ is a small time step. Numerically solving ODEs is not trivial: non-linearities, stiffness,

and chaotic behaviors can lead to poor numerical stability and divergence of the simulation.

Higher-order methods (Runge, 1895; Kutta, 1901) offer improved accuracy and stability com-

pared to the simple Euler method, still suffer from numerical issues when dealing with stiff

systems, requiring adaptive step sizes and implicit solvers (Hairer et al., 1993).

Interestingly, the formula (2-14) resembles residual layers in deep learning, as seen in

models developed for computer vision (ResNet (He et al., 2016)), where the input zℓ of a layer

ℓ is connected to its output gθ(zℓ), such that

zℓ+1 = zℓ + gθ(zℓ). (2-15)

20

One Training Method to Rule Them All Neural networks for system identification

@ Neural Ordinary Differential Equations In Chen et al. (2018), the authors acknowledge the

similarity between a residual layer and the explicit Euler discretization scheme. They pro-

pose using a more powerful algorithm, introducing the concept of neural ordinary differential

equations (see Figure 2.3). The purpose of this model goes beyond dynamical systems and

can be used for various tasks, including classification. The model assumes that the latent

state follows an ODE. The output of a Neural-ODE, given initial and final instants t0 and t1,

is expressed as

z(t1) = ODESolve(z0, gθ , t0, t1), (2-16)

where ODESolve refers to any numerical solver, such as a higher-order Runge-Kutta (RK)

method (pioneered in Wang and Lin (1998)), and gθ is a neural network. However, this

method can be computationally demanding, particularly for high-resolution, as it requires

back-propagating gradients through the ODE solver. To address this, the authors employ the

adjoint sensitivity method (Pontryagin, 1987), to reduce computational complexity. The ad-

joint method efficiently computes gradients by combining the original ODE with an adjoint

ODE, which can then be solved using the same solver.

Neural-ODE has paved the way to various follow-up work, leveraging this insight from two

different angles:

• Dynamical system perspectives of deep learning: Neural-ODE casts residual neural

networks into a continuous process, each layer being an iteration of an ODE solver.

By reducing the time step, we can artificially increase the number of layers, yielding

neural networks with theoretically infinite number of layers. It opens the door for using

tools from control theory to study neural networks (Rodriguez et al., 2022; Chang et al.,

2019a; Haber and Ruthotto, 2017).

• Deep learning applied to dynamical systems: Neural-ODEs can also be embedded

into the latent dynamics setup. It allows modeling the continuous dynamics f with

a neural network in a latent space, which is discovered during training. The dynamics

is trained end-to-end from a discrete set of measures D while keeping the advantages

of continuous formulation and explicit solvers. It also facilitates the incorporation of

prior knowledge from physics (see next section). For instance, Neural-ODEs can be

enhanced to handle second-order dynamics (Dupont et al., 2019; Norcliffe et al., 2020),

stiff dynamics (e.g. bouncing objects (Jia and Benson, 2019; Chen et al., 2020; Poli et al.,

2021)) or graph-related problems (Chamberlain et al., 2021; Poli et al., 2019).

In what follows, we are interested in the second interpretation. We can leverage Neural-

ODE as a drop-in replacement for the discrete dynamical system in the latent dynamics (equa-

tion (2-9) and (2-10)) such that the dynamics fθ is explicitly modeled in continuous time. In

practice, we use an ODE solver to compute trajectories at discrete time steps.

21

One Training Method to Rule Them All Neural networks for system identification

2.2.2 Solvers for PDE-based problems

Handling continuous dynamics for PDEs is an even greater challenge compared to ODEs, as

it involves discretizing multiple variables. To derive a training technique, we can once again

look at conventional discretization schemes and embed our dynamical model into it.

The simplest scheme for solving PDEs uses a uniform grid to divide the spatial domain

into a tiled arrangement of points. The finer the spacing between points, the more accurate

the model becomes. Yet, this method, known as the finite difference method and inspired by

the Euler method for ODEs, is limited to simple geometries with low curvature. Indeed,

maintaining uniformity across the entire domain constrains resolution, with direct impacts

on the computation time: if a specific region requires a finer mesh, it impacts the entire

simulation, and substantially increases the number of points to process.

To tackle these challenges, non-uniform grids offer greater flexibility. Two popular meth-

ods are the Finite Element Methods (FEMs) and the Finite Volume Methods (FVMs) which

allow for local mesh refinement to improve accuracy near critical areas while reducing com-

putational cost elsewhere.

• FEM discretizes the domain into a mesh of elements, such as triangles or quadrilater-

als in 2D and tetrahedra or hexahedra in 3D. The trajectory is approximated by basis

functions defined on these elements, minimizing the residual of the PDE.

• FVM divides the domain into control volumes, often based on the dual mesh of the FEM

mesh. The method approximates the PDE by integrating the equation over each control

volume and leveraging the divergence theorem to establish relationships between solu-

tion values at control volume faces. FVM finds extensive applications in fluid dynamics

and heat transfer problems.

These techniques are significantly more advanced than the one used for ODEs. To this

day, most of system identification techniques based on deep learning for PDEs still rely on

discrete setup. Yet, recent work attempts to leverage these algorithms to learn continuous

dynamics, following the insights from Neural-ODE.

@ Finite Element Networks Let us consider the FEM and consider a discretization of the

spatial domain X = (x1, x2, ...). The method proceeds by decomposing the solution on a

basis of local functions ϕj such that ϕj(xi)=1 if i=j and zero otherwise. The discrete solution

on X depends on coefficients cj(t) such that

s(xi, t) = ∑
j

cj(t)ϕj(xi). (2-17)

The Galerkin method (Galerkin, 1915) seeks a solution making the residual R(s) = ṡ −
f (s, t, x,∇s, · · ·) orthogonal to the space spanned by the basis functions, i.e. ⟨R(s), ϕi⟩ = 0

22

The Fellowship of the Dynamical Systems Neural networks for system identification

x1 x2 x3 x4 x5 x6Space x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

s(
t,

x)
Finite Element Approximation of initial condition s(t0, x)

s(t0, x)
c3(t)φ3(x)

s̃
ci(t)

(a)

Space x

x1 x2 x3 x4 x5 x6

tim
e

t

t1

t2

t3

t4

t5

t6

t7

t8

s(
t,

x)

1

0

1

Solution s(x, t) through time and coefficient c3(t)

s(t0, x)
s(ti, x)
c3(t)

(b)

Figure 2.4: Finite Elements Networks – (a) the solution s(t, x) of a PDE can be decomposed at discrete

points in space x1, x2, ... on basis functions ϕi linear by part, weighted by some coefficients ci. (b) The

Galerkin method consists of solving an ODE in the coefficients ci(t) (figure adapted from Lienen and

Günnemann (2022)).

for all i. This gives a condition on the coefficients ci(t) which takes the form of an ODE and

thus can be addressed using Neural-ODE (See figure 2.4 for an overview). Finite Element

Networks (Lienen and Günnemann, 2022) draw inspiration from these concepts and locally

model the dynamics f using a neural network. This approach harnesses the inductive biases

from FEM, enhancing the performance of learning-based physics simulators. In a similar

vein, a related derivation based on the FVM can be found in Karlbauer et al. (2022).

2.3 The Fellowship of the Dynamical Systems

By associating the latent dynamics model with a Neural-ODE-like training method, we are

now ready to learn a dynamical model from the observed trajectories from the dataset D. In

a sense, this setup already embeds prior knowledge, by modeling the dynamics in a higher

dimensional space as a differential equation. Yet, it may be beneficial to incorporate additional

information on the system of interest. In this section, we discuss different types of structures

that can be used to model the dynamics fθ , taking into account the type of problem we are

addressing and the requirements we would like to satisfy.

2.3.1 Structured linear dynamical systems

Linear models are a very convenient structure since studying linear systems is considerably

simpler. Their analytical solution is known, stability can be assessed by examining the eigen-

values of the matrix operator, and properties such as observability and controllability can

be determined through relatively straightforward linear algebra. Moreover, many controllers

and observers can be readily implemented, and simulation can be achieved efficiently. Such

models can be identified with latent dynamics involving three matrices A, B and C to model

23

The Fellowship of the Dynamical Systems Neural networks for system identification

the dynamics, without constraints on the encoder{
ṡ = fθ(s, u) = As + Bu,

y = hθ(s) = Cs.
(2-18)

Note that we are using a continuous time setup here, which can be embedded into a Neural-

ODE, or replaced by discrete-time dynamics. This setup has been explored for instance in

Masti and Bemporad (2018), which leverages a linear time-variant model, where the parame-

ters A, B and C depend on time and are computed via a dedicated MLP.

However, one might be concerned by the existence of a suitable latent space where the

dynamic of the studied system can indeed be linear. Koopman theory provides insights into

this matter.

ß Consider an autonomous discrete dynamical system (i.e. without external inputs)

s[k+1] = f
(
s[k]
)

where s ∈ Rn. In an infinite-dimensional Hilbert space, there exist ob-

servable functions g : Rn → R for which the Koopman operator K advances the function in

time, i.e.

Kg = g ◦ f ⇔ Kg
(
s[k]
)
= g

(
s[k+1]

)
. (2-19)

The Koopman operator reveals the existence of a universal linear embedding space for non-

linear systems. However, linearity comes at the cost of infinite dimensionality. Theoretical

studies on the Koopman operator can be found in Mezić and Banaszuk (2004); Mezić (2005);

Budišić et al. (2012). This framework paves the way for exploring linear dynamics in learned

latent spaces discovered from data. Indeed, the linearity of the Koopman operator yields the

existence of eigenfunctions, which corresponds to an infinite set of measurement functions

evolving linearly in time such that

φ
(
s[k+1]

)
= Kφ

(
s[k]
)
= λφ

(
s[k]
)
. (2-20)

Hence, Koopman theory states the existence of a infinite-dimensional state-space z[k] =

φ
(
s[k]
)

in which the dynamics is linear, i.e. z[k+1] = Kz[k]. Note that despite the change

of notation, this is still aligned with the latent dynamics, the observation being the entire

state with non-linear dynamics s, and the latent state variable being z which exhibits a linear

dynamics.

@ Deep Koopman Operator In Lusch et al. (2018), the Koopman operator is approximated

using a finite-dimensional block-diagonal matrix K̃. The input state s[k] is projected to a

latent space with a MLP z[k] = ϕθ

(
s[k]
)
, where ϕθ models a vectorized eigenfunction (that

is, a stack of multiple eigenfunctions φ). Within this latent space, the dynamics can be

approximated by a linear function, following Koopman theory: z[k+1] = K̃z[k]. Trajectories

in the latent space are then decoded using a second MLP learning the inverse mapping

ϕθ
−1. Depending on the problem, the approximated Koopman operator can be modeled

as a static matrix with learnable diagonal terms or parametrized by an auxiliary network

24

The Fellowship of the Dynamical Systems Neural networks for system identification

s[k]

ϕθ

z[k]

K̃

z[k+1]

Λ

ϕ−1
θ

s[k+1]

(a)

Phase Space Latent Space

s1

s2

z1

z2

(b)
Figure 2.5: Deep Koopman operator – (a) The Koopman operator is a linear operator in infinite dimen-

sion. The model proposes to learn the eigenfunctions of this operator to project the states into a space

where the dynamic becomes linear. (b) Example of a damped pendulum. On the left, the simulated

trajectory in physics space (dots) remains close to the physical trajectory of the system (lines). On the

right, trajectories in latent space where the dynamics is indeed linear. (figures from Lusch et al. (2018))

[λ1,k, λ2,k, ...] = Λθ

(
z[k]

)
to handle continuous spectra:

K̃ = diag
(

B(λ1,k), B(λ2,k, ...)
)
, B(λ=µ + iω) = exp(µ)

[
cos ω − sin ω

sin ω cos ω

]
(2-21)

The model (shown in figure 2.5) is trained to optimize three classic objectives for latent

dynamics over a prediction horizon m ∈N+:

Auto-encoder: min
∣∣∣∣s[k]−ϕθ

−1
(

ϕθ

(
s[k]
))∣∣∣∣ (2-22)

Linear dynamics: min
∣∣∣∣ϕθ

(
s[k+m]

)
− K̃mϕθ

(
s[k]
)∣∣∣∣ (2-23)

Prediction: min
∣∣∣∣s[k+m]−ϕθ

−1
(
K̃mϕθ

(
s[k]
))∣∣∣∣ (2-24)

The Koopman operator has garnered significant attention in recent research (Han et al.,

2020; Yeung et al., 2019; Li and Jiang, 2021; Mardt et al., 2020). We believe its popularity stems

from two key factors. First, it offers a robust theoretical framework for studying dynamics

in a linear representation, a domain well-understood by researchers. Secondly, while analyti-

cally calculating the eigenfunctions of the operator is exceptionally challenging (Mezić, 2005),

training-based methods have emerged as a viable alternative. A concurrent approach will

however be presented in detail in Chapter 5: the Kazantzis-Kravaris-Luenberger observer.

2.3.2 Latent dynamics for mechanics

One can derive a latent dynamics tailored to mechanical systems. The traditional approach,

known as Newtonian mechanics, employs vectors to describe position, velocity, and forces.

However, this vector representation often disregards mechanical constraints. For instance,

when studying a pendulum, it suffices to analyze the evolution of the angle rather than the

3D movements of the center of mass.

25

The Fellowship of the Dynamical Systems Neural networks for system identification

In contrast, analytical mechanics characterizes motion using scalar quantities that inher-

ently account for the degrees of freedom. Derived from the principle of minimal action,

various theories exist within this framework. Lagrangian mechanics, for instance, incorporates

constraints directly in a set of generalized coordinates q = [q1(t), q2(t), ...] governed by the

Euler-Lagrange equation

L(q, q̇, t) = T(q, q̇, t)−V(q, q̇, t),
d
dt

(
∂L
∂q̇

)
=

∂L
∂q

. (2-25)

Here, T(q, q̇, t) represents the total kinetic energy and V(q, q̇, t) denotes the total potential

energy. Similarly, by introducing the generalized momentum p = ∂L
∂q̇ , we can derive the

equations of Hamiltonian mechanics

H(q, p, t) = p · q̇− L(q, q̇, t), ṗ = −∂H
∂q

, q̇ =
∂H
∂p

, (2-26)

where H is the Hamiltonian of the system.

@ Lagrangian/Hamiltonian Neural Network Learning a Hamiltonian dynamical system

from data can be achieved by employing a neural network to model Hθ(q, p, t). For example,

Greydanus et al. (2019) proposes a training approach using the following cost function

LHNN =

∣∣∣∣∂Hθ

∂p
− ∂q

∂t

∣∣∣∣+ ∣∣∣∣∂Hθ

∂q
+

∂p
∂t

∣∣∣∣ , (2-27)

for some norm | · |. Hamiltonian neural networks enforce conservation laws and demonstrate

improved performance in simulating dynamical systems that typically suffer from energy

loss when using Newtonian models. However, this approach requires access to ground truth

generalized coordinates, which may pose challenges. Extensions have been developed to

handle arbitrary coordinates (Choudhary et al., 2021), image-based observations (Toth et al.,

2019), and non-autonomous systems (Zhong et al., 2019).

In contrast, Lagrangian dynamics can accommodate arbitrary coordinates by modeling

the Lagrangian function L(q, q̇, t). Notably, Lutter et al. (2019); Cranmer et al. (2020b) refor-

mulate equation (2-25) as follows

q̈ =
(
∇q̇∇T

q Lθ

)−1 [
∇qLθ −

(
∇q∇q̇Lθ

)
q̇
]

. (2-28)

Here, Lθ is a neural network approximating the Lagrangian function. Although this equa-

tion may appear complex, it can be numerically computed using automatic differentiation,

enabling simulation and back-propagation of the gradient to minimize the prediction error.

These formulations have been applied to graph Neural-ODEs in Bishnoi et al. (2023), and to

images in Zhong and Leonard (2020).

Despite the advantages offered by these methods, their current applications remain lim-

ited to simpler systems. The main challenge lies in optimizing a cost function that depends

26

The Fellowship of the Dynamical Systems Neural networks for system identification

on the derivative of the neural network, necessitating multiple passes through the computa-

tion graph. While this is feasible, it may somewhat restrict the complexity of the underlying

models.

2.3.3 Stable dynamics

Stability is a very useful property of dynamical systems and can be either an inductive bias

(for systems known to be stable) or simply a relevant property for downstream tasks, such as

simulation. The concept of stability varies in meaning between machine learning and control

theory1. The former usually refers to the stability of the training algorithm, while the latter

focuses on the behavior of the dynamical system. In the first section of this chapter, we

introduced a criterion to verify the stability of linear systems, by checking the real part of the

eigenvalues of the dynamics matrix (see equation (2-2)). In the other hand, the stability of

non-linear systems is harder to verify and requires a Lyapunov analysis.

Definition 2.1 An autonomous system ṡ = f (s) with an equilibrium point s∗= f (s∗) is said to be

stable if and only if

∀δ > 0, ∃ϵ > 0 such that
∣∣s0 − s∗

∣∣ < δ⇒
∣∣s(t)− s∗

∣∣ < ϵ, ∀t > 0. (2-29)

To prove the Lyapunov stability of a dynamical system, one can show the existence of a

real-valued Lyapunov function V(s) such that (assuming s∗ = 02)

V(s) = 0⇔ s = 0 ∀s ̸= 0, V(s) > 0 V̇(s) ⩽ 0. (2-30)

The Lyapunov function is analogous to the potential energy of the system: it remains positive

and reaches zero at the equilibrium point. The requirement for its derivative to be non-positive

guarantees that the system gradually dissipates "energy" over time, ensuring stability. Thus, to

assess system stability, it “suffices” to find a suitable Lyapunov function that satisfies (2-30).

However, identifying such a function for nonlinear systems is a complex task, presenting

significant challenges.

@ Stable deep dynamical models A promising challenge is thus to constrain a latent dynam-

ics to learn a stable dynamical model. This can be achieved by learning a suitable Lyapunov

function jointly with the dynamics. For instance, in Kolter and Manek (2019), the candidate

Lyapunov function V is modeled using an input-convex neural network (ICNN) gθ (Amos

et al., 2017) to prevent local optima, and is defined as follow

Vθ(s) = σ
(

gθ(s)− gθ(0)
)
+ ϵ|s|2, (2-31)

where σ is a positive convex function with σ(0) = 0 and ϵ a small constant. Consequently,

1and is arguably on top of the list of misleading terms that should be carefully avoided during trans-disciplinary

meetings
2in practice, any equilibrium point can be considered using a change of coordinates.

27

The Two Approaches: hybrid models Neural networks for system identification

the candidate Lyapunov function is convex and positive definite. The learned dynamics can

then be projected onto a subspace where V̇θ(s) ⩽ −αVθ(s), α being a positive constant. This

condition guarantees global asymptotic stabilitya. The dynamics fθ is modeled with an MLP.

The actual dynamics used during training is a projection of fθ on the stable manifold defined

by Vθ , i.e.

f̃θ(s) =

 fθ(s) if V̇θ(s) ⩽ −αVθ(s),

fθ(s)− ∇Vθ(s)
∥∇Vθ(s)∥2

2

[
∇Vθ(s)T fθ(s) + αVθ(s)

]
otherwise.

(2-32)

ato be precise, Vθ must also be radially unbounded

Note that this approach does not impose any additional properties on the Lyapunov func-

tion. Instead, the learned dynamics is directly projected onto a stable manifold, and the

shape of Vθ is guided by the training objective. In another work, (Gaby et al., 2022) assume

knowledge of the dynamics fθ and seek an appropriate Lyapunov function by minimizing the

following cost

L = ∑
s

max
([
∇Vθ(s) · fθ(s) + γ

∣∣s∣∣]2 , 0
)

. (2-33)

Moreover, in Petridis and Petridis (2006), a neural candidate function is learned using ge-

netic algorithms while satisfying certain constraints on the Hessian. Quadratic functions have

also been employed to ensure positive definiteness (Abate et al., 2020; Chang et al., 2019b).

However, stability is not always a desired property: for a drone (without taking into account

collisions with the ground), the dynamical system is naturally unstable: without any inputs,

the drone simply falls downwards indefinitely, and it is pointless to try to identify a stable

model for it.

2.4 The Two Approaches: hybrid models

So far, we have presented structures based upon well-chosen frameworks, such as the la-

grangian mechanics, linear systems, or stable dynamics, which embed prior knowledge on

the structure of the dynamics. However, in many cases, we may have access to explicit knowl-

edge of at least a part of the dynamical equation, obtained from first principles considerations

and laws of physics.

Thus, it is tempting to incorporate the known part of the ODE in our learned model. To

address this, hybrid models combine prior knowledge with data-driven approaches. Mathemat-

ically, we can decompose the true dynamics of a physical system f into a known component

fθ , derived from physics-based considerations, and an unknown residual term R. By access-

ing measurements from the true system stored in a dataset D, a hybrid model approximates

the residual dynamics by modeling R with another model, such as a neural network gψ. The

parameters of the known component θ and the residual ψ can be identified by minimizing the

28

The Two Approaches: hybrid models Neural networks for system identification

loss over D
argψ,θ min ∑

s∈D
L (s, ŝ) s.t

{
˙̂s = fθ(ŝ) + gψ(ŝ)

ŝ(0) = s(0)
, (2-34)

for some cost function Lmeasuring the discrepancy between trajectories. Hybrid models offer

several advantages:

• Inductive bias – Incorporating a handcrafted model, imparts a desired system behavior

and provides an inductive bias for learning. This utilization of prior knowledge en-

hances generalization to novel scenarios beyond the training data, as helps capturing

fundamental principles governing the system.

• Interpretability – Hybrid models offer interpretability, as the known component fθ is

based on well-understood physical principles. This enhances model diagnosis and facil-

itates understanding the contribution of the data-driven part. Moreover, hybrid models

tend to exhibit robustness against noise and uncertainties in the training data.

• Easier training – Hybrid models benefit from data efficiency. The incorporation of a

prior simplifies the training process, enabling the neural network to focus solely on

learning the residual dynamics, which often reduces the need for larger datasets. This

can lead to faster convergence, reduced risks of overfitting, and avoidance of local op-

tima.

Early research in artificial neural networks introduced the concept of hybrid models, also

known as gray-box models (Psichogios and Ungar, 1992; Rico-Martinez et al., 1994; Thompson

and Kramer, 1994). These models offer great versatility, as they allow the integration of prior

knowledge from various domains of physics, such as power systems (Nutkiewicz et al., 2018;

Wang et al., 2019a) and fluid mechanics (Belbute-Peres et al., 2020; Young et al., 2017).

@ APHINITY Formally, let us consider the true dynamics ṡ = f (s) where s ∈ Ω and f lies

in some functional space F . A hybrid model is the sum of a physics prior fθ ∈ Fp and a

data-driven augmentation term gψ ∈ Fa, where (θ, ψ) are parameters to be optimized such

that f = fθ + gψ.

However, the decomposition is not unique, and without constraints on the parameters,

the augmentation term can dominate the dynamics, overpowering the physics prior. Ideally,

we desire the augmentation term gψ to solely capture the residual dynamics. For instance,

when f ∈ Fp, we expect the augmentation term to be identically zero. To address this, Yin

et al. (2021b) seeks for a minimal norm decomposition of the form

min
fθ∈Fp,gψ∈Fa

|gψ| s.t ∀s ∈ Ω, ṡ = fθ(s) + gψ(s). (2-35)

The authors show the existence of a solution to equation (2-35) by assuming that Fp is

29

The Two Approaches: hybrid models Neural networks for system identification

(a) Ground Truth (b) Neural ODE (Chen et al., 2018) (c) APHINITY (Yin et al., 2021b)

Figure 2.6: Hybrid dynamics – Simulation from APHINITY with the hybrid dynamics of a damped

wave equation. The physics prior consists of the wave equation without the damping factor. Each

model is trained on trajectories of 25 frames, hence the last frame displayed here corresponds to the

out-of-distribution temporal domain. The APHNITY model benefits from strong prior knowledge on

the dynamics of the system, and performs better than a physics-agnostic Neural-ODE (figures from

Yin et al. (2021b))

proximinal, which means that any function x ∈ Fp must have at least one closest neighbor.

More precisely, for any subset C ⊂ Fp, the set PC(x) = {y ∈ C||x − y| = d(x, C)} is non-

empty, where d(x, C) = arg minc∈C |x− c|. Additionally, the solution is unique when Fp is a

Chebyshev set, implying that PC(x) contains a single element for all x ∈ Fp.

For practical implementations, neural networks are employed to model the augmenta-

tion term gψ. The dynamical model is trained using a dataset of measurements D and aims

to minimize the objective function

L = ∑
s∈D

∣∣gψ(s)
∣∣+ λ

K

∑
k=1

∣∣s[k]− ŝ[k]
∣∣, (2-36)

where λ is a weight that balances the importance of each term. The simulated trajectory

ŝ can be obtained by solving the hybrid model numerically, starting from the known initial

condition s(t=t0) (e.g., using Neural-ODE). Figure 2.6 shows a simulation of a damped wave

equation s̈ = c2∆s− ks, where the damping factor is removed from the equation to obtained

the physics prior fθ . APHINITY is compared to a physics-agnostic Neural-ODE model (i.e.

without a handcrafted model in the dynamics). The model shows excellent performance on

this simple problem.

Notably, the APHINITY framework has been extended and adapted in different ways. A

variational auto-encoder variant was proposed in Takeishi and Kalousis (2021), while Mehta

et al. (2021b) modified gψ by incorporating a latent memory of previous states, and Ajay et al.

(2018) leverages stochastic neural networks to augment physics simulators.

It is worth highlighting that the incorporation of prior knowledge into learning models

extends beyond residual learning from known analytical models. We have identified three

general methods for achieving this integration:

• Residual learning, as mentioned earlier, involves combining an explicit physics model

with a data-driven model to improve performance.

30

The Two Approaches: hybrid models Neural networks for system identification

ß To simulate the dynamics of a drone, a simple model based on kinematics and mo-

mentum conservation can be used, assuming proportionality between thrust and the

squared rotation speed (Mahony et al., 2012). While this model suffices for control ap-

plications, it lacks accuracy for simulation tasks. Even with accurate identification and

matching inputs, the simulation diverges from the real trajectory. Advanced modeling

techniques, such as blade-element momentum (Prouty, 1995), offer better rotor model-

ing but still fall short in simulation accuracy. To address this, Bauersfeld et al. (2021)

propose an approach combining APHINITY-like modeling with the blade-element mo-

mentum model. This hybrid model is trained using highly accurate drone flight data

(captured with motion capture) and demonstrates exceptional performance in closed-

loop flights, closely matching the real device trajectory.

• Physics-guided design of neural networks consists of adapting data-driven architectures

to address specific physics problems. By leveraging prior knowledge about the system,

the model structure can be tailored to incorporate relevant reasoning patterns. This

can be achieved by incorporating additional terms in the model structure or by directly

deducing the architecture from the task setup.

ß Tracking surface temperature in oceans, denoted as T(x, t), requires considering

fluid transport, thus involving advection and diffusion. If the physical equation gov-

erning the evolution of the temperature is particularly complex, it can be simplified

by assuming the displacement field w(x, t) of the fluid to be known. The temperature

then obeys the following PDE

∂T
∂t

(x, t) + (w(x, t) · ∇) T(x, t) = D∆T(x, t) . (2-37)

This formulation bears similarities with optical flow in computer vision. In Bézenac

et al. (2019), the equation is directly embedded in the model. They employ a CNN

to forecast the displacement map w(x, t) from previous temperature maps, which is

then used for updating the temperature using equation (2-37). The architecture and a

sample of the results are illustrated in figure 2.7.

• Differentiable physics simulators offer a distinct approach compared to previous meth-

ods, as they do not directly aim to identify dynamics models but rather leverage differ-

entiable physics simulators to incorporate priors into learning. This approach is widely

used in robotics, particularly for object manipulation tasks.

ß In situations where an agent needs to learn how to interact with its environment,

the most frequent approach is to rely on Reinforcement Learning (RL) which is one

of the rare options when the feedback from the system is limited to a reward. Yet,

RL is known to be less efficient than supervised learning due to limited information

31

The Two Approaches: hybrid models Neural networks for system identification

T(x, tk), ..., T(x, tk−h)

Convolution-Deconvolution

Model Supervision

T̂(x, tk+1) T(x, tk+1)
Warping

Scheme

ŵ(x, tk)

(a)

T(x, tk) T(x, tk+1) T(x, tk+3) T(x, tk+6)

G
ro

un
d

Tr
ut

h
M

od
el

w
(x

,t
k)

(b)

Figure 2.7: Physics-guided training – (a) The model introduced in Bézenac et al. (2019) lever-

ages physics priors on dynamics of the sea surface temperature. It is composed of a convolution-

deconvolution network forecasting a displacement map ŵ(x, tk) from a set of previous temperature

maps. This displacement map is used in an advection-diffusion equation to forecast temperatures at

the next time step. (b) Visual examples from the model. (figures from Bézenac et al. (2019))

provided by the reward signal. On the other hand, methods based on imitation suffer

from exploration challenges and require extensive data (Lee et al., 2015; Seita et al.,

2020).

A promising approach involves employing differentiable simulators that allow gra-

dient descent optimization through the simulator. When the dynamics of interest is

differentiable, such as in fluid mechanics (Holl et al., 2020; Um et al., 2020), gradients

can be straightforwardly calculated through a discrete model, which provides direct

feedback on how the action chosen by the agent would have affected the environment.

Challenges arise when dealing with non-differentiable dynamics, particularly in simu-

lations involving rigid or soft bodies, since contact forces are not differentiable. Stan-

dard approaches consist in smoothing stiff physical laws to create simulators capable

of handling rigid (Toussaint et al., 2019; Giftthaler et al., 2017; de Avila Belbute-Peres

et al., 2018; Geilinger et al., 2020) or soft dynamics (Ma et al., 2021; Du et al., 2021; Qiao

et al., 2020; Hu et al., 2019). These simulators are used for various downstream tasks,

including object manipulation (Chen et al., 2023; Li et al., 2023), motion planning (Ren

et al., 2023), or estimating physics properties from videos.

While hybrid models possess notable advantages, they still suffer from limitations. Train-

ing the residual component introduces challenges, as fθ typically requires a classical numerical

solver, which itself can be nontrivial, in particular for PDEs. Furthermore, if the residual is

represented by a neural network, the chosen numerical scheme must support gradient propa-

gation for effective optimization. Unfortunately, this requirement often leads to slow training

time.

32

The Return of Physics Neural networks for system identification

2.5 The Return of Physics

The appeal of machine learning methods for dynamical modeling lies in their capacity to learn

intricate patterns and representations from data. This becomes especially valuable when the

underlying physics of the system is not fully understood or difficult to model.

There is a trade-off to be made though. On one hand, handcrafted models are tedious

to build and require accurate experiments to identify the parameters but offer interpretable

results, thus predictable behavior. Data-driven techniques, on the other hand, are much more

versatile, and easier to use, with minimum requirements in terms of expert knowledge. How-

ever, the resulting model is hard to understand, and the more powerful the model the harder

it is to derive theoretical guarantees. A promising balance of the advantages of both methods

lies in methods based on symbolic regression. These techniques propose to infer a symbolic

dynamical model from a large dataset of trajectories gathered on the system.

@ SINDy (Brunton et al., 2016) SINDy is an algorithm that uncovers governing equations

from data. Instead of directly searching for a specific analytical form of the function fθ , the

algorithm constructs a dictionary of d candidate terms that may appear in the dynamics

Θ(s) =


| | | | |
s s2 ... cos s sin s exp s ...

| | | | |

 ∈ Rn×d. (2-38)

The dynamical model is then assumed to be a linear combination of the terms in the dictio-

nary, i.e.

ṡ = Θ(s)Ξ, (2-39)

where Ξ ∈ Rd×n is a parameter vector to be estimated. To limit the overall complexity of

the model, it is assumed that Ξ is sparse, meaning that most of its terms are zero. Solving

for sparsity can be achieved by numerous methods, e.g. LASSO (Tibshirani, 1996), or a

sequential thresholded least-squares algorithm.

This work has been expanded to include PDEs by incorporating partial derivatives into

Θ (Rudy et al., 2017; Schaeffer, 2017). Furthermore, ensemble methods such as bootstrap

aggregation (Breiman, 1996) have been applied in a follow-up work (Fasel et al., 2022). Sym-

bolic regression can also be approached using genetic algorithms (Cranmer, 2023; Schmidt

and Lipson, 2009; Searson et al., 2010) combining operators like +,−,÷,×, exp, log, ... to form

a symbolic expression. For high dimensional problems, such as particle physics, an interme-

diate step is introduced in (Cranmer et al., 2020a), involving fitting a neural network to model

particle interaction, followed by symbolic regression to simplify the model. It is also possi-

ble to directly regress a symbolic expression from the weights of a neural network, provided

that activation functions are expressive enough to capture complex relationships, and under

constraints of weight sparsity through L1 regularization (Sahoo et al., 2018; Long et al., 2019).

33

Take-home messages Neural networks for system identification

Recently, the Monte-Carlo Tree search has been used to explore expression trees and regress

symbolic equations (Sun et al., 2023).

Sparse regression of symbolic equations has garnered significant interest in the physics

community: while relieving the burden of physics modeling, it still produces human-

interpretable and explainable formulas suitable for downstream tasks. However, the method

requires that the terms appearing in the true dynamics are included as candidates in the

dictionary, necessitating a careful design of Θ.

2.6 Take-home messages

We derived a general framework called latent dynamics inspired by the state-space represen-

tation of dynamical systems, which is ubiquitous in physics and control theory. This setup is

composed of a state-observer (an encoder) to estimate a state variable in a latent space from

a set of previous observations, followed by a dynamics function and an observation function.

This setup has been declined for various purposes such as enforcing a particular form for

the dynamics or ensuring stability properties. However, it also requires hypotheses on the

dynamics and the interval of past observations required to retrieve the state, which will be

discussed in Part II.

Time-continuous dynamics are usually preferred over discrete systems since more algo-

rithms and laws are tailored to them. Neural-ODEs provide a convenient framework for ex-

plicitly leveraging continuous dynamics in a numerical implementation of a latent dynamics.

This also allows the incorporation of advanced priors into the model by integrating analytical

expressions. Yet, such efforts can prove to be ineffective when the data-driven part becomes

more expressive: handcrafted inductive biases have inherent limitations in complexity and

may be easily learned by the model. However, hybrid models have shown great potential to

satisfy the need for interpretability or to handle low-quality datasets.

Nevertheless, these approaches often come at the expense of increased computational

complexity due to multiple passes over the computation graph. Consequently, these methods

are currently restricted to relatively simple tasks. To scale up, a shift in the approach is

necessary, involving a fresh perspective on intuitive physics that relaxes certain prerequisites.

Embracing this new approach enables addressing large-scale datasets and complex problems

by harnessing the power of advanced deep learning models to their full potential. This will

be the topic of the next chapter.

34

Chapter 3
Deep Learning for intuitive physics

So far, we addressed system identification stricto sensu by looking for explicit approxima-

tions of the dynamics (f , h), bearing in mind that the learned state-space representation

could be used for different purposes later on. This is actually restrictive since the architecture

must eventually be related to the latent dynamics setup.

However, system identification is typically an intermediate step toward a higher goal.

Sometimes, this step be bypassed to directly tackle the final objective. Doing so usually offers

shortcuts and new solutions in which the dynamics is solely implicitly defined and embedded

into the weights of a neural network. In this chapter, we study approaches from intuitive

physics, which performs by relying on shortcuts and regularities in data rather than explicit

dynamical modeling. In particular, we identified two guidelines to alleviate the needs of

system identification. These workarounds propose to

• Learn the solution – by directly parametrizing the trajectory of a dynamical system

rather than its dynamics. In other words, it consists of approximating the solution of

a physics problem (typically a PDE) with a neural network sθ(x, t). When the PDE

operator is known, training the parameters θ can be achieved by taking advantage of

automatic differentiation tools. Training is more complicated when the operator remains

unknown. Such techniques will be explored in Part III of the manuscript.

• Learn the solver – differs from discrete-time system identification since the notion of

state is not explicitly required. Instead, we are looking for a function capable of advanc-

ing a trajectory forward in time, as a conventional simulator would do. This setup is

arguably the most popular in the community and benefits from a large body of work,

including ours, presented in Part IV.

Both approaches raise strong interest from the industrial community, as simulation is at

the core of many applications. By trying to learn the solution, we end up building new solvers

for PDE using simpler and more user-friendly tools than off-the-shelf software. Moreover,

35

Learning the solution from PDE operator Deep Learning for intuitive physics

learning the solver offers great opportunities to accelerate physical simulations, reducing their

cost and facilitating their usage.

3.1 Learning the solution from PDE operator

Among the vast landscape of tasks tackled by deep learning, the ones we are going to intro-

duce belong to the few who have successfully crossed the frontier and are now researched

from both ends by physicists and data scientists. Indeed, a large part of the work in applied

physics and engineering is dedicated to system modeling, which often requires a numeri-

cal solver, either to identify parameters of the model or simply to ensure that its predictions

match the observations. On one hand, for some problems, the solver can be relatively easily

implemented in a few lines of code by a non-expert1 (finite difference method for instance).

On the other hand, more complex physics, such as fluid mechanics or multi-dimensional sys-

tems, requires carefully designed algorithms and generic simulation software may fall short

of flexibility for research purposes.

Physics-Informed Neural Networks (PINNs) are a promising family of methods for build-

ing a solver which, in theory, can be applied to any PDE-based problem with minimal modi-

fications, while remaining simple to implement. The technique has rapidly harnessed interest

from other fields and is presently used in several research areas that were not related to Arti-

ficial Intelligence (AI) before. This line of work assumes that the dynamical model is already

known, and takes the form of a PDE{
ṡ(x, t) = f (s, t, x,∇s, ...,∇(n)s) ∀x, t ∈ Ω× T
s(x, t) = g(x, t) ∀x, t ∈ ∂Ω× T

, (3-1)

where ∂Ω is the frontier of the spatial domain.

@ PINNs model the solution of equation 3-1 with a neural network sθ(x, t), and learn the

parameters in order to satisfy the PDE operator, starting from a known initial condition

s(x, 0). Deep learning and PDEs have a long shared history (Dissanayake and Phan-Thien,

1994; Lagaris et al., 1998; Psichogios and Ungar, 1992) and have recently regained attention

(Raissi et al., 2019, 2017). Unlike conventional solvers, PINNs stand out for their mesh-free

nature: the solution is not modeled on a finite subset of Ω× T , but can rather be evaluated

at arbitrary points within the training domain. However, note that PINNs are often trained

on a bounded set T = [0, T] thus extrapolation to points outside the training domain is

not granted. The choice of architecture for sθ is left free. Commonly used architectures

include MLPs, but more recent approaches have been proposed, such as sinus-activated

neural networks (Sitzmann et al., 2020) or Multiplicative Filters Networks (Fathony et al.,

2021).

A typical loss for training a PINN exploits the residual given by the PDE operator. The

1Probably in MatLab though...

36

Learning the solution from PDE operator Deep Learning for intuitive physics


t

x1
...

xn



Neural Network

σ σ σ sθ(t, x)⇒

A
ut

om
at

ic
D

iff
er

en
ti

at
io

n

ṡθ

∇sθ

∇2sθ

∇3sθ

...



Residual PDE

Boundary condition

Initial condition

Measured data

Lpde =
∫∫

Ω×R
∥ṡθ(x, t)− f (sθ, t, x,∇sθ, ...)∥ dxdt

Lbc =
∫∫

∂Ω×R
∥sθ(x, t)− g(x, t)∥ dxdt

Lic =
∫

∂Ω
∥sθ(x, 0)− s(x, 0)∥ dx

Ldata = ∑
(x,t)∈X

∥s(x, t)− sθ(x, t)∥

Figure 3.1: Physics-Informed Neural Networks – model the solution of a partial differential equation

using a deep neural network that takes spatial and temporal coordinates as input and produces the

corresponding solution as output. To ensure the physics, boundary and initial conditions are satisfied,

these conditions are incorporated as soft constraints within the objective function. Efficient compu-

tation of the derivative, necessary for evaluating the residual, can be achieved through the use of

automatic differentiation tools. (figure inspired from Cuomo et al. (2022))

technique takes advantage of tools for automatic differentiation of neural networks, which al-

lows to efficiently compute the exact analytical partial derivatives of sθ . The training objective

may encompass the following terms:

1. Residual on PDE – This loss computes the difference between the partial derivatives of

sθ and the desired value according to the operator

Lpde =
∫∫

Ω×T

∣∣ṡθ(x, t)− f (sθ , t, x,∇sθ , · · ·)
∣∣dxdt, (3-2)

for some norm | · | where the derivative ṡθ is calculated analytically through automatic

differentiation. Note that the integral form is not suitable for practical implementation

and needs to be discretized by sampling the domain Ω× T . Originally, latin hypercube

sampling was used (Raissi et al., 2019), yet most applications use uniform sampling.

Adaptive variants exist to increase accuracy near regions with lower accuracy (see Wu

et al. (2023) for a review).

2. Boundaries and initial condition – The traditional formulation of PINNs relaxes the

enforcement of boundary and initial conditions with soft constraints, which are regular-

ized by another loss term:

Lboundary =
∫∫

∂Ω×T

∣∣sθ(x, t)− g(x, t)
∣∣dxdt︸ ︷︷ ︸

boundary condition

+

initial condition︷ ︸︸ ︷∫
Ω

∣∣sθ(x, 0)− s(x, 0)
∣∣dx. (3-3)

Imposing boundary conditions has proven to be of key importance for training PINNs

(Wang et al., 2021; Dwivedi and Srinivasan, 2020). Techniques to maintain hard con-

straints have been studied in Lagaris et al. (2000), and other work proposes to use a

37

Learning the solution from PDE operator Deep Learning for intuitive physics

distance metric from the boundary to manually enforce the constraints (Berg and Nys-

tröm, 2018; McFall and Mahan, 2009; Sheng and Yang, 2021). Recently, Hao et al. (2023)

proposed a bi-level optimization procedure where a PINN is used to solve the con-

straints during an inner loop optimization. The outer loop uses a Broyden method to

approximate the gradients.

3. Observed data – when available, can be incorporated in an additional term. This tends

to prevent over-fitting on small datasets and ensures that the solution aligns with the

measurements. The data loss term measures the difference between sθ(x, t) and the

observed data s(x, t) at sparse measurement points in time and space X = {xk, tk)|k ∈
J0, KK}:

Ldata =
K

∑
k=0

∣∣s(xk, tk)− sθ(xk, tk)
∣∣ (3-4)

For a general introduction to PINNs, Cuomo et al. (2022) provides an excellent resource.

Specific applications of PINNs to fluid dynamics can be found in Cai et al. (2021a), while Cai

et al. (2021b) explores their applications in heat transfer and Misyris et al. (2020) focuses on

power systems. The literature also offers a large set of training tricks to improve accuracy or

convergence speed. In addition to the adaptive collocation point methods discussed above,

one can also use adaptive weighting of each loss term (Meer et al., 2022; McClenny and Braga-

Neto, 2020). It is also recommended to carefully design the training curriculum of PINNs

when addressing challenging PDEs (Wang et al., 2022a; Wight and Zhao, 2020; Krishnapriyan

et al., 2021).

ß For instance, Zeng et al. (2023) introduces an adversarial discriminator network cθ(x, t) to

place bets on whether sθ will overshoot or undershoot the residual at a given location. This

network is jointly trained with the solution to minimize:

max
cθ

min
sθ

N

∑
n=0

cθ(xn, tn)×
(

ṡθ(xn, tn)− f (xn, tn, sθ ,∇sθ , · · ·)
)

(3-5)

over a set of N evaluation points (xn, tn)n=0..N ∈ Ω×T . This formulation defines a minimax

game with the Nash equilibrium at cθ = 0 and (sθ − f) = 0. The neural networks can

be trained using adaptive competitive gradient descent. Note that the norm in the classic

PINN loss (equation (3-2)) has disappeared. This is motivated by numerical analysis of the

ill-conditionness of the problem implied by the L2 norm. This multi-agent framework for

training PINNs shows substantial gain in performance (see figure 3.2). Other methods avoid

the squared loss by relying on the weak formulation of the PDE (E and Yu, 2017; Liao and

Ming, 2019), or on game theory (Zang et al., 2020).

Yet, PINNs have many drawbacks and limitations, which impact their applicability to

many PDEs, and make their usage and training difficult. In particular:

38

Learning the solution from sparse observations Deep Learning for intuitive physics

102 103 104 105 106 107

10−7

10−5

10−3

10−1

Iterations

L
2
R
el
a
ti
v
e
E
rr
o
r

PINN + Adam CPINN + ACGD

104 105 106 107

Forward Passes

(a) Poisson equation

∆s(x, y)=− 2 sin(x) cos(y)

102 103 104 105 106
10−4

10−3

10−2

10−1

Iterations

L
2

R
el

at
iv

e
E

rr
or

PINN + Adam CPINN + ACGD

103 104 105 106 107

Forward Passes

(b) Schrödinger equation

ṡ + 1
2

∂2s
∂x2 + |s|2s = 0

Figure 3.2: Competitive PINN – comparison of the relative residual error for a standard PINN model

optimized with Adam algorithm and a Competitive PINN (Zeng et al., 2023) trained with adaptive

competitive gradient descent. For both tasks, PINN reach a plateau in accuracy, while CPINN continues

to improve beyond this limit.

• A solution obtained with a PINN is limited to a single initial condition. To simulate a

trajectory from another starting point or different boundary conditions, the model must

be trained again from scratch.

• PINNs require the PDE operator to be known. Consequently, they are limited to known

and modeled phenomena and cannot retrieve a dynamics from a dataset of observations.

• They also suffer from a well-documented pathology: the optimization of the residual

from the PDE operator is an ill-posed problem, making the neural network particularly

difficult to train on non-trivial equations (Krishnapriyan et al., 2021; Wang et al., 2022b,

2021; Liu et al., 2021).

In summary, PINNs offer simplicity and adaptability for solving PDEs, making them

accessible to beginners and attractive to physicists. However, their formulation is ill-posed,

with important training challenges. Moreover, PINNs requires knowing the PDE, and their

main limitation is the inability to generalize to new initial conditions. Rapid adaptation is

hindered as it necessitates re-training the neural network from scratch, limiting its use in

real-time applications such as trajectory planning.

3.2 Learning the solution from sparse observations

Fortunately, new techniques are emerging to maintain the advantages of PINNs (mesh-free,

dense inputs) without their drawbacks (knowledge of the PDE, generalization to new initial

conditions).

3.2.1 Neural operators

A possible approach consists in learning a mapping from a functional space to another, also

called operator Gθ : u → s. When applied to PDEs, the input function u can be for instance a

new initial condition, different physical parameters, or a control input signal. In theory, since

39

Learning the solution from sparse observations Deep Learning for intuitive physics

the output of Gθ is also a function, we obtain a mesh-free solution capable of generalizing to

different inputs u. In practice, the input and output functional spaces need to be sampled for

numerical implementation, resulting in a training dataset of functions D :
{(

ui, si
)
|i ∈ J0, NK

}
evaluated at finite discrete points X = {x1, x2, ..., xK} ⊂ Ω (for readability, time and space

variables have been aggregated in a single vector x). To be mesh-free, the neural operator

must be able to interpolate its output at any location x ∈ Ω, potentially outside the training

domain X .

@ DeepONet (Lu et al., 2019) is a neural operator composed of two modules. First, given an

input function u sampled at fixed points in time and space X , the branch network computes

K representations b1, b2, · · · , bK from each value u(x1), · · · , u(xK). These embeddings can be

computed jointly with a single neural network, or separately, with a different neural network

for each input u(xk).

The output function of the neural operator is the solution of the PDE s(xq) expressed

at an arbitrary query point xq ∈ Ω. In DeepONet, the output is assumed to be a linear

combination of bk with weights coefficients w1, · · · , wK depending on the query xq. These

coefficients are computed with a trunk network:

s(xq) = (Gu)(xq) ≈
K

∑
k=1

wkbk (3-6)

DeepONet (illustrated in figure 3.3a) addresses some limitations of PINNs. It generalizes

to unobserved scenarios during training, and offers dense inputs in Ω, while not requiring

the analytic PDE during training. Lu et al. (2019) also provides theoretical guarantees regard-

ing approximation error, considering assumptions about the density of the observation grid.

Yet, contrary to PINN, the model is not entirely mesh-free as the input function u must be

discretized on a set of static points in time and space X that cannot change during evaluation.

Another line of work takes inspiration from the variational form of the PDE and proposes

to derive neural operators as a multi-layer network based on the following equation:

zℓ+1(x) = σ

Wzℓ(x) +
∫

Ω
κθ

(
x, x′, u(x), u(x′)

)︸ ︷︷ ︸
Kernel integral operator

zℓ(x′)dx′

 , (3-7)

where zℓ is the output of the ℓth layer of the neural operator, σ is an activation function

and W, θ are learnable parameters. The kernel integral operator is the most important part of

the architecture and is inspired by the Green function of PDEs. In other words, each layer

behaves like the solution of a PDE implicitly defined by the kernel operator. This function can

be modeled with various strategies to replace the integral form with a discrete formulation.

40

Learning the solution from sparse observations Deep Learning for intuitive physics

Branch Net1

Branch Net2

Branch NetK

b1

b2

bK

... ...

Trunk Net.

w1

w2

...

wK

× (Gu)(xq) =

∑K
k=1 wkbk

u(x1)

u(x2)

u(xK)

...

xq

Space & time query

Input vector

(a)

u Pθ
Layer

1

Layer

2
... Layer

L Li
ne

ar

s
z0 z1 zL

zℓ

∫
Ω κθ

(
x, x′, u(x), u(x′)

)
zℓ(x′)dx′

W
+ σ

1
|N(x)| ∑y∈N(x) κθ

(
e(x, x′)

)
zℓ(x′)

)∑r
j=1⟨ψ(j), z⟩ϕ(j)(x) + b(x)

F−1(Rθ · (Fzℓ)
)
(x)

Im
pl

em
en

ta
tio

ns

(GNO)

(LNO)

(FNO)

(b)

Figure 3.3: DeepONet & Neural Operators – (a) DeepONet consists of a branch network that outputs

bk (representing the solution to the PDE) at fixed points in time and space xk, either with a single MLP

or a set of networks. The trunk network calculates interpolation weights wk to express the solution at

arbitrary query points xq (figure inspired from Lu et al. (2019)). (b) Neural Operators learn operators

mapping between functional spaces. The input, representing the initial condition or command signal,

is projected to a latent space and undergoes kernel transformation to approximate the PDE solution.

Several methods are available to approximate the kernel operation, such as Graph Neural Operator

(GNO), Low-rank Neural Operator (LNO), or Fourier Neural Operator (FNO) (figure inspired from

Kovachki et al. (2021)).

ß For instance, given a set of measurement points X , (Li et al., 2020b) approximates the

kernel using local interactions between points. In other words, for any point x ∈ X , the

kernel is assumed to be non-zero only for points y ∈ X in the neighborhood of x, noted

N (x). First, the input function u(X) is smoothed by adding Gaussian noise, and projected

into an embedding space z0 thanks to a neural network Pθ acting as an encoder (typically an

MLP). It then undergoes several layers of transformations given by

Initialisation: z0(x) = Pθ

(
x, u(x),

Gaussian smoothed︷ ︸︸ ︷
uϵ(x),∇uϵ(x)

)
Iterative update: zℓ+1(x) = σ

[
Wzℓ + 1

|N (x)| ∑x′∈N (x) κθ

(
x, x, u(x), u(x′)

)
zℓ(x′)

]
,

Output: s(x) = QzL + q,

(3-8)

where L is the number of layers, |N (x)| is the cardinal of the neighborhood of x, and W, Q, q

and θ are trainable parameters. The kernel is said to be local since the output zℓ(x) only

depends on the previous vector zℓ−1 evaluated on the neighborhood of x. The model is

called Graph Neural Operator (GNO) and is illustrated in figure 3.3b.

Graph neural operators benefited from several follow-up works such as Low-rank Neural

Operator (LNO) (Kovachki et al., 2021) which reduces computational complexity using tensor

products, and multi-pole graph neural operator (Li et al., 2020c), which processes the initial graph

at multiple coarseness levels. A markovian variant is introduced in Li et al. (2021) (MNO) and

a boundary enforcement technique (Saad et al., 2022) has also been introduced. The Fourier

Neural Operator (FNO) (Li et al., 2020d) is a popular choice, utilizing the Fourier transform to

41

Learning the solution from sparse observations Deep Learning for intuitive physics

compute the kernel operator.∫
Ω

κθ

(
x, y, u(x), u(x′)

)
zℓ(x′)dx′ = F−1(RΦ · (Fzℓ)

)
(x), (3-9)

where F and F−1 are respectively Fourier transform and inverse Fourier transform. RΦ is the

only matrix parameter. However, working with non-uniform meshes poses challenges due to

the discretization of the Fourier transform.

Yet, while it is true that neural operators (equation (3-7)) can theoretically generalize to

unseen initial conditions and arbitrary locations, this is actually not the case in practice. For

instance, FNO requires a static cartesian grid and cannot be directly evaluated outside X .

Similarly, GNO can handle arbitrary meshes in theory but still has limitations in evaluating

points outside the training grid and the MNO variant can only be queried at fixed time in-

crements. Our quest for an effective framework to learn a solution capable of generalizing

to new initial condition and handling mesh-free data is not over yet, and we will provide a

contribution in chapter 7.

3.2.2 Input-continuous and generalizable approaches

An interesting analogy can be made between PINNs and Implicit Neural Representations

(INRs), such as Neural Radiance Fields (NeRF (Mildenhall et al., 2020)), where objects (images,

videos, or signed-distance functions of 3D objects) are directly encoded into the weights of a

neural network. Similarly, a PINN encodes a unique solution within a neural network, hence

the limitation to a single initial condition. To achieve generalizable PINNs, there are probably

insights to be harnessed from INRs.

Generalization in an INR can be simply achieved with the help of a feature code, con-

catenated to the inputs. This trick consists of assigning a feature code to each object in the

dataset while keeping fixed weights within the model. This feature code is used by the neural

network to change its output accordingly (Mescheder et al., 2019; Park et al., 2019). Recent

work shows that a better approach is to apply dynamic weight shifting and scaling using mod-

ulation vectors (Dupont et al., 2022a,b; Mehta et al., 2021a). In that case, the feature code is

not concatenated to the input but rather used to scale the weights of each layer.

@ Dynamics-aware Implicit Neural representations (DINo) (Yin et al., 2022) takes advantage

of this technique to achieve generalization over new initial conditions. The model proposes

to learn a spatial INR using an adapted Multiplicative Filter Network s(x, t) = hθ

(
x, α(t)

)
(Fathony et al., 2021) and modulates its weights dynamically across time with a modulation

42

Learning the solution from sparse observations Deep Learning for intuitive physics

s(x, 0)

ar
g

m
in
∥s
(x

,0
)
−

h θ
(x

,α
(0
)∥

α̇ = fθ(α)

Dynamics

h θ
(x

,α
)

α0

W
0z

0
+

b 0
W
′ 0α
(t
)

sω0 W
1z

1
+

b 1
W
′ 1α
(t
)

sω1 W
2z

2
+

b 2
W
′ 2α
(t
)

sω2

× ×

Spatial

input x

z0 z1 z2 s(x, t)

Figure 3.4: DINo – utilizes an implicit representation hθ(x, α) to represent snapshots of the solution

by modulating its weights with a code vector α. This code follows a Neural-ODE providing the time

dependency of the solution. The initial condition α(0) is obtained via auto-decoding from the initial

state s(x, 0) (figure inspired from Yin et al. (2022)).

vector α(t):

hθ

(
x, α(t)

)
= zL(x) with


z0(x) = sω0(x)

zℓ(x) =
(

Wℓ−1zℓ−1(x) + bℓ−1 +

modulation︷ ︸︸ ︷
W′ℓ−1α(t)

)
⊙ sωℓ

(x)

zL(x) = WL−1zL−1 + bL−1

, (3-10)

where sωℓ
(x) = [cos(ωℓx) sin(ωℓx)]T is a Fourier basis for the layer ℓ with trainable param-

eters ωℓ and zℓ is the latent state of the ℓth layer. The model leverages an additional term

W ′ℓ−1α(t) depending on time which modulates the output of each layer. The temporal evo-

lution of the solution is thus handled by this modulation vector, which is assumed to obey

an ODE:

α̇(t) = fθ(α), α(t=0) = eθ(s(x, 0), (3-11)

The dynamic fθ is modeled by an MLP embedded in a Neural-ODE setup. The encoder is an

optimization process α(0) = arg min ∥s(x, 0)− hθ

(
x, α(0)

)
∥. The model is depicted in figure

3.4.

DINo has quickly captured the attention of the research community due to its resemblance

to PINNs while overcoming some of their limitations. However, it also requires underlying

hypotheses for this decomposition to be possible. It assumes the existence of an ODE which

represents the evolution of α. In other words, it assumes that the state dynamic of the modeled

system translates into a suitable dynamic in the parameter space of the implicit representation,

which itself needs to be predictable by a latent space governed by an ODE. Moreover, these

transformations should be sufficiently simple (in a functional sense) to be trainable end-to-

end.

Another way of approaching the task consists of decoupling the prediction task given the

initial condition from the interpolation at arbitrary query points. This approach builds upon

auto-regressive solvers, which will be discussed more thoroughly in the next section. This

type of model advances a state representation one step forward in time but is limited in fixed

43

Learning the solver for grid-based data Deep Learning for intuitive physics

location and timesteps. A natural solution, while not straightforward to achieve, is to append

a module to interpolate the forecasted solution at arbitrary locations.

@ Mesh-Agnostic Neural PDE Solver or MAgNet (Boussif et al., 2022) uses an encode-

interpolate-forecast framework. The model performs by interpolating the observed initial con-

dition to the queried positions and forecasts the solution using an auto-regressive solver. In

particular, the interpolation is performed in a latent space z(X), with X = {xk|i ∈ J0, KK},
rather than in the physical space s(X , 0) defined by the initial condition.

z(xk) = Pθ

(
s(xk, 0)

)
. (3-12)

The interpolation at spatial query points X ′ = {x′j|j ∈ J0, LK} is performed using a learned

projection function (Esmaeilzadeh et al., 2020; Chen et al., 2021c) operating in a latent space

defined by the vector z. The physical value is retrieved using a decoder (MLP):

z(x′j) =
∑i∈N (x′j)

wjgθ

(
s(xi), z(xi), xi − x′j

)
∑i∈N (x′j)

wj
, (3-13)

ŝ(x′j, 0) = dθ

(
z(x′j)

)
, (3-14)

with N (x′j) ⊂ X the neighborhood of x′j, wj are distance-based weights, and gθ , dθ are MLPs.

We obtain a new initial condition ŝ(X + X ′, 0) augmented with values at the query points,

which can be advanced in time using an auto-regressive forecaster Fθ . In particular, MaGNet

uses an Euler scheme with a timestep ∆t between each iteration:

ŝ(x′j, t + ∆t) = s(x′j, t) + ∆t× Fθ

(
ŝ(X +X ′, t)

)
(3-15)

Combining auto-regressive prediction and interpolation has great potential for achieving

space and time continuous simulation: learning an input-dense solution capable of generaliza-

tion. Yet, MaGNet suffers from several flaws that hinder its performance. The interpolation is

performed solely on the initial condition, ignoring insights that could be gathered from mul-

tiple timesteps. Moreover, if the number of query points exceeds the number of known points

(|Y| ≫ |X |), the input to the auto-regressive solver is filled with noisy interpolation, which

impacts performance. We propose a different approach in Chapter 7, where interpolation is

performed after forecasting, and which leverages information from both spatial and temporal

domains.

3.3 Learning the solver for grid-based data

So far, we have primarily focused on dense representations of trajectories from physical sys-

tems, which find usage in experimental sciences where data is often scattered across time

and space. However, for simulation purposes, a discrete representation of the solution often

suffices, that is measurements taken at regular time intervals T =t1, ..., tK and fixed positions

X=x1, ..., xM.

44

Learning the solver for grid-based data Deep Learning for intuitive physics

In this section, we will focus on approaches trying to learn the behavior of a solver directly,

without explicit modeling of the dynamics. We recall that this guideline differs from learning

a discrete dynamical system, in the sense that the notion of state is not necessarily required.

In other words, we adopt a regression equation in a discrete-time and space setup:

s(X , tk+1) = F
(
s(X , tk)

)
, (3-16)

where F is the so-called solver. Thus, a trajectory can be forecasted from an initial condition

by applying F to its output multiple times. Our goal is to approximate F from a dataset D of

trajectories sampled at fixed points X × T .

3.3.1 Grid-based simulations

Let us begin with the particular case where X is a uniform and regular grid in a 2D space.

This discretization scheme is common for several applications involving PDEs. The interest

we have in this setup is that it is highly related to a well-studied field of deep learning:

computer vision. Indeed, assuming that the measurement points are distributed on a uniform

and regular grid allows to interpret trajectories as videos, expressing the physics forecasting

into a video prediction task which has been successfully addressed with CNNs (Wang et al.,

2022d; Lee et al., 2018; Gao et al., 2022; Wang et al., 2019e).

ß For instance, fluid dynamics is governed by the Navier-Stokes equations, which can be

written in the incompressible case and without heat transfer as:

∇ · v = 0; ρ
(∂v

∂t
+
(
v · ∇

)
v
)
= −∇p + µ∆v + f , (3-17)

where v(x, t), p(x, t) are the velocity and pressure field, ρ the density, µ the viscosity co-

efficient and f some external perturbations. Simulating fluid dynamics is challenging, in

particular because of the absence of an independent equation for pressure. Typically, the

pressure field is deduced from correction schemes to ensure incompressibility (Issa, 1986;

Barton, 1998; Kim and Benson, 1992). For 2D flows, the spatial domain can be discretized in

a uniform grid, which has the advantage of simplifying the discretization scheme, allowing

to use finite differences. However, the method is known to be inaccurate for complex flows

(Versteeg and Malalasekera, 2007).

Conversely, a learning-based approaches are a convenient solution to bypass the limita-

tions of handcrafted algorithms by discovering regularities and shortcuts in data, thus relying

on intuitive physics. In this case, CNNs are a well-adapted structure for modeling the dynam-

ics (F). Indeed, such model can be trained to simulate the trajectory of the system forward

in time in a much more complex way than the simpler finite difference method. Interestingly,

operators of spatial differentiation on a 2D grid can be expressed with convolution kernel,

aligning CNNs with conventional solvers.

45

Learning the solver for grid-based data Deep Learning for intuitive physics

(a) Ground Truth (b) DeepFluid

Figure 3.5: DeepFluid: Simulation results from Kim et al. (2019), where a CNN-based model is used to

perform fluid simulations for computer graphics. The model is trained on simulations obtained with

Mantaflow (Pfaff and Thuerey, 2016), a simulation software inspired by the Stable Fluid algorithm

(Stam, 1999), a fast and stable yet not physically accurate algorithm for rendering fluids.

@ DilResNet (Stachenfeld et al., 2021) models the solver with a CNN-based neural network

called Dilated Residual Network Fθ . The model is applied recursively from the initial condition

to forecast the pressure and velocity fields. The core of the model operates in a latent space

z(X , tk) = eθ

(
v(X , tk), p(X , tk)

)
. Finally, the output is then decoded to obtain the pressure

and velocity fields for the next time step.[
v(X , tk+1)

p(X , tk+1)

]
=

[
v(X , tk)

p(X , tk)

]
+ Fθ

(
z(X , tk)

)
(3-18)

Due to their early-age popularity in computer vision, CNNs are commonly used to ad-

dress fluid mechanics simulations. Such auto-regressive simulators for fluid mechanics can be

designed either end-to-end (Kurz et al., 2023; Margenberg et al., 2022; Gao et al., 2021; Obiols-

Sales et al., 2020; Franz et al., 2021) or embedded in hybrid solvers (Tompson et al., 2017;

Kochkov et al., 2021). Training usually involves supervised learning from accurate trajecto-

ries from classic solvers or real-world measurements from particle image velocimetry (Eckert

et al., 2019; Yu et al., 2023). CNN-based simulators excel at capturing intuitive fluid dynamics

and learning shortcuts to accelerate simulation and rendering, and have many applications in

computer graphics (Kim et al., 2019; Wiewel et al., 2019) (see figure 3.5). Yet, suitable dataset

for learning fluid dynamics are challenging to produce (see chapter 8).

@ Learning Fluid Mechanics from Scratch (Wandel et al., 2021) proposes a different train-

ing technique by leveraging the knowledge of the Navier-Stokes equations. The approach

considers a pool of simulation results, initialized with random initial conditions. During

training, inputs are drawn from the pool and inputted to the auto-regressive model trained

to minimize the residual from the Navier-Stokes equation (in a PINN-like setup). After sev-

eral optimization steps on the weights of the model, the predicted output is added to the

46

Learning the solver for grid-based data Deep Learning for intuitive physics

Eθ

PhyCell Conv LSTM

+

Dθ

I(t)

I(t + 1)

sp(t) sr(t)
Eθ

(
I(t)

)
sr(t + 1)sp(t + 1)

s(t + 1) = sp(t + 1) + sr(t + 1)

(a)

sp(t)

Dynamics
∂sp

∂x , ∂sp

∂y , ∂2sp

∂x∂y , ...

Partial derivatives Φθ(sp)

+

Correction

tanh

−

+s̃p(t + 1)

I(t) Eθ sp(t + 1)

Kt

(b)

Figure 3.6: PhyDNet – is an auto-regressive model forecasting the temporal evolution of videos repre-

senting physical phenomena. (a) the model disentangles a physics representation sp from the residual

dynamics sr , each term having its own dynamics. (b) the physics state is processed by a PhyCell, a

neural unit based on partial differential equations and inspired by Kalman filtering to forecast and

correct the latent state based on the observed frame (figures adapted from Guen and Thome (2020)).

pool of simulations, and the operation is repeated. The pool grows iteratively with better

and better outcomes as the model progresses.

The main limitation of CNN-based fluid solvers is their requirement for regular and uni-

form grids, which is unpractical in computational fluid dynamics. Complex geometries and

adaptive resolutions are better handled with irregular meshes (see 8).

However, CNNs are highly relevant for cases where the physical state is measured via a

video. Indeed, the observation function h of a camera (mapping states to frames) is challenging

to model using traditional tools, and CNNs offer a convenient way to learn state represen-

tations while avoiding the need for hand-crafted feature extractors. Yet, these models face

challenges since videos contain many irrelevant information for physics forecasting, such as

colors and backgrounds. Useful information is deeply entangled in the image structure, re-

quiring a holistic analysis of the frame to extract physical properties. Thus, a key task in

physical video processing is disentangling dynamic information from visual information, as

the latter does not influence the dynamics (Ehrhardt et al., 2018; Jaques et al., 2020).

@ PhyDNet (Guen and Thome, 2020) achieves this disentanglement by assuming the exis-

tance of a latent space in which the evolution of a video I[k] can be decomposed into two

components s[k] = sp[k] + sr[k], modeled as discretized variables of continuous states sp(t)

and sr(t) for some time t (sp[k] = s(tk)). The first component sp represents the physical

dynamics, and sr the residual dynamics. Both follow a different ODE in continuous time:

∂sp

∂t
= Fp

θ (s
p, I)

∂sr

∂t
= Fr

θ (s
r, I) (3-19)

The residual dynamics Fr
θ is modeled with a variant of RNN called ConvLSTM (Shi et al.,

2015). For the physical dynamics Fp
θ , PhyDNet introduces a specialized unit called PhyCell,

47

Learning the solver for grid-based data Deep Learning for intuitive physics

designed to model PDEs in the latent space. PhyCells behave as a Kalman filter, fusing the

prediction from a learned dynamical system and information from the current measurement

(i.e. the current image)

Dynamics: s̃p[k+1] = sp[k] + Φθ

(
sp[k]

)
Correction: sp[k+1] = s̃p[k+1] + K[k]⊙

(
Eθ(I[k])− s̃p[k+1]

) (3-20)

The matrix K[k] is similar to a Kalman gain and is modeled with a RNN K[k] =

tanh(W1s̃p[k+1] + W2Eθ

(
I[k]
)
+ b). Eθ is a CNN-based neural network playing the role of a

state estimator from the video. The learned dynamics Φθ is modeled as follows:

Φθ(sp) = ∑
i,j⩽q

ci
∂i+jsp

∂xi∂yj (3-21)

with [x y]⊤ are the spatial coordinates within the image and ci are learnable weights. The

function Φθ uses convolutional layers to represent differentiation filters. PhyDNet achieves

excellent video prediction performance (see figure 3.6 for an overview). The next frame is

retrieved with a decoder network I[k+1] = Dθ

(
sr[k+1] + sp[k+1]

)
PhyDNet addresses an “output prediction” task which consists of simulating the future

evolution of a measured quantity (here, the frames of a video) over time. This setup is very

common, and dedicated models typically exhibit two behaviors:

• A closed-loop phase – where ground truth observations I[k] are provided to the model

to correct the estimate of the latent state.

• An open-loop phase – where the model becomes autonomous, using its own predictions

as new inputs.

This raises questions about the amount of previous observations needed during the closed-

loop phase to accurately estimate a good latent representation (this question is addressed in

chapter 4), as well as the ability of the model to robustly converge to the true state from

observed frames (discussed in chapter 5).

Surprisingly, this class of neural simulators requires initialization from another simulator

and cannot perform cold start forecasting from a single initial condition. In other words, it

requires a window of past observations to perform. These initialization frames are usually

available for online tasks (e.g. control or state estimation), but not for simulation purposes.

The neural simulators we will introduce in Part IV are capable of forecasting a trajectory from

a single initial condition.

3.3.2 Object-level representations for videos

In many applications, reasoning over pixels is impractical and unnatural, especially for prob-

lems such as rigid body dynamics, where interpreting object movement directly from pixel

48

Learning the solver for grid-based data Deep Learning for intuitive physics

is challenging. In that case, disentanglement in the sense of PhyDNet might not be adapted.

Instead, inspired by and closely linked to computer vision, a line of work suggests reasoning

over object-level representations, i.e. structured latent spaces containing more or less explicit

information about objects in the scene. This approach benefits from extensive research on

object and pose detection (Zhu et al., 2014; He et al., 2017; Carion et al., 2020; Redmon and

Farhadi, 2018) and finds usage in visual reasoning tasks (Baradel et al., 2018; Kervadec et al.,

2021; Locatello et al., 2020; Xu et al., 2019).

For instance, in rigid body dynamics, one can leverage priors on object behavior, since

pixels belonging to the same object should evolve in the same way. Instead of searching for

image-wide displacement (i.e. optical flow), pixels are processed in groups, using a unique

transformation in 3D space, and deduce how the images should evolve accordingly.

ß The idea is illustrated in SE3-Net (Byravan and Fox, 2017), which considers a rigid body

scene acquired using a depth camera. The network identifies pixels belonging to the same

object and estimates their 3D transformations (represented by matrices in SE(3)). The next

frame of the video is obtained by applying these transformations to the pixels.

Formally, the input frame I[k] at time k is decomposed into Q motion masks Mq, where

(Mq)i,j[k] represents the probability of pixel (i, j) to belong to the motion class q. The rigid

SE(3) transformations (Rq[k], pq[k]) of each motion class are estimated with another network,

Rq being a rotation matrix and pq a translation vector. Each pixel at time k is then displaced

to its next position at time k+1 using the weighted transformation:

(i, j)[k+1] =
Q

∑
q=1

(Mq)i,j[k]×
(

Rq(i, j)[k] + pq[k]
)

(3-22)

The model is trained end-to-end to forecast future frames, see figure 3.7a for an illustration.

Using object-level transformations constrains the model to consider movements as a whole

rather than pixel by pixel, which improves the performances in various applications, such as

robotics manipulation, mapping (SLAM), and flow estimation (Vijayanarasimhan et al., 2017;

Gojcic et al., 2021; Zhang et al., 2020a; Huang et al., 2021; Ryu et al., 2022). In a more general

sense, one of the key interests of object-level representations is that they reduce dimensionality

by transforming high-resolution images into meaningful low-dimensional vectors. These rep-

resentations are arguably more suitable for intuitive physics, and can also offer some limited

form of interpretability.

Similar to region-based approaches, the use of keypoints is a natural choice and is a popular

object-level representation to describe movement with high precision. Historically, keypoints

were computed using hand-crafted features extractor (Lowe, 1999), but can nowadays be dis-

covered by deep learning. The main difficulty when detecting keypoints is that the dataset

is usually not labeled, i.e. we do not have access to ground truth optimal keypoints within

49

Learning the solver for grid-based data Deep Learning for intuitive physics

Input Ground Truth SE3-Net

Ba
xt

er
M

ul
ti

pl
e

Bo
xe

s
Si

ng
le

Bo
x

(a)

Source Target Reconstruction Keypoints

St
ac

k
Po

ng
Pa

cm
an

(b)

Figure 3.7: Object-level visual reasonning – (a) SE3-Net: the input depth map and ground truth

action (red dot and green arrow) are displayed in the first columns, the model outputs are shown in

the last column. The model maintains object coherence by constraining all points belonging to the

same motion mask to undergo the same transformation (figure from Byravan and Fox (2017)). (b)

Transporter Network: keypoints (4th column) and reconstructed target frame (3rd column) obtained

in three different setups. The discovered keypoints tracks the important part of the frames, such as the

joints of the robot arm or the moving objects in the scene.

each frame to perform the downstream task, whatever it is. Note that the notion of optimal

keypoints varies depending on the downstream task.

@ Transporter Network (Kulkarni et al., 2019) is an effective structure for building a key-

point detector suitable for control applications. In this model, keypoints are discovered

through a reconstruction proxy task, which aims at reconstructing a target frame Itarget from

a source frame Isource using (1) a feature extractor gθ(I) computing features from images

using a CNN, and (2) a keypoint detector kθ(I) which outputs 2D locations extracted from

heatmaps, obtained by another CNN.

The model must discover points on relevant moving content, thus disentangling back-

ground (encoded into features) and object/point positions. This is achieved through a trans-

port equation used to reconstruct the target image from the source, replacing the source

features at keypoints locations with the ones from the target features:

z =
(
1− kθ(Itarget)

)(
1− kθ(Isource)

)
× gθ(Isource) + kθ(Itarget)× gθ(Itarget) (3-23)

The transported features z are used to reconstruct the target image using a de-convolution

network. The model is trained end-to-end, minimizing the reconstruction loss, while in-

herently discovering meaningful 2D locations within the images. The Transporter network

has been applied successfully for control and reinforcement learning tasks, including Atari

50

Learning the solver for mesh-based simulations Deep Learning for intuitive physics

games (see figure 3.7b).

Keypoints have found practical applications in robotics manipulation, providing a conve-

nient way to model joints and formulate high-level goals, with many applications in robotics

(Zeng et al., 2021; Manuelli et al., 2019; Nagabandi et al., 2020; Manuelli et al., 2021). Moreover,

keypoints are also employed for understanding videos of physical phenomena, particularly

in rigid body dynamics to extract physical properties (e.g., mass, friction) and predict object

movements (Minderer et al., 2019; Li et al., 2020a; Ehsani et al., 2020)

In chapter 9 of the manuscript, we extend the Transporter network by introducing shape

coefficients and improving its temporal consistency. We demonstrate how causal reasoning

can be learned using counterfactual learning, opening new possibilities for understanding

complex dynamical systems from video data.

3.4 Learning the solver for mesh-based simulations

So far, we addressed simulations on regular spatial grids. We have discussed the limitations of

such sampling strategy for physical observations, and shown different techniques to leverage

object-level representations rather than pixel-based representations when dealing with videos.

Yet, several problems from the real-world extends beyond visual reasoning.

Fortunately, many physical phenomena can be represented as a connected graph of point-

wise objects, where each spatial node characterizes relevant physics properties. For instance:

• Rigid body dynamics are often simulated using 3D objects represented by connected

polygons, allowing collision detection between objects.

• Soft Body simulations involve deformable objects, such as fluids, modeled as connected

particles influenced by attractive or repulsive forces.

• Fluid Dynamics & Electromagnetism and other PDEs using eulerian formalism typi-

cally discretize space in a mesh of collocation points where physics quantities are mea-

sured.

The latter overcomes limitations faced by CNN-based methods. Convolution layers re-

quire a uniform discretization grid which us not suitable for adaptive resolution and cannot

handle complex geometries. On the other hand, graph-based spatial discretization offers more

versatility, as measurement points can be chosen arbitrarily to accommodate varying resolu-

tions and intricate shapes.

Formally, let us introduce a temporal graph structure (with discrete time index k) mod-

eling a physical problem G[k] = {X ,A,S [k], E [k]}, where X = {x1, x2, · · · } are the vertex

locations and S [k] = {s1[k], s2[k], · · · } are the corresponding time-varying states. The graph

also includes edges A = {(i, j), · · · } that may be associated with features E [k] = {eij[k], · · · }

51

Learning the solver for mesh-based simulations Deep Learning for intuitive physics

to represent interaction between connected vertices (e.g. elasticity coefficient between two

particles). Without loss of generality, we consider the case of a static graph structure (i.e. X
and A do not depend on time).

There exists an entire field of deep learning dedicated to processing such graph-structured

data called geometric deep learning. Geometric deep learning extends traditional neural net-

works with a message passing scheme which, in its simplest form, can be summarized in two

equations2, ∀(i, j) ∈ A

Message passing: e′ij = f edge(si, sj, xi, xj, eij)

Update: s′i = f node
(

si, xi, Agg
(
e′ij
)) , (3-24)

where f edge and f node are two neural networks, typically MLPs. The aggregation function

Agg
(
e′ij
)

merges the messages from the nodes j connected to node i (typically, a sum or an

average operator). The design of the message passing step, the aggregation function, and the

update step are not tailored to a specific design and can be adapted to the specificity of the

task. We refer to this class of models as Graph Neural Network (GNN).

GNNs are widely used across various domains in deep learning, including physics

(Shlomi et al., 2020; Satorras et al., 2021; Wang et al., 2022c), navigation (Lu et al., 2021; Chen

et al., 2019; Beeching et al., 2020), and finance (Cheng et al., 2022; Matsunaga et al., 2019). The

literature offers a diverse range of variants, leveraging spectral methods (Stachenfeld et al.,

2020; Bianchi et al., 2020; Cao et al., 2020), attention mechanisms (Veličković et al., 2018; Wang

et al., 2019c,d) or hierarchical structures (Zhang et al., 2020c,b).

ß For instance, to tackle rigid-body simulation, Allen et al. (2022b) extend the message-

passing equations to consider not only node-to-node interactions but also edges-to-edges

and faces-to-faces interactions. Unlike soft body dynamics, rigid bodies require fewer nodes

for representing simple geometries (e.g., a cube needs only 8 points regardless of its size). By

modeling faces-to-faces interactions, the model can accurately capture collisions that would

have been challenging to detect solely from the node-level interactions.

However, there is a particular structure of GNN that seems to provide excellent simulation

performance on a wide range of applications, the so-called Encode-Process-Decode pipeline.

This structure processes graphs using three modules:

• The encoder projects the physical states in S in a higher-dimensional space. Formally,

it computes embeddings ηi for each node. Edge features, if available, can also be em-

bedded in another latent space, otherwise, they can be computed from scratch using

geometrical consideration. The most common design is

ηi = gnode
θ (xi, si)

eij = gedge
θ (xi − xj, ∥xi − xj∥)

, (3-25)

2Time dependency is omitted for readability

52

Learning the solver for mesh-based simulations Deep Learning for intuitive physics

C
lo

th

gr
ou

nd
tr

ut
h

pr
ed

ic
tio

n

A
ir

flo
w gr

ou
nd

tr
ut

h
pr

ed
ic

tio
n

St
ru

ct
ur

e

gr
ou

nd
tr

ut
h

pr
ed

ic
tio

n

Time

(a)

G
oo

p gr
ou

nd
tr

ut
h

pr
ed

ic
tio

n

Sa
nd

gr
ou

nd
tr

ut
h

pr
ed

ic
tio

n

W
at

er

gr
ou

nd
tr

ut
h

pr
ed

ic
tio

n

Time

(b)

Figure 3.8: Encode-Process-Decode – Simulation results from (a) MeshGraphNet (Pfaff et al., 2020)

and (b) Graph Network-based Simulator (GNS) (Sanchez-Gonzalez et al., 2020). MeshGraphNet sim-

ulates physics on meshes, which is a sensible way to model fluid dynamics, structure deformation,

and clothes. GNS focuses on soft-body and smoothed-particle hydrodynamics and can simulate the

behavior of fluid by tracking the evolution of a set of particles.

with gnode
θ and gedge

θ are MLPs. The edges are usually computed using Delaunay trian-

gulation or obtained from nearest neighbors.

• The process step consists in applying several layers of message-passing to the encoded

graph (Scarselli et al., 2008; Kipf and Welling, 2016; Battaglia et al., 2016), i.e. multiple

iterations of

eij ← eij +

εij︷ ︸︸ ︷
f edge,ℓ
θ (ηi, ηj, eij), (3-26)

ηi ← ηi + f node,ℓ
θ

(
ηi, ∑

j
εij

)
, (3-27)

where f edge,ℓ
θ and f node,ℓ

θ are two neural networks (MLPs) of the ℓth iteration.

• Finally, the decoder re-projects the resulting node embeddings ηi to the physical space.

For simulation purposes, the output is usually embedded in a simple Euler scheme to

advance the states forward in time

si[k+1] = si[k] + Dθ(ηi), (3-28)

where Dθ is another MLP.

53

Large scale datasets for physics Deep Learning for intuitive physics

ß This model has been successfully applied to soft body dynamics (Sanchez-Gonzalez et al.

(2020), Graph Network-based Simulator (GNS)), and to mesh-based simulation, such as fluid

dynamics, cloth simulation, and material deformation (Pfaff et al. (2020), MeshGraphNet).

Both methods demonstrate impressive results (see figure 3.8). Li et al. (2018) propose a multi-

scale graph network for simulating soft-body dynamics, while Han et al. (2021) incorporate

temporal attention mechanisms to enhance the robustness of MeshGraphNet over longer

horizons, albeit with reduced accuracy during initial steps of the rollout.

A promising application of such models lies in their differentiability property, allow-

ing direct optimization of shapes to meet specific objectives using gradient descent on the

geometry. This idea is explored in Allen et al. (2022a).

In our work, we contribute to the domain by introducing a mesh transformer applied to

fluid simulations in chapter 8. Our approach specifically addresses a drawback of GNN-based

models, which require many layers to propagate information over long distances.

3.5 Large scale datasets for physics

In the previous sections, we have presented physics and control-related models based on

deep learning, but overlooked a crucial aspect, that is the necessity of large-scale datasets for

training neural networks. Deep learning is known to be extremely data-intensive, which is a

huge issue in the context of dynamical systems where generating data can be challenging.

In some cases, typically for control applications, it is possible to build a dataset of trajec-

tories by numerically solving the ground truth ODE. In general, one might use a conventional

solver (e.g. Runge-Kutta methods) to generate a large number of trajectories from random ini-

tial conditions (Gilpin, 2021; Gaby et al., 2022; Peralez et al., 2022). To ensure precision, a good

practice consists of (1) simulating the trajectory with a smaller time step than the desired one

(by roughly an order of magnitude), and (2) down-sampling the result to the targeted rate.

Challenges arise when dealing with dynamics in the form of a PDE, as conventional

numerical solvers become time-consuming, which might limit the precision or the number

of simulated trajectories in the dataset. Fluid mechanics is a good example: simulation data

can be acquired through several solvers, ranging from computer graphics-oriented simulators

(Takahashi et al., 2021; Pfaff and Thuerey, 2016) to accurate computational fluid dynamics

solver (OpenFOAM©, Ansys© Fluent, ...). A large body of work (Chen et al., 2021a; Pfaff et al.,

2020; Han et al., 2021; Stachenfeld et al., 2021) introduces synthetic datasets, yet is limited to

simple tasks such as 2D flow past a cylinder. Accurate 3D simulations are mostly conducted

on grid-based meshes and for rather simple, theoretic problems (Mohan et al., 2020; Chen

et al., 2021b; Stachenfeld et al., 2021). The John Hopkins Turbulent Database (Li et al., 2008)

contains nine direct numerical simulation datasets (i.e. direct resolution of Navier-Stokes

equations) but with only a single scene per dataset simulated on a very fine grid at low time

54

Take-home messages Deep Learning for intuitive physics

resolution.

In rigid body mechanics, numerical simulation involves collisions and resting contacts of

moving objects which are not trivial to handle. These datasets can serve various purposes and

are not limited to the collection of trajectories: Kubric (Greff et al., 2022) is a dataset generator

for rigid body scenes which leverages PyBullet© for physics simulation and Blender© for

visual rendering. CLEVRER (Yi et al., 2019) is a visual question-answering dataset, where

an agent is required to answer a counterfactual question after observing a video showing

3D objects moving and colliding and PHYRE (Bakhtin et al., 2019) is a physics benchmark

involving agent interaction to achieve collision-related goals.

In this thesis, we present two challenging datasets. In chapter 8, we introduce a fluid

mechanics dataset that has required several months of simulations on a high-end computer

to simulate a large-scale dataset of a difficult prediction task. In chapter 9, we propose a

counterfactual physics dataset based on rigid body mechanics, derived from CoPhy (Baradel

et al., 2020). The difficulty of generating this dataset lies in the assessment of the feasibility of

the underlying task.

Obtaining datasets from real physical systems is rare and difficult. Some methods lever-

age alignment with numerical simulations to extrapolate ground truth flows on real-world

phenomena (Eckert et al., 2019; Bézenac et al., 2019). Lerer et al. (2016) harnessed a handful

of real-world rigid body dynamics by filming towers of wooden cubes in a hundred differ-

ent configurations. Several real-world datasets for mechanical and electronic devices are also

available but are limited in size (Weigand et al., 2023; Janot et al., 2019; Schoukens and Noël,

2017). For drone control, highly accurate motion tracking devices have been used to create

large-scale datasets of drone flights (Song et al., 2023; Cioffi et al., 2023; Pfeiffer et al., 2022;

Loquercio et al., 2021; Bauersfeld et al., 2021).

3.6 Take-home messages

This chapter focuses on specialized models designed to address intuitive physics. We dis-

cussed two different approaches: learning the solution and learning the solver. For systems

governed by known differential equations, PINNs look for a solution using neural networks in

a mesh-free fashion. However, this method cannot generalize to new initial conditions. When

the governing equation is unknown, input-dense solutions can still be achieved using discrete

measurement datasets, but this requires high modeling efforts.

Deep learning excels in auto-regressive prediction tasks and extends its capabilities to

image-based reasoning and fluid mechanics. CNNs are particularly suited for video process-

ing, which is challenging to address with conventional tools. For better performance, training

CNNs can be biased toward object-centric representations, such as keypoints.

55

Take-home messages Deep Learning for intuitive physics

In a more general setup, the advantages of object-level representations suggest using ge-

ometric deep learning and graph neural networks to simulate physics. Such models achieve

impressive results on complex phenomena, such as rigid or soft body mechanics. However,

training these large-scale models necessitates large-scale datasets, which can be particularly

challenging to obtain in the context of physics-related tasks.

56

Part II

Foundations for Robust Simulations using

Observer Theory

58

General remarks

The identification of nonlinear dynamical models is an open topic in control theory, espe-

cially from sparse input-output measurements. A fundamental challenge of this task is

that, in the general case, very little to zero prior knowledge is available on both the state and

the nonlinear system. Moreover, many applications require specific guarantees on the iden-

tification method, such as the existence and uniqueness of the solution or error bounds. In

what follows, we introduce new theoretical tools and constructive methods for the identifica-

tion of nonlinear dynamical systems with neural networks. In particular, we rely on observer

theory to build models that maintain certain essential guarantees. In practice, our objective is

to perform open-loop simulation with high accuracy.

Chapter 4: Learning Reduced Nonlinear State-Space Models: an Output-Error Based

Canonical Approach

TLDR; We show that, under some structural conditions on the to-be-identified model,

the state can be expressed as a function of a sequence of past inputs and

outputs. This relation, which we call the state map, can be modeled as a

neural network. Taking advantage of existing learning schemes, a state-space

model can be identified. After the formulation and analysis of the approach,

we show its ability to identify three different nonlinear systems.

Chapter 5: Deep KKL: Data-driven Output Prediction for Non-Linear Systems

TLDR; We address the problem of output prediction and define a general framework

bringing together the necessary properties for such an output predictor. We

try to formulate it consistently, reducing the gap between deep learning and

control theory. Building on this formulation and problem definition, we pro-

pose a predictor structure based on the Kazantzis-Kravaris/Luenberger (KKL)

observer and we show that it fits well into our setup. Finally, we propose a

constructive solution for this predictor that solely relies on a small set of tra-

jectories measured from the system.

59

Chapter 4
Learning Reduced Nonlinear State-Space Models: an

Output-Error Based Canonical Approach

Work presented at Conference on Decision and Control 2022,

Co-authors: Quentin Possamaï (Alstom),

Laurent Bako (Centrale Lyon),

Madiha Nadri (Université Lyon 1),

Christian Wolf (NaverLabs Europe)

4.1 Context

Most approaches in control theory commonly build upon a deterministic model that

describes how the state variables evolve. This model holds a central role, as the ef-

fectiveness of the method frequently hinges on its accuracy (Weinmann, 2012; Cheah et al.,

2006; Bauersfeld et al., 2021; Buşoniu et al., 2018; Bemporad, 2006). As a result, modeling and

identifying a dynamical system is the cornerstone of downstream algorithms, such as con-

troller or observer design. This is not a trivial task: physical systems are typically complex,

often non-linear, and require a trade-off between thorough modeling of physical phenomena

and computation time. On the other hand, the identification of the parameters of a non-linear

model is a non-convex problem, which can require tremendous hours of calibrations and ex-

periments. Moreover, conventional dynamical modeling often requires domain experts and

the ability to freely interact with the system.

Data-driven techniques for the identification of non-linear systems show encouraging re-

sults against these challenges (Ljung et al., 2020; Masti and Bemporad, 2018; Pillonetto et al.,

2014). Specifically, deep learning offers a change of point of view, redirecting painstaking ef-

forts in physical modeling toward the collection of large-scale datasets of trajectories from the

system. The main insight is to rely on extremely versatile parametric functions (i.e. neural net-

works in our case) capable of approaching most dynamics up to a certain degree of precision.

The parameters can be directly identified from pairs of input-output measurements, provided

that these measurements gather enough information to approximate the true dynamics. Nev-

ertheless, the great flexibility of neural networks comes at the cost of a lack of mathematical

61

Context Learning Reduced Nonlinear State-Space Models

structure making it difficult to derive theoretical results in terms of robustness, precision, and

stability. Moreover, learning complex, high-dimensional dynamical systems is not straightfor-

ward. The general formulation leads to latent dynamics models lacking meaningful physical

structure and requires large dimensional state spaces.

In this chapter, we propose an identification structure for nonlinear state-space systems

from a set of observation trajectories and associated inputs. We demonstrate the existence of

a regressor inspired by finite impulse response models allowing us to map a series of past

observations to future outputs and provide bounds derived from the prediction error during

deployment. We then deduce a high-dimensional canonical state-space model discovered using

an output-error-based approach and propose to learn an auto-encoder projecting the dynamics

into a smaller state-space. We evaluate our proposal on different systems in simulation and

the real world.

We now recall the main related works already reviewed with more details in chapter

2. Data-driven dynamics are widely studied in the community and get a lot of attention.

In particular, Brunton et al. (2016); Sahoo et al. (2018); Chen et al. (2021d) propose to find

governing equations by performing a sparse regression from the data. At the junction between

physical modeling and learning, Yin et al. (2021b); Long et al. (2018); Wang et al. (2019b);

Mehta et al. (2021b) use neural networks to model complementary phenomena not described

by the initial physical model. For instance, Shi et al. (2019); Bauersfeld et al. (2021); Possamaï

et al. (2022) extend the dynamical model of a Unmanned Aerial Vehicle (UAV) with a neural

network in charge of predicting aerodynamic disturbances, which are often very demanding

and intractable for real-time physical simulation, when addressed with conventional methods.

Close to our work, a body of literature proposes to use deep learning for the identification

of latent dynamics, i.e. without direct physical meaning of the (latent) state variable. This is

notably the case for recent work around the Koopman operator (Lusch et al., 2018; Janny

et al., 2021; Peralez et al., 2020; Rowley et al., 2009). Another solution is to use an auto-

encoder structure to model the latent dynamics of a system from past observations (Masti

and Bemporad, 2018; Beintema et al., 2021). Our proposal differs from this line of work

in three main points: (1) we provide theoretical results and conditions for the existence of

the dynamical system that we identify, (2) we propose to use a high-dimensional regressor

structure without explicit state representation, which will be deduced from a dimensionality

reduction operation and (3) we evaluate our approach on challenging and unstable systems.

62

Problem statement and preliminary results Learning Reduced Nonlinear State-Space Models

4.2 Problem statement and preliminary results

4.2.1 Problem statement

We consider a nonlinear discrete-time system of the general form:{
s[k+1] = f

(
s[k], u[k]

)
y[k] = h

(
s[k], u[k]

)
+ w[k]

, (4-1)

with s[k] ∈ S ⊂ Rns , u[k] ∈ U ⊂ Rnu , and y[k] ∈ Y ⊂ Rny being the state, the input and

the output of the system at discrete time k ∈ N respectively. f : Rns × Rnu → Rns and

h : Rns ×Rnu → Rny are some nonlinear vector-valued functions. As to w[k] ∈ W ⊂ Rny , it

represents measurement noise. We make the following assumptions:

1. The external signals u and w take values in compact sets U andW respectively.

2. The state-space S is a known compact set containing the initial state s0.

3. (S ,U ,W ,Y) and (f , h) satisfy the following invariance conditions:

∀(s, u) ∈ S × U , f (s, u) ∈ S
∀(s, u, w) ∈ S × U ×W , h(s, u) + w ∈ Y

(4-2)

4. f and h are uniformly Lipschitz continuous on S × U ⊂ Rns ×Rnu with respect to U ,

i.e., there exists a constant γ f > 0 such that ∥ f (s, u) − f (s′, u)∥ ⩽ γ f ∥s − s′∥ for all

(s, s′, u) ∈ S2 ×U .

ß The assumptions 1 to 4 are essentially required to theoretically ensure the well-

definedness of optimization problems that will be expressed later in the chapter. Assump-

tions 1 to 3 guarantee that the physical state remains in a compact set, which is a reasonable

assumption for physical systems. Assumption 4 concerns the smoothness of the dynamics,

and excludes too abrupt changes, such as a ball bouncing against a wall. Of course in the

context of system identification, such assumptions are not intended to be checked before

applying the method to be developed.

The problem of interest in this chapter can be stated as:

Given a finite number N of input-output data pairs
{(

u[k], y[k]
)∣∣∣k ∈ J1, KK

}
generated by a

nonlinear system of the form (4-1), and under assumptions 1 to 4, find an appropriate dimension ns of

a state-space representation along with estimates of the associated functions f and h.

Here, the dimensions ny of outputs and nu of inputs are known a priori. However, the di-

mension ns of the state is a parameter of the model that needs to be estimated along with

the maps (f , h). We develop a solution in three steps: first, a nonlinear regression model is

derived from the system equations (4-1). The underlying non-linear map is then modeled by a

deep neural network and trained with the available data following an output-error principle.

63

Problem statement and preliminary results Learning Reduced Nonlinear State-Space Models

Given this map, we derive an equivalent canonical state-space representation of system (4-1)

typically of high dimension. Hence, the third and last step of the proposed procedure consists

of model reduction, i.e. the reduction of the state dimension. The process aims at finding

another state-space model that is as close as possible to the primary one but with a lower

dimension. This is achieved through the design of an appropriate encoder-decoder.

4.2.2 Preliminary results

An important challenge concerning the identification of the system (4-1) is the fact that the

state s[k] is not entirely measured. We therefore need to express it first as a function of the

available past input-output measurements
{(

u[τ], y[τ]
)∣∣∣τ < k

}
. Indeed, if the noise w[k] in

system (4-1) is assumed to be identically equal to zero, then under appropriate observability

conditions on the system, there exists a time horizon ℓ and a map ϕ : RL → Rns , with

L = ℓ(nu + ny), such that the state s[k] can be written as

s[k] = ϕ
(
z[k]

)
where z[k] =

[
u[k−ℓ]⊤ y[k−ℓ]⊤ · · · u[k−1]⊤ y[k−1]⊤

]⊤
(4-3)

is the so-called regressor vector. To show the existence of such a map ϕ, some observabil-

ity conditions on the system to be identified are needed. For this purpose let us start by

introducing some preliminaries. For a positive integer k, let Fk : Rns ×Rk×nu → Rns be the

map defined recursively from the function f in equation (4-1) as follows: for s ∈ Rns and(
u[1], . . . , u[k]

)
∈ Rk×nu , F1

(
s, u[1]

)
= f

(
s, u[1]

)
and for all k ⩾ 2,

Fk
(
s, u[1], . . . , u[k]

)
= f

(
Fk−1

(
s, u[1], . . . , u[k−1]

)
, u[k]

)
. (4-4)

Before proceeding further, let us mention a useful property of the maps Fk.

Lemma 4.1 Under Assumption 3, if f : Rns ×Rnu → Rns is uniformly γ f -Lipschitz on S × U with

respect to U , then the map Fk defined in equation (4-4) is uniformly γk
f−Lipschitz on S × U k with

respect to U k ⊂ Rk×nu .

gProof: The proof of this lemma is straightforward and is therefore omitted. ■

Now consider the function Ok : Rns ×Rk×nu → Rk×ny given by

Ok
(
s, u[1], . . . , u[k]

)
=


h
(
s, u[1]

)
h
(

F1
(
s, u[1]

)
, u[2]

)
...

h
(

Fk−1
(
s, u[1], . . . , u[k−1]

)
, u[k]

)

 . (4-5)

For notational simplicity, let us define the stacked vector ū[1|k] =
[
u[1]⊤ . . . u[k]⊤

]⊤
so that

Ok
(
s, u[1], . . . , u[k]

)
in the previous equality can be replaced by Ok

(
s, ū[1|k]

)
.

Definition 4.1 The system (4-1) is said to be finite-time observable over a time horizon r ∈ N if and

only if for each ū ∈ U r, the function Or(·, ū), with Or defined as in equation (4-5), is injective.

64

Problem statement and preliminary results Learning Reduced Nonlinear State-Space Models

ß Note that if the observability property in Definition 4.1 holds for some r ∈N then it holds

as well for any k ⩾ r.

Proposition 4.1 (Existence of the map ϕ) If the nonlinear system (4-1) (considered under the as-

sumption that w ≡ 0) is finite-time observable in the sense of Definition 4.1, then there exist ℓ ∈ N

and a (non-linear) map ϕ : RL → Rns such that equation (4-3) holds for all time k ⩾ ℓ, any initial

state in S and any input signal taking values in U .

gProof: By iterating the system equations, it is easy to see that

ȳ[k−ℓ|k−1] = Oℓ

(
s[k−ℓ], ū[k−ℓ|k−1]

)
. (4-6)

By the finite-time observability assumption of the system, Oℓ(·, ū) admits an inverse for any

given ū ∈ U ℓ. Denote with O∗ℓ (·, ū) : Rℓ×ny → Rns the inverse map of Oℓ(·, ū) which is such

that O∗ℓ (Oℓ(s, ū), ū) = s. It hence follows from equation (4-6) that

s[k− ℓ] = O∗ℓ
(
ȳ[k−ℓ|k−1], ū[k−ℓ|k−1]

)
(4-7)

which, by recursively applying the first equation of (4-1), gives

s[k] = Fℓ
(
O∗ℓ
(
ȳ[k−ℓ|k−1], ū[k−ℓ|k−1]

)
, ū[k−ℓ|k−1]

)
:= ϕ

(
z[k]

)
. (4-8)

■

Consider now the more realistic scenario where the (unknown) measurement noise sequence{
w[k]

}
is nonzero. Then equation (4-6) becomes

ȳ[k−ℓ|k−1] = Oℓ

(
s[k−ℓ], ū[k−ℓ|k−1]

)
+ w̄[k−ℓ|k−1]. (4-9)

As a consequence, the state can no longer be obtained exactly by equation (4-7) or (4-8) since

ȳ[k−ℓ|k−1] does not lie in the range of Oℓ

(
·, ū[k−ℓ|k−1]

)
. Let in this case the state s[k−ℓ] and

s[k] be estimated by

ŝ[k−ℓ] ∈ arg min
s∈S

∣∣∣ȳ[k−ℓ|k−1]−Oℓ

(
s, ū[k−ℓ|k−1]

)∣∣∣ (4-10)

ŝ[k] = Fℓ
(
ŝ[k−ℓ], ū[k−ℓ|k−1]

)
, (4-11)

for some norm | · | on Rℓ×ny . The optimization problem (4-10) is well-defined since, by As-

sumptions 1 to 4, the function s 7→
∣∣∣ȳ[k−ℓ|k−1]−Oℓ

(
s, ū[k−ℓ|k−1]

)∣∣∣ is defined on a compact

set S and is continuous. Using the extreme value theorem, it gives sufficient conditions for

the existence of a minimum and for the existence of the minimizer ŝ[k−ℓ] as defined above.

In contrast, the estimates ŝ[k−ℓ] and ŝ[k] may not be uniquely defined in a general setting.

Uniqueness would require some more strict conditions on the system. Here, we will be content

with a set-valued version ϕ̂ of ϕ in the noisy estimation scenario. Hence let ϕ̂ be defined by

ϕ̂
(
z[k]

)
=
{

Fℓ
(
ŝ[k−ℓ], ū[k−ℓ|k−1]

)∣∣∣ŝ[k−ℓ] as in equation (4-10)
}

. (4-12)

65

Modeling and learning Learning Reduced Nonlinear State-Space Models

A question we ask now is how far the noisy estimate from equation (4-11) lies from the

true state s[k]. To study this, a stronger notion of observability is introduced as follows.

Definition 4.2 The system (4-1) is called finite-time uniformly observable over a time horizon ℓ ∈ N

if there exists a constant αℓ > 0 such that for each ū ∈ U ℓ,

∥Oℓ(s, ū)−Oℓ(s′, ū)∥ ⩾ αℓ∥s− s′∥ (4-13)

for all (s, s′) ∈ Rns ×Rns . Here ∥ · ∥ denotes a generic norm defined on appropriate spaces.

Informally, this definition measures how difficult it is to distinguish two initial conditions

from their respective observed outcomes. The value of αℓ can be seen as a measurement of

the injectivity of Oℓ, i.e. αℓ close to zero implies Oℓ weakly injective. Based on this property,

it is possible to bound the error between the noisy estimate (4-11) and the true state.

Proposition 4.2 Under Assumptions 1 to 4, if the system (4-1) is finite-time uniformly observable

over a time horizon ℓ ∈N in the sense of Definition 4.2, then∣∣ŝ[k]− s[k]
∣∣ ⩽ 2γℓ

f α−1
ℓ

∣∣w̄[k−ℓ|k−1]
∣∣ (4-14)

where γ f is the Lipschitz constant of f (See Assumption 4) and αℓ is the constant appearing in equation

(4-13).

gProof: See appendix A.1. ■

The result follows now by applying equation (4-11), the uniform Lipschitz assumption

on f stated in assumption 4 and Lemma 4.1. It can be seen from the expression of the error

bound (4-14) that the more observable the system is (that is, the larger the constant αℓ), the

more robust the estimate ŝ[k]. Indeed αℓ, when it exists, can be defined as

inf
ū,s,s′∈U ℓ×S×S

s ̸=s′

∣∣∣Oℓ(s, ū)−Oℓ(s′, ū)
∣∣∣∣∣s− s′

∣∣ . (4-15)

4.3 Modeling and learning

4.3.1 Nonlinear regression model

A starting point of our identification method for system (4-1) is to solve a nonlinear regression

problem. To formulate this, note by Proposition 4.2 that the true state of the system can be

written as s[k] = ŝ[k] + δ[k] with
∣∣δ[k]∣∣ ⩽ γℓ

f α−1
ℓ

∣∣w̄[k−ℓ|k−1]
∣∣. Consider now plugging the

state estimate (4-11) into the output equation of system (4-1), which gives

y[k] = h
(
ŝ[k] + δ[k], u[k]

)
+ w[k] (4-16)

= h
(
ŝ[k], u[k]

)
+ ξ[k],

66

Modeling and learning Learning Reduced Nonlinear State-Space Models

s̄[k] s̄[k + 1]

u[k]

+Dθ Hθ

Ā

B̄

S̄ Eθ

z[k] y[k+1]

[
0

y[k+1]

]

[
z[k][:-1]

0

]

[
0

u[k+1]

]
z[k+1]

(a)

z[k] =



y[k−l]

u[k−l]
...

y[k−1]

u[k−1]



u[k] ŷ[k] y[k]

ẑ[k]Dθ

Hθ

Eθ

MSE

MSE

s̄[k]

(b)

Figure 4.1: Model overview and training pipeline – (a) Block diagram of our canonical reduced state

space representation as defined in equation (4-22) (b) Training: the dynamics is modeled by Hθ acting

as a regressor from a short history of previous observations to the future value. The encoder-decoder

model is used to reduce the size of the state z[k] to s[k]. We train each network by minimizing the

prediction error as well as the reconstruction error.

with ξ[k] being an error component entirely due to the noise. It is indeed equal to zero

whenever w ≡ 0. It can be shown that ξ[k] can be written as ξ[k] = w[k] + δ̃[k] with
∣∣δ̃[k]∣∣ ⩽

γhγℓ
f α−1

ℓ

∣∣w̄[k−ℓ|k−1]
∣∣, where γh is the Lipschitz constant of the measurement function h of

system (4-1). Since ŝ[k] is a function of z[k] we end up with

y[k] = H
(
z[k], u[k]

)
+ ξ[k] (4-17)

for some nonlinear function H, referred to as the regressor function.

ß In the absence of noise, the exact expression of H is

H
(
z[k], u[k]

)
= h

(
Fℓ
(
O∗ℓ
(
z[k]

)
, η
(
z[k]

))
, u[k]

)
, (4-18)

with η
(
z[k]

)
= ū[k−ℓ|k−1].

The second step of the identification method is to construct a high dimensional state-space

representation whose state is the vector z[k] defined in equation (4-3). More precisely, consider{
z[k+1] = Āz[k] + B̄u[k] + S̄H

(
z[k], u[k]

)
+ S̄ξ[k]

y[k] = H
(
z[k], u[k]

)
+ ξ[k],

(4-19)

where Ā = A⊗ Inu+ny , B̄ = ens−1 ⊗ Inu , S̄ = ens ⊗ Iny , ei ∈ Rns being the canonical basis vector

which has 1 in its i-th entry and zero everywhere else, ⊗ referring to the Kronecker product

and A ∈ Rns×ns given by the canonical form

A =



0 1 0 · · · 0
...

.
...

0 · · · . . . 1 0

0 · · · · · · 0 1

0 · · · · · · 0 0


. (4-20)

67

Modeling and learning Learning Reduced Nonlinear State-Space Models

ß The matrices Ā, B̄, and S̄ are simply used to crop and shift the vector z[k]. Namely, Ā

removes the last input-output pair and shifts the remaining ones to the bottom of the vector.

B̄ shifts the new input u[k] in place of the last input control, and S̄ does the same on the

predicted output H
(
z[k], u[k]

)
. By summing each component, we obtain the next vector

z[k+1].

From equation (4-17) it can be seen that the system (4-19) constitutes a state-space repre-

sentation for system (4-1) since both models have the same input-output behavior for k ⩾ ℓ.

Given a finite set of input-output data points
{(

u[k], y[k]
)∣∣∣k ∈ J1, K + ℓK

}
for some finite ob-

servation window J0, K + ℓK, an estimate Hθ of the function H can be obtained in a certain

nonlinear model class H by minimizing a regression loss J(Hθ) given as

J(Hθ) =
1
K

K+ℓ

∑
k=ℓ+1

β[k]
∣∣∣y[k]− Hθ

(
ẑ[k], u[k]

)∣∣∣ s.t.

{
ẑ[k+1] = Āẑ[k] + B̄u[k] + S̄Hθ

(
ẑ[k], u[k]

)
,

ẑ[ℓ+1] = z[ℓ+1]
(4-21)

where β[k] is a weighting coefficient such as β[k]=1 except for β[ℓ+1] = 10. Regression starts

after a burn-in phase of ℓ steps (i.e. the window size), which are needed to construct a full

state representation.

4.3.2 Model reduction

The last step of the proposed method consists of model reduction. Indeed, the model de-

scribed in equation (4-19), although structurally simple, may suffer from a high dimensional

state vector z[k]. This may be a concern for some applications. We therefore propose a sec-

ond deep learning structure allowing non-linear state-space model reduction by encoding the

state variable z[k] into a low dimensional state variable s̄[k] ∈ Rn̄ for some user-defined di-

mension n̄ ∈ N. Formally, we train an auto-encoder (Eθ ,Dθ) such that s̄[k] = Eθ

(
z[k]

)
and

z[k] = Dθ

(
s̄[k]
)
. By applying these maps to equation (4-19) and neglecting the noise terms,

we get an approximate representation of the initial system (4-1) as follows:
s̄[k+1] = Eθ

(
ĀDθ

(
s̄[k]
)
+ B̄u[k] + S̄Hθ

(
Dθ

(
s̄[k]
)
, u[k]

))
ȳ[k] = Hθ

(
Dθ

(
s̄[k]
)
, u[k]

)
.

(4-22)

The state-space equation is summarized in figure 4.1a. The parameters of the encoder Eθ and

decoder Dθ are trained with the reconstruction loss from data samples
{

z[k]
}

collected from

the training set (see also Fig. 4.1b, i.e.
∣∣∣z[k]−Dθ

(
Eθ

(
z[k]

))∣∣∣.
Another observation is that by going from equation (4-19) to equation (4-22), one reduces

the dimension of the state vector but at the cost of introducing some structural complexity.

Hence the computational cost associated with simulating a model such as system (4-22) may

still be high depending on the complexity of the auto-encoder (Eθ ,Dθ).

From a formal point of view, this reduced state has several advantages. The constructed

68

Experimental results Learning Reduced Nonlinear State-Space Models

state-space z[k] is not part of the update equation (4-22) anymore. We can also experimentally

show (see section 4.4), that this method can discover state representations of smaller size with

a method that is generic in nature and can be applied to a broad class of problems.

4.3.3 Model architecture

The choice of the model class H is fundamental for several reasons: it must be sufficiently

large to represent a good approximation of H, and it should not be too large to ensure learn-

ability and generalization to unseen conditions (Shalev-Shwartz and Ben-David, 2014). In

other words, this class needs to be complex enough to capture the behavior of the unknown

nonlinear function H while being easily identifiable from a rather limited set of measurements.

We thus propose two different implementations of the regressor function Hθ . First, we

rely on the well-documented approximation power of MLPs, whose capacity shall be limited.

In particular, the number of hidden layers and number of neurons of each layer is considered

as a hyper-parameter optimized over a validation set independent of training and evaluation

splits, as classically done in machine learning. We refer to this design as Ours (MLP).

Ours (MLP):

{
z[k+1] = Āz[k] + B̄u[k] + S̄gθ

(
z[k], u[k]

)
,

y[k] = gθ

(
z[k], u[k]

)
,

(4-23)

with gθ being an MLP. We also introduce an extension of our model using our proposed state

representation z[k], but implement the mapping H by a GRU. Formally, the GRU updates a

zero-initialized hidden vector using the previous observations and control input. This vector

is then decoded by a MLP to the desired observation. Equation (4-19) is then used for forward

prediction. We refer to this model as Ours (GRU), it is given as

Ours (GRU):


z[k+1] = Āz[k] + B̄u[k] + S̄gθ

(
h[k]

)
,

h[0] = 0, h[i+1] = rθ

([
y[k−ℓ+i] u[k−ℓ+i]

]
, h[i]

)
,

y[k+1] = gθ

(
h[ℓ], u[k+1]

)
,

(4-24)

with gθ being an MLP and rθ is a shorthand notation corresponding to the classical update

equations of GRUs (Cho et al., 2014). For simplicity, and as usually done, gates have been

omitted from the notation. The encoder and decoder functions are modeled with MLPs.

Hyper-parameters and training details1 are available in appendix A.2.

4.4 Experimental results

We illustrate and evaluate the proposed nonlinear dynamical model identification approach

on the estimation and prediction of the state of systems with unknown dynamics. To demon-

strate the practical feasibility of our model, we propose to study its behavior in three different

1Code and datasets: https://github.com/SteevenJanny/CanonicalStateSpace

69

https://github.com/SteevenJanny/CanonicalStateSpace

Experimental results Learning Reduced Nonlinear State-Space Models

0

1

Y
0

Output prediction example on 2D Drone

− 1

0

1

Y
0

Output prediction example on 3D Drone

0

1

Y
1

0

1

Y
1

0 20 40 60 80 100

Time (# index)

0.0

0.2

Y
2

− 0.2

0.0

Y
2

0

1

Y
3

0 20 40 60 80 100

3

4

Y
0

Output prediction example on Tank

− 1.0

− 0.5

Y
4

29.0 29.5 30.0 30.5 31.0 31.5 32.0

Time (# index)

3.85

3.90

3.95

0 20 40 60 80 100

Time (# index)

10

11

Y
5

l = 10

l = 20

l = 30

GT

Figure 4.2: Qualitative results – Visual example of the output prediction produced by Hθ (Ours (MLP))

for different values of ℓ on the three datasets.

scenarios. First, we demonstrate the capabilities of our regressor function Hθ for output pre-

diction on simulated systems. We also study the influence of key parameters, namely the

length ℓ of the time window and the impact of the state reduction.

4.4.1 Dynamical systems and benchmarks

We use two simulated and one real system to validate our contributions.

• Tank – we test the proposed method on the cascade tank system introduced in Schoukens

and Noël (2017). This system relates the water level in two connected tanks without con-

sideration of overflow. It has the form off system (4-1) with f and h instantiated as follows
s1[k+1] = s1[k]− k1

√
s1[k] + k2u[k],

s2[k+1] = s2[k] + k3
√

s1[k]− k4
√

s2[k]

y[k] = s2[k],

(4-25)

with s[k] =
[
s1[k] s2[k]

]⊤
∈ R2 being the state and ki, i = 1, . . . , 4 known parameters.

• 2D Drone – we introduce a model of a 2-dimensional drone, i.e. an UAV moving in a 2D

plane. The drone is equipped with two propellers and its dynamic is modeled by:

p̈x = − kT
m (Ω2

1 + Ω2
2) sin(θ)− γ

m (Ω1 + Ω2) ṗx,

p̈z = kT
m (Ω2

1 + Ω2
2) cos(θ)− γ

m (Ω1 + Ω2) ṗz − g,

θ̈ = kT L
J (Ω2

2 −Ω2
1),

y =
[

px pz θ
]⊤

,

(4-26)

70

Experimental results Learning Reduced Nonlinear State-Space Models

zt

y[k−ℓ], u[k−ℓ]

y[k−ℓ+1], u[k−ℓ+1]

...

y[k−1], u[k−1]

rθ

rθ

...

rθ

h[0] = 0

gθ

Ā
z
[k]+

B̄
u
[k]+

S̄H
θ (z

[k],u
[k])

z[k+1]

u[k]

· · · · · ·· · ·

ŷ[k]

h[1]

h[2]

h[ℓ−1]

h[ℓ]

Time

(a) Ours (GRU)

h[0]=0 · · ·

y[0], u[0] y[1], u[1] y[ℓ−1], u[ℓ−1]

h[1] h[2] h[ℓ−1]

k = ℓ

gθ

rθ

gθŷ[ℓ], u[ℓ]

rθ

gθŷ[ℓ+1], u[ℓ+1]

· · ·h[ℓ] h[ℓ+1] h[ℓ+2]

Time

(b) Classic GRU

Figure 4.3: Comparison with the GRU baseline – Our model differs from the classic GRU baseline in

the definition of the state: (a) our approach defines the state of the system as z[k]. The gated recurrent

unit is reinitialized at h[0] = 0 at each timestep and is only used to aggregate measurements from

z[k]. (b) Conversely, the GRU baseline uses directly the hidden vector h[k] as the state representation,

which is initialized only once at zero, and updated throughout the simulation. For k > ℓ, the baseline

switches to auto-regressive forecasting.

where (px, pz) is the position, θ the angle, kT the thrust constant, Ωi the rotationnal speed

of the ith propeller, L the length of the UAV, m its mass, J its inertia and γ its friction

coefficient. The main interest of such a system is its naturally unstable dynamics, which

complicates the identification process. The system has been discretized.

• 3D Drone – we also evaluate on recordings of the Blackbird UAV flight dataset (Antonini

et al., 2018), which consists of 10 hours of aggressive quadrotor flights, measured with an

accurate motion capture device. We processed the raw data gathered from the onboard in-

ertial measurement unit (IMU) and propeller rotation speeds as observation and command

signals. The regressor is trained to simulate the IMU measurements, i.e. acceleration and

angular speed of the drone expressed in the local frame.

Noise has been added to the observations for the two simulated systems, Tanks and 2D Drone.

More details about the dataset generation are provided in the appendix A.3.

4.4.2 Baseline methods

To experimentally compare our model to competing approaches from the literature, we intro-

duce a neural baseline in the form of GRU (Cho et al., 2014), the state-of-the-art variant of

recurrent neural networks. This is a pure data-driven technique from the machine learning

field, where the learned state representation directly corresponds to the hidden state vector of

the GRU. For a fair comparison, we limit the size of the hidden vector to fit the corresponding

size of z[k]. We refer to this model as Classic GRU. Its update equations are given by

Classic GRU:

 h[k+1] = rθ

([
y[k] u[k]

]
, h[k]

)
, h[0] = 0,

y[k] = gθ

(
h[k]

)
,

(4-27)

71

Experimental results Learning Reduced Nonlinear State-Space Models

Tank (×10−4) 2D Drone (×10−2) 3D Drone (×10−2)

ℓ
Class.
GRU†

Masti
et al.

Ours
(GRU)

Ours
(MLP)

Class.
GRU†

Masti
et al.

Ours
(GRU)

Ours
(MLP)

Class.
GRU†

Masti
et al.

Ours
(GRU)

Ours
(MLP)

5 163 1030 138 7.14 62.8 60.5 106 31.4 24.8 14.6 6.44 15.2

10 41.7 1070 5.60 0.930 82.7 58.6 68.9 9.95 23.7 14.5 5.32 14.2

15 4.57 957 3.06 0.960 61.9 58.2 35.2 7.52 23.4 13.0 5.07 13.6

20 4.04 914 1.07 0.761 78.4 55.3 19.3 8.06 22.7 12.6 4.68 13.5

25 0.600 915 0.481 0.606 80.3 53.6 23.0 5.17 21.3 12.1 4.83 13.6

30 1.73 917 0.193 0.448 104 51.3 25.0 3.13 19.2 12.6 4.61 13.1

† The size of the hidden state of each GRU model is adapted to the window size s.t. fits the size of the

† equivalent regressor model.

Table 4.1: Quantitative results – we report MSE error over 100-step rollouts by the learned regression

model and compare with baselines, for different window sizes ℓ. Our model consistently outperforms

all baselines.

where rθ(·) is a gated recurrent unit and gθ(·) is a MLP. The baseline is evaluated in a

setting that is comparable to the proposed model. In particular, the model has access to the

same window of input/output pairs
[
y[k+i], u[k+i]

]
i=1..ℓ during the initial burn-in phase.

However, these values do not explicitly make up the state, as in our model. This data-driven

baseline is sufficiently general to be able to learn the same state representation in theory, but

there is no guarantee that training will lead to this solution. The difference between Ours

(GRU) and this baseline is pictured in figure 4.3

We also experiment with a latent dynamics model, in particular, the one introduced in

Masti and Bemporad (2018). This model has been evaluated on the same tank system, yet,

with a different data collection technique. Train and test trajectory in the Tank dataset as

proposed in Masti and Bemporad (2018) are generated from PRBS-like signals, which is a

classical approach for system identification. Our version of the Tank dataset is much more

challenging: observations are collected from closed-loop simulations with targets generated

procedurally and PID control. In our dataset, we took care to explore a wide range of possible

states with sparse measurements in the train set to prevent over-fitting on a specific command

design.

4.4.3 Output prediction and parameter analysis

Output forecasting – the identified dynamical model can be evaluated by performing open-

loop forward prediction from initial conditions and the set of inputs applied to the real system.

The model then forecasts outputs, which are compared to ground truth measurements. We

assessed the first stage of our method using this task, i.e. the resolution of the regression

problem. Table 4.1 reports the mean squared error on 100-step roll-out predictions for each

baseline and different window sizes ℓ ∈ {5, 10, 15, 20, 25, 30}. Our method shows excellent

prediction error even for low window sizes and consistently outperforms the closest compet-

72

Experimental results Learning Reduced Nonlinear State-Space Models

ing method from the literature, Masti and Bemporad (2018), by a large margin. We conjecture

two key arguments to justify this difference : (1) the structure proposed by Masti and Be-

mporad (2018) suffers from complex interactions between the auto-encoder and the latent

dynamics that penalize learning, and (2) the baseline model over-fitted on the simpler dataset

used in the original paper.

Machine learning baseline – is competitive with our contribution. However, its structure

forces to observe only one couple
(
y[k], u[k]

)
at a time. Relevant information needs to be

stored in its memory, the hidden state and this storage process is fully learned by gradient

descent, a difficult process. In principle, these models can learn a state representation that

is similar or even identical to our designed state map, but there is no guarantee that this

representation will emerge. Our state map model can therefore be seen as a form of useful

inductive bias for recurrent neural models.

For moderate window sizes, our model benefits from the immediate availability of all the

components of z[k] in its state. For very large window sizes or complex dynamical systems

(such as 3D Drone), the GRU extension (Ours (GRU)) outperforms the MLP regressor. In

this situation, the extended GRU takes advantage of its incrementally updated memory and

manages to manipulate the large dimension of z[k] by processing it piecewise, whereas the

MLP must manipulate the entire vector. Figure 4.2 shows samples of the predicted trajectory

using the MLP regressor approach for each dataset.

4.4.4 Model reduction

The reduction step is performed downstream of the training of the regression model. Nev-

ertheless, the difficulty of the reduction task is directly related to the initial size of the state

representation z[k], that is, to the size of the window ℓ. To accurately evaluate the com-

pression capabilities of our approach, we trained several auto-encoders for each value of

ℓ ∈ {5, 10, 15, 20, 25, 30} corresponding to different rates of compression increasing by steps of

15%.

Figure 4.4b shows the compression capabilities of our encoder-decoder structure for dif-

ferent window sizes ℓ. The results are consistent on the three datasets. The compression rate is

more sensitive on small input dimensions, and conversely, a larger dimension can be reduced

extensively with negligible loss of accuracy. Indeed, increasing the number of inputs arguably

leads to an increase in the redundancies exploitable by the encoder to reduce the dimension

of the state space and reconstruct it with limited deviation with respect to the initial vector.

Yet such reduction introduces noise to the state representation that the regressor will have

to cope with. We thus evaluate the impact of state-space reduction on the output forecasting

capabilities of our model, and summarize the results in figure 4.4a. Our reduction method

manages to reduce the dimension of the state in a consistent way up to 60% for the two

73

Conclusion Learning Reduced Nonlinear State-Space Models

90%75%60%45%30%15%

Compression rate

10− 3

10− 2

10− 1
(M

S
E

10
0-

st
ep

ro
ll

o
u

t)

2.40x10-1

3.17x10-3

1.54x10-3

1.32x10-3

9.14x10-4
1.23x10-3

8.61x10-29.45x10-2
1.09x10-1

9.43x10-21.01x10-1
9.67x10-2

Tank

Ours

Masti et al.

90%75%60%45%30%15%

Compression rate

100

3 × 10− 1

4 × 10− 1

6 × 10− 1

1.28x100

4.43x10-1

3.48x10-1

2.96x10-1

3.23x10-1

3.18x10-1

6.17x10-1

5.60x10-1
5.60x10-15.82x10-1

5.73x10-1
5.63x10-1

Drone 2D

Ours

Masti et al.

State reduction dependency on hyper-parameters

(M
S

E
10

0-
st

ep
ro

ll
o

u
t)

(a)

5 10 15 20 25 30
Window size

90%

75%

60%

45%

30%

15%

C
o

m
p

re
ss

io
n

(%
)

Tank

5 10 15 20 25 30
Window size

90%

75%

60%

45%

30%

15%

2D Drone

5 10 15 20 25 30
Window size

90%

75%

60%

45%

30%

15%

3D Drone

10− 4

10− 3

10− 2

10− 4

10− 3

10− 2

10− 1

10− 3

10− 2

10− 1

Autoencoding Mean squared error

(b)

Figure 4.4: (a) We studied the impact of state compression for multiple configurations of final latent

state dimension and temporal window and aggregated the results by these two parameters on the

synthetic datasets. Specifically, we measure the MSE on prediction for 100 steps in the future (Ours

(MLP)). (b) Heatmap of MSE for the encoder-decoder structure depending on both the window size

(which relates to the initial state dimension dim z) and the compression rate.

datasets in simulation without sensible variation of the prediction error. The error bars reflect

the double dependence of our approach both on the performance of the regression model H

and on the quality of the encoding-decoding. We compare favorably to the baseline in Masti

and Bemporad (2018).

4.5 Conclusion

In this work, we take advantage of the power of high-capacity deep neural networks to design

a new methodology for estimating nonlinear dynamical systems from a set of input/output

data pairs. We show that the state can be expressed as a state map computed as a function of

past inputs and outputs. We learn a mapping from this representation to model outputs from

training data using deep networks and show that this approach is competitive.

We tackled the problem of reducing the state space, showing that a state of similar size

to the original problem can be obtained through auto-encoding. The methodology has been

validated using three numerical examples including a dataset of real-world experiments.

4.6 Post-scriptum: taking a step back

Research has a peculiar dynamics of its own. Every trajectory, regardless of the initial con-

dition, is attracted exponentially fast towards an unstable attractor known as the submission

deadline. After reaching this point, the dynamics changes and loses its lipschitzness. Trajec-

74

Post-scriptum: taking a step back Learning Reduced Nonlinear State-Space Models

tories become chaotic, exhibiting high sensibility to exogenous perturbations (often termed

as reviews). It is known that there exists a finite time horizon Tnotification such that the system

becomes quasi-stochastic for all t > Tnotification, resulting in two separate behaviors, the so-

called acceptance and rejected dynamics. Despite this, the dynamics is globally asymptotically

stable, ultimately reaching an equilibrium. In this section, we aim to explore this equilibrium,

as well as the insights gathered during this longer convergence horizon. Over time, our own

comprehension of our work shifts, benefits from quieter periods and formal or informal dis-

cussions. Exciting insights and applications may emerge, motivating future work that, for

now, are limited to handwritten notes on a (probably lost) notebook. Of course, we may also

discover limitations, or stealth drawbacks that nobody noticed earlier.

Scope of our results – When presenting our work to the community, we encountered two

common misconceptions. Firstly, that our model can fully capture the true physical model,

with s̄[k] representing the physical state. Achieving this without appealing to additional prior

knowledge, such as state supervision or enforcing the exact ODE, is very unlikely. An even

more common misinterpretation is that if our model performs well, then unobserved physical

quantities must be entangled in s̄[k]. This is also untrue. Actually, our method identifies a

dynamical model explaining the observation, hence modeling solely the observable part of the

dynamics.

ß For instance, consider a dynamical model of the form:

ẋ = f1(x, z), ż = f2(z), y = h(z), (4-28)

where the output y can be directly simulated from z, making the other part of the state (that

is, x) unnecessary.

Finally, the learned model is also tied to the control law used for generating the dataset, and

might not generalize if the system is controlled with a different algorithm.

About the experiments on the regressor – One of the important aspects of our experiments

is that the baselines are constrained to hold the same state size as our method. This creates

an asymmetry in the design, particularly visible when comparing Ours (GRU) and Classic

GRU. Let us fix the window length to ℓ so that the state dimension is L=dim z=(ny + nu)× ℓ.

Naturally, we also constrained the hidden state h[k] in Classic GRU (equation (4-27)) to match

this dimension. The insight behind this is that we limit the number of information channels to

L, i.e. the variables, allowed to flow from one timestep to the next. This addresses a particular

case where the state size of the model is expected to be small for some reason. Note that in

Ours (GRU), the dimension of the hidden state in the GRU is not limited, since it is initialized

to zero at each new iteration.

On one hand, our model cannot freely store information in the state, which is defined

canonically as the vector of past measurements. On the other hand, the hidden memory can

75

Post-scriptum: taking a step back Learning Reduced Nonlinear State-Space Models

be larger compared to the baseline (we choose dim h[k] = 128 for our method). This greatly

increases the expressivity of our GRU (and also the number of parameters) compared to Classic

GRU. An unconstrained GRU will likely outperform our model. However, our work shows

that limiting the window length in recurrent networks and enforcing physical meaningfulness

is beneficial in comparable setups. This is a valuable insight, as one might think about merging

both approaches, benefiting from not only the power of GRUs for long-term information, but

also from the advantages of z[k], which grounds its behavior in physics.

Determining the state dimension: sufficient vs. necessary – Our model identifies what one

might call a sufficient window length ℓ. This value can be determined by measuring the error

metric for different lengths and keeping the smallest value satisfying some threshold on the

accuracy of the regressor. However, not all observations within the resulting vector z[k] might

be necessary. For instance, several measurements can be redundant or uninformative due

to high sampling frequency or noise. As it stands, our method cannot cope with this kind of

reduction and is constrained to manipulate the entire window length. Indeed, the compressed

state is built using a pure reconstruction task, agnostic of the dynamics. Consequently, we

force s̄[k] to contain every information within z[k] including unnecessary observations.

Enhancing the method to truly extract a necessary dimension is complex. One promising

avenue involves replacing the encoder and decoder with attention modules (Vaswani et al.,

2017). The key idea is that attention will select certain measurements among z[k] rather than

using all of them. This motivates end-to-end training of the dynamics and the auto-encoder,

since z[k] could potentially not be reconstructed from s̄[k] anymore. Yet, practical implementa-

tion is not straightforward: (1) how can we extract a static state size since the attention weights

change dynamically with the inputs (a possible option could be to consider transformers with

memory, such as Ryoo et al. (2023)) and (2) how can we handle a varying number of observa-

tions when designing the regressors. This is, however, an interesting track to explore.

The "appropriate state size" is a lie – The definition of finite-time observability is binary.

Consider a noise-less finite-time observable system over a horizon ℓ∗. If the window length ℓ

is smaller than ℓ∗, the system is not observable and the state cannot be retrieved. Conversely,

for all ℓ ⩾ ℓ∗, one can theoretically perfectly estimate the true state. We addressed the case of

noise in proposition 4.2, but we neglected the effect of learning in the process.

For instance, we observe in our results that the performance of the regressor is improving

for ℓ ⩾ ℓ∗. This is reasonable, the model takes advantage of more information. This is

somehow related to the evolution of αℓ in equation (4-13). We may expect αℓ to increase with ℓ,

and this evolution is linked to the learning process, hence a direction of future research would

be to theoretically study these dependencies with the tool of learning theory (Shalev-Shwartz

and Ben-David, 2014). Another interesting direction is to consider the case where ℓ < ℓ∗. In

this situation, a trained model might still be able to partially forecast the observations, as the

76

Post-scriptum: taking a step back Learning Reduced Nonlinear State-Space Models

observed measurements might still contain regularities that can be exploited. This is more

challenging since Oℓ is not injective anymore.

Finally, defining in practice a minimal window length to guarantee observability is dif-

ficult, as the appropriate window length is tailored to the error of a learning model, which,

in the general case, will evolve continuously with ℓ. Thus, finding an appropriate state size is

mainly a matter of user-defined performance requirements.

77

Chapter 5
Deep-KKL: Data-driven Output Prediction for Non-

Linear Systems

Work presented at Conference on Decision and Control 2021,

Co-authors: Vincent Andrieu (Université Lyon 1),

Madiha Nadri (Université Lyon 1),

Christian Wolf (NaverLabs Europe)

5.1 Context

5.1.1 Introduction

Most of the models introduced so far, including in the related work chapters, capitalize

on past measurements to make predictions. For instance, the latent dynamics models

(introduced in chapter 2) leverage these measurements to estimate a latent state variable.

In the previous chapter, measurements are directly integrated into a regressor function for

forecasting outputs. We shown that this is connected to the concept of finite-time observability,

which pertains to the number of past observations necessary to accurately estimate a state-

space representation. A different approach is used in recurrent networks, for instance Classic

GRU (figure 4.3) in the previous chapter, or PhyDNet discussed p.47. In these methods,

the latent state is not estimated in a single shot but rather refined sequentially using the

observations within the available time window. These models typically exhibit two modes:

• The closed-loop mode starts from a random initial value for the state variable in the

latent space. Typically, the latent memory of a recurrent network is initialized at zero.

The model is then fed with the observed outputs sequentially and uses them to update

the state estimate.

• The open-loop mode is used during the prediction step. The model operating in this

mode is provided with its own previous predictions as inputs. It becomes autonomous,

in the sense that it does not rely on ground truth observations anymore.

However, such a design holds sensible hypotheses. During the closed-loop step, we

79

Context Deep-KKL

expect the model to retrieve a good state representation given the measurements. This

raises important questions: (1) will the system converge to a good state representation? (2)

will it perform reliably for any observed trajectories and more generally (3) what kind of

properties guarantee that the closed-loop behaves as expected?

We argue that the answers to these questions lie in the contraction property. We intend to

delve into how this property can be harnessed within the context of deep learning to ground

output prediction into a practical mathematical setup. In this chapter, we develop a framework

for designing an output predictor to forecast the observations of an unknown dynamical

system. While designed from a control theoretical point of view, it is easily transferable to

methods based on deep learning. Moreover, under some assumptions, we show that an upper

bound of the prediction error can be computed for predictors complying with our definition.

As a use case of this general approach, we develop an output predictor based on the

Kazantzis-Kravaris/Luenberger (KKL) observer (Kazantzis and Kravaris, 1998) for non-linear

systems. Building on theoretical work (Andrieu and Praly, 2006; Marconi et al., 2007; Isidori

et al., 2010), we develop a data-driven approach to compute a KKL output predictor without

any knowledge of the dynamics that generated the observations. Our method mainly relies

on deep learning to identify relevant regularities in the training data and extract a predictor

from them. We illustrate some of the capabilities of the model across a variety of simulations.

We also highlight the limitations, which are due to this constructive solution for KKL. We

compare the proposition with two types of deep networks classically used in the field of

machine learning for time series forecasting: Recurrent Neural Networks (RNNs) (Rumelhart

et al., 1985) and a more modern variant, the Gated Recurrent Unit (GRU) (Cho et al., 2014).

In the same spirit, recent development around the Koopman operator (Lusch et al., 2018;

Rowley et al., 2009) proposes to identify a transformation that projects the state of a system

into an infinite dimensional latent space, in which the dynamics is fully linear, and then

exploits this representation to explain the output. The Koopman operator shares with our

work the idea of using deep learning to find a latent representation of a nonlinear system from

a set of observed data. Nonetheless, there are a few key differences with our contribution:

• Koopman theory gives an infinite-dimensional transformation into a fully linear sys-

tem. So any finite-dimensional transformation results as an approximation. By relaxing

the constraint on output linearity, KKL guarantees the existence of a finite-dimensional

transformation under very weak assumptions.

• The latent space created by the Koopman operator contains information about the full

state, while our proposition requires only the observable part of the state to be embedded.

Thus, our contribution does not require neither a measurement of the complete state nor

the observability of the system.

• Koopman requires the mapping from the state to the latent representation and its in-

80

Prediction via embedding into an output-dependent uniform contraction Deep-KKL

verse, whereas KKL only requires the identification of the inverse mapping.

• In contrast to our contribution, methods based on the Koopman operator do not benefit

from access to the first steps of the observed trajectory. Their predictions are solely based

on the initial state of the system.

5.1.2 The output prediction problem

Consider an unknown dynamical system of dimension n ∈N with measured output:

ṡ = f (s) , y = h(s) , (5-1)

with f : Rn 7→ Rn a smooth vector field and h : Rn 7→ R a smooth observation function. For

each s ∈ Rn, we assume that there exists a unique solution to equation (5-1), denoted at time t

by S(s0, t), with s0 as the initial condition. This solution is defined for all time (i.e. we assume

forward and backward completeness). We introduce Y , the set of all possible output functions

that can be generated by this dynamical system from the set of initial conditions. Formally,

Y =
{

y : R+ 7→ R, ∃s0 , y(t) = h
(
S(s0, t)

)}
. (5-2)

The problem we want to solve is:

Given a current time ℓ can we infer the future value of a trajectory y in Y given that we know y(t),

for t in [0, ℓ] ?

Note that we may not solve this problem for all y in Y but at least for those in a particular

subset Y of Y . We address this problem by first defining a framework encapsulating the

observation dynamics into a larger dynamical model, said generative model with a contraction

property. Under some assumptions, we propose an upper bound of the prediction error over

time for such a model.

In a second step, we suggest a possible solution via the KKL observer formalism. After

proving the existence of a generative model under this particular form, we verify that it also

respects the hypothesis required for our upper bound. To demonstrate the feasibility of this

solution, and inspired by da Costa-Ramos et al. (2020), we design a learning algorithm to

design such KKL model. In our simulations, the KKL-based predictor exhibits remarkable

forecasting capabilities, excellent generalization, and good robustness to noise.

5.2 Prediction via embedding into an output-dependent uniform contraction

5.2.1 Uniform contraction and generating model

Consider now a dynamical system in the form

ż = G(z, y), (5-3)

where z in Rm and y in R. We denote by Z(z0, t, y) the solution of equation (5-3) at time t

initiated from z0. This solution depends only on the values of y for t in [0, ℓ], i.e. it is causal.

81

Prediction via embedding into an output-dependent uniform contraction Deep-KKL

z0 = 0 ż = G(z, y) ż = G(z, y) · · · ż = G(z, y)

y0 y1 yℓ

z1 z2 zℓ−1

Z(z0, t, y)

ż = g(z) ż = g(z) ż = g(z) · · ·

ψ ψ ψ

zℓ
zℓ+1 zℓ+2

ŷℓ+1 ŷℓ+2 ŷℓ+3

Z
(

Z(z0, ℓ, y)), p, y
)Close Loop

Contraction

Open Loop
Generating model

Time
t = 0 t = 1 t = ℓ t = ℓ+ 1 t = ℓ+ 2 t = ℓ+ 3

Figure 5.1: Model overview – Computation graph for output predictors. The known part of the

observation y(t) for t ⩽ ℓ is used to make the latent state Z(z0, t, y) converge to Z(zy
0, t, y). During the

prediction step, we open the loop and let the autonomous system ż = g(z) perform the prediction.

Definition 5.1 (Lohmiller and Slotine, 1998) System (5-3) is said to define a uniform exponential

contraction if there exist two positive constants k and λ such that for all locally integrable functions

y : R+ 7→ R and all (za, zb) ∈ Rm ×Rm the two solutions Z(za, t, y) and Z(zb, t, y) satisfy:∣∣Z(za, t, y)− Z(zb, t, y)
∣∣ ⩽ ke−λt|za − zb|. (5-4)

ß We are interested in this type of dynamical systems because they forget their initial condi-

tions. This will be made precise in Proposition 5.1.

Consider now an autonomous system with measured output

ż = g(z) , y = ψ(z) , (5-5)

where g : Rm → Rm and ψ : Rm → R and where the solution initiated from z in Rm and

evaluated at time t is denoted by Z(z, t). Let Y be a subset of Y .

Definition 5.2 A generating model for Y is defined as a couple (g, ψ) such that for all y in Y there

exists zy
0 in Rm such that y(t) = ψ

(
Z(zy

0, t)
)
.

For instance, (f , h) is a generating model for the entire set Y . A generating model allows

to explain an output y in Y via a dynamical system. If we know the initial condition zy
0

associated with y, future values can be predicted by integrating the generating model from zy
0.

5.2.2 Prediction based on contraction and generating model

We wish to predict the future of any trajectory in Y ⊂ Y . To this end, the following definition

provides two necessary conditions.

Definition 5.3 An output predictor for Y ⊂ Y is defined as a couple (G, ψ) such as

• ż = G(z, y) is a uniform exponential contraction with parameter (k, λ) as in Definition 5.1;

82

Prediction via embedding into an output-dependent uniform contraction Deep-KKL

• the couple (g, ψ) with g(z) = G(z, ψ(z)) is a generating model for Y.

The behavior of an output predictor is outlined in Figure 5.1. Let ℓ be the number of

known timesteps of y and p the number of predicted timesteps. For an output y ∈ Y, we

note zy
0 the exact initial condition such that ψ(Z(zy

0, t, y)) = y(t) and z0 the (random) initial

condition used in the predictor. The prediction is decomposed into three steps:

1. First, the known part of the observation y(t), t ∈ [0, ℓ] is combined with the contraction

property so that Z(z0, t, y) gets close to Z(zy
0, t, y). This is the closed-loop behavior of

the predictor.

2. Then, the autonomous dynamical model ż = g(z) produces predictions in the latent

space z(t), t ∈ [ℓ, ℓ+ p]. We refer to this behavior as open-loop, since the real observa-

tion y is not used as feedback.

3. Finally, the predicted latent state variables z(t) are inputted to ψ to compute the output

ŷ(t) = ψ(z(t)).

Furthermore, if the dynamics of the latent representation g, and the map ψ are Lipschitz, one

can compute an upper bound of the prediction error due to an error on the initial condition

z0.

Proposition 5.1 Assume there exist G : Rm ×R→ Rm and ψ : Rm → R, both C1, such that (G, ψ)

defines an output predictor for Y with:∣∣∣∣∂g
∂z

(z)
∣∣∣∣ ⩽ L1 ,

∣∣∣∣∂ψ

∂z
(z)
∣∣∣∣ ⩽ L2 , (5-6)

with g(z) = G(z, ψ(z)), L1 and L2 in R+, then for all trajectories y ∈ Y, known in the time interval

[0, ℓ], the prediction ŷ at the prediction horizon p > 0 is given as:

ŷ(ℓ+ p) = ψ(Z(Z(0, ℓ, y), p)) , (5-7)

and satisfies

|ŷ(ℓ+ p)− y(ℓ+ p)| ⩽ kL2e−λℓ+L1 p|zy
0| . (5-8)

gProof: See appendix B.1. ■

ß The prediction mismatch is upper-bounded by a term, which has the following properties:

• As the prediction horizon p increases, the prediction error grows as well. This growth

is exponential and depends mainly on the Lipschitz constant of g denoted L1.

• As ℓ increases, we obtain more information on the output before predicting. For each

fixed prediction horizon, the upper bound exponentially goes to zero for increasing p.

83

A possible solution via KKL Deep-KKL

5.3 A possible solution via KKL

5.3.1 KKL as an output predictor

In what follows, we derive the KKL observer structure to build an output predictor in the

sense of Definition 5.3. For the sake of following mathematical consideration, the state space

is reduced to a compact subsetO ⊂ Rn, and we assume that it is invariant along the dynamics,

i.e. for all s0 in O
S(s0, t) ∈ O , ∀t ∈ R. (5-9)

We introduce YO ⊂ Y, the set of output functions that can be generated by this dynamical

system when restricting s0 to be in O

YO =
{

y : R+ 7→ R, ∃s0 ∈ O , y(t) = h
(
S(s0, t)

)}
. (5-10)

Inspired by the KKL observers (Kazantzis and Kravaris, 1998; Andrieu and Praly, 2006), we

consider the particular case in which the contracting model given in equation (5-3) is defined

on Rm for some m ∈N and is in the form

G(z, y) = Az + by , (5-11)

with A ∈ Rm×m a Hurwitz matrix and b ∈ Rm such that (A, b) is a controllable pair. The

dynamical model (5-3) with G in equation (5-11) trivially defines a uniform contraction since

for all (za, zb) ∈ Rm ×Rm and a given y ∈ Y

|Z(za, t, y)− Z(zb, t, y)| = eAt|za − zb| . (5-12)

Since A is Hurwitz, it yields the existence of k and λ such that equation (5-4) holds. To show

that this formalism also defines a generating model, we need to find A, b, and a function ψ

such that ż = z + bψ(z) generates the output. With the use of Proposition 1, 2, and 3 from

Marconi et al. (2007), we have the following statement:

Theorem 5.1 With m = 2n + 2, there exist a Hurwitz matrix A and a vector b with (A, b) control-

lable and a continuous mapping ψ : Rm 7→ R such that with G defined in equation (5-11), (G, ψ)

defines an output predictor for YO (equation (5-10)).

gProof: See appendix B.2. ■

Thus, this result confirms that a linear contraction in the form (5-11) may define an output

predictor.

ß Going through the proof, it turns out that almost any complex couple (A, b) of dimension

m′ = n + 1 can be chosen to prove the existence of ψ, as long as A is Hurwitz and (A, b)

controllable. One can readily extend the m′-dimensional complex case to our m-dimensional

real equation by choosing m = 2m′.

84

A possible solution via KKL Deep-KKL

5.3.2 Lipschitz KKL predictor

The bound on the prediction error obtained in Proposition 5.1 depends on the Lipschitz con-

stants of ψ and g where g(z) = Az + bψ(z). However, the mapping ψ obtained from The-

orem 5.1 may not be globally Lipschitz. In Isidori et al. (2010) sufficient conditions have

been obtained to construct a global Lipschitz mapping ψ based on geometric observability

assumptions. Inspired by the result obtained in Andrieu (2014) it can be shown that when the

dynamical system to predict is observable, a global Lipschitz mapping ψ may be obtained.

Consequently, Proposition 5.1 may be employed.

Proposition 5.2 Assume that h is a global Lipschitz mapping. Assume moreover that the following

two observability conditions are satisfied.

• Backward Distinguishability: for all (s1, s2) in O2 such that s1 ̸= s2, there exists t ⩽ 0 such

that h(S(s1, t)) ̸= h(S(s2, t)).

• Backward Infinitesimal Distinguishability: for all (s, v) in O×Rn such that v ̸= 0, there exists

t ⩽ 0 such that
∂h(S(s, t))

∂s
v ̸= 0, (5-13)

then there exist a Hurwitz matrix A, a vector b with (A, b) controllable, a mapping ψ : Rm 7→ R and

a positive real number L2 such that

1. with G defined in equation (5-11) (G, ψ) defines an output predictor for YO;

2. the function ψ has bounded derivative, i.e.∣∣∣∣∂ψ

∂z
(z)
∣∣∣∣ ⩽ L2 , ∀z ∈ Rm; (5-14)

3. the conclusion of Proposition 5.1 holds with L1 = ∥A∥+ ∥b∥L2.

gProof: See appendix B.3. ■

The assumptions of the former proposition can be weakened by assuming that there exists

an (unknown) change of coordinates, such that in such a coordinate system (5-1) takes a the

triangular form {
ṡ1 = f1(s1)

ṡ2 = f2(s1, s2)
, y = h(s1) , (5-15)

for which the couple (f1, h) satisfies the observability assumptions of Proposition 5.2. In

that case, the former proposition may be applied. Assuming the existence of this change of

coordinates is very similar to the assumptions made in Isidori et al. (2010) to obtain that this

mapping is globally Lipschitz.

85

Learning KKL with deep networks Deep-KKL

5.4 Learning KKL with deep networks

In what follows, we propose a constructive method to find ψ based on deep learning. We

suppose to have access to two different types of data: (i) during a training phase, we have

access to a representative training set of sample trajectories YD ⊂ Y to learn ψθ(z), where

we now have made explicit in the notation the dependency of ψ on learned parameters θ; (ii)

for each trajectory, as described in the previous sections, we have access to the initial output

trajectory y(t) ∈ Y for t < ℓ, and are required to forecast the future output up to time ℓ+ p

(where p is the prediction horizon).

5.4.1 Architecture and training

We model function ψθ as an MLP where θ in Θ ⊂ Rq is the set of parameters to be learned.

This class of models is known to have universal approximation power under mild conditions

either for infinitely wide (Hornik, 1991) or infinitely deep (i.e. layered) (Lu et al., 2017) archi-

tectures, and they also admit Lipschitz constants (Bartlett et al., 2017; Scaman and Virmaux,

2018).

Since the previous section proves the existence of ψθ regardless of the choice of (A, b) (as

long as A is Hurwitz), we decided to learn A freely and fix b =
[
1 · · · 1

]⊤
, which reduces

the number of degrees of freedom of the model. All parameters are trained by gradient

descent to minimize

(θ, A) = arg min
θ,A

∑
y∈YD

ℓ+p

∑
t=0

∣∣∣y(t)− ψθ

(
z(t)

)∣∣∣2 s.t. ż(t) =

{
Az(t) + by(t) if t < ℓ,

Az(t) + bψθ(z(t)) else.
(5-16)

For the sake of implementation simplicity, we used a discrete formulation of the dynamics for

our simulations using an Euler scheme.

5.4.2 Data-sets and baselines

We compare our proposition to two classical types of deep networks designed for time series,

namely Recurrent Neural Networks (Rumelhart et al., 1985) with matrix parameters W1, W2

and vector b

z[k+1] = tanh
(
W1z[k] + W2y[k] + b

)
(5-17)

where k ∈N is a time index such as y[k] = y(kδt) for a sampling timestep δt. We also compare

with Gated Recurrent Units (Cho et al., 2014)
r[k+1] = σ

(
Wr1y[k] + Wr2z[k] + br

)
,

x[k+1] = σ
(
Wx1y[k] + Wx2z[k] + bx

)
,

n[k+1] = tanh
(

Wn1y[k] + r[k+1]⊙
(
Wn2z[k] + bn2

)
+ bn1

)
,

z[k+1] =
(
1− x[k+1]

)
∗ n[k+1] + x[k+1] ∗ z[k].

(5-18)

86

Learning KKL with deep networks Deep-KKL

Name Equation δt D
Van der Pol Oscillator

(van der Pol Jun. D.Sc, 1926)

{
ṡ1 = s2

ṡ2 = (1− s2
1)s2 − s1

0.25 s [−5, 5]2

Lorenz Attractor

(Lorenz, 1963)


ṡ1 = 10(s2 − s1)

ṡ2 = 24s1 − s2 − s1s3

ṡ3 = s1s2 − 8
3 s3

0.02 s [−1, 1]3

Lotka-Volterra Equations

(Volterra and Brelot, 1931)

{
ṡ1 = s1(

2
3 − 3

4 s2)

ṡ2 = s2(s1 − 1)
0.25 s [0, 2]2

Mean-Field

(Noack et al., 2003)


ṡ1 = 0.1s1 − s2 − 0.1s1s3

ṡ2 = s1 + 0.1s2 − 0.1s2s3

ṡ3 = −10(s3 − s2
1 − s2

2)

0.05 s

s1 = r cos θ

s2 = r sin θ

s3 = s2
1 + s2

2

θ ∈ [0, 2π]

Table 5.1: Description of system used for evaluation – δt is the final sampling time, and D the set

from where the initial conditions are sampled. For each model, we tried to predict the observation

y = h(s) = s1. We used 1000 trajectories for the training sets and 200 for the validation and testing set

respectively. These trajectories are generated by solving the differential equation numerically using an

RK4 solver with a resolution 10× superior to the final sampling. The observations have been re-scaled

so that the training set lies between −1 and 1.

where σ(x) = (1 + e−x)−1 is the sigmoid function and ⊙ is the Hadamard product. These

models contain inductive biases in the form of a recurrent memory vector z[k], which allows

to propagate the hidden state over time k. In other words, they define latent dynamical

systems z[k+1] = G
(
z[k], y[k]

)
. The function ψθ has the same structure for each of the two

variants.

To our knowledge, no proof exists that RNNs and GRUs define proper output predictors

in the sense of Definition 5.3. Depending on the learned matrix W1, the function learned by

the RNN may define a contraction (since tanh is monotonic), but there is no rigorous proof

that ψ exists for this formalism.

We evaluate our proposition on four different problems that exhibit chaotic behavior: Van

Der Pol oscillator (van der Pol Jun. D.Sc, 1926), Lorenz attractor (Lorenz, 1963), Lotka-Volterra

predation equations (Volterra and Brelot, 1931) and a Mean Field model (Noack et al., 2003)

for a fluid flow past a cylinder. Details on these systems are summarized in table 5.1. The

interest we have in chaotic systems is that they are highly sensible to error on initial conditions,

making them difficult to forecast.

Practically, ψθ is an MLP with 3 hidden layers of 128 neurons each. We used ReLU

activation functions. Canonically, the dimension of the latent space is equal to 2n + 2 where n

is the dimension of the system. Each model is trained with Adam optimizer for 800 epochs,

with 64 trajectories per batch. The learning rate is set to 10−4. During training, the model

takes as input the ℓ=25 first time steps of the output and outputs the p=25 following time

step. Hyper-parameters were optimized over the validation set. For testing, we reduced ℓ to

87

Numerical simulations Deep-KKL

Van Der Pol Lotka-Volterra

Mean-Field

Van Der PolVan Der Pol

Lorenz

O
b

se
rv

at
io

n
 (y

)
O

b
se

rv
at

io
n

 (y
)

O
b

se
rv

at
io

n
 (y

)
O

b
se

rv
at

io
n

 (y
)

Timestep (#) Timestep (#)

Timestep (#) Timestep (#)

Figure 5.2: Qualitative results – Demonstration of output prediction on four nonlinear systems. The

ℓ = 5 first time steps (before the vertical black line) were used during the closed loop step of each

model, then the open-loop predicts the p = 95 next measurements

RNN GRU Deep-KKL

Van Der Pol 0.0057 0.0343 0.0013

Lotka-Volterra 0.0885 0.1780 0.1064

Lorenz 0.0441 0.0480 0.0262

Mean-Field 0.2254 0.2044 0.0012

Table 5.2: Quantitative results – MSE on testing set with ℓ = 5 and p = 95. The accuracy of Deep-KKL

is at least equal to those of the classic GRU and RNN.

5 time steps and increased p to 95.

5.5 Numerical simulations

5.5.1 Global performances

Table 5.2 reports the Mean Squared Error (MSE) on prediction for each model on all four

datasets, namely:

LMSE =
1

Np ∑
y∈YT

ℓ+p

∑
k=ℓ

(
y[k]− ŷ[k]

)2, (5-19)

where YT is the test set of trajectories, of cardinality N. To evaluate the temporal generaliza-

tion capacities of all models, they were evaluated on a more difficult task than the one they

were trained on. They were trained on predicting p=25 future measurements by exploiting

ℓ=25 previous measurements. However, during testing, the MSE of Table 5.2 was calculated

over p=95 predictions after having seen only ℓ=5 initial time steps. The results show that

Deep-KKL generalizes efficiently over this broader horizon, despite the drastic decrease in the

amount of data supplied as input (see Figure 5.2).

On our test systems, the accuracy of Deep-KKL is at least equal to those of the classic

GRU and RNN, despite its inherent simplicity. By our simulations, we show that Deep-KKL

is efficient for output prediction on systems of small dimension while offering a structure more

88

Numerical simulations Deep-KKL

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
12

0.
14

0.
16

0.
18 0.
2

Std of Gaussian Noise

0.000

0.025

0.050

0.075

0.100

0.125

P
re

d
ic

ti
on

M
S

E
Van Der Pol

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
12

0.
14

0.
16

0.
18 0.
2

Std of Gaussian Noise

0.00

0.02

0.04

0.06

0.08

0.10

P
re

d
ic

ti
on

M
S

E

Lorenz

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
12

0.
14

0.
16

0.
18 0.
2

Std of Gaussian Noise

0.00

0.05

0.10

0.15

P
re

d
ic

ti
on

M
S

E

Lotka-Volterra

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
12

0.
14

0.
16

0.
18 0.
2

Std of Gaussian Noise

0.0

0.1

0.2

0.3

0.4

0.5

P
re

d
ic

ti
on

M
S

E

Mean-Field

Figure 5.3: Robustness to noise – Boxplot of MSE on the test set YT according to the amount of noise

added during training. Observation measurements lie in [−1, 1]. Deep-KKL is capable of handling a

reasonable amount of noise in the training data.

suitable for the elaboration of guarantees. Nevertheless, in practice, the recurrent baselines

are rarely used in their simple form and are generally stacked, i.e. multi-layered, where one

layer takes as input the state of the previous layer. We do not claim, that on systems with

very complex dynamics (stochasticity/uncertainty, large dimensions, strong nonlinearity, etc.)

Deep-KKL will be competitive with more complex and expressive models (Bézenac et al., 2019;

Baradel et al., 2020). However, in our examples, Deep-KKL takes advantage of its simpler

structure and manages to perform better. This seems to indicate that for systems of moderate

complexity, the use of high-capacity deep models does not seem to be a guarantee of better

results.

5.5.2 Noise Robustness

In an experimental setup, measurements are inevitably disturbed by noise and errors, ei-

ther due to mechanical disturbances on the systems or electronic noise associated with the

measurements, etc. We decided to evaluate these settings by training our model on noisy

observations. In practice, we altered the measured output y ∈ YD with Gaussian noise of zero

mean and varying standard deviation.

Figure 5.3 shows the evolution of prediction error made by Deep-KKL as a function of the

89

Numerical simulations Deep-KKL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Y

Lotka-Volterra

− 8

− 7

− 6

− 5

− 4

− 3

− 2

− 1

0

1

L
o

g
erro

r
o

n
p

red
ictio

n

x
2

x
1

− 8 − 6 − 4 − 2 0 2 4 6 8
− 8

− 6

− 4

− 2

0

2

4

6

8

Y

Van Der Pol

− 12

− 10

− 8

− 6

− 4 L
o

g
erro

r
o

n
p

red
ictio

n

x
2

x
1

Figure 5.4: Generalization on unseen domain – of Deep-KKL for Van Der Pol and Lotka-Volterra equa-

tions. Each dot represents log-MSE on a trajectory starting from the corresponding initial condition

(s1 s2). The black square represents the domain of the training set, training trajectories are black dots.

amount of noise added to the training set. Our proposed method is still able to learn with a

reasonable amount of noise on the training data.

5.5.3 Limitations due to Learning

On top of the initialization error detailed in Proposition 5.1, using deep learning implies

another source of error due to the fact that, for a given θ in Θ, the estimation ψθ is merely

an approximation of the true ψ on Y , which leads to errors in the open-loop phase of the

prediction process. The universal approximation theorem of neural networks (Csáji et al.,

2001) guarantees that if we allow the set of necessary parameters to be arbitrarily large, then

for an arbitrary choice of a constant δ > 0, there exists a set of parameters θ in Θ such that

|ψ(z)− ψθ(z)| ⩽ δ , ∀z ∈ Rm. (5-20)

The evaluation of the constant bound δ > 0 is difficult since we do not have access to the

ground truth ψ. The errors |ψ(z)− ψθ(z)| can have multiple reasons, and we will here ignore

aspects of learnability (Valiant, 1984), and concentrate on how a given error obtained by ψθ

impacts the prediction error over time. We formalize this as the following proposition.

Proposition 5.3 Consider Y ⊂ Y . Assume that (A, b, ψ) exists such that (G, ψ) with G defines in

equation (5-11) is a KKL output predictor for Y. Assume moreover that∣∣∣∣∂ψ

∂z
(z)
∣∣∣∣ ⩽ L2 . (5-21)

and that θ in Θ and δ > 0 satisfy equation (5-20). Then for all trajectories y ∈ Y, known in the time

interval [0, ℓ], a prediction ŷθ at the prediction horizon p > 0 given as

ŷθ(ℓ+ p) = ψθ

(
Zθ(Z(0, ℓ, y), p

)
) , (5-22)

90

Conclusion Deep-KKL

where Zθ(z0, p) is the solution initiated from z0 at time p of

żθ = Azθ + bψθ(zθ) , (5-23)

satisfies

|y(ℓ+ p)− ŷθ(ℓ+ p)| ⩽ kL2e−λℓ+L1 p|zy
0|+ δ

(
L4e

L2∥b∥P
L4

p
+ 1
)

, (5-24)

for some positive numbers k, λ, L1, L4 depending on L2, A and b.

gProof: See appendix B.4. ■

We complete this theoretical analysis by an experimental evaluation, in particular visual-

ization of the generalization capabilities of our model. A central question in machine learning

is how a model can generalize from the data it has seen during training, and thus how it

performs on unseen data. The distinction between ID (in-distribution) and OOD (out-of-

distribution) cases is of particular interest, the latter describing the performance of the model

on samples taken from spaces unseen during training. We explore this question and visualize

the behavior of Deep-KKL on a larger domain than the set from which the training trajectories

have been sampled.

In Figure 5.4, we compute the Log-MSE of Deep-KKL on a grid of trajectories from the Van

der Pol oscillator and Lotka-Volterra equations. For each point on the heat map, we generate

the true trajectories from the corresponding initial condition s(t=0)=(s1 s2)T by integrating

the corresponding ODE. Then, we use Deep-KKL to predict the output of this system and

compare the trajectories. The black square represents the set from which the trajectories in YD

were sampled.

There is evidence for excellent in-distribution generalization, as Deep-KKL generalizes

well inside the set parameter space covered by YD, of course beyond the samples of YD them-

selves. However, we observe limited, but not full OOD generalization, with failure cases when

certain parameters are extended beyond the range seen during training.

5.6 Conclusion

We have proposed a theoretical framework for predicting the output of dynamical systems,

making it possible to easily define a model capable of representing the dynamics of the obser-

vations, and resting solely on two properties. Our proposal is illustrated in a KKL observer

combined with learning a solution on a subspace of the observation space with neural net-

works. Our simulations validate our theoretical results, and demonstrate that Deep-KKL is

capable of representing the dynamics of chaotic systems of low dimension. However, the use

of learning methods inevitably generates a certain error in the estimates of ψ. Therefore, we

proposed a quantification of the effect of this error on the predictions over time.

91

Post-scriptum: taking a step back Deep-KKL

Lat. RNN GRU KKL

Size VdP Lo. LV MF VdP Lo. LV MF VdP Lo. LV MF

5 0.0064 0.0429 0.1207 0.2542 0.0193 0.0424 0.2855 0.2200 0.0011 0.0655 0.0749 0.1628

10 0.0085 0.0403 0.0858 0.1908 0.0052 0.0367 0.0935 0.0963 0.0018 0.0453 0.0466 0.0430

20 0.0032 0.0408 0.1049 0.2712 0.0112 0.0330 0.1001 0.0794 0.0020 0.0442 0.0396 0.0117

30 0.0041 0.0401 0.0997 0.2754 0.0077 0.0458 0.1736 0.0771 0.0016 0.0596 0.0794 0.0924

Table 5.3: Different state-size – We compared Deep-KKL with the recurrent baselines with larger latent

state size, on all four datasets. While our approach is competitive on small dimensions (close to 2n+ 2),

the baselines begin to perform better as the size increases.

5.7 Post-scriptum: taking a step back

Deep-KKL was the first released project of this Ph.D. and is arguably the one that benefits

from most introspection, feedback from the community, and connected work. In this section,

we will discuss recent work that appeared after the publication of ours. We also present

insights, and ideas to better highlight the potential of the method.

Follow up and related work – In the KKL framework, nonlinear systems can be analyzed with

the tools of linear dynamics. This motivated a lot of attention from the control community. For

a theoretical overview of recent results, see Brivadis et al. (2023). In particular, the backward

distinguishability guaranteeing the existence of ψ has been relaxed using set-valued KKL

observers (Bernard and Maghenem, 2023), and the framework has been extended to time-

varying dynamics in Tran and Bernard (2023).

Considering learning and KKL, the technique has been explored for observation purposes

rather than output prediction, i.e. to directly estimate s from the observations y. Note that in

this case, the KKL remains in closed-loop mode. For instance, Peralez and Nadri (2021) is a

concomitant work using an auto-encoder structure to learn the mapping T (equation (B-8) in

the appendix) and its inverse in discrete time. The architecture is related to a latent dynamics,

and the model is trained to minimize a classic reconstruction loss, together with a dynamics

loss, which corresponds the the residual of the discretized PDE (B-6) in the appendix. The

method has been extended with ensemble learning in Peralez et al. (2022), and to Neural-

ODEs in Miao and Gatsis (2023). Finally, Buisson-Fenet et al. (2022) introduces an empirical

criterion to calibrate the linear part of the dynamics in the KKL observer.

Deep-KKL vs. recurrent models – Similarly to the previous chapter, we do not claim that

Deep-KKL can outperform unconstrained baselines. In this case, the recurrent models are

limited to a hidden state size of 2n + 2, to match our condition of existence. However, surpris-

ingly, while Deep-KKL has a simpler structure, it shows competitive results with the recurrent

baselines on chaotic datasets, and beyond the training horizon. We interpret this as a call for

moderation: on some tasks, one can build powerful deep networks while keeping relatively

simple architectures and benefiting from theoretical guarantees. To complete this analysis,

92

Post-scriptum: taking a step back Deep-KKL

Training on clean data

Training on noisy data

Van der Pol Lorenz Lotka-Volterra Mean Field

Van der Pol Lorenz Lotka-Volterra Mean Field

Noise factor (% of std in train set) Noise factor (% of std in train set) Noise factor (% of std in train set) Noise factor (% of std in train set)
0% 5% 10% 15% 20% 25% 0% 5% 10% 15% 20% 25% 0% 5% 10% 15% 20% 25% 0% 5% 10% 15% 20% 25%

0% 5% 10% 15% 20% 25%0% 5% 10% 15% 20% 25%0% 5% 10% 15% 20% 25%0% 5% 10% 15% 20% 25%

0.06

0.04

0.02

0.00

0.06

0.04

0.02

0.00

0.08

0.09

0.04

0.02

0.00

0.08

0.09

0.04

0.02

0.00

0.20

0.15

0.10

0.05

0.00

0.20

0.15

0.10

0.05

0.00

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

M
S

E
M

S
E

KKL

RNN

GRU

Figure 5.5: Evaluation on noisy setup – (Top line) Robustness against noisy inputs for models trained

on perfect data. Deep-KKL shows limited success in handling the perturbation. (Bottom line) The

models are trained with noisy measurements (added Gaussian noise with std. corresponding to 5%

of the std. measured on the training dataset), which tend to improve robustness, but also degrade the

performance.

we measured the performance with different state sizes and reported the results in table 5.3.

Deep-KKL is competitive for smaller state sizes, but recurrent baselines outperform our ap-

proach as the latent size increases.

About Noise-robustness – The experiment presented in figure 5.3 evaluates the robustness

of Deep-KKL against noise in the training set. The metric is computed on raw measurements

(without noise) from the test set, while the model has been trained on noisy data. Another

interesting experiment consists of looking at how the model behaves when it is trained on

perfect data (no noise), but evaluated in a noisy scenario. The results are shown in figure

5.5, and Deep-KKL shows limited success in handling noisy data. A simple trick to improve

robustness consists of training the model with a small amount of noise applied to the inputs.

This tends to make the predictions more robust to perturbations.

On the stability of recurrent models – Training models over multiple steps of auto-regressive

predictions forces to consider the question of the stability of the dynamical model. This

issue is rarely addressed in deep learning, and as a matter of fact, appears fairly rarely with

very large models. Issues arise when the gradient descent passes through an iteration where

the dynamics becomes unstable. In this case, for some inputs, the forecasted trajectory can

explode, and the loss with it. This creates spikes in the training loss, that the model may or

may not recover from. The problem is usually addressed with symptomatic solutions, such as

gradient or learning rate clipping (Ede and Beanland, 2020; Mai and Johansson, 2021; Krueger

and Memisevic, 2016).

93

Post-scriptum: taking a step back Deep-KKL

In Deep-KKL, this issue can be addressed in a more principled way, since the stability is

directly related to the eigenvalues of A in equation (5-11). Empirically, we found that selecting

a small enough learning rate is sufficient to safely train the model, but looking into a provably

stable training technique for Deep-KKL is an interesting direction. The theoretical derivations

are based on the universal approximation theorem and ignore any errors induced by learning

from limited amounts of data. Additional work could study these effects using the tools of

learning theory (Shalev-Shwartz and Ben-David, 2014).

Finally, Deep-KKL is a simple yet very powerful model and there are arguably a lot of

advantages in integrating it into larger architecture. Moreover, the fact that the dynamics is

quasi-linear in the latent space allows for interpretation of how the model actually behaves,

which may be of interest for obtaining insights on what the model has learned. The output

predictor framework is also a promising way of obtaining theoretical guarantees on recurrent

models. For instance, proving that GRU and RNN define contractions is a way to justify why

such a model can be initialized from a random initial memory vector.

94

Part III

Differential equations for simulation and

control

96

General remarks

In the previous part, we address fundamental properties to design reliable simulators for

dynamical systems, that is the finite-time observability and the contraction property. We

will now dive into applied methods, building upon these previous results. In particular, we

focus on the resolution of physics-related problems taking the form of PDEs. We start by

demonstrating how contraction theory (introduced in the previous chapter) can be used for

control purposes. We introduce a new approach for output tracking on nonlinear system

requiring to solve a challenging PDE which we address with an advanced PINN-like method.

In a second time, we progress toward large-scale learning of fluid dynamics, and introduce

a new method for simulating physics in a time and space continuous manner, using insights

from finite-time observability properties.

Chapter 6: Deep learning-based output tracking via regulation and contraction theory

TLDR; We address output tracking control problems for input-affine nonlinear

systems. We design a two-step state-feedback controller including (1) a

contraction-based feedback stabilizer and (2) a feedforward action. The

method involves the resolution of a challenging PDE which is approached us-

ing PINN-like solver. We also provide theoretical guarantees that the controller

behaves correctly despite the approximations implied by the use of neural net-

works.

Chapter 7: Space and time continuous physics simulation from partial observation

TLDR; We focus on computational fluid dynamics and address the shortcomings of

a large part of the literature, which are based on fixed support for computa-

tions and predictions in the form of regular or irregular grids. We propose a

novel setup to perform predictions in a continuous spatial and temporal do-

main while being trained on sparse observations. We formulate the task as

a double observation problem and propose a solution with two interlinked

dynamical systems defined on, respectively, the sparse positions and the con-

tinuous domain, which allows to forecast and interpolate a solution from the

initial condition. Our model not only generalizes to new initial conditions (as

standard auto-regressive models do) but also performs evaluation at arbitrary

space and time locations.

97

Chapter 6
Deep learning-based output tracking via regulation

and contraction theory

Work presented at World Congress of International Federation on Automatic Control 2023,

Co-authors: Samuele Zoboli (Université Lyon 1),

Mattia Giaccagli (Tel Aviv University),

6.1 Context

This chapter focuses on output tracking, which is arguably among the most versatile ap-

plications of control theory. The task consists of designing a control action leading the

output of a dynamical system to track an arbitrary reference signal. Such a trajectory may be

generated from manual design or any external source, depending on the control task. While

being fairly simple to address on linear systems (Francis and Wonham, 1976), output tracking

remains an open problem for most general nonlinear dynamical systems. In this case, existing

approaches either rely on heavy online computation or demand dynamical model knowledge,

and canonically address the output tracking problem by exploiting one of the following tools:

1. Model inversion looks for an inverse model mapping the current state-target couple

to the input transporting the former to the latter. As an example, we point the reader

to solutions based on feedback linearization (Isidori, 1995, Chapter 5.2), (Devasia et al.,

1996).

2. Regulation theory generalizes the linear method. The controller is divided into a dy-

namical part (internal model) and a stabilizer (Isidori and Byrnes, 1990). The internal

model includes a generator of the steady-state solution where the tracking error is zero.

The stabilizer provides convergence to such a solution (see e.g. Giaccagli et al. (2022a)

for constant references). The control law guarantees stability, attractivity, and forward-

invariantness of a manifold where tracking is achieved.

3. Optimization considers output tracking as an optimization problem, which motivates

the use of the corresponding tools, such as the popular Model Predictive Control.

99

An introduction to contraction theory Output tracking via contraction theory

Approaches 1 and 2 are strongly model-dependent, in the sense that small modeling

approximation can cause large errors. Related issues can be alleviated with possible counter-

measures such as adaptive techniques (Serrani et al., 2001). Unfortunately, these tricks often

leverage challenging analytical considerations, as they usually require a well-defined change

of coordinates to bring the system into normal form and, in most cases, a minimum-phase

assumption. Conversely, (3) is promising in many ways: it can cope with (small) model errors

and it requires moderate theoretical analysis to be deployed. However, theoretical guarantees

such as stability are challenging to obtain. Hence, existing results are frequently restricted to

simpler classes of systems, e.g., linear ones (Chen et al., 2022).

In this work, we develop a solution to the output tracking problem which intertwines

techniques from machine learning and control theory. To do so, we propose a neural network-

based algorithm whose backbone comes from output-regulation theory. Formally, we propose

a two-step controller. First, we estimate the solution of the regulator equations for a given

reference signal, resulting in steady-state trajectory π(t) and control action ψ(t) minimizing

the tracking error. Then, we design a stabilizer making trajectories asymptotically converge

to the reference. To this aim, we rely contractive dynamics. Hence, our stabilizer makes the

closed-loop a contraction via the results presented in (Giaccagli et al., 2022b) and approximates

its analytical solutions with another DNN.

Notations – Throughout this chapter, |·| denotes the Euclidean norm, Bε ⊂ Rn denotes the

closed ball of radius ε > 0, i.e. Bε := {s ∈ Rn, |s| ≤ ε}. We say that ζ : [0,+∞) → R is a

class-K function if ζ(0) = 0 and ζ is strictly increasing.

Given a C1 vector field f : Rn ×R → Rn and a C1 2-tensor P : Rn ×R → Rn×n, the Lie

derivative of the 2-tensor P along the vector field f , denoted as L f P(s, t), is defined as

L f P(s, t) := d f P + P(s, t) ∂ f
∂s (s, t)+ ∂ f

∂s
⊤
(s, t)P(s, t)

with d f :=
∂P
∂s

f (s, t).

We say that a C1 vector field g : Rn×R 7→ Rn (respectively, a C1 matrix function g : Rn×R→
Rn×m) is a Killing vector field (or that it satisfies the Killing vector property) with respect to P

if LgP(s, t) = 0 (respectively, Lgi P(s, t) = 0 for all i = 1, . . . , m, with gi denoting the i-th column

of g) ∀(s, t). We say that a function ω ∈ L2 if it is measurable and
∫ +∞

0 |w(τ)|2 dτ < +∞.

6.2 An introduction to contraction theory

Before diving further into this work, we propose an introduction to the principles of contrac-

tion theory. This section does not provide an extensive description of the domain but aims

to give the necessary insights to understand the results of this chapter. Readers familiar with

contraction theory and control might skip this section.

100

An introduction to contraction theory Output tracking via contraction theory

We recall that an autonomous dynamical system ẋ = f(x, t) (x ∈ Rn) defines a uniform

exponential contraction (definition 5.1) if there exist two positive constants k and λ such that

for all xa and xb in Rn where x ∈ Rn

|X(xa, t)− X(xb, t)| ⩽ ke−λt|xa − xb| (6-1)

for X(x0, t) the solution at time t initiated from an initial condition x0. Contraction can be

interpreted geometrically by imagining two trajectories connected by a line. If the system is

contractive, we want the line to shrink exponentially with time. We use this insight to derive

conditions for (1) verifying contraction on autonomous systems and (2) designing controllers

making the closed-loop system contractive. To do so, we will study the rate of change of the

length L(t) between these two trajectories, and extract conditions to ensure that

dL
dt

(t) ⩽ −λL(t). (6-2)

6.2.1 Linear contraction and contractive controller

Let us begin with a linear system, f(x, t) = Ax where A ∈ Rn×n. The distance between

two trajectories initiated at xa and xb is L(t) = |X(xa, t) − X(xb, t)|. To study the rate of

change of this quantity, we equip Rn with a Euclidean norm defined by the metric matrix

P ∈ Rn×n, i.e. a symmetric positive definite matrix such that ∀(u, v) ∈ Rn, the scalar product

is ⟨u, v⟩P = u⊤Pv and the canonical norm |u|P =
√

u⊤Pu. The rate of change of L(t) is

d
dt

L(t) = L̇⊤PL + L⊤PL̇ (6-3)

Since L̇(t) = | ˙X(xa, t)− ˙X(xb, t)| = AL(t), the contraction condition (6-2) is

d
dt

L(t) = L⊤(A⊤P + PA)L ⩽ −λL⊤PL (6-4)

⇔ A⊤P + PA ≼ −λP (6-5)

This condition is known as the algebraic Riccati inequality and frequently appears in control.

Note that it can also be written as LfP ≼ −λP since P is a constant matrix. Moreover, with

P = I, the condition can be expressed on λ̄, the largest eigenvalues of A as λ̄ ⩽ −λ/2. In other

words, an autonomous linear system defines a contraction if and only if A is Hurwitz, that is,

if the system is stable. Contraction and stability are the same concepts for linear systems.

We now consider a non-autonomous linear system f(x, u, t) = Ax + Bu with u ∈ Rm

and B ∈ Rn×m. We aim to design a controller such that the closed-loop system becomes

contractive. In particular, we look for a controller of the form u = −ρB⊤Px where ρ > 0. The

condition (6-2) gives

d
dt

L(t) = L⊤(A⊤P + PA− 2ρPBB⊤P)L ⩽ −λL⊤PL (6-6)

⇔ A⊤P + PA− 2ρPBB⊤P ≼ −λP (6-7)

101

An introduction to contraction theory Output tracking via contraction theory

For a formal demonstration of this result, see Liberzon (2011). Finding a suitable controller to

make the closed-loop system contractive boils down to finding P, λ, and ρ such that inequality

(6-7) is satisfied, and the controller u = −ρB⊤Px is obtained readily.

6.2.2 Extension to non-linear system

We will extend the previous results to non-linear systems. Keep in mind that what follows

is not a formal derivation, but rather an introduction to contraction theory. For an in-depth

study, see for instance Andrieu et al. (2016); Lohmiller and Slotine (1998); Manchester and

Slotine (2017). Directly studying the length L(t) for nonlinear systems is tedious. Instead,

we will divide L(t) in small segments so that we can linearize the dynamics. We call δx

one of these segments, which can be interpreted as the virtual displacement between two

neighboring trajectories. The dynamics of δx is

δ̇x =
∂f

∂x
(x, t)δx (6-8)

Similarly to the linear case, we can now study how this distance changes. Yet, since the

dynamics depends on x, a constant metric P is not sufficient. We need to consider a varying

metric P(x, t) to account for the variations of ∂f
∂x (x, t). In other words, we are shifting from

Euclidean metrics to Riemannian ones, allowing for distortion of the state space. The rate of

change of the distance δx is given by

d
dt

δx⊤P(x, t)δx = δx⊤
(

∂f

∂x

⊤
P(x, t) + P(x, t)

∂f

∂x
+ Ṗ(x, t)

)
δx (6-9)

Since Ṗ = ∂P
∂x

∂x
∂t = dfP, the contraction condition is

∂f

∂x

⊤
P(x, t) + P(x, t)

∂f

∂x
+ dfP(x, t) ≼ −λP(x, t) (6-10)

or simply LfP ≼ −λP. This condition is similar to the one for the linear case, with the

exception that it accounts for the dependence of the metric on the state variable.

We now consider an input-affine dynamical system and its extended linearized system

ẋ = f(x, t) + g(x, t)u

δ̇x =

(
∂f

∂x
(x, t) +

m

∑
i=1

∂gi

∂x
(x, t))ui

)
︸ ︷︷ ︸

A(x,u,t)

δx + g(x, t)δu (6-11)

We are looking for a controller u = β(x, t) making the closed-loop system contractive, where

β is a C2 function such that ∂β
∂x = −ρg⊤P(x, t). One can verify that we retrieve the state-

feedback controller β(x, t) = −ρB⊤Px in the linear case. This design choice already gives a

first condition for existence: the function β must be C2, and g⊤P(x, t) must be integrable. We

now compute the rate of change

d
dt

δx⊤P(x, t)δx = δxT
((

A− ρgg⊤P
)⊤

P + P
(

A− ρgg⊤P
)
+ Ṗ

)
︸ ︷︷ ︸

K(x,t)

δx (6-12)

102

Preliminaries Output tracking via contraction theory

On the other hand, Ṗ = ∂P
∂x (f(x, t) + g(x, t)u) = dfP + dgPu, hence by developing K(x, t)

K(x, t) =

LfP︷ ︸︸ ︷
dfP +

∂f

∂x

⊤
P + P

∂f

∂x
−2ρPgg⊤P +

m

∑
i=1

βi(x, t)

(
dgi P +

∂gi

∂x

⊤
P + P

∂gi

∂x

)
︸ ︷︷ ︸

LgP

(6-13)

The closed-loop system is contractive if K(x, t) ≼ −λP. We retrieve the Riccati-like condition

LfP ≼ −λP with an additional term LgP depending on the command. In the linear case, the

action of the command is the same everywhere in the state space, consequently, the distance

between two trajectories with the same input and different initial conditions cannot increase

because of the input. This is not true in the nonlinear case, since the effect of the command

depends on the state. A simple workaround consists in assuming g to be a Killing vector field1

for P, i.e. LgP = 0 (see (Manchester and Slotine, 2017, Section III.A) or (Giaccagli et al., 2022a,

Section II.B)). Finally, the existence of the controller is subject to:

1. The existence of a positive definite symmetric matrix P(x, t) and positive constants λ, ρ

such that

LfP− 2ρPgg⊤P ≼ −λP (6-14)

2. The existence of a C2 function β(x, t) satisfying the integrability condition

∂β

∂x
= g⊤P(x, t) (6-15)

3. The vector field g satisfies the Killing vector condition

LgP = 0 (6-16)

6.3 Preliminaries

In this chapter, we consider a system of the form

ṡ = f (s) + g(s)u (6-17a)

e = h(s)− r(t) (6-17b)

where s ∈ Rns is the state, u ∈ Rnu is a control action, f , g, h are sufficiently smooth functions

and e ∈ Rne is the error between an output y = h(s) and a known smooth time-varying

reference r(t) taking values on a compact set R ⊂ Rne . Our goal is to design a feedback

control action u such that the error e asymptotically goes to zero.

From a regulation theory viewpoint, output tracking can be achieved if and only if there

exist two sufficiently smooth mappings π : Rne → Rns and ψ : Rne → Rnu solutions of the

1named after Wilhelm Killing

103

Main results Output tracking via contraction theory

so-called regulator equations (Isidori and Byrnes, 1990; Byrnes and Isidori, 2003)

π̇
(
r(t)

)
= f

(
π
(
r(t)

))
+ g
(

π
(
r(t)

))
ψ
(
r(t)

)
(6-18)

0 = h
(

π
(
r(t)

))
− r(t) .

ß In simple words, the solution (π, ψ) of the regulator equations is an admissible (i.e. realiz-

able) trajectory of the system that produces the desired output reference r(t). The mapping π

represents the steady-state manifold on which the tracking error is zero, and the mapping ψ is

the steady-state control action making such a manifold forward invariant along the trajectories

of the system.

We look for a controller capable of making the system contractive toward the steady-state

manifold trajectory so that any trajectory will converge exponentially to π. The controller has

the following form

u = γ(s, t) = ψ(t) + α(s, π(t), t), (6-19)

where α is any function that forces the dynamics of s to converge to π(t) and is asymptotically

vanishing, i.e. α(s, s, t) = 0 for all (s, t) ∈ Rns ×R.

For designing the controller, we take inspiration from (Giaccagli et al., 2022b), where

the synchronization problem is cast into the contraction framework. The authors provide a

constructive design achieving multi-agent synchronization for a network of input-affine time-

varying nonlinear systems. The general control structure (6-19) is inspired by the results in

(Pavlov et al., 2006, Section 5.4). However, we highlight four main differences in our approach.

1. In (Pavlov et al., 2006, Section 5.4) the authors propose α = K(s− π), with K being a

constant matrix. In our design, through the notion of “Killing vector field”, we provide

a more general structure for the controller α.

2. We show that approximate, rather than asymptotic, tracking can be achieved under a

non-perfect knowledge of the mappings (π, ψ).

3. We provide a neural networks-based algorithm for the estimation of (π, ψ) (and of the

control action α) that generalizes over references.

4. We link the performance of the neural network to the tracking error.

6.4 Main results

We formalize our problem as follows. Let c ⩾ 0 and assume to know a smooth function

γ : Rns × R → Rnu such that the system (6-17) in closed-loop with the feedback control

u = γ(x, t) has bounded trajectories and such that limt→+∞ |e(t)| ⩽ c. Then:

104

Main results Output tracking via contraction theory

• if c = 0, we say that the asymptotic output tracking control problem is solved;

• if c > 0, we say that the approximate output tracking control problem is solved.

The goal is to show that (i) under perfect knowledge of the system, of the regulation equa-

tions, and of the control structure, the asymptotic output tracking problem is solved; (ii) it

is still possible to achieve approximate output tracking using an approached solution. Then,

(iii) we show that the tracking error can be linked to the approximation errors of the esti-

mated quantities, and we provide bounds guaranteeing approximate tracking up to arbitrary

precision.

6.4.1 Approximate output tracking: the analytic solution

We start by assuming the following.

Assumption 6.1 Consider system (6-17), (6-18) and let φ(s, t) = f (s) + g(s)ψ(t). There exist a

C1 matrix function P : Rns ×R → Rns×ns taking symmetric positive definite values, a C2 function

β : Rns ×R → Rnu , positive real numbers p, p̄, ε, ρ > 0 such that, for all (s, t) ∈ Rns ×R, the

following holds:

1. The matrix function P satisfies

LφP(s, t)− ρP(s, t)g(s)g⊤(s)P(s, t) ≼ −εP(s, t) ,

pI ≼ P(s, t) ≼ pI .
(6-20)

2. The function β satisfies the integrability condition

∂β⊤

∂s
(s, t) = P(s, t)g(s) . (6-21)

3. The Killing vector property holds, namely

LgP(s, t) = 0. (6-22)

ß These assumptions are similar to the one introduced in section 6.2.

Proposition 6.1 Consider system (6-17), (6-18) and let φ(s, t) = f (s) + g(s)ψ(t). Let Assumption

6.1 hold and let ω : R → Rnu be in L2. Then, for any κ > ρ
2 , the trajectories of system (6-17) in

closed-loop with

u = ψ(t) + α(s, π(t), t) + ω(t) (6-23a)

where

α(s, π(t), t) = −κ
(

β(s, t)− β(π, t)
)

(6-23b)

satisfy

|S(s0, t0, t)−Π(π0, t, t0)| ⩽ k |s0 − π0| e−λ(t−t0) + ζ
(
|ω(t)|

)
(6-24)

for all (s0, π0, t, t0) ∈ Rns ×Rns × [t0, ∞)×R, for some k, λ > 0 and for some class-K function ζ,

with S(·) being the trajectory of (6-17) in closed-loop and Π(·) the trajectory of (6-18).

105

Main results Output tracking via contraction theory

gProof: See Appendix C.1. ■

The result of Proposition 6.1 shows that the control law (6-23) guarantees that trajectories

of (6-17) in closed-loop remain close to the solution of (6-18). In particular, the error between

the two depends on the component ω(t) in (6-23). Our objective is to approximate the control

action with neural networks. Then, in our case, ω(t) represents an approximation error.

Without full knowledge of the model and of (π(t), ψ(t)) solutions of (6-18), we end up using

a control law of the form

u = ψθ(t)− κ(βθ(s, t)− βθ(πθ , t)) , (6-25)

where ψθ , πθ , βθ represent suitable approximations of the functions ψ, π, β in (6-23) where we

already made explicit the dependency on parameters θ. In what follows, we link the error

in the control action to the approximation capabilities of our structure. More specifically, we

show that if the functions ψθ , πθ , βθ are sufficiently close to the true functions, then approxi-

mate output tracking is still achieved. This lays strong foundations for the following section,

as we exploit neural networks to learn an approximate version of the exact functions, which

are not explicitly computable in general. Hence, via Proposition 6.1 and the following result,

we highlight the link between the approximation and the tracking error.

Proposition 6.2 Consider system (6-17) in closed-loop with the control law (6-25). Let (π, ψ) be a

solution of (6-18) and let φ(s, t) := f (s) + g(s)ψ(t). Let (κ, β) be chosen as in Proposition 6.1. Then,

for any compact sets Ws̃ ⊂ Rns , R ⊂ Rne such that r(t) ∈ R for all t ⩾ t0 and for any δ ≥ 0, there

exist a compact setWs and a scalar µδ ≥ 0 such that, if the following holds for all (s, t) ∈ Ws× [t0, ∞)

|βθ(s, t)− β(s, t)| ⩽ µδ ,

|ψθ(t)− ψ(t)| ⩽ µδ ,

|πθ(t)− π(t)| ⩽ µδ ,

(6-26)

then

lim
t→+∞

|S(s0, t, t0)−Π(π0, t, t0)| < δ. (6-27)

for any (s0, π0) satisfying (s0 − π0) ∈ Ws̃.

gProof: See Appendix C.2. ■

6.4.2 DNN-based output tracking controller

We propose to implement ψθ , πθ , βθ using deep learning. Neural networks are typically Lips-

chitz functions by construction. Hence, if the approximation error over the training dataset is

bounded, the error over a compact set including the dataset is also bounded. This allows the

application of Proposition 6.2. In what follows, since the time-dependency of φ is due only to

the reference r(t) (because of the tracking task), we consider t0 = 0. Thus, we discretize the

106

Main results Output tracking via contraction theory

r[K]

r[K−1]

...

r[1]

r[0]

c1,θ

c1,θ

...

c1,θ

c1,θ

q[1]

q[2]

q[K−2]

q[K−1]

p1,θ

π[0]

z[0]

q[K]

Dyn. Dyn.

· · ·

Dyn.
π[1] π[2] π[k] π[k+1]

c2,θ c2,θ c2,θ

r[0] r[1] r[k]

p2,θ p2,θ p2,θ

z[1] z[2] z[k] z[k+1]

ψ[0] ψ[1] ψ[k]

R
ef

er
en

ce
si

gn
al

Reference signal

π

ψ

s

β

β

κ

κ

+
−
+

u

Steady
state

Stabilizer
Steady-state generator

Figure 6.1: Model overview – We address the output tracking problem with a twofold approach: the

state reference generator approximates the solution of the regulator equations and computes states and

inputs given an arbitrary reference signal. The stabilizer leverages a learned contractive function to

force the dynamical system to track the reference.

problem using the Euler scheme with a small timestep τ, yielding s(kτ) = sk. We organize

our algorithm into three steps2:

Step 1: Solve the regulator equations

Our goal is to identify a pair of steady state/input (π, ψ) such that the resulting trajectory

of the system reproduces the reference signal. In other terms, we are looking for the solution

of the regulator equations (6-18). The next steps will focus on building a controller making

the closed-loop system contractive with respect to this steady-state, thus achieving output

tracking.

We propose a two-step approach: first an initial condition π[0] is estimated from the

reference signal. Since the plant may not be fully observable from a single point, estimating

the initial state can take advantage of longer reference signal r= {r[k] | k ∈ [0, K]}. Then, we

simulate the system (6-17) while computing commands {ψ[k] | k ∈ [0, K]} on the fly using a

second neural structure. Formally:

Initial state estimation: π[0] = p1,θ
(
q[k]

)
st.

{
q[0] = 0

q[k+1] = c1,θ
(
q[k], r[k]

)
Next control input: ψ[k] = p2,θ

(
z[k]

)
st.

{
z[0] = 0

z[k+1] = c2,θ
(
π[k], r[k+1], z[k]

)
Simulation: π[k+1] = π[k] + τ

(
f
(
π[k]

)
+ g
(
π[k]

)
ψ[k]

)
with


a

texta

The initial state estimate is obtained by aggregating the reference signal into a unique vector

using a GRU c1,θ followed by an MLP p1,θ . The dynamics is then simulated, using inputs

computed at each step using another GRU c2,θ followed by a MLP p2,θ . Note that the reference

signal may change during the interval [0, K]. In that case, a new estimate of π[0] is obtained

2Our code can be found at: https://github.com/SteevenJanny/OutputTracking_contraction.git

107

https://github.com/SteevenJanny/OutputTracking_contraction.git

Main results Output tracking via contraction theory

by running through the state reference generator again. The model is trained to minimize

the mean squared error between the discrete reference signal {r[k] | k ∈ [0, K]} and the pre-

dicted observation
{

h
(
π[k]

)
| k ∈ [0, K]

}
. Architectures and training details are provided in

Appendix C.3. Note that by using the entire reference signal to estimate the initial condition,

we make use of the finite-time observability results stated in chapter 4. Indeed, the system

might not be observable from a single observation, so the estimation of π[0] can benefit from

a longer observation window.

ß Our setup shares similarity with PINNs in the sense that we are seeking for the solution of

a known differential equation (the regulator equations). However, in our case, we are solving

for two coupled variables π and ψ. Moreover, and conversely to PINNs, the initial condition

π[0] is unknown and must be estimated beforehand. These particularities force to adapt the

architecture accordingly with regards to standard PINN techniques. Importantly, our models

can be trained offline and do not need to be re-optimized on the fly. For these reasons, our

approach is closer to learning with a differentiable simulator rather than a PINN-like setup.

Step 2: Find a suitable metric P

This is arguably the most challenging step of our method. We addressed the problem as

a challenging PINN setup, where the solution is a matrix. Our goal is to find a metric Pθ ≻ 0

satisfying the following constraints:

• Symmetric – this is imposed as a hard constraint by estimating solely the upper trian-

gular part of Pθ ,

• Synchronization – is relaxed as a soft constraint and enforced via a loss term,

• Killing vector – is also relaxed with another loss term,

• Positive definiteness – is formulated as a condition on the eigenvalues of Pθ , and en-

forced via the loss.

The key difficulty of the problem is that the PDE is in fact a matrix inequality. A classic

approach could be to discretize the state space and ensure that each constraint is respected

at least locally. We propose a different method by formulating each constraint as a negative

definiteness condition on four matrices Mi taking the form of

M1 = LφPθ(s, ψ)− ρPθ(s, ψ)g(s)g⊤(s)Pθ(s, ψ) + εI,

M2 = LgPθ(s, ψ)− ϵI,

M3 = −LgPθ(s, ψ)− ϵI,

M4 = −Pθ(s, ψ) + pI.

(6-28)

We supervise negative definiteness on Mi by enforcing the maximum eigenvalue λ(Mi) to

have a negative real part R
{

λ(Mi)
}

. Since our constraints are formulated as inequalities,

the problem is solved when every eigenvalue has a negative real part, which motivates the

108

Main results Output tracking via contraction theory

following loss

JP,1(s, ψ, p) =
4

∑
i=1

wi Ji(s, ψ, p), with Ji(s, ψ, p) = ln
(

max
(
R
{

λ(Mi)
}

, 0
)
+ 1
)

, (6-29)

where p = (ρ, ε, ϵ, p) is a set of learned parameters and wP,1 := (w1, . . . , w4) is a vector of

(positive) scalar weights. The interest we have in this loss is that it reaches zero when all con-

ditions are satisfied. The parameter vector p controls the margins on the matrix inequalities.

We propose a modified objective for training the metric function Pθ and estimating p using a

switching loss function, composed of two interacting elements

JP(s, ψ, p) = JP,1(s, ψ, p) + σJP,2(p) , (6-30)

with switch variable σ = 0 if JP,1 > 0 and σ = 1 otherwise. The second component activates

once a suitable metric is found (i.e., once JP,1=0). It aims to improve the estimation of p while

looking for a better metric. Formally, it is defined as

JP,2(p) =

better
synchro.︷ ︸︸ ︷

w5 ln(ϵ2 + 1) + w6 ln(ρ2 + 1)− w7 ln(ε2 + 1)︸ ︷︷ ︸
better

Killing.

−

better
Pos. Def.︷ ︸︸ ︷

w8 ln(p2 + 1), (6-31)

with wP,2:=(w5, . . . , w8) is a vector of (positive) scalar weights. The composite objective (6-30)

switches between metric search and contraction parameters optimization. First, it looks for a

suitable metric along with a set of parameters p. Then, it freezes the metric parameters and

tries improving the contraction parameters p. If the metric still satisfies JP,1=0, another step

is taken in the direction of p improvement. If not, it unfreezes the metric parameters and the

loop starts again. Note that, by using JP,1 as a discriminant, we can set the final weights of Pθ

to be the last one verifying the contraction condition JP,1=0, thus guaranteeing approximate

output tracking (at least locally).

There are multiple advantages to using the switching objective (6-30). First, it achieves a

better estimation of parameters p. Second, it improves controller robustness, e.g., smaller ε

implies faster contraction, that is, better stability margins (Sontag, 2010). Third, it weakens

the dependence of p on the initial condition. As a matter of fact, p can be initialized to looser

bounds, which eases training. The second objective will then try to tighten the conditions

(6-28) progressively. Finally, it can escape from local minima as the shape of the loss function

drastically changes on switches.

Step 3: Computing the stabilizer β

Once a suitable Pθ metric has been found, βθ can be learned relatively to the following

cost:

Jβ(s, ψ) =

∣∣∣∣∂βθ

∂s
(s, ψ)− g(s)⊤Pθ(s, ψ)

∣∣∣∣2 . (6-32)

109

Simulations Output tracking via contraction theory

− 2 0 2

0

100

200

300

400

500

600
Ti
m
es
te
p
(#
)

Model noise: +/-0.000

− 2 0 2

Model noise: +/-0.001

− 2 0 2

Model noise: +/-0.010

− 2 0 2

Model noise: +/-0.050

Reference
Generator

(a)

10− 3 10− 2 10− 1

Model noise (+/- σ)

− 10

0

10

20

30

P
S

N
R

o
n

re
fe

re
n

ce
tr

ac
k

in
g

(6
00

st
ep

s)

(b)

Figure 6.2: Qualitative evaluation of the steady state generator – (a) We show four estimations from

the state reference generator in different regimes where uniform noise is added to the model. (b) We

measure the peak signal-to-noise ratio (PSNR, dB) between the reference and the output for different

noise ranges. We show that our approach is robust up to a sensible amount of noise.

Each model is trained with Adam optimizer until convergence on a training set composed

of states and commands (s, ψ) from the pre-trained state reference generator. Intermediate

derivatives in (6-28) are obtained via automatic differentiation. The state reference generator

and the stabilizer can be trained separately, as long as the training samples ψk for the stabilizer

come from a similar distribution to the one of the output ψ of the state reference generator.

Training Pθ , βθ on the outputs of the state reference generator is a way to ensure this.

6.5 Simulations

We test our solution on the well-known ball and beam setup. The plant can be described by a

system of the form (6-17) (Hauser et al., 1992) where s ∈ R4, u ∈ R and

f (s)=


s2

B(s1s2
4 − ga sin(s3))

s4

0

 , g(s)=


0

0

0

1

 , h(s)=s1 .

with B a constant depending on system parameters and ga the gravitational acceleration. The

interest of this setup lies in the fact that the relative degree3 is not well-defined when the

beam angular velocity and the ball position are zero. Therefore, input-output linearization

and normal form-based approaches fail to give a suitable controller. To make the problem

harder, we sample the reference signal using the trajectory of the first component z1 of a

Lorenz oscillator whose dynamics is described by
ż1 = 10(z2 − z1)

ż2 = z1(28− z3)− z2

ż3 = z1z2 − 8
3 z3 ,

(6-33)

with random initial conditions. As (6-33) is a chaotic oscillator, it is exponentially sensitive to

initial conditions, making it hard to find analytical solutions to the regulator equations. Then,

3see (Isidori, 1995, Chapter IV)

110

Simulations Output tracking via contraction theory

0 100 200 300 400 500 600

Timestep (#)

− 1.0

− 0.5

0.0

0.5

1.0

1.5

2.0
P

o
si

ti
o

n
(m

)
Reference

Generator

Initial Cond. #1

Initial Cond. #2

Initial Cond. #3

Initial Cond. #4

Initial Cond. #5

Initial Cond. #6

(a)

0.4 0.6 0.8 1.0 1.2 1.4
κ

100

3× 10−1

4× 10−1

6× 10−1

R
M

S
E

(r
ef

er
en

ce
)

Diverged

w/ param. fine-tuning

w/o param. fine-tuning

(b)

Figure 6.3: Output tracking – (a) the stabilizer rapidly converges to the state reference even when the

initial state is far from the generator at timestep k=0. At k=300 timesteps, we abruptly change the

reference signal. The state reference generator and the stabilizer react accordingly. (b) Our fine-tuning

step of the P metric increases the range of gain κ allowed for the stabilizer to track the reference. The

red cross indicates that the system diverged from the reference signals.

Noise standard deviationParameter
Finetuning 0 0.01 0.05 0.1

With 0.343 ± 0.015 0.323± 0.015 0.361± 0.011 0.385± 0.014

Without 0.385 ± 0.015 0.366 ± 0.016 0.408 ± 0.012 0.439 ± 0.016

Table 6.1: Noise robustness – is improved when using βθ trained with the parameter fine-tuning

step. We measure RMSE from reference for different standard deviation of Gaussian noise on state

measurements. Our model can still perform correctly with uncertain observations.

approaches as in (Pavlov et al., 2006) become unfeasible in practice.

State reference generator – We demonstrate the quality of the estimated steady-state

reference in figure 6.2a. Our approach succeed in providing a reliable pair
{(

ψ[k], π[k]
)
| k ∈

J0, KK
}

solutions to the regulator equations. Note that the solution might not be unique,

(multiple trajectories can give the same output), and we expect our model to provide an

approximate solution. Figure 6.2b shows the evolution of the error when the dynamical model

of the state reference generator is disturbed by a uniform noise whose amplitude is varied.

The performance is measured on a set of new references absent from the training dataset. The

standard deviation σ (represented by vertical bars) is obtained by averaging the results over

five iterations. We find that the state reference generator is consistently robust to model errors

up to a significant intensity.

Stabilizer – We generated the steady-state trajectory using the generator and used the

simulator to control six instances of the system starting from different initial conditions. The

result is illustrated in figure 6.3a. We find that each instance quickly converges towards the

trajectory of the state reference generator. This is in accordance with the previous theoretical

results. At timestep k=300, we drastically change the reference signal. The generator reacts

immediately to such a change and estimates a new (πk, ψk). Thanks to the stabilizer, the sys-

111

Conclusions Output tracking via contraction theory

tem converges quickly to the new reference. Once finished, the trajectory remains close to

the state reference without deviating from it. As mentioned above, the analytical solution to

the output tracking problem is difficult to obtain with such a nonlinear system under chaotic

references. Although it is an approximation of the analytical solution, our approach experi-

mentally demonstrates very satisfactory performance. We report quantitative results in Table

6.1, in particular in the context of a system perturbed by Gaussian noise modeling measure-

ment errors. We observe that the learned stabilizer βθ is robust even in noisy scenarios.

We also evaluate the advantages given by our switching objective, which reaches more

stringent parameters p. Table 6.1 compares noise robustness of our approach to the one with-

out the fine-tuning component. We observe experimentally that our improved loss function

leads to more robust control laws. Moreover, we also observe that fine-tuning allows for lower

control gain κ, (Figure 6.3b). This is linked to the size of the domain of attraction when the

Killing vector property holds only approximately (Giaccagli et al., 2022b).

6.6 Conclusions

Output tracking covers many applications, but proves itself to be very challenging, especially

when the dynamics is nonlinear. The main interest of our method is that it can be applied

readily to any nonlinear dynamics, provided that it is input-affine (e.g. most robotic systems).

By grounding the structure of the controller into contraction theory, we obtained a robust and

powerful solution that achieved good performance. Moreover, our algorithm does not involve

online optimization and can be trained entirely offline, offering the potential requirements in

terms of speed and memory footprint for on-board applications.

6.7 Post-scriptum: taking a step back

This work has been conducted in collaboration with two fellow PhD students experts in

control theory and especially in contraction-based control. This is arguably the most trans-

disciplinary chapter of this manuscript, and this project required many discussions between

both domains to translate the theoretical results from control to practical implementation

using deep learning. We believe this work lays the foundation for promising future work.

Solving the Riccati-like equation for nonlinear systems is tremendously difficult to achieve,

especially with a Riemannian metric. Our method uses insights presented in part II, namely

contraction and finite-time observability, but also harness recurrent models, auto-regressive

forecasting, and PINNs, which play an important role in the next chapters.

Dynamical model of the system – We mentioned the recourse to a dynamical model of the

system to train the steady-state generator (step 1). At first glance, this might appear as a

strong limitation of our approach. Yet, in practice, it is uncommon to work on a plant without

any model of its dynamics, and assuming the availability of a dynamical model is reasonable

112

Post-scriptum: taking a step back Output tracking via contraction theory

in most cases. Moreover, our experiments in noisy scenarios indicate that our method can

handle imprecise dynamical models. However, it is still possible to get rid of the model by

relying either on reinforcement learning or on supervised learning.

Heavy machinery – We acknowledge that step 2 is convoluted, to say the least. In partic-

ular, learning the Riemannian metric involves back-propagating the gradients through the

eigenvalue decomposition of four matrices Mi computed from not only the output of a neural

network but also its derivative with regard to its inputs. Fortunately, this can be done easily

with modern automatic differentiation tools, however, PINNs are known to be ill-posed prob-

lems and challenging to train, our situation is arguably on another level. There is room for

simplification and improvement of the training pipeline, which is an interesting direction for

future work.

Failure cases – Empirically, we observed good performance on a challenging setup. The

input-affine structure of the dynamics is suitable for most robotics applications, thus offering

a wide range of possible test systems. However, we discovered a failure case when testing our

approach on the 2D drone system introduced in chapter 4. The method fails at step 2, and

cannot identify a metric P satisfying all the conditions. We argue that drones are a particular

case of dynamical systems which are extremely difficult to handle, especially in open-loop.

Indeed, the dynamics of a drone is unstable: without inputs, the (numerically simulated)

drone falls indefinitely. In practice, the UAV is operated in a very small area of the state

space where it remains controllable. In other terms, the trajectories gathered from a drone for

training purposes explore a very limited part of the dynamics, hence the difficulty in training

a model on such a system. Actually, most applications of deep learning for drones work in

closed-loop frameworks (Bauersfeld et al., 2021; Kaufmann et al., 2023; Loquercio et al., 2021).

Observer design – Another direct application of contraction theory and our method concerns

observer design. Indeed, (Bernard et al., 2022, Theorem 4.1) states the existence of an observer

for nonlinear autonomous systems ṡ = f (s), y = h(s) of the form

˙̂s = f (ŝ, t) + k(ŝ, y) (6-34)

with

k(ŝ, y) =
1
2

κP(ŝ)
∂h
∂s

⊤(
y− h(s)

)
(6-35)

and P(ŝ) being a riemannian matrix solution of

L f P + ρ(s, t)
∂h
∂s

⊤ ∂h
∂s

≼ −qP (6-36)

for ρ : Rns ×R+ 7→ R and q > 0. This definition is very similar to ours, hence the method can

be adapted. Interestingly, even if an exact solution over the entire state-space is not available,

it may also be possible to still estimate approximate metric P avoiding the singularity points.

113

Chapter 7
Space and time continuous physics simulation from

partial observations

Under review,

Co-authors: Madiha Nadri (Université Lyon 1),

Julie Digne (CNRS, Lyon),

Christian Wolf (NaverLabs Europe)

7.1 Context

In the previous chapter, we addressed a complex control algorithm using a Physics-Informed

Neural Network (PINN) setup. Yet, PINNs have strong drawbacks when it comes to solv-

ing difficult PDEs. In this chapter, we propose a new data-driven solver for physics simulation

which overcomes these limitations. In particular, we account for additional requirements on

the behavior of the simulator:

R1. Data-driven – the underlying physics equation is assumed to be completely unknown.

This includes the PDE, but also the boundary conditions. The dynamics must be discovered

from a finite dataset of trajectories, i.e. a collection of observed behaviors from the physical

system.

R2. Generalization – the method must generalize to new unseen initial conditions (ICs)

readily, without re-training or fine-tuning.

R3. Time and space continuous – the domain of the predicted solution must be continuous

in space and time1 so that it can be queried at any arbitrary location within the domain of

definition.

These requirements are common in the field but rarely addressed altogether. R1 allows for

handling complex phenomena where the exact equation might be unknown, and R2 supports

the growing need for faster simulators, which consequently must handle new ICs. Space and

time continuity (R3) are also useful properties for standard simulations since the solution can

1In what follows while being a misnomer, space and time continuity of the solution designates the continuity of

the spatial and temporal domain of definition of the solution, and not the continuity of the solution itself.

115

Context Space and time continuous simulation

be made as fine as needed in certain complex areas.

This task requires learning from sparsely distributed observations only and without any

prior knowledge of the PDE form. In these settings, a standard approach consists of approx-

imating the behavior of a discrete solver, enabling forecasting in an auto-regressive fashion

(Pfaff et al., 2020; Yin et al., 2022; Janny et al., 2023; Sanchez-Gonzalez et al., 2020), losing

therefore spatial and temporal continuity. Indeed, auto-regressive models assume strong reg-

ularities in the data, such as a static spatial lattice and uniform time steps. For these reasons,

generalization to new spatial locations or intermediate time steps is not straightforward. These

methods satisfy R1 and R2, but not R3. In another trend, PINNs learn a solution on a contin-

uous domain. They leverage the PDE operator to optimize the weights of a neural network

representing the solution, and cannot generalize to new ICs, thus violating R1 and R2.

We identified three state-of-the-art methods capable (at least in theory) of satisfying each

requirement:

• Neural operators – can theoretically handle arbitrary locations and new initial condi-

tions while not requiring the PDE operator. However, in practice, existing implementa-

tions are limited to discrete locations, or uniform sampling grid (Lu et al., 2019; Li et al.,

2020d,c).

• DINo (Yin et al., 2022) – is a unique approach where the solution is modeled as a

dynamically modulated implicit representation using a hyper-network. This method

satisfies all three requirements and has been compared favorably to neural operators.

However, it involves heavy machinery which may hinder its performance in complex

scenarios, as shown empirically in this chapter.

• Interpolate & Forecast – is a different approach that leverages a discrete solver cou-

pled to an interpolation module to provide time and space continuity. This method is

illustrated in MaGNet (Boussif et al., 2022).

In this chapter, we address R1, R2 et R3 altogether in a new setup involving two joint dy-

namical systems. R1 and R2 are satisfied using auto-regressive discrete-time dynamics learned

from the sparse observations and producing a trajectory in latent space. Then, R3 is achieved

with a state observer derived from a second dynamical system in continuous time. This state

observer relies on transformer-based cross-attention to enable evaluation at arbitrary spatio-

temporal locations. In a nutshell: (a) We propose a new setup to address continuous space and

time simulations of physical systems from sparse observation, leveraging insights from con-

trol theory. (b) We provide strong theoretical results indicating that our setup is well-suited to

address this task compared to existing baselines, which are confirmed experimentally. (c) We

provide experimental evidence that our state observer is more powerful than handcrafted in-

terpolations for the targeted task. (d) With experiments on three challenging standard datasets

(Navier Yin et al. (2022); Stokes (2009), Shallow Water Yin et al. (2022); Galewsky et al. (2004),

116

Continuous solutions from sparse observations Space and time continuous simulation

…

…

Figure 7.1: Model overview – We achieve space and time continuous simulations of physics systems

by formulating the task as a double observation problem. System 1 is a discrete dynamical model used

to compute a sequence of latent anchor states zd auto-regressively, and System 2 is used to design a

state estimator ψq retrieving the dense physical state at arbitrary locations (x, t).

Eagle Janny et al. (2023), and against state-of-the-art methods (MeshGraphNet (MGN) Pfaff

et al. (2020), DINO Yin et al. (2022), MAgNet (Boussif et al., 2022)).

7.2 Continuous solutions from sparse observations

Consider a dynamical system following a PDE defined for all (x, t) ∈ Ω × J0, TK, with T a

positive constant:

ṡ(x, t) = f (s, x, t) ∀(x, t) ∈ Ω× J0, TK,

s(x, 0) = s0(x) ∀x ∈ Ω, s(x, t) = s̄(x, t) ∀(x, t) ∈ ∂Ω× J0, TK
(7-1)

where the state lies in an invariant set s ∈ S , f : S 7→ S is an unknown operator, s0 : Ω 7→ Rn

is the initial condition (IC) and s̄ : ∂Ω× J0, TK 7→ Rn the boundary condition. In what follows,

we consider trajectories with shared boundary conditions, hence we omit s̄ from the notation

for readability. In practice, the operator f is unknown, and we assume access to a set D of

K discrete trajectories from different ICs sk
0, sampled at sparse and scattered locations in time

and space. Formally, we introduce two finite sets X ⊂ Ω of fixed positions and fixed regularly

sampled times T at sampling rate ∆∗. Let S(s0, x, t) be the solution of this PDE from IC s0,

the dataset D is given as: D :=
{

S(sk
0,X , T)

∣∣∣ k ∈ J1, KK
}

. Our task is formulated as:

Given D, a new initial condition s0 ∈ S , and a query (x, t) ∈ Ω× J0, TK, find the solution of

equation(7-1) at the queried location and from the given IC, that is S(s0, x, t).

Note that this task involves generalization to new ICs, as well as estimation to unseen spatial

locations within Ω and unseen time instants within J0, TK. We do not explicitly require ex-

trapolation to instants t > T, although it comes as a side benefit of our approach up to some

extent.

117

Continuous solutions from sparse observations Space and time continuous simulation

7.2.1 The double observation problem

The task implies extracting regularities from weakly informative physical variables that are

sparsely measured in space and time since X and T contain very few elements. Conse-

quently, the possibility to forecast their trajectories from off-the-shelf auto-regressive methods

is very unlikely (as confirmed experimentally). To tackle this challenge, we propose an ap-

proach accounting for the fact that the phenomenon is not directly observable from the sparse

trajectories, but can be deduced from a richer latent state-space in which the dynamics is

Markovian. We introduce two linked dynamical models lifting sparse observations to dense

trajectories guided by observability considerations, namely

System 1:

{
zd[n+1] = f1

(
zd[n]

)
sd[n] = h1

(
zd[n]

) , System 2:

{
ṡ(x, t) = f2

(
s, x, t

)
z(x, t) = h2

(
s, x, t

) ∀(x, t)∈Ω×J0, TK

(7-2)

where for all n ∈ N, we note sd[n] = s(X , n∆) the sparse observation at some instant n∆.

The sampling rate ∆ is not necessarily equal to the sampling rate ∆∗ used for data acquisition,

which we will exploit during training to improve generalization. This will be detailed later.

System 1 – is a discrete-time dynamical system where the available measurements sd[n] are

considered as partial observations of a latent state variable zd[n]. We aim to derive an output

predictor from System 1 to forecast trajectories of sparse observations auto-regressively from

the sparse IC. As mentioned earlier, sparse observations are unlikely to be sufficient to perform

predictions, hence we introduce a richer latent state variable zd in which the dynamics is truly

Markovian, and observations sd[n] are seen as measurements of the state zd using the function

h1.

System 2 – is a continuous-time dynamical system describing the evolution of the to-be-

predicted dense trajectory S(s0, x, t). It introduces continuous observations z(x, t) such that

z(X , n∆) = zd[n]. The insight is that the state representation zd[n] obtained from System 1

is designed to contain sufficient information to predict sd[n], but not necessarily to predict

the dense state. Formally, zd represents solely the observable part of the state, in the sense of

control theory.

At inference time, we forecast at query location (x, t) with a 2-step algorithm: (Step-1)

System 1 is used as an output predictor from the sparse IC sd[0], and computes a sequence

z[0], z[1], · · · , which we refer to as “anchor states”. This sequence allows the dynamics to be

Markovian, provides sufficient information for the second state estimation step, and holds

information to predict the sparse observations, allowing supervision during training. (Step-2)

We derive a state observer from System 2 leveraging the anchor states over the whole time

domain to estimate the dense solution at an arbitrary location in space and time (see figure

7.1). Importantly, for a given IC, the anchor states are computed only once and reused within

System 2 to estimate the solution at different points.

118

Continuous solutions from sparse observations Space and time continuous simulation

7.2.2 Theoretical analysis

In this section, we introduce theoretical results supporting the use of Systems 1 and 2. In

particular, we show that using System 1 to forecast the sparse observations in latent space zd

rather than directly operating in the physical space leads to a smaller upper bound on the

prediction error. Then, we show the existence of a state estimator from System 2 and compute

an upper bound on the estimation error depending on the length of the sequence of anchor

states.

Step 1 – consists of computing the sequence of anchor states guided by an output prediction

task of the sparse observations. As classically done, we introduce an encoder (formally, a

state observer) e
(
sd[0]

)
=zd[0] coupled to System 1 to project the sparse IC into a latent space

zd. Following System 1, we compute the anchor states zd auto-regressively (with f1) in the

latent space. The sparse observations are extracted from zd using h1. In comparison, existing

baselines (Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020; Stachenfeld et al., 2021) maintain

the state in the physical space and discard the intermediate latent representation between

iterations. Formally, let us consider approximations f̂1, ĥ1, ê (in practice realized as deep net-

works trained from data D) of f1, h1 and e and compare the prediction algorithm for the classic

auto-regressive (AR) approach and ours

Classic AR: ŝar
d [n] := (ĥ1 ◦ f̂1 ◦ ê)n(sd[0]

)
Ours: ŝd[n] := ĥ1 ◦ f̂1

n ◦ ê
(
sd[0]

)
(7-3)

Classical AR approaches re-project the latent state into the physical space at each time step and

repeat the scheme “encode-process-decode”. Our method encodes the sparse IC, advances the

system in the latent space, and decodes toward the physical space at the end. The following

proposition indicates that our method is advantageous compared to the classic AR scheme.

Proposition 7.1 Consider a dynamical system of the form of System 1 and assume the existence of a

state observer e along with approximations f̂1, ĥ1, ê with Lipschitz constants L f , Lh and Le respectively

such that LhL f Le ̸= 1. If there exist δ f , δh, δe ∈ R+ such that ∀(z, s) ∈ Rnz ×Rns

| f1(z)− f̂1(z)| ⩽ δ f , |h1(z)− ĥ1(z)| ⩽ δh, |e(s)− ê(s)| ⩽ δe (7-4)

for the Euclidean norm | · |, then for all integer n > 0, with ŝd[n] and ŝar
d [n] as in (7-3),

|sd[n]− ŝd[n]| ⩽ δh + Lh

(
δ f

Ln
f − 1

L f − 1
+ Ln

f δe

)
(7-5)

|sd[n]− ŝar
d [n]| ⩽ δ

Ln − 1
L− 1

(7-6)

with δ = δh + Lhδ f + LhL f δe and L = LhL f Le.

Proof : See appendix D.1.

This result shows that falling back to the physical space at each time step degrades the

upper bound of the prediction error. Indeed, if L < 1, the upper bound converges trivially to

119

Continuous solutions from sparse observations Space and time continuous simulation

zero when n increases, and hence can be ignored. Otherwise, the upper bound for the classic

AR scheme appears to be more sensitive to approximation errors δh, δ f and δe compared to our

approach (for a formal comparison, see appendix D.2). Intuitively it means that information

is lost in the observation space, which thus needs to be re-estimated at each iteration when

using the classic AR scheme. By maintaining a state variable in the latent space, we allow this

information to flow readily between each step of the simulator (see blue frame in figure 7.1).

Step 2 – The state estimator builds upon System 2 and relies on the set of anchor states from

the previous step to estimate the dense physical state at arbitrary locations in space and time.

Formally, we look for a function ψq leveraging the sequence of anchor states zd[0], · · · , zd[q]

(simulated from the sparse IC sd[0]) to retrieve the dense solution2. In what follows, we show

that (1) such a function ψq exists and (2) we compute an upper bound on the estimation error

depending on the length of the sequence. To do so, consider the functional which outputs the

anchor states from any IC s0 ∈ S

Op(s0)=
[

h2
(
s0(X)

)
h2
(
S(s0,X , ∆)

)
· · · h2

(
S(s0,X , p∆)

)]
=
[

zd[0] · · · zd[p]
]

(7-7)

In practice, the ground truths zd[n] are not perfectly known, as they are obtained from a

data-driven output predictor (step 1) using the sparse IC. Inspired from chapter 4, we state:

Proposition 7.2 Consider a dynamical system defined by System 2 and (7-7). Assume that

A1. f2 is Lipschitz with constant Ls,

A2. there exists p > 0 and a strictly increasing function α such that ∀sa, sb ∈ S2 and ∀q ⩾ p∣∣Oq(sa)−Oq(sb)
∣∣ ⩾ α(q)|sa − sb|S (7-8)

where
∣∣ · ∣∣S is an appropriate norm for S .

Then, ∀q ⩾ p, there exists ψq such that, for (x, t) ∈ Ω×J0, TK and δn such that ẑd[n] = zd[n]+δn,

for all n ⩽ q,

ψq
(
zd[0], · · · , zd[q], x, t

)
= S(s0, x, t) (7-9)∣∣∣S(s0, x, t)− ψq

(
ẑd[0], · · · , zd[q], x, t

)∣∣∣
S
⩽ 2α(q)−1∣∣δ0|q

∣∣eLst. (7-10)

where δ0|q=
[
δ0 · · · δq

]
.

Proof: See appendix D.3.

ß Assumption A2. states that the longer we observe two trajectories from different ICs,

the easier it will be to distinguish them, ruling out systems collapsing to the same state.

Such systems are uncommon since forecasting their trajectory becomes trivial after some

time. This assumption is related to finite-horizon observability in control theory, a property of

dynamical systems guaranteeing that the (markovian) state can be retrieved given a finite

2Since the simulation is conducted up to T, and considering the time step ∆, in practice q ⩽ ⌊ T
∆ ⌋

120

Continuous solutions from sparse observations Space and time continuous simulation

number p of past observations. Equation 7-8 is associated with injectivity of Oq, hence the

existence of a left inverse mapping the sequence of anchor states to the IC s0.

Proposition 7.2 highlights a trade-off on the performance of ψq. On one hand, longer

sequences of anchor states are harder to predict, leading to a larger |δ0|q|, which impacts the

state estimator ψq negatively. On the other hand, longer sequences hold more information

that can still be leveraged by ψq to improve its estimation, represented by α(q)−1 in (7-10). In

contrast to competing baselines or conventional interpolation algorithms, our approach takes

this trade-off into account by explicitly leveraging the sequence to estimate the dense solution,

as will be discussed below.

Discussion and related work – the competing baselines can be analyzed using our setup, yet

in a weaker configuration. For instance, one can see Step 2 as an interpolation process, and

replace it with a conventional interpolation algorithm, which typically relies on spatial neigh-

bors only. Our method not only exploits spatial neighborhoods but also leverages temporal

data, improving the performance, as shown in proposition 7.2 and empirically corroborated

in Section 7.3.

MAgNet (Boussif et al., 2022) uses a reversed interpolate-forecast scheme compared to ours.

The IC sd[0] is interpolated right from the start to estimate s0 (corresponding to our Step 2,

with q=1), and then simulated with an auto-regressive model in the physical space (with the

classic AR scheme). Propositions 7.1 and 7.2 show that the upper bounds on the estimation

and prediction error are higher than ours. Moreover, if the number of query points exceeds the

number of known points (|Ω|≫|X |), the input of the auto-regressive solver is filled with noisy

interpolations, which impacts performance. This is illustrated in figure D.1 in the appendix.

DINo (Yin et al., 2022) is a very different approach leveraging a spatial implicit neural rep-

resentation modulated by a context vector, whose dynamics is modeled via a learned ODE.

This approach is radically different than ours and arguably involves stronger hypotheses,

such as the existence of a learnable ODE modeling the dynamics of a suitable weight modu-

lation vector. In contrast, our method relies on strong insights from dynamical systems and

observation theory.

7.2.3 Implementation

The implementation follows the algorithm described in the previous section: (Step-1) rolls out

predictions of anchor states from the IC and (Step-2) estimates the state at the query position

from these anchor states. The encoder ê from Step 1 is an MLP which takes as input the

sparse IC sd[0] and the positions X and outputs a latent state variable zd[0] structured as a

graph, with edges computed with a Delaunay triangulation. Hence, each anchor is a graph

zd[n] = {zd[n]i}, but we will omit index i over graph nodes in what follows if not required for

understanding.

121

Continuous solutions from sparse observations Space and time continuous simulation

e

Figure 7.2: Model overview – The model leverages a dynamical system (System 1) to perform auto-

regressive predictions of the dynamics in a mesh-structured latent space from sparse initial conditions.

It is combined with a data-driven state estimator derived from another continuous-time dynamical

system (System 2), implemented with multi-head cross-attention. The attention mechanism queries

the intermediate anchor states from the auto-regressive predictor and uses Fourier positional encoding

to encode the query points (x, τ). An additional GRU refines the dynamics after interpolation.

We model f̂1 as a multi-layer GNN (Battaglia et al., 2016). The anchor states zd[n] are

defined at fixed time steps n∆, which might not match ∆∗ used in the data T . We found it

beneficial to choose ∆=k×∆∗ with k>1∈N such that the model can be queried during training

on time points t ∈ T that do not match exactly with every time-steps in zd[0], zd[1], ..., hence

encouraging generalization to unseen time. The observation function ĥ1 is an MLP applied on

the vector at node level in the graph zd.

The state estimator ψq is decomposed into a Transformer model (Vaswani et al., 2017) cou-

pled to a recurrent neural network to provide an estimate at spatio-temporal query position

(x, t). First, through cross-attention we translate the set of anchor states zd[n] (one embed-

ding per graph node i and per instant n) into a set of estimates of the continuous variable

z(x, t) conditioned at the instant n∆, which we denote zn∆(x, t) (one embedding per instant

n). Following advances in geometric mappings in computer vision (Saha et al., 2022), we use

multi-head cross-attention to query from coordinates (x, t) the Keys corresponding to the nodes

i in each graph anchor state zd[n], ∀n

zn∆(x, t) = fmha
(
Q=ζω(x, t), K=V={zd[n]i}+ ζω(X , n∆)

)
, // attention over nodes i (7-11)

where Q, K, V are, respectively, Query, Key and Value inputs to the cross-attention layer fmha

(Vaswani et al., 2017) and ζω a Fourier positional encoding with a learned frequency parameter

122

Experimental results Space and time continuous simulation

ω. Finally, we leverage a state observer to estimate the dense solution at the query point from

the sequence of conditioned anchor variables, over time. This is achieved with a GRU (Cho

et al., 2014) maintaining a hidden state u[n],

u[n] = rgru
(
u[n−1], zn∆(x, t)

)
, Ŝ(s0, x, t) = D (u[q]) , (7-12)

which shares similarities with conventional state-observer designs in control theory (Bernard

et al., 2022). Finally, an MLP D maps the final GRU hidden state to the desired output, that

is, the value of the solution at the desired spatio-temporal coordinate (x, t). See appendix D.4

and figure 7.2 details.

7.2.4 Training

Generalization to new input locations during training is promoted by creating artificial gen-

eralization situations using sub-sampling techniques of the sparse sets X and T .

Artificial generalization – The anchor states zd[n] are computed at time rate ∆ larger than the

available rate ∆∗. This creates situations during training where the state estimator ψq does not

have access to a latent state perfectly matching with the queried time. We propose a similar

trick to promote spatial generalization. At each iteration, we sub-sample the (already sparse)

IC sd[0] randomly to obtain s̃d[0] defined on a subset of X . We then compute the anchor

states z̃d using System 1. On the other hand, the query points are selected in the larger set

X . Consequently, System 2 is exposed to positions that do not always match with the ones in

zd[n]. Note that the complete domain of definition Ω× J0, TK remains unseen during training.

Training objective – To reduce training time, we randomly sample M query points (xm, τm)

in X × T at each iteration, with a probability proportional to the previous error of the model

at this point since its last selection (see appendix D.4) and we minimize the loss

L =
K

∑
k=1

Lcontinuous︷ ︸︸ ︷
M

∑
m=1

∣∣∣S(sk
0, xm, τm)− ψq

(
z̃d[0|q], x, τm

)∣∣∣2 +
Ldynamics︷ ︸︸ ︷

⌊T/∆⌋
∑
n=0

∣∣∣s̃d[n]− ĥ1
(
z̃d[n]

)∣∣∣2, (7-13)

with z̃d[n] = f̂1
n ◦ ê

(
s̃d[0]

)
. Lcontinuous supervises the model end-to-end, and Ldynamics trains

the latent anchor states zd to predict the sparse observations from the IC.

7.3 Experimental results

Experimental setup – we generate X × T from Ω × J0, TK by subsampling the domain of

definition with various sampling rates, which changes the difficulty level of the task. We

evaluate on three highly challenging datasets (details are provided in appendix D.5):

• Navier (Yin et al., 2022; Stokes, 2009) simulates the vorticity of a viscous, incompressible

flow using the Navier-Stokes equations. The flow is driven by a sinusoidal force acting

on a square domain with periodic boundary conditions.

123

Experimental results Space and time continuous simulation

• Shallow Water (Yin et al., 2022; Galewsky et al., 2004) is a dataset defined on a non-

euclidean manifold. It studies the velocity of shallow waters evolving on the tangent

surface of a 3D sphere.

• Eagle (Janny et al., 2023) is a challenging dataset of unsteady airflow (turbulences) gen-

erated by a moving drone in a 2D environment with many different scene geometries.

This dataset will be presented in depth in Chapter 8.

We also evaluate our model against three competitive baselines that represent the current

state-of-the-art in continuous forecasting of physics solutions.

• Interpolated MeshGraphNet (MGN) (Pfaff et al., 2020) is a standard multi-layered GNN

used in an auto-regressive manner. This baseline is extended to time and space continu-

ity using physics-agnostic spline interpolation techniques.

• MAgNet (Boussif et al., 2022) proposes to interpolate the mesh to new positions in

the latent space before applying an MGN model (complemented with an Euler time-

discretization scheme to allow for arbitrary time querying). While it is designed to

generalize to new locations in space, it also assumes knowledge of the evaluation graph

during training, including new query points. When evaluating the super-resolution

setup, the authors kept the ratio between the amount of new query points and available

measurements constant. Hence, while the model is queried at unseen locations, it also

benefits from more information. In our setup, the model is exposed to a fixed set of

points and does not receive more samples when evaluated on positions unseen during

training. This makes our task more challenging than the one originally addressed in

Boussif et al. (2022).

• DINo (Yin et al., 2022) models the solution as an INR s(x, αt) where the spatial coor-

dinates x are fed to a Multiplicative Filter Network (MFN) (Fathony et al., 2021) and αt

is a context vector modulating the activations of the INR. The dynamics of the context

vector is modeled with a Neural-ODE α̇t = F(αt), where F is an MLP. We share common

objectives with DINo and take inspiration from the evaluation tasks in Yin et al. (2022),

yet in a more challenging setup.

Note that all three baselines have been extensively described in chapter 3. Details of the

baselines are in appendix D.5. We highlight a caveat on MAgNet: the model can handle a

limited amount of new queries, roughly equal to the number of observed points. Our task

requires the solution at up to 20 times more queries than available points. In this situation,

the graph in MaGNet is dominated by noisy states from interpolation, and the auto-regressive

forecaster performs poorly. During the evaluation, we found it beneficial to split the queries

into chunks of 10 nodes and to apply the model several times. This strongly improves the

performance at the cost of an increased runtime.

Space Continuity – Table 7.1 compares the spatial interpolation power of our method versus

124

Experimental results Space and time continuous simulation

Navier Shallow Water Eagle

High Mid Low High Mid Low High Low

In-X 1.557 1.130 1.878 0.1750 0.1814 0.2733 287.3 302.7DINo
(Yin et al., 2022) Ext-X 1.600 1.253 5.493 4.638 13.40 21.55 381.7 489.6

In-X 1.913 0.9969 0.6012 0.3663 0.2835 0.7309 64.44 83.58Interp. MGN
(Pfaff et al., 2020) Ext-X 2.694 4.784 14.80 1.744 4.221 8.187 173.4 241.5

In-X n/a n/a n/a
Time Oracle (n.c)

Ext-X 0.851 4.204 15.63 1.617 4.327 8.522 147.0 221.2

In-X 18.17 6.047 8.679 0.3196 0.3358 0.4292 99.79 124.5MAgNet
(Boussif et al., 2022) Ext-X 35.73 26.24 57.21 10.21 23.20 30.55 194.3 260.7

In-X 0.1989 0.2136 0.2446 0.2940 0.3139 0.2700 70.02 78.83
Ours

Ext-X 0.2029 0.2463 0.5601 0.4493 1.051 2.800 90.88 117.2

Table 7.1: Space Continuity – we evaluate the spatial interpolation power of our method vs. the

baselines and standard interpolation techniques. We vary the number of available measurement points

in the data for training from High (25% of simulation grid), Middle (10%), and Low (5%) amount of

points and show that our model outperforms the baselines. Evaluation is conducted over 20 frames in

the future (10 for Eagle) and we report the MSE to the ground truth solution (×10−3).

several baselines. The MSE values computed on the training domain (In-X=X) and out-

side (Ext-X=Ω \ X) show that our method offers the best performance, especially for the

Ext-domain task, which is our aim. To ablate dynamics and evaluate the impact of trained

interpolations, we also report the predictions of a Time Oracle which uses sparse ground truth

values at all time steps and interpolates (bicubic) spatially. This allows us to assess whether

the method is doing better than a simple axiomatic interpolation. While MGN offers com-

petitive in-domain predictions, the cubic interpolation fails to extrapolate reliably on unseen

points. This can be seen in the In/Ext gap for Interpolated MGN which is very close to

the Time Oracle error. MaGNet, which builds on a similar framework, is hindered by the

larger amount of unobserved data in the input mesh. At test time, the same number of initial

condition points are provided but the method interpolates substantially more points. DINo

achieves a very low In/Ext gap, yet fails on highly (5%) down-sampled tasks. One of the key

difference with DINo is that the dynamics relies on an internal ODE for the temporal evolu-

tion of a modulation vector. In contrast, our model uses an explicit auto-regressive backbone

and time forecasting is handled in an arguably more meaningful space, which we conjecture

to be the reason why we achieve better results (see figure D.2 in the appendix for qualitative

results on Shallow Water).

Time Continuity – is a step forward in difficulty, as the model needs to interpolate not

only to unseen spatial locations (datasets are undersampled at 25%) but also on intermediate

timesteps (Ext-T , Table 7.2). All models perform well on Shallow Water, which is relatively

easy. Both DINo and MAgNet leverage a discrete integration scheme (Euler for MAgNet

and RK4 for DINo) allowing querying the model between timesteps seen at training. These

schemes struggle to capture the data dependencies effectively and therefore the methods fail

125

Conclusion Space and time continuous simulation

G
ro

u
n

d
T

ru
th

O
u

rs
D

IN
o

M
es

h
G

ra
p

h
N

et
M

A
g

N
et

ŝ−
s

22
t0 + 2 t0 + 4 t0 + 6 t0 + 8 t0 + 10t0

Figure 7.3: Qualitative results on Eagle – Per point error of the flow prediction on an Eagle example

in the Low spatial down-sampling scenario. Our model shows lower errors, as also shown in Tables 7.1

and 7.2.

on Navier (see also Figure D.3 for qualitative results). Eagle is particularly challenging, the

main source of error being the spatial interpolation, as can be seen in Figure 7.3 – our method

yields lower errors in flow estimation.

Many more experiments – are available in appendix D.6. We study the impact of

key design choices, artificial generalization, and dynamical loss. We show qual-

itative results on time interpolation and time extrapolation on the Navier dataset.

We explore generalization to different grids. We provide more empirical evi-

dence of the soundness of Step 2 in an ablation study (including comparison with

attentive neural process (Kim et al., 2018), an attention-based structure somehow

close to ours), and observe attention maps on several examples. We show that our

state estimator goes beyond local interpolation, as conventional interpolation al-

gorithms would do. Finally, we also measure the computational burden of the

discussed methods and show that our approach is more efficient.

7.4 Conclusion

We used a double dynamical system formulation for simulating physical phenomena at ar-

bitrary locations in time and space. Our approach comes with theoretical guarantees on

existence and accuracy without knowledge of the underlying PDE. Furthermore, our method

generalizes to unseen initial conditions and reaches excellent performance outperforming ex-

isting methods. Yet a limitation lies in the requirement of regular sampling in time, on which

our dynamics loss can be expressed. Finally, in the case of known and well-studied phenom-

126

Post-scriptum: taking a step back Space and time continuous simulation

Navier Shallow Water Eagle

1/1 1/2 1/4 1/1 1/2 1/4 1/1 1/2 1/4

In-T 1.590 36.31 46.02 3.551 6.005 6.249 444.5 447.1 448.6DINo
(Yin et al., 2022) Ext-T n/a 39.42 54.72 n/a 6.015 6.265 n/a 479.4 470.7

In-T 2.506 4.834 12.77 1.408 1.289 1.333 203.4 210.4 263.3Interp. MGN
(Pfaff et al., 2020) Ext-T n/a 5.922 36.43 n/a 1.287 1.355 n/a 209.8 263.8

In-T n/a n/a n/a
Spatial Oracle (n.c)

Ext-T n/a 1.296 28.58 n/a 0.003 0.119 n/a 29.46 54.53

In-T 31.51 135.0 243.9 7.804 6.433 1.884 227.9 220.3 225.8MAgNet
(Boussif et al., 2022) Ext-T n/a 142.8 255.5 n/a 6.291 1.947 n/a 229.8 230.6

In-T 0.2019 0.1964 0.4062 0.4115 0.4278 0.4549 108.0 106.1 278.6
Ours

Ext-T n/a 0.2138 11.36 n/a 0.4326 0.4802 n/a 119.9 306.9

Table 7.2: Time Continuity – we evaluate the time interpolation power of our method vs. the baselines

and standard interpolation techniques. Models are trained and evaluated with only 25% of the full

observation grid, and with different temporal resolutions (full, half, and quarter of the original). The

Spatial Oracle (non-comparable!) uses the exact solution at every point in space, and performs temporal

interpolation. Evaluation is conducted over 20 frames in the future (10 for Eagle) and we report MSE

compared to the ground truth solution (×10−3).

ena, it would be interesting to add physics priors in the system, a nontrivial extension that we

leave for future work. A website has been created where results can be visualized and interact

with:

https://continuous-pde.github.io/

7.5 Post-scriptum: taking a step back

This project is the last one conducted during this Ph.D, hence its connection with most of

our previous work. The proposed approach shows outstanding performances compared to

the state-of-the-art on very challenging datasets while achieving all our requirements stated

in the introduction of the chapter. However, there is still room for improvement, in particular

concerning the underlying hypotheses required for training the model.

Real world datasets – One might argue that our approach has been tested solely on artificial

tasks. Theoretically, using a real-world dataset is possible, but faces several challenges related

to the performance evaluation. Indeed, while the model can be trained from sparse data,

the evaluation step requires dense observations of the physical simulation to measure the

generalization capabilities of the model. Publicly available datasets of real-world physical

phenomena that are both large-scale enough to allow for deep learning, and dense enough to

allow for good evaluation conditions are rare.

Sampling time during training – we assumed that the sampled time steps in T are evenly

spaced in J0, tK. This requirement is used for the auto-regressive module which leverages the

127

https://continuous-pde.github.io/

Post-scriptum: taking a step back Space and time continuous simulation

observed states sd[n] at several instants n∆. It would be interesting to extend the model to

handle irregular time sampling. A possible direction would be to leverage a continuous time

system rather than a discrete setup and solve for different times in T using a Neural-ODE

setup.

On one hand, we could still compute zd[n] at static time steps, but also simulate z(t)

for all t ∈ T , for supervision purposes. However, using a neural-ODE with a simple static

method (e.g. runge-kutta) might not be sufficient, as the duration between two times in T
can be large, hence the simulation less precise. Better performance might be obtained with

adaptive methods, but this will strongly impact the training time. Finally, the transition to

non-uniform T is not straightforward.

About the GRU – The role of the GRU in our dynamical interpolator is to behave as an

observer (see chapter 2 for a reminder). The network starts with a random initial condition

u[0] and must forecast the state using the conditioned vectors zn∆(x, t). This behavior can be

related to a contraction property. This could motivate the use of observers which are provably

contractive, such as Deep-KKL (chapter 5).

128

Part IV

Scaling up: large-scale learning of complex

physics phenomena

130

General remarks

Throughout the previous chapters, we noticed that our data greediness is growing bigger

and bigger. In Part II, we focused on principled learning-based models and theoretical

considerations. These projects are better evaluated with simple and well understood systems,

allowing easier analysis of the behavior of a model. In Part III, we addressed more and

more challenging problems, mainly under the form of PDEs. In particular, chapter 7 was

about fluid dynamics, an infamously difficult simulation task that requires a large amount of

training data to perform. In general, we spotted a lack of physics-oriented large-scale datasets

in the community, slowing down research towards fast neural simulators. Hence, part of our

work focused in providing large-scale and public datasets for physics simulations, as well as

strong baseline models to compete with.

Chapter 8: Large-scale learning of turbulent fluid dynamics with mesh transformers

TLDR; Industrial-grade fluid simulations are traditionally riddled by computationally

intensive numerical models. We propose a leap in difficulty and performance

by introducing Eagle, a new model, method and benchmark for fluid flow

forecasting. Our approach relies on a new mesh transformer, leveraging node

clustering, graph pooling and global attention to model long-range flow inter-

actions, which were traditionally carried on by multiple GNN iterations. To

strengthen our work, we also present a new accurately simulated fluid dy-

namics dataset that is significantly more challenging than existing tasks in the

literature.

Chapter 9: Unsupervised learning of counterfactual physics in pixel space

TLDR; Causal relationships are at the core of physics, yet learning them, especially

in high-dimensional data is a hard task, as they are often defined on low-

dimensional manifolds and must be extracted from complex signals. We

present a method and dataset for learning counterfactual physical processes

in pixel space. Going beyond the identification of structural relationships, we

deal with the challenging problem of forecasting raw video over long horizons.

Our model learns and acts on a suitable hybrid latent representation based on

a combination of dense features, sets of 2D keypoints and an additional latent

vector per keypoint.

131

Chapter 8
Large-scale learning of turbulent fluid dynamics

with mesh transformers

Work presented at ICLR (poster) 2023,

Co-authors: Aurélien Béneteau (SupAero, Toulouse)

Madiha Nadri (Université Lyon 1),

Julie Digne (CNRS, Lyon),

Nicolas Thome (Université Sorbonne)

Christian Wolf (NaverLabs Europe)

8.1 Context

Despite consistently being at the center of attention of mathematics and computational

physics, solving the Navier-Stokes equations governing fluid mechanics remains an

open problem. In the absence of an analytical solution, fluid simulations are obtained by

spatially and temporally discretizing differential equations, for instance with the FVM or FEM.

These algorithms are computationally intensive, and take up to several weeks for complex

problems while requiring expert configurations.

Neural network-based physics simulators may represent a convenient substitute in many

ways. Beyond the expected speed gain, their differentiability would allow for direct opti-

mization of fluid mechanics problems (airplane profiles, turbulence resistance, etc.), opening

the way to replace traditional trial-and-error approaches. They would also be an alternative

for solving complex PDEs where numerical resolution with conventional tools is intractable.

Yet, the development of such models is slowed down by the difficulty of collecting data in

sufficient amounts to reach generalization.

Indeed, fluid datasets for deep learning are challenging to produce in many ways. Real-

world measurement is complicated, requiring complex velocimetry devices (Wang et al., 2020;

Discetti and Coletti, 2018; Erichson et al., 2020). Remarkably, Eckert et al. (2019); Bézenac et al.

(2019) leverage alignment with numerical simulation to extrapolate precise ground truth flows

on real-world phenomena (smoke clouds and sea surface temperature). Fortunately, accurate

simulation data can be acquired through several solvers, ranging from computer graphics-

133

Context Turbulent fluid dynamics with mesh transformers

Timestep t
<latexit sha1_base64="m/+2W/Vh8yF76wonZ/TgfXKAXt0=">AAAC13icjVHLTsJAFD3UF+Kr4tJNIzFxRQqa6JLoxiUmvAwQ0pYBJ/SVdmoghLgzbv0Bt/pHxj/Qv/DOWBJdELlN2zvnnnPm3hk7dHksTPMjo62srq1vZDdzW9s7u3v6fr4RB0nksLoTuEHUsq2YudxndcGFy1phxCzPdlnTHl3JevOeRTEP/JqYhKzrWUOfD7hjCYJ6er4j2FhMa9xjsWChMTNETy+UiqYKY3FSQBrVQH9HB30EcJDAA4MPQbkLCzE9bZRgIiSsiylhEWVc1RlmyJE2IRYjhkXoiL5DWrVT1Ke19IyV2qFdXHojUho4Jk1AvIhyuZuh6olylugi76nylL1N6G+nXh6hAneE/qebM5fVyVkEBrhQM3CaKVSInM5JXRJ1KrJz49dUghxCwmTep3pEuaOU83M2lCZWs8uztVT9UzElKtdOyk3wJbtc7oIb5WLptFi+OStULtOrzuIQRzih+zxHBdeook7eY7zgFW/arfagPWpPP1Qtk2oO8Ce052+FSJb/</latexit>

Multi-Head	Attention

Timestep t+ 1
<latexit sha1_base64="tvXvPFuM0mkSD+XqLfa3FrowFDI=">AAAC2XicjVHLSsNAFD2Nr1pf8bFzEyyCIJS0CrosunFZoS9oS0nSaR2aF8lErKULd+LWH3CrPyT+gf6Fd8YUdFHsDUnunHvOmXtn7NDlsTDNj4y2sLi0vJJdza2tb2xu6ds79ThIIofVnMANoqZtxczlPqsJLlzWDCNmebbLGvbwUtYbtyyKeeBXxShkHc8a+LzPHUsQ1NX32oLdiXGVeywWLDQmhjgudvV8sWCqMGYneaRRCfR3tNFDAAcJPDD4EJS7sBDT00IRJkLCOhgTFlHGVZ1hghxpE2IxYliEDuk7oFUrRX1aS89YqR3axaU3IqWBQ9IExIsol7sZqp4oZ4nO8h4rT9nbiP526uURKnBD6H+6KXNenZxFoI9zNQOnmUKFyOmc1CVRpyI7N35NJcghJEzmPapHlDtKOT1nQ2liNbs8W0vVPxVTonLtpNwEX7LL+S64XioUTwql69N8+SK96iz2cYAjus8zlHGFCmrkfY8XvOJNa2kP2qP29EPVMqlmF39Ce/4GujaXbw==</latexit>

Figure 8.1: Teaser – We introduce Eagle, a large-scale dataset for learning complex fluid mechanics,

accurately simulating the airflow created by a 2D drone in motion and interacting with scenes of

varying 2D geometries. We address the problem through an autoregressive model and self-attention

over tokens in a coarser resolution, allowing to integrate long-range dependencies in a single hop,

shown in the given example by the attention distributions for ■, which follows the airflow.

oriented simulators (Takahashi et al., 2021; Pfaff and Thuerey, 2016) to accurate computational

fluid dynamics solver (OpenFOAM©, Ansys© Fluent, ...). A large body of work (Chen et al.,

2021a; Pfaff et al., 2020; Han et al., 2021; Stachenfeld et al., 2021) introduces synthetic datasets

limited to simple tasks, such as 2D flow past a cylinder.

In this chapter, we introduce Eagle, a large-scale dataset for learning unsteady fluid me-

chanics. We accurately simulate the airflow produced by a two-dimensional Unmanned Aerial

Vehicle (UAV) moving in 2D environments with different boundary geometries. This choice

has several benefits. It models the complex ground effect turbulence generated by the airflow

of an UAV following a control law, and, up to our knowledge, is thus significantly more chal-

lenging than existing datasets. It leads to highly turbulent and non-periodic eddies and high

flow variety, as the different scene geometries generate completely different outcomes. At the

same time, the restriction to a 2D scene (similar to existing datasets) makes the problem man-

ageable and allows for large-scale amounts of simulations (∼1.1m meshes). For a comparison

with existing datasets, see table 8.1.

As a second contribution, we propose a new multi-scale attention-based model, which

circumvents the quadratic complexity of multi-head attention by projecting the mesh onto

a learned coarser representation yielding fewer but more expressive nodes. Conversely to

standard approaches based on Graph Neural Networks (GNNs), we show that our model

dynamically adapts to the airflow in the scene by focusing attention not only locally, but also

over larger distances. More importantly, attention for specific heads seems to align with the

predicted airflow, providing evidence of the capacity of the model to integrate long-range

dependencies in a single hop (see figure 8.1). We evaluate the method on several datasets and

achieve state-of-the-art performance on two public fluid mechanics datasets (Cylinder-Flow,

(Pfaff et al., 2020) and Scalar-Flow (Eckert et al., 2019)), and on Eagle.

134

The Eagle dataset and benchmark Turbulent fluid dynamics with mesh transformers

Dataset Size Public
Dyn.
Scene

Dyn.
Mesh

nodes
(avg)

of
meas.

CylinderFlow 15Gb
✓ ✗ ✗

1,885 0.72M
Pfaff et al. (2020)

AirFoil 56Gb 5,233 0.72M

KS Equation

N.A ✗ ✗ ✗(Grid)

64 1,200

Incomp. Dec. 2,304 210

Comp. Dec. 32,768 35
Stachenfeld et al. (2021)

Rad. Cooling 32,768 30

Han et al. (2021) Vascular Flow N.A. ✗ ✗ ✓ 7,561 5,250

Eckert et al. (2019) Scalar Flow 351Gb ✓ ✗ ✗(Grid) 1.7M 0.015M

Bézenac et al. (2019) SST N.A ✓ ✗ ✗(Grid) 4,096 0.1M

Eagle (Ours) 270Gb ✓ ✓ ✓ 3,388 1.18M

Table 8.1: Comparison with available datasets – To the best of our knowledge, Eagle is the first dataset

of such scale, complexity, and variety. Smaller-scale datasets such as Li et al. (2008); Wu et al. (2017b)

have been excluded, as they favor simulation accuracy over size. The datasets in Stachenfeld et al.

(2021) are not public, but can be reproduced from the information in the paper.

8.2 The Eagle dataset and benchmark

Eagle is comprised of fine-grained fluid simulations defined on irregular triangle meshes,

which we argue is more suited to a broader range of applications than regular grids and

thus more representative of industrial standards. Compared to grid-based datasets (Bézenac

et al., 2019; Stachenfeld et al., 2021), irregular meshes provide better control over the spatial

resolution, allowing for finer discretization near sensitive areas. This property is established

for most fluid mechanics solvers (Versteeg and Malalasekera, 2007) and seems to transfer

well to simulators based on machine learning (Pfaff et al., 2020). However, using triangular

meshes with neural networks is not as straightforward as regular grids. Geometric deep learn-

ing (Bronstein et al., 2021) and graph networks (Battaglia et al., 2018) have established known

baselines but this remains an active domain of research. Existing datasets focus on tasks such

as the flow past an object (Chen et al., 2021a; Pfaff et al., 2020) or turbulent flow on an airfoil

(Thuerey et al., 2020; Sekar et al., 2019). These are well-studied problems, for some of which

analytical solutions exist, and they rely on a large body of work from the physics community.

However, the generated flows, while being turbulent, are merely steady or periodic despite

variations in the geometry. With Eagle, we propose a complex task, with convoluted, unsteady,

and turbulent airflow with minimal resemblance across each simulation.

Purpose – we built Eagle to meet a growing need for a fluid mechanics dataset in accordance

with the methods used in engineering, i.e. reasoning on irregular meshes. To significantly

increase the complexity of the simulations compared to existing datasets, we propose a proxy

task consisting of studying the airflow produced by a dynamically moving UAV in many

scenes with variable geometry. This is motivated by the highly non-steady turbulent outcomes

that this task generates, yielding challenging airflow to be forecasted. Particular attention has

135

The Eagle dataset and benchmark Turbulent fluid dynamics with mesh transformers

Tr
ia
ng
ul
ar

Sp
lin
e

St
ep

Figure 8.2: Snapshots from the dataset – Velocity field norm over time for three episodes, one for

each geometry type. Turbulence is significantly different from one simulation to another and strongly

depends on the ground surface.

also been paid to the practical usability of Eagle with respect to the state-of-the-art in fluid dy-

namics neural simulators by controlling the number of mesh points and limiting confounders

variables to a moderate amount (i.e. scene geometry and drone trajectory).

Simulation and task definition – we simulate the complex airflow generated by an UAV ma-

neuvering in 2D scenes with varying floor profiles. While the scene geometry varies, the UAV

trajectory is constant: it starts in the center of the scene and navigates, hovering near the floor

surface. During the flight, the two propellers generate high-paced airflows interacting with

each other and with the structure of the scene, causing convoluted turbulence. To produce a

wide variety of different outcomes, we procedurally generate a large number of floor profiles

by interpolating a set of randomly sampled points within a certain range. The choice of in-

terpolation order induces drastically different floor profiles, and therefore distinct outcomes

from one simulation to another. Eagle contains three main types of geometry depending on

the type of interpolation1 (see Figure 8.2):

• Step: surface points are connected using step functions (zero-order interpolation), which

produce very stiff angles with drastic changes of the airflow when the UAV hovers over

a step.

• Triangular: surface points are connected using linear functions (first-order interpola-

tion), causing the appearance of many small vortices at different locations in the scene.

• Spline: surface points are connected using spline functions with smooth boundaries,

causing long and fast trails of air, occasionally generating complex vortices.

1Videos on the project website https://eagle-dataset.github.io

136

https://eagle-dataset.github.io

Learning unsteady airflow Turbulent fluid dynamics with mesh transformers

Eagle contains about 600 different geometries (200 geometries of each type) corresponding

to roughly 1,200 flight simulations (one geometry gives two flight simulations depending on

whether the drone is going to the right or the left of the scene), performed at 30 fps over

33 seconds, resulting in 990 timesteps per simulation. Physically plausible UAV trajectories

are obtained through MPC control of a (flow agnostic) dynamical system we design for a 2D

drone. More details and statistics are available in appendix E.1.

We simulated the temporal evolution of the velocity field as well as the pressure field

(both static and dynamic) defined over the entire domain. Due to source motion, the triangle

mesh on which these fields are defined needs to be dynamically adapted to the evolving scene

geometry. More formally, the mesh is a valued dynamical graph Mt =
(
X t, E t,V t,P t;N t)

where X ⊂ R2 is the set of nodes positions, E ⊂ (N×N) the edges pairs, V ⊂ R2 is a field

of velocity vectors and P ⊂ R is a field of scalar pressure values. Both physical quantities are

expressed at node level. The set N contains node type attributes, indicating if a node belongs

to a wall, an input, or an output boundary. Note that the dynamical mesh is completely

flow-agnostic, thus no information about the flow can be extrapolated directly from the future

node positions. Time dependency will be omitted when possible for the sake of readability.

Numerical simulations – were carried out using the software Ansys© Fluent, which solves the

RANS equations with the Reynolds stress model. It uses five equations to model turbulence,

a more accurate approach than standard k-ϵ or k-ω models (two equations). This resulted in

3.9TB of raw data with ∼162,760 control points per mesh. We down-sampled this to 3,388

points on average and compressed it to 270GB. Details and illustrations are given in appendix

E.1.

Task – for what follows, we define xi ∈ X t as the 2D position of node i, vi ∈ V t its velocity,

pi ∈ P t pressure and ni ∈ N t its node type. We are interested in the following task: given the

complete simulation state at time t, namelyMt, as well as future mesh geometry X t+h, E t+h,

forecast the future velocity and pressure fields V t+h,P t+h, i.e. for all positions i we predict

vt+h
i , pt+h

i over a horizon h. Importantly, we consider the dynamical re-meshing step X t →
X t+h to be known during inference and thus is not required to be forecasted.

8.3 Learning unsteady airflow

Accurate flow estimations require data on a certain minimum spatial and temporal scale.

Deviations from optimal resolutions, i.e. data sampled with lower spatial resolutions or lower

frame rates, are typically very hard to compensate through models of higher complexity, in

particular when the estimation is carried out through numerical simulations with an analytical

model. The premise of our work is that machine learning can compensate for loss in resolution

by picking up longer rate regularities in the data, trading data resolution for complexity in the

modeled interactions. Predicting the outcome for a given mesh position may therefore require

137

Learning unsteady airflow Turbulent fluid dynamics with mesh transformers

Mesh M(t)
<latexit sha1_base64="rEuoLkyUr1TRsOYr2pNJCeGAywM=">AAAC4HicjVHLSsNAFD3G97vq0k2wCLopiQq6FN24ERSsFlqRyXTaDs2LZCJK6MKdO3HrD7jVrxH/QP/CO2MKahGdkOTMufecmXuvF/syVY7zOmQNj4yOjU9MTk3PzM7NlxYWT9MoS7io8siPkprHUuHLUFSVVL6oxYlggeeLM6+7r+NnlyJJZRSeqOtYnAesHcqW5EwRdVFabihxpfJDkXbsnt0ImOpw5ueHvTW1flEqOxXHLHsQuAUoo1hHUekFDTQRgSNDAIEQirAPhpSeOlw4iIk7R05cQkiauEAPU6TNKEtQBiO2S9827eoFG9Jee6ZGzekUn96ElDZWSRNRXkJYn2abeGacNfubd2489d2u6e8VXgGxCh1i/9L1M/+r07UotLBjapBUU2wYXR0vXDLTFX1z+0tVihxi4jRuUjwhzI2y32fbaFJTu+4tM/E3k6lZvedFboZ3fUsasPtznIPgdKPiblY2jrfKu3vFqCewjBWs0Ty3sYsDHKFK3jd4xBOeLc+6te6s+89Ua6jQLOHbsh4+AF/0mmQ=</latexit>

Encoder

Clustering

Graph Pooling

wi
<latexit sha1_base64="OkfwdkmDhE1zMNe4yLGHp/cbE48=">AAACxnicjVHLTsJAFD3UF+ILdemmkZi4Ii2a6JLohiVGQRIkpC0DTihtM51KCDHxB9zqpxn/QP/CO+OQqMToNG3PnHvPmbn3+knIU+k4rzlrYXFpeSW/Wlhb39jcKm7vNNM4EwFrBHEYi5bvpSzkEWtILkPWSgTzRn7Irv3huYpf3zGR8ji6kpOEdUbeIOJ9HniSqMtxl3eLJafs6GXPA9eAEsyqx8UX3KCHGAEyjMAQQRIO4SGlpw0XDhLiOpgSJwhxHWe4R4G0GWUxyvCIHdJ3QLu2YSPaK89UqwM6JaRXkNLGAWliyhOE1Wm2jmfaWbG/eU+1p7rbhP6+8RoRK3FL7F+6WeZ/daoWiT5OdQ2cako0o6oLjEumu6Jubn+pSpJDQpzCPYoLwoFWzvpsa02qa1e99XT8TWcqVu0Dk5vhXd2SBuz+HOc8aFbK7lG5cnFcqp6ZUeexh30c0jxPUEUNdTTIe4BHPOHZqlmRlVnjz1QrZzS7+Lashw+R95Bc</latexit>

wj
<latexit sha1_base64="hRVptWbA1Z4aq87gfPV0LGtKZ5I=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6LLopsuK9gG1lCSd1rF5MZlYShH8Abf6aeIf6F94Z0xBLaITkpw5954zc+91Y58n0rJec8bC4tLySn61sLa+sblV3N5pJlEqPNbwIj8SbddJmM9D1pBc+qwdC+YErs9a7uhcxVt3TCQ8Cq/kJGbdwBmGfMA9RxJ1Oe7d9oolq2zpZc4DOwMlZKseFV9wjT4ieEgRgCGEJOzDQUJPBzYsxMR1MSVOEOI6znCPAmlTymKU4RA7ou+Qdp2MDWmvPBOt9ugUn15BShMHpIkoTxBWp5k6nmpnxf7mPdWe6m4T+ruZV0CsxA2xf+lmmf/VqVokBjjVNXCqKdaMqs7LXFLdFXVz80tVkhxi4hTuU1wQ9rRy1mdTaxJdu+qto+NvOlOxau9luSne1S1pwPbPcc6DZqVsH5UrF8el6lk26jz2sI9DmucJqqihjgZ5D/GIJzwbNSM0UmP8mWrkMs0uvi3j4QOUV5Bd</latexit>

Attention

s0i
<latexit sha1_base64="2olylPDZYVJYK43JSB7QU2OspGU=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkV0VZIq6LLoRncV7ANqKUk6bYfmRWZSLMWFP+BW/0z8A/0L74wpqEV0QpIz595zZu69buxzIS3rNWcsLC4tr+RXC2vrG5tbxe2dhojSxGN1L/KjpOU6gvk8ZHXJpc9accKcwPVZ0x1dqHhzzBLBo/BGTmLWCZxByPvcc6SiRJcfdoslq2zpZc4DOwMlZKsWFV9wix4ieEgRgCGEJOzDgaCnDRsWYuI6mBKXEOI6znCPAmlTymKU4RA7ou+Adu2MDWmvPIVWe3SKT29CShMHpIkoLyGsTjN1PNXOiv3Ne6o91d0m9Hczr4BYiSGxf+lmmf/VqVok+jjTNXCqKdaMqs7LXFLdFXVz80tVkhxi4hTuUTwh7GnlrM+m1ghdu+qto+NvOlOxau9luSne1S1pwPbPcc6DRqVsH5cr1yel6nk26jz2sI8jmucpqrhEDXXyHuIRT3g2rozIGBt3n6lGLtPs4tsyHj4ADB2QiQ==</latexit>

Decoder /
Up Sampling

Timestep t
<latexit sha1_base64="m/+2W/Vh8yF76wonZ/TgfXKAXt0=">AAAC13icjVHLTsJAFD3UF+Kr4tJNIzFxRQqa6JLoxiUmvAwQ0pYBJ/SVdmoghLgzbv0Bt/pHxj/Qv/DOWBJdELlN2zvnnnPm3hk7dHksTPMjo62srq1vZDdzW9s7u3v6fr4RB0nksLoTuEHUsq2YudxndcGFy1phxCzPdlnTHl3JevOeRTEP/JqYhKzrWUOfD7hjCYJ6er4j2FhMa9xjsWChMTNETy+UiqYKY3FSQBrVQH9HB30EcJDAA4MPQbkLCzE9bZRgIiSsiylhEWVc1RlmyJE2IRYjhkXoiL5DWrVT1Ke19IyV2qFdXHojUho4Jk1AvIhyuZuh6olylugi76nylL1N6G+nXh6hAneE/qebM5fVyVkEBrhQM3CaKVSInM5JXRJ1KrJz49dUghxCwmTep3pEuaOU83M2lCZWs8uztVT9UzElKtdOyk3wJbtc7oIb5WLptFi+OStULtOrzuIQRzih+zxHBdeook7eY7zgFW/arfagPWpPP1Qtk2oO8Ce052+FSJb/</latexit>

Timestep t+ 1
<latexit sha1_base64="tvXvPFuM0mkSD+XqLfa3FrowFDI=">AAAC2XicjVHLSsNAFD2Nr1pf8bFzEyyCIJS0CrosunFZoS9oS0nSaR2aF8lErKULd+LWH3CrPyT+gf6Fd8YUdFHsDUnunHvOmXtn7NDlsTDNj4y2sLi0vJJdza2tb2xu6ds79ThIIofVnMANoqZtxczlPqsJLlzWDCNmebbLGvbwUtYbtyyKeeBXxShkHc8a+LzPHUsQ1NX32oLdiXGVeywWLDQmhjgudvV8sWCqMGYneaRRCfR3tNFDAAcJPDD4EJS7sBDT00IRJkLCOhgTFlHGVZ1hghxpE2IxYliEDuk7oFUrRX1aS89YqR3axaU3IqWBQ9IExIsol7sZqp4oZ4nO8h4rT9nbiP526uURKnBD6H+6KXNenZxFoI9zNQOnmUKFyOmc1CVRpyI7N35NJcghJEzmPapHlDtKOT1nQ2liNbs8W0vVPxVTonLtpNwEX7LL+S64XioUTwql69N8+SK96iz2cYAjus8zlHGFCmrkfY8XvOJNa2kP2qP29EPVMqlmF39Ce/4GujaXbw==</latexit>

Pressure
<latexit sha1_base64="QOkMVrhtOrwWN0qqc/vURfOq03g=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkVwVZK60GXRjSupYB9SiyTTaQ3Ni5mJUEq3/oBb/S7xD/QvvDOmoBbRCUnOnHvPmbn3+mkYSOU4rwVrYXFpeaW4Wlpb39jcKm/vtGSSCcabLAkT0fE9ycMg5k0VqJB3UsG9yA952x+d6Xj7ngsZJPGVGqe8F3nDOBgEzFNEXTcElzITvHRbrjhVxyx7Hrg5qCBfjaT8ghv0kYAhQwSOGIpwCA+Sni5cOEiJ62FCnCAUmDjHFCXSZpTFKcMjdkTfIe26ORvTXntKo2Z0SkivIKWNA9IklCcI69NsE8+Ms2Z/854YT323Mf393CsiVuGO2L90s8z/6nQtCgOcmBoCqik1jK6O5S6Z6Yq+uf2lKkUOKXEa9ykuCDOjnPXZNhppate99Uz8zWRqVu9ZnpvhXd+SBuz+HOc8aNWq7lG1dlmr1E/zURexh30c0jyPUcc5GmiSd4RHPOHZurCUNbGmn6lWIdfs4tuyHj4Al0mSug==</latexit>

Velocity
<latexit sha1_base64="Fh7fh3GJO/kI2uNg6+10w9EoquI=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwVZK60GXRjRuhgn1ALZJMp3VoXkwmQq0u/QG3+l/iH+hfeGdMQS2iE5KcOfecO3Pv9ZNApMpxXgvW3PzC4lJxubSyura+Ud7caqVxJhlvsjiIZcf3Uh6IiDeVUAHvJJJ7oR/wtj860fH2DZepiKMLNU54L/SGkRgI5imiOi0exEyo8VW54lQds+xZ4Oaggnw14vILLtFHDIYMITgiKMIBPKT0dOHCQUJcDxPiJCFh4hz3KJE3IxUnhUfsiL5D2nVzNqK9zpkaN6NTAnolOW3skScmnSSsT7NNPDOZNftb7onJqe82pr+f5wqJVbgm9i/fVPlfn65FYYAjU4OgmhLD6OpYniUzXdE3t79UpShDQpzGfYpLwsw4p322jSc1teveeib+ZpSa1XuWazO861vSgN2f45wFrVrVPajWzmuV+nE+6iJ2sIt9much6jhFA00zx0c84dk6s1Lr1rr7lFqF3LONb8t6+AA+S5Kc</latexit>

vi, eij
<latexit sha1_base64="mXvGs4tRWYnbj+SH9X8/FaiAQaA=">AAACznicjVHLSsNAFD2Nr1pfVZdugkVwISWpgi6LblxWsA+opSTptI7Ni2RSKKW49Qfc6meJf6B/4Z1xCmoRnZDkzLnn3Jl7rxv7PBWW9ZozFhaXllfyq4W19Y3NreL2TiONssRjdS/yo6TlOinzecjqggufteKEOYHrs6Y7vJDx5oglKY/CazGOWSdwBiHvc88RRLVHXX5ksu6E3027xZJVttQy54GtQQl61aLiC27QQwQPGQIwhBCEfThI6WnDhoWYuA4mxCWEuIozTFEgb0YqRgqH2CF9B7RrazakvcyZKrdHp/j0JuQ0cUCeiHQJYXmaqeKZyizZ33JPVE55tzH9XZ0rIFbglti/fDPlf32yFoE+zlQNnGqKFSOr83SWTHVF3tz8UpWgDDFxEvconhD2lHPWZ1N5UlW77K2j4m9KKVm597Q2w7u8JQ3Y/jnOedColO3jcuXqpFQ916POYw/7OKR5nqKKS9RQVx1/xBOejZoxMqbG/afUyGnPLr4t4+EDmIuThg==</latexit>

Figure 8.3: Model overview – The mesh transformer encodes the input mesh node values (positions,

pressure, and velocity), reduces the spatial resolution through clustering + graph pooling and per-

forms multi-head self-attention on the coarser level of cluster centers. A decoder upsamples the token

embeddings to the original resolution and predicts pressure and velocity at time step t + 1.

information from a larger neighborhood, whose size can depend on factors like resolution,

compressibility, Reynolds number, etc.

Regularities and interactions on meshes and graphs have classically been modeled with

probabilistic graphical models (MRFs (Geman and Geman, 1984), CRFs (Lafferty et al., 2001),

RBMs (Smolensky, 1986) etc.), and in the deep learning era through geometric DL (Bron-

stein et al., 2021) and graph networks (Battaglia et al., 2018), or deep energy-based models.

These models can capture long-range dependencies between distant nodes but need to exploit

them through multiple iterations. In this work, we argue for the benefits of transformers and

self-attention (Vaswani et al., 2017), which in principle are capable of integrating long-range

interactions in a single step.

However, the quadratic complexity of transformers in terms of number of tokens makes

its direct application to large meshes expensive. While low-complexity variants do exist

(Katharopoulos et al., 2020), we propose a different Ansatz, shown in figure 8.3. We pro-

pose to combine graph clustering and learned graph pooling to perform full attention on a

coarser scale with higher-dimensional node embedding. This allows the dot-product similar-

ity of the transformer model – which is at the heart of the crucial attention operations – to

operate on a semantic representation instead of on raw input signals, similar to the settings

in other applications. In natural language processing, attention typically operates on word

embeddings (Vaswani et al., 2017), and in vision either on patch embeddings (Dosovitskiy

et al., 2021) or on convolutional feature map cells (Wang et al., 2018). In the sequel, we present

the main modules of our model (further details are given in appendix E.2).

Offline Clustering – we down-scale mesh resolution through geometric clustering, which is

independent of the forecasting operations and therefore pre-computed offline. A modified

k-means clustering is applied to the vertices X t of each time step and creates clusters with a

constant number of nodes (details are given in appendix E.2.1). The advantages are twofold:

(a) the irregularity and adaptive resolution of the original mesh are preserved, as high-density

regions will require more clusters, and (b) constant cluster sizes facilitate parallelization and

138

Learning unsteady airflow Turbulent fluid dynamics with mesh transformers

allow to speed up computations. In what follows, let Ck be the kth cluster computed on mesh

Mt.

Encoder – the initial mesh Mt is converted into a graph G using the encoder in Pfaff et al.

(2020). More precisely, node and edge features are computed using MLPs ϕnode and ϕedge,

giving
η1

i = ϕnode(vi, pi, ni) ∀(vi, pi, ni) ∈ V ×P ×N ,

e1
ij = ϕedge(xi − xj, |xi − xj|) ∀(i, j) ∈ E

(8-1)

where | · | is the euclidean norm. The encoder also computes an appropriate positional encod-

ing based upon spectral projection F(x). We also leverage the local position of each node in

its cluster. Let x̄k be the barycenter of cluster Ck, then the local encoding of node i belonging

to cluster k is the concatenation fi =
[

F(xi)
⊤ F(x̄k − xi)

⊤
]⊤

. Finally, a series of L GNNs

extracts local features through message passing

eℓ+1
ij = eℓij +

εij︷ ︸︸ ︷
ψℓ

edge

([
ηℓ

i fi

]
,
[
ηℓ

j f j

]
, eℓij
)

,

ηℓ+1
i = ηℓ

i + ψℓ
node

([
ηℓ

i fi
]

, ∑j ε ij

)
.

(8-2)

The superscript ℓ indicates the layer, and ψℓ
node and ψℓ

edge are MLPs which encode nodes and

edges, respectively. The exact architecture hyper-parameters are given in appendix E.2. For

the sake of readability, in what follows, we will note ηi = ηL
i and eij = eL

ij.

Graph Pooling – summarizes the state of the nodes of the same cluster Ck in a single high-

dimensional embedding wk on which the main neural processor will reason. This is per-

formed with a Gated Recurrent Unit (GRU) (Cho et al., 2014) where the individual nodes are

integrated sequentially in random order. This allows to learn a more complex integration of

features than a sum. Given an initial GRU state u0 = 0, node embeddings are integrated

iteratively, indicated by superscript n,

un+1
k = rgru

(
[ηi fi] , un

k

)
, i ∈ Ck,

wk = ϕcluster(uN
k),

(8-3)

where N = |Ck| and ϕcluster is an MLP. rgru denotes the update equations of a GRU, where

we omitted gating functions from the notation. The resulting set of cluster embeddings W ={
wk | k ∈ J1, KK

}
significantly reduces the spatial complexity of the mesh.

Attention Module – consists of a Transformer with M layers of multi-head attention (MHA)

(Vaswani et al., 2017) working on the embeddings W of the coarse graph. Setting w1
k = wk,

we get for layer m:

wm+1
k = fmha

(
Q = [wm

k F(x̄k)] , K = V =W
)

, (8-4)

where Q, K, and V are, respectively, the query, key, and value mappings of a Transformer. We

refer to Vaswani et al. (2017) for the details of multi-head attention, denoted as fmha.

139

Experiments Turbulent fluid dynamics with mesh transformers

Decoder – the output of the attention module is calculated on the coarse scale, with one

embedding per cluster. The decoder upsamples the representation and outputs the future

pressure and velocity field on the original mesh. This upsampling is done by taking the

original node embedding ηi and concatenating with the cluster embedding wM
k , followed by

the application of a GNN, whose role is to take the information produced on a coarser level

and correctly distribute it over the nodes i. To this end, the GNN has access to the positional

encoding of the node, which is also concatenated{
v̂t+1 = vt + δv

p̂t+1 = pt + δp
, (δv, δp) = ggnn

(
[ηi wM

k fi]
)

, (8-5)

where i ∈ Ck and ggnn is the graph network variant described in equation (8-2), parameters are

not shared. Our model is trained end-to-end, minimizing the forecasting error over horizon

H (potentially lower than the target horizon h used during the test phase) where α balances

the importance of the pressure field over the velocity field

L =
H

∑
i=1

MSE
(

vt+i, v̂t+i
)
+ α

H

∑
i=1

MSE
(

pt+i, p̂t+i
)

. (8-6)

8.4 Experiments

We compare our method against three competing methods for physical reasoning:

• MeshGraphNet (Pfaff et al., 2020) (MGN) is a GNN-based model that relies on multiple

chained message passing layers.

• Graph Attention Transformer (Veličković et al., 2017) (GAT) is based upon MGN where

the GNNs interactions are replaced by graph attention Transformers. Compared to our

mesh transformer, here attention is computed over the one-ring of each node only.

• DilResNet (Stachenfeld et al., 2021) (DRN) differs from the other models as it does not

reason over nonuniform meshes, but instead uses dilated convolution layers to perform

predictions on regular grids.

To evaluate the latter on Eagle, we interpolate grid-based simulation over the original mesh

(see appendix E.1.2). During validation and testing, we project airflow back from the grid to

the original mesh in order to compute comparable metrics. All baselines have been adapted

to the dataset using hyperparameter sweeps, which mostly lead to increases in capacity, ex-

plained by the complexity of Eagle. We also compare to two other datasets:

• Cylinder-Flow (Pfaff et al., 2020) simulates the airflow behind a cylinder with different

radii and positions. This setup produces turbulent yet periodic airflows corresponding

to Karman vortex.

• Scalar-Flow (Eckert et al., 2019) contains real world measurements of smoke cloud.

This dataset is built using velocimetry measurements combined with numerical sim-

ulation aligned with the observations. Following Lienen and Günnemann (2022); Kohl

140

Experiments Turbulent fluid dynamics with mesh transformers

Figure 8.4: Qualitative comparisons – with the state of the art on Eagle. We color code the norm of the

velocity field.

Dataset Cylinder Flow Scalar Flow Eagle

Horizon +1 +50 +250 +1 +50 +100 +1 +50 +250

MeshGraphNet 0.0058 0.0405 0.0792 0.0374 0.3193 0.5944 0.0916 0.5698 0.9896

GAT 0.0112 0.1774 1.3336 0.0434 0.3991 0.6414 7.5587 19.260 26.867

DilResNet 0.0429 0.0626 0.1295 0.0372 0.2212 0.3975 0.2987 0.5650 0.8944

Ours 0.0030 0.0221 0.0735 0.0128 0.0869 0.1467 0.0811 0.3495 0.6357

Table 8.2: Quantitative results – Norm. RMSE (velocity and pressure) for our model (cluster size = 10)

and the baselines.

et al. (2020), we reduce the data to 2D grid-based simulation by averaging along the

x-direction.

We evaluate all models reporting the sum of the root mean squared error (N-RMSE) on

both pressure and velocity fields, which have been normalized with regards to the training

set (centered and reduced), and we provide finer-grained metrics in appendix E.3.1.

Existing datasets – show little success in discriminating the performances of fluid mechanics

models (see table 8.2). On Cylinder-Flow, both ours and MeshGraphNet reach near-perfect

forecasting accuracy. Qualitatively, flow fields are hardly distinguishable from the ground

truth at least for the considered horizon (see appendix E.3.2). As stated in the previous

sections, this dataset is a great task to validate fluid simulators but may be considered as satu-

rated. Scalar-Flow is a much more challenging benchmark, as these real-world measurements

are limited in resolution and quantity. Our model obtains good quantitative results, especially

141

Experiments Turbulent fluid dynamics with mesh transformers

Ablation N-RMSE (+250)

Clustering 1 node per cluster 20 nodes per cluster

GNN – 1.3484

One-ring 1.0258 0.7976

Average 0.7876 0.7797

Ours – 0.6572

Table 8.3: Ablations – GNN replaces global attention by a set of L GNNs on the coarser mesh. One-ring

constrains attention to the one-ring. Average forces uniform attention.

on a longer horizon, showing robustness to error accumulation during auto-regressive fore-

casting. Yet, no model achieved visually satisfactory results, the predictions remain blurry

and leave room for improvements (cf figure in appendix).

Comparisons with the state-of-the-art – are more clearly assessed on Eagle. Our model gives

excellent results and outperforms competing baselines. It succeeds in forecasting turbulent

eddies even after a long prediction horizon. Our model outperforms MeshGraphNet, which

provides evidence for the interest in modeling long-range interactions with self-attention.

GAT seems to struggle with our challenging dataset. The required increase in capacity was

difficult to do for this resource-hungry model, we failed even on the 40GB A100 GPUs of a

high-end Nvidia DGX.

DilResNet shows competitive performances on Eagle, consistent with the claims of the

original paper. However, it fails to predict details of the vortices (cf. Figure 8.4). This model

leverages grid-based data and was trained on a voxelled simulation finally projected back on

the triangular mesh during testing. This requires precaution in assessment. We try to limit

projection error by setting images to contain ten times more pixels than nodes in the actual

mesh. Yet, even at that scale, we measure that the reconstruction error represents roughly

a third of the final N-RMSE. This points out that grid-based simulations are not suited for

complex fluid problems such as Eagle, which require finer spatial resolution near sensitive

areas. We expose failure cases in appendix E.3.3.

Self-attention – is a key feature in our model, as shown in Figures 8.5b and c, which

plot the gradient intensity of a selected predicted point situated on the trail with regards

to all input points, for fixed trained model weights. MeshGraphNet is inherently limited to

a neighborhood determined by the number of chained GNNs, the receptive field, which is

represented as concentric black circles overlaid over the gradients. In contrast, our model is

not spatially limited and can exchange information across the entire scene, even possibly in a

single step. The gradients show that this liberty is exploited.

In the same figure we also show the attention maps, per head and layer, for the selected

point near the main trail in Figure 8.5d. Interestingly, our model discovers to attend not only

to the neighborhood (as a GNN would) but also to much farther areas. More importantly, we

142

Experiments Turbulent fluid dynamics with mesh transformers

(a)

(d)

Ours

MeshGraphNet(b)

(c)

Receptive field per
layer of GNN

Figure 8.5: Locality of reasoning. (a) Velocity of an example flow and a selected point ; (b): The

receptive field for this point for the MeshGraphNet model (Pfaff et al., 2020) is restricted to a local

neighborhood, also illustrated through the overlaid gradients ||∇MtMt+1||1. (c): the receptive field

of our method covers the whole field and the gradients indicate that this liberty is exploited; (d) the

attention distributions for point , certain maps correlate with airflow. Attention maps can be explored

interactively using the online tool at https://eagle-dataset.github.io.

observe that certain heads explicitly (and dynamically) focus on the airflow, which provides

evidence that attention is guided by the regularities in the input data. We released an online

tool allowing interactive visualization and exploration of attention and predictions, available

at https://eagle-dataset.github.io.

Ablation studies – indicate how global attention impacts performance: (a) closer to Mesh-

GraphNet, we replace the attention layers by GNNs operating on the coarser mesh, allowing

message passing between nearest cluster only; (b) we limit the receptive field of MHA to the

one-ring of the cluster; (c) we enforce uniform attention by replacing it with an average op-

eration. As shown in table 8.3, attention is a key design choice. Disabling attention to distant

points hurts RMSE, indicating that the model leverages efficient long-range dependencies.

Agnostic attention to the entire scene is not pertinent either: to be effective, attention needs

to dynamically adapt to the predicted airflow. We also conduct a study on generalization to

down-sampled meshes in appendix E.3.4.

The role of clustering – is to summarize a set of nodes into a unique feature vector. Arguably,

with bigger clusters, more node-wise information must be aggregated in a finite-dimensional

vector. We indeed observe a slight increase in N-RMSE when the cluster size increases (Figure

8.6a). Nonetheless, our model appears to be robust to even aggressive graph clustering as the

143

https://eagle-dataset.github.io
https://eagle-dataset.github.io

Conclusion Turbulent fluid dynamics with mesh transformers

10 nodes per cluster 20 nodes per cluster

30 nodes per cluster 40 nodes per cluster

lo
g

R
M

S
E

(v
elo

city
)

Figure 8.6: Impact of cluster size – Left: We color code RMSE in logarithmic scale on the velocity field

near a relatively turbulent area at a horizon of h=400 steps of forecasting. Right: Error (+50 timesteps),

inference time, and FLOPs for different cluster sizes and the baselines.

Model Ours MGN

Ablated Geometry Stp Spl Tri ∅ Stp Spl Tri ∅
Stp 0.927 0.865 1.132 0.828 2.062 1.236 1.347 1.116

Spl 0.595 0.584 0.857 0.488 1.257 0.941 1.037 0.807N-RMSE (+250)

Tri 0.730 0.732 1.049 0.647 1.685 1.100 1.131 1.037

Table 8.4: Generalization to unseen geometries – we evaluate our model and MeshGraphNet in dif-

ferent setups, evaluating all geometry types but removing one from training. Our model shows satis-

factory generalization, highlighting the complementarity of each simulation type.

drop remains limited and still outperforms the baselines. A qualitative illustration is shown

in figure 8.6 (left), where we simulate the flow up to 400 time-steps forward and observe the

error on a relatively turbulent region. Clustering also acts on the complexity of our model

by reducing the number of tokens on which attention is computed. We measure a significant

decrease in inference time and number of operations (FLOPs) even when we limit clusters to

a small size (Figure 8.6b and c).

Generalization experiments – highlight the complementarity of the geometry types in Eagle

since the removal of one geometry in the training set impacts the performances on the others.

MeshGraphNet suffers the most from this ablation, resulting in a drop ranging from 10% on

average (ablation of Spline) to 67% (ablation of Step). In our model, the performance drops

are limited for the ablation of Step and Spline. The most challenging geometry is arguably

Triangular, as the ground profile tends to generate more turbulent and convoluted flows.

8.5 Conclusion

We presented a new large-scale dataset for deep learning in fluid mechanics. Eagle contains

accurate simulations of the turbulent airflow generated by a flying drone in different scenes.

Simulations are unsteady, highly turbulent, and defined on dynamic meshes, which represents

a real challenge for existing models. To the best of our knowledge, we released the first

publicly available dataset of this scale, complexity, precision, and variety. We proposed a new

144

Post-scriptum: taking a step back Turbulent fluid dynamics with mesh transformers

model leveraging mesh transformers to efficiently capture long-distance dependencies on a

coarser scale. Through graph pooling, we show that our model reduces the complexity of

multi-head attention and outperforms the competing state-of-the-art on both existing datasets

and Eagle. We showed across various ablations and illustrations that global attention is a key

design choice and observed that the model naturally attends to airflow.

8.6 Post-scriptum: taking a step back

Before diving into perspective and feedback on this work, I would like to highlight the tremen-

dous implication of Aurélien Béneteau, intern with our team during his Master’s degree. Au-

rélien took care of the generation of the Eagle dataset, which represents an enormous amount

of work. This project could not have been done without his participation. This dataset is

a leap forward in difficulty with regards to existing baselines, and the many challenges in

generating such amount of simulations are only partially mentioned in the previous sections.

However, there is still room for future work.

Toward 3D simulations – While we think that 3D simulations are indeed the long-term future

on this subject, the complexity in factors of variation we need for large-scale machine learning

is currently not possible in 3D simulations. Up to date, fluids datasets in 3D are very limited,

due to the computation time required for simulation. Classical workarounds rely on relaxing

physical accuracy or versatility of the solver, e.g. with SPH simulations. Accurate 3D simu-

lations are mostly conducted on grid-based meshes and for rather simple, theoretic problems

(Mohan et al., 2020; Chen et al., 2021b; Stachenfeld et al., 2021). The John Hopkins Turbulent

Database (Li et al., 2008) contains nine direct numerical simulation datasets (i.e. direct resolu-

tion of Navier-Stokes equations) but with only a single scene per dataset simulated on a very

fine grid and low time resolution.

Training neural networks on 3D simulations is also very challenging. Eagle already plays

with the limit of what neural simulators can handle on decent hardware (40GB of GPU mem-

ory is a bare minimum to train our model on Eagle in a reasonable amount of time). Extending

to 3D would require more computing power than nowadays available to most researchers. Yet,

GNN-based models are theoretically not restricted to 2D and can readily manage 3D simula-

tions.

Improvements on the model architecture – Our mesh transformer reasons over two differ-

ent scales to perform prediction: the finer one with GNN and the coarser one with attention

mechanisms. It has been shown that multi-scale networks are beneficial for physics-related

tasks (Ronneberger et al., 2015; Cao et al., 2022; Lino et al., 2021). A natural track for im-

provement could be to consider more scales in our mesh transformer using successive layers

of clustering.

Another lead for improvement is to integrate more physics-informed mechanisms in the

145

Post-scriptum: taking a step back Turbulent fluid dynamics with mesh transformers

simulator. The Navier-Stokes equations are general enough to be considered as a general-

purpose prior. Moreover, most fluid simulations are conducted in an incompressible frame-

work (for flow velocities roughly below 0.5 Mach). This can be enforced in the model by

forecasting a scalar value and modeling the velocity field as its rotational, as suggested in

Wandel et al. (2021).

Adaptability – The main issue of this area of research is the lack of adaptability. Neural sim-

ulators such as ours or MeshGraphNet trained on Cylinder-flow will excel at forecasting the

flow past a cylinder but fail spectacularly on other tasks, such as Eagle, and vice-versa. More-

over, a model trained on Eagle may generalize to various geometries, but not to various fluid

types, and probably neither to very different flight paths. Adaptability in neural simulators is

difficult to achieve on complex tasks. To do so, the neural model is usually integrated into a

general-purpose solver, which increases the computational cost (Yin et al., 2021a; Kirchmeyer

et al., 2022; Heinonen and Lähdesmäki, 2019).

More versatile models require more diversified datasets, which is another obstacle for

general-purpose neural simulators. Eagle is limited to two confounders (geometry and flight

path), and extending the number of variables implies increasing the size of the dataset to carry

a sufficient amount of examples of each configuration. This greatly increases the difficulty of

generating such a dataset.

146

Chapter 9
Unsupervised learning of counterfactual physics in

pixel space

Work presented at ICLR (oral) 2023,

Co-authors: Fabien Baradel (NaverLabs Europe)

Natalia Neverova (Meta AI),

Madiha Nadri (Université Lyon 1),

Greg Mori (Simon Fraser University)

Christian Wolf (NaverLabs Europe)

9.1 Context

Reasoning on complex, multi-modal and high-dimensional data is a natural ability of

humans and other intelligent agents (Martin-Ordas et al., 2008), and one of the most

important and difficult challenges of AI. While machine learning is well suited for capturing

regularities in high-dimensional signals, in particular by using high-capacity deep networks,

some applications also require an accurate modeling of causal relationships. This is particu-

larly relevant in physics, where causation is considered a fundamental axiom. In the context

of machine learning, correctly capturing or modeling causal relationships can also lead to

more robust predictions, in particular better generalization to out-of-distribution samples, in-

dicating that a model has overcome the exploitation of biases and shortcuts in the training

data.

In recent literature on physics-related machine learning, causality has often been forced

through the addition of prior knowledge about the physical laws that govern the studied phe-

nomena, e.g. Yin et al. (2021b). A similar idea lies behind structured causal models, widely

used in the causal inference community, where domain experts model these relationships

directly in a graphical notation. This particular line of work allows to perform predictions be-

yond statistical forecasting, for instance by predicting unobserved counterfactuals, the impact

of unobserved interventions (Balke and Pearl, 1994), i.e. answering the question

What alternative outcome would have happened, if the observed event X had been replaced with an

event Y (after an intervention)?

147

Context Filtered-CoPhy

Counterfactuals are interesting, as causality intervenes through the effective modification of

an outcome. As an example, taken from (Schölkopf et al., 2021), an agent can identify the

direction of a causal relationship between an umbrella and rain from the fact that remov-

ing an umbrella will not affect the weather. We focus on counterfactual reasoning on high-

dimensional signals, in particular videos of complex physical processes. Learning such causal

interactions from data is a challenging task, as spurious correlations are naturally and easily

picked up by trained models. Previous work in this direction was restricted to discrete out-

comes, as in CLEVRER (Yi et al., 2019), or to the prediction of 3D trajectories, as in CoPhy

(Baradel et al., 2020), which also requires supervision of object positions.

In this chapter, we address the hard problem of predicting the alternative (counterfactu-

als) outcomes of physical processes in pixel space, i.e. we forecast sequences of 2D projective

views of the 3D scene, requiring the prediction over long horizons (150 frames corresponding

to ∼ 6 seconds). We conjecture that causal relationships can be modeled on a low dimensional

manifold of the data, and propose a suitable latent representation for the causal model, in par-

ticular for the estimation of the confounders and the dynamic model itself. Similar to V-CDN

(Kulkarni et al., 2019; Li et al., 2020a), our latent representation is based on the unsupervised

discovery of keypoints, complemented by additional information in our case. Indeed, while

keypoint-based representations can easily be encoded from visual input, as stable mappings

from images to points arise naturally, we claim that they are not the most suitable representa-

tion for dynamic models. We identified and addressed two main problems:

1. The individual points of a given set are discriminated through their 2D positions only,

therefore shape, geometry, and relationships between multiple moving objects need to

be encoded through the relative positions of points to each other,

2. The optimal representation for a physical model is not necessarily a 2D keypoint space,

where the underlying object dynamics has also been subject to the imaging process

(projective geometry).

We propose a new counterfactual model, which learns a sparse representation of visual

input in the form of 2D keypoints coupled with a (small) set of coefficients per point modeling

complementary shape and appearance information. Confounders (object masses and initial

velocities) in the studied problem are extracted from this representation, and a learned dy-

namical model forecasts the entire trajectory of these keypoints from a single (counterfactual)

observation. We show, that these design choices are key to the performance of our model and

that they significantly improve the capability to perform long-term predictions. Our proposed

model outperforms strong baselines for physics-related learning of video prediction.

We introduce a new challenging dataset for this problem, which builds on CoPhy, a recent

counterfactual physics benchmark (Baradel et al., 2020). We go beyond the prediction of

sequences of 3D positions and propose a counterfactual task for predictions in pixel space after

148

The Filtered-CoPhy benchmark Filtered-CoPhy

interventions on initial conditions (displacing, re-orienting, or removing objects). In contrast

to the literature, our benchmark also better controls the identifiability of causal relationships

and counterfactual variables and provides more accurate physics simulation.

Counterfactual (CF) reasoning and learning of causal relationships in machine learning

was made popular by the work of Judas Pearl (Pearl, 2000), which motivates and introduces

mathematical tools detailing the principles of do-calculus, i.e. study of unobserved interven-

tions on data. A more recent survey links these concepts to the literature in machine learning

(Schölkopf et al., 2021). The last years have seen the emergence of several benchmarks for

Counterfactual (CF) reasoning in physics. CLEVRER (Yi et al., 2019) is a visual question-

answering dataset, where an agent is required to answer a CF question after observing a

video showing 3D objects moving and colliding. Li et al. (2020a) introduce a CF benchmark

with two tasks: a scenario where balls interact with each other according to unknown interac-

tion laws (such as gravity or elasticity), and a scenario where clothes are folded by the wind.

The agent needs to identify CF variables and causal relationships between objects and to pre-

dict future frames. CoPhy (Baradel et al., 2020) clearly dissociates the observed experiment

from the CF one, and contains three complex 3D scenarios involving rigid body dynamics.

However, the proposed method relies on the supervision of 3D object positions, while our

work does not require any metadata.

9.2 The Filtered-CoPhy benchmark

We build on CoPhy (Baradel et al., 2020), retaining its strengths, but explicitly focusing on a

counterfactual scenario in pixel space and eliminating the ill-posedness of tasks we identified

in the existing work. Each data sample is called an experiment, represented as a pair of trajec-

tories: an observed one with initial condition X0 = A and outcome {Xt | ∀t ∈ J0, TK} = B (a

sequence), and a counterfactual one X̄0 = C and {X̄t | ∀t ∈ J0, TK} = D (a sequence). Through-

out this paper we will use the letters A, B, C and D to distinguish the different parts of each

experiment. The initial conditions A and C are linked through a do-operator do : X0 7→ X̄0,

which modifies the initial condition (Pearl, 2018). Experiments are parameterized by a set of

intrinsic physical parameters z which are not observable from a single initial image A. We

refer to these as confounders. As in CoPhy, in our benchmark, the do-operator is observed dur-

ing training, but confounders are not, i.e. they have been used to generate the data, but are

not used during training or testing. Following (Pearl, 2018), the counterfactual task consists in

inferring the counterfactual outcome D given the observed initial condition A, the observed

trajectory B, and the counterfactual initial state C, following a three-step process:

1. Abduction uses the observed data AB to compute the counterfactual variables, i.e. phys-

ical parameters, which are not affected by the do-operation.

2. Action updates the causal model; keep the same identified confounders and apply the

do-operator, i.e. replace the initial state A by C.

149

The Filtered-CoPhy benchmark Filtered-CoPhy

BA

C D

(a) BlocktowerCF (BT-CF)

A B

C D

(b) BallsCF (B-CF)

A B

C D

(c) CollisionCF (C-CF)

Figure 9.1: Dataset overview – The Filtered-CoPhy benchmark suite contains three challenging scenar-

ios involving 2D or 3D rigid body dynamics with complex interactions, including collision and resting

contact. Initial conditions A are modified to C by an intervention. The initial motion is indicated with

arrows.

3. Prediction computes the counterfactual outcome D using the causal graph.

The benchmark contains three scenarios involving rigid body dynamics. BlocktowerCF (BT-

CF) studies stable and unstable 3D cube towers, the confounders are masses. BallsCF (B-CF)

focuses on 2D collisions between moving spheres (confounders are masses and initial veloc-

ities). CollisionCF (C-CF) is about collisions between a sphere and a cylinder (confounders

are masses and initial velocities, see figure 9.1).

Unlike CoPhy, our benchmark involves predictions in RGB pixel space only. The do-

operation consists of visually observable interventions on A, such as moving or removing an

object. The confounders cannot be identified from the single-frame observation A, identifica-

tion requires the analysis of the entire AB trajectory.

For an experiment (AB, CD, z) to be well-posed, the confounders z must be retrievable

from AB. For example, since the masses of a stable cube tower cannot be identified generally

in all situations, it can be impossible to predict the counterfactual outcome of an unstable

tower, as collisions are not resolvable without known masses. In contrast to CoPhy, we ensure

that each experiment ψ : (X0, z) 7→ [X1, · · · , XT], given initial condition X0 and confounders

z, is well-posed and satisfies the following constraints:

Definition 9.1 Identifiability (Pearl, 2018) The experiment (AB, CD, z) is identifiable if, for any

set of confounders z′:

ψ(A, z) = ψ(A, z′)⇒ ψ(C, z) = ψ(C, z′). (9-1)

ß In an identifiable experiment, there is no distinct pair (z, z′) that gives the same trajectory

AB but different counterfactual outcomes CD. Details on implementation and impact are in

appendix F.1.1.

150

The Filtered-CoPhy benchmark Filtered-CoPhy

Figure 9.2: Impact of temporal frequency – 3D trajectories of each cube are shown. Black dots are

sampled at 5 FPS, colored dots at 25 FPS. Collisions between the red cube and the ground are not well

described by the black dots, making it hard to infer physical laws from regularities in data.

We also enforce sufficient difficulty of the problem through the meaningfulness of con-

founders. We remove initial situations where the choice of confounder values has no signifi-

cant impact on the outcome:

Definition 9.2 Counterfactuality Let zk be the confounders z, where the kth value has been modified.

The experiment (AB, CD, z) is counterfactual if and only if:

∃k : ψ(C, zk) ̸= ψ(C, z). (9-2)

ß In other words, we impose the existence of an object of the scene for which the (unob-

served) physical properties have a determining effect on the trajectory. Details on how this

constraint was enforced are given in appendix F.1.2.

Temporal resolution – the physical laws we target involve highly non-linear phenomena, in

particular collision and resting contacts. Collisions are difficult to learn because their actions

are both intense, brief, and highly non-linear, depending on the geometry of the objects in 3D

space. The temporal resolution of physical simulations is of prime importance. A parallel can

be made with Nyquist-Shannon frequency, as a trajectory sampled with too low frequency

cannot be reconstructed with precision. We simulate and record trajectories at 25 FPS, com-

pared to 5 FPS chosen in CoPhy, justified with two experiments. Firstly, figure 9.2 shows the

trajectories of the center of masses of cubes in BlocktowerCF (and other tasks), colored dots

are shown at 25 FPS and black dots at 5 FPS. We can see that collisions with the ground fall

below the sampling rate of 5 FPS, making it hard to infer physical laws from regularities in

151

Unsupervised learning of counterfactual physics Filtered-CoPhy

Xsource

Xtarget

CNN

Fθ

Kθ

Cθ

CNN

Fθ

Kθ

Cθ

×

×

×

Features f

Keypoints kn

Coefficients cn

G
Gaussian map.

∗
Convolution

×

Rθ

H

X̂target

Reconstruction
target

source appeareance

Gn[i]

Encoder

Encoder

Decoder

Figure 9.3: Derendering module overview – We de-render visual input into a latent space composed

of a dense feature map f modeling static information, a set of keypoints kn, and associated coefficients

cn. We show the training configuration taking as input pairs (Xsource, Xtarget) of images. Without any

supervision, a tracking strategy emerges naturally through the unsupervised objective: we optimize

the reconstruction of Xtarget, given features from Xsource and keypoints and coefficients from Xtarget.

data at this frequency. A second experiment involves learning a prediction model at different

frequencies, confirming the choice 25 FPS — details are given in appendix F.1.3.

9.3 Unsupervised learning of counterfactual physics

We introduce a new model for counterfactual learning of physical processes capable of pre-

dicting visual sequences D in the image space over long horizons. The method does not

require any supervision other than videos of observed and counterfactual experiences. The

code is publicly available online at https://filteredcophy.github.io. The model consists of

three parts:

1. An image-to-keypoints encoder learns a hybrid representation of an image in the form

of a (i) dense feature map and (ii) 2D keypoints combined with (iii) a low-dimensional

vector of coefficients (see figure 9.3). Without any state supervision, we show that the

model learns a representation that encodes positions in keypoints and appearance and

orientation in the coefficients.

2. A Counterfactual Dynamics (CoDy) model based on recurrent graph networks, in the

lines of (Baradel et al., 2020). It estimates a latent representation of the confounders z

from the keypoint and coefficient trajectories of AB provided by the encoder and then

predicts D in this same space.

3. A keypoints-to-image decoder that uses the predicted keypoints to generate a pixel-

space representation of D.

152

https://filteredcophy.github.io

Unsupervised learning of counterfactual physics Filtered-CoPhy

9.3.1 Disentangling visual information from dynamics

The encoder takes an input image X and predicts a representation with three streams, sharing

a common convolutional backbone, as shown in figure 9.3. Using three different heads Fθ ,

Kθ and Cθ , the encoder computes a dense feature map f ∈ Rnc×n f×n f (nc channels of n f ×
n f matrices) containing static information, such as the background, as well as N keypoints-

coefficients pairs (kn, cn), n ∈ J0, NK where kn ∈ R2 is a 2D keypoint carrying positional

information from moving objects and cn ∈ RC+1 its associated shape coefficients.

The unsupervised objective is formulated on pairs of images (Xsource, Xtarget) randomly

sampled from the same D sequences (see appendix F.4.1 for details on sampling). Exploit-

ing an assumption on the absence of camera motion1, the goal is to favor the emergence of

disentangled static and dynamic information. To this end, both images are encoded, and the

reconstruction of the target image is predicted with a decoder Dθ fusing the source dense

feature map and the target keypoints and coefficients. This formulation requires the decoder

to aggregate dense information from the source and sparse values from the target, naturally

leading to motion being predicted by the latter.

The decoder Dθ uses inductive bias favoring the usage of the 2D keypoint information in

a spatial way. The 2D coordinates kn for each keypoint are encoded as Gaussian heatmaps

G(kn), i.e. 2D Gaussian functions centered on the keypoint position. The additional coefficient

information, carrying appearance information, is then used to deform the Gaussian mapping

into an anisotropic shape using a fixed filter bank H = {H1, · · · , HC}, such as

Dθ

(
f , k1, c1, · · · , kN , cN

)
= Rθ

(
f ,

mapping for
keypoint 1︷ ︸︸ ︷

G1[1]
...

G1[C],

 , · · · ,

mapping for
keypoint n︷ ︸︸ ︷

GN [1]
...

GN [C],


)

where Gn[i] = cC+1
n (ci

nHi)︸ ︷︷ ︸
Filter i

∗ G(kn), (9-3)

where Rθ is a refinement network performing trained upsampling with transposed convolu-

tions, whose inputs are stacked channelwise. Gn[i] are Gaussian mappings produced from

keypoint positions kn, deformed by filters from bank H and weighted by coefficients ci
n. The

filters Hi are defined as fixed horizontal, vertical, and diagonal convolution kernels. This

choice is discussed in section 9.4. The joint encoding and decoding pipeline is illustrated in

Fig. 9.3.

The model is trained to minimize the mean squared error (MSE) reconstruction loss, reg-

ularized with a loss on spatial gradients ∇X weighted by hyper-parameters γ1, γ2 ∈ R:

Lderen = γ1|Xtarget − X̂target|2 + γ2|∇Xtarget −∇X̂target|2, (9-4)

1If this assumption is not satisfied, global camera motion could be compensated after estimation.

153

Unsupervised learning of counterfactual physics Filtered-CoPhy

where X̂target=Dθ(F (Xsource),Kθ(Xtarget), Cθ(Xtarget)) is the reconstructed image.

Related work – our unsupervised objective is somewhat related to the Transporter (Kulkarni

et al., 2019), which, computes visual feature vectors fsource and ftarget as well as 2D keypoints

ksource
n and ktarget

n , modeled as a 2D vector via Gaussian mapping. It leverages a handcrafted

transport equation: Ψ̂target
n = fsource × (1−ksource

n)×(1−ktarget
n) + ftarget×ktarget

n . Similarly, the

target image is reconstructed through a refiner network X̂target = Rθ(Ψ̂
target
1 , · · · , Ψ̂target

N). Yet,

the transporter suffers from a major drawback when used for video prediction, as it requires

parts of the target image to reconstruct the target image (i.e. ftarget). The model was originally

proposed in the context of RL and control, where reconstruction is not an objective. It also

does not use shape coefficients, requiring shapes to be encoded by several keypoints, or abu-

sively be carried through the dense features ftarget. This typically leads to complex dynamics

nonrepresentative of the dynamical objects. We conducted an in-depth comparison between

the Transporter and our representation in appendix F.3.2.

9.3.2 Dynamic model and confounder estimation

Our counterfactual dynamical model (CoDy) leverages multiple GNNs modules (Battaglia

et al., 2016) that join forces to solve the counterfactual forecasting tasks of Filtered-CoPhy.

Each one of these networks is a classical GNN, abbreviated as fgnn(xk), which contextualizes

input node embeddings xk through incoming edge interactions eik, providing output node

embeddings x̂k (parameters are not shared over the instances)

fgnn(xk) = x̂k, such that x̂k = gnodes

(
xk, ∑

i
eik

)
with eij = gedges

(
xi, xj

)
, (9-5)

where gedges is a message-passing function and gnodes is an aggregation function.

We define the state of a frame Xt at time t as a stacked vector s[t] composed of keypoints

and coefficients computed by the image-to-keypoints encoder, i.e.

s[t] =
[
s1[t] · · · sk[t]

]
where sn[t] =

[
kn cn

]
[t]. (9-6)

In the lines of (Baradel et al., 2020), given the original initial condition and outcome AB, CoDy

estimates an unsupervised representation z̃n of the latent confounder variables per keypoint

n through the counterfactual estimator (CF estimator in figure 9.4). It first contextualizes the

sequence sAB[t] through a GNN, then model the temporal evolution of this representation

with a GRU (Cho et al., 2014) per keypoint, sharing parameters over keypoints. Formally

hAB[0] = 0, hAB[t + 1] = rgru,1

(
hAB[t], fgnn,1

(
sAB[t]

))
, z̃ = hAB[T] (9-7)

We took inspiration from chapter 5, showing, under mild assumptions, the existence of

a latent space of higher dimension, where a dynamical system given as an ODE can have

simpler dynamics. We thus propose to use an encoder-decoder structure within CoDy, which

154

Experiments Filtered-CoPhy

projects our dynamical system into a higher-dimensional state space, performs forecasting of

the dynamics in this latent space, and then projects predictions back to the original keypoint

space. Note that this dynamics encoder/decoder is different from the encoder/decoder of

the image processing modules discussed in section 9.3.1, and resembles the Latent Dynamics

discussed in chapter 2.

The state encoder E
(
s[t]
)
= σ[t] is modeled as a graph network E := f2,gnn, whose aggre-

gation function projects into an output embedding space σ[t] of dimension 256. The decoder

∆
(
σ[t]
)
= s[t] temporally processes the individual contextualized states σ[t] with a GRU, fol-

lowed by new contextualization with a graph network f3,gnn. Details on the full architecture

are provided in appendix F.4.2.

The dynamic model CoDy performs forecasting in the higher-dimensional space σ[t],

computing a displacement vector δ[t+1] such that σ[t+1] = σ[t] + δ[t+1]. It takes the pro-

jected state embeddings σn[t] per keypoint n concatenated with the confounder representation

z̃n and contextualizes them with a GNN, resulting in embeddings un[t] = f4, gnn

([
σn[t], z̃n

])
,

which are processed temporally by a GRU. We compute the displacement vector at time t+1

as a linear transformation from the hidden state of the GRU. We apply the dynamic model in

an auto-regressive way to forecast long-term trajectories in the projected space σn[t] and apply

the state decoder to obtain a prediction ŝCD[t]. The dynamic model is trained with a loss in

keypoint space,

Lphysics = ∑
t

∣∣∣∣sCD[t]− ŝCD[t]
∣∣∣∣2 + γ3

∣∣∣∣sCD[t]− ∆
(
E
(
sCD[t]

))∣∣∣∣2. (9-8)

The first term enforces the model to learn to predict the outcomes and the second term favors

correct reconstruction of the state in keypoint space. The terms are weighted with a scalar

parameter γ3.

9.3.3 Training

End-to-end training of all three modules jointly is challenging, as the same pipeline controls

both the keypoint-based state representation and the dynamic module (CoDy), involving two

adversarial objectives: optimizing reconstruction pushes the keypoint encoding to be as rep-

resentative as possible, but learning the dynamics favors a simple representation. Faced with

these two contradictory tasks, the model is numerically unstable and rapidly converges to

regression to the mean. As described above, we separately train the encoder and decoder pair

on reconstruction only, without dynamical information (see equation (9-4)). Then we freeze

the parameters of the keypoint detector and train CoDy to forecast the keypoints from D

minimizing the loss in Equation (9-8).

155

Experiments Filtered-CoPhy

AB

C

D

Encoder

Encoder

Encoder

×

×

features AB

features C

features D

CF Estimator

DynamicsE ∆

CoDy
encoder

CoDy
decoderz̃k

σtσt+1
Decoder

D̂

source appearance:
features C

reconstruction
train

test

target:
MSE

stop grad.

stop grad.

AB

C

keypoints and coefficients

D

CoDy

Figure 9.4: Model overview – During training, we disconnect the dynamic prediction module (CoDy)

from the rendering module (decoder). On test time, we reconnect the two modules. CoDy forecasts

the counterfactual outcome D from the sparse keypoints representation of AB and C. The confounders

are discovered in an unsupervised manner and provided to the dynamical model.

Ours UV-CDN PhyD Pred

K 2K K 2K NET RNN

PSNR 23.48 24.69 21.07 21.99 16.49 22.04
BT-CF

L-PSNR 25.51 26.79 22.36 23.64 23.03 24.97

PSNR 21.19 21.33 19.51 19.54 18.56 22.31
B-CF

L-PSNR 23.88 24.12 22.35 22.38 22.55 22.63

PSNR 24.09 24.09 23.73 23.83 19.69 24.70
C-CF

L-PSNR 26.07 26.55 26.08 26.34 24.61 26.39

Table 9.1: Quantitative results – Comparison with the state-of-the-

art models in physics-related machine learning of video signals,

reporting reconstruction error (PSNR and introduced L-PSNR).

Copy

B

Copy

C

Ours

BT-CF 43.2 20.0 9.58

B-CF 44.3 92.3 36.12

C-CF 7.6 40.3 5.14

Copy B: absence of intervention

(always outputs B).

Copy C: the tower is stable

(always outputs C).

Table 9.2: Copying baselines – We

report MSE×10−3 on prediction of

keypoints and coefficients.

9.4 Experiments

We compare the proposed model to three strong baselines for physics-inspired video predic-

tion.

• PhyDNet (Guen and Thome, 2020) is a non-counterfactual video prediction model that

forecasts future frames using a decomposition between (a) a feature vector that tempo-

rally evolves via an LSTM and (b) a dynamic state that follows a PDE learned through

specifically designed cells (see chapter 3 for an overview).

• V-CDN (Li et al., 2020a) is a counterfactual model based on keypoints, close to our work.

It identifies confounders from the beginning of a sequence and learns a keypoint pre-

dictor through auto-encoding using the Transporter equation (see discussion in section

9.3.1). As it stands, it cannot be used for video prediction and is incomparable with our

work, see details in appendix F.3. We therefore replace the Transporter with our image

encoder-decoder modules, from which we remove the additional coefficients. We refer

156

Experiments Filtered-CoPhy

Coefficients: ✓ ✗

Keypoints: K 2K 4K K 2K 4K

PSNR 23.48 24.69 23.54 22.71 23.28 23.17
BT-CF

L-PSNR 21.75 23.03 21.80 21.18 21.86 21.70

PSNR 21.19 21.33 21.37 20.49 21.09 20.97
B-CF

L-PSNR 27.88 27.16 27.07 26.33 27.07 26.73

PSNR 24.09 24.09 24.26 23.84 23.66 24.06
C-CF

L-PSNR 23.32 23.46 23.44 22.58 22.81 23.45

Table 9.3: Ablation on coefficients – Impact of having additional orientation/shape coefficients (✓)

compared to the keypoint-only solution (✗), for different numbers of keypoints: equal to number of

objects (= K), 2K and 4K.

to this model as UV-CDN (for Unsupervised V-CDN).

• PredRNN (Wang et al., 2017) is a ConvLSTM-based video prediction model that lever-

ages spatial and temporal memories through a spatiotemporal LSTM cell.

All models have been implemented in PyTorch, architectures are described in appendix

F.4. For the baselines PhyDNet, UV-CDN, and PredRNN, we used the official source code

provided by the authors. We evaluate on each scenario of Filtered-CoPhy on the counterfactual

video prediction task. For the two counterfactual models (Ours and UV-CDN), we evaluate

on the tasks as intended: we provide the observed sequence AB and the CF initial condition

C, and forecast the sequence D. The non-CF baselines are required to predict the entire video

from a single frame to prevent them from leveraging shortcuts in a part of the video and

bypass the need for physical reasoning.

We measure performance with time-averaged peak signal-to-noise ratio (PSNR) that di-

rectly measures reconstruction quality. However, this metric is mainly dominated by errors

on the static background, which is not our main interest. We also introduce Localized PSNR

(L-PSNR), which measures area error in the important regions near moving objects, computed

on masked images. We compute the masks using classical background subtraction techniques.

Comparison to the SOTA – We compare our model against UV-CDN, PhyDNet, and Pre-

dRNN in Table 9.1, consistently and significantly outperforming the baselines. The gap with

UV-CDN is particularly interesting, as it confirms the choice of additional coefficients to model

the dynamics of moving objects. PredRNN shows competitive performances, especially on

CollisionCF. However, our localized PSNR tends to indicate that the baseline does not re-

construct accurately the foreground, favoring the reconstruction of the background to the

detriment of the dynamics of the scene. Fig. 9.5 visualizes the prediction on a single example,

more can be found in appendix F.7. We also compare to trivial copying baselines in Table

9.2, namely Copy B, which assumes no intervention and outputs the B sequence, and Copy C,

which assumes a stable tower. We evaluate these models in keypoints space measuring MSE

on keypoints and coefficients averaged over time, as copying baselines are unbeatable in the

157

Experiments Filtered-CoPhy

G
ro

un
d

Tr
ut

h

t=0 t=21 t=42 t=63 t=85 t=106 t=127 t=149

Fi
lte

re
d

C
oP

hy
(8

kp
ts

)
Ph

yD
N

et
U

V
-C

D
N

(8
kp

ts
)

Pr
ed

R
N

N

Figure 9.5: Qualitative results – Visualization of the counterfactual video prediction quality, comparing

our proposed model (Filtered-CoPhy) with the two baselines, PhyDNet and UV-CDN, over different

timesteps.

regions of static background, making the PSNR metrics unusable.

We provide additional empirical results by comparing the models using Multi-object

Tracking metrics and studies on the impact of the do-operations on PSNR in appendix F.5.

We also compute an upper bound of our model using the CoPhyNet baseline as described in

Baradel et al. (2020).

Performance on real-world data – is reported in appendix F.6, showing experiments on 516

videos of real wooden blocks introduced in Lerer et al. (2016).

Impact of appearance coefficients – are reported in Table 9.3, comparing to the baseline using

a keypoint-only representation. The coefficients have a significant impact: even increasing the

number of keypoints to compensate for the loss of information cannot overcome the advantage

of disentangling positions and shapes, as done in our model. We provide a deeper analysis

of the de-rendering/rendering modules in appendix F.2, which includes visualizations of the

navigation of the latent shape space in F.2.2.

Learning filters – does not have a positive impact on reconstruction performance compared

to the choice of the handcrafted bank, as can be seen in table 9.5. We conjecture that the

additional degrees of freedom are redundant with parts of the filter kernels in the refinement

158

Conclusion Filtered-CoPhy

State auto-encoder: ✓ ✗

BT-CF 9.58 11.10

B-CF 36.12 36.88

C-CF 5.14 16.16

Table 9.4: Ablation on CoDy – Impact of the dy-

namical CoDy encoder (✓) against the baseline op-

erating in the keypoint and coefficient space (✗).

We report MSE ×10−3 on the prediction of key-

points and coefficients (4 keypoints).

Filter bank: Fixed Learned

BT-CF 34.40 32.04

B-CF 37.76 31.25

C-CF 34.09 33.88

Table 9.5: Ablation of the filters – Learning the fil-

ter bank H from scratch has a mild negative effect

on the reconstruction task. We report the PSNR

on static reconstruction performance without the

dynamical model.

module Rθ : this corresponds to jointly learning a multi-channel representation
{

Gn[i] | i ∈
J1, CJ, n ∈ J1, NK

}
for shapes as well as the mapping which geometrically distorts them into

the target object shapes. Fixing the latent representation does not constrain the system, as the

mapping Rθ can adjust to it.

Impact of the high-dimensional dynamic space – We evaluate the impact of modeling object

dynamics in high-dimensional space through the CoDy encoder in Table 9.4, comparing pro-

jection to 256 dimensions to the baseline reasoning directly in keypoint and coefficient space.

The experiment confirms this choice of KKL-like encoder.

9.5 Conclusion

We introduced a new benchmark for counterfactual reasoning in physical processes requiring

to perform video prediction, i.e. predicting raw pixel observations over a long horizon. The

benchmark has been carefully designed and generated imposing constraints on identifiability

and counterfactuality. We also propose a new method for counterfactual reasoning, which is

based on a hybrid latent representation combining 2D keypoints and additional latent vec-

tors encoding appearance and shape. We introduce an unsupervised learning algorithm for

this representation, which does not require any supervision on confounders or other object

properties and processes raw video. Counterfactual prediction of video frames remains a

challenging task, and Filtered-CoPhy still exhibits failures in maintaining rigid structures of

objects over long prediction horizons.

9.6 Post-Scriptum: taking a step back

At first glance, Filtered-CoPhy seems like an easy task. Two years ago (when this project was

released), the literature was full of research on computer vision that could be potentially used

to process the videos. Moreover, how difficult could it be to simulate a simple tower of cubes?

Underestimating the difficulty of Filtered-CoPhy was arguably the first mistake of this Ph.D.

About rigid body dynamics – the physics in Filtered-CoPhy is actually very difficult to sim-

ulate using neural networks. There are two potential sources of difficulties. Firstly, collisions

159

Post-Scriptum: taking a step back Filtered-CoPhy

between rigid bodies imply brutal changes in momentum, in physics, we talk about impulses

rather than forces. These impulses strongly depend on the geometry of the objects, their ve-

locities, and their physical parameters. This type of highly non-linear change of dynamics is

very difficult to approximate using neural networks, which tend to model Lipschitz functions.

Consider Balls-CF for instance: most of the time, the dynamics is fairly simple, i.e. linear

translation, but drastically changes on a handful of frames when two objects collide. One

could think of using two models, one for translation (a simple linear dynamics is enough),

and a more powerful neural network handling collision. This implies the use of a third col-

lision detector model to control the switch between both dynamics, which is difficult to train

without access to the ground truth trajectory.

Such an approach could be promising for Balls-CF and, up to some extent, for

Collision-CF, but neglect another key difficulty: resting contacts. This phenomenon occurs

when multiple objects are in contact. The impulses of the objects are then interconnected,

and simulating the correct trajectory involves solving a very difficult optimization problem.

Even when ground truth trajectories are available, rigid body dynamics is difficult to model.

For instance Allen et al. (2022b) propose a face interaction network (a GNN handling message

passing at node, edges, and faces level) to simulate rigid bodies, and while showing promising

results, still provides inaccurate predictions, especially on collisions. In comparison, Filtered-

CoPhy is even more challenging, since it has a counterfactual aspect and does not allow for

ground truth supervision.

Model improvements – concerning the image encoder-decoder structure, our design can

surely benefit from several improvements. We could probably head towards vision trans-

formers (Dosovitskiy et al., 2021) to replace the CNN encoder since this type of architecture

has shown great success during the last two years. Additionally, the keypoint detection mech-

anism could be replaced with an attention mechanism at pixel level (or even below). The

decoder could also be updated using diffusion models (Rombach et al., 2022) from the feature

maps and conditioned on the keypoints and coefficients. While our structure already discover

how to encode (up to some extent) shape information in the coefficients, the use of diffusion

models could help produce crisper images with cleaner contours.

CoDy is more difficult to improve. The fact that learning the dynamics is carried by un-

supervised keypoints limits the possibilities (for instance, face interaction network Allen et al.

(2022b) cannot be used readily). A possibility is to replace the dynamics with a differen-

tiable simulator and train the model end-to-end. This forces the keypoints to match physical

coordinates, and coefficients to correspond to a standard rotation (such as quaternions or ro-

tation matrices). The confounders can be retrieved with an inner optimization loop trying to

reproduce the trajectory AB, and then reused to simulate D2.

2All these research tracks are conditioned to the existence of another suitable coffee-related pun, such as Latte-

CoPhy or Cold-CoPhy.

160

Post-Scriptum: taking a step back Filtered-CoPhy

Counterfactual learning – one of the limitations of our method is that it requires both the

observed and the modified experiment for training. A proper counterfactual reasoning task

(following Pearl (2000)) should not assume knowledge of the do-operation during training,

while still being able to generalize to counterfactual experiments during test. A simple mod-

ification to our model consists of training the dynamics on B rather than D, hence using the

same trajectory for confounders estimation and physics forecasting. In practice, preventing

overfitting is difficult: a lot of information can flow from the CF estimator to the dynamics

via the latent vector z̃. Doing so, CoDy overfits and fails to extract the confounders from AB

but rather encodes the entire trajectory in the latent vector. Thus, to respect strictly the coun-

terfactual task, we must add prior knowledge about the system (i.e. enforce known causal

relationships), by using for instance a differentiable simulator. Another option is to search for

minimal modification of the causal graph to integrate the effect of the do-operation.

161

Chapter 10
Final remarks

We have systematically broken down perspectives on a chapter-by-chapter basis, pin-

pointing potential shortcomings of our work and tracks for improvements. When

possible, we proposed insights for addressing these issues, and we hope that our contribu-

tions will raise interest from the community and motivate interesting and effective follow-up

work in the field of hybrid physics and research in deep learning. Most work discussed in this

manuscript has led to potential new collaborations with our colleagues, yet to be explored,

especially in the field of control theory. On this conclusive note, we would like to draw a

bigger picture and propose perspectives on a larger scale for the domain of hybrid physics

and deep learning techniques.

10.1 Theoretical insights for more principled models

In our opinion, the main difference between machine learning approaches for physics and

conventional tools is that research in the field advances faster than theoretical results. Deep

learning addresses harder and harder tasks, while theoretical results on their performance

and robustness are late to come. Indeed, on one hand, provable convergence guarantees and

error bounds are extremely difficult to obtain with the convoluted neural architectures used in

modern approaches, and dedicating time to this subject can meet with a sense of frustration.

On the other hand, because very few theoretical tools exist, research in neural networks often

boils down to empirical results on tailored and curated datasets, with limited (or at least

untested) portability to the real-world. To some extent, our work is no exception: models

introduced in Part IV of this manuscript rely on insights from physics, prior knowledge, and

reasonable intuitions, but no formal results. Conversely, techniques from Part II are better

supported by theory but are difficult to scale to larger and harder tasks.

We argue for a balance between analytical and empirical results. We believe that building

upon properties from control theory to derive more advanced architectures is a promising

way to obtain new models and techniques to improve the accuracy and robustness of physics-

163

Physics and deep learning for robotics Final remarks

oriented learning. Yet, in most cases, the assumptions and requirements for applying these

theorems cannot be rigorously verified, and the practical implementation might slightly differ

from the analytical framework. Yet, we believe it is beneficial to take inspiration from these re-

sults to influence our design and implementation processes. Many areas of research in control

theory are promising for applications of deep learning. We explored contraction theory, which

allows to give insights into the convergence and stability of recurrent neural networks, and

argue for adopting these principles more broadly to construct architectures that converge to a

meaningful solution more robustly. Moreover, non-linear control theory, observer/controller

design, graph theory, and cooperative game theory are potentially promising fields to be ex-

plored and fused with deep learning to contribute to the development of more principled and

interpretable models.

10.2 Physics and deep learning for robotics

We observed that most advanced deep learning-based approaches for physics address au-

tonomous systems, i.e. with input signals. This is also the case of our work: among the

previous six chapters, only two address non-autonomous dynamical systems (chapter 4 and

chapter 6). Indeed, taking into account input signals is not trivial since they significantly com-

plicate the dynamics and require a more comprehensive understanding of the system, which

results in larger datasets. Yet, we believe that robotics is among the most promising appli-

cations of deep learning, but this field implies interacting with an environment, hence the

presence of input control. Nowadays, most research directions replace conventional control

algorithms with reinforcement learning setups. These approaches are promising and suc-

cessful in a growing number of tasks, but we believe that the domain can benefit from more

hybridization, i.e. combining deep learning techniques with physical models. This can help

in designing architectures that are more intuitive, easy to understand and implement, and

potentially more efficient.

Using physics priors in robotics may also be a key to accelerating the release of our models

in the outside world. Relying on control and physics insights might help offer security and

robustness guarantees that are necessary for real-world applications. By fusing conventional

tools and modern learning approaches, we can design models that inherently respect the laws

of nature, leading to more robust and safer outcomes.

10.3 Neural simulators for faster engineering

In the introduction of the manuscript, we stated that most common phenomena in physics

can already be simulated using classical tools, such as standard PDE and ODE solvers. These

methods are fairly accurate and provide stability guarantees. We argue that research in neural

simulators serves two purposes. The main interest is obviously computation speed since

neural networks can rely on intuitive physics rather than handcrafted equations to produce

164

Neural simulators for faster engineering Final remarks

long-term simulations in a matter of seconds. When working on a new design, simulation is

a way to gain feedback on how a system will behave in the real world, hence offering wider

and faster access to simulations increases the amount of feedback that engineers can obtain,

allowing them to discover better designs more quickly.

We strongly believe that the long-term goal of neural simulators relies upon the differen-

tiability of the solver, which can thus be used to optimize a process according to a well-crafted

objective directly using the solver (with gradient descent), which traditional simulation tools

cannot handle well. This opens the possibility of using neural simulators for the automatic

design and optimization of systems. For instance, one could train a model to learn the dy-

namics of a physical system, and then use this model in an optimization loop to find the best

design parameters for the system. This approach can drastically speed up the design and

optimization process, particularly for complex systems where there are many parameters to

adjust. The ability to automatically tune and optimize parameters based on simulation results

improves the design process and results in better-performing systems.

We hope that these perspectives will inspire more researchers to explore the intersection

between physics, control theory, and deep learning. By bringing together knowledge from

these distinct but interrelated fields, we can push the boundaries of what is currently possible

and open up exciting new avenues of research.

165

Bibliography

Abate, A., Ahmed, D., Giacobbe, M., and Peruffo, A. (2020). Formal synthesis of lyapunov

neural networks. Control Systems Letters.

Ajay, A., Wu, J., Fazeli, N., Bauza, M., Kaelbling, L. P., Tenenbaum, J. B., and Rodriguez, A.

(2018). Augmenting physical simulators with stochastic neural networks: Case study of

planar pushing and bouncing. In International Conference on Intelligent Robots and Systems.

Allen, K., Lopez-Guevara, T., Stachenfeld, K. L., Gonzalez, A. S., Battaglia, P., Hamrick, J. B.,

and Pfaff, T. (2022a). Inverse design for fluid-structure interactions using graph network

simulators. In Neural Information Processing Systems.

Allen, K. R., Rubanova, Y., Lopez-Guevara, T., Whitney, W. F., Sanchez-Gonzalez, A., Battaglia,

P., and Pfaff, T. (2022b). Learning rigid dynamics with face interaction graph networks. In

International Conference on Learning Representations.

Amos, B., Xu, L., and Kolter, J. Z. (2017). Input convex neural networks. In International

Conference on Machine Learning.

Andrieu, V. (2014). Convergence speed of nonlinear luenberger observers. Journal on Control

and Optimization.

Andrieu, V., Jayawardhana, B., and Praly, L. (2016). Transverse exponential stability and

applications. Transactions on Automatic Control.

Andrieu, V. and Praly, L. (2006). On the Existence of a Kazantzis-Kravaris/Luenberger Ob-

server. Journal on Control and Optimization.

Antonini, A., Guerra, W., Murali, V., Sayre-McCord, T., and Karaman, S. (2018). Blackbird

Dataset: A large-scale dataset for UAV perception in aggressive flight. Robotics Research.

Bakhtin, A., van der Maaten, L., Johnson, J., Gustafson, L., and Girshick, R. (2019). Phyre: A

new benchmark for physical reasoning. Neural Information Processing Systems.

Balke, A. and Pearl, J. (1994). Counterfactual probabilities: Computational methods, bounds

and applications. In Uncertainty in Artificial Intelligence.

167

BIBLIOGRAPHY BIBLIOGRAPHY

Baradel, F., Neverova, N., Mille, J., Mori, G., and Wolf, C. (2020). Cophy: Counterfactual

learning of physical dynamics. In International Conference on Learning Representations.

Baradel, F., Neverova, N., Wolf, C., Mille, J., and Mori, G. (2018). Object level visual reasoning

in videos. In European Conference on Computer Vision (ECCV).

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. (2017). Spectrally-normalized margin bounds

for neural networks. In Neural Information Processing Systems.

Barton, I. E. (1998). Comparison of simple-and piso-type algorithms for transient flows. Inter-

national Journal for Numerical Methods in Fluids.

Battaglia, P., Hamrick, J., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M.,

Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gülçehre, Ç., Song, F., Ballard, A.,

Gilmer, J., Dahl, G., Vaswani, A., Allen, K., Nash, C., Langston, V., Dyer, C., Heess, N.,

Wierstra, D., Kohli, P., Botvinick, M., Vinyals, O., Li, Y., and Pascanu, R. (2018). Relational

inductive biases, deep learning, and graph networks. arXiv Preprint.

Battaglia, P., Pascanu, R., Lai, M., Rezende, D. J., et al. (2016). Interaction networks for learning

about objects, relations and physics. Neural Information Processing Systems.

Bauersfeld, L., Kaufmann, E., Foehn, P., Sun, S., and Scaramuzza, D. (2021). Neurobem:

Hybrid aerodynamic quadrotor model. arXiv preprint.

Beeching, E., Dibangoye, J., Simonin, O., and Wolf, C. (2020). Learning to plan with uncertain

topological maps. In European Conference on Computer Vision.

Beintema, G., Toth, R., and Schoukens, M. (2021). Nonlinear state-space identification using

deep encoder networks. In Learning for Dynamics and Control.

Beintema, G. I., Schoukens, M., and Tóth, R. (2023). Deep subspace encoders for nonlinear

system identification. Automatica.

Belbute-Peres, F. D. A., Economon, T., and Kolter, Z. (2020). Combining differentiable pde

solvers and graph neural networks for fluid flow prediction. In International Conference on

Machine Learning.

Bemporad, A. (2006). Model predictive control design: New trends and tools. In Conference on

Decision and Control.

Berg, J. and Nyström, K. (2018). A unified deep artificial neural network approach to partial

differential equations in complex geometries. Neurocomputing.

Bernard, P., Andrieu, V., and Astolfi, D. (2022). Observer design for continuous-time dynami-

cal systems. Annual Reviews in Control.

168

BIBLIOGRAPHY BIBLIOGRAPHY

Bernard, P. and Maghenem, M. (2023). Reconstructing indistinguishable solutions via set-

valued kkl observer. arXiv preprint.

Bernardin, K. and Stiefelhagen, R. (2008). Evaluating Multiple Object Tracking Performance:

The CLEAR MOT Metrics. Journal on Image and Video Processing.

Bézenac, E. D., Pajot, A., and Gallinari, P. (2019). Deep learning for physical processes: Incor-

porating prior scientific knowledge. Journal of Statistical Mechanics: Theory and Experiment.

Bhat, U. and Munch, S. B. (2022). Recurrent neural networks for partially observed dynamical

systems. Physical Review.

Bianchi, F. M., Grattarola, D., and Alippi, C. (2020). Spectral clustering with graph neural

networks for graph pooling. In International Conference on Machine Learning.

Bishnoi, S., Bhattoo, R., Jayadeva, J., Ranu, S., and Krishnan, N. A. (2023). Enhancing the in-

ductive biases of graph neural ode for modeling physical systems. In International Conference

on Learning Representations.

Boussif, O., Bengio, Y., Benabbou, L., and Assouline, D. (2022). Magnet: Mesh agnostic neural

pde solver. In Neural Information Processing Systems.

Breiman, L. (1996). Bagging predictors. Machine Learning.

Brivadis, L., Andrieu, V., Bernard, P., and Serres, U. (2023). Further remarks on kkl observers.

Systems & Control Letters.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. (2021). Geometric deep learning:

Grids, groups, graphs, geodesics, and gauges. arXiv preprint.

Brunton, S. L., Proctor, J. L., and Kutz, J. N. (2016). Discovering governing equations from

data by sparse identification of nonlinear dynamical systems. National Academy of Sciences.

Budišić, M., Mohr, R., and Mezić, I. (2012). Applied koopmanism. Chaos: An Interdisciplinary

Journal of Nonlinear Science.

Buisson-Fenet, M., Bahr, L., Morgenthaler, V., and Meglio, F. D. (2022). Towards gain tuning

for numerical kkl observers. arXiv preprint.

Buşoniu, L., de Bruin, T., Tolić, D., Kober, J., and Palunko, I. (2018). Reinforcement learning

for control: Performance, stability, and deep approximators. Annual Reviews in Control.

Byravan, A. and Fox, D. (2017). Se3-nets: Learning rigid body motion using deep neural

networks. In International Conference on Robotics and Automation.

169

BIBLIOGRAPHY BIBLIOGRAPHY

Byrnes, C. and Isidori, A. (2003). Limit sets, zero dynamics, and internal models in the

problem of nonlinear output regulation. Transaction on Automatic Control.

Cai, S., Mao, Z., Wang, Z., Yin, M., and Karniadakis, G. E. (2021a). Physics-informed neural

networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica.

Cai, S., Wang, Z., Wang, S., Perdikaris, P., and Karniadakis, G. E. (2021b). Physics-informed

neural networks for heat transfer problems. Journal of Heat Transfer.

Cao, D., Wang, Y., Duan, J., Zhang, C., Zhu, X., Huang, C., Tong, Y., Xu, B., Bai, J., Tong, J., et al.

(2020). Spectral temporal graph neural network for multivariate time-series forecasting. In

Neural Information Processing Systems.

Cao, Y., Chai, M., Li, M., and Jiang, C. (2022). Bi-stride multi-scale graph neural network for

mesh-based physical simulation. arXiv preprint.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020). End-

to-end object detection with transformers. In European Conference on Computer Vision.

Chamberlain, B., Rowbottom, J., Gorinova, M. I., Bronstein, M., Webb, S., and Rossi, E. (2021).

Grand: Graph neural diffusion. In International Conference on Machine Learning.

Chang, B., Chen, M., Haber, E., and Chi, E. H. (2019a). Antisymmetricrnn: A dynamical

system view on recurrent neural networks. In International Conference on Learning Represen-

tations.

Chang, Y.-C., Roohi, N., and Gao, S. (2019b). Neural lyapunov control. Neural Information

Processing Systems.

Cheah, C.-C., Liu, C., and Slotine, J. (2006). Adaptive jacobian tracking control of robots with

uncertainties in kinematic, dynamic and actuator models. Transactions on Automatic Control.

Chen, C., Xie, L., Xie, K., Lewis, F., and Xie, S. (2022). Adaptive optimal output tracking of

continuous-time systems via output-feedback-based reinforcement learning. Automatica.

Chen, J., Hachem, E., and Viquerat, J. (2021a). Graph neural networks for laminar flow pre-

diction around random two-dimensional shapes. Physics of Fluids.

Chen, K., Vicente, J. P. D., Sepulveda, G., Xia, F., Soto, A., Vázquez, M., and Savarese, S. (2019).

A behavioral approach to visual navigation with graph localization networks. arXiv preprint.

Chen, R. T., Amos, B., and Nickel, M. (2020). Learning neural event functions for ordinary

differential equations. In International Conference on Learning Representations.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary

differential equations. Neural Information Processing Systems.

170

BIBLIOGRAPHY BIBLIOGRAPHY

Chen, S., Sammak, S., Givi, P., Yurko, J. P., and Jia, X. (2021b). Reconstructing high-resolution

turbulent flows using physics-guided neural networks. In International Conference on Big

Data.

Chen, S., Xu, Y., Yu, C., Li, L., Ma, X., Xu, Z., and Hsu, D. (2023). Daxbench: Benchmarking

deformable object manipulation with differentiable physics. In International Conference on

Learning Representations.

Chen, Y., Liu, S., and Wang, X. (2021c). Learning continuous image representation with local

implicit image function. In Conference on Computer Vision and Pattern Recognition.

Chen, Z., Liu, Y., and Sun, H. (2021d). Physics-informed learning of governing equations from

scarce data. Nature Communications.

Cheng, D., Yang, F., Xiang, S., and Liu, J. (2022). Financial time series forecasting with multi-

modality graph neural network. Pattern Recognition.

Cho, K., Merriënboer, B. V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and

Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical

machine translation. arXiv preprint.

Choudhary, A., Lindner, J. F., Holliday, E. G., Miller, S. T., Sinha, S., and Ditto, W. L. (2021).

Forecasting hamiltonian dynamics without canonical coordinates. Nonlinear Dynamics.

Chow, T. W. and Fang, Y. (1998). A recurrent neural-network-based real-time learning control

strategy applying to nonlinear systems with unknown dynamics. Transactions on Industrial

Electronics.

Cioffi, G., Bauersfeld, L., Kaufmann, E., and Scaramuzza, D. (2023). Learned inertial odometry

for autonomous drone racing. Robotics and Automation Letters.

Cook, R. L. (1986). Stochastic sampling in computer graphics. Transactions on Graphics.

Cranmer, M. (2023). Interpretable machine learning for science with pysr and symbolicregres-

sion. jl. arXiv preprint.

Cranmer, M., Gonzalez, A. S., Battaglia, P., Xu, R., Cranmer, K., Spergel, D., and Ho, S. (2020a).

Discovering symbolic models from deep learning with inductive biases. Neural Information

Processing Systems.

Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P., Spergel, D., and Ho, S. (2020b). Lagrangian

neural networks. In ICLR 2020 Workshop on Integration of Deep Neural Models and Differential

Equations.

171

BIBLIOGRAPHY BIBLIOGRAPHY

Csáji, B. C. et al. (2001). Approximation with artificial neural networks. Faculty of Sciences,

Etvs Lornd University, Hungary.

Cuomo, S., Cola, V. S. D., Giampaolo, F., Rozza, G., Raissi, M., and Piccialli, F. (2022). Scientific

machine learning through physics–informed neural networks: where we are and what’s

next. Journal of Scientific Computing.

da Costa-Ramos, L., Meglio, F. D., Morgenthaler, V., da Silva, L. F. F., and Bernard, P. (2020).

Numerical design of luenberger observers for nonlinear systems. In Conference on Decision

and Control.

de Avila Belbute-Peres, F., Smith, K., Allen, K., Tenenbaum, J., and Kolter, J. Z. (2018). End-to-

end differentiable physics for learning and control. Neural Information Processing Systems.

Devasia, S., Chen, D., and Paden, B. (1996). Nonlinear inversion-based output tracking. Trans-

actions on Automatic Control.

Discetti, S. and Coletti, F. (2018). Volumetric velocimetry for fluid flows. Measurement Science

and Technology.

Dissanayake, M. and Phan-Thien, N. (1994). Neural-network-based approximations for solv-

ing partial differential equations. Communications in Numerical Methods in Engineering.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,

M., Minderer, M., Heigold, G., Gelly, S., et al. (2021). An image is worth 16x16 words: Trans-

formers for image recognition at scale. In International Conference on Learning Representation.

Draye, J.-P., Pavisic, D., Cheron, G., and Libert, G. (1996). Dynamic recurrent neural networks:

a dynamical analysis. Transactions on Systems, Man, and Cybernetics.

Du, T., Wu, K., Ma, P., Wah, S., Spielberg, A., Rus, D., and Matusik, W. (2021). Diffpd:

Differentiable projective dynamics. Transactions on Graphics.

Dupont, E., Doucet, A., and Teh, Y. W. (2019). Augmented neural odes. Neural Information

Processing Systems.

Dupont, E., Kim, H., Eslami, S., Rezende, D., and Rosenbaum, D. (2022a). From data to functa:

Your data point is a function and you can treat it like one. arXiv preprint.

Dupont, E., Loya, H., Alizadeh, M., Golinski, A., Teh, Y. W., and Doucet, A. (2022b). Coin++:

Data agnostic neural compression. arXiv preprint.

Dwivedi, V. and Srinivasan, B. (2020). Physics informed extreme learning machine (pielm)–a

rapid method for the numerical solution of partial differential equations. Neurocomputing.

172

BIBLIOGRAPHY BIBLIOGRAPHY

E, W. and Yu, B. (2017). The deep ritz method: A deep learning-based numerical algorithm

for solving variational problems. Communications in Mathematics and Statistics.

Eckert, M.-L., Um, K., and Thuerey, N. (2019). Scalarflow: a large-scale volumetric data set

of real-world scalar transport flows for computer animation and machine learning. ACM

Transactions on Graphics.

Ede, J. M. and Beanland, R. (2020). Adaptive learning rate clipping stabilizes learning. Machine

Learning: Science and Technology.

Ehrhardt, S., Monszpart, A., Mitra, N., and Vedaldi, A. (2018). Unsupervised intuitive physics

from visual observations. In Asian Conference on Computer Vision.

Ehsani, K., Tulsiani, S., Gupta, S., Farhadi, A., and Gupta, A. (2020). Use the force, luke!

learning to predict physical forces by simulating effects. In Conference on Computer Vision

and Pattern Recognition.

Erichson, N. B., Mathelin, L., Yao, Z., Brunton, S. L., Mahoney, M. W., and Kutz, J. N. (2020).

Shallow neural networks for fluid flow reconstruction with limited sensors. Royal Society A.

Esmaeilzadeh, S., Azizzadenesheli, K., Kashinath, K., Mustafa, M., Tchelepi, H. A., Marcus,

P., Prabhat, M., Anandkumar, A., et al. (2020). Meshfreeflownet: A physics-constrained

deep continuous space-time super-resolution framework. In International Conference for High

Performance Computing, Networking, Storage and Analysis.

Euler, L. (1824). Institutionum calculi integralis. Impensis Academia Imperialis Scientiarum.

Fang, Y. and Chow, T. W. (2005). Nonlinear dynamical systems control using a new rnn

temporal learning strategy. Transactions on Circuits and Systems.

Fasel, U., Kutz, J. N., Brunton, B. W., and Brunton, S. L. (2022). Ensemble-sindy: Robust sparse

model discovery in the low-data, high-noise limit, with active learning and control. Royal

Society A.

Fathony, R., Sahu, A. K., Willmott, D., and Kolter, J. Z. (2021). Multiplicative filter networks.

In International Conference on Learning Representations.

Forgione, M., Mejari, M., and Piga, D. (2022). Learning neural state-space models: do we need

a state estimator? arXiv preprint.

Francis, B. and Wonham, W. (1976). The internal model principle of control theory. Automatica.

Franz, E., Solenthaler, B., and Thuerey, N. (2021). Global transport for fluid reconstruction

with learned self-supervision. In Conference on Computer Vision and Pattern Recognition.

173

BIBLIOGRAPHY BIBLIOGRAPHY

Funahashi, K. and Nakamura, Y. (1993). Approximation of dynamical systems by continuous

time recurrent neural networks. Neural Networks.

Gaby, N., Zhang, F., and Ye, X. (2022). Lyapunov-net: A deep neural network architecture for

lyapunov function approximation. In Conference on Decision and Control.

Galerkin, B. G. (1915). Rods and plates. series occurring in various questions concerning the

elastic equilibrium of rods and plates. Engineers Bulletin.

Galewsky, J., Scott, R. K., and Polvani, L. M. (2004). An initial-value problem for testing

numerical models of the global shallow-water equations. Tellus A: Dynamic Meteorology and

Oceanography.

Gao, H., Sun, L., and Wang, J.-X. (2021). Phygeonet: Physics-informed geometry-adaptive

convolutional neural networks for solving parameterized steady-state pdes on irregular

domain. Journal of Computational Physics.

Gao, Z., Tan, C., Wu, L., and Li, S. Z. (2022). Simvp: Simpler yet better video prediction. In

Conference on Computer Vision and Pattern Recognition.

Gedon, D., Wahlström, N., Schön, T. B., and Ljung, L. (2021). Deep state space models for

nonlinear system identification. International Federation of Automatic Control.

Geilinger, M., Hahn, D., Zehnder, J., Bächer, M., Thomaszewski, B., and Coros, S. (2020).

Add: Analytically differentiable dynamics for multi-body systems with frictional contact.

Transactions on Graphics.

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian

Restoration of Images. Transactions on Pattern Analysis and Machine Intelligence.

Giaccagli, M., Astolfi, D., Andrieu, V., and Marconi, L. (2022a). Sufficient conditions for global

integral action via incremental forwarding for input-affine nonlinear systems. Transactions

on Automatic Control.

Giaccagli, M., Zoboli, S., Astolfi, D., Andrieu, V., and Casadei, G. (2022b). Synchronization in

networks of nonlinear systems: Contraction metric analysis and deep-learning for feedback

estimation. Transaction on Automatic Control.

Giftthaler, M., Neunert, M., Stäuble, M., Frigerio, M., Semini, C., and Buchli, J. (2017). Auto-

matic differentiation of rigid body dynamics for optimal control and estimation. Advanced

Robotics.

Gilpin, W. (2021). Chaos as an interpretable benchmark for forecasting and data-driven mod-

elling. In Neural Information Processing Systems.

174

BIBLIOGRAPHY BIBLIOGRAPHY

Gojcic, Z., Litany, O., Wieser, A., Guibas, L. J., and Birdal, T. (2021). Weakly supervised

learning of rigid 3d scene flow. In Conference on Computer Vision and Pattern Recognition.

Greff, K., Belletti, F., Beyer, L., Doersch, C., Du, Y., Duckworth, D., Fleet, D. J., Gnanapra-

gasam, D., Golemo, F., Herrmann, C., et al. (2022). Kubric: A scalable dataset generator. In

Conference on Computer Vision and Pattern Recognition.

Greydanus, S., Dzamba, M., and Yosinski, J. (2019). Hamiltonian neural networks. Neural

Information Processing Systems.

Guen, V. L. and Thome, N. (2020). Disentangling physical dynamics from unknown factors

for unsupervised video prediction. In Conference on Computer Vision and Pattern Recognition.

Haber, E. and Ruthotto, L. (2017). Stable architectures for deep neural networks. Inverse

problems.

Hairer, E., Nørsett, S. P., and Wanner, G. (1993). Solving ordinary differential equations. 1, Nonstiff

problems. Springer-Vlg.

Han, X., Gao, H., Pfaff, T., Wang, J.-X., and Liu, L. (2021). Predicting physics in mesh-reduced

space with temporal attention. In International Conference on Learning Representations.

Han, Y., Hao, W., and Vaidya, U. (2020). Deep learning of koopman representation for control.

In Conference on Decision and Control.

Hao, Z., Ying, C., Su, H., Zhu, J., Song, J., and Cheng, Z. (2023). Bi-level physics-informed

neural networks for pde constrained optimization using broyden’s hypergradients. In Inter-

national Conference on Learning Representations.

Hauser, J., Sastry, S., and Kokotovic, P. (1992). Nonlinear control via approximate input-output

linearization: The ball and beam example. Transaction on Automatic Control.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In International Conference

on Computer Vision.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In

Conference on Computer Vision and Pattern Recognition.

Heinonen, M. and Lähdesmäki, H. (2019). Ode2vae: Deep generative second order odes with

bayesian neural networks. Neural Information Processing Systems.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation.

Holl, P., Thuerey, N., and Koltun, V. (2020). Learning to control pdes with differentiable

physics. In International Conference on Learning Representations.

175

BIBLIOGRAPHY BIBLIOGRAPHY

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural

Networks.

Hu, Y., Liu, J., Spielberg, A., Tenenbaum, J. B., Freeman, W. T., Wu, J., Rus, D., and Matusik,

W. (2019). Chainqueen: A real-time differentiable physical simulator for soft robotics. In

International Conference on Robotics and Automation.

Huang, B., Han, S. D., Boularias, A., and Yu, J. (2021). Dipn: Deep interaction prediction

network with application to clutter removal. In International Conference on Robotics and Au-

tomation.

Isidori, A. (1995). Nonlinear Control Systems. Springer.

Isidori, A. and Byrnes, C. I. (1990). Output regulation of nonlinear systems. Transactions on

Automatic Control.

Isidori, A., Praly, L., and Marconi, L. (2010). About the Existence of Locally Lipschitz Output

Feedback Stabilizers for Nonlinear Systems. Journal on Control and Optimization.

Issa, R. I. (1986). Solution of the implicitly discretised fluid flow equations by operator-

splitting. Journal of Computational Physics.

Janny, S., Andrieu, V., Nadri, M., and Wolf, C. (2021). Deep kkl: Data-driven output prediction

for non-linear systems. In Conference on Decision and Control.

Janny, S., Beneteau, A., Thome, N., Nadri, M., Digne, J., and Wolf, C. (2023). Eagle: Large-scale

learning of turbulent fluid dynamics with mesh transformers. In International Conference on

Learning Representation.

Janny, S., Possamaï, Q., Bako, L., Wolf, C., and Nadri, M. (2022). Learning reduced nonlinear

state-space models: an output-error based canonical approach. In Conference on Decision and

Control.

Janot, A., Gautier, M., and Brunot, M. (2019). Data set and reference models of emps. In

Nonlinear System Identification Benchmarks.

Jaques, M., Burke, M., and Hospedales, T. (2020). Physics-as-inverse-graphics: Unsupervised

physical parameter estimation from video. In International Conference on Learning Represen-

tations.

Jia, J. and Benson, A. R. (2019). Neural jump stochastic differential equations. Neural Informa-

tion Processing Systems.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal

of Basic Engineering.

176

BIBLIOGRAPHY BIBLIOGRAPHY

Karlbauer, M., Praditia, T., Otte, S., Oladyshkin, S., Nowak, W., and Butz, M. V. (2022). Com-

posing partial differential equations with physics-aware neural networks. In International

Conference on Machine Learning.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. (2020). Transformers are RNNs:

Fast autoregressive transformers with linear attention. In International Conference on Machine

Learning.

Kaufmann, E., Bauersfeld, L., Loquercia, A., Müller, M., Koltun, V., and Scaramuzza, D. (2023).

Champion-level drone racing using deep reinforcement learning. Nature.

Kazantzis, N. and Kravaris, C. (1998). Nonlinear observer design using lyapunov’s auxiliary

theorem. Systems & Control Letters.

Kervadec, C., Jaunet, T., Antipov, G., Baccouche, M., Vuillemot, R., and Wolf, C. (2021). How

transferable are reasoning patterns in vqa? In Conference on Computer Vision and Pattern

Recognition.

Kim, B., Azevedo, V. C., Thuerey, N., Kim, T., Gross, M., and Solenthaler, B. (2019). Deep

fluids: A generative network for parameterized fluid simulations. In Computer graphics

forum.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., Vinyals, O., and Teh,

Y. W. (2018). Attentive neural processes. In International Conference on Learning Representa-

tions.

Kim, S.-W. and Benson, T. (1992). Comparison of the smac, piso and iterative time-advancing

schemes for unsteady flows. Computers & fluids.

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional

networks. In International Conference on Learning Representations.

Kirchmeyer, M., Yin, Y., Donà, J., Baskiotis, N., Rakotomamonjy, A., and Gallinari, P. (2022).

Generalizing to new physical systems via context-informed dynamics model. In International

Conference on Machine Learning.

Klushyn, A., Kurle, R., Soelch, M., Cseke, B., and van der Smagt, P. (2021). Latent matters:

Learning deep state-space models. Neural Information Processing Systems.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., and Hoyer, S. (2021). Machine

learning–accelerated computational fluid dynamics. National Academy of Sciences.

Kohl, G., Um, K., and Thuerey, N. (2020). Learning similarity metrics for numerical simula-

tions. In International Conference on Machine Learning.

177

BIBLIOGRAPHY BIBLIOGRAPHY

Kolter, J. Z. and Manek, G. (2019). Learning stable deep dynamics models. Neural Information

Processing Systems.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandku-

mar, A. (2021). Neural operator: Learning maps between function spaces. arXiv preprint.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and Mahoney, M. W. (2021). Characterizing

possible failure modes in physics-informed neural networks. Neural Information Processing

Systems.

Krueger, D. and Memisevic, R. (2016). Regularizing rnns by stabilizing activations. In Interna-

tional Conference on Learning Representation.

Kulkarni, T. D., Gupta, A., Ionescu, C., Borgeaud, S., Reynolds, M., Zisserman, A., and Mnih,

V. (2019). Unsupervised learning of object keypoints for perception and control. Neural

Information Processing Systems.

Kurz, M., Offenhäuser, P., and Beck, A. (2023). Deep reinforcement learning for turbulence

modeling in large eddy simulations. International Journal of Heat and Fluid Flow.

Kutta, W. (1901). Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Teubner.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. In International Conference on Machine

Learning.

Lagaris, I. E., Likas, A., and Fotiadis, D. I. (1998). Artificial neural networks for solving

ordinary and partial differential equations. Transactions on Neural Networks.

Lagaris, I. E., Likas, A. C., and Papageorgiou, D. G. (2000). Neural-network methods for

boundary value problems with irregular boundaries. Transactions on Neural Networks.

Lee, A. X., Gupta, A., Lu, H., Levine, S., and Abbeel, P. (2015). Learning from multiple demon-

strations using trajectory-aware non-rigid registration with applications to deformable ob-

ject manipulation. In International Conference on Intelligent Robots and Systems.

Lee, A. X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., and Levine, S. (2018). Stochastic adversarial

video prediction. In International Conference on Learning Representation.

Lerer, A., Gross, S., and Fergus, R. (2016). Learning physical intuition of block towers by

example. In International Conference on Machine Learning.

Li, M. and Jiang, L. (2021). Deep learning nonlinear multiscale dynamic problems using

koopman operator. Journal of Computational Physics.

Li, S., Huang, Z., Chen, T., Du, T., Su, H., Tenenbaum, J. B., and Gan, C. (2023). Dexdeform:

178

BIBLIOGRAPHY BIBLIOGRAPHY

Dexterous deformable object manipulation with human demonstrations and differentiable

physics. In International Conference on Learning Representations.

Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A., and

Eyink, G. (2008). A public turbulence database cluster and applications to study lagrangian

evolution of velocity increments in turbulence. Journal of Turbulence.

Li, Y., Torralba, A., Anandkumar, A., Fox, D., and Garg, A. (2020a). Causal discovery in

physical systems from videos. In Neural Information Processing Systems.

Li, Y., Wu, J., Tedrake, R., Tenenbaum, J. B., and Torralba, A. (2018). Learning particle dynam-

ics for manipulating rigid bodies, deformable objects, and fluids. In International Conference

on Learning Representations.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandku-

mar, A. (2020b). Neural operator: Graph kernel network for partial differential equations.

arXiv preprint.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandku-

mar, A. (2021). Markov neural operators for learning chaotic systems. arXiv preprint.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Stuart, A., Bhattacharya, K., and Anandku-

mar, A. (2020c). Multipole graph neural operator for parametric partial differential equa-

tions. In Neural Information Processing Systems.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., Anandkumar, A.,

et al. (2020d). Fourier neural operator for parametric partial differential equations. In

International Conference on Learning Representations.

Liao, Y. and Ming, P. (2019). Deep nitsche method: Deep ritz method with essential boundary

conditions. arXiv preprint.

Liberzon, D. (2011). Calculus of Variations and Optimal Control Theory. Daniel Liberzon.

Lienen, M. and Günnemann, S. (2022). Learning the dynamics of physical systems from

sparse observations with finite element networks. In International Conference on Learning

Representations.

Lino, M., Cantwell, C., Bharath, A. A., and Fotiadis, S. (2021). Simulating continuum mechan-

ics with multi-scale graph neural networks. arXiv preprint.

Liu, Z., Chen, Y., Du, Y., and Tegmark, M. (2021). Physics-augmented learning: A new

paradigm beyond physics-informed learning. arXiv preprint.

179

BIBLIOGRAPHY BIBLIOGRAPHY

Ljung, L., Andersson, C., Tiels, K., and Schön, T. B. (2020). Deep learning and system identi-

fication. International Federation of Automatic Control.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J.,

Dosovitskiy, A., and Kipf, T. (2020). Object-centric learning with slot attention. In Neural

Information Processing Systems.

Lohmiller, W. and Slotine, J. E. (1998). On contraction analysis for non-linear systems. Auto-

matica.

Long, Y., She, X., and Mukhopadhyay, S. (2018). Hybridnet: Integrating model-based and

data-driven learning to predict evolution of dynamical systems. In Conference on Robot

Learning.

Long, Z., Lu, Y., and Dong, B. (2019). Pde-net 2.0: Learning pdes from data with a numeric-

symbolic hybrid deep network. Journal of Computational Physics.

Loquercio, A., Kaufmann, E., Ranftl, R., Müller, M., Koltun, V., and Scaramuzza, D. (2021).

Learning high-speed flight in the wild. Science Robotics.

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Sciences.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In International

Conference on Computer Vision.

Lu, L., Jin, P., and Karniadakis, G. E. (2019). Deeponet: Learning nonlinear operators for iden-

tifying differential equations based on the universal approximation theorem of operators.

arXiv preprint.

Lu, Y., Chen, Y., Zhao, D., and Li, D. (2021). Mgrl: Graph neural network based inference in a

markov network with reinforcement learning for visual navigation. Neurocomputing.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The Expressive Power of Neural

Networks: A View from the Width. In Neural Information Processing Systems.

Luenberger, D. (1971). An introduction to observers. Transactions on Automatic Control.

Luenberger, D. G. (1964). Observing the state of a linear system. Transactions on Military

Electronics.

Lusch, B., Kutz, J. N., and Brunton, S. L. (2018). Deep learning for universal linear embeddings

of nonlinear dynamics. Nature communications.

Lutter, M., Ritter, C., and Peters, J. (2019). Deep lagrangian networks: Using physics as model

prior for deep learning. In International Conference on Learning Representations.

180

BIBLIOGRAPHY BIBLIOGRAPHY

Ma, P., Du, T., Zhang, J. Z., Wu, K., Spielberg, A., Katzschmann, R. K., and Matusik, W. (2021).

Diffaqua: A differentiable computational design pipeline for soft underwater swimmers

with shape interpolation. Transactions on Graphics.

Mahony, R., Kumar, V., and Corke, P. (2012). Multirotor aerial vehicles: Modeling, estimation,

and control of quadrotor. Robotics & Automation Magazine.

Mai, V. V. and Johansson, M. (2021). Stability and convergence of stochastic gradient clipping:

Beyond lipschitz continuity and smoothness. In International Conference on Machine Learning.

Manchester, I. and Slotine, J. (2017). Control contraction metrics: Convex and intrinsic criteria

for nonlinear feedback design. Transaction on Automatic Control.

Manuelli, L., Gao, W., Florence, P., and Tedrake, R. (2019). kpam: Keypoint affordances for

category-level robotic manipulation. In The International Symposium of Robotics Research.

Manuelli, L., Li, Y., Florence, P., and Tedrake, R. (2021). Keypoints into the future: Self-

supervised correspondence in model-based reinforcement learning. In Conference on Robot

Learning.

Marconi, L., Praly, L., and Isidori, A. (2007). Output Stabilization via Nonlinear Luenberger

Observers. Journal on Control and Optimization.

Mardt, A., Pasquali, L., Noé, F., and Wu, H. (2020). Deep learning markov and koopman

models with physical constraints. In Mathematical and Scientific Machine Learning.

Margenberg, N., Hartmann, D., Lessig, C., and Richter, T. (2022). A neural network multigrid

solver for the navier-stokes equations. Journal of Computational Physics.

Martin-Ordas, G., Call, J., and Colmenares, F. (2008). Tubes, tables and traps: great apes solve

twofunctionally equivalent trap tasks but show no evidence of transfer across tasks. Animal

Cognition.

Masti, D. and Bemporad, A. (2018). Learning nonlinear state-space models using deep au-

toencoders. In Conference on Decision and Control.

Matsunaga, D., Suzumura, T., and Takahashi, T. (2019). Exploring graph neural networks for

stock market predictions with rolling window analysis. arXiv preprint.

McClenny, L. and Braga-Neto, U. (2020). Self-adaptive physics-informed neural networks

using a soft attention mechanism. In arXiv preprint.

McFall, K. S. and Mahan, J. R. (2009). Artificial neural network method for solution of bound-

ary value problems with exact satisfaction of arbitrary boundary conditions. Transactions on

Neural Networks.

181

BIBLIOGRAPHY BIBLIOGRAPHY

Meer, R. V. D., Oosterlee, C., and Borovykh, A. (2022). Optimally weighted loss functions for

solving pdes with neural networks. Journal of Computational and Applied Mathematics.

Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ramamoorthi, R., and Chandraker, M.

(2021a). Modulated periodic activations for generalizable local functional representations.

In International Conference on Computer Vision.

Mehta, V., Char, I., Neiswanger, W., Chung, Y., Nelson, A., Boyer, M., Kolemen, E., and

Schneider, J. (2021b). Neural dynamical systems: Balancing structure and flexibility in

physical prediction. In Conference on Decision and Control.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., and Geiger, A. (2019). Occupancy

networks: Learning 3d reconstruction in function space. In Conference on Computer Vision

and Pattern Recognition.

Mezić, I. (2005). Spectral properties of dynamical systems, model reduction and decomposi-

tions. Nonlinear Dynamics.

Mezić, I. and Banaszuk, A. (2004). Comparison of systems with complex behavior. Physica D:

Nonlinear Phenomena.

Miao, K. and Gatsis, K. (2023). Learning robust state observers using neural odes. In Learning

for Dynamics and Control Conference.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng, R. (2020).

Nerf: Representing scenes as neural radiance fields for view synthesis. In European Confer-

ence on Computer Vision.

Minderer, M., Sun, C., Villegas, R., Cole, F., Murphy, K. P., and Lee, H. (2019). Unsupervised

learning of object structure and dynamics from videos. In Neural Information Processing

Systems.

Misyris, G. S., Venzke, A., and Chatzivasileiadis, S. (2020). Physics-informed neural networks

for power systems. In Power & Energy Society General Meeting.

Mohan, A. T., Lubbers, N., Livescu, D., and Chertkov, M. (2020). Embedding hard physical

constraints in neural network coarse-graining of 3d turbulence. arXiv preprint.

Nagabandi, A., Konolige, K., Levine, S., and Kumar, V. (2020). Deep dynamics models for

learning dexterous manipulation. In Conference on Robot Learning.

Noack, B. R., Afanisiev, K., Morzynski, M., Tadmor, G., and Thiele, F. (2003). A hierarchy of

low-dimensional models for the transient and post-transient cylinder wake. Journal of Fluid

Mechanics.

182

BIBLIOGRAPHY BIBLIOGRAPHY

Norcliffe, A., Bodnar, C., Day, B., Simidjievski, N., and Liò, P. (2020). On second order be-

haviour in augmented neural odes. Neural Information Processing Systems.

Nutkiewicz, A., Yang, Z., and Jain, R. K. (2018). Data-driven urban energy simulation (due-s):

A framework for integrating engineering simulation and machine learning methods in a

multi-scale urban energy modeling workflow. Applied energy.

Obiols-Sales, O., Vishnu, A., Malaya, N., and Chandramowliswharan, A. (2020). Cfdnet: A

deep learning-based accelerator for fluid simulations. In International Conference on Super-

computing.

Pan, Y. and Wang, J. (2011). Model predictive control of unknown nonlinear dynamical sys-

tems based on recurrent neural networks. Transactions on Industrial Electronics.

Park, J. J., Florence, P., Straub, J., Newcombe, R., and Lovegrove, S. (2019). Deepsdf: Learning

continuous signed distance functions for shape representation. In Conference on Computer

Vision and Pattern Recognition.

Pavlov, A., Wouw, N. V. D., and Nijmeijer, H. (2006). Uniform output regulation of nonlinear

systems: a convergent dynamics approach. Springer.

Pearl, J. (2000). Causality: Models, Reasoning and Inference. Cambridge University Press.

Pearl, J. (2018). Causal and counterfactual inference. The Handbook of Rationality.

Peralez, J., Galuppo, F., Dufour, P., Wolf, C., and Nadri, M. (2020). Data-driven multimodel

control waste for heat recovery system on a heavy duty truck engine. In Conference on

Decision and Control.

Peralez, J. and Nadri, M. (2021). Deep learning-based luenberger observer design for discrete-

time nonlinear systems. In Conference on Decision and Control.

Peralez, J., Nadri, M., and Astolfi, D. (2022). Neural network-based kkl observer for nonlinear

discrete-time systems. In Conference on Decision and Control.

Petridis, V. and Petridis, S. (2006). Construction of neural network based lyapunov functions.

In International Joint Conference on Neural Network Proceedings.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and Battaglia, P. (2020). Learning mesh-based

simulation with graph networks. In International Conference on Learning Representations.

Pfaff, T. and Thuerey, N. (2016). Mantaflow.

Pfeiffer, C., Wengeler, S., Loquercio, A., and Scaramuzza, D. (2022). Visual attention prediction

improves performance of autonomous drone racing agents. Plos one.

183

BIBLIOGRAPHY BIBLIOGRAPHY

Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., and Ljung, L. (2014). Kernel methods in

system identification, machine learning and function estimation: A survey. Automatica.

Poli, M., Massaroli, S., Park, J., Yamashita, A., Asama, H., and Park, J. (2019). Graph neural

ordinary differential equations. arXiv preprint.

Poli, M., Massaroli, S., Scimeca, L., Chun, S., Oh, S. J., Yamashita, A., Asama, H., Park, J., and

Garg, A. (2021). Neural hybrid automata: Learning dynamics with multiple modes and

stochastic transitions. Neural Information Processing Systems.

Pontryagin, L. S. (1987). Mathematical theory of optimal processes. CRC press.

Possamaï, Q., Janny, S., Nadri, M., Bako, L., and Wolf, C. (2022). Learning to estimate uav

created turbulence from scene structure observed by onboard cameras. In ArXiv pre-print.

Prouty, R. W. (1995). Helicopter performance, stability, and control. R.E. Krieger Publishing

Company.

Psichogios, D. C. and Ungar, L. H. (1992). A hybrid neural network-first principles approach

to process modeling. AIChE Journal.

Qiao, Y.-L., Liang, J., Koltun, V., and Lin, M. (2020). Scalable differentiable physics for learning

and control. In International Conference on Machine Learning.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017). Physics informed deep learning (part

i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural networks:

A deep learning framework for solving forward and inverse problems involving nonlinear

partial differential equations. Journal of Computational physics.

Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for activation functions. arXiv

preprint.

Rangapuram, S. S., Seeger, M. W., Gasthaus, J., Stella, L., Wang, Y., and Januschowski, T.

(2018). Deep state space models for time series forecasting. Neural Information Processing

Systems.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint.

Ren, J., Yu, C., Chen, S., Ma, X., Pan, L., and Liu, Z. (2023). Diffmimic: Efficient motion

mimicking with differentiable physics. In International Conference on Learning Representations.

Revach, G., Shlezinger, N., Ni, X., Escoriza, A. L., Sloun, R. J. V., and Eldar, Y. C. (2022).

Kalmannet: Neural network aided kalman filtering for partially known dynamics. Transac-

tions on Signal Processing.

184

BIBLIOGRAPHY BIBLIOGRAPHY

Rico-Martinez, R., Anderson, J., and Kevrekidis, I. (1994). Continuous-time nonlinear signal

processing: a neural network based approach for gray box identification. In Workshop on

Neural Networks for Signal Processing.

Rodriguez, I. D. J., Ames, A., and Yue, Y. (2022). Lyanet: A lyapunov framework for training

neural odes. In International Conference on Machine Learning.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). High-resolution

image synthesis with latent diffusion models. In Conference on Computer Vision and Pattern

Recognition.

Romero, A., Sun, S., Foehn, P., and Scaramuzza, D. (2022). Model predictive contouring

control for time-optimal quadrotor flight. Transactions on Robotics.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical

image segmentation. In Medical Image Computing and Computer-Assisted Intervention.

Rowley, C. W., Mezic, I., Bagheri, S., Schlatter, P., and Henningson, D. S. (2009). Spectral

analysis of nonlinear flows. Journal of Fluid Mechanics.

Ruchti, T. L., Brown, R. H., and Garside, J. J. (1993). Kalman based artificial neural network

training algorithms for nonlinear system identification. In International Symposium on Intel-

ligent Control.

Rudy, S. H., Brunton, S. L., Proctor, J. L., and Kutz, J. N. (2017). Data-driven discovery of

partial differential equations. Science Advances.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. (1985). Learning internal representations

by error propagation.

Runge, C. (1895). Über die numerische auflösung von differentialgleichungen. Mathematische

Annalen.

Ryoo, M. S., Gopalakrishnan, K., Kahatapitiya, K., Xiao, T., Rao, K., Stone, A., Lu, Y., Ibarz, J.,

and Arnab, A. (2023). Token turing machines. In Conference on Computer Vision and Pattern

Recognition.

Ryu, H., in Lee, H., Lee, J.-H., and Choi, J. (2022). Equivariant descriptor fields: Se (3)-

equivariant energy-based models for end-to-end visual robotic manipulation learning. In

International Conference on Learning Representations.

Saad, N., Gupta, G., Alizadeh, S., and Maddix, D. C. (2022). Guiding continuous operator

learning through physics-based boundary constraints. In International Conference on Learning

Representations.

185

BIBLIOGRAPHY BIBLIOGRAPHY

Saha, A., Mendez, O., Russell, C., and Bowden, R. (2022). Translating images into maps. In

International Conference on Robotics and Automation.

Sahoo, S., Lampert, C., and Martius, G. (2018). Learning equations for extrapolation and

control. In International Conference on Machine Learning.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., and Battaglia, P. (2020).

Learning to simulate complex physics with graph networks. In International Conference on

Machine Learning.

Satorras, V. G., Hoogeboom, E., and Welling, M. (2021). E (n) equivariant graph neural net-

works. In International Conference on Machine Learning.

Scaman, K. and Virmaux, A. (2018). Lipschitz regularity of deep neural networks: Analysis

and efficient estimation. In Neural Information Processing Systems.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008). The graph

neural network model. Transactions on Neural Networks.

Schaeffer, H. (2017). Learning partial differential equations via data discovery and sparse

optimization. Royal Society A: Mathematical, Physical and Engineering Sciences.

Schmidt, D., Koppe, G., Monfared, Z., Beutelspacher, M., and Durstewitz, D. (2020). Identify-

ing nonlinear dynamical systems with multiple time scales and long-range dependencies.

In International Conference on Learning Representations.

Schmidt, M. and Lipson, H. (2009). Distilling free-form natural laws from experimental data.

Science.

Schoukens, M. and Noël, J. P. (2017). Three benchmarks addressing open challenges in non-

linear system identification. International Federation of Automatic Control.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., and Bengio, Y.

(2021). Toward causal representation learning. Proceedings of the IEEE.

Searson, D. P., Leahy, D. E., and Willis, M. J. (2010). Gptips: an open source genetic program-

ming toolbox for multigene symbolic regression. In International multiconference of engineers

and computer scientists.

Seita, D., Ganapathi, A., Hoque, R., Hwang, M., Cen, E., Tanwani, A. K., Balakrishna, A.,

Thananjeyan, B., Ichnowski, J., Jamali, N., et al. (2020). Deep imitation learning of sequential

fabric smoothing from an algorithmic supervisor. In International Conference on Intelligent

Robots and Systems.

186

BIBLIOGRAPHY BIBLIOGRAPHY

Sekar, V., Jiang, Q., Shu, C., and Khoo, B. C. (2019). Fast flow field prediction over airfoils

using deep learning approach. Physics of Fluids.

Serrani, A., Isidori, A., and Marconi, L. (2001). Semi-global nonlinear output regulation with

adaptive internal model. Transactions on Automatic Control.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning - From Theory to

Algorithms. Cambridge University Press.

Sheng, H. and Yang, C. (2021). Pfnn: A penalty-free neural network method for solving a class

of second-order boundary-value problems on complex geometries. Journal of Computational

Physics.

Shi, G., Shi, X., O’Connell, M., Yu, R., Azizzadenesheli, K., Anandkumar, A., Yue, Y., and

Chung, S.-J. (2019). Neural lander: Stable drone landing control using learned dynamics.

In International Conference on Robotics and Automation.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and chun Woo, W. (2015). Convolu-

tional lstm network: A machine learning approach for precipitation nowcasting. In Neural

Information Processing Systems.

Shlomi, J., Battaglia, P., and Vlimant, J.-R. (2020). Graph neural networks in particle physics.

Machine Learning: Science and Technology.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wetzstein, G. (2020). Implicit neural

representations with periodic activation functions. Neural Information Processing Systems.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony

theory. In Parallel Distributed Processing.

Song, Y., Shi, K., Penicka, R., and Scaramuzza, D. (2023). Learning perception-aware agile

flight in cluttered environments. In International Conference on Robotics and Automation.

Sontag, E. D. (2010). Contractive systems with inputs. Perspectives in Mathematical System

Theory, Control, and Signal Processing.

Sontag, E. D. and Wang, Y. (1995). On characterizations of the input-to-state stability property.

Systems & Control Letters.

Stachenfeld, K., Fielding, D. B., Kochkov, D., Cranmer, M., Pfaff, T., Godwin, J., Cui, C., Ho,

S., Battaglia, P., and Sanchez-Gonzalez, A. (2021). Learned simulators for turbulence. In

International Conference on Learning Representations.

Stachenfeld, K., Godwin, J., and Battaglia, P. (2020). Graph networks with spectral message

passing. arXiv preprint.

187

BIBLIOGRAPHY BIBLIOGRAPHY

Stam, J. (1999). Stable fluids. In Seminal Graphics Papers: Pushing the Boundaries.

Stokes, G. G. (2009). On the Effect of the Internal Friction of Fluids on the Motion of Pendulums.

Cambridge University Press.

Sun, F., Liu, Y., Wang, J.-X., and Sun, H. (2023). Symbolic physics learner: Discovering gov-

erning equations via monte carlo tree search. In International Conference on Learning Repre-

sentations.

Takahashi, T., Liang, J., Qiao, Y.-L., and Lin, M. C. (2021). Differentiable fluids with solid

coupling for learning and control. In Conference on Artificial Intelligence.

Takeishi, N. and Kalousis, A. (2021). Physics-integrated variational autoencoders for robust

and interpretable generative modeling. Neural Information Processing Systems.

Thompson, M. L. and Kramer, M. A. (1994). Modeling chemical processes using prior knowl-

edge and neural networks. AIChE Journal.

Thuerey, N., Weißenow, K., Prantl, L., and Hu, X. (2020). Deep learning methods for reynolds-

averaged navier–stokes simulations of airfoil flows. American Institute of Aeronautics and

Astronautics.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society.

Tompson, J., Schlachter, K., Sprechmann, P., and Perlin, K. (2017). Accelerating eulerian fluid

simulation with convolutional networks. In International Conference on Machine Learning.

Toth, P., Rezende, D. J., Jaegle, A., Racanière, S., Botev, A., and Higgins, I. (2019). Hamiltonian

generative networks. arXiv preprint.

Toussaint, M., Allen, K. R., Smith, K. A., and Tenenbaum, J. B. (2019). Differentiable physics

and stable modes for tool-use and manipulation planning–extended abstract. In Joint Con-

ference on Artificial Intelligence.

Tran, G. Q. B. and Bernard, P. (2023). Arbitrarily fast robust kkl observer for nonlinear time-

varying discrete systems. HAL.

Um, K., Brand, R., Fei, Y. R., Holl, P., and Thuerey, N. (2020). Solver-in-the-loop: Learning from

differentiable physics to interact with iterative pde-solvers. Neural Information Processing

Systems.

Valiant, L. (1984). A theory of the learnable. In Communications of the ACM.

van der Pol Jun. D.Sc, B. (1926). On “relaxation-oscillations”. The London, Edinburgh, and

Dublin Philosophical Magazine and Journal of Science.

188

BIBLIOGRAPHY BIBLIOGRAPHY

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and

Polosukhin, I. (2017). Attention is all you need. Neural Information Processing Systems.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2017). Graph

attention networks. In International Conference on Learning Representation.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph

attention networks. In International Conference on Learning Representations.

Versteeg, H. K. and Malalasekera, W. (2007). An introduction to computational fluid dynamics: the

finite volume method. Pearson education.

Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar, R., and Fragkiadaki, K. (2017). Sfm-

net: Learning of structure and motion from video. arXiv preprint.

Volterra, V. and Brelot, M. (1931). Leçons sur la théorie mathématique de la lutte pour la vie.

Gauthier-Villars et cie.

Wandel, N., Weinmann, M., and Klein, R. (2021). Learning Incompressible Fluid Dynamics

from Scratch – Towards Fast, Differentiable Fluid Models that Generalize. In International

Conference on Learning Representations.

Wang, J.-S. and Chen, Y.-P. (2006). A fully automated recurrent neural network for unknown

dynamic system identification and control. Transactions on Circuits and Systems.

Wang, Q., Li, F., Tang, Y., and Xu, Y. (2019a). Integrating model-driven and data-driven

methods for power system frequency stability assessment and control. Transactions on Power

Systems.

Wang, Q., Li, F., Tang, Y., and Xu, Y. (2019b). Integrating model-driven and data-driven

methods for power system frequency stability assessment and control. Transactions on Power

Systems.

Wang, S., Sankaran, S., and Perdikaris, P. (2022a). Respecting causality is all you need for

training physics-informed neural networks. arXiv preprint.

Wang, S., Teng, Y., and Perdikaris, P. (2021). Understanding and mitigating gradient flow

pathologies in physics-informed neural networks. Journal on Scientific Computing.

Wang, S., Yu, X., and Perdikaris, P. (2022b). When and why pinns fail to train: A neural

tangent kernel perspective. Journal of Computational Physics.

Wang, X., Girshick, R., Gupta, A., and He, K. (2018). Non-local neural networks. In Interna-

tional Conference on Learning Representation.

Wang, X., He, X., Cao, Y., Liu, M., and Chua, T.-S. (2019c). Kgat: Knowledge graph attention

189

BIBLIOGRAPHY BIBLIOGRAPHY

network for recommendation. In International Conference on Knowledge Discovery & Data

Mining.

Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., and Yu, P. S. (2019d). Heterogeneous graph

attention network. In The World Wide Web Conference.

Wang, Y., Idoughi, R., and Heidrich, W. (2020). Stereo event-based particle tracking velocime-

try for 3d fluid flow reconstruction. In European Conference on Computer Vision.

Wang, Y., Long, M., Wang, J., Gao, Z., and Yu, P. S. (2017). Predrnn: Recurrent neural networks

for predictive learning using spatiotemporal lstms. In Neural Information Processing Systems.

Wang, Y., Wang, J., Cao, Z., and Farimani, A. B. (2022c). Molecular contrastive learning of

representations via graph neural networks. Nature Machine Intelligence.

Wang, Y., Wu, H., Zhang, J., Gao, Z., Wang, J., Philip, S. Y., and Long, M. (2022d). Predrnn:

A recurrent neural network for spatiotemporal predictive learning. Transactions on Pattern

Analysis and Machine Intelligence.

Wang, Y., Zhang, J., Zhu, H., Long, M., Wang, J., and Yu, P. S. (2019e). Memory in memory:

A predictive neural network for learning higher-order non-stationarity from spatiotemporal

dynamics. In Conference on Computer Vision and Pattern Recognition.

Wang, Y.-J. and Lin, C.-T. (1998). Runge-kutta neural network for identification of dynamical

systems in high accuracy. Transactions on Neural Networks.

Weigand, J., Götz, J., Ulmen, J., and Ruskowski, M. (2023). Dataset and baseline for an indus-

trial robot identification benchmark. In Workshop on Nonlinear System Identification Bench-

marks.

Weinmann, A. (2012). Uncertain models and robust control. Springer Science & Business Media.

Wiewel, S., Becher, M., and Thuerey, N. (2019). Latent space physics: Towards learning the

temporal evolution of fluid flow. In Computer graphics forum.

Wight, C. L. and Zhao, J. (2020). Solving allen–cahn and cahn–hilliard equations using the

adaptive physics informed neural networks. arXiv preprint.

Wu, C., Zhu, M., Tan, Q., Kartha, Y., and Lu, L. (2023). A comprehensive study of non-adaptive

and residual-based adaptive sampling for physics-informed neural networks. Computer

Methods in Applied Mechanics and Engineering.

Wu, J., Lu, E., Kohli, P., Freeman, B., and Tenenbaum, J. (2017a). Learning to see physics via

visual de-animation. In Neural Information Processing Systems.

Wu, X., Moin, P., Wallace, J. M., Skarda, J., Lozano-Durán, A., and Hickey, J.-P. (2017b). Tran-

190

BIBLIOGRAPHY BIBLIOGRAPHY

sitional turbulent spots and turbulent turbulent spots in boundary layers. National Academy

of Sciences.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y., Wang, L.,

and Liu, T. (2020). On layer normalization in the transformer architecture. In International

Conference on Machine Learning.

Xu, Z., Wu, J., Zeng, A., Tenenbaum, J. B., and Song, S. (2019). Densephysnet: Learning dense

physical object representations via multi-step dynamic interactions. arXiv preprint.

Yeung, E., Kundu, S., and Hodas, N. (2019). Learning deep neural network representations

for koopman operators of nonlinear dynamical systems. In American Control Conference.

Yi, K., Gan, C., Li, Y., Kohli, P., Wu, J., Torralba, A., and Tenenbaum, J. B. (2019). Clevrer: Col-

lision events for video representation and reasoning. In International Conference on Learning

Representations.

Yin, Y., Ayed, I., de Bézenac, E., Baskiotis, N., and Gallinari, P. (2021a). Leads: Learning dy-

namical systems that generalize across environments. Neural Information Processing Systems.

Yin, Y., Guen, V. L., Dona, J., de Bézenac, E., Ayed, I., Thome, N., and Gallinari, P. (2021b).

Augmenting physical models with deep networks for complex dynamics forecasting. Journal

of Statistical Mechanics: Theory and Experiment.

Yin, Y., Kirchmeyer, M., Franceschi, J.-Y., Rakotomamonjy, A., et al. (2022). Continuous pde

dynamics forecasting with implicit neural representations. In International Conference on

Learning Representations.

Young, C.-C., Liu, W.-C., and Wu, M.-C. (2017). A physically based and machine learning hy-

brid approach for accurate rainfall-runoff modeling during extreme typhoon events. Applied

Soft Computing.

Yu, C., Bi, X., and Fan, Y. (2023). Deep learning for fluid velocity field estimation: A review.

Ocean Engineering.

Zang, Y., Bao, G., Ye, X., and Zhou, H. (2020). Weak adversarial networks for highdimensional

partial differential equations. Journal of Computational Physics.

Zeng, A., Florence, P., Tompson, J., Welker, S., Chien, J., Attarian, M., Armstrong, T., Krasin, I.,

Duong, D., Sindhwani, V., et al. (2021). Transporter networks: Rearranging the visual world

for robotic manipulation. In Conference on Robot Learning.

Zeng, Q., Kothari, Y., Bryngelson, S. H., and Schäfer, F. (2023). Competitive physics informed

networks. In International Conference on Learning Representations.

191

BIBLIOGRAPHY BIBLIOGRAPHY

Zhang, J., Henein, M., Mahony, R., and Ila, V. (2020a). Vdo-slam: a visual dynamic object-

aware slam system. arXiv preprint.

Zhang, W., Liu, H., Liu, Y., Zhou, J., Xu, T., and Xiong, H. (2020b). Semi-supervised city-wide

parking availability prediction via hierarchical recurrent graph neural network. Transactions

on Knowledge and Data Engineering.

Zhang, Z., Zhuang, F., Zhu, H., Shi, Z., Xiong, H., and He, Q. (2020c). Relational graph

neural network with hierarchical attention for knowledge graph completion. In Conference

on Artificial Intelligence.

Zhao, T., Zheng, Y., Gong, J., and Wu, Z. (2022). Machine learning-based reduced-order

modeling and predictive control of nonlinear processes. Chemical Engineering Research and

Design.

Zhong, Y. D., Dey, B., and Chakraborty, A. (2019). Symplectic ode-net: Learning hamiltonian

dynamics with control. In International Conference on Learning Representations.

Zhong, Y. D. and Leonard, N. (2020). Unsupervised learning of lagrangian dynamics from

images for prediction and control. In Neural Information Processing Systems.

Zhu, M., Derpanis, K. G., Yang, Y., Brahmbhatt, S., Zhang, M., Phillips, C., Lecce, M., and

Daniilidis, K. (2014). Single image 3d object detection and pose estimation for grasping. In

International Conference on Robotics and Automation.

192

Part V

Appendices

193

Appendix A
Appendix of chapter 4

A.1 Proof of proposition 4.2

It follows from the definition (4-10) of ŝ[k− ℓ] that∣∣∣ȳ[k−ℓ|k−1]−Oℓ

(
ŝ[k−ℓ], ū[k−ℓ|k−1]

)∣∣∣ ⩽ ∣∣∣ȳ[k−ℓ|k−1]−Oℓ

(
s, ū[k−ℓ|k−1]

)∣∣∣, (A-1)

for all s ∈ S . In particular, this inequality holds for s = s[k−ℓ]. By then invoking equation

(4-9) we get∣∣∣Oℓ

(
s[k−ℓ], ū[k−ℓ|k−1]

)
−Oℓ

(
ŝ[k−ℓ], ū[k−ℓ|k−1]

)
+ w̄[k−ℓ|k−1]

∣∣∣ ⩽ ∣∣∣w̄[k−ℓ|k−1]
∣∣∣. (A-2)

By the triangle inequality, it follows that∣∣∣Oℓ

(
s[k−ℓ], ū[k−ℓ|k−1]

)
−Oℓ

(
ŝ[k−ℓ], ū[k−ℓ|k−1]

)
+ w̄[k−ℓ|k−1]

∣∣∣ (A-3)

⩾
∣∣∣Oℓ

(
s[k−ℓ], ū[k−ℓ|k−1]

)
−Oℓ

(
x̂[k−ℓ], ū[k−ℓ|k−1]

)∣∣∣− ∣∣w̄[k−ℓ|k−1]
∣∣.

Using the uniform observability,

αℓ

∣∣ŝ[k−ℓ]− s[k−ℓ]
∣∣ ⩽ ∣∣∣Oℓ

(
s[k−ℓ], ū[k−ℓ|k−1]

)
−Oℓ

(
ŝ[k−ℓ], ū[k−ℓ|k−1]

)∣∣∣ (A-4)

⩽ 2
∣∣w̄[k−ℓ|k−1]

∣∣.
As a consequence, we get

∣∣ŝ[k−ℓ]− s[k−ℓ]
∣∣ ⩽ 2α−1

ℓ

∣∣w̄[k−ℓ|k−1]
∣∣.

A.2 Model details

Classic GRU – is a 2-layer Gated Recurrent Unit (GRU). The hidden vector size is chosen such

that the cumulated dimension of the two hidden vectors matches the one of the corresponding

state z[k], formally nh = l
2 (nu + ny). The hidden vector is then decoded by an MLP with one

hidden unit of size nh.

Ours (MLP) – uses an MLP to model H with 3 hidden units of size 256 for the simulated

datasets and 2-layer with 2048 units for the 3D Drone. The encoder-decoder is modeled with

two MLP of 2 layers of 512 units.

195

Dataset details Appendix of chapter 4

Ours (GRU) – model H with a GRU with three layers, and hidden size of 128. The encoder-

decoder is identical to Ours (MLP).

Masti and Bemporad (2018) – uses a 3-layered MLP with 256 neurons per hidden layer

for the dynamics, and 2-layered, 128 neurons MLPs for the encoder and the decoder.

Each model is implemented in PyTorch and trained with Adam optimizer, with a 10−4

learning rate. We trained the regressors for 10,000 epochs, and the encoder for 3,000 epochs

on the simulated datasets and respectively 300 epochs on the 3D drone dataset.

A.3 Dataset details

Tank dataset is composed of trajectories generated by uniformly sampling five waypoints in

[0, 5] evenly distributed on time to construct a 200 steps reference signal, using cubic spline

interpolation. This reference is then tracked with a PID controller. The dataset contains 60

trajectories for the train set and 20 for both the validation and test set. We use k1 = 0.5, k2 =

0.4, k3 = 0.2 and k1 = 0.3 for simulation.

3D drone dataset built on the BlackBird dataset (Antonini et al., 2018). We extracted IMU

measurements and commands from raw flight data and applied pre-processing as follows:

temporal synchronization of both signals, noise filtering using Butterworth filters, and sam-

pling rate reduction to 50Hz. To create train/valid/test splits, we sampled 20 flights to create

the validation split and 10 for the test split. The remaining 146 flights were used for the

training set. Each flight has been sliced into 200-step chunks to ease training.

2D drone dataset is composed of 2D flights generated by uniformly sampling five to ten 2D

waypoints in [−2, 2]2 evenly distributed on time to construct a 600-step reference signal using

cubic spline interpolation. This reference is then tracked with Model Predictive Control. The

dataset contains 500 flights for the train set and 20 flights for validation and test sets. For

simulation, we choose kT = 4× 10−4, γ = 10−9, L = 0.15, m = 1 and J = 2.7× 10−3. The

system is simulated with an Euler integration scheme at 30Hz.

196

Appendix B
Appendix of chapter 5

B.1 Proof of Proposition 5.1

Note that

Z(zy
0, ℓ, y) = Z(zy

0, ℓ). (B-1)

Hence, with the contraction property (5.1), it gives :

|Z(0, ℓ, y)−Z(zy
0, ℓ)| ⩽ ke−λℓ|zy

0| . (B-2)

Due to the Lipschitz property, it yields for all (za, zb) and all p ⩾ 0

|Z(za, p)−Z(zb, p)| ⩽ eL1 p|za − zb| . (B-3)

Setting za = Z(0, ℓ, y) and zb = Z(zy
0, ℓ), the former inequality becomes

|Z(Z(0, ℓ, y), p)−Z(zy
0, ℓ+ p)| ⩽ eL1 p|Z(0, ℓ, y)−Z(zy

0, ℓ)| , (B-4)

⩽ ke−λℓ+L1 p|zy
0|

Since (g, ψ) is a generating model, and since (5-21) holds, it yields

|ŷ(ℓ+ p)− y(ℓ+ p)| = |ψ(Z(Z(0, ℓ, y), p))− ψ(Z(zy
0, ℓ+ p))|, (B-5)

⩽ L2ke−λℓ+L1 p|zy
0| .

B.2 Proof of Theorem 5.1

Theorem 5.1 mostly relies on the results obtained in Andrieu and Praly (2006) in the context

of observer design and Marconi et al. (2007) in the context of output regulation. The proof

of this statement relies on the existence of a C1 function T : O 7→ Rm mapping s to z which

satisfies the differential equation :

L f T(s) = AT(s) + bh(s), ∀s ∈ O , (B-6)

197

Proof of Proposition 5.2 Appendix of chapter 5

where L f T is the Lie derivative of T along f . The functions ψ and T need to satisfy the equality

ψ(T(s)) = h(s), ∀s ∈ O . (B-7)

Given a Hurwitz matrix A, as shown in Andrieu and Praly (2006), the following function T

T(s) =
∫ 0

−∞
e−Atbh(S(s, t))dt , (B-8)

is well defined for s in O and satisfies equation (B-6). It can be shown that T is C1 if the

eigenvalues of A are smaller than a specific value depending on the Lipschitz constant of f .

The proof of these results is detailed in Andrieu and Praly (2006) (see Theorem 2.4). To find

a function ψ such that equation (B-7) is satisfied, we need to ensure that T contains enough

information to represent the observation y. This requirement can be expressed as a pseudo-

injectivity with regards to h :

∀(s1, s2) ∈ O T(s1) = T(s2)⇒ h(s1) = h(s2). (B-9)

It is shown in (Marconi et al., 2007, Proposition 2) that this condition is satisfied provided

m = 2(n + 1) and A is the real representation of a Hurwitz diagonal matrix. Finally, (Marconi

et al., 2007, Proposition 3) states the existence of ψ. In conclusion, if the dimension of z ∈ Rm

is greater or equal to m = 2n + 2, then there exists a continuous function ψ : Rm 7→ R such

that for any trajectory y in YO, there exists zy
0 such that:

ż = Az + by z(0) = zy
0,

ψ
(
Z(zy

0, t, y)
)
= y(t), ∀t .

(B-10)

B.3 Proof of Proposition 5.2

The proof of Proposition 5.2 relies mostly on the results presented in Andrieu (2014). We fol-

low the steps of the proof of Theorem 5.1. However, it is shown in (Andrieu, 2014, Proposition

3.5) and (Andrieu, 2014, Proposition 3.6) that if m = 2n + 2, there exist (A, b) such that the

function T given in (B-8) is injective and full rank in O. Employing (Andrieu, 2014, Lemma

3.2), we obtain the existence of a positive real number LT such that

LT|T(s1)− T(s2)| ⩾ |s1 − s2|, ∀(s1, s2) ∈ O . (B-11)

Hence, denoting L3 the Lipschitz constant of h, for all (z1, z2) in T(O)2, it yields

|h(T−1(z1))− h(T−1(z2))| ⩽ L3|T−1(z1)− T−1(z2)| , (B-12)

⩽ L3LT|z1 − z2| .

Defining ψ as a global Lipschitz extension of h ◦ T−1 to Rm yields the first and second part

with L2 = L3LT of the proposition. The third part of the Proposition is simply obtained by

noticing that with g(z) = Az + bψ(z),∣∣∣∣∂g
∂z

(z)
∣∣∣∣ = ∣∣∣∣A + b

∂ψ

∂z
(z)
∣∣∣∣ ⩽ |A|+ |b|L2. (B-13)

198

Proof of Proposition 5.3 Appendix of chapter 5

B.4 Proof of Proposition 5.3

The idea of the proof is to compare ŷθ obtained from ψθ with the prediction ŷ defined in (5-7)

obtained employing the nominal mapping ψ. Note that

|ψ(z)− ψθ(zθ)| ⩽ |ψ(z)− ψ(zθ)|+ |ψ(zθ)− ψθ(zθ)| . (B-14)

With (5-20) and knowing that ψ is L2-Lipschitz

|ψ(z)− ψθ(zθ)| ⩽ L2|z− zθ |+ δ . (B-15)

On the other hand, A being Hurwitz, there exist P a positive definite matrix and λ > 0 such

that

PA + A⊤P ⩽ −2λP . (B-16)

For two vectors (u, v) in Rm, let us denote ⟨u, v⟩P = u⊤Pv and ∥u∥2
P = u⊤Pu. Along the

solutions of the system (5-23) and (5-5) with g(z) = Az + bψ(z) it yields

∂

∂t
∥z− zθ∥2

P = (z− zθ)
⊤(PA + A⊤P)(z− zθ) + 2⟨z− zθ , b(ψ(z)− ψθ(zθ))⟩P . (B-17)

Using Cauchy-Schwarz inequality and (B-16)

∂

∂t
∥z− zθ∥2

P ⩽ −2λ∥z− zθ∥2
P + 2∥z− zθ∥P∥b∥P|ψ(z)− ψθ(zθ)| (B-18)

With (B-15) we get

∂

∂t
∥z− zθ∥2

P ⩽ 2
(

L2∥b∥P − λ
)
∥z− zθ∥2

P + δ∥b∥P∥z− zθ∥P (B-19)

which is equivalent to

∂

∂t
∥z− zθ∥P ⩽

(
L2∥b∥P − λ

)
∥z− zθ∥P + δ∥b∥P (B-20)

With Grönwall inequality, it yields,

∥Z(z, p)−Zθ(z, p)∥P ⩽
δ∥b∥P

L2∥b∥P − λ
e(L2∥b∥P−λ)p , ∀(z, p). (B-21)

This implies with ŷ defined in (5-7) :

|ŷ(ℓ+ p)− ŷθ(ℓ+ p)| ⩽ δ

(
L2∥b∥P

L2∥b∥ − λ
e(L2∥b∥P−λ)p + 1

)
. (B-22)

However,

|y(ℓ+ p)− ŷθ(ℓ+ p)| ⩽ |y(ℓ+ p)− ŷ(ℓ+ p)|+ |ŷ(ℓ+ p)− ŷθ(ℓ+ p)|, (B-23)

and employing Proposition 5.1 it finally implies

|y(ℓ+ p)− ŷθ(ℓ+ p)| ⩽ kL2e−λℓ+L1 p|zy
0|+ δ

(
L4e

L2∥b∥P
L4

p
+ 1
)

, (B-24)

where k is obtained from P and L1 = ∥A∥ + L2∥b∥ and L4 = L2∥b∥P
L2∥b∥P−λ

. This concludes the

proof.

199

Appendix C
Appendix of chapter 6

To simplify the analysis, we assume forward completeness of the trajectories for all times

t ≥ t0, t0 ∈ R inside a forward invariant compact set F ⊂ Rns . We also assume that if

r(t) ∈ R for all t ≥ t0, then π(t) solving (6-18) is bounded and satisfies π(t) ∈ F for all t ≥ t0.

C.1 Proof of Proposition 6.1

The proof follows the line of results in Giaccagli et al. (2022b) and combines them with ISS-

like arguments. For space reasons, we only highlight the main parts. Define the state-error

s̃ := s−π. Its dynamics read as

˙̃s = φ(π + s̃, t) − φ(π, t) − κg(π + s̃) ×
(

β(π + s̃, t) − β(π, t)
)
+ g(π + s̃)ω(t) . (C-1)

Let S̃(s̃0, t, t0) be a solution defined for all t ≥ t0 and consider the function

Γ : [0, 1]×R×R→ Rns s.t


Γ(1, t0, t0) = S̃(s̃0, t0, t0)

Γ(0, t0, t0) = 0

Γ(x, t0, t0) = γ(x)

(C-2)

where γ : [0, 1]→ Rns is any C1 curve and solution to

∂Γ
∂t

(x, t, t0) = φ(∆, t)− φ(Π, t)− κg(∆)
(

β(∆, t)− β(Π, t)
)
+ g(∆)w(x) (C-3)

with ∆ = Γ + Π and Π = Π(π0, t, t0) being the trajectory of (6-18) (arguments are dropped

for space reasons) and w(x) = xω. Take the candidate Lyapunov function

V(t) =
∫ 1

0

∂Γ⊤

∂x
(x, t, t0)P(∆, t)

∂Γ

∂x
(x, t, t0) ds (C-4)

with P solving (6-20). Taking its time-derivative and through the Killing vector assumption

and the integrability condition (6-21), we get

V̇(t)⩽
∫ 1

0

∂Γ⊤

∂x
(x, t, t0)

[
T1(x, t0, t) + T2(x, t0, t)

]∂Γ

∂x
(x, t, t0) + T3(x, t0, t) dx , (C-5)

201

Proof of Proposition 6.2 Appendix of chapter 6

with

T1(x, t0, t) = LφP(∆, t)

T2(x, t0, t) = −2κP(∆, t)g(∆)g⊤(∆)P(∆, t)

T3(x, t0, t) =
∂Γ⊤

∂x
(x, t, t0)P(∆, t)g(∆, t)ω(t)+ω⊤(t)g⊤(∆, t)P(∆, t)

∂Γ
∂x

(x, t, t0) .

From the (generalized) inequality of Young: 2ab ≤ ca2 + b2

c for any c > 0 with

a = ∂Γ⊤
∂x (x, t, t0)

√
P(∆, t),

b =
√

P(∆, t)g(∆)ω(t)

c = λ
2

it follows that

T3(x, t, t0) ⩽
λ

2

∂Γ⊤

∂x
(x, t, t0)P(∆, t)

∂Γ

∂x
(x, t, t0) +

2

λ
ω⊤(t)g⊤(∆)P(∆, t)g(∆)ω(t) (C-6)

Taking κ ⩾ ρ
2 and g := sups∈F |g(s)|, employing (6-20) we get

V̇(t) ⩽ −λ
2 V(t) + 2

λ p g2|ω(t)|2 . (C-7)

From (6-20) and since S̃(s̃, t, t) = s̃(t) ∀ t, it follows that, for any t ≥ t0

p |s̃(t)|2 ⩽ V(t) ⩽ p |s̃(t)|2 . (C-8)

Hence, the proof concludes by Gronwall lemma and by following standard ISS-like arguments

Sontag and Wang (1995).

C.2 Proof of Proposition 6.2

By adding and subtracting ψ(t), β(s, t), β(π(t), t) and β(πθ(t), t), we rewrite the control (6-25)

as u(t) = u⋆(t) + ũ(t) with u⋆ := ψ(t)− κ
(

β(s, t)− β(π(t), t)
)

and ũ defined as

ũ(t) := ψθ(t)− ψ(t)− κ
[(

βθ(s, t)− β(s, t)
)
+
(

β(πθ(t), t)− βθ(πθ(t), t)
)
+(

β(π(t), t)− β(πθ(t), t)
)]

. (C-9)

Consider the Lyapunov function (C-4) with s̃ = s − π. Following the same lines as in the

proof of Proposition 6.1, it follows that

V̇(t) ⩽ −λ
2 V(t) + 2

λ p g2|ũ(t)|2 .

Consider now the reference r. Since r(t) ∈ R for all t ≥ t0, there exist a compact setWπ such

that π(t) ∈ Wπ for all t ≥ t0. Now, define

η1 := sup
s∈Wπ

|s| , η2 := sup
s∈Ws̃

|s| , η3 := max{η2, δ} .

202

Model details Appendix of chapter 6

Then,Ws̃ ⊆ Bη3 . Define V :=
{

s̃0 ∈ Rn : V(t0) ≤ p̄η2
3
}

, and note that s̃0 ∈ Bη3 implies s̃0 ∈ V
due to (C-8). Differently put, Bη3 ⊆ V . PickWs = Bη4 , where

η4 = η1 + sup
s∈V
|s| .

Then, V ⊆ Ws. Moreover, if s̃0 ∈ V , then s0 ∈ Wx. Let g := sups∈F |g(s)| and pick

µδ =
λδp

2
√

2 p g(1 + 2κ + κp g)
.

From (6-26), (C-9) and the relation (6-21), it follows that, for all times t ≥ t0 such that s(t) ∈ Ws

|ũ(t)| ⩽ µδ + 2κµδ + κp g |π(t)− πθ(t)| (C-10)

⩽ µδ(1 + 2κ + κp g) ⩽
λδp

2
√

2 p g
. (C-11)

Consider now the set V := {s̃0 ∈ Rns : V(t0) < pδ2} and suppose s̃0 ∈ V . By (C-8), if

p |s̃0|2 < pδ2 then |s0 − π0| < δ . Now, note that V ⫋ Bη3 ⊆ V and suppose s̃0 ∈ V \ V . This

implies |s̃0|2 ≥
p
p δ2. However, since s̃0 ∈ V implies s0 ∈ Ws, we have

V̇(t0) ⩽ −λV(t0) +
2
λ p g2|ũ(t0)|2 (C-12)

⩽ λ
2 (

p2

2p δ2 −V(t0)) (C-13)

⩽ p λ
2 (

1
2

p
p δ2 − |s̃0|2) < 0 . (C-14)

Hence, the level set V is forward invariant. Moreover, given the above results, the set V
is attractive and forward invariant, with the domain of attraction including V . Recall that

Ws̃ ⊆ Bη3 ⊆ V . Hence, for all s̃0 ∈ Ws̃, it holds limt→+∞|S(s0, t, t0)−Π(π0, t, t0)| ⩽ δ .

C.3 Model details

The steady-state reference generator uses two MLPs p1,θ , p2,θ with four layers, 64 hidden units

and tanh-activated, using layer normalization on intermediate layers. The recurrent networks

c1,θ , c2,θ are two single-layered GRU with a latent memory of dimension 64. The model is

trained with Adam optimizer, with the learning rate set at 10−3, batch size of 256 and 1,000

epochs. Both βθ and Pθ are modeled with four-layered, 64 hidden units and tanh-activated

MLPs. During training, we choose ωi = 1 for all i = 1...8. These models are trained using

Adam optimizer with a learning rate of 3× 10−3 during 100 epochs.

203

Appendix D
Appendix of chapter 7

D.1 Proof of proposition 7.1

The proof proceeds by successive majorations and triangular inequalities. For sake of clarity,

and only in this proof we omit the d subscript and write s[n] and z[n] for sd[n] and zd[n],

respectively.

We start with ŝ[n] := ĥ1 ◦ f̂1
n ◦ ê

(
s[0]

)
. Thus for any integer n > 0, we have

|s[n]− ŝ[n]| = |h1
(
z[n]

)
− ĥ1

(
ẑ[n]

)
|. (D-1)

Using Lipschitz property and 7-4, then

|s[n]− ŝ[n]| ⩽ |h1
(
z[n]

)
− ĥ1

(
z[n]

)
|+ |ĥ1

(
z[n]

)
− ĥ1

(
ẑ[n]

)
| (D-2)

⩽ δh + Lh|z[n]− ẑ[n]|.

Noticing that one can rewrite ẑ[n] as ẑ[n] = f̂1
n ◦ ê

(
s[0]

)
. Since z[n] = f1

n(z[0]) and using a

similar decomposition as for D-2), one gets:

∣∣z[n]− ẑ[n]
∣∣ ⩽ δ f

n−1

∑
k=0

Lk
f + Ln

f
∣∣z[0]− ẑ[0]

∣∣. (D-3)

Hence, from (D-2), and using z[0] = e
(
s[0]

)
and ẑ[0] = ê

(
s[0]

)
, we have

∣∣s[n]− ŝ[n]
∣∣ ⩽ δh + Lh

(
δ f

Ln
f − 1

L f − 1
+ Ln

f δe

)
. (D-4)

205

Comparison of upper bounds in Proposition 7.1 Appendix of chapter 7

We now move on to the classic auto-regressive case, i.e. ŝar[n] =
(
ĥ1 ◦ f̂1 ◦ ê

)n(s[0]).∣∣s[n]− ŝar[n]
∣∣ ⩽ ∣∣∣h1

(
z[n]

)
− ĥ1

(
z[n]

)∣∣∣+ ∣∣∣ĥ1
(
z[n]

)
− ĥ1

(
ẑar[n]

)∣∣∣ (D-5)

⩽ δh + Lh
∣∣z[n]− ẑar[n]

∣∣
⩽ δh + Lh

(
δ f + L f

∣∣∣e(s[n− 1]
)
− ê
(
ŝar[n− 1]

)∣∣∣)
⩽ δh + Lh

(
δ f + L f

(
δe + Le

∣∣s[n− 1]− ŝar[n− 1]
∣∣))

⩽ δ
n−2

∑
i=0

Li + Ln−1∣∣s[1]− ŝar[1]
∣∣,

with δ = δh + Lhδ f + LhL f δe and L = LhL f Le. Moreover,

|s[1]− ŝar[1]| = |ĥ1(z[1])− f̂1(ẑar[1])| (D-6)

⩽ δh + Lh|z[1]− ẑar[1]| (D-7)

⩽ δh + Lh(δ f + L f |z[0]− ẑar[0]|) (D-8)

⩽ δ (D-9)

Putting it all together, we get equation 7-6:

|s[n]− ŝar[n]| ⩽ δ
Ln − 1
L− 1

(D-10)

Finally, (D-4) and (D-10) conclude the proof.

D.2 Comparison of upper bounds in Proposition 7.1

We start by formulating (7-5) and (7-6) under a comparable form

|sd[n]− ŝd[n]| ⩽ δ + LhL f δ f
Ln−1

f − 1

L f − 1
+ LhL f δe(Ln−1

f − 1) = δ + K1 (D-11)

|sd[n]− ŝar
d [n]| ⩽ δ + δ

Ln − L
L− 1

= δ + K2 (D-12)

Now we consider two cases depending on the Lipschitz constants of the problem, namely

Lh, L f , and Le. First, consider the case where the Lipschitz constants are very large (i.e.

Lh, L f , Le ≫ 1). In that case, the upper bounds can be approached by

K1 ≈ Lhδ f Ln−1
f + LhLn

f δe (D-13)

K2 ≈ δh(LhL f Le)
n−1 + Lhδ f Ln−1

f Ln−1
h Ln−1

e + LhLn
f δeLn−1

h Ln−1
e (D-14)

Hence, K2 ≫ K1 (we highlighted the difference between both terms in the previous equation.

Now consider the case where the Lipschitz constants are very small (i.e. Lh, L f , Le ≪ 1).

Recall that this case corresponds to a trivial prediction task since any trajectory of System 1

will converge to a unique state. Again, the upper bounds can be approached by

K1 ≈ 0 (D-15)

K2 ≈ Lδ (D-16)

206

Proof of proposition 7.2 Appendix of chapter 7

In this trivial case, the upper bound on the prediction error using our method is a combination

of the approximation errors from each function. On the other hand, using the classic AR

scheme implies a larger error, since the model accumulates approximations at each time step

not only from the dynamics but also from the observation function and the encoder.

D.3 Proof of proposition 7.2

The proof follows the lines of Janny et al. (2022). The existence of ψq is granted by the

observability assumption. Indeed assumption A2. states that for all q > p, Oq is injective

in S . Hence, it exists a inverse mapping O∗q : Oq : S 7→ S such that ∀s′ ∈ S

O∗q
(
Oq(s′)

)
= s′ (D-17)

Let zd[0|q]=
[
zd[0] · · · zd[q]

]
. Hence, one can build ψq using the dynamics of the system for

all x ∈ Ω:

∀s0 ∈ S , S(s0, x, t) = S
(
O∗q
(
zd[0|q]

)
, x, t

)
:= ψq

(
zd[0|q], x, t

)
(D-18)

Now, because of the noise, the disturbed observation ẑd[0|q] = zd[0|q] + δ0|q may not belong

to Oq(S), where the inverse mapping O∗q is well defined. We solve this by finding the closest

“possible” observation.

ŝ0 = arg min
s′∈S

∣∣ẑd[0|q]−Oq(s′)
∣∣ (D-19)

ŝ(x, t) = S(ŝ0, x, t) := ψq
(
ẑd[0|q], x, t

)
. (D-20)

Hence, we have for all s′ ∈ S∣∣∣ẑd[0|q]−Oq
(
ŝ0
)∣∣∣ ⩽ ∣∣∣ẑd[0|q]−Oq

(
s′
)∣∣∣. (D-21)

In particular, for s′ = s0 and since Oq(s0) = zd[0|q],∣∣∣ẑd[0|q]−Oq
(
ŝ0
)∣∣∣ ⩽ ∣∣∣ẑd[0|q]−Oq

(
s0
)∣∣∣ (D-22)

⩽
∣∣δ0|q

∣∣.
In the other hand, from assumption A2. (7-8):

α(p)|ŝ0 − s0|S ⩽ |Oq(ŝ0)−Oq(s0)| (D-23)

⩽ |Oq(ŝ0)− ẑd[0|q]|+ |ẑd[0|q]−Oq(s0)|
⩽ 2

∣∣δ0|q
∣∣

Moreover, since f2 is Lipschitz

∂

∂t
|S(s0, x, t)− S(ŝ0, x, t)|S = | f2

(
S(s0, x, t)

)
− f2

(
S(ŝ0, x, t)

)
|S (D-24)

⩽ Ls|S(s0, x, t)− S(ŝ0, x, t)|S.

207

Model description Appendix of chapter 7

and using the Grönwall inequality

|S(s0, x, t)− S(ŝ0, x, t)|S ⩽ eLst|s0 − ŝ0|S . (D-25)

Finally, combining (D-23) and (D-25)

|S(s0, x, t)− S(ŝ0, x, t)|S ⩽ 2α(q)−1∣∣δ0|q
∣∣eLst.

which concludes the proof.

D.4 Model description

In this section, we describe the architecture of our implementation in more detail.

Step 1 – The output predictor derived from System 1 is implemented as a multi-layer graph

neural network inspired from Pfaff et al. (2020); Sanchez-Gonzalez et al. (2020) but without

following the standard “encode-process-decode” setup. Let X̃ = {x0, ..., xK} be the set of sub-

sampled positions extracted from the known locations X (cf. Artificial generalization from

section 7.2.4). The input of the module is the initial condition at the sampled points and the

corresponding positions
(

xi, s̃d[0](xi)
)

i and is encoded into a graph-structured latent space

zd[0] = (zd[0]i, e[0]ij)i,j where zd[0]i is a latent node embedding for position xi and e[0]ij is an

edge embedding for edge pairs (i, j) extracted from a Delaunay triangulation. The encoder ê

maps the sparse IC to node and edge embeddings using two MLPs, fedge and fnode:

zd[0]i = fnode
(
s̃d[0](xi), xi

)
, e[0]ij = fedge

(
xi − xj, |xi − xj|

)
, (D-26)

fnodes and fedges are two ReLU-activated MLPs, each consisting of 2 layers with 128 neurons.

The initial node and edge features zd[0]i and e[0]ij are represented as 128-dimensional vectors.

The dynamics f̂1 is modeled as a multi-layered graph neural network inspired from Pfaff

et al. (2020); Sanchez-Gonzalez et al. (2020), we therefore add a layer superscript ℓ to the

notation:

zd[n + 1] = f̂1
(
zd[n]

)
=
(
zL

i , eL
ij
)

i,j such that



eℓ+1
ij = eℓij +

εij︷ ︸︸ ︷
gℓedge

(
zℓi , zℓj , eℓij

)
,

zℓ+1
i = zℓi + gℓnode

(
zℓi , ∑j ε ij

)
,

e0
ij = e[n]ij,

z0
i = zd[n]i,

(D-27)

The GNNs employ two MLPs gℓnode and gℓedges with same dimensions as fedges and fnodes.

We compute the sequence of anchor states zd[0], · · · zd[q] in the latent space by applying f̂1

auto-regressively.

The observation function ĥ1 extracts the sparse observations s̃d[n] from the latent state

zd[n] and consists of a two-layered MLP with 128 neurons, with Swish activation functions

(Ramachandran et al., 2017) applied on the node features, i.e. s̃d[n](xi) ≈ ĥ1
(
z[n]i

)
.

208

Model description Appendix of chapter 7

Step 2 – The spatial and temporal domains Ω× J0, TK are normalized, since it tends to improve

generalization on unseen locations. The state estimator ψq takes as input the sequence of latent

graph representation zd[0], · · · , zd[q] and a spatiotemporal query sampled in Ω× J0, TK. This

query is embedded in a Fourier space using the function ζω which depends on a frequency

parameter ω ∈ Rdim Ω+1 (initialized uniformly in [0, 1]). By concatenating harmonics of this

frequency up to some rank, we obtain a resulting embedding of 128 dimensions (if ζω(x, t)

exceeds the number of dimensions, cropping is performed to match the target shape).

ζω(x, t) = [..., cos(kω1|nx x), sin(kω1|nx x), cos(kωnx+1t), sin(kωnx+1t), ...], k ∈ {0, · · ·K}.
(D-28)

The continuous variables zn∆(x, t) conditioned by the anchor states are computed with multi-

head attention Vaswani et al. (2017)

zn∆(x, t) = fmha
(
Q=ζω(x, t), K=V={zd[n]i}+ ζω(X , n∆)

)
, (D-29)

where fmha is defined as 
q1 = A(Q, K, V),

q2 = Q + q1,

q3 = B(q2),

out = q3 + q2.

(D-30)

Here, A(·, ·, ·) refers to the multi-head attention mechanism described in (Vaswani et al., 2017)

with four attention heads, and B(·) represents a single-layer multi-layer perceptron activated

by the rectified linear unit (ReLU) function. We do not use layer normalization.

The Gated Recurrent Unit Cho et al. (2014) aggregates the sequence of conditioned vari-

ables (of length q) as follows:

u[n] = rgru
(
u[n−1], zn∆(x, t)

)
, (D-31)

Ŝ(s0, x, t) = D (u[q]) , (D-32)

where u[n] is the hidden memory of a GRU, initialized at zero. rGRU denotes the update

equations of a GRU – we omit gating functions from the notation – and D is a decoder MLP

that maps the final GRU hidden state to the desired output, that is, the value of the solution

at the desired spatio-temporal coordinate (x, t), We used a two-layered gated recurrent unit

with a hidden vector of size 128, and a two-layered MLP with 128 neurons activated by the

Swish function for D.

Training loop – To create artificial generalization scenarios during training, we employ spatial

sub-sampling. Specifically, during each gradient iteration, we randomly and uniformly mask

25% of X and feed the remaining 75% to the output predictor (System 1). To reduce training

time further and improve generalization on unseen locations, we use bootstrapping by ran-

domly sampling a smaller set of points for querying the model (i.e. as inputs to ψq). To do

so, we maintain a probability weight vector W of dimension |X × T |, initialized to one. At

209

Baselines and datasets details Appendix of chapter 7

each gradient descent step, we randomly select N=1, 024 points from X × T weighted by W.

We update the weight matrix by setting the values at the sampled locations to zero and then

adding the loss function value to the entire vector. This procedure serves two purposes: (a) it

keeps track of poorly performing points (with higher loss) and (b) it increases the sampling

probability for points that have been infrequently selected in previous steps.

The choice of ∆ in the dynamics loss (7-13) allows us to reduce the complexity of the

model. In Table 7.1, we present results obtained with ∆ = 3∆∗ indicating that the output pre-

dictor (System 1) predicts the latent state representation three time steps later. Consequently,

the number of auto-regressive steps during training decreases from T/∆∗ (e.g., for Mesh-

GraphNet and MAgNet) to T/∆. In Table 7.2, we used ∆ = 2∆∗. For a more comprehensive

discussion on the effect of ∆ on performances, please refer to Appendix D.6.

Training parameters – To be consistent, we trained our model with the same training setup

over all different experiments (i.e. same loss function, and same hyper-parameters). However,

for the baseline experiments, we did adapt hyper-parameters and used the ones provided

by the original authors when possible (see further below). We used the AdamW optimizer

with an initial learning rate of 10−3. Models were trained for 4,500 epochs, with a scheduled

learning rate decay multiplied by 0.5 after 2,500; 3,000; 3,500; and 4,000 epochs. Applying

gradient clipping to a value of 1 effectively prevented catastrophic spiking during training.

The batch size was set to 16.

D.5 Baselines and datasets details

D.5.1 Baselines

The baselines are trained with the AdamW optimizer with a learning rate set at 10−3 for

10,000 epochs on each dataset. We keep the best-performing parameters on the validation set

for evaluation on the test set.

DINo – we used the official implementation and kept the hyper-parameters suggested by the

authors for Navier and Shallow Water. For Eagle, we used the same hyper-parameters as for

Shallow Water. The training procedure was left unchanged.

MeshGraphNet – we used our own implementation of the model in PyTorch, with 8 layers of

GNNs for Navier and Shallow Water, and up to 15 for Eagle. Other hyper-parameters were kept

unchanged. We warmed up the model with single-step auto-regressive training with noise

injection (Gaussian noise with a standard deviation of 10−4), as suggested in the original

paper, and then fine-tuned the parameters by training on the complete available horizon.

Both steps try to minimize the mean squared error between the prediction and the ground

truth. Edges are computed using Delaunay triangulation. During evaluation, we perform

cubic interpolation between time steps (linear interpolation gives better results on Eagle) first,

210

Baselines and datasets details Appendix of chapter 7

available IC

during training

artificially generated

sparse IC

A
r
tific

ia
l S

u
b

s
a
m

p
lin

g

t=0 t=0

interpolated IC

at all available points

Estimated

points

GT points

Physical Space Physical Space

Physical Space

Dense simulation

available IC

(including query points)

sparse IC

(query points removed)

t=0

Physical Space Physical Space

Training:

Evaluation:

Interpolation in

latent space

Simulation from

reconstituted

initial condition

Latent Space Latent Space

t=0

interpolated IC

at all available points

Figure D.1: MaGNet – suffers from drastic shifts in distribution between training and evaluation. The

model is trained on points from X , which corresponds to a small portion of the domain. We used our

subsampling trick to artificially generate queries. During evaluation, we require the prediction at every

available point in the complete simulation, hence, MaGNet must interpolate the initial condition to a

large number of query points, filling the input of the auto-regressive model with noisy estimates of the

IC.

then 2D cubic interpolation on space to retrieve the complete mesh.

MAgNet – We used our own implementation of the MAgNet[GNN] variant of the model, and

followed the same training procedure as for MeshGrapNet. The parent mesh and the query

points are extracted from the input data using the same spatial sub-sampling technique as

ours, and the edges are also computed with Delaunay triangulation. During evaluation, we

split the query points into chunks of 10 nodes, and compute their representation with all the

available measurement points. This reduces the number of interpolated vertices in the input

mesh and improves performances at the cost of higher computation time (see figure D.1).

However, to be fair, this increase in computational complexity introduced by ourselves was

not taken into account when we discussed computational complexity in appendix D.6.

D.5.2 Dataset details

Navier & Shallow Water – Both datasets are derived from the ones used in (Yin et al., 2022).

We adopted the same experimental setup but generated distinct training, validation, and

testing sets. For details on the GT simulation pipeline, please see Yin et al. (2022). The Navier

dataset comprises 256 training simulations of 40 frames each, with additional two times 64

simulations allocated for validation and testing. Simulations are conducted on a uniform grid

of 64 by 64 pixels (i.e. Ω), measuring the vorticity of a fluid subject to periodic forcing. During

training, simulations were cropped to T = 20 frames. The Shallow Water dataset consists of

64 training simulations, along with 16 simulations in both validation and testing. Sequences

of length T = 20 were generated. The non-euclidean sampling grid for this dataset is of

dimensions 128× 64.

211

More results Appendix of chapter 7

Navier

High Mid Low

In-X 2.266 2.017 3.154
DINo

Ext-X 2.317 2.136 6.740

In-X 6.853 3.136 1.378
Interp. MGN

Ext-X 7.632 6.890 15.55

In-X 171.5 31.07 10.02
MAgNet

Ext-X 227.0 57.60 89.20

In-X 0.3732 0.3563 0.3366
Ours

Ext-X 0.3766 0.3892 0.6520

Table D.1: Time Extrapolation – We assessed the performances of our model vs. the baselines in a

time-extrapolation scenario by forecasting the solution on a horizon two times longer than the training

one (i.e. 40 frames). Our model remains more performant.

Eagle – Eagle is a large-scale fluid dynamics dataset simulating the airflow generated by a

drone within a 2D room. We extract sequences of length T = 10 from examples within the

dataset, limiting the number of points to 3,000 (vertices were duplicated when the number of

nodes fell below this threshold).

The spatially down-sampled versions of these datasets (employed in Table 7.1 and 7.2)

were obtained through masking. We generate a random binary mask, shared across the train-

ing, validation, and test sets, to remove a specified number of points based on the desired

scenario. Consequently, the observed locations remain consistent across training, validation,

and test sets, except Eagle, where the mesh varies between simulations. For Navier and Shallow

Water, the High setup retains 25% of the original grid, the Middle setup retains 10%, and the

Low setup retains 5%. In the case of Eagle, the High setup preserves 50% of the original mesh,

while the Low setup retains only 25%. Temporal down-sampling was also applied by regularly

removing a fixed number of frames from the sequences, corresponding to no down-sampling

(1/1 setup), half down-sampling (1/2), and quarter down-sampling (1/4). During evaluation,

the models are tasked with predicting the solution to every location and time instant present

in the original simulation.

D.6 More results

Time continuity – is illustrated in Figure D.3 on the Navier dataset. Our model and the base-

lines are trained in a very challenging setup, where only part of the information is available.

During training, not only does the spatial mesh only contains 25% of the complete simulation

grid, but also the time-step is increased to four time its initial value. In this situation, the

model needs to represent low-resolution data while being trained on sparse data.

Generalization to unseen future timesteps – Beyond time continuity, our model offers some

generalization to future timesteps. Table D.1 shows extrapolation results for high/mid/low

212

More results Appendix of chapter 7

Figure D.2: Qualitative results on Shallow-Water – Simulation obtained with our model and the

baseline in the challenging 5% setup on the Shallow Water dataset (without temporal sub-sampling).

Each model is initialized with a small set of sparse observations and needs to extrapolate the solution at

many unseen positions. Our model outperforms the baselines, which struggle to compute the solution

outside the training domain.

subsampling of the spatial data on the Navier dataset which outperforms the predictions of

competing baselines.

Generalization to unseen grid – In our spatial and temporal interpolation experiments (tables

7.1 and 7.2 of the chapter), we assumed that the observed mesh remains identical during train-

ing and testing. Nevertheless, the ability to adapt to diverse meshes is an important aspect of

the task. To evaluate this capability, we trained our model in the spatial extrapolation setup

on the Navier dataset. We compute the error when exposed to different meshes, potentially

with a different sampling rate, and report the results in table D.2. Our model demonstrates

good generalization skills when confronted with new and unseen grids. We observe that

the error on new grids is close to the error reported in table 7.1 in the Ext-X case, we show

additionally that the model can generalize even if the observed grid is different. Notably,

the model performs well when trained with a medium sampling rate. Despite some perfor-

mance degradation when the evaluation setup is significantly different compared to training,

our model effectively maintains its interpolation quality between out-of-domain error (Ext-X)

and in-domain error, testifying to the robustness of our dynamic interpolation module.

Ablations – we study the impact of key design choices in Figure D.4a. First, we show the effect

213

More results Appendix of chapter 7

t = 0 t = Δ =4δt t = 2Δ t = 3Δ
G

ro
u

n
d

 T
ru

th
O

u
rs

D
IN

o
In

te
rp

. M
G

N
M

A
g

N
et

Figure D.3: Time continuity on the Navier dataset – during training, models are only exposed to a

sparse observation of the trajectories, represented spatially by the dots in the upper left figure and tem-

porally by the semi-transparent frames. Our model maintains the temporal coherence of the solution

and outperforms the baselines.

of the subsampling strategy to favor learning of spatial generalization, c.f. Section 7.2.4, where

we sub-sample the input to the auto-regressive backbone by keeping 75% of the mesh. We

ablate this feature by training the model on 100%, 50%, and 25% of the input points. When

the model is trained on 100% of the mesh, it fails to generalize to unseen locations, as the

model is always queried on points lying in the input mesh. However, reducing the number

of input points significantly further from the operating point decreases the performance of

the backbone, as it does not dispose of enough points to learn meaningful information for

prediction. We also replace the final GRU with simpler aggregation techniques, such as a

mean and a maximum pooling, which drastically degrades the results. Finally, we ablate

the dynamics part of the training loss (Eq. 7-13). As expected, this deteriorates the results

significantly.

More ablation on the interpolator – We conducted an ablation study to show that limiting

attention is detrimental. To do so, we designed four variants of our interpolation module:

• Single attention (w/o GRU) – performs the attention between the query and the em-

beddings in a single shot, rather than time-step per time-step. This variant neglects

the insights from control theory presented in section 7.2.1 (Step 2). The single softmax

function limits the attention to a handful of points, whereas our method encourages the

model to attend to at least one point per time step and reason on a larger timescale,

considering past and future predictions, which is beneficial for interpolation tasks, as

supported by proposition 7.2.

• Spatial (w/ GRU) & Temporal (w/o GRU) neighborhood – limit the attention to the

nearest temporal or spatial points, which significantly degrades the metrics. To han-

dle setups with sparse and subsampled trajectories, the interpolation module greatly

214

More results Appendix of chapter 7

Training

Navier Shallow

High Mid Low High Mid Low

In-X 0.2492 0.7929 4.5165 0.5224 1.5431 4.3447
High

Ext-X 0.2477 0.7782 4.4038 0.5256 1.5822 4.4963

In-X 0.4370 0.3230 0.9759 0.8528 1.2908 3.6766
Mid

Ext-X 0.4410 0.3401 0.9496 0.8617 1.2589 3.6043

In-X 2.2000 0.4039 0.6732 2.4395 1.5634 3.4793

Evaluation

Low
Ext-X 2.2037 0.4216 0.7892 2.3914 1.5313 3.2334

Table D.2: Generalization to unseen grid – We investigate generalization to previously unseen grids

by training our model on the Navier dataset in the space extrapolation setup. We report the error (MSE

(×10−3)) inside and outside the spatial domain X measured with different sampling rates unseen

during training. The diagonal shows results on grids with identical sampling rates wrt. training, but

sampled differently. Our model shows great generalization properties.

Ours
Single

attention
Temporal
attention

Spatial
neigh.

Temporal
neigh.

ANP
Kim et al. (2018)

In-X / In-T 0.2113 0.3863 0.2912 0.5623 0.4130 1.734

Ext-X / In-T 0.2251 0.4168 0.3180 0.6328 0.6681 1.835

In-X / Ext-T 0.2235 0.4094 0.3095 0.6030 1.9624 1.820

Ext-X / Ext-T 0.2371 0.4388 0.3350 0.6741 2.1818 1.920

Table D.3: Ablation on interpolation – We performed four ablations on the interpolation module (MSE

(×10−3)). Single attention combines all zd[n] into a single key vector, employing attention only once

(w/o GRU). Temporal attention replaces the GRU with a 2-head attention, Spatial neigh. restricts attention

to the five spatially nearest points from the query, and Temporal neigh. computes attention only with the

nearest time zd[n] to the queried time τ (w/o GRU). These results indicate that considering long-range

spatial and temporal interactions is beneficial for the interpolation task.

benefits from not only distant points but also from the temporal flow of the simulation.

• Temporal attention (w/o GRU) replaces the GRU in our model with a 2-head attention

layer. This variant of our model does not improve the performance compared to a GRU.

We argue that GRU is more suited for accumulating observations in time, as its structure

matches classic observer designs in control theory.

• Attentive Neural Process Kim et al. (2018) is a interpolation module close to ours re-

sembling the Single attention ablation, with an additional global latent c to account

for uncertainties. The model involves a prior function q(c, s) trained to minimize the

Kullback-Leibler divergence between q
(

z, s
(
X , T

))
(computed using the physical state

at observed points) and q
(

c, s
(
Ω \ X , J0, TK

))
(computed using the physical state at

query points).

Results are shown in table D.3. All ablations exhibit worse performance than ours. Note that

the ANP ablation involves performing the interpolation in the physical space to compute the

Kullback-Leibler divergence during training. Thus, the interpolation module cannot use the

215

More results Appendix of chapter 7

100% 50% 25% Mean Max w/o grounding. Ours
10−4

10−3

M
ea

n
S

q
u

ar
ed

E
rr

or

Spatial Sub. Agregation

Ablation Study

In-T , In-X
In-T , Ext-X

Ext-T , In-X
Ext-T , Ext-X

(a)

0 1000 2000 3000 4000 5000
of query locations

10− 1

100

R
u

n
ti

m
e

(s
)

Ours

DINo

MGN

MAgNet

25 50 75 100 125 150
of query time steps

10− 1

100

R
u

n
ti

m
e

(s
)

(b)

Figure D.4: Ablations and runtime – (a) Ablations on Navier (Yin et al., 2022; Stokes, 2009) with 10% of

data and half temporal resolution, from left to right: exploring subsampling strategies, replacing GRU

par mean/max pooling, removing physics grounding. (b) Runtime analysis as a function of query

locations and time steps, respectively.

latent space from the auto-regressive module, which may explain the drop in performance.

Adaptating ANP to directly leverage the latent states is probably possible, but not straightfor-

ward and requires several key changes in the architecture.

Efficiency – the design choices we made led to a computationally efficient model, compared to

prior work. For all three baselines, the required number of computed time steps for the auto-

regressive rollout depends on (1) the number of predicted time steps, and (2) the time values

themselves, as for later values of t, more iterations need to be computed. In contrast, our

method forecasts using attention from a set of “anchor states”, which is controlled through

the hyper-parameter ∆. The length of the auto-regressive rollout is therefore constant and

does not depend on the number of predicted time steps. Furthermore, while DINo scales

very well to predict additional locations, it requires a costly optimization step to compute

α0. MGN does benefit from the efficient cubic interpolation algorithm, which is a side effect

of the fact that it has been adapted to this task, but not designed for it. We experimentally

confirm these claims in Figure D.4, where we provide the evolution of runtime as a function

of query locations, and of query time steps, respectively. In both cases, our model compares

very favorably to competing methods.

Attention maps – To further support our claims, we analyzed the behavior of the interpolation

module in more depth and showed the top-100 most important nodes from the embedding

points zd[n](xi) used to interpolate at different queries. The figure is shown in Figure D.5. We

observed very complex behaviors that dynamically adapt to the global situation around the

queried points. Our interpolation module appears to give more importance to the flow rather

than merely averaging the neighboring nodes, thus relying on “why” the queried point is in

a specific state. Such behavior would be extremely difficult to implement in a handcrafted

algorithm.

216

More results Appendix of chapter 7

t0 t0 + ∆ t0 + 2∆ t0 + 3∆ t0 + 4∆ t0 + 5∆ t0 + 6∆

0.002

0.004
∣∣∣ ∂ŝ(x,τ)

∂zd[n]

∣∣∣2

(a) Frontier tracking: when queried on a streamline between areas of opposite vorticity, the interpolation module

attends not only to the spatial neighbourhood but also to the temporal flow near the frontier.
t0 t0 + ∆ t0 + 2∆ t0 + 3∆ t0 + 4∆ t0 + 5∆ t0 + 6∆

0.002

0.004

0.006 ∣∣∣ ∂ŝ(x,τ)
∂zd[n]

∣∣∣2

(b) Blob tracking: in homogeneous areas, the model tracks the origin of the perturbation, and focuses on its dis-

placement. Our dynamic interpolation exploits the evolution of the state rather than merely averaging neighboring

nodes.
t0 t0 + ∆ t0 + 2∆ t0 + 3∆ t0 + 4∆ t0 + 5∆ t0 + 6∆

0.001

0.002

0.003 ∣∣∣ ∂ŝ(x,τ)
∂zd[n]

∣∣∣2

(c) Periodic boundaries: our model effectively leverages the periodic condition of the Navier dataset, especially

when queried on points originating from perturbations on the other side of the simulation. Again, the interpolation

depends on which points explain the output, rather than the neighborhood.

Figure D.5: Norm of output derivative – wrt. each zd[n](xi) (Navier, high spatial subsampling setup).

We display top-100 nodes (•) with the highest norm, i.e. most important nodes for interpolation at

query point (■). Using gradients rather than attention allows to visualize the action of the GRU.

We observe context-adaptive behaviors, leveraging temporal flow information over local neighbors,

challenging to implement in handcrafted algorithms.

Parameter Sensitivity Analysis – We investigate the influence of two principal hyper-

parameters, namely the step size ∆ and the number of residual GNN layers L, on the per-

formances of our model. We present the results of our experiments in figure D.6 on the Navier

dataset, which has been spatially down-sampled at 10% during training and has a temporal

resolution reduced by two.

The choice of the step size between iterations of the auto-regressive backbone directly

affects both training and inference time. For a trajectory of T frames, the number of anchor

states zd[n] is determined by ⌊T/∆⌋. Increasing the step size ∆ of the learned dynamics leads

to a higher number of embeddings over which the models need to reason. A parallel can be

drawn between this phenomenon and the influence of the discretization size on the accuracy

of numerical methods for solving PDEs. Furthermore, the selection of ∆ also impacts the

generalization capabilities of the model in Ext-T . When ∆ > ∆∗, the model is queried during

training on intermediate instants not directly associated with any of the anchor states zd[n].

This is visible in Figure D.6 where, for instance, with ∆ = ∆∗, the In-X/In-T error is the

lowest, but other metrics increases compared to ∆ = 2∆∗.

217

More results Appendix of chapter 7

1 2 3 4
∆

10−4

2× 10−4

4× 10−4

3× 10−4

M
ea

n
S

q
u

ar
ed

E
rr

or
Influence of ∆

In-T , In-X
In-T , Ext-X

Ext-T , In-X
Ext-T , Ext-X

2 4 6 8 10
of layers

10−4

2× 10−4

3× 10−4

4× 10−4

M
ea

n
S

q
u

ar
ed

E
rr

or

Influence of backbone depth

In-T , In-X
In-T , Ext-X

Ext-T , In-X
Ext-T , Ext-X

Figure D.6: Impact of hyper-parameters on model performance – We evaluate the impact of two

critical hyper-parameters on our architecture, namely, the step size ∆ and the depth L of the physics

backbone. To assess the performance, we employ the 10% Navier dataset with 1/2 frames and compute

metrics for both in-domain and out-domain. The results reveal that increasing the depth of the GNN

layers enhances the model’s performance, while lower values of ∆ lead to better metrics. However, we

observed a degradation in the model ability to generalize to unseen time instants for the special case

∆=δt.

The number of layers L in the auto-regressive backbone significantly influences the over-

all performance of the model, both within the domain and on the exteriors. Increasing the

number of layers generally leads to improved performance. However, it appears that beyond

L = 8, the error starts to increase, indicating a saturation point in terms of performance gain.

The relationship between the number of layers and model performance is visually depicted

in Figure D.6. Throughout this chapter, we maintained this hyper-parameter constant for

the sake of simplicity, as our primary focus is the spatial and temporal generalization of the

solution.

218

Appendix E
Appendix for chapter 8

E.1 Dataset details

E.1.1 Structure and Post-processing

The Eagle dataset is composed of exactly 1,184 simulations of 990 time steps (33 seconds at 30

fps). Scene geometries are arranged in three categories based on the order of the interpolation

used to generate the ground structure: 197 Step scenes, 199 Triangular, and 196 Spline. A

geometry gives two simulations depending on whether the drone is crossing the left or the

right part of the scene. A proper train/valid/test splitting is provided ensuring that each

geometry type is equally represented. The train split contains 948 simulations, while test and

valid splits each contain 118 simulations.

Simulation details – The scene is described as a 5 m×2.5 m 2D surface. Wall boundary con-

ditions (zero velocity) are applied to the frontiers, except for the top edge, which is an outlet

(zero diffusion of flow variables). The propellers are modeled as two squares starting in the

middle of the scene, with wall boundary conditions on the left, right, and top edges, and inlet

conditions for the bottom edge (normal velocity of intensity proportional to the rotation speed

of the propeller). We mesh the scene with triangular cells of an average size of 15 mm, and

add inflation near wall boundaries. We let the simulator update the mesh during time with

default parameters.

Drone trajectory control – has received special care, and is obtained using model predictive

control (MPC) of a dynamical model of a 2D drone allowing realistic trajectory tracking. The

model is obtained by constraining the dynamics of a 3D drone model (Romero et al., 2022) to

motion in a 2D plane and reducing the number of rotors to two. The drone can therefore move

along the axis x and y, and pivot around the z-axis perpendicular to the simulation plane as

219

Dataset details Appendix for chapter 8

follows: 
ẍ = −K1(Ω2

1 + Ω2
2) sin(θ) + K2(Ω1 + Ω2)ẋ

ÿ = K1(Ω2
1 + Ω2

2) cos(θ)− g + K2(Ω1 + Ω2)ẏ

θ̈ = K3(Ω2
2 −Ω2

1),

(E-1)

where x, y is the 2D position of the drone and θ its orientation, Ω1 and Ω2 the left/right

propeller rotation speed, g = 9.81m/s is acceleration (gravity), and K1 = 10−4, K2 = 5 ×
10−5, K3 = 5.5 × 10−3 are physical constants depending on drone geometry. The resulting

trajectories represent physically plausible outcomes, taking into account inertia and gravity.

Mesh down-sampling – consists in simplifying the raw simulation data, as they are not suit-

able for direct deep learning applications, and require post-processing (see Figure E.1a). The

simulation software leverages a very fine-grained mesh dynamically updated to accurately

solve the Navier-Stokes equations. The main step thus consists of simplifying the mesh to a

reasonable number of nodes. Formally, our goal is to construct a new coarser mesh (X t, E t)

based upon the raw mesh proposed by the simulation software (X̄ t, Ē t). To cope with the

dynamic nature of the simulation mesh, our approach consists of dividing the target node set

into a static and a dynamic part X t = S +Dt.

• The static mesh is obtained by subsampling the simulation point cloud using Poisson

Disk Sampling ((Cook, 1986)). However, the spatial density of X̄ t evolves (certain areas

of space are more densely populated at the end of the simulation than at the start). To

preserve finer resolution near relevant regions, we thus concatenated 5 regularly spaced

point clouds X̄ tk into a single set. We then sub-sample the resulting set by randomly

selecting a point, and deleting all neighbors in a sphere of radius R around the chosen

point. This operation is repeated until no more point is at a distance less than R from

another. We used an adaptive radius R correlated to the density map: when the original

point cloud is dense, the radius is smaller. Conversely, the radius increases in sparse

areas. An example of the density map is provided in Figure E.1b.

• The dynamic mesh is mandatory to track drone motion accurately. We therefore com-

plete the static mesh with a dynamical part that follows the boundaries of the UAV. To

do so, we used the ground truth trajectory to track drone position and orientation across

time and extrapolate bounding boxes, which are then transformed into point clouds by

sub-dividing the box into several points.

Finally, the edge set E t is computed using constrained Delaunay triangulation to prevent

triangles from spawning outside of the domain. Once (X t, E t has been computed, we evaluate

the pressure and velocity field V t,P t on the nodes by averaging the three nearest points in

raw simulation data. We illustrate the final result in figure E.1. Better mesh simplification

algorithms exist, notably minimizing the interpolation error, yet such algorithms rely on the

simulated flow to compute the mesh, which may embed unwanted biases or shortcuts in the

mesh geometry.

220

Dataset details Appendix for chapter 8

(a)

(b)
(c)

Figure E.1: Down-sampling from raw simulation – (a) sample of raw simulation measurements ob-

tained on a high-resolution mesh. This single snapshot contains 158,961 nodes. (b) example of a node

density map controlling the sampling disk radius. The raw mesh is dense near the boundaries and on

the left side, as this sample is taken from a simulation where the drone explores the left region of the

scene. (c) Mesh simulation at final resolution. We drastically simplified the mesh while maintaining a

satisfactory level of detail.

E.1.2 Grid based dataset

One of the baselines, DilResNet (Stachenfeld et al., 2021), relies on convolutional layers for

future forecasting of turbulent flows and therefore requires projecting Eagle and Cylinder-

Flow on a uniform rectangular grid. However, such a discretization scheme can not adapt

its spatial resolution as a function of the geometry of the scene, which therefore constitutes a

disadvantage with respect to an irregular triangular mesh. To limit this effect, the resolution

of the grid is chosen such that the number of pixels is at least ten times larger than the number

of points in the triangular mesh.

We project Cylinder-Flow onto a uniform 256× 64 grid and Eagle onto a 256× 128 grid

(the dimensions were chosen to respect the height-width ratio of the original data). The value

of the pressure and velocity fields at each point in the grid is extrapolated from the nearest

point in the raw simulated data. We illustrate this projection in figure E.2. While the grid-

based simulation (figure E.2b) seems visually more accurate than the mesh-based simulation

(figure E.2d), we observed that the re-projection error (i.e. the error obtained after projecting

the grid-based data onto the triangular mesh) is greater near sensible regions, for example

near the scene boundaries.

221

Model details Appendix for chapter 8

(a) Cylinder Flow on uniform rectangular grid

(b) Eagle on uniform rectangular grid

(c) Cylinder Flow on irregular triangle mesh

(d) Eagle on irregular triangle mesh

Figure E.2: Mesh to grid conversion – Illustration of the pixellisation process. The left column (a

and b) shows snapshots of simulations from the grid-based datasets, used to train DilResNet. For

comparison, we show the same snapshots in the mesh-based datasets (c and d). While resolution

seems better on grid-based simulation, it lacks precision near sensible regions, which are primordial

for accurate forecasts.

E.2 Model details

E.2.1 Clustering

We use our own implementation of the same size Kmeans algorithm described here1. Using

equally sized clusters has two main advantages :

• Areas of high density will be covered by a greater number of clusters, allowing the

adaptive resolution of irregular meshes to be preserved on the coarser mesh.

• The model can be implemented efficiently, maximizing parallelization, since clusters can

be easily stored as batched tensors.

Since the clustering depends solely on the geometric properties of the mesh (and not on

the prediction of the neural network), it is possible to apply the clustering algorithm as a

pre-processing step to reduce the computational burden during training. Note that since the

mesh is dynamic, so are the clusters: the ke cluster at time t will not necessarily contain the

same points at time t + 1.

E.2.2 Architecture and Training Details

We kept the same training setup for all datasets and trained our model for 10,000 steps with

the Adam optimizer and a learning rate of 10−4 to minimize (8-6) with α = 10−1 and H = 8.

1https://elki-project.github.io/tutorial/same-size_k_means

222

Model details Appendix for chapter 8

Velocity and pressure are normalized with statistics computed on the train set, except for

Scalar-Flow, where better results are obtained without normalization.

Encoder – ϕnode and ϕedge are one-layer MLPs with ReLU activations, hidden size and output

size of 128 ((ηi, eij) ∈ R128). We used L=4 chained graph neural network layers composed of

two identical MLPs ψedge and ψnode with two hidden layers of dimension 128, ReLU activated,

followed by layer normalization. The positional encoding function F is defined as follows:

F(x) = [cos(2iπx) sin(2iπx)]i=−3,...3 (E-2)

where x is a 2D vector modeling the position of node i.

Graph Pooling – we used a single layer gated recurrent unit with a hidden size of dimension

W followed by a single layer MLP with hidden and output size of W. This step produces a

cluster feature representation wk ∈ RW . For Cylinder-Flow and Eagle, W=512. For Scalar-

Flow, W=128.

Attentional module – following (Xiong et al., 2020) an attention block is defined as follows

for an input w ∈ RW :
w1 = [LN(w) F(x̄k)]

w2 = MHA(w1, w1, w1)

w3 = w + Linear(w2)

w4 = LN(w3)

w5 = MLP(w4)

w6 = w3 + w5

(E-3)

where LN are layer norm functions, Linear is a linear function (with bias), MHA is multi-head

attention and MLP is a multi-layer perceptron with one hidden layer of size W. We denote

the barycenter of cluster k as x̄k. We used M=4 chained attention block, with four attention

heads each. The last attention layer is followed by a final layer norm.

Decoder – the decoder takes as input the node embeddings ηi, the cluster features updated

by the attentional module wM
k and the node-wise positional encoding fi. We applied a graph

neural network composed of two identical MLPs (two hidden layers with the hidden size of

128, ReLU activated, and layer norm). The resulting node embeddings are fed to a final MLP

with two hidden layers and a hidden size of 128, with TanH as the activation function.

E.2.3 Baselines training details

After performing a grid search to select the best options, we found that training each baseline

to minimize (8-6) with Adam optimizer and learning rate of 10−4 produces the best results.

We vary the weighting factor α to maintain the balance between pressure and velocity. For

Cylinder-Flow and Eagle, we trained the baselines over H = 5 time-steps. For Scalar-Flow, we

set H = 20.

223

More results Appendix for chapter 8

• MeshGraphNet: we performed a grid search over the number of GNN layers to fit each

dataset, but the best results were obtained with the recommended depth L = 15 for each

dataset. Conversely to what is suggested in Pfaff et al. (2020), we found that training

MeshGraphNet over a longer horizon improves the general performances. We used our

own implementation of the baseline and made sure to reproduce the results presented

in the main paper (for Cylinder-Flow only). We get the best trade-off between velocity

and pressure with α = 10.

• GAT: we performed a grid search over the number of heads per layer and the number

of layers. The best results were obtained for 10 layers of graph attention transformer

and two attention heads per layer (except for Cylinder-Flow, where four heads slightly

improve the performances).

• DilResNet: we found that increasing the number of blocks improves overall perfor-

mance, setting the number of convolutional blocks from 4 to 20.

The baselines are structurally built to predict velocity field V t+h
t and pressure field P t+h

t de-

scribed on the mesh geometry at current time X t. Auto-regressive forecasting on a longer

horizon thus requires interpolation of the predicted flow to the (provided) future mesh X t+h.

We do not want interpolation to disturb our problem of interest, which is turbulent flow pre-

diction. Therefore, we made the interpolation from X t to time X t+1 straightforward. As the

vast majority of the mesh remains static (see previous section), only the nodes linked to the

UAV need to be interpolated. Since they can readily be associated in a one-to-one relation,

nearest point interpolation can be performed automatically by assigning V t+h
t at these points

to V t+h.

E.3 More results

E.3.1 Detailed metrics

Formally, we used the following metrics to report our results on the test set D:

N-RMSE =
1

H|D|∑D
H

∑
t=1

|vt − v̂t|
ṽ

+
|pt − p̂t|

p̃
(E-4)

where ṽ and p̃ are the standard deviation of velocity and pressure field computed on the train

set.

Detailed metric – the raw root mean squared error (RMSE) on each field is reported in figure

E.4 as well as the temporal evolution of N-RMSE across prediction horizon. On Cylinder-Flow

(Figure E.4a), velocity error is very similar between MeshGraphNet and ours. Our model

slightly outperforms the baseline on the pressure field, yielding overall better performances.

However, the temporal evolution of the N-RMSE indicated that both models converge to the

same accuracy for very long roll-out prediction. On Eagle, our model shows excellent stability

over a long horizon and produces accurate velocity and pressure estimates.

224

More results Appendix for chapter 8

0

100

0

100

0

100

0

100

0

100

0

100

0

100

0

100

0

100

0

100

0

100

0

100

0

100

0

100

0

100

0

100

Figure E.3: K-number maps computed for each cluster, that is, the number of nodes required to reach

90% of the attention. A low k-number indicates a very specialized head (attending to a few nodes),

while a high k-number indicates uniform attention.

K-number – is a property which can be calculated for attention maps, and which consists

in the number of tokens required to reach 90% of attention (Kervadec et al., 2021). This

property can be used to characterize the shape of attention maps, varying from peaky attention

(requiring few tokens to reach 90%) to more uniform attention heads. We show k-numbers

in Figure E.3. Interestingly, the k-number maps can be compared with attention maps figure

8.5d: peaky heads (in blue) are correlated with relatively local attention maps, and conversely,

more uniform heads (in red) correspond to attention maps focusing on larger distances, often

following the airflow. Some heads have different behaviors depending on the selected cluster

and are peaky in some areas (mainly around the boundaries of the scene), but more uniform

elsewhere. These cues support the importance of global attention in our model.

225

More results Appendix for chapter 8

Horizon +1 +50 +250

Field V P V P V P

MGN 0.0004 0.0016 0.0047 0.0095 0.0144 0.0145

GAT 0.0015 0.0025 0.0278 0.0360 0.2595 0.2314

DRN 0.0098 0.0063 0.0152 0.0085 0.0344 0.0152

Ours 0.0003 0.0007 0.0044 0.0035 0.0179 0.0079 +1 +50 +100 +150 +200 +250
Horizon

10
2

10
1

10
0

R
M

S
E

Normalized RMSE

MeshGraphNet
DilResNet

GAT
Ours

(a) CylinderFlow: (Right) RMSE on velocity V and pressure P fields. (Left) Normalized RMSE over the forecasting

horizon. Our mesh transformer overcomes the baselines by a small margin. Yet qualitative results tend to indicate

that Cylinder Flow is already a well-mastered task.

Horizon +1 +50 +100

Field V D V D V D

MGN 0.0009 0.0059 0.0105 0.0568 0.0231 0.1130

GAT 0.0009 0.0066 0.0097 0.0578 0.0200 0.1091

DRN 0.0014 0.0101 0.0130 0.0750 0.0237 0.1217

Ours 0.0005 0.0024 0.0035 0.0145 0.0059 0.0239 +1 +25 +50 +75
Horizon

10
1

10
0

R
M

S
E

Normalized RMSE

MeshGraphNet
DilResNet

GAT
Ours

(b) Scalar Flow: (Right) RMSE on velocity V and density D fields. (Left) Normalized RMSE over the forecasting

horizon. Our model shows improvements over the baselines in both fields.

Horizon +1 +50 +250

Field V P V P V P

MGN 0.0810 0.4256 0.5926 2.2492 1.0702 3.7220

GAT 0.1698 64.546 0.8551 162.56 1.0959 227.20

DRN 0.2517 1.4453 0.5374 2.4568 0.9188 3.5824

Ours 0.0537 0.4590 0.3494 1.4432 0.6826 2.4130 +1 +50 +100 +150 +200 +250 +300 +350
Horizon

10
1

10
0

10
1

R
M

S
E

Normalized RMSE

MeshGraphNet
DilResNet

GAT
Ours

(c) Eagle: (Right) RMSE on velocity V and pressure P fields. (Left) Normalized RMSE over the forecasting hori-

zon. Our largely and consistently and reliably outperforms the competing baselines. While MeshGraphNet and

DilResNet show comparable performances during the first time steps, our model succeeded in controlling error

accumulation for reasonable horizons and eventually presented better simulations.

Figure E.4: Detailed metrics – on Cylinder-Flow, Scalar-Flow and Eagle, evaluated for each baselines

and our model.

226

More results Appendix for chapter 8

E.3.2 Qualitative results

Figure E.5: Examples of prediction forward in time on Cylinder-Flow

227

More results Appendix for chapter 8

Figure E.6: Examples of prediction forward in time on Scalar-Flow

228

More results Appendix for chapter 8

Figure E.7: Examples of prediction forward in time on Eagle

229

More results Appendix for chapter 8

E.3.3 Failure case

Despite the excellent performance of our model against competitive baselines, there is still

room for improvement. Some more difficult configurations give rise to very turbulent flows,

widely extended in the scene. The evolution of these flows is more difficult to predict and

the models we evaluated failed to remain accurate. In these cases, the precision with which

the small vortices are simulated is essential, because some of them will grow to become the

majority.

Moreover, our model suffers from an error accumulation problem, like any auto-regressive

model. Experimentally, we observe that the airflow tends to be smoothed by deep learning

models when the prediction horizon increases.

Figure E.8: Failure cases – We expose failure cases of our mesh transformer on Eagle. The error

increases when the flow tends to intensify throughout the scene, and when turbulence dominates.

Over a longer prediction horizon, the airflow tends to be smoother and less turbulent.

230

More results Appendix for chapter 8

Training
N-RMSE

90% 80% 70% 60%

90% 0.454 0.497 0.513 0.502

80% 0.427 0.446 0.467 0.440

70% 0.406 0.405 0.416 0.394
Testing

60% 0.401 0.370 0.368 0.348

Table E.1: Mesh down-sampling – We train our mesh transformer under different regimes of down-

sampling by keeping a fixed percentage of points from the initial mesh and removing the others. We

evaluate the resulting models on regimes different from training and observe very little variations in

N-RMSE among them.

E.3.4 Generalization to different mesh resolution

In Eagle, the number of points varies from one simulation to another, forcing the model to

generalize on meshes of different sizes. We explicitly demonstrate the performance of our

mesh transformer on this task in table E.1. Four instances of the model are trained on a

particular regime in which the simulation meshes are randomly down-sampled, respectively

at 90%, 80%, 70%, and 60% of the initial mesh resolution. These models are then evaluated in a

different regime from the one used for training, either higher (more points on average during

the test than during training) or lower (fewer points on the test than in training). We show

that our model generalizes well to these different regimes by giving relatively close N-RMSE

measurements for a given down-sampling regime.

231

Appendix F
Appendix for chapter 9

F.1 Further details on dataset generation

Confounders – in our setup are masses, which we discretize in {1, 10}. For BallsCF and

CollisionCF, we can also consider the continuous initial velocities of each object as con-

founders variables, since they have to be identified in AB to forecast CD. We simulate all

trajectories associated with the various possible combinations of masses from the same initial

condition.

Do-interventions – however, depend on the task. For BlocktowerCF and BallsCF, do-

interventions consist of (a) removing the top cube or a ball, or (b) shifting a cube/ball on

the horizontal plane. In this case, for BlocktowerCF, we make sure that the cube does not

move too far from the tower, to maintain contact. For CollisionCF, the do-interventions are

restricted to shifting operations, since there are only two objects (a ball and a cylinder). It

can consist of either a switch of the orientation of the cylinder between vertical or horizontal,

or a shift of the position of the moving object relative to the resting one in one of the three

canonical directions x, y, and z.

F.1.1 Enforcing the Identifiabilty constraint

The identifiability and counterfactuality constraints described in section 9.2 are imposed nu-

merically, i.e. we first sample and simulate trajectories with random parameters and then

reject those that violate these constraints.

As stated in section 9.2, an identifiable experiment guarantees that there is no pair (z, z′)

that gives the same trajectory AB but a different counterfactual outcome CD. Otherwise,

there will be no way to choose between z and z′ only from looking at AB, thus no way to

correctly forecast the counterfactual experiment. By enforcing this constraint, we make sure

that there exists at least a set {z, z′, ...} of confounders that give at the same time similar

observed outcomes AB and similar counterfactual outcomes CD.

233

Further details on dataset generation Appendix for chapter 9

In practice, there exists a finite set of possible variables zi, corresponding to every com-

bination of masses for each object in the scene (masses take their value in {1, 10}). During

generation, we submit each candidate experiment (AB, CD, z) to a test ensuring that the can-

didate is identifiable. Let ψ(X0, z) be the function that gives the trajectory of a system with

initial condition X0 and confounders z. We simulate all possible trajectories ψ(A, zi) and

ψ(C, zi) for every possible zi. If there exists z′ ̸= z such that the experiment is not identifiable,

the candidate is rejected. This constraint requires simulating the trajectory of each experiment

several times by modifying the physical properties of the objects.

Equalities in Definition 9.1 are relaxed by thresholding distances between trajectories. We

reject a candidate experiment if there exists a z′ such that

T

∑
t=0

∣∣ψ(A, z)− ψ(A, z′)
∣∣ < ε and

T

∑
t=0

∣∣ψ(C, z)− ψ(C, z′)
∣∣ > ε. (F-1)

The choice of the threshold value ε is critical, in particular for the identifiability constraint:

• If the threshold is too high, all AB trajectories will be considered equal, which results in

the acceptance of unidentifiable experiments.

• If the threshold is too low, all trajectories CD are considered equal. Again, this leads to

mistakenly accepting unidentifiable experiments.

There exists an optimal value for ε, which allows rejecting unidentifiable experiences. To

measure this optimal threshold, we generated a small instance of the BlocktowerCF dataset

without constraining the experiments, i.e. trajectories can be unidentifiable and non-

counterfactual. We then plot the percentage of rejected experiments in this unfiltered dataset

against the threshold value (Fig. F.1, left). We chose the threshold ε = 100 which optimizes

discrimination and rejects the highest number of “unidentifiable” trajectories.

To demonstrate the importance of this, we train a recurrent GNN on BlocktowerCF to

predict the cube masses from ground-truth state trajectories AB, including pose and velocities,

see Fig. F.2. It predicts the mass of each cube by solving a binary classification task. We train

this model on both BlocktowerCF and an alternative version of the scenario generated without

the identifiability constraint. The results are shown in Table F.1a. We are not aiming for 100%

accuracy, and this problem remains difficult in the sense that the identifiability constraint

ensures the identifiability of a set of confounder variables, while our sanity check tries to

predict a unique z.

However, the addition of the identifiability constraint to the benchmark significantly im-

proves the model’s accuracy, which indicates that the property acts positively on the feasibility

of Filtered-CoPhy. The corrected accuracy metric focuses solely on the critical cubes, i.e. those

cubes whose masses directly define the trajectory CD.

234

Further details on dataset generation Appendix for chapter 9

100 101 102 103

Threshold ε

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge
of

id
en

tifi
ab

le
ex

pe
ri

m
en

t

162.38

56%

Threshold grid search for identifiability constraint

100 101 102 103

Threshold ε

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge
of

co
un

te
rf

ac
tu

al
ex

pe
ri

m
en

t

162.38

51%

Threshold grid search for counterfactuality constraint

Figure F.1: Experimental tuning of the threshold parameter – We generate an unconstrained subset

of BlocktowerCF and plot the percentage of identifiable experiments as a function of the threshold ε.

without
constraint

with
constraint

Accuracy 56% 84%

Corrected Acc. 58% 91%

(a)

FPS 5 15 25 35 45

MSE (×10−2) 4.58 3.97 3.74 3.82 3.93

(b)

Table F.1: Sanity check – (a) identifiability constraint in BlocktowerCF, which results in better estima-

tion of cube masses. The corrected accuracy only considers those cubes for which changes in masses

are consequential for the trajectory D. (b) MSE between ground truth 3D positions and predicted

positions after 1 second, depending on the sampling rate of the trajectory.

F.1.2 Enforcing the Counterfactuality constraint

Let (AB, CD, z) be a candidate experiment, and zk be a combination of masses identical to

z except for the kth value. The counterfactuality constraint consists of checking that there

exists at least one k such that ψ(C, z) ̸= ψ(C, zk). To do so, we simulate ψ(C, zk) for all k and

measure the difference with the candidate trajectory ψ(C, z). Formally, we verify the existence

of k such that:
T

∑
t=0

∣∣ψ(C, zk)− ψ(C, z)
∣∣ < ε. (F-2)

Position
Quaternion

Lin. vel.
Ang. vel.

t=0 ..T

AB states

hT
m { 1, 10}

GRU

T

MLP ∈

GNN

x

Position
Quaternion

Lin. vel.
Ang. vel.

t=0 .. 1s

Position
Quaternion

Lin. vel.
Ang. vel.

t=1 s.. 2s
hT

GRU

CD states
(1 second length)

CD states
(next second)

E
n

co
d

er

GNN

x1 second

Figure F.2: Sanity check – Impact of the choice of temporal resolution. Left: We check the identifiability

constraint by training a model to predict the cube masses in BlocktowerCF from the observed trajectory

AB. The model is a graph neural network followed by a gated recurrent unit. Right: We check the

augmentation of the sampling rate by training an agent to forecast a 1-second-length trajectory from

the states of the previous second.

235

Further details on dataset generation Appendix for chapter 9

0 500 1000 1500 2000
of experiments

1, 1, 1, 1

1, 1, 1, 10

1, 1, 10, 1

1, 1, 10, 10

1, 10, 1, 1

1, 10, 1, 10

1, 10, 10, 1

1, 10, 10, 10

10, 1, 1, 1

10, 1, 1, 10

10, 1, 10, 1

10, 1, 10, 10

10, 10, 1, 1

10, 10, 1, 10

10, 10, 10, 1

10, 10, 10, 10

E
x.

va
r.

co
m

b
in

at
io

n
ballsCF

0 200 400 600 800 1000
of experiments

1, 1, 1, 1

1, 1, 1, 10

1, 1, 10, 1

1, 1, 10, 10

1, 10, 1, 1

1, 10, 1, 10

1, 10, 10, 1

1, 10, 10, 10

10, 1, 1, 1

10, 1, 1, 10

10, 1, 10, 1

10, 1, 10, 10

10, 10, 1, 1

10, 10, 1, 10

10, 10, 10, 1

10, 10, 10, 10

BlocktowerCF

instable

stable

0 2000 4000 6000
of experiments

1, 1

1, 10

10, 1

10, 10

E
x.

va
r.

co
m

b
in

at
io

n

collisionCF

Figure F.3: Dataset balance – During the dataset generation process, we carefully balance combinations

of masses, i.e. the confounders. For BlocktowerCF, we also guarantee that the proportion of stable CD

towers is close to 50% for each confounder configuration.

F.1.3 Analyzing temporal resolution

We analyzed the choice of temporal frequency for the benchmark with another sanity check.

We simulate a non-counterfactual dataset from BlocktowerCF where all cubes have equal

masses. A recurrent graph network takes as input cube trajectories (poses and velocities) over

a time interval of one second and predicts the rest of the trajectory over the following second.

We vary the sampling frequency; for example, at 5 FPS, the model receives 5 measurements

and predicts the next 5 time steps, which correspond to a one-second rollout in the future.

Finally, we compare the error in 3D positions between the predictions and the ground truth

on the last prediction. Results are shown in Table F.1b. This check shows clearly that 25 FPS

corresponds to the best trade-off between an accurate representation of the collision and the

amount of training data.

F.1.4 Simulation details

We used Pybullet as a physics engine to simulate Filtered-CoPhy. Each experiment is designed

to respect the balance between good coverage of confounder combinations and counterfactu-

ality and identifiability constraints described above. We generate the trajectories iteratively:

1. We sample a combination of masses and other physical characteristics of the given exper-

iment, such as stability of the tower, object motion in CollisionCF, or if the do-operation

consists of removing an object. This allows us to maintain a balance of confounder con-

figurations.

2. Then we search for an initial configuration A. For BlocktowerCF, we make sure that this

configuration is unstable to ensure identifiability. Then we simulate the trajectory B.

3. We look for a valid do-operation such that identifiability and counterfactuality con-

236

Performance evaluation of the de-rendering module Appendix for chapter 9

Keypoints K 2K 4K

PSNR 34.40 35.41 34.92
BT-CF

MSE Grad 27.24 21.39 23.99

PSNR 37.76 37.06 36.98
B-CF

MSE Grad 3.47 3.77 3.95

PSNR 32.00 35.41 34.42
C-CF

MSE Grad 32.00 12.57 17.09

Table F.2: Reconstruction task – PSNR (dB) on the task of reconstructing the target from the source

(both randomly sampled from Filtered-CoPhy), using 5 coefficients per keypoint. We vary the number

of keypoints in our model. Here K is the maximum number of the objects in the scene.

straints are satisfied. If no valid do-operation is found after a fixed number of trials, we

reject this experiment.

4. If a valid pair (AB, CD) is found, we add the sample to the dataset.

The trajectories were simulated with a sample time of 0.04 seconds. The video resolu-

tion is 448 × 448 and represents 6 seconds for BlocktowerCF and BallsCF, and 3 seconds

for CollisionCF. We invite interested readers to look at our code for more details, such as

do-operation sampling, or intrinsic camera parameters. Fig. F.3 shows the confounder distri-

bution in the three tasks.

F.2 Performance evaluation of the de-rendering module

F.2.1 Image reconstruction

We evaluate the reconstruction performance of the de-rendering module in the reconstruction

task. Note that there is a trade-off between the reconstruction performance and the dynamic

forecasting accuracy: a higher number of keypoints may lead to better reconstruction, but can

hurt prediction performance, as the dynamic model is more difficult to learn.

Reconstruction error – we first investigate the impact of the number of keypoints in Table F.2

by measuring the Peak Signal to Noise Ratio (PSNR) between the target image and its recon-

struction. We vary the number of keypoints among multiples of K, the maximum number

of objects in the scene. Increasing the number of keypoints increases reconstruction quality

(PSNR) up to a certain point, but results in degradation in forecasting performance. Further-

more, doubling the number of keypoints only slightly improves reconstruction accuracy. This

tends to indicate that our additional coefficients are already sufficient to model finer-grained

visual details. Table 9.3 in the main paper measures the impact of the number of keypoints

and the presence of the additional appearance coefficients on the full pipeline including the

dynamic model. Table F.3 illustrates the impact of the number of keypoints and the additional

appearance coefficient on the reconstruction performance alone. As we can see, the addition

of the coefficient consistently improves PSNR for low numbers of keypoints (over 2 dB for K

237

Performance evaluation of the de-rendering module Appendix for chapter 9

Ground Truth Ours (N Keypoints) Ours (2N Keypoints) Ours (4N Keypoints) Without coefficient (N Kpts) Without coefficient (2N Kpts) Without coefficient (4N Kpts)

Figure F.4: Reconstructions – produced by the de-rendering module. Our model correctly marks each

object in the scene and achieves satisfactory reconstruction.

keypoints). The improvement is less visible for larger numbers of keypoints since 3D visual

details could be encoded via the keypoint’s position, hence coefficients become less relevant.

Visualizations are shown in Fig. F.4.

K 2K 4K

Coefficients ✗ ✓ ✗ ✓ ✗ ✓

PSNR 32.53 34.40 33.97 35.41 34.57 34.92
BT-CF

MSE Grad 41.86 27.24 35.24 21.39 28.06 23.99

PSNR 34.62 37.76 36.94 37.06 37.15 36.98
B-CF

MSE Grad 6.22 3.47 4.16 3.77 4.07 3.95

PSNR 30.65 32.00 33.89 35.41 35.63 34.42
C-CF

MSE Grad 12.78 32.00 20.59 12.57 11.72 17.09

Table F.3: Number of coefficients – Impact of the number of keypoints and the presence of additional

appearance coefficient in the de-rendering module for pure image reconstruction (no dynamic model).

We report PSNR (dB) and MSE on the image gradient. K is the maximum number of the objects in the

scene. The coefficients significantly improve the reconstruction on a low number of keypoints. This

table is related to table 9.3 in the main paper, which measures this impact on the full pipeline.

F.2.2 Navigating the latent coefficient manifold

We evaluate the influence of the additional appearance coefficients on our de-rendering model

by navigating its manifold. To do so, we sample a random pair (Xsource, Xtarget) from an exper-

iment in BlocktowerCF and compute the corresponding source features and target keypoints

and coefficients. Then, we vary each component of the target keypoints and coefficients and

observe the reconstructed image (fig. F.5). We observed that the keypoints accurately con-

trol the position of the cube along both spatial axes. The rendering module does infer some

238

Comparison with the Transporter baseline Appendix for chapter 9

K
ey

po
in

tX

-0.7 -0.5 -0.4 -0.2 -0.1 0.1 0.2 0.4 0.5 0.7

K
ey

po
in

tY

-0.7 -0.5 -0.4 -0.2 -0.1 0.1 0.2 0.4 0.5 0.7

C
oe

ffi
ci

en
t1

0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9

C
oe

ffi
ci

en
t2

0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9

C
oe

ffi
ci

en
t3

0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9

C
oe

ffi
ci

en
t4

0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9

C
oe

ffi
ci

en
t5

0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9

Figure F.5: Coefficient sweep – Navigating the manifold of the latent coefficient representation. Each

line corresponds to variations of one keypoint coordinate or coefficient and shows the effect on a single

cube.

hints on 3D shape information from the vertical position of the cube, exploiting a shortcut in

learning. On the other hand, while not being supervised, the coefficients naturally learn to

encode different orientations in space and distance from the camera. Interestingly, a form of

disentanglement emerges. For example, coefficients n◦ 1 and 2 control rotation around the

z-axis and coefficient n◦4 models rotation around the y-axis. The last coefficient represents

both the size of the cube and its presence in the image.

F.3 Comparison with the Transporter baseline

F.3.1 Comparison with our de-rendering model

As described in section 9.3.1, the Transporter (Kulkarni et al., 2019) is a keypoint detection

model somewhat close to our de-rendering module. It leverages the transport equation to

compute a reconstruction vector:

Ψ̂target = fsource × (1− Ksource)× (1− Ktarget) + ftarget × Ktarget. (F-3)

where Ksource = ∑n G(ksource
n). This equation allows transmitting information from the input

by two means: the 2D position of the keypoints (Ktarget) and the dense visual features of

the target (ftarget). In comparison, our de-rendering solely relies on the keypoints from the

target image and does not require a dense vector to be computed on the target to reconstruct

239

Comparison with the Transporter baseline Appendix for chapter 9

Ours Transporter (not comparable)

Keypoints 4 8 16 4 8 16

BT-CF 34.40 35.41 34.92 34.10 34.88 39.20

B-CF 37.76 37.06 36.98 34.75 34.78 35.13

C-CF 35.41 34.42 35.98 32.66 33.39 34.47

Table F.4: Comparison with Transporter – PSNR (dB) on the task of reconstructing target from the

source (both randomly sampled from Filtered-CoPhy), using 5 coefficients per keypoint. We vary the

number of keypoints in both our model and the Transporter. Note that Transporter uses target features

to reconstruct the image, hence it is not comparable with our model.

Ground Truth Ours (4k) Ours (8k) Ours (16k) Learned (4k) Transporter (4k) Transporter (8k) Transporter (16k)

Ground Truth Ours (4k) Ours (8k) Ours (16k) Learned (4k) Transporter (4k) Transporter (8k) Transporter (16k)

Ground Truth Ours (4k) Ours (8k) Ours (16k) Learned (4k) Transporter (4k) Transporter (8k) Transporter (16k)

Figure F.6: Qualitative examples – Example of the reconstructed image by our-derendering module

and the Transporter.

the target. This makes the Transporter incomparable with our de-rendering module. We

nevertheless compare the performances of the two models in Table F.6, and provide visual

examples in Fig. F.6. Even though the two models are not comparable, as the Transporter

uses additional information, our model still outperforms the Transporter for small numbers

of keypoints. Interestingly, for higher numbers of keypoints, Transporter tends to discover

keypoints far from the object. We investigate this behavior in the following section and show

that this is a critical problem for learning causal reasoning on the discovered keypoints.

F.3.2 Analysis of behavior of Transporter

The original version of the V-CDN model (Li et al., 2020a) is based on Transporter (Kulkarni

et al., 2019). We have already highlighted the fact that this model is not comparable with our

task, as it requires not only the target keypoints Ktarget but also a dense feature map ftarget,

whose dynamics can hardly be learned due to its high dimensionality. More precisely, the

transport equation (Eq. F-3) allows to pass information from the target by two means: the 2D

240

Comparison with the Transporter baseline Appendix for chapter 9

position of the keypoints (Ktarget) and the dense feature map of the target (ftarget). The number

of keypoints therefore becomes a highly sensible parameter, as the transporter can decide to

preferably transfer information through the target features rather than through the keypoint

locations. When the number of keypoints is low, they act as a bottleneck, and the model has

to carefully discover them to reconstruct the image. On the other hand, when we increase the

number of keypoints, the Transporter stops tracking objects in the scene and transfers visual

information through the dense feature map, making the predicted keypoints unnecessary for

image reconstruction, and therefore not representative of the dynamics.

To illustrate our hypothesis, we set up the following experiment. Starting from a trained

Transporter model, we fixed the source image to be X0 (the first frame from the trajectory)

during the evaluation step. Then, we compute features and keypoints on the target frame

Xt regularly sampled in time. We reconstruct the target image using the transport equation,

but without updating the target keypoints. Practically, this consists in computing Ψ̂target with Eq.

(F-3) substituting Ktarget for Ksource.

Results are shown in Fig. F.7. There is no dynamic forecasting involved in this figure, and

the Transporter we used was trained in a regular way, we only changed the transport equation

on evaluation time. Even though the keypoint positions have been fixed, the Transporter

manages to reconstruct a significant part of the images, which indicates that a part of the

dynamics has been encoded in the dense feature map.

In contrast, this issue does not arise from our de-rendering module, since our decoder

solely relies on the target keypoints to reconstruct the image. Note that this is not contradic-

tory with the claim in Li et al. (2020a) since they do not evaluate V-CDN in pixel space. A

rational choice of the number of keypoints leads to satisfactory performance, allowing V-CDN

to accurately forecast the trajectory in keypoints space, and retrieve the hidden confounders

on their dataset.

F.3.3 Temporal inconsistency issues

Increasing the number of keypoints of the Transporter may lead to temporal inconsistency

during the long-range reconstruction. For example, a keypoint that tracks the edge of a cube

in the first frame may target a face of this same cube in the future, since dynamics does not

intervene in the keypoint discovery process.

Our de-rendering directly addresses this through the usage of additional appearance co-

efficients, which allows us to limit the number of keypoints to the number of objects in the

scene, effectively alleviating the consistency issue. Fig. F.8 illustrates this phenomenon by

plotting the discovered keypoint locations forward in time, as well as the 2D location of the

center of mass of each object. Note that the Transporter suffers from the temporal incon-

sistency issue with numbers of keypoints as low as 4 (green cube). In contrast, our model

241

Details of model architectures Appendix for chapter 9

G
ro

un
d

Tr
ut

h
t= 0 t= 7 t= 15 t= 22 t= 30 t= 37

Tr
an

sp
or

te
r4

Tr
an

sp
or

te
r8

Tr
an

sp
or

te
r1

6

Figure F.7: Static keypoints – We evaluate the Transporter with a varying number of keypoints to

reconstruct images regularly sampled in a trajectory while having the target keypoints fixed. Even

if the keypoints are not moving, the Transporter still manages to reconstruct a significant part of the

image, which indicates that the keypoints are not fully responsible for encoding the dynamics of the

scene.

manages to solve the problem and accurately tracks the centers of mass, even though they

were never supervised.

F.4 Details of model architectures

F.4.1 De-rendering module

We call a “block” a 2D convolutional layer followed by a 2D batch norm layer and ReLU

activation. The exact architecture of each part of the encoder is described in Table F.5a. The

decoder hyper-parameters are described in Table F.5b.

Dense feature map estimator Fθ – We compute the feature vector from Xsource by applying a

convolutional network Fθ on the output of the common CNN of the encoder. This produces

the source feature vector fsource of shape (batch, 16, 28, 28).

Keypoint detector Kθ – is a convolutional network which outputs a set of 2D heatmaps

of shape (batch, N, 28, 28), where N is the desired number of keypoints. We apply a spa-

tial softmax function on the two last dimensions, then we extract a pair of coordinates on

242

Details of model architectures Appendix for chapter 9

Tr
an

sp
or

te
r(

4k
pt

s)
t=0 t=30 t=60 t=70 t=80 t=90

Tr
an

sp
or

te
r(

8k
pt

s)
O

ur
s

(4
kp

ts
)

O
ur

s
(8

kp
ts

)

Figure F.8: Keypoints consistency – Temporal inconsistency in long-range reconstruction. We show

the keypoints discovered on images taken from different time steps (black dots). We also compute the

2D location of the center of mass of each object in the scene (white dots). Our de-rendering module

accurately tracks the centers of mass, which have never been supervised.

each heatmap by looking for the location of the maximum, which gives us ktarget
n of shape

(batch, N, 2).

Coefficient estimator Cθ – We obtain the coefficient by applying a third convolutional network

to the output of the common encoder CNN, which again results in a set of 2D vectors of shape

(batch, N, 28, 28). These vectors are flattened channel-wise and provide a tensor of shape

(batch, N, 28× 28)) fed to an MLP (see Table F.5a for the exact architecture) that estimates the

coefficients ctarget
n of shape (batch, N, C + 1).

Gaussian mapping G – The keypoint vector ktarget
n is mapped to a 2D vector through a Gaus-

sian mapping process :

G(k)(x, y) = exp

(
− (x− kx)2 + (y− ky)2

σ2

)
, (F-4)

where G(k) ∈ R28×28 is the Gaussian mapping of the keypoint k =
[
kx ky

]
. We deform these

Gaussian mappings by applying convolutions with filters Hi controlled by the coefficients cn.

The filters from H are 5 × 5 kernels that elongate the Gaussian in a specific direction.

Practically, we obtain the filter Hi by drawing a line crossing the center of the kernel and with

243

Details of model architectures Appendix for chapter 9

CNN

Module in ch. out ch. kernel stride pad.

1

Block

3 32 7 1 3

2 32 32 3 1 1

3 32 64 3 2 1

4 64 64 3 1 1

5 64 128 3 2 1

Fθ

1 Block 128 16 3 1 1

Kθ

1 Block 128 128 3 1 1

2 Conv2d 128 N 3 1 1

3 Softplus

Cθ

1 Block 128 N 3 1 1

2 Flatten

Module in out

3 Linear+ReLU 784 2048

4 Linear+ReLU 2048 1024

5 Linear+ReLU 1024 512

6 Linear+ReLU 512 C

7 Sigmoid

(a) Encoder architecture

Rθ

in ch. out ch. kernel stride pad.

1

Block

16+N×C 128 3 1 1

2 128 128 3 1 1

3 128 64 3 1 1

4 UpSamplingBilinear2d(2)

5
Block

64 64 3 1 1

6 64 32 3 1 1

7 UpSamplingBilinear2d(2)

8
Block

32 32 3 1 1

9 32 32 7 1 1

10 Conv2d 32 3 1 1 1

11 TanH

(b) Decoder architecture

Table F.5: Model details – Architectural details of the de-rendering module.

a slope angle of i π
C where C is the number of coefficients. We then apply a 2D convolution :

Gn[i] = cC+1
n
(
ci

nHi
)
∗ G(kn). (F-5)

Note that we also compute a supplementary coefficient αC+1
n used as a gate on the keypoints.

By setting this coefficient to zero, the de-rendering module can deactivate a keypoint (which

is redundant with deactivating the full set of coefficients for this keypoint).

Refiner Rθ – To reconstruct the target image, we channel-wise stack feature vectors from the

source with the constructed filters and feed them to the decoder CNN Rθ (Table F.5b).

We trained the de-rendering module on pairs of images (Xsource, Xtarget) randomly sam-

pled from sequences D. For a given sequence D, we take T − 25 first frames of the trajectory

as a source (where T is the number of frames in the video). The last 25 frames are used as a

target. For evaluation, we take the 25th frame as the source, and the 50th frame as the target.

We use Adam optimizer with a learning rate of 10−3, γ1 = 104 and γ2 = 10−1 to minimize

(9-4).

244

Details of model architectures Appendix for chapter 9

F.4.2 CoDy

We describe the architectural choices made in CoDy. Let

s[t] =
[
kn cn · · · kn cn

]
(F-6)

be the state representation of an image Xt, composed of the N keypoints 2D coordinates with

their C + 1 coefficients. The time derivative of each component of the state is computed via

an implicit Euler derivation scheme k̇[t] = k[t] − k[t − 1]. We use a subscript notation to

distinguish the keypoints from AB and CD.

CF estimator – The latent representation of the confounders is discovered from sAB. The graph

neural network from this module implements the message passing function gedges and the

aggregation function gnodes (see (9-5)) by a MLP with 3 hidden layers of 64 neurons and ReLU

activation unit. The resulting nodes embeddings hAB[t] = fgnn,1
(
sAB[t]

)
belong to R128. We

then apply a GRU with 2 layers and a hidden vector of size 32 to each node in hAB[t] (sharing

parameters between nodes). The last hidden vector is used as the latent representation of the

confounders z̃n.

State encoder-decoder – the state encoder is modeled as a GNN where the message passing

function and the aggregation function are MLPs with one hidden layer of 32 units. The

encoded state σCD[t] = E
(
sCD[t]

)
lies in R256. We perform dynamical prediction in this

σ space and then project back the forecasting in the keypoint space using a decoder. The

decoder ∆
(
σ[t]
)

first applies a shared GRU with one layer and a hidden vector size of 256 to

each keypoint σn[t], followed by a GNN with the same structure as the state encoder.

Dynamic system – our dynamic system forecasts the future state σ̂[t + 1] from the current

estimation σ̂[t] and the confounders z̃ = [z̃1 ... z̃N]. It first applies a GNN to the concatenated

vector [σ̂[t] z̃]. The message passing function and the aggregation function are MLPs with 3

hidden layers of 64 neurons and ReLU activation function. The resulting nodes embeddings

fgnn,2
(
σ[t]
)

belong to R64 and are fed to a GRU sharing weights among each node with 2 layers

and a hidden vector of size 64. This GRU updates the hidden vector vCD[t] = [v1 · · · vN],

that is then used to compute a displacement vector with a linear transformation:

σ̂n[t + 1] = σn[t] + Wvn[t] + b. (F-7)

CoDy is trained using Adam to minimize (9-8) (learning rate 10−4, γ3 = 1). We train

each CoDy instance by providing it with fixed keypoints states sAB[t] and the initial condition

sCD[0] computed by our trained de-rendering module. CoDy first computes the latent con-

founder representation z̃, and then projects the initial condition into the latent dynamic space

σ[0] = E
(
sCD[0]

)
. We apply the dynamic model multiple times to recursively forecast T time

steps from CD. We then apply the decoder ∆
(
σ̂[t]
)

to compute the trajectory in the keypoint

space.

245

Additional quantitative evaluation Appendix for chapter 9

F.5 Additional quantitative evaluation

F.5.1 Multi-object tracking metrics

When the number of keypoints matches the number of objects in the scene, the keypoint

detector naturally and in an unsupervised manner places keypoints near the center of mass

of each object (see Figure F.8). Leveraging this emerged property, we provide additional

empirical demonstration of the accuracy of our model by computing classical Multi-Object

Tracking (MOT) metrics. In particular, we computed the Multi-Object Tracking Precision

(MOTP) and the Multi-Object Tracking (MOTA) as described in Bernardin and Stiefelhagen

(2008).

• MOTA requires computing the number of missed objects (i.e. not tracked by a keypoint)

and the number of false positives (i.e. keypoints that do not represent an actual object).

MOTA takes values in [−1, 1], where 1 represents perfect tracking:

MOTA = 1− ∑t mt + ft + st

∑t gt
, (F-8)

where mt is the number of missed objects at time t, ft is the number of false positives at

time t, st is the number of swaps at time t, and gt is the number of objects at time t.

• MOTP is a measurement of the distance between the keypoints and the ground-truth

centers of mass conditioned on the pairing process:

MOTP =
∑i,t di

t

∑t ct
, (F-9)

where ct is the number of accurately tracked objects at time t and di
t is the distance

between the keypoint and the center of mass of the ith association {keypoints+center of

mass}.

Note that these metrics are related: low MOTP indicates that the tracked objects are

tracked precisely, and low MOTA indicates that many objects are missed. Thus, to be efficient,

a model needs to achieve both low MOTP and high MOTA.

We also reported the performances of CoPhyNet (Baradel et al., 2020) that predicts coun-

terfactual outcomes in Euclidian space using the ground-truth 3D space. As it uses ground

truth object positions during training, it is not comparable and should be considered as a soft

upper bound of our method. We present our results in Table F.6. This confirms the superiority

of our method over UV-CDN in keypoint space. The upper bound CoPhyNet takes advantage

of the non-ambiguous 3D representation modeled by the ground-truth state of the object of

the scene.

Our method also outperforms CoPhyNet on the ballsCF task, probably due to two phe-

nomena. First, ballsCF is the only 2D task of FilteredCoPhy. Thus, CoPhyNet does not have

the advantage of using ground-truth 3D positions. Second, the state-encoder in CoDy projects

246

Experiments on real-world data Appendix for chapter 9

Ours UV-CDN CoPhyNet (not comparable)

MOTA ↑ 0.46 0.16 0.44
BT-CF

MOTP ↓ 3.34 4.51 0.72

MOTA ↑ -0.07 -0.73 -0.16
B-CF

MOTP ↓ 4.64 5.83 5.10

MOTA ↑ -0.14 -0.19 0.21
C-CF

MOTP ↓ 6.35 6.35 4.37

Table F.6: MOT metrics – for different methods. While not comparable, we report the CoPhyNet

performance as a soft upper bound. Our method and UV-CDN use one keypoint per object. MOTA ↑:
higher is better; MOTP ↓: lower is better;

the 2D position of each sphere in a space where the dynamics is easier to learn, probably by

breaking the non-linearity of collisions.

F.5.2 Impact of the do-operations

We also measure the impact of the do-operation types on video forecasting. Fig. F.9 (left) is

obtained by computing PSNR for each example of the training set and reporting the result

on a 2D graph, depending on the amplitude of the displacement that characterizes the do-

operation. We applied the same method to obtain Fig.F.9 (right) that focuses on the type of

do-operation, that is moving, removing, or rotating an object. These figures are computed

using the 2K keypoints models.

Our method generalizes well across different do-operations, including both the type of

the operation and the amplitude. A key to this success is the careful design of the dataset

(balanced with respect to the types of do-operations), and a reasonable representation (our set

of keypoints and coefficients) able to detect and model each do-operation from images.

F.6 Experiments on real-world data

Our contributions are focused on the discovery of causality in physics through counterfactual

reasoning. We designed our model to solve the new benchmark and provided empirical evi-

dence that our method is well suited for modeling rigid-body physics and counterfactual rea-

soning. The following section aims to demonstrate that our approach can also be extended to

a real-world dataset. We provide qualitative results obtained on a derivative of BlocktowerCF

using real cubes tower (Lerer et al., 2016).

We refer to this dataset as Blocktower IRL. It is composed of 516 videos of wooden blocks

stacked in a stable or unstable manner. The amount of cubes in a tower varies from 2 to 4.

We aim to predict the dynamics of the tower in pixel space. This is highly related to our task

BlocktowerCF (which was inspired by the seminal work from Lerer et al. (2016)) with three

main differences: (1) the dataset shows real cube towers, (2) the problem is not counterfactual,

247

Qualitative evaluation: more visual examples Appendix for chapter 9

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

P
S

N
R

(d
B

)
BlocktowerCF

Measurements

Per bins average

Rotate Move
0

10

20

P
S

N
R

(d
B

)

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

P
S

N
R

(d
B

)

BallsCF

Measurements

Per bins average

Rotate Move
0

10

20

P
S

N
R

(d
B

)

0.2 0.4 0.6 0.8 1.0
Displacement amplitude

0

10

20

30

P
S

N
R

(d
B

)

CollisionCF

Measurements

Per bins average

Remove Move

Do-operation type

0

10

20

P
S

N
R

(d
B

)

Figure F.9: Effect of the do-operation – on the quality of the forecasted video. (left) our method

generalizes well to a wide range of "Move" operation amplitudes. (right) We observe a difference of

3dB in favor of the Move do-operation, which is unsurprising, as it is the least disturbing intervention

i.e. every cube has the same mass and (3) the dataset contains only a few videos.

To cope with the lack of data, we exploit our pre-trained models on BlocktowerCF and

fine-tune them on Blocktower IRL. The adaptation of the de-rendering module is straight-

forward: we choose the 4 keypoints-5 coefficients configuration and train the module for

image reconstruction after loading the weights from previous training on our simulated task.

CoDy, on the other hand, requires careful tuning to preserve the learned regularities from

BlocktowerCF and prevent over-fitting. Since Blocktower IRL is not counterfactual, we deacti-

vate the confounder estimator and set z̃n to vectors of ones. We also freeze the weights of the

last layers of the MLPs in the dynamic model.

To the best of our knowledge, we are the first to use this dataset for video prediction.

Lerer et al. (2016) and Wu et al. (2017a) leverage the video for stability prediction but actual

trajectory forecasting was not the main objective. To quantitatively evaluate our method, we

predict 20 frames in the future from a single image sampled in the trajectory. We measured an

average PSNR of 26.27 dB, which is of the same order of magnitude compared to the results

obtained in simulation. Figure F.10 provides a visual example of the output.

F.7 Qualitative evaluation: more visual examples

More qualitative results produced by our model on different tasks from our datasets are given

below.

248

Qualitative evaluation: more visual examples Appendix for chapter 9

G
ro

un
d

Tr
ut

h

Frame 1 Frame 3 Frame 5 Frame 9 Frame 11 Frame 16 Frame 20

Pr
ed

ic
tio

n
G

ro
un

d
Tr

ut
h

Frame 1 Frame 3 Frame 5 Frame 9 Frame 11 Frame 16 Frame 20

Pr
ed

ic
tio

n
G

ro
un

d
Tr

ut
h

Frame 1 Frame 3 Frame 5 Frame 9 Frame 11 Frame 16 Frame 20

Pr
ed

ic
tio

n

Figure F.10: Real-world dataset – We evaluate our method on a real-world dataset Blocktower IRL.

After fine-tuning, CoDy manages to accurately forecast future frames from real videos.

249

Qualitative evaluation: more visual examples Appendix for chapter 9

G
ro

un
d

Tr
ut

h

t=0 t=21 t=42 t=63 t=85 t=106 t=127 t=149

Fi
lte

re
d

C
oP

hy
(8

kp
ts

)
Ph

yD
N

et
U

V
-C

D
N

(8
kp

ts
)

Pr
ed

R
N

N
G

ro
un

d
Tr

ut
h

t=0 t=21 t=42 t=63 t=85 t=106 t=127 t=149

Fi
lte

re
d

C
oP

hy
(8

kp
ts

)
Ph

yD
N

et
U

V
-C

D
N

(8
kp

ts
)

Pr
ed

R
N

N

Figure F.11: Qualitative performance on the BlocktowerCF (BT-CF) benchmark.

250

Qualitative evaluation: more visual examples Appendix for chapter 9

G
ro

un
d

Tr
ut

h

t=0 t=21 t=42 t=63 t=85 t=106 t=127 t=149

Fi
lte

re
d

C
oP

hy
(8

kp
ts

)
Ph

yD
N

et
U

V
-C

D
N

(8
kp

ts
)

Pr
ed

R
N

N
G

ro
un

d
Tr

ut
h

t=0 t=21 t=42 t=63 t=85 t=106 t=127 t=149

Fi
lte

re
d

C
oP

hy
(8

kp
ts

)
Ph

yD
N

et
U

V
-C

D
N

(8
kp

ts
)

Pr
ed

R
N

N

Figure F.12: Qualitative performance on the BallsCF (B-CF) benchmark.

251

Qualitative evaluation: more visual examples Appendix for chapter 9

G
ro

un
d

Tr
ut

h

t=0 t=10 t=21 t=31 t=42 t=52 t=63 t=74

Fi
lte

re
d

C
oP

hy
(4

kp
ts

)
Ph

yD
N

et
U

V
-C

D
N

(4
kp

ts
)

Pr
ed

R
N

N
G

ro
un

d
Tr

ut
h

t=0 t=10 t=21 t=31 t=42 t=52 t=63 t=74

Fi
lte

re
d

C
oP

hy
(4

kp
ts

)
Ph

yD
N

et
U

V
-C

D
N

(4
kp

ts
)

Pr
ed

R
N

N

Figure F.13: Qualitative performance on the CollisionCF (C-CF) benchmark.

252

FOLIO ADMINISTRATIF

THESE DE L’INSA LYON, MEMBRE DE L’UNIVERISTE DE LYON

NOM : Janny DATE de SOUTENANCE: 16 Janvier 2023

Prénoms : Steeven

TITRE:

Identification and Simulation of Physical Systems with Structured Deep Learning and Inductive Knowledge

NATURE: Doctorat Numéro d’ordre : 2024ISAL0001

Ecole doctoral: infomath

Spécialité : informatique

Resumé : Les progrès technologiques de notre époque sont soutenus par la disponibilité croissante d’outils

numériques pour simuler, contrôler et observer les systèmes physiques. En se concentrant sur des phénomènes

de plus en plus complexes, nos outils conventionnels ne parviennent pas à répondre aux attentes croissantes des

ingénieurs, que ce soit en termes de précision ou de temps de calcul. Les approches data-driven, en particulier

les réseaux de neurones, offrent des alternatives prometteuses pour résoudre ces problèmes. Ces types de

modèles capturent des relations complexes et non linéaires dans les systèmes physiques et déplacent la charge

de modélisation vers celle de la collecte de données. Cependant, ces nouvelles méthodes sacrifient souvent les

critères de stabilité, de robustesse et de précision et plus généralement les garanties offertes par les approches

traditionnelles. Nous proposons de combiner les domaines de la physique, de l’apprentissage profond et de la

théorie du contrôle pour proposer de nouvelles méthodes hybrides, tirant parti de la puissance des réseaux de

neurones, tout en s’appuyant sur des biais inductifs issus de la physique. Ce manuscrit présente nos travaux

dans ce domaine. En particulier, il décrit des outils théoriques (abordés dans la partie 1) liés à la simulation

de systèmes dynamiques et les connecte à la conception de réseaux neuronaux. Dans un deuxième temps

(Partie 2), nous exploitons ces connaissances pour concevoir des algorithmes de contrôle et des techniques

de simulation impliquant la résolution de problèmes complexes liés aux équations aux dérivées partielles.

Enfin, dans la troisième partie, nous abordons des problèmes de simulation à plus grande échelle tels que la

dynamique des fluides et le raisonnement contrefactuel. Nos travaux ont été présentés lors de conférences

scientifiques dans le domaine de l’intelligence artificielle et de la théorie du contrôle. En construisant un pont

entre la physique et l’apprentissage automatique, nous croyons fermement que cette direction de recherche

peut contribuer à une nouvelle génération de méthodologies pour la simulation et le contrôle des systèmes

physiques.

MOTS-CLES: Deep learning, réseaux de neurones, controle, physique

Laboratoire(s) de rechercher : LIRIS, LAGEPP

Directeur de thèse :DIGNE Julie

Président du jury :

Composition du jury :

	Abstract
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	A New Hope: Data-driven models for physics and control
	The Physics Menace: Limitations of physics for models and simulations
	Control Theory Strikes Back: Theoretical tools to interact with real world
	The Return of Deep Learning: Hybrid approach to physics problems
	Attack of the Ph.D.: organization of the manuscript

	I State of the art
	General remarks
	Neural networks for system identification
	The Lord of the Physics: an introduction to dynamical systems
	One Training Method to Rule Them All
	The Fellowship of the Dynamical Systems
	The Two Approaches: hybrid models
	The Return of Physics
	Take-home messages

	Deep Learning for intuitive physics
	Learning the solution from PDE operator
	Learning the solution from sparse observations
	Learning the solver for grid-based data
	Learning the solver for mesh-based simulations
	Large scale datasets for physics
	Take-home messages

	II Foundations for Robust Simulations using Observer Theory
	General remarks
	Learning Reduced Nonlinear State-Space Models
	Context
	Problem statement and preliminary results
	Modeling and learning
	Experimental results
	Conclusion
	Post-scriptum: taking a step back

	Deep-KKL
	Context
	Prediction via embedding into an output-dependent uniform contraction
	A possible solution via KKL
	Learning KKL with deep networks
	Numerical simulations
	Conclusion
	Post-scriptum: taking a step back

	III Differential equations for simulation and control
	General remarks
	Output tracking via contraction theory
	Context
	An introduction to contraction theory
	Preliminaries
	Main results
	Simulations
	Conclusions
	Post-scriptum: taking a step back

	Space and time continuous simulation
	Context
	Continuous solutions from sparse observations
	Experimental results
	Conclusion
	Post-scriptum: taking a step back

	IV Scaling up: large-scale learning of complex physics phenomena
	General remarks
	Turbulent fluid dynamics with mesh transformers
	Context
	The Eagle dataset and benchmark
	Learning unsteady airflow
	Experiments
	Conclusion
	Post-scriptum: taking a step back

	Filtered-CoPhy
	Context
	The Filtered-CoPhy benchmark
	Unsupervised learning of counterfactual physics
	Experiments
	Conclusion
	Post-Scriptum: taking a step back

	Final remarks
	Theoretical insights for more principled models
	Physics and deep learning for robotics
	Neural simulators for faster engineering

	Bibliography

	V Appendices
	Appendix of chapter 4
	Proof of proposition 4.2
	Model details
	Dataset details

	Appendix of chapter 5
	Proof of Proposition 5.1
	Proof of Theorem 5.1
	Proof of Proposition 5.2
	Proof of Proposition 5.3

	Appendix of chapter 6
	Proof of Proposition 6.1
	Proof of Proposition 6.2
	Model details

	Appendix of chapter 7
	Proof of proposition 7.1
	Comparison of upper bounds in Proposition 7.1
	Proof of proposition 7.2
	Model description
	Baselines and datasets details
	More results

	Appendix for chapter 8
	Dataset details
	Model details
	More results

	Appendix for chapter 9
	Further details on dataset generation
	Performance evaluation of the de-rendering module
	Comparison with the Transporter baseline
	Details of model architectures
	Additional quantitative evaluation
	Experiments on real-world data
	Qualitative evaluation: more visual examples

