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RÉSUMÉ

La robotique marine a pris de plus en plus d’importance ces dernières années. Le

nombre croissant d’applications en surface et sous l’eau incite les chercheurs et les in-

génieurs à développer et à améliorer les technologies marines de pointe. La robotique

marine est la clé des futures avancées en matière d’exploration marine, de surveillance

de l’environnement, de gestion des ressources, d’énergie marine renouvelable et de

bien d’autres applications encore à découvrir. À mesure que notre compréhension des

océans s’approfondit, la demande en véhicules autonomes avancés capables d’opérer

dans ces environnements hostiles n’a jamais été aussi forte. Des applications telles que

l’inspection et la maintenance des éoliennes off-shore et des hydroliennes sous-marines

sont l’un des maillons manquants de la chaîne qui faciliterait la démocratisation de ces

technologies. La robotique marine est l’un des meilleurs candidats pour y parvenir.

Les deux principaux aspects de la robotique marine traités dans ce travail sont la

manœuvrabilité et le contrôle. Ces deux aspects apparaissent comme des points clés

pour débloquer de nouvelles applications. La question de la manœuvrabilité et de la

mobilité est essentielle pour de nombreuses applications marines. La réponse habituelle

pour augmenter la mobilité d’un véhicule est d’ajouter des moteurs.Mais, augmenter

le nombre de moteurs augmente également le coût du véhicule et ajoute du poids, ce

qui va à l’encontre de l’autonomie et de la facilité de manipulation et de déploiement.

Pour concevoir des véhicules autonomes bon marché, économes en énergie et légers,

le nombre de propulseurs doit être réduit. De nombreuses solutions existent en dehors

du contexte maritime pour augmenter le nombre de degrés de liberté actionnés d’un

véhicule sans ajouter de nouveaux actionneurs lourds. Pour les véhicules à roues, le

differential drive et les roues omni-directionnelles permettent de libérer un véhicule des

contraintes cinématiques des roues habituelles et débloquer de nouveaux degrés de

mobilité.
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Résumé Résumé

Propulsion vectorielle reconfigurable

Pour les avions et les bateaux, la solution la plus courante pour améliorer la manœu-

vrabilité d’un véhicule est la propulsion vectorielle ou reconfigurable. L’idée de la propul-

sion reconfigurable est d’ajouter un ou plusieurs actionneurs légers et des dispositifs mé-

caniques pour permettre de diriger le vecteur de poussée produit par le propulseur ou le

moteur principal. Ce type de technologie est notamment utilisé sur les avions à réaction,

dont les tuyères vectorielles augmentent considérablement les capacités. Certains sys-

tèmes de poussée vectorielle permettent même des manœuvres contre-intuitives comme

le décollage et l’atterrissage verticaux des avions à réaction.

La propulsion vectorielle est utilisée depuis de nombreuses années sur les véhicules

marins. Le moteur hors-bord orientable d’un bateau particulier est un bon exemple de

système de propulsion vectorielle. En tournant la roue, le pilote dirige le vecteur de

poussée de l’hélice par l’intermédiaire d’un système mécanique, généralement à com-

mande hydraulique. Un moteur principal et un actionneur supplémentaire (le pilote

dans cet exemple) permettent d’actionner deux des trois degrés de liberté du bateau.

Le principal avantage de ce type de technologie par rapport aux surfaces de contrôle

traditionnelles est que le vecteur de poussée (amplitude et direction) est indépendant

de la vitesse du véhicule. Cela permet une plus grande manœuvrabilité que les navires

équipés de gouvernails, par exemple.

De nombreuses technologies de propulsion reconfigurable pour les véhicules marins

autonomes suivent ce même principe. Mais, comme le montre ce travail, ces solutions

ne sont pas exemptes de défauts, surtout lorsqu’elles sont mises en place sur de pe-

tits systèmes. Le principal défaut à l’utilisation de propulseurs vectoriel posittionnés à

l’arrière du véhicule est l’apparition d’effets de couplage. Notamment, dans la majorité

des cas, ces propulseurs sont utilisés pour générer des forces transversales excentrées

créant des moments sur le corps du robot. Le plus souvent, les moments ainsi générés

sont utilisés comme variable d’entrée dans le contrôle des véhicules mais les effets de

forces transversaux sont négligés. La robustesse naturelle du véhicule aux perturbations

de force en embardée et en pilonnement est alors mise en jeu. Sur des gros véhicules

dont la coque est optimisée pour favoriser les mouvements d’avance et de rotation,

les effets de force latérale sont principalement amortis. En revanche, sur de plus petits

véhicules ayant des formes moins optimales (cylindrique ou sphérique par exemple), la

stabilité naturelle en embardée et en pilonnement peut ne pas être assez robuste pour

iv Version du October 11, 2023
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encaisser et amortir les effets des forces perturbatrices. Dans ce cas, les propulseurs re-

configurables conventionnels ne sont pas indiqués car bien que la stabilité du système

puissent être démontrée mathématiquement, ils sont susceptibles de créer eds com-

portements oscillants ou perturbés. Des essais en simulations montrent que ces effets

de force perturbateurs peuvent empêcher le véhicule de remplir sa mission.

La preuve de concept d’une nouvelle solution est donc proposée dans ce travail

et mise en pratique sur un nouveau robot : PlaSMAR. L’idée est d’avoir des paires de

propulseurs parallèles se déplaçant et tournant autour de la coque du véhicule. L’effet

combiné des deux propulseurs est contrôlé pour générer soit une force orientable et

un moment stationnaire, soit pour diriger l’axe d’un moment avec une force constante.

Étant donné que les propulseurs sont manipulés par paires parallèles, aucun effet de

couplage n’est créé.

Le robot PlaSMAR est présenté comme une preuve de concept de cette nouvelle

solution propulsive. L’étude de la matrice de configuration de propulsion (TCM) cor-

respondant à deux configurations possible de PlaSMAR et les résultats de simulation

exposés dans ce travail montrent que l’anneau rotatif permet effectivement d’ajouter un

nouveau DOF au véhicule sans créer de nouveau effets de couplage perturbateur. Ce

nouveau concept de reconfiguration semble donc être une solution mieux adaptée aux

petits véhicules.

Les deux configurations de PlaSMAR présentées apportent de nouvelles solutions

aux problèmes traditionnels de contrôle des véhicules sous-marins. La première con-

figuration ajoute un nouveau degré de liberté actionné et indépendant des autres :

l’embardée. Elle facilite les tâches de suivi de position.

La deuxième configuration permet d’actionner le tangage. Dans ce cas, ce nouveau

degré de liberté peut être utilisé soit en tant que tel, pour générer un moment de tan-

gage sur le véhicule, soit pour compenser l’angle de roulis du véhicule et maintenir les

propulseurs montés sur l’anneau dans le plan horizontal du repère inertiel. Ces deux

solutions améliorent les performances du véhicule pour les tâches présentées ici. Il faut

aussi noter que l’anneau rotatif arrière avec deux propulseurs permet de reproduire

l’actionnement en cavalement, tangage et lacet utilisé sur de nombreux véhicules sous-

marins habituels.

Cette nouvelle technologie fera l’objet d’études plus approfondies. En particulier,

l’actionnement de l’anneau rotatif n’a pas encore été réglé. De même, l’opération d’allocation

des poussées n’est pas triviale sur ce système. Une première solution est néanmoins

v Version du October 11, 2023



Résumé Résumé

présentée facilitant le contrôle. Cette solution ne prend pas en compte la dynamique

de l’anneau ni celle des propulseurs. Des travaux supplémentaires sur l’hélice et la dy-

namique de reconfiguration sont nécessaires pour optimiser la répartition. L’un des axes

à étudier est l’extension du modèle du système pour introduire le modèle de l’anneau.

Ainsi, l’entrée du système ne sera plus uniquement le vecteur d’efforts appliqués au

robot mais un vecteur contenant les poussées des propulseurs et l’angle du ou des an-

neaux rotatifs.

Commande

Le deuxième levier pour augmenter la maniabilité des systèmes robotiques marins

est l’association de la commande et du guidage. De manière générale, la commande

fait référence à l’ensemble des lois et des calculs utilisés pour calculer les entrées d’un

système pour qu’il suive une tâche donnée. Sur les véhicules marins, les entrées sont

généralement les forces générées par les propulseurs et les angles des éventuelles sur-

faces de contrôle ou des systèmes de propulsion vectorielle. Des calculs basés sur le

modèle cinématique et dynamique du véhicule sont alors effectués et optimisés pour

accomplir au mieux la tâche. La plupart des contrôleurs utilisés dans ce travail suiv-

ent l’approche basée modèle et supposent que l’état du véhicule et son modèle sont

parfaitement mesurés. Il s’agit de deux hypothèses fortes mais nécessaires. L’estimation

du modèle d’un véhicule marin et la mesure de son état sous l’eau sont deux sujets de

recherche en cours. Pour que ces hypothèses soient raisonnables, les contrôleurs sont

conçus pour être aussi robustes que possible vis-à-vis des approximations du modèle,

des incertitudes, des perturbations et des erreurs de mesure.

Les contrôleurs sont associés à des principes de guidage transformant la tâche en

références que le véhicule peut suivre. Hérités de la tradition navale, les algorithmes

de guidage permettent par exemple de transformer une coordonnée géographiques en

références d’avance et de cap pour la vaisseau. Ces références sont ensuite utilisées dans

le contrôleur et le système est asservi dessus.

La solution la plus répandue pour le guidage est le guidage par Ligne de vue (LOS). La

ligne de vue reproduit le comportement d’un capitaine expérimenté. Le principe est de

pointer le véhicule vers une cible éloignée, un point de passage, et d’avancer tout droit

dans sa direction. Ce comportement a été étendu au scénario de suivi de chemin où, au

lieu de pointer directement vers le prochain point de passage, le véhicule est asservi sur
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un chemin reliant deux points consécutifs. Il est donc pointé vers un point se déplaçant

sur le chemin et donc l’évolution peut faire partie des variables du contrôle. Suivant

l’héritage naval, la LOS est notamment adaptée au contrôle de véhicules actionnés en

cavale en lacet en surface ou en cavalement, en tangage et en lacet sous l’eau. C’est la

méthode la plus utilisée dans la recherche et l’industrie. Elle couvre facilement la ma-

jorité des tâches de suivi de chemin à grande échelle mais elle est moins adaptée aux

tâche de suivi de trajectoire ou aux systèmes ayant des configurations d’actionnement

différentes. Les références générées par le guidage en LOS sont ensuite fournies à un

contrôleur, le plus souvent basé sur un PID. Les modèles des véhicules marins étant non-

linéaires, les correcteurs PID sont souvent associés à des mécanismes de linéarisation.

L’intérêt de cette procédure est d’annuler les termes non-linéaires du modèle dans la

boucle fermée pour faciliter l’action du PID. Plusieurs méthodes existent utilisant soit

les valeurs courantes des termes non-linéaires du modèle, soit des valeurs nominales

désirées soit encore une association de termes courants et nominaux. Dans tous les cas,

les termes non-linéaires de la boucle fermée sont annulé au voisinage de la trajectoire.

Quand le véhicule s’écarte trop de la trajectoire en revanche les termes d’anticipations

peuvent être déstabilisant. Dans les cas sous-actionnés où la LOS ne peut pas être util-

isée, des mécanismes de guidage doivent être ajoutés. Deux solutions sont mises en

avant dans ce travail. La première consiste à réduire l’espace de travail de manière à

créer de nouvelles relations non-diagonales entre les degrés de libertés sollicités dans la

tâche et les degrés de liberté du robot. La seconde, détaillée ci-après, consiste à intro-

duire une matrice de guidage cinématique non-diagonale notée H qui permet de con-

trôler certains degrés de liberté non-actionnés au travers des couplages cinématiques.

Le troisième type de contrôleur le plus commun en robotique marine est le contrôleur

par mode glissant (SMC). L’avantage du SMC dans le cas des véhicules sous-actionnés

est qu’il permet facilement d’intégrer le guidage au contrôle. En effet, par construction

du contrôleur, il est possible de calculer les surface de glissement utilisées pour calculer

l’entrée sur un degré de liberté à partir des signaux d’erreur d’un autre degré de liberté.

Ce faisant, la construction même du contrôleur intègre des relations non-diagonales

qui permettent de contrôler un degré de liberté non actionné au travers des couplages

dynamiques du systèmes.

La première solution proposée introduit un nouveau principe de guidage cinéma-

tique basé sur le modèle. Le principe de cette méthode est relativement simple. Un

point traquant est introduit sur le véhicule. Ce point peut représenter le point focal
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d’une caméra ou le point d’action d’un effecteur. C’est ce point qui sera asservi sur la

trajectoire à la place du centre du repère mobile traditionnellement utilisé. Ce point in-

troduit de nouvelles relations cinématiques dans le modèles. En particulier, les vitesses

linéaires en ce point sont en fait des fonctions de vitesses linéaires et angulaires du cen-

tre du véhicule par effet de levier. Étant donné que la plupart des véhicules marins sont

actionnés en rotation par simplicité mais sont utilisés sur des tâches où le contrôle de

la position est primordial, ces nouvelles relations sont particulièrement intéressantes.

L’idée est donc de calculer des références de vitesses angulaires au centre du repère

mobile du véhicule permettant de générer les vitesses linéaires demandées par la tâche

au point traquant. Pour ce faire, une matrice de gain non diagonale basée sur le modèle

cinématique du véhicule est introduite : H.

L’avantage majeur de cette méthode est que le comportement du point traquant dans

le repère inertiel peut être choisi exactement bien que les translations du véhicules ne

soient pas actionnées directement. Le contrôleur peut donc être utilisé pour permettre

à des véhicules sous-actionnés par rapport à une tâche de suivi de position de la rem-

plir. Il est notamment appliqué sur des scénarios de suivi de trajectoire et de suivi de

chemin. En suivi de trajectoire, la tâche est définie en terme de position, de vitesse et

d’accélération et est contrainte temporellement. En suivi de chemin, le véhicule suit une

route entre des points de passage sans contrainte temporel. Le premier scénario permet

des applications à petite échelle mais de grande précision alors que le deuxième est

plutôt adapté à des applications de grande échelle où la composante temporelle et le

comportement du véhicule entre les points de passage ne sont pas prioritaires.

Les résultats de simulation montre que le contrôleur donne de très bons résultats

sur les tâches auxquelles il est soumis. Notamment, il permet de contrôler le robot

RSM actionné en cavalement, pilonnement, roulis et lacet sur des tâches sollicitant les

trois translations et le cap. Le contrôleur permet d’exploiter le roulis du véhicule qui

n’est pas requis dans la tâche pour compenser par le guidage l’absence d’actionnement

en embardée. Il fourni en fait plusieurs solutions, une ou le roulis est utilisé pour la

compensation et une ou c’est le lacet qui est utilisé. Bien que semblant plus naturelle,

cette deuxième solution montre de moins bonnes performances sur les tâches testées. En

effet, le degré de liberté utilisé pour la compensation ne peut pas être contrôlé. Le lacet

étant principalement utilisé pour contrôlé le cap du véhicule dans le repère inertiel, il

est perdu s’il est utilisé pour la compensation et la tâche ne peut pas être complètement

remplie.
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Le deuxième cas d’application intéressant de ce contrôleur est le contrpole du robot

Remus100 sur une application de suivi de chemin. Le robot Remus100 est représentatif

de la principale classe de robots sous-marins: les robots torpilles actionnés en cavale-

ment, tangage et lacet. Ces véhicules sont traditionnellement utilisés sur des tâches de

grande échelle où ils suivent des chemins définis en position. Le contrôleur basé sur la

matrice H a donc été appliqué au robot Remus100 sur l’une de ces tâches. Les résultats

de simulation montre que malgré les limitations de rayons de braquage et de variations

de vitesse de ce genre de véhicule, la tâche est parfaitement remplie. En fait, ce cas per-

met de montrer que ce nouveau principe de guidage permet de choisir facilement une

solution pour le problème de suivi de particule. Ce problème est représentatif à la fois

d’une problématique de suivi de chemin et de problématiques de type leader/follower.
Le contrôleur pourrait par exemple être utilisé pour asservir un robot (follower) sur un

autre système remplissant une tâche quelconque (follower). La démonstration de sta-

bilité basée sur le critère de Lyapunov et obtenue par back-stepping est donnée dans ce

travail.

Une deuxième solution mêlant guidage et contrôle est aussi présentée. Cette solution

s’appuie sur le concept de la platitude différentielle. La platitude est une caractéristique

inhérente d’un système qui permet d’établir une loi de contrôle basée modèle qui a été

démontrée comme étant particulièrement robuste aux approximations de modèle et aux

bruits de mesures. La platitude s’apparente à la notion de commandabilité d’un système

linéaire mais pour les systèmes non-linéaire. La platitude semble donc tout indiquée

pour le contrôle des véhicules marins et sous-marins.

Pour construire un contrôlé basé sur la platitude, il faut d’abord montrer que le sys-

tème à contrôler est plat. Un système plat est un système dont l’ensemble des variables

(état et entrées) peut être exprimé comme un ensemble de fonctions d’une sortie par-

ticulière nommé la sortie plate (et de ces dérivés) sans n’avoir à exprimer d’équation

différentielle. Les équations de la platitude représentant les variables du système en

fonction de la sortie plate sont utilisées pour établir un contrôleur basé modèle du sys-

tème. Elles permettent aussi de calculer des valeurs désirées ou nominales des variables

du systèmes utilisées dans le contrôleur pour la linéarisation.

Plusieurs exemples de la littérature montrent que le modèle représentant un vaisseau

de surface n’est pas naturellement plat. Les termes de couplage de masses ajoutées et

de frottement introduisent des couplages dynamiques dans le modèle qui empêchent de

montrer la platitude. En revanche, un cas simplifié du vaisseau de surface, l’Hovercraft,
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a une forme circulaire et une répartition de masse homogène qui permettent de montrer

la platitude. L’idée est donc d’établir un contrôleur basé sur la platitude en utilisant le

modèle de l’hovercraft puis de l’appliquer au modèle générique du vaisseau de surface

en utilisant les propriétés naturelles de robustesse de la platitude.

Les résultats de simulation présentés dans ce travail montrent que le contrôleur

calculé en passant par le modèle simplifié de l’hovercraft se comporte aussi bien sur

l’hovercraft que sur le vaisseau de surface. Les performances de suivi de trajectoire dans

le cas sans courant sont presque parfaites tant que le véhicules reste à proximité de la

trajectoire. En revanche, et c’est une des faiblesse majeure du contrôle par platitude

et par linéarisation par feedforward en général, quand le système s’écarte trop de la

trajectoire désirée, la stabilité n’est plus assurée. En effet, comme les valeurs nominales

des variables du modèle sont utilisées dans le contrôleur, les termes non-linéaires du

systèmes dans la boucle fermée s’annule quand le système est au voisinage de la tra-

jectoire mais deviennent de plus en plus important quand il s’en écarte. Aussi, bien

que la platitude soit particulièrement robuste aux approximations de modèle, quand le

véhicule simulé est très éloigné des hypothèses de forme et de distribution de masse

de l’hovercraft (s’il est particulièrement plus long que marge par exemple) et qu’il est

soumis à des perturbations comme un courant marin, le contrôleur atteint sa limite et

peut diverger. Pour corriger ces deux écueils, la contrôle basé sur la platitude est associé

à un contrôleur proportionnel dérivé intelligent (iPD).

Le iPD est un contrôleur adaptatif basé sur le PID. Il contient une fonction d’adaptation,

en général basé sur les filtres dit ALIEN, qui estime à chaque échantillon les perturba-

tions auxquelles le système est soumis sans les différencier. Tous les effets perturbateurs

sont regroupés en une seule valeur ou un seul vecteur. Le contrôleur est calculé en util-

isant un modèle linéaire dit ultra-local représentant le système pendant un très court

instant. Le iPD est mis en avant comme étant une solution générale pour remplacer les

correcteurs basés PID .

Ici, le iPD est calculé sur le système représentant la différence entre la commande du

système et la commande nominale calculée par la platitude. Il compense les comporte-

ments problématiques du contrôleur basé sur la platitude quand le système est trop loin

de la trajectoire ou que les différences entre le modèle réel et le modèle de l’hovercraft

sont trop grandes. Les performances du correcteurs associant platitude et iPD sont dé-

montrées en simulation. L’ajout du iPD permet effectivement d’assurer la stabilité du

système même quand il s’éloigne de la trajectoire. Le iPD permet aussi d’estimer et
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d’annuler les effets non modélisés dus aux différences de modèle et aux perturbations

extérieures augmentant ainsi la robustesse du contrôleur de départ.

Jusqu’à présent, le contrôleur basé sur la platitude avec le iPD n’a été appliqué

qu’aux vaisseaux de surface. Des travaux supplémentaires permettront assez facilement

de l’appliquer au modèle du véhicule sous-marin. Considérant les résultats prometteurs

sur le vaisseau de surface, le contrôleur semble adapté à la commande des véhicules

sous-marins actionnés en cavalement, tangage et lacet pour des tâches de suivi de tra-

jectoires en position.

Conclusion

Ce travail s’inscrit à la suite d’une longue série de travaux sur la conception et le

contrôle des véhicules marins. De nombreux types de lois de contrôle et de principes

de guidage pour les véhicules de surface et sous-marins ont été introduits et étudiés en

détail. Toutes les solutions issues de la littérature montrent des performances théoriques

équivalentes. Elles garantissent toutes la stabilité globale ou semi-globale du système,

même en présence de perturbations externes et de mesures bruitées.

Des travaux supplémentaires seront nécessaires pour comparer concrètement les dif-

férentes méthodes, à la fois sur le plan mathématique et sur des véhicules expérimen-

taux. Il est très difficile de classer les méthodes car leurs performances dépendront

probablement du système lui-même. D’autres paramètres devront être pris en compte,

comme le temps de calcul, les effets de l’échantillonnage numérique ou l’impact de

mesures de mauvaise qualité.

Un nouveau principe de guidage cinématique basé sur la matrice pratique H est

introduit. Ce nouveau principe permet de contrôler un véhicule sous-actionné ou mal

actionné en utilisant les couplages cinématiques entre une translation non actionnée

et une rotation actionnée. La commande est asymptotiquement stable et robuste aux

perturbations externes et aux bruits de mesure. Elle est facilement étendue à d’autres

types de systèmes grâce aux règles de conception et à l’algorithme de calcul de la matrice

fournis. Ces résultats permettent également d’évaluer les capacités d’un AUV donné et

de déterminer les tâches pour lesquelles il est adapté.

Le contrôleur a été appliqué avec succès dans des scénarios de suivi de trajectoire

et de suivi de chemin. Le suivi de trajectoire a été effectué sur le Remus100, un AUV

représentant la classe des navires uqr en forme de torpille. Le contrôleur basé sur la
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matriceH permet de résoudre le problème de suivi de trajectoire de plusieurs manières.

L’utilisation du contrôleur basé sur la matrice H permet de choisir avec précision le

comportement du point de suivi du véhicule. Dans le cas du suivi de trajectoire, par

exemple, il permet de trouver des solutions simples basées sur le PID pour le critère

de stabilité de Lyapunov. Dans de futurs travaux, le contrôleur pourra être utilisé dans

d’autres applications du back-stepping pour accomplir différents types de tâches.

L’application du contrôleur à un véhicule physique serait utile pour évaluer ses per-

formances en conditions réelles. Il est notamment très difficile d’anticiper le comporte-

ment de la loi de contrôle en ce qui concerne l’échantillonnage numérique, la latence

du calculateur embarqué ou des erreurs de mesure irrégulières.

Un contrôleur basé sur la platitude a également été développé dans le cas simple

des navires de surface. Le contrôle basé sur la platitude semble être un concurrent de

taille pour le contrôle des véhicules marins car il s’avère très robuste à l’approximation

du modèle et aux perturbations externes. Dans ce travail, un contrôleur basé sur la

platitude a été calculé pour les navires de surface en utilisant le modèle simplifié de

l’hovercraft. Le contrôleur a été développé dans l’hypothèse d’une forme de coque cir-

culaire et d’une distribution uniforme de la masse, mais il a été appliqué avec succès à

un navire de surface générique.

Le contrôleur basé sur la platitude comprend naturellement un principe de guidage.

Il permet de calculer une force de poussée et un moment de lacet à partir de deux

signaux de position. Les équations de platitude obtenues dans cet exemple pourraient

également être utilisées comme principe de guidage avec un autre type de contrôleur.

Pour accroître la robustesse et contrecarrer le comportement potentiellement prob-

lématique de la commande basée sur la platitude quand le système s’éloigne de la tra-

jectoire souhaitée, le contrôleur a été associée à un correcteur proportionnel dérivé

intelligent. L’iPD augmente la robustesse déjà impressionnante du contrôleur basé sur

la platitude et résout efficacement les problèmes causés par la linéarisation par antic-

ipation lorsque le véhicule se trouve en dehors de la limite acceptable autour de la

trajectoire souhaitée. Le contrôleur combiné est stable et résistant aux perturbations

externes et aux bruit de mesure.

Enfin, de nouveaux résultats sur la poussée vectorielle appliquée aux véhicules légers

ont été présentés. Des simulations ont notamment été menées pour montrer que l’utilisation

de propulseurs vectoriels excentrés n’est pas adaptée à tous les types de véhicules.

Bien qu’ils soient naturellement bornés, les effets de force de couplage générés par les
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propulseurs vectoriels peuvent compromettre la mission des véhicules trop légers ou des

véhicules qui n’ont pas de résistance naturelle aux perturbations en force transversale.

Un nouveau mode de propulsion vectorielle pour les véhicules sous-marins autonomes

a également été présenté. Alors que les propulseurs vectoriels sont généralement util-

isés pour contrôler les moments par le biais de couplages dynamiques, les résultats de

simulation montrent qu’ils peuvent également être utilisés pour contrôler les forces.

Ce nouveau mode de contrôle en force s’avère particulièrement utile pour les missions

où le contrôle en moment n’est naturellement pas adapté. C’est notamment le cas des

missions autonomes d’amarrage ou de vol stationnaire

La preuve de concept d’un nouveau type de système de poussée vectorielle a égale-

ment été proposée. Le nouveau système repose sur des paires de propulseurs parallèles

montés sur un anneau capable de tourner autour de sections cylindriques de la coque

d’un véhicule. Ce mouvement de rotation peut être utilisé pour diriger le vecteur de

force généré par la paire de propulseurs tout en maintenant un axe de moment station-

naire. Lorsque les propulseurs sont alignés sur l’axe de rotation de l’anneau, il est pos-

sible de diriger l’axe du moment généré par la paire de propulseurs tout en maintenant

le vecteur de force aligné sur le corps du véhicule. Il est démontré que ce deuxième

mode débloque aussi un nouveau DOF pour le véhicule et permet de compenser les

perturbations dues au roulis.

La prochaine étape consiste à concevoir et à construire une deuxième version de la

plateforme d’essai et à étudier les solutions possibles pour l’actionnement de l’anneau.

Des couplages magnétiques optimisés seront étudiés car ils permettraient de piloter la

rotation de l’anneau depuis l’intérieur de la coque, ce qui éviterait de percer des trous

dans la coque.

D’autres travaux seront menés sur le contrôleur de ce véhicule. Un contrôleur prenant

en compte la dynamique de l’anneau serait intéressant et pourrait s’avérer nécessaire.

Le modèle du véhicule devrait être étendu pour prendre en compte le comportement

de l’anneau et inclure l’angle de l’anneau comme nouvelle entrée de commande. De

même, des recherches supplémentaires sur l’optimisation de la procédure d’attribution

sont nécessaires pour améliorer les performances.

Dans l’ensemble, ce travail propose plusieurs solutions pour accroître la manœuvra-

bilité des embarcations marines sous-actionnées grâce à la commande et à de nouvelles

conceptions mécaniques.
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INTRODUCTION

Marine robotics, has gained increasing significance in recent years. The rapidly grow-

ing number of surface and underwater applications boosts both researchers and engi-

neers to develop and enhance cutting-edge marine technologies. Marine robotics is the

key to breakthroughs marine exploration, environmental monitoring, resource manage-

ment, marine renewable energy and so many more applications yet to discover. As our

understanding of the world’s oceans deepens, the demand for advanced autonomous

vehicles capable of operating in these harsh and remote environments has never been

greater.

Since the early years of the cold war, military researchers all over the world saw in

marine robotics an opportunity to extend their control over the seas. Cold war years

saw some of the first autonomous marine systems both on the surface and underwater.

Inheritance from these early works still shows to this day in the technologies, shapes,

approaches and methods used in marine robotics.

Nowadays, marine robotics also appears as an essential tool for green energy produc-

tion, observation and protection of marine environments. Applications like inspection

and maintenance of off-shore wind turbines and underwater tidal turbines are one of

the missing chain link that would facilitate the democratization of these technologies.

Marine robotics is one of the best candidates to fulfill them.

The recent effort to improve our knowledge of the marine environments also raises

a new class of applications for marine robotics. Cutting-edge autonomous and remotely

operated vehicles are at work all around the globe to observe, measure and sometimes

reconstruct the underwater world. Majors actors of research and industry keep devel-

oping new marine vehicle. This is notably the case of Ifremer 1 with the Ulyx shown on

figure 1a and designed for medium range underwater mapping applications. Another

example is the Auto-Hover 1 which recently joined the largest fleet of autonomous vehi-

cles in Europe at the National Oceanography Center in UK and shown on figure 1b.

The main two aspects of marine robotics treated in this work are maneuverability

and control. Both are believed to be key points to unlock new applications. The matter

1. Institut Français de recherche pour l’exploitation de la mer, France
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Chapter 0 – Introduction

(a) Ulyx (Credit : IFREMER/ECA) (b) Auto-Hover 1 (Credit: NOC)

Figure 1 – Examples of recent AUVs

of maneuverability and mobility is essential for many marine applications. The usual

answer to increasing the mobility of a vehicle is to add more motors. Increasing the

number of thrusters also increases the cost of the vehicle and adds weight which goes

against autonomy and ease of handling and deployment. In order to design cheap,

energy-efficient and lightweight autonomous vehicles, the number of thrusters must be

kept low. Many solutions exist outside of the marine context to increase the number of

actuated degrees of freedom of a vehicle without adding new heavy-weight actuators.

For wheeled vehicles, differential drive and omni-directional or mecanum wheels appear

as a good solution to free a vehicle from the kinematic constraints of usual wheels and

unlock new degrees of mobility as on the Uranus robot [124] displayed on figure 2.

Mecanum wheels are notably used in warehouse applications where fast, precise and

mobile vehicles are needed.

For planes and boats, the most common solution to increase the maneuverability of

a vehicle is thrust vectoring. The idea of vector thrust is to add one or several lightweight

actuators and mechanical contraptions to allow directing the thrust vector produced by

the main thruster or engine. This kind of technology is notably used on jet planes where

vectoring nozzles drastically increase their capabilities. Some vector thrust systems even

allow vertical take off and landing of jet planes like the one shown on figure 3.

Thrust vectoring has been used for years on marine vehicles. The off-board steerable

engine of a common boat is a good example of vector thrust system. When turning

the wheel, the pilot directs the thrust vector of the propeller through a mechanical

system, usually hydraulically driven. One main engine and a lightweight actuator (the

pilot in this example) allow actuating two of the three degrees of freedom of the boat.

The main advantage of this type of technology over the traditional control surfaces is

that the thrust vector (magnitude and direction) is independent from the speed of the
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Figure 2 – The Uranus omni-directional mobile robot.

Figure 3 – A vertical take-off and landing nozzle for jet planes.
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(a) 3-D render of the PlaSMAR robot.
(b) Schematics of the reconfiguration ring

principle.

Figure 4 – Proof of concept of the new vectoring thrust system : the PlaSMAR robot.

vehicle, allowing much greater maneuverability than ships with rudders for instance.

Many thrust vectoring technologies have been developed over the years for surface

and underwater autonomous vessels [43]. These solutions opened new applications for

small and lightweight vehicles. Some of these solutions are displayed and used in this

work. Most of them consists in having one main thruster or propeller directed using one

or two additional lightweight actuators, effectively increasing the number of actuated

degrees of freedom of a single thruster to two or three. But, as shown in this work,

these solutions are not without flaws and especially when working on small vehicles.

The proof of concept to a new solution is then exposed in this work. This new solution

consists in having pairs of parallel thrusters moving around the hull of the vehicle. The

combined effect of the two thrusters is controlled to generate either a steerable force

and a stationary moment or to direct the axis of a moment with a steady force. A 3-

D render of the vehicle designed with technology can be seen on figure 4 along with

schematics of the principle. The new solutions is applied in simulation for trajectory

tracking and shown to effectively increase the capabilities of the vehicle on common

tasks.

While this work mainly focuses on conventional propulsive technologies with thrusters

with propellers, more and more alternatives propulsive technologies appear. Notably,

bio-mimetic vehicles taking the shape of fish or turtles can be found in the literature

and show promising mobility capacities [18, 180, 143]. The design and control of this

new class of vehicles represent a whole new challenge.
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The second lever to increase the maneuverability of marine robotic systems is con-
trol. Broadly, control refers to the ensemble of laws and calculations used to calculate

the forces and moments required for a system to follow a given task. On marine craft,

the control inputs are usually the forces generated by the thrusters and the angles of

possible control surfaces or vectoring thrust systems. Calculations based on the kine-

matic and dynamic model of the vehicle are then performed and optimized to perform

the task at best. Most of the controllers used in this work follow the model-based ap-

proach and assume that the state of the vehicle and its model are thoroughly measured.

These are two strong but necessary hypotheses. Estimating the model of a marine ve-

hicle and measuring its state underwater are two ongoing research subjects. To make

these hypotheses sensible, the controllers are designed to be as robust as possible w.r.t.

model approximations, uncertainties, disturbances and measurement errors. In marine

robotics, and especially with poorly actuated vehicles, controllers are associated with

guidance principles transforming the task into references that the vehicle can track.

After an in-depth study of the solutions proposed in the literature, two new control

methods are proposed. These two new solutions blend guidance and control together.

The first solution is a model-based kinematic guidance principle and dynamic controller

based on a non-diagonal gain matrix denoted H. This controller is used in simulation

on underactuated vehicles to perform path following and trajectory tracking tasks. The

second controller is based on differential flatness. This controller has in facts been de-

veloped on a simple surface vessel, the hovercraft system, but is shown to be applicable

to most surface vehicles.

Overall, the controllers designed in this work are shown to increase the capabilities

of underactuated systems. They unlock new tasks and behaviors for these vehicles and

are believed to be a significant step ahead for marine robotics.

This manuscript is organized as follows. First, the model used to described the ve-

hicles is explained in details along some remarks on the simulator developed for this

work. Then, a bibliographical review of existing guidance methods and control princi-

ples is proposed. In the third chapter, the new kinematic guidance principle is described

along several simulation results showing its capacities. Then, the flatness-based con-

troller is detailed. Finally, the new vectoring thrust principle is presented with some

additional results on reconfigurable thrust and illustrated through simulations of the

PlaSMAR AUV.
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MODELING AND TASK DESCRIPTION
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This chapter introduces the model used in this work to describe the behavior of a

marine craft in its environment. The modeling of marine craft has received a lot of

attention over more than a century. While the first studies on the motion of solid bodies

through fluids can be found in ancient Greece, the work of Sir Horace Lamb in 1879

[101] is often cited as one of the first modern studies on the topic. The cold war years

saw a great amount of work produced on the modeling of submarines in the U.S. and
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notably the work of Imlay in the 60s [89]. About thirsty years later, the modeling of

marine vehicles is popularized among the robotics community by the work of Fossen

[63, 65, 64] which is the main reference used for modeling in the present work as in

many other underwater robotics publications. The recent work of Antonelli [8] as also

been a great inspiration for this work.

The goal of this chapter is to settle on the model and hypotheses used throughout

this work for the modeling of the vehicles. It is not meant to give new results on the

pure modeling. Nonetheless, some remarks on design and modeling choices are made

in this chapter. It is very important to settle on a realistic and effective model for the

system as it will later be used as a base for control algorithms in numerical simulations.

The model presented in this chapter is in six dimensions and represents both surface

and underwater vehicles. In this work, surface vehicles are considered as a reduction

of the underwater case to the horizontal plane, therefore neglecting some of the rota-

tions happening outside of the plane (roll and pitch). As will be seen in the following

examples, it is common practice to neglect some rotational effects of the model if the

associated restoring torques are considered large enough to maintain the vehicle in an

almost horizontal position or to neglect uncontrolled yet stable DOF.

This chapter also redefines the notion of task. It introduces a different understanding

of the tasks based on the trajectory, constraints and environmental disturbances. This

definition is used to define the requirements of a task in terms of actuated DOF or

natural dynamic of the vehicle. It also introduces the different scenarios dictating the

time constraints of the task.

1.1 Modeling of Marine Vehicles

1.1.1 Framework

Before introducing the model equations, it is mandatory to define the frames used

in this work. The most common approach is to define two frames R0and RB:

— R0(O,x0,y0, z0) is the inertial, North-East-Down (NED) frame

— RB(OB,xB,yB, zB) is a body-fixed frame

The origin of the body-fixed frame is usually chosen at the center of buoyancy of the

vehicle PB but can, in-facts, be chosen anywhere on the vehicle. The xB axis of the

mobile frame is most often aligned with the axis of greatest length of the vehicle.
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O

x0 y0

z0

OB

xB
Surge

yB
Sway

Pitch

zB Heave

Yaw

Roll

η1

Figure 1.1 – Representation of the R0and RBframes.

A third frame Rp(Op,xp,yp, zp) is introduced as it can be useful in some control

applications: the path-fixed frame. This third frame will be redefined when used in the

following examples of this work but it can be seen as a Serret-Frenet frame, centered on

a virtual particle on the desired path, generally with xp tangent to the path. The particle

is associated with a propagation function disctating its behavior on the path. As will be

seen later in this work, the propagation function can be parameterized and optimized

in control applications.

The position of the vehicle in R0is denoted by the vector η1 = [x y z]⊤ and the

orientation of the vehicle is given in the Roll-Pitch-Yaw convention and denoted η2 =
[ϕ θ ψ]⊤. The position and orientation of the vehicle are regrouped in the vector η =
[η⊤

1 η⊤
2 ].

Remark 1.1 The Euler (ZYX) angle convention used to represent the orientation of the
body-fixed frame is known to be singular in θ = ±π/2. This singularity notably appears in
the definition of the transformation matrix J(η) (See section 1.1.2). To avoid the singular
point, a quaternion representation can be used and is given in [63, 8]. In this work, the
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Translations along axis Rotations around axis

Axis Notation Name Axis Notation Name

xB u Surge xB p Roll

yB v Sway yB q Pitch

zB w Heave zB r Yaw

Table 1.1 – Usual names and notations for the motion
of the marine craft (SNAME 1950)

Euler angle representation will be kept as much as possible as it is believed to be a more
natural representation of the orientation of the vehicle. This is a sensible choice considering
that most vehicles are naturally stabilized in the horizontal plane, only few applications
in the literature require the vehicle to go perfectly vertical and that none of the scenarios
described in this work do so. For applications operating close to the singular attitude, a
quaternion approach is advised and some examples presented later in this work use it.

1.1.2 Kinematic Model

The velocity of the vehicle with respect to the inertial frame and expressed in the

body-fixed frame is given by the vector ν = [ν⊤
1 ν⊤

2 ] where ν1 = [u v w]⊤ is the vector

of linear velocity of point OB w.r.t. the earth-fixed frame and expressed in RB and

ν2 = [p q r]⊤ is the vector of angular velocity of the mobile frame RB. The standard

notation for the motions of the vehicle are given in Table 1.1, the SNAME 1 notation for

marine vessels will be used as much as possible in this work.

The kinematic model of the vehicle is given by the velocity transformation:

η̇ = J(η)ν (1.1)

1. Society of Naval Architects and Marine Engineers
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where J(η) is the transformation matrix defined as:

J(η) =

J1(η) 0

0 J2(η)

 (1.2a)

J1(η) = R(x0, ϕ)R(y0, θ)R(z0, ψ) (1.2b)

=


1 0 0

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) cos(ϕ)




cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)




cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1



=


cosψ cos θ − sinψ cosϕ+ cosψ sin θ sinϕ sinψ sinϕ+ cosψ cosϕ sin θ

sinψ cos θ cosψ cosϕ+ sinϕ sin θ sinψ − cosψ sinϕ+ sin θ sinψ cosϕ

− sin θ cos θ sinϕ cos θ cosϕ



J2(η) =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ/ cos θ cosϕ/ cos θ

 (1.2c)

In equation (1.1), R(i, j) denotes the rotation matrix of angle j around axis i. More

details about the calculations used to establish J2(η) can be found in [63]. As remarked

before, equation (1.2c) shows a singularity in θ = ±π/2 because of the Euler angle

representation. Quaternion alternative to J(η) can be found in [63, 8].

1.1.2.1 Addition of a tracking point

Some of the control methods used in this work require the definition of an interme-

diary point called a tracking point. The idea of having a tracking point is to control a

point of the vehicle, different from the center of the moving frame, towards the desired

state. This solution is often used when working with external manipulators or sensors

and this tracking point can be the focal point of a camera or the grasping point of the

end-effector of a manipulator arm. Thus, a tracking point E of coordinates [εx εy εz]⊤

in RBis introduced. Figure 1.2 displays an example of a tracking point E placed at the
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OB

E

xB

yB

zB

Figure 1.2 – Example of a tracking point E at the nose
of the body of an underwater vehicle.

nose of the vehicle slightly below the horizontal plane. In this example the coordinates

of E are [εx 0 εz]⊤ in RB.

The kinematic model equation (1.1) is modified to include this new tracking point :

η̇E = J(η)Tν (1.3)

where T is the transformation matrix moving the vector of linear and angular velocities

from point OB to point E:

T =



1 0 0 0 εz −εy

0 1 0 −εz 0 εx

0 0 1 εy −εx 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(1.4)

Matrix T is the matrix form equivalent to the Varignon transform applied to the kine-

matic wrench [167].

11 Version du October 11, 2023



Chapter 1 – Model and Task 1.1. Modeling of Marine Vehicles

Note that the introduction of the transformation matrix T creates a new set of kine-

matic couplings in the model that will be used later in this work for the control of the

vehicle.

1.1.3 Dynamic Model

The conventional dynamic model of marine craft is issued from Newton’s second law

and is usually written as:

τ = Mν̇ + C(ν)ν + D(ν)ν + g(η) (1.5)

In equation (1.5), τ (t) ∈ R6 is the vector of propulsive forces and moments gener-

ated by the thrusters and applied to the vehicle, M ∈ R6,6 is the mass and inertia matrix,

C(ν) ∈ R6,6 is the matrix of Coriolis, centripetal and gyroscopic effects, D(ν) ∈ R6,6 is

the matrix of damping effects and g(η) ∈ R6 is the vector of gravitational and buoyancy

effects. The model matrices are given in detail in the following sections. Numerical val-

ues of the model parameters for some AUVs used in this work are given in appendix D.

The vector τ expresses the forces and moments generated by the thrusters and con-

trol surfaces of the vehicle, it is written as:

τ =



FX

FY

FZ

TX

TY

TZ



(1.6)

1.1.3.1 Added masses

In order to take some of the environmental effects into account in the dynamic

model and notably the hydrodynamic effects of the surrounding water, it is common

practice in the robotics community to use the method of added masses [63][100][98].

Added masses are a set of mass coefficients, linearly added to the mass of the solid body
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moving through water to simulate some of its effects. They are pressure-induced forces

and moments due to the body impelling water movement. The coefficients appear in

the mass matrix M and in the Coriolis and Centripetal matrix C(ν). A lot of work has

been put into calculating, measuring or estimating added masses over the years and

the interested reader is referred to the following works for a deeper understanding of

the concept of added masses [89, 88, 100] as well as some of the work done on the

estimation of these coefficients [121, 98, 72].

The superposition of the body mass effects and the surrounding water effects is done

linearly in the M and C(ν) matrices calculations as:

M = Mb + Ma (1.7a)

C(ν) = Cb(ν) + Ca(ν) (1.7b)

where Mb and Cb(ν) are the body effects while Ma and Ca(ν) are the added mass

effects. The rigid-body terms Mb and Cb(ν) are, for any vehicle, of the shape:

Mb =

 mI3,3 −mS(PG)

mS(PG) I0

 (1.8a)

Cb(ν) =

 03,3 −mS(ν1)−mS(S(ν2)PG)

−mS(ν1)−mS(S(ν2)PG) mS(S(ν1)PG)− S(I0ν2)

 (1.8b)

In equation (1.8), I3,3 is the 3 by 3 identity matrix, m is the dry mass of the body, I0
is the matrix of inertia of the body of the vehicle defined in RBand PG is the position of

the center of gravity in RB. The inertia matrix of the cylinder is:

I0 =


Ix 0 0

0 Iy 0

0 0 Iz

+mS(PG)⊤S(PG) (1.9)

Ix, Iy, and Iz are the principal moments of inertia of the vehicle. They can be calculated

using standard formulations.
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Matrix S() is the skew-symmetric matrix defined as:

S(
[
x1 x2 x3

]⊤

) =


0 x3 −x2

−x3 0 x1

x2 −x1 0

 (1.10)

The matrix S() represents the cross product such that S(X)Y = X
∏
Y . The added

mass effects depend on the shape of the hull of the vehicle. The vehicles used in this

work are, for most of them, approximated with cylinders and hence have three planes

of symmetry. The added mass matrices are then of shape:

Ma =



−Xu̇ 0 0 0 0 0

0 −Yv̇ 0 0 0 0

0 0 −Zẇ 0 0 0

0 0 0 −Kṗ 0 0

0 0 0 0 −Mq̇ 0

0 0 0 0 0 −Nṙ



(1.11a)

Ca(ν) =



0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp

−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0



(1.11b)

The cylindrical shape approximation gives reliable simulation results and is widely

spread in the literature. This hypothesis is supported by the fact that off-diagonal terms

of Ma are generally of lesser magnitude than the diagonal terms, they are often negli-
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gible. The off-diagonal added masses are also particularly hard to measure estimate or

calculate.

For surface vessels, the shapes of the model matrices are different. Off-diagonal

terms accounting for the coupled effects of sway and yaw due to the usual hull shape

of surface vessels are added in the added mass matrix. In the horizontal plane space

reduction and considering the mobile frame centered on the center of gravity of the

surface vessel, the mass and added mass matrices are [63]:

Mb =


m 0 0

0 m 0

0 0 Iz

 (1.12a)

Ma =


−Xu̇ 0 0

0 −Yv̇ −Yṙ

0 −Yṙ −Nṙ

 (1.12b)

The non-zero off-diagonal terms of Ma imply a different formulation of the added

lass effects in the Coriolis and Centripetal matrix:

Ca(ν) =


0 0 Yv̇v + Yṙr

0 0 −Xu̇u

−Yv̇v − Yṙr Xu̇u 0

 (1.13)

1.1.3.2 Hydrodynamic Damping

As for the added masses introduced above, hydrodynamic damping evaluation of

marine craft is a difficult subject that has been much written about. The most common

approximations used in the underwater robotics and control community are also used

in this work. This is why, when talking about underwater vehicles of cylindrical hull, the

damping effects will be considered fully decoupled and only linear and quadratic terms

on the diagonal are used. Additional damping models are introduced and compared in
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[74]. In this case, matrix D(ν) is:

D(ν) = −diag(Xu, Yv, Zw, Kp,Mq, Nr)

− diag(Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|,Mq|q||q|, Nr|r||r|) (1.14)

where Xu, ..., Nr are linear damping coefficients and Xu|u|, ..., Nr|r| are quadratic coef-

ficients.

For surface vehicles, a better rendition of the usual hull shape is given by the follow-

ing damping matrix:

D(ν) = −


Xu 0 0

0 Yv Yr

0 Nv Nr

 (1.15)

This second damping representation allows taking the natural coupling between sway

and yaw into account while maintaining an independent surge mode. The linear damp-

ing approximation is generally used with surface vessels but a quadratic damping term

of the same shape could be added.

1.1.3.3 Gravitation and buoyancy effects

The vector g(η) contains the gravitation and buoyancy forces and moments under-

gone by the vehicle and expressed at the center of the vehicle in RB. These terms,

referred to as restoring torques and moments, depend on the relative position of the

centers of gravity PG and buoyancy PB in RBand on the orientation of the vehicle

w.r.t. R0. Generally speaking, the center point of the moving frame OB is chosen at the

center of buoyancy PB which often matches the geometrical center of the hull. On the

other hand, the mass distribution of the vehicle would ideally be designed to have the

center of gravity underneath the center of buoyancy. Point PG would be of coordinates

(0, 0, zG) in RBwith zG in the magnitude of a few centimeters to a meter depending on

the vehicle. This disposition allows having stable roll and pitch modes for the vehicle.

The gravity and buoyancy forces fG(η) and fB(η) for a submerged vehicle are given
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in the mobile frame as:

fG(η) = J1(η)−1


0

0

mg

 (1.16a)

fB(η) = J1(η)−1


0

0

−ρgV

 (1.16b)

with g the acceleration of gravity, ρ the local water density and V the volume of dis-

placed water. Forces fG(η) and fB(η) are expressed at the centers of gravity and buoy-

ancy respectively. The complete vector of gravity and buoyancy effects is then given at

the center of the mobile frame as:

g(η) =

 fG(η) + fB(η)

PG × fG(η) + PB × fB(η)

 (1.17)

Note that most of the vehicles used in this work are positively buoyant in sea water:

m < ρV .

1.2 Propulsive configuration

This section focuses on the representation of the propulsive arrangement of the ve-

hicles used in this work. The two main actuator types used in this work are the fixed

and the reconfigurable thruster. These two technologies are best suited for applications

requiring high maneuverability. However, it is worth mentioning the great number of

autonomous vehicles equipped with control surfaces (stern planes or rudders). Rud-

ders, often associated with one or several fixed thrusters, are notably useful for long

range applications with low turning radius where maneuverability is not a priority. No-

tably, underwater gliders used for long range oceanographic applications are generally

equipped with control planes and active ballasts. Their mobility is limited but they are
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very energy-efficient. Yet, because the action of control surfaces depends on the relative

velocity of the craft with respect to the surrounding waters, this kind of actuation is not

suited for applications like station keeping, precise maneuvers around a target or sharp

rotations which are the main focus of this work.

1.2.1 Thruster Configuration Matrix

The Thruster Configuration Matrix (TCM) represents the thruster arrangement of the

vehicle [67, 30]. It is used to calculate the combined propulsive effort of the n thrusters

of the vehicle. The TCM, often denoted as B, is also used for thrust allocation, it allows

calculating the necessary thrust of each thruster ui needed to generate a required effort

vector. All the thrust forces are regrouped in the thrust vector u.

Matrix B has 6 rows and one column per thruster. Each column of the TCM is built

with the effort wrench of a thruster moved to the center of the vehicle. A local frame

RPi
(Pi,xPi

,yPi
, zPi

) is associated to thruster i. Frame RPi
is centered on the estimated

thrust center of thruster i, Pi(xPi
, yPi

, zPi
), and the axis xPi

is aligned with the axis of

thrust.

The force generated by thruster i is expressed in RPi
as:

F
RPi
Pi

=
[
ui 0 0

]
(1.18)

where ui is the i-th component of the vector containing all thrust norms of the n

thrusters of the vehicle u ∈ Rn.

Frame RPi
is rotated with respect to RB of an angle ψPi

around zB and θPi
around

the newly created yB
′ axis. The rotation matrix from RPi

to RB is then:

RB
Pi

= R(ψPi
, zB)R(θPi

,yB
′) =


cosψPi

cos θPi
− sinψPi

cosψPi
sin θPi

sinψPi
cos θPi

cosψPi
sinψPi

sin θPi

− sin θPi
0 cos θPi

 (1.19)
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The force generated by thruster i expressed in RB then becomes:

FRB
Pi

= RB
Pi
F

RPi
Pi

=


cosψPi

cos θPi

sinψPi
cos θPi

− sin θPi

ui (1.20)

Finally, the moment created at the center of the vehicle by the force FRB
Pi

is calculated

at the center of the vehicle in RB as:

TRB
OB

= Pi × FRB
Pi

=


− sin θPi

yPi
− sinψPi

cos θPi
zPi

cosψPi
cos θPi

zPi
+ sin θPi

xPi

sinψPi
cos θPi

xPi
− cosψPi

cos θPi
yPi

ui (1.21)

Equation (1.20) and equation (1.21) give the i-th column of B and, building the

rest of B iteratively with the other thrusters, the following relationship is established:

τ = Bu (1.22)

Finally, to perform the thrust allocation, the relation (1.22) must be “inverted”. The

following examples show that, even though the fully-actuated case is trivial with B

being square and invertible, the underactuated case is not.

1.2.1.1 Thrust Allocation in the Fully actuated case

In the fully-actuated case, n = 6 and B invertible (det(B) ̸= 0), the thrust allocation

operation is easily realized inverting relation (1.22). It is then possible to know the

required thrust force of each thruster to generate a given vector τ :

u = B−1τ (1.23)

An example of a fully-actuated vehicle is displayed on figure 1.3. This vehicle has

six independent thrusters with no redundancies. The position and orientation of the

six thrusters are given in table 1.2 where L is the length of the cynlindrical hull of the

vehicle and R is the radius. This vehicle is theoretical, its thruster arrangement would
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Figure 1.3 – Simulation render of the fully actuated example vehicle. Blue cylinder:
Hull, black cylinders: Thrusters

Thruster 1 Thruster 2 Thruster 3 Thruster 4 Thruster 5 Thruster 6
−L/3

−R

0




−L/3

R

0




0

0

0




L/3

−2R/3

0




L/3

2R/3

0




−L/3

0

0


θP1 = 0 θP2 = 0 θP3 = 0 θP4 = π/2 θP5 = π/2 θP6 = π/2

ψP1 = 0 ψP2 = 0 ψP3 = π/2 ψP4 = 0 ψP5 = 0 ψP6 = 0

Table 1.2 – Propulsive configuration of the fully-actuated vehicle

be hard to physically carry out but it is a good example of the effects demonstrated here.

Examples of fully-actuated vehicles can be seen on figure 1.
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The TCM of this vehicle is:

BFA =



1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 1

0 0 0 2R/3 −2R/3 0

0 0 0 L/3 L/3 −L/3

R/3 −R/3 0 0 0 0



(1.24)

All 6 DOF of the vehicle are actuated and can be controlled independently which is

confirmed by the rank of the matrix: rank(BFA) = 6. The matrix BFA is invertible:

det(BFA) = −16R2L/27. We see that the first two thrusters both generate surge force

and yaw moment but because they are coupled together, these two DOF are made inde-

pendent. Same goes for the three last thrusters sharing heave, roll and pitch. The third

thruster on the other hand, controls sway on its own and, because it is centered on the

hull, does not generate any moment.

1.2.1.2 Thrust Allocation in the Underactuated case

In the underactuated case, n < 6, the thrust allocation is non-trivial. The TCM is not

square hence not invertible. In order to describe the solutions for thrust allocation of

underactuated vehicles, the RSM AUV is described in [169, 31, 30, 168]. The RSM AUV

is equipped with four thrusters: n = 4. Two are placed at the rear of the vehicle and

aligned with the xB axis and two are placed in the middle of vehicle on each side and

aligned with the zB axis. The RSM vehicle is displayed on figure 1.4 and the position

and orientation of theactuators are given in table 1.3.
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OB

PG

E

xB
yB

zB

Roll

PitchSurge

Sway

Heave

Yaw

u2
P2

u1
P1

u4

P4

u3

P3

Figure 1.4 – Schematic of the RSM robot. Red vectors are unitary thrust vector of each
thruster.

Thruster 1 Thruster 2 Thruster 3 Thruster 4
−L/2

R

0




−L/2

−R

0




0

R

0




0

−R

0


θP1 = 0 θP2 = 0 θP3 = −π/2 θP4 = −π/2

ψP1 = 0 ψP2 = 0 ψP3 = 0 ψP4 = 0

Table 1.3 – Propulsive configuration of the RSM robot
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The TCM for robot RSM is then:

BRSM =



1 1 0 0

0 0 0 0

0 0 1 1

0 0 R −R

0 0 0 0

−R R 0 0



(1.25)

It is clear in equation (1.25) that this vehicle is not able to generate any sway force

(second row is zero) nor pitch moment (fifth row also zero). The vehicle is clearly

underactuated and one gets: rank(BRSM) = 4. The first two thrusters share surge (ad-

dition of forces) and yaw (difference of forces). The last two share heave and roll in the

same way.

The two most common solutions for thrust allocation in the underactuated case are

the Moore-Penrose pseudo-inverse [129] and reduction of the calculation space. The

principle of space reduction is to discard 6 − n lines of the TCM to make it square and

invertible. The resulting reduced matrix must be of full rank showing that the vehicle

is in facts fully-actuated on the reduced space. The discarded lines correspond to the

non-actuated DOF of the vehicle or to the non-controlled DOF in the case of coupled

DOF (see example of section 1.2.2). In this case, the lines 2 and 5 of BRSM would be

discarded. The reduced matrix becomes:

Br
RSM =



1 1 0 0

0 0 1 1

0 0 −R R

−R R 0 0


(1.26)
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Matrix Br
RSM is invertible det(Br

RSM) = 4R2 and its inverse is:

(Br
RSM)−1 = 1

2



1 0 0 −1/R

1 0 0 1/R

0 1 −1/R 0

0 1 1/R 0


(1.27)

Note that, when using the reduced TCM, the effort vector must also be reduced

removing the same lines.

The second solution is to use the left-hand Moore-Penrose pseudo-inverse defined

for a matrix A as [129]:

A† = (A⊤A)−1A⊤ (1.28)

The pseudo-inverse of BRSM is then:

(BRSM)† = 1
2



1 0 0 0 0 −1/R

1 0 0 0 0 1/R

0 0 1 −1/R 0 0

0 0 1 1/R 0 0


(1.29)

The Moore-Penrose pseudo-inverse proposes a least error solution for the inversion

problem. Note that, because of the rows of zeros of BRSM the space-reduction and

pseudo-inverse give two very similar solutions. In this case, one gets:

u = (BRSM)†τ = (Br
RSM)−1τ r (1.30)

with τ r the reduced effort vector. Additional examples are displayed in section 5.1

where the Moore-Penrose pseudo-inverse is not satisfying and the reduced inverse must

be used.

More advanced solutions based on quadratic programming could be used to deal

with the inversion of the thrust allocation equation.
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1.2.2 Reconfigurable thrusters

Reconfigurable thrusters are mechanical devices where a main propeller is coupled

with additional mechanisms allowing reconfiguration of the thrust vector. They can also

be referred to as vector or vectorized thrusters. An overview of different reconfiguration

technologies can be found in [43]. This section is mainly focused on thrusters able

to direct their thrust axis in one or two dimensions but this concept has been pushed

forward in chapter 5 where thrusters able to rotate around the hull of the vehicle are

studied.

The off-board engine of a typical private boat is a good everyday-life example of a

2D reconfigurable thruster. The propeller axis can be directed around the vertical axis

allowing the engine to generate vector thrust in all the horizontal plane. Reconfigurable

thrusters increase the number of actuated DOF of a vehicle with additional lightweight

actuators but does not required additional heavyweight motors. It is a sensible solution

to increase the mobility of a vehicle without reducing its autonomy or adding weight

[30, 43].

The modeling of a reconfigurable thruster is not very different from the fixed thruster

introduced earlier. A frame RPi
is associated to a thruster and centered on the center

of thrust. In this model, the center of thrust is assumed to be static and the vector

thruster is considered to rotate around the center of thrust. The direction of the thrust

vector is parametrized with two angles: θr around yPi
and ψr around zPi

. Note that

the parametrization of the reconfigurable thruster is chosen so that the axis of thrust

is aligned with xPi
when θr = ψr = 0 to keep equivalence with the fixed thruster

model introduced earlier. Also, for a 2D reconfigurable thruster, one of the two angles

(preferably θr) is fixed to 0.

As for the fixed thrusters introduced in section 1.2.1, the effort generated by one

reconfigurable thruster at the center of the vehicle are calculated to establish the TCM.

In this case though, the force generated by the reconfigurable thruster is not aligned

with the xPi
axis as it can be rotated. The force vector is then given in RPi

as:

F
RPi
Pi

=


cosψr cos θr

sinψr cos θr

− sin θr

Ui (1.31)
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where Ui is the norm of the thrust force of thruster i.

To stick with the model introduced in section 1.2.1 for fixed thrusters, the reconfig-

urable thrusters will be modeled as three virtual fixed thrusters(respectively, two fixed

thrusters for 2DOF reconfigurable thruster) aligned with the axes of RPi
. The force

components of the three equivalent fixed thrusters are separated as:

ux,i = cosψr cos θrUi (1.32a)

uy,i = sinψr cos θrUi (1.32b)

uz,i = − sin θrUi (1.32c)

Equation (1.32) shows that the three force components generated by a single reconfig-

urable thruster are independent functions of the thrust norm Ui and the two reconfigu-

ration angles θr and ψr. This system is invertible. Note that for a 2DOF thruster (ψr = 0),

no force is generated on the yPi
axis. To maintain the equivalence with fixed thrusers,

the three force components ux,i, uy,i and uz,i of a reconfigurable thruster (respectively

ux,i and uz,i) are used in the vector of propulsive forces u. For a single 3D reconfigurable

thruster one gets:

u =


ux,i

uy,i

uz,i

 (1.33)

To show the effects of a 3DOF reconfigurable thruster, a simple uqr-craft is intro-

duced. This vehicle is equipped with a single 3DOF reconfigurable thruster at the rear.

Figure 1.5 displays this simple example vehicle. The TCM for this vehicle is built as if

it was equipped with three fixed thrusters, all placed in the same point Pi and aligned

with the axes of the local frame RPi
which, in this case, match the axes of RB[30]. Ta-

ble 1.4 shows the propulsive arrangement of this vehicle and the equivalent with fixed

thrusters.
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Figure 1.5 – Schematic of the example uqr-vehicle.

Reconfigurable Thruster Equivalent virtual fixed thrusters

3DOF x axis y axis z axis
−L/2

0

0




−L/2

0

0




−L/2

0

0




−L/2

0

0


θPi

= 0 θx = 0 θy = 0 θz = −π/2

ψPi
= 0 ψx = 0 ψy = π/2 ψz = 0

Table 1.4 – Propulsive configuration of the uqr example vehicle
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The TCM matrix for this vehicle is then:

Buqr =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 L/2

0 −L/2 0



(1.34)

Equation (1.34) shows that the uqr-vehicle introduced in this example has three

actuated DOF, rank(Buqr) = 3. In facts, the reconfigurable thruster positioned at the

rear of the vehicle generates a surge force (decoupled from all the other DOF) and two

pairs of coupled degrees of freedom: sway and yaw on one side and heave and pitch

on the other side. This example allows introducing the compulsory choice between

coupled actuated DOF. In facts, when a single actuator —whether it is a fixed thruster

or one of the virtual equivalent of a reconfigurable thruster— generates several coupled

DOF, one of these DOF must be chosen to be controlled and the other(s) will generate

disturbances (See section 5.1 and Appendix C for a more in depth study of the coupled

effects of reconfigurable thrusters). In this case, the equivalent fixed thruster aligned

with the yPi
axis for instance, generates a sway force coupled with a yaw moment

(second column of Buqr). In the controller, it will be necessary to choose which DOF is

controlled and which is seen as a disturbance. This choice depends mainly on the task

and the vehicle. Deeper studies about the consequences of choosing one DOF over the

other can be found in section 5.1.

Because of the coupling terms in Buqr, the reduction method is used for thrust allo-

cation instead of the pseudo-inverse if the moments are controlled and not the coupled

forces. Therefore, the coupled forces generated by the vector thruster are not taken into

account in the allocation calculations.

Once ux,i, uy,i and uz,i are calculated, the three control parameters of the reconfig-
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urable thruster Ui, θr and ψr are found using the inverse of system (1.32):

Ui =
√
u2
x,i + u2

y,i + u2
z,i (1.35a)

θr = −asin
(
uz,i
Ui

)
(1.35b)

ψr = arctan2 (uy,i, ux,i) (1.35c)

Remark 1.2 The following examples and notably section 5.1 hint towards preferential
choices of methods to invert the TCM in the underactuated case and particularly with
coupled actuators like off-centered vector thrusters. In facts, in cases where the TCM shows
actuator coupling, the Morre-Penrose pseudo-inverse of the TCM cn act as a filter or a gain
matrix in front of the control vector. Depending on the coefficients of B and therefore on the
physical dimensions of the vehicle, some terms of B† can tend to zero or on the contrary
get very large. Consequently, when working with coupled actuators, the second method
based on the reduced TCM is more suited for thrust allocation even though it neglects some
phenomena.

1.2.3 Remark on the effects of coupled actuators

One of the parameters to consider when choosing the thruster technology (fixed

or reconfigurable thrusters, control surfaces, ...) and propulsive arrangement of marine

vehicles is force and moment coupling. Typically, off-centered thrusters whom force axis

does not cross the center of the mobile frame, create a coupled force and moment. This

is notably the case for at least one of the fixed equivalent thrusters of a vector thruster.

The goal of this section is to demonstrate the effect of this additional disturbing term

and compare with an equivalent fixed-thrusters arrangement.

To demonstrate the consequences of this coupling effect, let us compare two surface

vehicles. The first one is equipped with two parallel rear thrusters aligned with the xB

axis and the second one is equipped with one 2DOF vector thruster, placed at the rear

and rotating around the vertical axis. This two vehicles are reductions of the RSM AUV

figure 1.4 and the uqr-vessel figure 1.5, respectively, in the horizontal plane. The first

one is actuated in surge and yaw and the associated TCM is:
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B1 =


1 1

0 0

−R R

 (1.36)

Note that in equation (1.36) R can be the radius of the hull of the vehicle if it is ap-

proximated to a cylinder or can be half of the distance between the two thrusters if the

vehicle is of any other shape. Equation (1.36) shows that surge and yaw are decoupled

and no additional force or moment is created by this propulsive arrangement, the two

actuators are sharing two DOF without redundancy. This propulsive arrangement can

generate a pure yaw moment without coupled effects.

Using the equivalent fixed thrusters introduced in the previous section, the TCM for

the second vehicle is:

B2 =


1 0

0 1

0 −L/2

 (1.37)

where L denotes the length of the hull of the vessel. Equation (1.37) shows that the vec-

tor thruster of the second vehicle can generate an independent surge force and coupled

sway force and yaw moment. The first virtual thruster generates a surge force while the

second generates both a sway force and a yaw moment. Following the reasoning intro-

duced in the previous section, it is necessary to choose only one of the two coupled DOF

in the control of the vehicle. In this example, yaw will be controlled to keep equivalence

between the two vehicles. An analogous example demonstrates the consequences of the

other choice in section 5.1.4.

To compare the different behaviors created by these two propulsive arrangements,

let us consider a control effort vector τc that would be the output of the controller. The

two vehicles are controlled in surge and yaw therefore τc is of shape:

τc =


Xc

0

Nc

 (1.38)
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where Xc denotes the control surge force and Nc the control yaw moment.

To study the consequence of the coupling terms introduced in the second propul-

sive arrangement, the real efforts applied to the vehicle are calculated. To do so, the

thrust allocation is performed and the resulting efforts expressed in RBat the center

of vehicle are calculated using equation (1.22). For ease of calculation, the two TCM

are inverted using the space reduction method introduced in the previous section. Note

that the results obtained with the Moore-Penrose pseudo-inverse on B2 vary depending

on the numerical values of the model parameters (here L). For coupled actuators, the

inversion on the reduced matrix seems more suitable. The control vector is also reduced

discarding the sway term: τ rc = [Xc Nc]⊤. The inverted reduced matrices are:

(Br
1)−1 = 1

2

1 −1
R

1 1
R

 (1.39a)

(Br
2)−1 =

1 0

0 −2
L

 (1.39b)

The real efforts applied to the vehicle in the two cases τ ∗
1 and τ ∗

2 respectively are then:

τ ∗
1 = B1(Br

1)−1τ rc =


Xc

0

Nc

 (1.40a)

τ ∗
2 = B2(Br

2)−1τ rc =


Xc

−2Nc
L

Nc

 (1.40b)

Equation (1.40) shows clearly that the thrust allocation and reconstruction of the effort

vector creates a new sway force on the second vehicle (second line of τ ∗
2 ). This sway

force does not appear on the first vehicle. This phenomena is due to the fact that, with

the second vehicle, generating a yaw moment is done by generating an off-centered

sway force which also acts as a disturbance. The first propulsive arrangement allows

31 Version du October 11, 2023



Chapter 1 – Model and Task 1.3. Remarks

generation of a pure yaw moment without sway force. Note that the same goes if sway

is chosen as a controlled DOF on the second vehicle, a yaw disturbance would appear.

At this point, one might think that this result is counter-intuitive considering that

most mainstream surface vehicles actually use a rear vector thruster. In facts, as demon-

strated in section 5.1 the consequences of this disturbing sway force can have varying

degrees of impact on the vehicle behavior. Notably, the shape of the hull of conventional

boats as well as other design parameters make them very robust to sway disturbances,

sway motions are highly damped and anti-drift planes stabilize the yaw angle of the

vehicle and reduce surge motions at high surge speeds. A more in-depth study on the

consequences of these disturbing coupling terms as well as on the model parameters

counter-acting these effects can be found in section 5.1.

1.3 Additional remarks on the Modeling and Simulation

of Marine craft

This section gives additional remarks on the modeling and simulation of marine

craft. Notably, it explains some of the choices made in simulation for the modeling of

sea currents, physical limitations of the actuators and measurement noise.

1.3.1 Limitation of reconfiguration speed

To give a more realistic rendition of the behavior of reconfigurable thrusters (also

called vector thrusters), the reconfiguration speed has been limited in the simulator.

Yet, in order to develop control methods that are independent from technology choices,

this limitation will not be taken into account in the following control calculations. Con-

sequently, an unmodeled delay is introduced between the requested control angle and

the actual value creating potentially disturbing effects.

Figure 1.6 shows the disturbing force created by the reconfiguration delay in an

extreme case (45◦ error). On figure 1.6 the required force vecotr is represented with the

blue arrow and the actual thrust vector is represented with the black arrow. The red

arrow represents the disturbing force created by the delay, orthogonal to the desired

force.

In order to reduce the norm of the disturbing force in case of reconfiguration delay,

the norm of the actual thrust is multiplied by a 0 to 1 parameter calculated as a function
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Figure 1.6 – Illustration of the consequences of the reconfiguration delay.
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of the reconfiguration angular error. The multiplier is 0 when the reconfiguration error

is π/2 rad or greater, tends to 1 when the reconfiguration error tends to π/4 rad and is

equal to 1 if the error is less than π/4 rad.

This method reduces the amount of disturbing force created by the reconfigura-

tion delay but also reduces the force component collinear to the controller output. The

multiplier barely deviates from 1 practically. Sufficiently smooth trajectories would not

require reconfiguration speed higher than the maximum.

1.3.2 Limitation of thrust variation

The simulator used in this work does not model the water surrounding the vehicle.

Therefore, it does not simulate the hydrodynamic effects acting on the propellers or the

acceleration of water created by the thrusters. Instead, and to avoid unrealistic results,

the variation of thrust of the actuators is limited.

This limitation implies a linear thrust profile which also creates a delay in the

thruster’s response to a control request. This delay is not modeled in the control cal-

culations and therefore mitigates the tracking performance.

1.3.3 Modeling sea currents

Sea currents are the most common external disturbance a marine vehicle is likely to

experience. Sea currents are modeled with a constant, irrotational velocity vector (See

[64] for more details) defined in R0 as:

vcurr =
[
ẋcurr ẏcurr ẇcurr 0 0 0

]⊤

(1.41)

and moved to the body-fixed frame RB using:

νcurr = J(η)−1vcurr (1.42)

The model of the vehicle is then redefined in terms of the relative velocity vector

νr = ν − νcurr. The kinematic model becomes:

η̇ = J(η)(νr − νcurr) = J(η)ν (1.43)
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and, deriving equation (1.43), the dynamic model becomes:

ν̇ =

−S(ν2)νcurr

03x1

+ M−1 (τ −C(νr)νr −D(νr)νr − g(η)) (1.44)

where S is the skew-symmetrical matrix defined in equation (1.10).

The main advantage of this representation is that the kinematic model of the vehicle

is defined only in terms of the absolute velocity vector ν and the dynamic model is

defined in term of the relative velocity vector νr. Effects of waves or wind could also be

taken into account and modeled as an external force vector translated into a velocity

vector linearly added to the current velocity. Then, the amplitude of the current velocity

could vary in time in a sinusoidal shape for instance.

1.3.4 Modeling measurement noise

Measurement noise are modeled with a white Gaussian noise. The standard devia-

tion of the noise is arbitrarily set and chosen to represent the reality of common sen-

sors. In the following, the standard deviation for position measures is typically chosen

between 0.1 m and 0.5 m depending on the experiment and between 0.05 and 0.1 rad for

angular measures.

1.3.5 Trajectory generation

This section describes the procedure used to generate trajectories in the simulator.

All the DOf of the trajectories must be defined as smooth times functions to be used

as references in the control calculations. To fit with all the controller developed in the

following (and notably some flatness-based controllers described in chapter 4, the tra-

jectory are continuous and have continuous derivatives up to the fourth order.

In the simulator, each task correspond to one time function. This function describes

six sets of lines and curves put together and their derivatives. Each trajectory is discon-

tinuous at that point because continuity is not assured between the different parts of

the path.

Then, points of interest are extracted from the trajectories corresponding to each

DOF. First points of interest are put down regularly on the trajectory. Then, some more
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Figure 1.7 – Example of trajectory generation. Blue: discontinuous time function, Black
circles: points of interest, Orange: final trajectory

points are added at and around discontinuities, rapid variations in curve, speed or accel-

eration of the paths. Note that instead of generating discontinuous time functions then

extracting interest points, the trajectory could be defined using only sets of waypoints.

Previous versions of the simulator were using these time functions as trajectory so they

ave been kept to save time.

The final step is to generate new paths between the points of interest. These new

segments and curves are calculated using polynomials to ensure continuity and smooth-

ness at and between the points up to the fourth order.

Figure 1.7 shows the result of the trajectory generation procedure on one DOF.

For better trajectory tracking performances, the rtajectory generation procedure

36 Version du October 11, 2023



Chapter 1 – Model and Task / 1.4. Task description 1.4. Task description

could be upgraded to take information of model and capability of the vehicle into ac-

count [130].

1.4 Task description

The first step of task-based design of marine vehicles and controllers is to define

(or redefine) the concept of task. The task, or application, settles the requirements and

constraints to which the vehicle has to conform. Notably, with the aim of reducing the

amount of actuators embedded on the vehicle, the evaluation of the number of solicited

degrees of freedom (DOF) for a task is of the utmost importance. The notion of task is

often confused with the notion of trajectory or path (in the sens of a succession of points

in space) the vehicle has to follow. In this work, the definition of a task is extended to

take other external phenomena into account. A task is described as the combination of

a path, additional constraints, environmental effects acting on the vehicle and natural

dynamics of the craft. These four components define the number of required DOF of a

task.

Redefining the tasks is the first step towards more maneuverable marine vehicles,

allowing for new behaviors and unlocking new applications.

1.4.1 Degrees of Freedom of a task

The trajectory, constraints, environmental effects and natural dynamics of the vehicle

define the required DOF for a task.

The trajectory is a set of up to six independent time relative functions, expressed

in the inertial frame, describing the expected behavior of the vehicle. These functions

represent expected translations in the inertial frame and the expected attitude of the ve-

hicle w.r.t the inertial frame. As a first design base, the vehicle will need to be equipped

with actuators allowing generating at least as many translations and as many rotations

as defined by the trajectory. Note that translations can be substituted with rotations but

not the opposite. In facts, a great number of vehicles (boats, cars, planes, ...) compen-

sate the lack of actuated translations with one or several actuated rotations. The need

for a compensation mechanism can make the control problem nontrivial. Controllers

exploiting this compensation mechanism are described in chapter 2.

Additionally, the task being most often defined in the inertial earth-fixed frame the
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attitude of an underactuated vehicle can modify its degree of actuation with respect to

the path and constraints. If only two of the three rotations of a vehicle are actuated

for instance, there are sets of possibly stable attitudes in which the vehicle looses the

capability of generating a moment around one axis of the inertial frame. As an example,

if a vehicle is actuated in roll and yaw but not in pitch, a ninety-degrees roll angle

nullifies its ability to turn around the vertical axis of the inertial frame which can be

detrimental for the task.

The same goes for translations if all three are not independently actuated. The ve-

hicle can reach attitudes in which it looses its capabilities of generating forces on 1 or

several axes of the inertial frame. This phenomenon must be taken into account when

the actuator arrangement of the vehicle is designed.

The vehicle may also have to comply with a number of constraints during the appli-

cation independently of the trajectory. These constraints are not always translatable into

path functions. They can be imposed by the design of the vehicle, its software architec-

ture (for instance the pitch singularity using Euler angles), the position of a sensor etc...

As an example, for a scanning mission, the vehicle can be equipped with a sonar whom

axis must be kept within a 5-degree range of the vertical. Such a constraint can require

one or several additional actuators to be filled at all time. For less critical constraints,

the designer can also choose to rely on the natural dynamics of the vehicle to meet the

constraints like the roll and pitch stability created by an offset between the centers of

gravity and buoyancy.

Environmental effects can also be taken into account when defining the task. As an

example, a known sea current pushing the vehicle away from the prescribed trajectory

can imply adding one or several actuators on the vehicle to counteract it.

Lastly, the natural dynamics of the vehicle can also be considered when defining

the task. The shape of the hull, the buoyancy of the vehicle or the relative position of

the centers of gravity and buoyancy are all parameters to be taken into account when

designing the vehicle for a given task. Depending on the shape of the hull, the vehicle

may have one or several energetically inefficient DOF to avoid. In the same way, if the

center of mass and the center of buoyancy of the vehicle are offset a constant restauring

moment will limit the attitude of the vehicle.
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1.4.1.1 Introductory example

Considering all four components of a task (trajectory, constraints, environmental

effects, natural dynamics), it appears that designing a vehicle and its propulsive ar-

rangement for a given mission is not always straightforward. It also implies that several

solutions will exist for one application. As a first example, for surface vessels, the simple

task of following a straight line has two different propulsive arrangement solutions. As a

first example the trajectory is a 2D segment of the horizontal plane. Considering that the

space of this application is composed of two translations and a rotation, two solutions

raise for tracking a straight line: two actuated translations or one actuated translation

and one actuated rotation.

In the first case, the vehicle would be equipped with two orthogonal fixed thrusters

(for simplicity of this example), each of them being able to generate a force moving the

vehicle on one axis. In the second case, the vehicle would be equipped with two parallel

thrusters which, when combined, can generate a force and a moment independently.

From the strict point of view of the number of actuators, these two solutions are equiv-

alent (considering in this example that both vehicles are equipped with same motors

and propellers). Assume for now that there is no additional constraint or environmental
effects. Then, the choice between these two solutions is guided by the shape of the hull

of the vehicle and its natural dynamics. If the vessel has a traditional V-shaped hull, it

will be much more energetically efficient to choose the second solution over the first

one, actuating the favored translation of the vehicle and turning around the vertical

axis to point the vehicle in the right direction.

Consider now that the same vehicle is required to maneuver in narrow paths, barely

wider than the width of the hull as it could be the case in ports or canal locks. In this

new scenario, the additional external constraint tips the scale towards the first solution.

It would be more practical locally for this application to have two actuated translations

and exploit the natural dynamics of the hull for yaw stability even if it is less efficient in

regard to energy consumption.

This question is much more complex underwater. To limit the number of embedded

actuators, it is often interesting to look for a trade-off between energy efficiency and

number of actuators. The designer has to decide whether it is more interesting for the

application to locally go against the natural dynamics of the vehicle at the cost of a

greater energy expenditure during a short period of time or to add a new thruster and

the needed battery and control capacities.
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1.4.2 Scenarios

The choice of scenario dictates the time constraint of the task. The three main sce-

narios for marine craft are setpoint regulation, path following and trajectory tracking.

Each scenario corresponds to a level of time constraint.

An application can of course be composed of several scenarios. Taking the example

of the surveillance of an offshore submerged power plant, reaching the plant ashore

could be a setpoint regulation subtask or a path following subtask but taking images

around the plant would likely be a trajectory tracking task.

Tasks can usually be broken down into two distinctive problems: the geometric task

and the dynamic task. The geometric task consists in making the position of one point

of the vehicle reach and track a desired target or geometrical path. The dynamic task

consists in making the velocity of the vehicle converge to and track the desired velocity

assignment. The chosen scenario dictates the importance given to the geometric and

dynamic tasks which are achieved either simultaneously or separately.

1.4.2.1 Setpoint regulation

In setpoint regulation, the target position and attitude are constant. The behavior of

the vehicle on its way to the target is left free. There is no time constraint in this sce-

nario. Several waypoints can be defined and a strategy to switch from one target to the

next is chosen. Most often, when the vehicle gets in a prescribed radius of a waypoint,

the target changes to the next waypoint. The switching strategy can be adapted to fit

the capabilities of the vehicle and smooth its behavior.

Setpoint regulation is notably used with large ships on long missions. A cargo ship

crossing the Atlantic Ocean aims for the next port or sets a course to follow for several

days at cruising speed. It does not necessarily need to follow a defined path.

The setpoint regulation scenario only focuses on the geometric task of the applica-

tion. The dynamic task is solved separately and is considered of secondary importance.

1.4.2.2 Path Following

The second scenario is path following. In this case, the path taken by the vehicle

between the waypoints is constrained. The path can be a straight line between two

points or a more complicated shape to avoid obstacles or areas or favor one motion.

In path following, the constraints are independent of time, the speed of the vehicle
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on the path is not prescribed and the dynamic task is considered solved otherwise. To

take the time constraint into account, path following can be updated to path tracking.

In both cases, the vehicle is aimed for a virtual particle moving along. The dynamics

of the particle can be decided a priori to emphasize the time constraint or adapted to

the behavior of the vehicle so that the system is never left behind. The work [20, 21]

propose a path following and tracking formalism based on the LOS guidance method

and show the principle of this type of tasks.

Path following and path tracking applications are notably useful to constrain the

vehicle to a path without constraining its speed. To take the example of the cargo ship,

the helmsman could choose to follow a known route to reach the next port in which

case a path following controller would be recommended. Once the vehicle is on the

route it follows the prescribed path and the pilot can choose the desired speed.

The path following scenario emphasizes solving the geometric task. As for setpoint

regulation, the dynamic task is considered of lesser importance in path following. The

dynamic task can even be sacrificed for the sake of fulfilling the geometric task. This

dichotomy gives inherent robustness and flexibility to the path following scheme.

1.4.2.3 Trajectory Tracking

The third scenario and hardest level of time constraint in trajectory tracking. Here,

the spatial constraints are associated with time requirements. The vehicle is tracking

a virtual target moving on a path with a prescribed speed and acceleration. Trajectory

tracking usually requires more advanced controllers to maintain good performance.

Most of the applications described in this work are trajectory tracking scenarios because

it represents the hardest level of difficulty for a vehicle. If the ship is able to track a

trajectory at the prescribed speed at all time it will easily be able to track a path with

a fixed speed or rally a setpoint. Both setpoint regulation and path following can be

replaced by trajectory tracking scenarios with an additional, offline, layer of trajectory

planning.

Also trajectory tracking allows smoother and more accurate control of the vehicle

all along the task than path following at the cost of higher computational complexity.

Trajectory tracking is more suited for applications requiring high degrees of maneu-

verability. It is notably used with smaller vehicles on applications with shorter time

constants.

Trajectory tracking solves the geometric and dynamic tasks simultaneously. The
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space and time assignments are mixed up into a single task demanding the vehicle

to be in a given point at a given time.

1.5 Definition of Underactuation

This work mainly focuses on the study of marine vehicles described as being un-

deractuated. Underactuation is a well defined concept in robotics in general. In this

work a slightly enhanced definition of underactuated systems is proposed to enclose the

relation between the system and the task.

In robotics, an underactuated system is usually defined as a system with fewer ac-

tuators or control inputs than degrees of freedom. Notably, the work of [160] or [163]

give the following definition of underactuation based on Newton’s second principle:

Definition 1.3 (Underactuated system) Considering the system described as:

q̈ = f1(q, q̇) + f2(q, q̇)u (1.45)

where q is the vector of position and attitude, u is a control vector and f1 and f2 are two
model functions established with Newton’s second principle.

The system is considered underactuated if:

rank(f2(q, q̇)) < dim(q)

Definition 1.3 certainly applies to underactuated marine craft considering that q = η

is the vector of position and orientation of the vehicle. Note that equation (1.45) is

equivalent to the representation of the vehicle in the inertial frame even though in

marine robotics and with mobile robots in general, the vector of control inputs u is

defined in a mobile frame fixed to the body of the vehicle. The actuation matrix f2 must

therefore take the rotation of the mobile frame into account.

From a control perspective, it is useful to extend Definition 1.3 to take the required

DOF of the task into account. It is notably interesting to introduce the notion of ill-
actuated vehicle. Following the work of [64], the rank condition on the actuation matrix

f2 is redefined in the subspace representing the required DOF of the task. Considering

the reduced model:

q̈r = f1,r(qr, q̇r) + f2,r(qr, q̇r)u (1.46)
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where all lines corresponding to DOF not required in the task are task are discarded in

qr, f2,r and f2,r. Then, there are three possible cases:

1. Underactuated:

dim(qr) > dim(u)

2. Ill-actuated:

dim(qr) = dim(u) & rank(f2,r(qr, q̇r)) < dim(qr)

3. Fully-actuated:

dim(qr) = dim(u) & rank(f2,r(qr, q̇r)) = dim(qr)

In the first case, the vehicle is clearly underactuated with respect to the task. It has

fewer actuated DOF than the task requires. This mean that the vehicle will only be able

to track part of the task requirements. As a very simple example, if the task is constituted

of single setpoint in the horizontal plane, two translations are required. If the vehicle

has only one actuated translation, then it is underactuated w.r.t. the task. It is perhaps

able to move on one axis to align with the point and meet one requirement of the task

but cannot join the point.

The second case is ill actuation. In this case, the vehicle has the same number of

actuated DOF as required in the task but they don’t match exactly. This is the most

common case in marine robotics as it is the case of most surface vessels and many

AUVs in position tracking applications. In the horizontal plane, a boat typically has one

actuated translation and one actuation rotation (ur-vessel defined earlier). But, if the

task requires two translations, typically to reach a point or follow a path defined in

positions, the boat misses one translation.

Ill-actuation is particularly interesting from a control perspective because, as seen in

many examples of chapter 2, guidance principles and particular designs of the control

laws allow exploiting a DOF not required in the task to control one of those missing.

Doing so is equivalent to modifying the function f2,r. Nevertheless, the following exam-

ples show that the control of a non-actuated DOF through compensation with another

one only works to a certain extend. For instance, ill-actuated vehicles are very hard

to control in station keeping tasks because the compensation mechanisms used in the

control often rely on kinematic or dynamic effects. In the end, ill-actuated vehicles are
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underactuated on the reduced space of the task.

The third and last case is full actuation. In this case the system has as many ac-

tuated DOF as requires in the task and they match. In this case the vehicle is able to

independently act on every DOF of the task at all times and in all configurations.
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This section presents a literature review on model-based control methods and guid-

ance principles for autonomous marine vehicles. Some of the most common methods

found in literature are presented. Detailed examples are given for each of these meth-

ods. For each method, a general introduction based on the presentation of a basic ex-

ample is given before examples in the marine context. This section notably introduces

the controllers used throughout this work.

The methods displayed in this chapter are both guidance and control solutions for

fully actuated and underactuated marine craft. There is a traditional dichotomy between

guidance and control in the marine literature. This separation seems to be inherited

from the early work done on guidance of ships. Usually, guidance refers to the algorithm

or calculations used on ill-actuated vehicles to turn position error signals into velocity
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Figure 2.1 – Simplified diagram of the control chain of an AUV

and angle references usable in the control of a ship actuated in surge and yaw. A sim-

plified flow chart of the Guidance-Control-Navigation chain is presented on figure 2.1.

Yet, as seen in the following examples, guidance and control can be performed simul-

taneously in some cases. It is notably the case of the Sliding Mode controllers designed

for underactuated vessels. They use dynamic coupling relations between the actuated

DOF of the vehicle and the DOF that are actually required in the task to perform both

guidance and control.

First, this section introduces the most intuitive guidance method for marine vessels:

Line of Sight (LOS) guidance [65, 66, 20]. This guidance principle is inherited from

naval tradition and mimics the behavior of an experienced boat pilot. Although it is not

specific to marine craft, LOS guidance is the go-to method for the most common appli-

cations of autonomous marine vehicles. In comparison to the other methods introduced

later in this work, LOS is slightly different since it is only a guidance method. Guidance

algorithms are used to calculate new sets of references for the vehicle to track instead

of the trajectory. The guidance calculations are usually based on the error signals on

non actuated DOF and give references for actuated DOF that are not part of the task.

Most often with marine vehicles, LOS guidance is used to calculate heading references

out of sway errors. The references calculated by the LOS guidance node are then used

in commercial controllers.

Then, examples of the different control methods are presented beginning with the

PID-based controllers [46, 158]. PID-based controllers are very common when working

with linear systems. With nonlinear systems, they are associated with various lineariza-

tion techniques to perform at best. Some of them are presented and notably model-

based feedback, feedforward, and hybrid linearizations. In the underactuated case, ex-

amples of additional manipulation allowing compensation of non actuated degrees of

freedom are presented. These compensation mechanisms exploit natural relations of

the model to compensate the lack of actuation of DOF. Compensation mechanisms act

as embedded guidance calculations inside the control law.

The case of feedforward linearization and notably differential flatness-based con-
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trollers [154, 137] is detailed separately. Differential flatness shows very good perfor-

mances and robustness when it is applied to nonlinear systems. The few examples of dif-

ferential flatness application to marine craft show promising results and are presented

in more details in chapter 4.

The next control method is Sliding Mode Control (SMC) [175, 34, 87]. SMC is an-

other very common control method for both linear and nonlinear systems offering good

robustness to external disturbances and model approximations as well as theoretical

finite-time convergence. Note that, unlike PID-based controllers, SMC are constructed

to naturaly include model-based linearizing terms. Several formulations exist for SMC

as the Terminal Sliding Mode [117] or the Super Twisting Sliding Mode [172], each

showing different characteristics. The examples also show that SMC can be applied in

the underactuated case and that the construction of the sliding mode control law itself

can be tuned to have a guidance role as well.

To complete the study, several adaptive controllers are presented. Notably, the Intel-

ligent PID is described in details as it will be used later in this work. Adaptive methods

are not at the heart of this work mostly focused on model-based methods but they are

an increasingly notorious part of the literature and their applications show good results.

Additional control methods can be found in [107, 104, 65, 122, 8, 103, 12] among

many others. Backstepping, Lyapunov-based methods are also common when working

with marine craft as seen in [1] or [102]. We did not retain some approaches that are

promising but on which we found very few references, such as [110]. In addition, these

last few years, some new control techniques based on machine learning are developed

as in [174]. Because they are still recent and not found so often in the literature, these

methods are not depicted in this work either.

One of the interests of this section is to see what consequences underactuation may

have on the control and how control laws can be designed and adapted to “solve” ac-

tuation flaws. To this end, most of the control laws in this section are first presented

in the fully actuated case and then underactuated examples are given. Doing so allows

for comparing the different strategies used in the underactuated case with the fully ac-

tuated case. Some of the control methods presented in this chapter are compared on a

prototype vehicle in [164].
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2.1 Line of Sight Guidance

The Line Of Sight guidance technique [20, 19, 26, 16] is the most intuitive guid-

ance method for most marine vehicles both on the surface and underwater. The basic

idea is rather simple and reproduces the behavior of an experimented helmsman: when

piloting a typical boat, the easiest and fastest way to reach a distant waypoint is to

point the boat towards the waypoint and sail straight forward. Once the waypoint or its

neighborhood is reached, the boat is pointed towards the next one and so on.

While being quite simple, the idea behind LOS guidance hides interesting concepts.

Inherited from traditional naval techniques, LOS guidance has initially been designed

for autonomous boats. Such vehicles are typically ill-actuated in the horizontal plane.

Only surge and yaw are actuated on most surface vehicles and sway is passively sta-

bilized by the hull shape. Position tracking tasks in the horizontal plane are thus non-

trivial. These vehicles will be referred to as ur-boats or ur-vessels in the following. There

are three main actuation configuration for ur-boats: a fixed rear longitudinal thruster

and a rudder, a single reconfigurable rear thruster rotating around the vertical axis or

two fixed rear thrusters. These three topologies allow for independently generating a

surge force and a yaw moment. The consequences of the choice of actuation arrange-

ment for ur-boats are studied in details in section 5.1. The choice of actuation may have

consequences on the control performance of the vehicle. As an example, a fixed thruster

and rudder configuration is not suited for on-the-spot rotation or hovering maneuvers.

Also, the different possible actuation arrangements of ur-vessels generate different cou-

pled force effects on the sway axis (see section 5.1 for more details).

Setpoint regulation and path tracking are the two most common tasks LOS guid-

ance is used for. The waypoints are usually a set of fixed (xd(i), yd(i)) points of the

horizontal plane. The setpoint regulations and path following scenarios are described

in section 1.4.2.

A very simple LOS guidance is given in figure 2.2 or in Section 6.5 of [65]. Here,

a new heading reference ψd is calculated based upon the position error between the

vehicle and the tracked waypoint calculated in the inertial frame. Proportional control

allows for tracking of the said heading reference. The surge speed is set to a constant.

It could be controlled with another PI-based controller as well. Once the neighborhood

of the current waypoint is reached, the next one is targeted. This simple LOS guidance

principle does not take the model of the vehicle into account nor does it compensate for
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any external disturbances. Intuitively, the heading reference would be calculated as:

ψd(t) = arctan2 (yd(i)− y(t), xd(i)− x(t)) (2.1)

In (2.1), the arctan2 function is used instead of the classical atan function to avoid

singularities. This expression is commonly used in numerical calculation; it extends the

definition of atan to the complete complex plane. The arctan2 function is defined on the

four quadrants of the complex plane as:

R2 \ (0, 0) −→ [−π; +π[

(y, x) 7−→ arctan2(x, y) =



+π + arctan
(
y
x

)
if x < 0, y > 0 (quadrant II)

+π2 if x = 0, y > 0

arctan
(
y
x

)
if x > 0 (quadrants I and IV)

−π2 if x = 0, y < 0

−π + arctan
(
y
x

)
if x < 0, y < 0 (quadrant III)

−π if y = 0, x < 0

LOS Controller Vehicle
xd yd

ud

ψd
τu

τr

η

ψx y

Figure 2.2 – Block diagram of a simple Line Of Sight Guidance control. The Controller
block represents any control function capable of calculating the surge and yaw controls

τu and τr from the desired and current states.

A more advanced control based on LOS guidance is given in [66]. In this work, LOS

guidance algorithms provide desired heading and its first and second order derivatives.

The nonlinearities of the model are taken into account and linearizing terms are added

in the controller in a hybrid feedback and feedforward fashion (see Section 2.2 for more
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details on linearizing controllers). The two controller equations can be expressed as:

τc =


Xc

0

Nc

 (2.2a)

Xc = m11u̇d + n11u− k1(u− ud) (2.2b)

Nc = m32v̇ +m33ṙc + n32v + n33r − k3(r − rc)− (ψ − ψd) (2.2c)

rc = −c(ψ − ψd) + rd (2.2d)

where mij are coefficients of the mass matrix, nij are coefficients of the Coriolis and

damping matrix, k1, k3 and c are control gains. The yaw speed control rc is calculated as

an intermediate command variable in the kinematic controller (2.2d). In the controller

given by (2.2a), the heading references ψd, rd and ṙd are outputs of an extended LOS

guidance algorithm similar to (2.1).

LOS guidance can also be applied in the underwater three-dimensional case as dis-

played in [20]. Underwater, LOS guidance is mainly used for vehicles actuated in surge,

pitch and yaw called uqr-vessels in the following. For uqr-vessels, pitch and yaw are gen-

erally used to cope for the lack of sway and heave actuation therefore allowing track-

ing of (x, y, z) waypoints or trajectories. The same principle as for 2D LOS guidance

is applied, the vehicle is pointed towards the tracked point and is propelled forward.

As shown in [20], 3D LOS guidance involves an additional angle: the elevation. As in

the 2D case, the heading and elevation angles given by LOS guidance can be used as

references in the yaw and pitch controllers respectively.

The work in [20] provides three assumptions for stability of the LOS guidance-based

controller and also makes use of two additional control parameters called look-ahead
distances. When look-ahead distances are used, the ship is not pointed towards the

target itself but towards a fictional point usually chosen further away on the trajec-

tory. Look-ahead distances allow a smoother trajectory convergence and can be tuned

relatively to the application and system. This work also introduces a path frame RP

centered on the tracked point p. Conditions upon the evolution of point p are given in

this work to ensure convergence in the form of an equation giving the evolution speed

of point p relatively to the desired speed of the vehicle. The tracking errors used for

the calculation of the reference elevation and heading angles of the LOS algorithm are
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calculated in frame RP . The work of [20] is actually quite different from the other ex-

amples of LOS guidance of this section. It is studied in more details and expanded in

section 3.5.2.

In [19], the same authors apply the principle of 3D LOS guidance to a uqr-ship

and build a complete controller upon this principle. As seen before, the LOS angles are

used as references in the pitch and yaw controllers. This work also gives a lead towards

unification of fully actuated and underactuated controllers, taking into account the fact

that some actuated DOF may be considered non-actuated in certain speed ranges. In

addition, [26] gives experimental results of a similar control method in the case of an

underwater vehicle tracking a predefined fixed-depth (xd, yd) path close to the surface.

The LOS guidance principles described up to this point do not take external distur-

bances like marine current, wind or waves into account. In fact, traditional LOS guid-

ance does not ensure theoretical convergence in the presence of external disturbances.

To cope for such disturbances, [16] proposes adding a new term in the traditional LOS

heading angle calculation in the case of a ur-vessel. This new term, denoted as yint,

behaves like the integral term of a PI controller. It cancels possible steady state error

due to persistent external disturbances. Though yint is not calculated as the integral of

y, its propagation function will be chosen to allow convergence of the closed-loop sys-

tem. Therefore, yint will be referred to as a pseudo-integral term. Considering yd = 0,

the modified LOS heading angle is:

ψd = atan
(
y + σyyint

∆

)
(2.3a)

ẏint = ∆y

(y + σyyint)2 +∆2 (2.3b)

In (2.3), σy is a new control parameter acting as an integral gain, and ∆ is the look-

ahead distance. As ∆ is always strictly positive, RHS of Equation (2.3) is always defined,

and the value of ψd is always in [−π
2 ,+

π
2 ]. For a complete four quadrants output, one

may use the arctan2 function instead.

Equation (2.3b) gives the propagation rate of the integral term yint. The first order

derivative of the pseudo-integral term yint is conveniently chosen to allow convergence

of the closed-loop system.

In [16], the tracked trajectory is a straight-line path defined in R0 by yd = 0. There-

fore, the position of the vehicle y used in (2.3) could be replaced by the cross-track error

for different trajectories. Nonetheless, having the integral term yint in (2.3) allows the
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vehicle to move along the path y = 0 with a non-zero relative heading angle in case of

external disturbances. An adaptive yaw controller is then given and stability is proven

in the presence of external disturbances.

The work presented in [24, 25] provides a generalization of the integral LOS guid-

ance in 3D in the presence of sea currents. In the former, the addition of an integral term

in the elevation angle calculation allows for compensation of vertical oceanic current in

the case of a horizontal trajectory tracking problem for a uqr-ship while, in the latter,

both elevation and heading angles are given with an integral term therefore allowing

robustness to any irrotational current. The example in [25] is interested in tracking the

x-axis line defined with yd = zd = 0. The enhanced heading angle in [25] is similar

to (2.3), and the elevation angle is built the same way but with the z tracking error:

θd = atan
(
z + σzzint

∆z

)
(2.4a)

żint = ∆zz

(z + σzzint)2 +∆2
z

(2.4b)

In [69, 106], a slightly different approach of LOS guidance is proposed. Here, the cal-

culation of the desired LOS heading angle is based upon the cross-track error. The cross-

track error kinematics is given by:

ẏe = U sin (ψ − ψp(s) + β) (2.5a)

ψp(s) = arctan2(y′
p(s), x′

p(s)) (2.5b)

where U =
√
u2 + v2 is the velocity of the ship, ψp(s) is the trajectory heading angle,

and β = arctan2(v, u) is the crab angle of the vehicle. The variable s can be considered

as a curvilinear abscissa whom propagation rule is given in [69]. More details about the

path frame used here can be found in the references and in section 3.5.2.

Thus, the cross-track error kinematics (2.5a) can be seen as a new tracking problem

of input Ψ = ψ + β and output ye, where Ψ is the course angle. A new formulation

of the desired LOS heading angle is given to stabilize the cross-track error towards the

equilibrium point ẏe = 0; the so-called proportional LOS guidance:

Ψd = ψp(s) + atan
(
−ye
∆

)
(2.6)

It is worth noting that [69] proposes an alternative representation of the problem.
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A pivot point is introduced and is chosen as the point of the vehicle where the local

sway velocity is zero. The pivot point is considered as the new tracking point. A new

definition of the cross-track error and of the tracking problem in general are given in

this point. The proportional LOS guidance is demonstrated as being uniform semiglobal

exponentially stable (USGES) for the ur-boat. Surge and yaw controllers are given in

this case based on the cross-track error. In addition to minimizing the cross-track error,

the work of [106] also includes minimization of the along-track error with a surge speed

controller taking both cross-track and along-track errors into account.

Some recent work conducted in [62] and [61] pushes the concept of integral LOS

guidance forward with a new adaptive LOS algorithm showing increased robustness

to unknown current. Also, this work uses a new amplitude-phase representation of the

kinematic model of the vehicle. These adaptive solutions are described along-side other

adaptive controllers in section 2.5.

LOS guidance has received a lot of attention over the years and many more refer-

ences could be added in this work. The method has been used in different applications

such as waypoint tracking control in [132], studies on the optimization of the look-

ahead distance choice have been conducted as in [106], and LOS guidance has been

applied to smooth transitions between fully actuated and underactuated configurations

in [173] and, up to this date, more work is conducted on the application of LOS guid-

ance to different marine craft [68, 111]. Also, [105] gives a good overview of LOS guid-

ance in 2D and 3D proposing both independent horizontal and vertical planar solutions

as well as a different solution coupled with an auto-depth controller.

Overall, LOS guidance can be considered as the go-to method for automation of

ur-vessels in surface or planar applications and uqr-ships in underwater applications.

However, as can be seen here, LOS guidance is not suited for applications where ori-

entation of the vehicle is controlled or in hovering tasks. In fact, LOS is one of the

methods using a rotational DOF to compensate the lack of actuation on a translation.

In the ur-ship case, yaw moment is used to compensate for the lack of sway. However,

the difference between LOS guidance and the other compensation methods given later

in this work is that, with LOS guidance, the compensation occurs at the guidance level

while, in the following, it happens mostly at the controller level. Using two translation

errors or two translation velocities in the calculation of a reference for a rotational DOF

makes the controller on the latter a function of either of these translation signals. This

kind of manipulation is useful for underactuated systems since it allows going beyond
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the traditional one-to-one diagonal controller systems where control over a DOF is cal-

culated upon the error on this same DOF. Other methods of this kind are presented in

the following.

2.2 Model-Based Linearization and PID Control

The very early works in (static state) feedback linearization can be found in W. Ko-

robov [99] and R.W. Brockett [22]. The necessary and sufficient conditions of feedback

linearization have been obtained by B. Jakubczyk and W. Respondek [94]; see the works

of R. Su and A. J. van der Schaft [162, 145] for the general extension to the nonlinear

case. Refer to D. Claude [32] for a survey. The problem of dynamic feedback lineariza-

tion has been later addressed by B. Charlet, J. Lévine and R. Marino [27]. See also

the books [91, 126, 156] for more references. Recall that the problem of dynamic state

feedback linearization is still open. The input–output linearization problem has been

first addressed in [92] and completely solved in an algebraic setting in [152].

Proportional Integral Derivative (PID) control is the most well-known and widely

spread control technique among autonomous systems. However, when it comes to ma-

rine craft and nonlinear systems in general, PID control itself may not be enough to

cancel the state error in trajectory tracking tasks. Additional linearizing mechanisms

must be associated with PID control when working with nonlinear systems such as

autonomous boats or underwater vehicles. This section demonstrates the use of PID

control and these additional strategies in the case of marine craft. The main advantage

of adding linearizing terms to the control law is to create a linear or quasi-linear closed-

loop system by canceling the nonlinearities of the model, whereas a PID controller alone

applied to a nonlinear system would be particularly difficult to tune and concluding on

the convergence and stability of the closed-loop system would not be possible.

This section displays examples of PID-based controllers both in the fully actuated

case and in the underactuated case. Note that, in the fully actuated case, the common

use of diagonal gain matrices creates a 1-to-1 relation between input and output. On

the other hand, in the underactuated case, additional non-diagonal mechanisms create

compensation behaviors used to control a non-actuated degree of freedom with another

actuated one through natural model relations.

This section mainly focuses on model-based linearization methods but model-free,

adaptive controllers also exist and some examples of such controllers can be found
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in [65, 158, 118, 15] and in section 2.5.

Linearizing model-based controllers can be broken down into three classes. The first

type is State Feedback Linearization, often referred to as Exact Linearization [65, 118].

Here, components of the model evaluated at the current state of the system are used

in the controller in order to theoretically exactly cancel the nonlinearities in the closed-

loop system. Practically, some nonlinear terms may appear in the closed loop system de-

pending on the experimental conditions and approximations. This methods is especially

sensitive to model approximation and variation in experimental conditions introducing

unexpected nonlinear terms in the closed-loop system. Nonetheless, the main interest of

using exact linearization is turning the original nonlinear control problem into a linear

(or almost linear) closed-loop system in which conventional PID tuning methods as pole

placement or linear quadratic regulation can be used.

The second class of linearizing model-based controllers can be referred to as Feed-
forward Linearization in opposition to the first one but is mostly called Flatness-based
control as a reference to the flat characteristics of the system. Flatness-based control is

discussed in details in the section 2.3 and is investigated deeply in chapter 4. In this

case, the model parameters added to the controller are evaluated at the desired state or

at a virtual reference. Therefore, as long as the current state is different to the desired

state or the reference used in the feedforward terms, the nonlinear terms of the system

are not exactly canceled in the closed-loop system. The resulting state error dynamics

can therefore remain nonlinear. In this second case, conventional tuning methods are

therefore more difficult to set up on the resulting closed-loop system. The non-linear

terms cancel out around the desired state or reference.

The third class of linearizing model-based controllers is hybrid between feedback

and feedforward linearization [46, 65, 158, 118]. In these controllers, both feedback

and feedforward terms are used to compensate the nonlinearities of the system either

everywhere or only in the vicinity of the trajectory. Such controllers can be used to bring

some “well-behaving” nonlinear terms in the closed-loop system, therefore enhancing

the overall performances. Outside of the marine context and with other types of con-

trollers, details about these nonlinearities of the closed-loop system and their interest

can be found in [84]. Some of the examples introduced in this section allow for com-

paring hybrid linearizing controllers using different amounts of feedforward.

As will be detailed later in this section, it is frequent to use a virtual reference in the

controller which may be apprehended as having two nested control loops or two stages.
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As a simple example, the virtual reference in the case of marine craft would be a virtual

velocity vector built itself as a controller assuring convergence of the position of the

vehicle towards the trajectory. Broadly, the outer loop generates an effort control vector

ensuring convergence of the vehicle’s velocity towards the virtual reference. This virtual

reference is calculated as a velocity controller, often PI-based, assuring convergence

of the position towards the trajectory. Using such a two-staged architecture is notably

useful to include the guidance principle in the controller. Most often, the guidance or

compensation mechanism is included in the first stage or outer loop of the controller.

This type of two-staged systems are often called cascaded systems [115]. Cascaded

systems are used in numerous control applications inside and out of the marine con-

text. The cascade structure provides a natural robustness and facilitates tuning of the

controller.

2.2.1 Examples of linearizing controllers

This section demonstrates the three different linearizing controllers introduced ear-

lier based on an example of [156]. In the original reference, a feedback linearizing

controller is used.

Let us introduce a nonlinear system of state x and input u. For simplicity, the system

used here is of scalar state and input:

ẋ = f(x) + g(x)u(t) (2.7)

The functions f(x) and g(x) are known nonlinear functions of the state x and g(x) is

assumed to be non-singular.

Three different PI-based linearizing controllers are given for this example following

the four categories introduced earlier. table 2.1 associates one controller with its usual

name.

u1(t) Feedback Linearization

u2(t) Exact Feedforward Linearization (Flatness)

u3(t) Hybrid Linearization

Table 2.1 – Names of linearizing controller categories
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u1(t) = g(x)−1 (ẋ∗ + PI(x∗, x)− f(x)) (2.8a)

u2(t) = g(x∗)−1 (ẋ∗ + PI(x∗, x)− f(x∗)) (2.8b)

u3(t) = g(x)−1 (ẋ∗ + PI(x∗, x)− f(x∗)) (2.8c)

In equation (2.8), the ∗ denotes a desired value or a reference calculated otherwise.

A PI controller is used in this example but note that other control laws could be used

instead to close the loop.

For comparison, the three corresponding closed-loop systems are given:

ẋ = ẋ∗ + PI(x) (2.9a)

ẋ = f(x) + g(x)g(x∗)−1 (ẋ∗ + PI(x)− f(x∗)) (2.9b)

ẋ = ẋ∗ + PI(x)− (f(x∗)− f(x)) (2.9c)

Equation (2.9) shows the three closed-loop systems respectively corresponding to

the three controllers of equation (2.8) applied to the system (2.7).

The consequences of the different linearizing solutions appear clearly in equation (2.9).

The feedback linearizing controller equation (2.8a) leads to the fully linear closed-loop

system equation (2.9a). All non-linear terms are exactly canceled provided that the

measured state and model terms used in the calculations of u1(t) are exact.

The feedfoward linearizing controller equation (2.8b) gives non-linear closed-loop

systems. Note however that as the system tends to the desired state, the remaining

non-linear terms tend to cancel out and the closed-loop system (2.9c) becomes similar

to equation (2.9a). Of course the feedforward controller operates at best when the

vehicle is in the vicinity of the desired trajectory. The behavior is jeopardized when the

error between the desired and actual state of the vehicle gets too large. Consequently,

feedforward linearizing controllers need to be used in association with a re-planning

strategy recalculating the desired trajectory if the system gets too far from the path or

in applications where the system is ensured to stay in an acceptable neighborhood of

the trajectory.

For the hybrid linearizing controller equation (2.8c), measured values are used in

g(x)−1 while desired values are used in f(x∗). This choice leads to the closed-loop system

(2.9c) where an additional error term (f(x∗) − f(x)) appears. This term can enhance
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the stability of the system as a damping term or be damageable. The choice of using

feedforward or feedback for each term of the model must ensure that all the terms

not exactly canceled and remaining in the closed-loop are actually favorable to the

convergence of the system and not damaging for the tracking mission. In the vicinity of

the trajectory, these terms are canceled eventually.

These control structures can be identified in the examples introduced in the follow-

ing and more details are given in the cited works and in the following sections as for

the interest of using one linearizing method over the other.

Obviously, such linearizing controllers are not only used with marine vehicles. They

can be applied to many nonlinear systems as in [128, 125]. Linearizing controllers

are applied to a generic dynamic system in the former and to a manipulator arm in

the latter. These two references refer to the methods used as the Computed torque.

Although it is very close to the linearization methods used in the following examples,

the term “computed torque” is rarely used when working with marine craft. In [17],

computed torque control is used to anticipate and control the behavior of an eel-like

robot.

2.2.2 Application to Fully Actuated Vehicles

2.2.2.1 Feedback Linearizing Controller

An example of a PID-based feedback linearizing controller can be found in [65] (in

Sections 7 and 14). The closed-loop system obtained when applying the controller is

linear. The control law is given by:

τ = Mν̇r + C(ν)ν + D(ν)ν + g(η) (2.10a)

ν̇r = J(η2)−1η̈r − J̇(η2)−1η̇ (2.10b)

η̈r = η̈d + KDėη + KPeη + KI

∫ t

0
eη(ζ)dζ (2.10c)

In (2.10), the acceleration reference η̈r is built as a typical PID controller associated

with the acceleration feedforward term η̈d. This control law is very close to the example

demonstrated in section 2.2.1. It is clear that applying the control law (2.10) leads to

a linear closed-loop system dynamics. In fact, because they are evaluated at the actual

state of the system, the nonlinearities of the model C(ν)ν + D(ν)ν + g(η) are exactly
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canceled by the control law. The closed-loop system is now:

ν̇ = ν̇r ⇒ η̈ = η̈d + KDėη + KPeη + KI

∫ t

0
eη(ζ)dζ (2.11)

The exact feedback linearization used in this example allows global exponential con-

vergence of both the velocity and position of the vehicle. This example also highlights

another advantage of the exact linearization which is that it allows using conventional

linear gain tuning methods on the closed-loop system.

This controller can be seen as a two-staged controller. The first stage calculates the

acceleration reference η̈r and the second stage uses this reference to calculate the con-

trol vector τ and cancel the non-linear part of the model. This structure is commonly

used in non-linear control as it makes a very understandable and predictable behavior

of the system. It is notably useful when working in two different frames rotating one

with respect to the other as it is the case here. The acceleration reference is computed

in the inertial frame and expressed in the body-fixed frame where it can be used to

calculate the force and moment vector as in equation (2.10a).

This control method is used throughout this work as a reference PID-based control

method for fully actuated vehicles. Performances of such a controller are detailed in

section 3.3.

2.2.2.2 Hybrid Linearizing Controllers

A first example of a hybrid linearizing controller can be found in [46]. In this work,

the model is considered in the inertial frame and an expression of the model matrices

expressed in this frame can be found in the reference. The modified matrices in the

inertial frame are indicated with ·̄ . The controller is given by the set of equations:

τ = M̄η̈r + C̄η̇r + D̄η̇r + ḡ(η) + Λϵ (2.12a)

η̇r = KDη̇d + KPeη + KI

∫ t

t0
eη(ζ)dζ (2.12b)

ϵ = KDėη + KPeη + KI

∫ t

t0
eη(ζ)dζ (2.12c)

In Equation (2.12), the orientation of the vehicle is represented in quaternions as part

of the vector η, and eη is the state error. The matrices KD, KP , KI and Λ are strictly

definite positive gain matrices that are set to the identity in this work but could be tuned
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for better performances. The reference [46] specifies that removing the integral term

by setting KI to 0 does not disturb the global convergence of the method. A similar

approach can also be found in [77] where the saturation is taken into account in the

controller.

In the control law (2.12), ϵ is built as a conventional PID controller outputting an

acceleration vector and η̇r is a virtual velocity reference as explained at the beginning of

this section. This reference can be seen as a kinematic controller assuring convergence

of the position of the vehicle towards the trajectory. It is interesting to note that, when

the state error tends to zero, the virtual velocity reference η̇r tends to the desired speed

in the inertial frame multiplied by a control parameter KD.

Removing the integral terms of the controller, the closed-loop error system can be

expressed in the inertial frame as:

0 = M ∗(KDη̈d − η̈) + (C∗ + D∗)(KDη̇d − η̇) +KDėη +KPeη (2.13a)

KD = M ∗KP + ΛKD (2.13b)

KP = (C∗ + D∗)KP + ΛKP (2.13c)

Because of the hybrid linearization used in this example, the closed-loop dynam-

ics (2.13) is nonlinear, the Coriolis, centripetal and damping terms are not canceled.

Note that, new ambiguous error terms (C∗ +D∗)(KDη̇d− η̇) are created in the closed-

loop system because of the hybrid character of this controller. However, the refer-

ence [46] states that the system is globally asymptotically convergent but it can hardly

be seen on the closed-loop system equations.

Similar examples of nonlinear PD controllers for trajectory tracking are demon-

strated in Sections 7 and 14 of [65]. Here, the control laws are given in the mobile

frame as:

τ = Mν̇r + C(ν)νr + D(ν)νr + g(η) + J(η)−1KPeη + J(η)−1KDϵ (2.14a)

ϵ = ėη + Λeη (2.14b)

η̇r = η̇d + Λeη (2.14c)

νr = J(η)−1η̇r (2.14d)

Again, η̇r (and thus νr) can be considered as the virtual velocity reference used in the

feedforward part of the control law, eη = ηr − η and eν = νr − ν. Note that in this
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example as in the previous the feedforward and feedback terms are nonlinearly mixed

together as in C(ν)νr. Some of the following hybrid controller examples show more

of a linear combination of linear and nonlinear terms leading to simpler closed-loop

systems. Here, nonlinearities will remain in the closed-loop system. However, it should

be noted that, once the position error is canceled (eη = 0), the velocity reference η̇r is

equal to the desired velocity η̇d. Therefore, when the vehicle tends towards the desired

state, the reference terms tends to the desired values and the controller behaves like a

common feedforward linearizing controller.

More examples of hybrid linearizing controllers can be found in [158]. This work

proposes and compares a set of controllers using either a hybrid linearization with

both feedforward and feedback terms, only feedforward terms or adaptive structures.

The model-based controllers introduced in [158] show interesting results. First, a con-

ventional PD controller that does not rely on the model, is given as a baseline for com-

parison. The PD control law is given as:

τ = KPeη + KDeν (2.15)

As said earlier in this section, a simple PD controller is unlikely to show good perfor-

mances when used to control a marine craft on complex trajectory tracking tasks. How-

ever, it is worth mentioning here because it can be a first step towards an autonomous

vehicle and give results on simple position keeping task.

Note that, in [158], the system is represented with a decoupled model. All non-

diagonal terms are neglected and notably the non-diagonal added masses and Coriolis

and centripetal terms. Therefore, most of the nonlinearities of the model are neglected.

The model can therefore be considered as six independent nonlinear subsystems, one

per degree of freedom. In addition, the linear and quadratic damping terms are bro-

ken apart and regrouped in two different matrices, respectively, DL and DQ. The first

control law is given as:

τ = Mν̇d + DQ(ν)ν + DLνd + g(η) + KPeη + KDeν (2.16)

The control law (2.16) is hybrid in the sense that it mixes feedforward and feedback

terms. The control law can be broken down into three parts. First, one finds a traditional

PD controller similar to the baseline PD control law (2.15): KPeη + KDeν . Matrices

KD and KP are usual gain matrices. Then, the linear part of the model is added and
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evaluated at the desired state, that is: Mν̇d + DLνd. Finally, the nonlinear terms of

quadratic damping, gravity, buoyancy and disturbance effects are added and evaluated

at the actual state: DQ(ν)ν +g(η). This last part is exactly canceling the nonlinear part

of the system.

Now, let us introduce the second control law of [158] for the sake of comparing

the closed-loop systems they both lead to. This second control law is mostly similar to

the first one, but this time feedforward is used in the quadratic damping. The second

control law is then:

τ = Mν̇d + DQ(νd)νd + DLνd + g(η) + KPeη + KDeν (2.17)

Note that exact feedback values of the nonlinear gravity, buoyancy and disturbance term

g(η) are used anyway.

The two closed-loop systems are then given by:

Mėν + (DL + KD)eν + KPeη = 0 (2.18a)

Mėν + (DQ(νd)νd −DQ(ν)ν) + (DL + KD)eν + KPeη = 0 (2.18b)

Because of the slightly different constructions of the two control laws, the second closed-

loop system (2.18b) shows an additional quadratic velocity error term. Both control

laws are exponentially convergent in both velocities and positions. Due to the system

simplification, the behavioral differences are very small in this example, but a small

improvement on the convergence time can be observed with the second control law.

Another similar comparison is made in [118]. In this work, the system model is com-

plete, and two control laws are produced. The first one is a completely exactly feedback-

linearizing controller while the second one uses feedforward terms in the damping term.

The two control laws are given by:

τ = M (ν̇d + KDeν + KPeη) + C(ν)ν + D(ν)ν + g(η) (2.19a)

τ = M(ν̇d + KDeν + KPeη) + C(ν)ν + D(νd)νd + g(η) (2.19b)

Note that, in these two control laws, the PD controller terms are used as part of the

reference acceleration term instead of being linearly added to the right hand side of the

controller. This method essentially allows for simplifying the mass matrix in the closed-

loop system equations, making them independent from the mass matrix and avoids in-
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troducing nonlinear error terms in the closed-loop system. The two closed-loop systems

are given as:

ėν + KDeν + KPeη = 0 (2.20a)

ėν + (KD + D(ν))eν + KPeη = 0 (2.20b)

The closed-loop equations (2.20) are hard to interpret in terms of stability because they

mix error signals in the inertial frame and in the body-fixed frame eη and eν respectively.

A simplified approach is to consider KPeη as a proportional term and the two other

terms are derivative of the first and second order.

In this work, the addition of damping terms in the second closed-loop system leads

to better trajectory tracking performances. It appears that the nonlinear damping term

of this second solution behaves favorably and enhances the performances.

Of course, more combinations of feedforward and feedback terms could be used but

are not discussed here. Nonetheless, as shown through all these examples, the knowl-

edge of the model can be used to simplify the nonlinear system, lead to a linear or par-

tially linear closed-loop system and therefore allow using a conventional tuning method

for the PID like pole placement or LQR 1. Of course, similarities with the methods pre-

sented in this section will be found in the following sections because these linearization

techniques are also used with other classes of controllers.

Indeed, the model-based linearization methods introduced in this section require

a precise estimation of the model parameters to perform at best. Adaptive methods

introduced in section 2.5 on the other hand only require minimal model knowledge

and are shown to perform as well as the model-based ones.

2.2.3 Application to Underactuated Vehicles

In the underactuated case, the linearization and PID control examples introduced

in the above are not sufficient. Indeed, using the control methods introduced in sec-

tion 2.2.2, some DOF would be neglected because of underactuation. The controllers

of section 2.2.2 are all diagonal. They create a one-to-one relation between one out-

put and the corresponding input. In order to take the non-actuated degrees of freedom

into account, the examples introduced in this section use either a non-diagonal space

1. For more details about LQR control in this context, see [171]
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reduction or a non-diagonal, kinematic couplings-based gain matrix in the control law.

In both cases, the kinematic couplings of the model are used to establish a model-based

kinematic guidance in a similar fashion as LOS guidance. The guidance thus created ap-

pears in the outer loop of the cascaded system. Through kinematic couplings, rotational

speeds are calculated in the control law to compensate for the lack of actuation on a

non-actuated translation. Other model-based methods involving less obvious coupling

effects can also be found for instance in [131].

The first mechanism used in addition to model-based linearization and PID control

is asymmetrical space reduction. Space reduction is a method consisting in reducing the

spatial dimension of the system and considering the controlled or actuated DOF of the

system. It is common practice when it comes to dealing with underactuated systems

and especially for a system where one or more DOF are both non-actuated and natu-

rally mechanically stable. As an example, it is common to neglect the roll motion of a

torpedo shape vehicle if the restoring moment in roll is considered strong enough to

keep an almost zero-roll angle during all the application time or if this DOF has no

meaningful impact on the mission. In such a case, the problem can be reduced to a five-

DOF problem. However, when it comes to vehicles and applications whose DOF do not

match one-to-one, space reduction gets more complicated but offers new possibilities.

In the following examples, space reduction can be considered asymmetrical because the

method considerstwo sets of different DOF, one set of controlled DOF expressed at the

tracking point (see section 1.1.2.1) of the system and one set of actuated DOF expressed

at the center of the vehicle. Using a tracking point different from the center of the craft

allows creating non-diagonal compensation behavior between the two sets of DOF.

As a first example, Ref. [3] proposes a solution to the 3-DOF position tracking prob-

lem applied to a generic uqr-craft in which space reduction is used to introduce the

guidance mechanism in the control law using a virtual reference point.

In [3], a reduced version of the kinematic model equation (1.1) is produced with

reduced matrices and vectors. Because J(η2) and η̇E are expressed at point E, they are

reduced following the DOF required in the application: the three last rows and columns

are discarded keeping only the rows corresponding to positions. On the other hand, ν is

expressed in point OB and is therefore reduced following the actuated DOF of the ship:

the second, third and fifth rows are discarded. In addition, because the transformation

matrix T−1 is used to move from E to OB, the rows are reduced following the DOF

required in the application while the columns are reduced following the actuated DOF.

64 Version du October 11, 2023



Chapter 2 – Literature review / 2.2. PID Control 2.2. PID Control

Therefore, the three last rows and columns 2, 3 and 5 are discarded in T−1. The reduced

kinematic model is then given as:

η̇E,r =


xE

yE

zE

 (2.21a)

J(η)−1
r = J1(η) (2.21b)

νE,r = J(η2)−1
r η̇E,r =


uE

vE

wE

 (2.21c)

νr = T−1
r νE,r =


u

q

r

 (2.21d)

T−1
r =


1 0 0

0 0 εx

0 −εx 0

 (2.21e)

The reduction of the dynamic equation is more straightforward since all the matrices

and vectors are expressed in point OB and reduced in the same way, keeping the first,

fifth and sixth rows and columns. In this example, T−1
r behaves like a non-diagonal

gain matrix creating the compensation behavior relying on the kinematic coupling of

the model.

The control law presented in [3] is composed of two stages, kinematic and dynamic

ones. The kinematic stage is a proportional controller with an anticipation term based

on the position error calculated in R0. The equation of the kinematic stage is given in
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RB by:

νc = T−1ν̄E (2.22a)

ν̄E = J(η)−1 (η̇∗ + Λη(η∗ − ηE))− δ(ν) (2.22b)

with Λη a definite positive gain matrix and δ a drift vector accounting for the neglected

motions and current velocity. Note that ν̄E stands for a control velocity at the tracking

point E supposed to ensure convergence of the position of the tracking point towards

the trajectory. All the vectors and matrices of Equation (2.22) are reduced following the

steps presented before, but the index r is omitted for clarity.

The dynamic stage has a feedback linearizing structure and is calculated in the re-

duced space at point OB:

τc = M (ν̇c + Λν(νc − ν)) + C(ν)ν + D(ν)ν + g(η2) + d(ν) (2.23)

where νc is the output velocity vector of the kinematic stage, and d(ν) is a vector con-

taining some terms that were discarded during the space reduction and considered as

external disturbances. Equation (2.23) is expressed following the space reduction pre-

sented before.

Therefore, looking at (2.21) and (2.22), it appears clearly that the pitch and yaw

control speeds at the output of the kinematic stage qc and rc are functions of the sway

and heave control speeds in point E, v̄E and w̄E, respectively. The pitch and yaw com-

ponents of τc are themselves calculated out of the lateral and vertical motions required

in point E. This behavior is created by the asymmetrical space reduction and notably

the introduction of non-diagonal terms in the reduced transformation matrix Tr
−1.

The method developed in [3] has been extended to different propulsive topologies

and applications in [168, 31]. In [168], the space reduction method is applied to the

two vehicles introduced in section 1.2.1 and section 1.2.2. Both are evaluated on a four

DOF task. The first vehicle is ill-actuated with respect to the task and a non-diagonal

compensation mechanism is introduced with the asymmetrical space reduction of the

Tr matrix. The same method is used on the second vehicle but this time neglecting the

angular constraint of the task.

The space reductions in [168] are different from the one introduced in [3]. For the

first vehicle, the vector and matrices expressed in OB are reduced discarding the sec-

ond and fifth rows and columns because sway and pitch are not actuated, whereas
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the vectors and matrices expressed in E are reduced discarding the fourth and fifth

rows and columns because roll and pitch are neglected in the task. For the second ve-

hicle, the vectors and matrices in E are reduced keeping only the three first rows and

columns corresponding to the three required translations while those expressed in OB

are reduced keeping the first, fourth and fifth rows and columns because the vehicle is

actuated in surge, pitch and yaw. The shape of the vectors and matrices for both vehicles

are described in detail in [168].

Partial convergence of the method is demonstrated in [31] for the first 4-DOF ve-

hicle. The compensation mechanism allows sway tracking in E but at the cost of yaw.

Nonetheless, the heading of the vehicle is kept stable thanks to hydrodynamic restoring

moments and stays very close to the task requirements.

Overall, in the examples presented above, the reduced translation matrix T−1
r be-

haves like a non-diagonal gain matrix making the velocity command of one DOF in

OB depending on the speed command on another DOF in E. As the previous solutions

shown in this work, this method allows compensation of the lack of actuation over one

degree of freedom with another. Preferably, a rotational DOF would be used to com-

pensate the lack of a translation. However, one of the major issues of such methods is

that reduced matrices lose some of their properties. Notably, the reduction of the J(η2)
might, in some cases, add new singularities to the system, making the matrix noninvert-

ible for some orientations.

Similar behavior can be obtained without space reduction introducing a model-

based non-diagonal gain matrix in the kinematic stage of the controller as displayed

in [36] (only in French for now). In this example, the so-called Handy H matrix is

introduced in the kinematic stage of the control law to allow compensation of the non-

actuated sway motion with yaw. This matrix is autonomously calculated by an algorithm

provided in this work and is based on the kinematic couplings of the model. It allows

for generating the yaw moment necessary to exactly create the sway speed in the track-

ing point E required to cancel the lateral error. The interest of this method is that it

does not require reducing the space of the application which makes generalization easy.

This method is presented in details and applied to several study cases in chapter 3 and

section 3.5.2.
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2.3 Differential Flatness

This section introduces examples of control laws based on differential flatness and

applied to both fully actuated and underactuated marine craft.

Differential flatness or, simply, flatness is an approach of control-command born

in 1991, as a consequence of the work of four French researchers—M. Fliess, J. Lévine,

Ph. Martin & P. Rouchon—on the control of an overhead crane [56]. This invention,

created from an application, gave rise to a new theory of nonlinear control. It was

first formulated in the language of differential algebra [55, 53] 2. The definition of this

property has been reformulated some years later in the formalism of the differential

geometry of prolongations and infinite jets [52]. Flatness is a structural property of

a to-be-controlled system, which naturally leads to trajectory tracking control. In the

linear framework, a flat system is exactly a controllable one, so flatness is a good can-

didate to be a definition of controllability of nonlinear systems. Flatness is presented

in detail in several books [83, 154, 116, 136, 142]. The control methodology derived

from flatness proceeds in two steps: Firstly, generation of a nominal command from the

to-be-followed trajectory by the system, secondly, closing the loop to have robustness

properties. The closed loop can be realized in several ways: it can be classical PID, state

feedback, LQG/LQR, sliding modes, model-free control. . . Flatness is sometimes been

confused with feedback linearization, partly because, besides its definition, the notion

of endogenous feedback and a related notion of linearization were introduced. Remem-

ber that flatness corresponds to the notion of state feedback linearization in the case of

single-input systems. See [51] for more details on the links between flatness and feed-

back linearization. About ten years after the appearance of flatness, it has been demon-

strated that, during operation, the trajectories of the flat output correspond to that of a

linear system in Brunovský form. This property is called exact feedforward linearization
(thus cannot be confused with feedback linearization). Through this new approach of

flatness, it was possible to establish the properties, already observed in practice on ap-

plications, of robustness towards parameter errors and perturbations. We can quote [81,

80, 82] for the theoretical aspects and [39] for the practical aspects of exact feedforward

linearization based on differential flatness. The flatness has spread in many domains of

control; we can quote here some of them: control of mechanical systems [13], mobile

robotics [54], control of electric motors [29], control of chemical reactors [140, 138,

2. This article is cited more than 3800 times at the date of writing the present work.
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86] (see references in [83, 154, 116, 142] for more more applications). Besides the

academic aspects, the flatness is present in many industrial realizations, too numerous

to be all quoted here. More details on the application of flatness to marine craft can be

found in chapter 4. The flatness prroperty of a system can also be used in the trajectory

generation phase to ensure that the planned paths are adapted to the capability of the

vehicle [170].

2.3.1 Application to Fully actuated vehicles

One of the few applications of differential flatness theory in the context of marine

vehicles can be found in [137]. In this example, a fully actuated AUV is evaluated on a

6-DOF task. For fully actuated system, choosing the flat output is pretty straightforward.

Nonetheless, this work shows that the model of the fully actuated AUV is flat for a flat

output chosen as the position and orientation vector z = η in the inertial frame. Then,

using flatness equations, the inputs of the system are written as functions of the flat

output. These expressions are then used to derive a flatness-based linearizing control

law using exact feedforward linearization and PD controllers. This work also introduces

an additional Kalman disturbances compensation method. The good performances of

the method on a 6-DOF task are displayed in section 4.5.1.

The proof of flatness of the completely actuated AUV given in [137] is a little bit

tricky and gives many details that are out the scope of the present work. Let us give

a direct proof: the position and orientation vector η is the most obvious and natural

choice for the flat output candidate. Choosing z = η notably allows for defining the task

in terms of desired position, orientation and velocities in the inertial frame, which is

both logical and practical in most applications. As in many cases, the flat output found

here has a strong signification w.r.t. the control problem as one wants to control η.

Then, showing the differential flatness of the system is pretty straightforward. In fact,

the only variables to express as functions of the flat output are the velocity vector in the

body-fixed frame ν and the propulsion vector τ . The inverse kinematic model and the

dynamic model expressed in the inertial frame constitute self-explanatory demonstra-

tions of the flatness of the system:

ν = J(η)−1η̇ (2.24a)

τ = M
(
J(η)−1η̈ + J̇(η)−1η̇

)
+ C(η̇)J(η)−1η̇ + D(η̇)J(η)−1η̇ + g(η) (2.24b)
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Looking at Equation (2.24), it appears clearly that both the velocity vector ν and

the effort vector τ can be expressed as functions of the flat output candidate η and its

derivatives η̇ and η̈. The model used to represent fully actuated marine craft is therefore

flat with flat output z = η.

As a consequence of flatness, the nominal open-loop control that achieves trajectory

tracking of the reference trajectory of the flat output η∗ is expressed by:

ν∗ = J(η∗)−1η̇∗ (2.25a)

τ ∗ = M
(
J(η∗)−1η̈∗ + J̇(η∗)−1η̇∗

)
+ C(η̇∗)J(η∗)−1η̇∗ + D(η̇∗)J(η∗)−1η̇∗ + g(η∗)

(2.25b)

Following the reasoning introduced in [81] and using the flatness equation (2.24),

a flatness-based closed-loop controller can be easily derived:

τc = τ1 + τ2 (2.26a)

τ1 = MJ(η∗)−1 (η̈∗ + Λ(eη)) (2.26b)

τ2 = MJ̇(η∗)−1η̇∗ + C(η̇∗)J(η∗)−1η̇∗ + D(η̇∗)J(η∗)−1η̇∗ + g(η∗) (2.26c)

where Λ is a control function like a PID controller based on the state error eη and τ2

constitutes the exact feedforward linearizing term. Of course, in the fully actuated case,

the formulation of the control law built with differential flatness is very close to some

of the feedforward linearizing controllers introduced in Section 2.2.

2.3.2 Application to Underactuated Vehicles

For underactuated vehicles, showing differential flatness is significantly harder. In the

marine context, two very promising examples can be found in [154]. Note that, the flat

output must be of the same dimension as the input. In fact, the very last example of

chapter 12 in [154] states that the model of an underactuated surface ship is not dif-

ferentially flat. It is impossible in this example to express all the problem variables as

functions of the flat output —chosen as the positions in the horizontal plane z = [x y]
—without expressing differential equationd. Instead, the underactuated surface ship is

said to be Liouvillian. More details about Liouvillian systems and their properties can be

found in [53, 28].

However, another very interesting system can be found in [154] as well as in [135]:
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the Hovercraft system. Arguably, the model used to represent the hovercraft system is

very close to the model of an underactuated surface vessel and could even be considered

as a special case of the more generic model of the surface ship with selected numerical

values of the parameters. The main differences to find between these two models are in

the mass distribution and damping approximations. However, the model of the hover-

craft is shown to be flat with the flat output z = [x y] in [154, 135]. In both examples,

equations of flatness allow for calculating surge and yaw controls as function of the de-

sired state, its derivatives up to the fourth order, and PD controllers on the flat output.

More details on flatness-based control and applications can be found in chapter 4.

2.4 Sliding Mode Control

After the famous book by I. Flügge-Lotz [59] on discontinuous control, the sliding

regime control was essentially introduced by a few authors in the end of the 1950s [41,

2, 60, 75, 148]. These works were followed by those of Cypkin [35], Emelyanov [42]

and Itkis [93]. Utkin introduced a notion, new for the time, of sliding control applied

to mono-variable classical linear systems, by the use of discontinuous controls [166].

See also [165] for a survey. All of these ideas would not have been possible without

the much more theoretical work of the Soviet mathematician Filippov in the 1960s con-

cerning differential equations with a discontinuous right-hand side [45]. The books of

Utkin [166] and Sira-Ramírez [153] give a good overview of this approach to discon-

tinuous control which has gained popularity its simplicity and its applications in vari-

ous fields of automation. Moreover, these techniques have led to industrial applications.

The applications of SMC in robotics and AUV start with the works of J.J.E. Slotine: [176,

155, 157, 175].

This section introduces the use of Sliding Mode Control for both fully actuated and

underactuated marine craft. SMC is widely used in both linear and nonlinear systems

experiencing model uncertainties or external disturbances. SMC is known for its robust-

ness [175] and for offering theoretical finite time convergence even in the presence of

model approximations and external disturbances. Finite time convergence is made pos-

sible by the introduction of a sign function in the controller. The use of the discontinuous

signum function in SMC induces a new phenomenon called chattering. Chattering is a

consequence of a discontinuity in the controller around the equilibrium point creating

fast steep oscillations potentially damaging for the actuators. Several methods intro-
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duced in this work allow mitigating or canceling chattering but at the cost of asymptotic

convergence instead of finite time convergence. Many examples of successful applica-

tion of SMC on surface vehicles and underwater craft can be found in the literature. This

section presents some of them after briefly introducing the method on a generic simple

example. This example is also used for introduction of the notations relative to SMC.

The interested reader is referred to [156, 109, 117, 178] for more information about

SMC outside of the marine environment. Note that, when SMC is applied to nonlinear

systems feedback linearizing terms naturally appear in the controller thanks to the con-

struction method of SMC. The end result is very similar to some PID-based controllers

of section 2.2.

An example of basic SMC can be found in [156]. Let us recall the system used in the

first example of Section 2.2, in the case of a n-order system, as:

x(n) = f(X) + g(X)u (2.27)

The state of the system is defined as X =
[
x ẋ ... x(n−1)

]
. Referring to the model

introduced in chapter 1, matrix g(X) can be seen as the inverse of a mass matrix and

vector f(X) as the vector regrouping all other forces and moments, notably the Coriolis

and centripetal effects as well as damping. An additional vector of disturbances could

be added in the system, but it is neglected in this example for the sake of simplicity.

Finally, u is the system input. In this example, f(X) and g(X) are considered known

but further analysis in the case of approximated model matrices can be found in [175,

156].

The idea behind SMC is to reduce the control problem to the lower-order problem of

minimizing the distance between a point in state-space and a surface. The said sliding
surface is in fact a state-space hypersurface 3 representing the desired dynamics of the

system. It appears in the literature that a confusion is often made between the actual

sliding surface and the distance between the current state and the surface. When re-

ferring to the “sliding surface”, authors often use the equation of distance between the

state of the system and the surface itself expressed in state space. In fact, the sliding

surface itself is the set of desired states represented in state space, and it can be defined

by the ensemble of system states where the distance to the surface is zero. In this work,

the distance representation will often be used keeping in mind that the sliding surface

3. Recall that in a space of dimension N , a hypersurface is a geometric object of dimension N − 1.
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is, in fact, properly defined as the states where this distance is zero. This choice is the

most common in the literature because the distance to the surface is a function of the

state error which is used to close the loop in the controllers.

As will be seen later, the question of defining the sliding surface has been widely

studied in the literature, but a basic definition of such a surface Σ associated with the

distance measure σ is given by:

σ(X, t) = ( d
dt

+ λ)n−1e = 0 (2.28)

To match with the model used in this work, the example is presented with n =
2: σ(X, t) = ė + λe. The quantity λ is a design parameter representing the slope of

the surface in state space. It can be tuned for better performances or relatively to the

application. Equation (2.28) shows that, in trajectory tracking applications, the sliding

surface Σ moves with the reference. One can also observe that the equilibrium point

ė = 0, e = 0 is contained in the surface σ = 0. Therefore, the control problem becomes

a problem of minimization of the distance σ. Once the surface is reached, the sliding
motion drives the system on the surface towards the equilibrium point ė = 0, e = 0
giving its name to the method.

The design of the command vector u(t) relatively to the sliding surface is based on

the Lyapunov theory. Let us define the following Lyapunov function candidate:

V = 1
2σ

2 (2.29)

for which one obviously has V (0) = 0 and V (σ) > 0 for σ ̸= 0. The first order time

derivative of V is:

V̇ = σ̇σ (2.30)

and the stability criteria V̇ < 0 therefore leads to:

σ̇σ < 0 (2.31)

Equation (2.31) is referred to as the sliding condition. The sliding condition must be

respected to ensure stability. The evolution of the sliding surface is then chosen to meet

the sliding condition at all time. One basic solution is:

σ̇ = −γ sign(σ) (2.32)
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where γ is a control gain to be tuned later. Using σ̇ = ë+λė, the model Equation (2.27)

can be combined to the sliding condition (2.32) to give an expression of the control

vector u:

u = g−1(X)[ẍ∗ − λė− γ sign(σ)]− f(X) (2.33)

Equation (2.33) can also be written as:

u = u1 + u2 (2.34a)

u1 = g−1(X)[ẍ∗ − λė]− f(X) (2.34b)

u2 = −g−1(X)γ sign(σ) (2.34c)

where the so-called equivalent term u1 is in fact a feedback linearizing term of reference

ẍ∗ (see Section 2.2), and u2 is the switching term assuring convergence towards the

sliding surface. In the case of an approximated model, u1 would be based on the model

matrices approximation and would only compensate the known parts of the model ma-

trices.

Remark 2.1 The conventional sliding surface definition used in this example and in most
of the following may lead to the appearance of steady state error in the presence of external
unknown disturbances. This phenomena is described in appendix A as well as an alter-
native sliding surface definition called Integral SMC. The sliding surfaces used in most of
the following examples can be replaced with integral sliding mode surfaces allowing better
robustness to unknown external disturbances. The conventional sliding surface presented
here has a proportional derivative structure which can lead to steady state error and no-
tably when using smooth switching functions. Adding an integral term in the sliding surface
definition creates a PID behavior.

Note that, in a real application, the simple controller (2.33) is likely to create chat-

tering as the switching of the signum function would not be instantaneous. The follow-

ing examples propose alternative switching functions reducing or avoiding chattering.

Figure 2.3 gives an overview of some of the switching functions used in the following ex-

amples to avoid chattering. This functions are continuous around the equilibrium point

which limits the fast oscillations causing chattering but also modify the convergence

of the controllers. Some work has been done to compare different switching strategies

and [134] shows that SM is globally exponentially stable with this selection of smooth
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Figure 2.3 – Comparison of the switching functions used to avoid chattering.

switching functions.

It is also worth mentioning the works of [147, 78, 159, 96] where SMC is combined

with Fuzzy logic to create more robust and adaptive controllers. Adaptive sliding mode

controllers can also be found in the work of [151, 150].

2.4.1 Application to Fully Actuated Vehicles

The work of [175] gives a good example of SMC applied to fully actuated marine

craft, and the formulation is the same as in the example exposed before. The system has

three actuated DOF and is sent on a horizontal plane application composed of (x, y, ψ)

75 Version du October 11, 2023



Chapter 2 – Literature review 2.4. Sliding Mode Control

trajectories. In [175], the model is not entirely known a priori and estimated values of

the model matrices are used in the controller. The model also includes approximated

disturbances. All approximations are bounded, and this work shows that, when they are

known, the estimation bounds can be used for the calculation of the gain parameter γ

(noted K(X, t) in the reference) to ensure convergence. In addition, Ref. [175] displays

the use of a different switching function based on a saturation function instead of a

signun function. The saturation function shown in figure 2.3 is better suited for real

applications since it avoids the chattering phenomenon. Using the saturation function

allows for creating a boundary layer around the sliding surface where the switching

effect is made continuous. The size of the boundary layer can be tuned for adapted

behavior of the system. The saturation function is originally defined as:

sat(x) =

 sign(x) if |x| >= 1

x if |x| < 1

Using the saturation function, it appears clearly that, inside the boundary layer

|σ| < 1, the nonlinear controller (2.33) becomes very similar to the PID-based lineariz-

ing controllers introduced in Section 2.2. Inside of the boundary layer, the controller

becomes:

u = g−1(X)[ẍ∗ − λė− γσ]− f(X) (2.35)

Therefore, the main drawback of using a continuous switching function such as the

saturation function is that the convergence cannot be guarantied in finite time anymore.

Nonetheless, [175] gives a method for calculation of the control gain, the slope of the

surface and the boundary layer thickness based on the estimation of the model matrices,

and shows very good tracking results.

The method is then used for the design of three decoupled controllers, one per ac-

tuated DOF. For each DOF, a sliding surface is defined as well as the different control

parameters such as the boundary layer thickness or the switch control gain. The three

sliding surfaces are given as:

σu = eu + λuex (2.36a)

σv = ev + λvey (2.36b)

σr = er + λreψ (2.36c)
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The surge and sway surfaces given by (2.36a) and (2.36b), respectively, are defined

in terms of positions in the inertial frame R0 and velocities in the body-fixed frame

RB. While this could be fine for simple mono-axial applications, such a definition of the

surge and sway sliding surfaces may be problematic when it comes to more complex

trajectories. In this case, the trajectory tracking results show good performances on the

tested trajectories.

The work of [34] is another good example of SMC following the same overall logic.

Here, the vehicle is controlled only in the diving plane and is fully actuated w.r.t. the

task. In this work, the performances of four different controllers based on SMC are

compared. The main difference between the four controllers is the model used in the

equivalent part U1 (see below Equation (2.39)). The first one uses a linearized model,

the second one uses the nonlinear exact model, the third one uses an adaptive model,

and the last one uses estimated states. The compliance and robustness of the SMC

method make such differences between controllers applied to the same system possible

and is once again demonstrated by the results of this work.

The definition of the sliding surface is also slightly different in [34] since a first order

linear surface, defined by σ = γ⊤x, is used. Here, x ∈ R3 is a reduction of the state of

the vehicle in the diving plane, γ ∈ R3 is a vector of gains, and σ contains, in fact, three

decoupled surfaces, one per DOF, linearly added. The use of first order sliding surfaces

allows for a simpler command vector and enables the use of pole-placement techniques

when tuning the parameters.

Another different definition of the set of sliding surfaces is given in [87]. As in [175],

the sliding surfaces are defined in terms of the position errors in the inertial frame

summed to velocity errors in the moving frame. The set of sliding surfaces is given by:

σ(eν , eη) =
[
Λ1 Λ2

] eν

eη

 (2.37)

where Λ1 and Λ2 are coefficient matrices defined in R6×6 and identified in the following.

To take better account of the coupling effects between the DOF of the system, the sliding

surfaces used here are defined over the full state space while, in the references presented

before, they are often defined only on the output. For ease of understanding of the

following equations, another self-explanatory expression of the vehicle model is given
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to match both the notation of chapter 1 and the notation used in the reference:

Mν̇ = f(ν,η) + g(ν,η)u(t) (2.38a)

η̇ = h(ν,η) (2.38b)

The definition of the sliding surfaces (2.37) leads to a different expression of the con-

trol vector:

U = U1 + U2 + U3 (2.39a)

U1 = ĝ(ν,η)−1
[
(Λ1M

−1)−1ν̇∗ − f̂(ν,η)
]

(2.39b)

U2 = ĝ(ν,η)−1(Λ1M
−1)−1Λ2

[
η̇∗ − ĥ(ν,η)

]
(2.39c)

U3 = −ĝ(ν,η)−1(Λ1M
−1)−1F (σ, Φ) (2.39d)

In (2.39), the estimates f̂ , ĝ and ĥ of the model function are used. A similar definition

of the control vector U could be given with the real values of the model functions if

they were to be considered known. As for the usual definition of SMC given earlier in

this section, the control vector U can be broken down into three parts. U1 compensates

the estimates of the dynamic effects of the model, U2 provides stabilization based on

estimates of the positional elements in h, and U3 is the switching term driving the

system to the sliding surfaces. This work uses the hyperbolic tangent function over the

boundary layer of thickness Φ as a switching function:

F (σ, Φ) = γ tanh(σ
Φ

) (2.40)

The hyperbolic tangent function is displayed in figure 2.3 with Φ = 0.5. The hyperbolic

tangent appears ideal since it is smooth around the equilibrium point σ = 0 but is still

steep enough around the sliding surface to ensure fast switching and the sliding behav-

ior.

Here, again, the structure of the control law is very similar to some controllers in-

troduced in Section 2.2 and notably when the distance to the sliding surface is close

to zero.

As for the saturation function seen before, using the hyperbolic tangent avoids chat-

tering at the cost of a non-finite convergence time.
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In order to set the values of Λ1 and Λ2, the system is linearized. Doing so highlights

that the first parameter matrix Λ1 can be chosen as the identity matrix without loss of

generality in the fully actuated case. Then, analyzing the linearized close-loop dynamics

leads to a desirable choice of the second parameter matrix Λ2:

ν = Λ2η (2.41)

Equation (2.41) is quite similar to the kinematic model of the system given in equa-

tion (1.1).

The authors then apply the SMC method they introduced on a set of four Single-

Input-Multiple-States subsystems. The three main subsystems are tested first indepen-

dently then all together in association with LOS guidance in a waypoint tracking exper-

iment. Effects of sea current are also highlighted in the last simulations.

Over the years, some more work has been carried out on SMC and notably the

introduction of new sliding surfaces. As an example, terminal sliding mode introduced

in [117] and applied to the marine craft model in [113] or [112] is based on a different

sliding surface definition. Terminal sliding mode offers finite convergence time, faster

and more precisely than conventional sliding mode by introduction of a new nonlinear

term in the sliding surface definition. Note that, in this work, the sliding surfaces are

completely defined in the inertial frame. In fact, two formulations of the terminal sliding

surface are given in [113]:

σc = ė(t) + λe(t)
q
p = 0 (2.42a)

σn = e(t) + 1
λ
ė(t)

p
q = 0 (2.42b)

In (2.42), λ is analogous to the control parameter used in the previous examples, and p

and q are two positive odd integers satisfying p > q. Using the sliding condition (2.31),

two control vectors can be derived from (2.42), respectively:

τη = M̂η

(
η̈∗ + λ

q

p
e(t)

q
p

−1ė(t) + γ sign(σc)
)

+ N̂η(ν,η, η̇) (2.43a)

τη = M̂η

(
η̈∗ + λ

q

p
ė(t)2− p

q + γ sign(σn)
)

+ N̂η(ν,η, η̇) (2.43b)

The first expression of the terminal sliding surface (2.42a) shows a singularity in e(t) =
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0 because q
p
< 1. Therefore, the second expression (2.42b) is to be used. Of course,

the two expressions of (2.42) are equivalent when the system reaches the surface. Once

again, the signum function is substituted with a saturation function in the final con-

trollers.

Simulation results show the performances of the terminal sliding mode in compar-

ison with traditional SMC and a classical computed torque controller (CTC). Terminal

sliding mode seems to outperform the traditional SMC and CTC notably displaying bet-

ter convergence times and a smoother overall behavior on the helix tracking task.

Another example of a different formulation of the sliding surface can be found in [4].

This work proposes a controller based on Super Twisting Sliding Mode Control (STSMC)

applied to the linearized model of the vehicle in the diving plane. More details about

the theory behind STSMC, sliding order and sliding accuracy can be found in [109, 95].

STSMC is designed to have as good disturbance rejection and robustness as traditional

SMC but reducing the chattering effect without the need of substituting the sign func-

tion, therefore assuring finite time convergence. The Super Twisting behavior is created

using a different solution of the sliding condition (2.31):

σ̇ = γ1|σ|
1
2 sign(σ) + γ2

∫ t

0
sign(σ(ζ))dζ (2.44)

The continuous switching behavior is created by the first member of equation (2.44)

displayed on figure 2.3. The second member of the sliding surface definition creates an

integral effect on the sliding surface canceling possible steady state errors.

Using the small angles approximation to linearize the system in the diving plane,

one can derive the sliding condition given by (2.44) into the following control law:

u = 1
d1

(−c11w − c12q − c13θ − c14z + u0θ̇ − λėz

+ γ1σ
1
2 sign(σ) + γ2

∫ t

0
sign(σ(ζ))dζ) (2.45)

In this case, a constant depth z∗, ż∗ = z̈∗ = 0 is tracked. The cij coefficients are

model parameters and the control input u is analogous to the stern plan defection angle

δs. u0 is a constant sway speed.

The simulation results indeed show dampening of the chattering effect when the

STSMC is compared with traditional SMC. However, it should be noted that STSMC
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displays slightly slower convergence than SMC.

This section demonstrated the use of different sliding mode controls in the case of

fully actuated marine vehicles. As seen in this section, sliding mode control comes in

different shapes. However, the two main levers for tweaking the controllers are the defi-

nition of the sliding surface itself and the choice of the solution of the sliding condition.

Many more examples would be worth adding to this section like the work in [179]

where SMC is associated with LOS guidance and Fuzzy Logic in the diving control of an

autonomous bio-mimetic dolphin robot as well as [149], which introduces four decou-

pled SM controllers of different orders in a vehicle with actuated surge, heave, pitch

and yaw.

2.4.2 Application to Underactuated Vehicles

This section studies the use of SMC in the case of underactuated marine craft. It is

notably interested in how the SMC method can be used as a guidance principle and

allow compensation of underactuation in the same way LOS does and how SMC can be

coupled with external guidance laws.

As a first example, in [10], the model of a ur-ship tracking horizontal straight lines

is studied. Two decoupled controllers are designed one for the surge motion and the

other for the yaw motion. Two sliding surfaces are given:

σu = eu + λu

∫ t

0
eu(ζ)dζ (2.46a)

σr = ėv + 2λrev + λ2
r

∫ t

0
ev(ζ)dζ (2.46b)

There are multiple points of interest in (2.46). First, both sliding surfaces are com-

pletely defined in the mobile frame. However, because positions in the mobile frame

can not be measured, the surfaces are defined in terms of the integral of the velocity

error on the two axes of the moving frame. This solution is analogous to defining the

surfaces in terms of positions 4 but, as shown later, the definition of the surge and sway

references matters when it come to tracking trajectories originally defined in the iner-

tial frame. Then, while the surge sliding surface σu is of the first order relatively to the

integral of eu, the yaw sliding surface σr is of the second order and defined relatively

4. Note that the definition of the sliding surfaces (2.46) is not considered as Integral SMC as seen in
appendix A
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to the sway speed error ev instead of the heading angle or the yaw velocity. Therefore,

the yaw controller derived from σr will be based on the sway speed error ev. Doing so

allows the authors to compensate the lack of sway actuation with yaw. This method is

very close to the other guidance methods exposed earlier in this review, and it is some-

what equivalent to generating yaw controls based on the lateral error measured on the

yB axis of the moving frame.

The surge and yaw controllers are derived from the respective sliding surfaces and

the dynamic model of the system as:

τu = −m22vr + d1u−m11(−u̇∗ + λueu)− γu sign(σu) (2.47a)

τr = m33

u∗ − m11
m22

u

[
rτu
m22
− vr − vrd − (2λrėv + λ2

rev)− γr sign(σr)
]

(2.47b)

Note that, in the original article, estimated values of the model parameters are used in

the control calculations, and the authors left the possibility to consider nonlinear damp-

ing. Equation (2.47) has been simplified for clarity. Equation (2.47b) is of a different

structure than the other control equations seen in this section because it is based on the

first time derivation of the sway equation of the dynamic model instead of the first order

derivative of the chosen sliding condition solution (2.46b). Hence the new speed terms

vr and vrd which contain the terms created by this manipulation. Exact definitions of

vr, vrd as well as the gains γu and γr can be found in [10]. The dynamic sway equation

derivative is used instead of the sliding condition derivative because the latter would

require information upon the second order derivative of both the actual and desired

sway speeds. Such information is not available in this work.

However, as claimed in [181, 40], the solution proposed in [10] does not solve all

the tracking problems. In fact, defining the sliding surfaces in terms of the integrals of

the velocity errors in the moving frame leads to neglecting constant offsets of the desired

position signals. To counteract this problem, the work of [181] and [40] redefine the

surge and sway velocity references.

First [181], gives a similar approach for trajectory tracking of a ur-ship in the hor-

izontal plane but with modified velocity references. To take a possible position offset

into account, the desired reference surge and sway speeds are calculated as:

u∗ = cosψẋ∗ + sinψẏ∗ − k cosψex − k sinψey (2.48a)

v∗ = − sinψẋ∗ + cosψẏ∗ + k sinψex − k cosψey (2.48b)
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with k a positive constant control parameter. Note that, in the original work [181],

two different control parameters k1 and k2, are mentioned but do not appear in the

equations. This work shows that convergence of the surge and sway errors eu and ev

leads to convergence of the position errors in the inertial frame ex and ey. The first order

derivative of the second order yaw sliding surface expressed in terms of the integral of

the sway error is used for the calculation of the yaw control. Therefore, knowledge

about the second order derivative of the desired sway motion is necessary as well as the

third order derivative of both desired position signals.

In the same way, [40] proposes a more global solution than in [10], solving the case

of offset trajectories. To do so, new surge and sway speed references are defined as:

u
∗

v∗

 =

 cosψ sinψ

− sinψ cosψ


ẋ

∗ + lx tanh(−kx
lx
ex)

ẏ∗ + ly tanh(−ky
ly
ey)

 (2.49)

where kx and ky are controller gains, and lx and ly are saturation coefficients chosen

relatively to the system’s physics. The definition of the speed references u∗ and v∗ given

by Equation (2.49) leads to the error equation:

eu
ev

 =

 cosψ sinψ

− sinψ cosψ


ėx + lx tanh(−kx

lx
ex)

ėx + ly tanh(−ky
ly
ey)

 (2.50)

Equation (2.50) shows that convergence of the speed errors eu and ev to zero leads

to asymptotic convergence of the position errors ex and ey. In fact, the speed errors in

Equation (2.50) behave nearly like sliding surfaces for the positions. The rotation matrix

being non-singular, when the speed errors converge to eu = ev = 0, one obtains:

ėx − lx tanh(−kx
lx
ex) = 0 (2.51a)

ėy − ly tanh(−ky
ly
ey) = 0 (2.51b)

Equation (2.51) can be seen as the sliding conditions of the inner loop of the system

assuring asymptotic convergence of the position errors the hyperbolic tangent function

being used instead of the signum function. In a way, this controller is quite similar to

the two-staged controllers presented in section 2.2.
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The sliding surfaces used for the dynamic controllers are then given. The sliding

surfaces used in [40] are very similar to (2.46) but with two different control parameters

in the yaw surface:

σu = eu + λu

∫ t

0
eu(ζ)dζ (2.52a)

σr = ėv + λr,1ev + λr,2

∫ t

0
ev(ζ)dζ (2.52b)

Here, too, the sliding surface σr used for yaw control is built upon the sway error ev.

Slightly different dynamics than the usual sliding condition (2.31) are imposed on σu

and σr:

σ̇u = −γu,1σu − γu,2 sign(σu) (2.53a)

σ̇v = −γv,1σv − γv,2 sign(σv) (2.53b)

where γi,j are all strictly positive control parameters. Note that using this sliding condi-

tion adds new terms, equivalent to proportional and derivative terms, in the controllers.

This time, the surge and yaw controllers are both calculated with the first order

derivations of the sliding surfaces giving:

τu = −Xuu− a23vr + 1
M11

(u̇∗ − λueu − γu,1σu − γu,2 sign(σu)) (2.54a)

τr = −Nrr − a12uv + 1
b
(−M2(Yvv̇ + a13u̇r)Γ − λr,1ėv − λr,2ev

− γr,1σr − γr,2 sign(σr)) (2.54b)

The newly introduced mass coefficients a12, a23, M11 and M2 as well as control pa-

rameters Γ and b are given in detail in [40]. The damping surge, sway and yaw coeffi-

cients Xu, Yv and Nr, respectively, are issued from the damping matrix of the dynamic

model. The simulation results show good performance in tracking linear trajectories

with or without an offset and circular trajectories.

A more recent example of SMC applied to underactuated vehicles can be found

in [172]. In this work, the authors propose a Super Twisting SMC based solution for

the problem of leader–follower tracking. The followers are uqr-vehicles following the

trajectory set by the mother ship. Three dimensions LOS guidance is used to calculate
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the approach angle references in pitch and yaw. Then, three decoupled Super Twisting

sliding mode controllers are designed for surge, pitch and yaw as well as a fourth one

looping back on the forward speed of the mother ship.

For surge control of the follower submarines, a zero-order sliding surface is built

upon the surge error with a constant reference u∗. The surface is therefore given as

σu = eu and the Super Twisting formulation of the sliding condition is used as in [4]

σ̇u = −γu,1|σu|
1
2 sign(σu)− γu,2

∫ t

0
sign(σu(ζ))dζ (2.55)

with two strictly positive gain parameters γu,1 and γu,2. The definition of the kine-

matic Super Twisting sliding-mode controller calculating the surge speed consign of

the mother ship is similar to this one. The mother ship velocity is calculated with the

position error kinematic model. More details about mother ship control can be found in

the reference [172].

On the other hand, the pitch and yaw controllers are Super Twisting sliding mode

controllers using first order terminal sliding surfaces as in [113]. The pitch and yaw

sliding surfaces and associated sliding conditions are given by

σθ = eθ + λθ|ėθ|
pθ
qθ (2.56a)

σ̇θ = −γθ,1|σθ|
1
2 sign(σθ)− γθ,2

∫ t

0
sign(σθ(ζ))dζ (2.56b)

σψ = eψ + λψ|ėψ|
pψ
qψ (2.56c)

σ̇ψ = −γψ,1|σψ|
1
2 sign(σψ)− γψ,2

∫ t

0
sign(σψ(ζ))dζ (2.56d)

where all the control parameters are constant and strictly positive.

As seen in the previous examples, the actual control signals τu, τq and τr are derived

from the first order derivative of the associated sliding surface and calculated with the

corresponding dynamic model equations. For increased robustness to external distur-

bances, adaptive disturbance terms can be added to the controller equations as shown

in [172]. Finally, the four sliding mode controllers are shown to stabilize the tracking

errors of the following submarines.

These few examples show that SMC can be used in the underactuated case and dis-

plays good performances. In these examples, one can find the idea of using a rotational

degree of freedom to compensate the lack of one or two non actuated translations.
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Sliding mode itself can be used as guidance principle like in [10, 40, 181] where yaw

controls are given as functions of the lateral motion errors using the same idea as in the

LOS examples given earlier [106] directly in the sliding surface calculations.

2.5 Adaptive Control

While this work is essentially focused on model-based control methods, adaptive

and model-free controllers are worth mentioning. These methods have received a great

amount of interest in the past few years in and outside the scope of marine vehicles

[97]. With this type of controllers, the model of the vehicle and the disturbance to

which it is subjected to are considered unknown or partially known. These controllers

adapt during the application either by changing the gain parameters or estimating the

external effects on the vehicle. Adaptive controllers are therefore naturally robust to

external disturbance and environment changes.

One of the first example of adaptive controllers applied to underwater vehicles can

be found in [177] where an adaptive sliding mode controller is experimented on an

underwater vehicle. Later, [6] proposes several adaptive controllers to compensate the

effects of an unknown sea current using either adaptive gain parameters or a current

velocity estimator. Following the same idea, [183] proposes a disturbance observer as-

sociated with a self-adjusting controller with adaptive gains. This work also raises that

chattering can occur when using self-adjusting control gains and proposes an alter-

native formulation dampening the chattering effects. The interested reader is also re-

ferred to [9, 71, 118, 158, 182], for examples of PID-based controllers using adaptive

structures for linearization. Other examples of adaptive sliding-mode controllers can be

found for instance in [76].

In [141], two adaptive controllers are presented. The first one is based on a delayed

estimate of the model parameters. The second one uses the known bounds of the non-

linear effects of the model to estimate and compensate the worst-case scenario of the

disturbing effects. This second controller is shown to be much more efficient than the

first one.

Several other methods have been developed over the years to adjust the gains of an

adaptive controller or estimate the disturbances such as in [114] which uses fuzzy logic

to compute gains or [185] which is based on neural network estimation of the state.

Arguably, integral action is the first step to adaptability in the controllers and is

86 Version du October 11, 2023



Chapter 2 – Literature review / 2.5. Adaptive Control 2.5. Adaptive Control

sufficient to compensate most of the effects acting on an AUV [7]. This integral action

can take place at the guidance level to create new equilibriums and compensate, for

example, sea current as shown in [16, 24]. In the case of adaptive LOS guidance, [61]

shows that the integral term can be used in several places to compensate the crab angle

for instance.

One type of adaptive controller is described in more details in the next Section as it

used in the following developments, the so-called Intelligent PID (iPID) controller.

2.5.1 Intelligent PID

Model-free control based on iPIDs is described in details in [49] which unifies the

previous works done on the subjected in the references therein. It is a wide spread

model-free control method (more than 400 citations to date) applied to a large range of

systems from shape memory alloy actuators [79] to flying drones [33, 11], AUVs [15],

autonomous land vehicles [123] and some more industry and research applications.

The idea behind iPIDs is to approximate the system with a very simple linear ultra-
local model where all the unknown effects are summed up in a single estimator function.

It is therefore easily adapted to any system, the ultra-local model and estimation tech-

nique are almost always the same (the order of the ultra-local model may change) [50].

The disturbing term of the ultra-local model is estimated with an ALIEN filter. Some of

the early work done on ALIEN filter can be found for instane in [120] where they are

used for estimation of noisy signals.

2.5.1.1 Ultra-local model

The perhaps complex model of the system is estimated using the following ultra-local

model:

y(ν) = αu+ F (2.57)

where y is the system output, u is the input, ν is the order of the ultra-local model

(may differ from the order of the system itself), α is a non-physical constant tuning pa-

rameter and F is the continuously updated function estimating all the unknown effects

(nonlinear model effects, disturbances).

In most cases, a first order ultra-local model ν = 1 gives good results but sometimes

a second order model is preferable. Note that several solutions can exist to approximate

a system with an ultra-local model. As an example, consider the second order model
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representing the dynamic of the position of a vehicle. It is possible to use a second

order ultra-local model using the position of the vehicle as a measurement but it is

also possible to use a first order ultra-local model using the speed of the vehicle as the

measurement. Finally, it could also be possible to use a first order ultra-local model with

position measurement and consider all second order effects as disturbance.

It is straightforward to build a controller based on the ultra-local model (2.57). In

this example, a simple proportional control law with a feedforward term is used but

more advanced iPID controllers can be useful.

The controller based on the first order ultra-local model is:

u = 1
α

(
ẏ∗ − F̂ +Kpe

)
(2.58)

where ẏ∗ is the first order derivative of the desired output y∗, e = y∗ − y is the error

between the desired and current output and Kp is a gain parameter. F̂ is a short term

estimate of F .

The closed-loop temporal is then:

ė+Kpe = F̂ − F (2.59)

Stability of the closed-loop system (2.59) is hardly demonstrated because of the

behavior of the estimate F̂ but the large number of successful applications of the method

tends to serve as a proof.

The work of [48] shows that iPs and iPIs do not work for second order ultra-local

models. In these cases, a derivative term is needed. Also, the work of [127] shows that

the estimation of F in iPs and iPDs has an integral effect and makes iPs (respectively

iPDs) equivalent to conventional PIs (respectively PIDs). Consequently, iPDs are favord

in the following.

2.5.1.2 Estimation of F

Looking at equation (2.58), it appears clearly that the main difficulty of iPIDs is the

estimation of F . The estimation of F is performed using ALIEN filters introduced in

[58]. The adaptive term F regroups all the unmodeled effects whether they are nonlin-

ear effects of the system or external disturbance with no distinction. The calculations

presented in this section are for a first order ultra-local model. Same methodology can
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be applied to higher orders.

The first hypothesis to estimating F̂ is that it is piece-wise constant on a small time

window [tk−1, tk]. The ultra-local model at the first order should therefore be expressed

as:

ẏ(t) = αu(t) + Fk, t ∈ [tk−1, tk[ (2.60)

In the following, the subscript k will be omitted for simplicity and the calculation are

performed on the time window [0, T ] with 0 < T ≪ 1.

Equation (2.60) gives:

F = ẏ − αu (2.61)

Because F is considered constant on the time window, equation (2.61) is given in

operational form:
F

s
= sy(s)− y(0)− αu(s) (2.62)

The initial condition y(0) is eliminated differientiating once with respect to s:

−F
s2 = y(s) + s

dy

ds
(s)− αdu

ds
(s) (2.63)

To add a filtering effect, equation (2.63) is multiplied by 1/s2 so that every member

is integrated at least once when going back to temporal space. Doing so adds robustness

to the estimation. Equation (2.63) becomes:

−F
s4 = 1

s2y(s) + 1
s

dy

ds
(s)− α 1

s2
du

ds
(s) (2.64)

Back to temporal, equation (2.64) becomes:

−T
3

3! F =
∫ T

0

(
(T − τ)1

1! − τ
)
y(τ)dτ − α

∫ T

0

(T − τ)1

1! (−τ)u(τ)dτ (2.65)

which simplifies as:

F = − 6
T 3

∫ T

0
[(T − 2τ)y(τ) + α(T − τ)τu(τ)] dτ (2.66)

The estimate can then be shifted into the time window [t− T, t]:

F = − 6
T 3

∫ T

0
[(T − 2τ)y(τ + t− T ) + α(T − τ)τu(τ + t− T )] dτ (2.67)
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The estimate of F (2.67) is adjusted at each sample and used in the controller to

compensate all the nonlinear effects and disturbances. No strict rules are given for the

tuning of parameter α except that it should be chosen so that the input and output of

the system are of the same order of magnitude. The works of [127] and [133] give

guidelines to the tuning of the control parameter based on trial-error.

2.6 Conclusions on the literature review

This section shows some of the tremendous work done on the control of autonomous

marine craft. A first clear conclusion is that there are many different methods in the liter-

ature answering the problem of controlling a marine vehicle with seemingly equivalent

performances. It is then a matter of adapting the choice of the control method to the ap-

plication, vehicle, sensors, etc... The four main solutions studied in this section — Line

Of Sight guidance, PID-based control and linearization, Differential flatness and Sliding

Mode Control — all show very promising results. These methods are used and detailed

further on in the following. The choice of the control method may also be related to the

type of scenario at hand in the task. Notably, LOS guidance is mainly used in setpoint

regulation and path following or path tracking applications while differential flatness is

more suited for trajectory tracking scenarios.

Also, this section shows that the control of underactuated vehicle requires additional

mechanisms to quit the traditional one-to-one input-output relationship of conventional

controllers and create necessary compensation behaviors. Often times, the idea with un-

deractuated vehicle is to use one of the actuated DOF to compensate the lack of another

non-actuated DOF. The classical example of this strategy is the traditional ur-vessel

where yaw is used to cope for the lack of sway. This strategy can be extended in 3D

space and with other associations of actuated rotations and non-actuated translations.

The two novel control results presented in chapter 3 and chapter 4 follow this same

logic.
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This chapter introduces a new model-based kinematic guidance principle for under-

actuated marine vehicles based on the new Handy matrix H. This controller is notably
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useful for trajectory tracking applications of ill-actuated AUVs. It relies on the idea of

compensating the lack of actuation of one translation with an actuated rotation. This

idea appears indirectly in many of the controllers presented for underactuated vehicles

in chapter 2. The H matrix acts as a non-diagonal gain matrix based on model coef-

ficients. The compensation mechanism created by the matrix H is in fact a kinematic

guidance principle included in the control law. Same principle appears for instance in

the SMC for underactuated AUVs presented in section 2.4.2.

Outside of the scope of marine vehicles, other model-based methods are used for

compensation of ill-actuation of mechanical systems. As an example, the partial feed-
back linearization introduced in [161, 160] relies on dynamic coupling effects between

active and passive DOF. Under some restrictions, this work shows that passive DOF can

be controlled exploiting their relations with active ones. Note that some marine crafts

meet the strong inertial coupling condition introduced in [161] and could potentially be

controlled using the non-collocated controller.

The work of Spong on collocated and non-collocated control as well as the multiple

articles of Fossen on LOS guidance are behind the idea of the control method introduced

in this chapter. The H matrix and the associated controller have been designed to allow

exploiting the natural kinematic couplings of the vehicle to control some of the passive

DOF using the actuated DOF.

3.1 A theoretical example of model based compensation

mechanisms

In this section, as a theoretical example, a linear system is studied to demonstrate

the methodology used in the design of theH matrix controller. First, an intuitive model-

based controller is designed for the fully-actuated system. This controller is based on the

inverse model of the system and a Proportional-Integral control law. It gives straight-

forward independent convergence of every state components of the system towards

the desired value, naturally canceling any coupling terms of the system. Then, an un-

deractuated version of the system is introduced and the first controller is shown to be

insufficient for proper control of the underactuated system. Finally, the model-based

compensation mechanism is introduced in the controller by means of a new model-

based asymmetrical term and is shown to allow convergence of the system towards the
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trajectory.

3.1.1 Intuitive controller in the fully actuated case

Before introducing the H matrix controller in the context of an underwater vehicle,

the method is described on a simple, theoretical example. As it will be demonstrated

later on, this example mimics the kinematic model of an AUV restricted to the horizontal

plane. Let us introduce the following fully-actuated system:

ẋ1 = u1 (3.1a)

ẋ2 = u2 + εu3 (3.1b)

ẋ3 = u3 (3.1c)

where the input vector is u = [u1 u2 u3]⊤ and the state is x = [x1 x2 x3]⊤. The input-

output relationship of system (3.1) can be rewritten as ẋ = Tu with:

T =


1 0 0

0 1 ε

0 0 1

 (3.2)

In this example, the system is fully actuated and the off-diagonal term of T creates a

coupling effect between the third input component u3 and the second DOF of the state

x2 equation (3.1b). As demonstrated later, this example is equivalent to controlling the

velocity of a given point on a solid body ẋ (ẋ1 and ẋ2 being linear velocities and ẋ3 being

an angular speed) with the velocity of another point u (u1 and u2 are linear velocities,

u3 is an angular speed) through the transformation matrix T .

We now build a model-based controller to drive the state of the system x towards

a desired state x∗. In this first example, the system is fully actuated and can therefore

track all three components of the desired state. The following intuitive controller can
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be designed:

u = T−1(ẋ∗ + λ(ex)) (3.3a)

ex = x∗ − x (3.3b)

λ(ex) = Kpex + Ki

∫ t

0
ex(ζ)dζ (3.3c)

T−1 =


1 0 0

0 1 −ε

0 0 1

 (3.3d)

The control input vector u is built using the inverse of model (3.1) where a feedforward

term ẋ∗ associated with a compensator function λ(ex) have been plugged in place of

the derivative of the state ẋ. In this example, λ contains three decoupled PI controllers

based on the tracking error ex with Kp and Ki two appropriate diagonal matrices of

control gains. Other usual controllers could be used instead.

This kind of structure for a controller is very well known and notably in the au-

tonomous marine vehicles community (See section 2.2.2 or [63] for examples). With

this controller, the closed-loop system is:

ẋ = TT−1(ẋ∗ + λ(ex)) = ẋ∗ + λ(ex) (3.4a)

ėx + Kpex + Ki

∫ t

0
ex(ζ)dζ = 0 (3.4b)

which, for appropriate choices of the gain parameters (diagonal, positive definite), en-

sures global exponential convergence of the three components of the state towards the

desired values.

Note that the model-based structure of the control vector u naturally cancels the

coupling effects of the non-diagonal matrix T and allows independent convergence of

the two DOF x2 and x3.

3.1.2 Kinematic guidance in the underactuated case

Consider now that the second input component u2 of the previous system (3.1) is

not available anymore, the control vector is now of form u = [u1 0 u3]⊤. The system
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is now considered underactuated with respect to the task x∗ = [x∗
1 x

∗
2 x

∗
3]⊤. The task is

then reduced to the first two components x∗
1 and x∗

2 to match the new capabilities of the

system. Yet, because the actuated DOF of the system do not exactly match the required

DOF of the task, it is ill-actuated with respect to the reduced task and a compensating

behavior will be mandatory.

Very often, when working with an underactuated system, the non-actuated DOF are

neglected and the controller is built on a reduced version of the state space [3, 31]. In

this example, the reduced version of equation (3.3) is:

u1

u3

 =

1 0

0 1


ẋ

∗
1 + λ1(ex1)

ẋ∗
3 + λ3(ex3)

 (3.5)

where the second row of the problem corresponding to the non-actuated DOF has been

removed. In order to keep a square relationship, the second column of T−1 has also been

discarded in (3.5), hence neglecting the coupling effect created by the off-diagonal term

in the second row. The control functions λ1 and λ3 are marked differently to show that

the set of parameters of each of the PI controller can be different.

The reduced controller (3.5) would perfectly work for any application where the

first and third DOF x1 and x3 are controlled but, in this case, where x2 is supposed to

be controlled, this reduced controller is not applicable. Using this reduced controller on

the system (3.1) gives the following closed-loop system:


ẋ1

ẋ2

ẋ3

 =


1 0 0

0 1 ε

0 0 1




u1

0

u3

 =


u1

εu3

u3

 =


ẋ∗

1 + λ1(ex1)

ε(ẋ∗
3 + λ3(ex3))

ẋ∗
3 + λ3(ex3)

 (3.6)

Equation (3.6) indeed shows that the first and third DOF are well controlled to-

wards the desired values x∗
1 and x∗

3 but the second DOF is not. As expected after space

reduction, the second component of the desired state x∗
2 does not even appear in the

closed-loop system (3.6). However, the third input component u3 appears to act on

the second DOF x2 though the coupling term ε. This relationship means that the third

control input u3 could be used to control either x2 or x3.

The idea of a model-based compensating controller is then to use this natural cou-

95 Version du October 11, 2023



Chapter 3 – Matrix H 3.1. Theoretical Example

pling effect of the model to generate a control input u3 allowing to track the desired

value of x2. To do so, a new non-diagonal term has to be added to the expression of the

controller, the so-called Handy Matrix H. The new controller ū = [ū1 0 ū3]⊤ is defined

as:

ū = HT−1(ẋ∗ + λ(ex)) (3.7)

The Handy matrix is designed to create a new expression of ū3 which, when the

controller is applied to the system, allows tracking of x2. Therefore, the new control

input ū3 will be a function of the desired state x∗
2 and of the correction term term λ2(ex2).

Input ū3 must also cancel any dependence on x3 or x∗
3 in the closed-loop equation of

x2. The new controller will be calculated on the complete space and not on a reduced

space.

In this first example, matrix H is built iteratively to demonstrate the process but an

algorithm computing H for any applicable system is provided in the following sections.

Detailing equation (3.7) gives:


ū1

0

ū3

 = H


1 0 0

0 1 −ε

0 0 1




ẋ∗

1 + λ(ex1)

ẋ∗
2 + λ2(ex2)

ẋ∗
3 + λ3(ex3)

 = H


ẋ∗

1 + λ1(ex1)

ẋ∗
2 + λ2(ex2)− ε(ẋ∗

3 + λ3(ex3))

ẋ∗
3 + λ3(ex3)

 (3.8)

On the other hand, applying the control vector ū to the system (3.1) gives:


ẋ1

ẋ2

ẋ3

 =


ū1

εū3

ū3

 (3.9)

The control inputs ū1 and ū3 must create the following expected closed-loop expressions

for ẋ1 and ẋ2:

ẋ1 = ẋ∗
1 + λ1(ex1) (3.10a)

ẋ2 = ẋ∗
2 + λ2(ex2) (3.10b)

Considering Equations (3.8), (3.9) and (3.10), the coefficients of H can be reverse-
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engineered; The relation ū1 = ẋ∗
1 + λ1(ex1) gives the first line of H:

[
1 0 0

]
. The zero

on the second line of ū gives the second line of H:
[
0 0 0

]
.

For the third line, the previous discussion hints that a first term will be needed in

the second column to turn ū3 into a function of ẋ∗
2 + λ2(ex2). Another term in the third

column will also be necessary to cancel the dependence in x∗
3. The third line of H will

then be of shape
[
0 a b

]
and coefficients a and b are found using Equations (3.9) and

(3.10):

ū3 = 1
ε

(ẋ∗
2 + λ2(ex2)) =

[
0 a b

]


ẋ∗
1 + λ1(ex1)

ẋ∗
2 + λ2(ex2)− (ẋ∗

3 + λ3(ex3))

ẋ∗
3 + λ3(ex3)

 (3.11)

The solution of this equation is given by a = 1
ε

and b = 1. The handy matrix H for this

example is therefore:

H =


1 0 0

0 0 0

0 1
ε

1

 (3.12)

and the controller reads:
ū1

0

ū3

 = H


ẋ∗

1 + λ1(ex1)

ẋ∗
2 + λ2(ex2)− ε(ẋ∗

3 + λ3(ex3))

ẋ∗
3 + λ3(ex3)

 =


ẋ∗

1 + λ1(ex1)

0

1
ε
(ẋ∗

2 + λ2(ex2))

 (3.13)

Matrix H is non-diagonal and presents a form of symmetry with the model matrix
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T . The closed-loop system for this example is then:


ẋ1

ẋ2

ẋ3

 =


1 0 0

0 1 ε

0 0 1




1 0 0

0 0 0

0 1
ε

1




1 0 0

0 1 −ε

0 0 1




ẋ∗

1 + λ1(ex1)

ẋ∗
2 + λ2(ex2)

ẋ∗
3 + λ3(ex3)

 =


ẋ∗

1 + λ1(ex1)

ẋ∗
2 + λ2(ex2)

1
ε

(ẋ∗
2 + λ2(ex2))

 (3.14)

Equation (3.14) shows that the new control vector ū of (3.7) allows tracking of the two

first DOF x1 and x2. The third DOF x3 is disturbed by the coupling effect. The distur-

bance on x3 must be assessed to ensure that the controller will not generate problematic

configuration. Ideally, x3 should be naturally stable for better use of this controller.

In this example, the application of the non-diagonal matrix H to the system exploits

the natural coupling of the system to create the expected compensation behavior and

allows to control the non-actuated second DOF x2 using the third input ū3.

3.2 Application to the kinematic model of the underwa-

ter vehicle

The model-based compensation strategy introduced in the previous section is ap-

plied, in this section, to the kinematic model of an underactuated underwater vehicle

in the form of the Handy matrix H. This section shows that the kinematic model of an

underwater vehicle with a off-centered tracking point is very similar to the example sys-

tem of section 3.1 and can therefore be treated in the same way. Several unitary cases

of compensation are given and the algorithm for calculation of the Handy matrix in the

general case is detailed and applied to the example of a standard uqr-craft. This com-

pensation mechanism will then be used as a kinematic model-based guidance principle

on underactuated underwater craft.

3.2.1 Interest of a tracking point

In order to reproduce a structure similar to (3.1) in the model of the underwater

craft, this method uses an off-centered tracking point as defined in section 1.1.2.1.

Tracking points or virtual reference points(VRP) appear in the literature [14, 3] as a way

to add angular stability to the vehicle. The VRP is usually positioned at the bow of the
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vehicle and controlling the VRP is equivalent ot pulling the vehicle from this point. It is

more naturally stable than pushing from the rear or the center, similar to how pulling a

trolley is steadier than pushing it from a single rear point [14].

Another noteworthy aspect of using a tracking point is to recreate a similar structure

as equation (3.1) in the kinematic model of the vehicle. Indeed, equation (1.3) shows

similarities with the example system (3.1) introduced in section 3.1 with the addition

of the transformation matrix J(η). The input of the subsystem (1.3) is ν and the output

is ηE. The modified kinematic model is recalled here:

η̇E = J(η)Tν (3.15)

A controller relying on the model-based compensation mechanism introduced in sec-

tion 3.1 can then be designed for an underactuated underwater vehicle with a tracking

point E. Following the theoretical example detailed above, the compensating controller

applied to the kinematic model of the vehicle will be of shape:

ν = HT−1J(η)−1 ˙̄ηE (3.16)

where ˙̄ηE denotes a corrective velocity vector expressed in the inertial frame at the

tracking point. This vector is a function of the desired velocity vector and of the error

between the actual and desired state of the tracking point. It is typically defined as:

˙̄ηE = η̇∗ + λ(eη) (3.17)

where eη = η∗−ηE is the error vector between the desired state η∗ and the state of the

tracking point ηE and λ is a vector of decoupled PI controllers, one per DOF.

3.2.2 Unitary cases

This Section introduces the unitary cases of compensation that can be combined to

design a complete controller. The matrix T of (1.4) shows that multiple coupling effects

can appear on the same DOF. Depending on the position of the tracking point E and

the propulsive arrangement of the system, different compensation mechanisms can be

created.

As a rule of thumb, if E has a non-zero coordinate on one axis of RB, say the xB
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axis, then the rotation around one of the two other axis, for instance zB, can be used to

generate a translation of point E on the third axis, yB in this case.

Two binary vectors are introduced to represent the actuation of the system: hOB
and

hE. They respectively represent the actuated DOF of the vehicle and the DOF controlled

at the tracking point E in the mobile frame. Both vectors have one column and six rows,

one per DOF, where “1” means actuated or controlled and “0” means non-actuated or not

controlled. As an example, a torpedo-shaped uqr-vessel (See section 5.1 for an example

of such a vehicle, Remus100) with a tracking point positioned at the front and following

a 3-D (x, y, z) trajectory with no attitude constraint can be represented by the following

pair of vectors:

hOB
=



1

0

0

0

1

1



and hE =



1

1

1

0

0

0



(3.18)

The vector hOB
encodes that the surge, pitch and yaw of the vehicle are actuated at

the center of the vehicle OB and the vector hE encodes that the surge, sway and heave

of the tracking point E are controlled. This pair of vectors implies that pitch and yaw,

both in association with surge, have been chosen to compensate for the lack of sway

and heave actuation and therefore allows the vehicle to fulfill tasks consisting in three

translations and no rotations.

The hOB
vector of a system is imposed by the propulsive configuration whereas the

hE vector is chosen depending on the position of the tracking point and the task. Asso-

ciating the controlled DOF of the tracking point hE and the task can be tricky because of

the nonlinear relationship between the translations coded in hE and defined in RB and

the necessary translations of the task defined in R0. If the task requires two translations

with no additional angular constraints then any pair of controlled translations of the

tracking point can be used to fulfill the task providing that the vehicle is capable of

maintaining the right attitude. As an example, if a task is composed of an horizontal

trajectory with no angular constraint, the vehicle must be able to move along the x0
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and y0 axes. Two orthogonal translations are needed. The obvious choice of controlled

DOF for this task is surge and sway (translations on the xB and yB axis). But, if the

vehicle is also capable of maintaining a constant 90◦ roll angle, surge and heave could

be used instead. In the same way, if the vehicle can maintain a constant 90◦ pitch angle,

sway and heave would also allow fulfilling the task. Therefore, the choice of hE must

take the rotation capabilities of the vehicle into account.

In order to place the tracking point for a given task and vehicle or to choose the

propulsive arrangement of a vehicle for a given task and tracking point, table 3.1 gives

a list of elementary compensation possibilities.

E hOB
hE

[εx 0 0]⊤
[1 0 0 0 0 1]⊤ [1 1 0 0 0 0]⊤

[1 0 0 0 1 0]⊤ [1 0 1 0 0 0]⊤

[0 εy 0]⊤
[0 1 0 1 0 0]⊤ [0 1 1 0 0 0]⊤

[0 1 0 0 0 1]⊤ [1 1 0 0 0 0]⊤

[0 0 εz]⊤
[0 0 1 1 0 0]⊤ [0 1 1 0 0 0]⊤

[0 0 1 0 1 0]⊤ [1 0 1 0 0 0]⊤

Table 3.1 – Unitary cases of compensation according to the position of the tracking
point E

table 3.1 shows the unitary cases of compensation of a non-actuated translation with

an actuated rotation according to the position of the tracking point E. It shows which

DOF of the tracking point can be controlled depending on its position and the propulsive

arrangement of the vehicle.

Several design rules can be drawn from this table:

1. This method can only be used if the tracking point E is different from OB the

center of RB.

2. This method only allows compensation of translations with rotations.

3. This method cannot be used to compensate a translation on one axis with a rota-

tion around the same axis.

Of course, the unitary cases of table 3.1 can be combined and associated with additional

actuated DOF to create a complete propulsive configuration. Note that this set of rules
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can also be used to understand what kind of task a given AUV is able to complete.

Additional remarks can be made about table 3.1. First, note that, in each case, at

least two DOF appear in both hOB
and hE, one being an actuated translation. As an

example, with the tracking point E of coordinates [εx 0 0]⊤, yaw can be used to com-

pensate sway or pitch can be used to compensate heave but, in both cases, actuation

in surge is mandatory. From a kinematic point of view, this additional actuated speed

is not strictly necessary to perform compensation of a non actuated linear speed. But,

from a control perspective, this DOF is mandatory. It covers the cases where a 90 degrees

rotation of the vehicle is not enough to cancel the error on the compensated linear DOF.

In such a scenario, the error is transferred to this other, actuated translation and can be

canceled.

Note also that each hE vector appears twice in table 3.1. Therefore, two equivalent

control solutions can be found for two different propulsive configurations and the same

set of controlled DOF. As an example, a vehicle actuated in sway and roll with a tracking

point on the yB axis and a vehicle actuated in heave and roll with a tracking point on

the zB axis can both be chosen for a task requiring sway and heave.

As exposed later in this work, using the H-based control method can give several

solutions for following a task with a given vehicle. It will then be the user’s decision to

pick among these solutions the more suitable one. One criterion is the need of controlled

rotations. Indeed, when a rotation is used for compensation it cannot be controlled

anymore. As an example, a ur-surface vessel cannot use this method to control both

sway and yaw at the same time. However, the uncontrolled rotation is, most of the

times, mechanically stable or stabilized by hydrodynamic effects on the vehicle. In the

example of the ur-vessel, yaw naturally tends towards the tangent to the track when

sway error is canceled and does not need to be actively controlled.

To demonstrate the different possibilities given by this method, simulations of some

of the unitary cases of table 3.1 have been conducted. These simulations aim to show

that the H-based controller can create different vehicle behaviors. It is of course a very

simple elementary example and not a realistic task. The trajectory of this example is a

vertical rail traveled at constant speed with no angular constraint. Considering that the

vehicle arrives at the top of the rail in a neutral horizontal state (no roll or pitch but any

yaw), heave control of the tracking point is mandatory. In facts, the necessity of heave

actuation at the tracking point is due to the initial attitude of the vehicle and its need to

instantaneously move along the z0 axis. If the vehicle had a 90◦ initial pitch angle and
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were passively stable in this configuration then surge actuation would be sufficient to

fulfill the task. Moreover, this application is a trajectory tracking scenario, the vehicle is

supposed to track the position and velocity of the target at all time. It is not allowed any

uncontrolled transitory regime as it could be the case in setpoint regulation scenarios.

In such cases, the tracking performances would be degraded locally but heave actuation

as such would not be necessary. This simple example also demonstrates the impact of

the initial condition of a task or, more broadly, the implications of having subsequent

fairly simple pieces of trajectory which, when put together, form a more complex task.

Table 3.1 gives two solutions: a tracking point on the xB axis with surge and pitch

actuation or a tracking point on the yB axis with sway and roll actuation. In the first

solution, the coordinates of the tracking point are [ε 0 0]⊤. The corresponding vectors

of actuated and controlled DOF as well as the H matrix used in this case are:

hOB

1 =



1

0

0

0

1

0



hE =



1

0

1

0

0

0



H1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1/ε 0 1 0

0 0 0 0 0 1


In the second solution, the coordinates of the tracking points are [0 ε 0]⊤ and the vectors

of actuated and controlled DOF as well as the H matrix are:

hOB

2 =



0

1

0

1

0

0



hE =



0

1

1

0

0

0



H2 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 1/ε 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


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Figure 3.1 – Simulation snapshot at t = 1s. Blue vehicle: Pitch compensation - Red
vehicle: Roll compensation

In this example, the tracking point is outside of the hull fo the vehicle to keep kinematic

equivalence with the first case. It also allows showing that the tracking point does not

need to be a physical point of the vehicle. Any point of RBcan be chosen as a tracking

point.

The different behaviors created by the two control strategies appear clearly on the

simulation snapshot figure 3.1. On figure 3.1, each colored cylinder represents the hull

of a vehicle. The blue one uses pitch compensation while the red one uses roll com-

pensation. They are both equipped with two thrusters represented with grey cylinders.

The tracked trajectory is represented with the dashed black line and the tracking point

of the two vehicle are figured with a black circle. Both tracking point overlap with the

current target on this snapshot showing perfect position tracking in both cases.

Figure 3.2 shows that the two compensating solutions are equivalent in terms of

position tracking and notably regarding the z0 axis. On the other hand, figure 3.3 shows

the difference of strategy of the two compensation solutions. The first vehicle (Blue line)
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Figure 3.2 – Comparison of the position of the vehicles in the two cases. Blue: Pitch
compensation - Red: Roll compensation. a: x0, b: y0, c: z0
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Figure 3.3 – Comparison of the orientation of the vehicles in the two cases. Desired
orientation values are arbitrarily put to 0 but are not part of the task. Blue: Pitch

compensation - Red: Roll compensation. a: Roll, b: Pitch, c: Yaw
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pitches down to generate a heave motion at the tracking point as shown on figure 3.3.(c)

whereas the second vehicle (Red Line) rolls on the side to generate heave motion as

shown on figure 3.3.(a).

This elementary example illustrates the necessary choice of strategy using this method.

Also, if the task also required the vehicle to keep a neutral pitch for instance, then the

second solution using roll for compensation would be preferable. On the other hand if

the vehicle were equipped with a camera pointing downwards then roll should not be

disturbed and the first solution should be chosen. Additional constraints would limit the

possible solutions. The vehicle being suitably equipped, it is also possible to alternate

between two strategies during the mission, the needed H matrix being recalculated to

meet the chosen strategy with the algorithm presented in the following.

3.2.3 Algorithm for the calculation of H

This section details the algorithm calculating the Handy matrixH for a given system

and task. The computation of H makes use of the skew-symmetrical cross-product ma-

trix S(λ). Notably, for point E of coordinates [εx εy εz]⊤, it calculates S = S([1/εx 1/εy 1/εz]⊤):

S




1/εx

1/εy

1/εz



 =


0 −1/εz 1/εy

1/εz 0 −1/εx

−1/εy 1/εx 0

 (3.19)

Note that, to avoid singularities, the matrix S is built only with the non-zero coordi-

nates of E. As an example, for a tracking point on the xB axis εx ̸= 0 and εy = εz = 0,

one would build S([1/εx 0; 0]⊤) replacing 1/εy and 1/εz with 0.
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Algorithm 1 Calculation of the Handy matrix H
H ← I6

e← [εx εy εz]⊤

ϵ← [0 0 0]⊤

for k = 1 : 3
if e(k) ̸= 0

ϵ(k)← 1/e(k)
Σ ← S(ϵ)
for i = 3 : 6

if hOB
(i) = 1 and hE(i) = 0

for j = 1 : 3
if hE(j) = 1 and hOB

(j) = 0 and j ̸= i− 3
H(i, j)← Σ(i− 3, j)
H(j, :)← 0

Algorithm 1 takes the two vectors hOB
and hE as inputs as well as the coordinates

of the tracking point E. The user needs to define the actuated DOF of the vehicle in

hOB
and choose, following the design rules evoked before, the controlled DOF at the

tracking point in hE.

Overall, algorithm 1 browses through the actuated rotational DOF of the vehicle. If

it finds a rotation in hOB
which is not controlled in hE, it checks whether it is used to

compensate a translation. When the rotation and translation are found, the appropriate

ratio 1/εk (εk being the k-th coordinate of E in RB) is selected in Σ and placed at the

corresponding place in the bottom left submatrix of H. Finally, it cancels the row of H
corresponding to the non actuated translation of hOB

.

For demonstration of the matrix generation, let us apply algorithm 1 to the uqr-

vessel example (3.18) introduced in the previous section. In this example, the H matrix

must compensate the lack of two translations, sway and heave, with pitch and yaw.

Considering a tracking point E of coordinates [εx 0 0]⊤, the skew-symmetrical cross-

107 Version du October 11, 2023



Chapter 3 – Matrix H 3.2. Kinematic application

product matrix of interest is:

Σ = S





1
εx

0

0



 =



0 0 0

0 0 − 1
εx

0 1
εx

0



The matrix H is initialized with the identity.

hOB

1 =



1

0

0

0

1

0



hE =



1

0

1

0

0

0



H =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


Considering the pair hOB

, hE of (3.18), the first rotational DOF actuated in hOB
but

not controlled in hE is pitch (fifth line, i = 5). The algorithm now seeks a translation in

hE which is not actuated in hOB
and can be compensated (j ̸= i− 3) and finds one on

the third line (j = 3) corresponding to heave. The appropriate term of Σ (second row,

third column) is placed in the appropriate position in H (fifth row, third column) and

the heave line of H is canceled. At this stage H is:

H =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 − 1
εx

0 1 0

0 0 0 0 0 1


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Then, the algorithm resumes, reading hOB
to find another rotation used for com-

pensation. Yaw is used for compensation of sway (i = 6, j = 4) so the appropriate term

of S is again copied in H and the sway line of H is canceled. At this stage the handy

matrix for this example is:

H =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 − 1
εx

0 1 0

0 1
εx

0 0 0 1



(3.20)

Finally equation (3.20) shows the handy matrix H for an uqr-vessel navigating on a

(x, y, z) path and with a tracking point at the front of the vehicle. This algorithm can be

applied for any suitable pair hOB
, hE.

3.3 Application to the RSM Robot

In this section, theH-based controller is detailed and adapted to the RSM robot. The

RSM robot is an underactuated underwater vehicle used in several research applications

over the years [31, 30]. This vehicle is used in this example as a representative of a

class of underactuated marine craft lacking sway and pitch actuation. The propulsive

arrangement of this vehicle is described in section 1.2.1.2 and a 3D rendition appears

on figure 3.4. The actuation of RSM is described here in terms of its associated vectors

hOB
and hE. A couple of possible control strategies are described. The complete model-

based controller is given in details and a convergence demonstration of the H-based

controller is presented.

3.3.1 Actuation and task of the RSM Robot

The RSM Robot is composed of a cylindrical hull and is equipped with four thrusters.

The first two thrusters P1 and P2 are in the plane (OB,xB,yB) at the rear of the vehicle
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Figure 3.4 – The propulsive configuration of the RSM robot

aligned with xB. The two other thrusters are placed in the (OB,yB, zB) plane and are

aligned with zB. Therefore, the vehicle is able to generate independent surge and heave

forces as well as roll and yaw moments. Sway and pitch are not actuated. Nevertheless,

because the center of gravity PG is slightly below the center of buoyancy PB = OB, the

vehicle is naturally stable in roll and pitch.

The actuation vector for RSM is:

hOB
=



1

0

1

1

0

1



(3.21)
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Figure 3.5 – Top view of the seabed scanning trajectory at 1 m depth.

The tracking point is chosen at the bow of the vehicle below the waterline. The

coordinates of E are [εx 0 εz]⊤ and for this example we take εx = εz = 0.2 m. As

exposed before, the position of the tracking point adds to the stability of the vehicle and

is chosen to create exploitable kinematic couplings.

The vehicle is evaluated on the Seabed Scanning task presented on figure 3.5. This

task is composed of several horizontal rails at constant depth and the vehicle must stay

tangent to the rails. Therefore, the required DOF for this task are the three translations

and the rotation around z0, the vehicle is ill-actuated. No additional angular constraints

are added to the task.

Because the required DOF of the task are different from the actuated DOF of the

vehicle, a compensation mechanism is introduced in the controller to cope for the lack

of sway actuation and have three actuated translations. Referring to table 3.1, two

solutions raise for this tracking point and propulsive arrangement: either use roll and

heave or use yaw and surge. This last solution is the most commonly used on usual

underactuated surface vessels.

The two strategies are associated with two different vectors for the controlled DOF
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at the tracking point:

hE,p =



1

1

1

0

0

1



and hE,r =



1

1

1

1

0

0



In the first case hE,p, roll is used for sway compensation so the yaw angle of the

vehicle can be controlled. In the second case hE,r, yaw is used for compensation and

can thus not be controlled. In this case though roll, which is not part of the task, could be

controlled. Note that, because of the hydrodynamic effects on the hull of the vehicle, the

yaw angle is naturally stabilized at non-zero speed and the hull of the vehicle naturally

aligns with the velocity vector. Hence, only minimal yaw disturbance appear in this task

when it is not controlled. To see a significant difference between the two strategies,

additional tests will be conducted with a yaw constraint different from the tangent to

the track.

Of course, the two vectors hE,p and hE,r correspond to two different matricesHp and

Hr respectively. Applying algorithm 1 in the two cases with hOB
defined as in (3.21)

yields:

Hp =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 −1/εz 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(3.22)
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and

Hr =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1/εx 0 0 0 1



(3.23)

In order to demonstrate the action of these two matrices, they are applied to the

relation (3.15) in the same way as in the theoretical example of section 3.1. Inverting

equation (3.15) gives:

ν = T−1νE (3.24)

The Handy matrices Hp and Hr can be applied to this system giving:

ν1 = HpT
−1νE (3.25)

and

ν2 = HrT
−1νE (3.26)

The first case is detailed as:

u

v

w

p

q

r



=



1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 −1/εz 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





1 0 0 0 −εz 0

0 1 0 εz 0 −εx

0 0 1 0 εx 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





uE

vE

wE

pE

qE

rE



=



uE − εzqE

0

wE + εxqE

vE − εxrE

qE

rE



(3.27)

Equations (3.27) shows that, because of the off-diagonal term of Hp, the roll speed

p is now a function of the sway speed at point E, vE. Same reasoning can be applied
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with Hr, making the yaw speed r a function of the sway speed at point E, vE. The next

section explains how this new behavior can be used in a controller to allow tracking of

a non-actuated DOF.

3.3.2 Complete controller

This section introduces the complete controller used on the RSM Robot in association

with the H matrix-based guidance principle. Some variations of this controller have

been introduced in chapter 2. The controller is a two-staged cascade system. A velocity

reference is calculated with a PI control law and the H matrix, to cancel the position

errors. A model-based proportional effort vector is then proposed to control the speed

of the vehicle towards the reference speed.

The control effort vector τc is calculated as:

τc = M (ν̇c + K(νc − ν)) + C(ν)ν + D(ν)ν + g(η) (3.28)

where νc is the reference velocity vector calculated withH and detailed in the following

and K is an appropriate proportional gain matrix.

Equation (3.28) shows a typical feedback linearizing structure associated with a

proportional controller [65]. The calculation of τc is directly drawn from the dynamic

model of the vehicle equation (1.5). Matrices M , C(ν) and D(ν) are the mass, Coriolis

and centripetal and damping matrices of the model respectively and g(η) is the vector

of gravity and buoyancy effects. The non linear terms of the model are evaluated at the

current state of the system (η, ν) therefore allowing feedback linearization; Applying

the control vector τc cancels the non linear terms of the model equation (1.5), leading

to the linear closed-loop system:

ν̇ = ν̇c + K(νc − ν) (3.29a)

eν = (νc − ν) (3.29b)

ėν + Keν = 0 (3.29c)

The new velocity reference νc is also built as a model-based feedback linearizing

controller but, in this case, including the Handy matrix H to create the compensation

behavior. Recalling the kinematic model of the vehicle including the tracking point E
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Kinematic
Guidance

Dynamic
Stage

Figure 3.6 – Block diagram of the cascade H-based controller. Σ represents the AUV,
N (η,ν) = C(ν)ν + D(ν)ν + g(η)

equation (1.3) one gets:

νc = HT−1J(η)−1
[
η̇∗ + Kpeη + Ki

∫ t

0
eη(ζ)dζ

]
(3.30)

with eη = η∗ − ηE the error between the desired state η∗ and the state of the tracking

point ηE.

Overall, this controller is a cascade system as depicted on figure 3.6. The inner loop

(dynamic stage), calculates the efforts τc required for the vehicle to reach the velocity

reference νc calculated by the outer loop (kinematic guidance). The outer loop therefore

behaves like a kinematic guidance stage outputting new reference velocities for the

controller in a similar way as a LOS guidance stage or any other guidance algorithm

would. Cascade systems are known for their natural robustness to external disturbances

but the inner loop must be faster than the outer loop to ensure stability.

Note that, in equation (3.30) the PI control law could be replaced by any usual

controller (SMC, LQR). Using a different control law in the outer loop could produce

different behavior. Notably, adding a sliding surface and switching term would enhance

robustness to external disturbances.

3.3.3 Stability proof

To show the convergence of the controller, this section focuses on the second Handy

Matrix solution Hr applied to the RSM robot in a planar trajectory tracking application.

This example allows demonstrating that the Handy matrix indeed allows convergence

of the compensated DOF and does not disturb the other controlled DOF. It could be
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reproduced for any other actuation configuration, task, or compensated DOF.

The cascade structure of the controller and the feedback linearizing PI-based forms

used in both stages give a first hint towards stability of the controller. Yet, stability of the

overall closed-loop system is addressed here to illustrate the behavior of the controller

not only with respect to the compensated DOF but also regarding the other DOF not

involved in the compensation.

Let us recall the complete model of the underwater vehicle:

τ = Mν̇ + C(ν)ν + D(ν)ν + g(η) (3.31a)

η̇E = J(η)Tν (3.31b)

with, because of underactuation of the RSM robot, the vector of propulsive efforts τ of

shape: τ = [X 0 Z K 0 N ]⊤ (X and Z being non-zero force components and K and M

being non-zero moments).

A tracking point E of coordinates [εx 0 0]⊤ inRBis used in this proof. The associated

transformation matrix is:

T =



1 0 0 0 0 0

0 1 0 0 0 εx

0 0 1 0 −εx 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(3.32)

The sway of the vehicle is not actuated but can be compensated with yaw. The

corresponding Handy matrix Hr calculated with algorithm 1 is given in equation (3.23)
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and recalled here:

Hr =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1/εx 0 0 0 1



(3.33)

As detailed in section 3.3.2, the controller used in this example is:

τc = M (ν̇c + Keν) + C(ν)ν + D(ν)ν + g(η) (3.34a)

νc = HrT
−1J(η)−1(η̇∗ + λ(eη)) (3.34b)

In equation (3.34b), λ(eη) is a PI control law based on the tracking error eη:

λ(eη) = Kpeη + Ki

∫ t

0
eη(ζ)dζ (3.35)

Following the results of appendix C and as demonstrated before, thanks to the feed-

back linearizing terms, applying the control vector τc to the dynamic model (3.31a)

cancels the non-linearities of the dynamic model on the actuated DOF. The non actu-

ated DOF (sway and pitch) are naturally stable and, because no coupled efforts are

generated by the actuators on these two axes, they are assumed to stay stable in closed

loop with reasonable disturbances.

Remark 3.1 Rigorously, the following equations should only be written for the controlled
DOF but for the sake of clarity and considering the natural sway and pitch stability of the
system, the equations are given on the complete system.

The effort control vector τc creates the linear closed-loop system:

ν̇ = ν̇c + K(νc − ν) (3.36)

Now, in order to give a demonstration of the convergence of the position errors

in R0, equation (3.36) must be rewritten using the following relations drawn from
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equation (3.31b) and equation (3.34b).

ν̇ = T−1(J̇(η, η̇)−1η̇E + J(η)−1η̈E) (3.37a)

˙̄η = η̇∗ + λ(eη) (3.37b)

νc = HrT
−1J(η)−1 ˙̄η (3.37c)

ν̇c = HrT
−1(J̇(η, η̇)−1 ˙̄η + J(η)−1 ¨̄η) (3.37d)

The gain matrices of the controller are defined as:

K = KI (3.38a)

Kp = kpI (3.38b)

Ki = kiI (3.38c)

where I is the identity matrix. It implies that the sets of gain parameters are the same

on all the DOF. Each independent gain could be tuned to better match the individual

characteristics of each DOF without changing the convergence result.

Using the expressions of (3.37) in equation (3.36) gives:

HrT
−1(J̇(η, η̇)−1η̇∗ + J(η)−1η̈∗) + K(HrT

−1J̇(η, η̇)−1η̇∗ − T−1J(η)−1η̇E) =

T−1(J̇(η, η̇)−1η̇E + J(η)−1η̈E) (3.39)

Multiplying both sides by T leads to:

THrT
−1(J̇(η, η̇)−1η̇∗ + J(η)−1η̈∗) + TK(HrT

−1J̇(η, η̇)−1η̇∗ − T−1J(η)−1η̇E) =

J̇(η, η̇)−1η̇E + J(η)−1η̈E (3.40)

which can then be rewritten as:

THrT
−1(J̇(η, η̇)−1η̇∗ + J(η)−1η̈∗) + K(THrT

−1J̇(η, η̇)−1η̇∗ − J(η)−1η̇E) =

J̇(η, η̇)−1η̇E + J(η)−1η̈E (3.41)

118 Version du October 11, 2023



Chapter 3 – Matrix H / 3.3. Application RSM 3.3. Application RSM

The matrix product THrT
−1 reads:

THrT
−1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1/εx 0 0 0 0



(3.42)

and, considering that the roll and pitch are stable and undisturbed, the vehicle is sup-

posed to stay in the horizontal plane where ϕ ≈ 0 and θ ≈ 0. Matrices J(η)−1 and

J̇(η, η̇)−1 are then:

J(η)−1 =



cψ sψ 0 0 0 0

−sψ cψ 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(3.43a)

J̇(η, η̇)−1 =



−ψ̇sψ ψ̇cψ 0 0 0 0

−ψ̇cψ −ψ̇sψ 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(3.43b)
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Considering equation (3.42) and equation (3.43) and after some calculations, the

two first lines of equation (3.41) give in the earth-fixed frame:

ëx + (kp +K)ėx + (ki +Kkp)ex +Kkiχx + ψ̇(ėy + kpey + kiχy) =0 (3.44a)

ëy + (kp +K)ėy + (ki +Kkp)ey +Kkiχy − ψ̇(ėx + kpex + kiχx) =0 (3.44b)

with χx =
∫ t

0
ex(ζ)dζ and χy =

∫ t

0
ey(ζ)dζ.

Remark that the sixth equation of (3.41) gives the dynamics of the orientation pa-

rameter ψ, not controlled in this case:

ψ̈ = 1
εx

[
−ψ̇(ẋ∗cψ + ẏ∗sψ)− ẍsψ + ÿcψ +K(−ẋ∗sψ + ẏ∗cψ)

]
−Kψ̇ (3.45)

Equation (3.45) has the shape of a Liénard equation whom study is outside of the scope

of this work.

3.3.3.1 Lyapunov argument

The stability of the closed-loop system (3.44) is demonstrated in this Section using

Lyapunov theory. First, new error variables are introduced:

σx = ėx + kpex + kiχx (3.46a)

σy = ėy + kpey + kiχy (3.46b)

The two error variables σx and σy are similar to the standard definition of sliding

surfaces (see section 2.4) but are just used as intermediate variables in the present

demonstration. The first order derivatives of these two new error variables are:

σ̇x = −(kp +K)ėx − (ki +Kkp)ex −Kkiχx − ψ̇(ėy + kpey + kiχy) + kpėx + kiex

= −Kσx − ψ̇σy (3.47a)

σ̇y = −(kp +K)ėy − (ki +Kkp)ey −Kkiχy + ψ̇(ėx + kpex + kiχx) + kpėy + kiey

= −Kσy + ψ̇σx (3.47b)

Remark 3.2 At this point and to stick with the concept of SMC, choosing an appropriate
sliding condition would also allow demonstrating that an additional SMC-based stage of
control would add robustness to external bounded disturbances.
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A natural Lyapunov function candidate is:

V = 1
2(σ2

x + σ2
y) (3.48)

Function V is of class C1, positive definite and radially unbounded. The first order time

derivative of the Lyapunov function candidate is:

V̇ = σ̇xσx + σ̇yσy = −Kσ2
x − ψ̇σxσy −Kσ2

y + ψ̇σxσy = −K(σ2
x + σ2

y) (3.49)

Then, for any choice of K strictly positive, V̇ is strictly negative and V̇ ≤ −αV with

α ≥ 2K. Consequently, the equilibrium point σx = 0, σy = 0 is globally exponentially

stable (GES). Also, owing to the cascade structure of equation (3.46), the equilibrium

ex = 0, ey = 0 is then GES too.

One interesting remark is that the GES character of the method is independent from

any condition on the yaw rate of the vehicle. This property is of particular interest

in controlling the AUV planar trajectory, considering that the dynamics of ψ given by

equation (3.45) are hardly predictable or controllable.

3.4 Simulation results

This section shows trajectory tracking results obtained in simulation on the RSM robot

using the controller based on the Handy matrix H. Several tests are conducted; First,

the two possible compensation solutions Hp and Hr (section 3.3.1) are compared on

the Seabed Scanning task. Then, the Hr solution is compared with a traditional LOS

controller and a SM controller on the same task with and without sea current.

3.4.1 Comparison of compensation solutions

3.4.1.1 Seabed Scanning

First, the two different compensation solutions Hp and Hr are compared on the

seabed scanning task using a PI control law in the outer loop and a P control law in the

inner loop. table 3.2 gives the simulation parameters used for this experiment as well

as the position of the tracking point and the gain parameters used for both vehicles.
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Item Value Item Value

Trajectory Seabed Scanning Nominal Speed 1.5m.s−1

Current velocity [0 0 0]⊤ Simulation time sample 0.05ms

Vehicle Shape Cylinder Propulsive configuration RSM

Tracking point [0.2 0 0.2]⊤ K 8

kp 8 ki 2

Table 3.2 – Simulation parameters - seabed scanning mission

Figure 3.7 displays the position and orientation of both vehicles with each com-

pensation strategy and shows that both solutions have equally good position tracking

performances on the three axes. This confirms that the method produces the desired

results in terms of position tracking regardless of the chosen compensation strategy.

However, figure 3.7 shows differences in the orientation of both vehicles as highlighted

in figure 3.8.

This last figure, compares the orientation errors between the two solutions. Here,

notable differences raise. First, figure 3.8.(a) shows that the first compensation strategy

creates a larger roll disturbance than the second one. This results was expected since this

DOF is used for compensation in the first case and can therefore not be controlled while

it is controlled in the second case. Yet, this greater disturbance is acceptable since roll

is not part of the required DOF of the task. For the same reason, figure 3.8.(c) shows a

larger error on the yaw angle when the second solution is used. In this case, yaw is used

for compensation and is not controlled. It leads to approximately 25◦ errors in curves.

This error is naturally canceled on the straight lines because of the hydrodynamic drag

which realigns the vehicle on the global speed.

3.4.1.2 Rail on the y0 axis with yaw constraint

The differences between the two strategies appear more clearly on figure 3.9. This

time the vehicle is evaluated on a single rail aligned with the y0 axis at constant depth

but with the additional yaw constraint of staying perpendicular to the trajectory. The

desired yaw angle is ψ∗ = 0 during all the task.Once again, the method shows very good

tracking results in position for both strategies. However, the first vehicle using matrix
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(a) Position comparison.
a: x0 axis, b: y0 axis, c: z0 axis
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(b) Orientation comparison.
a: Roll, b: Pitch, c: Yaw

Figure 3.7 – Comparison of the position and orientation of the two vehicles. Blue: Hp,
Red: Hr, Dashed: Reference
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Figure 3.8 – Comparison of orientation errors for the two compensation solutions on
the Seabed Scanning. Blue: Hp, Red: Hr - a: Roll error - b: Pitch error - c: Yaw error
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Figure 3.9 – Comparison of orientation errors for the two compensation solutions on
the y0 rail with ψ∗ = 0. Blue: Hp, Red: Hr - a: Roll error - b: Pitch error - c: Yaw error
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Hp generates a roll angle of approximately 70◦ degrees but has a perfect yaw tracking

while the second vehicle using matrix Hr generates a yaw error of 90◦. Here again the

second vehicle neglects the desired yaw and stabilizes along the linear velocity vector

of the trajectory.

This last case study shows two different things. First, it demonstrates that some

strategies can provide completely different results on different tasks. In this case, the

yaw compensation solution using Hr can be considered acceptable on the first task

(figure 3.7) but is totally not suited for the second task (figure 3.9). It demonstrates

that the combination of trajectory, constraints and natural dynamics of the vehicle is

central in the definition of the task. In the first task, the yaw angle is only slightly

disturbed by the controller and hydrodynamic effects cause it to tend naturally towards

the desired value. In the definition of the trajectory, choosing a desired yaw angle equal

to the tangent to the desired velocity vector does match the natural dynamics of the

vehicle. Depending on the application, a little disruption of the yaw angle during the

turns can be accepted. On the second task however, the yaw constraint goes radically

against the natural dynamics of the vehicle. In this case, the yaw angle of the vehicle

must be actively controlled to meet the constraints imposed by the task. Comparing

these two task shows that, even if they theoretically require the same DOF (surge, sway,

heave and yaw), the association of the trajectory constraints and natural dynamics of

the chosen vehicle implies two different control strategies.

The second effect demonstrated by these two case studies is the possible disturbance

created by the chosen compensation strategy. The yaw angle constraint has been added

to keep the vehicle pointed perpendicularly to a vertical plane of a virtual object in the

spirit of a sensor inspection of a submerged structure. In such a case, the constraint is

not really on the yaw angle of the vehicle but is rather on the orientation of the xB

axis of the vehicle with respect to an object in the inertial frame. Thus, to maintain the

desired orientation, the vehicle must be able to control the orientation of its longitudinal

axis around the vertical axis of the inertial plane, z0. Yet, figure 3.9 shows that the roll

compensation strategy can create quite drastic roll angles depending on the required

sway and heave speeds. Here, the roll of the vehicle stabilizes around 70◦ but the value

of the equilibrium depends on the desired speeds of the trajectory. For a greater desired

speed, if the vehicle had a slightly lower buoyancy or a center of gravity closer to its

center of buoyancy, the roll equilibrium found by the controller would tend to 90◦.

The issue is that, at ϕ = 90◦, the RSM propulsive arrangement is unable to generate
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any moment around the vertical axis of the inertial frame z0 because the two rear

thrusters end up in a vertical plane. Despite the fact that the vehicle and control strategy

theoretically allow good control of all the required DOF of the task, the choice of the

compensation strategy can create attitudes in which the vehicle looses control over one

or several other DOF. This case of study may seem far fetched but similar issues can

appear with other control laws and DOF.

3.4.2 Comparison with LOS and SMC

In this section, the controller based on the Hr matrix is compared with a Sliding

Mode Controller (SMC) drawn from [40] and a PID controller associated with Line

Of Sight guidance (LOS) derived from [105]. The three controllers are evaluated on

the Seabed Scanning task first without external disturbance and then in presence of

an unknown constant irrotational sea current. The three controllers are applied to the

RSM vehicle.

The LOS and SMC controllers are some of the most common in literature. They are

presented in detail in section 2.1 and section 2.4 respectively. As with the Hr matrix,

both controllers can be used to compensate the lack of sway with yaw.

The structures of the controllers are slightly different. The LOS and Hr based con-

trollers are cascade system composed of a guidance stage as the outer loop and a feed-

back linearizing proportional controller as the inner loop. Whereas the SMC controller

is built in a single stage. The yaw sliding surface used in the calculation of the yaw input

is a function of the sway error. Equations of the dynamic model are used to calculate the

input through dynamic couplings. None of the three controller control the yaw angle of

the vehicle.

Table 3.3 shows the simulation parameters used in the two experiments. The gain

parameters of the three controllers are the same in the two tests to evaluate robustness

against unpredictable disturbances.

3.4.2.1 Without external disturbance

Figure 3.10 shows that the position tracking performance of the three controllers

are virtually identical without sea current. Figure 3.11 shows that the compensation

strategies used in the three controller do not destabilize the naturally stable DOF of the

three vehicles. Notably, the yaw angle of the three vehicles naturally tends towards the

126 Version du October 11, 2023



Chapter 3 – Matrix H / 3.4. Simulation results 3.4. Simulation results

0 10 20 30 40 50 60
0

5

10

15

20

0 10 20 30 40 50 60
0

5

10

15

20

0 10 20 30 40 50 60
0

5

10

15

20

Figure 3.10 – Comparison of position in R0for the LOS controller (Blue), the SMC
(Green) and the H controller (Red) on the Seabed Scanning task without current. a:

x0 axis - b: y0 axis - c: z0 axis

tangent to the track in between the turns and is only disturbed to correct sway errors in

the turns.

3.4.2.2 Constant sea current

In the presence of a constant sea current, the tracking performance is degraded for

both controllers as shown on Figs. 3.12 and 3.13. However, the performance degrada-

tion of the first vehicle (mH with kinematic PI) is probably related more to the use of a

PI control law than to the guidance method. The response of the PI being quite slow, the

vehicle falls behind during the turns (around 16s, 44s, 68s and 92s) but quickly catches

back with the desired trajectory. All the controlled DOF converge on the trajectory be-

tween the turns showing that the guidance principle stays effective in the presence of

sea current.
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Figure 3.11 – Comparison of orientation for the LOS controller (Blue), the SMC
(Green) and the H controller (Red) on the Seabed Scanning task without current. a:

Roll - b: Pitch - c: Yaw
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Figure 3.12 – Comparison of position errors for the H controller (1, Blue) and the SM
controller (2, Red) on the Seabed Scanning with constant current on x0 axis. a: Error

on x0 - b: Error on y0 - c: Error on z0

The SM controller of the second vehicle on the other hand (Red line on Figs. 3.12

and 3.13) has a more aggressive response during the turns which limits the error but

can experience steady state error as on figure 3.13.(a).
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Figure 3.13 – Comparison of orientation errors for the H controller (1, Blue) and the
SM controller (2, Red) on the Seabed Scanning with constant current on x0 axis. a:

Roll error - b: Pitch error - c: Yaw error
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Item Value Item Value

Trajectory Seabed Scanning Nominal Speed 1.5m.s−1

Current velocity [−0.75m.s−1 0 0]⊤ Simulation time sample 0.05ms

Vehicle Shape Cylinder Propulsive arrangement RSM

Hr based controller

Tracking point [0.2 0 0]⊤ K 8

kp 8 ki 2

LOS Guidance

ku 60 ki,u 3

kd,u 1 kr 20

ki,r 1 kd,r 10

Kp 20 Ki 5

Kd 8

Sliding Mode Controller

lx 1 ly 1

kx 1 ky 1

λ1 5 λ2 5

λ3 1 Ku 2

Kr 2 Wu 1

Wr 1

Table 3.3 – Simulation parameters, with sea current
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3.5 Path-Following application of theHmatrix controller

In this section, the H matrix controller is applied to a path-following problem. The

Remus100 AUV has been used for this illustration and the task is a mock-up of a typical

mission. It is made up of a series of waypoints joined by straight routes.

As described briefly in section 1.4.2.2, in the path-following scenario, the vehicle is

constrained to the path between the waypoints. A virtual particle is simulated on the

path, evolving according to the behavior of the vehicle so that it can never leave the

actual particle representing the vehicle behind. The path-following approach used in

this example is adapted from [20] and similar work can be found for instance in [111].

In path following, the geometric and dynamic tasks are tackled independently. In

this example however, the solution given by the H controller is demonstrated to solve

the dynamic task and provide a general solution to the geometric task at the same time.

3.5.1 The Remus100 AUV

The Remus100 (Remote Environmental Monitoring UnitS) shown on figure 3.14

is a commercial AUV designed by the Oceanographic System Lab. of the Woods Hole

Oceanographic Institution and used in applications of hydrographic surveys, scientific

sampling or pipeline inspections. It has been used in many research and industry appli-

cations and has a very well established model.

The Remus100 is equipped with a fixed rear thrusters, a rudder and a stern plane.

The actuation configuration of the vehicle generates an independent surge force and

pitch and yaw moments depending on the relative velocity of the vehicle and the sur-

rounding water. Following the remark made on coupled DOF in section 5.1, the sway

and heave forces generated by the stern control surfaces are neglected in the controller

calculations. A simplified allocation model has been used to calculate the control sur-

Figure 3.14 – Remus100 (Image from OSL WHOI)
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faces defection angles and the necessary propeller speed.

3.5.2 H matrix controller for Remus100

The H matrix controller for the Remus100 vehicle is introduced in this section. The

task is focused only on the position of the vehicle, the attitude of the vehicle is stabi-

lized by hydrodynamic effects and hydrostatic restoring moments acting on the hull and

control surfaces. As evoked before, the vehicle is actuated in surge, pitch and yaw.

Recalling the DOF representation introduced in section 3.2.2, the actuated DOF of

the vehicle at the center of the mobile frame are represented as:

hOB
=
[
1 0 0 0 1 1

]⊤

(3.50)

To allow compensation of the lack of actuation in sway and heave, the tracking point

is placed at the nose of the vehicle, E = [εx, 0, 0]⊤ with εx approximately equal to half

the hull length of the AUV. Having the tracking point at the front of the vehicle also

increases the natural pitch and yaw stability. The controlled DOF at the tracking point

are represented as:

hE =
[
1 1 1 0 0 0

]⊤

(3.51)

The Remus100 vehicle associated with the position task of this example mtch with

the example given in section 3.2.3. Using algorithm 1 with hOB
and hE defined in

equation (3.50) and (3.51) respectively, the H matrix is calculated as:

H =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 − 1
εx

0 1 0

0 1
εx

0 0 0 1



(3.52)

Then, using the equations introduced in chapter 3, the H matrix controller is built as a
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cascaded model-based linearizing controller:

νc = HT−1J(η)−1λ(ηE, η̇E, α) (3.53a)

τc = M (ν̇c + Keν) + C(ν)ν + D(ν)ν + g(η) (3.53b)

where α is an auxiliary variable to be defined later and λ(ηE, η̇E, α) is a control law to

be determined. Because of the path following scenario, the control law will be a function

of the current state of the vehicle and of the current state of the virtual path particle

contained in α which is not known a priori but will be used as a control parameter and

defined in the following. The non linear terms of the model are canceled using feedback

linearization. The matrix K is a conventional positive definite proportional gain matrix

and eν = νc − ν.

A complete proof of the stability of the H-based controller can be found in chap-

ter 3. Nevertheless, the cascaded structure of the system allows a rapid convergence

demonstration. The feedback linearizing structure of the dynamic part of the controller

equation (3.53b) gives the closed-loop system:

ν̇ = ν̇c + Keν ⇒ ν → νc (3.54)

Remark 3.3 Here, as in section 3.3.3, the stability demonstration is given on the full six
DOF state space. The stability of the non actuated DOF is assumed considering the great
number of applications of the Remus100 vehicle where possible instability of the non actu-
ated DOF due to coupling effects are not taken into account. A more rigorous demonstration
should demonstrate the stability of the actuated DOF first, then show that the disturbance
generated on the non actuated DOF does not make them unstable.
Then, providing that the inner loop is faster than the outer loop, applying equation (3.53a)

to equation (1.3) gives the closed-loop system:

η̇E = J(η)THT−1J(η)−1λ(ηE, η̇E, α) (3.55)
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with:

THT−1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 − 1
εx

0 0 0

0 1
εx

0 0 0 0



(3.56)

Breaking down the velocity vector into translation and rotation components η̇E =
[η̇E

⊤
1 , η̇E

⊤
2 ]⊤ and the control law in the same way, λ = [λ⊤

1 ,λ
⊤
2 ]⊤, the closed-loop system

(3.55) gives:

η̇E1 ≡ λ1 (3.57)

The λ(ηE, η̇E, α) function must therefore be chosen to solve the path following prob-

lem described in the following.

3.5.3 The path-following problem

In this section, the path-following problem is described using the formalism of [20].

The position of the particle representing the tracking point of the vehicle is denoted p

and the position of the virtual particle evolving on the path is denoted pp. The geometric

path is parametrized by the scalar variable ϖ. It is defined as:

P = {p ∈ R3 | p = pp(ϖ) ∀ ϖ ∈ R} (3.58)

The geometric path is defined under the following assumptions motivated by the

stability results described later in this section (see equation (3.70)):

A.1 The path is regular: ϖ > 0 , ϖ̇ > 0 ∀ t > 0.

A.2 The virtual particle is only moving forward on the path with the velocity vector

vp = [Up, 0, 0]⊤ expressed in the path frame with Up > 0.

The parameter ϖ can be seen as the curvilinear abscissa of the virtual particle on

the path. The propagation of ϖ will indirectly be used as a control parameter in the fol-

lowing to create the desired following behavior and move the virtual particle according
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to the evolution of the vehicle. A local path frame Rpcentered on pp(ϖ) is defined such

that the xp axis of Rpis tangent to the path at all times. The path frame is the result of

two consecutive rotations of the inertial frame. First a rotation of angle χp around the

z0 axis and then a rotation of angle νp around the y axis of the intermediate frame. The

two angles are defined for a given pp(ϖ) as:

χp(ϖ) = arctan
(
y′
p(ϖ)
x′
p(ϖ)

)
(3.59a)

νp(ϖ) = arctan
 −z′

p(ϖ)√
x′
p(ϖ)2 + y′

p(ϖ)2

 (3.59b)

where ·′ is the derivative operator
d

dϖ
. The two associated rotation matrices are given

as:

Rp,z(χp(ϖ)) =


cos(χp) − sin(χp) 0

sin(χp) cos(χp) 0

0 0 1

 (3.60a)

Rp,y(νp(ϖ)) =


cos(νp) 0 sin(νp)

0 1 0

− sin(νp) 0 cos(νp)

 (3.60b)

The full rotation from the inertial frame to the path frame is hence defined as:

Rp(ϖ) = Rp,z(χp(ϖ))Rp,y(νp(ϖ)) (3.61)

The following error between the virtual particle on the path and the tracking point

of the vehicle is then defined in the path frame:

ε = Rp
⊤(p− pp(ϖ)) (3.62)

Note that, in order to stick to the formalism of [20], the error convention used in this

section is the opposite of the convention used elsewhere in this work. The error vector
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Figure 3.15 – Path following problem in the horizontal plane. Blue : Path particle, Red
: Vehicle
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ε = [xe, ye, ze]⊤ is broken down into the along-track error xe, cross-track error ye and

vertical-track error ze. The path-following problem thus becomes the error minimizing

problem of driving the error vector ε to zero.

The path following problem is once again solved using Lyapunov theory. Consider

the Lyapunov function candidate Vε:

Vε = 1
2ε

⊤ε (3.63)

The first-order time derivative of the error vector expressed in the path frame is:

ε̇ = Ṙp
⊤(p− pp) + Rp

⊤(ṗ− ṗp)

= Sp
⊤Rp

⊤(p− pp) + Rp
⊤(ṗ− ṗp)

= Sp
⊤ε + Rp

⊤(ṗ− ṗp) (3.64)

with the skew-symmetric matrix Sp = −Sp
⊤ is:

Sp
⊤ =


0 −χ̇p cos(νp) ν̇p

χ̇p cos(νp) 0 χ̇p sin(νp)

−ν̇p −χ̇p sin(νp) 0

 (3.65)

The first-order time derivative of the Lyapunov candidate Vε becomes:

V̇ε = ε⊤
(
Sp

⊤ε + Rp
⊤(ṗ− ṗp)

)
= ε⊤Rp

⊤(ṗ− ṗp) (3.66)

At this point, the kinematic and dynamic parts of the task are considered to be solved.

This means that the velocity of the tracking point ṗ is equal to a desired virtual velocity

vector ṗdv. Hence V̇ε becomes:

V̇ε = ε⊤Rp
⊤(ṗdv − ṗp) (3.67)

The desired velocity vector and the velocity of the virtual particle are then designed to

respect the stability criterion V̇ε ≤ 0.

In [20], the desired virtual velocity vector ṗdv is constructed so as to introduce LOS
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guidance. Here, according to the results of section 3.5.2, the desired velocity vector

can be chosen as the output of the position control law λ1 where the parameter α is

chosen as the position of the virtual particle pp. Using the H based controller, one gets

ṗ = η̇E1 ≡ λ1(ηE, η̇E,pp) = ṗdv.

In a first approximation, the control law λ1 is chosen as a proportional controller

based on the following error ε and moved to the inertial frame using Rp associated

with a feedforward term:

λ1 = Rpvd −ΛRpε (3.68)

with Λ a diagonal gain matrix with equal coefficients on the diagonal Λ = λI3 with

λ > 0. The vector vd = [Ud, 0, 0]⊤ is the desired velocity of the vehicle expressed in

the path frame where the desired surge speed Ud is a control parameter defined in the

following.

Then, because the virtual path particle is constrained to the path, its velocity vector

in the inertial frame is defined as:

ṗp = Rpvp (3.69)

with vp = [Up, 0, 0]⊤ and Up the speed of the particle which is a control parameter,

chosen later to ensure stability and move the virtual particle according to the behavior

of the vehicle.

The time derivative of the Lyapunov function candidate becomes:

V̇ε = ε⊤Rp
⊤(Rpvd −ΛRpε−Rpvp)

= ε⊤(vd −Λε− vp)

= −λ(x2
e + y2

e + z2
e) + (Ud − Up)xe (3.70)

Here, the speed of the virtual particle Up can be chosen to cancel the second term of

the right hand member, Up = Ud and thus V̇ε ≤ 0 for all λ > 0.

The path-following problem can be updated to a path-tracking problem as described

in [20]. In path-tracking, the speed of the vehicle is adapted to catch up with the par-

ticle. To do so, the desired speed of the vehicle is expressed as a function of the along-

track error:

Ud = Up − kxxe (3.71)

with kx a gain parameter.
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The time derivative of the Lyapunov function candidate becomes:

V̇ε = −λ(x2
e + y2

e + z2
e)− kxx2

e (3.72)

In such a case, the equilibrium ε = 0 is stable for any λ > 0 and kx > 0.

This last choice of Ud is particularly interesting since it allows an operator to choose

the behavior of the whole system (vehicle and path particle) by tuning only the particle

speed Up and the control parameters. Overall, the equilibrium ε = 0 is shown to be

globally exponentially stable.

The path tracking scheme can easily be adapted to other scenarios. As an example, in

a robotic fleet, the path particle can represent a primary vehicle following a predefined

task. Other secondary vehicles of the fleet are tracking the primary one for instance

going back and forth to the surface for communication. It is then very important that

all the secondary vehicles adapt their speed to the primary one.

Another similar solution to equation (3.71) is to choose the desired speed of the

vehicle and adapt the particle speed so that the vehicle is not left behind. This is a

different approach where the desired speed of the ship is prioritized. It implies that no

time constraint can be added to the task as the behavior of the vehicle may vary between

the waypoints. In this case, the particle speed is:

Up = Ud + kxxe (3.73)

The derivative of the Lyapunov function is obviously similar to equation (3.72) using

this solution. One major difference is that the path particle speed Up may not meet with

assumptions A.1 and A.2. This approach also creates the stable equilibrium ε = 0 for

any λ > 0 and kx > 0. Yet, it does not ensures that the path is regularly defined. The

main advantage is that it allows a pilot to choose the desired speed of the craft and the

particle adapts.

3.5.4 Simulation results

The controller developed in Sections 3.5.2 and 3.5.3 is applied in simulation to the

model of the Remus100. These simulations were performed on a different simulator

based on the MSS toolbox [70]. Experiments are conducted with a simulated measure-

ment noise of standard deviation 0.1 m for the position measurements and 0.01rad for
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the orientations. The path is defined as straight lines in 3-D joining waypoints. No ad-

ditional constraint is added to the task and the vehicle is naturally stable in roll and

pitch. Note that the shape and actuation configuration of the Remus100 allows neglect-

ing the sway and heave forces generated by the actuators in the controller. The vehicle

is considered actuated in surge, pitch and yaw.

A simplified allocation procedure is used to calculate the defection angles of the

rudder and stern plane of the vehicle δr and δs:

δr = 2Nc

L

2 ρU
2
hAsCδs

(3.74a)

δs = 2Mc

L

2 ρU
2
vArCδr

(3.74b)

where Mc and Nc are the fifth and sixth components of the control vector τc, ρ is the

local water density, L is the length of the hull of the vehicle, Uh and Uv are the yB axis

and zB axis relative speeds of the vehicle and As, Ar, Cδs and Cδr are known physical

parameters of the control surfaces.

The target switches from one waypoint to the next as soon as the tracking point of

the vehicle arrives in a circle of 0.1 m radius around the current target.

3.5.4.1 Without external disturbance

With no external current, the controller gives very good following results. The po-

sition of the tracking point and virtual particle are shown on figure 3.16. Figure 3.17

shows that the vehicle lines up with the path between the turns and stays tangent to

the x axis of the path frame at all times. The pitch and yaw angles follow the desired

elevation and azimuth angles (respectively) of the path.

3.5.4.2 With sea current

In this experiment, the vehicle is exposed to a 0.5 m s−1 sea current aligned with the

y0 axis. Figure 3.18 shows that the following per shows that the path following perfor-

mances are not decreased in presence of external disturbance and measurement noise.

Nonetheless, figure 3.19 shows that the yaw equilibrium taken by the vehicle between

the turns is different from the azimuth angle of the path. With sideways current, the
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Figure 3.16 – Position of the tracking point (Blue) of the vehicle with no current.
Dashed Red: Position of virtual particle, Dashed black: Waypoints

142 Version du October 11, 2023



Chapter 3 – Matrix H / 3.5. Path Following 3.5. Path Following

Figure 3.17 – Attitude of the Remus100 vehicle (Blue) compared to the azimuth and
elevation angle of the path (Dashed black)
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Figure 3.18 – Position of the tracking point (Blue) of the vehicle with current. Dashed
Red: Position of virtual particle, Dashed black: Waypoints
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Figure 3.19 – Attitude of the Remus100 vehicle (Blue) with sea current compared to
the azimuth and elevation angle of the path (Dashed black)
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Figure 3.20 – Path following error in the path frame.
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vehicle cannot stay tangent to the path but finds a different equilibrium. Yet, figure 3.20

shows that the error in the path frame is canceled even with external disturbance. Even

though robustness to external disturbance has not been demonstrated on this example,

the cascade structure of the controller, integral action and use of a tracking point hint

towards robustness to bounded disturbances.

3.6 Partial conclusions on H based control

In this chapter, a novel control method for underactuated marine craft has been

presented. This controller relies on a guidance stage based on the new Handy matrixH.

The matrix creates compensation behaviors between the different DOF of the system.

Notably, it allows exploiting actuated rotations of the vehicle to compensate for the lack

of some translations as it is usually the case with marine vehicles. The method has been

shown to perform as well as a Line Of Sight guidance principle and a Sliding Mode

Controller, two reference control methods in the literature.

The convergence calculations and simulation results show that the errors on the

controlled DOF globally exponentially converge to zero. The cascade structure of the

system makes it reliable and robust to external disturbances. The H matrix does not

create any pole or zero in the control law which entirely characterized by the gains of

proportional controller of the inner loop and the PI of the outer loop.

Nevertheless, this controller shows one of the drawbacks of any compensation con-

trol methods. Because the attitude taken by the vehicle during the task is not completely

controlled, and notably in the examples above, the roll angle is not controlled, the vehi-

cle can stabilize in configurations in which actuation over one or several DOF of task is

lost. It is notably showing clearly on section 3.4.1. If the vehicle were to stabilize with

a roll angle of 90◦, actuation over the rotation around the vertical axis of the inertial

frame z0 would be lost and the vehicle would not be able to meet the task constraints.

The equilibrium on the DOF used for compensation, roll in the examples, is hardly pre-

dictable as it depends on AUV dynamics and environmental factors. As a matter of facts,

limitations can be set on the DOF used for compensation to avoid singular attitudes

with the counterpart of reducing performance.

The kinematic guidance principle has also been applied to the path-following prob-

lem. This problem and the Remus100 vehicle used for example are a very common un-

derwater robotics problem. TheHmatrix controller allows perfect path-following in this
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case even with unmodeled disturbances and measurement noise. This path-following

problem could easily be extended to a leader-follower fleet problem where one vehicle

as to follow another one performing a specified mission.

Further studies on physical systems will be conducted to discriminate the different

compensation solutions offered by the method. Notably, an energetic study comparing

the total energy consumption of two strategy would allow choosing one optimal solution

over the other and help for the choice of a solution.
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In this chapter, flatness-based controllers are derived for both the fully actuated ma-

rine craft and the underactuated surface vessel. Flatness-based control has been briefly

introduced in section 2.3. It has shown very good results on both fully actuated and un-

der actuated systems as the mechanical crane or the car with trailers. The main quality

of flatness-based control is its robustness to both model approximations and distur-

bances making it a strong contestant for the control of marine craft.
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As shown in this chapter, flatness-based controller relies on the inherent properties

of a physical system. This chapter demonstrates that the flat character of a system can

also depend on the actual numerical values of some sets of model parameters. This last

property is exploited in this chapter to derive a flatness-based controller for systems

which are not naturally flat.

To further increase the robustness of flatness-based control on udrcatutaed vehicles,

it is associated with Intellignt PID section 2.5.1. Here, the iPID is used to allow ap-

plying the flatness based controller calculated on a special case of surface vessels, the

Hovercraft, to any surface vessel. The iPID also compensates one of the weaknesses of

flatness-based control, its unstable behavior away from the trajectory.

4.1 Introduction to flatness based control

In this section, the concept of flatness-based control is introduced with a theoretical

example derived from [90] and studied in details in [84]. It is a simple MIMO system

given as:

ẋ1 = u1 (4.1a)

ẋ2 = x3 + x2u1 (4.1b)

ẋ3 = u2 (4.1c)

where u1 and u2 are the two control inputs and x[x1, x2, x3]⊤ is the state.

As evoked before, (differential) flatness, is an inherent property of a class of systems,

notably useful for the design of controllers and often associated with feedforward lin-

earization and extended PID control [84]. First, the plant must be shown flat meaning

that all variables of the system can be expressed as function of a particular set of vari-

ables, the flat outputs, and their derivatives. The flat output is a set of independent

differential functions of the system variables which can be used to express all other

variables of the system [139]. The flat output must have as many components as the

number of inputs of the plant. A flat system can have several flat outputs.

In this example, the system has two inputs. The flat output must therefore have two

independent components. On physical systems, the flat output is often chosen as a set

of variables of interest for the system. Working with mobile robots for instance, the

position and orientation of the vehicle are good candidates for the flat output. Also, the
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task is likely to be defined in terms of desired values of the flat output making a strong

argument in the choice of the flat output when several solutions exist.

To show flatness of a system, flat output candidates are tested. The first flat output

candidate denoted z is chosen as: z = [x1 x2]⊤ in this example. Showing that this system

is flat means demonstrating that all other variables of the system can be expressed as

functions of the flat output and its derivatives without solving any differential equation.

The three variables of the system are therefore expressed as functions of x1 and x2:

u1 = ẋ1 (4.2a)

x3 = ẋ2 − x2ẋ1 (4.2b)

u2 = ẍ2 − ẋ2ẋ1 − x2ẍ1 (4.2c)

These formulations of the intermediary variable x3 and the two inputs u1 and u2 show

that the system is flat. The flat output candidate z is indeed a flat output of this system.

Equations like (4.2) will be referred to as equations of flatness or flatness equations in

the following. They are notably used as a base in the control calculations.

In this example, the pair x1, x2 is the most natural flat output. Whereas some sys-

tems may accept several flat outputs, here equation (4.1b) implies that any candidate

containing x3 would require integrating a differential equation to show flatness. For in-

stance, if z′ = [x1 x3]⊤ were to be chosen, x2 could not be expressed as an algebraic

function of the flat output but instead as a differential expression ẋ2 = x3 + x2ẋ1 pre-

venting demonstration of flatness. This is referred to as a flatness defect (see [53] for

more details).

One important property of flat systems, stated for instance in [38], is that all flat sys-

tems can be represented using the Brunovský state [23]. The Brunovský representation

of system is a minimal representation where a succession of change of variables allow

representing the system as a set of integrator chains. The Brunovský state representa-

tion is particularly useful for the design of the control law in flatness-based control as

it allows turning complex non-linear systems into simpler integrator chains. Note that

[38] introduces a controller form based on the Brunovský state. A simple feedback takes

the system from the controller form to the Brunovský form.
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Quoting [84] again, the Brunovský state for this system is:

ξ1,1 = x1 (4.3a)

ξ2,1 = x2 (4.3b)

ξ2,2 = ẋ2 (4.3c)

Then, the system can be rewritten as:

ξ̇1,1 = u1 (4.4a)

ξ̇2,1 = ξ2,2 (4.4b)

ξ̇2,2 = ξ2,2u1 + ξ2,1u̇1 + u2 (4.4c)

At this point, introducing the new inputs v1 = u1 and v2 = ξ2,2u1 + ξ2,1u̇1 + u2

allows writing equation (4.4) as two simple chains of integrators, which facilitates the

calculations of the controller and leads to an unique solution for the original inputs:

u1 = v1 (4.5a)

u2 = v2 − ξ2,2ξ̇1,1 − ξ2,1ξ̈1,1 (4.5b)

The new system reads:

ξ̇1,1 = v1 (4.6a)

ξ̇2,1 = ξ2,2 (4.6b)

ξ̇2,2 = v2 (4.6c)

The control inputs for this new simplified system are obviously calculated in a feedfor-

ward and extended PID fashion as:

vc1 = ξ̇∗
1,1 + PI(e1,1) (4.7a)

vc2 = ξ̇∗
2,2 + PID(e2,1) (4.7b)

In equation (4.7), the upperscript ∗ denotes desired values and the functions PI(ξ1) and

PID(ξ2) represent usual PI and PID controllers calculated on the errors on ξ1,1 and ξ2,1

respectively.
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Using equation (4.5), the original control inputs are calculated as:

uc1 = ξ̇∗
1,1 + PI(ξ1,1) (4.8a)

uc2 = ξ̇∗
2,2 + PID(ξ2,1)− ξ∗

2,2ξ̇
∗
1,1 − ξ∗

2,1ξ̈
∗
1,1 (4.8b)

where all variables of lesser order have been replaced by their desired values issued

from the trajectory. Because all the variables of the system have been defined as func-

tions of the flat output, the desired values for each of them can be calculated for the

complete trajectory. Using the desired values of the system variables in the controller

gives flatness-based control its robustness but also limits the range of application of

flatness-based control to the vicinity of the trajectory. This highlights that the trajectory

of the flat output must be sufficiently smooth and continuously defined up to a high

enough order, here to the second order, to allow proper feedforward linearization.

In facts, a faster but less rigorous method —working on most flat systems— can be

used to build the controller without writing the Brunovský state. The idea is to seek, in

each flatness equation of inputs (in this example equation (4.2a) and (4.2c)), a favored
or preferential flat output component and replace it with an extended PID controller and

a feedforward term of the higher order. The rest of the variables are replaced by their

desired values in a feedforward linearizing manner. The preferential output component

generaly appears with a higher derivation order in the input flatness equation. Here,

the choice is obvious in equation (4.2): the first input u1 only depends on the first order

derivative of the first input component ẋ1 so u1 can only be used to control x1. For u2,

both x1 and x2 appear at the second order in equation (4.2c) but x1 has already been

chosen in u1 so, to avoid redundancies, only x2 can be used. Following this rule, the two

control inputs are:

uc1 = ẋ∗
1 + PI(e1) (4.9a)

uc2 = ẍ∗
2 + PID(e2)− ẋ∗

2ẋ
∗
1 − x∗

2ẍ
∗
1 (4.9b)

Note that, because x1 appears at the first order in u1 a PI controller is sufficient while in

u2, because x2 appears at the second order, a PID controller is better suited [84, 85]. In

this example, the resulting expression (4.9) is equivalent to equation (4.8).

This method does not always allow designing the controller for flat systems and

would not work on a system where no flat output component appear preferential in any

of the input flatness equations (see for instance the hovercraft system in section 4.3.3).
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4.2 Flatness-based control in the fully actuated case

In this section, flatness-based control is applied to the example of a fully-actuated

underwater vehicle (see for example the vehicle introduced in section 1.2.1.1). On fully-

actuated plants, the end result of flatness-based control is naturally close to feedforward

linearizing control but the approach is different. One of the few applications of flatness

to an underwater vehicle is found in [137] but a variation of the method is used here.

The model of the fully-actuated underwater vehicle is recalled here. It is expressed

in the inertial frame [8] as it is the most self-explanatory representation for flatness-

based control but the same results are obtained with the dynamic model expressed in

the mobile frame as in equation (1.5).

τ = M̃(η)η̈ + C̃(η, η̇)η̇ + D̃(η, η̇)η̇ + g(η) (4.10a)

M̃ (η) = MJ(η)−1 (4.10b)

C̃(η, η̇) = MJ̇(η, η̇)−1 + C(ν)J(η)−1 (4.10c)

D̃(η, η̇) = D(ν)J(η)−1 (4.10d)

where M̃ (η), C̃(η, η̇) and D̃(η, η̇) are the model matrices expressed in the inertial

frame (see section 1.1.3 for details). In the following, the arguments of matrices M̃ , C̃

and D̃ will be omitted for the sake of clarity and conciseness.

In this chapter, as in many of the examples of chapter 2, the vector of propulsive

forces and moments τ is considered to be the input of the system. In facts, when working

with fixed thrusters, the real input of the system is the vector of thrusts u. Yet, the

relationship τ = Bu being static, using τ as an input is acceptable with fixed thrusters.

With reconfigurable thrusters or control surfaces, the relation between τ and the real

inputs of the system (like the rudder angle or the reconfiguration angle of a vector

thruster) may prevent showing flatness of the complete system as it adds more non

linearities in the model.

4.2.1 Flat Output

From a broader point of view, the flat output can be seen as a set of variables of

interest of the system whom main property is that it is naturally central to the system
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in the sense that all other variables of the system can be expressed as functions of

this set and its time derivatives. The relationship between the flat output and the other

variables is inherent to the system. In the fully actuated case the choice of the flat output

candidate comes naturally as z = η.

A different choice like z = ν could work but would be more complex to use. It would

for instance be harder to have order zero position terms in the controller or to add an

integral effect on the position and orientation.

4.2.2 Flatness of the system

In the fully actuated example shown in equation (4.10), the only variables other

than the flat output candidate z = η are the input vector τ and the velocity vector

in the mobile frame ν. The dynamic model equation (4.10) of the example and the

kinematic model equation (1.1) give naturally:

ν = J(η)−1η̇ (4.11a)

τ = M̃η̈ + C̃η̇ + D̃η̇ + g(η) (4.11b)

The fully actuated underwater vehicle is then flat with the flat output z = η. In this

case, the equations of the model directly give the equations of flatness but it will not

always be the case and notably not with underactuated systems.

4.2.3 Description of the trajectory

The task trajectory is usually defined in terms of desired values of the flat output.

It must be sufficiently smooth meaning that it must be defined and differentiable to a

sufficiently high order to match the order of derivation of the flat output needed to

defined all variables of the system.

One methodology to define a suitable trajectory to flatness control is to start with a

set of waypoints. Each waypoint imposes a desired position, velocity and acceleration

on all six DOF of the flat output as well as a time constraint. The order of constraint

of the waypoints must match the order of the system. Here in the case of the AUV, the

trajectory must be defined up to the second order. Then, smooth paths are defined be-

tween the waypoints using, for instance, a piece-wise polynomial trajectory generator. It
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is mandatory to keep continuity around the waypoints between two consecutive pieces

of path up to the highest order of the system.

Once the desired values of the flat output are properly defined, nominal values of

the other variables of the system can be calculated using the flatness equations. Notably,

a nominal input τ ∗ is calculated:

ν∗ = J(η∗)−1η̇∗ (4.12a)

τ ∗ = M̃ (η∗)η̈∗ + C̃(η∗, η̇∗)η̇∗ + D̃(η∗, η̇∗)η̇∗ + g(η∗) (4.12b)

4.2.4 Flatness-based controller

As briefly evoked in section 2.2.1, flatness-based controllers in the fully-actuated

case often resemble a sort of feedforward linearizing controller. In facts, the nominal

input defined with respect to the flat output equation (4.12b) provides feedforward

terms that are used in the flatness-based controller. The closed loop system obtained

with a flatness-based controller is nonlinear but the nonlinearities cancel out in the

vicinity of the trajectory. Flatness-based controllers are therefore particularly suited for

applications where the system is assured to stay in the neighborhood of the desired

trajectory. As shown in [85], the remaining non-linear terms of the closed-loop system

can behave favorably for the convergence and stability of the system.

The rigorous method to designing the flatness-based controller of a system starts

with writing the model in the Brunovský state as shown in section 4.1. Yet, writing the

Brunovský state representation for such a system can be quite strenuous as it requires

separating and decoupling all six DOF of the flat output. Instead, the other method is

used in this example. In facts, because the flat output and the input of the system are

defined in two different frames related by the transformation matrix J(η), no favored

output component arise in any of the input flatness equations. The matrix M̃ (η) is

non-diagonal for any vector η thus several components of the flat output appear at the

second order on all the input equations. Yet, provided that the M̃ matrix is of plain

rank at all times, the vector formulation equation (4.11b) can be used and the complete

η̈ vector replaced with the feedforward term and the controller. This condition on M̃

ensures that, for any configuration of the vehicle, no output component will be left

uncontrolled during the application and no redundancy can appear.
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The controller is designed directly on the vector flatness formulation equation (4.11b)

replacing the second order instance of the complete flat output η̈ by a vector of six de-

coupled PID controllers, one per flat output, and a feedforward term η̈∗. The other

variables are substituted with their desired values. The controller reads:

τc = M̃ (η∗)(η̈∗ + PID(eη)) + C̃(η∗,ν∗)η̇∗ + D̃(η∗,ν∗)η̇∗ + g(η∗) (4.13)

In this equation, PID(eη) is a vector-PID controller calculated with the complete error

vector eη. The gain matrices are diagonal. It is equivalent to having six independent PID

controllers, one for each component of the flat output.

Applying this controller to the system (4.10) leads to the following closed-loop sys-

tem:

M̃(η∗)(η̈∗ + PID(eη))− M̃(η)η̈ + C̃(η∗,ν∗)η̇∗ − C̃(η,ν)η̇

+ D̃(η∗,ν∗)η̇∗ − D̃(η,ν)η̇ + g(η∗)− g(η) = 0 (4.14)

The resulting closed-loop system is nonlinear because of the feedforward terms used

for linearization. Yet, in the neighborhood of the trajectory, the non linearities cancel

out and, as demonstrated in [85], the non linearities of the closed-loop system can

behave favorably. Notably, when the model parameters are approximated in the control

calculations, the remaining non-linear terms can add robustness to the controller. The

performances of this flatness-based controller are detailed and compared with other

controllers in section 4.5.1.

4.3 Flatness-based control in the underactuated case

As seen with several examples throughout this work (see chapter 2) a large number

of marine vehicles are underactuated or ill-actuated. This is notably the case of most

surface ships. While flatness-based control is not typically associated to underactuated

vehicles, some examples outside of the marine context show good control performances

on underactuated systems. Flatness-based control has notably made a name for itself

solving the problem of controlling a car with trailers [53]. Also, the natural robustness

to external disturbance and model approximations of flatness-based control makes it an

ideal candidate for marine applications.

157 Version du October 11, 2023



Chapter 4 – Flatness 4.3. Underactuated case

4.3.1 Model of the underactuated surface vessel

The underactuated surface vessel has been used as an example in several studies on

flatness-based control [154, 135]. In [154], two different models are presented for the

surface ship giving similar results. In this section, the model issued from [63] for surface

vessels is used. Reminding the equations introduced in chapter 1 the model matrices

are given for the surface vessel considering that the body-fixed frame is centered on the

center of gravity as:

M =


m−Xu̇ 0 0

0 m− Yv̇ −Yṙ

0 −Nv̇ I0 −Nṙ

 (4.15a)

C(ν) =


0 0 −(m− Yv̇)v + Yṙr

0 0 (m−Xu̇)u

(m− Yv̇)v − Yṙr −(m−Xu̇)u 0

 (4.15b)

D(ν) = −


Xu 0 0

0 Yv Yr

0 Nv Nr

 (4.15c)

Hence, the complete model of a surface vehicle actuated in surge and yaw (neglecting

possible coupled sway actuation force) is given in component form as:
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ẋ = u cosψ − v sinψ (4.16a)

ẏ = u sinψ + v cosψ (4.16b)

ψ̇ = r (4.16c)

u̇ = 1
m−Xu̇

(
τu + (m− Yv̇)vr − Yṙr2 +Xuu

)
(4.16d)

v̇ = I0 −Nṙ

(m− Yv̇)(I0 −Nṙ)− Y 2
ṙ

(Yṙṙ − (m−Xu̇)ur + Yvv + Yrr)

− Yṙ
(m− Yv̇)(I0 −Nṙ)− Y 2

ṙ

(τr +Nv̇v̇ − (Xu̇ − Yv̇)uv + Yṙur +Nvv +Nrr) (4.16e)

ṙ = − Yṙ
(m− Yv̇)(I0 −Nṙ)− Y 2

ṙ

(Yṙṙ − (m−Xu̇)ur + Yvv + Yrr)

+ m− Yv̇
(m− Yv̇)(I0 −Nṙ)− Y 2

ṙ

(τr +Nv̇v̇ − (Xu̇ − Yv̇)uv + Yṙur +Nvv +Nrr) (4.16f)

Equation (4.16) gives the kinematics and dynamics of an underactuated ship in the

horizontal plane using the usual approximations of shape, added masses and damping

relative to surface vessels. The model is expressed at the center of the mobile frame

which is usually chosen at the center of gravity of the vehicle in surface applications.

The two inputs of this system are τu and τr, respectively a surge force and a yaw moment

generated by either two fixed thrusters, a single vector thruster or a thruster associated

with a control surface (in the two last cases, sway disturbances are neglected).

The non diagonal shape of the added mass and damping matrices create several cou-

pled acceleration and speed terms in equation (4.16). Notably, a quadratic yaw speed

term Yv̇r
2 appears in the surge dynamics equation (4.16d) and a yaw acceleration term

Yṙṙ appears in the sway dynamics equation (4.16e). These terms are often neglected as

they will be in what follows.

4.3.2 Flatness defects of the surface vessel

Considering that most applications of the autonomous surface vehicle are setpoint

regulation or path tracking tasks, the sensible choice for the flat output candidate would

be the vector of position in the horizontal plane z = [x y]⊤. Because the system has

only two independent inputs, the flat output must have exactly two components. It is

therefore impossible to consider the two position coordinates as well as the orientation
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ψ as the flat output.

As stated in both [135] and [154], the general model of the surface vessel presented

in equation (4.16) is not flat. Trying to express all systems variables as functions of z

and its time derivatives, one quickly realizes that no algebraic expression of the ψ angle

can be found. A differential expression is mandatory. Using the first time derivative of

equation (4.16a) and equation (4.16b) and trigonometric combinations, the following

relation is established:

ẍ sinψ − ÿ cosψ = uψ̇ − 1
m− Yv̇

(
−(m−Xu̇)uψ̇ + Yvv + Yṙψ̈ + Yrψ̇

)
(4.17)

Equation (4.17) is a second order differential equation in yaw angle ψ. The differ-

ential equations preventing the flatness demonstration are referred to as flatness defects
[53]. The defect of a non flat system is the number of differential equations obtained

when trying to show flatness of a system. Here, the system as a defect equal to 1.

Remark 4.1 Studying equation (4.17) also allows finding the defects preventing flatness
of the system. As said before, flatness is an inherent property of a physical system but it can
depend on numerical values of some constant parameters of the plant. For a given system
as equation (4.16), some sets of numerical parameters can cancel the defects of a system
and allow showing flatness while another set will give a non-flat system 1. Notably, looking
at equation (4.17), it appears clearly that the off-diagonal terms of the added mass and
damping matrices Yṙ and Yr bring derivatives of the yaw angle in equation (4.16d) and
equation (4.16e). Choosing to neglect these terms or working with systems where they are
naturally null would modify the flatness property of the system. This is the case of the
Hovercraft system studied in the following.

Note that [154] presents a simplified version of the SV model as a Liouvillian system

which is one of the almost flat properties of a system that can be used to calculate

controllers. Here, this more complete expression of the plant cannot be shown to be

Liouvillian.
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Figure 4.1 – Simplified representation of the hovercraft.

4.3.3 Special case: the Hovercraft system

The hovercraft system is a typical case study of mobile robots. It is described as

an underactuated surface vehicle controlled in surge and yaw like the surface vessel

studied in the previous section but with the distinctive feature of being of circular shape

with homogeneous mass distribution. This property of the hovercraft system translates

in the added mass and damping matrices. The coupling terms between sway and yaw

are canceled in both matrices: Yṙ = Nv̇ = 0 and Yr = Nv = 0. Also, the circular shape

of the vehicle implies that the hydrodynamic effects of damping and added mass on the

surge and sway axes are the same, giving Xu̇ = Yv̇ and 2 Xu = Yv. The matrices of (4.15)

1. To our best knowledge, this fact only appears implicitly in previous works about differential flatness.
2. Some work like [154] use Xu = 0 and Yv ̸= 0 and obtain similar results.
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become:

M =


m−Xu̇ 0 0

0 m−Xu̇ 0

0 0 I0 −Nṙ

 (4.18a)

C(ν) =


0 0 −(m−Xu̇)v

0 0 (m−Xu̇)u

(m−Xu̇)v −(m−Xu̇)u 0

 (4.18b)

D(ν) = −


Xu 0 0

0 Yv 0

0 0 Nr

 (4.18c)

With these new hypotheses, the surface vessel system becomes:

ẋ = u cosψ − v sinψ (4.19a)

ẏ = u sinψ + v cosψ (4.19b)

ψ̇ = r (4.19c)

u̇ = τu
m−Xu̇

+ vr + Xu

m−Xu̇

u (4.19d)

v̇ = −ur + Yv
m− Yv̇

v (4.19e)

ṙ = τr
I0 −Nṙ

+ Nr

I0 −Nṙ

r (4.19f)

Notice that many coupling terms have been canceled in the new expression (4.19)

like in the model of the cylindrical AUV used before in this work (see chapter 1 for

details). Notably, the yaw dynamics (4.19f) are now independent of the two other DOF

and some yaw speed and acceleration terms have been canceled out from the surge and

sway dynamics, equation (4.19d) and equation (4.19e) respectively.

162 Version du October 11, 2023



Chapter 4 – Flatness / 4.3. Underactuated case 4.3. Underactuated case

For ease of writing, the following notations are introduced:

β = Xu

m−Xu̇

= Yv
m− Yv̇

(4.20a)

γ = Nr

I0 −Nṙ

(4.20b)

τ̃u = τu
m−Xu̇

(4.20c)

τ̃r = τr
I0 −Nṙ

(4.20d)

The model thus reads:

ẋ = u cosψ − v sinψ (4.21a)

ẏ = u sinψ + v cosψ (4.21b)

ψ̇ = r (4.21c)

u̇ = τ̃u + vr + βu (4.21d)

v̇ = −ur + βv (4.21e)

ṙ = τ̃r + γr (4.21f)

4.3.3.1 Flatness of the hovercraft

As before, the sensitive flat output candidate is z = [x y]⊤ as it would enable straight-

forward position tracking applications. In the system (4.21) the variables which need

to be expressed as functions of the flat output candidate to demonstrate flatness of the

system are the yaw angle ψ, the surge and sway speeds u and v and the two system

inputs τ̃u and τ̃r.

Some of the interesting steps leading to the demonstration of flatness are presented

here. First the kinematic part of the model is inverted to give expressions of the speed

of the vehicle in the mobile frame:

u = ẋ cosψ + ẏ sinψ (4.22a)

v = −ẋ sinψ + ẏ cosψ (4.22b)

Then, the trigonometric combinations of the first time derivatives of equation (4.21a)
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and equation (4.21b) are used to find formulations of ψ and τ̃u.

ẍ cosψ + ÿ sinψ = τ̃u + βu (4.23a)

−ẍ sinψ + ÿ cosψ = βv (4.23b)

Equation (4.23b) and (4.22b) directly give:

tanψ = ÿ − βẏ
ẍ− βẋ

⇒ ψ = atan
(
ÿ − βẏ
ẍ− βẋ

)
= atan

(
Y

X

)
(4.24)

with X = ẍ− βẋ and Y = ÿ − βẏ.

This first result is promising when compared to the general surface vehicle and equa-

tion (4.17). It shows that, because of the mass distribution and shape of the vehicle, the

yaw angle is directly related to the velocity and acceleration of the vehicle in the iner-

tial frame. This seems sensible considering the hypotheses, the vehicle naturally lines

up with the vector of acceleration.

The expression of ψ (4.24) then gives:

cosψ = X√
X2 + Y 2

(4.25a)

sinψ = Y√
X2 + Y 2

(4.25b)

which in turn gives:

u = ẋX + ẏY√
X2 + Y 2

(4.26a)

v = −ẋY + ẏX√
X2 + Y 2

(4.26b)

Then, using equation (4.22a), equation (4.23a) and equation (4.25), the first input

τ̃u is calculated as:

τ̃u =
√
X2 + Y 2 (4.27)

Finally, because the yaw speed and acceleration are decoupled from the two other
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DOF of the system, successive differentiation of equation (4.24) gives:

r = Ẏ X − ẊY
X2 + Y 2 (4.28a)

τ̃r = Ÿ X − ẌY
X2 + Y 2 −

2(Ẏ X − ẊY )(XẊ + Y Ẏ )
(X2 + Y 2)2 + γ

Ẏ X − ẊY
X2 + Y 2 (4.28b)

All the variables of the system have been expressed as functions of the flat output

candidate z = [x y]⊤ and its time derivatives up to the fourth order. The hovercraft

model (4.21) is thus flat and z is indeed a flat output. At this point, the trajectory of

the flat output must be continuously defined up to the fourth order. As seen later on,

change of input allows reducing the need to the second order.

The main differences between the hovercraft model (4.21) and the general model

of the underactuated surface vessel (4.16) are the hypotheses made on the numerical

values of the model parameters. This goes to show that the flatness property of a system

can depend on the numerical value of some parameters. Some sets of parameters can

cancel or create defects preventing flatness.

4.3.3.2 Flatness-based controller of the hovercraft

One special feature of the hovercraft plant (4.21) is that the second input τ̃r only

controls yaw and is decoupled from the two other DOF of the system. Equation (4.21f)

can be written as:

τ̃r = ψ̈ − γψ̇ (4.29)

This last expression can be thought as a change of control input: instead of consid-

ering the yaw moment as an input, the yaw angle will be used as input of the simplified

model 3:

ẋ = u cosψ − v sinψ (4.30a)

ẏ = u sinψ + v cosψ (4.30b)

u̇ = τ̃u + vψ̇ + βu (4.30c)

v̇ = −uψ̇ + βv (4.30d)

3. This method is different from the two examples [154] and [135] both using second order state
expansion on τ̃u to create two fourth-order input equations of the flat output.
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Figure 4.2 – Bloc diagram of the flatness-based controller

where the two inputs τ̃u and ψ can be expressed as:

τ̃u =
√

(ẍ− βẋ)2 + (ÿ − βẏ)2 (4.31a)

ψ = atan
(
ÿ − βẏ
ẍ− βẋ

)
(4.31b)

Remark 4.2 System (4.30) does not have the standard form of non-linear systems: the
first order derivative of one of the input components ψ̇ appears in the last two equations.
This system thus belong to the class of generalized state systems. The interested reader is
referred to [38] and the references therein for more information about this class of systems.
While the input derivative is naturally canceled in the following development, an alternative
representation of system (4.30) is given in appendix B without any derived input [47].

In this example, because no favored output component appear in equation (4.31),

the controller is designed using the Brunovský state of the system [38, 84]. Following

the example of section 4.1, the following state transform is a sensitive Brunovský state

candidate:

ξ1,1 = x (4.32a)

ξ1,2 = ẋ (4.32b)

ξ2,1 = y (4.32c)

ξ2,2 = ẏ (4.32d)

(4.32e)
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Using state transform (4.32), system (4.30) becomes:

ξ̇1,1 = ξ1,2 (4.33a)

ξ̇1,2 = τ̃u cosψ + βξ1,2 (4.33b)

ξ̇2,1 = ξ2,2 (4.33c)

ξ̇2,2 = τ̃u sinψ + βξ2,2 (4.33d)

A new input v = [v1 v2]⊤ is introduced such as:

v1 = τ̃u cosψ (4.34a)

v2 = τ̃u sinψ (4.34b)

which yields a single solution for the original inputs:

ψc = atan
(
v2

v1

)
(4.35a)

τ̃u,c = v1 cosψc + v2 sinψc (4.35b)

Equation (4.33) is then rewritten with the new input:

ξ̇1,1 = ξ1,2 (4.36a)

ξ̇1,2 = v1 + βξ1,2 (4.36b)

ξ̇2,1 = ξ2,2 (4.36c)

ξ̇2,2 = v2 + βξ2,2 (4.36d)

System (4.36) is expressed in the controller form [38]. An obvious simple feedback

leads to the well known Brunovský form composed of two pure integrator chains, the

details are left to the reader.

Note that, in the general case, the Brunovský state transform may depend on the

input and, in the case of generalized state systems, on the input derivatives. It is a

specificity of this system to be generalized in its original representation equation (4.30)

and standard in its Brunovský form; All derivatives of the input disappear during the

state transformation.

In an exact feedforward linearizing fashion [84], the controller is calculated on this
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system as:

v1 = ξ̇∗
1,2 + PID(e1)− βξ∗

1,2 (4.37a)

v2 = ξ̇∗
2,2 + PID(e2)− βξ∗

2,2 (4.37b)

where PID is a standard PID controller function and e1 = ξ∗
1,1 − ξ1,1 and e2 = ξ∗

2,1 − ξ2,1

are the tracking errors. As before the upperscript ∗ marks desired values of the variable.

The controller (4.37) gives the closed-loop system:

ë1 + kDė1 + kP e1 + kIχ1 − βė1 = 0 (4.38a)

ë2 + kDė2 + kP e2 + kIχ2 − βė2 = 0 (4.38b)

where χi =
∫ t

0 ei(σ)dσ and kP , kD and kI are the positive gain parameters o the PID.

In the present case, the closed-loop system is linear. The feedforward terms of the con-

troller add the two damping terms βė1 and βė2 in the error dynamics. The damping

parameter β < 0 thus behaves as an additional derivative gain stabilizing the system.

In this example, the same gains have been chosen on the two axes as the vehicle is

perfectly symmetrical. In the following applications, notably when the hypothesis of a

circular hull is not met, different sets of gains on the two axes could be used.

Here, the original inputs of system (4.30) can be calculated using equation (4.35):

ψc = atan
(
ξ̇∗

2,2 + PID(e2)− βξ∗
2,2

ξ̇∗
1,2 + PID(e1)− βξ∗

1,2

)

= atan
(
ÿ∗ + PID(ey)− βẏ∗

ẍ∗ + PID(ex)− βẋ∗

)
(4.39a)

τ̃u,c = (ξ̇∗
1,2 + PID(e1)− βξ∗

1,2) cosψc + (ξ̇∗
2,2 + PID(e2)− βξ∗

2,2) sinψc
= (ẍ∗ + PID(ex)− βẋ∗) cosψc + (ÿ∗ + PID(ey)− βẏ∗) sinψc (4.39b)

The final controller (4.39) indeed shows the same symmetry characteristics as the

rest of the hovercraft system. Because no input has been favored in the inputs calcula-

tions, the controllability of the system is ensured.

Remark 4.3 Note that the final controller (4.39) has the same shape as the flatness input
equations (4.31). While it would have not been rigorous to directly use the equations of
flatness to build the controller on this system for the various reasons exposed before, the
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alternative method without using the Brunovský state would have given a similar controller
structure.

Remark 4.4 In the presence of yaw disturbance or when considering actuators limitations,
it is necessary to add an extra level of control on yaw. The yaw subsystem (Eqs.(4.21c),(4.21f))
being flat with ψ as the flat output, the yaw controller can be:

τ̃r,c = ṙ∗ + kψd ėψ + kψp eψ + kψi χψ − γr∗ (4.40)

with eψ = ψc − ψ, r∗ = ψ̇c, ṙ∗ = ψ̈c and kψp , kψi and kψd are appropriate gain parameters.
The yaw angle ψ can be measured or calculated using the equation of flatness (4.24). Any
other autopilot could be used here provided that they are faster than the main flatness-
based control loop to ensure the behavior of the cascaded system.

Before adding the iPID in the flatness-based controller, it is tested on a SV model with

a conventional PID. The work of [85] shows that flatness-based control is naturally ro-

bust to a certain amount of model approximation (10% in the reference) and that the

approximation of some of the terms of the model can act favorably for the stability of

the closed-loop system. In is then reasonable to expect the controller (4.39) to give good

result when applied on the SV. Of course in the SV model, added-mass and damping

are different on the surge and sway axis: Xu̇ ̸= Yv̇ and Xu ̸= Yv. The parameter β of

equation (4.39) would then be chosen as the smaller of the two damping parameters

so that the controller does not rely on a false natural damping effect. The simulation

results presented in section 4.5.2 show that the flatness based controller (4.39) associ-

ated with the inner loop (4.40) gives very good trajectory tracking results on both the

hovercraft and the surface vessel. The main limits of this controller as demonstrated in

section 4.5.2.4 is the behavior outside of the neighborhood of the the trajectory. This

weakness is compensated in the following section with an additional layer of Intelligent

PID control.

4.4 Association with Intelligent PID

In this Section, the results obtained on the hovercraft system are extended to all

surface vessels. To do so, the flatness-based controller developed in the previous section

is associated with Model Free Control and Intelligent PIDs (iPIDs). The idea is to ally the

natural robustness of flatness-based control with the adaptability of the iPID to design
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a controller which can be applied to any surface vessel. Therefore, the controller is

calculated as if the system to control were a hovercaft (with the hypotheses of circular

shape and symmetrical mass distribution) but is applied to any surface vessel model.

As exposed in section 2.5.1, iPIDs are a wide-spread model-free control solution

successfully applied to a multitude of various systems. Details about the theory behind

iPIDs can be found in [49]. The idea is to approximate the system with an ultre-local

model containing an adaptive term estimating all the non-modeled effects acting on the

system as a single number (or vector). Here, the iPID is associated with the nominal

control calculated with flatness, is applied to the Brunovský state representation of the

hovercraft system and then propagated in the model of the vehicle.

Intelligent PIDs have yet to be implemented on the underactuated SV. The SV being

ill-actuated with respect to the task (lack of one translation), iPID alone will not be

sufficient to complete the task. A compensation mechanism is needed to control the

lacking translation using the rotation. It is therefore associated with flatness to create

this compensation mechanism.

4.4.1 Implementation of the iPID

Recall the Brunovský representation of the hovercraft:

ξ̇1,1 = ξ1,2 (4.41a)

ξ̇1,2 = v1 + βξ1,2 (4.41b)

ξ̇2,1 = ξ2,2 (4.41c)

ξ̇2,2 = v2 + βξ2,2 (4.41d)

with ξ1,1 = x, ξ1,2 = ẋ, ξ2,1 = y and ξ2,2 = ẏ.

In order to associate the flatness-based controller calculated in the previous section

with the iPID, the control inputs are broken down into two parts:

v1 = v∗
1 + δv1 (4.42a)

v2 = v∗
2 + δv2 (4.42b)

where v∗
1 and v∗

2 are the nominal controller calculated with flatness and δv1 and δv2 are

the iPID contribution. The idea here is to use the iPID to control the vehicle around
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its nominal trajectories dictated by the flatness-based controller. This is somewhat sim-

ilar to the idea behind SMC where the system is oscillating around the sliding surface

representing the desired equilibrium.

Considering the system (4.41), the nominal flatness-based controllers are given as:

v∗
1 = ξ̇∗

1,2 − βξ∗
1,2 = ẍ∗ − βẋ∗ (4.43a)

v∗
2 = ξ̇∗

2,2 − βξ∗
2,2 = ÿ∗ − βẏ∗ (4.43b)

(4.43c)

Then, applying the controller (4.42) into the system (4.41), a new system based on

the tracking error and controlled with the iPID controllers δv1, δv2 is created:

ẍ = v∗
1 + δv1 + βẋ = ẍ∗ − βẋ∗ + δv1 + βẋ⇒ ëx = βėx − δv1 (4.44a)

ÿ = v∗
2 + δv2 + βẏ = ÿ∗ − βẏ∗ + δv2 + βẏ ⇒ ëy = βėy − δv2 (4.44b)

where the subscript ∗ denotes desired values of the variable and ex = x∗ − x and ey =
y∗ − y.

Two iPID controllers are therefore designed to control the error system in the vicinity

of the trajectory. The system is composed of two second order decoupled subsystems

thus second order ultra-local models are used. The two error signals are considered as

measurements in the two ultra-local models:

ëx = αxδv1 + Fx (4.45a)

ëy = αyδv2 + Fy (4.45b)

where Fx and Fy are the two adaptive functions estimating the unmodeled terms and

αx and αy are two control parameters.

Following the reasoning in section 2.5, the estimation of Fx and Fy is done using

ALIEN filters [58, 57]. For the second order ultra-local models, Fx and Fy are estimated

as:

F̂x = 5!
2T 5

∫ T

0

[[
(T − τ)2 − 4(T − τ)τ + τ 2

]
x(τ)− αx

(T − τ)2

2 τ 2δv1(τ)
]
dτ (4.46a)

F̂y = 5!
2T 5

∫ T

0

[[
(T − τ)2 − 4(T − τ)τ + τ 2

]
y(τ)− αy

(T − τ)2

2 τ 2δv2(τ)
]
dτ (4.46b)
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+
+

Figure 4.3 – Bloc diagram of the flatness and iPD controller applied to the Brunovskỳ
state representation.

The adaptive terms F̂x and F̂y are considered constant on one time sample and are

calculated once for each sample. The time dependency in in the expressions of F̂x and

F̂y is omitted for clarity.

Because the two iPIDs are calculated on the error system, the desired values in both

ex and ey are all zero: e∗
x = ė∗

x = ë∗
x = 0 and e∗

y = ė∗
y = ë∗

y = 0. The two control inputs of

the ultra-local models are then:

δv1 = 1
αx

(
ë∗
x − F̂x +Kx

d (ė∗
x − ėx) +Kx

p (e∗
x − ex)

)
= 1
αx

(
−F̂x +Kx

d (−ėx) +Kx
p (−ex)

)
(4.47a)

δv2 = 1
αy

(
ë∗
y − F̂y +Ky

d (ė∗
y − ėy) +Ky

p (e∗
y − ey)

)
= 1
αy

(
−F̂y +Ky

d (−ėy) +Ky
p (−ey)

)
(4.47b)

with Kx
D, Kx

P , Ky
D and Ky

P strictly positive gain parameters. The complete controller is

thus:

v1 = ẍ∗ − βẋ∗ + 1
αx

(
−F̂x +Kx

d (−ėx) +Kx
p (−ex)

)
(4.48a)

v2 = ÿ∗ − βẏ∗ + 1
αy

(
−F̂y +Ky

d (−ėy) +Ky
p (−ey)

)
(4.48b)

Figure 4.3 shows the final flatness and iPD controller applied to the Brunovskỳ state

representation of the system.

Note that different sets of gain parameters are used on the two axes. Without the

even mass distribution approximation of the hovercraft system, the gain parameters

have no reason to be the same on the two axes. Practically, they could be chosen equal
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in some cases.

Also, no integral term is necessary in equation (4.48). The work of [127] and [48]

shows that the adaptive terms Fx and Fy cover the work of the integral term of a con-

ventional PID. In facts, intelligent proportional derivative controllers as this one are

shown to be equivalent to conventional PIDs.

4.5 Simulations of the flatness-based controllers

This sections presents simulations of the two flatness-based controllers developed on

the fully-actuated and underactuated vehicles. In the fully-actuated case, the flatness-

based controller is compared with a feedback linearizing PID-based controller and a

sliding mode controller. It shows very good trajectory tracking performance and robust-

ness external disturbance.

In the underactuated case, the conventional flatness-based controller and the asso-

ciation with iPID are shown to be very effective on both the hovercraft and the generic

surface vessel. Both controller show good robustness to external disturbances, measure-

ment noise and model approximations. The iPID is shown to compensate the behavior

of conventional flatness when the systems gets too far from the desired path.

4.5.1 Fully-actuated AUV

In the fully-actuated case, the flatness-based controller is compared with a feedback

linearizing PID-based controller and a sliding mode controller. These controllers are

compared on seabed scanning mission consisting in horizontal rails at constant depth.

The task requires the six DOF, the center of the vehicle must actively track the position

of the target moving on the trails as well as following the attitude trajectory. To confirm

the theoretical performances of the flatness-based controller it is first tested on a refer-

ence scenario with no external disturbance or approximation and then evaluated with

external disturbances, estimation errors of the model parameters and initial errors.

The control laws used for comparison are recalled here. The first controller is a

standard feedback linearizing, PID-based controller calculated in the inertial frame.

τPID = M
(
J(η)−1(η̈∗ + PID(eη)) + J̇(η, η̇)−1η̇

)
+ C(ν)ν + D(ν)ν + g(η) (4.49)
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In equation (4.49), PID(eη) denotes six decoupled PID controllers, one per DOF, calcu-

lated in the inertial frame on the position and orientation errors contained in eη. In this

example, the same gain parameters are used on all six DOF. Allegedly, using a different

set of gain parameters on each DOF would allow finer tuning of the performances on

each axis. Yet, the same of gains used in this example shows very good performances on

all six DOF.

The second control law is the Sliding Mode controller presented in section 2.4 [40]

and adapted to this vehicle. It is composed of six decoupled sliding mode controllers,

one per DOF. To avoid chattering and as is usually done, the signum function was re-

placed by a saturation function. Note that, to match with the greater number of refer-

ences, the control surfaces are calculated with respect to the position and orientation

error vector. No integral term is added and therefore steady state error can appear in

the presence of unknown external disturbances (See appendix A).

τSMC = M̃(η) (η̈∗ + λėη + Ksat(σ)) + C̃(η,ν)η̇ + D̃(η,ν)η̇ + g(η) (4.50)

In this example, the gain matrices λ and K are diagonal and the same gain parameters

are used for all six DOF. The expressions of the model matrices expressed in the inertial

frame M̃ , C̃ and D̃ are given in Equation (4.10).

For the sake of comparison, the flatness-based controller is recalled here:

τFlat = M̃ (η∗)(η̈∗ + PID(eη)) + C̃(η∗,ν∗)η̇∗ + D̃(η∗,ν∗)η̇∗ + g(η∗) (4.51)

The first difference appearing between the three controllers is the linearizing terms.

As described before, one of the main assets of flatness-based control is that the con-

ventional linearizing terms of a feedback linearizing controller are substituted with the

nominal value of the controller, creating increased robustness. One the other hand, the

linearizing terms of both the PID-based controller and the SM controller are calculated

at the current state of the vehicle. Besides, all three controllers show very similar struc-

tures. The three control laws are calculated using error vectors expressed in the inertial

frame.

All the following tests are performed on the RSM vehicle equipped with six indepen-

dent fixed thrusters and presented in figure 1.3. The control parameters of the three

controllers are given in table 4.1. All the gain matrices are diagonal with equal factors

on all the rows.
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Item Value Item Value

Trajectory Seabed Scanning Nominal Speed 1.5m.s−1

Simulation time sample 0.05ms Vehicle Shape Cylinder

Flatness-based controller

kp 20 ki 5

kd 8

PID

kp 20 ki 5

kd 8

Sliding Mode Controller

K 5 λ 10

Table 4.1 – Simulation parameters - fully actuated vehicle

The gain parameters of the PID-based controller and those of he Flatness-based con-

trollers have been purposely chosen equal to allow better comparison of the linearizing

techniques. The nominal speed of the following tests has been chosen to ensure that the

thrusters of these vehicles stay far from their maximum thrusts. At nominal speed, the

thrusters generate about 35% of their maximal thrust.

It is worth mentioning that all three controllers have equivalent energy consumption

on each of the following tasks.

4.5.1.1 Base case scenario

The base case scenario of this study is a trajectory tracking task with no external dis-

turbance or model approximation. The vehicle is placed on the task at the initial time

so there is no initial error. In facts, the trajectory is composed of six independent tra-

jectories, one per DOF, continuously defined up to the fourth order. They are described

with connected polynomials to ensure continuity up to the fourth order.

Figures 4.4 and 4.5 respectively show the position and orientation errors of the

three controllers. As expected, the three controllers perform equally well on the six

DOF during the complete experiment. Very slightly larger errors appear on the x0 and

175 Version du October 11, 2023



Chapter 4 – Flatness 4.5. Flatness simulations

0 10 20 30 40 50 60 70 80 90 100

-0.2

-0.1

0

0.1

0.2

0 10 20 30 40 50 60 70 80 90 100

-0.2

-0.1

0

0.1

0.2

0 10 20 30 40 50 60 70 80 90 100

-0.2

-0.1

0

0.1

0.2

Figure 4.4 – Comparison of the position errors for the three controllers. Red: PID -
Green: SMC - Blue: Flatness-based
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Figure 4.5 – Comparison of the orientation errors for the three controllers. Red: PID -
Green: SMC - Blue: Flatness-based
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y0 axis of the PID-based controller (Red line on figure 4.4.(a) and figure 4.4.(b)) and

on the yaw error (Red line on figure 4.5.(c)). Considering that the gain parameters are

the same for the FBLN and Flatness-based controllers, these difference (magnitudes of

a centimeter and a degree respectively) may be attributed to the linearizing terms.

4.5.1.2 Initial error

As exposed in the previous sections, Flatness-based control has notably been de-

signed to be used at the vicinity of the desired trajectory. Using trajectory values in

the linearizing terms of the controller implies that the nonlinearities of the closed-loop

system cancel only when the system is on trajectory. Otherwise, some non linear terms

remain in the closed-loop system.

To illustrate the behavior of the Flatness-based controller when the system is not

on the trajectory, two tests are performed with initial position error on the y0 axis. For

the first test, depicted on figure 4.6, the initial error is 1 m while for the second test

depicted on figure 4.7, the initial error is 5 m. In the initial configuration, the error is

on the yB axis of the mobile frame, all other DOF (up to the fourth order) are initiated

at the desired value. The vehicle is then supposed to perform a sway motion whilst

maintaining proper depth, surge speed and orientation.

In the first case, with the 1m initial error, all three vehicle converge on the trajec-

tory. It is worth noting that the Flatness-based and PID-based controllers behave almost

equally and converge faster than the SM controller but at the cost of a greater distur-

bance on the x0 axis (and greater orientation disturbances, not given here).

On the other hand, with the 5m initial error, the flatness-based controller does not

converge on the trajectory. In facts, the y0 is not canceled but oscillates around the initial

value, slightly diverging. More concerning, the controller generates great disturbances

on other DOF as shown on figure 4.7.(a) and figure 4.7.(c): both errors on the x0 and

z0 axes diverge. The PID-based and SM controllers eventually converge to the trajectory

with the 5m initial error.

This example shows that the flatness-based controller performs as well as conven-

tional controllers in the neighborhood of the trajectory but does not converge when the

vehicle is too far from the trajectory. Of course, the numerical size of the boundary layer

around the trajectory allowing convergence of the system depends on the system itself.

Therefore, if the vehicle were to get outside of this convergence boundary around the

trajectory (here, outside of a 5m range from the target), the flatness-based controller
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Figure 4.6 – Comparison of the position errors for the three controllers with a 1m
initial error on the y0 axis. Red: PID - Green: SMC - Blue: Flatness-based
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Figure 4.7 – Comparison of the orientation errors for the three controllers with a 5m
initial error on the y0 axis. Red: PID - Green: SMC - Blue: Flatness-based
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Figure 4.8 – Comparison of the position errors for the three controllers with a 0.75m/s
current on x0 axis. Red: PID - Green: SMC - Blue: Flatness-based

would not allow correcting the error and a new trajectory should be calculated to catch

up.

4.5.1.3 Robustness to external disturbances

To evaluate the robustness to external disturbances, an ocean current is added in

simulation. This current is not known by the controller and therefore not compensated.

In this example, a constant irrotational current is used. It is aligned with the x0 axis and

its velocity is half of the nominal velocity required on the trajectory: 0.75 m/s.

As shown on figure 4.8 the PID-based controller and the flatness-based controller

perform as well in this case. The errors shown on figure 4.8 for these two controllers

are the same as in the base case figure 4.4. Note that the SM controller shows the

expected steady state error on the x0 axis(Green line on figure 4.8.(a)).

Figure 4.9 shows that the flatness-based controller does not deviate much in roll (fig-

ure 4.9.(a)) but a 15 degrees deviation appears on the yaw angle on figure 4.9.(c). The

yaw deviation is slightly larger than the one appearing with the PID-based controller.

The PID-based controller also demonstrates some pitch oscillations when the vehicle is
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Figure 4.9 – Comparison of the orientation errors for the three controllers with a
0.75m/s current on x0 axis. Red: PID - Green: SMC - Blue: Flatness-based

facing the current that do not appear when using the Flatness-based controller. Here

again, the SM controller shows steady state errors in both roll and yaw.

Overall, the Flatness-based controller shows good robustness to external distur-

bances in the fully-actuated case. In facts, as long as the vehicle stays in the vicinity

of the trajectory, the integral term of the controller ensures convergence of the (almost

linear) closed-loop system when facing unknown constant disturbances. The difference

of pitch oscillations between the PID-based controller and the Flatness-based controller

could be interpreted as a proof of the effect of the stabilizing non-linear terms resulting

from the feedforward linearizing method. Further test are necessarily to evaluate the

role of each of the terms of the closed-loop system created by the flatness-based con-

troller but the simulations show that the flatness-based controller is as good as the other

controllers from the literature.

4.5.2 Underactuated surface vessel

This section presents the trajectory tracking simulation results obtained with the two

flatness-based controllers introduced in section 4.3.3 and section 4.4. Both controllers
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are calculated using the hovercraft model considering a circular hull shape and an even

mass distribution. They are applied first to a hovercraft and then to the model of a

generic surface vessel. The surface vessel does not meet the hypothesis of circular shape

and mass distribution of the hovercraft. The conventional hypothesis for estimation

of the added mass and damping parameters are used (see chapter 1 for details). One

notable difference is that the surge and sway added masses and damping parameters

are not equal on the surface vessel and additional coupling terms appear between the

sway and yaw in both the mass and damping matrices. The obvious flatness defects due

to the shape of the surface vessel have been described in section 4.3.

The control laws are recalled here. Both controllers are calculated on the Brunovský

representation of the system and then transformed into the inputs of the original system.

The conventional flatness-based controller is:

v1 = ẍ∗ + PID(ex)− βẋ∗ (4.52a)

v2 = ÿ∗ + PID(ey)− βẏ∗ (4.52b)

where PID is a regular PID function with strictly positive gain parameters.

The second controller is the association of a flatness-based controller and an iPID.

The inputs are calculated as the sum of the nominal control based on flatness and the

iPID applied to the error system. The controller reads:

v1 = ẍ∗ − βẋ∗ + 1
αx

(
−F̂x +Kx

d (−ėx) +Kx
p (−ex)

)
(4.53a)

v2 = ÿ∗ − βẏ∗ + 1
αy

(
−F̂y +Ky

d (−ėy) +Ky
p (−ey)

)
(4.53b)

F̂x = 5!
2T 5

∫ T

0

[[
(T − τ)2 − 4(T − τ)τ + τ 2

]
x(τ)− αx

(T − τ)2

2 τ 2δv1(τ)
]
dτ (4.53c)

F̂y = 5!
2T 5

∫ T

0

[[
(T − τ)2 − 4(T − τ)τ + τ 2

]
y(τ)− αy

(T − τ)2

2 τ 2δv2(τ)
]
dτ (4.53d)

Little literature exist on the tuning of the control parameters αx and αy. The rule of

thumb is to choose αx ad αy so that the inputs δv1 and δv2 are approximately the same

order of magnitude as second order derivative of the measurements ëx and ëy respec-

tively. In this case, because the two iPIDs are calculated on error systems, the expected

values for ëx and ëy is zero. The control parameters αx and αy have then been chosen

equal to 1. The damping parameters are chosen as β = −12 and γ = −4.
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The controls of the original system are then obtained using:

ψc = atan
(
v2

v1

)
(4.54a)

τ̃u,c = v1 cosψc + v2 sinψc (4.54b)

τ̃r,c = ṙ∗ + kψd ėψ + kψp eψ + kψi χψ − γr∗ (4.54c)

Note that the following simulation results have been obtained on a much simpler

simulator than the other simulations presented in this work. They are preliminary re-

sults of the methods but some more refined work is still needed. The simplified simula-

tor does not take limitations of variation of inputs into account but the control efforts

are upper bounded with the arbitrary chosen maximal values of τ̃maxu,c = 100 N and

τ̃maxr,c = 100 Nm.

4.5.2.1 Ideal case

Item Value Item Value

Trajectory Lawn Mower Nominal Speed 1m.s−1

Simulation time sample 0.05ms Vehicle Shape Circular

Conventional Flatness-based controller

kp 11.1 ki 3.3

kd 6.6 kψp 100

kψi 10 kψd 20

iPID

αx 1 αy 1

Kx
P 11.1 Ky

p 11.1

Kx
d 6.6 Ky

D 6.6

kψp 100 kψi 10

kψd 20

Table 4.2 – Simulation parameters - Ideal case Hovercraft
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Figure 4.10 – Comparison of the trajectory of the flatness-based controllers in the ideal
case - Red: conventional flatness, Blue: iPID, Black: Reference

The two controllers are first tested in the ideal case. They are applied to the hover-

craft without noise and without external disturbance. The task is defined as a succession

of three segments in the horizontal plane. The first one is aligned with the x0 axis, the

second one with the y0 axis and the third one is diagonal. On each segment, the vehicle

must accelerate to reach the nominal speed of 1 m s−1 then decelerate so that it arrives

at the next turning point with zero velocity. This task is referred to as the Lawn Mower
task referring to the behavior of an autonomous lawn mower robot.

The PID of the flatness-based controller, iPD and PID of the low-level ψ controller

are tuned using a simplified pole placing method. The poles of each system are chosen

to be in the sam place so that the three controller can be tuned choosing only one

characteristic time parameter. The sets of gains are chosen to ensure that the inner loop

controlling the ψ angle is always faster than the outer loop.

Figure 4.10 shows the behavior of the two vehicles on the task. The trajectory may
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appear discontinuous on figure 4.10 but it is in fact continuous up to the fourth order.

Both controllers allow almost perfect tracking of the trajectory in the ideal case as ex-

pected. Without disturbances, and applying the controllers to the hovercraft system, the

adaptive functions Fx and Fy of the iPD have noting to estimate and converge to zero

very quickly. Once they reach zero, both controllers are perfectly equivalent.

This example shows that the flatness-based structure of the controllers acts as a

guidance method on the underactuated hovercraft. The calculation of the command

angle ψc creates the compensation mechanism of underactuation mentioned in previous

examples this time relying on the natural flatness of the plant.

4.5.2.2 External disturbance and Measurement noise

Item Value Item Value

Trajectory Lawn Mower Nominal Speed 1 m s−1

Simulation time sample 0.05 ms Vehicle Shape Circular

Noise deviation in position 0.1 m Noise deviation in orientation 0.1rad

Current velocity in R0 [−0.5 m s−1, 0, 0]⊤

Conventional Flatness-based controller

kp 11.1 ki 3.3

kd 6.6 kψp 100

kψi 10 kψd 20

iPID

αx 1 αy 1

Kx
P 11.1 Ky

p 11.1

Kx
d 6.6 Ky

D 6.6

kψp 100 kψi 10

kψd 20

Table 4.3 – Simulation parameters - Hovercraft with sea current

In this experiment, a constant irrotational sea current and white measurement noise
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Figure 4.11 – Comparison of the trajectory of the flatness-based controllers with sea
current - Blue: conventional flatness, Red: iPID, Black: Reference

are added. The current has a constant speed of −0.5 m s−1 and is aligned with x0 axis

of the inertial frame. The vehicle is therefore directly facing the current during the first

segment, has it askew on the second segment and in diagonal all along the last segment.

The magnitude of the angle measurement is voluntary chosen to be much more con-

sequential than the position measurement noise to emulate the difference in accuracy

between a position sensor like a GPS and the angular measurement obtained with an

IMU or a magnetic compass.

Figure 4.11 shows that the two controllers are robust to the constant current and

noise on the three segments. As shown on figure 4.12, both error signals of the two

vessels oscillate around 0 because of the measurement noise but are stable.

This experiment shows the behavior of the adaptive functions Fx and Fy of the iPID

when the system is disturbed. Figure 4.13 shows that the the Fx function converges

towards the estimated vales of the current velocity multiplied by the damping coefficient
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Figure 4.12 – Comparison of the tracking errors of the flatness-based controllers with
sea current - a: x0 axis, b: y0 axis, Blue: conventional flatness, Red: iPID
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Figure 4.13 – Adaptive functions Fx and Fy on the hovercraft with constant sea
current. Red: Adaptive functions iPID - Blue: Integral term conventional PID

F̂x → −0.5β = −6. In the conventional flatness-based controller, the integral term of

the control law compensates the effects of the sea current. Figure 4.13 confirms that on

simple case like this one, the adaptive functions of iPIDs have a similar behavior as the

integral term of a conventional PID.

The experiments performed on the hovercrfat confirm the natural robustness of

flatness-based controllers to both external disturbances and measurement noise.

4.5.2.3 Application to the surface vessel

In this section, the two controllers are applied to a generic surface vessel model with

no modification of the control parameters. The same sea current and measurement

noise are appied to the vehicle as in the previous section. The added mass and damp-

ing parameters of the vessel are given in table D.3. The surface vessel does not meet

the hypothesis of circular shape of the hovercraft, the sway added mass and damping

187 Version du October 11, 2023



Chapter 4 – Flatness 4.5. Flatness simulations

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Ref
Flat
iPID

Figure 4.14 – Comparison of the trajectory of the flatness-based controllers on the SV
with sea current - Blue: conventional flatness, Red: iPD, Black: Reference

parameters Yv̇ and Yv are much larger than the surge counter-parts.

Figure 4.14 and figure 4.15 shows that both controllers still give good results when

applied to the surface vessel in presence of current and noise. The natural robustness

to model uncertainties of the flatness-based conventional controller is sufficient to keep

the SV on track even though it is not meeting the hovercraft hypothesis at all.

4.5.2.4 Application to the surface vessel with initial error

As shown in the fully-actuated case in Section 4.5.1, the main weakness of flatness-

based control (and feedforward linearization) is the behavior of the system when it gets

too far from the desired trajectory. Feedforward linearization does not allow coming

back on track if the vehicle exists a safety layer around the task. To test the behavior of

the two controllers in such a case, they are evaluated on a single x0 axis segment with

an initial error of 15 m on the y0 axis.
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Figure 4.15 – Comparison of the tracking errors of the flatness-based controllers on the
SV with sea current - a: x0 axis, b: y0 axis, Blue: conventional flatness, Red: iPD
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Figure 4.16 – Comparison of the tracking errors of the flatness-based controllers on the
SV with a 15 m initial error - a: x0 axis, b: y0 axis, Blue: conventional flatness, Red: iPD
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Figure 4.16 shows that the conventional flatness-based controller completely di-

verges from the trajectory with the initial error whereas the iPD allows converging back

to the path.
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Item Value Item Value

Trajectory Lawn Mower Nominal Speed 1 m s−1

Simulation time sample 0.05 ms Vehicle Shape Surface Vessel

Noise deviation in position 0.1 m in orientation 0.1rad

Current velocity in R0 [−0.5 m s−1, 0, 0]⊤

Vehicle parameters

m 18 kg Iz 0.61 kg m

Xu̇ 2 Yv̇ 50

Yṙ 2 Nṙ 0.5

Xu 12.8 Yv 100

Yr 2 Nr 4

Conventional Flatness-based controller

kp 11.1 ki 3.3

kd 6.6 kψp 100

kψi 10 kψd 20

iPD

αx 1 αy 1

Kx
P 11.1 Ky

P 11.1

Kx
D 6.6 Ky

D 6.6

kψp 100 kψi 10

kψd 20

Table 4.4 – Simulation parameters - Surface Vessel with sea current

192 Version du October 11, 2023



Chapter 4 – Flatness / 4.6. Conclusion 4.6. Conclusion

4.6 Partial conclusion on flatness-based control

This chapter applies flatness-based control to both fully-actuated and underactuated

marine craft. It shows that flatness-based control is an interesting alternative for the

control of sch vehicles as it is efficient an robust.

The flatness-based controller designed for underactuated systems naturally embeds

a form of guidance as it allows turning position references into force and moment con-

trol inputs. In facts, the equations of flatness could also be used as a guidance principle

associated with any controller as it notably allows calculating surge and yaw references

for the vehicle to track.

Flatness-based control is also associated to intelligent PID to control underactuated

surface vessels. Using the hovercraft hypothesis, a simplified flat model of the surface

vessel is used to calculate a flatness-based controller. Then, an adaptive layer based

on iPD is added to increase the robustness of the controller. The idea is to be able to

successfully apply this controller to any surface vessel.

The simulation experiments performed on the hovercraft and surface vessel show

that the flatness-based controller alone is already robust to model uncertainties, dis-

turbance and measurement noise. Flatness also appears to be agood guidance solution

as it allows calculating proper angular references for position trajectory tracking of an

underactuated surface vessel. Yet, the last experiment performed on the surface vessel

shows that conventional flatness-based control reaches its limit when the system is ini-

tialized far from the desired path. Nevertheless, this last experiment also shows that the

association of an iPD layer increases the already robust flatness-based controller and

compensate its weakness with great errors allowing the vehicle to converge back on the

path after being initialized with a large position error.

Overall, flatness-based control is proven to be effective and robust for both fully-

actuated and underactuated marine vehicles. Further work will be required to extend

the results obtained on underactuated surface vessels to uneractuated AUVs. More stud-

ies on physical systems will be conducted.
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This chapter studies effects of vector thrust on AUVs and proposes a new concept

of thrust reconfiguration. Notably, it presents potential side-effects of conventional off-

centered vector thrusters like those found in [43]. It shows that reconfigurable thrusters

can have damaging coupled effects on AUVs and notably on smaller vehicles. Although

it is physically bounded, the coupled forced effect created by off-center vector thrusters

can jeopardize the control objectives of a vehicle.

The coupled effects of conventional vector thrusters are studied in details. Simu-

lation studies show that they can be neglected on larger and heavier vehicles but not

on smaller and lighter ones. More than the actual weight of the system, its shape can

make it more or less naturally robust to these coupled effects making vector thrusters

not viable for some systems.
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To counteract these coupled effects, a new concept of vector thrust is introduced.

With this concept, pairs of parallel thrusters are mounted on a ring rotating around

the hull. Actuation of the ring allows directing the force of the pair of thrusters while

keeping a decoupled moment or choosing the axis of the moment they generate keep-

ing the force on a constant axis. A proof of concept has been designed: the PlaSMAR

robot. Simulations show that the PlaSMAR robot has increased capabilities thanks to

the reconfiguration ring.

5.1 Effects of vector thrusters

Vector thrust is one of the most common solution for increasing the maneuverability

of a vehicle with a minimal amount of additional weight and expense. The first example

of vector thrust in the marine context is the off-board engine of most private boats. The

engine rotates around a vertical axis to generate thrust in the whole horizontal plane.

Here, the rotation is often generated by the pilot or can be actuated.

For underwater vehicles, several technologies allow mimicking this principle in two

or three dimensions [44, 43]. Underwater reconfigurable thrusters are usually com-

posed of the main motor and one or two additional servos. Through mechanical con-

traptions, the servos actuate the rotation of the main motor or of the propeller axis to

direct the thrust vector.

Vector thrusters generate off-center forces that can be used to control the orientation

of the vehicle through their coupled moments. Yet, in general, only the moments gen-

erated by the actuators are taken into account both in the modeling and in the control

of underactuated vessels. This section shows that the impact of the coupled force and

moments on a vehicle depend on the physical properties of this vehicle. It also shows

that even though the coupled force effects are considered as disturbances in general,

they can also have an interest in applications like docking.

5.1.1 Coupled force effects

This section shows the coupled effects of off-centered vector thrusters and how they

may interfere in the control calculations. The reconfigurable uqr-architecture intro-

duced in section 1.2.2 is used as an example. A schematic of the vehicle is recalled

in figure 5.1. The vehicle is equipped with a single 3-DOF stern thruster generating
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Figure 5.1 – Schematic of the example uqr-vehicle.

forces on the xB, yB and zB axes. As exposed in section 1.2.2, the vector of forces and

moments created by the 1D3 thruster τ is calculated using the TCM denoted B:

τ = Bu (5.1)

where u is the vector of elementary forces created by the reconfigurable thruster. In this

case, the 3-DOF thruster is equivalent to three fixed thrusters aligned with the xB, yB

and zB axes respectively. The vector of forces is therefore u = [ux, uy, uz]⊤ with:

ux = cos(θi) cos(ψi)U (5.2a)

uy = cos(θi) sin(ψi)U (5.2b)

uz = − sin(θi)U (5.2c)

where θi and ψi are respectively the yB and zB reconfiguration angles of the vector

thruster and U =
√
u2
x + u2

y + u2
z is the command thrust.

Considering that the force application point of the reconfigurable thruster is posi-

tioned at the very back of the hull of the vehicle and that the vector thruster rotates
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around this point, the fixed-thruster equivalent TCM is:

B =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 −L

0 −L 0



(5.3)

where L represents half of the vehicle hull length.

The vector of generated forces and moments is then of shape:

τ = B


ux

uy

uz

 =



ux

uy

uz

0

−Luz

−Luy



(5.4)

Equation (5.4) shows clearly the pairs of coupled forces and moments generated by

the reconfigurable thruster. The sway force and yaw moment are coupled and the heave

force and pitch moment are coupled.

From a controller perspective, one of the two coupled efforts is selected and con-

trolled. Yet, the other coupled effort of each pair cannot be neglected as seen in the

following.

5.1.2 Impacts on the dynamic model

The effects of coupled actuators are described on a simplified dynamic model repre-

senting an underwater vehicle equipped with a stern 3-D vector thruster. The compacted
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model is:

Mν̇ + N (ν,η) = τ (5.5)

where N (ν,η) represents the Coriolis and centripetal effects acting on the system as

well as the damping, gravitational and buoyancy effects. M and N include added-mass

effects.

Considering that the vehicle has a cylindrical shape (negligible off-diagonal added-

mass parameters), the simplified dynamic model is given in component form:

m1u̇+ n1(ν,η) = ux (5.6a)

m2v̇ + n2(ν,η) = uy (5.6b)

m3ẇ + n3(ν,η) = uz (5.6c)

m4ṗ+ n4(ν,η) = 0 (5.6d)

m5q̇ + n5(ν,η) = −Luz (5.6e)

m6ṙ + n6(ν,η) = −Luy (5.6f)

where m1, ...,m6 are the diagonal coefficients of the mass and inertia matrix M and

n1, ..., n6 are the components of the vector N .

In this example, the pitch and yaw moments generated by the vector thruster are

chosen as control inputs. The sway and heave forces generated by the vector thruster

uy and uz appearing respectively in equation (5.6b) and equation (5.6c) are therefore

considered disturbances.

Equation (5.6b) and (5.6c) show that the disturbing coupled forces are mainly miti-

gated by the mass and added mass parameters on the sway and heave axes m2 and m3.

They are also counter-acted by the damping effects contained in n2 and n3:

v̇ = 1
m2

(uy − d2v − n̄2(ν,η)) (5.7a)

ẇ = 1
m3

(uz − d3w − n̄3(ν,η)) (5.7b)

where the linear damping terms d2v and d3w have been extracted from n2(ν̇,η) =
n̄2(ν,η) + d2v and n3(ν̇,η) = n̄3(ν,η) + d3w.

The impact of the disturbing sway and heave forces is therefore mitigated by the

shape of the vehicle. The robustness of the natural sway and heave stability of the

vehicle due to the shape of the hull and the mass distribution could allow neglecting

198 Version du October 11, 2023



Chapter 5 – Vector thrust for AUVs / 5.1. Vector thrust effects 5.1. Vector thrust effects

the sway and heave disturbing forces created by the vector thruster. Also, different hull

shapes create different coupling terms in the mass and damping matrices counter-acting

the coupled forces.

As an example, figure 5.2 shows the behavior of three cylindrical vehicles with dif-

ferent m2 and m3 mass parameters. The first vehicle is a close representation of the Re-

mus100 (presented in details in section 3.5.2) (Blue lines on figure 5.2 and figure 5.3) ,

the second one (Red lines) has been artificially made ten times heavier on the sway and

heave axes and the third one (Green lines) has been made ten times lighter on the same

axes. The three vehicles are controlled in surge, pitch and yaw using the sameH-matrix

based controller on the seabed scanning task. Note that, as shown in the next section,

the construction of the H based controller as presented in chapter 3 indirectly assumes

that the sway and heave disturbing forces are negligible. Nonetheless, as shown in this

example, reasonably low sway and heave velocities are sufficient to ensure stability of

the vehicle.

As expected, figure 5.3 shows that the coupled sway and heave forces generate less

sway and heave velocity on the heaviest vehicle than on the two lighter ones. This

natural stability results in better tracking performance as shown on figure 5.2 even

though the lighter vehicle still shows reasonably good tracking performances too. It

stays stable but oscillates around the desired trajectory.

Following the same idea, the H-matrix controller has been applied to the RSM ve-

hicle (presented in chapter 1), the Remus100 and a mock up of the ODIN. All three

vehicles are equipped with a single rear 3-D vector thruster and tested on the seabed

scanning task. Numerical values of the model coefficients for the three vehicles can be

found in appendix D.

Figure 5.4 represents the position of the three vehicles. It shows that while the RSM

(Blue line) and Remus100 (Red line) perform well on the task, the ODIN (Green line)

oscillates around the desired trajectory. The spherical shape of ODIN does not offer a

robust enough stability on the sway and heave axes to counteract the coupled effect

of the vector thruster. While the vehicle oscillates in a stable tube around the desired

trajectory, the tracking mission can hardly be considered successful.

This example goes to show that even though the hypothesis of negligible sway and

heave disturbing forces is not formally correct, the natural stability of some systems

is sufficient to counter-act the disturbing effects of the coupled forces. Note that, as

demonstrated in [66, 64] and detailed in the following section, because the thrust of the
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Figure 5.2 – Comparison of tracking errors of the 3 Remus-like vehicles - (a): x0 axis,
(b) y0 axis, (c) z0 axis - Blue: Normal, Red: Heavy, Green: Light

200 Version du October 11, 2023



Chapter 5 – Vector thrust for AUVs / 5.1. Vector thrust effects 5.1. Vector thrust effects

0 10 20 30 40 50 60 70 80 90 100

-2

0

2

4

0 10 20 30 40 50 60 70 80 90 100

-2

0

2

4

0 10 20 30 40 50 60 70 80 90 100

-2

0

2

4

Figure 5.3 – Comparison of linear velocities of the 3 Remus-like vehicles - (a): xB axis,
(b) yB axis, (c) zB axis - Blue: Normal, Red: Heavy, Green: Light
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Figure 5.4 – Comparison of the position of the 3 vehicles on the Seabed Scanning task -
(a): x0 axis, (b) y0 axis, (c) z0 axis - Blue: RSM, Red: Remus100, Green: ODIN
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propeller is physically bounded, the disturbing forces are as well. Hence, the sway and

heave speeds of the vehicle cannot completely diverge. Yet, from a control perspective,

the sway and heave behavior of some systems can jeopardize the whole tracking mission

as it is the case for ODIN in the last experiment.

5.1.3 Controller calculations for coupled actuators

Calculating the controller for a non-decoupled system is not trivial. As shown in the

previous section and in appendix C, the coupled effects of the input can disturb both

the controlled and uncontrolled DOF of the system to a point where the tracking task

cannot be considered successful. Some of the controllers introduced in chapter 2 re-

quire the assumption of negligible coupled force when the moment is used for control

of the position of the vehicle through kinematic or dynamic coupling or any other guid-

ance principle. This is notably the case for the sliding mode underactuated controller

described in [40] and used in simulations in section 3.4 and for the H based controller

introduced in chapter 3.

In the case of a vehicle equipped with one stern vector thruster, the underactuated

SMC controller would use the first order derivative of the sway and heave dynamical

equations to exploit the dynamic couplings of the system and control the sway and

heave modes with the yaw and pitch inputs respectively. Considering a simplified model

of an underwater vehicle (diagonal mass and damping matrices, linear damping), the

sway, heave, pitch and yaw equations of the dynamic model taking the coupled forces

into account are:

v̇ = 1
m− Yv̇

(uy + (m−Xu̇)ur − (m− Zẇ)wp+ Yvv) (5.8a)

ẇ = 1
m− Zẇ

(uz + (m− Yv̇)vp− (m−Xu̇)uq + Zww) (5.8b)

q̇ = 1
Iy −Mq̇

(−Luz + (Zẇ −Xu̇)uw + (Ix − Iz +Nṙ −Kṗ)pr +Mqq) (5.8c)

ṙ = 1
Iz −Nṙ

(−Luy + (Xu̇ − Yv̇)uv + (Iy − Ix +Kṗ −Mq̇)pq +Nrr) (5.8d)

Taking the example of the sway equation (5.8a), the second order time derivative of
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v gives:

v̈ = 1
m− Yv̇

(u̇y + (m−Xu̇)(u̇r + uṙ)− (m− Zẇ)(ẇp+ wṗ) + Yvv̇)

= 1
m− Yv̇

[
u̇y + (m−Xu̇)(u̇r + u

Iz −Nṙ

(−Luy + (Xu̇ − Yv̇)uv +Nrr))

−(m− Zẇ)(ẇp+ wṗ) + Yvv̇
]

(5.9)

where both uy and u̇y appear due to the coupled force effect of the vector thruster.

The sway dynamics of the vehicle are now expressed as a generalized system: the first

order derivative of the input appears in the equation(see [47] and appendix B for more

details). Hence, the strategy used to establish the SMC on the decoupled system cannot

be used as such in this case.

In the same way, the H matrix based controller introduced in chapter 3 indirectly

assumes that the coupled force effects on the sway and heave are negligible. This time,

it is in facts the sway and heave control speeds that are assumed to be 0 in the kinematic

stage of the controller to establish the relation νc = HT−1J(η)−1 ˙̄ηE, where ˙̄ηE is the

sum of the desired velocity and the PI control law. Without assuming vc = wc = 0,

the kinematic relations vc = v̄E − εxrc and wc = w̄E + εxqc cannot be used to cancel

the sway and heave errors using the yaw and pitch speeds respectively as they were in

section 3.3.

Nonetheless, some controller designs can take the coupling effects of vector thrusters

into account. This is the case of the adaptive and integral LOS guidance solutions of

[61, 62] described in section 2.1. In these controllers, the sway force (and heave force

if applied to underwater vehicles) is not directly taken into account but is instead com-

pensated through the calculations of the adaptive crab angle. Using the adaptive crab

angle in the LOS calculations allows considering the surge and sway speeds ratio and

couteracting the disturbing sway speed. The coupled effect is therefore estimated as a

disturbance and compensated in the guidance calculations.

Also, the work of [66] introduces another controller taking the coupled force effects

of an underactuated surface vessel equipped with a vector thruster into account. The

controller is derived using the back stepping technique and Lyapunov theory. It includes

the uncontrolled sway modes and shows that the system is stable even though it is

disturbed by the coupled forces. In facts, this work shows that because the inputs of

the system are physically bounded by the maximum thrust of the motor, the system is
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stable.

Some more theoretical work like [115] demonstrate the mathematical stability of

coupled cascaded systems like the the AUV with vector thrusters using the property

of forward completeness (see [5] for in depth studies of forward completeness). Yet, the

mathematical stability of the system demonstrated in this work does not ensure tracking

performances. Even though the system cannot be completely destabilized, the uncon-

trolled sway modes disturb the trajectory tracking mission. The use of reconfigurable

thrust is to consider for naturally stable and robust systems but is not ideal for lighter

vehicles.

5.1.4 Force control with vector thrusters

On of the interest of vector thrust is the possibility to control either the forces gen-

erated by the thruster or the coupled moments. As depicted before in this section and

all along this work, the traditional way of controlling marine craft is to use the moment

generated by an off-center motor and propeller or control surface to control the steering

of the vehicle. Doing so, the force component is either neglected or considered a dis-

turbance. In this section, simulation experiments performed on the Remus100 vehicle

equipped with a single 3-D reconfigurable thruster show that the sway and heave force

components generate by the thruster can be used directly in the controller in specific

use cases like docking and station keeping.

Of course, intuition and experience show that controlling a free body in water with

rear forces is unstable, the vehicle would turn around so that the forces are actually

pulling it instead of pushing. This instability is due to the hydrostatic and hydrodynamic

effects acting on the hull of the craft. Consequently, in this section, the reconfigurable

thruster is positioned at the front of the vehicle. This is equivalent to having a vehicle

going “backwards” with a tracking point positioned at the rear.

One major issue when “pulling” the vehicle is that the water flow generated by

the thruster is directly hitting the hull. This is energetically inefficient and potentially

damaging for the vehicle in the long term. It must therefore be limited to short range

applications. One noteworthy example where force control is most useful and more

efficient that moment control is the docking maneuver.

The docking maneuver is a really complex case study for the guidance and control of

autonomous marine craft that has been solved in many different ways like conventional
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Figure 5.5 – Top view of the desired docking trajectory in the inertial frame

control or machine learning [119, 144]. Here, a very simplified docking maneuver is

presented. It is similar to the maneuver performed in ports with boats. A virtual dock

parallel to the x0 axis is simulated and the vehicle must approach the dock, turn to align

with it and then maintain its position alongside the virtual dock. The task is composed

of one approach segment at a 135◦ angle to the dock, a full turn to align the vessel

with the dock and a station keeping subtask when the vessel reaches the virtual dock.

The desired docking trajectory is displayed on figure 5.5. The blue circle represents the

initial position of the vehicle where the docking maneuver is initialized and the red dot

represents the end position. The vehicle takes around 10 seconds to reach the red dot

and then maintains its position on the red dot for as long as the simulation lasts. The

virtual dock is materialized by the horizontal axis on figure 5.5.

The position of the tracking point of the uqr-vehicle is controlled using the H-based

controller with the corresponding forces generated by the thruster. No compensation

mechanism is necessary so the H matrix in this case is the identity. The controller is
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almost equivalent to a single stage PID controller defined in the inertial frame (see

Chapter 3 for more details).

The attitude of the vehicle is left uncontrolled. The hydrodynamic effects acting on

the hull naturally align the vehicle to the water flow surrounding it. Hence, with no

current the vehicle aligns with the velocity vector at the tracking point. With currents,

the vehicle finds an equilibrium between the direction of the velocity and the direction

of the current. In the docking maneuver, the turn before station keeping aligns the vessel

with the virtual dock. In the presence of sea current, the vehicle naturally aligns with

the current field when station keeping.

The docking experiment is performed with a constant sea current of −0.5 m s−1

velocity aligned with the y0. Two control strategies are compared on the Remus100

equipped with a rear reconfigurable thruster. The position of the first vehicle is con-

trolled conventionally, using the moments generated by the thruster. Kinematic cou-

plings are used in the controller to compensate the lack of sway and heave actuation.

The second vehicle is controlled directly with the force generated by the thruster. No

compensations mechanism is involved. The second vehicle is initiated backwards on the

approach segment for stability.

Recalling the formalism introduced before, the pair of DOF vectors in the first case

is:

hOB

1 =



1

0

0

0

1

1



hE =



1

1

1

0

0

0



(5.10)
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while in the second case with force control it is

hOB

2 =



1

1

1

0

0

0



hE =



1

1

1

0

0

0



(5.11)

The first vehicle is considered to be actuated in surge, pitch and yaw and the three

position coordinates of the tracking point are controlled through a guidance mecha-

nism (in this example based on the H matrix). The second vehicle is considered to be

actuated in surge, sway and heave and the three position coordinates of the tracking

point are controlled. This second case does not require any guidance or compensation

mechanism.

The position tracking errors of the two vehicles are displayed on figure 5.6. The

force-controlled vehicle (Red line) appears much more stable than the moment-controlled

one (Blue lines). Notably, figure 5.6 shows that force control allows much better station

keeping for this vehicle. In moment-control, the vehicle circles around the final point in

a stable ellipsoid as seen on figure 5.7.
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Figure 5.6 – Comparison of position tracking errors on the docking task - a: x0 axis, b:
y0 axis, c: z0 axis - Blue: Moment control, Red: Force control
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Figure 5.7 – Top view of the trajectory of the two vehicles on the docking task - Blue:
Moment control, Red: Force control
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5.2 New vector thrust concept: PlaSMAR

This section introduces a new concept of reconfigurable thrust. The idea is to direct

and reposition a pair of thrusters to allow generating a directed force and a decoupled

moment. This concept is notably suited for cylindrical-hull vehicles as it relies on a ring

carrying the thrusters around the hull.

It has been developed on the test platform PlaSMAR 1. PlaSMAR is an easily recon-

figurable robot designed to easily emulate any fixed-thrusters arrangement as well as to

be equipped with the reconfiguration ring. The first version of this vehicle can be seen

on figure 5.8 in a four fixed-thrusters configuration equivalent to the RSM vehicle.

This first prototype has been mainly 3D printed. It is inspired by the Blue ROV (Blue

Robotics company) and by the printable AUV designed in [146]. On figure 5.8, the

vehicle is equipped with two 3D printed black rings holding two thrusters each. The

fixed rings allow positioning and orienting pairs of thrusters to reproduce commercial

propulsive arrangements and facilitate testing fixed configurations.

This section details the concept of the rotating ring used for reconfiguration of a pair

of parallel thrusters. Notably, it presents the thrust allocation used on two configurations

of PlaSMAR and control solutions.

5.2.1 Reconfiguration ring

Conventional thruster reconfiguration is pushed a step further with the PlaSMAR

concept. The idea is to direct a pair of parallel thrusters to control both the force and the

moment they generate without introducing new coupling terms. To do so, two parallel

thrusters are mounted on a ring rotating around the hull of the vehicle. They can be

mounted either tangent to the ring or parallel to its axis of rotation as seen on figure 5.9.

The first configuration of figure 5.9 allows directing the summed force of the two

thrusters in the plane of the ring while maintaining the moment actuation around the

ring axis created by differential thrust. In the second configuration, the force of the two

thruster is kept parallel to the axis of rotation of the ring but the axis of the moment

they generate can be directed.

Of course, in order to equip the ring on a vehicle, it must have a cylindrical hull or at

least a cylindrical section of hull around which the ring can rotate. On a cylindrical-hull

1. Plateforme Sous-Marine Autonome Reconfigurable
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Figure 5.8 – Picture of PlaSMAR during one of the first pool tests. Configuration
equivalent to RSM with four fixed thrusters.

(a) First configuration. Red arrows: thrust
vectors of each thruster

(b) Second configuration. Red arrow: axis
of the generated moment

Figure 5.9 – Schematics of the rotating ring principle. Black ring: hull of the AUV, Red
ring: Rotating ring
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(a) 0◦ reconfiguration angle (b) 90◦ reconfiguration angle

Figure 5.10 – 3-D renders of the first configuration of PlaSMAR. The rotating ring is
placed at the front (rendered on Fusion360)

(a) 0◦ reconfiguration angle (b) 90◦ reconfiguration angle

Figure 5.11 – 3-D renders of the second configuration of PlaSMAR. The rotating ring is
placed at the rear (rendered on Fusion360)

vehicle, the ring can be positioned anywhere along the hull and in the (yB, zB) plane.

It rotates around the xB axis of the cylinder. The two configurations of figure 5.9 are

displayed on 3-D renders of PlaSMAR on figure 5.10 and figure 5.11 respectively.

Figure 5.10 and figure 5.11 shows two stages of the design of PlaSMAR. Initially, as

shown on ??, four metallic bars were used to hold the different rings around the hull.

The bars were only pushed inside the two black end pieces holding on the front and

back flanges. The latest version shown on ?? uses two threaded rods to hold the two end

pieces appearing in red together. The ring are mounted on two points and secured with

nuts. The rotating rings presented on figure 5.10 and figure 5.11 are simplified proof

of concepts of the system. The motor is bigger than needed and should be encased.

Also, the front ring on both configurations should be in the middle of the hull to avoid
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coupled pitch effects as it is on figure 5.8.

In the first configuration(figure 5.10), the two front thrusters are mounted on the

reconfiguration ring. They generate a force in the (yB, zB) plane parameterized by the

rotation angle of the ring and a roll moment independent from their configuration. This

contraption therefore allows actuation in sway and heave whilst maintaining decoupled

roll. With the ring in its neutral 0◦ configuration (figure 5.10a), the thrusters are aligned

with the zB axis and generate a pure heave force. At a 90 degrees angle (figure 5.10b),

the thrusters are aligned with the yB axis and generate a pure sway force. In between

the two extreme configurations, they can generate any diagonal force in the (yB, zB)
plane. With the two rear fixed-thrusters, this vehicle is actuated in surge, sway, heave,

roll and yaw. Only the pitch moment is not controlled.

In the second configuration (figure 5.11), the two back thrusters are mounted on

the reconfiguration ring. The two thrusters are parallel to the xB of the vehicle so

they generate a surge force in any configuration of the ring. The main interest of the

reconfiguration ring in this case is the possibility to direct the axis of the moment gen-

erated by the two thrusters. At a 0 degree angle (figure 5.11a), the thrusters are in the

(xB,yB) plane aligned with xB and generate a yaw moment while at a 90 degrees an-

gle (figure 5.11b), they are in the (xB, zB) plane and generate a pitch moment. In the

intermediary configurations, they can generate a moment around any axis of the verti-

cal plane (yB, zB). With the two front fixed-thrusters, this vehicle is actuated in surge,

heave, roll, pitch and yaw. Note that the rear rotating ring alone constitute an alterna-

tive to the common uqr-vessels. The two rear thrusters mounted on the rotating ring

can independently generate a surge force, a pitch and a yaw moment. With the proper

guidance, these three DOF are sufficient to perform any underwater position tracking

task. This solution is a viable alternative to the usual fixed-thruster and control surfaces

actuation of torpedo-shaped vehicles.

Overall, a pair of thrusters mounted on the reconfiguration can be utilized to gen-

erate an adjustable force vector whilst maintaining the moment or to direct the axis of

the moment whilst maintaining the force. Effectively, the reconfiguration ring creates a

new actuated DOF on the vehicle.

Several solutions can be designed to actuate the ring. The first and most simple

one is to use a small servomotor with gear reduction placed on the outside of the hull.

This is by far the simplest solution mechanically but it requires water proof casing to

protect the electronic components exposed to water. Also, adding components on the
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hull modifies its hydrodynamic profile and can be detrimental. It could also be difficult

to fix the motor assembly to the hull without risks of leakage. A second solution could be

to magnetically connect the outside ring to another ring inside the hull holding magnets

and actuate the inside ring. This way, no external components are needed. This kind of

magnetic contraption has been used for example in [168, 73, 44] to transmit force

through the hull of a craft with no hole. Finally, and notably in the first configuration

presented on figure 5.10a, the thrusters themselves could be used to rotate the ring.

Unlatching the ring from the hull, the roll moment generated by the two thrusters of

the first configuration would rotate the ring. A mechanical latch on the outside would

be necessary or one could imagine some form of magnetic latching from the inside. This

solution implies that the thursters are reconfigured at times when no roll is needed in

the application since the ring will be rotating freely around the hull.

One of the other interest of the reconfiguration ring is to compensate roll distur-

bances. In facts, section 3.4.1 shows that roll actuation can be very useful in association

with heave to compensate for the lack of sway. Yet, this example shows one of the main

problem of staying at a non-zero roll angle. Because most vehicles are design to operate

at a zero degree roll angle and because task are usually defined in the inertial frame,

a non-zero roll angle equilibrium can jeopardize the actuation of another DOF of the

task. In the example of section 3.4.1, the vehicle is rolling on the side to compensate

for sway but doing so, the two rear thrusters responsible for heave are misaligned with

the vertical axis of the inertial frame. At the extreme, the vehicle is not able to rotate

around the vertical axis of the inertial frame anymore because a 90 degrees roll angle

puts the two rear thrusters in the vertical plane of the inertial frame. The vehicle looses

a DOF with respect to the task (rotation around the vertical axis of R0). Therefore, the

reconfiguration ring could be used to compensate for this phenomena and maintain the

rear thrusters in the horizontal plane of R0. Using the ring to rotate of the opposite

of the roll angle of the vehicle, the thrusters mounted on the ring can be kept fixed

in the horizontal plane of the inertial frame. This behavior can be used to compensate

disturbances in roll as well as consequences of sway compensation using roll.

Then, in the second configuration presented on figure 5.10b, compensating the roll

angle would allow the two rear thrusters to generate a moment around the vertical axis

of the inertial frame independently from the attitude of the vehicle (considering that

pitch is different from 90◦). In this use case, the reconfiguration ring does not really add

a new DOF to the vehicle but makes it more robust to roll disturbance.
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The roll compensation behavior is not as useful in the first configuration of fig-

ure 5.10 because roll itself is actuated and can be stabilized. Yet, one could imagine

scenarios where the vehicle needs to dives vertically whilst suffering from roll distur-

bances. In this case, it would be useful to be able to keep the two thrusters vertical w.r.t.

the inertial frame to maintain full heave capacity.

5.2.2 Thrust allocation of PlaSMAR

Considering the first configuration of PlaSMAR figure 5.10a, this section exposes the

thrust allocation of the reconfigurable ring. In this case the front thrusters are mounted

on a ring placed around the cylindrical hull of the vehicle, approximately in the middle

of its length. In section 1.2.1 and section 1.2.2, thrust allocation is performed using the

TCM matrix denoted B. The TCM is used to calculate the necessary thrust of all the

thrusters of the vehicles for a given command vector τc:

τc = Bu (5.12)

where u is the vector containing all the elementary thrusts. The relation (5.12) needs

to be inverted to perform thrust allocation.

For fixed thrusters, B is constant. In the fully-actuated case without redundancy, B

is invertible and thrust allocation is performed using:

u = B−1τc (5.13)

In the underactuated case, two methods are detailed in section 1.2.1: the Moore-Penrose

pseudo-inverse used notably for decoupled propulsive arrangement and the space re-

duction which consists in inverting B in a reduced subspace where the vehicle can be

considered fully-actuated.

For vector thrusters, the same methods are used considering an equivalent TCM

representing a virtual fixed-thruster equivalent of the reconfigurable arrangement [30].

Then, a 3-DOF vector thruster is represented with 3 orthogonal fixed virtual thrusters

and the TCM is calculated considering the virtual thrusters. The main interest of this

solution is that it provides a constant TCM independent from the reconfiguration angles

of the vector thrusters. The angles and thrust are reconstructed after thrust allocation

is performed on the fixed-thrusters equivalent.
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Here, with the thrusters mounted on the ring their position is not constant. It is

therefore difficult to find a fixed-thrusters equivalent. In the first configuration of PlaS-

MAR, the two front thrusters are used to generate a force in the (yB, zB) plane and a

roll moment without coupling. One fixed-thrusters solution emulating the generation of

a force in the (yB, zB) plane is to consider two orthogonal thrusters placed at the center

of the hull. Yet, this solution does not allow generating roll moment. One or several

additional virtual thrusters would be necessary to generate roll which would modify the

dimension of the problem. A configuration with three thrusters placed in the vertical

plane all around the hull with 120◦ angle one with the other could be used to generate

sway, heave and yaw.

In a first approximation, the ring is considered to have a perfect tracking of the

commanded angle α = αc. Therefore, the TCM can be considered locally constant to

perform thrust allocation. The controller outputs a control effort vector and notably

the sway and heave forces as well as the roll moment, Yc, Zc and Kc respectively. The

control angle of the ring αc is calculated geometrically for a given pair Yc, Zc:

αc = arctan2(Zc, Yc) (5.14)

The arctan2 function is used for a complete four quadrants definition of the angle αc.

More studies are needed to establish the optimal solution of αc considering the rotation

speed of the ring and the variation rate of the thrusters. Practically, if the thrusters are

considered to be able to switch direction and to vary its thrust fast enough, α could

be limited to a [0, π/2] interval and cover all possible forces of the plane. For now, the

thrust allocation procedure favors rotating the ring over inverting the thrust of the two

thrusters. As seen in the following simulation, this can result in a light oscillation due

to numerical delay.
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The TCM can then be calculated for a given αc as:

B1 =



1 1 0 0

0 0 sin(αc) sin(αc)

0 0 − cos(αc) − cos(αc)

0 0 −R R

0 0 0 0

−R R 0 0



(5.15)

where R is the radius of the hull. The two first columns correspond to the two rear

thrusters actuating surge and yaw and columns three and four correspond to the two

thrusters mounted on the ring. Equation (5.15) confirms that when the ring angle αc
is 0 degrees, the two front thrusters generate a pure heave force and when the angle

is 90 degrees, they generate a pure sway force. Then, between 0 and 90 degrees, they

generate a diagonal force in the (yB, zB) plane. Equation (5.15) also shows that the roll

moment generated by the two thrusters mounted on the ring is independent from the

angle of the ring and is decoupled from the sway and heave forces.

Because the sway and heave modes are coupled with αc different from 0 or 90 de-

grees, space reduction is not suited for inverting B1. The Moore-Penrose pseudo-inverse

in used in this case (see ??. Simulation results presented in the following show that the

Moore-Penrose pseudo-inverse behaves properly in this case but this result is hardly

general. More investigation on other ineverting methods based on quadratic program-

ming would be needed to ensure that the inversion of B1 is always successful. The

Moore-Penrose pseudo-inverse of the TCM is:

B†
1 =



1
2 0 0 0 0 − 1

2R

1
2 0 0 0 0 1

2R

0 sin(αc)
4 − cos(αc)

4 − 1
2R 0 0

0 sin(αc)
4 − cos(αc)

4
1

2R 0 0


(5.16)
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A more rigorous approach would be to extend the model of the vehicle with the

dynamics of the ring. This way, the input of the system would no be τc anymore but the

forces of each thruster and the angle of the ring. Doing so would also allow adding one

more control layer on the behavior on the ring.

Of course, similar calculations can be realized in the second configuration presented

on figure 5.10b where the rear thrusters are mounted on the ring and used to generate

a surge force and a moment around any axis of the plane (yB, zB). When the two rear

thrusters are mounted on the reconfigurable ring, the TCM becomes:

B2 =



1 1 0 0

0 0 0 0

0 0 1 1

0 0 −R R

R sin(αc) −R sin(αc) 0 0

−R cos(αc) R cos(αc) 0 0



(5.17)

In the third mode where the ring is used to compensate the roll angle of the vehicle,

the ring angle is set to αc = −ϕ where ϕ is the current roll angle of the vehicle.

5.2.3 Control of PlaSMAR

Thanks to the allocation method detailed in the previous section, pretty much any

controller presented in this work can be used on PlaSMAR. In the first configuration,

the vehicle has five independent DOF: surge, sway, heave, roll and yaw. Because the

three translations are independently actuated, no compensation mechanism is needed

in position tracking tasks. Moreover, roll and yaw are actuated and pitch is usually

naturally stabilized because of the mass distribution. The vehicle is therefore capable of

keeping a neutral roll angle allowing rotations around the vertical axis of the inertial

plane. Also, the association of roll and yaw allows the vehicle to roll to the side and get

into an upright position allowing vertical diving. For the control, PID based controllers

with a linearization mechanism or SMC can be used.

Same goes for the second configuration. The vehicle has 5 actuated DOF: surge,
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heave, roll, pitch and yaw. Then, for a position tracking task like seabed scanning, roll

or yaw can be used in association with heave or surge to compensate for sway. In such

a case, the H-matrix based controller or the SMC controller fro underactuated craft

can be used. If roll is used for compensation and pitch is not actually part of the task,

then the reconfiguration ring can be used to cancel out the roll angle and maintain the

rear thrusters in the horizontal plane of the inertial frame. This way, the vehicle can be

controlled in yaw at all times. (for any roll angle)

In the following, the vehicle in the first configuration is controlled using a very sim-

ple PID-based controller. The control effort vector is calculated in the inertial frame as:

τc = M̃ (η)
(
η̈∗ + Kdėη + Kpeη + Ki

∫ t

0
eηdζ

)
+ C̃(η, η̇)η̇ + D̃(η, η̇)η̇ + g(η) (5.18a)

M̃(η) = MJ(η)−1 (5.18b)

C̃(η, η̇) = MJ̇(η, η̇)−1 + C(ν)J(η)−1 (5.18c)

D̃(η, η̇) = D(ν)J(η)−1 (5.18d)

where Kd, Kp and Ki are diagonal strictly definite gain matrices, η̈∗ is the second order

derivative of the desired state vector η∗ and eη = η∗ − η is the error signal. The model

matrices with the subscript ·̃ are expressed in the inertial frame using the kinematic

relation η̇ = J(η)ν. Because the vehicle is not actuated in pitch, the fifth line of τc is

discarded.

5.3 Simulations

PlaSMAR is evaluated in simulation on several study cases. It is compared with the

RSM AUV used before in this work and controlled using the H-matrix based controller

(see chapter 3 for more details) or a SMC inspired by [40]. In this SMC, the guidance

action is created using sway error in the calculation of the yaw sliding surface. More

details about this controller can be found in section 2.4.2.
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Figure 5.12 – Comparison of the position signals of the two vehicles. Blue: RSM, Red:
PlaSMAR - a: x0 axis, b: y0 axis, c: z0 axis

5.3.1 Seabed scanning

In this first scenario, the first configuration of PlaSMAR is tested on the seabed scan-

ning task. The vehicle is equipped with the front reconfigurable ring holding two parallel

thrusters and two horizontal rear thrusters on the fixed ring. In this configuration, the

vehicle is actuated in surge, sway, heave, roll and yaw and thus over-actuated with re-

spect to the task which does not require roll. It is compared to the RSM vehicle which is

ill-actuated on the task. It must use yaw to compensate for sway.

Figure 5.12 shows that both vehicles have perfect position tracking on the whole

task. The main difference between the two vehicles appears in figure 5.13 where PlaS-

MAR (red line) appears to have a much smaller heading error than RSM (blue line).

In facts, because the sway of PlaSMAR is directly actuated, the vehicle does not need

any compensation mechanism and can truly control its yaw angle. This is not the case

of RSM which uses yaw to compensate for sway. Numerical delay creates a slight heave

and pitch oscillation on PlaSMAR.

To accentuate the difference between the two vehicles, they are evaluated on a sec-

ond version of the seabed scanning task where the heading angle is constraint to ψ∗ = 0.
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Figure 5.13 – Comparison of the orientation errors of the two vehicles. Blue: RSM,
Red: PlaSMAR - a: roll, b: pitch, c: yaw

Figure 5.14 shows the two different behaviors of the vehicles. On figure 5.14a,

RSM is tangent to the path aligned with the y0 axis. Because yaw is used for com-

pensation of sway, the heading constraint is neglected and the heading angle naturally

stabilizes tangent to the velocity vector. On figure 5.14b on the other hand, PlaSMAR

is aligned with the x0 axis while traveling along the y0 axis. The new DOF provided

by the ring allows the vehicle to translate in sway while controlling its heading and

maintaining constant depth.

5.3.2 Roll compensation

In this section, the reconfigurable ring of PlaSMAR is used for compensation of the

roll of the vehicle. The second configuration shown on figure 5.10b is used where the

two rear thrusters are mounted on a ring. The vehicle is therefore actuated in surge,

heave, roll, pitch and yaw. In this example, it is evaluated on the seabed scanning. Be-

cause sway is not actuated, roll is used for compensation using the Hp matrix controller

introduced in section 3.4.1. Section 3.4.1 shows that compensation mechanisms can
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(a) RSM with SMC
(b) PlaSMAR with front reconfigruable

ring (black)

Figure 5.14 – Simulation snapshots of the two vehicles on the seabed scanning with
ψ∗ = 0 - Blue axis: xB, Green axis: yB, Black axis: zB

disturb the other DOF of the systems. In particular in this case, using roll disturbs the

heading control. With a non-zero roll angle, the capability of the vehicle to rotate aroudn

the vertical axis of the inertial frame is diminished. At the extreme, when ϕ = π/2 and

θ = 0, the zB axis of the vehicle is in the horizontal plane of the inertial frame. Yaw

actuators can no longer be used to control the heading of the craft.

To counteract this effect, the two rear thrusters are mounted on a rotating ring and

maintained as fast as possible in the horizontal plane of the inertial frame. The angle

command of the ring is at all time αc = −ϕ.

This solution is compared with the RSM vehicle using theHp based controller on the

seabed scanning trajectory with the heading constraint ψ∗ = 0.

Figure 5.15 shows the attitude of the two vehicles on the task. In the first turn

around 15s, both vehicles roll to the side to generate the needed sway velocity at the

tracking point but, because it stabilizes around ϕ = π/2, the first vehicle (blue line) is

not able to control its heading anymore. The two rear thrusters are in the vertical plane

of R0. Then, the yaw control trying to maintain the heading of the vehicle destabilizes

the system. On the other hand, the PlaSMAR vehicle stabilizes with ϕ = π/2 and,thanks

to the rotating ring, is still able to really control its heading.

Comparing figure 5.14b and figure 5.16 shows that both solutions are almost equiv-
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Figure 5.15 – Comparison of the attitude of the two vehicles. Blue: RSM, Red:
PlaSMAR - a: roll, b: pitch, c: yaw

alent. The first vehicle keeps a neutral roll angle and directs the two front thrusters to

generate sway while the second vehicle rolls to the side to be able to push along the y0

axis while maintaining the two rear thrusters in the horizontal plane. This comparison

also shows that one solution for this task with RSM or PlaSMAR would be to integrate

the desired roll behavior of the vehicle directly in the task. Because both vehicles are

actuated in roll and roll is not part of the task requirements, a roll trajectory mimick-

ing the behavior of the vehicles obtained here could be calculated. The vessel would

then track this roll angle and naturally align its thrusters to the the y0 axis for instance

to navigate along this axis without direct sway control. Such a solution is more about

trajectory planning than it is about control.
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Figure 5.16 – Simulation snapshots of PlaSMAR with rear reconfigurable ring (black
cylinder) on the seabed scanning with ψ∗ = 0. - Blue axis: xB, Green axis: yB, Black

axis: zB
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5.4 Partial conclusions on vector thrust

A new concept of reconfigurable thrust has been introduced in this chapter: the

reconfigurable ring. PlaSMAR is presented as a proof of concept of this new propulsive

solution. The study of the TCM corresponding to the two configurations of PlaSMAR

and simulation results exposed in this chapter show that the rotating ring allows adding

a new DOF to the vehicle without creating new coupling. This new reconfiguration

concept seems to be a better suited solution for smaller vehicles as it does not introduce

any new disturbing effects.

The two configurations of PlaSMAR give new solutions to traditional control problem

of underwater vehicles. The first configuration adds sway as an actuated DOF decou-

pled from the others. It facilitates position tracking as the vehicle does not require any

compensation or guidance mechanism to track the three position components of the

space.

The second configuration adds pitch. In this case, this new DOF can be used either as

such, to generate a pitch moment on the vehicle, or to compensate the roll angle of the

craft and maintain the rear thrusters in the horizontal plane of the inertial frame. These

two solutions enhance the performances of the vehicle on the tasks presented here. It

is worth noting that the rear rotating ring with two thrusters allows reproducing the

surge, pitch and yaw actuation used on many usual underwater vehicles.

Further studies are required on this new technology. Notably, the actuation of the

rotating ring is yet to be sorted out. Also, thrust allocation is not trivial on this system.

More work on the propeller and reconfiguration dynamics is required to optimize the

allocation.

226 Version du October 11, 2023



CONCLUSION

This work follows on from the long line of work on the design and control of marine

vehicles. Many types of different control laws and guidance principles for surface and

underwater vehicles have been introduced and studied in details. All the solutions pre-

sented in the literature show equivalent theoretical performances. All of them ensure

global or semi-global stability of the plant even in presence of external disturbances and

noisy measurements.

Further work will be needed to properly compare all the different methods both

mathematically and on experimental vehicles. Ranking the methods is very difficult as

their performances will likely depend on the system itself. Other parameters will be to

consider like computation time, effects of numerical sampling or the impact of poor-

quality measurements.

Then, a new kinematic guidance principle based on the handy matrix H has been

introduced. This new principle allows control of an underactuated or ill-actuated ve-

hicle using kinematic couplings between a non actuated translation and an actuated

rotation. The control is shown to be stable and robust to external disturbance and mea-

surement noise. It will be easily extended to other types of systems thanks to the design

rules and matrix calculation algorithm provided. These results also allow evaluating the

capabilities of a given AUV and finding the tasks for which it is suited.

The controller has been successfully applied in both trajectory tracking and path

following scenarios. Path following was performed on Remus100, a wide spread AUV

representing the class of torpedo shape uqr-vessels. The H-matrix based controller al-

lows solving the path following problem in several manners. Using the H-matrix based

controller allows precisely choosing the behavior of the tracking point of the vehicle

which is very valuable. In path following for instance, it allows finding simple PID-

based solutions to the Lyapunov stability criterion. In future works, the controller could

be used in other back-stepping applications to complete different types of tasks.

One of the interesting use cases of the path following example is the leader-follower

scenario. In this case, the H-matrix controller is used in the follower vehicle. The con-

struction of the closed-loop system allows tracking the leader vehicle and adapting the
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follower’s behavior to ensure that both tasks are successful. Such applications could

notably be interesting in pipeline surveillance where one vehicle, the leader, would be

measuring or taking images of a submerged structure while the other, the follower,

would go back and forth between the leader and the surface or a support ship.

Applying the controller to a physical vehicle would be valuable to assess its perfor-

mances in conditions. Notably, it is very hard to anticipate the behavior of the control

law with respect to numerical sampling, latency of the embedded calculator or unsteady

measurement errors.

A flatness-based controller has also been developed using the more simple case of

surface vessels. Flatness-based control appears to be a very strong contestant for the

control of marine vehicles as it is shown to be very robust to model approximation

and external disturbances. In this work, a flatness-based controller has been derived for

surface vessels using the simplified model of the hovercraft. The controller has been

developed under the hypothesis of a circular hull shape and even mass distribution but

has been successfully applied to a generic surface vessel.

The flatness-based controller naturally includes a guidance principle. It allows cal-

culating a surge force and a yaw moment out of two position signals. The flatness equa-

tions obtained in this example could also be used as a guidance principle with another

type of controller.

For increased robustness and to counteract the potentially damaging behavior of

flatness-based control away from the desired trajectory, it has been associated with an

intelligent proportional derivative controller. The iPD increases the already impressive

robustness of the flatness-based controller and effectively solves the problems caused

by feedforward linearization when the vehicle is outside the acceptable bound around

the desired trajectory. The combined controller has been shown to be stable and robust

to external disturbances and noisy measurements. In this case again, the next step is

to apply the controller on a physical system. Investigations on the application of the

controller on a scale-model of the hovercraft have been started.

Also, some more calculation work is required to apply the controller to underwater

vehicles. From the results obtained on the surface vessels, it is safe to assume that the

controller will easily scale up to the underwater case. It seems notably well suited for

uqr-vessels in position tracking applications.

Finally some new results on vectoring thrust applied to small scale AUVs have been

presented. Notably, simulations have been conducted to show that the use of off-centered
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vector thrusters is not suited for every type of vehicle. Although they are bounded, the

coupling force effects generated by vector thrusters can jeopardize the tracking mission

of smaller vehicles or of vehicles without natural robustness to force disturbances.

A new use case of vector thrusters on AUVs has also been exposed. While vector

thrusters are usually used for moment control through dynamic couplings, simulation

results show that they can also be used for force control. This new force control mode

is shown to be especially useful for missions where moment control is naturally not

suited. This is notably the case of autonomous missions like docking, hovering and

station keeping missions.

The proof of concept for a new type of vectoring thrust system has also been pro-

posed. The new system relies on pairs of thrusters mounted on a ring able to rotate

around cylindrical sections of the hull of a vehicle. This rotating motion can be used to

direct the force vector generated by the pair of thrusters while maintaining a stationary

moment axis. When the thrusters are aligned with the axis of rotation of the ring, it

allows directing the axis of the moment generated by the pair of thrusters while keep-

ing the force vector aligned with the body of the vehicle. This second mode is shown to

effectively unlock a new DOF for the vehicle as well as allowing compensation of roll

disturbances.

On this matter, the next step is to design and build a second version of the test plat-

form and investigate the possible solutions for actuation of the ring. Optimized magnetic

couplings will be investigated as they would allow piloting the rotation of the ring from

the inside of the hull therefore avoiding the need of holes in the hull.

Some more work will be conducted on the controller of this vehicle. A controller

taking the dynamics of the ring into account would be interesting and might appear to

be necessary. The model of the vehicle would have to be extended to take the behavior of

the ring into account and include the ring angle as a new control input. In the same way,

further investigations on optimizing the allocation procedure are required for increased

performances.

Overall, this work proposes several solutions to increasing the maneuverability of

underactuated marine craft through control and new mechanical designs.
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APPENDIX A

INTEGRAL SLIDING MODE CONTROL

This appendix demonstrates that steady state can appear when using a sliding mode

controller on a system subjected to external unknown disturbances or model approxi-

mations. Then, Integral Sliding Mode is presented as a solution against this steady state

error. There are not many references mentioning integral SMC in the literature but some

hints can be found in [108, 150]. Note that super-twisting SMC as described for instance

in [151] has an integral behavior and cancels steady state error.

A demonstration based on the study of the equilibrium of the closed loop system is

provided. This phenomena appears to be rather absent from the literature and notably in

the context of marine craft although it can cause problems in many real-life applications.

In this example, the demonstration is performed on a fully-actuated system but similar

effects can be shown on underactuated vehicles.

A.1 Apparition of steady state error

To demonstrate the apparition of steady state error, the model of a marine craft

expressed in the inertial frame and in presence of an unknown external disturbance is

introduced.

τ = M̄(η)η̈ + C̄(η,ν)η̇ + D̄(η,ν)η̇ + g(η) +∆ (A.1)

Matrices M̄ , C̄ and D̄ are the model matrices modified to express the model in the

inertial frame. They contain the transformation based on the J(η) matrix. Vector ∆

marks the unknown external disturbance effect.

Following the reasoning introduced in the examples of section 2.4, the sliding surface

for this second order system is defined with respect to η as:

σ = ( d
dt

+ λ)(2−1)eη = ėη + λeη (A.2)
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A simple sliding condition is used in this example as the super-twisting and terminal

sliding mode conditions exposed in section 2.4 do not make much difference on this

issue. To avoid chattering, a saturation function is used instead of the intuitive signum

function. Note that the signum function does not solve the steady state error. The sliding

condition is then:

σ̇ = −Ksat(σ) (A.3)

Using the method described in section 2.4, the control is established from the sliding

condifiton and the model equation:

τc = M̄(η)(η̈∗ + λėη + Ksat(σ)) + C̄(η,ν)η̇ + D̄(η,ν)η̇ + g(η) (A.4)

Of course, because ∆ is an unknown disturbance term, it cannot be used in the control

calculations. The closed-loop system is therefore:

ëη + λėη + Ksat(σ) = M̄−1∆ (A.5)

A quick way to demonstrate the appearance of a steady state error in to study the

values taken by the error vector eη when an equilibrium ëη = ėη = 0 is reached. To

do so, the system is considered in the neighborhood of the sliding surface meaning

sat(σ) = σ. In such conditions, the closed-loop system becomes :

Kλeη = M̄−1∆ (A.6)

In this conditions, it appears clearly that a steady state error depending on the dis-

turbance magnitude appears at the error equilibrium. This steady state can be made

as small as necessary tuning the gain parameters K and λ but cannot be canceled. In

facts, inside the boundary layer, the SMC behaves similarly to a Proportional Derivative

controller hence the steady state error.

A.2 Integral Sliding Mode

When working with Proportional and Proportional Derivative controllers, the solu-

tion to cancel steady state errors is to add an integral term. The same idea is used in

Integral Sliding Mode Control (ISMC). Several definitions of the ISMC can be found
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but it is rarely seen in the context of marine vehicles. The ISMC used in this example

consists in defining the sliding surface with respect to the integral of the position and

orientation error instead of the error. Same reasoning can be seen in some underac-

tuated examples of section 2.4 where the integral of the speed signal is used to take

constant position offsets into account. The system (A.3) is then considered of the third

order with respect to the integral of η. The sliding surface is therefore defined as:

σ = ( d
dt

+ λ)(3−1)
∫ t

0
eη(ζ)dζ = ėη + 2λeη + λ2

∫ t

0
eη(ζ)dζ (A.7)

The same sliding condition is used as in equation (A.3):

σ̇ = −Ksat(σ) = ëη + 2λėη + λ2eη (A.8)

In these conditions and following the same logic as before, the controller is then:

τc = M̄ (η)(η̈∗ + 2λėη + λ2eη + Ksat(σ)) + C̄(η,ν)η̇ + D̄(η,ν)η̇ + g(η) (A.9)

In this case, the closed-loop system becomes:

ëη + 2λėη + λ2eη + Ksat(σ) = M̄−1∆ (A.10)

As before, the equilibrium in the neighborhood of the sliding surface is studied:

sat(σ) = σ, ëη = ėη = 0. The closed-loop system is rewritten as:

eη = (λ + 2Kλ)−1
(
M̄−1∆−Kλ2

∫ t

0
eη(ζ)dζ

)
(A.11)

Equation (A.11) shows that the state error eη can be canceled at the equilibrium

thanks to the integral term. The ISMC formulation therefore allows to cancel steady

state errors due to external unknown disturbances.
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APPENDIX B

ALTERNATIVE REPRESENTATION OF THE

GENERALIZED STATE SYSTEM

This appendix gives an alternative representation to the generalized state system

described in section 4.3.3. The system is recalled here:

ẋ = u cosψ − v sinψ (B.1a)

ẏ = u sinψ + v cosψ (B.1b)

u̇ = τ̃u + vψ̇ + βu (B.1c)

v̇ = −uψ̇ + βv (B.1d)

The inputs of system (B.1) are the surge force τ̃u and the yaw angle ψ whom first

order derivative appears in equation (B.1c) and equation (B.1d).

Following the method exposed in [37, 38], a generalized state transformation is

calculated to cancel the dependency in ψ̇. The infinite prolongation [184] is introduced

for system (B.1):

d

dt
= (u cosψ − v sinψ) ∂

∂x
+ (u sinψ + v cosψ) ∂

∂y

+ (τ̃u + vψ̇ + βu) ∂
∂u

+ (−uψ̇ + βv) ∂
∂v

+
∞∑
k=0

τ̃ (k+1)
u

∂

∂τ̃
(k)
u

+
∞∑
k=0

ψ(k+1) ∂

∂ψ(k) (B.2)

The new state ζ = [ζ1 ζ2 ζ3 ζ4]T must satisfy the following condition expressed in

terms of Lie bracket: [
d

dt
,
∂

∂ψ̇

]
(ζ) = 0 (B.3)
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This partial differential equation ensures that the first time derivative of the new state

ζ does not depend on ψ̇. The Lie bracket thus reads :

[
d

dt
,
∂

∂ψ̇

]
= v

∂

∂u
− u ∂

∂v
+ ∂

∂ψ
(B.4)

The four components of the new state ζ are chosen as independent functions of the

state variables. The natural choice for the first two components ζ1 and ζ2 is x and y

respectively. The position coordinates obviously respect condition (B.3):

(v ∂
∂u
− u ∂

∂v
+ ∂

∂ψ
)(x) = 0 (B.5a)

(v ∂
∂u
− u ∂

∂v
+ ∂

∂ψ
)(y) = 0 (B.5b)

Then, two more independent functions must be found for ζ3 and ζ4. A multitude of

solutions exist for this problem so two fairly simple solutions are selected:

ζ3 = 1
2(u2 + v2) (B.6a)

ζ4 = ψ + atan
(
v

u

)
(B.6b)

The two solutions ζ3 and ζ4 of equation (B.6) are shown to be suitable with respect

to condition (B.3): [
d

dt
,
∂

∂ψ̇

]
(ζ3) = vu− uv = 0 (B.7a)[

d

dt
,
∂

∂ψ̇

]
(ζ4) = − v2

u2 + v2 −
u2

u2 + v2 + 1 = 0 (B.7b)

The state ζ is then given as:

ζ1 = x (B.8a)

ζ2 = y (B.8b)

ζ3 = 1
2(u2 + v2) (B.8c)

ζ4 = ψ + atan
(
v

u

)
(B.8d)
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and the associated new state space representation is:

ζ̇1 = ẋ (B.9a)

ζ̇2 = ẏ (B.9b)

ζ̇3 = (ζ̇1 cosψ + ζ̇2 sinψ)τu + 2βζ3 (B.9c)

ζ̇4 = − ζ̇1 sinψ + ζ̇2 cosψ
2ζ3

τu (B.9d)

To conclude, the new state space representation is indeed standard, the state trans-

formation canceled all dependency in the input derivative ψ̇. The standard representa-

tion could then be used to perform the controller calculations.

Note that, in this specific case, the Brunovsky state transformation detailled in sec-

tion 4.3.3.2 also cancels the dependencies in ψ̇ because of the symmetries in the plant

but this is not a general result.
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APPENDIX C

CONTROL OF UNDERACTUATED

SYSTEMS WITH COUPLED ACTUATORS

This appendix presents a side effect of the control of some underactuated systems

independently from the control method used. In these examples, a feedback linearizing

controller is used as it is the most frequently used in this work. This phenomena notably

appears when coupled actuators are used to control underactuated systems. In such

cases, one of the two coupled effects generated by an actuator (most often one force

and one coupled moment) is chosen for the control of the system. The other one can

create non negligible disturbance on the uncontrolled DOF or even on the whole system.

Most examples of such systems rely on the natural stability of the uncontrolled DOF

(for instance autonomous boats). Yet, the passive stability of the free DOF may not be

robust enough to counteract the effect of the coupled actuator. It might notably be the

case for small scale vehicle equipped with vector thrusters or vehicles with simple hull

shapes (cylinder, box shape).

Consider the following control system:

ẋ = f(x) + g(x)u (C.1)

where x ∈ R3 is the state vector, f(x) ∈ R3 is a vector field, g(x) ∈ R3,3 is a known

matrix and u ∈ R3 is the input vector.

Considering that g(x) is invertible, an intuitive model-based feedback linearizing

controller can be designed as:

u = g(x)−1 (ẋd + λ(ex)− f(x)) (C.2)

where λ(ex) is a control law based on the tracking error ex and ẋd is the desired velocity

used as a feedforward term. Plugging the controller (C.2) into the model equation (C.1)
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gives the closed-loop system:

ėx = λ(ex) (C.3)

the non-linear terms of the model are canceled using feedback linearization and choos-

ing function λ properly, stability of the equilibrium ex = 0 can be ensured for all three

DOF of the space.

Now, let us consider the same system but in the underactuated context. In this sec-

ond example, the second component of the control vector u is always 0 because of

underactuation:

u =
[
u1 0 u3

]T
(C.4)

The controller is built again using the intuitive feedback linearizing solution equa-

tion (C.2). This time though, because of underactuation, the three DOF of the system

behave differently. Let us define the vectors and matrices of the system as:

x =
[
x1 x2 x3

]T
(C.5a)

f(x) =
[
f1(x) f2(x) f3(x)

]T
(C.5b)

λ(ex) =
[
λ1(ex) λ2(ex) λ3(ex)

]T
(C.5c)

g(x) =


g1(x) 0 0

0 g2(x) 0

0 0 g3(x)

 (C.5d)

Note that all three components of f can depend on the complete state vector x. In this

first case, g(x)) has been chosen diagonal. All three DOF are decoupled.

Then, applying the controller (C.2) with the hypothesis (C.4) on the system (C.1)
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considering (C.5) gives:

u =


u1

0

u3

 =


g−1

1 (x) 0 0

0 0 0

0 0 g−1
3 (x)






ẋ1,d

0

ẋ3,d




λ1(ex)

0

λ3(ex)

−

f1(x)

0

f3(x)



 (C.6a)


ẋ1

ẋ2

ẋ3

 =


f1(x)

f2(x)

f3(x)

+


g1(x) 0 0

0 g2(x) 0

0 0 g3(x)




u1

0

u3

 (C.6b)

Note that the second line of u has been artificially set to zero to respect the constraint

of underactuation. The closed-loop system becomes:

ẋ1 = ẋ1,d + λ1(ex) (C.7a)

ẋ2 = f2(x) (C.7b)

ẋ3 = ẋ3,d + λ3(ex) (C.7c)

Equation (C.7) shows that the first and third components of x can indeed be driven

towards the desired value using the λ1 and λ3 functions but that the second component

x2 is left uncontrolled. Moreover, since the function f2(x) can depend on the complete

state x (natural coupling terms), the behavior of x2 is hardly predictable, could be

unstable and could destabilize the rest of the system.

Furthermore, the matrix g(x) could contain off-diagonal coupling terms:

g(x) =


g1(x) 0 0

0 g2,2(x) g2,3(x)

0 0 g3(x)

 (C.8)
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In such a case, the system becomes:

u =


u1

0

u3

 =


g−1

1 (x) 0 0

0 0 0

0 0 g−1
3 (x)






ẋ1,d

0

ẋ3,d




λ1(ex)

λ2(ex)

λ3(ex)

−

f1(x)

f2(x)

f3(x)



 (C.9a)


ẋ1

ẋ2

ẋ3

 =


f1(x)

f2(x)

f3(x)

+


g1(x) 0 0

0 g2,2(x) g2,3(x)

0 0 g3(x)




u1

0

u3

 (C.9b)

thus the closed-loop system becomes:

ẋ1 = ẋ1,d + λ1(ex) (C.10a)

ẋ2 = f2(x) + g2,3(x)g3(x)−1 (ẋ3,d + λ3(ex)− f3(x)) (C.10b)

ẋ3 = ẋ3,d + λ3(ex) (C.10c)

Equation (C.10) shows that the third control component u3 could be used to control

the second DOF of the system x2 through the coupling term g2,3 but at the cost of the

control over the thrid DOF x3 which would be left uncontrolled. If x3 is controlled then

u3 creates disturbance on x2 that could make it even more unstable.

In many systems, the stability of the non-actuated DOF is assumed to be robust

enough to counteract disturbances created by the actuators. It is notably the case for

most boats where the hull shape, mass distribution and hydrodynamic effects damp any

sway motion and favor surge and yaw displacements. Therefore, even if the vehicle is

actuated in surge and yaw only, the natural sway stability allows controlling either the

yaw angle of the vehicle or the two position coordinates without risking unstability.

Nonetheless, other systems like the small cylindrical hull underwater vehicle used in

some examples of this work (see chapter 1) are not guaranteed to be stable enough.

Coupled actuators may create instability of the uncontrolled DOF. The physical bounds

of the actuators ensure that the disturbances created by coupled actuators are bounded

too.
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APPENDIX D

MODEL COEFFICIENTS OF THE VEHICLES

This appendix gives the numerical values of th model coefficients of the robots used

in this work: RSM , Remus100 and ODIN.

RSM

Item Value Item Value

m 18 kg Ix 0.096

Iy 0.611 Iz 0.608

PG [0, 0, 0.012]⊤ PB [0, 0, 0]⊤

Xu̇ −1.88 Yv̇ −18.81

Zẇ −18.81 Kṗ 0

Mq̇ −0.56 Nṙ −0.56

Xu −12.85 Yv −71.85

Zw −71.85 Kp −0.38

Mq −3.88 Nr −3.88

Table D.1 – Simulation parameters - RSM
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Remus100

Item Value Item Value

m 31 kg Ix 0.17

Iy 6.70 Iz 6.70

PG [0, 0, 0.02]⊤ PB [0, 0, 0]⊤

Xu̇ −0.83 Yv̇ −29.43

Zẇ −29.43 Kṗ −0.033

Mq̇ −3.42 Nṙ −3.42

Xu −1.59 Yv −3.02

Zw −3.02 Kp −0.58

Mq −10.78 Nr −1.49

Xuu −12.85 Yvv −1.91

Zww −1.91 Kpp −0.38

Mqq −1.96 Nrr −1.96

Table D.2 – Simulation parameters - Remus100
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ODIN

Item Value Item Value

m 84 kg Ix 3.79

Iy 2.52 Iz 2.52

PG [0, 0, 0]⊤ PB [0, 0, 0]⊤

Xu̇ −62.50 Yv̇ −62.50

Zẇ −62.501 Kṗ 0

Mq̇ −30 Nṙ −30

Xu −48 Yv −48

Zw −48 Kp −80

Mq −80 Nr −80

Table D.3 – Simulation parameters - ODIN
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Titre : Analyse et commande des robots sous-marins autonomes à propulsion vectorielle re-
configurable.

Mot clés : Guidage, Contrôle, AUV sous-actionnés, Propulsion Vectorielle

Résumé : Ce manuscrit présente des
avancées en matière de contrôle et de
conception de véhicules marins auto-
nomes. Il se concentre sur l’amélioration
de la mobilité des véhicules marins afin de
débloquer de nouvelles applications telles
que l’inspection et la maintenance des sys-
tèmes de production d’énergie verte en
mer. Les deux axes principaux de ce tra-
vail sont le contrôle des véhicules marins
sous-actionnés et la conception de nou-
velles solutions de propulsion vectorielle.
Deux nouveaux contrôleurs ont été mis au
point pour les véhicules sous-actionnés. Le
premier contrôleur repose sur un nouveau
principe de guidage cinématique. Une nou-
velle matrice de gain non diagonale basée

sur le modèle, appelée H, est introduite
pour exploiter les relations cinématiques du
modèle. Elle permet de contrôler un véhi-
cule dans une tâche de suivi de chemin. Le
deuxième contrôleur présenté dans ce tra-
vail est basé sur la platitude différentielle. Il
est calculé sur une version plate du modèle
de navire de surfac. Le contrôleur est asso-
cié à un iPD pour une plus grande robus-
tesse et un meilleur comportement. La loi
de commande est adaptée à la commande
des véhicules de surface. Un nouveau sys-
tème de poussée vectorielle basé sur deux
propulseurs parallèles montés sur un an-
neau rotatif est également présenté pour
améliorer la mobilité des AUV sans créer
de nouveaux effets de couplage.

Title: Analysis and control of autonomous underwater vehicles with reconfigurable vectoring
thrust.

Keywords: Guidance, Control, Underactuated AUVs, Vectoring Thrust

Abstract: This work presents advances in
the control and design of autonomous ma-
rine vehicles. It is focused on enhancing the
mobility of marine vehicles to unlock new
applications like the inspection and mainte-
nance of off-shore green energy production
plants or the observation and protection of
marine environments. The two main axes
of this work are the control of underactu-
ated marine vehicles and the design of new
vectoring thrust solutions. Notably, two new
controllers have been developed for under-
actuated marine craft. The first controller
relies on a new kinematic guidance princi-
ple. A new non diagonal model-based gain
matrix denoted H is introduced to exploit

kinematic relations of the model. It is shown
to allow control of a torpedo shaped vehicle
on a path following task. The second con-
troller presented in this work is based on
differential flatness. It is calculated on a flat
version of the surface vessel model where
the usual defects preventing flatness are
canceled. The controller is associated with
an iPD for increased robustness and better
behavior away from the trajectory. The re-
sulting control law is shown to be suited for
the control of a generic surface vessel. A
new vectoring thrust system based on two
parallel thrusters mounted on a rotating ring
is also presented to enhance the mobility of
AUVs without creating new coupled effects.
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