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Résumé xi

Développement et analyse de schémas d’ordre élevé pour des modèles de convection-diffusion,
étude du comportement en temps long

Résumé

Dans cette thèse, nous nous intéressons à l’approximation numérique de problèmes de convection-diffusion,
potentiellement anisotropes, par des schémas d’ordre élevé sur maillages généraux. Notre objectif est de
proposer des méthodes fiables, précises et efficaces : les solutions numériques doivent préserver les proprié-
tés physiques des solutions continues (conservation de la masse, positivité des densités, comportement
en temps long) tout en autorisant une large gamme de paramètres de discrétisation (pas de temps grands,
maillages spatiaux généraux) et en optimisant la précision de calcul à coût donné. Les problèmes considérés
sont des équations d’advection-diffusion ainsi que des systèmes couplés de dérive-diffusion qui modélisent
les composants semi-conducteurs.

On se concentre d’abord sur une équation d’advection-diffusion seule, pour laquelle nous proposons
et analysons trois méthodes d’ordre bas de type volumes finis hybrides (HFV). Cette comparaison met en
avant la nécessité d’utiliser un schéma non-linéaire afin de préserver la positivité des solutions, tant d’un
point de vue théorique que numérique. On s’intéresse alors à l’approximation d’un système de dérive-
diffusion, constitué de deux équations d’advection-diffusion couplées avec une équation de Poisson. Pour
ce problème, on introduit un schéma non-linéaire basé sur la méthode précédente, qui préserve les bornes
des densités calculées (et en particulier leur positivité) et le comportement en temps long de la solution. Ce
schéma HFV pour la dérive-diffusion est ensuite comparé numériquement avec un schéma présentant des
propriétés similaires basé sur la méthode volumes finis en dualité discrète (DDFV).

Nous nous intéressons alors à des schémas d’ordre élevé (en espace). Ces schémas sont basés sur
des méthodes de type hybride d’ordre élevé (HHO) qui peuvent être interprétées comme des extensions à
l’ordre arbitraire des méthodes HFV. Nous introduisons deux méthodes pour les équations d’advection-
diffusion linéaires. La première est linéaire, tandis que la seconde est non-linéaire, et permet de préserver
la positivité. Pour ces deux schémas, nous prouvons l’existence de solutions discrètes et établissons des
résultats de comportement en temps long. Nous confirmons également ces résultats numériquement, et
mettons en avant la nécessité d’utiliser une méthode non-linéaire pour préserver la positivité. Par ailleurs,
on observe que la méthode non-linéaire converge à l’ordre attendu. De plus, la montée en ordre permet un
gain d’efficacité (précision de l’approximation pour un coût de calcul donné) conséquent par rapport aux
méthodes d’ordre bas des premiers chapitres.

Ces travaux sont complétés par l’étude de problèmes de convection-diffusion avec convection très
irrégulière, effectuée en collaboration avec des physiciens durant la thèse. Les recherches menées visent
à comprendre comment concevoir des diodes électroluminescentes efficaces émettant dans l’ultraviolet
profond, et soulèvent divers enjeux relatifs à la modélisation, l’analyse numérique et la simulation de ces
problèmes.

Mots clés : analyse numérique, méthode d’entropie, méthodes numériques sur maillages généraux, mé-
thodes numériques d’ordre élevé, semi-conducteurs, edp paraboliques

Centre Inria de l’Université de Lille – Parc scientifique de la Haute-Borne – 59650 Villeneuve
d’Ascq – France
Laboratoire Paul Painlevé – Cité Scientifique – 59655 Villeneuve-d’Ascq – France



xii Résumé

Development and numerical analysis of high-order schemes for convection-diffusion models, study
of their long-time behaviour

Abstract

In this thesis, we are interested in the numerical approximation of anisotropic convection-diffusion
problems using high-order schemes on general meshes. Our objective is to develop reliable, accurate,
and efficient methods: the numerical solutions must preserve the physical properties of the continuous
solutions (mass conservation, positivity of densities, long-time behaviour) while allowing for a wide range
of discretisation parameters (large time steps, general spatial meshes) and optimising the accuracy at a
given computational cost. The problems under study are advection-diffusion equations as well as coupled
drift-diffusion systems that model semiconductor devices.

We first focus on a single advection-diffusion equation for which we propose and analyse three
different hybrid finite volume (HFV) methods to approximate the solution. Their comparison highlights the
necessity of using a nonlinear scheme to ensure the preservation of positivity, both from a theoretical and
a numerical level. We then consider the numerical approximation of a drift-diffusion system, consisting
of two coupled advection-diffusion equations with a Poisson equation. For this problem, we introduce a
nonlinear scheme based on the previous method, which preserves the bounds on the computed densities
(including their positivity) and the long-time behaviour of the solution. This HFV scheme for drift-diffusion
is then numerically compared with another scheme with similar properties based on the discrete duality
finite volume (DDFV) method.

We then focus on high-order (in space) schemes. These schemes are based on hybrid high-order
(HHO) methods which can be interpreted as an arbitrary-order extension of HFV methods. We introduce
two schemes for linear advection-diffusion: the first method is linear, while the second one is nonlinear
and preserves the positivity of the solution. For both of these schemes, we prove the existence of discrete
solutions and establish results about their long-time behaviour. We also confirm these results numerically
and emphasise the need to use a nonlinear method to preserve positivity. We observe that the nonlinear
method converges at the expected order. Furthermore, increasing the order leads to a significant gain
in efficiency (accuracy of the approximation for a given computational cost) compared to the low-order
methods discussed in the first chapters.

These works are complemented with the study of convection-diffusion problems with highly irregular
convection, carried out in collaboration with physicists during the thesis. These investigations aim to
understand how to design efficient deep ultraviolet-emitting electroluminescent diodes, and raise various
issues related to the modeling, numerical analysis and simulation of these problems.

Keywords: numerical analysis, entropy method, numerical methods on general meshes, high-order
numerical methods, semiconductors, parabolic pdes
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Avant-propos

Ce manuscrit présente les résultats obtenus durant la thèse réalisée au sein du centre Inria de
l’Université de Lille et encadrée par Claire Chainais-Hillairet, Maxime Herda et Simon Lemaire.
Ce document contient une introduction générale, qui décrit les modèles et méthodes numériques
étudiés et dresse un panorama des contributions (en anglais). Cette introduction est suivie
de quatre chapitres, correspondant chacun à des travaux publiés, et d’une conclusion dans
laquelle nous exposons quelques perspectives. Le manuscrit est complété par quatre chapitres
annexes, qui résultent de travaux réalisés en collaborations avec des mathématiciens et physiciens
du Weierstrass Institute (Berlin, Allemagne) et du Tyndall National Institue (Cork, Irelande).
L’Annexe A introduit les travaux et leur contextes physique et mathématique, tandis que les
Annexes B-C-D rassemblent des travaux publiés ou soumis pour publication.
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Cette thèse est dédiée à l’approximation numérique de problèmes de convection-diffusion,
éventuellement anisotropes, par des schémas d’ordre élevé sur maillage généraux. L’originalité
principale de ces travaux est de traiter simultanément plusieurs enjeux : préservation de la
structure, maillages généraux et ordre élevé. Bien que de nombreuses avancées aient été réalisées
pour aborder chacun de ces enjeux individuellement, concevoir des méthodes qui présentent
toutes ces caractéristiques simultanément est un travail difficile. Notre objectif est donc de
proposer des méthodes fiables et efficaces : les solutions numériques doivent préserver les
propriétés physiques des solutions continues tout en autorisant une large gamme de paramètres
de discrétisation et en maintenant des coûts de calcul raisonnables.

Dans cette introduction générale, nous présentons dans un premier temps les modèles
considérés dans ce manuscrit, en partant de différents contextes physiques, et en décrivant les
propriétés (positivité et comportement en temps long) de leurs solutions. Cette présentation
est l’occasion d’introduire la méthode d’entropie, outil fondamental des travaux de cette thèse.
Nous nous intéressons ensuite à l’approximation numérique de ces modèles, en introduisant les
grands concepts et enjeux de cette procédure, puis en proposant un état de l’art des différentes
méthodes d’approximation pour les modèles de convection-diffusion. Enfin, nous dressons un

3



4 Introduction générale

panorama (en anglais) des travaux théoriques (analyse numérique de schémas) et numériques
(implémentation de schémas, investigation numérique de leurs propriétés et comparaison)
réalisés au cours de cette thèse.

Phénomènes de convection-diffusion : modélisation, comporte-
ment et analyse

Les problèmes de convection-diffusion étudiés dans cette thèse constituent une brique de
base pour décrire des phénomènes physiques et biologiques variés. Parmi les différents modèles
complexes s’inscrivant dans le cadre discuté, on peut citer les modélisations d’écoulements
en milieux poreux [17], l’étude de dispositif électronique comme les semi-conducteurs [258,
207, 208], les modélisations en biologie [135, 183, 179, 246], l’étude de la corrosion et de
la dégradation de certains matériaux [3, 16, 53] ou encore des modèles de mécanique des
fluides [206]. Tous ces phénomènes partagent une structure dissipative semblable. Ils échangent
quelque chose avec leur environnement au cours du temps. Sous l’effet de ces échanges, le
système va évoluer en vue d’atteindre un état plus stable. D’un point de vue mathématique, les
modèles cités présentent tous un caractère diffusif [138, 130] et appartiennent à la grande classe
des Équations aux Dérivées Partielles (EDP) paraboliques.

Modèles anisotropes d’advection-diffusion et de dérive-diffusion

Le premier modèle qui nous intéresse est une équation linéaire d’advection-diffusion, étudiée
dans les Chapitres 1 et 4. Il s’agit d’un modèle dissipatif jouet, qui contient la structure de base
des modèles dissipatifs. Il décrit l’évolution au cours du temps d’une quantité de matière dans un
domaine borné (Ω ⊂ Rd , d ∈ {1,2,3}) qui est soumise à deux phénomènes : la diffusion d’une part
(transfert naturel des zones de forte occupation vers celles faiblement occupées) et l’advection
par un champ extérieur V : Ω→ Rd (transport de la matière à cause d’une force externe). Le
système mathématique obtenu pour l’inconnue notée u : R+ ×Ω→ R, qui représente la quantité
de matière (ou sa concentration/densité), est le suivant :

∂tu −div(J(u)) = f dans R+ ×Ω,
J(u) =Λ (∇u +uV ) dans R+ ×Ω,
u = uD sur R+ × Γ D ,

J(u) ·n = gN sur R+ × ΓN ,
u(0, ·) = uin dans Ω.

(1)

Dans ce système, uin est la donnée initiale, f est le terme source qui traduit l’apparition ou
la disparition de matière dans le domaine. Les conditions de bord, de type Neumann sur
ΓN et Dirichlet sur Γ D correspondent respectivement à une condition sur les flux au bord
et une imposition des quantités de matière présentes. Le modèle est caractérisé par le flux
d’advection-diffusion J(u) = Λ (∇u +uV ) qui décrit les échanges locaux de matière suivant la
loi de Nernst–Planck [218, 227]. L’une des particularité de cette thèse est de s’intéresser à des
modèles anisotropes : le flux dépend d’un tenseur Λ : Ω → Rd×d , qui traduit l’existence de
directions privilégiées pour la diffusion, généralement à cause de la structure du milieu (comme
c’est le cas dans les applications aux milieux poreux [17]) ou d’une force extérieure (comme dans
les modèles de semi-conducteurs [143] présentés ci-dessous). Dans de nombreuses applications,



Phénomènes de convection-diffusion : modélisation, comportement et analyse 5

le champ d’advection dérive d’un potentiel φ :Ω→ R : on peut écrire V = ∇φ, et

J(u) =Λ(∇u +u∇φ).

Dans cette thèse, on s’intéresse également à des modèles de transport de charge dans des
matériaux semi-conducteurs. Ces matériaux sont les constituants de base de nombreux dis-
positifs électroniques, notamment sous forme de diodes et de transistors qui constituent les
circuits intégrés (et donc, par exemple, les processeurs et mémoires des ordinateurs ou des
téléphones). Ils sont aussi utilisés dans des dispositifs opto-électroniques, comme les Diodes
Électroluminescentes (DEL, light-emitting diode LED en anglais) ou les cellules photovoltaïques.
Le modèle le plus simple pour les étudier est le système de dérive-diffusion introduit par Van
Roosbroeck dans [258] en 1950. Il modélise l’évolution de charges électriques dans un matériau
possédant une structure de réseau cristallin, qui constitue le semi-conducteur. L’idée fondamen-
tale régissant ces structures est la suivante : les électrons (charges négatives) peuvent facilement
se déplacer au sein du matériau, qui possède ainsi des propriétés intermédiaires entre un isolant
électrique et un conducteur. Le transport des électrons laisse libres certains sites dans les bandes
de valence du semi-conducteur : ce sont les trous d’électrons, aussi appelés simplement trous,
qui correspondent à des charges positives. Au niveau mathématique, après adimensionnement,
on obtient un système couplé d’inconnues N , P et φ vérifiant

∂tN −div(∇N −N∇φ) = 0 dans R+ ×Ω,
∂tP −div(∇P + P∇φ) = 0 dans R+ ×Ω,

−λ2 div(∇φ) = C + P −N dans R+ ×Ω,
N =ND , P = P D et φ = φD sur R+ × Γ D ,

(∇N −N∇φ) ·n = (∇P + P∇φ) ·n = ∇φ ·n = 0 sur R+ × ΓN ,
N (0, ·) =N in et P (0, ·) = P in dans Ω.

(2)

Dans ce système, N : R+ × Ω → R représente la densité de charges négatives (électrons),
P : R+ ×Ω → R la densité de charges positives (trous) et φ : R+ ×Ω → R est un potentiel
électrostatique, induit par l’inhomogénéité spatiale de charge électrique dans le domaine. Les
densités de charges suivent des lois de conservation décrites par des équations d’advection-
convection, dont le champ VE = ±∇φ dérive du potentiel électrostatique et dépend de la charge
de l’espèce considérée. Ce potentiel est lui-même solution d’une équation de Poisson, qui prend
en compte la densité de charges totale, constituée de plusieurs contributions : les trous, les élec-
trons et les impuretés (charges intrinsèques ajoutées volontairement dans le réseau cristallin).
Cet ajout de charge dans le matériau est nommé dopage et correspond à la fonction C :Ω→ R.
Le dopage est un processus d’une importance capitale, car il permet de créer un dispositif aux
propriétés voulues. Ainsi, le dopage C caractérise en partie le type de dispositif utilisé (diode,
transistor, etc). Une illustration de géométrie typique de diode et son dopage associé est donnée
en Figure 1, page 12.
Dans l’équation de Poisson qui régit le potentiel φ, la constante λ est nommée longueur de Debye
(réduite). Elle est issue de l’adimensionnement du système, et dépend de certaines constantes
physiques fondamentales (la conductivité diélectrique du milieu, la charge et la mobilité d’une
particule élémentaire) et des caractéristiques du semi-conducteur étudié, dont la norme L∞ du
dopage et la taille du dispositif. Les valeurs typiques de λ varient de 10−3 à 10−5.
Pour les modèles de semi-conducteurs, les conditions de bord sont des conditions mixtes
Dirichlet-Neumann : les conditions de Dirichlet modélisent des contacts ohmiques (i.e. un
contact avec un métal, conducteur, qui va imposer la quantité de charges au bord, ou avec
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d’autres semi-conducteurs) et celles de Neumann correspondent à des parties isolées (sans
contact avec l’extérieur, les charges ne peuvent ni rentrer ni sortir). .

Le modèle de Van Roosbroeck est un modèle simple, auquel ont peut ajouter des effets plus
complexes. On peut notamment s’intéresser à l’effet d’un champ magnétique extérieur [143],
à la prise en compte de diffusions non-linéaires [144, 257] ou encore prendre en compte les
interactions entre les charges via des termes de réaction non-linéaires. La motivation principale
de cette thèse est l’approximation du système ci-dessous, qui prend en compte ces différents
effets : 

∂tN −div(NΛN∇(h(N )−φ)) = −R(N,P ) dans R+ ×Ω
∂tP −div(PΛP∇(h(P ) +φ)) = −R(N,P ) dans R+ ×Ω

−div(Λφ∇φ) = C + P −N dans R+ ×Ω

N =ND , P = P D et φ = φD sur R+ × Γ D

NΛN∇(h(N )−φ) ·n = PΛP∇(h(P ) +φ) ·n =Λφ∇φ ·n = 0 sur R+ × ΓN

N (0, ·) =N in et P (0, ·) = P in dans Ω,

(3)

La nonlinéarité h dans les équations sur les charges est obtenue à partir de modèles ciné-
tiques [172]. On peut alors décrire les flux sur les charges comme étant le produit de densités
par des potentiels dits de quasi-Fermi wN et wP :

JN = −N∇wN et JP = −P∇wP .

Ces potentiels jouent un rôle fondamental dans le modèle, tant d’un point de vue physique que
mathématique. Ils sont liés aux densités des espèces à travers les équations d’état

N = g (φ−wN ) et P = g (−φ+wP ) , (4)

où la fonction g : R → R+ est la fonction de distribution associée à la statistique. C’est une
fonction strictement monotone, de bijection réciproque h. On peut donc exprimer les potentiels
de quasi-Fermi en fonction des densités

wN = h(N )−φ et wP = h(P ) +φ,

et obtenir les équations de (3). Dans le cas du modèle de Van Roosbroeck, la statistique considérée
est celle de Boltzmann, qui correspond à g = exp et h = log ; les termes de diffusion qui en
découlent sont linéaires. Le type de statistique utilisée dans la modélisation dépend de la nature
du semi-conducteur (organique ou non) et du cadre d’application [144, 257, 125]. Les expressions
de g sont généralement complexes, mais il existe des approximations analytiques couramment
utilisées [31, 223].
La présence des tenseurs d’anisotropie ΛN et ΛP est liée à l’existence d’un champ magnétique
extérieur, par exemple dans le cadre d’étude de capteurs [234]. Ce champ va faire tourner les
charges et ainsi modifier le comportement global du semi-conducteur. Un modèle pour de tels
dispositifs a été introduit (dans le cas de la statistique de Boltzmann) par Gajewski et Gärtner
dans [143], puis obtenu comme limite rigoureuse d’un modèle cinétique [23, 155]. Le champ
magnétique extérieur est décrit par un champ de vecteur B : Ω → Rd , qui modifie les flux
d’électrons et de trous en rajoutant un terme dû à la contribution magnétique de la force de
Lorentz. Des manipulations algébriques permettent ensuite d’exprimer directement les flux
avec champ magnétique comme des produits de tenseurs ΛN et ΛP par les flux de charges sans
champ magnétique. Pour un problème bidimensionnel, l’effet de rotation ne peut avoir lieu que
dans le plan du semi-conducteur, et on peut se restreindre au cas B = bez, où ez est un vecteur
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orthogonal au semi-conducteur et b est l’intensité du champ magnétique. Les tenseurs sont alors
de la forme

ΛN =
1

1 + b2

(
1 b
−b 1

)
et ΛP =

1
1 + b2

(
1 −b
b 1

)
. (5)

Pour un problème en trois dimensions de l’espace, en notant B = (b1,b2,b3), on a

ΛN =
1

1 + |B|2


1 + b2

1 b1b2 − b3 b1b3 + b2
b1b2 + b3 1 + b2

2 b2b3 − b1
b1b3 − b2 b2b3 + b1 1 + b2

3


et

ΛP =
1

1 + |B|2


1 + b2

1 b1b2 + b3 b1b3 − b2
b1b2 − b3 1 + b2

2 b2b3 + b1
b1b3 + b2 b2b3 − b1 1 + b2

3

 .
L’une des particularités de ces tenseurs est leur caractère non-symétrique.
Dans les équations de transport de charges, les termes R(N,P ) sont des termes de réaction, qui
traduisent des interactions entre les charges et avec le milieu. En particulier, à cause de l’agitation
thermique interne ou d’une stimulation externe (par exemple optique ou électrique) il existe
un phénomène d’apparition de charges dans le dispositif, nommé génération : les électrons
de valence sont arrachés pour devenir des électrons de conduction (libres). D’autre part, les
électrons et les trous peuvent interagir entre eux via un phénomène nommé recombinaison : un
électron de conduction peut devenir un électron de valence et neutraliser un trou. Ces termes
ont une structure particulière, de la forme

R(N,P ) = r(N,P )
(
eh(N )+h(P )−1

)
, (6)

où r est une fonction positive. Ces effets de génération/recombinaison sont fondamentaux
lorsque l’on s’intéresse à des dispositifs opto-électroniques, et la compétition entre eux a une
influence sur le rendement des dispositifs. Ces questions font l’objet de l’Annexe D.

Positivité des solutions et conservation de la masse

L’équation linéaire (1) a été longuement étudiée et son analyse est maintenant classique [119,
Section 7.1]. On sait en particulier montrer l’existence et l’unicité d’une solution globale, et
évaluer sa régularité en fonctions des données.
Parmi les propriétés remarquables des solutions figure la positivité :

si les données uin, f ,gN et uD sont positives, alors u ≥ 0 dans R+ ×Ω.

Il suffit d’imposer en plus que
∫
Ω
uin > 0 pour assurer la stricte positivité de la solution. Ces

propriétés sont essentielles pour assurer une cohérence avec la physique du problème.
Une autre propriété remarquable concerne la préservation de la masse : si l’on impose des
conditions de Neumann sur tout le bord du domaine (ΓN = ∂Ω), alors sous une hypothèse de
compatibilité entre les données

∫
Ω
f +

∫
∂Ω
gN = 0, la masse de la solution est conservée au cours

du temps :

∀t > 0,
∫
Ω

u(t) =
∫
Ω

uin.

Concernant les systèmes de dérive-diffusion, l’existence et l’unicité de solutions globales ont
été prouvées dans divers contextes, sous des hypothèses raisonnables sur les données (dont la
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positivité des densités initiales et des densités sur les contacts ohmiques). On peut notamment
citer les travaux fondateurs [214, 142, 208] pour le modèle de Van Roosbroeck (2), des études
pour des statistiques non-Boltzmann [144, 149] et une analyse pour un modèle anisotrope [143].
L’étude du système (3) peut être abordée en suivant les arguments présentés dans ces travaux.
Comme pour le modèle d’advection-diffusion, les solutions des systèmes de dérive-diffusion
satisfont une propriété de positivité : les densités de charges N et P sont strictement positives
sur le domaine en tout temps. Pour certaines statistiques non-Boltzmann (typiquement une
statistique de Blakemore qui correspond à une non-linéarité de la forme h(s) = log

(
s

1−s

)
, on a

également une borne supérieure a priori sur les densités donnée par a = supR h. Ainsi, en général

∀t > 0, 0 < N (t) < a et 0 < P (t) < a,

où a ∈]0,+∞].

Comportement en temps long et méthode d’entropie

Comme annoncé précédemment, les phénomènes considérés sont caractérisés par une évolu-
tion vers des états stationnaires. L’objectif de cette section est de présenter la méthode d’analyse
emblématique pour étudier ce phénomène.

Pour l’équation d’advection-diffusion (1), l’état stationnaire associé u∞ est défini par
−div(Λ (∇u∞ +u∞V )) = f dans Ω,

u∞ = uD sur Γ D ,

(Λ (∇u∞ +u∞V )) ·n = gN sur ΓN .

(7)

Dans le cas où Γ D = ∅, pour assurer une cohérence avec le problème évolutif, la masse de u∞ doit
aussi être égale à la masse initiale : ∫

Ω

u∞ =
∫
Ω

uin =M.

L’état stationnaire est bien défini et unique [106, 114]. De plus, il a les mêmes propriétés de
positivité que la solution transitoire.
Notons qu’il existe des états stationnaire particuliers, qui correspondent à des états physiques
très stables, pour lesquels les flux sont nuls. Ces états stationnaires sont nommés équilibres
thermiques. Lorsque le champ dérive d’un potentiel V = ∇φ, les équilibres sont associés à des
potentiels de quasi-Fermi constants sur Ω. En pratique, pour l’équation (1) de tels état station-
naires ne peuvent exister que si les données sont compatibles avec l’équilibre. Typiquement, un
terme source nul f = 0 et des conditions de Neumann homogènes sur tout le bord (ΓN = ∂Ω
avec gN = 0) donnent un équilibre thermique. Lorsque ces conditions ne sont pas satisfaites, on
obtient un état stationnaire dit hors-équilibre.

Pour le modèle d’advection-diffusion (1), la solution u(t) converge exponentiellement vite,
quand t→ +∞, vers u∞, solution de (7). Un tel résultat se généralise à d’autre modèles dissipatifs,
dont les systèmes de dérive-diffusion (2)-(3). Pour démontrer un tel comportement, on utilise la
méthode d’entropie. Celle-ci a initialement été introduite dans le cadre de la théorie cinétique des
gaz par Boltzmann dans [34], à travers le théorème H. Comme présenté dans [8], cette méthode
a par la suite été utilisée dans des cadres plus variés, notamment pour l’étude d’équations
d’advection-diffusion [62, 254, 63, 33], ou plus généralement d’équations paraboliques [61]. On
renvoie à l’ouvrage de Jüngel [174] pour une explication détaillée, et décrivons ci-dessous la
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philosophie générale de la méthode.
(i) Identification d’une entropie relative : on définit une quantité, motivée par la physique, qui

dépend de la solution et de l’état stationnaire, nommée entropie relative E. Cette quantité
est positive, et doit mesurer dans un certain sens l’écart entre u et u∞. En particulier,
l’entropie relative s’annule quand la solution transitoire coïncide avec l’état stationnaire.

(ii) Obtention d’une relation d’entropie : on dérive l’entropie relative par rapport au temps
afin d’obtenir une relation sur l’entropie, parfois nommée relation d’entropie/dissipation
d’entropie, ou simplement relation de dissipation d’entropie, de la forme :

d
dt

E(t) = −D(t), (8)

où D est une quantité positive nommée dissipation d’entropie ou information de Fischer.
Cette relation implique la décroissance de l’entropie au cours du temps : l’entropie relative
s’interprète alors comme une fonctionnelle de Lyapunov du problème.

(iii) Obtention d’un contrôle de l’entropie par sa dissipation : on compare l’entropie relative
avec sa dissipation, pour obtenir une estimation du type

∀t > 0, νE(t) ≤ D(t), (9)

où ν est une constante positive. Cette estimation s’obtient à l’aide d’inégalités fonction-
nelles. On en déduit une décroissance exponentielle de l’entropie :

∀t > 0, E(t) ≤ e−νtE(0). (10)

(iv) Obtention d’un contrôle de la distance entre u et u∞ par l’entropie : pour conclure, on trouve
une norme ‖ · ‖ sur un espace adapté tel que

∀t > 0, ‖u(t)−u∞‖γ ≤ CE(t), (11)

où γ et C sont des constantes strictement positives. On en déduit alors de (10) une conver-
gence exponentiellement rapide de ‖u(t)−u∞‖ vers 0 quand t→∞.

Pour l’équation (1), on peut par exemple partir de l’énergie quadratique pour définir une
entropie relative

E2 =
1
2
‖u −u∞‖2L2(Ω), de dissipation D2 =

∫
Ω

Λ∇ (u −u∞) · ∇ (u −u∞) .

Une autre possibilité est d’utiliser l’entropie de Boltzmann (ou plus généralement des entropies
de Tsallis [33])

EB =
∫
Ω

u∞Φ1

( u
u∞

)
, de dissipation DB =

∫
Ω

u(t)Λ∇(w −w∞) · ∇(w −w∞)

où Φ1(s) = s log(s) − s + 1, w = log(u) + φ et w∞ = log(u∞) + φ. Cette entropie correspond à
une quantité physique nommée énergie interne. Notons que la relation d’entropie (8) donne
également des bornes sur l’entropie et sa dissipation. Il est souvent possible d’en déduire des
estimations sur la solution elle-même. Cette stratégie est l’un des outils essentiels de cette thèse,
permettant d’obtenir des estimations a priori sur des solutions discrètes.

Pour les modèles de semi-conducteur, on peut également étudier le comportement en temps
long via une méthode d’entropie. La notion d’état stationnaire étant plus délicate à définir
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(notamment de part leur non-unicité [215, 216]), l’analyse du comportement en temps long est
restreinte à un cadre simple où l’état stationnaire est un équilibre thermique (N e, P e,φe). Comme
pour l’équation d’advection-diffusion, celui-ci est caractérisé par des potentiels de quasi-Fermi
constants :

h(N e)−φe = αN et h(P e) +φe = αP dans Ω,

où (αN ,αP ) ∈ R2. Cette relation impose naturellement une condition sur les données au bord :

h(ND )−φD = αN et h(P D ) +φD = αP sur Γ D . (12)

En lien avec l’intuition physique, on impose également qu’il n’y ait plus de phénomène de
recombinaison/génération lorsque le semi-conducteur est à l’équilibre, ce qui signifie que
R(N e, P e) = 0. En revenant à la définition (6), ceci impose une autre condition de compatibilité
dans le cas où r , 0 :

αN +αP = 0. (13)

Sous ces conditions, on obtient une relation simple entre les densités de charge et le potentiel à
l’équilibre :

N e = g(αN +φe) et P e = g(αP −φe).

On en déduit que le potentiel à l’équilibre φe est une solution de l’équation de Poisson non-
linéaire (nommée équation de Poisson-Boltzmann dans le cas de la statistique de Boltzmann
g = exp) suivante : 

−div(Λφ∇φe) = C + g(αP −φe)− g(αN +φe) dans Ω,

φe = φD sur Γ D ,

Λφ∇φe ·n = 0 sur ΓN .

(14)

Les propriétés de g permettent alors de montrer que (14) admet une unique solution φe. Ceci
implique qu’il existe un unique équilibre thermique (N e, P e,φe). Sous ces hypothèses, l’analyse
du comportement en temps long est alors menée pour différentes situations grâce à une méthode
d’entropie [144, 143]. L’entropie relative utilisée pour le système (3) est définie par

E(t) =
∫
Ω

H(N )−H(N e)− h(N e)(N −N e) +
∫
Ω

H(P )−H(P e)− h(P e)(P − P e)

+
1
2

∫
Ω

∇(φ−φe) ·Λφ∇(φ−φe),

où H : x→
∫ x

1 h(s)ds. Les deux premiers termes sont des énergies internes (entropies de type
Boltzmann sur les densités), et le dernier terme est une énergie électrique. On a alors la relation
de dissipation d’entropie

dE
dt

(t) = −D(t),

où le terme de dissipation d’entropie s’écrit

D(t) =
∫
Ω

N∇(h(N )−φ) ·ΛN∇(h(N )−φ) +
∫
Ω

P∇(h(P ) +φ) ·ΛP∇(h(P ) +φ)

+
∫
Ω

R(N,P ) (h(N ) + h(P )) .
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Le dernier terme est lié aux processus de recombinaison/génération. Il est positif en vertu de la
structure (6) des termes de réaction.

Approximation numérique des problèmes de convection-diffusion

Afin de comprendre les enjeux de l’approximation numérique, il est bon de rappeler que pour
les modèles jouets (1), (2) et (3), les résultats théoriques ne fournissent pas d’expression explicite
de la solution. C’est d’autant plus vrai pour des modèles plus réalistes utilisés dans l’indus-
trie ou la recherche (tels que les modèles utilisés actuellement par des équipes de recherche en
opto-électronique, c.f. Annexes B-C-D). Pour pouvoir exploiter pleinement les modèles mathéma-
tiques proposés, il faut donc être capable d’en tirer des informations quantitatives, en calculant
une solution approchée qui pourra être exploitée au niveau industriel. A titre d’exemple, la
conception de dispositifs modernes comme les LEDs émettant en UV profond (étudiées en
Annexe D) nécessite beaucoup de tests par essai-erreur avant d’obtenir des résultats probants
(par exemple, pour obtenir des LEDs efficaces en termes de consommation d’énergie). De tels
tests ne peuvent se faire expérimentalement, à cause du nombre de configurations et du coût
(économique et temporel) de chaque dispositif. La simulation numérique est alors la solution
privilégiée pour réaliser ces tests à moindre coût, mais il faut être capable de garantir que la
solution calculée est correcte.

Le travail réalisé dans cette thèse s’inscrit dans cette logique : nous proposons des méthodes
numériques pour approcher les solutions des modèles (1), (2) et (3). Les méthodes introduites
sont alors analysées théoriquement et étudiées au niveau numérique.

Dans cette section, nous présentons les enjeux majeurs de l’analyse numérique, et dressons
un panorama des méthodes existantes pour approcher les problèmes étudiés dans cette thèse.
L’accent est mis sur la question de la préservation des propriétés des solutions continues au
niveau discret.

Enjeux de fiabilité de l’approximation

Pour les méthodes numériques qui nous intéressent, les solutions approchées sont obtenues
via la discrétisation du domaine spatial en un maillage (partition en sous-domaines polyédriques
nommés mailles ou volumes de contrôle). Dans l’idéal, on souhaite avoir une grande liberté lors
de la conception du maillage, pour pouvoir par exemple avoir des mailles de formes différentes,
ou des nœuds orphelins. Les questions relatives aux maillages sont cruciales dans certaines
applications, comme en géosciences où le maillage est souvent imposé par la connaissance que
l’on a du sol : il s’agit d’une donnée du problème. Un autre intérêt des maillages généraux
est la facilité avec laquelle ils permettent de réaliser des raffinements locaux. Même pour des
simulations de semi-conducteurs (associés à des dispositifs aux géométries assez simples, souvent
cartésiennes), il peut être très intéressant d’avoir un maillage adapté localement (voir Figure 1
avec le cas d’une diode où les les zones d’intérêt sont raffinées) afin d’optimiser les coûts de
calculs. Pour finir, les capacités de prise en compte d’un maillage général ou de la diffusion
anisotrope sont fortement liées.

La qualité d’un schéma numérique est souvent évaluée par la précision du schéma (sur un
maillage fixé). Cependant, un tel critère ne saurait être suffisant pour garantir une approximation
fiable des phénomènes simulés. En effet, l’analyse théorique des modèles continus fournit des
propriétés qualitatives importantes, qu’il convient de préserver au niveau discret. Les schémas
qui suivent ce principe sont nommés de “schémas préservant la structure” (structure-preserving
schemes en anglais). L’enjeu majeur de cette thèse est le développement de schémas préservant la
structure d’entropie des problèmes de convection-diffusion, et ce sans condition sur le maillage
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C = 1
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C = −1

Γ D0

Γ D1

Figure 1 – Géométrie d’une diode et maillage adapté associé.

spatial ou le pas de temps utilisés. L’importance de la relation de dissipation d’entropie au niveau
continu permet en particulier d’obtenir de nombreuses autres préservations, que nous détaillons
ci-dessous.

Positivé des solutions discrètes. On peut considérer qu’obtenir une densité approchée négative
est une aberration vis-à-vis de la physique. D’un point de vue pratique, l’exploitation d’une
densité non positive est difficile, voire impossible. D’un point de vue théorique, la question
de la préservation de la positivité peut aussi être très importante pour l’analyse. Une telle
préservation s’obtient au moyen d’une entropie qui est affectée par le signe de la solution,
comme l’entropie de Boltzmann.

Préservation des équilibres thermiques. La question des équilibres thermiques est elle aussi
capitale, au vu du rôle joué par ces états stationnaires particuliers dans les modèles et leur
analyse. Définir précisément une notion de schéma préservant les équilibres thermiques
n’est pas aisé, et plusieurs définitions seront proposées et utilisées dans cette thèse, en
fonction des méthodes considérées. Pour une équation d’advection-diffusion (1), une
telle propriété correspond essentiellement au fait que l’état stationnaire discret pour
des données compatibles avec l’équilibre est, en un certain sens, une interpolation de
l’équilibre thermique continu. Pour les systèmes de dérive-diffusion, ceci correspond au
fait que l’état stationnaire discret peut être interprété comme une approximation d’une
solution de l’équation de Poisson-Boltzmann (14). En règle générale, l’annulation du terme
de dissipation d’entropie discrète permet de caractériser les équilibres discrets.

Comportement en temps long des solutions discrètes. Pour les modèles étudiés ici, le compor-
tement asymptotique t→∞ est très particulier : les solutions convergent exponentielle-
ment vite vers des états stationnaires. Concevoir des schémas dont les solutions vérifient
une propriété analogue est donc un gage conséquent de fiabilité. Pour certaines applica-
tions qui s’intéressent à des phénomènes évoluant sur des échelles de temps très longues,
comme les phénomènes de corrosion [16, 53], la question du temps long est cruciale car
elle assure la fiabilité des simulations. Un schéma avec un bon comportement en temps
long permet également de calculer des états stationnaires à moindre coût. Si l’on considère
l’exemple des semi-conducteurs, on s’intéresse généralement aux courbes courant-tension,
qui concernent des états stationnaires. Pour simuler ces dispositifs, on a recours à des
schémas (non-linéaires) qui nécessitent d’être initialisés par des données suffisamment
proches de la solution. On a alors recours à des procédés de continuation. Une des possi-
bilités consiste à utiliser cette initialisation comme une donnée initiale, et laisser évoluer
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(en temps) le problème. Si la solution discrète converge exponentiellement vite vers un
état stationnaire discret, on obtient une approximation de l’état stationnaire en très peu
d’itérations en temps.

Enfin, pour les modèles où la masse est préservée (par exemple, advection-diffusion avec condi-
tions de bord de Neumann homogènes), il est également important d’assurer cette caractéristique
au niveau discret. Comme pour la positivité, cette conservation peut être utilisée à des fins d’ana-
lyse théorique des schémas.

Volumes finis à deux points : forces et faiblesses

Nous présentons maintenant une classe de schémas qui répond à presque tous les cri-
tères discutés à la section précédente, massivement utilisée pour simuler des modèles de semi-
conducteurs : les méthodes volumes finis à deux points. Ces méthodes sont basées sur une
discrétisation du flux de matière. En définissant de manière adaptée les flux numériques, on
obtient des schémas très robustes, puisqu’ils s’appuient sur des quantités qui portent un sens
physique. Initialement introduites pour des problèmes hyperboliques [188, 150], l’utilisation de
ces méthodes s’est ensuite répandue à des problèmes elliptiques et paraboliques [121].

L’idée des schémas volumes finis deux points (Two Points Flux Approximation, TPFA en
anglais) pour les problèmes elliptiques est d’introduire, pour une discrétisation D du domaine
donné, des inconnues discrètes

uD = (uK )K∈M,

oùM est le maillage et uK l’inconnue de maille. Le problème continu div(J(u)) = f est alors
discrétisé en intégrant l’équation sur chaque maille K ∈M, et en utilisant une formule de Green :

∀K ∈M,
∫
∂K
J(u) ·n =

∫
K
f .

Muni des inconnues de mailles, on approche le flux normal J(u) · n sur la face σ par un flux
numérique FK,σ (uD). On obtient finalement le schéma

∀K ∈M,
∑
σ∈EK

FK,σ (uD) =
∫
K
f ,

où EK est l’ensemble des faces de la maille K . Dans le cas où le flux est diffusif (J(u) =Λ∇u), on
utilise une discrétisation différences finies des gradients. Cette méthode est alors très simple à
implémenter, et préserve les propriétés de la solution continue. Elle souffre néanmoins d’une
limitation intrinsèque : pour être consistant avec les problèmes continus, il faut se placer sur
un maillage dit admissible vérifiant une condition d’orthogonalité (pour le produit scalaire
induit par le tenseur de diffusion Λ) [121, Définition 3.1]. En pratique, même pour des ten-
seurs anisotropes relativement simples, il est très compliqué de construire de tels maillages
admissibles. Lorsque l’on considère des problèmes plus compliqués (diffusion anisotrope et
hétérogène, plusieurs tenseurs de diffusion pour un système couplé), de tels maillages peuvent
tout simplement ne pas exister. Ainsi, l’usage de ces schémas est essentiellement restreint à des
cas isotropes, sur des maillages avec des géométries simples (et sans nœuds orphelins).

Les schémas TPFA sont l’objet d’une abondante littérature. Pour approcher l’équation
d’advection-diffusion linéaire (1) (avec Λ = Id), le flux de Scharfetter–Gummel [239, 160, 73] est
une solution privilégiée : il permet de gérer des advections très fortes (ce flux peut être interprété
comme une interpolation d’un flux parabolique et d’un flux hyperbolique, obtenue grâce à la
fonction de Bernoulli B(s) = s

es −1 ), préserve la positivité et les équilibres thermiques au niveau
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discret. Il présente également un bon comportement en temps long, tout comme certaines de ses
généralisations [131, 69].
Concernant les modèles de dérive-diffusion isotropes, on peut également citer les travaux fonda-
teurs de [239]. Suivant cette approche, de nombreuses recherches autour de schémas TPFA posi-
tifs préservant le comportement en temps longs ont été menées [68, 27, 28]. Notons également
que la question de généraliser le flux de Scharfetter–Gummel à des statistiques non-Boltzmann a
été un sujet actif [265, 120, 26, 140, 50]. Toutes ces méthodes préservent la positivité et l’équi-
libre thermique. De nombreux travaux comparatifs (numériques et théoriques) [125, 127, 50]
ont également permis d’identifier les atouts et faiblesses de chacune de ces méthodes.

Malheureusement, tous les résultats énoncés plus haut ne sont valables que pour des pro-
blèmes isotropes sur maillages orthogonaux. Ainsi, il n’existe pas de schéma satisfaisant pour
le modèle anisotrope (3). La seule tentative connue est le schéma TPFA de [143] pour la statis-
tique de Boltzmann (h = log), qui repose sur une perturbation des flux de Scharfetter–Gummel
pour gérer l’anisotropie. Les auteurs parviennent à montrer que la positivité des solutions est
préservée sous certaines conditions liant la géométrie du maillage avec l’intensité du champ
magnétique. En pratique, ces conditions sont extrêmement restrictives et difficiles à vérifier : les
résultats numériques présentés indiquent clairement une perte de la positivité au niveau discret.

Schémas pour problèmes anisotropes sur maillages généraux

Afin de gérer l’anisotropie et régler le défaut majeur des schémas TPFA, de nombreuses
méthodes de type volumes finis ont été développées depuis les les vingt dernières années [157,
105, 40, 39, 110, 123, 124] pour discrétiser des problèmes de diffusion anisotrope. Par rapport
aux schémas TPFA, ces méthodes reposent sur l’ajout d’inconnues auxiliaires qui permettent
de gérer l’anisotropie de la diffusion et la généricité du maillage, via la reconstruction d’un
opérateur gradient discret. Elles peuvent cependant s’exprimer grâce à des flux numériques, qui
ne sont plus basés sur une formulation différences finies entre deux points. La plupart de ces
méthodes peuvent s’inscrire dans le formalisme des "schémas gradients" [111]. Ces méthodes
permettent d’approcher les problèmes anisotropes avec une grande robustesse, mais celle-ci
s’obtient au prix d’une perte de la positivité des solutions numériques, comme obervé lors du
benchmark de la conférence FVCA 5 [154].

L’utilisation de ces méthodes a ensuite été généralisée à des problèmes de convection-diffusion
qui nous intéressent dans ce manuscrit. Pour le problème d’advection-diffusion linéaire (1), un
schéma Hybride Mimétique Mixte (HMM) a été proposé et analysé [19]. Ce schéma, étudié
dans le Chapitre 1, est conçu comme une généralisation des B-schémas TPFA [66]. Cependant,
il ne préserve ni la positivité ni les équilibres thermiques. Concernant les modèles de semi-
conducteurs isotropes, des schémas Volumes Finis en Dualité Discrète (Discrete Duality Finite
Volume, DDFV en anglais) on été proposés [64] pour supporter les maillages généraux sur des
domaines bi-dimensionnels. On peut aussi citer le schéma HMM [81] pour un modèle de plasma
(qui est essentiellement un système de dérive diffusion en statistique de Boltzmann avec une
anisotropie sur l’une des deux espèces). Ces schémas ne préservent pas la positivité des densités,
ce qui restreint leur analyse.

Afin de palier le défaut de positivé des schémas précédemment cités, différentes stratégies
ont été proposées. Elles reposent sur l’introduction d’une nonlinéarité dans le schéma.
On peut notamment citer les méthodes [245, 113, 32, 48] qui reposent sur l’ajout d’une non-
linéarité dans le flux numérique. Ces méthodes s’avèrent robustes vis-à-vis de l’anisotropie et des
maillages pour des problèmes de diffusion linéaire, et l’existence et la consistance des flux sont
prouvées [32]. Plus récemment, une méthode pour des systèmes de Poisson–Nernst–Planck (un
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modèle pour décrire l’évolution d’ions dans une solution, semblable au système (2) mais avec
des conditions de bord de type Neumann sur tout le bord du domaine) sur maillage généraux a
été introduit et partiellement analysé [250] en suivant cette méthodologie.
Une autre solution a été proposée par Cancès et Guichard [55, 56] pour une classe d’équations
non-linéaires contenant l’équation d’advection-diffusion linéaire : discrétiser le flux d’advection-
diffusion

J(u) =Λ (∇u +u∇φ)

sous la forme non-linéaire suivante

J(u) = uΛ∇(log(u) +φ).

Par rapport aux méthodes présentées plus haut, l’avantage de cette stratégie est qu’elle repose
sur une non-linéarité qui a un sens au niveau continu. Celle-ci donne notamment au schéma
une structure d’entropie (de Boltzmann), qui permet de proposer une analyse (existence de
solutions positives et convergence). De plus, il est assez simple de généraliser ce schéma à des
diffusions non-linéaires (correspondant à des modèles avec des statistiques non-Boltzmann).
Suivant ce principe, un schéma non-linéaire Volumes Finis en Dualité Discrète a été dévéloppé
et analysé [52, 51]. Grâce à des inégalités fonctionnelles de type Sobolev logarithmique, une
analyse du comportement en temps long reposant sur l’entropie de Boltzmann est menée.

Méthodes d’ordre élevé

Nous nous intéressons maintenant aux méthodes d’ordre élevé. L’idée générale de ces mé-
thodes est d’utiliser des inconnues discrètes polynomiales pour obtenir une précision accrue,
pour peu que les solutions continues soient assez régulières. Ce gain de précision est générale-
ment accompagné d’un gain d’efficacité : pour un coût de calcul donné, on pourra atteindre une
meilleure précision avec une méthode d’ordre élevée qu’avec une méthode d’ordre bas.

Bien qu’il existe de nombreuses méthodes d’ordre élevé pour les problèmes diffusifs, dont
les éléments finis Pk , nous nous concentrons ici sur des méthodes conservatives, qui peuvent
s’interpréter comme des généralisations des méthodes d’ordre bas présentées précédemment
pour des problèmes de diffusion linéaires (pouvant être anisotropes et posés sur maillages
généraux). Historiquement, les premières méthodes introduites sont les méthodes Galerkin Dis-
continues [13, 9, 10] (Discontinuous Galerkin, DG en anglais). On peut interpréter ces schémas
comme une généralisation à l’ordre élevé des méthodes volumes finis TPFA : le schéma repose
sur un équivalent discret du flux entre chaque maille. Cette caractéristique permet d’assurer
le caractère conservatif de la méthode. Pour en améliorer l’efficacité, des versions hybrides
ont été introduites [85, 87]. Ces méthodes de Galerkin Discontinue Hybrides (Hybridisable
Discontinuous Galerkin, HDG en anglais) reposent sur l’ajout d’inconnues sur les faces afin de
découpler les inconnues de mailles. Ceci permet de réaliser une élimination des inconnues de
mailles (condensation statique) et ainsi obtenir un gain d’efficacité conséquent pour des ordres et
dimensions élevés. Une approche similaire, en utilisant des stabilisations différentes, donne lieu
aux méthodes Hybrides d’Ordre Elevé [100, 99, 97, 83] (Hybrid High Order, HHO en anglais).
Elles permettent notamment d’obtenir un ordre de convergence optimal (k + 2 en norme L2 pour
des inconnues de degré k), contrairement aux méthodes HDG originelles. Enfin, on peut citer les
méthodes des Elements Virtuels [20, 21, 22, 7] (Virtual Element Method, VEM en anglais), dont
l’analyse repose sur l’introduction d’espaces de fonctions non-polynomiales.

Les trois méthodes précédemment citées (HDG, VEM et HHO) sont fortement liées les unes
aux autres, et partagent une caractéristique commune : des inconnues auxiliaires, placées sur le
squelette du maillages (réunion des faces) sont utilisées pour réaliser une condensation statique,
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qui permet d’éliminer les inconnues de maille. On parle parfois de méthodes squelettales. Les
liens entre les méthodes HDG et HHO ont été étudiés et explicités dans [84], tandis que les
similarités entre les méthodes VEM et HHO sont discutées dans [192].

L’utilisation de ces méthodes squelettales d’ordre élevé pour des problèmes de convection-
diffusion est l’objet de travaux depuis plus d’une dizaine d’années. Concernant les équations
d’advection-diffusion linéaires, de nombreuses méthodes HDG ont été développées [86, 78, 79,
139, 229]. On peut également citer la méthode HHO [98], qui est une extension à l’ordre élevé
du schéma HMM [19]. Pour l’approximation de systèmes de dérive-diffusion, divers schémas
DG et HDG ont aussi été proposés [200, 77]. Toutes ces méthodes, qui traitent la diffusion de
manière linéaire, présentent un défaut de positivité.

A notre connaissance, la conception de schémas d’ordre élevé préservant la positivité est un
travail encore assez peu exploré, qui est essentiellement restreint à des méthodes DG.
La première stratégie connue pour préserver la positivité repose sur l’utilisation de schémas
DG dont la solution est positive en moyenne sur les mailles [198, 196]. Les inconnues peuvent
prendre des valeurs négatives dans la maille, mais on s’assure que leurs moyennes sont positives
en choisissant habilement des paramètres de stabilisation. Ce choix de stabilisation est délicat,
et dépend de l’ordre de la méthode ainsi que de la dimension du problème. De plus, le fait que
la solution puisse être ponctuellement négative limite pour le moment l’analyse des schémas.
Cette méthode a aussi été appliquée à des systèmes de Poisson–Nernst–Planck [197].
Une autre approche est proposée dans [36], où un schéma DG pour une équation de Fisher–KPP
(équation de la forme ∂tu − 4u = u(1 − u), avec des conditions de Neumann homogènes) est
introduit et analysé. Ce schéma suit les idées des schémas non-linéaires de [55, 56], et est
basé sur la structure d’entropie du problème, utilisée avec un changement d’inconnue non-
linéaire qui permet d’assurer la positivité de la solution. La positivité et la structure d’entropie
discrète permettent alors de fournir une analyse étendue du schéma, incluant l’existence de
solutions, le comportement en temps long et la convergence des solutions vers un problème
semi-discrétisé en temps. L’analyse du schéma est réalisée pour un ordre et une dimension
arbitraire. Cette analyse repose sur un terme de stabilisation bien choisi, qui fait intervenir les
normes L∞ des inconnues discrètes sur les faces du maillage. Les résultats numériques présentés
pour un problème unidimensionnel indiquent bien une préservation de la positivité et un bon
comportement en temps long, mais la question de l’ordre de convergence du schéma n’est pas
discutée.

Méthodes étudiées dans cette thèse : HFV et HHO

Le positionnement initial de cette thèse est d’utiliser les stratégies introduites dans [55, 56,
52, 51] pour développer et analyser des méthodes pour le modèle anisotrope (3) permettant
d’assurer la positivité des densités calculées. Parmi les méthodes volumes finis développées
pour gérer l’anisotropie de problèmes linéaires, une classe de schémas, les méthodes HMM, se
distingue des autres de par l’existence de généralisations d’ordre élevé. Puisque l’utilisation
de méthodes d’ordre bas est un succès, la question de savoir s’il est possible de proposer et
d’analyser des méthodes non-linéaires d’ordre élevé suivant les principes de [55, 56, 52, 51]
se pose naturellement. Avant de pouvoir développer des méthodes d’ordre élevé, un travail
préliminaire consiste à adapter les stratégies non-linéaires au cas des versions d’ordre bas des
schémas. Les méthodes qui nous intéressent dans cette thèse sont dites hybrides, basées sur des
inconnues dans les mailles et sur les faces.

Afin de concevoir des schémas préservant la structure, nous avons besoin d’utiliser des
méthodes implicites (en temps) et généralement non-linéaires. Une des questions cruciales
concernant leur analyse est l’existence de solutions. Comme pour l’étude des EDP il n’existe
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pas de méthodologie générale pour ce genre de résultats. La technique utilisée dans cette thèse
repose sur une méthode dite de continuité : l’idée est de comparer le schéma étudié avec un
schéma plus simple, dont on sait qu’il admet des solutions (typiquement, un schéma linéaire).
Cette comparaison se fait en reliant de manière continue les deux schémas. Il faut alors obtenir
des estimations a priori sur les solutions, qui permettent d’en déduire l’existence de solution
par des arguments de type degré topologique (voir par exemple [107] pour une introduction
au degré ainsi que des applications à des résultats d’existence pour des problèmes continus et
discrets). Ainsi, l’enjeu majeur de l’étude de schémas non-linéaires est l’obtention d’estimations
a priori. Il est intéressant de noter que, contrairement au cas de schémas linéaires, la question
de l’unicité des solutions ne découle en général pas des résultats d’existence. Cependant, cette
problématique ne se limite pas à des enjeux théoriques : la qualité d’une méthode doit aussi
être questionnée en pratique, à travers son implémentation dans un code de simulation. La
question de l’existence est aussi délicate en pratique qu’en théorie : puisque calculer une solution
revient à résoudre un système non-linéaire, comment peut-on la déterminer en pratique ? Dans
notre cas, l’implémentation repose sur des méthodes de Newton, pour lesquelles nous n’avons
pas de garantie théorique de convergence globale. Par conséquent, un enjeu réel est de vérifier
que l’on arrive bien à calculer une solution. L’implémentation d’un schéma non-linéaire qui
permet effectivement d’obtenir des solutions approchées est donc un résultat conséquent. Afin
de s’assurer que le schéma (et son implémentation) est robuste, il est également nécessaire de
réaliser des tests dans différentes situations (maillages, données physiques). Cette étape de test
doit aussi permettre de confirmer que les propriétés théoriques du schéma sont présentes en
pratique, notamment pour les schémas préservant la structure (positivité, comportement en
temps long).
Notons finalement qu’il existe en général tout un panel de méthodes pour approcher un problème
donné. Il est donc important de proposer une comparaison numérique, qui permet d’identifier
les points forts des méthodes et d’en comprendre les cadres d’utilisation les plus appropriés.
Cet aspect comparatif est assez présent dans cette thèse (Chapitres 1, 3 et 4). En particulier
nous proposons lorsque c’est possible un travail de comparaison entre des méthodes linéaires et
des méthodes non-linéaires. Il est important de noter que de tels travaux sont délicats, car les
résultats peuvent dépendre de l’implémentation des schémas plus que des schémas eux même.

Les méthodes d’ordre bas étudiées dans cette thèse sont basées sur les Volumes Finis Hy-
brides [123] (Hybrid Finite Volume, HFV en anglais, qui sont un cas particulier du schéma
SUSHI), qui coïncident avec les versions d’ordre bas des méthodes Hybrides d’Ordre Élevé [100]
(Hybrid High Order, HHO en anglais). Notons que les méthodes HFV partagent des liens très
forts avec les méthodes Différences Finies Mimétiques [40, 39] et les méthodes Volumes Finis
Mixtes [110]. Dans [112], les auteurs unifient l’analyse et la description de ces trois méthodes,
sous le nom de méthode Hybride Mimétiques Mixte (HMM).
Nous donnons ici une description succincte de la philosophie des schéma HFV. Pour une discré-
tisation D du domaine donné, on introduit des inconnues discrètes

uD = ((uK )K∈M, (uσ )σ∈E )

constituées d’inconnues de maille uK ∈ R d’inconnues de face uσ ∈ R. L’approche de la méthode
est locale : pour chaque maille K , on va définir un gradient discret sur K qui dépend des
inconnues locales : l’inconnue de maille uK et les inconnues de face de la maille (uσ )σ∈EK . Cette
approche permet d’obtenir un gradient discret ∇DuD sur Ω, qui est utilisé comme analogue
discret du gradient continu. De manière équivalente, on peut définir des flux numériques
FK,σ (uD) associés à ce gradient discret, et écrire la méthode comme une méthode volumes finis.
Comme pour le gradient, les flux sont locaux, dans le sens où FK,σ (uD) dépend uniquement de



18 Introduction générale

uK et des inconnues de face locales (uσ )σ∈EK :

FK,σ (uD) =
∑
σ ′∈EK

Aσσ
′

K (uK −uσ ′ ),

où les Aσσ
′

K dépendent de la géométrie du maillage et du tenseur. L’une des forces majeures
de cette approche locale consiste en la possibilité de réaliser une condensation statique lors
de la résolution numérique des systèmes linéaires correspondant : l’inconnue de maille K
peut être exprimée en fonction des inconnues de face associées. Il est alors possible d’éliminer
localement les inconnues de maille, pour se ramener à un système linéaire sur les inconnues
de face uniquement. Cette procédure offre un gain d’efficacité conséquent, en diminuant de
fait le nombre d’inconnues de la méthode. Enfin, notons que les schémas HFV coïncident
avec les schémas TPFA dans des cas isotropes sur des maillages fortement contraints, dits
suradmissibles [123].

Comme pour les méthodes HFV, les schémas HHO sont basés sur des inconnues hybrides

uD = ((uK )K∈M, (uσ )σ∈E ) ,

mais ici les inconnues de maille et les inconnues de face sont polynomiales. Comme pour la
méthode HFV, l’idée principale est de reconstruire un gradient sur chaque maille, en utilisant
toutes les inconnues locales à disposition (inconnue de maille et inconnues de face). La définition
de ce gradient suit une formule d’intégration par parties discrète, qui est testée contre des
fonctions polynomiales. Ce gradient discret est consistant avec le gradient continu, mais il
présente un défaut de stabilité. Pour obtenir un schéma stable, il faut également prendre en
compte les sauts entre les inconnues de mailles et les inconnues de face, via un terme de
stabilisation. Le choix de cette stabilisation est crucial, car il a une influence directe sur l’ordre
de convergence. La stabilisation originelle de [100] permet, pour des inconnues de maille et de
face de degré k d’obtenir un schéma d’ordre optimal k + 2 en norme L2. Avec ce choix, le schéma
HHO pour k = 0 coïncide avec la méthode HFV sous certaines hypothèses sur les données et le
maillage [100]. Notons que la stabilisation initialement utilisée pour les méthodes HDG permet
d’obtenir une convergence d’ordre k + 1 en norme L2 pour la même configuration.
La stabilisation utilisée au Chapitre 4 est différente de la stabilisation HHO originelle. Elle
repose sur des inconnues de maille “enrichies” de degré k+ 1 et des inconnues de face de degré k.
Avec de telles inconnues discrètes, la définition du gradient discret ne change pas, mais on peut
utiliser une stabilisation dite de Lehrenfeld-Schöberl [190, 191], qui permet d’obtenir un schéma
d’ordre k + 2 en norme L2. Dans le même temps, la condensation statique permet de garder un
système global qui ne dépend que des inconnues de face, de degré k. De telles méthodes sont
nommées méthodes HHO d’ordre mixte (k,k+ 1) ou méthodes HDG+. L’intérêt de la stabilisation
de Lehrenfeld-Schöberl est qu’elle est bien plus simple à exprimer, manipuler et implémenter
que la stabilisation originelle de [100].

Overview of the works and results

In this section, we describe the main theoretical and numerical results presented in the
manuscript. For each chapter, we also give some details about the codes implemented.
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Long-time behaviour of Hybrid Finite Volume schemes for advection-diffusion
(Chapter 1)

In the first chapter of this thesis, we focus on the numerical approximation of the linear
advection-diffusion toy model

∂tu −div(Λ (∇u +u∇φ)) = f

with Hybrid Finite Volume (HFV) methods preserving entropy structures of the continuous
problem. We focus on HFV methods because they are a first step towards HHO schemes.

We first introduce two linear methods (namely the one introduced in [19] and an exponential
fitting scheme based on [43], relying on the change of unknown ρ = u eφ). Then, we develop
a new nonlinear scheme based on the reformulation of the flux uΛ∇(log(u) +φ) as in [56, 52]
for Vertex Approximate Gradient (VAG) and Discrete Duality Finite Volume (DDFV) methods.
The three HFV schemes have an entropy structure, related to quadratic entropies for the linear
schemes and Boltzmann entropy for the nonlinear one. Thanks to these entropy dissipation
estimates, we show several theoretical results.

The first theoretical result of this chapter is related to the existence of (positive) solutions to
the nonlinear scheme, stated in Theorem 1. The associated proof differs from the existing ones
of [56, 52, 51, 57], and is based on a discrete entropy method alongside with a Brouwer fixed-
point argument. The method of proof is generic and can be easily adapted to any schemes with
an entropy structure, see for instance [156, 1] and the other Chapters of the present manuscript.
Other analysis results relate to the discrete long-time behaviour of the three schemes. These
results are stated in Theorems 2, 3 and 4, and assert that the discrete solutions converge
exponentially fast towards their associated steady-states as time tends to infinity. The proofs
essentially rely on discrete functional inequalities. For both linear schemes, an analysis for data
out of equilibrium is available.
As an intermediate step of the long-time behaviour analysis, we have established a Logarithmic-
Sobolev inequality adapted to problems with Dirichlet boundary conditions in Appendices 1.A.2
and 1.A.3. Up to our knowledge, these results are new, both in the continuous and discrete
frameworks.

We numerically validate our theoretical findings on a set of test-cases (see Figure 2) and, for
completeness, we also compare the accuracy of the three schemes on stationary problems. These
tests reveal that the two linear schemes can indeed compute non-positive solutions in practice.
Moreover, all three schemes are accurate at order two in space for L2 norm.

This work is an article published in Numerische Mathematik [70], in collaboration with Claire
Chainais-Hillairet, Maxime Herda and Simon Lemaire.

About the codes

The HFV codes related to this first work are implemented in C++. The codes rely on an
already existing mesh class for 2 dimensional meshes. The implementation is based on the
“Finite Volume" flavour, using numerical fluxes. The main difficulty of these codes lies in the
nonlinear schemes and the related Newton methods. Two codes were developed for the need of
Chapter 1:

(i) hfv_evol: a code for linear anisotropic advection-diffusion equations with homogeneous
Neumann boundary condition, zero source term and symmetric diffusion tensor. It includes
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Figure 2 – Long-time behaviour of discrete solutions to HFV schemes on a Kershaw mesh.

the linear HMM scheme (1.26) of [19], the linear HFV exponential fitting scheme (1.35)
and the nonlinear HFV scheme (1.45). The HMM scheme is implemented to handle general
(not necessarily irrotational) advection fields. This code was used for the numerical results
about positivity and long-time behaviour presented in Sections 1.5.2 and 1.5.3.

(ii) hfv_sta: a code for stationary linear anisotropic advection-diffusion equations with mixed
Dirichlet-Neumann boundary condition (with a Dirichlet boundary of positive measure)
with general boundary data, general source term and symmetric diffusion tensor. As for
hfv_evol, this code include the three schemes presented in Chapter 1. For the nonlinear
scheme, in order to ensure the convergence of the Newton method, a continuation proce-
dure from the thermal equilibrium towards the real problem was implemented. This code
was used for the accuracy study of Section 1.5.4.

Structure-preserving schemes for semiconductor models (Chapters 2 and 3)

In Chapters 2 and 3, we assert the relevance of the previously selected method (the nonlinear
HFV scheme) by using it on a complex coupled system of PDEs (3) modelling semiconductor
devices. The aim of this work is threefold:

— use the nonlinear HFV scheme on a nonlinear and anisotropic problem which cannot be
approximated thanks to TPFA schemes;

— give us a better understanding of the theoretical features needed to approximate this kind
of problems (with the aim of developing high-order schemes);

— check that such schemes actually work in practice for more complex problems than linear
advection-diffusion equations.

In Chapter 2, we are interested in the numerical approximation of a drift-diffusion system
which models semiconductor devices. The model under consideration is a generalisation of
the one introduced in [143]. Its main feature is the fact that it takes into account an external
magnetic field, which induces a rotation of the charge carriers (see Figure 3) and therefore
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anisotropy on the convection-diffusion equations. From a mathematical point of view, such a
system is modelled by the following system, where the unknowns N and P are the density of
negative (electrons) and positive (holes) charges, and φ is the electrostatic potential induced by
the spatial inhomogeneity of the electric charges:

∂tN −div(NΛN∇(h(N )−φ)) = −R(N,P )

∂tP −div(PΛP∇(h(P ) +φ)) = −R(N,P )

−div(Λφ∇φ) = C + P −N.

In this system, ΛN and ΛP are (potentially) nonsymmetric anisotropic tensors related to the
magnetic field, h is a nonlinearity in the diffusion (related to the so-called statistics used) and
R(N,P ) is a reaction term. Because of the anisotropy induced by the magnetic field, it is not
possible to design TPFA-admissible mesh for this problem. In [143] Gajewski and Gärtner
propose a scheme based on a perturbation of the TPFA Scharfetter–Gummel scheme in order
to handle this anisotropy for Boltzmann statistics (h = log), but the scheme proved to compute
negative densities on some situations. On the other hand, the positivity of the density is crucial
both from a practical (since negative densities holds no physical meaning) and theoretical (since
the analysis of the schemes relies on entropy structure, which do not have any meaning if the
densities are negative) point of view. Thus, we use the nonlinear HFV method introduced in
Chapter 1 in order to tackle both anisotropy and positivity issues, and introduce a structure-
preserving scheme for this model.

With respect to the Chapter 1, the main novelty and difficulty of this work is the support
of the coupling between unknowns. Another difference comes from the nonsymmetry of the
tensors ΛN and ΛP , but it proves not to be a significant issue for the HFV method used. Last,
since the diffusion considered for the equation on the charge carriers are nonlinear, one has
to handle general nonlinearities and potentially two bounds on the densities. The analysis
highlights the importance of the quasi-Fermi potentials wN = h(N )−φ and wP = h(N ) +φ, which
are the key variables to handle the coupling. Thanks to this approach, we show that the scheme
admits solution with relevant physical bounds on the densities (which are in particular positive),
and preserve the long-time behaviour of the solution.

Our first result regarding the approximation of semiconductor models is Theorem 7, in which
we state an existence result for the scheme. The computed densities are shown to be bounded
in appropriate intervals (and in particular are positive) thanks to the use of a discrete entropy
structure. We use the strategy employed in Chapter 1 together with a key correspondence
discussed in Section 2.3.2 between discrete densities and discrete quasi-Fermi potentials through
the nonlinear stationary scheme (2.42).
A second result of this work is Theorem 9, in which we establish the exponential decay of the
discrete solutions towards the associated thermal equilibrium on a fixed mesh. The proof of this
result relies on the use of a discrete Poincaré inequality on the discrete quasi-Fermi potentials.

From a numerical point of view, we give some evidence of our theoretical results, and
investigate the relation between the cost of the scheme (number of Newton iterations) and the
intensity of the magnetic field. Moreover, we assert the numerical robustness of the scheme with
respect to the physical data, including the intensity of the magnetic field.

Following this work, we focus in Chapter 3 on the numerical comparison of two different
structure-preserving methods for drift-diffusion systems, namely the HFV scheme introduced
in Chapter 2 and a DDFV scheme based on the scheme for advection-diffusion [52, 51]. Up to
our knowledge, such a comparative work between positivity preserving schemes on general
meshes for coupled problems is new, but is fundamental in order to to understand the practical
advantages and limitations of each method. For the sake of simplicity and conciseness, we
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Figure 3 – Influence of the magnetic field intensity on the density of electrons of a non-
equilibrium steady state.

consider a simplified model with Boltzmann statistics, without anisotropy neither reaction
terms. We present both schemes in a similar way, in order to point out the numerous theoretical
similarities between both frameworks. Therefore, the notations used in this Chapter (for the
mesh and the HFV scheme) differ a little bit from these used in the rest of the manuscript. We
then perform a numerical comparison about the long-time behaviour and the preservation of
the positivity. Overall, both schemes present a similar behaviour, both from a quantitative and
qualitative point of view.

These works are published in M2AN [213] (Chapter 2) and in the book of proceedings of the
conference FVCA X [187] (Chapter 3, in collaboration with Stella Krell).

About the codes

The HFV code related to this part, hfv_SC, is implemented in C++ and follows the structure
of hfv_evol. It is a code for transient anisotropic drift-diffusion system with mixed Dirichlet-
Neumann boundary conditions. This code is developed to handle both Boltzmann and Blakemore
statistics, realistic recombination/generation term (either Auger recombination, Shokley-Read-
Hall term of a linear combination of both), anisotropic and non-symmetric tensors. With
respect to the previous code, the main difficulty of the implementation lies in the coupling
between the three different unknowns (positive and negative charges carrier density, electrostatic
potential). Considering nonlinear diffusion (Blakemore statistics) for the densities also implies
new challenges, including the fact that one has to handle two bounds on the densities (a lower
one, which is 0 and upper one) in the Newton method. Another main difference lies in the stiff
behaviour induced by the coupling (for small Debye lengths and strong magnetic fields), which
requires a more refined choice of parameters (thresholds of truncation and stopping criteria).
This code was used for the numerical results of Chapters 2 and 3.
Regarding the DDFV scheme studied in Chapter 3, it was implemented by Stella Krell.
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High-order schemes for advection-diffusion (Chapter 4)

In the last chapter, we are interested in the discretisation of advection-diffusion equations
with high-order methods in space. The main goal of this part is to develop and analyse a high-
order (which means, at least of order 3 in L2 norm in space) scheme which keeps the structure
preserving features of the low-order schemes introduced in the previous chapters, and especially
preserves the positivity. There is moreover a real need to investigate the numerical behaviour
and the efficiency of such schemes for 2D problems. Thus, our objective is twofold:

— develop and analyse high-order structure-preserving schemes for diffusive problems;

— exhibit reasonable evidence that these high-order methods are appealing in terms of
computational efficiency (compared to low-order structure preserving methods).

As in Chapter 1, this work focuses on a single linear advection-diffusion equation, but is of
course intended to be used on more complex problems, including the anisotropic drift-diffusion
system studied in Chapter 2.

We now provide a brief discussion about the locks and the key we had to identify in order
to achieve the main goal of the thesis. The difficulties one needs to face in the design of a
positivity-preserving high-order scheme inspired from the HFV scheme of Chapter 1 essentially
lie in the following questions.

(i) How can we ensure (both from a theoretical and a practical point of view) that the
polynomial unknowns stay positive?
Indeed, it is not easy a priori to infer the sign of a polynomial function (of arbitrary degree)
from the degrees of freedom (values of the function at some points, or coefficients of the
function in a given polynomial basis) which are the quantities available in practice in the
code. Such a difficulty seems to be further reinforced by general meshes.

(ii) How can we define high-order counterparts of the “reconstruction operators” used for
the nonlinear HFV schemes?
Indeed, the design and the analysis of the nonlinear HFV schemes rely on the definition of
a local operator rK : V K → R, which maps the local unknowns to a constant within the cell.
A natural high-order generalisation of this operator (in order to get a consistent scheme at
the expected order) should be an operator rkK : V kK → Pk(K), where V kK is the set of local
(polynomial) unknowns, and Pk(K) is the space of polynomials functions on the cell K .
However, using a simple mean between cell and face unknowns, as it was done for the
low-order schemes, is not a relevant possibility anymore since the face unknowns are not
defined on the cell.

(iii) How can we generalise the method to obtain the L∞ a priori estimates on the discrete
solution?
Indeed, the existence results for the low-order schemes rely on entropy methods: a control
on the discrete entropy and its dissipation ensures that the discrete solution is bounded in
L∞ (with meshsize-dependant bounds). Up to now (and in similar works with different
space discretisations [56, 52, 57]) the proofs of such results are based on a propagation of
the information: one has a bound on a given cell unknown thanks to mass conservation, can
therefore compare this unknown with the surrounding face unknowns and get estimates on
these face unknowns. Then, proceeding in the same way, we compare the face unknowns
with nearly cell unknowns, and get a bound for every unknown. For high-order schemes, a
natural comparison can be performed on faces, between the trace of the cell unknown and
the surrounding face unknowns. However, once we have a bound on a given face unknown,
inferring a bound on the neighbouring cell unknown seems difficult, since we can only get
information on the trace of this unknown.
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Of course, these issues are somehow interconnected: the reconstruction operators should also
be positive on the cells, and should be the key to get the algebraic structure allowing to get L∞

bounds on the unknowns. The work presented in Chapter 4 proposes a first solution in order to
answer the three previous points. We detail below the key ideas.

(1) Potentials as polynomials and densities as exponentials of polynomials. With regards
to the analysis performed in Chapter 2, the key idea to solve the positivity issue (i) is to
use the quasi-Fermi potential w = log(u) +φ as the main unknown. Therefore, we want to
approximate ` = log(u) as a polynomial function (on each cell and face), and reconstruct a
discrete density by taking the exponential of the discrete `. The resulting discrete solution
will thus be positive on the cells and faces, as the exponential of some real functions. Note
that this process is easily generalisable to nonlinear diffusion since one just has to use the
distribution function g of this statistics instead of the exponential.

(2) Two different reconstructions for the consistent and stabilisation parts. To address the
reconstruction issue (ii), the solution chosen is to split the reconstruction operator into two
different parts: a “consistent” reconstruction defined on the cells, which only takes into
account the cell unknowns, and a “stabilising” reconstruction defined on the faces, which
takes into account the face unknowns as well as the traces of the cell unknown. In order
to simplify the design of the stabilising reconstruction, we choose to use a variant of the
classical HHO scheme: instead of using cell and face unknowns of the same (maximal)
degree k, we increase the maximal degree of the cell unknowns to k + 1. Therefore, the
scheme that we use is based on a mixed-order HHO(k,k + 1) scheme (see [83, Section 3.2.1],
in HHO(l,p) l is the degree of face unknowns and p is the degree of cell unknwons), and
on a stabilisation whose characteristics are derived from the so-called Lehrenfeld-Schöberl
stabilisation [190, 191] in the context of HDG methods (which are sometimes called HDG+
schemes). This strategy allows for a scheme of order k + 2 (in L2 norm) while the systems
to solve depend only on face unknowns, of degree k.

(3) Over-dissipation thanks to over-stabilisation. To tackle the issue (iii), we first have to
understand how such results are achieved for low-order schemes. For all the nonlinear
schemes presented and analysed in [56, 52, 57, 70], the proofs of L∞ a priori estimates rely
on the definition of the reconstruction operators, which ensure an over-dissipation: at the
discrete level, one adds something to increase the dissipation (for the HFV scheme, we add
the faces unknowns to get this over-dissipation, for the conforming P1 scheme of [57], the
authors use the fact that the mean of a positive affine function on a simplex controls every
local DOF of the unknown). In order to get analogous results in the high-order framework,
we introduce a new term in the discretisation which induces such an over-dissipation. This
term, which corresponds to a discretisation of −εdiv(Λ∇(log(u) +φ)) can be seen as an
over-stabilisation, where the ε depends on the mesh and tends to zero as the mesh is refined.
Such a term provides sufficient control on the quasi-Fermi potential to obtain discrete
L∞ bounds from the entropy and its dissipation. Moreover, we scale this stabilisation
parameter ε with respect to the size of the mesh so that it does not change the order of
accuracy of the scheme. On the other hand, this stabilisation is designed to not disturb the
mass preservation neither the thermodynamical consistency: the scheme has an entropy
structure, and preserves the thermal equilibrium whether with or without this stabilisation.
Up to now, we do not know if this over-stabilisation is really needed in the analysis, but
numerical results indicates that the use of this term in the scheme does not have significant
impact on its behaviour neither on its accuracy.

In order to demonstrate the interest of using high-order schemes, we introduce two arbitrary
order skeletal schemes : a linear one (4.14), based on the exponential fitting strategy already



Overview of the works and results 25

used in Chapter 1, and a nonlinear one (4.20), devised to preserved the positivity according
to the previous discussion. Both schemes preserve the thermal equilibrium and enjoy discrete
entropy structures. The exponential fitting schemes is essentially introduced for comparison
purposes with respect to the nonlinear scheme.

In terms of analysis, our result is the existence of solutions (with positive densities) to the
nonlinear scheme (4.20), stated in Theorem 10. This result is based on a discrete a priori estimate
stated in Lemma 9, alongside with the entropy structure and the mass conservation property of
the scheme. As previously discussed, the use of an over-dissipation term is the key ingredient to
get these estimates.
We also state long-time behaviour results for both schemes in Propositions 14 and 16. Regarding
the exponential fitting scheme, we obtained the exponential convergence of the solution towards
the thermal equilibrium by the use an adapted discrete Poincaré inequality. For the nonlinear
scheme, an analysis relying on discrete logarithmic Sobolev inequalities is not yet available, and
the convergence of solution in time is based on a compactness argument alongside with the fact
that the dissipation tends to vanish.

At the numerical level, we investigate the behaviour of both linear and nonlinear schemes,
using the same test-cases as in Chapter 1, and compare some of the results with the low-order
schemes of Chapter 1. In particular, we show that our theoretical results about long-time
behaviour are satisfied for both scheme, and that the non-linear scheme preserves the positivity
of the solution, while exhibiting an optimal order of accuracy (convergence of order k + 2 for
face unknowns of degree k). Moreover, this comparative work indicates two important outcomes.
First, the use of the high-order version of the nonlinear scheme allows for significant gains in
computational efficiency despite the fact that the time discretisation is merely of order one (see
Figure 4). At the same time, when using high-order schemes, the use of nonlinear strategies seems
to be needed to preserve the positivity of the discrete solution. Indeed, the solutions computed
with the linear exponential fitting scheme demonstrates spurious oscillations (inducing some
negative values) whose intensity increases with the order of approximation.
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Figure 4 – Efficiency of non-linear HHO methods.
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At the end, these promising results pave the way for the development and analysis of similar
high-order and efficient schemes for complex dissipative systems.

The Chapter 4 is an extended version of the proceeding [212] for the conference FVCA X.

About the codes

The HHO codes related to Chapter 4 are implemented in C++. The codes rely on an existing
code developed by Simon Lemaire for a linear Poisson equation, with isotropic diffusion and
homogeneous Dirichlet boundary conditions on 2 dimensional meshes. This initial code relies
on equal-order HHO method, and the consistent part used is the (continous) gradient of the
potential reconstruction. Three codes were developed for the need of the last chapter:

(i) hfv_fe: a test code which was a preliminary work in order to understand how to write
the finite volume scheme hfv_evol in a finite element flavour, with an implementation
allowing a natural high-order extension. The nonlinear schemes implemented aim to
approximate solution to transient linear advection-diffusion equations with homogeneous
Neumann boundary conditions. The main attempt was to write separately the consistent
term and the stabilisation term, in such a way that polynomial unknowns could be use
instead of constant ones, while keeping an accuracy of order 2. The unknown used was
either the density u or the potential ` = log(u). The numerical results obtained with
this code are not shown in this manuscript, but they indicated the importance of using
an appropriate stabilisation term. These results also motivated the use of mixed-order
HHO methods instead of equal-order one, in view of the complexity of both analysis and
implementation of a relevant stabilisation term.

(ii) hho_expfitt: a code for linear anisotropic advection-diffusion equations with mixed Dirichlet-
Neumann boundary conditions and general source term. The scheme implemented (4.14)
is based on the exponential fitting strategy already used in Chapter 1, and is therefore
a linear method. The main work regarding this code was to adapt the existing code to
mixed-order method, implement general boundary conditions and discrete gradient op-
erators. An other issue lies in the non-polynomial reconstruction of the discrete density
(see Remark 19). There are two versions of this code: one for for stationary problems (with
does not handle pure Neumann boundary conditions) and one for transient problems. This
code was used for the numerical results of Chapter 4.

(iii) hho_nl: a code for transient anisotropic advection-diffusion equation with homogeneous
Neumann boundary conditions. The scheme implemented is the nonlinear HHO scheme (4.20),
main goal of this PhD. The main difficulties lies in the use of non-polynomial reconstructed
densities and the nonlinearity of the scheme. Moreover, the use of high-order polynomials
induces many numerical instabilities which hinders the convergence the Newton method.
Various strategies had to be implemented in order to get a reliable solver, including trunca-
tion, filtering of oscillations and loop break for divergent Newton methods. The different
tricks used are discussed in Section 4.4.1. The structure of this code is different from
the previous ones, and essentially relies on two classes: one for representing the discrete
unknowns (both potentials and densities), and an other one to handle the Newton method.
This code was used for the numerical results of Chapter 4.
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Semiconductors models with irregular convection fields (Appendices A-B-C-
D)

The Appendices are dedicated to the numerical approximation of realistic modern semi-
conductor devices. This work began following Patricio Farrell’s visit to Lille in October 2021,
during which he presented to the Rapsodi team various projects and open questions concerning
numerical approximations of real-life models of modern semiconductors. One of them was about
semiconductor models which takes into account what is sometimes called random fluctuations
in the alloys constituting the devices.

In a very simplified way, this consists in a drift-diffusion system with Boltzmann statistics
(as the one studied in Chapter 3) where the convection fields are perturbed by some irregular
quantities, called band-edge energies (BEEs). It reads

∂tN −div(∇N −N∇(φ−Ec)) = 0

∂tP −div(∇P + P∇(φ+Ev)) = 0

−λ2 div(∇φ) = C + P −N,

where Ec and Ev are the conduction and valence energies band, which are a characteristic of the
material used in the semiconductor device. For classical models and devices, these BEEs are often
considered to be constant functions, and therefore do not really appear in the equation since they
only intervene trough their gradients. The main originality of the “random alloys fluctuations
model” considered here lies in the fact that we do not consider constant BEEs anymore: these
functions are now irregular ones. This irregularity comes from intern fluctuation inside the
materials, and could even be described by a function which exhibits some jumps between each
pair of atoms. This problem can then be reduced in a first time to the numerical approximation
of solution to the advection-equation

∂tu −div(∇u +u∇(φ+E)) = 0,

where φ is a regular potential and E is an irregular band edge energy (which can be, to fix ideas,
a piecewise constant function). The approach used by P. Farrell and his collaborators [221, 222]
to get numerical simulations of such equations relied on a TPFA-Scharfetter–Gummel scheme,
used as if the BEE E was regular, either with the discontinuous E or with a regularised version of
E, obtained thanks to a Gaussian convolution. With this method, simulations provide numerical
solutions in accordance with the physical intuition. On the other hand, this approach was
lacking in a more robust analytical framework and some guarantees about the quality and the
robustness of the approximation. Indeed, even at the continuous level, if E is a discontinuous
function, its is not straightforward to define a natural notion of solution to such an equation (for
example in 1D, with a piecewise constant BEE, the gradient of E is a sum of Dirac masses and
the corresponding advection field is extremely irregular). In the case one uses a regularisation
on E, the question of knowing how to regularise in a good way to keep a similar behaviour to the
non-regular model also needs to be answered.

Following the presentation of this problem, I suggested that one could use a strategy inspired
from the exponential fitting procedure used in Chapter 1 in order to overcome the irregularity
issue. Indeed, formally, using the change of variable ρ = u

e−E , we get the following equation on ρ

e−E ∂tρ −div
(
e−E (∇ρ+ ρ∇φ)

)
= 0,

which does not take into account the undefined ∇E. Therefore, this formal computation suggests
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to use the new "exponentially fitted" formulation to define a notion of solution to this irregular
problem, and then define a solution of the irregular problem as u = ρeE . At the numerical level,
this strategy implies to solve problems with a heterogeneous and discontinuous tensor e−E . I then
spent 10 weeks at the WIAS in Berlin during the summer of 2022 to work with Patricio Farrell
on these issues. This stay led to some discussions and collaborations with physics researchers
who worked on these models: Thomas Koprucki and Timo Streckenbach from the WIAS (Berlin,
Germany), and Stefan Schulz, Michael O’Donovan and Robert Finn form the National Tyndall
institute (Cork, Ireland). The content of the appendices presents the work resulting from this
stay and these collaborations.

From a numerical point of view, this work is quite different from the previous ones, since we
focus on TPFA finite volume methods. The main reason to this choice lies in the necessity to be
able to use the methods developed in the existing codes currently used by the collaborators for
the simulation of LEDs. However, we believe that the nonlinear hybrid methods studied during
this PhD could be used in this framework. In fact, in the light of certain difficulties encountered
to generate TPFA-admissible meshes for these problems in the situations studied in practice, the
use of methods handling general meshes could be a solution in order to gain some computational
efficiency, and therefore a first step towards the simulation of bigger devices. The same remark
should apply to high-order schemes, in regards of the encouraging results of Chapter 4 about
efficiency and computational costs. Thus, one can see this project as a preliminary work in order
to apply state of the art numerical methods to current problems in physics and engineering.

In Appendix A, we are first interested in a the simple model of advection-diffusion with
irregular advection field suggested by the physicists, and we propose a theoretical framework to
analyse the equation, as well as different TPFA schemes to approximate the solution. Then, we
discuss and summarise the works done with the physicists about the design of efficient LEDs.

For completeness, the full versions of the articles corresponding to these works are presented
in the last appendices. In Appendix B, we compare the numerical results obtained thanks to
our strategy with numerical results obtained by commercial packages and real experiments.
In Appendix C, we investigate some issues related to the approximation of models with non-
Boltzmann statistics. These issues are well-known in the mathematical community, but are
rather poorly documented in physical communities. Especially, the main interest of this work is
to show that unsuitable approximations lead to non-correct behaviours, which can even be seen
on I-V curves. Last, in Appendix D we investigate numerically the way of designing efficient
LEDs.

The Appendix B is an article submitted [219], in collaboration with Michael O’Donovan, Patricio
Farrell, Timo Streckenbach, Thomas Koprucki and Stefan Schulz. Appendix C is an article pul-
ished in Optical and Quantum Electronics [126], in collaboration with Patricio Farrell, Michael
O’Donovan, Stefan Schulz and Thomas Koprucki. Last, the Appendix D is an article published
in Applied Physics Letters [133], in collaboration with Robert Finn, Michael O’Donovan, Patricio
Farrell, Timo Streckenbach, Thomas Koprucki and Stefan Schulz.

About the codes

The work of implementation related to this part differs from the previous ones, since it
covers the modification of an existing code for realistic problems and the development of a
demonstration code for toy problems.

In order to investigate the different possible discretisations of advection-diffusion with



Overview of the works and results 29

irregular advection, a C++ code was implemented from scratch: tpfa_qw. It is developed
to approximate the solutions of the model problem −div(u∇ (h(u) +φ+E)) = f in one space
dimension. It can handle both Boltzmann and Blakemore statistics, generic electrostatic potential
φ and piecewise constant band edge energy E. The main specificity of the code lies in the fine
handling of the meshes and the discontinuities. Indeed, one of the strategies considered (the
one before this work for the simulations) is a scheme where the quantities are not continuous on
a given cell. With respect to the HFV codes this code marks the debut of the Object Oriented
Programming in the implementation, and it introduces the general structure used to solve the
nonlinear problem of Chapter 4. In particular, the code includes a class representing the discrete
unknowns, and a class which handles the Newton method. This last class also allows one to test
if the Jacobian is well computed.

On the other hand, an implementation work was performed on an existing code, ddfermi [104],
which is designed to simulate drift-diffusion processes in semiconductor devices. This code
handles 3D simulations, and various TPFA discretisations of the system, including the SEDAN
flux [265] and the Bessemoulin-Chatard flux [26]. My main contribution was to add some imple-
mentations of numerical fluxes for non-Boltzmann statistics with varying band-edge energies.
The simulations presented in Appendices B-C-D were obtained via ddfermi.
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This chapter is a work in collaboration with Claire Chainais-Hillairet, Maxime Herda and
Simon Lemaire published in Numerische Mathematik [70].

We are interested in the long-time behaviour of approximate solutions to anisotropic
and heterogeneous linear advection-diffusion equations in the framework of hybrid
finite volume (HFV) methods on general polygonal/polyhedral meshes. We con-
sider two linear methods, as well as a new, nonlinear scheme, for which we prove
the existence and the positivity of discrete solutions. We show that the discrete
solutions to the three schemes converge exponentially fast in time towards the as-
sociated discrete steady-states. To illustrate our theoretical findings, we present
some numerical simulations assessing long-time behaviour and positivity. We also
compare the accuracy of the schemes on some numerical tests in the stationary case.

1.1 Introduction

We are interested in the numerical approximation of linear advection-diffusion equations
on bounded domains. These equations constitute the main building block in the modelling of
more complex problems stemming from physics (e.g., porous media flows [17], or corrosion
models [16]), biology, or electronics (semi-conductor devices modelling [258]). Thus, designing
reliable numerical schemes to approximate their solutions is a pre-requisite before discretising
more complex models. Our aim here is the preservation of some key physical properties of these
equations at the discrete level, on a large variety of meshes.

Let Ω be an open, bounded, connected polytopal subset of Rd , d ∈ {2,3}, with boundary ∂Ω
divided into two disjoint open subsets Γ D and ΓN , in such a way that ∂Ω = Γ D ∪ ΓN . We consider
the following problem: Find u : R+ ×Ω→ R solution to

∂tu −div(Λ(∇u +u∇φ)) = f in R+ ×Ω,
u = gD on R+ × Γ D ,

Λ(∇u +u∇φ) ·n = gN on R+ × ΓN ,
u(0, ·) = uin in Ω,

(1.1)

where n is the unit normal vector to ∂Ω pointing outward Ω, and the data satisfy:

— Λ ∈ L∞(Ω;Rd×d) is a symmetric and uniformly elliptic diffusion tensor: there exist λ[,λ]
with 0 < λ[ ≤ λ] <∞ such that, for a.e. x in Ω, ξ ·Λ(x)ξ ≥ λ[|ξ |2 and |Λ(x)ξ | ≤ λ]|ξ | for all
ξ ∈ Rd ;
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— φ ∈ C1(Ω) is a regular potential from which derives the advection field V φ = −Λ∇φ,
assumed to satisfy V φ ∈H(div;Ω);

— f ∈ L2(Ω) is a source term;

— gD ∈H
1
2 (Γ D ) is a Dirichlet datum, assumed to be the trace on Γ D of uD ∈H1(Ω) satisfying

‖uD‖H1(Ω) ≤ C‖gD‖H1/2(ΓD ) for a given C > 0;

— gN ∈ L2(ΓN ) is a Neumann datum;

— uin ∈ L2(Ω) is an initial datum.

When |Γ D | = 0, we assume that the compatibility condition
∫
Ω
f +

∫
∂Ω
gN = 0 holds true, and

we denote by M the initial mass such that M =
∫
Ω
uin, which is known to be preserved along

time:
∫
Ω
u(t) = M for almost every t > 0. For further use, we also let in that case uM = M

|Ω| ∈ R,
and we refer to this quantity as the mass lifting. Advection-diffusion models of the form (1.1)
enjoy certain structural properties. First, when the data f , gD , gN , and uin are positive, then the
solution u is also positive. Second, the asymptotics t→∞, the so-called long-time behaviour of
the solutions, is well understood (see [33, 62, 63, 254] for related models). Indeed, the solution
u to (1.1) converges exponentially fast when t→∞ towards the steady-state u∞, solution to the
stationary problem 

−div(Λ(∇u∞ +u∞∇φ)) = f in Ω,

u∞ = gD on Γ D ,

Λ(∇u∞ +u∞∇φ) ·n = gN on ΓN ,

(1.2)

with additional constraint
∫
Ω
u∞ =M when |Γ D | = 0. The question of the long-time behaviour

has been widely studied in the context of many-particle systems, for which the second law
of thermodynamics ensures a relaxation of the transient phenomena towards an equilibrium.
From a mathematical point of view, this evolution is strongly related to the dissipation of an
entropy functional. Such a vision based on entropy dissipation has given birth to the so-called
entropy method. As highlighted by Arnold et al. in [8], the successful use of the entropy method
in kinetic theory paves the way to extended applications on various dissipative systems. We
refer the reader to the book [174] of Jüngel for a presentation of some of these applications.
In [33], Bodineau et al. proposed an entropy functional adapted to drift-diffusion equations
with non-homogeneous Dirichlet boundary conditions. A direct adaptation of their method
allows to conclude in the present case on the exponential convergence in time of the solution to
Problem (1.1) towards the solution to Problem (1.2).

Under appropriate assumptions on the data (a sufficient condition, also valid for more general
advection fields, is to assume that divV φ ≥ 0 a.e. in Ω and V φ ·n ≤ 0 a.e. on ΓN ), the stationary
Problem (1.2) is coercive and its well-posedness is straightforward. It turns out that, even if
such assumptions on the data are not fulfilled, for an advection field of the form V φ = −Λ∇φ,
the problem is still coercive in the new unknown ρ∞ = u∞ eφ, so that one can conclude on well-
posedness by solving the problem in the new unknown. Concerning the evolution Problem (1.1),
the same arguments show the existence and uniqueness of a global weak solution. For general
advection fields (not necessarily deriving from a potential), we refer the reader to the results of
Droniou [106] (for mixed Dirichlet-Neumann boundary conditions), and Droniou and Vázquez
[114] (for pure Neumann boundary conditions) for detailed statements about well-posedness
and regularity of the solutions.

When it comes to numerical approximation, the accuracy of the method is not the only
important feature. In some applications (e.g., in subsurface modelling, where the mesh often
results from seismic analysis), the mesh must be taken as a datum of the problem, and the
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numerical method needs to be adapted so as to handle potentially fairly general meshes. In
some other applications (e.g., power plant simulation), the preservation of the positivity of the
solutions (or better, of the monotonicity properties of the equation) is an important quality
criterion. In yet some other applications (e.g., nuclear waste repository management), finally, the
reliability of the simulations in very large time proves to be crucial for sustainability purposes.
The positivity and long-time behaviour of discrete solutions have been closely studied in the
context of standard two-point flux approximation (TPFA) finite volume schemes, for isotropic
diffusion (i.e., Λ = λId with λ : Ω → R?+) on orthogonal meshes. In [131], Filbet and Herda
studied the long-time behaviour of a TPFA scheme for nonlinear boundary-driven Fokker–Planck
equations, adapting to the discrete setting the arguments of [33]. In [69], Chainais-Hillairet
and Herda proved on a variety of models that a whole family of TPFA schemes (the so-called
B-schemes) preserves the exponential decay towards discrete steady-states. The results of [131]
and [69] are valid for general advection fields, and a choice of data |Γ D | > 0, f = 0, gD > 0,
gN = 0, and uin ≥ 0. We also refer to [195, 73, 160, 46] for related schemes and similar issues.
However, these TPFA schemes suffer from an intrinsic limitation: the mesh needs to be Λ-
orthogonal, which, in practice, restricts their use to isotropic diffusion tensors and (standard)
orthogonal meshes. In order to overcome this limitation, several linear finite volume methods
using auxiliary unknowns have been designed (cf. [109] for a presentation of some of these
schemes). As highlighted by Droniou in [109], these methods however suffer from a lack of
monotonicity, and so do not preserve the positivity of discrete solutions. As a possible remedy,
Cancès and Guichard introduced in [56] (see also the seminal paper [55]), for a class of models
encompassing (1.1) for pure Neumann boundary conditions and a choice of data f = 0, gN = 0,
and uin ≥ 0 with M > 0, a nonlinear vertex approximate gradient (VAG) scheme, designed so
as to preserve at the discrete level the positivity of the solutions and the entropy structure of
the models, for arbitrary anisotropic diffusions and general meshes. Following the same ideas,
Cancès et al. devised and analysed in [52] a (nonlinear) positivity-preserving discrete duality
finite volume (DDFV) scheme, whose discrete entropy structure and long-time behaviour were
fully studied in [51], based on the adaptation to the discrete setting of nonlinear functional
inequalities. The DDFV scheme at hand is however limited to the two-dimensional case, and
its adaptation to a three-dimensional framework seems difficult (cf. [109]). Let us also mention
the work [241] (and the references therein), in which a general framework for the convergence
analysis of positivity-preserving nonlinear cell-centred finite volume methods on general meshes
is introduced. On another level, it is known that, given adequate assumptions hold on the
data, the solutions to Problem (1.1) are regular in space (at least locally). This suggests that
the use of high-order methods shall be an interesting track in order to increase the accuracy at
fixed computational cost. Recently introduced by Di Pietro et al. in [100], hybrid high-order
(HHO) methods can be seen as an arbitrary-order generalisation of hybrid finite volume (HFV)
schemes, that were introduced by Eymard et al. in [123] as yet another way to overcome the
limitations of TPFA schemes. HFV methods hinge on cell and face unknowns (whence the
vocable hybrid), and as such benefit from a unified 2D/3D formulation. HFV methods have
also been bridged to the larger family of hybrid mimetic mixed (HMM) methods in [112]. In
view of the above elements, the study of HFV methods appears to be a natural first step in order
to design structure-preserving high-order (HHO) schemes for Problem (1.1), that shall both
increase the accuracy at fixed computational burden, and preserve the key properties (positivity
and long-time behaviour) of the model at hand.

In this article, we study three different HFV schemes for Problem (1.1). The first one is the
HFV variant of the HMM family of schemes introduced and analysed in the stationary setting
by Beirão da Veiga et al. in [19, 108] (note that an arbitrary-order (HHO) generalisation of this
scheme has been proposed in [98]). It is a linear scheme, based on a discretisation of the diffusive
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and advective fluxes, that is well-posed under a coercivity condition. The second scheme is
also a linear one. Its construction is based on exponential fitting, and takes inspiration from
ideas in [43] (it also shares some features with the works [189, 205] and [131], which cover
general advection fields). This scheme is unconditionally coercive. These two linear schemes
are not expected to preserve positivity, which motivates the introduction of the third method.
For pure Neumann boundary conditions, and a choice of data f = 0, gN = 0, and uin ≥ 0 with
M > 0 (see Appendix 1.B for the case of mixed Dirichlet-Neumann boundary conditions), we
introduce a nonlinear HFV scheme, that is devised along the lines of the nonlinear VAG and
DDFV schemes of [56] and [52, 51], so as to guarantee the positivity of discrete solutions. Our
first result, stated in Theorem 1, is the existence of (positive) solutions to this nonlinear scheme.
In a second time, we investigate the long-time behaviour of the three schemes at hand. We
establish in Theorems 2, 3, and 4 the exponential decay in time of their discrete solutions towards
the associated discrete steady-states. We numerically validate our theoretical findings on a set of
test-cases and, for completeness, we also compare the accuracy of the three schemes on stationary
problems.

The article is organised as follows. In Section 1.2, we introduce the HFV framework (mesh,
discrete unknowns and discrete operators) on a steady variable diffusion problem. In Section 1.3,
we introduce the three schemes for the transient advection-diffusion problem, and we discuss
their well-posedness. In Section 1.4, we study the long-time behaviour of the three schemes, and
prove exponential decay to equilibrium. In Section 1.5, we discuss the implementation of the
schemes, and provide a numerical validation of our theoretical results, as well as a comparison
of the stationary schemes in terms of accuracy. Appendices 1.A, 1.B, and 1.C finally collect some
functional inequalities and the proofs of supplementary and auxiliary results.

1.2 Hybrid finite volume discretisation of a variable diffusion
problem

The aim of this section is to recall the HFV framework on a steady variable diffusion problem,
which corresponds to (1.2) without advection term (V φ = 0). For a detailed presentation of the
method, we refer to [123].

1.2.1 Mesh and discrete unknowns

The definitions and notation we adopt for the discretisation are essentially the same as in
[123]. A discretisation of the (open, bounded) polytopal set Ω ⊂ Rd , d ∈ {2,3}, is defined as a
triplet D = (M,E ,P ), where:

— M (the mesh) is a partition ofΩ, i.e., a finite family of nonempty disjoint (open, connected)
polytopal subsets K of Ω (the mesh cells) such that (i) for all K ∈ M, |K | > 0, and (ii)
Ω =

⋃
K∈MK .

— E (the set of faces) is a partition of the mesh skeleton
⋃
K∈M∂K , i.e., a finite family of

nonempty disjoint (open, connected) subsets σ ofΩ (the mesh faces, or mesh edges if d = 2)
such that (i) for all σ ∈ E, |σ | > 0 and there exists Hσ affine hyperplane of Rd such that
σ ⊂ Hσ , and (ii)

⋃
K∈M∂K =

⋃
σ∈E σ . We assume that, for all K ∈ M, there exists EK ⊂ E

(the set of faces of K) such that ∂K =
⋃
σ∈EK σ . For σ ∈ E, we letMσ = {K ∈M | σ ∈ EK } be

the set of cells whose σ is a face. Then, for all σ ∈ E, eitherMσ = {K} for a cell K ∈M, in
which case σ is a boundary face (σ ⊂ ∂Ω) and we note σ ∈ Eext , orMσ = {K,L} for two cells
K,L ∈M, in which case σ is an interface and we note σ = K |L ∈ Eint .
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— P (the set of cell centres) is a finite family {xK }K∈M of points of Ω such that, for all K ∈M,
(i) xK ∈ K , and (ii) K is star-shaped with respect to xK . Moreover, we assume that the
Euclidean (orthogonal) distance dK,σ between xK and the affine hyperplane Hσ containing
σ is positive (equivalently, the cell K is strictly star-shaped with respect to xK ).

For a given discretisation D, we denote by hD > 0 the size of the discretisation (the meshsize),
defined by hD = sup

K∈M
hK where, for all K ∈M, hK = sup

x,y∈K
|x−y| is the diameter of the cell K . For all

σ ∈ E, we let xσ ∈ σ be the barycentre of σ . Finally, for all K ∈M, and all σ ∈ EK , we let nK,σ ∈ Rd
be the unit normal vector to σ pointing outward K , and PK,σ be the (open) pyramid of base σ
and apex xK (notice that, when d = 2, PK,σ is always a triangle). Since |σ | and dK,σ are positive,

we have |PK,σ | =
|σ |dK,σ
d > 0. We depict on Figure 1.1 an example of discretisation. Notice that the

mesh cells are not assumed to be convex, neither xK is assumed to be the barycentre of K ∈M.
Notice that hanging nodes are seamlessly handled with our assumptions, so that meshes with
non-conforming cells are allowed (see the orange cross in Figure 1.1; the cell K therein is treated
as an hexagon). We consider the following measure of regularity for the discretisation (which is

K
xK

xL

L

Ω

dK,σ

σ ′ = K |K ′
σ = K |L

PL,σ

nK,σ ′

xσ

K ′

hK ′

Figure 1.1 – Two-dimensional discretisation and corresponding notation.

slightly stronger than the ones advocated in [123, Eq. (4.1)] or in [111, Eq. (7.8)-(7.9)]):

θD = max

 max
K∈M,σ∈EK

hK
dK,σ

, max
σ∈E ,K∈Mσ

hd−1
K

|σ |

 . (1.3)
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Notice that θD ≥ 1, and that for all K ∈M,

hdK ≥ |K | =
∑
σ∈EK

|PK,σ | =
∑
σ∈EK

|σ |dK,σ
d

≥
∑
σ∈EK

hdK
dθ2
D

=
|EK |
dθ2
D
hdK .

Thus, the number of faces of any mesh cell is uniformly bounded:

∀K ∈M, |EK | ≤ dθ2
D. (1.4)

Also, it is an easy matter to verify that max
σ=K |L∈Eint

max
(
dK,σ
dL,σ

,
dL,σ
dK,σ

)
≤ θ

d
d−1
D . Given F a family of

discretisations, we say that F is uniformly regular if there exists θ ≥ 1 such that for all D ∈ F ,
θD ≤ θ.

We now introduce the set of (hybrid, cell- and face-based) discrete unknowns:

V D =
{
vD =

(
(vK )K∈M, (vσ )σ∈E

)
: vK ∈ R ∀K ∈M,vσ ∈ R ∀σ ∈ E

}
.

Given a mesh cell K ∈ M, we let V K = R × R|EK | be the restriction of V D to K , and vK =(
vK , (vσ )σ∈EK

)
∈ V K be the restriction of a generic element vD ∈ V D to K . Also, for vD ∈ V D, we

let vM :Ω→ R and vE :
⋃
K∈M∂K → R be the piecewise constant functions such that

vM|K = vK for all K ∈M, and vE|σ = vσ for all σ ∈ E .

In what follows, for any set X ⊂Ω, we denote by (·, ·)X the inner product in L2(X;Rl), for l ∈ {1;d}.
In particular, we have (wM,vM)Ω =

∑
K∈M
|K |wKvK and (wE ,vE )∂Ω =

∑
σ∈Eext

|σ |wσvσ . For further

use, we let 1D denote the element of V D with all coordinates equal to 1. Also, given a function
f : R→ R, and with a slight abuse in notation, we denote by f (vD) the element of V D whose
coordinates are the (f (vK ))K∈M and the (f (vσ ))σ∈E . Finally, we let the product wD × vD denote
the element of V D whose i-th coordinate is the product of the i-th coordinates of wD and vD.

When considering mixed Dirichlet-Neumann boundary conditions, we assume that the dis-
cretisation D is compliant with the partition ∂Ω = Γ D ∪ ΓN of the boundary of the domain, in the
sense that the set Eext can be split into two (necessarily disjoint) subsets EDext =

{
σ ∈ Eext | σ ⊂ Γ D

}
and ENext =

{
σ ∈ Eext | σ ⊂ ΓN

}
such that Eext = EDext ∪ENext . Notice that as soon as |Γ D | > 0, |EDext | ≥ 1.

We define the following subspace of V D, enforcing strongly a homogeneous Dirichlet boundary
condition on Γ D :

V DD,0 =
{
vD ∈ V D : vσ = 0 ∀σ ∈ EDext

}
.

In view of the upcoming analysis, we define a discrete counterpart of the H1 seminorm. Locally
to any cell K ∈M, we let, for any vK ∈ V K , |vK |

2
1,K =

∑
σ∈EK

|σ |
dK,σ

(vK − vσ )2. At the global level, for
any vD ∈ V D, we let

|vD |1,D =
√ ∑
K∈M
|vK |

2
1,K .

Notice that | · |1,D does not define a norm on V D, but if |vD |1,D = 0, then there is c ∈ R such that
vD = c1D (vD is constant). Thus, | · |1,D defines a norm on the space V DD,0 as soon as |Γ D | > 0, as
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well as on the space of zero-mass vectors

V ND,0 =
{
vD ∈ V D :

∫
Ω

vM = 0
}
.

For further use, and to allow for a seamless treatment of pure Neumann boundary conditions,
we introduce the notation V D,0, to denote either V ND,0 whenever |Γ D | = 0, or V DD,0 otherwise.

1.2.2 Discrete problem

The HFV method hinges on the definition of a discrete gradient operator ∇D, that maps any
element vD ∈ V D to a piecewise constant Rd-valued function on the pyramidal submesh ofM
formed by all the PK,σ ’s, for K ∈M and σ ∈ EK . More precisely, for all K ∈M, and all σ ∈ EK ,

∇DvD|K = ∇KvK with ∇KvK |PK,σ = ∇K,σvK = GKvK + SK,σvK ∈ R
d ,

where GKvK is the consistent part of the gradient given by

GKvK =
1
|K |

∑
σ ′∈EK

|σ ′ |(vσ ′ − vK )nK,σ ′ =
1
|K |

∑
σ ′∈EK

|σ ′ |vσ ′nK,σ ′ ,

and SK,σvK is a stabilisation given, for some free parameter η > 0, by

SK,σvK =
η

dK,σ

(
vσ − vK −GKvK · (xσ − xK )

)
nK,σ . (1.5)

Remark 1 (Choice of η). There are two specific values of the stabilisation parameter η > 0 for which
one recovers known numerical schemes from the literature:

(i) for η =
√
d, one recovers the original HFV scheme of [123], that coincides with the TPFA scheme

on super-admissible meshes (see [123, Lemma 2.10]);

(ii) for η = d, one recovers the Discrete Geometric Approach (DGA) of [88], later bridged to the
non-conforming finite element setting in [101].

The influence of the value of η on the numerical results has been investigated in [35] for anisotropic
diffusion problems. It is shown that the above two values are appropriate choices (neither under- nor
over-penalised).

Let us consider the stationary problem (1.2), without advection term (V φ = 0). Our aim is to
write an HFV discretisation of this steady variable diffusion problem. Locally to any cell K ∈M,
we introduce the discrete bilinear form aΛK : V K ×V K → R such that, for all uK ,vK ∈ V K ,

aΛK (uK ,vK ) =
∑
σ∈EK

|PK,σ |∇K,σvK ·ΛK,σ∇K,σuK = (Λ∇KuK ,∇KvK )K , (1.6)

where we set ΛK,σ = 1
|PK,σ |

∫
PK,σ

Λ. At the global level, we let aΛD : V D ×V D → R be the discrete

bilinear form such that, for all uD,vD ∈ V D,

aΛD(uD,vD) =
∑
K∈M

aΛK (uK ,vK ) = (Λ∇DuD,∇DvD)Ω.
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The discrete HFV problem then reads: Find uzD ∈ V D,0 such that

aΛD(uzD,vD) = (f ,vM)Ω + (gN ,vE )ΓN − aΛD(ulD,vD) ∀vD ∈ V D,0, (1.7)

where ulD ∈ V D is equal

(i) either, when |Γ D | > 0, to the HFV interpolate uDD of the known lifting uD of the Dirichlet
datum gD (satisfying |uDD |1,D ≤ Cl,ΓD ‖g

D‖H1/2(ΓD ), where Cl,ΓD > 0 only depends on the
discretisation D through θD),

(ii) or, when |Γ D | = 0, to uMD = uM1D, where we recall that uM = M
|Ω| is the mass lifting (remark

that aΛD(uMD ,vD) = 0 for all vD ∈ V D),

and the approximation of the solution to (1.2), denoted u∞D ∈ V D, is finally defined as

u∞D = uzD +ulD. (1.8)

Let us note that the superscript z stands for “zero", while l stands for “lifting".
Problem (1.7) defines a finite volume method, in the sense that it can be equivalently rewrit-

ten under a conservative form, with local mass balance, flux equilibration at interfaces, and
boundary conditions. For all K ∈M, and all σ ∈ EK , the normal diffusive flux −

∫
σ
Λ∇u∞ ·nK,σ is

approximated by the following numerical flux:

FΛK,σ (uK ) =
∑
σ ′∈EK

Aσσ
′

K (uK −uσ ′ ), (1.9)

where the Aσσ
′

K are defined by

Aσσ
′

K =
∑
σ ′′∈EK

|PK,σ ′′ |yσ
′′σ

K ·ΛK,σ ′′yσ
′′σ ′

K , (1.10)

and the yσσ
′

K ∈ Rd only depend on the geometry of the discretisation D (see, for example, [123,
Eq. (2.22)] for an exact definition with η =

√
d). For all K ∈M, one can express the local discrete

bilinear form aΛK in terms of the local fluxes
(
FΛK,σ

)
σ∈EK

: for all uK ,vK ∈ V K ,

aΛK (uK ,vK ) =
∑
σ∈EK

FΛK,σ (uK )(vK − vσ ). (1.11)

As for the VAG [56] and DDFV [52, 51] schemes, we can also express the local discrete bilinear
form in a different way, which will be useful in the sequel:

aΛK (uK ,vK ) = δKvK ·AKδKuK , (1.12)

where, for all vK ∈ V K , δKvK ∈ R|EK | is defined by

δKvK = (vK − vσ )σ∈EK ,

and AK ∈ R|EK |×|EK | is the symmetric (because Λ is) positive semi-definite matrix whose entries
are the Aσσ

′
K , that can actually be proved to be nonsingular (cf. Lemma 4).
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1.2.3 Well-posedness

As for the continuous case, the well-posedness of HFV methods for diffusion problems
relies on a coercivity argument. Let K ∈ M, and reason locally. By definition (1.6) of the
local discrete bilinear form aΛK , and from the bounds on the diffusion coefficient, we have
λ[‖∇KvK‖

2
L2(K ;Rd )

≤ aΛK (vK ,vK ) ≤ λ]‖∇KvK‖
2
L2(K ;Rd )

for all vK ∈ V K . Furthermore, the following

comparison result holds (cf. [111, Lemma 13.11, p = 2] and its proof): there exist α[,α] with
0 < α[ ≤ α] <∞, only depending onΩ, d, and θD such that α[|vK |

2
1,K ≤ ‖∇KvK‖

2
L2(K ;Rd )

≤ α]|vK |
2
1,K

for all vK ∈ V K . Combining both estimates, we infer a local coercivity and boundedness result:

∀vK ∈ V K , λ[α[|vK |
2
1,K ≤ a

Λ
K (vK ,vK ) ≤ λ]α]|vK |

2
1,K . (1.13)

Summing over K ∈M, we get the following global estimates:

∀vD ∈ V D, λ[α[|vD |
2
1,D ≤ a

Λ
D(vD,vD) ≤ λ]α]|vD |

2
1,D. (1.14)

The well-posedness of Problem (1.7)-(1.8) follows.

Proposition 1 (Well-posedness). There exists a unique solution u∞D ∈ V D to Problem (1.7)-(1.8),
which satisfies |u∞D |1,D ≤ C

(
‖f ‖L2(Ω) + ‖gN ‖L2(ΓN ) + ‖gD‖H1/2(ΓD )

)
, for some C > 0 depending on the

data, and on the discretisation D only through θD.

Proof. The existence/uniqueness of uzD ∈ V D,0 solution to (1.7) (and in turn of u∞D = uzD +ulD) is a
direct consequence of the coercivity estimate (1.14), and of the fact that | · |1,D defines a norm on
V D,0 (recall that V D,0 denotes either V ND,0 when |Γ D | = 0, or V DD,0 otherwise). To prove the bound
on |u∞D |1,D, we use the triangle inequality:

|u∞D |1,D ≤ |u
z
D |1,D + |ulD |1,D.

To estimate the first term, we test Problem (1.7) with vD = uzD ∈ V D,0, we use (1.14), and we
apply the Cauchy–Schwarz inequality. We get

λ[α[|uzD |
2
1,D ≤ ‖f ‖L2(Ω)‖uzM‖L2(Ω) + ‖gN ‖L2(ΓN )‖uzE‖L2(ΓN ) +λ]α] |ulD |1,D |u

z
D |1,D.

Using a discrete Poincaré inequality, recalled in Proposition 7, and applied to uzD ∈ V D,0, as well
as the discrete trace inequality of [111, Eq. (B.58), p = 2] combined with a discrete Poincaré
inequality, we obtain

|uzD |1,D ≤ C1(‖f ‖L2(Ω) + ‖gN ‖L2(ΓN )) +C2|ulD |1,D.

It remains to estimate the norm of the lifting |ulD |1,D:

(i) if |Γ D | > 0, one has ulD = uDD (interpolate of the lifting uD ), therefore |ulD |1,D ≤ Cl,ΓD ‖g
D‖H1/2(ΓD );

(ii) if |Γ D | = 0, since ulD = uMD = uM1D, the lifting is constant and |ulD |1,D = 0.

1.3 Definition of the schemes and well-posedness

In this section, we introduce and study the well-posedness of three HFV schemes, two linear
ones and a nonlinear scheme, for the time-dependent advection-diffusion problem (1.1). For
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the first two (linear) schemes, we introduce and study in the first place their steady versions
on Problem (1.2). For the nonlinear scheme, by anticipation of the asymptotic analysis of
Section 1.4.3, we restrict our study to the case where the (positive) solution to Problem (1.1)
converges in long time towards the so-called thermal equilibrium (see (1.25)). However, as it
will be verified numerically in Section 1.5.4 in the stationary setting, our scheme is applicable
to more general data. We consider a fixed spatial discretisation D of Ω, which satisfies the
conditions detailed in Section 1.2.1, and a fixed time step ∆t > 0 for the time discretisation.

Remark 2 (Linear schemes and nonhomogeneous data). The linearity of Problem (1.1) implies
that, (i) if |Γ D | > 0, the shifted variable uz = u −uD (recall that uD is a known lifting of the Dirichlet
datum gD) satisfies an advection-diffusion equation with zero Dirichlet boundary condition on Γ D ,
and (ii) otherwise, the shifted variable uz = u −uM (recall that uM = M

|Ω| is the mass lifting) satisfies a
(compatible) pure Neumann advection-diffusion equation with zero-mass constraint. Thus, without
loss of generality, we can restrict our study to the homogeneous case gD = 0 or M = 0. For an example
(in the steady, purely diffusive case) of how to handle at the discrete level nonhomogeneous data gD or
M, we refer the reader to Problem (1.7)-(1.8) and Proposition 1 above. Notice that such manipulations
are possible for linear schemes only.

1.3.1 Standard HFV scheme

We present here the HFV variant of the HMM family of schemes introduced in [19, 108].

Stationary problem

We consider Problem (1.2) with gD = 0 when |Γ D | > 0, or M =
∫
Ω
u∞ = 0 otherwise (cf. Re-

mark 2). Locally to any cell K ∈M, we introduce the discrete bilinear form aK : V K ×V K → R
such that, for all uK ,vK ∈ V K ,

aK (uK ,vK ) = aΛK (uK ,vK ) + aφK (uK ,vK ), (1.15)

where the diffusive part aΛK is defined by (1.6) (and rewrites as (1.11) in terms of the local

diffusive fluxes FΛK,σ (uK ) given by (1.9)), and the advective part aφK is defined by

a
φ
K (uK ,vK ) =

∑
σ∈EK

F
φ
K,σ (uK )(vK − vσ ), (1.16)

with FφK,σ (uK ) an approximation of the normal advective flux
∫
σ
u∞V φ ·nK,σ . In order to define

the numerical advective fluxes, we need to introduce some data. We set V φK,σ = 1
|σ |

∫
σ
V φ ·nK,σ , and

µσ = min
(
1,minK∈Mσ

Sp(ΛK )
)
> 0 whereΛK = 1

|K |
∫
K
Λ. We could as well use the finer local Péclet

number introduced in [80], namely consider the value µσ = min
(
1,minK∈Mσ

(nK,σ ·ΛKnK,σ )
)
,

but we choose here to stick to the formula advocated in [19, 108]. We also consider a Lipschitz
continuous function A : R→ R, satisfying the following conditions:

A(0) = 0,
∀s ∈ R, A(−s)−A(s) = s,
∀s ∈ R, A(−s) +A(s) ≥ 0.

(1.17)
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Notice that A = B − 1, where B is the classical function used for the B-schemes introduced in
[66]. In the B-schemes framework, advection and diffusion are simultaneously treated in the
definition of the numerical flux. Here, as in [19], only the advective part is considered, whence
the fact that A = B− 1. Standard choices of A functions include:

— the centred discretisation: A : s 7→ − s2 ;

— the upwind discretisation: A : s 7→max(−s,0);

— the Scharfetter–Gummel discretisation: A : s 7→
{

s
es −1 − 1 if s , 0

0 if s = 0 .

We eventually define, for all K ∈M, and all σ ∈ EK , the numerical advective flux: for all uK ∈ V K ,

F
φ
K,σ (uK ) = |σ |

µσ
dK,σ

(
A

(
−
dK,σ
µσ

V
φ
K,σ

)
uK −A

(
dK,σ
µσ

V
φ
K,σ

)
uσ

)
. (1.18)

Letting aD : V D ×V D→ R be the (global) discrete bilinear form such that, for all uD,vD ∈ V D,

aD(uD,vD) =
∑
K∈M

aK (uK ,vK ), (1.19)

and recalling that V D,0 denotes either V ND,0 whenever |Γ D | = 0, or V DD,0 otherwise, the discrete
problem reads: Find u∞D ∈ V D,0 such that

aD(u∞D ,vD) = (f ,vM)Ω + (gN ,vE )ΓN ∀vD ∈ V D,0. (1.20)

Remark that, for pure Neumann boundary conditions with M , 0, as opposed to the purely
diffusive case of Problem (1.7), aD(uMD ,vD) , 0 a priori for vD ∈ V

N
D,0. The well-posedness

of (1.20) is discussed in the following proposition.

Proposition 2 (Well-posedness). Let A be a Lipschitz continuous function satisfying (1.17). If the
advection field V φ satisfies the two following conditions:

(i) almost everywhere on ΓN , V φ ·n ≤ 0, (1.21a)

(ii) there exists β <
2λ[α[
C2
P

such that, almost everywhere in Ω, divV φ ≥ −β, (1.21b)

where λ[α[ is the coercivity constant of (1.14), and CP is either equal to CPW if |Γ D | = 0 or to CP ,ΓD
otherwise (where CPW ,CP ,ΓD are the Poincaré constants of Proposition 7), then there exists κ > 0, only
depending on Λ, β, Ω, d, Γ D , and θD such that

∀vD ∈ V D,0, aD(vD,vD) ≥ κ|vD |
2
1,D. (1.22)

Consequently, there exists a unique solution u∞D ∈ V D,0 to Problem (1.20). Moreover, one has

|u∞D |1,D ≤ C
(
‖f ‖L2(Ω) + ‖gN ‖L2(ΓN )

)
,

for some C > 0 depending on the data, and on the discretisation D only through θD.

Proof. Let K ∈ M, and σ ∈ EK . Let sK,σ = dK,σ
µσ
V
φ
K,σ and ζK,σ = A(−sK,σ ) + A(sK,σ ). According

to (1.17), ζK,σ ≥ 0, and we have A(−sK,σ ) = sK,σ+ζK,σ
2 and −A(sK,σ ) = sK,σ−ζK,σ

2 . Consequently, for
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all vK ∈ V K ,(
A(−sK,σ )vK −A(sK,σ )vσ

)
(vK − vσ ) =

1
2
sK,σ (v2

K − v
2
σ ) +

1
2
ζK,σ (vK − vσ )2 ≥ 1

2
sK,σ (v2

K − v
2
σ ).

Recalling (1.16) and (1.18), we infer that, for all vD ∈ V D,

a
φ
D(vD,vD) =

∑
K∈M

a
φ
K (vK ,vK ) ≥ 1

2

∑
K∈M

∑
σ∈EK

|σ |V φK,σ (v2
K − v

2
σ ).

Since, for all K ∈M,
∑
σ∈EK |σ |V

φ
K,σ =

∫
K

divV φ and, for all σ ∈ Eint ,
∑
K∈Mσ

|σ |V φK,σ = 0, we have,
for all vD ∈ V D,0,

a
φ
D(vD,vD) ≥ 1

2
(divV φ,v2

M)Ω −
1
2

(V φ ·n,v2
E )ΓN . (1.23)

Combining (1.15) with (1.19), (1.21) with (1.23), and the coercivity result (1.14), we deduce that,
for all vD ∈ V D,0,

aD(vD,vD) ≥ λ[α[|vD |
2
1,D −

β

2
‖vM‖2L2(Ω). (1.24)

Using a Poincaré inequality from Proposition 7, one has, for all vD ∈ V D,0,

aD(vD,vD) ≥
(
λ[α[ −

βC2
P

2

)
|vD |

2
1,D,

therefore the estimate (1.22) holds for κ = λ[α[−
βC2

P
2 , which is positive according to (1.21b). The

existence/uniqueness of u∞D ∈ V D,0 solution to (1.20) is a direct consequence of the coercivity
estimate (1.22), and of the fact that | · |1,D defines a norm on V D,0. The continuous dependency
of u∞D with respect to the data can then be proved as in the proof of Proposition 1.

Remark 3 (Assumptions on the advection field). The well-posedness result of Proposition 2 does not
use the fact that V φ is related to the gradient of a potential, and thus extends to general advection fields.
Even better, under a smallness assumption on the meshsize hD, it is actually possible to prove well-
posedness for Problem (1.20) without assumptions (1.21) on the advection field. The starting point to
prove so is a discrete Gårding inequality like (1.24), which can be easily obtained in full generality
from (1.23) (in the case |ΓN | > 0, it is obtained from the multiplicative discrete trace inequality of [111,
Eq. (B.57), p = 2] and holds for hD sufficiently small). The proof then proceeds by contradiction,
assuming that a discrete inf-sup condition does not hold in the limit hD→ 0, and using a compactness
argument (cf. [111, Lemmas B.27-B.33, p = 2]), together with the unconditional well-posedness of the
continuous problem (1.2) (cf. [106]).

Remark 4 (Choice of A). The choice of the function A is of great importance. In particular, the
Scharfetter–Gummel approximation is rather classical in various contexts. First introduced in [239] in
the framework of TPFA schemes, this approximation of the flux ensures the preservation of the so-called
thermal (or Gibbs) equilibrium at the discrete level, which has the form:

u∞th = ρ̄e−φ (1.25)

where ρ̄ ∈ R+ is prescribed by the data. For instance, for pure Neumann boundary conditions, f = 0,
and gN = 0, we have ρ̄ =M/

∫
Ω

e−φ. The discrete solution obtained with the TPFA scheme is then the
interpolate of u∞th . This property is no more true for the hybrid scheme and we observe numerically



44 CHAPTER 1. Long-time behaviour of HFV schemes for advection-diffusion

that, for ρ̄ , 0, the discrete solution u∞D ∈ V D is in general not the HFV interpolate of u∞th . However, as
explained in [108, pp. 553-554], provided the parameters (µσ )σ∈E are well-chosen, the Scharfetter–
Gummel flux ensures an automatic upwinding to the scheme in the advection-dominated regime
(whereas it degenerates towards the centred scheme in the diffusion-dominated regime).

Evolution problem

We consider Problem (1.1) with gD = 0 when |Γ D | > 0, or M =
∫
Ω
uin = 0 otherwise (see Re-

mark 2). We use a backward Euler discretisation in time, and the HFV discretisation introduced
in Section 1.3.1 in space. The discrete problem reads: Find

(
unD ∈ V D,0

)
n≥1

such that
1
∆t

(unM −u
n−1
M ,vM)Ω + aD(unD,vD) = (f ,vM)Ω + (gN ,vE )ΓN ∀vD ∈ V D,0,

u0
K =

1
|K |

∫
K
uin ∀K ∈M,

(1.26a)

(1.26b)

where aD is defined by (1.15) and (1.19). Since aD is coercive, the bilinear form in (1.26a) is also
coercive, so the scheme (1.26) is well-posed under the assumptions (1.21) on the advection field,
as a straightforward consequence of Proposition 2.

Remark 5 (Pure Neumann case). When considering pure Neumann boundary conditions, and
contrary to the stationary case, one can actually seek at each time step for a solution to Problem (1.26)
in V D, i.e., it is not necessary to seek for a solution in the constrained space V ND,0. Indeed, testing (1.26a)
by 1D ∈ V D, and using that

∫
Ω
f +

∫
∂Ω
gN = 0 and aD(unD,1D) = 0, one can automatically infer that∫

Ω
unM =

∫
Ω
un−1
M for all n ≥ 1, that is,

∫
Ω
unM =

∫
Ω
u0
M =

∫
Ω
uin =M = 0 for all n ≥ 1, i.e., unD ∈ V

N
D,0

for all n ∈ N? .

1.3.2 Exponential fitting HFV scheme

Following ideas in [43] (cf. also [189, 205] and [131] for general advection fields) in the
context of finite element methods, we aim to design an unconditionally (i.e., without the need
for assumptions (1.21) on the advection field V φ) coercive scheme for the advection-diffusion
problem in the HFV framework.

Stationary problem

We consider Problem (1.2). The strategy advocated in [43] is based on the following observa-
tion: at the continuous level, if u∞ is a solution to (1.2), letting

ω = e−φ, (1.27)

we can introduce the Slotboom change of variable ρ∞ = u∞
ω (see [207, 208]). Then, noticing that

∇u∞+u∞∇φ =ω∇ρ∞−ρ∞ω∇φ+ρ∞ω∇φ =ω∇ρ∞, the Slotboom variable ρ∞ equivalently solves
the following pure diffusion problem:

−div(ωΛ∇ρ∞) = f in Ω,

ρ∞ =ω−1gD on Γ D ,

ωΛ∇ρ∞ ·n = gN on ΓN ,

(1.28)
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with additional constraint
∫
Ω
ωρ∞ =M when |Γ D | = 0. Following Remark 2 (with ρ instead of u,

ρD lifting of ω−1gD instead of uD lifting of gD , and ρM = M∫
Ω
ω
∈ R instead of uM ), we consider

Problem (1.28) with ρ∞ = 0 on Γ D when |Γ D | > 0, or
∫
Ω
ωρ∞ = 0 otherwise (which is equivalent

to consider Problem (1.2) with gD = 0 or M =
∫
Ω
u∞ = 0). Since φ is continuous on Ω, there exist

ω[,ω] with 0 < ω[ ≤ ω] <∞, only depending on φ and Ω, such that ω[ ≤ ω(x) ≤ ω] for all x ∈Ω.
We then denote by L2

ω(Ω) the ω-weighted L2 space on Ω.

At the discrete level, instead of discretising (1.2), we approximate the solution to (1.28). For
any K ∈M, we let aωK : V K ×V K → R be the discrete bilinear form such that, for all ρ

K
,vK ∈ V K ,

aωK (ρ
K
,vK ) = (ωΛ∇KρK ,∇KvK )K , (1.29)

and, classically, we let aωD : V D × V D → R be the corresponding global discrete bilinear form
obtained by sum of the local contributions. To account for the change of variable, we let V ωD,0
be the space V DD,0 when |Γ D | > 0, and the space

{
vD ∈ V D :

∫
Ω
ωvM = 0

}
otherwise. The discrete

problem reads: Find ρ∞
D
∈ V ωD,0 such that

aωD(ρ∞
D
,vD) = (f ,vM)Ω + (gN ,vE )ΓN ∀vD ∈ V

ω
D,0. (1.30)

Remark that, for pure Neumann boundary conditions with M , 0, as for Problem (1.7), letting
ρM
D

= ρM1D, aωD(ρM
D
,vD) = 0 for all vD ∈ V D. Letting ωD ∈ V D be the HFV interpolate of ω, i.e.,

ωK =
1
|K |

∫
K
ω ∀K ∈M, ωσ =

1
|σ |

∫
σ
ω ∀σ ∈ E , (1.31)

the approximation of the solution to Problem (1.2) is finally defined as the product u∞D =ωD×ρ∞D ,
that is

u∞K =ωKρ
∞
K ∀K ∈M, u∞σ =ωσρ

∞
σ ∀σ ∈ E . (1.32)

Remark that u∞D ∈ V D,0. Reasoning as in Section 1.2.3, one can easily prove that, for all vD ∈ V D,

aωD(vD,vD) ≥ω[λ[α[ |vD |
2
1,D. (1.33)

This estimate is instrumental to infer well-posedness for Problem (1.30)-(1.32).

Proposition 3 (Well-posedness). There exists a unique solution u∞D ∈ V D,0 to Problem (1.30)-(1.32),

which satisfies |u∞D |1,D ≤ C
(
‖f ‖L2(Ω) + ‖gN ‖L2(ΓN )

)
, for some C > 0 depending on the data, and on the

discretisation D only through θD.

Proof. The existence/uniqueness of ρ∞
D
∈ V ωD,0 solution to (1.30) (and in turn of u∞D ∈ V D,0) is a

direct consequence of the coercivity estimate (1.33), and of the fact that | · |1,D clearly defines a
norm on V ωD,0. To prove the bound on |u∞D |1,D, we use the fact that u∞D =ωD × ρ∞D . For all K ∈M,

|u∞K |
2
1,K =

∑
σ∈EK

|σ |
dK,σ

(ωKρ
∞
K −ωσρ

∞
σ )2 ≤ 2

∑
σ∈EK

|σ |
dK,σ

(
ω2
σ (ρ∞K − ρ

∞
σ )2 + (ρ∞K )2(ωK −ωσ )2

)
.

By definition (1.31) of ωD, and local stability of the HFV interpolant (cf. [111, Proposition B.7,
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p = 2] and its proof), we infer

|u∞K |
2
1,K ≤ 2ω2

] |ρ
∞
K
|21,K + 2(ρ∞K )2C2

sta‖∇ω‖2L2(K ;Rd ),

with Csta > 0 only depending on d and θD. Since ∇ω = −ω∇φ, φ ∈ C1(Ω), and ω > 0, we have

‖∇ω‖2
L2(K ;Rd ) ≤ω] sup

x∈Ω
|∇φ(x)|2|K |ωK .

Summing over K ∈M then yields

|u∞D |
2
1,D ≤ 2ω2

] |ρ
∞
D
|21,D + 2C2

staω] sup
x∈Ω
|∇φ(x)|2‖ρ∞M‖

2
L2
ω(Ω)

.

When |Γ D | > 0, ‖ρ∞M‖
2
L2
ω(Ω)

≤ ω]‖ρ∞M‖
2
L2(Ω) ≤ ω]C

2
P ,ΓD
|ρ∞
D
|21,D, where we have applied the dis-

crete Poincaré inequality (1.83) to ρ∞
D
∈ V DD,0. Otherwise, ρ∞

D
∈ V ωD,0 satisfies

∫
Ω
ωρ∞M = 0,

and one can use [51, Lemma 5.2] to infer that ‖ρ∞M‖L2
ω(Ω) ≤ 2‖ρ∞M −

1
|Ω|

∫
Ω
ρ∞M‖L2

ω(Ω), and fi-
nally get that ‖ρ∞M‖L2

ω(Ω) ≤ 2√ω]CPW |ρ∞D |1,D applying the discrete Poincaré inequality (1.82) to

ρ∞
D
− 1
|Ω|

∫
Ω
ρ∞M1D ∈ V

N
D,0. In any case, we end up bounding |u∞D |1,D by |ρ∞

D
|1,D, with multiplicative

constant depending on the data, and on the discretisation D only through θD. The rest of the
proof consists in bounding |ρ∞

D
|1,D, and proceeds as in the proof of Proposition 1, using that

‖ρ∞M‖L2(Ω) ≤ 2
√
ω]
ω[
CPW |ρ∞D |1,D when |Γ D | = 0.

In the sequel, the HFV scheme (1.30)-(1.32) will be referred to as “exponential fitting". Notice
that no assumption on V φ is needed to ensure its coercivity.

Remark 6 (Preservation of the thermal equilibrium). As for the exponential fitting scheme of [43],
the method (1.30)-(1.32) preserves the thermal equilibrium, in the sense that u∞D = ρ̄ωD when
u∞ = u∞th (see (1.25)). This property is analogous to what holds true for the TPFA Scharfetter–Gummel
scheme.

Evolution problem

We consider Problem (1.1). Following the previous strategy, letting ρ = u
ω , one can show that

ρ equivalently solves the following transient pure diffusion problem:
ω∂tρ −div(ωΛ∇ρ) = f in R+ ×Ω,

ρ =ω−1gD on R+ × Γ D ,
ωΛ∇ρ ·n = gN on R+ × ΓN ,

ρ(0, ·) = ρin in Ω,

(1.34)

where ρin = uin
ω . Following Remark 2, we consider Problem (1.34) with ρ = 0 on Γ D when

|Γ D | > 0, or
∫
Ω
ωρin = 0 otherwise (which is equivalent to consider Problem (1.1) with gD = 0 or

M =
∫
Ω
uin = 0).

At the discrete level, instead of discretising (1.1), we approximate the solution to (1.34).
We use a backward Euler discretisation in time, and the HFV discretisation introduced in
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Section 1.3.2 in space. The discrete problem reads: Find
(
ρn
D
∈ V ωD,0

)
n≥1

such that
1
∆t

(ρnM − ρ
n−1
M ,ωMvM)Ω + aωD(ρn

D
,vD) = (f ,vM)Ω + (gN ,vE )ΓN ∀vD ∈ V

ω
D,0,

ρ0
K =

1
ωK |K |

∫
K
uin ∀K ∈M,

(1.35a)

(1.35b)

where aωD is defined (locally) by (1.29), and the approximation unD ∈ V D,0 of the solution to
Problem (1.1) is finally defined as unD = ωD × ρnD, i.e., according to (1.32) (with superscript n
instead of∞). Once again, because of the coercivity of aωD, the scheme (1.35) is unconditionally
well-posed, as a straightforward consequence of Proposition 3.

Remark 7 (Pure Neumann case). When considering pure Neumann boundary conditions, as for the
standard HFV scheme (see Remark 5), one can seek for a solution to Problem (1.35) in V D.

1.3.3 Nonlinear HFV scheme

We are interested in the evolution problem (1.1). We restrict our study to the pure Neumann
case (|Γ D | = 0), and to the choice of data f = 0, gN = 0, and uin ≥ 0 with M =

∫
Ω
uin > 0

(see Appendix 1.B for the case of mixed Dirichlet-Neumann thermal equilibrium boundary
conditions). Under these assumptions, it is known that the solution u to Problem (1.1) is strictly
positive on R?+ ×Ω. Furthermore, in long time, u(t) converges towards the thermal equilibrium.
Indeed, we easily verify that the function u∞ = ρM e−φ, where we recall that ρM = M∫

Ω
e−φ

> 0

(cf. Section 1.3.2), solves the steady problem (1.2) with same data. Since u > 0 on R?+ ×Ω, we can
rewrite the flux J = −Λ(∇u +u∇φ) under the nonlinear form

J = −uΛ∇
(
log(u) +φ

)
= −uΛ∇ log

( u
u∞

)
.

At the continuous level, introducing this nonlinearity enables to highlight the following en-
tropy/dissipation structure of the model at hand: testing the equation against log

(
u
u∞

)
, we

get
d
dt

E(t) +D(t) = 0, (1.36)

where

E(t) =
∫
Ω

u∞Φ1

(
u(t)
u∞

)
and D(t) =

∫
Ω

u(t)Λ∇ log
(
u(t)
u∞

)
· ∇ log

(
u(t)
u∞

)
, (1.37)

with Φ1(s) = s log(s)− s+ 1 for all s > 0. Since Φ1 ≥ 0, the relative entropy E(t) is a non-negative
quantity (as well as the relative dissipation D(t)). The entropy/dissipation structure (1.36)-(1.37)
is instrumental to prove the exponential convergence in time of the solution u(t) to Problem (1.1)
towards the equilibrium u∞. From the above nonlinear expression of the flux J , we build a
nonlinear hybrid discretisation of the problem, leading to a scheme designed along the same
principles as the nonlinear VAG and DDFV schemes of [56] and [52, 51]. This scheme is devised
so as to ensure the positivity of discrete solutions, as well as to preserve at the discrete level
the entropy/dissipation structure (and the long-time behaviour) of the model. The choice of
designing a nonlinear HFV scheme is driven by the prospect of the design of hybrid high-order
(HHO) schemes which could have similar features.
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Definition of the scheme and key properties of discrete solutions

In the sequel, a vector of discrete unknowns vD ∈ V D will be called positive if and only if, for
all K ∈M and all σ ∈ E, vK > 0 and vσ > 0. Recall the definition (1.27) of ω = e−φ, as well as the
definition (1.31) of the HFV interpolate ωD ∈ V D of ω. Remark that ωD is positive. If uD ∈ V D is
positive, one can then define wD as the element of V D such that

wK = log
(
uK
ωK

)
∀K ∈M, wσ = log

(
uσ
ωσ

)
∀σ ∈ E . (1.38)

In what follows, to emphasise the dependency of wD upon uD, we sometimes write wD(uD).
Locally to any cell K ∈M, we define an approximation of

(u,v) 7→ −
∫
K
J · ∇v =

∫
K
uΛ∇ log

( u
u∞

)
· ∇v

under the form

TK (uK ,wK ,vK ) =
∫
K
rK (uK )Λ∇KwK · ∇KvK ,

for all uK ∈ V K positive and all vK ∈ V K , where rK :
(
V K

)?
+
→ R?+ is a local reconstruction

operator. Since rK (uK ) is a (positive) constant on K , we have

TK (uK ,wK ,vK ) = rK (uK )aΛK
(
wK ,vK

)
, (1.39)

where aΛK is defined by (1.6). Following (1.12), one can equivalently reformulate (1.39) using the
local matrix AK defined by (1.10):

TK (uK ,wK ,vK ) = rK (uK )δKvK ·AKδKwK . (1.40)

As already pointed out in the analysis of the nonlinear DDFV scheme of [52, 51], the definition
of the local reconstruction operator is crucial to guarantee the existence of solutions and a good
long-time behaviour to the scheme. The most natural choice in the HFV context would obviously
be rK (uK ) = uK , however it turns out that such a reconstruction embeds too few information on
uK to conclude, as already suggested in [49]. Therefore, we use a richer reconstruction, described
below, which embeds information from both the local cell and face unknowns. For uK ∈ V K
positive, we let

rK (uK ) = f|EK |
((
m(uK ,uσ )

)
σ∈EK

)
, (1.41)

with m : (R?+)2→ R?+ and, for k ≥ 1 integer, fk : (R?+)k → R?+, such that

m is non-decreasing with respect to both its variables, (1.42a)

m(x,x) = x for all x ∈ R?+ and m(y,x) =m(x,y) for all (x,y) ∈ (R?+)2, (1.42b)

m(λx,λy) = λm(x,y) for all λ > 0 and all (x,y) ∈ (R?+)2, (1.42c)
y − x

log(y)− log(x)
≤m(x,y) ≤max(x,y) for all (x,y) ∈ (R?+)2, x , y, (1.42d)
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and

fk(x1, . . . ,xk) =
1
k

k∑
i=1

xi or fk(x1, . . . ,xk) = max(x1, . . . ,xk). (1.43)

Note that, for all (x,y) ∈ (R?+)2, one has

y − x
log(y)− log(x)

≤
(√
x+
√
y

2

)2

≤
x+ y

2
≤max(x,y),

and each expression of the previous sequence is a mean function m satisfying the properties
(1.42). Heuristically, rK (uK ) computes an average of the unknowns attached to the cell K ,
especially it contains information about all the local face unknowns. As far as the proper-
ties (1.42)-(1.43) are concerned, they will be instrumental to prove Lemma 2 and Proposition 6
below. As now standard, we finally let TD be such that, for all uD ∈ V D positive, and all vD ∈ V D,

TD(uD,wD,vD) =
∑
K∈M

TK (uK ,wK ,vK ), (1.44)

where the local contributions TK are defined by (1.39).
Using a backward Euler discretisation in time, and the HFV discretisation we have just

introduced in space, our discrete problem reads: Find
(
unD ∈ V D

)
n≥1

such that
1
∆t

(unM −u
n−1
M ,vM)Ω + TD(unD,wD(unD),vD) = 0 ∀vD ∈ V D,

u0
K =

1
|K |

∫
K
uin ∀K ∈M.

(1.45a)

(1.45b)

Notice that if (unD)n≥1 solves Problem (1.45), then, necessarily, unD is positive for all n ≥ 1.
Therefore, in the sequel, we will speak about the positive solutions to (1.45). Notice also that
u0
M may vanish in some cells of the mesh, since we only impose that uin ≥ 0 (but u0

M cannot be
identically zero in Ω since M > 0). Notice finally that u0

E needs not be defined, as the scheme
only uses u0

M.
Testing (1.45a) with vD = 1D, and remarking that TD(unD,wD(unD),1D) = 0 for all n ≥ 1, we

immediately infer the following discrete mass conservation property.

Proposition 4 (Mass conservation). If
(
unD ∈ V D

)
n≥1

is a (positive) solution to (1.45), then

∀n ∈ N? ,
∫
Ω

unM =
∫
Ω

u0
M =

∫
Ω

uin =M.

Following Proposition 4, a discrete steady-state u∞D ∈ V D of (1.45) shall satisfy

TD(u∞D ,wD(u∞D ),vD) = 0 ∀vD ∈ V D, (1.46)

and
∫
Ω
u∞M = M. Letting w∞D = wD(u∞D ), and testing (1.46) with vD = w∞D , by (1.39) and (1.44),

since rK (u∞K ) > 0 for all K ∈M, we necessarily have aΛD(w∞D ,w
∞
D ) = 0, which yields |w∞D |1,D = 0 by

the coercivity property (1.14). Hence, w∞D = c1D for some constant c ∈ R, and since
∫
Ω
u∞M =M,

by (1.38), we necessarily have ec = ρM , that is c = log(ρM ) andw∞D = log(ρM )1D. As a consequence,
again by (1.38), u∞D = ρMωD, i.e., u∞D is the HFV interpolate of u∞th . Thus, just like the exponential
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fitting scheme (cf. Remark 6), the nonlinear scheme preserves the thermal equilibrium. We notice
that wD, first defined by (1.38), can actually be modified up to an additive constant without any
impact on the scheme (1.45). Hence, we can redefine wD as

wK = log
(
uK
u∞K

)
∀K ∈M, wσ = log

( uσ
u∞σ

)
∀σ ∈ E . (1.47)

Another important consequence of the fact that u∞D is the HFV interpolate of u∞th is the following.

Letting u∞[ = Mω[
|Ω|ω]

> 0 and u∞
]

=
Mω]
|Ω|ω[

> 0 (recall that ω[ and ω] only depend on φ and Ω), we

have u∞[ ≤ u
∞
th ≤ u

∞
]

, but we also have that

u∞[ 1D ≤ u
∞
D ≤ u

∞
] 1D, (1.48)

where the inequalities shall be understood coordinate-wise. In other words, the continuous
bounds on the steady-state are transferred to the discrete level.

Given a (positive) solution
(
unD ∈ V D

)
n≥1

to (1.45), we define the following discrete versions
of the relative entropy and dissipation introduced in (1.37): for all n ≥ 1,

En =
∫
Ω

u∞MΦ1

(
unM
u∞M

)
and Dn = TD

(
unD,w

n
D,w

n
D
)
, (1.49)

where we let wnD = wD(unD), and we recall that Φ1(s) = s log(s) − s + 1 for all s > 0. Notice that
En ≥ 0 for all n ≥ 1 since Φ1 ≥ 0. For further use, we extend the function Φ1 by continuity to
0, letting Φ1(0) = 1. We can then define, in case there exists K ∈ M such that u0

K = 0, E0 ≥ 0
according to (1.49). As far as Dn is concerned, by (1.39) and (1.44), for all n ≥ 1, we have

Dn =
∑
K∈M

rK (unK )aΛK (wnK ,w
n
K ) ≥ 0.

We can now establish the following discrete counterpart of (1.36).

Proposition 5 (Entropy dissipation). If
(
unD ∈ V D

)
n≥1

is a (positive) solution to (1.45), then

∀n ∈ N, En+1 −En

∆t
+Dn+1 ≤ 0. (1.50)

Proof. Let n ∈ N. By the expression (1.49) of the discrete relative entropy, and the convexity of
Φ1, we have

En+1 −En ≤
∑
K∈M
|K |u∞K Φ

′
1

(
un+1
K

u∞K

)(
un+1
K −unK
u∞K

)
.

Thus, by (1.47), we get

En+1 −En ≤
∫
Ω

(
un+1
M −unM

)
log

un+1
M
u∞M

 = (un+1
M −unM,w

n+1
M )Ω.

By (1.45a) and (1.49), we finally infer

En+1 −En ≤ −∆t TD(un+1
D ,wn+1

D ,wn+1
D ) = −∆tDn+1,
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which yields (1.50).

We finally state the main result of Section 1.3.3, about the existence of (positive) solutions to
the nonlinear scheme (1.45). The proof of this result is the subject of the next subsection.

Theorem 1 (Existence of positive solutions). Let uin ∈ L2(Ω) be a non-negative function such
that

∫
Ω
uin = M > 0. There exists at least one positive solution

(
unD ∈ V D)n≥1 to the nonlinear

scheme (1.45). Moreover, there exists ε > 0, depending on Λ, φ, uin, M, Ω, d, ∆t, and D such that

∀n ≥ 1, unK ≥ ε ∀K ∈M and unσ ≥ ε ∀σ ∈ E . (1.51)

The uniform-in-time positivity result (1.51) on discrete solutions is the equivalent in the HFV
context of [56, Lemma 3.7] and [52, Lemma 3.5] obtained, respectively, in the VAG and DDFV
contexts.

Existence of discrete solutions

The existence of discrete solutions to the nonlinear scheme (1.45) is proved in two steps.
First, we introduce a regularised scheme, for which we prove the existence of solutions by a
fixed-point argument, inspired from the proof of existence in [25]. Then, we prove that sequences
of regularised solutions satisfy uniform a priori bounds, which allows us to pass to the limit in
the regularisation parameter. Notice that our proof of existence uses the same estimates, but
follows a quite different path than the ones in the VAG [56] and DDFV [52] contexts, in which
the proof is based on the topological degree, together with a monotonicity argument. Henceforth,
we reason in the wD variable, and we recall that uD = u∞D × exp(wD) according to (1.47). The
advantage of doing so is that we can seek for solutions wD in the whole space V D, with bijective
correspondence with solutions uD that are automatically positive. Recalling the definition (1.49)
of the discrete relative entropy and dissipation, and using (1.44) combined with (1.40), we let,
for all wD ∈ V D,

E(wM) =
∑
K∈M
|K |u∞K Φ1(ewK ), D(wD) =

∑
K∈M

rK
(
u∞K × exp(wK )

)
δKwK ·AKδKwK , (1.52)

in such a way that En = E
(
wM(unM)

)
and Dn = D

(
wD(unD)

)
for all n ≥ 1. Using the fact that

Φ1(0) = 1, we extend the definition of E(wM) to the case where some wK ’s are equal to −∞.
Before proceeding with the proof of Theorem 1, we state two preliminary lemmas. The first

one, that can be found, e.g., in [119, Section 9.1], is a corollary of Brouwer’s fixed-point theorem.
This result is instrumental to show the existence of solutions to the regularised scheme.

Lemma 1. Let N ∈ N? , and let P : RN → RN be a continuous vector field. Assume that there is r > 0
such that

P (x) · x ≥ 0 if |x| = r.

Then, there exists a point x0 ∈ RN such that P (x0) = 0 and |x0| ≤ r.

The second lemma, whose proof is postponed until Appendix 1.C.1, establishes sufficient
boundedness conditions on the discrete mass and (relative) dissipation so that a priori bounds
hold for vectors of discrete unknowns. This result is instrumental to show that sequences of
regularised solutions satisfy (uniform) a priori bounds.
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Lemma 2. Let wD ∈ V D, and assume that there exist C] > 0, and M] ≥M[ > 0 such that

M[ ≤
∑
K∈M
|K |u∞K ewK ≤M] and D(wD) ≤ C]. (1.53)

Then, there exists C > 0, depending on Λ, u∞[ , u∞
]

, M[, M], C], Ω, d, and D such that

|wK | ≤ C ∀K ∈M and |wσ | ≤ C ∀σ ∈ E .

We can now proceed with the proof of Theorem 1. Let us first define the following inner
product and corresponding norm on the space V D: for all zD,vD ∈ V D,

〈zD,vD〉 =
∑
K∈M

zKvK +
∑
σ∈E

zσvσ and ‖vD‖ =
√
〈vD,vD〉.

Letting N = |M| + |E|, and identifying V D to RN , the inner product 〈·, ·〉 is nothing but the
standard inner product on RN . For all K ∈M, and all σ ∈ EK , we let, for uK ∈ V K positive,

F nl
K,σ (uK ) = rK (uK )

∑
σ ′∈EK

Aσσ
′

K

(
log

(
uK
u∞K

)
− log

(
uσ ′

u∞σ ′

))
, (1.54)

where the Aσσ
′

K are defined by (1.10). Combining (1.39) and (1.47) with (1.11) and (1.9), there
holds that TK (uK ,wK ,vK ) =

∑
σ∈EK F

nl
K,σ (uK )(vK − vσ ) for all vK ∈ V K . In what follows, we let

n ∈ N? and un−1
M ≥ 0 be given. We assume that Mn−1 =

∫
Ω
un−1
M > 0 and that un−1

M > 0 if n > 1. We
also assume that E(wn−1

M ) > 0. If E(wn−1
M ) = 0 (which is equivalent to un−1

M = u∞M), then necessarily,
by (1.50), unD = u∞D uniquely solves (1.45a). Letting, for any uD ∈ V D positive, GnD(uD) be the
element of V D such that

GnK (uD) = |K |
uK −un−1

K

∆t
+

∑
σ∈EK

F nl
K,σ (uK ) ∀K ∈M, (1.55a)

Gnσ (uD) = −
(
F nl
K,σ (uK ) +F nl

L,σ (uL)
)

∀σ = K | L ∈ Eint , (1.55b)

Gnσ (uD) = −F nl
K,σ (uK ) ∀σ ∈ Eext withMσ = {K}, (1.55c)

we infer that, for all vD ∈ V D,

1
∆t

(
uM −un−1

M ,vM
)
Ω

+ TD(uD,wD(uD),vD) =
〈
GnD(uD),vD

〉
. (1.56)

Hence, a positive vector unD ∈ V D is a solution to the nonlinear equation (1.45a) if and only if
GnD(unD) = 0D. With this observation in hand, we now detail the two steps of the proof.

Step 1: Using the relation uD = u∞D × exp(wD), we define the vector field P n,µD : V D→ V D such
that, for all wD ∈ V D,

P n,µD (wD) = GnD
(
u∞D × exp(wD)

)
+µwD, (1.57)

with GnD defined by (1.55) and µ ≥ 0. Notice that, unlike GnD, the vector field P n,µD is continuous

on the whole space V D for any µ ≥ 0. If wnD ∈ V D satisfies P n,0D (wnD) = 0D, then letting unD =
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u∞D × exp(wnD), we have GnD(unD) = 0D, therefore unD is a (positive) solution to (1.45a). For µ > 0,
the problem of finding w

n,µ
D ∈ V D such that P n,µD (w

n,µ
D ) = 0D can thus be seen as a regularisation

of the original problem. By (1.57) and (1.56), for all wD ∈ V D, we have〈
P n,µD (wD),wD

〉
=

∑
K∈M

|K |
∆t

(
u∞K ewK −un−1

K

)
wK

+
∑
K∈M

rK
(
u∞K × exp(wK )

)
δKwK ·AKδKwK +µ‖wD‖

2.
(1.58)

By (1.52), we recognise in the second term of the right-hand side the quantity D(wD) ≥ 0. As far
as the first term is concerned, for n > 1, by positivity of the (un−1

K )K∈M, there exist real numbers

(wn−1
K )K∈M such that un−1

K = u∞K ew
n−1
K for all K ∈M, and since Φ1 is convex,∑

K∈M

|K |
∆t

(
u∞K ewK −un−1

K

)
wK =

∑
K∈M

|K |
∆t
u∞K wK

(
ewK −ew

n−1
K

)
≥

∑
K∈M

|K |
∆t
u∞K

(
Φ1

(
ewK

)
−Φ1

(
ew

n−1
K

))
=
E(wM)−E(wn−1

M )

∆t
,

(1.59)

where we have used the definition (1.52) of E(wM). For n = 1, now, it may happen that u0
K be

zero for some K ∈M, and then w0
K such that u0

K = u∞K ew
0
K cannot be defined. However, letting in

that case w0
K = −∞, the inequality above still holds since Φ1(0) = 1 and Φ1(es)− 1 ≤ ses for all

s ∈ R. By non-negativity of E(wM), we finally infer from (1.58) and (1.59) that

〈
P n,µD (wD),wD

〉
≥ µ‖wD‖

2 −
E(wn−1

M )

∆t
,

so that, for µ > 0, there holds
〈
P n,µD (wD),wD

〉
≥ 0 if ‖wD‖ =

√
E(wn−1

M )
µ∆t > 0. By Lemma 1, we then

conclude about the existence of solutions to the regularised scheme. There exists w
n,µ
D ∈ V D such

that

P n,µD (w
n,µ
D ) = 0D and ‖wn,µD ‖ ≤

√
E(wn−1

M )

µ∆t
. (1.60)

Step 2: Since
〈
P n,µD (w

n,µ
D ),w

n,µ
D

〉
= 0, by (1.58) and (1.59), we have

E(w
n,µ
M )

∆t
+D(w

n,µ
D ) +µ‖wn,µD ‖

2 ≤
E(wn−1

M )

∆t
.

The three terms on the left-hand side being non-negative, we infer that

D(w
n,µ
D ) ≤ C], (1.61)

with C] =
E(wn−1

M )
∆t > 0. Moreover, since

〈
P n,µD (w

n,µ
D ),1D

〉
= 0, by (1.57) and (1.56), we have∑

K∈M
|K |u∞K ew

n,µ
K −Mn−1 = −µ∆t

〈
w
n,µ
D ,1D

〉
.
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Applying a Cauchy–Schwarz inequality, and recalling the bound (1.60), we obtain∣∣∣∣∣∣∣ ∑K∈M |K |u∞K ew
n,µ
K −Mn−1

∣∣∣∣∣∣∣ ≤ µ∆t‖1D‖‖wn,µD ‖ ≤ √µ
√
N∆tE(wn−1

M ),

so that, letting µ0 = (Mn−1)2

4N∆tE(wn−1
M )

> 0, the following holds for all 0 < µ ≤ µ0:

0 <
Mn−1

2
=M[ ≤

∑
K∈M
|K |u∞K ew

n,µ
K ≤M] =

3Mn−1

2
. (1.62)

By (1.62) and (1.61), we infer that w
n,µ
D satisfies (1.53) for µ sufficiently small with constants that

are uniform in µ, so that by Lemma 2 the family (w
n,µ
D )0<µ≤µ0

is bounded uniformly in µ. As
a consequence, by compactness, there is wnD ∈ V D such that, up to extraction, w

n,µ
D converges

towards wnD when µ tends to zero. Since P n,µD converges to P n,0D as µ tends to zero, we finally infer
that P n,0D (wnD) = 0D (also,

∑
K∈M |K |u∞K ew

n
K =Mn−1).

Conclusion: Letting unD = u∞D × exp(wnD), we have GnD(unD) = 0D, therefore unD is a (positive)

solution to (1.45a). By Propositions 4 and 5, and since D
(
wnD

)
= Dn, En is non-negative, and En is

non-increasing in n according to (1.50), we deduce that∑
K∈M
|K |u∞K ew

n
K =M and D(wnD) ≤ E0

∆t
.

By Lemma 2 (recall also that u∞[ ,u
∞
]

only depend on M, φ, and Ω), there exists C > 0, depending

on Λ, φ, uin, M, Ω, d, ∆t, and D, but not on n ∈ N? , such that −C1D ≤ w
n
D ≤ C1D. By (1.48), we

finally infer that unD ≥ ε1D, with ε = u∞[ e−C > 0 still independent of n ∈ N? . This concludes the
proof of Theorem 1.

1.4 Long-time behaviour

In this section, we analyse the long-time behaviour of the three HFV schemes we have
introduced in Section 1.3, thereby proving the main results of this paper.

Remark 8 (Linear schemes and nonhomogeneous data). In order to stay consistent with Section 1.3,
we here below state our asymptotic results of Theorems 2 and 3, which respectively concern the (linear)
standard and exponential fitting schemes, for discrete problems that feature homogeneous data (i.e.,
gD = 0 when |Γ D | > 0, or M = 0 otherwise). Nonetheless, Theorems 2 and 3 remain valid in the general
case of nonhomogeneous data (we refer to Remark 2 for the straightforward adaptation of the schemes
to this situation). Indeed, the proofs of the latter results only hinge on the fact that the difference
between the discrete transient and steady-state solutions belongs to the homogeneous space V D,0 or
V ωD,0, which is always true. This remark does not apply, however, to the nonlinear scheme.

1.4.1 Asymptotic behaviour of the standard HFV scheme

We recall that u is the solution to Problem (1.1), and that u∞ is the corresponding steady-
state, solution to Problem (1.2), and we consider the following definition of the relative entropy
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and dissipation:

E(t) =
1
2
‖u(t)−u∞‖2L2(Ω) , D(t) =

∫
Ω

(
Λ∇(u(t)−u∞)− (u(t)−u∞)V φ

)
· ∇(u(t)−u∞).

It can be easily verified that the following entropy/dissipation relation holds at the continuous
level:

d
dt

E(t) +D(t) = 0.

It is assumed that V φ is such that D(t) ≥ C‖∇(u(t) − u∞)‖2
L2(Ω;Rd )

for some C > 0, so that D(t)
indeed defines a dissipation.

At the discrete level, recalling that
(
unD ∈ V D,0

)
n≥1

is the solution to Problem (1.26), and
that u∞D ∈ V D,0 is the corresponding steady-state, solution to Problem (1.20), we consider the
following equivalents of the relative entropy and dissipation: for all n ∈ N? ,

En =
1
2

∥∥∥unM −u∞M∥∥∥2
L2(Ω)

, Dn = aD
(
unD −u

∞
D ,u

n
D −u

∞
D
)
,

where the discrete bilinear form aD is defined by (1.15) and (1.19). The definition of the relative
entropy is seamlessly extended to the case n = 0. Our main result on the standard HFV scheme
is the following.

Theorem 2 (Asymptotic stability). Assume that the advection field V φ satisfies the conditions (1.21)
of Proposition 2, with constant β. Then, the following discrete entropy/dissipation relation holds true:

∀n ∈ N, En+1 −En

∆t
+Dn+1 ≤ 0. (1.63)

Furthermore, the discrete entropy decays exponentially fast in time: there is ν = 2κ
C2
P
> 0, where κ is

the constant of (1.22) (only depending on Λ, β, Ω, d, Γ D , and θD), and CP is either equal to CPW if
|Γ D | = 0 or to CP ,ΓD otherwise (where CPW , CP ,ΓD are the Poincaré constants of Proposition 7), such
that

∀n ∈ N, En+1 ≤ (1 + ν∆t)−1En. (1.64)

Consequently, the discrete solution converges exponentially fast in time towards its associated discrete
steady-state: for all n ∈ N? ,∥∥∥unM −u∞M∥∥∥

L2(Ω)
≤ (1 + ν∆t)−

n
2
∥∥∥u0
M −u

∞
M

∥∥∥
L2(Ω)

. (1.65)

Proof. Let n ∈ N. One has

En+1 −En =
∑
K∈M

|K |
2

((
un+1
K −u∞K

)2
−
(
unK −u

∞
K

)2
)
.

Since x 7→ x2 is convex, for all x,y ∈ R, we have y2 − x2 ≤ 2y(y − x), therefore

En+1 −En ≤
∑
K∈M
|K |

(
un+1
K −unK

)(
un+1
K −u∞K

)
=

(
un+1
M −unM,u

n+1
M −u∞M

)
Ω
. (1.66)
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Now, testing (1.26a) with vn+1
D = un+1

D −u∞D ∈ V D,0 yields(
un+1
M −unM,v

n+1
M

)
Ω

= −∆taD
(
un+1
D ,vn+1

D
)

+∆t
(
(f ,vn+1

M )Ω + (gN ,vn+1
E )ΓN

)
.

By definition (1.20) of the discrete steady-state u∞D , we also have

(f ,vn+1
M )Ω + (gN ,vn+1

E )ΓN = aD
(
u∞D ,v

n+1
D

)
,

whence, by bilinearity of aD, we infer(
un+1
M −unM,v

n+1
M

)
Ω

= −∆t aD
(
un+1
D −u∞D ,v

n+1
D

)
= −∆tDn+1.

Combined to (1.66), this proves the entropy/dissipation relation (1.63). Now, since the advection
field V φ satisfies (1.21), we can invoke (1.22) from Proposition 2 to infer that

Dn+1 ≥ κ|un+1
D −u∞D |

2
1,D,

where κ > 0 only depends on Λ ,β, Ω, d, Γ D , and θD. Combining this estimate with a discrete
Poincaré inequality from Proposition 7 (applied to un+1

D −u∞D ∈ V D,0), and with the definition of
the discrete (relative) entropy, yields

Dn+1 ≥ κ

C2
P

∥∥∥un+1
M −u∞M

∥∥∥2
L2(Ω)

=
2κ

C2
P

En+1,

where CP is either equal to CPW if |Γ D | = 0 or to CP ,ΓD otherwise. This last inequality, combined
with the entropy/dissipation relation (1.63), implies the entropy decay (1.64). The inequal-
ity (1.65) is then a straightforward consequence of the definition of En.

The result of Theorem 2 does not use the fact that V φ is related to the gradient of a potential, it
thus extends to general advection fields.

1.4.2 Asymptotic behaviour of the exponential fitting scheme

We recall that ρ = u
ω , with ω = e−φ, is the solution to Problem (1.34), and that ρ∞ is the

corresponding steady-state, solution to Problem (1.28). We consider the following ω-weighted
definitions of the relative entropy and dissipation:

Eω(t) =
1
2

∥∥∥ρ(t)− ρ∞
∥∥∥2
L2
ω(Ω)

, Dω(t) =
∫
Ω

ωΛ∇(ρ(t)− ρ∞) · ∇(ρ(t)− ρ∞).

It can be easily verified that the following entropy/dissipation relation holds at the continuous
level:

d
dt

Eω(t) +Dω(t) = 0.

At the discrete level, let us recall that
(
ρn
D
∈ V ωD,0

)
n≥1

is the solution to Problem (1.35). We
then set unD = ωD × ρnD with ωD defined by (1.31), in such a way that unD ∈ V D,0. Similarly,
ρ∞
D
∈ V ωD,0 is the corresponding steady-state, solution to Problem (1.30), and we set u∞D =

ωD × ρ∞D ∈ V D,0. We consider the following equivalents of the ω-weighted (relative) entropy and
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dissipation: for all n ∈ N? ,

Enω =
1
2

∥∥∥ρnM − ρ∞M∥∥∥2
L2
ω(Ω)

, Dnω = aωD
(
ρn
D
− ρ∞
D
,ρn
D
− ρ∞
D

)
,

where the discrete bilinear form aωD is defined (locally) by (1.29). The definition of the relative
entropy is seamlessly extended to the case n = 0. Our main result on the exponential fitting HFV
scheme is the following, whose proof is very similar to the one of Theorem 2.

Theorem 3 (Asymptotic stability). The following discrete entropy/dissipation relation holds true:

∀n ∈ N, En+1
ω −Enω
∆t

+Dn+1
ω ≤ 0. (1.67)

Furthermore, the discrete entropy decays exponentially fast in time: there is νω = 2ω[λ[α[
ω]C

2
P
> 0, where

λ[α[ is the coercivity constant of (1.14) (only depending on Λ, Ω, d, and θD), (we recall that) the
bounds ω[,ω] only depend on φ and Ω, and CP is either equal to 2CPW if |Γ D | = 0 or to CP ,ΓD
otherwise (where CPW , CP ,ΓD are the Poincaré constants of Proposition 7), such that

∀n ∈ N, En+1
ω ≤ (1 + νω∆t)

−1Enω. (1.68)

Consequently, the discrete solution converges exponentially fast in time towards its associated discrete
steady-state: for all n ∈ N? ,

‖unM −u
∞
M‖L2(Ω) ≤

√
ω]
ω[

(1 + νω∆t)
− n2 ‖u0

M −u
∞
M‖L2(Ω). (1.69)

Proof. Let n ∈ N. Reasoning as in the proof of Theorem 2, we infer

En+1
ω −Enω ≤ −∆t aωD

(
ρn+1
D
− ρ∞
D
,ρn+1
D
− ρ∞
D

)
= −∆tDn+1

ω ,

which proves (1.67). By the coercivity estimate (1.33), we have that Dn+1
ω ≥ω[λ[α[

∣∣∣ρn+1
D
−ρ∞
D

∣∣∣2
1,D,

where α[ > 0 from Section 1.2.3 only depends on Ω, d, and θD, and ω[ > 0 only depends on φ
and Ω. Reasoning as in the proof of Proposition 3, and using a discrete Poincaré inequality from
Proposition 7 (combined with [51, Lemma 5.2] in the case |Γ D | = 0), we also infer that

‖ρn+1
M − ρ∞M‖L2

ω(Ω) ≤
√
ω]CP |ρn+1

D
− ρ∞
D
|1,D,

where ω] > 0 only depends on φ and Ω, and CP is either equal to 2CPW if |Γ D | = 0 or to CP ,ΓD
otherwise. Thus, we finally get that

Dn+1
ω ≥ 2ω[λ[α[

ω]C
2
P

En+1
ω .

Combined to (1.67), this yields (1.68). Deriving (1.69) is then straightforward.

1.4.3 Asymptotic behaviour of the nonlinear scheme

Recall that u > 0 is the solution to Problem (1.1) endowed with pure Neumann boundary
conditions (|Γ D | = 0), and data f = 0, gN = 0, and uin ≥ 0 with M =

∫
Ω
uin > 0 (see Appendix 1.B
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for the case of mixed Dirichlet-Neumann boundary conditions), and that u∞ > 0, solution to
Problem (1.2) with same data, is the thermal equilibrium u∞th given by (1.25) with ρ̄ = ρM .
The analysis of the nonlinear scheme relies on the entropy/dissipation structure (1.36)-(1.37)
introduced in Section 1.3.3. Notice that the relative dissipation (or relative Fisher information)
of (1.37) can be equivalently rewritten

D(t) =
∫
Ω

u(t)Λ∇ log
(
u(t)
u∞

)
· ∇ log

(
u(t)
u∞

)
= 4

∫
Ω

u∞Λ∇
√
u(t)
u∞
· ∇

√
u(t)
u∞

.

At the discrete level, recalling that
(
unD ∈ V D

)
n≥1

is a (positive) solution to Problem (1.45),
and that u∞D ∈ V D is the corresponding steady-state, solution to Problem (1.46), that is equal
to the HFV interpolate of u∞th , we consider the discrete entropy En and dissipation Dn defined
by (1.49), and we define a discrete counterpart of the relative dissipation written in root-form:
for all n ≥ 1,

D̂n = 4
∑
K∈M

u∞K,[

∫
K
Λ∇KξnK · ∇Kξ

n
K

= 4
∑
K∈M

u∞K,[δKξ
n
K
·AKδKξnK , (1.70)

where, for all K ∈M, u∞K,[ = min
(
u∞K ,min

σ∈EK
u∞σ

)
and the matrix AK is defined by (1.10), and ξnD is

the element of V D such that

ξnK =

√
unK
u∞K

∀K ∈M, ξnσ =

√
unσ
u∞σ

∀σ ∈ E . (1.71)

At the discrete level, and as opposed to the continuous level, the quantities Dn and D̂n are not
equal, therefore we need to compare them. The definition of u∞K,[ results from the following

observation: according to the structures of Dn and D̂n, locally, we expect to have to compare u∞K,[
with rK (unK ), which depends on unK and on the (unσ )σ∈EK .

Proposition 6 (Fisher information). There is CF > 0, only depending on Λ, Ω, d, and θD such that

∀n ≥ 1, D̂n ≤ CFDn. (1.72)

Proof. Let n ∈ N? , and K ∈M. By (1.96) from Lemma 4, we first have that

4u∞K,[ δKξ
n
K
·AKδKξnK ≤ 4u∞K,[ δKξ

n
K
·BKδKξnK , (1.73)

where the matrix BK is the diagonal matrix defined by (1.95). Since for all (x,y) ∈
(
R?+

)2
,∫ y

x
dz√
z

= 2
(√
y −
√
x
)
, the Cauchy–Schwarz inequality yields

4
(√
y −
√
x
)2
≤ (y − x)

(
log(y)− log(x)

)
.

By the property (1.42d) of the function m, we then get that

∀(x,y) ∈
(
R?+

)2
, 4

(√
y −
√
x
)2
≤m(x,y)

(
log(y)− log(x)

)2
. (1.74)
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Since BK is diagonal, the combination of (1.73), (1.71), and (1.74), yields

4u∞K,[ δKξ
n
K
·AKδKξnK ≤

∑
σ∈EK

4u∞K,[B
σσ
K


√
unK
u∞K
−
√
unσ
u∞σ


2

≤
∑
σ∈EK

u∞K,[B
σσ
K m

(
unK
u∞K

,
unσ
u∞σ

)(
log

(
unK
u∞K

)
− log

(
unσ
u∞σ

))2

.

By definition of u∞K,[, and monotonicity (1.42a) and homogeneity (1.42c) of m, we infer that, for
all σ ∈ EK ,

u∞K,[m

(
unK
u∞K

,
unσ
u∞σ

)
≤ u∞K,[m

 unKu∞K,[ , u
n
σ

u∞K,[

 =m
(
unK ,u

n
σ

)
.

By definition (1.43) of f|EK |, and the bound (1.4) on |EK |, we then have

max
σ∈EK

u∞K,[m

(
unK
u∞K

,
unσ
u∞σ

)
≤max
σ∈EK

m
(
unK ,u

n
σ

)
≤ |EK |rK (unK ) ≤ dθ2

D rK (unK ).

We deduce that

4u∞K,[ δKξ
n
K
·AKδKξnK ≤ dθ

2
D rK (unK )

∑
σ∈EK

BσσK

(
log

(
unK
u∞K

)
− log

(
unσ
u∞σ

))2

= dθ2
D rK (unK ) δKw

n
K ·BKδKw

n
K ,

where wnK ∈ V K is such that unK = u∞K × exp(wnK ). Using again (1.96) from Lemma 4, we finally
infer that

4u∞K,[ δKξ
n
K
·AKδKξnK ≤ dθ

2
DCB rK (unK ) δKw

n
K ·AKδKw

n
K ,

with CB > 0 only depending on Λ, Ω, d, and θD. Summing over K ∈ M, and recalling the
definitions (1.70) of D̂n, and (1.49) of Dn, eventually yields (1.72) with CF = dθ2

DCB.

The long-time behaviour of the nonlinear HFV scheme is studied in the following result.

Theorem 4 (Asymptotic stability). Recall the discrete entropy/dissipation relation of Proposition 5.

The discrete entropy decays exponentially fast in time: there is νnl =
4u∞[ λ[α[
CFC

2
LS,∞

> 0, depending on Λ, φ,

M, Ω, d, and θD such that
∀n ∈ N, En+1 ≤ (1 + νnl∆t)

−1En. (1.75)

Consequently, the discrete solution converges exponentially fast in time towards its associated discrete
steady-state: for all n ∈ N? ,

‖unM −u
∞
M‖L1(Ω) ≤

√
2ME0 (1 + νnl∆t)

− n2 . (1.76)

Proof. Let n ∈ N. By definition (1.70) of D̂n, and from the coercivity estimate (1.14), we first infer
that

D̂n+1 = 4
∑
K∈M

u∞K,[a
Λ
K

(
ξn+1
K
,ξn+1
K

)
≥ 4u∞[ a

Λ
D
(
ξn+1
D ,ξn+1

D

)
≥ 4u∞[ λ[α[

∣∣∣ξn+1
D

∣∣∣2
1,D,
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which, combined with (1.72), implies that

Dn+1 ≥ 1
CF

D̂n+1 ≥
4u∞[ λ[α[
CF

∣∣∣ξn+1
D

∣∣∣2
1,D.

In order to compare this quantity with the entropy, we use the discrete log-Sobolev inequal-
ity (1.86) from Proposition 9, applied to the couple (un+1

D ,u∞D ) (which satisfies the mass condition
owing to Proposition 4). We get

En+1 =
∫
Ω

u∞MΦ1

un+1
M
u∞M

 ≤ C2
LS,∞

∣∣∣ξn+1
D

∣∣∣2
1,D,

which, combined with the previous estimate, yields

Dn+1 ≥
4u∞[ λ[α[
CFC

2
LS,∞

En+1.

Combined with (1.50) from Proposition 5, this shows (1.75). The L1-norm estimate (1.76) is
then a direct consequence of (1.75) and of the Csiszár–Kullback lemma (cf., e.g., [51, Lemma

5.6]) applied to the probability measure µ(x)dx = u∞M(x) dx
M and to the function g =

unM
u∞M

such that∫
Ω
gdµ = 1, which yields ‖unM −u

∞
M‖L1(Ω) ≤

√
2MEn for all n ≥ 1.

Remark 9 (Norms and long-time behaviour). Notice that Theorem 4 states an exponential decay
in L1-norm, whereas Theorems 2 and 3 assert a convergence in L2, and thus a convergence in Lp for
any p ∈ [1,2]. This is reminiscent of the fact that the natural topologies for the linear and nonlinear
problems differ.

1.5 Numerical results

1.5.1 Implementation

In this section, we discuss some practical aspects concerning the implementation of the
schemes described in this paper. In all the test-cases presented below, the two-dimensional
domain is taken to be Ω = (0,1)2. The meshes used for the numerical tests, presented on Figure
1.2, are the classical Cartesian, triangular, and Kershaw meshes from the FVCA V benchmark
(see [154]), as well as a tilted hexagonal-dominant mesh (cf. [101]). These meshes have convex

(a) Cartesian mesh (b) Triangular mesh (c) Kershaw mesh (d) Tilted hexagonal mesh

Figure 1.2 – Implementation. Coarsest meshes of each family used in the numerical tests.

cells, hence we always choose xK to be the barycentre of K ∈ M. In our implementation,
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we compute the meshsize as h̃D = max
K∈M

|K |
|∂K | . Observe that h̃D/hD is framed by constants only

depending on the mesh regularity. Notice also that the Kershaw mesh family is not uniformly
regular in the sense defined in Section 1.2.1. In practice, we use a fixed value

√
2 < η = 1.5 < 2 of

the stabilisation parameter (see Remark 1). In the sequel, we denote by HMM the classical HFV
linear scheme for advection-diffusion, and we restrict our attention to the Scharfetter–Gummel
discretisation of the flux (1.18), namely to the function A(s) = s

es −1 −1, extended by continuity to
0 at s = 0.

Linear systems and static condensation

The two linear (HMM and exponential fitting) schemes are implemented in the same way.
To fix ideas, we consider the evolution problem with pure Neumann boundary conditions,
of unknown solution uD ∈ V D. We denote by UM ∈ R|M| and UE ∈ R|E| the unknown vectors
(uK )K∈M and (uσ )σ∈E . The linear schemes result in the following block system:(

MM MM,E
ME ,M ME

)(
UM
UE

)
=

(
SM
SE

)
, (1.77)

where MM ∈ R|M|×|M|, MM,E ∈ R|M|×|E|, ME ,M ∈ R|E|×|M|, ME ∈ R|E|×|E|, and SM ∈ R|M| and SE ∈
R|E| stem from the loading term and the boundary conditions. By construction, the matrix
MM is diagonal with non-zero diagonal entries, and can therefore be inverted at a very low
computational cost. Thus, one can eliminate the cell unknowns, noticing that

UM = M−1
M

(
SM −MM,EUE

)
. (1.78)

Using this relation, one infers that UE is the solution to the following linear system:(
ME −ME ,MM−1

MMM,E
)
UE = SE −ME ,MM−1

MSM, (1.79)

where MD = ME −ME ,MM−1
MMM,E , the so-called Schur complement of the matrix MM, is an

invertible matrix of size |E| × |E|. In practice, we solve the linear system (1.79) using an LU
factorisation algorithm, and we use the solution UE to reconstruct UM from (1.78). This method,
called static condensation, allows one to replace a system of size |M|+ |E| by a system of size |E|
without additional fill-in. In the case of mixed Dirichlet-Neumann boundary conditions, the
Dirichlet face unknowns are eliminated from the global linear system.

Exponential fitting scheme: choice of unknown and harmonic averaging

The exponential fitting scheme can be expressed in either the u or the ρ = u eφ variable.
In the ρ variable, the resulting linear system is symmetric. One can then use, e.g., Cholesky
factorisation or a conjugate gradient method. However, the formulation in ρ is ill-conditioned.
In our numerical experiments, the ratio between the condition numbers of the linear systems
in ρ and in u often exceeds 105. Because of this, we chose and we recommend to solve the
linear system in the unknown u. Notice that solving the system in u is equivalent to right
pre-condition the system in ρ with the inverse of the diagonal matrix with entries the coordinates
of the interpolate of ω = e−φ.

In order to implement the exponential fitting scheme, one needs to evaluate averages of the
diffusion tensor 1

|PK,σ |
∫
PK,σ

ωΛ. Observe that ω(x)/ω(xK ) is of order ehK ‖∇φ‖L∞(PK,σ ) in PK,σ . There-

fore, with large advection fields, the diffusion problem (1.28) becomes strongly heterogeneous. It
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is pointed out in [43] that an (empirical) solution to improve robustness to this heterogeneity is
to use harmonic averages to approximate integrals of the diffusion tensor. In the numerical tests
of the following subsections, we compare the “classical" exponential fitting scheme (for which
the integral is approximated by a standard - second order - quadrature) with the “harmonic"
one, in which case we choose to use the following approximation:

1
|PK,σ |

∫
PK,σ

ωΛ ≈ 3

 ∑
F∈EPK,σ

1
ω(xF)


−1

Λ(xK ),

where EPK,σ denotes the set of edges of the triangle PK,σ (recall that d = 2 in our experiments),
and xF is the barycentre of F ∈ EPK,σ .

Nonlinear scheme and Newton’s method

The implementation of the nonlinear scheme relies on the following formulation: given
un−1
D ∈ V D positive, we want to solve the nonlinear system Gn,δtD (unD) = 0D, where Gn,δtD is defined

as in (1.55) but with a time step δt instead of ∆t. The resolution of this system relies on Newton’s
method.

First, one initialises the method with δt = ∆t, and initial guess max(un−1
D ,ε1D) ∈ V D (where

the maximum is taken coordinate by coordinate), in order to avoid potential problems due to
the singularity of the log near 0. The successive linear systems to compute the residue have the
same structure as (1.77). We thus perform static condensation at each Newton iteration. As a
stopping criterion, we compare the l∞ relative norm of the residue with a threshold tol. If the
method does not converge after imax iterations, we divide the time step by 2, and we restart the
resolution. When the method converges, one can proceed with the approximation of un+1

D , with
an initial time step of min(∆t,2δt). In practice, we use ε = 10−11, imax = 50, and tol = 10−11.

The implementation of the nonlinear scheme relies on the computation of log(ωK ) and
log(ωσ ). Since we have chosen xK to be the barycentre of K , we choose to approximate 1

|K |
∫
K

e−φ

by e−φ(xK ). Therefore, log(ωK ) is computed as log(e−φ(xK )) = −φ(xK ). The same holds true for
log(ωσ ).

In the simulations shown below, we use arithmetic means for the functions m and f|EK | of the
reconstruction rK defined by (1.41)-(1.43). For all K ∈M, and all uK ∈ V K , we thus consider

rK (uK ) =
1
2

uK +
1
|EK |

∑
σ∈EK

uσ

 .
This choice is close to the one advocated in [49, Eq. (58)]. For a discussion on other choices of
reconstructions, we refer to [51, Section 6.2].

1.5.2 Long-time behaviour of discrete solutions

In this section, we present some numerical illustration of the long-time behaviour of discrete
solutions. We focus on a test-case from [56, 52, 51]. We consider homogeneous pure Neumann
boundary conditions (Γ D = ∅ and gN = 0), and zero loading term (f = 0). The advective potential

and diffusion tensor are set to φ(x,y) = −x and Λ =
(
lx 0
0 1

)
for lx > 0. The exact solution is given
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by
u(t,x,y) = C1 e−αt+

x
2 (2πcos(πx) + sin(πx)) + 2C1πex−

1
2 ,

where C1 > 0 and α = lx
(1

4
+π2

)
. Note that uin vanishes on {x = 1}, but for any t > 0, u(t, ·) > 0.

The associated steady-state is
u∞(x,y) = 2C1πex−

1
2 .

Our experiments are performed using the following values:

lx = 10−2 and C1 = 10−1.

We compute the solution on the time interval [0,Tf ], and we denote by (unD)1≤n≤Nf the corre-
sponding approximate solution. Note that the number of time steps Nf may differ between the
linear and nonlinear schemes, because of the adaptive time step refinement procedure used for
the nonlinear scheme.

We set Tf = 350 in order to see the complete evolution. Since the long-time behaviour of the
schemes does not depend on the size of the discretisation, we can explore the evolution using
a large time step ∆t = 10−1. We perform the numerical experiments on two Kershaw meshes
(see Figure 1.2c) of sizes 0.02 and 0.006. In Figure 1.3, we depict, as a function of time, the L1
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Figure 1.3 – Long-time behaviour of discrete solutions. Comparison of the long-time behaviour
on Kershaw meshes for Tf = 350 and ∆t = 0.1.

distance between unD and u∞ (the exact steady-state) computed as∑
K∈M
|K ||unK −u

∞(xK )|.

We observe the exponential decay towards the steady-state, until some precision is reached.
Note that for the HMM scheme, some saturation occurs at precision of magnitude 10−6 and
10−7: the scheme does not preserve the thermal equilibrium (see Remark 4). This saturation
corresponds to the accuracy of the stationary scheme (see Section 1.5.4), so the threshold is
lower on the refined mesh. Note that one could also consider the error measure

∑
K∈M
|K ||unK −u

∞
K |
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between the discrete solution and the discrete steady-state: this quantity decays exponentially,
with a lower saturation of magnitude 10−12, corresponding to machine precision. The other
(nonlinear and exponential fitting) schemes have the same decay rate, and the saturation occurs
at machine precision. For the four schemes, the rates of convergence are similar to the real one α.
In particular, the use of harmonic averages in the exponential fitting scheme does not have any
impact on the long-time behaviour.

1.5.3 Positivity of discrete solutions

We are now interested in the positivity of the discrete solutions. We use the following test-
case with anisotropic diffusion and homogeneous pure Neumann boundary conditions. We set
Γ D = ∅, f = 0, gN = 0,

φ(x,y) = −
(
(x − 0.4)2 + (y − 0.6)2

)
and Λ =

(
0.8 0
0 1

)
.

For the initial datum, we take
uin = 10−31B +1Ω\B,

where B is the Euclidean ball
{
(x,y) ∈ R2 | (x − 0.5)2 + (y − 0.5)2 ≤ 0.22

}
. These data ensure that

the solution u is positive on R+×Ω. The experiment is performed on a tilted hexagonal-dominant
mesh (see Figure 1.2d) of size 4.3 · 10−3, made up of 4192 cells and 12512 edges. Since we deal
with a diffusive phenomenon, the smallest values of u are expected for small time, hence we
perform the simulation with a relatively small final time Tf = 5.10−4, alongside with a time step
of ∆t = 10−5.

The results are collected in Table 1.1. The cost is defined as the number of linear systems
solved in order to compute the solution (unD)1≤n≤Nf , and the minimum values min_cells and
min_edges are defined by

min
{
unK | 1 ≤ n ≤Nf , K ∈M

}
and min

{
unσ | 1 ≤ n ≤Nf , σ ∈ E

}
.

The indicated number of negative unknowns is for the whole simulation. Here, Nf = 50 also for
the nonlinear scheme (no sub-division of the time step was needed in Newton’s method). As

cost min_cells min_edges # negative unknowns
Nonlinear 175 9.93e-04 7.36e-04 0

HMM 50 -5e-03 –7.74e-02 593
ExpF 50 -4.98e-03 -7.72e-02 590

ExpF (harmonic) 50 -4.98e-03 -7.74e-02 588

Table 1.1 – Positivity of discrete solutions. Numerical results for Tf = 5.10−4 and ∆t = 10−5 on
a tilted hexagonal-dominant mesh. At each time step, there are 4192 cell unknowns and 12512
edge unknowns.

expected, the nonlinear scheme has positive discrete solutions, whereas the linear ones exhibit
a violation of positivity (the value of η can have some influence on positivity; see [122]). Note
that the use of harmonic averages for the exponential fitting scheme has no impact on the
undershoots.

We observe that the nonlinear scheme requires approximately 3.5 times more linear system
inversions than the linear schemes. However, this value depends strongly on the final time
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of simulation Tf . Indeed, the number of linear systems solved at step n decreases when n
increases. The first time step costs 9 resolutions, but this number rapidly decreases as the
solution approaches the steady-state (the second and the third time steps respectively cost 5 and
4 resolutions).

1.5.4 Accuracy of stationary solutions

In this section, we aim at comparing the accuracy of the different schemes for the stationary
problem. To do so, we define the discrete L2-norm and H1-seminorm errors as (i) the L2-norm of
the difference uM−ΠM(u), and (ii) the | · |1,D-seminorm of the difference uD−ΠD(u), where uD is
the discrete solution, and ΠD(u) is the HFV interpolate of the continuous solution u (computed
as ΠD(u) ≈ ((u(xK ))K∈M, (u(xσ ))σ∈E )). In what follows, we reason in relative errors.

The nonlinear scheme is extended to a more general setting, in order to take into account a
loading term f ≥ 0 and mixed Dirichlet-Neumann boundary conditions (|Γ D | > 0) with gD > 0
and gN ≥ 0. The scheme writes:

Find uD ∈ V D positive such that GD(uD) = 0D, (1.80)

where GD : (V D)?+→ V D is the vector field defined by

GK (uD) =
∑
σ∈EK

F nl
K,σ (uK )−

∫
K
f ∀K ∈M, (1.81a)

Gσ (uD) = −
(
F nl
K,σ (uK ) +F nl

L,σ (uL)
)

∀σ = K | L ∈ Eint , (1.81b)

Gσ (uD) = −
∫
σ
gN −F nl

K,σ (uK ) ∀σ ∈ ENext withMσ = {K},

(1.81c)

Gσ (uD) =
1
|σ |

∫
σ
gD −uσ ∀σ ∈ EDext , (1.81d)

F nl
K,σ (uK ) = rK (uK )

∑
σ ′∈EK

Aσσ
′

K (log(uK ) +φ(xK )− log(uσ ′ )−φ(xσ ′ )) ∀K ∈M,∀σ ∈ EK . (1.81e)

The implementation of this scheme still relies on a Newton method similar to the one used for
the evolution scheme. It is here initialised with ΠD(ω) = ωD.

The first test-case we consider is the same as in [19]. It is an isotropic problem, with Λ = I2,
ΓN = ∅, φ(x,y) = −(2x+ 3y), and exact solution

u(x,y) =
(
x − e2(x−1)

)(
y2 − e3(y−1)

)
,

the other data f and gD being set accordingly. Note that for this test-case, the diffusion and
advection terms are of the same order of magnitude. The numerical experiments are performed
on the triangular mesh family (see Figure 1.2b). The convergence results are depicted in Figure
1.4. As expected, the two linear schemes are of order two in L2-norm, and one in H1-seminorm.
The same holds for the nonlinear scheme, whose accuracy is rather the same as the classical HMM
scheme, one order of magnitude better than the exponential fitting schemes. On this test-case,
the use of harmonic averages for the exponential fitting scheme does not have a significant
impact.

The second test-case is an advection-dominated problem, with anisotropic diffusion and
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Figure 1.4 – Accuracy of stationary solutions. Relative errors in discrete L2-norm and H1-
seminorm for the first test-case on triangular meshes.

mixed Dirichlet-Neumann boundary conditions. We set Γ D = ({0} × (0,1))∪ ({1} × (0,1)), ΓN =
((0,1)× {0})∪ ((0,1)× {1}), gD = 1, gN = 0, and f = 0. The diffusion tensor and the potential are
defined by the following expressions:

Λ =
(
1 0
0 ly

)
and φ(x,y) = log

(1
v

+ x
)
,

with ly ,v > 0. Note that the advection field V φ = −
(

v
1+vx

0

)
has a magnitude of order v when x

is small. Thus, near the boundary {0} × [0,1], the problem is advection-dominated if v is large

enough. Moreover, div(V φ) =
v2

(1 + vx)2 > 0 and V φ ·n = 0 on ΓN , so the problem is coercive. The

exact solution is given by

u(x,y) =
v

1 + vx

( 2vx
2 + v

(1
v

+
x
2

)
+

1
v

)
.

We perform our numerical experiments on the Cartesian mesh family (see Figure 1.2a), with

ly = 100 and v = 200.

The results are depicted in Figure 1.5. They show that the HMM scheme suffers, most probably
because of the fact that the advective term predominates over the diffusive term, at least in
some part of the domain. The order of convergence of the HMM scheme is less than one in
H1-seminorm, and than two in L2-norm. The other schemes converge with order one in H1-
seminorm, and two in L2-norm. Moreover, on this test-case, their accuracy is better than that of
the HMM scheme. Notice that ω = e−φ = v

1+vx has small variations (i.e., not exponential) in the
cells, even if v is large. Therefore, the diffusion tensor ωΛ of the problem in the ρ unknown for
the exponential fitting schemes is not that heterogeneous (locally). It could explain the good
performances of the exponential fitting schemes in this case. Moreover, on this test-case, using
harmonic averages in the exponential fitting scheme gives a substantial gain in accuracy for both
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Figure 1.5 – Accuracy of stationary solutions. Relative errors in discrete L2-norm and H1-
seminorm for the second test-case on Cartesian meshes.

the L2 and H1 relative errors, of magnitude 101.

1.6 Conclusion

In this paper, by means of discrete entropy methods, we have analysed the long-time be-
haviour of three hybrid finite volume schemes for linear advection-diffusion equations. We
have proved that the solutions to all schemes converge exponentially fast in time towards the
associated discrete steady-states. Two schemes among the three are new, that are the (linear)
exponential fitting scheme (adapting known ideas to the HFV context) and the nonlinear scheme,
for which we have proved the existence of solutions. All schemes can handle anisotropy and gen-
eral meshes. The two linear schemes can deal with general data and mixed Dirichlet-Neumann
boundary conditions, however they do not preserve the positivity of solutions. On the other hand,
the nonlinear scheme preserves positivity and can be used in practice with general boundary con-
ditions. However, at the moment, its asymptotic analysis is limited to systems that converge in
time towards the thermal equilibrium, restricting the admissible data. We have finally validated
our theoretical findings on different numerical tests, assessing long-time behaviour, positivity,
and spatial accuracy of the schemes.

1.A Functional inequalities

1.A.1 Discrete Poincaré inequalities

We recall the following hybrid discrete Poincaré inequalities (cf. [111, Lemmas B.25 and B.32,
p = 2]).

Proposition 7 (Discrete Poincaré inequalities). Let D be a given discretisation of Ω, with regularity
parameter θD. There exists CPW > 0, only depending on Ω, d, and θD such that

∀vD ∈ V
N
D,0, ‖vM‖L2(Ω) ≤ CPW |vD |1,D. (1.82)
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Assume that |Γ D | > 0. Then, there exists CP ,ΓD > 0, only depending on Ω, d, Γ D , and θD such that

∀vD ∈ V
D
D,0, ‖vM‖L2(Ω) ≤ CP ,ΓD |vD |1,D. (1.83)

1.A.2 Logarithmic Sobolev inequalities

In this section, we derive logarithmic Sobolev inequalities on a bounded domain, in the
continuous setting. The intermediate results of Proposition 8 below will be useful in the discrete
setting. In the following, µ is a probability measure on the bounded domain Ω, and the space
L
q
µ(Ω) denotes the space endowed with the norm ‖f ‖q

L
q
µ(Ω)

=
∫
Ω
|f |qdµ. We start with a preliminary

lemma, which is an adaptation of part of the proof of [96, Theorem 6.1.22] (see also [153]). We
recall that Φ1(s) = s log(s)− s+ 1.

Lemma 3. For all t ∈ R and ψ ∈ L2
µ(Ω) such that ‖ψ‖L2

µ(Ω) = 1, one has∫
Ω

Φ1

(
(1 + tψ)2

)
dµ ≤ t2

∫
Ω

ψ2 log(ψ2)dµ+ (1 + t2) log(1 + t2) + (1 + |〈ψ〉µ|)t2,

where 〈ψ〉µ =
∫
Ω
ψdµ.

Proof. Let us define, for δ > 0,

fδ(t) =
∫
Ω

Φ1

(
(1 + tψ)2 + δ

)
dµ− t2

∫
Ω

ψ2 log(ψ2)dµ− (1 + t2) log(1 + t2) .

Differentiating fδ yields

f ′δ (t) = 2
∫
Ω

(1 + tψ)ψ log
(
(1 + tψ)2 + δ

)
dµ− 2t

∫
Ω

ψ2 log(ψ2)dµ− 2t log(1 + t2)− 2t .

In particular, f ′δ (0) = 2log(1 + δ)〈ψ〉µ. Differentiating once more, and using that ‖ψ‖2
L2
µ(Ω)

= 1, we

obtain

f ′′δ (t) = 2
∫
Ω

ψ2 log
(

(1 + tψ)2 + δ
(1 + t2)ψ2

)
dµ+ 4

∫
Ω

ψ2 (1 + tψ)2

δ+ (1 + tψ)2 dµ− 4t2

1 + t2
− 2 .

Therefore, using that log(x) ≤ x − 1 in the first term, that x
δ+x ≤ 1 in the second, together with the

fact that µ is a probability measure and that ‖ψ‖2
L2
µ(Ω)

= 1, one gets

f ′′δ (t) ≤ 2δ
1 + t2

+
4t

1 + t2
〈ψ〉µ + 4− 4t2

1 + t2
− 2 ≤ 2δ+ 2|〈ψ〉µ|+ 2 .

One concludes by integrating this inequality twice between 0 and t, using that fδ(0) = Φ1(1 + δ),
and letting δ→ 0.

Proposition 8. For any ξ ∈ Lqµ(Ω) with q > 2, one has

∫
Ω

ξ2 log

 ξ2

‖ξ‖2
L2
µ(Ω)

dµ ≤
q

q − 2
‖ξ − 〈ξ〉µ‖2Lqµ(Ω)

+
q − 4
q − 2

‖ξ − 〈ξ〉µ‖2L2
µ(Ω)

, (1.84)
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where 〈ξ〉µ =
∫
Ω
ξ dµ. Besides, one also has∫

Ω

Φ1(ξ2)dµ ≤
q

q − 2
‖ξ − 1‖2

L
q
µ(Ω)

+
2q − 6
q − 2

‖ξ − 1‖2
L2
µ(Ω)

+Φ1

(
1 + ‖ξ − 1‖2

L2
µ(Ω)

)
. (1.85)

Proof. i) Assume that 〈ξ〉µ , 0, and take t and ψ such that ξ = 〈ξ〉µ(1 + tψ) and ‖ψ‖L2
µ(Ω) = 1.

In particular, 〈ψ〉µ = 0, and 1 + t2 =
‖ξ‖2

L2
µ(Ω)

〈ξ〉2µ
. Using Lemma 3, a somewhat tedious but

straightforward computation yields

∫
Ω

ξ2 log

 ξ2

‖ξ‖2
L2
µ(Ω)

dµ ≤
∫
Ω

(ξ − 〈ξ〉µ)2 log

 (ξ − 〈ξ〉µ)2

‖ξ − 〈ξ〉µ‖2L2
µ(Ω)

dµ+ 2‖ξ − 〈ξ〉µ‖2L2
µ(Ω)

.

Observe that the last inequality also holds if 〈ξ〉µ = 0. Let φ = ξ − 〈ξ〉µ. Then,

∫
Ω

ξ2 log

 ξ2

‖ξ‖2
L2
µ(Ω)

dµ ≤ 2
q − 2

‖φ‖2
L2
µ(Ω)

∫
Ω

φ2

‖φ‖2
L2
µ(Ω)

log

 φq−2

‖φ‖q−2
L2
µ(Ω)

dµ+ 2‖φ‖2
L2
µ(Ω)

.

Therefore, by Jensen’s inequality for the probability measure φ2

‖φ‖2
L2
µ(Ω)

dµ applied to the

concave function log, one obtains

∫
Ω

ξ2 log

 ξ2

‖ξ‖2
L2
µ(Ω)

dµ ≤ 2
q − 2

‖φ‖2
L2
µ(Ω)

log


‖φ‖q

L
q
µ(Ω)

‖φ‖q
L2
µ(Ω)

+ 2‖φ‖2
L2
µ(Ω)

=
q

q − 2
‖φ‖2

L2
µ(Ω)

log


‖φ‖2

L
q
µ(Ω)

‖φ‖2
L2
µ(Ω)

+ 2‖φ‖2
L2
µ(Ω)

,

and one concludes using that log(x) ≤ x − 1.

ii) Take t and ψ such that ξ = 1 + tψ and ‖ψ‖L2
µ(Ω) = 1. Remark that t = ‖ξ −1‖L2

µ(Ω). Using that
|〈ψ〉µ| ≤ ‖ψ‖L2

µ(Ω) = 1, Lemma 3 yields

∫
Ω

Φ1(ξ2)dµ−Φ1

(
1 + ‖ξ − 1‖2

L2
µ(Ω)

)
≤

∫
Ω

(ξ − 1)2 log

 (ξ − 1)2

‖ξ − 1‖2
L2
µ(Ω)

dµ+ 3‖ξ − 1‖2
L2
µ(Ω)

.

Letting φ = ξ − 1, the proof goes on as for i).

From there, logarithmic Sobolev inequalities are immediate consequences of Poincaré–Sobolev
inequalities, of [51, Lemma 5.2], and of the fact that Φ1(1 + s) ≤ s log(1 + s).

Corollary 1 (Logarithmic Sobolev inequalities). Assume that µ has a density (still denoted by µ)
with respect to the Lebesgue measure such that 0 < µ[ ≤ µ(x) ≤ µ] for a.e. x ∈ Ω. Then, for any
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ξ ∈H1(Ω), one has

∫
Ω

ξ2 log

 ξ2

‖ξ‖2
L2
µ(Ω)

dµ ≤ C(Ω,d,µ[,µ])‖∇ξ‖2L2
µ(Ω;Rd )

.

Besides, if |Γ D | > 0 and ξ − 1 ∈H1,D
0 (Ω) = {v ∈H1(Ω) | v = 0 on Γ D }, then∫

Ω

Φ1(ξ2)dµ ≤ C′(Ω,d,µ[,µ])
(
1 + log

(
1 + ‖ξ − 1‖2

L2
µ(Ω)

))
‖∇ξ‖2

L2
µ(Ω;Rd )

.

1.A.3 Discrete logarithmic Sobolev inequalities

Similarly to what was done in [51], one can derive discrete logarithmic Sobolev inequalities
adapted to the hybrid setting.

Proposition 9 (Discrete logarithmic Sobolev inequality, Neumann case). Let D be a given discreti-
sation of Ω, with regularity parameter θD. Let vD,v

∞
D ∈ V D be two positive vectors of unknowns such

that ∫
Ω

vM =
∫
Ω

v∞M =M,

and set v∞M,] = sup
K∈M

v∞K . Define ξD as the element of V D such that

ξK =
√
vK
v∞K

∀K ∈M, ξσ =
√
vσ
v∞σ

∀σ ∈ E .

Then, there exists CLS,∞ > 0, only depending on M, v∞M,], Ω, d, and θD such that∫
Ω

v∞MΦ1

(
ξ2
M

)
≤ C2

LS,∞
∣∣∣ξD∣∣∣21,D . (1.86)

Proof. By (1.84) and [51, Lemma 5.2] applied to the probability measure µ(x)dx = v∞M(x) dx
M and

to the function ξM =
√
vM
v∞M

, we first infer that, for q > 2,∫
Ω

vM log
(
ξ2
M

)
≤ C(M,v∞M,],q)

(
‖ξM − ξM‖2Lq(Ω) + ‖ξM − ξM‖2L2(Ω)

)
,

where we let ξM = 1
|Ω|

∫
Ω
ξMdx. The conclusion then falls in two steps. On the one hand, since∫

Ω
vM =

∫
Ω
v∞M, we remark that∫

Ω

v∞MΦ1

(
ξ2
M

)
=

∫
Ω

vM log
(
ξ2
M

)
.

On the other hand, we invoke (1.82) and the discrete Poincaré–Sobolev inequality of [111,
Lemma B.25, p = 2] for 2 < q < 2d

d−2 :

∀wD ∈ V
N
D,0, ‖wM‖Lq(Ω) ≤ CP S |wD |1,D,
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where CP S > 0 only depends on Ω, d, and θD, that we apply to wD = ξD − ξM1D ∈ V
N
D,0. This

proves (1.86).

Starting from (1.85), a similar proof yields the following result. The relevant discrete
Poincaré–Sobolev inequality in this case is given in [111, Lemma B.32, p = 2].

Proposition 10 (Discrete logarithmic Sobolev inequality, Dirichlet case). Assume that |Γ D | > 0.
Let D be a given discretisation of Ω, with regularity parameter θD. Let vD,v

∞
D ∈ V D be two positive

vectors of unknowns such that
vD − v

∞
D ∈ V

D
D,0,

and set v∞M,] = sup
K∈M

v∞K and M∞ :=
∫
Ω
v∞M. Define ξD as the element of V D such that

ξK =
√
vK
v∞K

∀K ∈M, ξσ =
√
vσ
v∞σ

∀σ ∈ E .

Then, letting µ =
v∞M
M∞ , there exists CLS,ΓD ,∞ > 0, only depending on M∞, v∞M,], Ω, d, Γ D , and θD such

that ∫
Ω

v∞MΦ1(ξ2
M) ≤ C2

LS,ΓD ,∞

(
1 + log

(
1 + ‖ξM − 1‖2

L2
µ(Ω)

))
|ξD |

2
1,D. (1.87)

1.B Nonlinear scheme for mixed Dirichlet-Neumann bound-
ary conditions

In this appendix, we introduce and analyse a version of the nonlinear scheme for the evolution
problem (1.1) when |Γ D | > 0. In order to perform the asymptotic analysis, we need to assume
that the data are compatible with the thermal equilibrium:

f = 0, gN = 0, and there exists ρD > 0 such that gD = ρD e−φ = ρDω.

For such data, given uin ≥ 0, the solution u to (1.1) is positive for t > 0, and converges towards
u∞ = ρD e−φ when t→∞.

1.B.1 Scheme and well-posedness

Accordingly to this setting, we define u∞D = ρDωD. One has u∞[ 1D ≤ u∞D ≤ u
∞
]

1D, where

0 < u∞[ ≤ u
∞
]

only depend on ρD , φ, and Ω. Remind that, as in (1.47), given a positive uD ∈ V D,
one defines wD(uD) ∈ V D as

wK = log
(
uK
u∞K

)
∀K ∈M, wσ = log

( uσ
u∞σ

)
∀σ ∈ E .
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For mixed boundary conditions, the discrete problem reads: Find
(
unD ∈ V D

)
n≥1

positive such
that 

1
∆t

(unM −u
n−1
M ,vM)Ω + TD

(
unD,wD(unD),vD

)
= 0 ∀vD ∈ V

D
D,0,

wD(unD) ∈ V DD,0,

u0
K =

1
|K |

∫
K
uin ∀K ∈M.

(1.88a)

(1.88b)

(1.88c)

Notice that, since for all σ ∈ E, wnσ = log
(
unσ
u∞σ

)
, the equation (1.88b) only means that, for all

σ ∈ EDext , unσ = u∞σ , which enforces strongly the Dirichlet boundary condition on Γ D . One can
show the following existence result.

Theorem 5 (Existence of positive solutions and entropy/entropy dissipation relation). Let uin ∈
L2(Ω) be a non-negative function. There exists at least one positive solution

(
unD ∈ V D

)
n≥1

to the
nonlinear scheme (1.88). It satisfies the following entropy/dissipation relation:

∀n ∈ N, En+1 −En

∆t
+Dn+1 ≤ 0, (1.89)

where En and Dn are, respectively, the discrete relative entropy and dissipation defined in (1.49).
Moreover, there exists ε > 0, depending on Λ, φ, uin, ρD , Ω, d, ∆t, and D such that, for all n ≥ 1,
unK ≥ ε for all K ∈M and unσ ≥ ε for all σ ∈ E.

The proof of this theorem relies on the same arguments as the one of Theorem 1 for (homo-
geneous) pure Neumann boundary conditions. The major difference lies in the counterpart of
Lemma 2, which is no longer based on the positivity of the mass, but on the prescribed (zero)
value on the Dirichlet faces.

1.B.2 Long-time behaviour

In the next theorem, we state the long-time behaviour of the discrete solutions to the nonlinear
scheme (1.88).

Theorem 6 (Asymptotic stability). If
(
unD ∈ V D

)
n≥1

is a (positive) solution to (1.88), then the

discrete entropy decays exponentially fast in time: there is νnl,ΓD > 0, depending on Λ, φ, Γ D , ρD , uin,
Ω, d, and θD such that

∀n ∈ N, En+1 ≤ (1 + νnl,ΓD ∆t)
−1En. (1.90)

Consequently, the discrete solution converges exponentially fast in time towards its associated discrete
steady-state.

Proof. Let n ∈ N? . As in Section 1.4.3, one has Dn ≥ 1
CF

D̂n ≥
4u∞[ λ[α[
CF

∣∣∣ξnD∣∣∣21,D, where CF > 0

depends on the data. Using the discrete log–Sobolev inequality (1.87) from Proposition 10, we
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get

En ≤ C2
LS,ΓD ,∞

(
1 + log

(
1 + ‖ξnM − 1‖2

L2
µ(Ω)

))
|ξnD |

2
1,D

≤
C2
LS,ΓD ,∞CF

4u∞[ λ[α[

(
1 + log

(
1 + ‖ξnM − 1‖2

L2
µ(Ω)

))
Dn. (1.91)

Then, there is C > 0 such that (recall that ξnD is positive)

‖ξnM − 1‖2
L2
µ(Ω)
≤ ‖(ξnM)2‖L1

µ(Ω) + 1 ≤
∥∥∥∥Φ1

(
(ξnM)2

)∥∥∥∥
L1
µ(Ω)

+C = (M∞)−1En +C ,

where the last inequality is an application of the Fenchel–Young inequality x ≤ Φ1(x) +Φ?1 (1),
where Φ?1 is the convex conjugate of Φ1 and x = (ξnM)2. But, since the entropy/dissipation relation
(1.89) holds, the discrete entropy decays and En ≤ E0. Therefore, one has

‖ξnM − 1‖2
L2
µ(Ω)
≤ (M∞)−1E0 +C .

Combining this estimate with (1.91), we deduce that there exists νnl,ΓD > 0, depending on Λ, φ,
Γ D , ρD , uin, Ω, d, and θD such that En ≤ νnl,ΓDDn. Then, using the entropy/dissipation relation
(1.89), we get (1.90).

1.C Proofs of technical results

1.C.1 Discrete boundedness by mass and dissipation

We prove Lemma 2 from Section 1.3.3. To ease the reading, we first recall the result.

Lemma 2. Let wD ∈ V D, and assume that there exist C] > 0, and M] ≥M[ > 0 such that

M[ ≤
∑
K∈M
|K |u∞K ewK ≤M] and D(wD) ≤ C]. (1.53)

Then, there exists C > 0, depending on Λ, u∞[ , u∞
]

, M[, M], C], Ω, d, and D such that

|wK | ≤ C ∀K ∈M and |wσ | ≤ C ∀σ ∈ E .

Proof. For K ∈M, using (1.12) and (1.13), we first infer that

δKwK ·AKδKwK = aΛK (wK ,wK ) ≥ λ[α[|wK |
2
1,K = λ[α[

∑
σ∈EK

|σ |
dK,σ

(
wK −wσ

)2
.

By definition (1.3) of the regularity parameter θD, we have that |σ |
dK,σ
≥ hd−2

K
θD

for all σ ∈ EK , so that

δKwK ·AKδKwK ≥
λ[α[
θD

hd−2
K |δKwK |

2. (1.92)
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By the expression (1.52) of D(wD), and the local lower bound (1.92), we thus get

D(wD) =
∑
K∈M

rK
(
u∞K × exp(wK )

)
δKwK ·AKδKwK

≥ λ[α[
θD

∑
K∈M

hd−2
K rK

(
u∞K × exp(wK )

)
|δKwK |

2

=
λ[α[
θD

∑
K∈M

∑
σ∈EK

hd−2
K rK

(
u∞K × exp(wK )

)
(wK −wσ )2.

Let K ∈M and σ ∈ EK be fixed. Using, successively, the definition (1.41) of rK combined with the
definition (1.43) of f|EK |, the combination of (1.48) with assumptions (1.42a) and (1.42c), and the
assumptions (1.42b) and (1.42d) combined with the bound (1.4) on |EK |, we infer, for wσ , wK ,

rK
(
u∞K × exp(wK )

)
(wK −wσ )2 ≥ 1

|EK |
m
(
u∞K ewK ,u∞σ ewσ

)
(wK −wσ )2

≥
u∞[
|EK |

m
(
ewK ,ewσ

)
(wK −wσ )2

≥
u∞[
dθ2
D

(ewK −ewσ ) (wK −wσ ) ≥ 0,

and we verify that this inequality still holds when wσ = wK . Since D(wD) ≤ C] by (1.53), for all
K ∈M, and all σ ∈ EK , we have

0 ≤ (ewK −ewσ ) (wK −wσ ) ≤ ζh2−d
K , (1.93)

with ζ =
dC]θ

3
D

λ[α[u
∞
[
> 0 (recall that α[ depends onΩ, d, and θD). Besides, since

∑
K∈M |K |u∞K ewK ≤M]

again by (1.53), we have |K |u∞K ewK ≤M] for all K ∈ M. Similarly, since
∑
K∈M |K |u∞K ewK ≥M[,

there exists K0 ∈M such that |Ω|u∞K0
ewK0 ≥M[ > 0. Combining these bounds, we infer that there

exists K0 ∈M such that

log

 M[

|Ω|u∞
]

 ≤ wK0
≤ log

(
M]

|K0|u∞[

)
. (1.94)

Now, let us show that we can similarly frame all the other components of wD.

For a,x ∈ R, let us define E(a,x) = (ex−ea) (x − a) ≥ 0. Observe that E(a,y + a)e−a = (ey −1)y =:
ξ(y) and that ξ is continuous, strictly decreasing for y < 0, strictly increasing for y > 0, ξ(0) = 0,
and ξ(y)→ +∞ when y→±∞. Let b,a] > 0, and take |a| ≤ a]. By the properties of ξ, if E(a,x) ≤ b,
then |x| ≤ κb(a]) := a] + max{|y| s.t. ξ(y) = bea] }. We can thus infer that if (xk)k=0,...,m is a finite

sequence of real numbers such that E(xk ,xk+1) ≤ b and |x0| ≤ a], then |xm| ≤ κ
(m)
b (a]) where κ(m)

b is
m compositions of κb. In particular, the bound only depends on a], m and b.

Now we can conclude the proof. Because of the connectivity of the mesh, for any cell
K (respectively, face σ ) there is a finite sequence of components of wD, denoted (xk)k=0,...,m,
starting at x0 = wK0

and finishing at xm = wK (respectively, xm = wσ ) such that, by (1.93),
E(xk ,xk+1) ≤ b := ζh2−d

D . The inequality (1.94) yields the initial bound on |x0|, and one concludes
by the above argument.
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1.C.2 A local comparison result

We prove a local comparison result between the matrices AK and some (local) diagonal
matrices. The proof relies on arguments that are similar to those advocated in [56] to analyse the
VAG scheme.

Lemma 4. For K ∈ M, let AK ∈ R|EK |×|EK | be the matrix defined by (1.10). The matrices AK are
symmetric positive-definite, and there exists CA > 0, only depending on Λ, Ω, d, and θD such that

∀K ∈M, Cond2(AK ) ≤ CA,

where Cond2(AK ) = ‖A−1
K ‖2‖AK‖2 is the condition number of the matrix AK . Moreover, letting for

K ∈M, BK ∈ R|EK |×|EK | be the diagonal matrix with entries

BσσK =
∑
σ ′∈EK

|Aσσ
′

K | for all σ ∈ EK , (1.95)

there exists CB > 0, only depending on Λ, Ω, d, and θD such that

∀K ∈M, ∀w ∈ R|EK |, w ·AKw ≤ w ·BKw ≤ CBw ·AKw. (1.96)

Proof. Let K ∈ M and k = |EK |. As a direct consequence of its definition (1.10), the matrix
AK ∈ Rk×k is symmetric and positive semi-definite. Now, let w = (wσ )σ∈EK ∈ Rk , and define
vK ∈ V K such that

vK = 0 and vσ = −wσ for all σ ∈ EK .

Then, δKvK = (vK − vσ )σ∈EK = w. By (1.92), we immediately get that

w ·AKw ≥
λ[α[
θD

hd−2
K |w|

2,

which implies, since w ∈ Rk is arbitrary, that AK is invertible, and gives us a lower bound
on its smallest eigenvalue. By the same arguments advocated to prove (1.92), noticing that
|σ |
dK,σ
≤ θDhd−2

K for all σ ∈ EK , we infer that

w ·AKw ≤ λ]α]θDhd−2
K |w|

2.

We eventually get, using the estimates on the eigenvalues of AK , that

Cond2(AK ) ≤
λ]α]
λ[α[

θ2
D = CA, (1.97)

with CA > 0 only depending on Λ, Ω, d, and θD. Now, by (1.95), since AK is symmetric, we have

w ·BKw =
∑
σ∈EK

∑
σ ′∈EK

|Aσσ
′

K |w
2
σ =

∑
σ∈EK

∑
σ ′∈EK

|Aσσ
′

K |w
2
σ ′ ,

and we can use the half-sum to get

w ·BKw =
∑
σ∈EK

∑
σ ′∈EK

|Aσσ
′

K |
w2
σ +w2

σ ′

2
.
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Using Young’s inequality, we infer

w ·AKw =
∑
σ∈EK

∑
σ ′∈EK

Aσσ
′

K wσwσ ′ ≤
∑
σ∈EK

∑
σ ′∈EK

|Aσσ
′

K ||wσ ||wσ ′ |

≤
∑
σ∈EK

∑
σ ′∈EK

|Aσσ
′

K |
w2
σ +w2

σ ′

2
= w ·BKw.

For the second inequality, by symmetry of AK , we have

w ·BKw =
∑
σ∈EK

BσσK w2
σ ≤max

σ∈EK
(BσσK )

∑
σ∈EK

w2
σ = max

σ∈EK

 ∑
σ ′∈EK

|Aσ
′σ
K |

 |w|2 = ‖AK‖1|w|2.

The space Rk×k being of finite dimension, the norms ‖ · ‖1 and ‖ · ‖2 are equivalent, and there
exists γk > 0 such that ‖ · ‖1 ≤ γk‖ · ‖2. Moreover, since AK is symmetric positive-definite, the
following inequality holds:

w ·AKw ≥
‖AK‖2

Cond2(AK )
|w|2.

From the previous estimates and (1.97), we deduce that

w ·BKw ≤ γk Cond2(AK )w ·AKw ≤ γkCAw ·AKw.

But, according to (1.4), we have max
K∈M

γk ≤ max
(d+1)≤l≤dθ2

D

γl , therefore

w ·BKw ≤ CBw ·AKw,

where CB = CA max
(d+1)≤l≤dθ2

D

γl is a positive constant only depending on Λ, Ω, d, and θD. This

completes the proof of the comparison result (1.96).
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We are interested in the discretisation of a drift-diffusion system in the frame-
work of hybrid finite volume (HFV) methods on general polygonal/polyhedral
meshes. The system under study is composed of two anisotropic and nonlinear
convection-diffusion equations with nonsymmetric tensors, coupled with a Pois-
son equation and describes in particular semiconductor devices immersed in a
magnetic field. We introduce a new scheme based on an entropy-dissipation re-
lation and prove that the scheme admits solutions with values in admissible sets
- especially, the computed densities remain positive. Moreover, we show that the
discrete solutions to the scheme converge exponentially fast in time towards the
associated discrete thermal equilibrium. Several numerical tests confirm our theo-
retical results. Up to our knowledge, this scheme is the first one able to discretise
anisotropic drift-diffusion systems while preserving the bounds on the densities.

2.1 Introduction

We are interested in the numerical approximation of a generalised anisotropic Van Roos-
broeck’s drift-diffusion system, inspired by the model introduced in [143] by Gajewski and
Gärtner to describe semiconductors devices immersed in exterior magnetic fields. Such a
model differs from the classical drift-diffusion system from its anisotropic nature, induced by
the magnetic field. From a numerical point of view, this anisotropy leads to several difficul-
ties, including the preservation of bounds on the solution (see the numerical results of [143]).
The main originality of our work is to address this difficulty using a nonlinear Hybrid Finite
Volume method [123, 70], specifically designed to handle anisotropy while preserving the
bounds. Hence, up to our knowledge, the scheme introduced here is the first bound-preserving
scheme for anisotropic drift-diffusion systems. From a general perspective, the Van Roosbroeck’s
drift-diffusion system, initially introduced in [258], is one of the fundamental models for the
description and the simulation of semiconductor devices. It is a macroscopic model taking into
account the densities of the charge carriers (the electrons, negatively charged, and the holes, of
positive charge) alongside with an electrostatic potential induced by the spatial inhomogeneity of
the charges. Mathematically speaking, the system consists of two parabolic convection-diffusion
equations coupled with a Poisson equation on the electrostatic potential. Among the other
different generalisations of the initial model proposed in [258], one can mention the incorpo-
ration of nonlinear terms of recombination-generation (see for example [208]), as well as the
use of non-Boltzmann statistics [144, 125] to describe some specific physical situations (high
carrier densities) or devices (for example, organic semiconductors [257]), which leads to the
modification of the diffusive term into a nonlinear one. Another generalisation of the system, as
discussed above, is presented in [143]: the authors consider that the semiconductor is immersed
into an exterior magnetic field. Such a situation leads to the introduction of anisotropy tensors
(which are nonsymmetric) in the convection-diffusion equations, related to the magnetic field.

In the present work, we consider a general model that encompasses the different features
mentioned above. More precisely, let Ω be an open, bounded, connected polytopal subsets
of Rd , with d ∈ {1,2,3} whose boundary ∂Ω is divided into two disjoint subset ∂Ω = Γ D ∪ ΓN ,
with |Γ D | > 0. We are interested in the following problem, where the unknowns N , P and φ are
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functions from R+ ×Ω to R:

∂tN −div(NΛN∇(h(N )−φ)) = −R(N,P ) in R+ ×Ω
∂tP −div(PΛP∇(h(P ) +φ)) = −R(N,P ) in R+ ×Ω

−div(Λφ∇φ) = C + P −N in R+ ×Ω

N =ND , P = P D and φ = φD on R+ × Γ D

NΛN∇(h(N )−φ) ·n = PΛP∇(h(P ) +φ) ·n =Λφ∇φ ·n = 0 on R+ × ΓN

N (0, ·) =N in and P (0, ·) = P in in Ω,

(2.1)

where n denotes the unit normal vector to ∂Ω pointing outward Ω.
Let us give some insight and explanations about this system, and make precise assumptions

on the data. First, the unknowns N and P refer respectively to the densities of electrons and
holes, and φ refers to the electrostatic potential. The densities N and P take values in the set of
admissible densities Ih =]0, a[, where a ∈]0,+∞] is the upper bound on the density. Ih is in fact
the definition domain of the function h : Ih→ R, which depends on the statistics used to describe
the relation between the densities and the chemical potential. We assume that h is a C1 function,
such that h′ > 0 on Ih, with limits lim

0
h = −∞ and lim

a
h = +∞. We denote by g = h−1 : R→ Ih the

inverse function of h. Note that g is positive, and that g ′ > 0 on R. Moreover, we assume that
there exists g0 > 0 such that for any real s, g ′(s) ≤ g0g(s). We refer the reader to [144, 125, 127]
for more details about these statistics functions, but let us emphasise here three classical cases
that fall under the scope of our assumptions:

(i) the Boltzmann statistics, for which g = exp, a = +∞ and h = log;

(ii) the Blakemore statistics, for which g(s) = (γ + e−s)−1, a = 1
γ and h(s) = log(s/(1−γs)), with

γ > 0 (a relevant physical value is γ = 0.27);

(iii) the Fermi-Dirac statistics of order 1/2, for which g(s) = 2√
π

∫ +∞
0

√
z

1+ez−s dz and a = +∞.

The statistics (ii) can be interpreted as an approximation of (iii) in low density situations (see
the seminal paper of Blakemore [31]), and similarly (ii) can be approximated by (i) if the carrier
densities are small enough. For the purpose of future analysis, we define H : x→

∫ x
1 h(s)ds and

G : x 7→
∫ x
−∞ g(s)ds. Notice that H and G are strictly convex, and that G is positive.

The function C ∈ L∞(Ω) is the doping profile of the semiconductor, which characterises the
device under study. In practice, C is a discontinuous function.
The term R(N,P ) corresponds to the recombination-generation rate, which can be interpreted as
a reaction term between electrons and holes. We assume that this term has the following form:

R(N,P ) = r(N,P )
(
eh(N )+h(P )−1

)
, (2.2)

where r is a continuous non-negative function, which can be nonconstant in space. Pertinent
choices of r are for example (see [207, 208, 128]) the Auger recombination r(N,P ) = cNN + cP P ,
the Shokley-Read-Hall (SRH) term r(N,P ) = (τNN + τP P + τC)−1, or no recombination term r = 0.
The tensor Λφ ∈ L∞(Ω,Rd×d) is the (rescaled) permittivity of the medium. We assume that it is

a symmetric and uniformly elliptic tensor, in the sense that there exists λφ
]
≥ λφ[ > 0 such that

∀ξ ∈ Rd ,
λ
φ
[ |ξ |

2 ≤ ξ ·Λφξ ≤ λ
φ
]
|ξ |2,

In practical situations, the permittivity is often assumed isotropic, leading to a tensor of the
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form Λφ = λ2ε Id , where λ is the rescaled Debye length of the system, which accounts for the
nondimensionalisation, and ε :Ω→ R∗+ is a uniformly positive function corresponding to the
dielectric permittivity of the material. Note that relevant values of the Debye length can be very
small, inducing some stiff behaviours. Moreover, since the devices are often made of different
materials, the function ε can be non-regular, and exhibits discontinuities at junctions between
different materials.
The tensors ΛN and ΛP are diffusion tensors in L∞(Ω,Rd×d), related to the exterior magnetic
field. We refer to [143] for a detailed description of the semiconductor models with magnetic
field. A typical example is the case d = 2, where the magnetic field ~B is orthogonal to the device:
letting b = |~B|, the tensors write

ΛN =
µN

1 + b2

(
1 b
−b 1

)
and ΛP =

µP
1 + b2

(
1 −b
b 1

)
,

where µN :Ω→ R?+ and µP :Ω→ R?+ are the rescaled mobilities of the electrons and holes. For
our analysis, we will consider general tensors, and only assume that the tensors are uniformly
elliptic and bounded, in the sense that there exist λ] ≥ λ[ > 0 such that for any ξ ∈ Rd ,

λ[|ξ |2 ≤ ξ ·ΛNξ, λ[|ξ |2 ≤ ξ ·ΛP ξ and |ΛNξ | ≤ λ]|ξ |, |ΛP ξ | ≤ λ]|ξ |.

Note that these tensors are nonsymmetric in general (if b , 0).
Concerning the boundary data, we consider mixed Dirichlet-Neumann conditions. On Γ D , which
corresponds to the ohmic contacts, we impose that the values of the densities and the electrostatic
potential are equal to ND , P D and φD which are the traces of H1 functions, denoted the same
way. On ΓN , which corresponds to insulated contacts, we impose a null flux. Concerning the
initial conditions, we impose the initial densities N in and P in, which are in L∞(Ω). We assume
that the initial and boundary data are uniformly bounded in Ih: there exist 0 < m <M < a such
that, almost everywhere on Ω,

m ≤N in, P in,ND , P D ≤M. (2.3)

In the sequel, we will use the generic term of “data” or “physical data” to refer to the objects
previously introduced, namely h, r, Λφ, ΛN , ΛP , C, ND , P D , φD , N in and P in.

The existence and uniqueness of the global solutions to the drift-diffusion system (2.1) have
been originally investigated in the case of Boltzmann statistics (h = log), see for example [214,
142, 208]. Concerning models with general statistics described above, we refer to [144, 149].
One of the main properties of the solutions is the fact that the carrier densities N and P take
values in Ih: in the sequel we will say that the densities are Ih-valued. Another natural concern
lies in the long-time behaviour of the system, that is to say the asymptotics of the solutions when
t→ +∞: under some assumptions on the data, the solutions are shown to converge exponentially
fast towards some steady-state called thermal equilibrium. The thermal equilibrium is a specific
steady-state (N e, P e,φe) for which the electrons and holes currents cancel. Under the hypothesis
on the function h, according to [209], there is no vacuum in this state, which hence satisfies
∇ (h(N e)−φe) = 0 and ∇ (h(P e) +φe) = 0 on Ω. Therefore, there exist some constants αN and αP
such that h(N e)−φe = αN and h(P e) +φe = αP in Ω (recall that Ω is connected). In particular,
this implies the following compatibility condition on the boundary data:

h(ND )−φD = αN and h(P D ) +φD = αP on Γ D . (2.4)

Moreover, at the thermal equilibrium, there is no more recombination nor generation, that is to
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say R(N e, P e) = 0. This implies, according to the definition of R, that h(N e) + h(P e) = 0 if r , 0.
Combined with the previous constraint, this imposes another compatibility condition on the
constants if r , 0:

αN +αP = 0. (2.5)

Under these conditions, we get that N e = g(αN +φe) and P e = g(αP −φe). Thus, the electrostatic
potential at the equilibrium φe is a solution to the following nonlinear Poisson equation (called
Poisson-Boltzmann in case of Boltzmann statistics, i.e. if g = exp):

−div(Λφ∇φe) = C + g(αP −φe)− g(αN +φe) in Ω,

φe = φD on Γ D ,

Λφ∇φe ·n = 0 on ΓN .

(2.6)

In the sequel, we will assume that the boundary data are compliant with the thermal equilibrium
and satisfy the compatibility conditions (2.4) and (2.5) (if r , 0). Notice that (2.4) and (2.3) imply
that φD is bounded on Γ D . Hence, we assume that its lifting on Ω, also denoted by φD , is in
H1(Ω)∩L∞(Ω). The analysis of the long-time behaviour of the drift-diffusion system was carried
out in [143] in the case of the Boltzmann statistics with a magnetic field, and in [144] for other
statistics (without magnetic field). It relies on the use of the entropy method, which consists in
using a Lyapunov functional -the entropy- decaying with time. Such a method was initially used
in kinetic theory and then extended to the study of various dissipative systems, as explained in
[8, 174]. Let us sketch here the main lines of this method: letting

E(t) =
∫
Ω

H(N )−H(N e)− h(N e)(N −N e) +
∫
Ω

H(P )−H(P e)− h(P e)(P − P e)

+
1
2

∫
Ω

∇(φ−φe) ·Λφ∇(φ−φe),

D(t) =
∫
Ω

N∇(h(N )−φ) ·ΛN∇(h(N )−φ) +
∫
Ω

P∇(h(P ) +φ) ·ΛP∇(h(P ) +φ)

+
∫
Ω

R(N,P ) (h(N ) + h(P )) ,

one has the following entropy-entropy dissipation relation:

dE
dt

(t) = −D(t). (2.7)

From the assumptions on R and h, one deduces that the entropy E and the dissipation D are
non-negative quantities. Therefore, the entropy decreases, and this implies the convergence of
(N (t), P (t),φ(t)) towards (N e, P e,φe) when t→∞.

Note that the system (2.1) can also be interpreted as a Poisson–Nernst–Planck (PNP) system,
which describes the evolution of charged particles, typically ions in a solution. Especially, the
results presented in this article can be easily generalised to systems with more than two charge
carriers.

From a numerical point of view, approximating the solutions to system (2.1) proves to be a
challenging task due to various factors, including the nonlinear coupling between the equations,
the discontinuity of the doping profile C, the stiffness induced by small values of the Debye
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length λ, the anisotropy in the convection-diffusion equations or the non-symmetric nature of
the tensors. Moreover, it is essential to design numerical schemes that preserve the qualitative
physical properties of the continuous model. Here, the fact that the densities take values in
Ih as well as the long-time behaviour are characteristic features of the continuous system that
should be preserved at the discrete level. Another challenge lies in the variety of meshes the
scheme can handle. Indeed, semiconductor devices are subject to boundary layers phenomena,
which often require local mesh refinement to be performed: matching simplicial meshes are
strongly constrained, and not very suitable for this purpose (see [207, Chapter 5.4]). Among
the various numerical methods that have been proposed for solving drift-diffusion systems, the
seminal work of Scharfetter and Gummel [239] in one dimension with Boltzmann statistics
presents the keystone idea of numerous schemes: to use the exponential relation between
chemical potentials and densities to ensure a preservation of the steady-state as well as a good
discrete long-time behaviour. This idea was generalised for different statistics (of the form
h(s) = sα , which do not match the assumptions presented above and allow vacuum) in [26] by
Bessemoulin-Chatard. This scheme was proved to have a good long-time behaviour in [27, 28],
following ideas from Chainais-Hilairet and Filbet introduced in [68] to analyse the long-time
behaviour of an upwind TPFA scheme. The analysis strongly relies on the adaptation of the
entropy method at the discrete level. The schemes discussed above are essentially part of the
two-points flux approximation (TPFA) [121], which suffers from limitations: the mesh has to
satisfy some orthogonality conditions, and the diffusion tensor has to be isotropic. In order to
overcome these strong constraints, various finite volume methods have been introduced in the
framework of the Poisson equation (see [109]), using auxiliary unknowns. Regrettably, these
schemes do not enjoy monotonicity properties, and especially they can have negative solutions.
In [55, 56], Cancès and Guichard proposed a solution to compensate this limitation, introducing
nonlinear schemes based on the entropic structure of the problem. The specific question of
approximating drift-diffusion systems on general meshes was already investigated in the past.
One can cite the discrete duality finite volume (DDFV, see [157, 105] for a presentation and
analysis of these schemes applied to Poisson equations) scheme of Chainais-Hillairet [64], which
can handle general polygonal meshes with d = 2 in the framework of Boltzmann statistics. More
recently, Su and Tang designed and analysed a scheme for Poisson–Nernst–Planck systems
on general meshes in [250]. This scheme is based on two discretisation methods: a virtual
element method [20] for the Poisson equation alongside with a positive nonlinear finite volume
method [32, 48] for the convection-diffusion ones. The scheme is shown to admit solutions with
positive densities and to have an entropic structure. However, it is restricted to the Boltzmann
statistics with pure homogeneous Neumann boundary conditions and the Debye length is
assumed to be 1. Apart from these finite volume schemes, many finite elements schemes were
also designed for this type of drift-diffusion systems. Among them, one can cite the mixed and
hybrid exponential fitting schemes [42, 43] of Brezzi, Marini and Pietra, which are proposed as
finite elements generalisations of the Scharfetter–Gummel scheme [239], for linear diffusion
on simplicial meshes. These schemes were then generalised to other statistics, especially in
dimension 2, by Jüngel and Pietra in [175]. For other references about these schemes and their
extensions, we refer the reader to [41]. Up to our knowledge, the only existing scheme which
can handle the presence of a magnetic field in the model (anisotropic tensors ΛN and ΛP ) is the
one introduced and analysed by Gajewski and Gärtner in [143]. It can be seen as a modified
Scharfetter–Gummel scheme, and is hence restricted to Boltzmann statistics (h = log). Moreover,
the scheme is restricted to triangular meshes, and bound to some strong constraints between
the mesh geometry and the magnetic field intensity. Last, the scheme does not preserve the
positivity of the densities in the presence of a strong magnetic field.

In this article, we are concerned with the design and the analysis of a numerical scheme
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for (2.1) that preserves the continuous features of the system (long-time behaviour and Ih-
valuation of the densities). One of our main concerns is the ability of the scheme to handle the
large variety of possible data: statistics function h, recombination-generation term R, physical
data (dopingC, Debye length λ, initial and boundary data, magnetic field) and discretisation data
(mesh, time step). Note that among the different motivations, for the support of general meshes
is the desire to make local mesh adaptation much simpler in order to capture the boundary
layers. Such an approach based on a local adaptation has already been investigated in 1D [58],
but should become much more complicated or even impossible to use in higher dimension on
constrained meshes. Hence, the scheme presented here could be a possible way to use local
mesh refinement in 2D or 3D. To devise such a scheme, we use the hybrid finite volume (HFV)
method, introduced in [123] by Eymard et al. in the framework of stationary diffusion problems.
This method entails several interesting features: it can handle anisotropic and heterogeneous
diffusion tensors alongside with very general polytopal meshes, and it benefits from a unified
1D/2D/3D formulation. The scheme introduced here and its analysis are based on the entropy
structure (2.7) of the system, following the ideas of [29, 27] (in the framework of drift-diffusion
systems with TPFA schemes) and [56, 52, 70] (in the framework of advection-diffusion equations,
with positivity-preserving schemes supporting anisotropy and general meshes). In particular,
the nonlinearity induced by the function h is discretised along the principles of the nonlinear
HFV scheme introduced and analysed in [70] for advection-diffusion equations. Using this
approach, we get a unified scheme for the system (2.1), robust with respect to the various data of
the problem. The main result of this paper, stated in Theorem 7, is the existence of solutions
(with Ih-valued discrete densities) to the nonlinear scheme. In Theorem 9, we establish the
exponential decay of the discrete solutions towards the associated thermal equilibrium. These
theoretical results are validated by various numerical simulations.

The article is organised as follows. In Section 2.2, we introduce the HFV framework (mesh,
discrete unknowns, discrete operators), present the schemes for the equations (2.1) and a
generalisation of (2.6) (namely, the semi-linear Poisson equation (2.30)), and state our main
result. In Section 2.3, we show that the stationary scheme is well posed, and discuss an important
consequence, namely the correspondence between discrete densities and discrete quasi-Fermi
potentials. In Section 2.4, we analyse the scheme for the transient problem, showing that it has
an entropy structure and admits solutions with Ih-valued densities whose long-time behaviour
mimics that of the continuous solutions. In Section 2.5, we discuss the implementation of the
schemes, and give some numerical evidences of our theoretical results. Finally, in Appendix 2.A,
we state and prove a technical result that is instrumental to show the existence of solutions.

2.2 Discrete setting and schemes

The aim of this section is to recall the HFV framework for diffusive problems, and introduce
the schemes for the discretisation of the drift-diffusion system (2.1) and the nonlinear Poisson
equation (2.30). Here, for the purpose of analysis, we present the schemes from the finite element
viewpoint. We refer the reader to Section 2.5.1 for a presentation of the schemes within the
framework of finite volume methods (especially for the purpose of implementation).
For a detailed presentation of the HFV method in the framework of a steady variable diffusion
problem with symmetric tensor, we refer the reader to [123].

2.2.1 Mesh, discrete unknowns and boundary data

The definitions and notation we adopt for the discretisation are essentially the same as in
[123]. A discretisation of the (open, bounded, connected) polytopal set Ω ⊂ Rd , d ∈ {1,2,3}, is
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defined as a triplet D = (M,E ,P ), where:

— M (the mesh) is a partition ofΩ, i.e., a finite family of nonempty disjoint (open, connected)
polytopal subsets K of Ω (the mesh cells) such that (i) for all K ∈ M, |K | > 0, and (ii)
Ω =

⋃
K∈MK .

— E (the set of faces) is a partition of the mesh skeleton
⋃
K∈M∂K , i.e., a finite family of

nonempty disjoint (open, connected) subsets σ ofΩ (the mesh faces, or mesh edges if d = 2)
such that for all σ ∈ E, |σ | > 0 and there existsHσ affine hyperplane of Rd such that σ ⊂Hσ ,
and

⋃
K∈M∂K =

⋃
σ∈E σ . We assume that, for all K ∈M, there exists EK ⊂ E (the set of faces

of K) such that ∂K =
⋃
σ∈EK σ . For σ ∈ E, we letMσ = {K ∈M | σ ∈ EK } be the set of cells

whose σ is a face. Then, for all σ ∈ E, eitherMσ = {K} for a cell K ∈M, in which case σ is
a boundary face (σ ⊂ ∂Ω) and we note σ ∈ Eext , orMσ = {K,L} for two cells K,L ∈M, in
which case σ is an interface and we note σ = K |L ∈ Eint .

— P (the set of cell centres) is a finite family {xK }K∈M of points of Ω such that, for all K ∈M,
(i) xK ∈ K , and (ii) K is star-shaped with respect to xK . Moreover, we assume that the
Euclidean (orthogonal) distance dK,σ between xK and the affine hyperplane Hσ containing
σ is positive (equivalently, the cell K is strictly star-shaped with respect to xK ).

For a given discretisation D, we denote by hD > 0 the size of the discretisation (the meshsize),
defined by hD = sup

K∈M
hK where, for all K ∈M, hK = sup

x,y∈K
|x−y| is the diameter of the cell K . For all

σ ∈ E, we let xσ ∈ σ be the barycentre of σ . Finally, for all K ∈M, and all σ ∈ EK , we let nK,σ ∈ Rd
be the unit normal vector to σ pointing outward K , and PK,σ be the (open) pyramid of base σ
and apex xK (notice that, when d = 2, PK,σ is always a triangle). Since |σ | and dK,σ are positive,

we have |PK,σ | =
|σ |dK,σ
d > 0. We depict on Figure 2.1 an example of discretisation. Notice that the

mesh cells are not assumed to be convex, neither xK is assumed to be the barycentre of K ∈M.
Moreover, hanging nodes are seamlessly handled with our assumptions, so that meshes with
non-conforming cells are allowed (see the orange cross in Figure 2.1; the cell K therein is treated
as an hexagon).

K
xK

xL

L

Ω

dK,σ

σ ′ = K |K ′

σ = K |L

PL,σ

nK,σ ′

xσ

K ′

hK ′

Figure 2.1 – Two-dimensional discretisation and corresponding notations.
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We consider the following measure of regularity for the discretisation (which is the same as in
[70, Eq. (2.1)]):

θD = max

 max
K∈M,σ∈EK

hK
dK,σ

, max
σ∈E ,K∈Mσ

hd−1
K

|σ |

 . (2.8)

We now introduce the set of (hybrid, cell- and face-based) discrete unknowns:

V D =
{
vD =

(
(vK )K∈M, (vσ )σ∈E

)
| vK ∈ R ∀K ∈M,vσ ∈ R ∀σ ∈ E

}
.

Given a mesh cell K ∈ M, we let V K = R × R|EK | be the restriction of V D to K , and vK =(
vK , (vσ )σ∈EK

)
∈ V K be the restriction of a generic element vD ∈ V D to K . Also, for vD ∈ V D, we

let vM :Ω→ R and vE :
⋃
K∈M∂K → R be the piecewise constant functions such that

vM|K = vK for all K ∈M, and vE|σ = vσ for all σ ∈ E .

For further use, we let 1D (respectively 0D) denote the element of V D with all coordinates equal
to 1 (respectively 0). Also, given a function f : R→ R, and with a slight abuse in notation, we
denote by f (vD) the element of V D whose coordinates are the (f (vK ))K∈M and the (f (vσ ))σ∈E .
Given uD and vD two elements of V D, we say that uD ≤ vD (respectively <, ≥, >) if and only if
for any K ∈M and σ ∈ E, uK ≤ vK and uσ ≤ vσ (respectively <, ≥, >). In particular, a vector of
unknowns vD ∈ V D is Ih-valued if and only if 0D < vD < a1D. Note that Ih-valued vectors have
therefore positive coordinates.

We assume that the discretisation D is compliant with the partition ∂Ω = Γ D ∪ ΓN of the
boundary of the domain, in the sense that the set Eext can be split into two disjoint subsets
EDext =

{
σ ∈ Eext | σ ⊂ Γ D

}
and ENext =

{
σ ∈ Eext | σ ⊂ ΓN

}
such that Eext = EDext ∪ ENext . Notice that,

since |Γ D | > 0, one has |EDext | ≥ 1. We define the following subspace of V D, enforcing strongly a
homogeneous Dirichlet boundary condition on Γ D :

V D,0 =
{
vD ∈ V D | ∀σ ∈ E

D
ext , vσ = 0

}
.

In view of the upcoming analysis, we define a discrete counterpart of the H1 semi-norm. Locally
to any cell K ∈M, we let, for any vK ∈ V K , |vK |

2
1,K =

∑
σ∈EK

|σ |
dK,σ

(vK − vσ )2. At the global level, for
any vD ∈ V D, we let

|vD |1,D =
√ ∑
K∈M
|vK |

2
1,K .

Notice that | · |1,D does not define a norm on V D, but if |vD |1,D = 0, then there is c ∈ R such that
vD = c1D (vD is constant). Thus, | · |1,D defines a norm on the space V D,0.

We finally introduce discrete hybrid (Dirichlet) boundary data. The definitions below are
motivated by the need to preserve the compatibility condition (2.4) at the discrete level. First,
we define the discrete liftings of the densities ND

D and P DD as the elements of V D such that for
any K ∈M and any σ ∈ E,

ND
σ = g

(
1
|σ |

∫
σ
h(ND )

)
and ND

K = g
(

1
|K |

∫
K
h(ND )

)
, (2.9)

P Dσ = g
(

1
|σ |

∫
σ
h(P D )

)
and P DK = g

(
1
|K |

∫
K
h(P D )

)
. (2.10)
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We also define the hybrid interpolate φD
D
∈ V D of the lifting φD , defined by φDK = 1

|K |
∫
K
φD for

any K ∈M and φDσ = 1
|σ |

∫
σ
φD for all σ ∈ E. One has (see [111, Proposition B.7]) the following

stability results:

|φD
D
|1,D ≤ Cl,ΓD ‖φD‖H1/2(ΓD ) and − ‖φD‖L∞(Ω)1D ≤ φ

D
D
≤ ‖φD‖L∞(Ω)1D, (2.11)

where Cl,ΓD is a positive constant only depending on θD, Ω and Γ D . By (2.4) and (2.9)-(2.10), the
following compatibility condition, discrete counterpart of (2.4), holds:

∀σ ∈ EDext , h(ND
σ )−φDσ = αN and h(P Dσ ) +φDσ = αP . (2.12)

Remark 10 (Discrete liftings). The definition of the discrete boundary densities (2.9) and (2.10)
is driven by the desire to obtain the discrete compatibility condition (2.12). Such definition boils
down to discretise quantities carrying a physical meaning, homogeneous to the quasi-Fermi potentials.
Moreover, this definition ensures that ND

D and P DD are Ih-valued. Notice that in practice, if ND is
regular enough, one can choose to approximate 1

|σ |
∫
σ
h(ND ) by h(ND (xσ )) (respectively, 1

|K |
∫
K
h(ND )

by h(ND (xK )) if xK is chosen to be the barycenter of K), and therefore find a classical expression for the
discrete liftings, namely ND

σ =ND (xσ ) and ND
K =ND (xK ). The same holds true for P DD .

2.2.2 Foundations of the hybrid finite volume method

The HFV method hinges on the definition of a discrete gradient operator ∇D, that maps any
element vD ∈ V D to a piecewise constant Rd-valued function on the pyramidal submesh ofM
formed by all the PK,σ ’s, for K ∈M and σ ∈ EK . More precisely, for all K ∈M, and all σ ∈ EK ,

∇DvD|K = ∇KvK with ∇KvK |PK,σ = ∇K,σvK = GKvK + SK,σvK ∈ R
d ,

where GKvK is the consistent part of the gradient given by

GKvK =
1
|K |

∑
σ ′∈EK

|σ ′ |(vσ ′ − vK )nK,σ ′ =
1
|K |

∑
σ ′∈EK

|σ ′ |vσ ′nK,σ ′ ,

and SK,σvK is a stabilisation, given, for some parameter η > 0, by

SK,σvK =
η

dK,σ

(
vσ − vK −GKvK · (xσ − xK )

)
nK,σ . (2.13)

Let us consider a generic tensor Λ ∈ L∞(Ω,Rd×d), such that for any ξ ∈ Rd , λ[|ξ |2 ≤ ξ ·Λξ and
|Λξ | ≤ λ]|ξ |. Locally to any cell K ∈M, we introduce the discrete bilinear form aΛK : V K ×V K → R
such that, for all uK ,vK ∈ V K ,

aΛK (uK ,vK ) =
∑
σ∈EK

|PK,σ |∇K,σvK ·ΛK,σ∇K,σuK =
∫
K
∇KvK ·Λ∇KuK (2.14)
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where we set ΛK,σ = 1
|PK,σ |

∫
PK,σ

Λ. At the global level, we let aΛD : V D ×V D → R be the discrete

bilinear form such that, for all uD,vD ∈ V D,

aΛD(uD,vD) =
∑
K∈M

aΛK (uK ,vK ) =
∫
Ω

∇DvD ·Λ∇DuD.

As for the continuous case, the well-posedness of HFV methods for diffusion problems
relies on a coercivity argument. Let K ∈ M, and reason locally. By definition (2.14) of the
local discrete bilinear form aΛK , and from the bounds on the diffusion coefficient, we have
λ[‖∇KvK‖

2
L2(K ;Rd )

≤ aΛK (vK ,vK ) ≤ λ]‖∇KvK‖
2
L2(K ;Rd )

for all vK ∈ V K . Furthermore, the following

comparison result holds (cf. [111, Lemma 13.11]): there exist α[,α] with 0 < α[ ≤ α] <∞, only
depending on Ω, d, and θD such that α[|vK |

2
1,K ≤ ‖∇KvK‖

2
L2(K ;Rd )

≤ α]|vK |
2
1,K for all vK ∈ V K .

Combining both estimates, we infer a local coercivity and boundedness result:

∀vK ∈ V K , λ[α[|vK |
2
1,K ≤ a

Λ
K (vK ,vK ) ≤ λ]α]|vK |

2
1,K . (2.15)

Summing over K ∈M, we get the following global estimates:

∀vD ∈ V D, λ[α[|vD |
2
1,D ≤ a

Λ
D(vD,vD) ≤ λ]α]|vD |

2
1,D. (2.16)

Last, we recall the hybrid discrete Poincaré inequality (cf. [111, Lemma B.32, p = 2]): there exists
CP ,ΓD > 0, only depending on Ω, d, Γ D , and θD such that

∀vD ∈ V D,0, ‖vM‖L2(Ω) ≤ CP ,ΓD |vD |1,D. (2.17)

In the sequel, we will omit the tensor in superscript and use the following notations instead:

a
φ
D = a

Λφ

D , aPD = aΛPD and aND = aΛND . (2.18)

One can note that, since Λφ is symmetric, one has

∀(uD,vD) ∈ V 2
D,0, |a

φ
D(uD,vD)| ≤ α]λ

φ
]
|uD |1,D |vD |1,D. (2.19)

For further use, we introduce the linear form L
φ
D : V D→ R such that

∀vD ∈ V D, L
φ
D(vD ) =

∫
Ω

CvM − a
φ
D(φD

D
,vD). (2.20)

Note that, according to (2.19), the Poincaré inequality (2.17) and the estimates (2.11), one has

∀vD ∈ V D,0, |L
φ
D(vD )| ≤ ‖C‖L2(Ω)‖vM‖L2(Ω) +α]λ]|φDD |1,D |vD |1,D ≤ L

φ
]
|vD |1,D, (2.21)

where there exists CL > 0, only depending on Ω, Γ D , d, Λφ and θD such that

L
φ
]
≤ CL

(
‖C‖L2(Ω) + ‖φD‖H1/2(ΓD )

)
.
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2.2.3 Description of the schemes and main theorem

In this section, we introduce an HFV scheme for Problem (2.1). The scheme is designed so as
to preserve the entropic structure presented in the introduction. In the sequel, we consider a
fixed spatial discretisation D of Ω which satisfies the assumptions of Section 2.2.1, and a fixed
time step ∆t > 0 for the time dicretisation. For any n ∈ N, we let tn = n∆t.

Our HFV scheme relies on the hybrid nonlinear discretisation introduced in [70] for linear
advection-diffusion equations, which was in turn inspired from the VAG and DDFV schemes
of [56, 52]. We refer to [70] for a detailed description of the discretisation (with h = log). The
common idea of these schemes is to discretise the flux in a nonlinear way: formally, given a
function u with values in Ih and a function φ, the problem div(−uΛ∇(h(u) + φ)) = 0 can be
expressed in term of the flux

J = −uΛ∇(h(u) +φ) = −uΛ∇w,

where w = h(u) +φ is a quasi-Fermi potential. Therefore, locally to any cell K ∈M, we define an
approximation of

(u,w,v) 7→ −
∫
K
J · ∇v =

∫
K
uΛ∇w · ∇v

under the form

TΛK (uK ,wK ,vK ) =
∫
K
rK (uK )Λ∇KwK · ∇KvK

for all Ih-valued uK ∈ V K and all (wK ,vK ) ∈ V 2
K , where rK : V K → Ih, called local reconstruction

operator, maps Ih-valued elements of V K to Ih. Since rK (uK ) is a (positive) constant on K , we
have

TΛK (uK ,wK ,vK ) = rK (uK )aΛK
(
wK ,vK

)
, (2.22)

where aΛK is defined by (2.14). As already pointed out in previous works on similar nonlinear
schemes [49, 52, 51, 70], the definition of the local reconstruction operator is crucial to guarantee
the existence of solutions as well as the long-time behaviour of the discrete solutions. Especially,
we use a reconstruction which embeds information from both the local cell and face unknowns.
It is a natural generalisation of the one introduced in [70]. For uK an Ih-valued element of V K ,
we let

rK (uK ) =
1
|EK |

∑
σ∈EK

m(uK ,uσ ) (2.23)

where m : I2
h → Ih is a continuous (mean-)function satisfying

∀(x,y) ∈ I2
h , mh(x,y) ≤m(x,y) ≤max(x,y), (2.24)

and the function mh is defined by

mh(x,y) =
[xh(x)−H(x)]− [yh(y)−H(y)]

h(x)− h(y)
if x , y and mh(x,x) = x. (2.25)

This function mh was used in [131, Definition 3.3] to analyse an entropic scheme for nonlinear
advection-diffusion equations. One can note that in the case of the Boltzmann statistics (h = log),
mh(x,y) is the classical logarithmic average of x and y, which coincides with the assumptions
of [70]. Moreover, for any (x,y) ∈ R2, one has mh (g(x), g(y)) = xg(x)−H(g(x))−[yg(y)−H(g(y))]

x−y . Since the
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derivative of x 7→ xg(x)−H(g(x)) is g, the following simple expression holds:

∀(x,y) ∈ R2, mh (g(x), g(y)) =
G(x)−G(y)

x − y
. (2.26)

Note that, for all (x,y) ∈ I2
h , one has mh(x,y) ≤ x+y

2 ≤ max(x,y), and each expression of the
previous sequence is a mean function m satisfying (2.24). Heuristically, rK (uK ) computes an
average of the unknowns attached to the cell K , especially it contains information about all
the local face unknowns. The property (2.24) will be instrumental to prove Lemma 7 and the
existence of solutions to the scheme. Finally, we let TΛD be such that, for all Ih-valued uD ∈ V D,
and all (wD,vD) ∈ V 2

D,

TΛD (uD,wD,vD) =
∑
K∈M

TΛK (uK ,wK ,vK ), (2.27)

where the local contributions TΛK are defined by (2.22). In the sequel, we will use the following
notation

T ND = TΛND and T PD = TΛPD = (resp., T NK = TΛNK and T PK = TΛPK ).

Using a backward Euler discretisation in time, and the nonlinear HFV discretisation previ-
ously described in space, we consider the following scheme for the drift-diffusion system (2.1):
find

(
(Nn
D, P

n
D,φ

n
D

)
)
n∈N
∈ V 3

D
N

such that

wN,n+1
D = h

(
Nn+1
D

)
−φn+1
D
−αN1D ∈ V D,0,

wP ,n+1
D = h

(
P n+1
D

)
+φn+1
D
−αP 1D ∈ V D,0,

ψn+1
D

= φn+1
D
−φD
D
∈ V D,0,∫

Ω

Nn+1
M −Nn

M
∆t

vM + T ND (Nn+1
D ,wN,n+1

D ,vD) = −
∫
Ω

R(Nn+1
M , P n+1

M )vM ∀vD ∈ V D,0,∫
Ω

P n+1
M − P nM
∆t

vM + T PD (P n+1
D ,wP ,n+1

D ,vD) = −
∫
Ω

R(Nn+1
M , P n+1

M )vM ∀vD ∈ V D,0,

a
φ
D(ψn+1

D
,vD)−LφD(vD) =

∫
Ω

(
P n+1
M −Nn+1

M
)
vM ∀vD ∈ V D,0,

N0
K =

1
|K |

∫
K
N in and P 0

K =
1
|K |

∫
K
P in ∀K ∈M.

(2.28a)

(2.28b)

(2.28c)

(2.28d)

(2.28e)

(2.28f)

(2.28g)

Notice that the equations (2.28a) and (2.28b) implicitly assume that, for any n ≥ 1, the potentials
h
(
Nn
D
)

and h
(
P nD

)
are defined, meaning that the discrete densities Nn

D and P nD are Ih-valued.
Therefore, a solution to (2.28) has Ih-valued discrete densities by definition, which can be
expressed as functions of the discrete quasi-Fermi potentials: for any n ≥ 1,

Nn
D = g

(
wN,nD +φn

D
+αN1D

)
and P nD = g

(
wP ,nD −φ

n
D

+αP 1D
)
. (2.29)

Remark 11 (Discrete potentials and boundary values). The definitions of the discrete quasi-Fermi
potentials (2.28a) and (2.28b) are used to enforce the boundary conditions on the discrete unknowns.
Indeed, since wN,nD ∈ V D,0, from (2.29) we get that for any σ ∈ EDext , Nn

σ = g
(
0 +φDσ +αN

)
= ND

σ
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according to the compatibility condition (2.12). A similar result holds for P nD. In fact, by definition of
the trilinear forms, one can rewrite in a more natural way the equations (2.28d) and (2.28e) noticing
that

T ND (Nn+1
D ,wN,n+1

D ,vND ) = T ND (Nn+1
D ,h

(
Nn+1
D

)
−φn+1
D
,vND ), and

T PD (P n+1
D ,wP ,n+1

D ,vPD) = T PD (P n+1
D ,h

(
P n+1
D

)
+φn+1
D
,vPD).

When considering general boundary conditions (i.e., if αN and αP are no longer constant on Γ D ,
and therefore with liftings no longer constant in Ω), the scheme will be the same, except for the
equations (2.28d) and (2.28e) where arguments of the trilinear forms will be

T ND (Nn+1
D ,wN,n+1

D +αND,v
N
D ) and T PD (P n+1

D ,wP ,n+1
D +αP D,v

P
D).

The analysis of such a scheme is more sophisticated than the one presented here, and shall be the subject
of a future work.

Plugging the expression of the discrete carrier densities (2.29) into Equation (2.28f), we get an
elliptic semi-linear equation on ψn+1

D
. This stationary equation gives a correspondence between

densities and potentials at a given time, and will be of great importance in the analysis. At the
continuous level, it corresponds to the following semi-linear Poisson equation:

−div
(
Λφ∇φ

)
= C + g(zP −φ)− g(zN +φ) in Ω,

φ = φD on Γ D ,

Λφ∇φ ·n = 0 on ΓN ,

(2.30)

where zP and zN are given functions in L∞(Ω).

Remark 12 (Electrostatic potential at thermal equilibrium). If zP and zN are constant with
respective values αP and αN in Ω, then the solution to (2.30) is the electrostatic potential at thermal
equilibrium φe solution to (2.6).

We introduce an HFV scheme to approximate (2.30): find φ
D

= ψ
D

+φD
D
∈ V D where ψ

D
∈

V D,0 is such that

∀vD ∈ V D,0, a
φ
D(ψ

D
,vD) = LφD(vD) +

∫
Ω

[
g(zPM −φ

D
M −ψM)− g(zNM +φDM +ψM)

]
vM, (2.31)

where zPM and zNM are the piecewise constant functions such that, for any cell K ∈ M, zPM =
1
|K |

∫
K
zP and zNM = 1

|K |
∫
K
zNon K . We will prove in Theorem 8 that this scheme is well-posed.

Especially, in the light of Remark 12, one can define the discrete thermal equilibrium as a triplet
(N e
D, P

e
D,φ

e
D

) ∈ V 3
D of discrete unknowns satisfying:

φe
D

= φD
D

+ψe
D
, where ψe

D
∈ V D,0 is the solution to (2.31) with(zN , zP ) = (αN ,αP ),

N e
D = g(αN1D +φe

D
),

P eD = g(αP 1D −φ
e
D

).

(2.32)

Note that, by definition, the discrete densities at thermal equilibrium N e
D and P eD are Ih-valued.

We remind the reader that alternative formulations (in the spirit of finite volume methods) of
the schemes (2.28) and (2.31) are presented in Section 2.5.1.
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We are now in position to state the main result of this paper, whose proof is the subject of
Section 2.4.

Theorem 7 (Existence of discrete Ih-valued solutions to (2.28)). Let N in and P in two positive func-
tions in L∞(Ω) satisfying the condition (2.3). There exists at least one solution

(
(Nn
D, P

n
D,φ

n
D

)
)
n∈N
∈

V 3
D
N to the coupled scheme (2.28). It satisfies the following entropy-dissipation relation:

∀n ∈ N, En+1 −En

∆t
+Dn+1 ≤ 0, (2.33)

where En and Dn are, respectively, the discrete relative entropy and dissipation at time tn = n∆t,
defined by

En =
∫
Ω

H(Nn
M)−H(N e

M)− h(N e
M)

(
Nn
M −N

e
M

)
+
∫
Ω

H(P nM)−H(P eM)− h(P eM)
(
P nM − P

e
M

)
+

1
2
a
φ
D(φn

D
−φe
D
,φn
D
−φe
D

), (2.34)

and Dn = T ND (Nn
D,w

N,n
D ,wN,nD ) + T PD (P nD,w

P ,n
D ,wP ,nD ) +

∫
Ω

R(Nn
M, P

n
M)

(
h(Nn

M) + h(P nM)
)
. (2.35)

Moreover, there exist 0 <M[ ≤M] < a, depending on the physical data, ∆t, and D such that

∀n ≥ 1, M[1D ≤N
n
D ≤M]1D and M[1D ≤ P

n
D ≤M]1D. (2.36)

Remark 13 (L∞ bounds). Notice that the bounds M[ and M] on the discrete densities depend on the
time step ∆t and on the spatial discretisation D (and therefore, on the meshsize). Thus, our result is
weaker than the one proved in [28, Theorem 1] in the framework of TPFA schemes. In fact, we believe
that the discrete Moser iteration process used in [28] to get uniform bounds cannot be adapted in the
hybrid framework, because the method is intrinsically non-monotone.

2.3 Analysis of the stationary scheme

In this section, we analyse the scheme (2.31) for the approximation of the semi-linear elliptic
equation (2.30). First, we show that the scheme is well-posed. Then, we use this result to
show that there is a correspondence between the discrete densities and the discrete quasi-Fermi
potentials, which will be very useful for the following.

2.3.1 Well-posedness

In the next theorem, we show that the scheme (2.31) admits a unique solution. The proof
relies on an energy minimisation approach.

Theorem 8 (Well-posedness for (2.31)). Let zN and zP be two functions in L∞(Ω). There exists a
unique ψ

D
∈ V D,0 solution to (2.31), and there exists a positive constant CPoisson, only depending on

Λφ, Ω, Γ D , d and θD such that the following stability estimate holds:

|ψ
D
|21,D ≤ CPoisson

[
G

(
‖zP ‖L∞(Ω) + ‖zN ‖L∞(Ω) + ‖φD‖L∞(Ω)

)
+ ‖C‖2L2(Ω) + ‖φD‖2

H1/2(ΓD )

]
. (2.37)
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Moreover, the application (zN , zP ) 7→ ψ
D

is continuous from L∞(Ω)×L∞(Ω) to V D,0.

Proof. We define the discrete energy functional JD : V D,0→ R by

JD(uD) =
1
2
a
φ
D(uD,uD)−LφD(uD) +

∫
Ω

G(zPM −φ
D
M −uM) +G(zNM +φDM +uM). (2.38)

Since G is C2 on R, JD is C2 on V D,0, and one can compute its differential at a point uD ∈ V D,0:

∀vD ∈ V D,0, dJD(uD) · vD = aφD(uD,vD )−LφD(vD)−
∫
Ω

[
g(zPM −φ

D
M −uM)− g(zNM +φDM +uM)

]
vM.

Hence, a solution ψ
D
∈ V D,0 to (2.31) is an element of V D,0 such that dJD(ψ

D
) = 0. Now, one can

notice that JD is strongly convex on V D,0. Indeed, since aφD is coercive and LφD is a continuous

linear form, uD 7→
1
2a
φ
D(uD,uD)− LφD(uD) is strongly convex. Moreover, G is a convex function

(since G′ = g is strictly increasing), so uD 7→
∫
Ω
G(zPM−φ

D
M−uM)+G(zNM+φDM+uM) is also convex.

Therefore, JD has a unique minimum ψ
D
∈ V D,0, which is a solution to (2.31). On the other hand,

by convexity of JD, any critical point of JD in V D,0 is a minimum, therefore the solution to (2.31)
is unique. The continuity of (zNM, z

P
M) 7→ ψ

D
follows from the regularity of JD and the implicit

function theorem. To obtain (2.37), one can use the monotonicity of G and (2.11) to get

JD(ψ
D

) ≤ JD(0D) =
∫
Ω

G(zPM −φ
D
M) +G(zNM +φDM)

≤
∫
Ω

G
(
‖zP ‖L∞(Ω) + ‖φD‖L∞(Ω)

)
+G

(
‖zN ‖L∞(Ω) + ‖φD‖L∞(Ω)

)
≤ 2|Ω|G

(
‖zN ‖L∞(Ω) + ‖zP ‖L∞(Ω) + ‖φD‖L∞(Ω)

)
.

Furthermore, using the fact that G is positive alongside with (2.16) and (2.21), and using Young’s
inequality on Lφ

]
|ψ
D
|1,D, one has the following lower bound:

JD(ψ
D

) ≥ 1
2
a
φ
D(ψ

D
,ψ
D

)−LφD(ψ
D

) ≥ α[λ[
2
|ψ
D
|21,D −L

φ
]
|ψ
D
|1,D ≥

α[λ[
4
|ψ
D
|21,D −

1
α[λ[

L
φ
]

2
.

We conclude by combining the previous estimates and using the bound on Lφ
]

.

Notice that this result ensures the existence and uniqueness of the discrete thermal equilib-
rium (N e

D, P
e
D,φ

e
D

) described in equation (2.32).

Remark 14 (Uniform bounds). The stability result (2.37) gives a uniform bound (with respect to the
meshsize hD) on ψ

D
in energy norm | · |1,D. There is however no clear L∞ bound (uniform in D) on the

potential. It is rather different from some previous results in the TPFA framework (see [68]), where L∞

bounds were obtained alongside with the H1 estimate.

2.3.2 Correspondence between discrete densities and discrete potentials

In this section, we discuss the link between discrete densities and discrete potentials.
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For a given couple (ND, P D) ∈ V 2
D of Ih-valued vectors, one associates a unique discrete

electrostatic potential φ
D

= ψ
D

+φD
D
∈ V D such that ψ

D
∈ V D,0 is the solution to

∀vD ∈ V D,0, a
φ
D(ψ

D
,vD) = LφD(vD) +

∫
Ω

(PM −NM)vM. (2.39)

Since aφD is coercive on V D,0 and LφD is a linear form, (2.39) is well-posed and ψ
D

is uniquely
defined, so is φ

D
. Then, one associates to (ND, P D) a unique couple of discrete quasi-Fermi

potentials (wND ,w
P
D) ∈ V 2

D defined by

wND = h (ND)−φ
D
−αN1D and wPD = h (P D) +φ

D
−αP 1D. (2.40)

We call these vectors the discrete electrostatic (φ
D

) and quasi-Fermi potentials ((wND ,w
P
D)) associ-

ated to the discrete densities (ND, P D).
Note that, as in Remark 11, the discrete quasi-Fermi potentials associated to (ND, P D) are in
V D,0 if and only if the densities satisfy the following discrete boundary condition:

∀σ ∈ EDext , Nσ =ND
σ and Pσ = P Dσ . (2.41)

Conversely, for a given couple (wND ,w
P
D) ∈ V 2

D, one associates a unique electrostatic potential
φ
D

= ψ
D

+φD
D
∈ V D such that ψ

D
∈ V D,0 is the solution to

∀vD ∈ V D,0, a
φ
D(ψ

D
,vD) = LφD(vD)+∫

Ω

(
g(wPM +αP −φDM −ψM)− g(wNM +αN +φDM +ψM)

)
vM. (2.42)

Indeed, since the functions wPM +αP and wNM +αN are in L∞(Ω), according to Theorem 8 applied
to (zN , zP ) = (wPM +αP ,w

N
M +αN ), there exists a unique solution to problem (2.42). Then, one

associates to (wND ,w
P
D) a couple of Ih-valued discrete carrier densities (ND, P D) ∈ V D by

ND = g(wND +φ
D

+αN1D) and P D = g(wPD −φD +αP 1D).

Notice that with this process, according to (2.42) and the definition of ND and P D, one has that

∀vD ∈ V D,0, a
φ
D(ψ

D
,vD) = LφD(vD) +

∫
Ω

(PM −NM)vM.

Therefore, it means that (wND ,w
P
D) and φ

D
are the discrete potentials associated to the discrete

densities (ND, P D) in the sense of (2.39)-(2.40).
Moreover, (wND ,w

P
D) ∈ V 2

D,0 if and only if (ND, P D) satisfy the discrete boundary condition (2.41).
Thus, there is a bijective correspondence between (Ih-valued) discrete densities and discrete

quasi-Fermi potentials (in V D).

Remark 15 (Thermal equilibrium and quasi-Fermi potentials). From the definition (2.32) of
the discrete thermal equilibrium, one can notice that (N e

D, P
e
D,φ

e
D

) are the discrete densities and
electrostatic potential associated to the quasi-Fermi potentials at thermal equilibrium, which are the
null vectors

(
wN,eD ,wP ,eD

)
= (0D,0D).
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2.4 Analysis of the transient scheme

In this section, we perform the analysis of the scheme (2.28) for the drift-diffusion system.
The first two subsections are dedicated to the proof of Theorem 7. We also state and prove a
qualitative property about the discrete solutions, namely the long-time behaviour in Theorem 9,
in line with the work of [27].

2.4.1 Discrete entropy structure

The scheme (2.28) is designed so as to mimic the continuous entropic structure presented in
introduction. In this part, we are interested in the entropic property of the scheme (2.28).

First, we define a discrete counterpart of the entropy and entropy dissipation. Given (ND, P D)
a couple of Ih-valued vectors, one can define the relative discrete entropy as

E(ND, P D) =
∫
Ω

H(NM)−H(N e
M)− h(N e

M)
(
NM −N e

M
)

+
∫
Ω

H(PM)−H(P eM)− h(P eM)
(
PM − P eM

)
+

1
2
a
φ
D(φ

D
−φe
D
,φ
D
−φe
D

), (2.43)

where (N e
D, P

e
D,φ

e
D

) are defined in (2.32), and φ
D

is the discrete electrostatic potential associated
to (ND, P D) in the sense of Section 2.3.2. Notice that, by convexity of H , H(NM) −H(N e

M) −
h(N e

M)
(
NM −N e

M

)
and the analogous term in PM are non-negative. Therefore, the discrete

entropy is non-negative. Similarly, one defines the discrete dissipation by

D(ND, P D) = T ND (ND,w
N
D ,w

N
D ) + T PD (P D,w

P
D,w

P
D) +

∫
Ω

R(NM, PM) (h(NM) + h(PM)) . (2.44)

By definition of T ND and T PD , the first two terms are non-negative. One can also notice that the
integrand of the third term writes

R(NM, PM) (h(NM) + h(PM)) = r(x,NM, PM) (exp(h(NM) + h(PM))− 1)(h(NM) + h(PM)) ,

so since r is non-negative and x(ex−1) ≥ 0 for any real x, the discrete dissipation is also non-
negative. Note that, given a couple (wND ,w

P
D) ∈ V 2

D of discrete quasi-Fermi potentials, one can
also define the corresponding relative entropy and dissipation by E(wND ,w

P
D) = E(ND, P D) and

D(wND ,w
P
D) = D(ND, P D), where (ND, P D) are the discrete densities associated to (wND ,w

P
D).

At the continuous level, the analysis of the drift-diffusion system relies on the entropic
structure. At the discrete level, we use analogous results, based on the following lemma, which
will be used in the proofs of Theorems 7 and 9.

Lemma 5 (Discrete differentiation of the entropy). Let Nn
D, P nD, ND and P D be four Ih-valued

elements of V D, and (wND ,w
P
D) ∈ V 2

D be the discrete quasi-Fermi potentials associated to the discrete
densities (ND, P D). Then, the following inequality holds:

E(ND, P D)−E(Nn
D, P

n
D) ≤

∫
Ω

(
NM −Nn

M
)
wNM +

∫
Ω

(
PM − P nM

)
wPM. (2.45)
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Proof. By definition of the discrete entropy, one has

E(ND, P D)−E(Nn
D, P

n
D) =

∫
Ω

H(NM)−H(Nn
M)− h(N e

M)
(
NM −Nn

M
)

+
∫
Ω

H(PM)−H(P nM)− h(P eM)
(
PM − P nM

)
+

1
2

(
a
φ
D(φ

D
−φe
D
,φ
D
−φe
D

)− aφD(φn
D
−φe
D
,φn
D
−φe
D

)
)
. (2.46)

Let us first consider the first term (in N ) of (2.46): by convexity of H and definition of N e
D, we

get∫
Ω

H(NM)−H(Nn
M)− h(N e

M)
(
NM −Nn

M
)
≤

∫
Ω

(h(NM)− h(N e
M))

(
NM −Nn

M
)

=
∫
Ω

(h(NM)−φeM −αN )
(
NM −Nn

M
)
.

For the second term of (2.46), one has an analogous result, namely∫
Ω

H(PM)−H(P nM)− h(P eM)
(
PM − P nM

)
≤

∫
Ω

(h(PM) +φeM −αP )
(
PM − P nM

)
.

Now, notice that since aφD is a symmetric and positive semi-definite bilinear form on V D, the

quadratic form uD 7→ a
φ
D(uD,uD) is convex, and therefore for any (uD,vD) ∈ V 2

D, one has

a
φ
D(uD,uD)− aφD(vD,vD) ≤ 2aφD(uD − vD,uD).

Using this relation with uD = φ
D
−φe
D

and vD = φn
D
−φe
D
∈ V D, we obtain the following estimate

on the third term of (2.46):

1
2

(
a
φ
D(φ

D
−φe
D
,φ
D
−φe
D

)− aφD(φn
D
−φe
D
,φn
D
−φe
D

)
)
≤ aφD(φ

D
−φn
D
,φ
D
−φe
D

).

We recall that the electrostatic potentials are defined by (2.39), and that φ
D
−φn
D

= ψ
D
−ψn
D

.

Hence, letting vD = φ
D
−φe
D
∈ V D,0 and using the linearity of aφD with respect to the first variable,

one gets

a
φ
D(φ

D
−φn
D
,vD) = aφD(ψ

D
,vD)− aφD(ψn

D
,vD)

= LφD(vD) +
∫
Ω

(PM −NM)vM −L
φ
D(vD)−

∫
Ω

(P nM −N
n
M)vM

=
∫
Ω

(PM − P nM)vM −
∫
Ω

(NM −Nn
M)vM.
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Combining the previous estimates, we obtain

E(ND, P D)−E(Nn
D, P

n
D) ≤

∫
Ω

(h(NM)−φeM −αN − vM)
(
NM −Nn

M
)

+
∫
Ω

(h(PM) +φeM −αP + vM)
(
PM − P nM

)
.

But, by definition of vD, we have h(NM)−φeM −αN − vM = h(NM)−φM −αN = wNM and h(PM) +
φeM −αP + vM = wPM, therefore (2.45) holds.

One can now state the following a priori result about the dissipation of entropy, which
ensures that (2.33) holds.

Proposition 11 (Entropy dissipation). Assume that
(
(Nn
D, P

n
D,φ

n
D

)
)
n∈N
∈ V 3

D
N is a solution to (2.28).

Then, the following entropy-entropy dissipation relation holds:

∀n ≥ 0,
E(Nn+1

D , P n+1
D )−E(Nn

D, P
n
D)

∆t
≤ −D(Nn+1

D , P n+1
D ).

Proof. Since the discrete quasi-Fermi potentialswN,n+1
D andwP ,n+1

D are in V D,0 by (2.28a) and (2.28b),
one can use them as test functions in (2.28d) and (2.28e): summing the two identities, and notic-
ing that wN,n+1

M +wP ,n+1
M = h(Nn+1

M ) + h(P n+1
M ) because of (2.5), one gets that∫

Ω

Nn+1
M −Nn

M
∆t

wN,n+1
M +

∫
Ω

P n+1
M − P nM
∆t

wP ,n+1
M = −D(Nn+1

D , P n+1
D ).

One concludes using Lemma 5.

From this entropic structure follows an important preservation property of the scheme (2.28).

Proposition 12 (Thermodynamic consistency). Let (N∞D , P
∞
D ,φ

∞
D

) ∈ V 3
D be a discrete stationary

state of the scheme (2.28), in the sense that there exist
(
(Nn
D, P

n
D,φ

n
D

)
)
n∈N
∈ V 3

D
N a solution to (2.28)

and n∞ ∈ N such that,
∀n ≥ n∞, (Nn

D, P
n
D,φ

n
D

) = (N∞D , P
∞
D ,φ

∞
D

).

Then the discrete stationary state coincides with the discrete thermal equilibrium:

(N∞D , P
∞
D ,φ

∞
D

) = (N e
D, P

e
D,φ

e
D

). (2.47)

Proof. Let n ≥ n∞, we have

E(Nn+1
D , P n+1

D )−E(Nn
D, P

n
D) = E(N∞D , P

∞
D )−E(N∞D , P

∞
D ) = 0.

According to Proposition 11, one has by positivity of the dissipation

D(N∞D , P
∞
D ) = D(Nn+1

D , P n+1
D ) = 0.

But, since all the terms of the dissipation are non-negative (see (2.44)), it means that

T ND (N∞D ,w
N,∞
D ,wN,∞D ) = T PD (P∞D ,w

P ,∞
D ,wP ,∞D ) = 0,
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where (wN,∞D ,wP ,∞D ) ∈ V 2
D,0 are the quasi-Fermi potentials associated to the discrete stationary

densities (N∞D , P
∞
D ). Now, let K ∈M. Since all the coordinates of N∞K are positive, rK (N∞K ) is also

positive, and by definition (2.22) of T NK , we get that

aNK (wN,∞K ,wN,∞K ) = 0.

Using the local coercivity estimates (2.15), we infer that |wN,∞K |21,K = 0. This holds for any cell

K ∈M, so we have |wN,∞D |1,D = 0, but wN,∞D ∈ V D,0, therefore wN,∞D = 0D. A similar result holds

for wP ,∞D . Thus, one has wN,∞D = wP ,∞D = 0D and, by Remark 12, it means that (wN,∞D ,wP ,∞D ) are
equal to the quasi-Fermi potentials at thermal equilibrium. By correspondence between densities
and potential discussed in Section 2.3.2, we get (2.47).

Remark 16 (Preservation of the thermal equilibrium). The statement of Proposition 12 means
that the scheme (2.28) preserves the thermal equilibrium: the only admissible discrete stationary
state is the discrete thermal equilibrium. This remarkable feature is sometimes called thermodynamic
consistency in the context of TPFA schemes (see [127]). In such a framework, this result is expressed
in the following way: if the numerical fluxes of the convection-diffusion equations vanish, then the
discrete quasi-Fermi potentials are constant (equal to zero). For our HFV scheme, this statement still
holds, using the numerical fluxes (2.5.1) defined in Section 2.5.1. In fact, both statements in terms
of fluxes and stationary states are equivalent. This notion of thermodynamic consistency can indeed
be reformulated using the entropic property of the schemes: if the discrete dissipation associated to a
discrete solution vanishes, then the solution is the discrete thermal equilibrium.

2.4.2 Existence of solutions

The goal of this section is to prove the existence result and the estimates (2.36) of Theorem 7.
The proof proposed here is an adaptation of the one introduced in [70] for similar schemes in the
context of linear advection-diffusion equations. According to the discussion in Section 2.3.2, it is
equivalent to seek discrete solutions in terms of densities or in terms of quasi-Fermi potentials.
Therefore, we will seek discrete quasi-Fermi potentials in the whole space V D,0 ×V D,0 instead of
discrete densities in the set of Ih-valued elements of V D ×V D (which is not a vector space).

In the sequel, we consider the vector space V 2
D,0, and denote by wD = (wND ,w

P
D) ∈ V 2

D,0 a
typical element. We endow V 2

D,0 with the following natural inner product and norm:

〈wD,vD〉 =
∑
K∈M

(
wNK v

N
K +wPKv

P
K

)
+

∑
σ∈Eint∪ENext

(
wNσ v

N
σ +wPσ v

P
σ

)
and ‖wD‖ =

√
〈wD,wD〉.

One can also endow V 2
D,0 with the l∞ norm ‖.‖∞ defined by

‖wD‖∞ = max
K∈M, σ∈Eint∪ENext

(
|wNK |, |w

P
K |, |w

N
σ |, |wPσ |

)
.

Since V 2
D,0 is a finite-dimensional vector space of dimension 2

(
|M|+ |Eint |+ |ENext |

)
there exists a

constant cdim only depending on dim(V D,0) such that

∀wD ∈ V
2
D,0, cdim‖wD‖ ≤ ‖wD‖∞. (2.48)

We can now establish the existence result by induction on n. Let Nn
D and P nD be two Ih-

valued vectors, we want to show that there exists a solution to (2.28a)-(2.28f). Given wD =
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(wND ,w
P
D) ∈ V 2

D,0, (and (ND, P D,ψD) the associated discrete densities and electrostatic potential),
the application

vD 7→
∫
Ω

NM −Nn
M

∆t
vNM + T ND (ND,w

N
D ,v

N
D ) +

∫
Ω

R(NM, PM)vNM

+
∫
Ω

PM − P nM
∆t

vPM + T PD (P D,w
P
D,v

P
D) +

∫
Ω

R(NM, PM)vPM

is a continuous linear form on V 2
D,0. Hence, there exists a unique G(wD) ∈ V 2

D,0 such that

∀vD ∈ V
2
D,0, 〈G(wD),vD〉 =

∫
Ω

NM −Nn
M

∆t
vNM + T ND (ND,w

N
D ,v

N
D ) +

∫
Ω

R(NM, PM)vNM

+
∫
Ω

PM − P nM
∆t

vPM + T PD (P D,w
P
D,v

P
D) +

∫
Ω

R(NM, PM)vPM, (2.49)

and it is straightforward to see that G(wD) = (0D,0D) if and only if (ND, P D,φD) is a solution

to (2.28a)-(2.28f). Moreover, by the continuity result of Theorem 8, the vector field G : V 2
D,0→

V 2
D,0 is continuous. As in [70], our proof relies on two key results. The first one, that can be

found, e.g., in [119, Section 9.1], is a corollary of Brouwer’s fixed-point theorem.

Lemma 6. Let k be a positive integer and let P : Rk → Rk be a continuous vector field. Assume that
there is r > 0 such that

P (x) · x ≥ 0 if |x| = r.

Then, there exists a point x0 ∈ Rk such that P (x0) = 0 and |x0| ≤ r.

The second lemma, whose proof is postponed until Appendix 2.A, establishes that bounds on
the discrete entropy and dissipation terms imply bounds on the discrete quasi-Fermi potentials.

Lemma 7. Let (wND ,w
P
D) ∈ V 2

D,0, and assume that there exists B] ≥ 0 such that

E(wND ,w
P
D) ≤ B] and D(wND ,w

P
D) ≤ B]. (2.50)

Then, there exists C] > 0, depending on the data, B] and D such that

−C]1D ≤ w
N
D ≤ C]1D, −C]1D ≤ w

P
D ≤ C]1D and −C]1D ≤ φD ≤ C]1D,

where φ
D

is the electrostatic potential associated to (wND ,w
P
D).

We are now in position to prove the existence of solutions to the scheme and the estimates on
these solutions.

Proof of existence - Theorem 7. In order to use the result of Lemma 6, notice that by definition of
G, and because wNM +wPM = h(NM) + h(PM), we have

∀wD ∈ V
2
D,0, 〈G(wD),wD〉 =

∫
Ω

NM −Nn
M

∆t
wNM +

∫
Ω

PM − P nM
∆t

wPM +D(wND ,w
P
D).

Since (wND ,w
P
D) are the quasi-Fermi potentials associated to (ND, P D), the result of Lemma 5



2.4. Analysis of the transient scheme 99

ensures that

∀wD ∈ V
2
D,0, 〈G(wD),wD〉 ≥

E(wND ,w
P
D)−E(Nn

D, P
n
D)

∆t
+D(wND ,w

P
D). (2.51)

Let Bn = E(Nn
D, P

n
D). According to Lemma 7, there exists Cn > 0 depending on the data, D and ∆t

such that
if E(wND ,w

P
D) +∆tD(wND ,w

P
D) ≤ Bn, then ‖wD‖∞ ≤ C

n. (2.52)

Now, letting rn = 2Cn/cdim, one can notice that for any wD ∈ V 2
D,0 such that ‖wD‖ = rn, we have

Cn < 2Cn = cdim‖wD‖ ≤ ‖wD‖∞. Therefore, by (2.51) and contraposition of (2.52), if ‖wD‖ = rn,
one has

∆t〈G(wD),wD〉 ≥ E(wND ,w
P
D) +∆tD(wND ,w

P
D)−Bn > Bn −Bn ≥ 0.

Thus, we can use the result of Lemma 6 applied to the vector field G, and there exists at least one
solution (Nn+1

D , P n+1
D ,φn+1

D
) to (2.28a)-(2.28f).

To prove the bounds (2.36), it suffices to note that the dissipation relation (2.33) implies that

En+1 ≤ En ≤ E0 and Dn+1 ≤ E0

∆t
.

Hence, by Lemma 7, there exists C] depending on the data, D, ∆t and E0 (but not on n) such that

−C]1D ≤ w
N,n+1
D ≤ C]1D, −C]1D ≤ w

P ,n+1
D ≤ C]1D and −C]1D ≤ φ

n+1
D
≤ C]1D.

Therefore, by (2.29), g(−2C] +αN )1D ≤N
n+1
D ≤ g(2C] +αN )1D, and an analogous estimate holds

for P n+1
D .

2.4.3 Long-time behaviour

In this section, we analyse the long-time behaviour of the scheme (2.28). The analysis
proposed here relies on an adaptation of the arguments presented in [27] in the framework of
TPFA schemes.

Theorem 9 (Discrete long-time behaviour). Let
(
(Nn
D, P

n
D,φ

n
D

)
)
n∈N
∈ V 3

D
N be a solution to the

coupled scheme (2.28). There exists νD,∆t > 0 depending on the data, D and ∆t such that

∀n ∈ N, En+1 ≤ (1 + νD,∆t∆t)
−1En. (2.53)

Moreover, the discrete solution converges geometrically fast towards the discrete thermal equilibrium:
there exists a positive constant cD,∆t depending on the data, D and ∆t such that

∀n ∈ N, ‖Nn
M −N

e
M‖

2
L2(Ω) + ‖P nM − P

e
M‖

2
L2(Ω) + ‖φnM −φ

e
M‖

2
L2(Ω) ≤ cD,∆tE

0(1 + νD,∆t∆t)
−n. (2.54)

Proof. In this proof, we will denote by c a generic constant depending on the data, D and ∆t
(but not on n). First, recall that the solutions satisfy the bounds (2.36). One can notice (using
a Taylor expansion of H) that there exists two positive constants c̃1 and c̃2 such that for any
(x,y) ∈ [M[,M]],

c̃1(x − y)2 ≤H(x)−H(y)− h(y)(x − y) ≤ c̃2(x − y)2. (2.55)

Therefore, letting Ên = ‖Nn
M −N

e
M‖

2
L2(Ω) + ‖P nM − P

e
M‖

2
L2(Ω) +

1
2
a
φ
D(φ

D
−φe
D
,φ
D
−φe
D

) and using
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(2.36) and (2.55), we deduce that there exist c1 and c2 positive such that

c1Ên ≤ En ≤ c2Ên. (2.56)

Since E(N e
D, P

e
D) = 0, by Lemma 5 (used with (ND, P D) = (Nn

D, P
n
D) and (Nn

D, P
n
D) = (N e

D, P
e
D)), one

gets

c1Ên ≤ En ≤
∫
Ω

(
Nn
M −N

e
M

)
wN,nM +

∫
Ω

(
P nM − P

e
M

)
wP ,nM .

Then, we use Young inequality (with scaling c1) to obtain

c1Ên ≤
c1

2

(
‖Nn
M −N

e
M‖

2
L2(Ω) + ‖P nM − P

e
M‖

2
L2(Ω)

)
+

1
2c1

(
‖wN,nM ‖

2
L2(Ω) + ‖wP ,nM ‖

2
L2(Ω)

)
.

Notice that ‖Nn
M −N

e
M‖

2
L2(Ω) + ‖P nM − P

e
M‖

2
L2(Ω) ≤ Ên, therefore we have

c1

2
Ên ≤ 1

2c1

(
‖wN,nM ‖

2
L2(Ω) + ‖wP ,nM ‖

2
L2(Ω)

)
.

Combining this estimate with (2.56), we deduce that

c1

c2
En ≤ c1Ên ≤

1
c1

(
‖wN,nM ‖

2
L2(Ω) + ‖wP ,nM ‖

2
L2(Ω)

)
. (2.57)

On the other hand, one has Dn ≥ T ND (Nn
D,w

N,n
D ,wN,nD ) + T PD (P nD,w

P ,n
D ,wP ,nD ), and, for any K ∈ M,

using (2.22) alongside with the positivity of rK (NK ) and the local coercivity (2.15) of aNK , one
gets that

T NK (Nn
K ,w

N,n
K ,wN,nK ) ≥ rK (Nn

K )aNK (wN,nK ,wN,nK ) ≥ α[λ[rK (Nn
K )|wN,nK |

2
1,K .

Moreover, by definition of rK , properties on m and mh and the bounds (2.36) on Nn
D, we deduce

that

rK (Nn
K ) =

∑
σ∈EK

m(Nn
K ,N

n
σ )

|EK |
≥

∑
σ∈EK

mh(Nn
K ,N

n
σ )

|EK |
≥

∑
σ∈EK

mh(M[,M[)
|EK |

≥M[.

The same holds for the term T PD (P nD,w
P ,n
D ,wP ,nD ), therefore by the discrete Poincaré inequality

(2.17) one has

Dn ≥ α[λ[M[

(
|wN,nD |

2
1,D + |wP ,nD |

2
1,D

)
≥ α[λ[M[

C2
P ,ΓD

(
‖wN,nM ‖

2
L2(Ω) + ‖wP ,nM ‖

2
L2(Ω)

)
. (2.58)

Combining (2.57) and (2.58), we get the following control on the entropy:

νD,∆tEn ≤ Dn with νD,∆t =
α[λ[M[c

2
1

c2C
2
P ,ΓD

.

From this inequality and the entropy dissipation relation (2.33), we deduce (2.53). To get (2.54),
notice that c1Ên ≤ En, so using the discrete Poincaré inequality alongside with the coercivity of



2.5. Numerical results 101

a
φ
D, we get

‖Nn
M −N

e
M‖

2
L2(Ω) + ‖P nM − P

e
M‖

2
L2(Ω) +

α[λ
φ
[

2C2
P ,ΓD

‖φnM −φ
e
M‖

2
L2(Ω) ≤ Ên ≤ 1

c1
En.

We conclude by using (2.53).

Remark 17 (Non-uniformity with respect to the mesh). The result of Theorem 9 states a geometric
convergence of the solutions to the scheme towards the discrete thermal equilibrium. However, the
constants involved in (2.53) and (2.54) may depend strongly on the mesh (and in particular on hD),
which yelds a weaker result than the one of [27, 28] for TPFA schemes. Such a dependency is a
reminiscence of the non-monotonicity of the HFV schemes (see Remark 13). In practice, the long-time
behaviour of the scheme seems not to depend on the meshsize: see Section 2.5.3.

2.5 Numerical results

In this section, we give some numerical evidences of the good behaviour of the scheme (2.28).
We use test-cases inspired by the 2D PN-junction studied in [27], whose geometry is described
in Figure 2.2. The domain Ω is the unit square ]0,1[2. For the boundary conditions, we split
Γ D = Γ D0 ∪ Γ

D
1 with Γ D0 = [0,1]× {0} and Γ D1 = [0,0.25]× {1}. For i ∈ {0,1}, we let

ND =ND
i , P

D = P Di and φD =
h(ND

i )− h(P Di )
2

on Γ Di .

To be consistent with the compatibility condition (2.4) we assume that there exists a constant
α0 such that h(ND ) + h(P D ) = α0, therefore for given ND and α0 we set P D = g

(
α0 − h(ND )

)
on

Γ D . Thus, we get αN = αP = α0
2 . If r , 0, we finally impose that α0 = 0 to satisfy (2.5). We use the

N-region
C = 1

P-region
C = −1

Γ D0

Γ D1

Figure 2.2 – The geometry of the PN diode.



102 CHAPTER 2. HFV scheme for semiconductor models with magnetic fields

following initial condition:

N0(x,y) =ND
1 + (ND

0 −N
D
1 )(1−√y) and P0(x,y) = P D1 + (P D0 − P

D
1 )(1−√y).

Finally, we use a piecewise constant doping profile C, equal to −1 in the P-region and 1 in the
N-region (see Figure 2.2). Concerning the tensors, we assume that the permittivity is isotropic, of
the form Λφ = λ2I2, where λ > 0 is the rescaled Debye length. We also assume that the magnetic
field is constant, of magnitude b ≥ 0, and that the rescaled mobilities are equal to 1 (µN = µP = 1),
therefore the tensors for the convection-diffusion equations are

ΛN =
1

1 + b2

(
1 b
−b 1

)
and ΛP =

1
1 + b2

(
1 −b
b 1

)
. (2.59)

2.5.1 Implementation

In this section, we discuss some practical details concerning the implementation of the
schemes introduced in this paper. The mesh families used for the numerical tests are classical
Cartesian and triangular families - see for example [154]- and a tilted hexagonal-dominant mesh
family, depicted on Figure 2.3. These meshes have convex cells, hence we always choose xK to be

(a) Cartesian mesh (b) Triangular mesh (c) Tilted hexagonal mesh

Figure 2.3 – Implementation. Coarsest meshes of each family used in the numerical tests.

the barycentre of K . Moreover, we use a fixed stabilisation parameter η = 1.5 (see (2.13)). In the
simulations showed below, we use the arithmetic mean as an m function for the reconstruction
defined in (2.23), therefore for uD ∈ V D and K ∈M,

rK (uK ) =
1
2

uK +
1
|EK |

∑
σ∈EK

uσ

 .
For a discussion on other choices of reconstructions we refer to [51, Section 6.2].

Finite volume formulation

The hybrid schemes described in this paper define finite volume methods, in the sense that
they can be equivalently rewritten under a conservative forms, with local mass balances, flux
equilibration at interfaces, and boundary conditions. For more details about this formulation in
the framework of a linear Poisson equation, we refer the reader to [123]. Let us detail succinctly
this formulation for our schemes. Let Λ be a generic uniformly elliptic tensor. For all K ∈M,
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and all σ ∈ EK , in the framework of HFV methods, the normal diffusive flux −
∫
σ
Λ∇u · nK,σ is

approximated by the following numerical flux:

FΛK,σ (uK ) =
∑
σ ′∈EK

Aσσ
′

K (uK −uσ ′ ), (2.60)

where the Aσσ
′

K are defined by

Aσσ
′

K =
∑
σ ′′∈EK

|PK,σ ′′ |yσ
′′σ

K ·ΛK,σ ′′yσ
′′σ ′

K , (2.61)

and the yσσ
′

K ∈ Rd only depend on the geometry of the discretisation D (see, for example, [123,
Eq. (2.22)] for an exact definition with η =

√
d). For all K ∈M, one can express the local discrete

bilinear form aΛK in terms of the local fluxes
(
FΛK,σ

)
σ∈EK

: for all (uK ,vK ) ∈ V 2
K ,

aΛK (uK ,vK ) =
∑
σ∈EK

FΛK,σ (uK )(vK − vσ ).

With these considerations, the scheme (2.31) for the Poisson equation (2.30) writes under the
following form:

∑
σ∈EK

F
Λφ

K,σ (φ
K

) = |K |
(
CK + g(zPK −φK )− g(zNK +φK )

)
∀K ∈M,

F
Λφ

K,σ (φ
K

) = −F
Λφ

L,σ (φ
L
) ∀σ = K |L ∈ Eint ,

φσ = φDσ ∀σ ∈ EDext ,

F
Λφ

K,σ (φ
K

) = 0 ∀σ ∈ ENext withMσ = {K},

(2.62a)

(2.62b)

(2.62c)

(2.62d)

where the fluxes are defined by (2.60), and CK = 1
|K |

∫
K
C. The first equation corresponds to local

balance, the second imposes the local conservativity of the fluxes at interfaces and the last one
enforces the boundary conditions.

Following an analogous approach, we define the nonlinear flux for the advection-diffusion:
for any Ih-valued uK ∈ V K and φ

K
∈ V K , we let

F ΛK,σ (uK ,φK ) = rK (uK )FΛK,σ
(
h(uK ) +φ

K

)
. (2.63)

Therefore, letting wK = h(uK ) +φ
K
−α1K (with α ∈ R), one can write the local trilinear form TΛK

in terms of the nonlinear flux: for any vK ∈ V K ,

TΛK (uK ,wK ,vK ) =
∑
σ∈EK

F ΛK,σ (uK ,φK )(vK − vσ ).
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The scheme (2.28) for the drift-diffusion system then writes under the following form:

∀K ∈M, |K |
Nn+1
K −Nn

K

∆t
+

∑
σ∈EK

F ΛNK,σ (Nn+1
K ,−φn+1

K
) = −|K |R(Nn+1

K , P n+1
K ),

∀K ∈M, |K |
P n+1
K − P nK
∆t

+
∑
σ∈EK

F ΛPK,σ (P n+1
K ,φn+1

K
) = −|K |R(Nn+1

K , P n+1
K ),

∀K ∈M,
∑
σ∈EK

F
Λφ

K,σ (φn+1
K

) = |K |
(
CK + P n+1

K −Nn+1
K

)
,

∀σ = K |L ∈ Eint , F ΛNK,σ (Nn+1
K ,−φn+1

K
) +F ΛNL,σ (Nn+1

L ,−φn+1
L

) = 0,

∀σ = K |L ∈ Eint , F ΛPK,σ (P n+1
K ,φn+1

K
) +F ΛPL,σ (P n+1

L ,φn+1
L

) = 0,

∀σ = K |L ∈ Eint , F
Λφ

K,σ (φn+1
K

) +F
Λφ

L,σ (φn+1
L

) = 0,

∀σ ∈ EDext , Nn+1
σ =ND

σ , P
n+1
σ = P Dσ and φn+1

σ = φDσ ,

∀σ ∈ ENext , F ΛNK,σ (Nn+1
K ,−φn+1

K
) = F ΛPK,σ (P n+1

K ,φn+1
K

) = F
Λφ

K,σ (φn+1
K

) = 0,

(2.64a)

(2.64b)

(2.64c)

(2.64d)

(2.64e)

(2.64f)

(2.64g)

(2.64h)

where the nonlinear fluxes are defined by (2.63), the initial data (N0
K , P

0
K )K∈M are defined as

in (2.28g) and the cell K in (2.64h) is such thatMσ = {K}.
Note that these formulations yield nonlinear systems. Thus, we can introduce natural

functions Gsta : V D→ V D and Gn,∆t : V 3
D→ V 3

D such that (2.62) rewrites Gsta(φ
D

) = 0D and (2.64)

writes Gn,∆t(Nn+1
D , P n+1

D ,φn+1
D

) = (0D,0D,0D). The two functions are regular on their domains.

Newton’s method and static condensation

The implementation of the nonlinear schemes relies on their finite volume formulation. To
fix ideas, we consider the case of the transient scheme (2.64). Given (Nn

D, P
n
D) ∈ V 2

D Ih-valued,
we want to solve the nonlinear system Gn,δt(Nn+1

D , P n+1
D ,φn+1

D
) = (0D,0D,0D) (with a time step

δt instead of ∆t). The resolution of this system relies on a Newton method with time step
adaptation.

First, one initialises the method with initial guess (Ñn
D, P̃

n
D) ∈ V 2

D, where the coordinates of
Ñ
n
D (respectively P̃ nD) are the projections of the coordinates of Nn

D (resp. P nD) on [ε,a − ε] (if
a = +∞, we project on [ε,+∞[) in order to avoid potential problems due to the singularity of h
near 0 and a.
The computation of the residues follows the process described below: let us denote by RM ∈ R3|M|

and RE ∈ R3|E| the residue vectors (rNK , r
P
K , r

φ
K )K∈M and (rNσ , r

P
σ , r

φ
σ )σ∈E . They are solution to the

following linear block system: (
MM MM,E
ME ,M ME

)(
RM
RE

)
=

(
SM
SE

)
, (2.65)

where MM ∈ R3|M|×3|M|, MM,E ∈ R3|M|×3|E|, ME ,M ∈ R3|E|×3|M|, ME ∈ R3|E|×3|E|, and SM and SE are
vectors of size 3|M| and 3|E| issued from the previous iteration. By construction, the matrix MM
is block diagonal with 3× 3 diagonal blocks, which are expected to be invertible. Therefore, this
matrix can be inverted at a very low computational cost, inverting only small matrices. Thus, we
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can eliminate the cell unknowns, noticing that

RM = M−1
M

(
SM −MM,ERE

)
. (2.66)

Using this relation, one shows that RE is the solution to the following linear system:(
ME −ME ,MM−1

MMM,E
)
RE = SE −ME ,MM−1

MSM, (2.67)

where MD = ME −ME ,MM−1
MMM,E , the Schur complement of the block MM, is an invertible

matrix of size 3|E| × 3|E|. In practice, we solve the linear system (2.67) using an LU factorization
algorithm, and we use the solution RE in order to compute RM from (2.66). This technique,
called static condensation, allows one to replace a system of size 3(|E| + |M|) by a system of
size 3|E| without any additional fill-in. As a stopping criterion for the Newton iterations, we
compare the l∞ relative norm of the residue with a threshold tol. If the method does not converge
after imax iterations, we divide the time step by 2 and restart the resolution. When the method
converges, one can proceed to the approximation of (Nn+2

D , P n+2
D ,φn+2

D
), with an initial time step

of min(∆t,1.4× δt).
The initial time step (used to compute (N1

D, P
1
D,φ

1
D

)) is ∆t. In practice, we use ε = 10−9, imax = 50

and tol = 10−10.
For the discrete thermal equilibrium, we solve the nonlinear system Gsta(φ

D
) = 0D (with

(zP , zN ) = (αN ,αP )) using a similar approach, based on a Newton’s method alongside with a
continuation method. Moreover, note that the counterpart in this case of the matrix MM is
diagonal with non-zero entries, so its inversion is straightforward.

2.5.2 Proof of concept

In this section, we are interested in qualitative and quantitative properties of the discrete
solutions, and we present the profiles of some computed discrete solutions.

(a) P 0
M (b) P nM with tn = 0.1 (c) P nM with tn = 0.5

Figure 2.4 – Test-case 1. Evolution of the discrete density of holes

For the test-case 1, we use a set of data introduced in [68], with Boltzmann statistics (h = log),
no recombination (r = 0), no magnetic field (b = 0), λ = 1, boundary values ND

0 = 0.9, ND
1 =

0.1 and α0 = log
(
ND

0 ×N
D
1

)
. We perform a simulation on a tilted hexagonal-dominant mesh

constituted of 280 cells, with ∆t = 0.1. On Figure 2.4, we show the profiles of P nM for different
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values of n. The evolution is in accordance with results obtained in the TPFA context (see [68],
and notice that we use a different initial condition). Note that the discrete density remains
positive, as expected. In fact, even on coarser meshes, the positivity of the densities is preserved
(both for the cell and edge values).

Now, we want to assert the robustness of the scheme with respect to the h function and the
anisotropy. We consider the test-case 2, with Blakemore statistics (h(s) = log

(
s

1−γs

)
, γ = 0.27),

(a) P 0
M (b) P nM with tn = 0.001 (c) P nM with tn = 0.004

(d) P nM with tn = 0.01 (e) P nM with tn = 2 (f) P eM

Figure 2.5 – Test-case 2 (b = 1). Evolution of the discrete density of holes (note that the scale
varies from a figure to the other)

a SRH recombination term (r(N,P ) = 10
1+N+P ) and a strong magnetic field b = 1. We also use a

(realistic) small Debye length λ = 0.05. In order to check the fact that the discrete densities are
Ih-valued (here, a = 1/γ ≈ 3.7), we consider boundary values close to the maximum admissible
densities: ND

0 = 3.5 and ND
1 = 1.5. Since r , 0, we let α0 = 0. We perform a simulation on a

refined triangular mesh (57 344 cells), with a time step ∆t = 0.1. We show the profile of P nM
for different values of n in Figure 2.5. Notice that this test-case is subject to boundary layers
(essentially because λ is small and b is big, see the discussion below and Table 2.1), therefore
the scheme performs numerous adaptations of the time step at the beginning of the simulation
(the first admissible time step is δt ≈ 10−8). Moreover, one can see a rotation movement for the
density of the holes, which is in accordance with the expected physical effect of the magnetic
field.
To give more quantitative informations, we show in Figure 2.6 the evolution of the minimal
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Figure 2.6 – Test-case 2 (b = 1). Evolution of the discrete extremal values, time step and cost

and maximal values, along with the time step and the number of Newton’s iterations needed
to compute the solutions at a given time. First, note that we display each of the steps (from tn

to tn+1) used to compute the solutions on the time interval [0,1], there are 63 of them for this
simulation. The extremal values account for the cell and edge unknowns: we let

minNn
D = min

(
min
K∈M

Nn
K ,min

σ∈E
Nn
σ

)
and maxNn

D = max
(
max
K∈M

Nn
K ,max

σ∈E
Nn
σ

)
,

as well as analogous definitions for the holes density. In order to observe the extremal values
on relevant scales, we look at the minimum and the distance between a (the maximal density
allowed by the model) and the maximal densities computed, and print them on a log scale. As
expected from Theorem 7, the values of the discrete densities stay in Ih =]0, a[. In particular, our
scheme is not subject to the same lack of positivity as the scheme of [143] when the magnetic field
is intense. Moreover, it is remarkable to note that the scheme seems very robust: the densities are
close to the limit values, at a distance reaching 7.56e-8 in the most difficult situation. Note that
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this value mean that in practice, we do not perform the projection step described in Section 2.5.1
to initialise the Newton’s methods, since the projection threshold ε = 10−9 is smaller than 7.56e-8.
Using larger values for ε could perhaps improve the convergence of Newton’s methods, but
the impact of such a modification has not been investigated here. As previously announced,
one can see that the first effective time step needed to compute (N1

D, P
1
D,φ

1
D

) is relatively small:

0.1 × 2−22 ≈ 2.38e-8. It means that the time step adaptation procedure needed to perform 22
time step reductions before managing to compute a solution. On the other hand, we can see that
after this initial reduction, there are only five others time step reductions (one around 1.5e-5,
one at 2e-5, two around 1.5e-4, and a last one at 9e-4). At the end of the simulation, around
t = 0.3, the time step reach its maximal value ∆t = 0.1 and there is no more time step adaptation.
On the third graph, we show the number of Newton iterations needed to compute the discrete
solution from one time to another. Note that we do not take into account the iterations used in
non-convergent Newton’s methods (i.e. methods that leads to a time step reduction). For all the
time step reductions of this simulation, the Newton’s methods do not converge because at least
one of the computed discrete densities was not Ih-valued. On average, the convergent Newton’s
methods converge in 10.5 iterations. Finally, we can see on Figure 2.6 a clear correlation between
the extremal values reached by the discrete densities and the number of Newton iterations
needed to compute the solution. This can be explained by at least one fact: since h is singular in 0
and a, the values of its derivative near these limit values blow up. Therefore, the Jacobian matrix
used in the Newton’s method tends to be ill-conditioned, which induces numerical instabilities.
We can give a last remark on this test-case: the most extreme values observed in Figure 2.6 are
located near to the boundary and appear at the beginning of the simulation (see for example the
minimal values on Figure 2.5b, on the left and right sides of the square). Hence, the difficulties
are essentially due to the presence of the (strong) magnetic field, which induces rotation of the
charges and creates boundary layers.

Magnetic field intensity b = 0 b = 0.5 b = 1
min

{
minNn

D | 0 ≤ t
n ≤ 1

}
3.20e-1 5.36e-3 1.41e-4

min
{
minP nD | 0 ≤ t

n ≤ 1
}

1.56e-2 2.53e-3 7.56e-8

min
{
a−maxNn

D | 0 ≤ t
n ≤ 1

}
2.04e-1 4.17e-3 2.18e-6

min
{
a−maxP nD | 0 ≤ t

n ≤ 1
}

2.31 9.39e-1 4.23e-2
Number of steps 18 40 63
Minimal time step 3.13e-3 1.53e-6 2.38e-8
Number of initial time step reductions 5 16 22
Total number of time step reductions 5 16 27
Maximal number of Newton iterations 7 7 35
Average number of Newton iterations 5.05 5.45 10.54
Total cost 96 234 692

Table 2.1 – Test-case 2. Comparison of the extremal values and costs for different magnetic fields

To confirm this statement, we perform simulations with the same parameters (still on the
time interval [0,1]) except that we consider situations with smaller magnetic field intensities
(b = 0 and b = 0.5). The results are presented in Table 2.1. As expected, it seems that the extremal
values are strongly related to the intensity of the magnetic field. It follows that the number of
Newton iterations, and hence the global computational cost of the simulation increase with the
intensity of the magnetic field. We can also notice that the time step reductions occur only at the
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first time step for the moderate magnetic fields (b = 0 and b = 0.5): the computational difficulties
lie in the boundary layers appearing at small times. As previously, note that the “number of
iterations” mentioned on the table do not take into account the iterations of non-convergent
Newton’s methods. In the last line, we give the “Total cost” of the simulation, that is to say
the number of linear systems solved during the simulation, including the iterations of non-
convergent Newton’s methods. Taking into account every iterations performed, the simulation
with b = 1 is basically 7 times more time consuming than the one without magnetic field.

In order to assert the robustness of the method with respect to the mesh, we consider
the test case 3, which is characterised by the same physical parameters as the previous one:
h(s) = log

(
s

1−γs

)
, γ = 0.27), r(N,P ) = 10

1+N+P , b = 1, λ = 0.05, ND
0 = 3.5, ND

1 = 1.5 and α0 = 0.
Contrarily to the previous test, we perform a simulation on a tilted hexagonal mesh, constituted
of 4192 cells, with a time step ∆t = 0.1. One has to notice that the spatial mesh used here is
a “general polygonal" one, in the sense that it is not a admissible mesh for the TPFA scheme.
Moreover, the geometry of this mesh is not well-suited with respect to the geometry of the device,
since the junction of the PN-diode (which corresponds to the discontinuity of the doping profile
C) crosses some cells. On Figure 2.7, we show the profile of the density of holes PM computed

(a) P nM with tn = 0.00082 (b) P nM with tn = 0.0044 (c) P nM with tn = 0.0087

Figure 2.7 – Test-case 3. Evolution of the discrete density of holes, on a tilted hexagonal mesh.

at different times. These profiles are to be compared with these of the Figure 2.5: even if the
tilted hexagonal does not fit the geometry of the problem perfectly and is much coarser than the
triangular mesh used for the Figure 2.5, the profiles look quite the same.
We give quantitative information for this test case on Figure 2.8, which is the counterpart of

Figure 2.6: we show the evolution of the bounds of the discrete densities, as well as the time
step and the number of Newton’s iterations used for a given time step. First, note that the first
admissible time step (δt ≈ 10−6) is bigger than the one on the refined triangular mesh. Moreover,
the extremal values are much farther from the bounds of Ih than on the triangular mesh. This
behaviour can be explained by the fineness of the triangular mesh, which enable the scheme to
capture in a very accurate way the boundary layers: the continuous solution take very small/big
values near to the boundary of the domain, but if one average these values on relatively big cells
(such as the cells of the tilted hexagonal mesh), then the mean values are not so extreme. We
can also remark that the number of iterations needed to compute one time step peaks around
t ≈ 3.10−4, as in Figure 2.6: it corresponds to the time when the densities are closest to the
bounds of Ih. Such fact enforces the hypothesis formulated before: the values of the densities
have an important impact on the Jacobian entries and hence on the convergence of the Newton’s
method.

Overall, the behaviour of the scheme does not depend on the geometry of the mesh, and the
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Figure 2.8 – Test-case 3 (b = 1, tilted hexagonal mesh). Evolution of the discrete extremal values,
time step and cost.

fact that the PN-junction crosses some cells does not have a noticeable impact.

2.5.3 Long-time behaviour of the discrete solutions

We are now interested in the long-time behaviour of the solutions computed with the scheme.
For the test-case 4, we consider a test-case from [27] with Boltzmann statistics (h = log), no
recombination (r = 0), no magnetic field (b = 0), λ = 1 and boundary values ND

0 = e, ND
1 = 1 and

α0 = 1. We are interested in the the evolution of the discrete relative entropy and the L2 distance

to the equilibrium (namely,
√
‖Nn
M −N

e
M‖

2
L2(Ω) + ‖P nM − P

e
M‖

2
L2(Ω) + ‖φnM −φ

e
M‖

2
L2(Ω)) with respect

to time.
In Figure 2.9, we show the evolution of these quantities for simulations performed on the

family of triangular meshes (the coarsest mesh has 56 cells, and a size h0), with ∆t = 0.01. First,
one can note that the evolutions are exponentially fast, as expected from Theorem 9. One can also
see a saturation phenomenon when the machine precision is reached. Moreover, as announced
in Remark 17, the decay rate is not strongly impacted by the meshsize. Last but not least, the
quantitative values of the decay rate are in accordance with those obtained in [27, Figure 2] with
a Scharfetter–Gummel TPFA scheme.

In Figure 2.10, we show the evolution of the discrete relative entropy and the L2 distance to
the equilibrium for simulations computed with ∆t = 0.01 on meshes with different geometry:
a Cartesian one (64 cells, hD = 3.12 10−2), a triangular one (56 cells, hD = 3.07 10−2) and a
tilted hexagonal one (76 cells, hD = 3.42 10−2). Note that the meshes under consideration have
a similar meshsize. As for the previous results, the expected exponential decay of entropy is



2.5. Numerical results 111

0 2 4 6 8 10
10−17

10−13

10−9

10−5

10−1

Time

D
is

cr
et

e
re

la
ti

ve
en

tr
op

y

h0 h0/2 h0/2
2 h0/2

3 h0/2
4

0 2 4 6 8 10

10−15

10−11

10−7

10−3

101

Time
L

2
d

is
ta

nc
e

to
eq

u
il

ib
ri

u
m

h0 h0/2 h0/2
2 h0/2

3 h0/2
4

Figure 2.9 – Test-case 4. Influence of the meshsize: entropy and L2 distance to equilibrium

observed. The decay rates computed are almost the same for the three mesh geometries, which
reinforces the previous observations: in practice, the decay rate is not impacted by the mesh used
for the simulation (either by its geometry or its size). It is also remarkable to note that on the
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Figure 2.10 – Test-case 5. Influence of the mesh geometry on the long-time behaviour: entropy
and L2 distance to equilibrium.

tilted hexagonal mesh, which is not adapted to the geometry of the semiconductor device, the
long-time behaviour is essentially similar to the one on meshes with adapted geometry. Again,
this indicates the robustness of the scheme with respect to the mesh used.

Last, we investigate the influence of the magnetic field over the long-time behaviour. We
consider the test-case 6, with Blakemore statistics (h(s) = log

(
s

1−γs

)
), no recombination (r = 0),

λ = 1 and boundary values ND
0 = e, ND

1 = 1 and α0 = 1. We perform our simulations on a
Cartesian mesh, with a time step ∆t = 0.01, with different values of b. The results are presented
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Figure 2.11 – Test-case 6. Long-time behaviour for the Blakemore statistics and influence of the
magnetic field

in Figure 2.11a. One can see the relative entropy decreases exponentially fast in time. Moreover,
the presence of a magnetic field tends to attenuate the dissipative effects, and to slow down the
evolution. This was expected from a physical point of view, since the magnetic field induces
a rotation of the charge carriers which delays the natural relaxation towards equilibrium. On
Figure 2.11b, we show the evolution of the entropy decay rate with respect to the intensity of
the magnetic field b. We plot the values of the decay rate for different values of b, as well as a
reference rate ν(b) = ν0√

1+b2
, where ν0 is the numerical value of the decay rate computed with no

magnetic field (b = 0). The computed values seem to fit very well the reference rate. Note that
the decay rate seems therefore to be proportional to 1√

1+b2
, which happens to be the modulus of

the eigenvalues of the diffusion tensors ΛN and ΛP .

2.6 Conclusion

In this article, we have designed and analysed a scheme for general anisotropic drift-diffusion
systems on general polytopal meshes. The scheme is based on the Hybrid Finite Volume
method. We have proved that the scheme has a discrete entropic structure, and used it to
show the existence of solutions (with Ih-valued densities). As a by-product of this structure, we
have also proved that the solutions to the scheme converge exponentially fast in time towards
the associated discrete thermal equilibrium. The results are established for general statistics
functions h, general diffusion tensors (potentially anisotropic and nonsymmetric) and general
recombination terms, under the hypothesis that the boundary data are compatible with the
thermal equilibrium (conditions (2.4) and (2.5)). Finally, we have validated our scheme on
different numerical tests, highlighting the Ih-valuation of the discrete densities, the ability
to withstand intense magnetic fields and the long-time behaviour. Numerical experiments
(not presented in this paper) suggest that the scheme introduced here also works in situations
where the compatibility condition with the thermal equilibrium does not hold. Hence, a future
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direction would be to analyse the scheme in such a situation.

2.A Discrete boundedness by entropy and dissipation

In this appendix, we prove Lemma 7. To do so, we need a technical result stated below.

Lemma 8. Let E : (x,y) 7→ (G(x)−G(y)) (x − y), and (x,y) ∈ R2.
If there exist two positive constants M and C1 such that |y| ≤ M and 0 ≤ E(x,y) ≤ C1, then, there
exists a constant CM,C1

only depending on M and C1 such that |x| ≤ CM,C1
.

Proof. First, we define Ey : δ 7→ (G(y + δ)−G(y))δ, therefore letting δ = x − y, one has E(x,y) =
Ey(δ) ≤ C1. The inequality |x| ≤M + |δ| holds, so it suffices to get a bound on δ to conclude:

(i) if δ ≥ 2M + 1 > 0, then since G is increasing, one has

G(y + δ) ≥ G(y + 2M + 1) ≥ G(−M + 2M + 1) = G(M + 1) and G(y) ≤ G(M),

so C1 ≥ Ey(δ) ≥ (G(M + 1)−G(M))δ, and we get 2M + 1 ≤ δ ≤ C1 (G(M + 1)−G(M))−1;

(ii) if δ ≤ −2M − 1, a similar computation shows that −2M − 1 ≥ δ ≥ C1 (G(−M − 1)−G(−M))−1.

Hence, one has |δ| ≤max
(
2M + 1,

C1

G(M + 1)−G(M)
,

C1

G(−M)−G(−M − 1)

)
, which concludes the

proof.

We can now prove Lemma 7. The proof is similar to [70, Lemma 2], except for the use of the
unknowns on EDext .

Lemma 7. Let (wND ,w
P
D) ∈ V 2

D,0, and assume that there exists B] ≥ 0 such that

E(wND ,w
P
D) ≤ B] and D(wND ,w

P
D) ≤ B]. (2.50)

Then, there exists C] > 0, depending on the data, B] and D such that

−C]1D ≤ w
N
D ≤ C]1D, −C]1D ≤ w

P
D ≤ C]1D and −C]1D ≤ φD ≤ C]1D,

where φ
D

is the electrostatic potential associated to (wND ,w
P
D).

Proof. The proof is divided into two steps. First, we prove bounds on the discrete electrostatic
potential φ

D
thanks to the bound on the entropy. Then, we use these bounds to estimate

(wND ,w
P
D).

Since E(wND ,w
P
D) ≤ B], by (2.16) one has

α[λ
φ
[

2
|φ
D
−φe
D
|21,D ≤

1
2
a
φ
D(φ

D
−φe
D
,φ
D
−φe
D

) ≤ B].

Therefore, letting c1 = |φe
D
|1,D +

√
2B]

α[λ
φ
[

, we get that |φ
D
|1,D ≤ c1. By definition of |.|1,D, we deduce

that, for any K ∈M and any σ ∈ EK , |σ |dK,σ
(φK −φσ )2 ≤ c2

1. Letting c2 = max
K∈M,σ∈EK

c1

√
dK,σ
|σ |

, one has

∀K ∈M,∀σ ∈ EK , |φK −φσ | ≤ c2.
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On the other hand, there exists σ0 ∈ EDext such that φσ0
= φDσ0

and so, by (2.11), we have

|φσ0
| ≤ ‖φD‖L∞(Ω).

Now, one can use the connectivity of the mesh: for any cell K (resp. face σ ) there is a finite
sequence of components of φ

D
, denoted (xk)0≤k≤l , starting at x0 = φσ0

and finishing at xl = φK
(resp. xl = φσ ) such that, for any k in {0, . . . l −1}, one has |xk+1 −xk | ≤ c2. Therefore, one concludes
that

|xl | ≤ lc2 + |x0| ≤ 2|M|c2 + ‖φD‖L∞(Ω).

Thus there exists φ] positive depending on the data and D such that

−φ]1D ≤ φD ≤ φ]1D.

Now, note that since D(wND ,w
P
D) ≤ B], one has T ND (ND,w

N
D ,w

N
D ) ≤ B] and T PD (P D,w

P
D,w

P
D) ≤ B],

where we recall that the discrete densities are defined by ND = g(wND +φ
D

+αN1D) and P D =

g(wPD −φD +αP 1D). For K ∈M, using (2.22) alongside with the positivity of rK (NK ) and the local

coercivity (2.15) of aNK , one gets that

B] ≥ rK (NK )aNK (wND ,w
N
D ) ≥ α[λ[

∑
σ∈EK

rK (NK )
|σ |
dK,σ

(wNK −w
N
σ )2. (2.68)

Given σ ∈ EK , by definition of rK and NK , using (2.24) and the positivity of m, we obtain

rK (NK ) =
1
|EK |

∑
σ ′∈EK

m (NK ,Nσ ′ ) ≥
1
|EK |

mh
(
g(wNK +φK +αN ), g(wNσ +φσ +αN )

)
.

Recall that formula (2.26) holds, so

rK (NK ) ≥ 1
|EK |

G(wNK +φK +αN )−G(wNσ +φσ +αN )

(wNK +φK +αN )− (wNσ +φσ +αN )
.

Moreover, since G is convex, (x,y) 7→ G(x)−G(y)
x−y is non-decreasing with respect to both its variables,

therefore using the bound on φ
D

proved previously we get

rK (NK ) ≥ 1
|EK |

G(wNK −φ] +αN )−G(wNσ −φ] +αN )

(wNK −φ] +αN )− (wNσ −φ] +αN )

=
1
|EK |

G(wNK −φ] +αN )−G(wNσ −φ] +αN )

wNK −w
N
σ

.

Using (2.68), one gets that for any K ∈M and for any σ ∈ EK ,

0 ≤
(
G(wNK −φ] +αN )−G(wNσ −φ] +αN )

)
(wNK −w

N
σ ) ≤ ζ

where ζ =
B]
α[λ[

max
K∈M, σ∈EK

dK,σ |EK |
|σ |

. Now, let uD = wND + (−φ] + αN )1D ∈ V D. It is clear that it
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suffices to get bounds on uD to bound wND . The previous relation writes

∀K ∈M, ∀σ ∈ EK , 0 ≤ E(uK ,uσ ) ≤ ζ, (2.69)

where E : R2→ R+ is the function defined in Lemma 8. Now, notice that since wND ∈ V D,0 there
exists σ0 ∈ EDext such that uσ0

= −φ] + αN . One can then use the connectivity of the mesh to
conclude: for any cell K (resp. face σ ) there is a finite sequence of components of uD, denoted
(xk)0≤k≤l , starting at x0 = uσ0

and finishing at xl = uK (resp. xl = uσ ) such that for any k in
{0, . . . , l − 1}, one has E(xk+1,xk) ≤ ζ. Therefore, by l successive applications of Lemma 8, we get
the existence of some cN > 0, depending on ζ, l, and x0 = −φ] +αN such that |xl | ≤ cN . Thus,
there exists CN

]
> 0 depending on the data, D and B] such that

∀K ∈M, ∀σ ∈ E , |wNK | ≤ C
N
] and |wNσ | ≤ CN] .

Using the same strategy, one gets bounds for wPD, which concludes the proof.
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This chapter is a work in collaboration with Stella Krell, accepted as a proceeding of the
FVCA X conference [187]. For the purpose of unified presentation and comparison, the notations
used in this chapter are slightly different from those of the two previous chapters.

We made a comparison between a Discrete Duality Finite Volume (DDFV) scheme
and a Hybrid Finite Volume (HFV) scheme for a drift-diffusion model with mixed
boundary conditions on general meshes. Both schemes are based on a nonlinear
discretisation of the convection-diffusion fluxes, which ensures the positivity of the
discrete densities. We investigate the behaviours of the schemes on various numerical
test cases.
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3.1 Motivation

We are interested in the numerical discretization of a drift-diffusion model on general meshes.
Let Ω be a polygonal connected open bounded subset of R2, whose boundary Γ = ∂Ω is divided
into two parts Γ = Γ D ∪ ΓN with m(Γ D ) > 0. The problem writes:

∂tN −div(∇N −N∇φ) = 0 in R+ ×Ω,
∂tP −div(∇P + P∇φ) = 0 in R+ ×Ω,

−λ2 div(∇φ) = C + P −N in R+ ×Ω,
N =ND , P = P D and φ = φD on R+ × Γ D ,

(∇N −N∇φ) ·n = (∇P + P∇φ) ·n = ∇φ ·n = 0 on R+ × ΓN ,
N (0, ·) =N in and P (0, ·) = P in in Ω,

(3.1)

where n denotes the unit normal vector to ∂Ω pointing outward Ω. Regarding the data,

(i) the parameter λ > 0 is the rescaled Debye length of the system, which accounts for the
nondimensionalisation (relevant values of this parameter can be very small, inducing some
stiff behaviours),

(ii) the initial conditions N in and P in belong to L∞(Ω) and are positive,

(iii) the doping profile C is in L∞(Ω), and characterises the semiconductor device used.

In the following, we also assume that the boundary conditions are the trace of some H1 function
on Ω, such that the following relation holds:

log(ND )−φD = αN and log(P D ) +φD = αP on Γ D , (3.2)

where αN and αP are two real constants. It follows that ND and P D are positive.
The solution to (3.1) enjoys some natural physical properties: the densities N and P are

positive for all time, and the solution converges exponentially fast towards some thermal
equilibrium (N e, P e,φe) as the time goes to infinity. This thermal equilibrium, which is a
stationary solution to (3.1), is defined such that

N e = eαN+φe and P e = eαP −φ
e
, (3.3)

where the electrostatic potential at the equilibrium φe is the solution to the Poisson-Boltzmann
equation 

−λ2 div(∇φe) = C + exp(αP −φe)− exp(αN +φe) in Ω,

φe = φD on Γ D ,

∇φe ·n = 0 on ΓN .

(3.4)

The relation (3.2) is a compatibility condition in order to ensure that the only stationary state
of (3.1) is the thermal equilibrium defined by (3.4).

When designing numerical schemes for (3.1), it is crucial to ensure that the scheme preserves
these properties at the discrete level. This structure preserving features are ensured by classical
Two-Point Flux Approximation (TPFA) schemes on admissible orthogonal meshes (see [27]).
Unfortunately, these schemes cannot be used on general meshes, and their use is essentially
restricted to isotropic problems. On the other hand, it appears that the use of adaptative mesh
refinement could be a relevant solution in order to handle the stiff behaviour of these problems,
as presented in [58]. Therefore, a first step towards this kind of strategy lies in the development
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of structure preserving scheme on general meshes. However, the main issue of schemes handling
general meshes for diffusive problems is the lack of discrete positivity, both at the theoretical
and practical level (see [109]). One of the possible solution in order tackle this problem is
to use a nonlinear approach based on the entropy structure of the model. Such idea was
originally introduced in [56] with a Vertex Approximate Gradient (VAG) scheme for advection-
diffusion problems. Following the ideas of this seminal work, a nonlinear positivity preserving
Discrete Duality Finite Volume (DDFV) scheme for linear advection-diffusion equations has
been introduced in [52]. The good long-time behaviour of this scheme has then been established
in [51]. In the spirit of these works, a nonlinear structure preserving Hybride Finite Volume
(HFV) scheme was introduced and analysed in [213]: this scheme is proved to preserve the
positivity of the densities as well as the long-time behaviour of the solutions. These three
schemes are based on different spatial discretisation methods handling general meshes (VAG,
DDFV and HFV), but they share the same spirit in terms of conception and analysis.

The aim of this paper is therefore to compare two of these methods for a realistic coupled
problem, from a numerical point of view. To do so, we to introduce a nonlinear structure
preserving DDFV scheme for (3.1) based on the scheme of [52] and we compare it numerically
with the HFV scheme of [213].

3.2 Description of the schemes

The schemes used here are based on the same nonlinear strategy, introduced in [56], consisting
in the reformulation of the convection-diffusion fluxes:

∇N −N∇φ =N∇ (log(N )−φ) and ∇P + P∇φ = P∇ (log(P ) +φ) .

The quantities log(N )−φ and log(P ) +φ are often called quasi-Fermi potentials in the literature
associated to semiconductor models, and have an important physical meaning. At the discrete
level, both schemes rely on discrete gradients operators to approximate the continuous gradients.
The major issue lies in the discretisation of the prefactors P and N , which will be handled by
local reconstruction operators. This discretisation strategy is a way of ensuring, both at the
theoretical and practical levels, the positivity of the discrete densities. We refer to [213, Theorem
1] (HFV scheme for drift-diffusion system) and [52, Theorem 2.1] (DDFV scheme for a single
advection-diffusion equation) for proofs of this statement. We also refer the reader to these
proofs for more insight about the reconstruction operators.
Both schemes are based on a backward Euler discretisation in time. To fix ideas, we will use a
constant time step ∆t > 0. For more precise descriptions and statements about the schemes and
the meshes, we refer to [52] (DDFV) and [213] (HFV).

Remark 18 (Generalisation to anisotropic models). In this paper, we consider isotropic convection-
diffusion equations for the charges carriers for the sake of brevity. One could add anisotropic diffusion
tensors and consider the framework described in [213]. Thus, the presentation made here can easily be
extended to models with external magnetic fields (see [143]).

Both schemes rely on a spatial discretisation (or mesh) of the domain Ω. The (primal interior)
mesh M is a partition of Ω in polygonal control volumes (or cells). We let ∂M be the set of
boundary edges, seen either as degenerate control volumes (DDFV framework) or as edges (HFV
framework). The primal mesh M is defined as the reunion of M and ∂M. Given a cell K ∈M, we
fix a point xK ∈ K , called the center of K . For all neighboring primal cells K and L, we assume
that ∂K ∩∂L is a segment, corresponding to an internal edge of the mesh M, denoted by σ = K |L
and we let Eint be the set of such edges. We denotes by E = Eint ∪∂M the set of all (internal and
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exterior) edges of the mesh, and define EK the set of edges of the cell K ∈M. For any K ∈M and
σ ∈ EK , we define nσK as the unit normal to σ outward K .
Given any measurable X ⊂ R2, we denote by mX the measure of the object X.

3.2.1 The DDFV scheme

In order to define the DDFV scheme, we need to introduce two other meshes: the dual mesh
denoted M∗ and the diamond mesh denoted D (see [52] for more details). The dual mesh M∗

is also composed of interior dual mesh M∗ (corresponding of cells around vertex in Ω) and of
boundary dual mesh ∂M∗ (corresponding of cells around vertex on ∂Ω). For any vertex xK∗ of the
primal mesh satisfying xK∗ ∈Ω, we define a polygonal control volume K∗ by connecting all the
centers of the primal cells sharing xK∗ as vertex. For any vertex xK∗ ∈ ∂Ω, we define a polygonal
control volume K∗ by connecting the centers xK of the interior primal cells and the midpoints
of the boundary edges sharing xK∗ as vertex and xK∗ . We define the set E∗int of internal edges
of the dual mesh similarly as Eint . We denote by nσ ∗K∗ the unit normal to σ ∗ outward K∗. For
each couple (σ,σ ∗) ∈ E ×E∗int such that σ = [xK∗ ,xL∗ ] and σ ∗ = K∗|L∗, we define the quadrilateral
diamond Dσ,σ ∗ whose diagonals are σ and σ ∗ (if σ ⊂ ∂Ω, it degenerates into a triangle). The set
of the diamonds defines the diamond mesh D , which is a partition of Ω. Finally, the DDFV

xL∗

xK∗

xL

xK τK∗,L∗

nσK

τK,L
nσ ∗K∗

σ = K |L, edge of the primal mesh
σ ∗ = K∗|L∗, edge of the dual mesh
Diamond Dσ,σ ∗

Vertices of the primal mesh
Centers of the primal mesh

xD

xL∗

xK∗

xL
xK

Figure 3.1 – Definition of the diamonds Dσ,σ ∗ and related notations.

mesh is made of T = (M,M∗) and D.
We now introduce the space of scalar fields which are associated to each primal and dual cell

RT , and space of vector fields constant on the diamonds
(
R2

)D
:

uT ∈ RT ⇐⇒ uT =
(
(uK )K∈M , (uK∗ )K∗∈M∗

)
and ξD ∈

(
R2

)D
⇐⇒ ξD = (ξD)D∈D .

To enforce Dirichlet boundary conditions, we introduce the set of Dirichlet boundary primal
and dual cells: ∂MD = {K ∈ ∂M : K ⊂ ΓD } and ∂M∗D = {K∗ ∈ ∂M∗ : xK∗ ∈ Γ D }, and, for a given
v ∈ C(Γ D ), we define

E
ΓD
v = {uT ∈ RT | ∀K ∈ ∂MD , uK = v(xK ) and ∀K∗ ∈ ∂M∗D , uK∗ = v(xK∗ )}.

These sets can be generalised to less regular boundary data v by substituting punctual evaluation
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by averages. We also define discrete bilinear forms on RT and
(
R2

)D
by

~vT ,uT �T =
1
2

∑
K∈M

mKuKvK +
∑
K∗∈M∗

mK∗uK∗vK∗

 , ∀(uT ,vT ) ∈
(
RT

)2
,

(
ξD,ϕD

)
D

=
∑
D∈D

mD ξD ·ϕD, ∀(ξD,ϕD) ∈
((
R2

)D)2
.

The DDFV method is based on the definition of a discrete gradient operator ∇D : RT →
(
R2

)D
,

defined by ∇DuT =
(
∇DuT

)
D∈D

, where

∇DuT =
1

2mD
(mσ (uL −uK )nσK + mσ ∗(uL∗ −uK∗ )nσ ∗K∗ ) ∀D ∈D. (3.5)

Finally, we introduce a reconstruction operator on diamonds rD. It is a mapping from RT

to RD defined for all uT ∈ RT by rDuT =
(
rDuT

)
D∈D

, where for D ∈ D, whose vertices are xK ,

xL, xK∗ , xL∗ , rDuT = 1
4 (uK + uL + uK∗ + uL∗ ). One can now introduce a DDFV discretisation of

(u,w,v) 7→
∫
Ω
u∇w · ∇v, defined by

TD : (uT ,wT ,vT ) 7→
∑
D∈D

mDr
DuT ∇DwT · ∇DvT .

Now, we first discretise the data by taking the mean values of N in, P in and C on the primal and
dual cells, which define N0

T , P 0
T and CT . Then, for all n ≥ 0, we look for (Nn+1

T , P n+1
T ,φn+1

T ) ∈
E
ΓD
ND ×E

ΓD
PD
×EΓD

φD
solution to:

�Nn+1
T −Nn

T
∆t

,vT

�
T

+TD(Nn+1
T , log(Nn+1

T )−φn+1
T ,vT ) = 0 ∀vT ∈ E

ΓD
0 , (3.6a)�P n+1

T − P nT
∆t

,vT

�
T

+TD(P n+1
T , log(P n+1

T ) +φn+1
T ,vT ) = 0 ∀vT ∈ E

ΓD
0 , (3.6b)

λ2
(
∇Dφn+1

T ,∇DvT
)
D

=
�
CT + P n+1

T −Nn+1
T ,vT

�
T
∀vT ∈ E

ΓD
0 . (3.6c)

In (3.6a) and (3.6b), we use the notation log(uT ) =
(
(log(uK ))K∈M , (log(uK∗ ))K∗∈M∗

)
.

3.2.2 The HFV scheme

In order to define the HFV scheme, we need to introduce a pyramidal submesh. To do so, one
has to assume that each cell K ∈M is star-shaped with respect to its center xK (we recall that xK
is not necessarily the barycentre of K). We then define PK,σ as the pyramid (triangle) of base σ
and apex xK . Given any σ ∈ E, we denote by xσ the barycentre of σ , and by dK,σ the euclidean
distance between σ and xK . Finally, we define the hybrid discretisation (or mesh) as D = (M,E).

We now introduce the space of discrete (scalar) hybrid unknowns VD:

uD ∈ VD⇐⇒ uD =
(
(uK )K∈M , (uσ )σ∈E

)
,

where the uK ∈ R are the cell unknowns and the uσ ∈ R are the edges unknowns (approximation



122 CHAPTER 3. Schemes for drift-diffusion systems: DDFV vs HFV

of the trace of the solutions on the edges). To enforce Dirichlet boundary conditions, for a given
v ∈ C(Γ D ), we define

V ΓDD,v = {uD ∈ VD | ∀σ ∈ ∂MD , uσ = v(xσ )}.

As for the DDFV framework, we define a bilinear form on VD, discrete counterpart of the inner
product on L2(Ω) as �

uD,vD
�
M

=
∑
K∈M

mKuKvK , ∀(uD,vD) ∈ V 2
D.

Note that this discrete inner product only takes into account the values of the cell unknowns.

The HFV method is based on the definition of a discrete gradient operator ∇D : VD→ (R2)Ω

which maps discrete hybrid unknowns onto piecewise constant functions on the pyramidal
submesh. More precisely, given vD ∈ VD, K ∈M and σ ∈ EK we let

∇DvD |PK,σ = GKvD + SK,σvD,

where the consistent part of the gradient GKvD and the stabilisation part SK,σvD are defined as

GKvD =
1

mK

∑
σ ′∈EK

mσ ′vσ ′nK,σ ′ and SK,σvD =
η

dK,σ

(
vσ − vK −GKvK · (xσ − xK )

)
nK,σ ,

where η is a given positive stabilisation parameter. One can now define the discrete counterpart
of (u,v) 7→

∫
Ω
∇u · ∇v as

aD : (uD,vD) 7→
∫
Ω

∇DuD · ∇DvD.

Finally, we introduce as previously local reconstruction operators on cells rK : VD→ R, such

that for any uD ∈ VD, rK (uD) =
1
|EK |

∑
σ∈EK

uK +uσ
2

, where |EK | is the cardinal of the finite set EK .

One can now introduce a HFV discretisation of (u,w,v) 7→
∫
Ω
u∇w · ∇v, defined by

TD : (uD,wD,vD) 7→
∑
K∈M

rK (uD)
∫
K
∇DwD · ∇DvD.

We now discretise the data by taking the mean values of N in, P in and C on the cells and
edges, which define P 0

D, N0
D and CD. Then, for all n ≥ 0, we look for (Nn+1

D , P n+1
D ,φn+1

D
) ∈

V ΓD
D,ND ×V

ΓD
D,PD

×V ΓD
D,φD

solution to:

�Nn+1
D −Nn

D

∆t
,vD

�
M

+TD(Nn+1
D , log(Nn+1

D )−φn+1
D
,vD) = 0 ∀vD ∈ V

ΓD
D,0, (3.7a)�P n+1

D − P nD
∆t

,vD

�
M

+TD(P n+1
D , log(P n+1

D ) +φn+1
D
,vD) = 0 ∀vD ∈ V

ΓD
D,0, (3.7b)

λ2aD
(
φn+1
D
,vD

)
=
�
CD + P n+1

D −Nn+1
D ,vD

�
M
∀vD ∈ V

ΓD
D,0. (3.7c)

As previously, we use the notation log(uD) =
(
(log(uK ))K∈M , (log(uσ ))σ∈E

)
.
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3.2.3 Some structural differences between schemes

As highlighted by the unified presentation above, both schemes are very similar and rely on
the same features. Note that both local reconstruction operators rD and rK take into account all
the local unknowns of the geometric entity considered (diamond or cells), this property is the
key point of the analysis of this kind of schemes, see [52, 213].
However, the schemes exhibit differences, some of which are listed below:

— the discrete HFV gradient ∇D includes a stabilisation term for the sake of coercivity and
the stabilisation parameter η has to be chosen a priori, whereas the DDFV one is simpler
and do not need any choice of parameter;

— the DDFV unknowns are all "volumic", in the sense that there are associated to geometric
entities with non-zero two-dimensional measures, whereas the faces unknowns of the
HFV method have no mass and have no influence on the discrete time derivative terms�
Nn+1

D −Nn
D,vD

�
M

and
�
P n+1
D − P nD,vD

�
M

;

— the cells unknowns of the HFV scheme can be eliminated before solving linear systems,
using a static condensation procedure (see [213, Section 5.1.2.]), whereas one has to solve a
system including all primal and dual unknowns for DDFV;

— the HFV scheme can be used in 3D without any modification (the edges become faces),
whereas using a DDFV method in 3D requires more sophisticated changes (see [90]).

3.3 Numerical experiments

The two numerical schemes described here are nonlinear, hence their algebraic realisations
boil down to the resolution of nonlinear systems of equations. To solve these systems, we use
Newton method, with an adaptative time stepping strategies: if the Newton method does not
converge, we try to compute the solution for a smaller time step 0.5×∆t. If the method converges,
we use a bigger time step 1.4×∆t. We fix the initial time step as well as the maximal time step
allowed, and denote these quantities by ∆tini and ∆tmax.
We use the same stopping criterion for both scheme, namely the size of the l2 norm of the goal
function (with the same threshold). Note that even if we use the same algebraic criterion, this
does not mean in practice that the criterion has the same level of exigence for both schemes.
In particular, since the HFV scheme has two different type of unknowns (cell and face), under-
standing how to create equivalent stopping criteria for the two schemes is unclear at this point.
The results presented below indicate that, indeed, the criterion used leads to slightly different
behaviours.

For the HFV scheme, at each system resolution, a static condensation is used to eliminate the
cell unknowns (see [213, Section 5.1.2.]), and we use η = 1.5.

Note that we use N , P and φ as discrete unknowns in the schemes. One could also solve the
system using the quasi-Fermi potentials and the electrostatic potential as discrete unknowns.
Such a choice corresponds at the level of the implementation to a preconditioning. It could
maybe leads to better performances in practice, but it seems difficult to find relevant criterion in
order to know when switch between the two sets of unknowns.

3.3.1 Description of the test case

The test cases used below follow the framework used in [213] to describe a 2D PN-junction,
whose geometry is described in Figure 3.2. The domain Ω is the unit square ]0,1[2. For the
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N-region
C = 1

P-region
C = −1

Γ D0

Γ D1

Figure 3.2 – PN diode geometry.

boundary conditions, we split Γ D = Γ D0 ∪ Γ
D
1 with Γ D0 = [0,1] × {0} and Γ D1 = [0,0.25] × {1}. For

i ∈ {0,1}, we let

ND =ND
i , P

D = P Di and φD =
h(ND

i )− h(P Di )
2

on Γ Di .

To be consistent with the compatibility condition (3.2) we assume that there exists a constant α0
such that log(ND × P D ) = α0. Therefore for given ND and α0 we set

P D =
eα0

ND
on Γ D .

Thus, one has αN = αP = α0
2 . The doping profile C is piecewise constant, equal to −1 in the

P-region and 1 in the N-region (see Figure 3.2). Last, we use the following smooth initial
conditions:

N0(x,y) =ND
1 + (ND

0 −N
D
1 )(1−√y) and P0(x,y) = P D1 + (P D0 − P

D
1 )(1−√y).

3.3.2 Positivity

In this section, we compare the discrete positivity preservation of the schemes. The test used
here corresponds to the following values:

λ = 0.05, ND
0 = 0.1, ND

1 = 1 and α0 = −4.

We perform a test on a distorted quadrangle mesh (mesh_quad_6 of the FVCA 8 Benchmark),
with ∆tini = 1.410−3 and ∆tmax = 0.1. We show in Figure 3.3 the evolution of the minimal values
of P and N , along with the time step and the number of Newton’s iterations needed to compute
the solutions at a given time for each time step. The minimal values are taken on every unknowns
(primal and dual cells for the DDFV scheme, cells and faces for the HFV one). One can see that
both schemes compute, as expected by the theoretical results, positive densities. The minimal
values computed are of the same order for both schemes. Moreover, both computations proceed
without the need of a time step reduction. Regarding the cost, it appears that the HFV scheme
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Figure 3.3 – Positivity. Evolution of the discrete minimal values, time step and cost

needs more Newton iterations than the DDFV one (90 vs 63). For both schemes, the number of
iteration decay as the time increases, since the solutions converge exponentially fast towards the
equilibrium.

3.3.3 Long-time behaviour

Here, we investigate the long-time behaviour of the schemes. At the continuous level, one
usually quantify the distance between the solution (N,P ,φ) and the equilibrium (N e, P e,φe) by
looking at the relative entropy, defined as

E(t) =
∫
Ω

N eH
( N
N e

)
+
∫
Ω

P eH
( P
P e

)
+
λ2

2
‖∇(φ−φe)‖2L2(Ω),

with H : s 7→ s log(s)− s+ 1. One can check that (N,P ,φ) coincides with the equilibrium if and
only if the relative entropy cancels. In the following, we are interested in the evolution of the
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discrete counterparts of this quantities, defined as

EnD =
�
N e

DH

(
Nn

D

N e
D

)
,1D

�
M

+
�
P eDH

(
P nD
P eD

)
,1D

�
M

+
λ2

2
aD

(
φn
D
−φe

D
,φn

D
−φe

D

)
for the HFV scheme (where 1D is the discrete elements whose coordinates are 1, and the product,
quotient and functions are applied coordinate-wise) and similar definition for the DDFV scheme.
Note that the HFV entropy does not take into account the edge unknowns of the discrete densities.
To compute the discrete equilibrium, we use a nonlinear scheme for (3.4) and get φe

D
, then we

defined the associated densities following the continuous relations N e = eαN+φe and P e = eαP −φ
e

(defined as the discrete level coordinate by coordinate).
We consider a test case with physical data ND

0 = e, ND
1 = 1 and α0 = 0. We also use two

different values of the Debye length λ, respectively 1 and 0.01. We perform simulations on
a triangular mesh, with a ∆tini = ∆tmax = 0.1. On Figure 3.4, we show the evolutions of the
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Figure 3.4 – Long-time behaviour. Evolution of the discrete relative entropies.

discrete relative entropies along time, for the two values of λ and both schemes. As expected,
the convergence towards the equilibrium is exponentially fast, as in the continuous framework.
Moreover, it is remarkable to notice that the decay rates are almost the same for both schemes.
Moreover, with the small Debye length (Figure 3.4b), both schemes are able to capture the
behaviour with a very fast evolution far from the equilibrium, then slower once close to it.

3.4 Conclusion

We have compared numerically two schemes for drift-diffusion systems. Both schemes handle
seamlessly general polygonal meshes, and are designed in order to preserve the positivity of
the density as well as the entropy structure of the continuous problem. It appears that the
two schemes present similar behaviours on practical test cases, both from a qualitative and
quantitative viewpoint.
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High-Order methodology. The first one is a linear scheme, while the second one is
nonlinear. Both schemes admit solutions and possess a discrete entropy structure,
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which ensures that the long-time behaviour of the discrete solutions mimics the
continuous one. Moreover, the nonlinear scheme preserves the positivity of the
solution at the discrete level. On the contrary, we present numerical evidence indicat-
ing that the linear scheme does not preserve positivity, independently of the order
considered. Finally, we show on numerical experiments that the nonlinear scheme
has optimal order of accuracy, and is less demanding, for a given accuracy, in terms
of computational resources than a low-order Hybrid Finite Volume nonlinear method.

4.1 Motivations and context

We are interested in the discretisation of a linear advection-diffusion equation on general
meshes with a high-order scheme. Our goal is to compare nonlinear structure-preserving high-
order methods with similar low-order methods and linear high-order methods. More precisely,
let Ω be an open, bounded, connected polytopal subset of Rd , d ∈ {2,3}, with Lipschitz boundary.
We consider the following linear advection-diffusion problem with homogeneous Neumann
boundary conditions: find u : R+ ×Ω→ R solution to

∂tu −div(Λ(∇u +u∇φ)) = 0 in R+ ×Ω,
Λ(∇u +u∇φ) ·n = 0 on R+ ×∂Ω,

u(0, ·) = uin in Ω,

(4.1)

where n is the unit normal vector to ∂Ω pointing outward from Ω. We assume that the data
satisfy:

(i) Λ ∈W 1,∞(Ω;Rd×d) is a uniformly elliptic diffusion tensor: there exists λ[ > 0 such that, for
a.e. x in Ω, Λ(x)ξ · ξ ≥ λ[|ξ |2 for all ξ ∈ Rd ;

(ii) φ ∈ C1(Ω) is a regular potential;

(iii) uin ∈ L1(Ω) is a non-negative initial datum, such that
∫
Ω
uin log

(
uin

)
<∞.

The solutions to (4.1) enjoy some specific and well-known properties. First the mass of the
solution is preserved along time, i.e. for almost every t > 0,∫

Ω

u(t) =
∫
Ω

uin =M (4.2)

where M > 0 is the initial mass. Second, the solution is positive:

for t > 0, u(t, ·) > 0 almost everywhere on Ω. (4.3)

Last, the solution has a specific long-time behaviour: it converges exponentially fast when t→∞
towards the thermal equilibrium u∞, solution to the stationary problem associated to (4.1),
defined as

u∞ =
M∫
Ω

e−φ
e−φ . (4.4)

In order to get a reliable numerical approximation of such problems, one has to preserve these
structural properties at the discrete level. It is well-known that Two-Point Flux Approximation
(TPFA) finite volume methods are structure-preserving (see [69] for the long-time behaviour),
but these methods can only be used on meshes satisfying some orthogonality conditions (with
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respect to the inner product induced by Λ), which essentially restricts the use of these methods
to problems with isotropic tensors. On the other hand, a number of finite volume methods
using auxiliary unknowns has been introduced for anisotropic problems on general meshes
within the past twenty years. On can cite Discrete Duality Finite Volume (DDFV) methods,
with additional unknowns on a dual mesh [157, 105], Vertex Approximate Gradient (VAG)
methods, with auxiliary unknowns at the vertices of the mesh [124] or Hybrid Finite Volume
(HFV) and Mimetic Finite Difference (MFD) methods, with auxiliary unknowns attached to the
faces of the mesh [40, 123]. Such methods have proven to be relevant solutions to the anisotropy
issue, but none of these linear methods preserves the positivity of the solutions (see [109]). A
possible alternative was proposed in [56], with the introduction and analysis of a nonlinear
positivity-preserving VAG scheme. The design and analysis of this scheme, as well as of its
DDFV and HFV counterparts of [52, 70], relies on the entropy structure of (4.1): there exists
some physically motivated quantity, called entropy, which decays along time. Reproducing this
structure at the discrete level is a key point to get stability and convergence results.
One can also cite the methods introduced and analysed in [245, 113, 32], which rely on the
introduction of nonlinearities within the schemes at the discrete level. These schemes exhibit a
good robustness with respect to anisotropy and meshes for linear stationary diffusion. However
they rely on nonlinearities which do not correspond to a particular equation at the continuous
level. Therefore, it seems difficult to show that they enjoy discrete entropy structures (and
associated long-time behaviour).

All the schemes discussed above are at most of order two in space in L2-norm. A natural
extension of these works is to develop similar methods with high-order accuracy. Such a task is
not easy, because high-order polynomials are well-known to produce oscillations, which makes
it difficult to ensure that the discrete solutions stay positive on the whole domain. There exist
various positivity-preserving schemes in the litterature, based on Discontinuous Galerkin (DG)
methods [13, 9, 10]. To our knowledge, the first high-order positive DG scheme for diffusive
problems is the one introduced in [198] for linear advection-diffusion. The idea of this scheme is
to choose some stabilisation parameters (depending on the degree of the polynomial unknowns
and on the dimension of the domain) so that the positivity of the unknowns is ensured in average:
the mean value of each cell unknown is positive, even though the (polynomial) unknowns can
take negative values inside the cells. The main drawback of such a scheme lies in the difficulty
to analyse it: since the solution can become negative on some area of the domain, it is not
possible to adapt the analysis techniques used in the continuous framework, such as the use of
the Boltzmann entropy.
Another positivity-preserving DG scheme was introduced in [36] for a Fisher–KPP equation
∂tu −4u = u(1−u). This nonlinear scheme is developed so as to preserve the entropy structure
of the continuous problem, and relies on a transformation of the equation based on the variable
λ = log(u). The scheme provides positive densities, defined as u = eλ. Compared to the high-
order DG schemes discussed above, the main improvement lies in the fact that the unknowns
are positive everywhere. Such a feature allows the authors to fully analyse the scheme, including
existence, long-time behaviour, and convergence towards a semi-discretised solution. The
analysis is based on the properties of a well-chosen stabilisation function whose expression
implies L∞-norms of the polynomial unknowns along the faces of the mesh. One can also cite
the space-time DG discretisation [37] for cross-diffusion systems.

The aim of this chapter is to introduce a high-order scheme for anisotropic problems on
general meshes, preserving the three structural properties (4.2)-(4.3)-(4.4) discussed above. Since
the HFV method can be seen as the low-order version of the Hybrid High-Order (HHO) scheme
introduced in [100] for stationary diffusion, it is rather natural to try to adapt the nonlinear
HFV scheme of [70] to the HHO framework. Our goal here is twofold. First, we want to design



130 CHAPTER 4. High-order schemes for advection-diffusion

a structure-preserving high-order scheme, and assert from a numerical point of view that the
scheme is indeed of high order accuracy. On the other hand, we also want to compare this
scheme with other approaches, based on two criteria:

(i) in terms of efficiency, with respect to the nonlinear low-order schemes of Chapter 1;

(ii) in terms of structure preservation, with respect to linear high-order schemes.

For the second criterion we mainly focus on the positivity of the discrete solutions. Indeed, with
high-order schemes, one can expect to compute a numerical solution which is very close to the
continuous one. Therefore, one could expect that the use of linear high-order schemes (with
sufficiently high order) is already a solution in itself to preserve the positivity, at least in practice.

In order to perform this comparison, we introduce two HHO schemes. The first one is linear,
and relies on the exponential fitting strategy [42] already used in Chapter 1. The key idea of
this scheme is the change of unknown ρ = u eφ, which allows one to reformulate (4.1) into an
unconditionally coercive problem in ρ. As a by-product of this reformulation, we also get a
scheme which preserves the thermal equilibrium. The second scheme is a nonlinear one, which
can be seen as a high-order generalisation of the nonlinear HFV scheme introduced in Chapter 1.
This scheme is designed so as to preserve the positivity of the discrete solutions. For the sake of
simplicity, both schemes rely on a mixed-order HHO space: given an integer k ≥ 0, the methods
hinge on face unknowns of degree k and enriched cell unknowns of degree k + 1. The main
interest of such a discrepancy in the degree between face and cell unknowns is the simplification
of the stabilisation term. In the meantime, such a choice preserves optimal accuracy (order
k + 2 in L2-norm) and frugality (the linear system only takes into account the face unknowns,
of degree k). This kind of method is sometimes referred to as HDG+ in the literature, and is
associated to the so-called Lehrenfeld-Schöberl stabilisation [190, 191].

Our first theoretical results stated in Propositions 13 and 14 concern the well-posedness of
the exponential fitting scheme and its long-time behaviour. Regarding the nonlinear scheme, we
prove the existence of (positive) solutions in Theorem 10. Last, these discrete solutions are proved
to converge (in time) towards an associated discrete thermal equilibrium in Proposition 16.

Note that one could also compare the schemes introduced in this chapter with the linear
scheme for advection-diffusion of [98], based on separate discretisations of the advection and
diffusion. This scheme is a high-order generalisation of the HMM scheme [19] which was
considered in Chapter 1. As observed in [70], the low-order version of this scheme has two major
drawbacks, namely the fact that it does not preserve the thermal equilibrium, and the need for
some coercivity assumptions (which constrain the variety of potentials that can be considered for
the analysis). We expect the high-order scheme to inherit these features. Moreover, in order to
perform a fair comparison between the schemes, one should also consider a mixed-order version
of the scheme of [98], but such a variation has, to our knowledge, not been studied yet. Thus, we
will not consider this scheme here, but a numerical comparison including this scheme could be
the subject of a future work .

The rest of this chapter is organised as follows. In Section 4.2, we first present the discrete
framework, and describe the two schemes under consideration. Then, in Section 4.3 we discuss
the main properties of both schemes, and provide some elements of analysis regarding the
well-posedness and discrete long-time behaviours. Last, in Section 4.4 we discuss the implemen-
tation of the nonlinear scheme and we assert the behaviour of the schemes on some test-cases.
These results show that the nonlinear high-order scheme offers a better efficiency in terms of
computational cost than low-order schemes, while preserving the positivity of the solution,
contrary to linear schemes.
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4.2 Discrete setting and schemes

In this section, we introduce the discrete framework. Since our focus is mainly on the
numerical aspects of the schemes, the description is concise. We refer the reader to [97, Section
1.1] for a more detailed description.
Here, as in the rest of this manuscript, we focus on space discretisation. Hence, both schemes are
based on a backward Euler discretisation in time. For the sake of readability, we will consider a
constant positive time step ∆t. The time discretisation is then defined as (tn)n∈N, where tn = n∆t.
Note that it is rather straightforward to generalise the discussion below to variable time steps.

4.2.1 Mesh

We define a discretisation of Ω as a couple D = (M,E), where:

— the meshM is a partition of Ω, i.e. M is a finite collection of disjoint, open, Lipschitz
polytopes K ⊂Ω with positive measure |K | > 0 (the cells) such that Ω =

⋃
K∈MK ;

— the set of faces E is a partition of the mesh skeleton
⋃
K∈M∂K , i.e. E is a finite collection of

disjoint, connected, relatively open subsets σ (the faces) of Ω with positive measure |σ | > 0
such that

⋃
K∈M∂K =

⋃
σ∈E σ . It is assumed that, for all σ ∈ E, σ is a Lipschitz polytopal

subset of an hyperplane. We denote by EK the set of faces of the cell K , and we let nK,σ ∈ Rd
be the (constant) unit normal vector to σ ∈ EK pointing outward from K .

The diameter of a subset X ⊂Ω is denoted by

hX = sup{|x − y| | (x,y) ∈ X2}.

We define the size of D as hD = sup{hK | K ∈M}.
When studying asymptotic behaviours with respect to the meshsize, one has to adopt a

measure of regularity for (refined) families of discretisations. We classically follow [97, Definition
1.9], in which regularity for a refined family of discretisations is quantified by a uniform (with
respect to the meshsize) parameter 0 < θ < 1, called regularity parameter. This parameter takes
into account the ratios between the different characteristic scales of the mesh (typically, the size
of the cells and the size of the faces).

4.2.2 Polynomials, discrete unknowns and discrete operators

In the following, k is a fixed non-negative integer. First, we introduce polynomial spaces
on a subset X ⊂Ω: Pk(X) and Pk(X)d denote respectively the spaces of polynomial functions
X→ R and polynomial vector fields X→ Rd of total degree at most k. If X is a geometric object

of Hausdorff dimension l ∈ {1,2,3}, the dimension of the space Pk(X) is
(
l + k
k

)
. We also define

the L2(X)-orthogonal projector Πk
X : L1(X)→ Pk(X) such that, given any v ∈ L1(X), Πk

X(v) is the
only element of Pk(X) which satisfies

∀w ∈ Pk(X),
∫
X
Πk
X(v)w =

∫
X
vw.

Given any K ∈M, σ ∈ EK and v ∈W 1,1(K), we also introduce the shortcut notation

Πk
σ (v) =Πk

σ

(
v|σ

)
.
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We now introduce the set of discrete unknowns corresponding to the mixed-order HHO
method [83, 97], with face unknowns of degree k and (enriched) cell unknowns of degree k + 1:

V kD =
{
vD =

(
(vK )K∈M, (vσ )σ∈E

) ∣∣∣∣∣∣ ∀K ∈M, vK ∈ Pk+1(K)
∀σ ∈ E , vσ ∈ Pk(σ )

}
.

Given a cell K ∈M, we let
V kK = Pk+1(K)×

∏
σ∈EK

Pk(σ )

be the restriction of V kD to K , and for any generic discrete unknown vD ∈ V
k
D we denote by

vK =
(
vK , (vσ )σ∈EK

)
∈ V kK its local restriction to the cell K . Given any vD ∈ V

k
D, we associate two

piecewise polynomial functions vM :Ω→ R and vE :
⋃
K∈M∂K → R such that

vM|K = vK for all K ∈M and vE |σ = vσ for all σ ∈ E .

We also introduce 1D ∈ V
k
D the discrete element such that 1K = 1 for any cell K ∈M and 1σ = 1

for any face σ ∈ E. Last, given a cell K ∈M, we define the local interpolator IkK :W 1,1(K)→ V kK
such that, for any v ∈W 1,1(K),

IkK (v) =
(
Πk+1
K (v),

(
Πk
σ (v)

)
σ∈EK

)
.

Similarly, the global interpolator IkD :W 1,1(Ω)→ V kD is defined as

IkD(v) =
((
Πk+1
K (v)

)
K∈M

,
(
Πk
σ (v)

)
σ∈E

)
∀v ∈W 1,1(Ω).

In order to analyse the schemes, one needs to introduce an H1-like discrete semi-norm. To
do so, given a cell K ∈M, we first introduce a local semi-norm | · |1,K on V kK , defined as

|vK |
2
1,K = ‖∇vK‖2L2(K)d +

∑
σ∈EK

1
hσ
‖vσ − vK‖2L2(σ ).

At the global level, we define the discrete H1 semi-norm | · |1,D on V kD as

|vD |1,D =
√ ∑
K∈M
|vK |

2
1,K . (4.5)

Note that | · |1,D is not a norm on V kD, but any vD ∈ V
k
D satisfying |vD |1,D = 0 is a constant discrete

element: there exists c ∈ R such that vD = c1D. In particular, this implies that | · |1,D is a norm on
the space V kD,0 of null-mass discrete unknowns, defined as

V kD,0 =
{
vD ∈ V

k
D |

∫
Ω

vM = 0
}
.

The HHO schemes are based on a local approach, which ensures the local conservativity of
the method. Given a cell K ∈M, we introduce local operators defined on V kK , which are split
into a consistent part and a stabilisation part. We first define a local discrete gradient operator
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GkK : V kK → Pk(K)d such that, for any vK ∈ V
k
K , GkK (vK ) satisfies∫

K
GkK (vK ) · τ =

∫
K
∇vK · τ +

∑
σ∈EK

∫
σ

(vσ − vK )τ ·nK,σ ∀τ ∈ Pk(K)d . (4.6)

This operator is a discrete counterpart of the continuous gradient and is consistent. It satisfies
the following commutation property:

∀v ∈W 1,1(K), GkK ◦ I
k
K (v) =Πk

K (∇v),

where Πk
K acts component-wise. However, this operator suffers from a lack of coercivity. To

ensure stability, we need to add a stabilisation, which controls the jumps between the cell
unknown (or, to be more precise, the trace of this unknown on ∂K) and the face unknowns. To
do so, given a face σ ∈ EK , we define the jump operator JK,σ : V kK → Pk(σ ) by

JK,σ (vK ) =Πk
σ (vK )− vσ . (4.7)

One can now introduce the classical (see [83, Section 3.2.1] and [97, Sections 4.2 and 5.1]) discrete
counterpart of the local bilinear form (w,v) 7→

∫
K
Λ∇w ·∇v as the bilinear form aK : V kK ×V

k
K → R

such that

aK : (wK ,vK ) 7→
∫
K
ΛGkK (wK ) ·GkK (vK ) + ηl

∑
σ∈EK

ΛKσ

hσ

∫
σ
JK,σ (wK )JK,σ (vK ), (4.8)

where ΛKσ = ‖Λ|KnK,σ · nK,σ ‖L∞(σ ) and ηl > 0 is a stabilisation parameter (l stands for linear).
The stabilisation used here, based on the jump operators JK,σ , is the main specificity of the
mixed-order HHO method with respect to the equal-order one [100]. Note that such a strategy
used in mixed-form (formulation on the flux) is sometimes called HDG+ methods, and the
corresponding stabilisation is called Lehrenfeld-Schöberl stabilisation, as it was first introduced
in [190, 191]. Here, as in the rest of this manuscript, the HHO scheme is written on primal form.

One can now define a global bilinear form aD : V kD×V
k
D→ R, discretisation of the continuous

one (w,v) 7→
∫
Ω
Λ∇w · ∇v, by summing the local contributions:

aD(wD,vD) =
∑
K∈M

aK (wK ,vK ). (4.9)

In terms of analysis, the definition of aD implies (see for example [97, Section 5.1.6]) that the
following stability estimate holds: there exists a positive constant α[, depending only on Ω, k
and θ (the regularity of the mesh) such that

∀vD ∈ V
k
D, aD(vD,vD) ≥ λ[α[|vD |

2
1,D. (4.10)

In particular, since | · |1,D is a norm on V kD,0, this estimate implies that aD is a coercive bilinear
form on V kD,0.
In order to perform the analysis of the linear scheme, as in the continuous setting, we need a
control of the L2-norm of vM by its energy-norm. This is the purpose of the discrete Poincaré-
Wirtinger inequality: there exists a positive constant CP , depending only on Ω, k and θ such
that

∀vD ∈ V
k
D,0, ‖vM‖L2(Ω) ≤ CP |vD |1,D. (4.11)
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We refer to [97, Theorem 6.5, p = q = 2] for a demonstration of this result (in the equal-order
case).

4.2.3 Exponential fitting scheme (linear)

The first scheme introduced herein is a linear one, which follows the exponential fitting
strategy. Such an idea has, to our knowledge, initially been introduced at the numerical level
in [43] in the context of mixed finite elements. In Chapter 1, we introduce and analyse an HFV
scheme based on this strategy. In a nutshell, the exponential fitting approach hinges on the
following reformulation of the continuous flux: letting ω = e−φ, we introduce the Slotboom

variable ρ =
u
ω

. Then, at least formally, one has the following relation:

∇u +u∇φ =ω∇ρ, (4.12)

which allows one to transform an advection-diffusion equation into a purely diffusive problem.
The main goal of this procedure is to ensure the coercivity of the new problem (since, by
regularity of φ, ω is uniformly bounded away from zero). The exponential fitting scheme is
based on this formulation. We discretise the Slotboom variable as a polynomial, that is to say
we approximate ρ as a discrete unknown in V kD. Then, we reconstruct the discrete density by
mimicking the continuous relation u = ω × ρ. Thus, a solution (ρn

D
)n≥1 to the scheme (4.14)

described below corresponds to an approximation of the Slotboom variable associated to the
density u.

More precisely, for a given discrete Slotboom variable ρ
D
∈ V kD, we associate a discrete density

uD =
(
(uωK )K∈M, (u

ω
σ )σ∈E

)
defined as a collection of (non-polynomial) regular functions:

∀K ∈M, uωK =ω|KρK and ∀σ ∈ E , uωσ =ω|σρσ .

To this discrete density, we associate two piecewise continuous functions: uωM : Ω → R, the
discrete density on the cells and uωE :

⋃
K∈M∂K → R, the discrete density on the faces. These

reconstructed densities are defined as

uωM|K = uωK for all K ∈M and uωE |σ = uωσ for all σ ∈ E . (4.13)

Note that uD is not a collection of polynomials in general (as highlighted by the use of a double
underline).

Remark 19 (Non-polynomial reconstruction). Here, we choose to reconstruct the density as a non-
polynomial function, since we locally multiply the polynomial unknown ρK (or ρσ for the faces) by the
continuous (and, a priori non-polynomial) ω. One could also think of reconstructing a polynomial
unknown, by multiplying (component by component) ρ

D
by IkD(ω). Such a polynomial reconstruction

is the choice made for the HFV exponential fitting scheme of Chapter 1, in the sense that we use an
interpolation of ω to define the discrete density. But for the low-order scheme of Chapter 1, both
polynomials are constants, and therefore the reconstructed density is also constant. For the arbitrary-
order scheme presented here, we believe that a polynomial reconstruction of the density is not so
relevant. Indeed, the main issue of using IkD(ω) lies in the lack of positivity: there is no way of ensuring
that the polynomials constituting IkD(ω) are positive on their definition domain. Therefore, the use of a
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polynomial reconstruction should lead to larger positivity issues. Such issues do not exist in Chapter 1,
since the interpolation is positivity preserving.

In order to define a mixed-order HHO exponential fitting scheme, one needs to introduce
a discrete counterpart of (ρ,v) 7→

∫
Ω
ωΛ∇ρ · ∇v. To do so, given K ∈ M, leveraging the defini-

tion (4.8) of aK , we define at the local level aωK : V kK ×V
k
K → R as the bilinear form

aωK : (ρ
K
,vK ) 7→

∫
K
ωΛGkK (ρ

K
) ·GkK (vK ) + ηl

∑
σ∈EK

ΛωKσ

hσ

∫
σ
JK,σ (ρ

K
)JK,σ (vK ),

where ΛωKσ = ‖ωΛ|KnK,σ ·nK,σ ‖L∞(σ ). At the global level, as previously, we construct the bilinear
form aωD : V kD ×V

k
D→ R by summing the local contributions:

aωD : (ρ
D
,vD) 7→

∑
K∈M

aωK (ρ
K
,vK ).

We can now introduce the exponential fitting scheme for Problem (4.1): find (ρn
D

)n≥1 ∈
(
V kD

)N∗
such that, for all n ∈ N,

∫
Ω

uω,n+1
M −uω,nM

∆t
vM = −aωD(ρn+1

D
,vD) ∀vD ∈ V

k
D,

uω,n+1
M|K =ω|Kρ

n+1
K ∀K ∈M,

uω,0M|K = uin|K ∀K ∈M.

(4.14a)

(4.14b)

(4.14c)

Given a solution (ρn
D

)n≥1 to (4.14), as described above, we associate a sequence of reconstructed
densities (unD)n≥1.

One can check that, for any c ∈ R, the discrete element ρ
D

= c1D ∈ V
k
D is a stationary solution

to the exponential fitting scheme (4.14) (in Slotboom variable). Therefore, we define the discrete
Slotboom variable at equilibrium ρ∞

D
∈ V kD as

ρ∞
D

= cMω 1D, where cMω =
M∫
Ω
ω
.

It is naturally associated to the the discrete thermal equilibrium u∞D =
(
(uω,∞K )K∈M, (u

ω,∞
σ )σ∈E

)
. It

is the only stationary solution to (4.14) associated to a density of mass M.

4.2.4 Nonlinear scheme

Following the ideas from [56, 70], our nonlinear scheme relies on a nonlinear reformulation
of Problem (4.1). To do so, we introduce the logarithm potential ` = log(u) and the quasi-Fermi
potential w = ` +φ. At least formally, if u is positive, one has the following relation:

∇u +u∇φ = u∇ (log(u) +φ) = e`∇w. (4.15)

We choose to discretise the potentials as polynomials, i.e. to approximate ` and w as discrete
unknowns in V kD. Then, mimicking the relation u = e` , we reconstruct the density as the
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exponential of polynomial functions, thus ensuring its positivity. Therefore, a solution
(
`nD

)
n≥1 to

the nonlinear scheme (4.20) described below corresponds to an approximation of the logarithms
of the solution u (density).

More specifically, for a given discretisation `D ∈ V
k
D of the potential `, one associates a

discrete density

:
uD = ((uK )K∈M, (uσ )σ∈E ) ,

defined as a collection of positive smooth functions

∀K ∈M, uK = exp(`K ) and ∀σ ∈ E , uσ = exp(`σ ).

As previously, we associate to this discrete density a couple of piecewise smooth functions
uM :Ω→ R (corresponding to the cell unknowns) and uE :

⋃
K∈M∂K → R (corresponding to the

face unknowns), defined as

uM = exp(`M) and uE = exp(`E ). (4.16)

Note that a discrete density
:
uD is not a collection of polynomials (which is highlighted by the

use of the wave under u), but it enjoys positivity, both on the cells and faces, since it is defined
as the exponential of real functions.

As previously, this scheme is based on local cell contributions, split into a consistent term and
a stabilisation term. Given a cell K ∈M, we define a discretisation of (`,w,v) 7→

∫
K

e`Λ∇w · ∇v
as a sum of nonlinear consistent (4.17a) and stabilising (4.17b) contributions:

CK (`K ,wK ,vK ) =
∫
K

e`K ΛGkK (wK ) ·GkK (vK ),

SK (`K ,wK ,vK ) = ηnl
∑
σ∈EK

ΛKσ

hσ

∫
σ

eΠ
k
σ (`K ) +e`σ

2
JK,σ (wK )JK,σ (vK ),

(4.17a)

(4.17b)

where ηnl > 0 is a stabilisation parameter (nl stands for nonlinear). We can now define a local
application TK : V kK ×V

k
K ×V

k
K → R by

TK (`K ,wK ,vK ) = CK (`K ,wK ,vK ) +SK (`K ,wK ,vK ) + εhk+2
K aK (wK ,vK ), (4.18)

where ε is a non-negative parameter and aK is the bilinear form defined in (4.8)-(4.9). At the
global level, we define TD : V kD ×V

k
D ×V

k
D→ R by summing the local contributions:

TD(`D,wD,vD) =
∑
K∈M
TK (`K ,wK ,vK ). (4.19)

Remark 20 (Parameter ε). The operator TD is to be understood as a discretisation of (`,w,v) 7→∫
Ω

(e` +ε)Λ∇w · ∇v, with ε ∼ εhk+2
D a small parameter. The ε perturbation is used in order to show the

existence result of Proposition 10 and can be seen as a kind of stabilisation. The scaling factor hk+2
K in

(4.18) is used to get the expected order of convergence. Although the choice made here gives the right
order of convergence, the use of larger parameters (such as hk+1

K ) has not yet been studied. In practice,
numerical results for ε = 1 and ε = 0 are almost the same. The influence of this term will be further
investigated in future works.

We now let φ
D

= IkD(φ) ∈ V kD be the interpolate of φ. Now, using a backward Euler dis-
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cretisation in time with time step ∆t > 0, we introduce the following scheme for (4.1): find(
`nD

)
n≥1 ∈

(
V kD

)N∗
such that, for all n ≥ 0,

∫
Ω

un+1
M −unM
∆t

vM = −TD(`n+1
D , `n+1

D +φ
D
,vD) ∀vD ∈ V

k
D,

un+1
K = e`

n+1
K ∀K ∈M,

u0
K = uin |K ∀K ∈M.

(4.20a)

(4.20b)

(4.20c)

Given a solution
(
`nD

)
n≥1 to the scheme (4.20) (which are approximations of the logarithm of

the density at times tn = n∆t), as discussed above, we associate a sequence of positive discrete
densities

(
:
unD

)
n≥1

.

Remark 21 (Initial condition). Note that the scheme (4.20) does not rely on discrete initial data, as
described in (4.20c). This strategy allows one not to define `0

D (as the interpolate of `in = log(uin)),
which is not possible in regions where uin vanishes.
The question of defining an initial discrete datum is a major difficulty when it comes to the numerical
implementation and the initialisation of the Newton method (see Section 4.4.1).

We define the discrete thermal equilibrium as
:
u∞D =

(
(u∞K )K∈M, (u∞σ )σ∈E

)
where

∀K ∈M, u∞K = cMnl e−φK and ∀σ ∈ E , u∞σ = cMnl e−φσ ,

with cMnl =M/
∫
Ω

e−φM . One can show that
:
u∞D (and the associated logarithm potential at equilib-

rium `∞D = log(cMnl )1D −φD ∈ V
k
D) is the only stationary solution to (4.20) with mass M.

4.3 Main features of the schemes

In this section, we present some theoretical results about the two schemes introduced above.
We especially focus on the existence (and stability) of solutions, as well as on questions related
to the long-time behaviour. The results presented below are generalisations of the analysis for
low-order schemes presented in Chapter 1. In particular, the analysis strongly relies on the
entropy structure of both schemes.

Remark 22 (Low-order versions of the schemes (k = 0)). Note that the low-order versions of the
two schemes introduced above do not coincide with the exponential fitting and nonlinear HFV schemes
of Chapter 1. Indeed, even if the equal-order HHO method (face and cell unknowns of the same degree
k) for k = 0 is essentially equivalent to the HFV method for diffusion problems [100], such a result
does not hold for the mixed-order HHO method. In fact, the low-order versions of the schemes (4.14)
and (4.20) have enriched cell unknowns, which are affine functions (and not constant). Therefore, the
results presented here are new, even for k = 0.

Before presenting individual results for each scheme, it should be noted that both schemes
exhibits a similar important property: the preservation of the thermal equilibrium. Indeed,
both scheme admit an unique stationary solution with mass M, namely ρ∞

D
= cMω 1D and `∞D =

log(cMnl )1D −φD, which are associated to the following discrete cell densities:

uω,∞M =
M∫
Ω

e−φ
e−φ and u∞M =

M∫
Ω

e−φM
e−φM .
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One can notice that uω,∞M coincides with the continuous thermal equilibrium u∞. This is a
consequence of the choice of a non-polynomial reconstruction of the density in the exponential
fitting scheme (see Remark 19). For the nonlinear scheme, we do not preserve the exact thermal
equilibrium, since the discrete densities for this scheme are defined as exponentials of polynomial
functions (so, contrarily to the scheme of Chapter 1, the discrete equilibrium is not IkD(u∞).
However, the discrete thermal equilibrium u∞M is a reasonable discretisation of u∞, in the sense
that the logarithm potential of the discrete thermal equilibrium and the interpolate of the
continuous equilibrium logarithm potential are equal up to an additive constant:

∀K ∈M, log(u∞K )−Πk+1
K (log(u∞)) = log

(∫
Ω

e−φ
)
− log

(∫
Ω

e−φM
)
.

In fact, at the continuous level, the thermodynamic consistency is sometimes expressed as
follows: if the advection-diffusion flux J = ∇u + u∇φ vanishes on Ω, then the quasi-Fermi
potential log(u) +φ is constant in Ω. Both schemes satisfy discrete counterparts of this principle:
for the exponential fitting scheme, log(uωM) +φ and log(uωE ) +φ|∂M are constant; while for the for
the nonlinear scheme, `D +φ

D
is a constant discrete element (i.e. proportional to 1D).

4.3.1 Exponential fitting scheme

We present here the main properties of the exponential fitting scheme (4.14), and give
detailed proofs of the results.

As a preliminary remark, note that since φ is C1 on Ω, there exist positive constants ω[ and
ω] such that

∀x ∈Ω, ω[ ≤ω(x) ≤ω].

As a consequence, the diffusion tensor ωΛ is uniformly elliptic. This implies a stability estimate
on the bilinear form aωD on V kD: there exists a positive constant αω[ = ω[λ[α[ (which therefore
depends only on Ω, k φ, Λ and the regularity of the mesh θ) such that

∀vD ∈ V
k
D, a

ω
D(vD,vD) ≥ αω[ |vD |

2
1,D. (4.21)

We first state an existence result, which is mainly a consequence of the previous stability
estimate.

Proposition 13 (Well-posedness of the exponential fitting scheme). The exponential fitting
scheme (4.14) admits an unique solution (ρn

D
)n≥1. Moreover, the corresponding discrete densities

(unD)n≥1 have a mass equal to M:

∀n ≥ 1,
∫
Ω

uω,nM =
∫
Ω

uin =M. (4.22)

Proof. Let n ≥ 0, and assume that uω,nM is defined. We want to show that equation (4.14b) admits
a unique solution. To do so, we first define, for any ρ

D
∈ V kD,

‖ρ
D
‖ω,∆t,D =

√
∆t|ρ

D
|21,D +

∫
Ω

ωρ2
M.

Since | · |1,D is a semi-norm on V kD, it follows that ‖.‖ω,∆t,D is an Euclidean norm on V kD. Thus,
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by (4.21), the bilinear form A : (ρ
D
,vD) 7→

∫
Ω
ωρMvM + ∆taωD(ρ

D
,vD) satisfies the following

coercivity estimate:
∀ρ
D
∈ V kD, A(ρ

D
,ρ
D

) ≥min(1,αω[ )‖ρ
D
‖2ω,∆t,D.

Therefore, by Lax-Milgram theorem, equation (4.14b) admits an unique solution ρn+1
D

in V kD.
To get the mass preservation identity (4.22), we test (4.14a) by 1D to get∫

Ω

uω,n+1
M −uω,nM

∆t
= 0.

We conclude by noticing that
∫
Ω
uω,0M =

∫
Ω
uin according to (4.14c).

We now state our main result about the exponential fitting scheme, which ensures that the
solution to (4.14) has similar long-time behaviour as the continuous solution. As usual with the
entropy method, the main idea is to get a control of the entropy by its dissipation. Here, such an
estimate is a consequence of the discrete Poincaré inequality (4.11).

Proposition 14 (Long-time behaviour of the exponential fitting scheme). Assume that uin ∈ L2(Ω),
and let (ρn

D
)n≥1 be the solution to the exponential fitting scheme (4.14). Then, the following discrete

entropy relation holds:

∀n ∈ N, En+1
ω −Enω
∆t

≤ −Dn+1
ω , (4.23)

where the discrete quadratic entropy is defined as

Enω =
1
2

∫
Ω

ω|ρnM − ρ
∞
M|

2 with ρ0
M =

uin

ω
∈ L2(Ω)

and the discrete dissipation is defined by

Dnω = aωD(ρn
D
− ρ∞
D
,ρn
D
− ρ∞
D

) ∀n ≥ 1.

As a consequence, the discrete density converges exponentially fast in time towards the corresponding
discrete density at equilibrium: there exist positive constants Cω and νω only depending on the data
and on the mesh regularity parameter θ such that

∀n ∈ N,‖uω,nM −uω,∞M ‖L2(Ω) ≤ Cω (1 + νω∆t)
− n2 ‖uin −uω,∞M ‖L2(Ω). (4.24)

Proof. Let n ∈ N. By convexity of x 7→ x2 on R, one has

En+1
ω −Enω =

1
2

∫
Ω

ω
(
|ρn+1
M − ρ∞M|

2 − |ρnM − ρ
∞
M|

2
)
≤

∫
Ω

ω
(
ρn+1
M − ρnM

)(
ρn+1
M − ρ∞M

)
.

Therefore, testing (4.14a) against ρn+1
D
− ρ∞
D
∈ V kD, we get

En+1
ω −Enω
∆t

≤ −aωD(ρn+1
D
,ρn+1
D
− ρ∞
D

).

Note that this estimate holds true also for n = 0 (using the definition of ρ0
M). On the other hand,
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by definition of ρ∞
D

(proportional to 1D) alongside with the bilinearity of aωD, one has

aωD(ρ∞
D
,ρn+1
D
− ρ∞
D

) = 0 and aωD(ρn+1
D
,ρn+1
D
− ρ∞
D

) = Dn+1
ω ,

which yields the entropy relation (4.23). To get the exponential decay, one needs to compare
Dn+1
ω with En+1

ω . To do so, we let vD = ρn+1
D
− ρ∞
D
∈ V kD, and we define the probability measure

µ = ω
Mω

dx on Ω, where Mω =
∫
Ω
ω. We define µvM as the mass of vM for the measure µ, i.e.

µvM =
∫
Ω

vMdµ.

The mass preservation identity (4.22) implies that

µvM =
∫
Ω

vMdµ =
1
Mω

∫
Ω

ωvM =
1
Mω

∫
Ω

(
uω,n+1
M −uω,∞M

)
=
M −M
Mω

= 0.

Therefore, letting v = 1
|Ω|

∫
Ω
vM, we apply [51, Lemma 5.2, q = 2 and µ as defined above] to get∫

Ω

ω
Mω

v2
M =

∫
Ω

(vM −µvM)2 dµ ≤ 4
∫
Ω

(vM − v)2 dµ.

Using the upper bound on ω and the definition of µ, we infer that∫
Ω

ωv2
M ≤ 4ω]

∫
Ω

(vM − v̄)2 = 4ω]‖vM − v̄‖2L2(Ω).

By definition of v̄, one has vD− v̄1D ∈ V
k
D,0 so we can apply the discrete Poincaré inequality (4.11)

to infer that
‖vM − v̄‖2L2(Ω) ≤ C

2
P |vD − v̄1D |

2
1,D = C2

P |vD |
2
1,D.

Combining the two previous estimates, we get

En+1
ω ≤ 2ω]C

2
P |vD |

2
1,D.

Now, one can use the stability estimate (4.21) on aωD to deduce that

Dn+1
ω = aωD(vD,vD) ≥ αω[ |vD |

2
1,D.

Therefore, by the last two estimates, one has the following relation between the entropy and its
dissipation:

En+1
ω ≤

2ω]C
2
P

αω[
Dn+1
ω .

Plugging this estimate into the entropy relation (4.23), we deduce that

(1 + νω∆t)En+1
ω ≤ Enω, with νω =

αω[
2ω]C

2
P

.

This implies the exponential decay of the entropy:

∀n ≥ 0, Enω ≤ (1 + νω∆t)
−nE0

ω.
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To conclude, we just use the bounds on ω to infer that

ω[‖u
ω,n
M −uω,∞M ‖2L2(Ω) ≤ 2Enω ≤ω]‖u

ω,n
M −uω,∞M ‖2L2(Ω)

which yields (4.24) with Cω =
√
ω]
ω[

.

Remark 23 (Regularity of the initial datum and topology of the convergence). Notice that in
Proposition 14 we made the extra assumption that uin ∈ L2(Ω). Indeed, the long-time analysis of the
exponential fitting scheme relies on the decay of the quadratic entropy (on the Slotboom variable)

Eω(t) =
1
2

∫
Ω

ω|ρ(t)− ρ∞|2.

Therefore, even at the continuous level, one needs to have a finite initial quadratic entropy to perform
the analysis, and assuming that the initial datum is in L2(Ω) is a safe choice. At the end, the exponential
fitting scheme gives a convergence (in time) result in the L2 topology, as a reminiscence of its linearity.
On the other hand, the nonlinear scheme will yield convergence in a weaker norm (typically L1), but
can be used to deal with less regular initial data, which are in L log(L) only.

4.3.2 Nonlinear scheme

We present here some results regarding the analysis of the nonlinear scheme (4.20). Since
we deal with a nonlinear scheme, unlike the exponential fitting scheme, the question of the
existence of solutions is the main difficulty here. As often for this type of scheme, we start by
establishing some a priori estimates, and then give an existence result.
For the purpose of analysis, given `D ∈ V

k
D a discrete logarithm potential, we associate a discrete

quasi-Fermi potential defined as

wD = `D +φ
D
− log(cMnl )1D.

By definition of cMnl , one has wM = log
(
uM
u∞M

)
. Note that, on the other hand, for any (`D,vD) ∈

V kD ×V
k
D, we have

TD(`D, `D +φ
D
,vD) = TD(`D,wD,vD),

since `D + φ
D

and wD only differ from an additive constant element . As in Chapter 2, the
discrete quasi-Fermi potentials are the key variables in order to perform the existence analysis
of the scheme.
As a last remark before analysing the scheme, note that by stability of the interpolator (see [97,
Proposition 2.2]), there exists φ] > 0 depending only on φ, Ω, k and θ such that

|φ
D
|1,D ≤ φ]. (4.25)

We now state our fundamental a priori results. As for the exponential fitting scheme, the
discrete entropy structure of the nonlinear scheme is mainly a consequence of the convexity of
the entropy.

Proposition 15 (Fundamental a priori relations). Let
(
`nD

)
n≥1 be a solution to the nonlinear

scheme (4.20), and
(
:
unD

)
n≥1

be the associated reconstructed discrete density. Then, the following
a priori results hold:
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(i) the mass is preserved along time:

∀n ∈ N∗,
∫
Ω

unM =
∫
Ω

uin =M, (4.26)

(ii) a discrete entropy/dissipation relation holds true:

∀n ∈ N, E
n+1 −En

∆t
≤ −Dn+1, (4.27)

where the discrete entropy and dissipation are non-negative quantities defined by

En =
∫
Ω

u∞MΦ1

(
unM
u∞M

)
≥ 0 and Dn = TD(`nD,w

n
D,w

n
D) ≥ 0 for n ≥ 1

with Φ1 : s 7→ s log(s)− s+ 1 (and Φ1(0) = 1).

Proof. Let n ≥ 0. Using 1D as a test function in (4.20a), we get that the mass is preserved:∫
Ω

un+1
M =

∫
Ω

unM.

Therefore, by (4.20c), we get the identity (4.26).
To get the entropy relation, we use the convexity of Φ1 and notice that

En+1 −En ≤
∫
Ω

u∞MΦ
′
1

un+1
M
u∞M

 un+1
M −unM
u∞M

.

Then, since wn+1
M = log

(
un+1
M
u∞M

)
and Φ ′1 = log, one has

En+1 −En ≤
∫
Ω

wn+1
M

(
un+1
M −unM

)
. (4.28)

On the other hand, testing (4.20a) withwn+1
D ∈ V kD, we get by definition of the discrete dissipation∫

Ω

wn+1
M

(
un+1
M −unM

)
= −∆tTD(`n+1

D , `n+1
D +φ

D
,wn+1
D ) = −∆tTD(`n+1

D ,wn+1
D ,wn+1

D ),

which finally yields (4.27).

Note that the previous results hold for any ε ≥ 0. Following the ideas of [56, 70], the
entropy/dissipation relation should allow one to show the exponential convergence of the
discrete solutions towards the discrete thermal equilibrium and to get convergence results (when
(hD,∆t)→ (0,0)). These aspects will be the topics of future works.

In the remainder of this section, we focus on the existence of solutions and on the long-time
behaviour, for ε > 0. The two results stated rely on a discrete a priori estimate, which is a
high-order counterpart of Lemma 2.
In order to perform the analysis, we first introduce an inner product 〈·, ·〉 on V kD such that

∀(wD,vD) ∈ V kD ×V
k
D,

〈
wD,vD

〉
=

∫
Ω

wMvM +
∑
σ∈E

∫
σ
wσvσ .
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We denote by ‖ · ‖ the corresponding Euclidean norm:

∀vD ∈ V
k
D, ‖vD‖ =

√ ∑
K∈M
‖vK‖2L2(K) +

∑
σ∈E
‖vσ ‖2L2(σ ).

We now state the fundamental discrete a priori result. Note that the proof proposed here
adapts easily to non-Boltzmann statistics, since we do not use the morphism properties of the
exponential function (but only the fact that it is non-decreasing).

Lemma 9 (Discrete boundedness by mass and energy semi-norm). Let `D ∈ V
k
D and assume that

there exist C] > 0 and M] ≥M[ > 0 such that

M[ ≤
∫
Ω

e`M ≤M] and |`D |
2
1,D ≤ C]. (4.29)

Then, there exists a positive constant C depending only on M[, M], C], k, Ω and D such that

‖`D‖ ≤ C.

Proof. In order to prove this lemma, we need two preliminary results.
First, we recall that in a finite-dimensional vector space, all the norms are equivalent. There-

fore, there exist some positive constants c∞ and c2 (depending only on D and k) such that

∀K ∈M,∀v ∈ Pk+1(K),


‖v‖L∞(K) ≤ c∞‖v‖L2(K),
‖v‖L2(K) ≤ c2‖v‖L∞(K),
‖v‖L2(σ ) ≤ c2‖v‖L∞(σ ) ∀σ ∈ EK ,
‖v‖L∞(σ ) ≤ c∞‖v‖L2(σ ) ∀σ ∈ EK ,
‖∇v‖L∞(K) ≤ c∞‖∇v‖L2(K),

and

∀σ ∈ E ,∀v ∈ Pk(σ ),
{
‖v‖L∞(σ ) ≤ c∞‖v‖L2(σ ),
‖v‖L2(σ ) ≤ c2‖v‖L∞(σ ).

Note that these inequalities essentially correspond to reverse Lebesgue and discrete trace in-
equalities, for which the precise dependency of the constant with respect to the considered cell
is known [97, Section 1.2].

Second, let K ∈M. By the mean value theorem (see [118, Remark 2.12]), one shows that there
exists some positive constant cK depending on K (essentially its size and shape) such that

| inf
K
`K − sup

K
`K | ≤ cK‖∇`K‖L∞(K) ≤ cKc∞‖∇`K‖L2(K) ≤ cKc∞

√
C].

Therefore, defining the maximal oscillation over the cells as

oD = c∞
√
C]max

K∈M
cK ,

we get that
∀K ∈M, | inf

K
`K − sup

K
`K | ≤ oD. (4.30)

We now proceed in three steps. First, we get an L∞-control over one of the cell unknowns.
Then, we propagate this bound to the neighbouring unknowns. Last, we use the connectivity of
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the mesh to get an estimate on ‖`D‖.
Since M[ ≤

∫
Ω

e`M =
∑
K∈M

∫
K

e`K ≤M], there exists a cell K0 ∈M such that

|K0|M[

|Ω|
≤

∫
K0

e`K0 ≤M].

Let `[ = inf
K0
`K0

and `] = sup
K0

`K0
be the extremal values of `K0

on K0. According to (4.30), one has

`] − oD ≤ `[.

Thus, integrating this inequality we deduce that∫
K0

e`]−oD ≤
∫
K0

e`K0 ≤M] so `] ≤ log
(
M]

|K0|

)
+ oD.

For the other bound, one has

|K0|M[

|Ω|
≤

∫
K0

e`K0 ≤
∫
K0

e`[+oD so `[ ≥ log
(M[

|Ω|

)
− oD.

Letting CK0
= max

(
log

(
M]

|K0 |

)
+ oD, oD − log

(
M[
|Ω|

))
, we get an uniform control of the cell unknown

`K0
:

‖`K0
‖L∞(K0) ≤ CK0

.

Now, we can estimate the neighbouring face unknowns. Let σ ∈ EK0
be a fixed face. The

bound on |`D |
2
1,D implies that ‖`K0

− `σ ‖2L2(σ ) ≤ hσC]. Since `K0
is polynomial, one has

‖`σ ‖L2(σ ) ≤ ‖`K0
‖L2(σ ) +

√
hσC] ≤ c2‖`K0

‖L∞(σ ) +
√
hσC] ≤ c2CK0

+
√
hσC].

Therefore, letting Cσ = c∞
(
c2CK0

+
√
hDC]

)
we get an uniform control of the face unknown:

‖`σ ‖L∞(σ ) ≤ Cσ .

On the other hand, let L ∈M be a cell such that σ ∈ EL. As previously, one has ‖`L − `σ ‖2L2(σ ) ≤
hσC] ≤ hDC], therefore

‖`L‖L∞(σ ) ≤ c∞‖`L‖L2(σ ) ≤ c∞
(
‖`σ ‖L2(σ ) +

√
hDC]

)
≤ c∞

(
c2‖`σ ‖L∞(σ ) +

√
hDC]

)
.

Thus, assuming that ‖`σ ‖L∞(σ ) is controlled, one gets an uniform estimate on the trace of `L on σ .
But, using the control of the oscillations (4.30), we deduce that

‖`L‖L∞(L) ≤ ‖`L‖L∞(σ ) + oD.

All in all, we can get an uniform estimate on any cell or face unknown. Because of the
connectivity of the mesh, for any cell K (respectively, face σ ) there is a finite sequence of
components of `D, denoted (`k)k=0,...,m, starting at `0 = `K0

and finishing at `m = `K (respectively,
`m = `σ ) so that `K (resp. `σ ) can be connected to `K0

. Given i, we denote by Ci the L∞-norm
of `i (either on a face or on a cell, depending on the nature of `i). According to the previous
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estimates, if i is even (and corresponds to a cell unknown), one has

Ci+1 ≤ c∞
(
c2Ci +

√
hDC]

)
,

and else, if i is odd (and corresponds to a face unknown), we have

Ci+1 ≤ c∞
(
c2Ci +

√
hDC]

)
+ oD.

At the end, one can deduce that for any 0 ≤ i ≤m− 1,

Ci+1 ≤ oD + c∞
√
hDC] + c∞c2Ci .

Using a comparison with an arithmetico-geometric sequence, we infer that

Cm ≤ (c∞c2)m |C0 −γ |+ |γ | with γ =
oD + c∞

√
hDC]

1− c∞c2
. (4.31)

Therefore, Cm depends only on CK0
, oD, hD, c2, c∞, C] and m. Iterating this process for each

unknown, since there is a finite number of cells and faces (at most |M|+ |E|), we deduce that
there exists a positive constant C depending on CK0

, oD, hD, c2, c∞, C] and |M|+ |E| such that

∀K ∈M, ‖`K‖L∞(K) ≤ C and ∀σ ∈ E , ‖`σ ‖L∞(σ ) ≤ C.

To conclude and get a bound on ‖`D‖, we just use the fact that the local (cell and face) L2-norms
are dominated by the local L∞-norms.

Remark 24 (Non-uniform bound). Note that the estimate obtained in Lemma 9 involves quantities
which strongly depend on the mesh, such as the meshsize hD or the number of cells and faces. Therefore,
this estimation is not uniform with respect to the mesh.

We now state an existence result, which holds only for positive ε. The proof strongly relies
on the methodology developed in Chapter 1 in order to show the existence result of Theorem 1
for the nonlinear HFV scheme.

Theorem 10 (Existence of solutions to the nonlinear scheme (4.20)). Assume that the stabilisation
parameter ε in (4.18) is positive. Then, there exists at least one solution

(
`nD

)
n≥1 to the scheme (4.20).

The associated densities
(
:
unD

)
n≥1

are positive.

Proof. The proof proceeds by induction. Let n ∈ N, and assume that unM is well defined, following
the definition (4.20b) (if n ≥ 1) or (4.20c) (if n = 0). We now prove the existence of a solution
`n+1
D ∈ V kD to (4.20a). In order to simplify the computations, instead of looking for the logarithmic

potential, we will seek for the discrete quasi-Fermi potential wn+1
D = `n+1

D +φ
D
− log(cMnl )1D.

To do so, we first notice that, given any wD ∈ V
k
D (in the following, we denote by `D =

wD −φD + log(cMnl )1D the discrete logarithm potential and by
:
uD the associated density), the

application

vD 7→
∫
Ω

uM −unM
∆t

vM + TD(`D,wD,vD)

is a continuous linear form on V kD. Therefore, by Riesz representation theorem, there exists a
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unique GD(wD) ∈ V kD such that

∀vD ∈ V
k
D,

〈
GD(wD),vD

〉
=

∫
Ω

uM −unM
∆t

vM + TD(`D,wD,vD).

On the other hand, since V kD is a finite-dimensional vector space, one can show thatwD 7→ GD(wD)
is a continuous mapping on V kD. Notice that, for any discrete quasi-Fermi potential wD ∈ V

k
D

satisfying GD(wD) = 0D, the corresponding discrete logarithm potential `D = wD−φD+log(cMnl )1D
is a solution to (4.20a). Thus, our goal from now on is to prove that GD vanishes on V kD.

We introduce a regularisation of GD: given any µ > 0, we define an application GµD as

GµD : wD 7→ GD(wD) +µwD.

By definition of GD, one has〈
GµD(wD),wD

〉
=

〈
GD(wD),wD

〉
+µ‖wD‖

2

=
∫
Ω

uM −unM
∆t

wM + TD(`D,wD,wD) +µ‖wD‖
2.

As it was already shown in the proof of Proposition 15 (equation (4.28)), by convexity of Φ1 one
has ∫

Ω

uM −unM
∆t

wM ≥
E(wD)−En

∆t
,

where the relative entropies are defined by

E(wD) =
∫
Ω

u∞MΦ1

(
uM
u∞M

)
and En =

∫
Ω

u∞MΦ1

(
unM
u∞M

)
.

As already mentioned, since Φ1 is a non-negative function, these two quantities are non-negative.
Moreover, since unM is piecewise C∞ if n ≥ 1 and

∫
Ω
u0
M log(u0

M) =
∫
Ω
uin log(uin) <∞, one has

En < ∞. Note that it may occur that En = 0 (which is equivalent to unM = u∞M), in which case
`D = `∞D is the unique solution to (4.20a) by mass preservation and entropy relation (4.27). In
the following, we therefore assume that En > 0. The previous identities and the non-negativity
of the dissipation and entropy imply that〈

GµD(wD),wD
〉
≥

E(wD)−En

∆t
+ TD(`D,wD,wD) +µ‖wD‖

2

≥ µ‖wD‖
2 − En

∆t
.

(4.32)

Thus, for any wD ∈ V
k
D such that ‖wD‖ ≥

√
En
µ∆t , one has

〈
GµD(wD),wD

〉
≥ 0. Therefore, according

to Lemma 1 (see also [119, Section 9.1]), there exists a least one w
µ
D ∈ V

k
D such that

GµD(w
µ
D) = 0D and ‖wµD‖ ≤

√
En
µ∆t

. (4.33)
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Now, using (4.32) with w
µ
D, we get

E(w
µ
D)

∆t
+ TD(`

µ
D,w

µ
D,w

µ
D) +µ‖wµD‖

2 ≤ En

∆t
,

so TD(`
µ
D,w

µ
D,w

µ
D) ≤ En

∆t . Therefore, recalling the definition (4.18)-(4.19) of TD, alongside with
the fact that ε > 0 and the global stability result (4.10) for aD, we then infer that

εα[λ[h
k+2
[ |w

µ
D |

2
1,D ≤

En

∆t
with h[ = min

K∈M
hK .

On the one hand, by definition of the discrete logarithm potential `
µ
D associated to w

µ
D and the

estimate (4.25) on |φ
D
|1,D, it holds

|`µD |1,D = |wµD −φD + log(cMnl )1D |1,D ≤
√

En

εα[λ[h
k+2
[ ∆t

+φ]. (4.34)

On the other hand, by definition of GµD, one first infers

0 =
〈
GµD(w

µ
D),1D

〉
=

∫
Ω

u
µ
M −u

n
M

∆t
+ TD(`

µ
D,w

µ
D,1D) +µ

〈
w
µ
D,1D

〉
=

∫
Ω

u
µ
M −u

n
M

∆t
+µ

〈
w
µ
D,1D

〉
.

Second, recalling the estimate (4.33) on w
µ
D and using the Cauchy–Schwarz inequality, one gets∣∣∣∣∣∫

Ω

(
u
µ
M −u

n
M

)∣∣∣∣∣ ≤ µ∆t‖wµD‖‖1D‖ ≤ √µ√∆tEn‖1D‖.
Thus, letting Mn =

∫
Ω
unM > 0 and µn = (Mn)2

4∆tEn‖1D‖
> 0, for all 0 < µ < µn one has

Mn

2
≤

∫
Ω

e`
µ
M ≤ 3Mn

2
. (4.35)

Therefore, by estimates (4.34) and (4.35), one can apply Lemma 9 to `
µ
D with M[ = Mn

2 , M] = 3Mn

2

and C] =

√ En
εα[λ[h

k+2
[ ∆t

+φ]

2

(note that these three constants do not depend on µ): there exists

a constant C > 0 which does not depend on µ such that

∀µ ∈]0,µn[ , ‖`µD‖ ≤ C.

Then, by compactness, there exists `n+1
D ∈ V kD such that, up to extraction, `

µ
D→ `n+1

D when µ→ 0.
On the other hand, GµD tends to GD as µ tends to 0. Therefore, lettingwn+1

D = `n+1
D +φ

D
−log(cMnl )1D,

we have 0D = GµD(w
µ
D)→GD(wn+1

D ) as µ→ 0, which implies that

GD(wn+1
D ) = 0D.
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It follows that `n+1
D is a solution to (4.20a).

Remark 25 (Uniqueness of the solution). As for the nonlinear HFV scheme of Chapter 1, the
existence result only asserts that solutions exist. However, the question of uniqueness is still open
currently. A possible approach to show such a result could be to consider the relative entropy of a
solution with respect to another solution, and show that this quantity vanishes.

Last, we state a result which indicates that the nonlinear scheme has a good long-time be-
haviour, in the sense that the solution converges in time towards the discrete thermal equilibrium.
Note that this result is relatively weaker compared to the one of Proposition 14, since it does not
give any indication about the speed of convergence.

Proposition 16 (Long-time behaviour of the nonlinear scheme). Assume that the stabilisation
parameter ε in (4.18) is positive, and let

(
`nD

)
n≥1 be a solution to the scheme (4.20). Then, the solution

converges towards the discrete logarithm potential at equilibrium as time tends to +∞:

`nD −−−−−→n→∞
`∞D in V kD. (4.36)

Consequently, the corresponding discrete density (unM)n≥1 converges to u∞M in L∞(Ω).

Proof. First, note that by the entropy relation (4.27), one has∑
n≥1

Dn ≤
∑
n≥1

En−1 −En

∆t
≤ E0

∆t
.

Thus, according to the definition of the discrete dissipation Dn, alongside with the defini-
tion (4.19) of TD, the fact that ε > 0 and the global stability result (4.10) on aD, we infer that∑

n≥1

|wnD |
2
1,D ≤

E0

εhk+2
[ α[λ[∆t

,

where h[ = minK∈M hK > 0. This implies in particular that

∀n ≥ 1, |wnD |
2
1,D ≤

E0

εhk+2
[ α[λ[∆t

and |wnD |1,D −−−−−→n→∞
0. (4.37)

Let n ≥ 1. By definition of `nD and the bound on φ
D

, one has |`nD |1,D ≤ φ] +
√

E0

εhk+2
[ α[λ[∆t

. On the

other hand, by the mass preservation identity (4.26), we have
∫
Ω

e`
n
M =M > 0. Therefore, one can

apply Lemma 9 to `nD: there exists a positive constant C (which depends on ε, D, k, ∆t and M,
but not on n) such that

∀n ≥ 1, ‖`nD‖ ≤ C.

Therefore, by compactness, there exists `D ∈ V
k
D such that, up to extraction,

lim
n→∞

`nD = `D in V kD.

On the other hand, by continuity of | · |1,D on V kD, by definition of wnD and (4.37), we have

|`D +φ
D
|1,D = 0.
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This means that there exists a ∈ R such that `D+φ
D

= a1D. Moreover, thanks to mass preservation,
it holds

M =
∫
Ω

e`
n
M −−−−−→

n→∞

∫
Ω

e`M so that
∫
Ω

e`M =M.

Hence, one has a = log(cMnl ), which implies that `D = log(cMnl )1D −φD = `∞D . By uniqueness of
the limit, we get the convergence of the whole sequence

(
`nD

)
n≥1 towards `∞D . This implies in

particular that `nM −−−−−→n→∞
`∞M in L∞(Ω) by norm equivalence in finite-dimensional vector spaces.

Then, by the mean value theorem we deduce that

‖unM −u
∞
M‖L∞(Ω) = ‖e`

n
M −e`

∞
M ‖L∞(Ω) ≤ emax(‖`nM‖L∞(Ω),‖`∞M‖L∞(Ω)) ‖`nM − `

∞
M‖L∞(Ω),

which implies the convergence of the densities.

Remark 26 (Estimation of the rate of convergence). The previous result states a convergence of the
potential towards the corresponding equilibrium potential. It follows that unM −−−−−→n→∞

u∞M in L∞(Ω).

This result is relatively weaker than other long-time behaviour results presented in this manuscript.
Indeed, there is no indication on the speed of convergence, even on a fixed mesh. However, note
that the numerical results of Section 4.4.4 indicate that the convergence is as expected exponentially
fast, and that the rate of convergence is similar to the continuous one. In order to state exponential
convergence towards the equilibrium, one has to establish that the discrete dissipation controls the
discrete entropy. Such an estimate (with a dependence on the meshsize) can be obtained for Dirichlet
boundary conditions, using the same trick (comparison of the Boltzmann entropy with the H1-norm of
the quasi-Fermi potential, see (2.58)) as in Chapter 2. In order to get a uniform rate of convergence
(with respect to the meshsize), one has to use further a discrete Logarithmic-Sobolev inequality. This
strategy, already advocated for the low-order schemes of Chapter 1, is the subject of an ongoing work.

4.4 Numerical results

In this section, we assert the properties of the schemes on some test-cases. We also aim at
investigating the relevance of using (nonlinear) high-order schemes in terms of computational
efficiency (accuracy for a given computational cost). The tests considered below are all set in the
domain Ω =]0,1[2, and are the same tests as in Chapter 1, to which we refer for more detailed
descriptions.
Given a (face) degree k, the exponential fitting scheme (4.14) will be referred to as expf_k, the
nonlinear scheme (4.20) as nlhho_k, whereas the HFV scheme of Chapter 1 will be denoted
nlhfv. Note that nlhho_0 hinges on affine cell unknowns, whereas the cell unknowns for nlhfv
are constant: these two schemes hence do not coincide (see Remark 22), and nlhho_0 is expected
to be more costly.
In the sequel, we use the following stabilisation parameters: ηnl = ηl = 1. Regarding the
parameter ε we will use the value ε = 1. However, in some situations we will compare the two
values ε = 1 and ε = 0. The nonlinear scheme with ε = 0 will then be denoted nlhho_k_0 for
better readability.

The computations presented in this chapter were run on a laptop equipped with an Intel
Core i7-9850H processor clocked at 2.60GHz and 32Gb of RAM.



150 CHAPTER 4. High-order schemes for advection-diffusion

4.4.1 Implementation

Here, we discuss some implementation aspects of the schemes. For a detailed introduction to
the implementation of mixed-order HHO methods for standard linear diffusion problems (with
a different consistent part), we refer the reader to [83, Chapter 8]. A different presentation (for
equal-order methods) can be found in [97, Appendix B].

General setting

The HHO implementation here makes use of monomial basis functions for both the cell and
face unknowns. Note that such a choice is known to introduce some numerical instabilities for
large values of k. In the sequel, we will thus restrict the schemes to k ≤ 3 in order to avoid as
most as possible these instabilities. Keep in mind that the use of orthonormal basis functions
could improve the results presented below (and especially the convergence of the Newton
method used for the nonlinear scheme), and should be one of the next future improvements.
The quadrature formulas used in our implementation are based on the Dunavant rules [115],
which implies to subdivide the cells into triangles. For the tests below, we use mesh families
with cells star-shaped with respect to their barycenters, therefore the subdivisions correspond to
the pyramidal submesh introduced in the HFV context (see Chapter 1). To deal with integrals
of non-polynomial functions (for both schemes), we use quadrature formulas of order 2k + 5.
We performed a few tests (not shown here) with higher-order formulas and did not observe
significant changes. Last but not least, the local computations are performed sequentially. One
could expect a significant gain in terms of computational time parallelising these latter.

Exponential fitting scheme

For the linear exponential fitting scheme, the implementation follows the classical HHO
strategy for linear diffusion problems. We directly solve for the discrete Slotboom variables
(ρn
D

)n≥1. As standard for skeletal methods, we do not solve the full linear system but perform
static condensation, which allows one to locally eliminate the cell unknowns (see [97, Appendix
B.3.2]). Since the scheme relies on the same LHS matrix at each time step, we perform once and
for all an LU decomposition of the matrix at the beginning of the computation. At each time step,
the resolution is then inexpensive (the RHS has to be updated, but only through a matrix-vector
product).

The implementation detailed here is relatively naive. In particular, we do not address the
main questions which were highlighted in Chapter 1 about the (harmonic) averaging of ω
(which is linked to the question of the quadrature formulas for the high-order scheme) and the
preconditioning of the system (which was equivalent to choose to solve the system in the density
variable u for the HFV scheme). These questions should be addressed in future works. However,
in view of the results obtained in Chapter 1 for the HFV exponential fitting scheme, we believe
these potential improvements will have no effect on the lack of positivity of this scheme.

Nonlinear scheme

The numerical scheme (4.20) requires to solve a nonlinear system of equations at each time
step. For a given n ∈ N, one wants to find `n+1

D ∈ V kD solution to the nonlinear scheme (4.20): this
scheme can be written as the equation

Gn,∆tD (`n+1
D ) = 0D,
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where Gn,∆tD : V kD → V kD is a regular (nonlinear) vector field. To find a zero of Gn,∆tD , we use a
Newton method.

In practice, the use of a naive method without any adaptation proved not to be enough
to compute a solution in general. In order to get a robust implementation, which can handle
various data and meshes, we use a few techniques. For further use, we denote by ‖`D‖l∞ the
l∞-norm of the coefficients of `D in the polynomial bases (cells and faces) used to implement the
scheme. This ‖ · ‖l∞ is a norm on V kD which is easily (and at very low cost) computable in practice.
To fix the ideas and notation, the Newton method is defined as follows: given an initialisation
`D,0 ∈ V

k
D and a time step 0 < δt ≤ ∆t, one defines a sequence `D,i of elements of V kD such that

Jn,δt`D,i
(`D,i+1 − `D,i) = −Gn,δtD

(
`D,i

)
, (4.38)

where Gn,δtD is the vector field associated to the nonlinear scheme (4.20) with time step δt instead

of ∆t, and Jn,δt`D,i
is the differential (Jacobian in practice in the implementation) of Gn,δtD at the point

`D,i . Note that in practice, we do not solve this linear system, but perform static condensation
(see [97, Appendix B.3.2]) in order to eliminate (locally) the cell unknowns. The resulting linear
system is called "condensed system" in what follows. We discuss below the main tricks deployed
to reach robustness in the implementation of the Newton method.

Stopping criterion. In order to have information about the convergence of the Newton method,
we consider two quantities: the relative norm of the residual ri+1 and the norm of the
objective function gi defined as

ri+1 =
‖`D,i+1 − `D,i‖l∞
‖`D,i‖l∞

and gi = ‖Gn,δtD (`D,i)‖l∞ .

We consider that the Newton method has converged when either

(ri+1 ≤ 0.1× tol) or (ri+1 ≤ tol and gi ≤ tol)

with tol = 5.10−10, in which case we set `n+1
D = `D,i+1. On the other hand, if this criterion is

not met at i = 50, the method is considered as non-convergent (and we then proceed to a
time step reduction, see below). In practice for the test of this chapter, we never reached
i = 50, either because the method converged or because of a loop break, as described below.

Loop break for large `D. The computation of Gn,δtD
(
`D,i

)
and Jn,δt`D,i

implies punctual evaluations

of e`K,i and e`σ,i (for K a cell and σ a face) in the quadrature formulas. Such computations
can lead to severe numerical issues if the values at the quadrature nodes are too large.
Therefore, we declare that `D,i is too large for the computations if there exists a cell
quadrature node xK,q ∈ K or a face quadrature node xσ,q ∈ σ such that

|`K,i(xK,q)| ≥ 100 or |`σ,i(xσ,q)| ≥ 100.

In such a case, the method is immediately considered as non-convergent, and we proceed
with a time step reduction (see below). Note that the choice of the value 100 allows
one to compute densities

:
uD on a range from 10−43 to 1043, and hence should not be a

significant restriction in practice. In the numerical simulations presented in Sections 4.4.2-
4.4.4, the use of this loop-breaking procedure is absolutely necessary in order to avoid
some “explosion” of the method which leads to evaluations of too large quantities and
crash of the code. Moreover, we also add a loop break if the linear solver does not
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perform a successful resolution of the condensed linear system associated to (4.38), which
corresponds to situations where either Jn,δt`D,i

or its condensed counterpart are not invertible.

Such situations occur in practice, essentially on very coarse meshes.

Adaptive time stepping. The previous strategies can lead to resolution failures for a given time
step δt. If the Newton method does not converge, we try to compute the solution for a
smaller time step 0.5 × δt. On the other hand, if the method converges we use for the
subsequent time step the value 2× δt. The maximal time step allowed is the initial time
step, denoted by ∆t. In practice, the scheme may perform numerous time step reductions
at the beginning (early times) of the computation.

Initialisation by truncation and filtration. As for any Newton method, the question of the
initialisation is fundamental in order to get a robust implementation. It appears that, for
n ≥ 1, the natural initialisation `D,0 = `nD is satisfactory when used with the adaptative time
stepping strategy. However, for n = 0, such a choice is not possible, since `0

D does not exist
in general if uin vanishes locally or is too small (see Remark 21). A first way of tackling
this problem (in the spirit of the techniques already used for the low-order schemes of the
previous Chapters) is to define a truncated initial logarithm potential ˜̀in as

˜̀in = log
(
max(uin,10−8)

)
,

and to initialise the Newton method with a polynomial interpolation ˜̀0
D ∈ V

k
D of ˜̀in. In

fact, such a strategy induces another issue: ˜̀0
D exhibits strong oscillations in the regions

where the truncation is performed (this also holds true if uin is not continuous on Ω near
its discontinuities, as in Section 4.4.2). These oscillations usually make the method diverge,
even with extremely small time step. Therefore, we eventually initialise the method with a
“filtered” discrete unknown `0

D ∈ V
k
D with no oscillation, which corresponds to a projection

of ˜̀0
D to piecewise constants (on cells and faces):

∀K ∈M, `0
K =Π0

K ( ˜̀0
K ) =

1
|K |

∫
K

˜̀0
K and ∀σ ∈ E , `0

σ =Π0
σ ( ˜̀0

σ ) =
1
|σ |

∫
σ

˜̀0
σ .

In practice, using `D,0 = `0
D as the first initialisation (when n = 0) yields convergent Newton

methods for all tests presented below. In particular, the use of filtered initial discrete data
seems crucial for high-order schemes (k ≥ 1). For the lowest order version of the scheme
(k = 0), the use of ˜̀0

D as the first initialisation often yields convergent Newton methods (up
to time step reduction). Note that in order to define the initialisation on the faces, one has
to assume more regularity on uin than the initial hypothesis.

Of course, the chosen values for the stopping criterion and the thresholds are arbitrary and could
be modified. However, the set of values advocated here makes the scheme robust enough so as to
compute solutions for all the test-cases in this chapter.

Remark 27 (Potentials vs. densities). One of the main differences between the present scheme and the
low-order ones from Chapter (1) lies in the fact that we use the potential ` as our unknown, whereas the
density u was used in the low-order schemes. As a consequence, our stopping criterion only provides
information on `, while we are interested in the reconstructed density. Moreover, we only take into
account the coefficients of the polynomials (through the norm ‖ · ‖l∞), but such a norm does not give
much information about the effective behaviour of the unknown. A more relevant stopping criterion
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could be to consider the residual in terms of densities

‖uM,i+1 −uM,i‖L2(Ω)

‖uM,i‖L2(Ω)

(and analogous definition for the face unknowns) in order to ensure a satisfying accuracy on u. However,
the main issue of such a criterion is its evaluation cost. Thus, in this work we choose to use a purely
algebraic stopping criterion on `, whose cost is marginal. The testing of other stopping criteria will be
the subject of future investigations.

Last, recall that for the HFV schemes, we used a loop-breaking strategy: when the computed density
had non-positive values, we performed a time step reduction. Here, such a situation cannot occur since
` takes values in R, but this apparent absence of negativity on the density is in fact pernicious. Indeed,
situations where `D takes very negative values are the counterpart of a negative u for the low-order
schemes, and lead to divergent Newton methods. The main difficulty here lies in the design of a relevant
criterion in order to avoid this divergence.

4.4.2 Positivity

This first section is dedicated to assessing discrete positivity preservation. For the test
considered here, we set the advection field and the diffusion tensor to

φ(x,y) = −
(
(x − 0.4)2 + (y − 0.6)2

)
and Λ =

(
0.8 0
0 1

)
.

For the initial datum, we take
uin = 10−31B +1Ω\B,

where B is the Euclidean ball{
(x,y) ∈ R2 | (x − 0.5)2 + (y − 0.5)2 ≤ 0.22

}
.

These data ensure that the solution u is positive on R+ ×Ω. We perform the simulation on the
time interval [0,5.10−4] with ∆t = 10−5 on a refined tilted hexagonal-dominant mesh (4192 cells
and 12512 edges). The computed discrete densities are denoted by (

:
unD)1≤n≤Nf and (uω,nD )1≤n≤50.

Note that the situation Nf > 50 may occur if the nonlinear scheme has to perform time step
adaptation. In this section, we also compare our results with the linear HMM scheme of [19]
which was studied in Chapter 1.

In Table 4.1, we collect the minimal values reached by the discrete solutions. The values of
“mincells" are defined by

min
{

1
|K |

∫
K
unM | K ∈M,1 ≤ n ≤Nf

}
and min

{
1
|K |

∫
K
uω,nM | K ∈M,1 ≤ n ≤ 50

}
,

for, respectively, the nonlinear scheme and the exponential fitting scheme. The values of “min-
cellQN" are the minimal values taken by the densities at the cell quadrature nodes. Analogous
definitions hold for the faces. The values of “#resol” correspond to the number of linear systems
solved during the computation. Note that the size of these systems depends on the value of k,
so it is not a relevant information to compare the cost of the schemes for different values of k.
Last, the “computing time” is the total time needed to compute the discrete solution (it includes
the precomputational steps, such as the computation of the matrices representing GkK ). Recall
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scheme
computing
time (in s)

#resol mincells minfaces mincellQN minfaceQN

nlhfv 1.77e+01 175 9.93e-04 7.36e-04 9.93e-04 7.36e-04
nlhho_0 7.17e+01 224 1.00e-03 1.01-03 2.41e-06 1.01e-03
nlhho_1 4.13e+02 248 6.65e-04 2.05e-05 1.78e-04 3.57e-08
nlhho_2 1.45e+03 251 9.50e-04 5.99e-04 2.67e-07 1.06e-05
nlhho_3 3.87e+03 254 9.85e-04 8.58e-04 1.10e-05 1.79e-05

HMM 2.20e-01 50 -5.00e-03 -7.74e-02 -5.00e-03 -7.74e-02
expf_0 5.66e-01 50 1.02e-03 1.89e-03 -3.78e-01 1.89e-03
expf_1 2.23e+00 50 -1.29e-02 -2.40e-01 -4.91e-01 -3.71e-01
expf_2 6.34e+00 50 -6.14e-03 -1.02e-01 -5.08e-01 -5.35e-01
expf_3 1.53e+01 50 -3.24e-04 -1.02e-02 -5.52e-01 -4.05e-01

Table 4.1 – Positivity of discrete solutions.

that the HMM and the exponential fitting schemes are linear (with corresponding matrices
not depending on time), whence their extremely low cost compared to the nonlinear schemes.
However, when an LU decomposition is unaffordable and an iterative solver has to be used
instead, nlhho_k is “only” five times more costly than expf_k.

The results of Table 4.1 first indicate that, as expected, all nonlinear schemes preserve the
positivity of the discrete solutions. On the other hand, none of the linear schemes preserves
positivity on the whole domain Ω. In fact, except for expf_0, all linear schemes studied here do
not even preserve the average positivity on each cell, in the sense that there exists K0 ∈M and
n0 an integer such that∫

K0

uω,n0
M < 0 ( or un0

K0
< 0 for the HMM scheme).

Moreover, it is interesting to note that the positivity violation peak (which can be approximated
as |mincellQN| and |minfaceQN|) increases as k increases, while in average (values of mincells
and minfaces) the lack of positivity becomes smaller as the order increases.

At this stage, it is worth pointing out the fact that quantifying the negativity of the solution
is much more difficult for high-order schemes, since it is not possible to “count” the number of
negative values (which corresponds to the degrees of freedom for low-order schemes). While the
“mincellQN” value gives information about the minimum value reached on the whole domain, it
does not give any indication about the measure of the set {x ∈Ω | uω,nM (x) < 0} where the discrete
cell unknown takes negative values. The same remark applies to “mincells”. As an attempt to
provide an idea of the size of this set, we display in Table 4.2 the number of cells with negative
average over the whole simulation, defined as the cardinal of the set{

(K,n) ∈M× [[1;50]] |
∫
K
uω,nM < 0

}
.

These data reveal that the higher the order, the smaller the size of the negative-values set (except
for expf_0).

The previous observations seem to indicate a competition between two phenomena for the
linear methods. As k increases, the accuracy is improved, and therefore the discrete solution
becomes closer to the continuous one. Hence, in average, high-order schemes compute solutions
with smaller area of negativity. However, high values of k induce larger oscillations for the
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scheme HMM expf_0 expf_1 expf_2 expf_3
# cells with negative average 90 0 824 136 1

Table 4.2 – Number of negative cell averages

polynomial solution: the computed solution takes negative values on smaller sets but the
undershoots become bigger as k increases. At the end, it seems that there is no hope to get a
positive discrete solution on the whole domain Ω with a linear method on general meshes.

Remark 28 (An accuracy criterion taking into account positivity). The previous observations
suggest that, for applications where preserving the positivity of the solution is an essential feature, the
accuracy of the scheme should not simply be defined as an Lp distance between the discrete solution
(uM) and the exact one (u). We believe that a relevant criterion in order to take into account both
“classical accuracy” (distance between uM and u) and positivity is to look at the relative Boltzmann
entropy (or other kinds of “relative Φ-entropies” as defined in [33]) with respect to the exact solution,
that is

Err(uM) =
∫
Ω

uΦ1

(uM
u

)
, (4.39)

where Φ1(s) = s log(s)− s + 1 for s > 0, Φ1(0) = 1 and Φ(s) with large values for s < 0. The interest
of such a definition is twofold. First, the negativity of uM is penalized. Second, if uM is positive
and

∫
Ω
uM =

∫
Ω
u (which is the case in practice for problems with homogeneous Neumann boundary

conditions), by Csiszár–Kullback inequality (see for example [51, Lemma 5.6]), one has

‖uM −u‖L1(Ω) ≤
√
‖u‖L1(Ω)Err(uM).

4.4.3 Convergence, accuracy and efficiency

Here, we are interested in the convergence as (hD,∆t)→ (0,0) of the nonlinear schemes.
We consider a test-case with known exact solution. We set the advective potential and

diffusion tensor to

φ(x,y) = −x and Λ =
(
lx 0
0 1

)
for lx > 0. The exact solution is then given by

u(t,x,y) = C1 e−αt+
x
2 (2πcos(πx) + sin(πx)) + 2C1πex−

1
2 , (4.40)

where C1 > 0 and α = lx
(

1
4 +π2

)
. Note that uin vanishes on {x = 1}, but for any t > 0, u(t, ·) > 0.

Here, our experiments are performed using lx = 1 and C1 = 10−1.
To get information about the accuracy of the schemes, we compute the discrete solution on

the time interval [0,0.1], and we denote by (
:
unD)1≤n≤Nf the corresponding discrete density. Then,

we compute the relative L2
t (L2

x) error on the solution and on the gradient of the solution, defined
as √∑Nf

n=1 δt
n‖unM −u(tn, ·)‖2

L2(Ω)

‖u‖L2
t (L2

x)
and

√∑Nf
n=1 δt

n‖GM(
:
unD)−∇u(tn, ·)‖2

L2(Ω)

‖∇u‖L2
t (L2

x)

where δtn = tn − tn−1 (note that
∑

1≤n≤Nf δt
n = 0.1) and GM(

:
unD) is the discrete gradient of the
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densities. This discrete operator is defined by mimicking the continuous relation ∇u = e`∇` at
the discrete level: GM(

:
unD) is a piecewise continuous vector field satisfying, for any cell K ∈M,

GM(
:
uD)|K = e`K GkK (`K ) in K.

As already mentioned, L2-norms (in space) are computed using quadrature formulas of order
2k + 5, and we use the approximation

‖u‖L2
t (L2

x) '

√√√√ Nf∑
n=1

δtn‖u(tn, ·)‖2
L2(Ω)

for the exact solution norms (with an analogous definition for ‖∇u‖L2
t (L2

x)). Notice that, with the
chosen definitions, we do not take into account the time t = 0. To plot the error graphs, we
perform our simulations on a triangular mesh family (Di)1≤i≤5, such that hDi /hDi+1

= 2. Since the
time discretisation is of order one, on the i-th mesh of the family, we use an initial (and maximal)
time step of

∆ti =
∆t0

2i(k+2)

where ∆t0 = 0.05. The goal of this choice is to fit the time step according to the expected order of
convergence of the scheme (in space).
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Figure 4.1 – Accuracy of transient solutions. Relative errors on triangular meshes.

In Figure 4.1, we plot the errors as functions of the meshsize hD for different values of k. We
see that, as one could expect, the scheme nlhho_k converges at order k + 1 in energy-norm, and
k + 2 in L2 norm of the density.

We now study efficiency, that is to say accuracy for a given computational cost. In Figure 4.2,
we plot the errors as functions of the computing walltime. It is remarkable to see that, even with
a low-order discretisation in time, significant efficiency gains can be obtained using a large value
of k. The gain is expected to be even bigger after parallelising the local computations. Of course,
the use of higher-order time-stepping methods should also lead to significant gains, and this
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Figure 4.2 – Accuracy vs. computational cost. Relative errors on triangular meshes.

will be investigated in future works.

Remark 29 (High-order schemes in time and space). The extension of the nonlinear scheme (4.20)
to arbitrary orders in time and space is a rather natural goal in order to achieve optimal efficiency.
However, even with a discretisation of order 2 (like for example BDF2), there is currently no successful
approach retaining the discrete entropy structure. Since this structure is the cornerstone of the analysis
(including the existence of solutions), it is important to preserve it. Some numerical investigations on
nonlinear entropic TPFA schemes for diffusive problems with order two time discretisation (BDF2)
have been performed in [89, Chapter 3], and indicate that such a time discretisation could be a good
candidate, even with respect to long-time behaviour (see [89, Chapter 3.4.4]).

As a last accuracy test, we compare the nonlinear HHO scheme with the HFV scheme of
Chapter 1. For the sake of completeness, we also include the scheme nlhho_2_0 (i.e. with ε = 0
in (4.18)) in our comparison. For the nlhfv scheme, we use the same definition of the errors
as in Chapter 1. The results are presented on Figure 4.3. First, we can see that nlhho_2 and
nlhho_2_0 have the same behaviour. Tests with other values of k, not shown here, indicate
that the influence of ε (0 or 1) on the accuracy of the scheme is not noticeable. Regarding
the efficiency, the interest of using high-order schemes seems clear (in particular when one is
interested in the accuracy on the gradient). For the accuracy on the density, the trend is quite
clear and shows that for (relative) errors smaller than 10−5, the high-order schemes are more
efficient. Note that the comparison presented here between the HFV and HHO schemes is not
completely fair. Indeed, the HFV scheme has been implemented within an independent code,
where a lot of optimisations (including precomputations and static condensation with explicit
inverse matrices) are performed. Moreover, the question of the stopping criterion for the Newton
method (see Remark 27) implies that it is difficult to compare "similar" versions.

Overall, the tests presented here confirm that the nonlinear high-order schemes allow for a
consequent gain of efficiency compared with low-order schemes.
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Figure 4.3 – Accuracy: nlhfv vs. nlhho. Relative errors on triangular meshes.

4.4.4 Discrete long-time behaviour

We are now interested in the long-time behaviour of discrete solutions. We use the same test-
case as before, but with an anisotropic tensor: we set lx = 10−2. The corresponding steady-state
is

u∞(x,y) = 2C1πex−
1
2 .

We compute the solution on the time interval [0,350], with ∆t = 10−1, on two Kershaw meshes of
sizes 0.02 and 0.006. In Figure 4.4, we show the evolution along time of the L1 distance between

:
unD and u∞, computed as ∫

Ω

|unM −u
∞|,

for the nlhho_k schemes, for k ∈ {0,1,2}. We observe the exponential convergence towards the
thermal equilibrium for each value of k, until some precision is reached. For k ≥ 1, the rates of
convergence are similar to the exact one (α), and do not depend on the size of the mesh. For
k = 0, the rate of convergence towards equilibrium differs a bit from α on the coarsest mesh,
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Figure 4.4 – Long-time behaviour of discrete solutions. Comparison of the long-time behaviour
of the solutions to the nonlinear HHO schemes on Kershaw meshes for Tf = 350 and ∆t = 0.1.

but theses two rates seem to coincide on sufficiently refined meshes. Note that for the test-case
considered, φ ∈ P1(Ω), therefore φM = φ. It follows that u∞M = u∞, hence the very low saturation
threshold.

For the exponential fitting scheme, the distance between unD and u∞ is computed as∫
Ω

|uω,nM −u∞|.

To assess the behaviour of the exponential fitting scheme, we last compare the results for three
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Figure 4.5 – Long-time behaviour of discrete solutions. Comparison of the long-time behaviour
of the solutions to the nonlinear HHO schemes on Kershaw meshes for Tf = 350 and ∆t = 0.1.
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schemes with face unknowns of degree k = 1: nlhho_1, nlhho_1_0 and expf_1.
The results are presented in Figure 4.5. As previously, one can note that nlhho_1 and nlhho_1_0
exhibit an extremely similar behaviour. Regarding the exponential fitting scheme, as stated
in Proposition 14, the discrete density converges exponentially fast towards the equilibrium.
Moreover, as for the nonlinear schemes, the decay rate is similar to the continuous one.

4.5 Conclusion

In this chapter, we have introduced two arbitrary-order schemes for linear anisotropic
advection-diffusion equations on general meshes. The first one is a linear scheme which follows
the exponential fitting strategy, whereas the second is a nonlinear scheme which follows the
low-order philosophy [56, 52, 70]. We have proved that both schemes admit solutions, have an
entropy structure and preserve the long-time behaviour of the continuous problem. Moreover,
the solutions to the nonlinear scheme are positive by construction. We have validated these
theoretical results on numerical test-cases. We have also highlighted the lack of positivity of the
linear method, which justifies the use of (more costly) nonlinear methods. In the meantime, the
use of nonlinear schemes with polynomial unknowns of sufficient degree proves to improve the
efficiency (accuracy at given computational cost) with respect to low-order nonlinear methods.
These results confirm the benefits of using high-order nonlinear schemes in order to get reliable
approximation of diffusive problems. Future directions of this work include a deeper analysis
of the nonlinear scheme, as well a the development of similar schemes for more complex and
nonlinear problems.
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The work presented in this thesis shows that high-order nonlinear structure-preserving
methods for anisotropic diffusive problems on general meshes can be used successfully. The study
performed in Chapter 1 shows that non-linear methods are needed in order to preserve positivity
of solutions to anisotropic problems on general meshes, and introduces a nonlinear structure-
preserving HFV method. This method is then used on complex and nonlinear anisotropic
problems in Chapter 2 and 3, and allows one to approximate solutions to the drift-diffusion
system (3) while preserving the structural bounds (implying in particular positivity) on the
densities and the long-time behaviour. These encouraging results motivate the design of high-
order schemes with similar structure-preserving features. Using the quasi-Fermi potentials
as key variables, we successfully adapt the nonlinear HFV discretisation to an HHO one in
Chapter 4. The scheme introduced exhibits an optimal order of accuracy, while preserving the
positivity and the long-time behaviour of the solutions. The implementation proposed enjoys
a robustness similar to the HFV one, and the use of sufficiently high-order schemes gives a
consequent gain of computational efficiency with respect to the HFV scheme.

Thus, this work paves the way to various extensions and applications to other models. We
discuss some of them below, regarding the analysis, the implementation and the applications.

Further analysis of the schemes

Regarding the analysis of the schemes, the most interesting challenges lie in the way of getting
uniform (with respect to the meshsize) estimates needed in order to get long-time behaviour and
convergence results.

The first natural question about the analysis of the HHO scheme is to understand how to
get uniform (with respect to the meshsize) estimates. Indeed, such estimates are needed in
order to prove both convergence of the scheme and uniform long-time behaviour. Performing an
analysis of the long-time behaviour of the nonlinear HHO scheme similar to the one performed in
Chapter 1 is a first important step and an ongoing work. The main issues is to get an high-order

161
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counterpart of Proposition 6. The main difference when it comes to the high-order scheme is
the difference between potential (polynomials) and densities: one has to deal with both in order
to get the appropriate estimates. Another important task then is to adapt discrete functional
inequalities of Section 1.A to the case of high-order unknowns.

The convergence analysis of the non-linear schemes for advection-diffusion equations is an
important perspective of our work, for both HFV and HHO schemes. The analysis of the HFV
scheme was not proved in this thesis, however the long-time behaviour analysis gives some
uniform estimates on H1 discrete semi-norms in Proposition 6. Such estimates, combined with
the compactness toolbox [6] are the key ideas to show the convergence of similar DDFV and
VAG schemes [56, 52]. The adaptation of these arguments to the HFV framework should be
possible. For the high-order scheme, one needs to get uniform estimates (see above) and handle
non-polynomial density. It is not known whether the toolbox [6] can be used directly.

The convergence analysis of schemes for drift-diffusion systems are more difficult. Indeed,
the coupling between the unknowns makes it difficult to get uniform estimates on the relevant
quantities. Up to our knowledge, the convergence analysis of existing schemes for drift-diffusion
systems relies on L∞ bounds on the densities and/or on the electrostatic potential. On the other
hand, getting such estimates (uniform with respect to the meshsize) seems rather difficult for
the methods considered here. A potential approach could be to adapt arguments used for the
recent analysis of a continuous memristor model [170], which is essentially a drift-diffusion
systems with three densities instead of two. The main interest of this analysis is the fact that it
does not rely on L∞ estimates on the solution (which are not available because there are three
species instead of two) but rather on a pure entropy/energy method. We believe that such a
method could be used at the discrete level with our schemes. Note that the analysis of long-time
behaviour (with an uniform rate of decay with respect to the meshsize) of HFV schemes for the
drift-diffusion system should also be performed using similar ideas.

Another important task is related to the analysis of the nonlinear schemes in situations
out of equilibrium. Such analysis is performed for a nonlinear P1 finite element scheme [57]
which enjoys the same structure as the nonlinear HFV scheme. The adaptation of this analysis
to the nonlinear HFV scheme seems possible, but rather technical since one has to deal with
non-conformal method. A related work could be the analysis of positivity-preserving schemes
for stationary problems. The accuracy study of Chapter 1 suggests that the stationary version of
the nonlinear HFV scheme is suited in order to approximate solutions to stationary problem, but
up to now the analysis this scheme (or similar VAG or DDFV schemes) was not performed. A
relevant analysis approach should be to use the relative entropy with respect to a lifting of the
boundary condition in order to get entropy estimations. However, the main difficulty in order
to analyse such a stationary scheme is related to the way of getting estimates on the entropy
dissipation without the help of the time derivative term. Such estimates could be consequences
of refined Log-Sobolev inequalities.

More efficient and robust implementations

In terms of implementation, we are working on a couple of ways to improve the numerical
behaviour of the schemes.

A first interesting question about the numerical robustness is the implementation of the
Newton method. Indeed, some recent work [38, 24] suggests that the use of parametrisation
(or change of unknowns) in the Newton method could strongly improve its robustness. For
the HFV schemes, such strategy would mean be to solve the problem using either densities
or quasi-Fermi potentials as primal unknowns. Note that the use of quasi-Fermi potentials as
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unknowns is the solution implemented in the TPFA code ddfemi [104]. On the other hand,
for the HHO scheme, since we can only use the coefficients of the polynomials representing
the quasi-Fermi potentials, it is not straightforward to switch between densities and potentials.
Another possibility could be to consider more subtle resolution method, using for example line
search techniques. Some numerical test performed during the phase development of hho_nl
with relaxed Newton steps indicated that a better robustness can be achieved with such strategy,
but at the cost of many iterations. Of course, such numerical work could also be associated to a
theoretical study, in order to ensure the behaviour of the Newton method (invertible Jacobian
matrices, global convergence of the methods).

Another important feature which should be investigated is the question of mesh adaptation.
In [143], it is suggested that an equidistribution of the entropy dissipation over the domain
(which means, the same dissipation on every cells) leads to a better repartition of the errors, and
therefore to a better efficiency. We believe that refining the mesh in areas where the dissipation
is too big can be a way of improving the convergence of the Newton methods. Such questions
are the topic of an ongoing work on TPFA schemes with collaborators from WIAS and Tyndall
National Institute for semiconductors models studied in Appendices: we aim at understanding
how to use the entropy and its dissipation in order to get coarser mesh without loosing too much
accuracy. Our ultimate goal is to simulate bigger devices than the ones studied in Appendix D.
Of course, the use of HFV and HHO schemes should be a better solution when it comes to mesh
adaptation, given the flexibility afforded by general meshes.

Last but not least, an important question which was not addressed during this PhD is
the parallelisation of the computations for the hybrid schemes. Indeed, these methods are
based on local contribution, and a lot of computations can be performed in parallel (static
condensation, computation of every local quantity). Such implementation should allow one to
get a way better efficiency for the scheme implemented, and could be part of the development
of the ParaSkel++ [18] platform. Natural related development in this framework includes
methods handling three dimensional domains and the use orthogonal polynomial basis instead
of monomial ones.

Applications to other complex problems

In term of non-academic problems, my work essentially focused on semiconductor models,
and the main goal was to approximate (3). In view of the results of Chapter 4, an extension
of the work performed in Chapters 2 and 4 to develop and analyse an high-order scheme for
semiconductor models is a short-term objective in order to get more efficient structure-preserving
schemes for this problem.
Of course, the methodology developed in this thesis is intended to be used in a variety of
different settings and models. Here, we discuss three situations of interest. As above, the
schemes developed could be either HFV ones (as a preliminary work) or HHO ones.

A first natural application is related to porous media problems, for which there are challenges
related to anisotropy. In particular, there exists some HMM, DDFV and HHO based schemes [65,
71, 72, 5] for Peaceman problem. These schemes are shown to be convergent, but there is
no theoretical guaranties that the computed concentrations are non-negative. Therefore, the
use of the non-linear methods of this PhD could be a solution in order to get a more reliable
approximation of the solutions.

Another field of application could be the wide family of cross-diffusion systems. These are
systems of multiples unknowns, in which the diffusion coefficients for each unknown depends on
the other unknowns. As for the drift-diffusion systems (which can be seen as simple prototypes



164 Conclusion and perspectives

of general cross-diffusion systems), the developpement and analysis of TPFA schemes for cross-
diffusion is an active field of research [54, 147, 177]. On the other hand, there exists some
anisotropic cross-diffusion models obtained as rigorous limits of stochastic models [230, 117].
For such models, the use of the previous TPFA schemes is not possible: the use of HFV and
HHO schemes based on the work of this thesis should be a natural solution to get reliable
approximation methods. Of course, the use of high-order schemes should also be an interesting
solution to approximate such systems in an efficient way. Since these systems are generally
analysed thanks to boundedness by entropy methods [47, 173], the methodology used to analyse
our scheme should be adaptable without too much difficulty to cross-diffusion.

Another interesting question is the generalisation of the results presented in this thesis to
convection fields, which are not the gradient of potentials. Indeed, in the study performed here,
the only scheme which is able to handle such a general field is the HMM scheme [19] studied
in Chapter 1. However, this scheme does not preserve positivity, neither thermal equilibrium.
Moreover, its analysis relies on coercivity assumptions. From a more general point of view, the
main difficulty of such a situation in order to develop structure-preserving methods is that
the quasi-Fermi potentials, keystone of our structure preserving methods and the associated
analysis, do not exist anymore. A first direction in order to solve this issue could be to use a Hodge
decomposition of the field V = ∇φ+V0, where V0 is divergence-free, and treat the irrotational
part in a non-linear way by using a partial quasi-Fermi potential log(u) +φ. The advective (and
coercive) part induced by V0 could then be discretised using the scheme of [19]. Computations
at the continuous level indicate that this strategy -which is in a way similar to the one used to
analyse non-coercive advection-diffusion problems [106]- allows one to get some estimates on
the entropy dissipation. On the other hand, at the discrete level the way of getting this estimate
is not straightforward and one has to understand how to perform the Hodge decomposition in
an appropriate way. Note that this situation is not purely academic, and can be used in practical
situations. In particular, there exists a series of work by Jochmann [163, 164, 165, 167, 166, 168]
about semiconductor models in which the electrostatic filed does not solve a Poisson equation.
Such a model correspond to a situation where the internal magnetic effects are not neglected
anymore: the electrostatic field is not the gradient of a potential anymore, but is given by Maxwell
equations. It could be interesting to develop positivity preserving high-order methods for such a
system, using the methodology introduced in this thesis for the convection-diffusion equation
alongside with some recent HHO methods for Maxwell equations [76]. Another interesting
direction for such work could be to investigate the asymptotic preserving features of schemes
with respect to the asymptotic analysis done by Jochman for the continuous model (long-time
behaviour and singular limit when the magnetic susceptibility tends to zero).

Numerical comparisons with existing methods

As far as possible, we gave numerical comparison between different methods in order to
identify and exhibit the strengths of each method introduced.

The results of Chapter 4 indicate that the high-order structure-preserving method developed
in this thesis have a better efficiency that the nonlinear HFV method of Chapter 1. However,
keeping in mind that the methods developed here address the need to handle anisotropy and
substitute for TPFA schemes, a question of great importance is the comparison of the hybrid
methods with the TPFA ones. Indeed, in situations where both classes of methods are available
(isotropic problems on orthogonal meshes), the efficiency of the high-order schemes could be
a strong argument in favour of HHO schemes. In order to understand the performances of
each scheme, one need to perform tests on various nonlinear problems. In order to avoid the
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limitations induced by the (first order accurate) time discretisation and give a fair comparison,
the ideal situation should be to use stationary problems.

Another interesting work could be an extension of the results presented in Chapter 3. Indeed,
we only focused on an isotropic drift-diffusion system, but one could ask if both HFV and DDFV
schemes have the same behaviour for the anisotropic problem (3) with general statistics. Ongoing
numerical investigations indicate that both schemes handle anisotropy for Boltzmann statistics.
Moreover, the influence of the intensity of the magnetic field on the rate of exponential decay
towards equilibrium (results in the same spirit as Figure 2.11b) is rather similar for both schemes.
In view of the results of Chapter 4, it would be interesting to also compare the low-order schemes
of Chapter 3 with a nonlinear structure-preserving HHO scheme for anisotropic drift-diffusion
systems. Such comparative work could be a first step in order to investigate the behaviour of
high-order structure-preserving schemes on complex problems and get reference results. On the
other hand, such a work could also be the opportunity to investigate the question of efficiency
(and the expected gain for the high-order methods) of the schemes on nonlinear problems.

High-order discretisations in time

A last important perspective of this work is related to the time-stepping method used. Indeed,
all schemes presented in this manuscript are based on a backward Euler discretisation in time.
Such a choice allows one to get discrete entropy structures relatively easily as a consequence
of the convexity of the entropies. On the other hand, since every schemes are of order at least
two in space, which leads to a rather large unbalanced space-time accuracy. This is even worse
for high-order schemes: the use of high-order methods for time discretisation should provide a
scheme higher efficiency.

The main difficulty when it comes to high-order methods in time is the way of getting the
entropy relation, which is the base of all the nonlinear schemes developed here. A first step
should be to test different numerical strategies in order to check both stability and efficiency of
the schemes. Such a comparative work was performed for TPFA schemes in [89], and shows that
BDF2 schemes provide good stability properties for entropic schemes. The analysis of such a
scheme could rely on the methodology used in [146] to analyse an entropic scheme using BDF2.
Another interresting direction could be the use of Runge-Kutta schemes following the work [176]
on semi-discrete problems. A possible interesting solution could be the use of Strong Stability
Preserving Methods, which are often used in the context of hyperbolic equations [151, 152].
Note that for the linear schemes used in this thesis, the use of a Crank–Nicolson discretisation
in time leads to an exact entropy-dissipation relation at the discrete level (with an equality as
in the continuous framework). However, getting a control of the entropy by the dissipation
(which then depends on two times) in this situation seems rather difficult. Moreover, such a time
discretisation is known to generate spurious oscillations which should degrade the positivity of
solutions.
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A.1 Motivations and context

In the Appendices, we focus on models with irregular convection fields. Such models are
particularly useful in describing realistic devices, where the structure induces local fluctuations
in internal energies. The prototype equation for modeling such a framework can be reduced to
the linear problem:

∂tu −div(∇u +u∇(φ+E)) = 0, (A.1)

where φ is a regular potential (solving a Poisson equation in the context of drift-diffusion
systems) and E is a function known as the Band Edge Energy (BEE), which depends on the
material (alloy) used in the semiconductor. In classical models (as in the drift-diffusions systems
studied in Chapter 2 and 3), this energy is assumed to be constant. However, there are practical
situations in which the BEEs are not constant and can even be irregular. Two cases of interest
are:

— regions of the alloy with strong local fluctuations, referred to as quantum wells, where the
BEEs exhibit extreme irregularity (essentially, a function taking different values at each
atom);

— junctions of two layers made of different materials, known as heterojunctions, where the
BEEs are piecewise constant.

167
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Random alloy fluctuations significantly affect the electronic, optical, and transport properties of
(In,Ga)N-based optoelectronic devices. To bridge the gap between macroscale drift-diffusion sim-
ulations and atomistic band-edge fluctuations, recently a multiscale framework was developed
to integrate the macroscopic and microscopic worlds [221].

To understand how we can appropriately approximate the solutions of such problem, it is
necessary to establish a framework for analysing the continuous equation (A.1). To the best of
our knowledge, the most comparable situations in the literature are related to “distributional
drifts” in stochastic problems [136, 137, 238, 161, 162]. In these works, the problems considered
are driven by advection fields that lie in low-regularity Sobolev spaces, and the solutions are
defined as limits of solutions to regularised problems. However, these advections are too regular
for our study, as we aim to consider drifts that are singular measures, such as gradients of
piecewise constant functions.
On the other hand, while the advection considered in (A.1) can be highly irregular, it has the
specific structure of a gradient. By formally defining ρ = u

ω , with ω = e−φ−E ∈ L∞(Ω), we can
express an equivalent formulation of (A.1) in terms of ρ, namely

ω∂tρ −div(ω∇ρ) = 0. (A.2)

Such an equation is classically well-posed, as the diffusion coefficient ω is bounded and uni-
formly positive on Ω. Hence, one can define the concept of solution to (A.1) by employing the
exponential fitting formulation (A.2). Interestingly, this notion of solution can also be obtained
as a limit of regularised solutions.
This approach can be generalised to problems with non-linear statistics (written here for the
stationary problem to fix ideas)

−div(u∇(h(u) +φ+E)) = f ,

where h is a function corresponding to the considered statistics (see, for example, the introduction
of Chapter 2). By defining ρ = eh(u)

ω , one formally obtains an exponential fitting formulation:

−div
(
g(log(ρ)−φ−E)

ρ
∇ρ

)
= f , (A.3)

where g is a positive function, the inverse of h. In this formulation, similar to the previous
discussion, the gradient of the irregular term E no longer appears.

At the numerical level, we propose a strategy based on the exponential fitting formulations
and Two Point Flux Approximation (TPFA) finite volume methods. As for the HFV exponential
fitting developed in Chapter 1, one of the main challenges lies in averaging the diffusion
coefficient ω (or g(log(ρ) −φ − E) for general statistics), which is irregular. It is worth noting
that this issue has been addressed in the context of heterogeneous diffusion problems for TPFA
schemes [121, Section 2.3.1]. Our numerical results (see Figure A.1) demonstrate the suitability
of the exponential fitting for this type of problem, provided that an appropriate averaging
technique is employed to handle the irregular BEE. In practice, it is necessary to use a harmonic
mean for the averaging process.

The remainder of this appendix is organized as follows. First, we present the results of
Appendices B-C-D, introducing the physical context of the problems and the issues addressed.
Then, in Section A.5, we summarise various perspectives linked to this work, from both physical
and mathematical points of view.
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Figure A.1 – Accuracy of schemes. Boltzmann statistics and heterojunctions.

A.2 A comparison between numerical simulations and experi-
mental results (Appendix B)

In Appendix B, we compare the numerical results obtained using our strategy with those
obtained from commercial packages and experimental data.

Specifically, we consider an (In,Ga)N/GaN semiconductor system with quantum wells and
introduce a model that incorporates random fluctuations in the alloy. This is achieved by
computing appropriate band edge energies using the Localisation Landscape Theory (LLT) ap-
proach [11, 132, 224]. The LLT approach allows for the prediction of charge localisation regions
and their corresponding energies. Our method differs from classical strategies implemented in
commercial software, which employ a Schrödinger equation to incorporate quantum corrections.
However, these Schrödinger-Poisson solvers have a significant computational cost, and currently,
these commercial packages only support 1D simulations.

To assess the validity of our approach, we compare our simulations with results obtained
using the commercial package nextnano [30], which employs a full Schrödinger-Poisson equation,
as well as experimental data. In particular, we investigate the impact of the well order on
device behaviour. Our results demonstrate good agreement between our simulations and those
presented in [30]. Moreover, considering the random fluctuations is necessary to accurately
reproduce the observed trends in the experiment.

A.3 The question of thermodynamic consistency (Appendix C)

In Appendix C, we investigate certain issues related to the approximation of models with
non-Boltzmann statistics. These discussions are motivated by observations resulting from the
use of incorrect discretisation methods for solving problems with varying BEEs. However, they
also apply to classical models with constant BEE.

These issues are well-known within the mathematical community and have led to numerous
studies, ranging from the development of schemes handling general statistics to the comparison
of such methods [265, 120, 26, 140, 50, 125, 127, 50]. However, in more applied scientific
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communities, these questions are relatively under-documented.
The work presented in Appendix C aims to provide physics-based evidence that using

inconsistent discretisations of the flux can significantly impact the results of simulations. The
main novelty of this work lies in investigating the influence of discretisation on important
physical behaviours, namely the recombination process and current-voltage (I-V) curves. The
former is of major importance in LED applications, while the latter serves as a basis for engineers
to model the device behaviour in an electrical circuit. The study conducted provides strong
evidence that employing an inconsistent Scharfetter–Gummel flux in situations where non-
Boltzmann statistics are used leads to non-physical results.

As a by-product of this study, we also introduce a new definition of thermodynamically con-
sistent numerical flux (C.7). This notion is based on the relationship between the monotonicity
of the quasi-Fermi potential and the sign of the flux. The introduced definition corresponds to a
discrete version of this continuous feature. The main advantage of this notion is that, unlike the
classical one 1, it holds meaning even outside of thermal equilibrium. It appears that this notion
is linked to the methodology used in [50] to analyse TPFA schemes for Blakemore statistics:
the numerical fluxes are expressed as the product of a positive interface term by the discrete
derivative of the quasi-Fermi potentials.

A.4 Application to the design of efficient LEDs (Appendix D)

The last appendix focuses on a practical question: how to design efficient LEDs. We are
specifically interested in LEDs operating in the deep-UV-C wavelength range (below 280 nm),
which can be used for applications such as sterilisation or water purification filters. Aluminium
gallium nitride ((Al,Ga)N) based LEDs are considered ideal candidates for such devices, as their
emission wavelengths can be tuned across the entire UV spectrum without the need for toxic
mercury. However, the use of (Al,Ga)N alloy is relatively new, and there is limited literature
available compared to more classical (In,Ga)N-based optoelectronic systems. The main goal of
our work is to understand the impact of random fluctuations in the alloy on LED efficiency.

To understand the behaviour and efficiency of LEDs, it is important to examine the recombi-
nation processes. In the situation under study, two main types are of interest:

— Radiative recombination, which involves electron transitions from the conduction band to
the valence band accompanied by photon emission. This process is the primary source of
light emission.

— Non-radiative Auger-Meitner recombination, which involves internal transfer of electrons
(from the valence band to the conduction band) or of holes. This internal process can
be viewed as an energy leak associated with the "emission" of phonons. Experimental
results [148, 233] indicate that at high densities of charge carriers, this recombination
process can physically degrade the device.

As a preliminary approach, we can consider that the ideal device will exhibit high radiative
recombination and low non-radiative recombination. Our study focuses on these two types of
recombination, comparing the device behaviour with and without random fluctuations.

Ultimately, our results suggest that random fluctuations increase both radiative and non-
radiative recombination. To improve efficiency, careful device design is necessary to control
the increase in non-radiative recombination. This can be achieved, for example, by using wider
wells or increasing the number of wells in relevant areas.

1. If the numerical fluxes vanish, then the quasi-Fermi potentials are constant.
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A.5 Some mathematical issues raised by these works

Regarding the work performed on the toy model, the numerical investigation suggests that
it is possible to develop accurate schemes even for irregular BEEs. A useful first step before
analysing schemes for full drift-diffusion systems could be to prove the convergence of the
scheme for the toy problem equation. Convergence analysis for Boltzmann statistics is a classical
approach using the compactness method since it only involves an equation with a heterogeneous
diffusion coefficient. However, the case of non-Boltzmann statistics is more challenging. In
fact, even for the continuous modified equation (A.3), we do not yet know if solutions exist.
One possible first step could be to study the continuous equation and show, as in the linear
case, that an equivalence holds between regularised solutions and exponentially fitted ones.
Another possibility could be to directly prove the convergence of the numerical schemes using
compactness. Such a result would imply, in particular, that a solution to the continuous problem
exists. The techniques used in [50] could be relied upon for the analysis.

When it comes to simulating realistic devices, one of our medium-term objectives is to
compare the numerical results obtained using our framework with experimental data that will
soon be produced at the National Tyndall Institute. This comparative work will allow us to
confirm the relevance of the approach used (LLT combined with the drift-diffusion system) in
modelling complex devices. Once this confirmation has been obtained, it will be possible to
apply our simulations to study optimal designs for LEDs.
The main hindrance to perform these comparisons is the cost of the simulations. Since we
use an extremely refined mesh in the wells, our computations are not affordable for realistic-
sized devices with a large number of wells. Furthermore, the adaptation between refined and
coarse areas is challenging due to the orthogonality constraint on the (TPFA) admissible meshes.
To address this issue, we are currently working on ways to locally coarsen the mesh while
maintaining the same device behaviour. One of our goals is to find good heuristic criteria
for mesh adaptation. A related question could be linked to homogenisation. Instead of using
the exponential fitting approach to define a continuous solution, we could view the BEEs as
oscillating functions and employ more classical homogenisation methods to obtain a well-posed
limit equation. Such homogenised equation could be easier to discretise and would allow us to
simulate larger devices with more quantum wells.

All the previous observations suggest that, according the promising results of Chapter 4, an
interesting perspective could be to use HHO structure-preserving methods in order to simulate
the devices under consideration. Regarding the irregularity of the BEEs, we believe that the
non-linear strategies of the hybrid schemes developed in this thesis are adapted to handle it.
Indeed, returning at the initial flux

J = u∇(log(u) +φ+E),

one can introduce a (partial) quasi-Fermi potential w = log(u) +E, and expresses the flux as

J = ew−E∇(w+φ).

Here, the irregular BEE E only appears in the diffusion coefficient. Hence, we can approximate
the corresponding PDE using the same strategy as in Chapter 4, by discretising the potentials
w and φ as polynomials. From a numerical perspective, the main difficulty caused by the
irregularity of the BBE is the heterogeneity of the diffusion coefficient. However, this feature is
not an issue in theory when it comes to the HHO method used (since it can handle heterogeneous
and anisotropic diffusion). Of course, from a practical point of view, as usual with exponential
fitting, the main challenge lies in approximating the integrals

∫
K

e−E with irregular and oscillating
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integrands.
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This chapter corresponds to a submitted work [219], in collaboration with Michael O’Donovan,
Patricio Farrell, Timo Streckenbach, Thomas Koprucki and Stefan Schulz.

In this work, we study the impact that random alloy fluctuations have on the distribu-
tion of electrons and holes across the active region of a (In,Ga)N/GaN multi-quantum
well based light emitting diode (LED). To do so, an atomistic tight-binding model is
employed to account for alloy fluctuations on a microscopic level and the resulting
tight-binding energy landscape forms input to a quantum corrected drift-diffusion
model. Here, quantum corrections are introduced via localization landscape theory
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and we show that when neglecting alloy disorder our established theoretical frame-
work yields results very similar to commercial software packages that employ a
self-consistent Schrödinger-Poisson-drift-diffusion solver; this provides validation of
the developed quantum corrected transport model. Similar to experimental studies
in the literature, we have focused on a multi-quantum well system where two of the
three wells have the same In content while the third well differs in In content. By
changing the order of wells in this ‘multi-color’ quantum well structure and looking at
the relative radiative recombination rates of the different emitted wavelengths, we (i)
gain insight into the distribution of carriers in such a system and (ii) can compare our
findings to trends observed in experiment. Our results indicate that the distribution
of carriers depends significantly on the treatment of the quantum well microstructure.
For instance, when including random alloy fluctuations and quantum corrections in
the simulations, the calculated trends in the relative radiative recombination rates as a
function of the well ordering are consistent with previous experimental studies. How-
ever, the results from the widely employed virtual crystal approximation contradict
the experimental data. Our calculations clearly demonstrate that when accounting for
random alloy fluctuations in the simulations, no further ad-hoc modifications to the
transport model are required, in contrast to previous studies neglecting alloy disor-
der. Overall, our work highlights the importance of a careful and detailed theoretical
description of the carrier transport in an (In,Ga)N/GaN multi-quantum well system
to ultimately guide the design of the active region of III-N-based LED structures.

B.1 Introduction

At the heart of modern light emitting diodes (LEDs) operating in the blue to violet spectral
region are (In,Ga)N/GaN multi-quantum well (MQW) systems [158]. While the efficiency of
these LEDs is and can be very high, further efficiency gains will still directly reduce the cost
of operating such LEDs. Moreover, extending efficient operation of (In,Ga)N-based LEDs into
the green to red spectral range is a topic of current research interest [201, 240, 12, 116, 159].
To achieve all this, understanding the fundamental electronic, optical and transport properties
of (In,Ga)N-based MQW systems is of central importance to guide design of (In,Ga)N-based
LEDs with new and improved capabilities. While experimental and theoretical studies on the
electronic [59, 75, 252] and optical [169, 95] properties of such systems have already revealed
that these properties are significantly impacted by alloy fluctuation induced carrier localization
effects, the impact of alloy disorder on the carrier transport has only been targeted recently [220,
221, 222, 203, 44, 194]. Here, studies are ranging from fully atomistic quantum mechanical
approaches [220] up to modified continuum-based models [221, 222, 203, 44, 194].

Recently, we have developed a three-dimensional (3-D) multiscale simulation framework
that connects atomistic tight-binding theory with a modified, quantum corrected drift-diffusion
(DD) solver. The framework has been employed to investigate uni-polar carrier transport and
it was found that alloy fluctuations result in an increase in carrier transport of electrons (in an
n-i-n system) [221], but decreases transport in the case of holes (in a p-i-p systems) [222]. In the
present work we extend this scheme to investigate the active region of (In,Ga)N-based MQW
LED structures (thus p-i-n systems) and study how carriers distribute across the active region.
In general, understanding the carrier distribution can help to guide maximizing the efficiency
in an LED, since ideally the carriers shall be distributed evenly across the entire MQW region
so that all QWs will contribute to emission [266]. However, previous experimental studies on
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carrier distribution in (In,Ga)N/GaN MQW systems have indicated that mainly the well closest
to the p-doped contact side contributes to the light emission process [145, 92, 199, 266]. These
samples were specifically designed to gain insight into the carrier distribution inside the active
region of an LED.

Overall, this has been attributed to a sequential filling of the QWs, resulting in a high hole
density only in the p-side QW. To establish accurate carrier transport models the trends found in
the experimental studies of Refs. [145, 92, 199, 266] need to be captured. Previous theoretical
studies have reproduced the experimentally observed behaviour, however this required (i)
treating bound carriers in a quantum mechanical picture, (ii) softening of the QW barrier
interface to account for tunneling effects, (iii) distinguishing between continuum and bound
carriers in the carrier transport model (multi-population model), and (iv) allowing for scattering
between the different populations [236]. But, the impact of alloy disorder is basically neglected
in this advanced but also complex carrier transport model.

In this paper we show that when employing our quantum corrected 3-D simulation frame-
work that accounts for random alloy fluctuations, the experimentally observed trends are
captured, without introducing for instance a multi-population scheme. This highlights that our
developed solver presents an ideal starting point for future device design studies.

To highlight clearly the impact that random alloy fluctuations have on the carrier distribution
in the active region of an (In,Ga)N-based LED, we use as a reference point a virtual crystal
approximation (VCA) which effectively can be described by a 1-D model. The benefit of this
is twofold. Firstly, this enables us to compare directly the outcomes of our quantum corrected
model with results from 1-D commercial software simulations; commercial software packages
often employ a standard Schrödinger-Poisson-DD solver, which is numerically very costly
and therefore unfeasible in large 3-D transport simulations. This motivates the need for an
alternative implementation of quantum corrections. Secondly, and building on this benchmark,
alloy fluctuations can be included in the calculations, revealing clearly their impact on the results.
Our studies show, and when using the same input parameter set, only the model accounting for
random alloy fluctuations produces trends that are consistent with the experimental data. The
widely employed VCA yields results that are in contradiction with the experimental data, thus
indicating that radiative recombination stems mainly from the well furthest away from the p-side.
Overall, this highlights (i) that alloy fluctuations are essential to achieve an accurate description
of the carrier transport and (ii) have to be taken into account when theoretically guiding the
design of energy efficient III-N light emitters.

The paper is organized as follows: in Section B.2 we outline the model structure used for
calculations and briefly summarise some of the literature experimental data from Ref. [145]. The
theoretical framework which we use is summarized in Section B.3. Our results are discussed in
Section B.4. Finally Section B.5 presents our conclusions.

B.2 Model MQW structures and literature experimental find-
ings

To investigate the carrier distribution in (In,Ga)N/GaN MQW systems we proceed similar to
experimental studies in the literature [145, 199] and target MQW systems where one of the wells
in the MQW stack has a slightly higher In content compared to the remaining wells. In our case,
we study MQW systems with three (In,Ga)N/GaN wells. Here two are In0.1Ga0.9N (“shallow”)
wells and one is an In0.125Ga0.875N (“deep”) QW. These QWs are 3 nm wide and separated by
5 nm GaN barriers. The band edge profile of such a system along the transport (c-) direction,
using a VCA, is shown in Fig. B.1 at a current density of 50 A/cm2.
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Figure B.1 – Conduction and valence band edges (black) along with the quasi-Fermi energies for
electrons and holes (grey) in an (In,Ga)N/GaN multi-quantum well system described in virtual
crystal approximation. The band edge profile and the quasi Fermi levels are shown at a current
density of 50 A/cm2. The leftmost (In,Ga)N quantum well contains 12.5% indium while the
other two (In,Ga)N wells (centre and right) contain 10% indium.
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Figure B.2 – Schematic illustration of multi-quantum well system. The n-doped region is shown
in cyan, the p-doped is in red and undoped regions are in grey. The quantum wells are numbered
starting from the n-side.
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Figure B.3 – Profile of (a) valence band edge energy, (b) conduction band edge energy, and (c)
radiative recombination rate in the growth plane (c-plane) of an In0.1Ga0.9N quantum well; the
current density is 50 A/cm2 in all depicted figures. The slice displayed is the through the center
well. The data are shown in all cases on a linear scale.

In the following, we investigate the carrier transport properties in two settings: (i) on an
atomistic level accounting for random alloy fluctuations and (ii) in the frame of a VCA thus
neglecting alloy fluctuations. In the latter VCA case (ii), at a given z-position (along the c-
direction), there is no variation in material properties within the growth plane (c-plane). This
assumption is also made in the widely used 1-D transport simulations on (In,Ga)N MQWs.

To study the carrier distribution in MQW systems using the simulation settings (i) and (ii), we
follow again the experimental approach e.g. presented in Ref. [145] and the deep QW is moved
from the n-side (position 1 (n-side) in Fig. B.2) to the p-side (position 3 (p-side) in Fig. B.2). In
the case of the random alloy structures, the same microscopic configuration is kept for each well
and only the ordering is changed.

For each of these systems the ratio of radiative recombination from the shallow wells to the
deep well is calculated using:

% =
RRAD
ΩS

RRAD
ΩD

(B.1)
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where

RRADΩi
=

∫
Ωi

RRAD (r)dV , (B.2)

is the total radiative recombination from the region Ωi . Here, ΩD is the region containing the
deep QW, ΩS is the region containing the shallow wells (as there are two shallow QWs this
is the union of the two shallow QW regions). The radiative recombination rate at position r,
RRAD (r), is discussed in further detail in section B.3.2. Since we are studying a system with three
QWs, an even distribution of carriers across the MQWs would result in a ratio of % = 2. Previous
experimental work on a similar system by Galler et. al. [145] found that % was small (i.e. emission
is dominated by the deep QW) only when the deep well was closest to the p-doped side of the MQW
system (thus position 3 (p-side) in Fig.B.2). The authors conclude that holes are responsible for
this behavior, and argue that they are mainly found in the p-side QW and not in wells further
away from the p-side. As a consequence, the overall emission from the (In,Ga)N/GaN MQW
system is dominated by the emission from this well closest to the p-doped region. In line with
Ref. [145], we calculate % at a current density of 50 A/cm2, which allows us to compare the here
predicted trends with the trends found in the experimental studies. The theoretical framework
employed to gain insight into % is discussed in the following section.

B.3 Theoretical framework

In this section, we introduce the underlying (microscopic) theory of our multiscale simula-
tions. We start in Section B.3.1 with the electronic structure model, an atomistic tight-binding
(TB) model, and discuss the drift-diffusion approach in Section B.3.2. Since all these ingredients
have been discussed in detail in Refs. [221, 222], we here give only a brief summary.

B.3.1 Tight-binding energy landscape

In order to model the electronic structure of the above described (In,Ga)N MQW systems on
an atomistic level, we employ a nearest-neighbour, sp3 TB model [242]. Here, local strain and
polarization effects are included using a valence force field model and local polarization theory,
respectively [60].

To connect the TB model to a DD solver we proceed as follows. Firstly, the TB model is
used to extract a potential energy landscape describing the MQW region of the device using an
atomistic framework. To do so, at each atomic site in the three dimensional (3-D) supercell, a
local TB Hamiltonian is constructed from the full TB Hamiltonian [75]. Subsequently, only the
local TB Hamiltonian is diagonalized, yielding the conduction and valence band edge energy
at each lattice site. These band edge energies include now already effects arising from alloy
fluctuations and connected fluctuations in strain and built-in polarization field. The obtained
3-D confining energy landscape, after employing a Gaussian softening, forms the basis for our
DD calculations. In previous studies we have investigated and discussed in detail the influence
of the Gaussian softening on transport calculations for electrons and holes [221, 222]. Here, we
choose a Gaussian broadening on the order of the GaN lattice constant, σc,v = aGaN = 0.3189 nm,
in all calculations. This value is large enough to average over a number of neighboring sites,
while also small enough to retain fluctuations in the energy landscape.

To obtain an accurate description of carrier transport in (In,Ga)N-based LEDs, the DD
equations, which will be discussed below, are often coupled with solving the Schrödinger
equation to account for quantum corrections. Such a Schrödinger-Poisson solver is widely
available in commercial software packages. However, in these packages it is largely restricted
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to 1-D simulations, since the extension to a 3-D system is computationally basically unfeasible.
Instead of solving the large eigenvalue problem connected to evaluating the Schrödinger equation,
we have implemented quantum corrections via localization landscape theory (LLT) [132]; this
approach is numerically much more efficient and gives results similar to a full self-consistent
Schrödinger-Poisson solver, as we will also discuss below. From LLT we extract an effective
confining potential for the conduction and valence band edge starting from the TB energy
landscape.

An example of the resulting quantum corrected energy landscape is given in Fig. B.3 (a) and
(b). Here, in-plane band edge profiles for a single atomic plane through an In0.1Ga0.9N QW,
after LLT has been applied, are shown. As Fig. B.3 (a) reveals, the fluctuations in the valence
band edge energy due to alloy fluctuations are of the order of 100 meV. In combination with
the high effective hole mass, these fluctuations are large enough to give rise to strong carrier
localization effects as seen in other studies already [260, 242, 102]. We therefore expect that,
especially for holes, the inclusion of random alloy fluctuations in the simulation will impact
the carrier distribution. Consequently recombination rates are also expected to be noticeably
influenced.

The variation in the conduction band edge energy is significantly smaller (order of 30 meV),
as can be seen in Figure B.3 (b). Since the effective electron mass is much lower in comparison
with the holes, electron wave functions are less strongly perturbed by alloy fluctuations. The
impact that these fluctuations in the band edge energies have on the radiative recombination
is also seen in Fig. B.3 (c); the radiative recombination is calculated with ddfermi as will be
described in section B.3.2. The correlation between the valence band edge maxima and regions
of high radiative recombination can be clearly identified; similar spatial profiles can be seen for
non-radiative (Auger) recombination (not shown).

In order to highlight the impact of random alloy fluctuations on carrier transport and the
distribution of carriers across a MQW system, we compare our atomistic calculations with
the outcome of a VCA. In the latter case a homogeneous effective crystal is constructed where
material properties are chosen to be interpolated properties of the binaries InN and GaN within
the QW region. Here a linear, composition weighted interpolation scheme is employed. A
bandgap bowing of −2.0 eV is used, consistent with the underlying atomistic TB model [60].
The VCA description, without any Gaussian broadening, is similar to commercially available
packages. However, and in contrast to commercial software packages, quantum corrections via
LLT can also be taken into account in our VCA simulations, following the approach used for the
random alloy case.

B.3.2 Device simulation

Having outlined above the generation of the energy landscape of the active region, e.g.
the (In,Ga)N/GaN MQW system, a full device mesh, including the n- and p-doped regions,
needs to be constructed on which the DD equations are solved. To achieve this we proceed as
follows and divide the device mesh into two regions: an atomistic and a macroscopic one. The
atomistic region is used to describe the MQW region and has as many grid points as atoms in the
system. These points contain information about the conduction and valence band edge energies
calculated from TB, as discussed above.

In order to capture the effects of carrier localization in the calculations, the in-plane dimen-
sions of our 3-D simulation cell should be larger than the localization length of the holes, given
that electrons are less strongly affected by alloy fluctuations [252]. In our atomistic calculations
we use a system with in-plane dimensions of 12.8× 11.0 nm2. This is large enough to see the
effects of hole localization as the in-plane hole localization length for In0.1Ga0.9N QWs is of
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the order of 1 nm [253]. The in-plane dimensions can be seen in Fig. B.3 (a) and (b) where the
in-plane valence and conduction band edges of an In0.1Ga0.9N QW are shown. In case of the
VCA, given that there are no variations in material properties (band edge energies) within the
growth plane (c-plane), a much smaller in-plane area is sufficient (1.3× 1.1 nm2), which reduces
the numerical effort.

LLT is solved on this (finite element) mesh using a finite element method (FEM). The DD
calculations are carried out employing a Voronoi finite volume method (FVM) [128]. Therefore,
the generated FEM mesh must be transferred to an appropriate FVM mesh. Every point from the
FEM mesh is included on the FVM mesh, as well as extra points required to produce a boundary-
conforming Delaunay tetrahedral mesh; conduction and valence band data are then interpolated
onto these additional nodes. This mesh is then embedded within a macroscopic device mesh
which contains information about the p- and n-doped regions. In our atomistic transport studies
here, we focus on systems without an (Al,Ga)N electron blocking layer (EBL). In principle,
an atomistic mesh resolution would be required for the EBL, given the alloy fluctuations in
(Al,Ga)N. However, and as we will discuss below, an (Al,Ga)N EBL is of secondary importance
for the questions targeted in the present study. Therefore, outside active MQW region of the
system, pure GaN is assumed. Thus, the conduction and valence band edge values are position
independent (except for changes due an applied bias). The absence of strongly fluctuating band
edges in the macroscopic mesh region allows us to use a sparse mesh and scale the simulation
to a full device. The mesh is created using TetGen [247] and the interpolation is handled via
WIAS-pdelib [141]. More details on the mesh generation can be found in Ref. [221].

Equipped with knowledge about the mesh generation, we turn now to the DD simulations.
To do so we build on the van Roosbroeck system of equations [258]:

−∇ · (εs(r)∇ψ(r)) = q(p(r)−n(r) +C(r)) , (B.3a)

∇ · jn(r) = qR(r) , (B.3b)

∇ · jp(r) = −qR(r) , (B.3c)

jn(r) = −qµnn(r)∇ϕn(r) , (B.3d)

jp(r) = −qµpp(r)∇ϕp(r) . (B.3e)

In the above equations, q is the elementary charge, εs(r) = ε0εr (r) is the dielectric permittivity,
ψ(r) is the device electrostatic potential, p(r) and n(r) are the hole and electron densities, C(r) =
N+
D(r)−N+

A (r) is the net activated dopant density, jn(r), jp(r), ϕn(r) and ϕp(r) are the electron
and hole current densities and the respective quasi-Fermi potentials. The total recombination
rate is denoted by R.

The carrier densities are related to the band edge energies, Edd
c (r) and Edd

v (r), and quasi-Fermi
potentials, ϕn(r) and ϕp(r), via the state equations [128]

n(r) =NcF
q(ψ(r)−ϕn(r))−Eddc (r)

kBT

 , (B.4a)

p(r) =NvF
Eddv (r)− q(ψ(r)−ϕp(r))

kBT

 . (B.4b)

Here, Nc and Nv are the effective density of states for the conduction and valence band,
respectively. For the distribution function, F , we use Fermi-Dirac statistics, and kB is the
Boltzmann constant. A temperature of T = 300 K has been used in all calculations. It is to
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note that the valence band, Eddv (r), and conduction band edge energy, Eddc (r), can be described
either by a VCA, a VCA including quantum corrections via LLT, or an atomistic random alloy
calculation including LLT-based quantum corrections.

The total recombination rate in Eqs. (B.3b) and (B.3c), R, is calculated using the ABC
model [178, 226]. Here, R is the sum of (defect related) Shockley-Read-Hall, RSRH , radia-
tive, RRAD and (non-radiative) Auger recombination rate, RAUG. The SRH rate is obtained
from:

RSRH (r) =
r(n,p)

τp
(
n(r) +ni(r)

)
+ τn

(
p(r) +ni(r)

) , (B.5)

the radiative part via
RRAD (r) = B0r(n,p) , (B.6)

and the Auger rate is calculated as

RAUG(r) = (Cnn(r) +Cpp(r))r(n,p) . (B.7)

In Eqs. (B.5) to (B.7)
r(n,p) = n(r)p(r)−n2

i (r)

and

n2
i (r) = n(r)p(r)exp

(
qϕn − qϕp
kBT

)
.

The above equations require further input, namely the radiative recombination coefficient
B0, the Auger recombination coefficients Cp and Cn as well as the the SRH lifetimes τp and
τn. All these parameters will in principle carry a composition dependence [210, 211, 181].
Furthermore, B0, Cp and Cn will also be carrier density dependent [93, 94, 169]. We follow
here the widely made assumption that these coefficients are constant across the InGaN MQW
region [194, 203]. In the following we take a weighted average of parameters calculated in
Ref. [210] for an electron and hole density of 3.8× 1018 cm−3, which is a good approximation
for the average carrier densities in the QWs at a current density of 50 A/cm2. As our active
region consists of two In0.1Ga0.9N QWs and one In0.125Ga0.875N QW we evaluate the different
recombination coefficients as follows:

Reff
i =

2× (R10%
i ) + 0.5× (R15%

i +R10%
i )

3
. (B.8)

Here, Ri ∈ {B0,Cn,Cp} are the radiative recombination, electron-electron-hole and hole-hole-
electron Auger recombination coefficients, respectively. As there are no values for an In0.125Ga0.875N
QW in Ref. [210], a linear average of the coefficients in In0.1Ga0.9N and In0.15Ga0.85N wells has
been used. A summary of the material parameters employed in all simulations is given in
Table B.1.

The numerical approximation of the van Roosbroeck system is implemented (in 3-D) in
ddfermi [104]. As already mentioned above, we employ the FVM and the current is discretized
using the SEDAN (excess chemical potential) approach [265, 50, 2], which yields a thermody-
namically consistent flux approximation in the sense of Ref. [128].

To simulate the devices under study, we also used the commercial software nextnano [30],
which relies on the simulation of a self-consistent Schrödinger-Poisson-DD system. In this
work we use nextnano to simulate the carrier transport in the above discussed MQW systems
within a 1-D approximation. In nextnano we utilize the same parameter set as in the ddfermi

simulations. Therefore, the obtained results can be directly compared to our 3-D VCA model.
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Table B.1 – Material parameters used in the different regions of the simulation supercell. Param-
eters denoted with † are taken from [194]; parameters denoted with ‡ are derived from [210] as
described in the main text.

Parameter Value in each region
Name Units p-GaN i-InGaN n-GaN

Doping cm−3 5× 1018 1× 1016 5× 1018

µh
† cm2/Vs 5 10 23

µe
† cm2/Vs 32 300 200

τp
† s 10 1× 10−7 7× 10−10

τn
† s 6× 10−10 1× 10−7 10

B0
‡ cm3/s 2.8× 10−11 2.8× 10−11 2.8× 10−11

Cp
‡ cm6/s 5.7× 10−30 5.7× 10−30 5.7× 10−30

Cn
‡ cm6/s 1× 10−31 1× 10−31 1× 10−31

When including quantum corrections in ddfermi, LLT is used. In nextnano a self-consistent
Schrödinger-Poisson-DD calculation is performed where a k ·p Hamiltonian is used to calculate
eigenstates across the full simulation domain. Following the ddfermi set up, in nextnano we
employ also a 1-band model for the calculation of the electron and hole densities.

B.4 Results

In this section we present the results of our study on the carrier distribution in the above
described (In,Ga)N/GaN MQW systems. To understand the impact of the alloy microstructure on
the carrier distribution, in Section B.4.1 we start with standard 1-D calculations building on the
commercial software package nextnano [30]. We use this entirely continuum-based description
of the QWs also to determine the impact (i) of an EBL and (ii) a self-consistent Schrodinger-
Poisson-DD treatment on the transport properties. Moreover, and as already mentioned above,
(ii) can also be used as a benchmark for our 3-D ddfermi solver. In Section B.4.2 we then
proceed to investigate the influence of random alloy fluctuations on the carrier distribution in
the (In,Ga)N/GaN MQW stack.

B.4.1 Continuum-based simulations of the carrier transport in (In,Ga)N-
based LEDs

To examine the impact of random alloy fluctuations on the carrier distribution in an
(In,Ga)N/GaN MQW stack, we start with a ‘standard’ 1-D simulation approach that is widely
applied in the literature. In a first step we begin with nextnano calculations and as outlined
above, compare the results to our ddfermi data.

nextnano simulations

To study how the presence of an EBL affects the ratio of radiative recombination %, Eq. (B.1),
the systems outlined in Section B.2 are simulated with and without a 20 nm Al0.15Ga0.85N EBL
using nextnano. The EBL is separated from the p-side QW (position 3 (p-side) in Fig. B.2) by a 10
nm GaN barrier. Similar settings for an (Al,Ga)N EBL have been used in previous studies [194].
The nextnano calculated ratio of radiative recombination %, when varying the position of the
deep QW in the MQW stack, are depicted in Fig. B.4 (a). Turning first to the data without
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Figure B.4 – Ratio of radiative recombination %, Eq. (B.1), from the shallow wells (In0.1Ga0.9N)
to recombination from the deep well (In0.1Ga0.9N) calculated as a function of the position of the
deep well in the multi-quantum well stack. Here % is evaluated using (a) nextnano excluding
(purple) and including (green) quantum corrections via a self-consistent Schrödinger-Poisson-
drift diffusion solver; results are shown when excluding (solid, filled circles) and including
(dotted, open circles) an Al0.15Ga0.85N blocking layer, and (b) ddfermi excluding (purple),
including (green) quantum corrections via localization landscape theory (LLT) using a virtual
crystal approximation (VCA) and a random alloy calculation including LLT-based quantum
corrections (blue); these calculations neglect the AlGaN blocking layer.

quantum corrections, we find that in the case of the employed 1-D VCA-like continuum-based
description, % is small when the deep QW is at the n-side (position 1 (n-side) Fig. B.2) and larger
when the deep well is at the p-side (position 3 (p-side) Fig. B.2). Thus, the 1-D model predicts the
opposite trend when compared to experiment [145]. This trend is only slightly changed when
including quantum corrections via a self-consistent Schrödinger-Poisson-DD model. In this case
a much weaker dependence of the results on the position of the deep QW in the MQW stack is
observed. However, even when including quantum corrections, the nextnano results for % are
not reflecting the experimentally observed behavior (see discussion above). Figure B.4 (a) reveals
also that qualitatively the results do not depend on the presence of the EBL, indicating that for
the structures considered, this feature of an LED is of secondary importance for the aims of this
work.

ddfermi simulations

Since we are also able to use the atomistic framework in a VCA setting, we compare our
ddfermi results, cf. Fig. B.4 (b) (purple), with those from nextnano, cf. Fig. B.4 (a) (purple,
solid). We focus on structures which neglect the EBL as we have found above that it does not
impact results in a VCA. In both nextnano and ddfermi a similar trend is found: the deep QW
dominates recombination only when it is located at the n-side. This is illustrated further in
Fig. B.5 (a), which displays the contribution (in percent) to the radiative recombination rate from
each QW (colors) in the MQW stack. The data are shown as a function of position of the deep
QW in the MQW system. This confirms that it is always the QW which is closest to the n-doped
side (position 1) that dominates the recombination process; the n-side QW contributes ≈ 95%
when the deep QW is at position 1, ≈ 70% when the deep QW is at position 2 or 3. Again, we
stress that this is the opposite trend to the experimental findings in Ref. [145].
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(a) VCA (b) VCA + LLT (c) Random alloy + LLT
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Figure B.5 – Contribution of each quantum well (n-side; centre; p-side) in the (In,Ga)N multi-
quantum well system to the total radiative recombination RRAD

Ωi
for i ∈ {n-side,center,p-side} as

a percentage of the total radiative recombination from all 3 quantum wells for (a) virtual crystal
approximation (VCA), (b) virtual crystal approximation with quantum corrections included
via localization landscape theory (VCA + LLT) and (c) a random alloy calculation including
localization landscape theory based quantum corrections (Random alloy + LLT). That data are
shown as a function of the position of the deep quantum well (x-axis). Each bar contains the
percentage recombination from the n-side quantum well (purple), the center quantum well
(green) and the p-side quantum well (blue). Labelling is consistent with that introduced in
Fig. B.2.

To shed more light on this result, the upper row in Figure B.6 depicts the average hole (black,
solid), electron (black, dashed) and radiative recombination (red) rate along the c-axis when the
deep QW (In0.125Ga0.875N well) is (a) closest to the n-side (position 1), (b) in the centre of the
MQW stack (position 2) and (c) closest to the p-side (position 3). Focusing on the VCA data,
Figs. B.6 (i) (a-c), we see the cause of the dominant recombination from the n-side QW: the
hole density is always high in this region, independent of which well is closest to the n-side. In
particular, the p-side QW fails to capture holes effectively and consistently has the lowest hole
density. We note that a similar behavior is also found in the nextnano calculations discussed in
Sec. B.4.1.

Given that our VCA ddfermi approach and nextnano treat (In,Ga)N as a homogeneous
alloy that can be described by averaged material parameters which do not vary throughout the
wells (no alloy fluctuations included), it allows us also to compare the implemented methods for
quantum corrections in DD simulations. Here, as discussed above, nextnano builds on the widely
used Schrödinger-Poisson-DD model while ddfermi utilizes the recently developed LLT method.
It has been discussed and shown in the literature that the LLT method can produce results in
good agreement with the solution of the Schrödinger equation in the case of a 1-D effective mass
approximation [132, 74]. Looking at Fig. B.4 (a) (green, solid) and Fig. B.4 (b) (green) we see
that the results from our in-house developed ddfermi-based 3-D model, which employs LLT
(3-D, ddfermi), are very similar to the standard self-consistent 1-D Schrödinger-Poisson-DD
calculation underlying nextnano. This gives confidence that our LLT treatment is providing a
comparable description of the quantum corrections in the system.

Overall, Fig. B.4 (a) reveals that when including quantum corrections in the VCA calculations,
the position of the deep QW has little impact on the ratio of the relative radiative recombination,
%. From Fig. B.5 (b) one can also gain more insight into this behavior and how quantum
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corrections impact the carrier distribution in the MQW stack. In the absence of quantum
corrections but utilizing a VCA, Fig. B.5 (a), the well closest to the n-side dominates the relative
radiative recombination ratio % independent of the position of the deep well in MQW systems.
When including quantum corrections this situation is now changed: the deep QW is now the
dominant emitter independent of its position in the MQW stack.

This behavior becomes clear when analyzing the electron and hole densities as a function of
the position of the deep well in the (In,Ga)N/GaN MQWs, as shown in Fig. B.6 (ii). Looking at
the electron densities first, we find that electrons preferentially occupy the well closest to the
p-side. This effect is enhanced when the deep QW is closest to the p-side (cf. Fig. B.6 (ii) (c)). In
our previous study on uni-polar electron transport [221], we have already seen that including
quantum corrections leads to a softening of the potential barrier at the QW barrier interfaces.
This in turn can lead to an increased electron current at a fixed bias point, when compared to
a VCA system without LLT treatment, and thus the electrons can more easily ‘overshoot’ the
wells in the MQW system. As a consequence, a lower electron density in the well closest to the
n-side is observed. Turning to the hole density, the situation is different. Here, we find that
holes preferentially populate the well closest to the n-side. Only when the deep QW is closest
to the p-side, the hole density in this well is noticeably increased. However, when comparing
the distribution of holes in the MQW as a function of the position of deep well in absence
(Fig. B.6 (i)) and presence (Fig. B.6 (ii)) of quantum corrections, the results are not very different.
This indicates that quantum corrections, at least when employing a VCA, are of secondary
importance for the hole distribution. This finding is consistent with our previous results on
uni-polar hole transport [222], where we have discussed that due to the high effective hole
mass and the small valence band offset, quantum corrections have a smaller impact on the hole
transport when compared to electrons. As a consequence, the distribution of holes follows a
similar pattern to that of the VCA where quantum corrections are neglected. Finally, when
looking at the ratio of radiative recombination %, it is important to note that this quantity is not
only determined by having both large electron and hole densities in the same well but also by
their spatial overlap. As one can infer from Fig. B.6 (ii) (a-c), the largest radiative recombination
rate is always observed in the deepest well. This indicates also that the spatial overlap of electron
and hole densities largest in the deep QW regardless of its position across the MQW system.
We stress again that even when including quantum corrections in the VCA calculations, the
resulting trend in % is not reflecting the trend observed in experimental studies [145].

B.4.2 Impact of a random alloy fluctuations on the carrier transport in (In,Ga)N/GaN
MQWs

In the last step, we move away from the VCA description of the system and include, in
addition to quantum corrections, also random alloy fluctuations in the calculations. Figure B.4 (b)
(blue) shows that, and this time in line with the experimental results by Galler et. al [145], the
deep QW only contributes significantly to the radiative recombination when it is closest to the
p-side (position 3). In fact, when including random alloy fluctuations in the calculations, the
well closest to the p-side always has the largest contribution to total radiative recombination, as
can be seen in Fig. B.5 (c).

To understand this behavior, Fig. B.6 (iii) depicts the electron and hole densities in the
different wells as a function of the position of the deep well in the MQW systems. Looking at
the electron density first, in comparison to the VCA calculations both including and excluding
quantum corrections, random alloy fluctuations lead a reduction in electron density at the n-side
QW. As discussed above and previously, quantum corrections can lead to increased electron
transport, and including alloy fluctuations adds further to this effect due to the softening of the
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barrier at the well interfaces [221]. As a consequence, the electrons can more easily ‘overshoot’
the wells in the MQWs, which can also be seen in the increased electron density beyond the p-
side QW when alloy fluctuations and quantum corrections are included. However, in comparison
to the VCA result including quantum corrections, the electron density in the p-side well is only
slightly affected by alloy fluctuations.

In contrast, hole densities in the p-side QW are more dramatically changed by alloy fluctua-
tions. As Figs. B.6 (ii) and B.6 (iii) show, in comparison to the VCA description, alloy fluctuations
lead to an increase in the hole density in the p-side QW (position 3) even when the deep QW
is closest to the n-side (position 1) or in the centre (position 2) of the MQW system. While the
smoothing of the well barrier interface can increase hole transport, as in the case of electrons,
there are now also alloy disorder induced localization effects to contend with. As discussed in
our previous work, these localization effects are detrimental to hole transport [222] and result
in an increased hole density in the p-side QW. As a consequence, the well closest to the p-side
dominates radiative recombination

We note that there is still a reasonable hole density present in the n-side QW (Fig. B.6 (iii) (a-
c)). In general, the distribution of carriers will also depend on the GaN barrier width and a 5
nm barrier is narrow enough to allow for some hole transport across the MQW [199]; a similar
dependence of hole transmission on the barrier width has been seen in previous non-equilibrium
Green’s function studies [220]. Thus we expect that increasing the barrier width will mainly lead
to a reduction of the hole density in the well furthest away from the p-side, but should to a lesser
extent affect the hole density in the well closest to the p-side. Therefore, even for a larger barrier
width than the here considered 5 nm, we expect that the recombination will still be dominated
by the p-side QW.

We note that based on the VCA results we did not consider the EBL in the atomistic calcu-
lations. In general the EBL needs to be treated with an atomistic resolution. Previous studies
of (Al,Ga)N barriers in uni-polar device settings have found that the impact of these barriers is
lower than what is expected from a 1-D simulation for both electrons [45] and holes [231]. Thus
given that our VCA calculations show that the presence of the EBL is of secondary importance
for our study, we expect a similar conclusion when treating the EBL with alloy fluctuations.
Therefore, it is unlikely that the EBL impacts the here presented result, however this question
may be targeted in future studies.

B.5 Conclusions

In this work we apply a 3-D quantum corrected multiscale simulation framework to gain
insight into the impact of random alloy fluctuations on the electron and hole distribution across
the active region of an (In,Ga)N/GaN LED. To study the spatial distribution of carriers we have
followed literature experimental studies [145] and analyzed the radiative recombination ratio in
a multi-quantum well system, where one of the wells in the system has a higher indium content
(deeper well) and its position is varied within the stack.

The here considered MQW systems are not only of interest for a comparison with experiment,
they provide also the ideal opportunity to benchmark and validate results from our in-house de-
veloped 3-D multiscale simulation framework against commercially available software packages.
To do so we treat the QWs in a virtual crystal approximation (VCA), to mimic the 1-D simulation
widely used in the literature for (In,Ga)N QWs and implemented in the commercial software
package nextnano. In addition, this study allows us also to compare the different schemes to
account for quantum corrections (localization landscape theory vs. Schrödinger-Poisson-DD
simulations) in the simulations. Overall, this analysis showed very good agreement between
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results obtained from our in-house software and nextnano (without random alloy fluctuation).
Equipped with this benchmarked model, our analysis reveals that including (random) alloy

fluctuations in the calculations is vital for reproducing trends seen in experiment. More specifi-
cally, when using the widely employed virtual crystal approximation (VCA), the hole density
in the well closest to the p-doped region of the device is significantly reduced compared to our
atomistic random alloy calculation. As a consequence, and in contrast to the experiment, in VCA
the well closest to the p-side contributes very little to the radiative recombination process, an
effect that can be reduced by accounting for quantum corrections. While this leads to enhanced
radiative recombination from the well closest to the p-side, at least when this well is the deep
well, it still does not reflect the trends observed in the experimental studies. However, when
including random alloy fluctuations and quantum corrections in our 3-D simulation framework,
these effects lead to an increase in the hole density in the well closest to the p-side. Consequently,
this well dominates the radiative recombination process in line with the experimental data. We
note that in addition to quantum corrections and alloy fluctuations no further ingredients are
required (e.g. multi-population model) to explain the experimentally observed trends. Therefore,
our calculations highlight that alloy fluctuations are a key ingredient in simulations guiding the
design of III-N based devices. Thus, the here developed model presents an ideal starting point
for future calculations.
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(ii) VCA + LLT
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(iii) Random alloy + LLT
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Figure B.6 – Hole density (black, solid), electron density (black, dashed), and radiative recombi-
nation rate (red, solid) averaged over each atomic plane along the transport direction. Results
from calculations building on (i) a virtual crystal approximation (top), (ii) a virtual crystal in-
cluding quantum corrections via localization landscape theory (LLT) (center) and a (iii) random
alloy description including LLT-based quantum corrections (bottom); the deep well is located at
(a) the n-side (left), (b) the center (middle) and (c) the p-side (right). The data are shown on a log
scale.
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We show the importance of using a thermodynamically consistent flux discretiza-
tion when describing drift-diffusion processes within light emitting diode simula-
tions. Using the classical Scharfetter-Gummel scheme with Fermi-Dirac statistics
is an example of such an inconsistent scheme. In this case, for an (In,Ga)N multi
quantum well device, the Fermi levels show an unphysical hump within the quan-
tum well regions. This result originates from neglecting diffusion enhancement
associated with Fermi-Dirac statistics in the numerical flux approximation. For
a thermodynamically consistent scheme, such as the SEDAN scheme, the humps
in the Fermi levels disappear. We show that thermodynamic inconsistency has

189
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far reaching implications on the current-voltage curves and recombination rates.

C.1 Introduction

In recent years drift-diffusion simulations have offered a numerically attainable method
for studying carrier dynamics in a wide variety of devices including light-emitting diodes
(LEDs) [237, 225, 219], transistors [251, 91] and solar cells [232, 255]. The physical interpretation
of the model is quite straightforward: carriers in a device tend to diffuse from regions of high
carrier density to low, and have drift motion due to an applied force such as an electric field in
the device. On the other hand, the numerical implementation of the model can carry pitfalls
which lead to an incorrect description of the device behaviour as we will highlight below in
detail.

The purpose of this publication is therefore to show the practical unphysical implications of
disobeying thermodynamic consistency. In the stationary case, thermodynamic consistency for
discretized drift-diffusion equations can be defined by the demand that the zero bias solution
coincides with the thermodynamic equilibrium. In the transient case, it is closely related to the
fact that, for boundary conditions compatible with the thermodynamic equilibrium, the solution
converges to this equilibrium when time tends to infinity. It is already known that disobeying this
property causes non-physical dissipation in the steady state, see [26]. However, the inconsistent
discrete approximation of the numerical fluxes has also more direct consequences for the quasi
Fermi potentials and is thus important for accurately describing the physics of a device in the
frame of drift-diffusion simulations. If one inconsistently approximates the fluxes the quasi
Fermi level will show a completely wrong behavior in for instance quantum well regions, which
are at the heart of modern LEDs. This has a knock-on effect for the description of the carrier
densities and thus also recombination and current-voltage (IV) curves, which we will illustrate
with an (In,Ga)N quantum well structure, a material system of strong interest for energy efficient
solid state lighting [158] and for which considerable effort has been undertaken to develop
advanced carrier transport models [221].

For the Boltzmann distribution, the classical Scharfetter-Gummel scheme [239] presents such
a thermodynamically consistent scheme. Strictly monotonically increasing non-Boltzmann dis-
tribution functions lead to diffusion enhancement. Various extensions of the Scharfetter-Gummel
scheme have been suggested to account for this effect, see [228, 171, 249]. Unfortunately, these
schemes are not thermodynamically consistent. In [184, 185] a thermodynamically consistent
generalization for Blakemore statistics (which is itself a special case of [120]) is presented in
the spirit of [239] by solving local Dirichlet problems. But this generalization requires solving
local nonlinear equations during assembly and the iterative solution of the coupled system. It is
therefore computationally prohibitively expensive. A computationally more affordable approach
is presented in [67]. On the other hand, in [26] the author presents another extension of the
Scharfetter-Gummel scheme using a proper average of the nonlinear diffusion guaranteeing
thermodynamic consistency for a specific choice of the distribution function. An alternative inter-
pretation of this approach based on averaging the diffusion enhancement for a very general class
of statistical distribution functions was given in [186]. Finally, the SEDAN scheme [265, 50, 2]
includes the nonlinearity in the drift instead of the diffusion part of the flux and thus also yields
a thermodynamically consistent scheme.

The remainder of this paper is organized as follows: In Section C.2, we describe the bipolar
drift-diffusion model for charge transport in semiconductors. Its finite volume discretization
including the flux discretizations is described in Section C.3. The formal definition of discrete



C.2. Drift-diffusion equations and diffusion enhancement 191

thermodynamic consistency is also presented in this section. We compare thermodynamically
consistent and inconsistent schemes in Section C.4 by studying the distribution of densities and
quasi Fermi levels within an (In,Ga)N quantum well (QW) system, which is embedded in a p-i-n
junction. Finally, we conclude in Section C.5.

C.2 Drift-diffusion equations and diffusion enhancement

We briefly introduce a model based on nonlinear partial differential equations which describes
bipolar charge transport in a semiconductor. More details can be found in [128]. The dependence
of the carrier densities n and p on the chemical potentials for electrons and holes ηn and ηp
are described by a statistical distribution function F as well as conduction and valence band
densities of states Nc and Nv via the state equations n = NcF (ηn) and p = NvF (ηp). Typical
choices for the distribution function are F (η) = exp(η), the so-called Boltzmann approximation,
or F (η) = F1/2(η) = 2√

π

∫∞
0

E1/2

eE−η+1
dE, namely the Fermi-Dirac integral of order 1/2 describing

degenerate semiconductors.
The chemical potentials are related to the quasi-Fermi potentials of electrons and holes ϕn

and ϕp via
ηn = (q(ψ −ϕn)−Ec)/(kBT ) and ηp = (q(ϕp −ψ) +Ev)/(kBT ).

Here q denotes the elementary charge, ψ the electrostatic potential, kB the Boltzmann constant,
T the temperature and Ec and Ev the conduction and valence band-edge energies. This model
assumes that charge carriers behave as if they are in a bulk material, described by a 3-D density
of states. In a slowly varying potential this is a valid description, however in a quantum well
system the abrupt interface requires a more advanced treatment. To account for the quantum
mechanical nature of electrons and holes one option is to solve the Schrödinger equation for
the confining potential energy formed by Vc,v = Ec,v − qψ. This is a numerically demanding
approach, as the Schrödinger equation is an eigenvalue problem which would need to be solved
self-consistently coupled to Poisson and drift-diffusion equations. While such a calculation
is feasible in 1D, extending this to 2D or 3D structures is numerically prohibitive. Therefore,
in recent years significant efforts have been undertaken to establish methods that account for
quantum corrections but are computationally cheaper [129, 225]. One of these approaches is
based on the so-called localization landscape theory (LLT), which allows to extract a (non-local)
effective potential. It has been shown that LLT provides a good approximation of the single
particle ground states, not only in square wells but also triangular wells which are relevant for
systems with a polarization field – such as (In,Ga)N QWs [74]. The resulting (effective) confining
potentials, Eeff

c,v , exhibit band edges that are softened and approximate the finite extent of carrier
wavefunctions 1. In the framework of LLT a linear system of equations is solved to determine the
effective potential without introducing extra free parameters [132]. Our implementation of this
method in conjunction with a drift-diffusion based carrier transport solver is discussed in more
detail in [219] and [221]. In [219] we have compared results of our quantum corrected drift-
diffusion model employing LLT with the results of a commercially available software package
utilizing a ‘standard’ Schrödinger-Poisson solver. Our findings indicate that LLT can produce
results in good agreement with the fully coupled Schrödinger-Poisson-drift-diffusion solver,
highlighting that LLT captures quantum mechanical corrections sufficiently. In recent years this
method has been used to study transport behaviour of numerous semi-conductor structures
include LEDs [202, 193, 203, 236], blocking layers [231] and superlattices [256]; moreover, these

1. From here on within this work Ec,v shall refer to the band edge values which are modified to account for the
effective potential, Ec,v ≡ Eeff

c,v .
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methods have been used successfully alongside experimental studies to gain insight into device
behaviour [203, 236].

We model a bipolar semiconductor device as a domain Ω ⊂ Rd where the carrier transport in
a self-consistent electrical field is described by a system of partial differential equations. In the
steady-state case this drift-diffusion system consists of Poisson’s equation for ψ and continuity
equations for electrons and holes:

−∇ · (ε0εr∇ψ) = q(C + p −n), ~x ∈Ω, (C.1)

−∇ · jn = −qR, ∇ · jp = −qR, ~x ∈Ω. (C.2)

Here, εr is the relative permittivity, C is the net doping profile, and R = R(n,p) describes carrier
recombination. Electron and hole current densities can be expressed in terms of quasi-Fermi
potentials by

jn = −qµnn∇ϕn, jp = −qµpp∇ϕp, (C.3)

or for any strictly monotonic Fermi-like distribution function F (η) in drift-diffusion form

jn = qµn
[
UT g

( n
Nc

)
∇n−n∇

(
ψ − Ec

q

)]
and jp = −qµp

[
UT g

( p
Nv

)
∇p+ p∇

(
ψ +

Ev
q

)]
, (C.4)

where µn and µp denote the electron and hole mobilities, respectively, and UT = kBT /q is the
thermal voltage. The factor g can be defined in terms of densities, g(x) = x(F −1)′(x), for x ∈ R.
This factor is the so-called diffusion enhancement appearing as a density-dependent modification
factor in the generalized Einstein relation, see [257], leading in general to a non-linear diffusion
coefficient. For the Boltzmann distribution, F (η) = exp(η), we have g ≡ 1 and the current
expressions (C.4) reduce to the usual ones with linear diffusion.

C.3 Finite volume space discretization

We discretize the domain Ω using the Voronoï box based finite volume method introduced
in [204], also known as “box method” due to [15]. It uses a simplical boundary conforming
Delaunay grid ([248]) which allows to obtain control volumes surrounding each given collocation
point xK by joining the circumcenters of the simplices containing it, see [128] for details.

Let ∂K denote the boundary of the control volume K , and |ξ | the measure of a geometrical
object ξ. For each control volume K , we integrate the continuity equation (C.2) and apply Gauss’s
theorem to the integral of the flux divergence. Restricting our considerations to the electron
transport equation, we obtain

0 =
∫
∂K

jn ·nds −
∫
K

qR dx =
∑

L neighbor of K

∫
∂K∩∂L

jn ·nKLds −
∫
K

qR dx

≈
∑

L neighbor of K

|∂K ∩∂L|jn,KL − q|K |R(nK ,pK ),
(C.5)

where n is the internal unit normal to ∂K and nKL is the internal unit normal to the interface
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∂K ∩ ∂L for each neighbor L of K . The values nK , pK are the numerical approximations of
the densities n and p at the collocation points xK , and jn,KL are approximations of the normal
currents through ∂K ∩∂L. In the same manner the discretization of the Poisson equation can be
obtained. A more detailed discussion of this method can be found in [128].

C.3.1 Discrete thermodynamic consistency

One property which holds on a continuous level to avoid unphysical state dissipation is
the preservation of thermodynamic equilibrium [128]. Mathematically, this means that vanishing
fluxes shall imply constant quasi Fermi potentials. The classical discrete counterpart of this
property is formulated as below (see for example [186, 128]): a numerical flux j = jKL is said to
be thermodynamically consistent if it satisfies an analogous discrete relation, i.e.

j = 0 implies δϕKL = 0, (C.6)

where δϕKL = (ϕL −ϕK )/UT . Similarly, we define δηKL = ηL − ηK and δψKL = (ψL −ψK )/UT and
δEKL = (Ec,L −Ec,K )/(qUT ). We point out that the condition (C.6) holds in equilibrium. Here, we
introduce a stronger notion of thermodynamic consistency, which holds outside of equilibrium,
namely

j ≤ 0 implies δϕKL ≥ 0 and j ≥ 0 implies δϕKL ≤ 0. (C.7)

An important property of defining thermodynamical consistency like above is that the sign of the
numerical current is consistent with that of its continuous counterpart (C.3). Thermodynamic
consistency is also important, when coupling the van Roosbroeck system to heat transport
models [128]. We discuss now different numerical fluxes that may be used within a Voronoï
finite volume framework.

C.3.2 The Scharfetter-Gummel scheme

First, we introduce the well known, classical Scharfetter-Gummel flux approximation [239]
given by

jsg = j0
{
B (δψKL − δEKL)F (ηL)−B (−δψKL + δEKL)F (ηK )

}
, (C.8)

where the constant j0 is given by j0 = qµnNc
UT
hKL

for hKL = |~xK − ~xL|, and B is the Bernoulli

function, B(x) = x
exp(x)−1 . It is important to point out that Scharfetter and Gummel introduced

this numerical flux only in the Boltzmann regime, i.e. F = exp. In this case, the flux is thermo-
dynamically consistent in the sense of (C.6). However, once we leave the Boltzmann regime,
i.e. F , exp, and continue using (C.8) this numerical flux will no longer be thermodynamically
consistent.

C.3.3 SEDAN scheme

Next, we present the SEDAN scheme, which yields a thermodynamically consistent approach
also for state equations which do not necessarily rely on the Boltzmann approximation. The
earliest reference we could find for such a excess chemical potential scheme is the source code
of the SEDAN III simulator [265], which explains the reason we use this name. A numerical
analysis focused comparison of this flux approximation is given in [50] and simulation results
are presented in [2]. The scheme is motivated by rearranging the drift part to include the excess
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Figure C.1 – Conduction band edge (black) and quasi Fermi energy (red) at a bias of 3.3V
(a) when using Boltzmann statistics, (b) when incorrectly using the Scharfetter-Gummel (SG)
scheme with Fermi-Dirac (FD) statistics, and (c) when correctly using the SEDAN scheme with
Fermi-Dirac statistics.

chemical potential, νex = lnF (η)− η, yielding

jsedan = j0
{
B (QKL)F (ηL)−B (−QKL)F (ηK )

}
(C.9)

with

QKL = δψKL − δEKL + νexL − ν
ex
K = δψKL − δEKL − δηKL + ln

F (ηL)
F (ηK )

. (C.10)

Note that, using the definition of QKL and the fact that exB(x) = B(−x), one can reformulate the
SEDAN flux as

jsedan = j0B (QKL)F (ηL)
(
1− eδϕKL

)
.

Therefore, it is easy to see that the SEDAN flux satisfies (C.7), since both B(QKL) and F (ηL) are
positive: it is a thermodynamicaly consistent numerical flux.

Note that when applying Boltzmann statistics νex = 0 and the SEDAN flux becomes equivalent
to the Scharfetter-Gummel expression. Therefore, in the next section, when displaying results
using Boltzmann statistics, we only show results from one numerical scheme.

C.4 Simulations

To illustrate the importance of using thermodynamically consistent flux approximations, we
study a simple (In,Ga)N multi QW (MQW) system. In particular, we consider three QWs and
the same set of parameters as in [219]. For large negative values of η (η ≤ −2, which correspond
roughly to densities below 14% of the effective density of states Nc, thus a low carrier density
regime in the conduction band of the wells) the Boltzmann approximation provides a good
estimate of the Fermi-Dirac statistics. Therefore in certain cases Scharfetter-Gummel scheme
can offer a good description of the drift-diffusion model (e.g. Ref. [222]).

On the other hand there are situations where Boltzmann statistics will not suffice and the
importance of using a thermodynamically consistent scheme becomes apparent. Figure C.1 (a)
displays the conduction band edge and quasi Fermi energies of the MQW system when treated
using Boltzmann statistics at a bias of 3.3V. Applying the Scharfetter-Gummel scheme (C.8) to
Fermi-Dirac statistics for a bias of 3.3V leads to humps in the quasi Fermi energy within each
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QW, see Figure C.1 (b).
Recalling the condition (C.7), for thermodynamically consistent schemes, the discrete gra-

dient of the discrete quasi Fermi level should indicates the direction of the discrete electron
flow (as it is in the continuous case, according to (C.3)). However in Figure C.1 (b), one can see
that, when the Scharfetter-Gummel scheme is applied to Fermi-Dirac statistics, resulting in a
thermodynamically inconsistent scheme, the direction of electron flow is to the right outside the
QW regions (e.g. between -5 nm and 3 nm) but to the left inside the QW regions (e.g. between
10 nm and 15 nm), which is not in accordance with (C.7). Moreover, as there is no generation of
carriers in the system this change in direction of the electron flux is highly unphysical.
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Figure C.2 – Numerical electron flux averaged over each atomic plane at a bias of 3.3V shown for
Boltzmann statisitcs (black), Fermi-Dirac statistics incorrectly using the Scharfetter-Gummel (SG)
flux discretization (red) and Fermi-Dirac statistics correctly using the SEDAN flux discretization
(blue).

These humps in the quasi Fermi level are not present if one uses the Scharfetter-Gummel
scheme with the Boltzmann approximation, which is a thermodynamically consistent scheme
(Figure C.1 (a)). Similarly, using Fermi-Dirac statistics with the SEDAN scheme does not exhibit
the unphysical humps in the Fermi level (Figure C.1 (c)).

Another perspective to interpret thermodynamic inconsistency is to note the incorrect in-
terplay between quasi Fermi energies and local current fluxes. We see in Figure C.2 that the
local numerical electron fluxes are positive and decrease monotonically across the QW regions.
This is true for all three settings, that is, Boltzmann statistics in combination with the classical
Scharfetter-Gummel scheme, as well as Fermi-Dirac statistics using both consistent and inconsis-
tent numerical schemes. By our definition of a thermodynamically consistent scheme (C.7), a
positive local numerical flux should imply a negative quasi Fermi potential discrete gradient. In
fact, this is true for both consistent settings as one can see in Figure C.1 (a) and (c). However, for
the inconsistent case the derivative of the quasi Fermi energies can become positive inside the
wells, Fig. C.1 (b), also in disagreement of how the flux should behave at the continuous level
(see the relation between the flux and the quasi Fermi potential (C.3)).

Previous studies of the numerical flux approximations have shown that a thermodynamically
inconsistent scheme can result in the incorrect sign of the particle flux [186]. This is also reflected
by the fact that (C.6) holds only for consistent schemes, which guarantee the physically correct
sign of the current also far from equilibrium.
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Figure C.3 – Electron density at a bias of 3.3V (a) when using Boltzmann statistics, (b) when
incorrectly using the Scharfetter-Gummel (SG) scheme with Fermi-Dirac statistics, and (c) when
correctly using the SEDAN scheme with Fermi-Dirac statistics.

The physical reason of why an inconsistent scheme produces humps within the QWs becomes
apparent when looking at the corresponding densities at a bias of 3.3V. The Fermi-Dirac function
grows like a polynomial while the Boltzmann approximation grows for large densities exponen-
tially, see for example Figure 50.9 in [128]. This different behaviour leads to nonlinear diffusion,
the so-called diffusion enhancement, for non-Boltzmann statistics, see (C.4), or [186]. The
Scharfetter-Gummel scheme neglects the diffusion enhancement assuming only linear diffusion,
which has a knock-on impact on the carrier density: the densities calculated using Boltzmann
statistics (Fig. C.3 (a)) and using Fermi-Dirac statistics with the Scharfetter-Gummel scheme
(Fig. C.3 (b)) are visibly indistinguishable. However, in order to produce the same density
between a Boltzmann and Fermi-Dirac calculation, the quasi Fermi levels must differ. This
results in the unusual behaviour of the quasi Fermi level exhibited in Figure C.1 (b). Comparing
these densities with the correctly calculated density using Fermi-Dirac statistics in combination
with the thermodynamically consistent SEDAN scheme (Figure C.3 (c)) we see that the choice
of statistics function will impact carrier density in the well, and more strongly in the barrier
regions at the here chosen example bias of 3.3V.

Because it influences the carrier density, thermodynamic inconsistency has direct implications
for the computed recombination rates as well as the current-voltage (IV) curves. Next, we
compare the recombination rates calculated using Boltzmann statistics with those calculated
while incorrectly using the Scharfetter-Gummel scheme implementing Fermi-Dirac statistics.

This is highlighted in Figure C.4 (a), where the differences between Fermi-Dirac and Boltzmann-
like behaviour are shown for the three recombination rates, calculated via

∆ log(recomb.) = log(RSEDAN
i )− log(RBoltzmann

i ) ,

where Rsi is the recombination rate associated with the process i (i ∈ {Shockley–Read–Hall,
Radiative,Auger}) calculated with the scheme s (s ∈ {Boltzmann, SEDAN}). From this figure it
becomes clear that the Boltzmann behaviour overall underestimates the recombination across
the multi QW region of the device. In particular, the Auger recombination is underestimated
by up to two orders of magnitude at a bias of 3.3V. These differences increase as the bias
is increased (not shown). This can have consequences for overall device behaviour such as
the internal quantum efficiency and the IV curves. The latter are shown in Figure C.4 (b),
where the decreased recombination current displayed in the Boltzmann and thermodynamically
inconsistent Fermi-Dirac scheme leads to an underestimate of the current density by close to an
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Figure C.4 – (a) Difference in magnitude of the Shockley-Read-Hall (SRH, black), radiative
(red) and Auger (blue) recombination rates between Fermi-Dirac and Boltzmann statistics at a
bias of 3.3V, calculated as described in the main text. (b) Current density-voltage (IV) curves
using Boltzmann statistics (black, dashed), Fermi-Dirac statistics using the Scharfetter-Gummel
scheme (SG, red) and Fermi-Dirac statistics using the SEDAN scheme (black, solid), shown on a
log scale.

order of magnitude at 3.6V.
The results highlighted above indicate that Fermi statistics implemented using a thermo-

dynamically inconsistent scheme will result in Boltzmann-like behaviour in LED simulations
– at least in terms of carrier and current densities. If this is extended to laser simulations the
consequences can be even more dramatic, as the gain calculation depends on the difference
between the electron and hole quasi Fermi energies [14], expressed by the so-called Fermi voltage.
In this case the unphysical humps seen in Figure C.1 (b) will lead to an incorrect prediction of
the transparency density.

C.5 Conclusion

In this paper, we have shown the importance of using a thermodynamically consistent flux
discretization when describing drift-diffusion processes within quantum well devices.

Using the classical Scharfetter-Gummel scheme with Fermi-Dirac statistics is an example of
such an inconsistent scheme. Here we studied an (In,Ga)N multi quantum well structure as an
example since it is a very important material system for optoelectronic devices. In this case, the
Fermi levels show humps within the quantum wells resulting in an unphysical description of the
direction of the current, e.g. assuming the usual continuous expression. This is explained by the
omission of diffusion enhancement from the numerical current expression, that leads to a similar
density distribution as using Boltzmann statistics. This has a knock-on effect for recombination
and current-voltage behaviour, where using Fermi-Dirac statistics with a thermodynamically
inconsistent scheme may incorrectly predict a Boltzmann-like behaviour.

Contrarily, for a thermodynamically consistent scheme, such as the SEDAN scheme, these
unphysical humps in the Fermi levels disappear and accurate current curves and recombination
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processes are predicted. Thus, thermodynamically consistent schemes are essential to address
open questions, such as the efficiency drop in modern light emitting devices and to reliably
guide their design.



AppendixD
Theoretical study of the impact of
alloy disorder on carrier transport
and recombination processes in deep
UV (Al,Ga)N light emitters

This work is an article published in Applied Physics Letters [133], in collaboration with
Robert Finn, Michael O’Donovan, Patricio Farrell, Timo Streckenbach, Thomas Koprucki and
Stefan Schulz.

Aluminium gallium nitride ((Al,Ga)N) has gained significant attention in recent
years due to its potential for highly efficient light emitters operating in the deep
ultra-violet (UV) range (< 280 nm). However, given that current devices exhibit
extremely low efficiencies, understanding the fundamental properties of (Al,Ga)N-
based systems is of key importance. Here, using a multi-scale simulation frame-
work, we study the impact of alloy disorder on carrier transport, radiative and
non-radiative recombination processes in a c-plane Al0.7Ga0.3N/Al0.8Ga0.2N quan-
tum well embedded in a p-n junction. Our calculations reveal that alloy fluctu-
ations can open "percolative" pathways that promote transport for the electrons
and holes into the quantum well region. Such an effect is neglected in conven-
tional, and widely used transport simulations. Moreover, we find that the result-
ing increased carrier density and alloy induced carrier localization effects signifi-
cantly increase non-radiative Auger-Meitner recombination in comparison to the
radiative process. Thus, to avoid such non-radiative process and potentially re-
lated material degradation, a careful design (wider well, multi quantum wells)
of the active region is required to improve the efficiency of deep UV light emitters.

Light emitters operating in the ultraviolet (UV) spectral range have received significant
attention in recent years due to their importance for a wide range of applications [182]. A
region of particular interest is the deep-UV-C wavelength window (< 280 nm), which enables
for instance water purification and sterilization. Aluminium gallium nitride ((Al,Ga)N) based
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light emitting diodes (LEDs) are ideal candidates for such applications since their emission
wavelengths can in principle be tuned across the entire UV spectrum and they do not require the
use of toxic mercury. Unfortunately, the external quantum efficiency (EQE) of (Al,Ga)N-based
LEDs is very low (≤1%) in the deep UV-C range and multiple factors contribute to this, e.g. low
light extraction efficiencies and poor carrier injection, high defect densities and thus reduced
radiative recombination in the active region [4, 182].

Understanding the fundamental material and device properties is of central importance
in improving the efficiency of such devices. Theory and simulation plays an important role
for guiding the device design. However, III-N systems and alloys, such as (In,Ga)N, (Al,In)N
but also (Al,Ga)N, exhibit in general very different properties when compared to other III-V
materials, e.g. (In,Ga)As. For instance, experimental and theoretical studies reveal strong
alloy fluctuation induced carrier localization effects in III-N alloys and heterostructures [82,
243, 242, 103, 261, 134]. Accounting for such effects present a significant challenge for an
accurate theoretical and numerical description, since a three-dimensional (3D) treatment of, for
instance, a quantum well (QW), is required ideally on an atomistic level. Numerical challenges
are further amplified when it comes to simulating LED structures, which require not only
large 3D supercells but also self-consistent calculations. Significant progress has been made
to address these questions [225, 103, 221]. But, in comparison to (In,Ga)N-based systems,
understanding the fundamental impact of alloy fluctuations on electronic, optical and carrier
transport properties in (Al,Ga)N-based QW systems is sparse.

Here, we target these questions for an Al0.7Ga0.3N/Al0.8Ga0.2N QW embedded in p- and n-
doped regions, thus a system relevant for deep UV (Al,Ga)N-based LEDs. The calculations build
on our recently established quantum corrected multi-scale simulation framework that connects
atomistic electronic structure theory with a drift-diffusion scheme to analyze carrier transport.
To target recombination processes, the model is coupled with the widely used ABC model [226],
where empirical A, B and C coefficients from the literature are employed. Our results indicate
that alloy fluctuations can promote carrier transport through the intrinsic barriers by opening
up percolative paths that are lower in energy. These pathways appear to improve the carrier
injection into the QW active region – a feature that is neglected in ‘conventional’ calculations
utilizing a virtual crystal approximation (VCA). Moreover, while we find that alloy disorder
and carrier localization effects enhance radiative recombination, we find also that non-radiative
Auger-Meitner recombination processes are strongly increased. The resulting increase in high
energy carriers via non-radiative Auger-Meitner recombination may also lead to a degradation
of the material as indicated in experimental studies [148]. As a consequence, our results suggest
that alloy disorder can have a detrimental effect on the device efficiency. To reduce Auger-Meitner
related processes, increasing the well width or employing multi QW (MQW) active regions to
reduce the carrier density may be a way to improve quantum efficiencies in UV emitters, as
the above discussed percolation paths may be exploited to distribute the carriers more evenly
between MQWs.

In order to investigate the impact alloy disorder has on carrier transport and recombination
processes in (Al,Ga)N-based LEDs, we describe the electronic structure of the active region by
means of a empirical nearest neighbour sp3 tight-binding (TB) model. We note that while we treat
the TB matrix elements as free parameters to reproduce hybrid-functional DFT band structures,
the TB matrix could also be constructed from maximally localized Wannier functions generated
from DFT [259]. This would thus provide an avenue to extend our method towards a DFT-based
TB Hamiltonian. In general, our employed TB framework treats strain and polarization field
fluctuations due to random alloy fluctuations with an atomistic resolution. We have recently
employed the TB model to study the influence of alloy fluctuations on the electronic and optical
properties of (Al,Ga)N/AlN QWs. Our work revealed that random alloy fluctuations are sufficient
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Figure D.1 – Schematic illustration of the (Al,Ga)N-based p-i-n system underlying the simula-
tions. The intrinsic barriers plus quantum well region is denoted as the "atomistic" mesh in the
main text, while the n- and p-regions are described by a sparser device mesh.

to lead to carrier localization effects in such systems. A detailed description of the model and
electronic structure results is given in Ref. [134].

To connect our TB model to drift-diffusion (DD) simulations we have recently developed the
following procedure [221]. As a first step a "local" TB Hamiltonian is constructed. By diagonalis-
ing this local Hamiltonian an energy landscape that accounts for alloy induced fluctuations in
the conduction and valence band profile is obtained. This energy landscape with an atomistic
resolution is mapped onto a finite element mesh using the software library pdelib [141]. The
underlying finite element mesh has as many nodes as the atoms in the system. To target LED
device simulations, the "atomistic" mesh is connected to a sparser device mesh representing
p- and n-doped regions. Using localization landscape theory (LLT) [225] in conjunction with
the software package ddfermi, [104] quantum corrected DD simulations are performed. More
details about the carrier transport calculations, the mesh generation and numerical aspects can
be found in Refs. [221] and [128].

The above outlined quantum corrected multi-scale simulation framework is here applied to
a p-i-n system where the intrinsic (i) region contains a 2.3 nm wide Al0.7Ga0.3N QW embedded
into approximately 10 nm wide intrinsic Al0.8Ga0.2N barriers, following the UV-C device design
in Ref. [235]. The atomistic mesh region describing the active region of the device has the
dimensions of roughly 17.4× 15.1× 22.2 nm3, corresponding to ≈ 560,000 atoms, and is coupled
with a sparser device mesh by adding 40 nm of n- and p-doped regions, respectively. The doping
density is 5× 1019 cm−3 following the set-up described in Ref. [244]. A schematic illustration
of the structure is given in Fig. D.1. To connect the conduction band and valence band edges
between the atomistic and the sparser mesh, we use a blend of Gaussian softening and LLT to
avoid discontinuities at such an interface. Details on the Gaussian softening and the effect of
LLT on the energy landscape can be found elsewhere [221]. To test the impact of the in-plane
dimensions of the simulation cell and thus also the influence of the alloy microstructure on the
results, the calculations have been repeated for different cell sizes (not shown). These different
calculations revealed in general the same trends as reported below, so that the above detailed
simulation set up gives a representative picture of the impact of alloy disorder on the carrier
transport in the discussed device.

To investigate the impact alloy fluctuations have on the carrier transport and the recombina-
tion process we proceed as follows: Our starting point is a fully atomistic description, meaning
that alloy fluctuations in both the intrinsic (Al,Ga)N QW and (Al,Ga)N barriers are accounted
for (cf. Fig. D.1). To study the impact of alloy disorder on the carrier injection, we investigate
a second set-up in which alloy fluctuations in the (Al,Ga)N QW are treated on an atomistic
level, however the intrinsic (Al,Ga)N barriers are described in a VCA. Finally, we employ a
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Figure D.2 – (a) Current-voltage curves, on a log-scale, for an Al0.7Ga0.3N/Al0.8Ga0.2N quantum
well embedded in a p-n junction. The data are shown for simulations that (i) account for random
alloy (RA) fluctuations in the well and barriers (blue), (ii) account for RA fluctuations in the well
but treat the barrier in a virtual crystal approximation (VCA) (red), and (iii) use a VCA in the
entire p-i-n structure (pink). The inset shows the I-V curves on a linear scale.

VCA description of the entire QW plus barrier system. This last setting is basically equivalent
to one-dimensional carrier transport simulations widely employed in commercially available
software packages. In order to establish a comparable VCA description of the targeted system,
without introducing additional free parameters (e.g. alloy dependence and or bowing parameters
of material parameters), the atomistic energy landscape is averaged over the corresponding
areas (e.g. well or barrier). To achieve this averaging procedure, the QW was treated initially
with Dirichlet boundary conditions so that, except from alloy fluctuation induced variations,
the conduction and valence band edges are flat. A VCA description of the barriers is then
straightforward and achieved by averaging the atomistic energy landscape over the entire barrier
volume. However, the QW VCA description is slightly more complicated as piezoelectric and
spontaneous polarization induced built-in fields across the QW cause the band edges to slope.
Thus, a volume average over the QW region is not possible. In this case, the atomistic energy
landscape is averaged across each c-plane along the growth direction (c-axis). While this can
lead to slight fluctuations in the energy landscape, the approach chosen here is better suited
to compare the different calculations, since it avoids constructing a VCA that requires specific
information on how to average e.g. material and TB parameters with composition, or to perform
a separate VCA built-in field calculation.

Building on these different simulation set-ups, Fig. D.2 displays the calculated current-voltage
(I-V) curves of the above described (Al,Ga)N p-i-n structure using (i) the fully atomistic approach
(RA), (ii) accounting for alloy fluctuations in the well but not the barrier (RA QW/VCA Barriers)
and (iii) a VCA of the entire system. One can infer from this figure that the fully atomistic
treatment gives independent of the applied voltage the highest current density, while the full
VCA description of the system (well and barriers) results in the lowest density. Figure D.2 also
reveals that the current density, especially at lower bias values, is increased when accounting for
alloy fluctuations in the barrier; this can be seen from the comparison of the I-V curves for the
fully atomistic and ‘partial’ VCA (RA QW, VCA Barriers) treatment. Thus, our results indicate
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Figure D.3 – 3D isosurface plot of the current density in the intrinsic (Al,Ga)N quantum well
and barrier regions at a bias of 5.5 V, using the fully atomistic description. The current density
for the holes (blue) and electrons (red) are plotted at 700 A cm−2, reflecting locally high current
densities due to alloy fluctuations; dashed black lines indicate well boundaries.

that alloy fluctuations are beneficial for the carrier injection into the QW region.
To visualise this aspect further, Fig. D.3 depicts an isosurface plot of the current density in

the intrinsic (Al,Ga)N QW and barrier regions, cf. Fig. D.1, at a fixed bias point of 5.5 V obtained
from the fully atomistic description of the system. One can infer that alloy fluctuation induced
band edge energy fluctuations lead to regions of higher and lower current densities. Thus, the
fluctuations in the band edge energies enable percolation paths into the active region; such
pathways are absent in a VCA description of the system. We note that this percolation path effect
has also be observed in (In,Ga)N QWs and (Al,Ga)N barriers [263, 45, 231, 264]. We note that
both electron and hole transport are affected by these percolation paths. However, due to the
lower effective electron mass, the electron charge density is more smeared out, and compared
to the holes, fewer regions reach the isosurface value at which the current density is plotted in
Fig. D.3. As a consequence of these percolation paths one expects higher carrier densities in
the active region in comparison to a simulation that neglects alloy disorder. Also, as we will
see below, the percolation paths can lead to an increased hole density in the intrinsic barrier on
the n-side of the studied system. Such a situation may be beneficial for inter-well transport in
(Al,Ga)N multi-QW systems as recently reported in (In,Ga)N-based LEDs [203].

To study the impact of alloy fluctuations on the carrier transport and recombination in
(Al,Ga)N-based LED structures in further detail, Fig. D.4 depicts electron and hole carrier
densities above the turn-on voltage of the device, at a bias of 5.5 V. Figure D.4 (a) displays
the averaged carrier density, over each c-plane, for the random alloy system along the c-axis
(growth direction) together with the VCA data which neglects alloy disorder. When comparing
the averaged random alloy data with the VCA results, it becomes clear that (on average) both
electron and hole carrier densities are increased in the well when taking alloy fluctuations into
account. Figure D.4 (a) indicates that the average hole charge density does not leak as much
into the intrinsic (Al,Ga)N barrier material on the n-side of system (region below 10.7 nm),
when compared to the hole density profile in VCA; one may attribute this to alloy induced hole
localization effects which are not accounted for by the VCA description. The average electron
density extends further into the (Al,Ga)N barrier region on the p-side (region above 13 nm)
when compared to the VCA data; we relate this to the effect that alloy disorder and quantum
corrections effectively reduce the quantum confinement between well and barrier and that the
electrons are less strongly affected by alloy induced carrier localization effects as already seen
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Figure D.4 – Electron (red) and hole (blue) density along the c-axis of a Al0.7Ga0.3N/Al0.8Ga0.2N
quantum well embedded in a p-i-n junction at a bias of 5.5 V; data are shown for the intrinsic
regions of the device. (a) Averaged carrier distribution of the fully atomistic calculation over
each c-plane along the c-axis (solid lines), and the carrier distribution for the virtual crystal
approximation (dashed lines); (b) Scatter plot of the carrier distribution in the fully atomistic
calculation. The vertical dashed black lines indicate well boundaries. Note (b) is an order of
magnitude larger than (a) on the y-axis.

in (In,Ga)N-based systems [221] . However, it must be noted that the random alloy data in
Fig. D.4 (a) are averaged over each c-plane. Thus, while on average the hole density may be
smaller in e.g. the intrinsic barrier of the n-region when compared to VCA, local alloy regions
may have high hole densities. To shed light onto this behavior, Fig. D.4 (b) displays a scatter
plot of the carrier densities along the c-axis in the intrinsic (Al,Ga)N regions. The symbols give
the carrier density at each lattice site within the respective c-planes. Figure D.4 (b) reveals
strong fluctuations in the local densities which may be an order of magnitude higher than the
average densities displayed in Fig. D.4 (a). The local hole carrier density is also noticeably higher
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Figure D.5 – Radiative and Auger-Meitner non-radiative recombination rates along the c-axis of
the Al0.7Ga0.3N/Al0.8Ga0.2N p-i-n system at a bias of 5.5 V; the data are shown for the intrinsic
regions of the device. Solid lines: results from the atomistic calculations taking alloy fluctuations
into account (averaged over each c-plane). Dashed lines: data obtained from a virtual crystal
approximation of the same system; vertical dashed black lines indicate well boundaries.

when compared to the electrons. In general, due to the higher effective mass, carrier localization
for holes is more pronounced when compared to electrons [134]. Therefore, we conclude that
percolative pathways, can promote easier transport of the carriers through the barriers. Thus,
holes may transport to the n-side of the system more easily when compared to predictions from
a VCA model. This aspect is of interest when designing multi-QW-based (Al,Ga)N LEDs, since it
can help with a more equal distribution of holes between the wells, and thus be important for
recombination processes.

Equipped with this information we turn our attention now to the recombination process
in the system. To do so we employ the widely used ABC model. In the following we mainly
focus our attention on the radiative and Auger-Meitner (non-radiative) processes; with increased
current densities radiative and non-radiative Auger-Meitner processes become dominant over
Shockley-Read-Hall (SRH) recombination as these contributions scale with carrier density n as
∝ n2 (radiative) and ∝ n3 (Auger-Meitner) compared to ∝ n (SRH). We note that defect related
non-radiative processes, such as SRH and trap assisted tunnelling (TAT) processes can also
affect the device performance of UV-C (Al,Ga)N-based LEDs significantly. While we take SRH
into account, TAT processes have not been considered here but could be accounted for as a
SRH-like process with different capture rates as detailed in Ref. [233]. Turning to radiative and
Auger-Meitner (non-radiative) recombination rates, Fig. D.5 depicts these rates calculated (i)
including random alloy fluctuations and thus carrier localization effects and (ii) using VCA for
the entire system, consequently excluding alloy disorder. Figure D.5 displays the random alloy
(RA) data averaged over each c-plane. We stress that the recombination rates are calculated
using the local carrier density data, thus accounting for the effect that locally one may encounter
both high electron and hole densities. The required radiative (B) and Auger-Meitner (Cnnp
and Cnpp) recombination coefficients are taken from Ref. [244]. We note that building on this
often used carrier density dependent recombination model, the wave function character of
electrons and holes is not taken into account. While the symmetry of the wave functions
can affect radiative and non-radiative recombination rates, analyzing the spatial overlap of
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electron and hole charge density provides first insight into the impact of alloy disorder on the
recombination rates. Comparing the atomistic calculation with the VCA data it becomes clear
that both radiative and non-radiative contributions are enhanced by alloy disorder since this
can improve the carrier injection but also induce carrier localization in the wells. But, upon
further inspection, Fig. D.5 reveals that the non-radiative rate increases more strongly when
compared to the radiative. In the VCA the ratio of radiative to non-radiative peak values is
rVCA ≈ 19 while in the atomistic simulation it is rRA ≈ 2 at a bias of 5.5 V. In general, and using
the ABC model [226] here as a starting point, the radiative recombination contributes with Bn2

while the Auger-Meitner non-radiative rate with Cn3, where n is the carrier density. Thus, when
alloy disorder increases the carrier density in local regions of the well, the Auger-Meitner rate is
expected to increase more quickly than the radiative rate. Moreover, the Auger-Meitner rate is
a three-particle process and has basically two contributions, namely an electron-electron-hole
and a hole-hole-electron process [180]. Given that alloy induced carrier localization effects
are significant for holes, locally the hole-hole wave function overlap is (strongly) increased.
In turn this can result in increased Auger-Meitner rates [210]. Taking all this together, alloy
disorder and related carrier localization effects are expected to lead to a significant increase of
the non-radiative Auger-Meitner effect and thus have a detrimental effect on the performance
of (deep) UV LEDs; a similar effect has been seen (In,Ga)N-base LEDs [264]. Moreover, strong
Auger-Meitner non-radiative recombination may also lead to material degradation effects in
deep-UV LEDs, as recently indicated in experiments [148, 233].

In summary, using a quantum corrected multi-scale simulation framework, we presented
a detailed analysis of the impact of alloy fluctuations on carrier transport and recombination
processes in an Al0.7Ga0.3N/Al0.8Ga0.2N single quantum well system embedded in a p-n junction.
Understanding the fundamental properties of such systems provides useful insight into the
physics of deep UV light emitters. Our results show that alloy disorder can lead to improved
carrier injection into the active region, i.e. quantum well, through percolative pathways. Also,
these pathways can give rise to higher hole densities in the intrinsic region near the n-side of a
device, an aspect of potential interest for tailoring inter-well transport in (Al,Ga)N-based multi
quantum well systems. In general, these percolation effects are not captured by standard virtual
crystal approximations employed in many commercially available carrier transport simulation
packages. Moreover, we find an increase in the carrier density in the well which is accompanied
by alloy induced carrier localization effects. In comparison to virtual crystal simulations, both
radiative and non-radiative Auger-Meitner recombination processes are increased. We attribute
this to alloy induced carrier localization effects, resulting in high local carrier densities which
affect the Auger-Meitner effect more strongly than the radiative process. Moreover, the high
energy of such Auger-Meitner generated carriers may lead to a degradation of the material and
thus an enhancement of Shockley-Read Hall recombination. Overall, our results indicate that
alloy disorder opens up percolative pathways improving carrier transport, but the enhanced
Auger effect can have a detrimental effect on the efficiency of the device. While we have focused
here on relatively high Al contents in the well and barrier, the above drawn conclusions are also
expected to hold for systems with lower Al contents, given that our recent atomistic studies
reveal that even at only 10% Al in (Al,Ga)N hole localization effects are observed. Thus, in
general a careful design of the active region of an UV LED, e.g. by using wider wells as discussed
in recent literature [217, 262] or multi quantum wells by exploiting percolation pawthways to
improve the interwell transport, is necessary to reduce non-radiative recombination processes
and prevent material damage.
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Développement et analyse de schémas d’ordre élevé pour des modèles de convection-diffusion,
étude du comportement en temps long

Résumé

Dans cette thèse, nous nous intéressons à l’approximation numérique de problèmes de convection-diffusion,
potentiellement anisotropes, par des schémas d’ordre élevé sur maillages généraux. Notre objectif est de
proposer des méthodes fiables, précises et efficaces : les solutions numériques doivent préserver les proprié-
tés physiques des solutions continues (conservation de la masse, positivité des densités, comportement
en temps long) tout en autorisant une large gamme de paramètres de discrétisation (pas de temps grands,
maillages spatiaux généraux) et en optimisant la précision de calcul à coût donné. Les problèmes considérés
sont des équations d’advection-diffusion ainsi que des systèmes couplés de dérive-diffusion qui modélisent
les composants semi-conducteurs.

On se concentre d’abord sur une équation d’advection-diffusion seule, pour laquelle nous proposons
et analysons trois méthodes d’ordre bas de type volumes finis hybrides (HFV). Cette comparaison met en
avant la nécessité d’utiliser un schéma non-linéaire afin de préserver la positivité des solutions, tant d’un
point de vue théorique que numérique. On s’intéresse alors à l’approximation d’un système de dérive-
diffusion, constitué de deux équations d’advection-diffusion couplées avec une équation de Poisson. Pour
ce problème, on introduit un schéma non-linéaire basé sur la méthode précédente, qui préserve les bornes
des densités calculées (et en particulier leur positivité) et le comportement en temps long de la solution. Ce
schéma HFV pour la dérive-diffusion est ensuite comparé numériquement avec un schéma présentant des
propriétés similaires basé sur la méthode volumes finis en dualité discrète (DDFV).

Nous nous intéressons alors à des schémas d’ordre élevé (en espace). Ces schémas sont basés sur
des méthodes de type hybride d’ordre élevé (HHO) qui peuvent être interprétées comme des extensions à
l’ordre arbitraire des méthodes HFV. Nous introduisons deux méthodes pour les équations d’advection-
diffusion linéaires. La première est linéaire, tandis que la seconde est non-linéaire, et permet de préserver
la positivité. Pour ces deux schémas, nous prouvons l’existence de solutions discrètes et établissons des
résultats de comportement en temps long. Nous confirmons également ces résultats numériquement, et
mettons en avant la nécessité d’utiliser une méthode non-linéaire pour préserver la positivité. Par ailleurs,
on observe que la méthode non-linéaire converge à l’ordre attendu. De plus, la montée en ordre permet un
gain d’efficacité (précision de l’approximation pour un coût de calcul donné) conséquent par rapport aux
méthodes d’ordre bas des premiers chapitres.

Ces travaux sont complétés par l’étude de problèmes de convection-diffusion avec convection très
irrégulière, effectuée en collaboration avec des physiciens durant la thèse. Les recherches menées visent
à comprendre comment concevoir des diodes électroluminescentes efficaces émettant dans l’ultraviolet
profond, et soulèvent divers enjeux relatifs à la modélisation, l’analyse numérique et la simulation de ces
problèmes.

Mots clés : analyse numérique, méthode d’entropie, méthodes numériques sur maillages généraux, mé-
thodes numériques d’ordre élevé, semi-conducteurs, edp paraboliques

Centre Inria de l’Université de Lille – Parc scientifique de la Haute-Borne – 59650 Villeneuve
d’Ascq – France
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Development and numerical analysis of high-order schemes for convection-diffusion models, study
of their long-time behaviour

Abstract

In this thesis, we are interested in the numerical approximation of anisotropic convection-diffusion
problems using high-order schemes on general meshes. Our objective is to develop reliable, accurate,
and efficient methods: the numerical solutions must preserve the physical properties of the continuous
solutions (mass conservation, positivity of densities, long-time behaviour) while allowing for a wide range
of discretisation parameters (large time steps, general spatial meshes) and optimising the accuracy at a
given computational cost. The problems under study are advection-diffusion equations as well as coupled
drift-diffusion systems that model semiconductor devices.

We first focus on a single advection-diffusion equation for which we propose and analyse three
different hybrid finite volume (HFV) methods to approximate the solution. Their comparison highlights the
necessity of using a nonlinear scheme to ensure the preservation of positivity, both from a theoretical and
a numerical level. We then consider the numerical approximation of a drift-diffusion system, consisting
of two coupled advection-diffusion equations with a Poisson equation. For this problem, we introduce a
nonlinear scheme based on the previous method, which preserves the bounds on the computed densities
(including their positivity) and the long-time behaviour of the solution. This HFV scheme for drift-diffusion
is then numerically compared with another scheme with similar properties based on the discrete duality
finite volume (DDFV) method.

We then focus on high-order (in space) schemes. These schemes are based on hybrid high-order
(HHO) methods which can be interpreted as an arbitrary-order extension of HFV methods. We introduce
two schemes for linear advection-diffusion: the first method is linear, while the second one is nonlinear
and preserves the positivity of the solution. For both of these schemes, we prove the existence of discrete
solutions and establish results about their long-time behaviour. We also confirm these results numerically
and emphasise the need to use a nonlinear method to preserve positivity. We observe that the nonlinear
method converges at the expected order. Furthermore, increasing the order leads to a significant gain
in efficiency (accuracy of the approximation for a given computational cost) compared to the low-order
methods discussed in the first chapters.

These works are complemented with the study of convection-diffusion problems with highly irregular
convection, carried out in collaboration with physicists during the thesis. These investigations aim to
understand how to design efficient deep ultraviolet-emitting electroluminescent diodes, and raise various
issues related to the modeling, numerical analysis and simulation of these problems.

Keywords: numerical analysis, entropy method, numerical methods on general meshes, high-order
numerical methods, semiconductors, parabolic pdes
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