
HAL Id: tel-04398735
https://hal.science/tel-04398735v1

Submitted on 16 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Co-design and implementation of a minimal kernel
oriented by its proof, and evolution towards multicore

architectures
Quentin Bergougnoux

To cite this version:
Quentin Bergougnoux. Co-design and implementation of a minimal kernel oriented by its proof, and
evolution towards multicore architectures. Hardware Architecture [cs.AR]. Université de Lille, 2019.
English. �NNT : 2019LILUI029�. �tel-04398735�

https://hal.science/tel-04398735v1
https://hal.archives-ouvertes.fr

Thèse

pour obtenir le grade de

Docteur de l’Université de Lille

Domaine : Informatique

préparée au laboratoire CRIStAL

sous la supervision de École Doctorale des Sciences Pour l’Ingénieur

soutenue par

Quentin Bergougnoux

le 19 juin 2019

Titre:
Co-design et implémentation d’un noyau minimal orienté par

sa preuve, et évolution vers les architectures multi-cœur

Directeur de thèse : Gilles Grimaud
Co-directeur de thèse : Julien Cartigny

Jury
Pr. Noël De Palma, President (Université Grenoble Alpes)
Pr. Gaël Thomas, Rapporteur (Telecom Sud Paris)
Pr. Sébastien Monnet, Rapporteur (Université Savoie Mont Blanc)

Mme. Fabienne Boyer, Examinateur (Université Grenoble Alpes)
Pr. Gilles Grimaud, Directeur de thèse (Université de Lille)
M.. Julien Cartigny, Co-directeur de thèse (Université de Lille)

ii

PhD Thesis

to obtain the grade of

Docteur de l’Université de Lille

Domain : Computer Science

prepared in CRIStAL laboratory

under the supervision of École Doctorale des Sciences Pour l’Ingénieur

defended by

Quentin Bergougnoux

on June 19, 2019

Title:
Co-design and implementation of a minimal kernel oriented
by its proof, and evolution towards multicore architectures

PhD. advisor: Gilles Grimaud
PhD. co-advisor: Julien Cartigny

Jury
Pr. Noël De Palma, President (Université Grenoble Alpes)
Pr. Gaël Thomas, Rapporteur (Telecom Sud Paris)
Pr. Sébastien Monnet, Rapporteur (Université Savoie Mont Blanc)

Mme. Fabienne Boyer, Examiner (Université Grenoble Alpes)
Pr. Gilles Grimaud, Advisor (Université de Lille)
M. Julien Cartigny, Co-advisor (Université de Lille)

« Il est dur d’échouer, mais il est pire de n’avoir jamais tenté de réussir. »

— Franklin Delano Roosevelt

ii

Remerciements

Je tiens en premier lieu à remercier mes directeurs de thèse, Gilles Grimaud et Julien
Cartigny. Comme tu l’as si bien exprimé Gilles, cette thèse fut une aventure pour
nous tous, avec son lot d’embûches et d’aléas imprévus. Je peux aujourd’hui avoir
la satisfaction et la fierté de l’avoir achevée, et vous dois énormément pour ça.

Je voudrais également remercier Gaël Thomas et Sébastien Monnet, pour avoir
accepté de rapporter cette thèse et pour l’intérêt que vous avez porté à mon travail.
Je remercie également Noël de Palma pour avoir accepté de présider le jury, ainsi
que Fabienne Boyer pour avoir accepté d’en être examinatrice. J’ai énormément
apprécié la richesse des échanges que nous avons pu avoir au cours de la soutenance
et ce fut un honneur d’avoir votre présence au sein de ce jury.

J’adresse également de chaleureux remerciements à l’équipe 2XS et à tous ceux
que j’ai pu côtoyer régulièrement au laboratoire. Je ne vais pas tous vous nommer
ici car il y en aurait pour des pages et des pages, mais tous ces instants passés avec
chacun d’entre vous ont égayé cette longue aventure. Je n’en serais probablement pas
là si vous n’aviez pas fait parti, ne serait-ce que de façon éphémère, de ce quotidien.
La personne que je suis devenue aujourd’hui, c’est aussi à vous que je la dois.

Sur un plan plus personnel, j’ai également des remerciements à adresser tout
d’abord à ma famille: ma sœur Loraine, mes parents Philippe et Christine, mes
grands-parents, et tous les autres. Vous qui m’avez porté et supporté pendant ces
années, et qui m’avez poussé à continuer dans les moments de doute voire de détresse,
je vous dois également énormément.

De même, je souhaiterais également adresser quelques mots à mes amis proches,
qui m’ont également soutenu et porté quand il le fallait. Nous avons vécu beaucoup
de choses ensemble, et j’espère que nous en vivrons encore beaucoup à l’avenir. Vous
êtes une seconde famille pour moi - une famille un peu étrange, certes, mais une
famille tout de même!

Enfin, j’adresse également plus particulièrement un énorme merci à ma com-
pagne, Aurore, qui a eu le malheur de me subir au quotidien pendant cette dernière
année. Je suis conscient que ça n’a pas dû être simple tous les jours, avec la montée
de la pression et du stress à l’approche du jour fatidique. Tu n’as jamais cessé de me
soutenir et de me pousser à aller au bout, et de croire en moi malgré mon pessimisme
naturel. Du fond du cœur, un énorme merci.

Cette page de remerciements approche de la fin, aussi ai-je un dernier remer-
ciement un peu spécial à adresser.

iii

CHAPTER 0. REMERCIEMENTS

Merci à mon chat Neppy. En t’entendant miauler pendant une heure entière
devant une porte fermée, et, par lassitude, cédant et t’ouvrant la porte, tu m’as
fait comprendre qu’à force de persévérance, on arrivait toujours à ses fins... Il en
est allé de même pour cette thèse. Cela peut paraître un peu ridicule, mais tes
ronronnements et tes bêtises incessantes m’ont toujours redonné le sourire quand il
le fallait, alors merci à toi, Little Nep.

iv

Résumé

Avec la croissance majeure de l’Internet des Objets et du Cloud Computing, la
sécurité dans ces systèmes est devenue un problème majeur. Plusieurs attaques
ont eu lieu dans les dernières années, mettant en avant la nécessité de garanties
de sécurité fortes sur ces systèmes. La plupart du temps, une vulnérabilité dans
le noyau ou un de ses modules est suffisante pour compromettre l’intégralité du
système.

Établir et prouver des propriétés de sécurité par le biais d’assistants de preuve
semble être un grand pas en avant vers l’apport de garanties de sécurité. Cela repose
sur l’utilisation de modèles mathématiques dans le but de raisonner sur leur com-
portement, et d’assurer que ce dernier reste correct. Cependant, en raison de la base
de code importante des logiciels s’exécutant dans ces systèmes, plus particulièrement
le noyau, cela n’est pas une tâche aisée. La compréhension du fonctionnement in-
terne de ces noyaux, et l’écriture de la preuve associée à une quelconque propriété
de sécurité, est de plus en plus difficile à mesure que le noyau grandit en taille.

Dans cette thèse, je propose une nouvelle approche de conception de noyau, le
proto-noyau. En réduisant les fonctionnalités offertes par le noyau jusqu’à leur plus
minimal ensemble, ce modèle, en plus de réduire au maximum la surface d’attaque,
réduit le coût de preuve au maximum. Il permet également à un vaste ensemble de
systèmes d’être construits par-dessus, considérant que la minimalité des fonctionnal-
ités comprises dans le noyau oblige les fonctionnalités restantes à être implémentées
en espace utilisateur.

Je propose également dans cette thèse une implémentation complète de ce noyau,
sous la forme du proto-noyau Pip. En ne fournissant que les appels systèmes les
plus minimaux et indispensables, l’adaptation du noyau à des usages concrets et la
faisabilité de la preuve sont assurées. Afin de réduire le coût de transition modèle-
vers-binaire, la majorité du noyau est écrite directement en Gallina, le langage de
l’assistant de preuve Coq, et est automatiquement convertie en code C compilable
pendant la phase de compilation. Pip ne repose alors que sur une fine couche
d’abstraction matérielle écrite dans des langages de bas niveau, qui ne fournit que
les primitives que le modèle requiert, telles que la configuration du matériel.

De plus, étant donné que l’Internet des Objets et le Cloud Computing nécessitent
aujourd’hui ces architectures, je propose plusieurs extensions au modèle de Pip afin
de supporter le matériel multi-cœur. Soutenus par des implémentations, ces mod-
èles permettent d’apporter le proto-noyau Pip dans les architectures multi-coeur,
apportant ainsi des garanties de sécurité fortes dans ces environnement.

Enfin, je valide mon approche et son implémentation par le biais d’évaluations
de performances et d’une preuve de concept de portage de noyau Linux, démontrant
ainsi la flexibilité du proto-noyau Pip dans des environnements réels.

v

Abstract

Due to the major growth of the Internet of Things and Cloud Computing worlds,
security in those systems has become a major issue. Many exploits and attacks
happened in the last few years, highlighting the need of strong security guarantees
on those systems. Most of the times, a vulnerability in the kernel or one of its
modules is enough to compromise the whole system.

Etablishing and proving security properties through proof assistants seems to be
a huge step towards bringing security guarantees. This relies on using mathematical
models in order to reason on their behaviour, and prove the latter remains correct.
Still, due to the huge and complex code base of the software running on those
systems, especially the kernel, this is a tedious task. Understanding the internals
of those kernels, and writing an associated proof on some security property, is more
and more difficult as the kernel grows in size.

In this thesis, I propose a new approach of kernel design, the proto-kernel. By
reducing the features provided by the kernel to their most minimal subset, this
model, in addition to lowering the attack surface, reduces the cost of the proof effort.
It also allows a wide range of systems to be built on top of it, as the minimality of
the features embedded into the kernel causes the remaining features to be built at
the userland level.

I also provide in this thesis a concrete implementation of this model, the Pip
proto-kernel. By providing only the most minimal and mandatory system calls,
both the usability of the kernel and the feasibility of the proof are ensured. In order
to reduce the model-to-binary transition effort, most of the kernel is written directly
in Gallina, the language of the Coq Proof Assistant, and is automatically converted
to compilable C code during compilation phase. Pip only relies on a thin hardware
abstraction layer written in low-level languages, which provides the operations the
model requires, such as modifying the hardware configuration.

Moreover, as Internet of Things and Cloud Computing use cases would require,
I propose some extensions of Pip’s model, in order to support multicore hardware.
Backed up by real implementations, those models bring the Pip proto-kernel to
multicore architectures, bringing strong security guarantees in those modern envi-
ronments.

Finally, I validate my approach and its implementation through benchmarks and
a Linux kernel port proof-of-concept, displaying the flexibility of the Pip proto-kernel
in real world environments.

vi

Contents

Remerciements . iii
Résumé . v
Abstract . vi
Contents . vii

Introduction 1

1 State of the art 5
1 Operating system architecture . 5

1.1 Monolithic kernels . 5
1.2 Micro kernels . 6
1.3 Hybrid kernels . 8
1.4 Exokernel . 8
1.5 Trusted computing base and security 9
1.6 Managing hardware . 9

2 Virtual machines . 10
2.1 Virtualization and abstraction 10
2.2 Virtualization kinds . 12
2.3 Hypervision . 12
2.4 Virtualization methods . 13

3 TCB and formal proof . 16
3.1 Minimizing the TCB . 16
3.2 Proof and security . 16
3.3 Goals of proving the TCB . 16
3.4 Hardware architecture . 17
3.5 Model-based proof . 18
3.6 Implementation-based proof 18
3.7 Combining both methodologies 19
3.8 Common Criteria . 19

4 Micro kernels and proofs . 21
4.1 The seL4 micro kernel . 21
4.2 Access control and restrictions 22
4.3 Refinement proof . 22
4.4 Layered proof . 23
4.5 Proof and language . 23

5 Conclusion . 23

vii

CONTENTS

2 Problem statement and model design 25
1 Proof approach . 25

1.1 Proof-oriented design . 25
1.2 Abstract model . 26
1.3 Security . 27
1.4 Performance . 28

2 Hierarchical model . 29
2.1 Usual TCB model . 29
2.2 Segmentation vs. MMU . 30
2.3 Towards separation kernels . 34
2.4 Recursive virtualization . 34
2.5 Hierarchical TCB . 35
2.6 Access control management 36

3 Interrupts and abstraction delegation 37
3.1 Execution flow . 37
3.2 Abstracting the interrupt controller 38
3.3 Scheduling . 39
3.4 User mode implementation . 39

4 Conclusion . 40

3 The Pip proto-kernel 41
1 Proto-kernel . 41

1.1 Features . 41
1.2 Properties . 42
1.3 Managing virtual memory . 43
1.4 Managing control flow . 44
1.5 Managing the target architecture 45

2 Proof integration . 46
2.1 Compiling the model . 46
2.2 Kernel architecture . 47
2.3 Kernel structures . 48
2.4 Memory model overhead . 50
2.5 Initial state . 52

3 Multicore . 53
3.1 Motivations . 53
3.2 Hardware architecture . 54
3.3 Issues . 54
3.4 Multicore models . 56
3.5 Use cases . 58

4 Conclusion . 59

4 Performances and return on experience 61
1 Single core . 61

1.1 Micro benchmarks . 61
1.2 Introducing the macro-benchmarks 63
1.3 Results . 64

2 Feedback : the Linux kernel . 66
2.1 Porting Linux . 66

viii CONTENTS

CONTENTS

2.2 Minako . 67
2.3 Booting Linux . 68
2.4 Isolating processes . 70
2.5 Performances . 72

3 Multicore . 73
3.1 Micro benchmarks . 73
3.2 Macro-benchmarks . 76

4 Conclusion . 79

Conclusion 81

Bibliography 85

Appendices 93
1 Exposed API . 95

1.1 Creating and removing partitions 95
1.2 Managing the partition’s internals 96
1.3 Managing pages . 96
1.4 Managing control flow . 97
1.5 Managing hardware . 98

2 Hardware abstraction layer . 98
2.1 Memory Abstraction Layer . 98
2.2 Interrupt Abstraction Layer 100

List of Figures 101

CONTENTS ix

CONTENTS

x CONTENTS

Introduction

Overview

Everything begins with this simple observation : computer systems are everywhere.
Although they used to be bound to mostly personal computers some years ago,
today, the growth of technology and Internet brought computing in phones, tablets,
sensors and even fridges. The Internet of Things, as it is called, is growing more
and more, and is bringing Internet in your everyday life, up to the most insignificant
object.

On the opposite side, this growth led to an evolution of users and enterprises’
needs, in terms of data processing and storage. Cloud Computing was an answer to
those issues, by putting servers anywhere around the world, and allowing users to
rent the computing power and storage on those servers. A lot of customers can be
using the same server at the same time, using virtualized systems.

Having connected objects and Cloud Computing almost everywhere, the overall
security of these devices and systems remain questionable. What happens when a
vulnerability is present in a device? Do my data remain truly confidential? Is there
a possibility for a malicious user to steal my data?

There are many examples of nasty exploitations of vulnerabilities in Cloud or
IoT devices. For instance, in 2016, hundreds of thoundands connected cameras were
vulnerable to the same breach, and were exploited at the same time to perform a
large-scale distributed denial of service attack [21]. As well, an exploitable vulnera-
bility in Cloud servers could lead to huge data leaks [66].

The major problem is that a single vulnerable application can compromise a
whole device. While Cloud and IoT hardware and software providers tend to provide
more security to their devices, and claim to do so, the unending flow of discovered
and exploited vulnerabilities tells us that it is just not enough.

Context

My thesis was partially funded by the Celtic+ On Demand Secure Isolation project.
This project involved many actors from different countries, such as Nextel in Spain,
BEIA in Romania, Orange Labs in France among many others. Each actor had its
defined task to perform, such as managing access control or designing the commu-
nication protocols. Mine was to design the lowest layer of the project’s architecture,
which is the memory isolation layer the remaining tasks were built onto.

Thus, the aim of my project is to provide a model and an implementation for
a minimal kernel. It needs to provide strong guarantees about memory isolation

1

INTRODUCTION

between the applications running on top of it.
I have been doing my thesis in the 2XS (eXtra Small, eXtra Safe) team of the

CRIStAL laboratory of the University of Lille. The research axis of the team mostly
involves working on embedded devices with strong hardware constraints. Another
research axis, which is directly related to my work, involves co-designing system
software and the associated proof. Thus, a tight collaboration between the “formal
proof” and the “embedded systems” parts of the team has been growing since the
project began, and is still growing today.

Joint work

In addition to my thesis, two other thesis have been parts of this project. The first
one, led by Narjes Jomaa, finished in December 2018 and was about verifying the
API provided by our proto-kernel towards its isolation property [52]. The second
one, led by Mahieddine Yaker, is still ongoing, and is about bringing strong security
guarantees to the FreeRTOS real-time operating system, in order to build a secure,
isolated operating system suitable for critical embedded systems [88].

Claim

This thesis presents a new kind of kernel model, the proto-kernel, suitable for high
levels of certification. Its design is minimal, ensuring only memory isolation and, in
a very simple fashion, control flow. The model of the API, which is under a proof
process, is directly compiled into the binary and executed. Thus, any inconsistencies
between the model and what is really executed are avoided. Moreover, it relies on
no particular hardware mechanisms, except the presence of a Memory Management
Unit.

This thesis also presents a proof-of-concept of an implementation of this model
and shows that its performances are acceptable. We claim that, through this model,
we can achieve high levels of security at a minimal cost. This is demonstrated by a
port of the Linux kernel on top of my proto-kernel, displaying less that 5% overhead.

Outline

This document is organized as follows:

Chapter 1 - State of the art presents a state of the art about operating system
kernels, virtual machines, Trusted Computing base and formal proof on system
software. The aim is to give a good overview of what already exists, and how my
approach fits into it.

Chapter 2 - Problem statement and model design discusses the various
issues my subject draws, and possible solutions to them. For each issue, I will
discuss the possible solutions and drawbacks, and elaborate the proto-kernel model,
which is my first contribution.

2 INTRODUCTION

INTRODUCTION

Chapter 3 - The Pip proto-kernel presents the implementation of my model,
the Pip proto-kernel. I will explain the internals of the kernel, as well as how the
proof is integrated into the development and build process. First, I present the single
core implementation. Then, I propose several models to tackle issues that rise when
considering multi-core harware, suitable for specific embedded devices and Cloud
Computing.

Chapter 4 - Performances and return on experience evaluates the Pip
proto-kernel through micro and macro benchmarks as well as its behaviour when
porting Linux on top of it. The performances of the multi-core models are also
discussed.

Conclusion concludes this document by suming up the previous chapters, and
present some future possible work about Pip and my approach.

INTRODUCTION 3

INTRODUCTION

4 INTRODUCTION

Chapter 1

State of the art

In this chapter, I will present many projects and concepts related to my work. I will
begin by presenting the common kernel architectures often seen in general-purpose
operating systems or in research kernels. Then, I will present virtualization-related
concepts and projects, such as abstraction and hypervisor taxonomy. I will also
introduce the concepts of Trusted Computing Base and how proving kernel code
can lead into huge modifications of the TCB. Finally, I will focus a bit more on
microkernel proofs, as there has already been lots of efforts around this.

1 Operating system architecture

In this section, we will take a look into many existing kernel architectures, and
discuss the trust issues they induce.

1.1 Monolithic kernels

Monolithic kernels, usually bundled within general-purpose operating systems such
as Windows, Linux or BSD-based distributions contain most, if not all, the function-
nalities related to hardware management and kernel mechanisms within themselves.
By doing so, there only remains applications and user interface in user mode, as
seen in figure 1.1.

These kernels are most suitable for an everyday computing usage due to their
efficient performance : by doing everything directly within the kernel, no privilege
changes are required when a service is required, such as reading from a device or
writing to a file.

Consequently, these kernels expose a huge API containing several hundreds of
system calls fullfilling various purposes. As well, the code base for these is huge.
For instance, there is more than 20 million source lines of code (SLOC) in the latest
release of the Linux kernel.

An extension of the monolithic kernel model is the modular kernel. By allowing
the loading of kernel modules coming from outside the kernel (most modules are
stored on the filesystem as independant binaries) and linking them with the kernel,
the latter becomes more and more extensible at run-time [31]. Still, this also brings
up more security issues : what happens when a malicious module is loaded? Most of
the times, modules are loaded at the kernel level, with the same rights. When doing

5

CHAPTER 1. STATE OF THE ART

Hardware

Kernel space

User space

Threading Scheduling

MMU

File systems

Drivers Modules

And more...

Applications and libraries

IPC

Figure 1.1: Monolithic kernel architecture

so, a malicious module can read and write data in the kernel, while a “bad-written”
module can crash the overall system.

Nevertheless, several efforts were done to bring more security into modular ker-
nels, such as the Barrier exo-kernel [46], which brought memory isolation between
the Linux kernel and its modules, ensuring a malicious module won’t compromise
the kernel.

1.2 Micro kernels

Micro kernels reduce the size of the kernel’s code base, exposing only a near-
minimum subset of functionnalities required to build a full operating system stack
on top of it.

The features which used to be exposed in kernel space in monolithic kernels are
now exposed as servers in user space instead, as described in figure 1.2. The code
base for these kernels is then a lot reduced, being around 10.000 SLOC for most of
them1.

Still, the first micro kernels, notably Mach, displayed bad performance. This
was mostly due to the server-based architecture, which exposed many features as
independant processes in different privilege levels than the kernel. Thus, it required
a lot of inter-process communications and privilege changes for a simple request.
Because of that, monolithic kernels were still overly used in comparison to micro-
kernels, despite the high reliability of the latter [80].

As well, the minimal subset of functionnalities strictly required within the kernel
was not clearly identified.

1Around 4.000 SLOC for Minix 3

6 1. OPERATING SYSTEM ARCHITECTURE

CHAPTER 1. STATE OF THE ART

Hardware

Kernel space

User space

Threading Scheduling MMU

File systemsDrivers

Applications and libraries

IPC

Servers

Figure 1.2: Micro kernel architecture

To solve both of these issues, the german scientist Jochen Liedtke [63] defined
the L4 micro kernel family. Mostly, Liedtke stated :

“A concept is tolerated inside the microkernel only if moving it outside
the kernel, i.e., permitting competing implementations, would prevent
the implementation of the system’s required functionality.”

(Jochen Liedtke)

Therefore, a L4 microkernel would contain only 4 major features :

• virtual memory management,

• threading,

• scheduling,

• inter-process communication.

Several micro kernels were born from this concept, one on the most popular being
OKL4, which is bundled today in tons of mobile devices. This kernel model is often
known to be suitable for mobile and embedded devices, due to its low amount of
SLOC, its proof-suitable design [43] and its better performance [48].

Meanwhile, other micro kernels, not belonging to the L4 family, are still popular.
These include Minix, developed by Andrew Tannenbaum, or Mach, which is bundled
today as the core component of XNU, the kernel of Apple’s macOS, which belongs
to the hybrid kernel family2.

1. OPERATING SYSTEM ARCHITECTURE 7

CHAPTER 1. STATE OF THE ART

Hardware

Kernel space

User space Applications and libraries

IO Kit DriversMach

BSD
File systems Processes

Signals ...

Figure 1.3: XNU kernel architecture

1.3 Hybrid kernels

Hybrid kernels are designed to combine the good aspects of both monolithic and
micro kernels.

They mostly consist of a core, base component being a micro kernel, with another
monolithic kernel layer running on top of it. The most notable example of this is
the XNU kernel, the core of Apple’s macOS (see figure 1.3).

In XNU’s model, the micro kernel layer is responsible for message passing, mem-
ory protection and threading3, while the BSD layer handles the POSIX API, UNIX
processes, file systems and so on. Thus, the performance of the system (most es-
pecially during system calls) remains acceptable and close to a monolithic kernel’s
performance. Still, the driver framework (IO-Kit), the drivers themselves and mem-
ory management remain handled by the OSFMK micro kernel layer.

Thus, a vulnerability in the BSD layer of the kernel would not compromise the
full system as, for instance, the driver subsystem is separate from it. This allows a
hybrid kernel to rely on the robust and efficient security provided by a micro-kernel
architecture while keeping the functionnalities provided by a monolithic kernel.

1.4 Exokernel

As a way of further minimizing the size of the kernel, the MIT developed the Ex-
okernel model [62] [35]. The major idea behind Exokernel is to force applications
to communicate directly with the hardware as much as possible, without relying on
abstractions provided by the kernel.

The Exokernel, as defined by Engler, Kaashoek and O’Toole, provides a secure
way of accessing the hardware from userland. Systems implemented in userland are
called Library Operating Systems [20], and manage to achieve high performance by
optimizing them for this particular architecture.

2More specifically, OSFMK, which is a commercial version of Mach.
3This list of features is not exhaustive.

8 1. OPERATING SYSTEM ARCHITECTURE

CHAPTER 1. STATE OF THE ART

An Exokernel provides only two functionnalities related to hardware management
and access. First, it provides memory partitioning, which enables memory isolation
between library operating systems. It also features resource multiplexing, which
is tightly related to scheduling policies and enables a fair share of the system’s
resources.

The minimality of the exo-kernel architecture is seen as a strong basis of security
for critical systems [68], and highlights the relationship between small kernel base
and reliable security guarantees.

1.5 Trusted computing base and security

The major common concept between all of these kernel families is the trust we can
put in the kernel [45]. Indeed, we can consider that an application has to trust
the kernel, and assume that the kernel is running properly. On the other hand, we
cannot make any assumption on the execution of a user application if the kernel is
compromised by a vulnerability or by a poor design. Indeed, a vulnerability into
it might compromise the security properties of the whole system thus making any
assumption onto the latter irrelevant.

As such, this introduces the concept of Trusted Computing Base, which is defined
as following :

Definition 1. A Trusted Computing Base (TCB) the minimal set of hardware and
software components that are critical and mandatory to the security of the system.

Any application or software component has then to trust the underlying software
layer. In monolithic kernels, applications have to trust the whole kernel, while in
micro kernels, for instance, an application has to trust the various servers it uses -
the latter putting their trust in the micro kernel as well.

Still, the software is not the only part of the TCB, as the previous definition
states. Each software is run onto a specific hardware, which has to be taken into
consideration as well when it comes to security assessments of a complete system.

1.6 Managing hardware

Being the most straightforward component of a TCB, the hardware the kernel is
running onto represents a huge trust issue when trying to ensure security properties
on a system. Many questions can be asked :

• does the hardware behave properly?

• what happens on a hardware failure?

• what happens when the hardware is incorrectly configured by the software?

• in summary, can we trust the hardware?

Recently, a huge vulnerability was found in Intel, AMD and ARM processors, ex-
ploiting speculative execution. These vulnerabilities, Spectre [58] and Meltdown [65],
exploited an erroneous caching of data through speculative execution to leak, for in-
stance, kernel data from userland. Being a hardware vulnerability, most systems

1. OPERATING SYSTEM ARCHITECTURE 9

CHAPTER 1. STATE OF THE ART

were affected, and the most straightforward software patch was to completly isolate
the kernel and the userland’s memory spaces, thus inducing a huge slowdown in
terms of performances. Other vulnerabilities involving cache issues were also per-
formed [38] [49], highlighting the major issue of hardware trust in secure software.

Ensuring security properties on the hardware can be done by either proving the
hardware itself [50], or assuming that the hardware behaves properly and ensuring
the software does not configure or use it in an inappropriate way. Many efforts
were done to that end. Secure MMU has been developed as a hardware component
designed to ensure memory isolation between a hypervisor and its guest [50]. The
guest system is then fully isolated from the other guests and even with the hypervisor
itself.

As well, many hardware today expose Direct Memory Accesses (DMA), which
are designed for performance goals and consists of asking the hardware to read or
write directly into physical memory, thus bypassing any memory virtualization or
protection mechanism. DMAs would cause no problems when correctly configured.
Still, when it comes to ensuring strong security properties, bypassing any memory
protection or isolation is unacceptable.

To that end, IOMMUs were added, bringing memory virtualization between the
hardware and physical memory. An IOMMU adds an address translation layer
between the devices and the physical memory, in the same way the MMU does
between the CPU and the memory. Using an IOMMU allows protecting the kernel
from a bad configuration of third-party drivers, for instance.

By using IOMMUs, the hardware trust issues becomes a matter of ensuring
proper configuration of the IOMMU chip, and handling the various vulnerabilities
this new layer of hardware could involve. For instance, the IOMMU, like a MMU,
works at a page granularity, whereas devices work at a thinner granularity, which
could cause many issues [67]. Other projects, such as vIOMMU [19], involve a full
virtualization of an IOMMU, bringing safety in guest virtual machines while keeping
close-to-native performance.

2 Virtual machines
The expression “virtual machine” nowadays covers a wide range of different kind of
software, with different purposes. This sections aims at providing an overview of
virtualization in general, as well as the softwares available to that end.

2.1 Virtualization and abstraction

As virtualization and abstraction are two notions I will be relying on in the remaining
of this document, I will present in this section the differences between these two
terms.

Virtualization In common sense, virtualization refers to the act of creating a
virtual instance of an object, which does not have a physical existence. For instance,
a virtual machine runs a virtualized hardware made to appear as a real hardware
by the virtualization software, as depicted in figure 1.4. The virtualization software
if usually called Virtual machine Monitor (VMM) or Hypervisor.

10 2. VIRTUAL MACHINES

CHAPTER 1. STATE OF THE ART

Physical machine

Virtual machine 1 Virtual machine 2

Virtualization software

Network packet for virtual machine 2

Figure 1.4: Example of virtualization

File system abstraction

Ext4 driver NTFS driver HFS+ driver

Write operation request

write(...)

ext4 write(...) hfsp write(...)ntfs write(...)

Figure 1.5: Example of abstraction

Today, virtualization is widely used in many different use cases, from personal
to professionnal and industrial use cases. Cloud Computing servers make a heavy
use of virtualization to allow multiple instances of operating systems to run on the
same machine.

Abstraction Abstraction, on the opposite, refers to the act of using a common
interface, feature or characteristic to interact with various objects, rather than using
specific instances of the latter. For instance, a (simplified) file system layer, as
described in figure 1.5 is an abstraction provided by an operating system to make
complex operations, such as writing into a file, appear as a simple task to the user by
using a common interface rather than specific implementations. Usually, operating
systems heavily rely on abstractions to provide their functionnalities [81].

From now on, in this section, I will mainly focus on virtualization and virtual-
ization software.

2. VIRTUAL MACHINES 11

CHAPTER 1. STATE OF THE ART

2.2 Virtualization kinds

In computing, virtualization refers to the usage of a virtual machine, rather than a
physical device, on which a software, for example an operating system, is run. The
system on which the virtualization software is running is called the host, while the
virtualized software is called the guest. There are two main kinds of virtualization,
which are full virtualization and paravirtualization. Each has its advantages and
drawbacks, making their use cases quite various.

Full virtualization In full virtualization, the software or operating system present
in the virtual machine is running unmodified. The ability to run the software without
any port or modification of the code is ensured by the VMM, which makes the virtual
hardware appear as a physical hardware to the guest.

The main advantage of full virtualization resides in the ability to run any un-
modified software, as soon as the virtualized hardware is coherent enough with the
real hardware’s behaviour. Nevertheless, full virtualization, when not using hard-
ware optimizations, tend to provide poor performance due to the heavy usage of a
virtualized hardware, including the CPU.

Paravirtualization In opposition to full virtualization, paravirtualization requires
modifications to the guest software, in order to take the virtualization software into
consideration. A full hardware environment is not provided. Rather, the guest uses
directly the host’s physical resources. Still, most of the times, the guest is aware of
the VMM’s existence, and can make many requests to it through hypercalls. As it
uses directly the host’s hardware, paravirtualization is often faster than full virtu-
alization, but it also requires a modification of the guest software.

Thus, two major issues are drawn. First, not all software have an available par-
avirtualized version, making full virtualization mandatory in some cases. Secondly,
each hypervisor has its own hypercall interface, making any modification or port
of a paravirtualized guest bound to a specific hypervisor. There is a real issue of
compatibility between hypervisors, which usually binds the choice of the hypervisor
with the choice of the guest system.

2.3 Hypervision

Hypervisors are often classified into two categories [37], depending on their way to
provide an environment for their virtual machines.

Type 1 hypervisors Type 1 hypervisors provide a virtualized environment for
guest software by making the hypervisor run directly on the host’s hardware, and
making it control every hardware access requested by guests. The task of initializing
the system’s base hardware is performed by the hypervisor itself, which acts as a
kernel providing any mandatory feature a guest would need.

Usually, those hypervisors boot the primary operating system as a virtual ma-
chine guest (called dom0, using Xen terminology). The latter is then able to manage
the hypervisor and boot other virtual machines, as depicted in figure 1.6. Most, if
not all, Type 1 hypervisors provide paravirtualization or full virtualization, but are
not able to virtualize another architecture.

12 2. VIRTUAL MACHINES

CHAPTER 1. STATE OF THE ART

Hardware

Hypervisor

Operating system (dom0)

domU domU domU

Figure 1.6: Type 1 hypervisor

Hardware

Hypervisor

Operating system

VM VM VM

Figure 1.7: Type 2 hypervisor

Among Type 1 hypervisors, the most common ones are VMware ESX [85],
Xen [22] and Microsoft Hyper-V [60].

Type 2 hypervisors Type 2 hypervisors rely on a running operating system.
Implementing only the virtualization mechanisms, the host OS remains responsible
for hardware initialization and resource access, as depicted in figure 1.7.

Among the wide range of Type 2 hypervisors, the most widely used are Oracle
VirtualBox [14], bhyve [1] and its macOS counterpart xhyve [16], QEMU [23] and
KVM [54]. Most of these hardware are able to virtualize another architecture than
the hosts’ through CPU virtualization.

2.4 Virtualization methods

Type 2 hypervisors provide a virtual hardware the guest runs onto. Among this
hardware, an interesting part is the virtual CPU provided.

Virtualizing a CPU Virtualizing a CPU can be done in several ways. The
most straightforward way to do it is through a fetch-decode-execute loop, as the
Bochs x86 Emulator does [2]. During the execution of the guest, each instruction is
fetched, decoded and executed, as a simple, basical CPU would do. The performance
provided is then far lower than an execution on real hardware. Still, this is a very
portable way of virtualizing a CPU.

Some other CPU emulators perform a dynamic recompilation (or Just-In-Time/JIT
recompilation) of the guest binary, as QEMU [13] does. This consists of taking the
guest binary’s instructions and convert them into the host system’s instruction set,
in order to make the host execute directly the guest’s code. Although being highly
dependant on the host’s and guest’s architectures, this is a much faster way to em-
ulate a CPU as the host’s hardware will execute it directly. Still, this approach has
its limits. For instance, when the emulated software modifies its code on its own (as
the older Windows NT kernels did), it forces the emulator software to throw away
the previously recompiled code and recompile it again. Thus, code sections which
would initially be optimized would become not efficient at all.

As well, JIT recompilation is challenged by dynamic code loading within the
kernel (modules, iptables filters...).

2. VIRTUAL MACHINES 13

CHAPTER 1. STATE OF THE ART

High-level source code Low-level code (assembly)

Object fileExecutable binary

Memory image

Compiler

Assembler

Linker

Loader

Instructions

VM Interpreter

VM Loader

Virtual memory image

Figure 1.8: Binary compilation and execution

Figure 1.8 displays a flowchart of a binary’s compilation and execution on real
hardware and virtual machine, with the distributed/loaded binary being in the blue
box.

Hardware-assisted virtualization When the host system and the guest system
share the same hardware architecture, full virtualization can be enhanced by the
usage of hardware facilities provided by the CPU, such as Intel VT-x or AMD-
V [18] [36] [74].

Those extensions mostly provide a way for the guest to execute directly on the
hardware while keeping the host safe from any unwanted tampering. These features
include, but are not limited to, Nested Page Tables [69] [25] and virtual memory
caches optimizations such as VPID [77].

For example, Intel’s implementation of nested page tables, EPT, has been eval-
uated by VMware 2009 [17]. The comparison was done with shadow paging, which
was a software way to virtualize MMU. The results have shown a 48% performance
gain on MMU-intensive benchmarks, and up to 600% performance gain on MMU-
intensive micro-benchmarks. Although, on some corner cases which can be avoided,
EPT seem to cause some latency, it has become today widely used to reduce the
overhead induced by MMU virtualization.

Application virtualization Finally, there is another interesting kind of virtual
machine which is Process Virtual Machines.

These virtual machines, while not virtualizing a real hardware, virtualize an
execution environment for applications written in high-level languages. The most
popular virtual machine in this family is the Java Virtual Machine [73], which acts
as a fully-featured execution environment for Java language binaries. Being a virtual
machine exposing an abstract architecture [64], this kind of environments belong in

14 2. VIRTUAL MACHINES

CHAPTER 1. STATE OF THE ART

High-level source code Bytecode (Java, CLR...)
Compiler

VM Loader

Interpreter
Instructions Virtual memory image

Figure 1.9: Process VM flowchart

virtual machines.

The same concept goes for Microsoft’s CLR runtime, which serves as an execution
for all the .Net-based languages (CSharp, FSharp, VB.Net...) [71].

Those virtual machines, as they rely on an internal, abstract architecture, con-
tain their own instruction set. Moreover, they often define their own data types
(which the hardware it is running onto may not be able to represent directly), and
manipulate high-level objects and abstractions such as objects.

The main advantage, though, is that the code executed by those VMs can be
distributed and run on any hardware. As the virtual machine runs its own instruc-
tion set, there is no need for various distributions of the same binary for different
architectures, as depicted in figure 1.9.

As a comparison with figure 1.8, the end-to-end compilation of a binary and its
loading on a Process VM is displayed in figure 1.9.

Real-time virtualization Most embedded systems today require real-time guar-
antees, especially for critical systems which can be found in avionics or automobile
industries. Those systems, by essence, are very critical when it comes to the ex-
ecution time of the various tasks running on the system. Thus, high guarantees
are required and in virtualized environments, not only the guest system, but also
the hypervisor need to provide real-time guarantees to ensure that the real-time
constraints of the system are met.

Many hypervisors tend to fulfill those needs, such as Xtratum [28]. The latter
provides spatial isolation through partitions, as well as strong temporal isolation
with efficient real-time policies. Another one is RT-Xen [87], which aims to pro-
vide a real-time scheduling framework to the Xen hypervisor through four different
algorithms (Deferrable, Sporadic, Periodic, Polling). This is mainly done through
adding for each VCPU information such as a budget, a period and a priority.

As well, other projects allow the construction of real-time systems on top of it.
An example is the OKL4 kernel [30], another L4-based microkernel, whose memory
isolation is based on compartments (Trusted Virtual Domains). The latter are
virtualized contexts with allocated sets of resources, allowing the implementation
of a real-time operating system on top of it.

2. VIRTUAL MACHINES 15

CHAPTER 1. STATE OF THE ART

3 TCB and formal proof
In this section, we will discuss the various interests and issues caused by trying to
bring strong security properties through formal proof on a system’s TCB.

3.1 Minimizing the TCB

When trying to bring strong security properties onto a system through formal proof,
one on the major keypoints is to minimize the code base to be proved [26]. As such,
minimizing the TCB to its strict minimal is essential. Indeed, the more function-
nalities the kernel ensures, such as in monolithic kernels, the more difficult and
fastidious it will be to bring security guarantees.

It is then essential to identify which functionnalities are mandatory to the kernel
and the system, and which guarantees we want to bring onto it. Thus, bring-
ing guarantees of a monolithic kernel is unreasonable due to the huge amount of
functionnalities and code these kernels contain. Intuitively, it is more efficient and
straightforward to work on micro kernels, or even smaller kernel models.

3.2 Proof and security

When talking about proof and security properties, it becomes important to define
what exactly security means. Indeed, there is no universal security nor definition of
it. Each proof effort on a kernel brings its own definition of security, and provides
guarantees related this very definition. Some brings guarantees about memory iso-
lation between applications while others ensure isolation between the kernel and the
userland.

A proof then covers only the security properties defined, which brings up the
question of what should be guaranteed, or what do we mean by security. Most security
properties are built and defined on top of commonly recognized properties, such as
memory isolation or partitioning, as defined by Rushby [51].

3.3 Goals of proving the TCB

As explained before, any application or software component running onto the system
has to put its trust into the underlying layer. By bringing security properties onto
this layer, and by proving them to be verified, we can ensure that this layer behaves
properly, and that the behaviour of the application will not compromise the brought
guarantees.

Hoare triples A common way to build a proof on a TCB is through Hoare triples,
which works with states, properties and operations. It consists of ensuring that,
given the system is in a state verifying the desired security property before an
operation is performed, the resulting state of the system after the operation still
verifies the property.

More precisely, given P and Q are assertions, or states, and C a command or
operation, a Hoare triple is written as following :

{P}C{Q} (1.1)

16 3. TCB AND FORMAL PROOF

CHAPTER 1. STATE OF THE ART

P and Q are respectively called the precondition and the postcondition. When the
precondition is met, executing the operation C etablishes the postcondition. When
aiming to prove a security property PS, the Hoare triples consists of considering
that if the precondition state verifies PS, executing the operation C will result in a
postcondition also verifying PS.

TCB and proof relationship The Hoare triples gives a general representation
of any reasoning on algorithms. Still, it does not define what the C command is.
It might be a function provided by a library, a system call, an assembly mnemonic
or even a logical block of hardware, such as a hardware device. In this context,
any software proof relies on a succession of hypothesis exposed as Hoare triples,
describing the “commands” we consider as trustable, i.e. which provides the expected
postconditions from the initial preconditions.

A proof built this way then has, as a TCB, this set of hypothesis. Still, Hoare
triples can be used to reason at different granularities (machine instruction, system
call, library function...). Each reasoning then relies on a different TCB, some of
them being part of other, like russian dolls.

Thus, ideally, each software hosted on a system should rely on a stack of TCBs.
Each TCB element should be as small as possible, so that the proof and the amount
of hypothesis it relies on could be the smallest possible too. In some way, this
approach is similar to refinement proofs, but here, we conceive it in a bottom-up
approach rather than a top-down approach, in order to enhance the reusability of
the proven elements.

Proof and code co-design Moreover, proving security properties on the TCB
(and most importantly, the kernel) is a major step towards an insurance of the
security of the whole system. Still, proving a TCB brings major drawbacks, such
as performances issues due to a lot of safety checks performed at each operation,
and kernel structure modifications induced by the proof process. Mostly, when it
comes to proving a TCB, the most flexible way is to develop the kernel while keeping
the proof effort in mind. This has, for instance, been demonstrated by Popek et
al. [75] [76] during their work on the UCLA secure operating system. Notably, they
stated :

“The UCLA kernel operating system was still under construction during
the proof effort, therefore permitting the desired verification changes at
relatively low cost. That is, when code is encountered which is difficult
to verify, alternate but equivalent methods of achieving the same effect
are employed if they reduce the difficulty of verification.”

(Gerald J. Popek, David A. Farber)

In summary, there is a huge link between the proof and the TCB. Modifying the
TCB becomes impossible without modifying the proof, and in order to make a proof
process possible, modifications would be required on the TCB’s code base.

3.4 Hardware architecture

As well, the hardware is a major issue when it comes to proving a TCB, and most
of the times the software doesn’t rely on a hardware which already brings formal

3. TCB AND FORMAL PROOF 17

CHAPTER 1. STATE OF THE ART

proof on security properties.
If we keep in mind that any software is designed to run on a target architecture,

any kernel has to perform hardware-specific operations during its execution. With-
out modifying the kernel’s structure here as well, it becomes mandatory to link the
proof to the target hardware. The proof is then tied to a specific hardware, and
becomes irrelevant when porting the kernel to another hardware.

The goal is then to get rid of the target architecture, by working on an abstraction
of a hardware, which mostly consists of a minimal subset of features covered by
hardware implementations. The features integrated into this abstract hardware
then become the minimal hardware requirements to run the proved software. The
latter are then expressed as proof hypothesis in the Hoare triples associated to the
proof.

3.5 Model-based proof

Considering the issues towards hardware integration into the proof, two different
ways of proving the software are feasible.

The first one consists in building a model-based proof, reasoning with abstract
models of both hardware and software algorithms. Once the proof process succeeds,
these models are compiled into executable code for a specific, target architecture.
The major drawback is that, even if the model is proved to verify the guarantees we
want to ensure, there is no guarantee that the generated binary also verifies them.
There is again a question of trust we can put into the compiler, resulting in the fact
that even if we can in theory assume that the security properties are verified during
the execution of the software, we no longer have strong guarantees [57].

To solve this, an additional step of verification towards the compiler is mandatory,
for instance by using a verified compiler [61] such as CompCert [27], which allows
proofs on code written in a subset of the C language, and ensures the generated
binary is strictly equivalent to the source code.

3.6 Implementation-based proof

Another way of proving the software is to bring the proof directly at the binary
level, verifying the generated binary instead of the source code. There is then
strong guarantees on the executable binary, but requires a fastidious proof process
which is, by essence, fully hardware-dependent as it relies on a binary for a specific
architecture.

This relies mostly of a formalization of the target architecture’s semantics (assem-
bly mnemonics). It ensures that, given a known initial state, executing the sequence
of instructions the program contains results into another known state, verifying the
desired properties.

The major drawback is that the overall proof becomes irrelevant when the hard-
ware changes or gets updated. As well, some architectures such as Intel x86 contain
an insanely high amount of different mnemonics and instruction kinds4. This is also
due to the high amount of upgrades and extensions to the architecture’s instruction

4Intel x86 today provides more that 3000 instructions and variants
(https://stefanheule.com/blog/how-many-x86-64-instructions-are-there-anyway/)

18 3. TCB AND FORMAL PROOF

CHAPTER 1. STATE OF THE ART

set. Formalizing all the instruction set is very fastidious. Consequently, proving the
binary often need to restrict the mnemonics used to a minimal, essential subset of
the target architecture’s possibilities.

3.7 Combining both methodologies

When it comes to fully prove security properties from the model to the implemen-
tation, it becomes possible to combine both previous methodologies. Still, there are
different ways to combine these, as there is a remaining gap between the abstract
model and the implementation.

Two methodologies here are interesting :

Verifying the implementation towards the model

First, verifying a model and an implementation separately is fastidious. Still, by
verifying an equivalence between a proved model and the resulting implementation,
we can infer that the properties exposed and verified into the model are kept into the
binary. Mostly, this consists of performing a proof process on the abstract model,
and then checking that the binary is indeed equivalent to the model.

Compiling the model

Another way of combining those approaches is to compile directly the model into
the binary. Thus, no equivalence check are needed, as the proved model is directly
built into the resulting binary. Still, compiling a model into the binary is quite
fastidious at first. Indeed, going from an abstract model written mostly in a func-
tional language (suitable for the proof process) to compilable, hardware-dependant,
freestanding code can be quite a challenge.

This also brings restrictions on the abstract model, which needs to be written in
an imperative style. Again, two approaches exist :

• Embed a full runtime for the model’s language into the binary, such as House [33],
which embeds a minimal Haskell runtime into its binary,

• Compile the model code into C or assembly code, dropping all the dependencies
and runtime issues in the process.

Bringing a runtime into the binary is the most straightforward way to compile
the model directly into the binary, but also brings some issues. For instance, most of
the languages used require a garbage collector, which also brings performance issues
on its own. As well, not having full control on memory allocations and deallocations
when it comes to bring strong properties on a kernel is not suitable.

3.8 Common Criteria

As a way to provide a common and neutral basis for the evaluation of security
properties on software, the ISO/IEC 15408, aka. Common Criteria (CC) was made.

The Common Criteria is a global standard used to evaluate the security level pro-
vided by the evaluated software (called the Target Of Evaluation/TOE). It provides

3. TCB AND FORMAL PROOF 19

CHAPTER 1. STATE OF THE ART

an evaluation performed by an independent organism against security standards,
and thus brings a more reliable evaluation of the product. Being recognized by
25 countries [7], an evaluation through Common Criteria is recognized in all these
countries.

The Common Criteria specification is splitted into three parts, which are :

• introduction and general model [3], which contains the general concepts and
base evaluation model,

• security functional requirements [5], which defines templates on which to base
the functional requirements of the target of evaluation,

• security assurance requirements [4], which defines templates on which to base
the assurance requirements of the target of evaluation.

Its main purpose is to evaluate systems through different levels of certification,
called Evaluation Assurance Level, going from EAL1 to EAL7. Each EAL has its
own requirements and prerequisites to certify a system. Notably, EAL6 and EAL7
require formal verification of the system.

Evaluation Assurance Level

Here is a quick description of EAL levels 1 to 7.

EAL1 - Functionally tested This level of certification if applicable to software
with lower security threats. It basically provides evidence that the product works
as expected regarding its documentation, and has good protection towards known
threats.

EAL2 - Structurally tested In addition to EAL1, EAL2 brings tests at the
design level of the product, as well as an additional vulnerability analysis.

EAL3 - Methodically tested and checked In addition to EAL2, EAL3 adds
an investigation into the development process of the target, adding more tests and
checks during the development phase, thus ensuring the target of evaluation’s secu-
rity properties are not corrupted during the development process.

EAL4 - Methodically designed, tested and reviewed EAL4 is the highest
level at which it would be feasible to evaluate an already existing product. It requires
more design specification and tests.

Lots of operating system went under a Common Criteria EAL4(+) certification
process, such as Windows [15], Linux-based distributions [6] or even Solaris [10].

EAL5 - Semiformally designed and tested Most of the times, EAL5 requires
the product to be designed and built with the idea of the certification in mind.
It requires semiformal descriptions, structured architecture and more development
procedures.

20 3. TCB AND FORMAL PROOF

CHAPTER 1. STATE OF THE ART

EAL6 - Semiformally verified design and tested This certification level
brings high insurance againt significant risks. It requires a structured represen-
tation of the implementation of the product, as well as an even more structured
architecture, additional vulnerabilty analysis and development process controls.

EAL7 - Formally verified design and tested Currently the highest level of
certification available, EAL7 requires a formal specification and verification of the
product, and an equivalence between the specification and the implementation.

Only a few products got an EAL7 certification, which is usually reserved to
products with huge security requirements in high risk situations, or with high val-
ued assets. A diode hardware, the Fox-It Data Diode got an EAL7+ certification
level [11].

In summary, when designing a kernel, achieving high levels of certification brings
higher restrictions and requirements. Achieving the EAL7 level is almost impossible
for general-purpose operating systems, which barely achieve level EAL4. Mostly, this
is due to the fact that formally designing a kernel, especially when it has already
been developed without any formal design process in mind, is a tedious and insanely
difficult task. Proving this design validates security properties is even more difficult.

Thus, when aiming for high certification levels, co-designing the kernel is the
best approach, as the formal design of the kernel is already part of the development
process since the early stages.

4 Micro kernels and proofs

In this section, I will go further into kernel security proofs by presenting some
projects related to it, and explaining the whereabouts of their proof process.

4.1 The seL4 micro kernel

One of the major recent projects related to kernel security is the seL4 micro ker-
nel [44] [56], developed by the Australian laboratory Data61, formerly NICTA5. The
aim of this project was to fully prove the memory protection model on a L4 micro
kernel [55] [34] (see section 1.2) while keeping the performance expected from this
kernel family.

The proof of seL4 is written using the Isabelle proof assistant, and it is verified
during the proof process that the generated binary is equivalent to the verified source
code. Thus, the developers of seL4 claim to be « running the manual » [32]. It is
worth noticing that this was the first complete formal proof on an operating system
kernel.

seL4 provides the features of a L4 kernel, which are virtual memory management,
threading, scheduling and inter-process communication. As well, seL4 provides no
memory allocation within the kernel. Any allocated memory has to be given di-
rectly from the caller application’s own memory, which ensures that there is no
possible Denial-of-Service through kernel memory overuse. This also ensures that
an application could never use some memory out of its own boundaries.

5https://www.data61.csiro.au/

4. MICRO KERNELS AND PROOFS 21

CHAPTER 1. STATE OF THE ART

Kernel

Capabilities

User application

1. Service request 2. Check rights
3. Service response

Figure 1.10: Simplified capability-based access control

4.2 Access control and restrictions

As a way to provide access control as well as a support for the proof, seL4 uses
access tokens known as Capabilities. The latter handle rights for, for instance,
specific hardware, memory or interrupt access to a given application running on top
of it. Applications can give a subset of their capabilities to another application, thus
allowing access delegation and revokation.

Another project, CapDL, was built to create static systems based on seL4 by
using a Domain-Specific Language (DSL) to describe the capability architecture of
a project [59].

Access control has been a basis for any proof-based effort of achieving verification
of security properties. Indeed, it is an intuitive way to represent a user code’s rights
on the system, as well as a way to let user applications handle their rights without
ever compromising the kernel. When a service is requested, the kernel checks the
caller’s rights to perform - or not - the operation accordingly (see figure 1.10).
Therefore, any proof related to security properties on a system would rely on an
access-control based mechanism, may it be capabilities or something else.

4.3 Refinement proof

seL4’s proof is based on machine-checked refinement. It is a two-step verification
process, which ensures that:

• the compilable C code (at least the one targetting ARM architectures) imple-
ments the Haskell model of the kernel,

• the Haskell model implements the high-level specification of the kernel.

By successfully verifying both of these steps, it is ensured that the compilable
C code, which becomes later the executable binary, is equivalent to the high-level
specification of the kernel. Still, this is fastidious : each modification on the C code
or Haskell code involves a full reverification of the whole system. As well, again,
there is no guarantee on the generated binary once the C code goes through the
compilation and linking phase.

22 4. MICRO KERNELS AND PROOFS

CHAPTER 1. STATE OF THE ART

The CertiKOS hypervisor, developed by the University of Yale, whose memory
manager, BabyVMM, was also verified [84] is composed of multiple thin layers of
code. The overall verification is done through series of refinements.

4.4 Layered proof

A complementary methodology of proof is layer-based proof, which has been also
achieved by the CertiKOS project [40]

Instead of proving the whole system’s code base, CertiKOS works on small layers
of code which provide strong guarantees to the layers built on top of them.

This layer architecture is especially suitable for kernel developments. Most mi-
cro kernels and smaller-size kernels are built onto the same paradigm : multiple
small layers of code, each one relying on a lower-level one. Thus, CertiKOS (and
projects following the same concept) are kernel verification frameworks, most of
their methodology being appliable to real-world kernels.

In 2018, the CertiKOS team also managed to build a certified, concurrent oper-
ating system on top of CertiKOS [41], through a programming toolkit called CCAL
allowing specification, composition, compilation and linkage of certified layers.

4.5 Proof and language

These projects highlighted a major fact : proof and language are highly dependent.
Singularity [47], a project led by Microsoft Research, highlighted the tight link be-
tween proof, high-level language and system architecture. Written mostly in CSharp
with a low-level CLR virtual machine, Singularity brings memory isolation directly
through the language itself. Thus, it does not even use virtual memory, and instead
ensures that the executed binary does not steps on another binary’s memory at
run-time.

5 Conclusion
Considering this state of the art, many models and methodologies bring answers to
the common issues related to security of proof development. The minimality of the
kernel seems to be a major requirement, in order to make the proof feasible.

Moreover, the proof process itself draws many issues. Minimizing the mandatory
effort to be provided in this process is a tedious task due to the complexity of the
associated code base, even in smaller kernels. The proof process has a huge impact
on the model, as the design of the model will be oriented by its proof. Thus, the
triple Model — Proof — Code has to be seen as a unique entity in order to ease the
verification process [79]. The question of the hardware architecture and portability
of the resulting kernel is also a huge issue to solve.

In summary, despite the huge amount of models and methodologies already ex-
isting, none can provide a straightforward way to build a minimal, highly portable
kernel requiring the lowest amount of proof effort. It is then needed to identify all
the issues my thesis aims to solve, and to build a new model which answers every
one of them.

5. CONCLUSION 23

CHAPTER 1. STATE OF THE ART

24 5. CONCLUSION

Chapter 2

Problem statement and model design

In this chapter, I will go in more details into the problems tackled by my thesis. For
each one, I will give some background and potential solutions, before choosing the
most appropriate one and build the model of my work upon it. The resulting model
will be the first contribution of my thesis, and will be designed to answer the issues
developed in this chapter.

First, we want a security proof based on memory isolation. As it is known to
be a difficult task, we choose instead to build the kernel around the proof effort,
and not otherwise. In order to have the most robust but flexible design, we end up
building a hierarchical memory isolation model.

First, I will present the proof-related problems, and how our security require-
ments revolves around them. Then, I will discuss the whereabouts of the hierarchical
aspect of the model, and the benefits it brings. Finally, I will explain how mem-
ory isolation alone is not enough, and why interrupts and processor time should be
managed by the model as well.

1 Proof approach

1.1 Proof-oriented design

Kernel co-design A major goal of my work is to provide a proof-oriented ap-
proach of designing the kernel. Mostly, this involves designing the kernel while
taking the proof into consideration.

The most straightforward way to take the model into consideration while de-
signing the kernel is to design the code which will be proved as a separate unit
consisting of an abstract model. While the proof relies on this abstract model, the
latter should also be compiled directly into the kernel. By keeping the same model
for the kernel and the proof, it is ensured that the proof remains valid during the
execution of the kernel.

Compiling an abstract model draws many issues related to the language used to
design the model. As explained in section 1.3.4, formal languages are often used
to those ends, such as Haskell or Coq. While being suitable for abstract reasonings
and proof processes, those language are not appropriate when it comes to low-level
programming. By relying on higher-level abstractions, such as lists, they involve
many dependencies which, at a lower level, most of the times ties to the standard

25

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

C library and the functionnalities it provides. As this is used to design a kernel,
we cannot rely on a standard library, thus requiring the model’s code to avoid any
usage of high-level abstractions.

Proving the model Here, two different issues have to be addressed. First, the
model has to be proven against the memory isolation property. This process is
mainly done by writing the model in functional languages, which allow reasoning
on such properties much easier than in C or assembly code. In order to be able to
do this in C, for instance, we need a precise, formal idea of the semantics of the
source language. While functional languages provide appropriate environments to
that end, this is not the case in C. An answer to this issue is provided by VeL-
LVM [72] [90], which brings a formalization of LLVM IR’s semantics. This allows
reasoning on LLVM IR code in a formal way, ensuring that the code will bring the
wanted behaviour.

By doing so, we ensure the model verifies our security properties. Consequently,
it should be verified and remain correct during its execution.

But in this case, “should ” is not enough. We aim to run the model directly
on the hardware, and thus we need to compile it into executable code. We then
need another guarantee, on the equivalence of the compiled binary code with the
model’s code. In other words, we have to ensure that there is an equivalence between
the source code and the compiled binary. CompCert [27], for instance, brings this
property by ensuring that the compiled code is equivalent to its source. CompCert
also provides a formal specification of the C language, allowing reasoning on C code
to provide the wanted properties.

We finally chose to write the model through the Coq Proof Assistant [9], using
the Gallina language. The model is then converted to C code using a Coq-To-C
converter1, and rely on CompCert to compile into executable code. By doing so,
the security properties ensured by the Gallina code remain verified in the executable
binary.

What to prove? Finally, determining the frontier between the non-proved code
and the proved code is mandatory. The latter mostly consists of the system call code.
Indeed, all the critical operations performed by the kernel should be done mostly
through system calls, thus making them the major part of the proved code. What
remains is the architecture-dependent code, which is, as explained in section 1.3.4,
both difficult to prove and, by essence, not usable for other architectures as it is tied
to the very architecture it targets.

1.2 Abstract model

Abstracting the model As explained in the previous part, the totality of the
proof process has to be done on the abstract model’s code. The architecture de-
pendant code is only designed to support the execution of the model by correctly
configuring and interfacing with the hardware, but should not interfere with the
proved code.

1This converter, Digger, is not part of my work. Still, I will talk a bit more about it later in
this document.

26 1. PROOF APPROACH

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

In order to allow the abstract model to know about the hardware possibilities
while keeping the real hardware out of this, an interface is required. This interface
provides enough knowledge to the abstract code about what the hardware can do,
such as enabling or disabling virtual memory, or writing a value into a configuration
table, and brings an abstract architecture into the model. Still, this is only an
interface and brings no real code into the model.

Bringing the target architecture into the model We can bring the real ar-
chitecture into the model during the compilation of the model into executable code,
where it is linked with a hardware-dependent implementation of the provided in-
terface. The portability of the kernel is then ensured, as only porting this code to
another architecture provides a fully working port of the whole kernel. There is then
no difference between the behaviour of the kernel’s services on an architecture and
another architecture, excepted the hardware-dependant operations.

By doing so, the proof is only written once for all architectures, and remains
valid on any platform the kernel is running onto. The major drawback of this is
that the proof then relies on an implementation of a hardware abstraction layer. A
vulnerability in this HAL’s behaviour might then, while not compromising the proof
at an algorithmic level, cause issues during the execution of the real code. Having
an accurate, efficient and secure implementation of the HAL then becomes a strong
prerequisite for any proof-related reasoning.

1.3 Security

Bringing security to a model through formal proof requires having an accurate defi-
nition of the security we are trying to achieve. A lot of different visions of “security”
are described in the state of the art and previous security-related kernel projects. In
my work, we are going to focus on three major definitions, whose association builds
our definition of security.

Definition 2. Confidentiality consists of ensuring that a running code unit cannot
retrieve or read data that does not belong to it, such as from another code unit.

By ensuring confidentiality within the kernel, we ensure that any code running
on top of it can trust that its data remains confidential and only accessible from
within it.

Definition 3. Integrity consists of ensuring that a running code unit cannot modify
or tamper data that does not belong to it.

By ensuring integrity within the kernel, we ensure that any code running on top
of it cannot see its data being modified in non-legitimate ways.

Both confidentiality and integrity ensure that, given a running code unit suffers
from a vulnerability, exploiting the latter will never compromise the full system.

Definition 4. Availability consists of ensuring the capacity for a code unit to be
executed and run, as well as the availabity of its resources, especially processor time.

By ensuring availability, there is no way for a code unit to perform a Denial-of-
Service (DoS) attack on the system by preventing another code unit from running.

1. PROOF APPROACH 27

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

Definition 5. Kernel isolation consists of ensuring user code cannot access or tam-
per with the kernel’s data.

By ensuring kernel isolation, we ensure that a partition cannot read or write
into the kernel’s space, and thus perform a privilege escalation and compromise the
whole system.

The security property that has to be ensured consists of both confidentiality,
integrity, availability and kernel isolation.

1.4 Performance

Security and performance Writing proved software can bring some drawbacks
when it comes to the performance on the resulting software.

When writing kernels, these performance issues can be problematic, especially
when the proved code mainly covers system calls, which are called countless times
during the execution of the system, thus showing an infamous slowdown of the
kernel.

Supporting the proof on the code can go from adding additional checks during
the execution of the algorithm to writing and reading control structures dedicated to
keeping track of the various operations performed. Those checks can, for instance,
ensure that any structure manipulated by the kernel is correctly typed, and that no
invalid operations are to be performed on them.

It becomes then mandatory to ensure a compromise between the security we
want to prove, and the performance of the kernel. This can be done by reducing the
amount of check to the most minimal but efficient subset of required checks, as well
as optimizing the layout of the data structures to ensure that the various accesses
are as fast as possible.

Still, achieving the same performance level as an unsafe code would provide is
impossible. The latter doesn’t provides security checks verifying whether a requested
operation is legitimate or dangerous for the system. The proved code needs to test
everything it uses and controls, and doubts any requested operation. It solves the
security guarantee issue by sacrifying CPU cycles. Still, this is mandatory : there is
a balance between security and performance. The more we want to ensure security,
the more performance loss we have. This is true even on a non-proved code trying to
achieve security goals by doing as more checks as possible, but not formally verifying
anything.

Proof and performance When it comes to formally proving code, most of the
times the written code will mostly take advantage of specific structures and code
paradigms, which are potentially less efficient when it comes to performance. For
instance, recursivity, which is widely used, and strong typing contraints will bring
performance drawbacks.

As well, in my case, the model’s code is written in Gallina, and focuses on security
properties. Should we write the code directly in C, the performance issues could
be addressed much easier, as hand-written code can bring optimizations. Here, we
compile translated code, and the source code does not focus at all on performance.

The main issue here is that, should the compiler or converter provide any opti-
mization, the latter has to be proved as well. Its equivalence with its non-optimized

28 1. PROOF APPROACH

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

counterpart, may it be in the translated source code or the executable binary, has
to be ensured. CompCert runs into the same issue : as each optimization has to
be proved, it requires a tremendous amount of time and work to prove all of them.
Thus, it is slower than a regular compiler, because it needs proof on any optimiza-
tion, and does not optimize the ones it cannot prove.

Still, it is only a matter of time and efforts before all the provable optimizations
are implemented. The question “Is there any non-provable optimization? ” remains
whole. As well, we cannot ensure yet that there is any non-automatable optimiza-
tion, that a human could do but not a compiler.

There is yet a huge balance between security and performance, as most of the
work around this is still the state of the art stage.

2 Hierarchical model

2.1 Usual TCB model

Usually, on general-purpose kernels, the Trusted Computing Base consists of one
unique component, which is the system’s kernel. By fully relying on the kernel and
directly calling it when a service is required, applications rely on a single component
to ensure its good working.

Therefore, should this component encounter an issue or contain a vulnerability,
the overall system becomes compromised.

Is a single TCB trustable enough ? Most of the times, the TCB - the kernel -
runs in privileged mode, also called kernel mode. The remaining applications run in
user mode, which is a less privileged mode. This ensures that any critical operation
an application would require first go through the kernel before being performed,
thus ensuring it cannot do anything to compromise the system.

Still, countless exploits went through user mode applications to compromise the
kernel. For instance, a vulnerability present in older Apple mobile devices2 exploited
a flaw in the PDF reader for Safari, and then used a vulnerability chain exploiting,
notably, a font parsing vulnerability in the kernel used to gain access to the kernel.

These exploits highlight a major drawback of a single component TCB. Those
kernels performing all the privileged operations on the system, and featuring a wide
range of various services provided, the attack surface is huge. There is then a much
higher risk of providing an exploitable entrypoint for exploiting the kernel from user
mode.

What about applications ? Exploiting the kernel through user mode applica-
tions is based on a privilege escalation (going from a lower privilege level to a higher
one in an illegitimate way). Other vulnerabilities can also exist within a single
privilege level.

For instance, an application should never be able to access another application’s
data without the latter’s approval. Many mechanisms, such as shared memory, allow
an application to share memory with another one. Still, an incorrect configuration

2Namely, JailbreakMe 3 for iOS 4.3.X

2. HIERARCHICAL MODEL 29

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

of the MMU, or a weak management of the MMU cache, can lead to illegitimate
accesses to memory pages that does not belong to an application.

In my vision of security, which is explained in part 1.3, the issue is the same that
the user-to-kernel privilege escalation. Integrity and confidentiality, at least, are no
longer ensurable.

Therefore, in order to provide the security property previously defined, two things
are required :

• ensure isolation between applications, in order to keep the security property
valid,

• reduce the amount of functionnalities provided by the TCB, in order to nullify
the attack surface on the TCB.

2.2 Segmentation vs. MMU

Isolating applications between them can be done through several ways. Many of
them are architecture-dependant. For instance, older operating systems for the
Intel architecture3 used segmentation to isolate the kernel and the applications, and
also the applications themselves.

What is segmentation ?

Segmentation used to be an interesting way to isolate portions of code, usually
applications or kernel. Moreover, it has already been used to perform memory
isolation on some operating systems, such as early versions of Minix [82]. As well,
the main target architectures for my work are mainly 32-bits platforms, featuring
segmentation and a known memory layout. Therefore, it is a worthy candidate for
implementing a memory isolation mechanism.

It consists in defining, in the architecture’s Global Descriptor Table (GDT),
segment entries, which define mostly the following :

• segment privilege level (ring-level), which are used to define whether the seg-
ment is a kernel-mode or user-mode segment,

• segment base and limit, which defines the memory portion the segment covers,

• segment rights, which defines whether the segment is executable or writable.

The GDTmostly consists of segment entries. It also contains other entries related
to task management or far-call descriptors (call-gates), among other entry types. It
is stored in physical memory, and the processor gets knowledge about this table
when loading a GDT descriptor4 containing the address and size of the table. Still,
despite the various kinds of entries this table can hold, each entry has a fixed size,
thus the size of the table and the various offsets used to point to specific descriptors
can be easily calculated.

Segmentation is used to convert a logical address into a linear address. This is
done by adding the segment’s base to the logical address, and ensuring the requested

3I will focus here on Intel x86, 32 bits, protected mode
4LGDT mnemonic

30 2. HIERARCHICAL MODEL

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

0x0

Base 0x300000 Limit 0x200000

0x300000

Segment

Memory

0x500000

Segment memory

0x100000 in segment

...

Figure 2.1: Segmentation example

logical address does not exceed the boundaries of the segment. Each memory access
on the Intel architecture is done through a specific segment. Most of the times, four
segments are defined :

• Two are defined for the kernel’s code and data,

• Two are defined for userland applications’ code and data.

Example

Given a segment is defined as having a base of 0x300000 and a limit of 0x200000.
Accessing the address 0x100000 through this segment would, in fact, provide the
linear address 0x400000. Accessing the address 0x280000, on the other hand, would
exceed the boundaries of the segment and be an illegitimate access (see figure 2.1).

Why is segmentation not suitable ?

Isolating applications with segmentation can be done. Still, is it really secured and
usable in modern architectures ?

Segments are linear. As explained previously, segments are defined through,
roughly, a base and a limit, meaning that the address space they cover are linear
and contiguous. There is no fine-grained page management possible, thus requiring
the memory given to an application to be contiguous.

On most modern systems, allocating pages for user-mode code goes through
a page allocation, most of the times into the kernel. Page allocator works at a
page granularity, thus there is no guarantee that the allocated pages are contiguous.
Moreover, it is much more simple to allocate a memory space for an application
using discontiguous pages, as there is no guarantee that a large enough memory
portion is available to allocate the required memory at once.

Segmentation does not allow such fragmented memory space creation.

Segments are not so secure. Still, segmentation brings a first, basic but manda-
tory access control on user-to-kernel accesses by forbidding any access from a seg-
ment to another segment at a higher privilege level5.

5I consider here that the kernel privilege level is higher than the user mode’s privilege level.
Still, Intel architectures work with ring-levels, which are a level of privilege corresponding to a

2. HIERARCHICAL MODEL 31

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

Index T PL

02315

Index : index of segment within table
T : 0 refers to GDT, 1 refers to LDT
PL : segment requested privilege level

Figure 2.2: Segment register structure

This, trying to access data within the kernel from any user-mode application
would require to go through the kernel’s data segment to that end. Accessing that
segment from a lower-privileged segment would result in a fault.

Meanwhile, when it comes to the same privilege level, things are quite different.
In fact, we can consider that two applications are isolated if their memory segments
are distinct. Nevertheless, accessing another application’s memory through its own
segment would not trigger any fault, as the target segment has the same privilege
level. Isolation between applications is then broken.

Local Descriptor Table Still, some operating systems, such as Minix 2, used
segmentation as a way to isolate applications. There is a way to perform secure
isolation through segmentation using a Local Descriptor Table, which is a GDT-
like structure bound to a task. Segment registers for a task are then filled in with
segments into the LDT, rather than in the GDT, by setting the T bit in figure 2.2
to 1. This T bit, when set into a segment register such as CS, DS, ES, FS, GS or SS,
informs the CPU that the segment index provided refers to an entry present into
the LDT rather than in the GDT.

As does the GDT, the LDT holds several segment entries, and a single entry in
the GDT marks the location of the LDT in memory [12]. Intel x86 also features a
hardware task switching mechanism, which is used through the configuration and
usage of a Task State Segment (TSS), holding all the registers, stack addresses for
each ring-level, I/O permissions and, in our case, a pointer to the task’s LDT. Thus,
loading a TSS for a task (for instance during a context switch) would automatically
reload the LDT for this task, giving it its own appropriate segments. It is still
worth noticing that hardware task switching through TSSs does not save or reload
additional registers such as FPU, MMX or SSE registers on Intel architectures.

Still, this forces the kernel to use hardware task switching, whereas most kernels
today perform task switching directly into the software, by swapping registers and
stacks by hand. This is mostly due to the fact that hardware task switching is much
slower than software task switching, and that maintaining the task switching code
is possible in the software way, whereas soft-patching the hardware way is inefficient
and unnecessary complicated [8]. As well, maintaining a TSS and a LDT for each
process is a tedious task, which removes any portability on the operating system
as well. Finally, in 64 bits mode, it is not possible anymore to use hardware task
switching.

segment. Ring-level 0 is kernel mode, while higher values are for user-mode. Even if I could tend
to say that, in that specific case, the kernel’s privilege level is lower than the userland’s, I will keep
on saying that it is higher, for better comprehension.

32 2. HIERARCHICAL MODEL

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

0112131

OffsetPT IdxPD Idx

First-level table
”Page Directory”

Second-level table
”Page Table”

Requested virtual address

MMU configuration register (CR3) Page Directory address

P. Table 1

P. Table 2

P. Table 3

P. Table N

...

P. Addr

P. Addr

P. Addr

P. Addr

...

OffsetPhysical page addressResulting physical address

Figure 2.3: Address translation through a MMU

In summary, segmentation is good and could fulfill my needs in terms of isolation,
but its non portability and tedious configuration makes it unsuitable for my work.

MMU as a solution The MMU was the most straightforward way to fulfill the
isolation needs within kernels. It allows conversion from a linear address to a physical
address through page translation tables, and was more expansible and scalable than
the segmentation ever was. Moreover, most architectures today provide a MMU,
whereas only a few of them provide segmentation. Today, kernels targetting Intel
architectures use segmentation for defining the privilege level, but segments are
defined as a linear segments covering the whole memory available to the system. 64
bits extensions to Intel CPUs even removed segments base and limits6.

A MMU is configured through indirection tables. The latter are used on any
virtual address access to find either the address of the next indirection table for any
N-1 level table, or the physical address the requested address points to for the last
level table, as depicted in figure 2.3. The base address of the first configuration table
is stored in a specific register, thus changing the active virtual memory environment

6Excepted for FS and GS segments, which are configured in a different way using Model-Specific
Registers.

2. HIERARCHICAL MODEL 33

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

for a task can be done by only changing the address stored in this register.

2.3 Towards separation kernels

By using efficiently the MMU, it becomes possible to isolate safely the user tasks on
the system. Most systems today provide partial memory isolation between applica-
tions. The latter can, for example, use shared memory to communicate and share
data. Implementing full isolation in those contexts would be a tedious task and a
performance killer.

Things are different when it comes to designing a new kernel model from scratch,
as the whole system design can, at this moment, take into consideration the full
memory isolation between tasks. The most accurate and interesting kernel model
to that end is separation kernels.

Designed by Rushby [78], separation kernels were initially designed to simulate
distributed environments within a single system.

“The task of a separation kernel is to create an environment which is
indistinguishable from that provided by a physically distributed system:
it must appear as if each regime is a separate, isolated machine and that
information can only flow from one machine to another along known
external communications lines.” (John M. Rushby)

This model was also designed by keeping in mind verification objectives.
By using the separation kernel model, we ensure that any application or task

running on top of the kernel is fully isolated from the others, and have no way of
communicating through internal mechanisms.

2.4 Recursive virtualization

As explained previously, larger-sized kernels or TCBs introduce a wider range of
possible exploitable vulnerabilities.

Given those vulnerabilities can compromise the whole system, this is a serious
issue to address and a hard compromise to make : how can we put the largest amount
of functionnalities into the kernel without risking any security breach into it ?

This issue was partially answered by recursive hypervisor development efforts,
such as Abyme [70]. The latter was developed from a simple fact : given modern
hypervisors provide more and more features into them, the attack range is getting
wider. Thus, the whole system can be compromised. In order to detect a potential
hypervisor exploitation, and mitigate the upcoming security risk, Abyme was de-
veloped as a hypervisor capable of virtualizing itself. This allows monitoring, thus
detection of potential exploited security breachs.

As such, an application or kernel then trying to exploit the hypervisor would, in
fact, exploit an already virtualized hypervisor, which exploitation would be immedi-
ately detected and mitigated by the top-level hypervisor, as presented in figure 2.4.

By serving both as the host and the guest kernel, the hypervisor becomes fully
recursive, whatever the amount of virtualization layers desired. This builds a hier-
archical TCB concept, as the level N hypervisor instance always relies on the level
N-1 instance.

34 2. HIERARCHICAL MODEL

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

Guest Guest

Guest hypervisor

Top-level hypervisor Kernel mode

User mode

Figure 2.4: Recursive hypervisor architecture

init process User process

Linux kernel

Hypervisor

’b’ is the TCB of ’a’

a b

Figure 2.5: Hierarchical TCB example

2.5 Hierarchical TCB

Recursive virtualization introduced a concept of hierarchical TCB. Indeed, each
instance of the hypervisor relies completely on the instance which virtualizes it.

Generalizing this model Therefore, this model can be generalized into a generic
hierarchical TCB model. Any user code running onto the system has to put its trust
only in the code that spawned it and acts as its TCB. For example, a Linux process
running onto a virtualized Linux kernel should only have to trust the Linux kernel
itself without any knowledge about the underlying hypervisor. Nevertheless, the
Linux kernel is spawned directly on the hypervisor, and puts its trust in the latter,
as displayed in figure 2.5. Thus, the whole trust chain remains coherent.

Introducing partitions Through the generalization of the previous model, we
can infer a simple fact : a piece of code running at any level of the system can
be a kernel, a hypervisor, a process or any other software kind, and thus can be
generalized as well.

2. HIERARCHICAL MODEL 35

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

By combining what was presented in separation kernels and recursive TCB mod-
els, these pieces of code can be summarized as mainty memory portions (containing
code or data). These memory portions will be called partitions in the remaining
of this document, and are the only support for an implementation of this model.
By essence, they are mandatory to implement any memory isolation or hierarchical
relationships between them.

Proot

P1

P1.1

P1.1.1

P1.1.2

P1.1.3

P1.2

P1.2.1

P1.2.2

P2

P2.1

P2.2

Figure 2.6: Partition tree example

It becomes then possible to represent the hierarchical relationships between par-
titions, and thus the whole system architecture, by building a partition tree, such
as in figure 2.6. In this example, P1 is the TCB of P1.1 and P1.2, and P1.1 is the
TCB of P1.1.1, P1.1.2 and P1.1.3. This model also provides a recursive way to allocate
resources, and manage the available resources at a system-wide level. Each partition
handles its own resources and would never go out of its boundaries, thus making the
resource availability also recursive.

2.6 Access control management

A hierarchical partitioning model as presented in the previous section requires an
accurate access control mechanism, in order to avoid any inconsistencies. This access
control mechanism should take a central place in the integrity and confidentiality
properties. For instance, referring to the minimal example featured in figure 2.6, a
page p which is not present in P1.1 should not be present either in P1.1.1 or P1.1.2.

In other words, the partition P1.1 does not have the rights to access the page p,
thus its children partition cannot either.

There can be various ways to represent such information in the system.

Capability-like mechanisms The seL4 microkernel, for example, used capabil-
ities as a way to represent the access rights to the system’s resources. They act
as small token of rights present within each partition, and determine whether the
partition can (or cannot) access a resource. Those resources can be, for example,
memory pages, interrupts or I/O ports. In this model, a partition can also delegate
resources to children partitions, giving them some of their own capabilities.

36 2. HIERARCHICAL MODEL

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

This allows a fine-grained control of what is allocated within the kernel, and
what rights a partition can request and own.

Still, capabilities highlight a major fact related to access control : everything is
memory [39] The same goes for special objects, which can be Thread Control Blocks,
IPC endpoints, MMU configuration tables or capabilities.

How to make something simpler A capability-like mechanism is an accurate
way to handle access control, and brings good flexibility over access management.
Still, my work brings two particular features :

• The TCB is as small as possible,

• Everything is recursive.

Right now, the model I’m heading towards only handles memory isolation. The
“everything is memory” paradigm comes very useful here : the only thing this model
should handle is, indeed, memory.

As well, memory environments for partitions are built through their MMU con-
figuration tables. A partition having a memory page mapped into its environment
has then all the rights on this page, including the right to give it to a child - and so
on.

Therefore, there is no need for a capability-like access control mechanism. Ca-
pabilities are made to cover and handle a whole lot of different hardware resources
kinds, that are to be fully handled in userland partitions instead in this model. By
handling everything through MMU configuration tables, and relying on the recursive
aspect of the hierarchical model, a whole memory access control system is implicitly
made.

3 Interrupts and abstraction delegation

3.1 Execution flow

The previous model might seem suitable and efficient when the system runs uninter-
rupted. Switching from a partition to another could be done in a cooperative way,
meaning that each partition has to explicitly give execution to another.

Should a partition never perform this operation,it would become the only one
to get to be executed, and would prevent any other from running. This denial of
service directly compromises the third security property previously defined, which
is availability, by compromising the ability of a partition to get CPU time.

Figure 2.7 depicts this use case : in this figure, considering Partition 1 never
finishes, Partition 2 never gets execution time.

Thus, the model also needs to handle CPU time and interrupts, in the most
minimal fashion, but preventing this kind of attacks.

Handling interrupts In a perfect world (from the partition’s point of view), the
execution flow of a partition could remain uninterrupted until its work is done. This
scenario, depicted in figure 2.7, presents the major drawback explained previously
related to denial of service.

3. INTERRUPTS AND ABSTRACTION DELEGATION 37

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

CPU Time

Kernel

Partition 1

Start Finish

Partition 2

Start

Figure 2.7: Execution time cooperation

CPU Time

Kernel

Partition 1

Partition 2

Start IRQ IRET IRQ IRET IRQ IRET INT

Figure 2.8: Interrupts happening

Nevertheless, in real world systems, the execution flow hardly ever remains un-
interrupted. Many events happen, such as hardware interrupts (IRQ), which could,
at any moment, interrupt the currently running partition. Those events might even
give its execution time to another, as depicted in figure 2.8.

By taking advantage of the IRQ mechanism, the hardware clock, which generates
a timer interrupt, becomes a safeguard. It can ensure a partition can never perform
a denial of service on CPU time. Indeed, this IRQ would interrupt any running
partition in a regular and uncancellable fashion, thus allowing other partitions to
get CPU time.

3.2 Abstracting the interrupt controller

Configuring the hardware vector In most architectures, the interrupt con-
troller is configured through a table, called Interrupt Vector. This table defines,
mostly, the address at which to branch when an interrupt is triggered, and a stack
to jump onto7.

Given an interrupt can happen at any moment of the execution, the kernel has
to handle it. This is done by configuring the interrupt vector so that any interrupt
will jump directly into the kernel, interrupting any executing partition.

Virtualizing the interrupt vector Most of the times, especially if the kernel
mainly handles virtual memory and does not bring other features, some partitions

7On Intel architectures, the stack is defined in another table. Still, when an interrupt occurs,
the stack remains switched.

38 3. INTERRUPTS AND ABSTRACTION DELEGATION

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

would want to perform their own interrupt handling. For instance, a Linux kernel
would still need a fully functional interrupt flow to keep its good working.

Still, a partition should not ever be able to modify the Interrupt Vector directly.
By hijacking the latter, it could directly redirect all the interrupts to itself, thus
bypassing any way of interrupting its execution.

Hierarchical interrupt control flow To solve that issue, the whole interrupt
control flow needs to be abstracted. Any partition, at any level in the partition tree,
should be able to handle the interrupts it receives.

Each partition then features a virtual interrupt vector, which contains a branch-
ing address and a stack within the partition for each interrupt. The abstraction of
the control flow is then finished by adding the possibility for partitions to dispatch
virtual interrupts to their children or parent. Those virtual interrupts would act
like real interrupts, the difference being in the usage of the virtual interrupt vector
instead of the hardware’s interrupt vector.

This way, hardware interrupts are still given to the kernel, which receives and
acknowledges it appropriately. Then, the kernel redirects a virtual timer interrupt
to the top-level partition in the partition tree, which is free to redirect it to any of
its children.

3.3 Scheduling

Once the top-level partition gets the interrupt, it can be redirected to any of its
children. This children can, also, redirect execution on another one.

This mechanism highlights a hierarchical scheduling mechanism : each partition
can also implement its own scheduling policy, as the scheduler itself is not integrated
into the kernel. This allows more flexibility in scheduling policies, and the imple-
mentation of various scheduling policies on the same running system. It becomes
then possible to implement, for instance, a real-time operating system on top of
it, as the kernel does not bring any limitation or restriction on possible scheduler
implementations.

In figure 2.9 is displayed an example of a partition tree having a Linux kernel
and a FreeRTOS instance running side-by-side, each one with its scheduling policies.
When the interrupt happens, the top-level partition redirects it to one or another,
depending on its own scheduling policy.

3.4 User mode implementation

As the scheduler is not built into the kernel, but rather delegated to the running
partitions, it has to be implemented in user mode. Given what was previously ex-
plained, handling only virtual memory is not enough for any partition to implement
a scheduler. At least one more feature is required : a partition needs to be able to
send an interrupt to a child or its parent.

Critical sections in the kernel On the Intel architecture, when an interrupt is
triggered, most of the times, the interrupted execution context is put on the stack.
This execution context consists, mostly, of registers, return address and flags. Still,

3. INTERRUPTS AND ABSTRACTION DELEGATION 39

CHAPTER 2. PROBLEM STATEMENT AND MODEL DESIGN

Kernel

Top-level partition

Linux kernel FreeRTOS
Scheduler Scheduler

Figure 2.9: Hierarchical scheduling

especially during the execution of critical sections of code, the system requires that
no modification is done on its registers or stack. This can be easily done using
architecture-specific instructions to disable interrupts during the execution of this
section, and re-enabling interrupts afterwards.

Managing interrupt disabling Being able to interrupt a partition at any mo-
ment involves taking into consideration the execution context of this partition.
When running critical, uninterruptible sections of code, the usual behaviour of dis-
abling physical interrupts cannot be tolerated. By disabling all physical interrupts,
a partition could perform another denial of service on the system by keeping the
execution time.

Thus, while interrupts cannot be disabled, a partition executing critical sections
of code should not see its stack or context trashed during a scheduling performed
by its ancestors either. Consequently, there is a need for a partition to inform the
system of its virtually uninterruptible state, such as a virtual CLI flag, so that the
system does not tamper with its stack during context switch, and instead put the
interrupted partition’s data in a safer place like a designated buffer.

4 Conclusion
In this section, I explained the various issues my work aims to solve. By taking into
account proof-driven development constraints while achieving high security guaran-
tees on the whole system, I came to design a fully recursive and hierarchical model
based on partitions. The latter remains minimal, and thus is suitable for an under-
lying proof process on its security properties.

This model only lets virtual memory management and a minimal, simplist con-
text switching support to the kernel while letting all the other functionnalities in
user mode. Being fully hierarchical, this model also brings a lot of flexibility on
potential system implementations on top of it.

In the next chapter, I will go further into the implementation details of this
model, and the kernel that was born from it, the Pip proto-kernel.

40 4. CONCLUSION

Chapter 3

The Pip proto-kernel

In this chapter, I will present the implementation of the model developed in the
previous chapter.

The resulting kernel, the Pip protokernel, is my answer to the “how can we bring
proved security in the Internet of Things at the lowest possible performance cost? ”
question. First, I will present the kernel itself and its structure, leading to the
definition of the kernel family it belongs to : the protokernel.

Then, I will explain how we compiled the model into the binary, and how we
integrated the hardware architecture into the abstract model. I will also go further
into technical aspects of the implementation, such as how the proof relies on the
kernel structures, as well as the hardware configuration steps and an evaluation of
the memory overhead exposed by Pip, in the best and worst cases.

Finally, I will present the latest part of my work around Pip. By evolving the
kernel’s model into multicore architectures, more use cases can be built on top of
Pip. Still, implementing multicore architectures while keeping the proof valid brings
many questions, mainly revolving around concurrency and cache issues. I will answer
all these questions in this part, and present two different multi-core models for Pip
for different use cases.

1 Proto-kernel

1.1 Features

Pip is a minimal kernel ensuring only memory isolation between memory portions
called partitions [24]. Its model, inspired by Rushby’s work [51], is hierarchical and
provides a partition tree starting from the lower level partition, also called “Root
Partition” or “Multiplexer”.

It relies on a hierarchical Trusted Computing Base (TCB), meaning that each
partition is under the responsibility of its parent, and likewise : each partition is
only of charge of the children it creates. An example of partition tree seen by Pip,
in a single-core environment, is shown in figure 3.1.

Pip, however, doesn’t fit into an existing kernel family. Most of the work aiming
to ensure memory isolation are based onto two distinct kernel models:

• Micro-kernels, especially L4 kernels [63], handling memory isolation, thread-
ing and inter-process communications through high-level abstractions (capa-

41

CHAPTER 3. THE PIP PROTO-KERNEL

Pip Proot

P1

P1.1

P1.1.1

P1.1.2

P1.1.3

P1.2

P1.2.1

P1.2.2

P2

P2.1

P2.2

Figure 3.1: Single-core partition tree example

bilities), some of them having been under a formal proof effort, such as seL4,

• Exo-kernels [62], only handling memory isolation and resource multiplexing,
such as Barrier [46], handling memory isolation between a guest kernel and its
modules through a low-level interface.

In comparison to the previously exposed models, Pip’s API is limited to virtual
memory management operations (partition creation and deletion, page mapping...)
and control flow management (interrupt routing and context resume). Other con-
siderations, such as hardware resource multiplexing, scheduling or inter-partition
communcation are exposed in userland and remain at the responsibility of overlying
partitions.

Handling only memory isolation and control flow in a minimal fashion, Pip be-
longs to the proto-kernel family.

Definition 6. A proto-kernel is a separation kernel built on a hierarchical model.
The features it provides are restricted to their minimal essence, and are mostly
limited to virtual memory management and basic control flow management.

1.2 Properties

The goal of the formal proof process is to ensure that, whatever the requested op-
erations during the execution are, the memory isolation between partitions remains
verified. This is ensured by both proving that the operations performed by Pip
during an API call are safe, and that any forbidden operation is denied.

Given a dummy partition tree, such as the one given in figure 3.1, we ensure that
on a same level in the partition tree, the memory owned by a partition is separate
from the memory owned by each of its siblings. In the partition tree example, given
M(P) is the set of memory pages owned by the partition P, we have :

• M(P1) ∩ M(P2) = ∅

• M(P1.1) ∩ M(P1.2) = ∅

• M(P2.1) ∩ M(P2.2) = ∅
42 1. PROTO-KERNEL

CHAPTER 3. THE PIP PROTO-KERNEL

• And so on...

Definition 7. We call horizontal isolation the property which ensures that the in-
tersection of the sets of pages owned by sibling partitions is an empty set.
∀ P1, P2, Sibling(P1, P2) =⇒ M(P1) ∩ M(P2) = ∅

As well, due to the hierarchical model, the isolation property also ensures that
the set of pages owned by a partition are a subset of the set of pages owned by its
parent. Again, considering the example partition tree in figure 3.1, we have :

• M(P1) ⊂ M(Proot)

• M(P2) ⊂ M(Proot)

• M(P1.1) ⊂ M(P1)

• And so on...

Definition 8. We call vertical sharing the property which ensures that the set of
pages owned by a partition is a subset of the set of pages owned by its parent.
∀ P1, P2 = Child(P1) =⇒ M(P2) ⊂ M(P1)

The only notable exception is related to kernel pages, which are the pages of
data and code owned by Pip. These pages are present in all partitions, in order to
allow any partition to call for Pip services, as well as to ensure a correct behaviour
of the system on an interrupt event.

Those pages do not respect horizontal isolation nor vertical sharing, but instead
another property ensuring that these pages are never accessible and cannot be tam-
pered with while the system is in unprivileged mode, i.e. at any moment of the
execution excepted on system calls.

Definition 9. We call kernel isolation the property which ensures that the set of
pages owned by Pip is always present, but never accessible nor writable from user
space.
∀ P1, Kpages =⇒ M(P1) ∩ Kpages = ∅

1.3 Managing virtual memory

Creating and deleting partitions

As it relies on a hierarchical partitioning model, Pip provides an interface allowing
partitions to create and manage related partitions. First of all, a partition needs to
be able to create and delete child partitions. To that end, we provide two system
calls, Pip_CreatePartition and Pip_DeletePartition. The first one builds a
new partition with all the related control structures, the second one deletes a child
partition, returning all of its pages to the caller.

It is important to notice that, as there is no page allocator within the kernel, all
of the pages required for the creation of the partition (especially control structures)
have to be provided by the caller partition itself. By doing that, we also ensure that
the memory a partition can use is bounded to its own available memory. A partition
will then never be allowed to allocate memory within the kernel or other partitions,
this forbidding any denial-of-service attack on the kernel.

1. PROTO-KERNEL 43

CHAPTER 3. THE PIP PROTO-KERNEL

Giving and retrieving memory

Once a partition has been created, it is also required to be able to give it some mem-
ory. To allow those memory derivations, two additional system calls are provided,
which are Pip_AddVAddr and Pip_RemoveVAddr. The first one gives a page to a
child partition at a given virtual address, while the second one retrieves a page from
the child to the caller.

Using those system calls can lead to modifications to the target partition’s control
structures.

Moreover, in some cases, more memory will be needed. This scenario can hap-
pen when it is needed to insert a new indirection table within the MMU’s control
structures (see figure 2.3) in order to map the page correctly. Still, Pip does not
allocate memory within the kernel, so this memory cannot be given by Pip directly.
When an additional page is required to map a page into a partition, the caller itself
needs to provide those pages.

Feeding control structures

In order to solve the issue described previously, we have to manage the fact that there
is no page allocator within Pip, and that every page required has to be provided by
the caller. It becomes then not possible to give a page to a child partition before
checking whether the required structures are present or not.

When those structures are missing, the caller has to give again some additional
pages, in order to allow Pip to update correctly the state of the target partition.
First of all, we need to know the amount of pages required. To that end, the
Pip_PageCount call is used. The latter, given a target partition and virtual address,
return the amount of pages Pip would require to map a page to the given address.

When this call return a non-zero amount of pages, the caller partition can build
a linked list of pages (i.e. write at the beginning of a page the virtual address of the
next one), containing the required amount of pages. Then, the Pip_Prepare call is
used which consumes this list to update the control structures.

As well, when a parent partition wants to retrieve non-used control structures
pages (for instance, after the removal of a page), it can use the Pip_Collect system
call, which retrieves unused pages and gives them back to the caller.

In summary, Pip provides only 7 system calls for memory management. A more
detailed version of the interface is available in appendix 1.

1.4 Managing control flow

As a way to handle control flow, we need a way to mimic two behaviours of modern
architectures.

The first one is the ability to trigger an interrupt, or, in our case, send an
interrupt to a partition. This behaviour is handled by the Pip_Dispatch system
call, which saves the caller’s context (registers, stack...) and triggers an interrupt
into the target partition. This is similar to an INT instruction on Intel architectures.

The second one is the ability to resume the state of a previously interrupted
partition, in a similar way to the Intel x86’s IRET instruction. This is performed

44 1. PROTO-KERNEL

CHAPTER 3. THE PIP PROTO-KERNEL

through the Pip_Resume system call, which fetches the interrupted context and
restores it while dropping the current context.

As well, the hardware control flow is handled in a minimal fashion within Pip.
Software interrupts, such as a system call or a fault, will have the same behavious as
a Pip_Dispatch call to the parent partition. Hardware interrupts, on the opposite,
are directly dispatched to the root partition.

In the running example displayed in figure 3.2, path (1-2-3) represents a software
interrupt while path (a-b-c-d) represents a hardware interrupt.

In realistic use cases, path (1-2-3) could represent a system call requested by
Task 1. Pip gets the INT signal, and then redirects the signal to FreeRTOS. Once
the call has been performed, FreeRTOS resumes the task.

As well, path (a-b-c-d) could represent a timer interrupt happening when Task
2 is running. Pip gets first the hardware interrupt and redirects it directly to the
Root Partition. The latter can then perform its scheduling operations, and resumes
the elected partition, which is FreeRTOS. FreeRTOS can then perform its own
scheduling operation as well, and this time resume Task 1 instead.

Pip

Root partition

FreeRTOS

Task 1 Task 2

(1)

(2)

(3)

(a)

(b)

(c)

(d)

Figure 3.2: Interrupt routing policy

1.5 Managing the target architecture

Finally, depending on the target architecture, Pip provides some architecture-dependant
calls. These are not described in appendix 1, but are available in some ports of Pip.

More specifically, the Intel x86 version of Pip provides various ways to access the
hardware’s I/O ports, which cannot be achieved through standard memory accesses.
These calls are Pip_In{b|w|l}, Pip_Out{b|w|l}, which are almost the same as the
IN{B|W|L} and OUT{B|W|L} instructions.

In addition, given a partition has no visibility about physical memory, Pip also
provides a way to feed an I/O register with the physical address of a page within

1. PROTO-KERNEL 45

CHAPTER 3. THE PIP PROTO-KERNEL

(Algorithms)

HAL

Hardware

HAL (model)

Hoare logic
Monad

CoqToC

Coq implementation C implementation

automatic

Platform-
dependent

abstraction

API code
(Algorithms)
API code

Figure 3.3: Pip design

a partition. This could be useful for, for instance, DMA device configuration. This
feature is provided through the Pip_OutAddrL system call.

Finally, on multi-core architectures, many information could be required during
the execution, such as the amount of cores or the identifier of the currently running
core. All of these information can be fetched through the Pip_SmpRequest call.

2 Proof integration

2.1 Compiling the model

The core of the kernel, its API, is written in Gallina through the Coq proof en-
vironment [52] [53]. The main goal of this is to provide strong guarantees on the
behaviour of the system calls, i.e. to ensure the isolation property is preserved at any
moment of the execution (excepted during the system calls themselves, or during
the system’s bootstrap).

In order to make this code executable on real hardware, Digger1 was developed.
Digger is a tool which purpose is to convert some Coq code, written in a monadic,
imperative style, into compilable C code. The equivalence between the input (Coq
model code) and the output (compilable C code) is still under verification process,
in order to ensure that the semantics of the generated code are the same as the
source Coq code, thus preserving the proof (see figure 3.3).

Right now, the generated C code is compiled through GCC along with the re-
maining sources, generating an executable binary for Pip. In order to bring even
more safety and trust into this conversion, it is planned to compile the API code
through CompCert2, adding another layer of formal verification into the compilation
toolchain.

Another way to reach the verification of this equivalence could be through a
verification on the binary itself. To that end, a tool like VeLLVM 3 could be used.
VeLLVM brings a formalization of a subset of semantics provided by the interme-
diate representation of a binary generated by the LLVM compiler (LLVM IR), thus

1https://github.com/2xs/digger
2http://compcert.inria.fr
3https://github.com/vellvm/vellvm

46 2. PROOF INTEGRATION

CHAPTER 3. THE PIP PROTO-KERNEL

1 uint32_t readTableVirtual(uint32_t table , uint32_t index)
2 {
3 /* Get a pointer , dereference it with the index and return its value */
4 assert(index <= TABLE_MAX_INDEX);
5 uint32_t val = ((uint32_t *)table)[index];
6
7 return val & 0xFFFFF000;
8 }

Figure 3.4: Example of implementation of a MAL function

allowing formal verification through this representation. The major drawback of
this is the necessity to compile Pip with LLVM, which is not the case yet, as we
are currently compiling it with GNU CC, and are aiming to compile it through
CompCert.

2.2 Kernel architecture

The Pip proto-kernel is designed in a layered fashion, having the API code architecture-
independant and proved relying on a minimal hardware abstraction layer, later called
HAL in this document.

Memory Abstraction Layer

The Memory Abstraction Layer is responsible for abstracting all operations related
to virtual memory management. These include, but are not limited to, reading or
writing values from or into indirection tables, enabling or disabling virtual memory,
reading or writing flags...

The functions exposed by this layer are designed to be minimal and serve one
simple purpose. Therefore, their implementation is most of the times very simple
(see figure 3.4).

The whole interface is available in appendix 2.1.

Interrupt Abstraction Layer

The Interrupt Abstraction Layer brings control flow management into the HAL. It
only provides a few set of functions, allowing to enable or disable interrupts, and
the implementation of the dispatch and resume system calls4.

In order to abstract the target architecture’s interrupt vector, we provide a Vir-
tual Interrupt Descriptor Table (VIDT). It allows any partition to handle its inter-
rupts while never tampering with the real interrupt vector, which is handled by Pip
only.

It holds basic information about the partition’s control flow, such as entrypoints
and stack pointers for any interrupt, as well as Pip flags, which represent the state
of the partition. Its structure is displayed in figure 3.5.

This layer also contains the code required for initializing the interrupt controller
and physical interrupt vector.

4At the time I write this document, dispatch and resume were not proven. Their rewrite in Coq
and proof process are a work-in-progress.

2. PROOF INTEGRATION 47

CHAPTER 3. THE PIP PROTO-KERNEL

Offset Data
0 Virt(EP0) Virt(SP0)
2 Virt(EP1) Virt(SP1)
4 Virt(EP2) Virt(SP2)

...
Page size - 2 0 Pip flags

• EPn : Entrypoint for interrupt number n

• SPn : Stack pointer for interrupt number n

Figure 3.5: VIDT structure

Bootstrap

This layer is responsible for initializing the whole system, and putting it in a con-
sistent state before starting up the root partition. It contains all the boot code
required for Pip to start, as well as calls to the other abstraction layers for hardware
initialization.

Once the system has booted, this layer is not called nor used anymore. Therefore,
it doesn’t export any interface as the API code won’t require it.

2.3 Kernel structures

In order to allow or deny derivation and partition creation according to the current
system state while preserving isolation properties, Pip has to keep track of pages
allocated to partitions. To that end, Pip will use several hardware-independant
data structures per partition, which will represent the global state of the partition’s
memory space.

Partition Descriptor

A Partition Descriptor is a single page whose purpose is to identify an existing
partition through its physical address, as well as to store pointers (expressed as
physical and virtual-in-parent address couples) to other control structures related
to this partition. Its structure is presented in figure 3.6.

Shadow Pages

Shadow Pages are two sets of n-levels indirection tables, n being the amount of
indirection tables required for the target architecture. Their goal is to store multiple
information about page derivations and usages within a partition :

• Shadow 1 holds the child partition in which a page has been derivated, and
flags representing whether the page represents a child partition descriptor or
not,

• Shadow 2 holds the virtual address of a page in the parent partition’s MMU
environment.

48 2. PROOF INTEGRATION

CHAPTER 3. THE PIP PROTO-KERNEL

Offset Data
0 Phys(P. Descriptor) Virt(P. Descriptor)
2 Phys(MMU root) Virt(MMU root)
4 Phys(Shadow 1) Virt(Shadow 1)
6 Phys(Shadow 2) Virt(Shadow 2)
8 Phys(Shadow List) Virt(Shadow List)
10 IO flags 0

• Phys(p) : Physical address of p

• Virt(p) : Virtual address of p in parent partition

• IO flags : Access control flags for IO ports on Intel x86

Figure 3.6: Partition Descriptor structure

Offset Data
0 First free index
1 Virt(p1) Phys(p1)
3 Virt(p2) Phys(p2)
5 Virt(p3) Phys(p3)

...
Page size - 1 Phys(pnext)

• Phys(p) : Physical address of p

• Virt(p) : Virtual address of p in parent partition

Figure 3.7: Shadow List structure

The Shadow List is a linked list of virtual-in-parent and physical address couples.
It stores the addresses of the partition’s control structures themselves, in order to
keep track of them when deleting or collecting a partition. Its last entry holds the
physical address of the next Shadow List page, if more than one page is required.
Its structure is displayed in figure 3.7.

The benefits of using both of these structures are double :

• Provide efficient access control : Shadow 1 holds information about page
derivation, thus forbidding multiple derivations of the same page, as well as
derivations of a forbidden page, such as a Partition Descriptor,

• Enhance performance : Shadow 2 and Shadow List are used to find efficiently
the virtual address of control structures’ pages without having to parse the
whole address space when the parent partition reclaims them.

2. PROOF INTEGRATION 49

CHAPTER 3. THE PIP PROTO-KERNEL

2.4 Memory model overhead

Evaluating pp, the partition model’s memory usage

In terms of memory usage, the overhead induced by the support of these control
structures can be evaluated straightforwardly, as the amount of pages pp required
to build a partition can be calculated as follows:

pp = ppd + psh1 + psh2 + plist + 1 (3.1)

• One page is required to support the Partition Descriptor.

• ppd is the amount of pages required to build a Page Directory and its sub-tables
(Page Tables) for a partition - it is determined by the architecture and the
amount of memory given to the partition.

• psh1 is the amount of pages required to support the first set of Shadow Tables,
which are a duplicate structure of the Page Directory: psh1 = ppd. The same
formula applies to psh2.

• plist is the amount of pages required to build a list of virtual and physical
address couples corresponding to the control structures, the Linked List.

Evaluating plist, the Linked List’s memory usage

To calculate the amount of pages required to support this structure, we will add
a new constant nbe, which is the maximum amount of address couples a page can
contain on the target architecture.

nbe can be calculated from the size of a page on the target architecture, and from
the size of an address on the same architecture:

nbe =
spage

2× saddr
(3.2)

On the Intel x86 32-bits architecture, the page size is 4096 bytes, and the address
size is 4 bytes: in this case, nbe = 512.

plist can be evaluated by dividing the total amount of pages currently used by the
control structures with the number of entries a page can contain, minus the linked
list entry itself:

plist =
ppd + psh1 + psh2 + 1

nbe − 1
=

3× ppd + 1

nbe − 1
(3.3)

Evaluating op, the memory usage factor of the partitioning model

By simplifying the expression 3.1, we can evaluate the amount of pages required as
follows:

pp = d
nbe × (3× ppd + 1)

nbe − 1
e (3.4)

By extension, the memory usage factor op, compared to the memory usage with-
out Pip, can be evaluated as following:

op =
pp
ppd

(3.5)

50 2. PROOF INTEGRATION

CHAPTER 3. THE PIP PROTO-KERNEL

Without Pip With Pip
Mm Cs Total Ratio Mm Cs Total Ratio

Best case 1024 2 1026 0,19% 1024 8 1032 0,78%
Worst case 1024 1025 2049 50,02% 1024 3083 4107 75,07%

Mm : Mapped memory
Cs : Control structures

Figure 3.8: Amount of pages required to build a 4Mb partition

Best and worth cases

For example, on the Intel x86 (32 bits) architecture, we can estimate the best and
worst cases of memory overhead through two different partitions.

A partition containing only one page of data and a VIDT is the worst case of
overhead: in this case, it requires two additional Page Table entries, thus having
ppd = 3, pp = 11 and then op = 367%.

On the other hand, a partition having every single page available mapped (thus
having a Page Table associated to each Page Directory entry) is the best case:
ppd = 1025, pp = 3083 and then op = 301%.

Relationship with mapped memory

While that overhead might seem huge, it is unsignificant. Considering a Page Table
holds e entries (which is also the amount of pages which can be mapped through
this Page Table), and that a page has a fixed size of ps, a single Page Table is then
able to map up to mpt of memory :

mpt = e ∗ ps (3.6)

In my implementation of Pip, e = 1024 and ps = 4096, thus a single Page Table
can map up to 4Mb of memory.

If we consider a partition having only one Page Table filled in with pages, this
partition will require one page for its Page Directory, one page for its Page Table. We
consider the overall allocated memory to be the memory mapped to the partition,
as well as the memory required to build its control structures.

Without Pip, this partition would then require two pages, which represents 8kb of
memory, i.e. 0,19% of the overall allocated memory. With Pip, the amount of pages
required to build the control structures can be evaluated through expression 3.4. It
would then require 8 pages, representing 32kb of memory, i.e. 0,78% of the overall
allocated memory.

Now, considering a worst case, having still 4Mb of memory mapped, but with a
page mapped in each possible Page Table. Without Pip, we require 1024 Page Ta-
bles, and a Page Directory, which represents 4100kb (50,02% of the overall required
memory). Such use case would already require more memory to build the partition
itself than the memory allocated to the partition, even without Pip. With Pip, we
require, according to expression 3.4, 12,04Mb, representing 75,07% of the overall
allocated memory. The results are summed up in figure 3.8.

2. PROOF INTEGRATION 51

CHAPTER 3. THE PIP PROTO-KERNEL

These results are expected : any partition requires Shadow Pages 1 and 2, which
are exact clones (in terms of structure) of MMU configuration tables. A memory
factor of 300% can already be expected, with a bit more related to VIDT and Shadow
List memory usage. As well, the theorical worst case presented here is not realistic,
and would not happen in real-world environments. Still, in this case, the amount
of memory required to build the partition or memory environment was already high
and caused a huge memory overhead.

Thus, the impact of Pip on the system is very low. The control structures
associated to a partition are sized on page boundaries. Building a virtual memory
environment without Pip, using only a MMU, would already require some memory
pages for the Page Directory and Page Tables. Here, with Pip, we require 3 times,
approximatively, this amount of pages : while the memory overhead is high, the
impact on the system is unsignificant.

2.5 Initial state

When the system boots up, the hardware is in an unknown state, thus making any
assumption on it absolutely irrelevant. For instance, on Intel x86, Pip is booted
through the GRUB bootloader, which puts the system in Protected Mode, sets up a
Global Descriptor Table and many other structures. The major problem is that
we do not have control over what is done at bootloading time.

To solve that issue, the bootstrap component of Pip’s HAL performs several
steps before allowing the API to be called.

Configuring the base hardware

In order to make reasonings about the hardware’s state, Pip has to put it into a
known, consistent state before doing anything else. To that end, the bootstrap
component builds new control structures the hardware needs, even if they have
already been setup at bootloading time. For instance, on Intel x86, these control
structures are :

• Global Descriptor Table, which we use to define a linear, contiguous mem-
ory segment for both user-mode and kernel-mode,

• Task State Segment, which we use to define where the kernel stack is when
catching an interrupt,

• Model-Specific Registers, which we use to configure SYSENTER and SYSEXIT,
the instructions used to perform a system call.

In addition, as explained previously, the partitions running on top of Pip do
not handle interrupts directly. The latter are caught by Pip, and then dispatched
through software to the appropriate partition. To that end, the bootstrap layer
configures the hardware’s interrupt vector in a way that Pip catches any incoming
interrupt.

52 2. PROOF INTEGRATION

CHAPTER 3. THE PIP PROTO-KERNEL

Setting up the root partition

When the hardware has been successfully initialized, Pip can spawn the root par-
tition. To that end, a virtual memory environment is setup, providing a linear,
contiguous memory area for the root partition containing all the available mem-
ory. Pip’s control structures are then initialized and filled with appropriate values,
putting the root partition in a known state as well. This allows the upcoming API
calls from the root partition to be called from a known state, thus making the Hoare
triples-based reasonings in the proof valid and usable.

Once the setup is done, Pip starts up the root partition by dispatching the
virtual interrupt number 0 to it, jumping to a fixed entrypoint and stack address.
The bootstrap stage is then finished, and the bootstrap code is no longer used or
called during the remaining of the execution.

3 Multicore

3.1 Motivations

About single-core and modern use cases

Many systems today combine features that used to be implemented on separate
chipsets as independant subsystems, for instance in avionics or automobile industry.
Others request high performance through full parallelization of algorithms, such as
Cloud Computing appliances or virtual machines.

All these use cases require parallel execution of code within the system. Such
behaviour could be achieved by appropriately scheduling the execution time of the
CPU at the Root Partition level. Nevertheless, by doing so, execution would never
be fully parallel. Instead, it would be sequential, and while a virtual machine or
chipset is running, other are paused. Consequently, this approach is inefficient on
multi-core hardware and brings major slowdowns, which are unacceptable in, for
example, embedded real-time systems.

Towards a new multicore model

Pip’s initial model is efficient and suitable for single-core targets.
Still, today, more and more hardware components as well as software algorithms

run in a parallel fashion through multicore architectures. Putting Pip on a multi-
core machine to fulfill the needs previously recalled does not take advantage of the
features provided by this kind of architectures.

The most important problem here is the abstract model of the hardware the
formal proof relies on. By exposing only a single-core hardware model, it forbids
any implementation on multicore hardware. Still, we can consider that a single-core
hardware is nothing more than a multicore hardware using one core.

Thus, modifying this abstract representation of the hardware allows us to bring
parallel architectures into consideration while keeping backwards compatibility with
the former model.

3. MULTICORE 53

CHAPTER 3. THE PIP PROTO-KERNEL

Core 1

Core 2

S1 S2Int. state

Pre PostCall

Unk. state Unk. state Unk. state

Pre PostCall

Figure 3.9: Unknown states during system calls

3.2 Hardware architecture

In comparison to the single-core hardware model, multi-core environments com-
monly introduce more specific hardware.

First of all, the interrupt controller becomes a multi-core interrupt controller
(APIC on Intel x86), allowing interrupts to be transmitted from one core to another
(Inter-Processor Interrupts, called IPI in the remaining of this document). The
control flow management exposed by Pip has then to be modified to support those
features safely.

Another crucial point is that each core has now its own virtual memory environ-
nement, and more importantly its own address translation cache (TLB). This cache
stores virtual-to-physical address translations for one core. A modification on the
active memory environment on one core could then affect another core’s one. It is
then essential to handle this cache correctly and efficiently.

Finally, it is important to consider that, in a multi-core context, system calls
can be parallel, and be run concurrently on many cores at the same time, which
cause several questions about concurrent access to the critical data structures of the
system. Indeed, the API’s proof relies on the Hoare triples defined on it. Having a
core perform a system call while another is still executing a service would cause the
pre-condition of this call to be in an unknown state (see figure 3.9).

Given P0 is the isolation property, the Hoare triple on an API call asserts that
if the pre-condition state S1 verifies P0, the post-condition S2 will also verify P0.
During the system call itself, the system is in an internal state, and whether it
verifies or not P0 is unknown. Should a system call happen on another core while
the system is in this internal state, the latter would become the pre-condition of this
call, leading in an unknown state as pre-condition and post-condition.

This would compromise the overall validity of the proof during the system’s
execution, and requires to be managed correctly as well.

3.3 Issues

Keeping the validity of the Hoare triples applied to the API in a multi-core context
requires more guarantees about the facilities a multi-core architecture provides.

Inter-processor interrupts

Given what we said previously, many aspects are to be taken into consideration
when implementing a multi-core model for Pip. First, even if core-local interrupts

54 3. MULTICORE

CHAPTER 3. THE PIP PROTO-KERNEL

are already handled correctly, Pip has to provide a new abstraction of interrupts. In
order to handle inter-processor interrupt, it has to extend the pre-existing interface
to allow partition to handle not only core-local interrupt, but also interrupts from
other cores.

The necessity of this abstraction aims at forbidding a partition to handle the
multi-core interrupt controller (APIC). An attack, presented by Zhao [91], presents
a denial of service using a particular IPI flow, allowing a malicious kernel using many
cores to never send the End of Interrupt (EOI) signal when receiving a TLB clear
request IPI (in this case, the VM Exit IPI). When the hypervisor send the signal,
the guest then won’t receive it, and keep its cache. A page removed from the VM
can then remain virtually accessible, and that even if it has been removed from its
structures. By preventing a partition to handle the controller directly, Pip protects
itself from such attacks.

Address translation caches

As well, many cores being executed simultaneously, we can imagine many partitions
being executed simultaneously. TLB issues then become complex, given a system
call on a core can cause address space changes on a memory space currently active
on another core. For example, given a parent partition is executing on one core and
a child partition on another core, having the parent remove a page from the child
would cause an inconsistency into the TLB of the core executing the child.

Without using architecture-dependant optimizations, such as Virtual Process
IDentifier (VPID) for Intel architectures, we need to clear the TLBs at each system
call, in order to avoid any cache inconsistency due to changes to memory mappings.
Flushing the TLB at each system call is nevertheless expensive in terms of perfor-
mance. To solve these issues, additional hardware optimizations can be used in Pip’s
HAL.

Implementing those functionnalities can still be risky. An attack on XMHF (a
hypervisor also having a formal proof effort [83]) exploits a weakness in its imple-
mentation. This attack is based on a bad usage of the VPID feature. In order to
avoid the performance issue previously presented, XMHF developers used this fea-
ture. A weakness in its implementation causes a partial and incomplete TLB clear,
allowing, under some condition, a malicious core to keep an illegitimate access to
a page of memory. This attack, while being architecture-dependent, questions the
trust we can have on the software use of hardware features. Ideally, those features
must be independent from the kernel, and remain unhandled by Pip’s model itself -
rather by the hardware abstraction layer.

API parallelism

Finally, even if we can keep the non-interruptibility of system calls in this context,
we can then question system calls parallelism, i.e. the possibility that many cores
might call the API at the same time. We can distinguish two cases :

• The concurrent calls to the API come from partitions having no common
page (e.g. two direct children of the same parent) : those calls can be fully
parallelized, as they will not be working on the same memory,

3. MULTICORE 55

CHAPTER 3. THE PIP PROTO-KERNEL

Pip

RP 1
CPU1

C1 C2

RP 2
CPU2

C1 C2

Figure 3.10: Single-thread model

• The concurrent calls to the API come from partitions having common pages
(e.g. a parent partition and a child) : in this case, concurrent calls should be
forbidden, and spinlocks should be added to the API code in order to ensure
no data structure is concurrently accessed.

3.4 Multicore models

There are many ways to deal with those issues with our proto-kernel model. By
making each core work on different, separate portions of the physical memory, those
issues can be dealt with in the most straightforward way. Still, enabling multi-
thread applications on Pip can bring life to more specific use cases and software
architectures.

These solutions have both their advantages and drawbacks. Still, I built two
different models from this. The single-thread model makes each core use a differ-
ent portion of the physical memory. The multi-thread model, on the other hand,
allows a partition tu run on multiple cores, but requires more accurate controls and
operations to ensure that both of the previously stated issues are resolved.

Single-thread model

This model exposes a single multiplexer/root-partition per core, each one running
since boot time on separate parts of physical memory (see figure 3.10), as a "multi
mono-core" system, in a similar way to the Xtratum hypervisor [89] [29]. An example
of the partition then seen by Pip is shown in figure 3.11.

The main interest of this model resides into the complete isolation between the
memory used by the different cores, appliable to virtualization contexts where each
virtual machine can, for example, execute onto a core without ever having the op-
portunity to compromise another one during its execution. There is then no issue
related to TLB management : the core’s TLBs will always have entries pointing to
different physical memory pages.

Nevertheless, although there is no page sharing between cores in this model,
communication between them is still possible. Each core is bound to a memory
page, shared between each core, and a virtual interrupt number. Each core is then
exported to other ones as external, independant peripheral devices. A core then
behaves as a device, and emits an interrupt on other cores when data is written in
its associated page. We can then pass information from one core to another without
compromising the isolation property. As such, in this model, IPIs are represented

56 3. MULTICORE

CHAPTER 3. THE PIP PROTO-KERNEL

Pip

Proot1

P1

P1.1

P1.2

P2

P2.1

P2.2

Proot2

P3 P3.1

P3.1.1

P3.1.2

P4 P4.1

P5

Figure 3.11: Multi-core, single-thread partition tree example

Pip

Root partition
CPU1,3

C2
CPU4C1

C1.1 C1.2
CPU2 C2.1 C2.2

Figure 3.12: Multi-thread model

as core-local interrupts coming from other devices, in the sole purpose to allow
communication.

The implementation of the API itself remains unchanged. The "multiple mono-
core" model vouches for the fact that there is no concurrency between the API
calls, the root partitions associated to each core running on different parts of the
physical memory of the host. System calls can then be run in a parallel fashion
without any risk related to concurrent accesses to the system’s critical data struc-
tures, thus ensuring the validity of the Hoare triples previously referred to, without
any modification to the model’s implementation.

Multi-thread model

In this model, a partition can be run simultaneously on several cores (see figure 3.12).
This model is more flexible in an implementation point of view : we can then

implement a fully featured parallel execution model on a partition, allowing simulta-
neous execution of many execution contexts, and let the partition handle the cores’
control flow as it desires without any restriction, excepted the ones imposed by the
hierarchial model.

This model, while being multi-threaded and allowing the implementation of mod-
ern multi-core systems, is vulnerable to the same TLB issues than the previous

3. MULTICORE 57

CHAPTER 3. THE PIP PROTO-KERNEL

Pip

Core 1 Core 2

Linux loader

Linux

FreeRTOS

Figure 3.13: Single-thread virtualization use case

model, and even more to the synchronisation and parallelization of the system calls.
It then seems to be necessary to forbid the parallel execution of system calls, the
latter being likely to manipulate concurrently the same data structures.

As well, in order to avoid any inconsistency in the TLBs, they have to be cleared
at each system calls.

Doing this TLB cleaning as well as locking the system calls can lead to a con-
siderable performance loss.

3.5 Use cases

The two models I propose both expose different visions of multicore. While the first
one is more like a “multiple single-core” model, the second one provides what we
usually expect from a multicore model : parallelization and concurrency.

The differences between those models is what brings strength to the multicore
implementation of Pip. Its flexibility allows a wide range of different usages, espe-
cially considering that additional models could also be built to deal with specific
issues.

The single-thread model, for instance, is especially suitable for specific virtual-
ization needs. By having each core run a separate virtual machine, the memory
isolation between the virtual machines is ensured, as depicted in the example use
case displayed in figure 3.13. Still, there are hardware management issues related to
device sharing. It is highly difficult to build a resource sharing mechanism for shar-
ing, for instance, a network adapter with two virtual machines. Indeed, the physical
memory of the system being split into different parts belonging to different cores,
a device’s memory would be associated to a specific core, and become unaccessi-
ble from the other ones. Still, the core responsible for the network adapter could
route an incoming packet to the appropriate core through the core-specific dedicated
page and virtual interrupt. Nevertheless, this workaround is time-consuming and a
performance killer.

In summary, when it comes to virtual machines relying on separate hardware
components, this model is efficient and the most suitable. For instance, old automo-
bile embedded systems, which used to be located on separate chipsets, could take
advantage of this model to run on a single hardware component. The systems being
initially isolated, even in terms of hardware devices, this model brings no issues.
Still, when hardware sharing issues are drawn, this model becomes quite inefficient.

58 3. MULTICORE

CHAPTER 3. THE PIP PROTO-KERNEL

Pip

Linux loader

Linux

FreeRTOS

Resource multiplexer

Core 1 Core 2

Figure 3.14: Multi-thread virtualization use case

On those specific use cases, the multi-thread model is more appropriate and
efficient. As depicted in figure 3.14, a resource multiplexer could be running as a
Root Partition. Having the ownership of all the physical memory, the multiplexer
can manage the hardware efficiently, and share the resources between the virtual
machines running on top of it. The latter could be running one on each core, but
the resource multiplexer could also allow manage the core allocation precisely, and
determine which cores are dedicated to a virtual machine. By associating more than
one core to a virtual machine, this model allows the usage and execution of parallel
algorithms on top of Pip, taking full advantage of the multi-core architecture.

4 Conclusion

In summary, the Pip proto-kernel, combining both hierarchical, recursive TCB and
separation kernel model, is a concrete application of the model developed in the
previous chapter. By its unique design, the issues presented in the previous chapter
are all addressed, and the usability of the model has been demonstrated through a
concrete, complete implementation on a real-world hardware, which is both desktop
and embedded Intel x86. Its API is minimal, written in Coq as part of the model,
and only covers the minimal set of operations required to build a working system
on top of it. By converting the API’s code written in Coq into compilable C code,
we nullify the amount of work required when a change is made onto the model : the
model is automatically converted and recompiled into the kernel. The equivalence
between the Coq source code and the converted C code is ensured by the converter
tool, Digger, while the equivalence between the C code and the binary aims to be
verified through CompCert. The whole compilation chain from Coq to binary is
then automated and verified.

The data structures used by Pip, and on which the proof relies on, cause a
low memory overhead. By mimicking the control structures of a real hardware
(MMU translation tables, interrupt vector), those structures can be used on any
architecture. As well, the hardware abstraction layer Pip relies on exposes minimal
operations, each function having a specific, unique purpose. Porting the kernel to

4. CONCLUSION 59

CHAPTER 3. THE PIP PROTO-KERNEL

another architecture then consists in porting the hardware abstraction layer only,
thus making the kernel easily portable to other architectures.

Finally, I presented two different models suitable for multicore usages. Those
models are designed to address specific multicore use cases, such as virtualization.
The flexibilty of those models has been demonstrated, as well as the possibility
of building othere multicore models to answer different issues. The proof remains
valid on multicore models, as the implementation of those models only relied on
the hardware abstraction layer. By ensuring the validity of the Hoare triples on
multicore targets, especially by forbidding concurrent accesses to the API, we ensure
the isolation property remains verified through the execution of the system.

In the next chapter, I will discuss the performances of the Pip proto-kernel, on
single-core and multicore models, as well as my work around the port of a Linux
kernel on top of it.

60 4. CONCLUSION

Chapter 4

Performances and return on
experience

In this chapter, I will display a performance overview of Pip in various use cases,
through many benchmarks.

First, I will present an evalutation of the single-core model of Pip, through
micro and macro benchmarks. These benchmarks show an acceptable performance
overhead, but suffer from the benchmark syndrome. Indeed, benchmarks are not
representative of a real world use case.

To solve this, I will also present my work around Linux, and how I ported
a full Linux 4.10.4 kernel on top of Pip. By using Linux as a support for further
benchmarks, but this time on a general-purpose operating system port, I will provide
additional performance evaluation results.

Finally, I will focus on the multicore models, by running benchmarks on both
models. As well, I will run some common benchmarks, JPEG compression and
Mandelbrot fractal calculation, suitable for multi-core/multi-thread execution, in
order to assess the multicore models’ efficiency.

1 Single core
In order to evaluate my approach’s efficiency, I ran several benchmarks on top of
Pip. These benchmarks aim to assert the low impact of Pip’s API calls on the overall
system performance, as well as to display the minimality of the system calls.

1.1 Micro benchmarks

First of all, I evaluated the average amount of CPU cycles consumed by Pip’s system
calls.

Experimental protocol To that end, I added performance counter code into
LibPip’s1 functions, which displays, for each system call, the amount of CPU cycles
consumed until its end. On the serial link are then printed, for each call, the system
call number, and the values of the CPU performance counter at the beginning and
end of call. The output is formatted this way :

1A standalone library for Pip partitions acting as a system call wrapper

61

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

[LIBPIP]:System call number:Begin:End

Once the output has been generated into a single file, a script parses it and
displays the average amount of cycles required for each call.

Target hardware This benchmark has been run on a VirtualBox virtual machine,
using 512Mb of physical memory and 1 CPU. No hardware acceleration were used, as
the goal here is to evaluate an amount of CPU cycles. Therefore, the most accurate
way to evaluate this is to run the benchmark without any optimization whatsoever.
As I don’t know about VirtualBox’s cycle accuracy, I also run those benchmarks on
real hardware, using an Intel Pentium 4 CPU with 512Mb physical memory.

The amount of cycles displayed covers the system call execution time, as well as
the context switches from the usermode library to the kernel, and the travel back
to usermode once the call has been performed.

Results Here are the results of the benchmark :

CREATEPARTITION: 1 entries, 289356 cycles average.
PAGECOUNT: 171823 entries, 279477 cycles average.
PREPARE: 171 entries, 310671 cycles average.
ADDVADDR: 171413 entries, 270846 cycles average.
REMOVEVADDR: 85385 entries, 273215 cycles average.

The results display an average of 300.000 cycles per call. This is an expected
result, as those calls only read or write at specific indexes into partitions’ control
structures. The performances provided by these calls is acceptable and do not cause
any huge overhead on the system’s execution.

Still, Collect and DeletePartition behave differently, and require much more cy-
cles to execute.

The case of Collect and DeletePartition The execution time of Collect and
DeletePartition vary, depending on the memory layout and state of the target par-
tition. Therefore, benchmarking those calls requires several different use cases in
order to evaluate their performance accurately.

We consider the best case for Collect is when there is no Page Table associated
to the target address we want to collect. In that case, my benchmark returns an
average of 705.792 cycles. When a Page Table is present, but has a mapped page
entry written into it, the cycle count should be much higher, as Pip has to parse the
Page Table entirely. Indeed, my benchmark returns an average of 20.277.816 cycles.
The worst case, which, incidentally, is the very purpose of Collect, is when there
is effectively no page mapping associated to the Page Table we want to collect. In
that case, my benchmark returns an average of 42.162.049 cycles.

DeletePartition is simpler to deal with : all the present Page Tables are parsed,
each mapped page being returned to the caller. Therefore, the best case for DeletePar-
tition is when there is no page mapped, no Page Table present, while the worst case
has everything mapped with any possible Page Table present into the Page Direc-
tory.

62 1. SINGLE CORE

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

Best case Worst case
Collect 705.792 42.162.049

DeletePartition 42.288.338 3.393.646.844

Figure 4.1: Collect and DeletePartition performance (CPU cycles)

The results of those specific benchmarks are displayed in figure 4.1.
While those performances are expected, they might not cause a huge overhead

on a whole system execution. Indeed, the usage of those calls is rare compared to the
other systems calls. Where AddVAddr or RemoveVAddr are to be used frequently,
Collect and DeletePartition might be used once in a while, thus causing a temporary
slowdown at some specific points in time, but not permanently.

As well, especially for DeletePartition, the worst case presented is not represen-
tative of a real-world use case, and would probably not happen, as it requires the
MMU environment of the child partition to have any possible page mapped into it.

AddVAddr vs. SBRK I also compared the ADDVADDR’s call cycle cost to
Linux’s SBRK system call (requiring a page of extra memory), which does roughly
the same (give a process a specified amount of memory, e.g. a page). To that end,
I used the Linux 4.10.4 kernel with exactly the same kernel configuration as the
Pip/Linux port. This configuration ensures, mostly, that no hardware optimizations
are used, in order to evaluate both of these call’s behaviours in similar environments.

As well, I ensured the memory mapped through sbrk() did not require any ad-
ditional Page Table.

The results displayed an average of 648.761 CPU cycles per sbrk() call, which is
roughly twice the amount of cycles required to perform an AddVAddr. This can be
partially explained by the fact that the memory allocated to the Linux process is
given by the kernel. Thus, a page allocator within the kernel is required and called.
AddVAddr, on the other hand, does not allocate anything, as the page is given by
the caller partition as a parameter to the system call.

1.2 Introducing the macro-benchmarks

Once the system calls are benchmarked, it is then important to evaluate Pip’s global
cost through macro-benchmarks. These are specific applications, run as partitions
on top of Pip.

In order to do so, I used three different benchmarks, which are the following.

Dhrystone Dhrystone is a widely-used, popular integer computation benchmark
designed by Reinhold P. Weicker in 1984 [86]. Its execution puts a lot of stress on
the CPU, and even if it is not realistic compared to real-world applications, it is a
good way to evaluate the overhead of Pip in terms of CPU cycles. Still, here, we
won’t look at the DMIPS shown by the benchmark, but only at the cycles required
to execute it instead. Dhrystone uses no system call during its execution.

AES AES is a cryptographic computation benchmark. Its aim is to cipher and
decipher a string through multiple AES algorithms :

1. SINGLE CORE 63

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

• AES-ECB-128,

• AES-ECB-192,

• AES-ECB-256,

• AES-CFB128-128,

• AES-CFB128-192,

• AES-CFB128-256.

Its execution also puts a lot of stress onto the CPU, thus making it an accurate
benchmark in order to evaluate Pip’s cost. Being an algorithm frequently used in
cryptographic applications, its performances are also worth being evaluated on top
of Pip. It uses no system call either.

Fibonacci/JS This benchmark runs a JavaScript version of the Fibonacci algo-
rithm on a high integer boundary. The script is run onto a port of the Duktape2

JavaScript interpreter on Pip, on a two-level partition architecture. The root par-
tition acts as a multiplexer and resource allocator, and spawns the interpreter into
a child partition. When Duktape requires more space for its stack - which happens
a couple of times on recursive functions such as Fibonacci - a fault is triggered to
the root partition. It then maps another page at the accurate address into its child.
It then uses many system calls during its execution, such as Dispatch, Resume or
AddVAddr. By its architecture and design, this benchmarks is relevant as it also
benchmarks the overhead induced by the map-on-fault flow.

Experimental protocol Each benchmark has been run on top of Pip, and di-
rectly on bare-metal as a standalone “kernel ”. Still, the code is running in user
mode, with the MMU enabled, each page written as accessible from user mode in
order to run the benchmarks in the exact same conditions. While the bare-metal im-
plementation of AES and Dhrystone displayed no particular issue or difficulty, the
Fibonacci/JS benchmark required a minimal LibC implementation. Fortunately,
the required functions to run the benchmark correctly do not rely on specific ker-
nel structures or features. The interface of the LibC provided, both for the Pip
implementation and the bare-metal implementation, is displayed in figure 4.2. On
bare-metal, interrupts are disabled, while on top of Pip, the VCLI flag is set, dis-
abling any hardware interrupt redirection to the root partition. Only the page fault
interrupt is configured on bare-metal for the Fibonacci/JS, which immediately maps
a page at the faulting address before resuming the benchmark.

1.3 Results

The results of the experiment are displayed in figure 4.3. While the overheads
displayed in the figure might seem to be huge, they are only just a matter of a few
percents, as the scale goes from 100% to 106%. Dhrystone and AES display a very
low overhead, which can be explained by the fact that the only interrupt happening

2http://duktape.org

64 1. SINGLE CORE

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

1 int *__errno(void);
2 void abort();
3
4 /* Not implemented , but fortunately not required */
5 double difftime(time_t time_end , time_t time_beg);
6 time_t time(time_t *arg);
7 struct tm *gmtime(const time_t* time);
8 struct tm *localtime(const time_t* time);
9 time_t mktime(struct tm *time);

10
11 /* Memory allocation */
12 void *malloc(size_t n);
13 void *realloc(void *ptr , size_t size);
14 void free(void *p);
15 void *calloc(size_t nmemb , size_t size);
16
17 /* Memory manipulation functions */
18 void *memcpy(void *dest , const void *src , size_t n);
19 int memcmp(const void *s1, const void *s2, size_t n);
20 void *memmove(void *dest , const void *src , size_t n);
21 void *memset(void *s, int c, size_t n);
22
23 /* String manipulation functions */
24 int strcmp(const char *s1, const char* s2);
25 int strncmp(const char *s1, const char* s2 , size_t n);
26 size_t strlen(const char *s);
27 char *strcat(char *dest , const char *src);
28 char *strchr(const char *dest , int c);
29 char *strcpy(char *dest , const char *src);
30
31 /* String output */
32 int printf(const char * format , ...);

Figure 4.2: Minimal LibC interface for Fibonacci/JS

Dhrystone AES Fibonacci/JS

100

102

104

106

10
0

10
0

10
0

10
0
.8
7

10
0
.9
3

10
4
.8
3

E
xe
cu
ti
on

ti
m
e
(%

)

Bare-metal Pip

Figure 4.3: Dhrystone, AES and Fibonacci/JS benchmarks on bare-metal and Pip

1. SINGLE CORE 65

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

during the execution of the benchmark, and thus the only context changes, are
due to the timer interrupt. The overhead presented represents the many times Pip
caught the timer interrupt and then resumes the benchmark without redirecting it,
whereas on bare-metal, the interrupt handler is not even called.

On the opposite, the Fibonacci/JS benchmark displays a higher overhead. On
bare-metal, when the stack grows too much, a fault is triggered. A page is then
mapped, and the benchmark is resumed. When running on top of Pip, the fault is
transmitted to the parent partition, which performs successive calls to PageCount,
Prepare (if required) and AddVAddr before using Resume to resume the benchmark.
This operation is obviously much longer than mapping the page directly, and thus
causes the displayed overhead.

2 Feedback : the Linux kernel

2.1 Porting Linux

As a way to demonstrate the usability of Pip’s model and implementation, I ported
a Linux kernel (version 4.10.4) on top of it. The main challenge of this port was to
keep the main features of Linux untouched and working, while still integrating Pip’s
isolation features into Linux.

Design The choice was made here to run Linux as a partition, and each process
as a sub-partition of the kernel, without any relationship with the process tree.

This choice is motivated by Linux’s internals : the memory for each process
is given by the kernel itself, not by the parent process. The process relationship
structure in Linux is mostly about rights, streams or environment inheritance, which
all are Linux abstractions and/or features provided by the latter. The main thing
Pip has to manage correctly here is the memory given to each process, which is
precisely one of the only things not represented by Linux’s process tree.

Challenges Porting Linux on top of Pip has drawn several challenges, due to Pip’s
restricted interface and limitations towards shared memory. For instance, allowing
two processes to share memory is a common thing in UNIX(-like) kernels, but is
seemingly impossible with Pip, due to the memory isolation property. The only way
to integrate that behavior without breaking Pip’s isolation property is to integrate
a swapping layer directly into the kernel, swapping pages on the go when required.
This allows processes to see their memory as shared, even if the page is not really
shared but swapped instead.

Another challenge is related to interrupt management. Most kernels (if not all of
them) want to handle interrupts, and by extension the interrupt controller, directly.
Keeping in mind that Linux runs in a Pip partition, it cannot be allowed to handle
the PIC directly : allowing it to do so would allow a denial-of-service attack to
be run on the overall system (even unknowingly). Therefore, I had to hook Pip’s
interrupt management into Linux while trying to keep most of it untouched.

Loading Linux A recurrent question was about Linux’s boot sequence. In most
systems, today, Linux is booted through a boot loader such as GRUB (or, for

66 2. FEEDBACK : THE LINUX KERNEL

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

Pip

Linux

/bin/init

Minako

Other process...

Figure 4.4: Minako on Pip architecture

some older versions, LILO). The kernel image also integrates a Master Boot Record
header, allowing the image to be directly burnt into a floppy or hard drive, and
booting directly from the real-mode entrypoint of the computer. More recently,
another kernel entrypoint was added for UEFI systems, booting directly into Long
Mode...

In summary, there are plenty of ways to boot the kernel, making the boot se-
quence incredibly hard to understand at first sight (with no previous experience
with Linux’s internals). I chose to write my own Linux loader for Pip, in order to
have full control over the boot sequence and during the execution of the kernel.

2.2 Minako

Minako is a Pip root partition, initially designed to be a Linux kernel loader. While
not being a part of the contribution of my thesis on its own, I made Minako as a
generic-purpose partition loader for Pip, and integrated a way to bootstrap Linux
into it. The architecture of the Linux port of Pip is displayed in figure 4.4, having
Minako as a root partition and resource multiplexer.

Boot-loader The first goal of Minako is to bootstrap the Linux kernel from its
kernel image. It basically does some essential operations before letting Linux boot
by itself :

• Check for the integrity of the Linux image,

• Parse and configure Linux’s image header,

• Create a child partition for Linux,

• Map the kernel image into the created partition,

• Allocate and fill a zero page with the required data for Linux’s boot3,

3See Linux boot sequence documentation for more information about this.

2. FEEDBACK : THE LINUX KERNEL 67

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

• Allocate a buffer page between Linux and Minako, allowing Minako to know
in which state the kernel is (booting, booted, interrupted...),

• Give the remaining free memory to the Linux partition,

• Boot Linux through the 32 bits, protected-mode entrypoint.

Resource multiplexer Minako also acts as a resource multiplexer. Linux has
no direct access to the hardware (excepted through memory-mapped I/O, if Mi-
nako maps them). Therefore, when the kernel performs an I/O operation, a fault is
triggered in Minako instead, and the latter decides whether the operation was legit-
imate or not. For instance, an access to the CPU’s interrupt controller is forbidden,
whereas an output on the serial link is allowed.

The same goes for hardware interrupts. Most of the time, they are directly
retransmitted to the kernel. Should it be several kernels Minako is handling, it
would redispatch the interrupts according to the multiplexing policies implemented
within it. The only notable exception here is the timer interrupt, which has a slightly
different behavior depending on the state the target kernel is in.

Handling the timer interrupt Pip handles interrupts in a simple fashion : either
it dispatchs a new interrupt, or triggers an interrupt return through the RESUME
call. When the child kernel is already booted and ready, a timer interrupt should
and will be dispatched to it, through a DISPATCH call to the appropriate interrupt
vector number. Nevertheless, Linux’s boot process on Pip takes much more time
than on bare-metal, due to the various operations requested to Minako. Therefore,
many timer interrupts happen during the time Linux is booting or executing system
call code. Whereas Linux just disables interrupts on bare-metal, Minako still gets
them on the Pip port of it. In that case, the buffer page previously allocated comes
to an use, storing the state the kernel is in :

• When Linux is executing kernel code, Minako will simply resume the Linux
partition,

• When a Linux process is running, Minako will dispatch the interrupt to the
kernel.

2.3 Booting Linux

Allowing Linux to boot in userland required some changes in some operations it does
during early-boot. I won’t cover the hardware-specific configuration phases here, as
most of them were disabled and irrelevant in this document. Some changes were
specific to Pip and required proper handling, which will be developed here.

Handling the address space changes Linux is a higher-half kernel, meaning
that it puts its own code into the higher half of the system’s virtual memory. Here,
during its boot, Linux would configure a temporary virtual memory space for the
kernel, putting itself at address 0xC0000000 and higher.

68 2. FEEDBACK : THE LINUX KERNEL

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

Pip

Linux

Minako(1) Page fault

(2) Call handler

(3) Swap page
(4) Resume execution

Figure 4.5: Page swapping in Minako, part 1

Linux

Minako

0x702000 0xC0702000

(1) RemoveVAddr (2) PageCount/Prepare/AddVAddr

Figure 4.6: Page swapping in Minako, part 2

Unfortunately, Linux cannot be allowed to manipulate directly its own address
space, as well as it cannot be mapped from its bootstrap in higher half, due to direct
jumps done before the virtual memory is initialized.

Therefore, I added a swapping layer directly in Minako, as depicted in figure 4.5.
Its behavior is rather simple, and is triggered when a page fault is caught. Minako
first checks whether the faulting address is in higher or lower half. If it is in lower
half, the fault is considered as critical, and a kernel panic is triggered into Linux.
On the opposite, a fault in higher half might be legitimate, and require a swapping.
Minako then checks for the existence of the desired page in lower half. If it is found,
it is remapped into higher half, and the kernel is resumed, as explained in figure 4.6.
If not, Linux will kernel panic as well.

Thus, the pages of the kernel are remapped on demand as the system boots.
I implemented later on a system call to Minako that Linux uses to request a full
remap of its memory layout. Still, this slows down the boot process of Linux a lot,
as the whole memory layout has to be rebuilt : whereas on bare-metal Linux could
only move the index of its Page Table within its Page Directory, here, Minako needs
to perform a full swap operation on each page.

Evaluating the amount of available memory Traditionally, Linux probes the
system’s available memory through e8204, a real-mode BIOS call. Changing this
behaviour was required for two specific reasons :

4A facility provided by the computer’s BIOS, reporting the memory map of the system

2. FEEDBACK : THE LINUX KERNEL 69

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

• Pip does not allow BIOS calls from userland,

• The memory map E820 would report would be inaccurate and wrong, as Pip
and Minako already consumed some memory.

Therefore, Minako uses the buffer page to store a restricted, accurate memory
map telling Linux which memory is available and usable. The E820’s behavior is
then simulated, but remains accurate for the remaining of the boot process.

Interrupt management During its early boot, Linux tries to configure the CPU’s
Interrupt Vector. As explained previously, Pip’s interrupt management was inte-
grated instead, using the last page of the virtual memory environment, the VIDT.
Usually, Linux expects to find the interrupted process’ context state on the stack
when an interrupt is triggered. This behaviour is not preserved on this port, due
to Pip’s interrupt management internals. Instead, when Linux gets an interrupt, it
fetches the interrupted process’ context from its partition’s VIDT buffer, and then
puts it into a buffer the interrupt handler can query. This way, most of the interrupt
behaviour is kept functional, especially for system calls and scheduler.

Spawning /bin/init Having no storage device available, the first process, often
known as init, is stored into an initial ramdisk embedded into Linux’s kernel image.
Once the early boot stage has finished, Linux has to spawn this process and virtually
enter userland. To that end, the kernel has to do a couple of additional steps. Those
steps include, but are not limited to, parsing the ELF binary for the init process,
opening the standard I/O streams (stdin, stdout, stderr) and allocating a stack for
the process.

2.4 Isolating processes

In order to create processes into partitions, I had to integrate Pip’s partition model
into Linux’s process structures.

Handling virtual memory Initially, Linux stores, for each process, a pointer to
the first-level virtual memory configuration table. As Linux cannot handle virtual
memory directly, this pointer stores data that won’t be used directly. Instead, a
reference to the partition descriptor storing the Linux process is required. It will
then be stored in the first entry of the Linux-side MMU configuration table. The
remaining of this table is still updated by Linux, and provides an overview of the
process’ partition state.

Consistency between the configuration table generated by Linux and the one
used by Pip then has to be ensured, in order to keep the coherency of the spawned
process’ memory environment. Fortunately, when a process is spawned, Linux maps
nothing at first. Instead, it will catch the Page Faults triggered by the process on
an access to a missing page. If the page is indeed missing, Linux would map it and
return to the process.

I then hooked this behaviour to integrate calls to Pip’s API, thus really mapping
the page when required, and ensuring the equivalence of the tables stored by Linux
and the ones used internally by Pip.

70 2. FEEDBACK : THE LINUX KERNEL

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

Faulting address in process

Linux MMU tables MappedInChild

Partition the page belongs toAddress in partition

RemoveVAddr

AddVAddr

Figure 4.7: Page swapping in the Linux port

Shared memory When two processes share memory, their MMU configuration
tables point to the same physical address. This is not allowed in Pip, so swapping
pages is required instead. To that end, when a page belonging to a process is also
mapped into another process, Linux updates their MMU configuration, but does not
call Pip to update the MMU environment. The MMU configuration table maintained
by Linux is not used by the system, and is only used as a support for page swapping,
as it represents Linux’s view of the process’ memory space.

When the second process tries to access the page, a page fault is triggered.
The kernel will then get the supposed physical address of the page in the MMU
configuration associated to the process by Linux. In fact, this address is not a
physical address, but the address of the page in the Linux kernel’s partition. Using
the MAPPEDINCHILD system call, Linux can get the partition this page has been
mapped to. The only information still needed is the address it has been mapped to.

To that end, Linux also keeps another translation table, similar to a MMU
configuration table, in its own address space. This table keeps trace of the address
of the shared page, in the child partition they have been mapped to.

By using both the MAPPEDINCHILD call and this internal table, Linux unmaps the
page through the REMOVEVADDR call, and then maps it in the appropriate partition
through the ADDVADDR call. This behavious is described in figure 4.7, and provides
a second layer of page swapping, in addition to Minako’s one.

BSS section When a process, initially stored in an ELF binary file, is spawned,
Linux parses the ELF sections and maps the pages when required. One notable
exception is the BSS, a section with no related pages in the image, filled with zeros
when mapped (uninitialized variables and structures).

Initially, the pages pointed by BSS sections are all mapped into a single zero-
filled page, marked as read-only in Linux’s MMU configuration table. When the

2. FEEDBACK : THE LINUX KERNEL 71

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

Dhrystone AES

100

105

110

115

10
0

1
00

11
1
.6
1

1
07
.8
1

1
06
.5
8

1
03
.4
9

E
xe
cu
ti
on

ti
m
e
(%

)

Linux
Pip/Linux

Pip/Linux with PGE

Figure 4.8: Dhrystone and AES benchmarks on Linux, real hardware

process tries to write in this segment, Linux would clone this page into a new,
writable page, and update its memory environment. This behaviour is simulated in
a different way with Pip, as it doesn’t handle (yet) read-only pages. When a process
is spawned, the BSS section is parsed, fully allocated and initialized with zeros at
first. Without doing that, the same BSS page would be swapped over and over,
causing performance and consistency issues.

2.5 Performances

Global Pages feature Recent Intel x86 processors provide an optimization called
Global Pages (called PGE later in this document). This feature allows the kernel
(here, Pip) to mark kernel and static pages (i.e. pages who have the same mapping
whatever the current virtual memory environment may be) as Global Pages, thus
keeping their entries valid in the TLB. These entries are then kept and not flushed
when a context change occurs on an interrupt or a system call.

Hardware specifications I ran the following benchmarks on an Intel Core i7
CPU, having 16Gb of physical memory. Pip/Linux is booted from a bootable ISO
image burnt onto a flash USB drive.

Results As a way to assert the low impact of Linux’s port on top of Pip, I also
ran the Dhrystone and AES benchmarks as Pip/Linux processes, forked from the
init process.

In order to evaluate the optimizations provided by the PGE feature of x86 CPUs,
I also ran these benchmarks without any optimization enabled. The results are
shown in figure 4.8, displaying the overheads of the benchmarks when running on
the Linux port, with and without optimizations. In this figure, the scale goes from
100% to 115%.

72 2. FEEDBACK : THE LINUX KERNEL

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

The latter displays an overhead under 12% for an optimization-less CPU, and
under 7% for a port using the various optimizations provided by the CPU. The
performances provided by the Linux port thus remain acceptable and realistic for
embedded applications.

Process Context IDentifier feature The Long Mode extensions (i.e. 64 bits
mode) of Intel x86 processors also introduced the PCIDE feature, allowing TLB
entries to be tagged with a context identifier. Here, we consider a context is nothing
more than a partition.

Unfortunately, this feature is only supported in 64 bits mode, triggering aGeneral
Protection Fault when enabled while being in 32 bits mode. This behaviour is
incorrectly simulated by the QEMU simulator (version 2.7.0), thus allowing me to
evaluate the potential speedup brought by this feature. The results are displayed
in figure 4.9, presenting the overheads of the benchmarks running the Linux port,
with and without optimizations. In this figure, the scale goes from 100% to 115%.

QEMU’s implementation of caches hits and misses is questionable, but requesting
an already cached address translation is still way faster than walking the page table
entries. A TLB hit represents an average 1 cycle cost, whereas a miss costs an
average 72 cycles. On real hardware, a TLB hit costs an average 1 cycle, whereas
a miss costs from 10 to 100 cycles, depending on the hardware and the translation
tables layout.

The results display an even more significant speedup, due to the TLB tagging
allowing the Linux and init (benchmark) partitions’ TLB entries to be kept at each
context change and not flushed. Although this optimization is not available in 32
bits mode, I’m confident it will be another way of making the Linux port, as well as
any other Pip-based software, faster and closer to a bare-metal implementation on
a future 64 bits port of Pip.

3 Multicore

The multicore models of Pip bring more questions about the performance issues. In
addition to the interrogations previously stated towards the impact of the system
calls, the overhead of the multicore additions needs to be evaluated. As well, the
efficiency of the multicore models when it comes to multico algorithms requires
evaluation as well.

3.1 Micro benchmarks

Interrupt transmission The multicore implementation of Pip brought many up-
dates to the system call mechanisms, as well as locks put onto them, in order to
avoid concurrency between calls. It also allows interrupts to be dispatched to other
cores.

I first benchmarked the interrupt transmission time as speedup factors, taking
a fault’s transmission time as a reference. The results are displayed in figure 4.10,
which shows the speedup factors of Virtual Interrupts and Virtual IPIs compared
to faults.

3. MULTICORE 73

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

Dhrystone AES

100

105

110

115

1
00

1
00

1
12
.4
8

10
7
.2
3

1
07
.1
1

10
4
.1
8

1
03
.9
4

10
3
.8
2

E
xe
cu
ti
on

ti
m
e
(%

)

Linux
Pip/Linux

Pip/Linux with PGE
Pip/Linux with PGE and PCIDE

Figure 4.9: Dhrystone and AES benchmarks on Linux, QEMU 2.7.0

Compared to faults and traditional INT/IRET mechanisms, Virtual Interrupts
are more than 3 times faster, and Virtual IPIs are around 1.25 times faster.

Those figures and results are expectable. In order to fully understand them, we
have to take a look at how exactly those three interrupt kinds are handled.

Faults

Faults, being triggered by either the CPU itself or an explicit INT instruction,
are known to be expensive in terms of performance. Linux, for instance, has re-
placed its traditional INT tampoline for system calls by a faster and more efficient
SYSENTER/SYSCALL implementation.

SYSENTER and SYSCALL (depending on whether the code is running on an Intel
or AMD CPU) are designed to provide a fast and efficient way for an application
to request a service from the kernel. By configuring only an entrypoint and stack
for the kernel, at which the CPU branches directly when SYSENTER/SYSCALL is run,
all the historical, fastidious interrupt handling process is avoided, thus making the
user-to-kernel and kernel-to-user transition much faster and efficient.

Still, the former interrupt handling process is still mandatory for hardware in-
terrupts and faults, and requires many steps to handle an interrupt correctly.

First, the CPU fetches the entrypoint of the interrupt from the currently active
Interrupt Descriptor Table in memory. It then switches to the stack pointer defined
in the Task State Segment ’s Ring 0 (Kernel mode) Stack Pointer. Some registers
(stack pointer, instruction pointer, segments...) are then pushed onto the newly
enabled stack.

Pip then pushes additional registers (general registers, remaining segment point-
ers) before executing the IAL’s generic interrupt handler. The latter performs many
checks (whether the interrupt was caught while being already in kernel mode or

74 3. MULTICORE

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

not, checking if the faulty partition was the root partition...) in order to determine
the appropriate behavior. It also defines the target partition for the interrupt. The
interrupted partition’s context is saved onto the appropriate buffer.

Once everything has been done, the generic Dispatch operation is performed,
changing the current partition to the target partition. The interrupt handling is
then over when Pip switches back to userland at the defined entrypoint and stack
for the triggered fault.

Core-local Dispatch

Core-local dispatch, in opposition to faults, are not triggered through the archi-
tecture’s fault mechanism, but through SYSCALL/SYSENTER instead. We previously
said that SYSENTER was a much faster way to execute kernel code, as its behaviour
is much simpler. When SYSENTER is called, it fetches the kernel entrypoint and
stack from some Model-Specific Registers (MSR). It also puts the caller’s instruc-
tion pointer and stack pointer into registers - nothing is pushed onto the stack at
this moment.

Pip then puts onto the stack the caller’s instruction and stack pointer, and
immediately performs the caller’s context save. It then fetches the arguments for
the desired system call from the user stack, and copies them onto the kernel’s stack.

While this might seem unsafe, we don’t allow any concurrency between system
calls, and we can evaluate the boundaries of this copy, as we have a maximum
amount of parameters. The kernel’s stack is much higher than the space required
to copy those arguments. Therefore, this operation remains safe.

The system call — here, Dispatch — is then immediatly called. It then checks the
validity of the target partition, and whether it is a core-local or inter-core interrupt.
The generic Dispatch operation is then performed, going back to userland at the
defined entrypoint and stack.

Inter-core Dispatch

An inter-core Dispatch is composed of two different parts. First of all, a Dispatch call
is made in the same way as a core-local Dispatch, except that a target core number
is sent as an additional parameter. Pip then checks the validity of the parameters,
and then fills in a temporary, internal buffer.

An inter-processor interrupt is then triggered by Pip through the hardware’s
interrupt controller. While Pip returns back to userland on the caller core immedi-
ately, it also fetches the interrupt data on the target core from the internal buffer
it filled in previously. It then returns to userland in the target partition with the
required entrypoint and stack.

An inter-core Dispatch is then slower than a virtual interrupt transmission, but
also faster than a fault, as it is composed of half a fast call to Pip (Dispatch call from
the caller partition), and a physical interrupt to the target partition. Our multi-
core model then displays expected transmission times, independant of the number
of cores Pip is running on.

3. MULTICORE 75

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

Dual core Quad core

1

2

3

1 1

3.
26

3.
1
2

1
.2
5

1.
2
6

Sp
ee
du

p
fa
ct
or

Fault (reference)
Virtual interrupt

Virtual IPI

Figure 4.10: Speedup of VInt and VIPI towards faults

3.2 Macro-benchmarks

Single-thread applications

In order to evaluate the possible overhead brought by multicore models, I also ran
the same benchmarks than I previously used with the singlecore model. First, I ran
those benchmarks on their own, the main core running each benchmark while the
other cores are freezing.

These benchmarks displayed no overhead, as Pip’s behaviour in singlecore is the
same than in multicore using one core.

I then ran all the benchmark at the same time, each one running on a different
core. The results are displayed in figure 4.11, which displays the overhead of the
single-thread and multi-thread models compared to the single-core model. The scale,
in this figure, goes from 100% to 104%.

The overhead of the single-thread model is very low. Indeed, the single-thread
model is very similar to running one Pip instance onto each core. Its performances
are then very similar to the single-core model.

The multi-thread model’s performances are more interesting. In this model,
each benchmark runs into the same partition, but on different cores. The overheads
displayed by Dhrystone and AES remain low : they perform no system call to Pip,
and only perform heavy calculations on the CPU. There is then no room for big
performance loss in this model as well.

The Fibonacci benchmark is different, due to its structure : it first prepares
a child partition for a Javascript interpreter (Duktape5), then boots this partition
which runs a Javascript recursive version of the Fibonacci algorithm.

When running Fibonacci on high values, the stack quickly grows and ends up
triggering a page fault in the parent (here, root) partition, which provides another

5Duktape Javascript embeddable engine : https://duktape.org

76 3. MULTICORE

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

Dhrystone AES Fibonacci

100

102

104

10
0

10
0

10
0

1
00
.0
3

1
00
.0
8

1
00
.5
9

1
00
.6
5

10
0
.9
3

1
03
.5
3

E
xe
cu
ti
on

ti
m
e
(%

)

Single-core (reference)
Single-thread model
Multi-thread model

Figure 4.11: Overhead of multi-core models of Pip compared to single-core

page to the Javascript engine to allow the stack to grow more. Each time a system
call is performed, Pip locks the API so that no ther core can trigger a system call,
and clears the TLBs for each core.

Mainly due to those TLB flushes, each benchmark becomes a bit slower, the
few pages they use being recached as soon as the CPU tries to access them. The
overhead is then significantly higher on the Fibonacci benchmark, having two levels
of partitions, while being non-significant on the other ones. It is noticeable than
even if the overhead is higher on the last benchmark, it is still a matter of a few
percents (under 4%). This model thus provides acceptable performances as well.

Multi-thread applications

In order to evaluate the efficiency of our multi-core implementation, we also ran a
parallel calculation of Mandelbrot’s fractal on the multi-thread implementation of
Pip6, changing the amount of cores available on the machine. We also executed the
same benchmark on a Darwin host (Darwin Kernel 17.5.0 running on an Intel Core
i7 6770k processor) using OpenMP instead of partitions.

In the results shown in figure 4.12, we can see the speedup factor is very similar
on multicore environments. A minimal slowdown is seen with OpenMP when the
amount of cores grows up, which can be explained, at least partially, by the load
balance algorithm OpenMP uses to share tasks among its threads. Still, on dual-core
applications, there is close to no difference between Pip and OpenMP.

We also ran a JPEG compression algorithm taken from the Mälardalen WCET
benchmarks [42]. This benchmark runs a Discrete Cosine Transform on an 8x8
pixels block. We modified it in order to run the DCT on several pixel blocks, thus
simulating a complete image compression parallelized through Pip.

6Code : https://github.com/MrXedac/pip-mandelbrot

3. MULTICORE 77

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

Pip Darwin/OpenMP

1

2

3

4

1 1

1.
91

1.
9
8

3
.8
4

3.
3
6

Sp
ee
du

p
fa
ct
or

Single core (reference)
Dual core
Quad core

Figure 4.12: Mandelbrot benchmark

Pip Darwin/OpenMP

1

1.5

2

2.5

3

1 1

1
.5
8

1.
51

2
.7
6

2.
34

Sp
ee
du

p
fa
ct
or

Single core (reference)
Dual core
Quad core

Figure 4.13: JPEG benchmark

78 3. MULTICORE

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

4 Conclusion
In summary, Pip provides acceptable performances, close to native performance in
some use cases. The overhead caused by the kernel is caused only by the various
calls to the API when it comes to memory or control flow management, and is then
unsignificant in use cases that do not make a heavy usage of this API. On more
complex use cases, the overhead is a bit higher but remains in an acceptable range.
The operations provided by the API are minimal enough to have a low impact on
the system’s overall performance.

Still, the API, despite its minimality, is sufficient enough to port a full generic-
purpose operating system on top of Pip, namely Linux. A high amount of modi-
fications were still required in the guest kernel, in order to take into consideration
Pip’s partitioning model. The heavy usage of shared memory, or the relocation of
the kernel in higher half, for instance, required more work on this port that initially
expected.

The port provided good performance as well, giving a good comparison base for
evaluating Pip’s performances in real-world environments.

In addition to this, the flexibility of the model has been demonstrated through a
multi-core port of Pip. Two different models have been developed, each one designed
for specific use cases. Their performance are expectable and realistic for the said use
cases. Multi-threaded benchmarks, such as JPEG or Mandelbröt fractal calculation,
displayed an expected speedup, which scales with the amount of cores used.

In summary, both the efficiency and the flexibility of Pip’s approach and model
are demonstrated through these evaluations and return on experiment. Pip’s model,
and the resulting kernel, is an efficient, realistic and flexible way to provide high
security guarantees to the Internet of Things and Cloud Computing worlds.

4. CONCLUSION 79

CHAPTER 4. PERFORMANCES AND RETURN ON EXPERIENCE

80 4. CONCLUSION

Conclusion

Initial statement

Initially, my work aimed to solve the question of provable security at the lowest pos-
sible cost in embedded devices (Internet of Things) or in Cloud Computing servers.

Many projects already tried to bring answers to that issue, but brought many
other issues due to their architecture. Going from an abstract model to an executable
kernel brings many steps of refinement and verification, which makes the proof effort
time-consuming. Ensuring optimal performance, as well, is a hard to solve issue,
due to the specific structures used while writing proved code.

What I addressed in my thesis is both of those issues, by lowering the model-to-
binary transition effort, and ensuring optimal performance during execution.

Kernel co-design

First, I explained my definition of security, which is a combination of Integrity,
Confidentiality, Availability and Kernel Isolation.

From this definition, I came to build my first contribution, which is a simple,
minimal memory isolation model built on structures called partitions. The latter
are nothing but a combination of control structures and memory pages.

By revolving around a hierarchial model, partitions allow an intuitive reason-
ing on the isolation property. The proof then covers the operations which modify
the structures associated to partitions, which are the system calls exported by the
kernel. The amount of system calls is minimal as well. By having only 7 of them
related to memory management, and 2 related to interrupt management, the proof
effort is lowered as much as possible. The only prerequisite for the proof to be valid
is that the initial state of the system verifies the isolation property, which is done by
the boot code of the kernel. As well, the model does not rely on any hardware op-
timization. While the latter can be implemented in the hardware abstraction layer,
they are not mandatory in any way. The model then relies on a “flat” memory archi-
tecture, and does not provide multiple layers of memory enhanced by virtualization
optimizations. Still, this is sufficient and enough to provide good performances for
any architecture providing no particular virtualization-related feature.

Going from this model to an executable kernel comes through an automated
conversion of the model’s code to compilable C code. The tool used to that end,
Digger, while not being covered by this thesis, aims to provide a proof covering the
equivalence of the generated C code towards the source Coq code. By not relying
on a higher-level language runtime to execute the model, but rather converting the

81

CONCLUSION

latter to a low-level language code, we ensure both optimal performance and min-
imal footprint. Indeed, dependencies to commonly used facilities, such as garbage
collectors, are removed.

Finally, the equivalence between the resulting code and the generated binary aims
to be certified through CompCert. By going through these automated steps, it is
ensured that the executable binary’s code is equivalent to the model. A modification
on the model then requires close to no other modifications or efforts towards the
verification, as the model-to-binary compilation process is fully automated.

The flexibility of the model has been demonstrated by evolving the initial model
into two different multicore models. Those models feature either single-thread archi-
tecture, by exposing one root partition per core, or a full multi-thread architecture
by allowing a partition to run on multiple cores. The issues brought by multicore
architectures, such as cache issues or multicore interrupt management, have been
answered at the hardware abstraction level, thus bringing no modification on the
model’s code, and leaving the API mostly unmodified. The only modification was
about interrupt management, which is mandatory, as the hardware behaves differ-
ently in multicore environments.

Model validation and performance

The minimal design of the kernel, associated with the minimal behaviour of the
operations provided by the API, should ensure optimal performance. In order to
validate this claim, and demonstrate the usability of the resulting kernel, I performed
micro-benchmarks and macro-benchmarks on the bare kernel. As well, I ported a
Linux 4.10.4 kernel on top of it, in order to demonstrate the possibility of porting a
general-purpose kernel for Pip. I have finally run several benchmarks based on this
port.

Porting Linux was a difficult task due to the limitations Pip brings. Having
no memory sharing mechanism allowed within the kernel, for instance, brings the
need to have an alternative way to share memory pages between two partitions/pro-
cesses. Still, the benchmarks run on top of it, Dhrystone and AES, displayed a low
overhead when using no hardware optimization (around 10%). When using Intel-
specific hardware optimizations, mainly related to cache management by keeping
kernel pages into the TLB and associating each TLB entry with a specific memory
environment, the overhead is even more reduced. On real hardware, by only keeping
the kernel’s pages into the TLB, the overhead is around 3% lower than without any
optimization. On the QEMU simulator, the overhead is under 4% when using any
possible optimization. Thus, this model does not bring major slowdowns.

When it comes to multicore models, the single-thread model brings close to no
overhead regarding the single-core model, displaying an overhead under 1% towards
the latter. The multi-thread model brings a bit higher overhead, but still provides
more than acceptable performances. Its overhead remains under 4% for the most
memory-consuming benchmark I ran on top of it, which performed a tremendeous
amount of memory mapping operations during its execution. When it comes to
the classical Dhrystone and AES benchmarks, its performances remain under 1%
overhead compared to the single-core model.

Finally, the multi-thread model’s performances have been evaluated against the

82 CONCLUSION

CONCLUSION

performances of the same benchmark run onto any system using the OpenMP li-
brary. A Mandelbrot fractal calculation benchmark and a JPEG compression bench-
mark have been run, and the speedup factor brought by adding more cores to the
benchmark has been evaluated. The results showed similar speedup factors than
OpenMP.

All of these benchmarks displayed good performance for Pip, and thus confirm
the claim that the model is efficient and brings optimal performance to the system.

Future work
Direct Memory Accesses An issue which remains unsolved in my work is related
to hardware management, and more specifically Direct Memory Accesses.

While bringing higher performance related to hardware input/output, DMA also
brings several issues when it comes to the system’s security. As it allows a device
to write directly in physical memory without going through the CPU and MMU,
DMA can bypass any isolation mechanism built into the system and compromise
the system’s security when incorrectly configured.

The issue is even more complex, as when using no hardware mechanism to that
end, there is no software-based way to control how a DMA behaves. Once it has
been configured, the hardware perform its operation without even going through the
CPU, only to trigger, for instance, an interrupt when it has finished its work. But
when an malicious DMA operation has been performed, this interrupt happens too
late.

This issue can be solved, or mitigated, in many ways. The simplest way to avoid
those issues is by forbidding any DMA access on the system. While preserving
the security property, this solution also brings major slowdowns on the system, as
the hardware won’t be able to communicate directly with the physical memory,
this making hardware accesses significantly slower. In my opinion, this is not an
acceptable solution.

Another way of solving that could be by controlling the DMA configuration.
When running Pip on static systems, with predefinite memory-mapped IO registers,
the registers used to control DMA accesses could be identified and their access
restricted by the kernel, only to ensure that the physical address the hardware should
write or read into belong to the right partition. Still, this requires many additional
checks and operations, especially when the memory layout of the partition changes.
While being a possible solution, this would quickly become a bottleneck in terms of
performances and complexity.

The most straightforward way to solve that issue is by using an IO-MMU com-
ponent, which acts as a MMU between the hardware and the physical memory. Still,
this requires handling the IO-MMU in Pip’s hardware abstraction layer, and keep-
ing it valid and coherent towards the currently running partition at any moment of
the execution. As well, any hardware running Pip would then need an IO-MMU,
which restricts the amount of hardware Pip can be run onto, especially in embedded
devices.

Page sharing The Linux port on top of Pip displayed a major issue when it
comes to the usability of Pip. While being convenient and appropriate for the proof

CONCLUSION 83

CONCLUSION

process, the complete memory isolation between sibling partitions can be difficult
to deal with when it comes to general-purpose operating systems.

Sharing memory has been a fast, efficient way to share information and reduce
communication slowdowns between processes. As well, many internal tweaks done
by kernel (in this case, Linux) involve mapping the same page (for instance, the
zero page) at many different locations within the process’ address space, which Pip
forbids.

When this behaviour has to be kept, an appropriate behaviour has to be im-
plemented in fault handlers, in order to unmap and remap the pages accordingly,
while taking into consideration the expected behaviour, at the Linux kernel’s point
of view.

This issue, apart from the infamous complexity of the code, brings major slow-
downs in specific cases. The major issue here is that is issue is driven by the model
itself, and thus is unavoidable.

We can then question the pertinence of the model towards general-purpose oper-
ating systems, and whether the API should be extended to provide more appropriate
ways to handle those cases. Still, extending the API requires more proof effort as
well.

Finding a good balance between the features provided by the kernel and the
resulting proof effort is a difficult task. While I have implemented a minimal, suffi-
cient enough kernel to build full secure and efficient systems on top of it, the model
is obviously for more specific use cases. This is a question which has yet to be
answered, and is a big part of the future work concerning Pip.

84 CONCLUSION

Bibliography

[1] bhyve - the bsd hypervisor. http://bhyve.org.

[2] The bochs ia-32 emulator project. http://bochs.sourceforge.net.

[3] Common criteria - introduction and general model. https://www.
commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf.

[4] Common criteria - security assurance components. https://www.
commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf.

[5] Common criteria - security functional components. https://www.
commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf.

[6] Common criteria certified products. https://www.commoncriteriaportal.
org/products/.

[7] The common criteria recognition agreement members. https://www.
commoncriteriaportal.org/ccra/index.cfm.

[8] Context switch definition. http://www.linfo.org/context_switch.html.

[9] The coq proof assistant. https://coq.inria.fr.

[10] Eal4+ evaluation of solaris 10 release 11/06 trusted exten-
sions. https://www.oracle.com/technetwork/topics/security/
solaris-10-tx-cr-v1-134034.pdf.

[11] Fox datadiode eal7+ certification. https://www.fox-it.com/nl/
diensten-en-technologie/product/fox-datadiode/certifications/.

[12] Local descriptor table. https://wiki.osdev.org/LDT.

[13] Qemu internals. https://qemu.weilnetz.de/doc/2.7/
qemu-tech-20160903.html.

[14] Virtualbox virtualization. https://www.virtualbox.org.

[15] Windows platforms common criteria. https://docs.
microsoft.com/fr-fr/windows/security/threat-protection/
windows-platform-common-criteria.

[16] xhyve is a lightweight virtualization solution for os x. https://www.
pagetable.com/?p=831.

85

BIBLIOGRAPHY

[17] Performance evaluation of intel ept hardware assist.

[18] Adams, K., and Agesen, O. A comparison of software and hardware tech-
niques for x86 virtualization. In Proceedings of the 12th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (New York, NY, USA, 2006), ASPLOS XII, ACM, pp. 2–13.

[19] Amit, N., Ben-Yehuda, M., Tsafrir, D., and Schuster, A. vIOMMU:
Efficient IOMMU Emulation. In Proceedings of the 2011 USENIX Confer-
ence on USENIX Annual Technical Conference (Berkeley, CA, USA, 2011),
USENIXATC’11, USENIX Association, p. 6.

[20] Ammons, G., Appavoo, J., Butrico, M., Da Silva, D., Grove, D.,
Kawachiya, K., Krieger, O., Rosenburg, B., Van Hensbergen, E.,
and Wisniewski, R. W. Libra: A library operating system for a jvm in
a virtualized execution environment. In Proceedings of the 3rd International
Conference on Virtual Execution Environments (New York, NY, USA, 2007),
VEE ’07, ACM, pp. 44–54.

[21] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein,
E., Cochran, J., Durumeric, Z., Halderman, J. A., Invernizzi, L.,
Kallitsis, M., Kumar, D., Lever, C., Ma, Z., Mason, J., Menscher,
D., Seaman, C., Sullivan, N., Thomas, K., and Zhou, Y. Understand-
ing the mirai botnet. In Proceedings of the 26th USENIX Conference on Se-
curity Symposium (Berkeley, CA, USA, 2017), SEC’17, USENIX Association,
pp. 1093–1110.

[22] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,
A., Neugebauer, R., Pratt, I., and Warfield, A. Xen and the art of
virtualization. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2003), SOSP ’03, ACM, pp. 164–177.

[23] Bellard, F. Qemu, a fast and portable dynamic translator. In Proceedings
of the Annual Conference on USENIX Annual Technical Conference (Berkeley,
CA, USA, 2005), ATEC ’05, USENIX Association, pp. 41–41.

[24] Bergougnoux, Q., Iguchi-Cartigny, J., and Grimaud, G. Pip, un
proto-noyau fait pour renforcer la sécurité dans les objets connectés. In Con-
férence d’informatique en Parallélisme, Architecture et Système (ComPAS)
(Sophia Antipolis, France, Jun 2017), Université Sophia Antipolis.

[25] Bhargava, R., Serebrin, B., Spadini, F., and Manne, S. Accelerating
two-dimensional page walks for virtualized systems. In Proceedings of the 13th
International Conference on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2008), ASPLOS XIII, ACM,
pp. 26–35.

[26] Biggs, S., Lee, D., and Heiser, G. The jury is in: Monolithic OS design
is flawed. In Asia-Pacific Workshop on Systems (APSys) (Korea, Aug. 2018),
ACM SIGOPS.

86 BIBLIOGRAPHY

BIBLIOGRAPHY

[27] Blazy, S., Dargaye, Z., and Leroy, X. Formal verification of a C compiler
front-end. In FM 2006: Int. Symp. on Formal Methods (2006), vol. 4085 of
Lecture Notes in Computer Science, Springer, pp. 460–475.

[28] Crespo, A., Ripoll, I., and Masmano, M. Partitioned embedded architec-
ture based on hypervisor: The xtratum approach. In 2010 European Dependable
Computing Conference (April 2010), pp. 67–72.

[29] Crespo, A., Ripoll, I., and Masmano, M. Partitioned Embedded Ar-
chitecture Based on Hypervisor: The XtratuM Approach. In Eighth European
Dependable Computing Conference, {EDCC-8} 2010, Valencia, Spain, 28-30
April 2010 (2010), {IEEE} Computer Society, pp. 67–72.

[30] Davi, L., Dmitrienko, A., Kowalski, C., and Winandy, M. Trusted
virtual domains on okl4: Secure information sharing on smartphones. In Pro-
ceedings of the Sixth ACM Workshop on Scalable Trusted Computing (New
York, NY, USA, 2011), STC ’11, ACM, pp. 49–58.

[31] de Goyeneche, J.-M., and Fernández de Sousa, E. A. Loadable kernel
modules. IEEE Softw. 16, 1 (Jan. 1999), 65–71.

[32] Derrin, P., Elphinstone, K., Klein, G., Cock, D., and Chakravarty,
M. M. T. Running the manual: An approach to high-assurance microkernel de-
velopment. In Proceedings of the ACM SIGPLAN Haskell Workshop (Portland,
OR, USA, Sept. 2006).

[33] Diatchki, I. S., Hallgren, T., Jones, M. P., Leslie, R., and Tolmach,
A. Writing systems software in a functional language: An experience report.
In Proceedings of the 4th Workshop on Programming Languages and Operating
Systems (New York, NY, USA, 2007), PLOS ’07, ACM, pp. 1:1–1:5.

[34] Elkaduwe, D., Klein, G., and Elphinstone, K. Verified protection model
of the sel4 microkernel. In Verified Software: Theories, Tools, Experiments
(Berlin, Heidelberg, 2008), N. Shankar and J. Woodcock, Eds., Springer Berlin
Heidelberg, pp. 99–114.

[35] Engler, D. R., Kaashoek, M. F., and O’Toole, Jr., J. Exokernel: An
operating system architecture for application-level resource management. In
Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles
(New York, NY, USA, 1995), SOSP ’95, ACM, pp. 251–266.

[36] Fisher-ogden, J. Hardware support for efficient virtualization, 2006.

[37] Goldberg, R. P. Architecture of virtual machines. In Proceedings of the
Workshop on Virtual Computer Systems (New York, NY, USA, 1973), ACM,
pp. 74–112.

[38] Götzfried, J., Eckert, M., Schinzel, S., and Müller, T. Cache attacks
on intel sgx. In Proceedings of the 10th European Workshop on Systems Security
(New York, NY, USA, 2017), EuroSec’17, ACM, pp. 2:1–2:6.

BIBLIOGRAPHY 87

BIBLIOGRAPHY

[39] Grosvenor, M. P. The sel4 capability system. In The (First?) CHERI
Microkernel Workshop (2016).

[40] Gu, L., Vaynberg, A., Ford, B., Shao, Z., and Costanzo, D. Certikos: a
certified kernel for secure cloud computing. In APSys ’11 Asia Pacific Workshop
on Systems, Shanghai, China, July 11-12, 2011 (2011), H. Chen, Z. Zhang,
S. Moon, and Y. Zhou, Eds., ACM, p. 3.

[41] Gu, R., Shao, Z., Kim, J., Wu, X. N., Koenig, J., Sjöberg, V., Chen,
H., Costanzo, D., and Ramananandro, T. Certified concurrent abstrac-
tion layers. In Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (New York, NY, USA, 2018),
PLDI 2018, ACM, pp. 646–661.

[42] Gustafsson, J., Betts, A., Ermedahl, A., and Lisper, B. The
Mälardalen WCET benchmarks – past, present and future. In WCET2010
(Brussels, Belgium, July 2010), B. Lisper, Ed., OCG, pp. 137–147.

[43] Heiser, G. Secure embedded systems need microkernels. USENIX ;login: 30,
6 (Dec. 2005), 9–13.

[44] Heiser, G., Elphinstone, K., Kuz, I., Klein, G., and Petters, S.
Towards trustworthy computing systems: Taking microkernels to the next level.
ACM Operating Systems Review 41, 4 (Dec. 2007), 3–11.

[45] Heiser, G., Ryzhyk, L., von Tessin, M., and Budzynowski, A. What if
you could actually Trust your kernel? In Workshop on Hot Topics in Operating
Systems (Napa, CA, USA, May 2011), pp. 1–5.

[46] Hua, J., and Sakurai, K. Barrier: A Lightweight Hypervisor for Protect-
ing Kernel Integrity via Memory Isolation. In Proceedings of the 27th Annual
ACM Symposium on Applied Computing (New York, NY, USA, 2012), SAC
’12, ACM, pp. 1470–1477.

[47] Hunt, G. C., and Larus, J. R. Singularity: Rethinking the Software Stack.
SIGOPS Oper. Syst. Rev. 41, 2 (2007), 37–49.

[48] Härtig, H., Hohmuth, M., Liedtke, J., Schönberg, S., and Wolter,
J. The performance of microkernel-based systems. In Proceedings of the Six-
teenth ACM Symposium on Operating Systems Principles (New York, NY, USA,
1997), SOSP ’97, ACM, pp. 66–77.

[49] Irazoqui, G., Eisenbarth, T., and Sunar, B. Cross processor cache
attacks. In Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security (New York, NY, USA, 2016), ASIA CCS ’16, ACM,
pp. 353–364.

[50] Jin, S., and Huh, J. Secure MMU: Architectural support for memory isolation
among virtual machines. In Proceedings of the International Conference on
Dependable Systems and Networks (2011), pp. 217–222.

88 BIBLIOGRAPHY

BIBLIOGRAPHY

[51] John, R. Partitioning in avionics architectures: Requirements, mechanisms,
and assurance. Tech. rep., 1999.

[52] Jomaa, N., Nowak, D., Grimaud, G., and Hym, S. Formal proof of
dynamic memory isolation based on MMU. Sci. Comput. Program. 162 (2018),
76–92.

[53] Jomaa, N., Torrini, P., Nowak, D., and Grimaud, G. Proof-oriented
design of a separation kernel with minimal trusted computing base. In 18th
International Workshop on Automated Verification of Critical Systems (2018).

[54] Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori, A. Kvm:
the linux virtual machine monitor. In In Proceedings of the 2007 Ottawa Linux
Symposium (OLS’-07 (2007).

[55] Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T.,
Kolanski, R., and Heiser, G. Comprehensive formal verification of an os
microkernel. ACM Trans. Comput. Syst. 32, 1 (Feb. 2014), 2:1–2:70.

[56] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D.,
Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish,
M., Sewell, T., Tuch, H., and Winwood, S. seL4: Formal verification of
an OS kernel. In ACM Symposium on Operating Systems Principles (Big Sky,
MT, USA, Oct. 2009), ACM, pp. 207–220.

[57] Klein, G., Murray, T., Gammie, P., Sewell, T., and Winwood, S.
Provable security: How feasible is it? In Workshop on Hot Topics in Operating
Systems (Napa, USA, May 2011), USENIX, p. 5.

[58] Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp,
M., Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y. Spectre
Attacks: Exploiting Speculative Execution.

[59] Kuz, I., Klein, G., Lewis, C., and Walker, A. C. capDL: A language
for describing capability-based systems. In Asia-Pacific Workshop on Systems
(APSys) (New Delhi, India, Aug. 2010), pp. 31–35.

[60] Leinenbach, D., and Santen, T. Verifying the microsoft hyper-v hypervisor
with vcc. In FM 2009: Formal Methods (Berlin, Heidelberg, 2009), A. Caval-
canti and D. R. Dams, Eds., Springer Berlin Heidelberg, pp. 806–809.

[61] Leroy, X. Formal certification of a compiler back-end, or: programming a
compiler with a proof assistant. In 33rd Symposium Principles of Programming
Languages (POPL 2006) (Charleston, SC, United States, Jan. 2006), ACM
Press, pp. 42–54.

[62] Leschke, T. Achieving Speed and Flexibility by Separating Management from
Protection: Embracing the Exokernel Operating System. SIGOPS Oper. Syst.
Rev. 38, 4 (2004), 5–19.

[63] Liedtke, J. On micro-kernel construction. SIGOPS Oper. Syst. Rev. 29, 5
(Dec. 1995), 237–250.

BIBLIOGRAPHY 89

BIBLIOGRAPHY

[64] Lindholm, T., Yellin, F., Bracha, G., and Buckley, A. The Java
Virtual Machine Specification, Java SE 8 Edition, 1st ed. Addison-Wesley
Professional, 2014.

[65] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard,
S., Kocher, P., Genkin, D., Yarom, Y., and Hamburg, M. Meltdown.
ArXiv e-prints (2018).

[66] Mansfield-Devine, S. The ashley madison affair. Netw. Secur. 2015, 9
(Sept. 2015), 8–16.

[67] Markuze, A., Morrison, A., and Tsafrir, D. True iommu protection
from dma attacks: When copy is faster than zero copy. In Proceedings of the
Twenty-First International Conference on Architectural Support for Program-
ming Languages and Operating Systems (New York, NY, USA, 2016), ASPLOS
’16, ACM, pp. 249–262.

[68] Mazières, and Kaashoek, M. Secure applications need flexible operating
systems. In Proceedings of the 6th Workshop on Hot Topics in Operating Sys-
tems (HotOS-VI) (Washington, DC, USA, 1997), HOTOS ’97, IEEE Computer
Society, pp. 56–.

[69] Meghanathan, N. Virtualization of virtual memory address space. In Pro-
ceedings of the Second International Conference on Computational Science, En-
gineering and Information Technology (New York, NY, USA, 2012), CCSEIT
’12, ACM, pp. 732–737.

[70] Morgan, B., Alata, E., Nicomette, V., and Averlant, G. Abyme : un
voyage au coeur des hyperviseurs récursifs. In Symposium sur la sécurité des
technologies de l’information et des communications 2015 (SSTIC) (2015).

[71] Morrison, V. Introduction to the common language runtime (clr).
https://github.com/dotnet/coreclr/blob/master/Documentation/botr/
intro-to-clr.md.

[72] of Pennsylvania, U. Vellvm. http://www.cis.upenn.edu/~stevez/
vellvm/.

[73] Olausson, T., and Johansson, M. Java -past, current and future trends.

[74] Osisek, D. L., Jackson, K. M., and Gum, P. H. Esa/390 interpretive-
execution architecture, foundation for vm/esa. IBM Systems Journal 30, 1
(1991), 34–51.

[75] Popek, G. J., and Farber, D. A. A model for verification of data security
in operating systems. Commun. ACM 21, 9 (Sept. 1978), 737–749.

[76] Popek, G. J., and Kline, C. S. A verifiable protection system. In Proceedings
of the International Conference on Reliable Software (New York, NY, USA,
1975), ACM, pp. 294–304.

90 BIBLIOGRAPHY

BIBLIOGRAPHY

[77] Righini, M. Enabling intel R© virtualization technol-
ogy features and benefits. https://www.intel.com/
content/dam/www/public/us/en/documents/white-papers/
virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.
pdf.

[78] Rushby, J. M. Design and verification of secure systems. In Proceedings of
the Eighth ACM Symposium on Operating Systems Principles (New York, NY,
USA, 1981), SOSP ’81, ACM, pp. 12–21.

[79] Serman, F. Reducing hardware TCB in favor of certifiable virtual machine
monitor. PhD thesis, 2016. Thèse de doctorat dirigée par Grimaud, Gilles et
Hauspie, Michaël Informatique Lille 1 2016.

[80] Tanenbaum, A. S., Herder, J. N., and Bos, H. Can we make operating
systems reliable and secure? Computer 39, 5 (May 2006), 44–51.

[81] Tanenbaum, A. S., and Woodhull, A. S. Operating Systems Design and
Implementation (3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 2005.

[82] Tanenbaum, A. S., and Woodhull, A. S. Operating Systems Design and
Implementation, 3 ed. Pearson Prentice Hall, Upper Saddle River, NJ, 2006.

[83] Vasudevan, A., Chaki, S., Jia, L., McCune, J., Newsome, J., and
Datta, A. Design, implementation and verification of an extensible and mod-
ular hypervisor framework. In 2013 IEEE Symposium on Security and Privacy
(May 2013), pp. 430–444.

[84] Vaynberg, A., and Shao, Z. Compositional verification of a baby virtual
memory manager. In Certified Programs and Proofs (Berlin, Heidelberg, 2012),
C. Hawblitzel and D. Miller, Eds., Springer Berlin Heidelberg, pp. 143–159.

[85] Waldspurger, C. A. Memory resource management in vmware esx server.
SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 181–194.

[86] Weicker, R. P. Dhrystone: A synthetic systems programming benchmark.
Commun. ACM 27, 10 (Oct. 1984), 1013–1030.

[87] Xi, S., Wilson, J., Lu, C., and Gill, C. Rt-xen: Towards real-time hy-
pervisor scheduling in xen. In Proceedings of the Ninth ACM International
Conference on Embedded Software (New York, NY, USA, 2011), EMSOFT ’11,
ACM, pp. 39–48.

[88] Yaker, M., Gaber, C., Grimaud, G., Wary, J., Cartigny, J., Han,
X., and Sanchez-Leighton, V. Ensuring iot security with an architecture
based on a separation kernel. In 2018 IEEE 6th International Conference on
Future Internet of Things and Cloud (FiCloud) (Aug 2018), pp. 120–127.

[89] Zamorano, J., and de la Puente, J. A. On real-time partitioned multicore
systems. Ada Lett. 33, 2 (Nov. 2013), 33–39.

BIBLIOGRAPHY 91

BIBLIOGRAPHY

[90] Zhao, J., Nagarakatte, S., Martin, M. M. K., and Zdancewic, S.
Formalizing the llvm intermediate representation for verified program transfor-
mations. In POPL (2012), J. Field and M. Hicks, Eds., ACM, pp. 427–440.

[91] Zhao, S., and Ding, X. On the Effectiveness of Virtualization Based Mem-
ory Isolation on Multicore Platforms. In Proceedings - 2nd IEEE European
Symposium on Security and Privacy, EuroS and P 2017 (2017), pp. 546–560.

92 BIBLIOGRAPHY

Appendices

93

1 Exposed API

1.1 Creating and removing partitions

Create Partition

Creates a new child partition. Usage:
1 uint32_t ret = createPartition(
2 descriptor ,
3 pageDir ,
4 sh1 ,
5 sh2 ,
6 sh3
7);

ret contains 0 if the call failed, 1 else.
The five empty pages given as arguments should become the following once the

partition has been created:

• descriptor: Partition Descriptor for the newly-created partition

• pageDir: MMU configuration root page

• sh1: Clone of the MMU configuration storing information related to page
derivation

• sh2: Clone of the MMU configuration storing information related to the parent
partition

• list: Linked list of physical-virtual addresses couples, storing the address
translations of the MMU configuration’s pages in the parent partition

Delete Partition

Removes a child partition, freeing all its pages and giving them back to the caller.
Usage:

1 uint32_t ret = deletePartition(
2 descriptor
3);

ret contains 0 if the call failed, the address on a page containing a linked list of
the freed pages else. The linked lists of pages taken or returned by Pip share the
same structure. Each page contains a pointer to the next one, while the last one
holds a null pointer.

For example, you can build a list of three pages as following:
1 uint32_t *pg1 , *pg2 , *pg3;
2 *pg1 = pg2;
3 *pg2 = pg3;
4 *pg3 = 0;

• descriptor: Partition Descriptor of the partition to remove

1. EXPOSED API 95

1.2 Managing the partition’s internals

Page Count

Returns the amount of pages required to prepare a child partition before mapping
a page. Usage:

1 uint32_t ret = pageCount(
2 descriptor ,
3 targetAddr
4);

ret contains the amount of pages required (0 if the partition is already prepared,
the amount of required pages else).

• descriptor: Partition Descriptor of the partition we plan to prepare

• targetAddr: Target virtual address in the child partition

Prepare

Prepares a child partition to receive a mapping. Usage:
1 uint32_t ret = prepare(
2 descriptor ,
3 targetAddr ,
4 list
5);

ret returns 0 if the call failed, 1 else.

• descriptor: Partition Descriptor of the partition we want to prepare

• targetAddr: Target virtual address in the child partition

• list: A pointer to a page containing a linked list of pages

Collect

Retrieves empty MMU configuration pages and give them back to the caller. Usage:
1 uint32_t ret = collect(
2 descriptor ,
3 targetAddr
4);

ret returns 0 if the call failed, the address of a linked list of freed pages else.

• descriptor: Partition Descriptor of the partition we want to clean

• targetAddr: Target virtual address in the child partition

1.3 Managing pages

Add VAddr

Maps a page into a child partition. Usage:
1 uint32_t ret = addVaddr(
2 page ,
3 targetPartition ,
4 targetAddr
5);

96 1. EXPOSED API

ret returns 0 if the call failed, 1 else.

• page: The page we want to give to a child

• targetPartition: Partition Descriptor of the child partition

• targetAddr: The address at which to place the page

Remove VAddr

Removes a page from a child partition, and gives it back to the caller. Usage:
1 uint32_t ret = removeVaddr(
2 targetPartition ,
3 targetAddr
4);

ret returns 0 if the call failed, the address of the returned page in the caller else.

• targetPartition: Partition Descriptor of the child partition

• targetAddr: The address of the target page we want to get back

1.4 Managing control flow

Dispatch

Dispatches a signal to a partition related to the caller (parent or child). Usage:
1 dispatch(
2 partition ,
3 signal
4);

• partition: Partition Descriptor of the target partition (0 for parent)

• signal: The virtual interrupt number of the signal (e.g. 1 for timer, 2 for
keyboard...)

Dispatch saves the interrupted context onto the caller’s stack or its VIDT, de-
pending on its current state (virtual interrupts enabled or disabled, stack overflow-
ing...), and then immediately gives the execution to the target partition’s signal
handler, if the signal is handled, thus being similar to the INT instruction.

If, for whatever reason, the signal is not handled, then dispatch does absolutely
nothing.

Resume

Resumes the execution of a previously interrupted partition. Usage:
1 resume(
2 partition ,
3 intstate
4);

• partition: Partition Descriptor of the target partition (0 for parent)

1. EXPOSED API 97

• intstate: 1 if we enable virtual interrupts after resuming, 0 else.

Resume does NOT save the context of the caller, being somehow similar to the
IRET instruction. It immediatly resumes the interrupted state of the target partition,
and gives back execution to the latter.

1.5 Managing hardware

IO ports

Those functions provide many ways to access the IO ports on the x86 architecture.
Usage:

1 outb(
2 port ,
3 value
4);
5
6 ret = inb(
7 port
8);

Given you’re using an IN operation, ret contains the value stored into the IO
port.

The arguments given to the various IO port operations are exactly the same as if
you were using them directly in assembly through the INB/OUTB/INW/OUTW/INL/OUTL...
operations.

• port: The IO port to read/write from/to

• value: Given you’re using an OUT operation, the value to write onto the IO
port

2 Hardware abstraction layer

2.1 Memory Abstraction Layer

1 void enable_paging ();
2 void disable_paging ();
3
4 /* Activate : deprecated */
5 void activate(uint32_t dir);
6
7 /* Current page directory */
8 uint32_t getCurPartition(void); //!< Interface to get the current Page Directory
9 void updateCurPartition (uint32_t descriptor);

10
11 uint32_t getRootPartition(void); //!< Interface to get the current Page Directory
12 void updateRootPartition (uint32_t descriptor);
13
14 /* Address manipulation stuff */
15 uint32_t getNbIndex (); //!< Get amount of indirection tables
16 uint32_t getIndexOfAddr(uint32_t addr , uint32_t index); //!< Get index of

↪→ indirection level given
17 uint32_t getOffsetOfAddr(uint32_t addr); //!< Get offset from address
18 uint32_t readTableVirtual(uint32_t table , uint32_t index); //!< FETCH address

↪→ stored in indirection table
19 uint32_t readTableVirtualNoFlags(uint32_t table , uint32_t index); //!< FETCH

↪→ address stored in indirection table
20 uint32_t readArray(uint32_t table , uint32_t index); //!< Read an array ’s contents

98 2. HARDWARE ABSTRACTION LAYER

21 void writeTableVirtual(uint32_t table , uint32_t index , uint32_t addr); //!< STORE
↪→ an address in an indirection table

22 void writeTableVirtualNoFlags(uint32_t table , uint32_t index , uint32_t addr); //!<
↪→ STORE an address in an indirection table

23 uint32_t readPresent(uint32_t table , uint32_t index); //!< Reads the present flag
24 void writePresent(uint32_t table , uint32_t index , uint32_t value); //!< Writes the

↪→ present flag
25 uint32_t readAccessible(uint32_t table , uint32_t index); //!< Reads the accessible

↪→ flag
26 void writeAccessible(uint32_t table , uint32_t index , uint32_t value); //!< Writes

↪→ the accessible flag
27 uint32_t readPhysical(uint32_t table , uint32_t index); //!< FETCH address stored in

↪→ indirection table , physical version
28 uint32_t readPhysicalNoFlags(uint32_t table , uint32_t index);
29 void writePhysical(uint32_t table , uint32_t index , uint32_t addr); //!< STORE an

↪→ address in an indirection table , physical version
30 void writePhysicalNoFlags(uint32_t table , uint32_t index , uint32_t addr);
31 uint32_t readIndex(uint32_t table , uint32_t index); //!< FETCH index stored in

↪→ indirection table , physical version
32 void writeIndex(uint32_t table , uint32_t index , uint32_t idx); //!< STORE an index

↪→ in an indirection table , physical version
33 uint32_t dereferenceVirtual(uint32_t addr);
34 uint32_t derivated(uint32_t table , uint32_t index); //!< Returns 1 if the page is

↪→ derivated , 0 else
35
36 uint32_t readPDflag(uint32_t table , uint32_t index); //!<
37 void writePDflag(uint32_t table , uint32_t index , uint32_t value); //!< Writes the

↪→ page directory flag contents
38 uint32_t get_pd (); //!< Returns the VIRTUAL ADDRESS of the current Page Directory
39
40 void cleanPageEntry(uint32_t table , uint32_t index); //!< Cleans a page entry ,

↪→ setting its contents to 0x00000000
41
42 uint32_t defaultAddr(void); //!< Default address , should be 0x00000000
43 extern const uint32_t defaultVAddr; //!< Default address , should be 0x00000000
44 uint32_t getTableSize(void); //!< Table size
45 uint32_t getMaxIndex(void); //!< Table size
46 uint32_t addressEquals(uint32_t addr , uint32_t addr2); //!< Checks whether an

↪→ address is equal to another.
47 void cleanPage(uint32_t paddr); //!< Cleans a given page , filling it with zero
48
49 uint32_t checkRights(uint32_t read , uint32_t write , uint32_t execute); //!< Checks

↪→ whether the asked rights are applicable to the architecture or not
50 uint32_t applyRights(uint32_t table , uint32_t index , uint32_t read , uint32_t write ,

↪→ uint32_t execute); //!< Apply the asked rights to the given entry
51
52 uint32_t toAddr(uint32_t input); //!< Converts a given uint32_t to an address (only

↪→ for Haskell FFI purposes)
53 extern const uint32_t nbLevel;
54
55 /* Amount of pages available , meh */
56 extern uint32_t maxPages;
57 #define nbPage maxPages
58
59 /* Coq related stuff */
60 int geb(const uint32_t a, const uint32_t b); //!< Greater or equal
61 int gtb(const uint32_t a, const uint32_t b); //!< Greater than
62 int leb(const uint32_t a, const uint32_t b); //!< Lower or equal
63 int ltb(const uint32_t a, const uint32_t b); //!< Lower than
64 int eqb(const uint32_t a, const uint32_t b); //!< Equals
65 uint32_t mul3(uint32_t v); //!< Multiply an integer with 3
66 uint32_t inc(uint32_t val); //!< Increment an integer
67 uint32_t sub(uint32_t val); //!< Decrement an integer
68 uint32_t zero(); //!< Zero. That’s it.
69
70
71 uint32_t indexPR(void); //!< Partiton descriptor index into itself
72 uint32_t indexPD(void); //!< Page directory index within partition descriptor
73 uint32_t indexSh1(void); //!< Shadow 1 index within partition descriptor
74 uint32_t indexSh2(void); //!< Shadow 2 index within partition descriptor
75 uint32_t indexSh3(void); //!< Configuration tables linked list index within

↪→ partition descriptor

2. HARDWARE ABSTRACTION LAYER 99

76 uint32_t PPRidx(void); //!< Parent partition index within partition descriptor
77 uint32_t kernelIndex(void); //!< Index of kernel ’s page directory entry
78 void writePhysicalWithLotsOfFlags(uint32_t table , uint32_t index , uint32_t addr ,

↪→ uint32_t present , uint32_t user , uint32_t read , uint32_t write , uint32_t
↪→ execute); //!< Write a physical entry with all the possible flags we might
↪→ need

79 void writeKPhysicalWithLotsOfFlags(uint32_t table , uint32_t index , uint32_t addr ,
↪→ uint32_t present , uint32_t user , uint32_t read , uint32_t write , uint32_t
↪→ execute); //!< Write a physical entry with all the possible flags we might
↪→ need

80 uint32_t extractPreIndex(uint32_t vaddr , uint32_t index);

2.2 Interrupt Abstraction Layer

1 // These are deprecated and are about to be removed
2 void initInterrupts (); //!< Interface for interrupt initialization
3 void panic(); //!< Interface for kernel panic
4
5 // The interface
6 void enableInterrupts (); //!< Interface for interrupt activation
7 void disableInterrupts (); //!< Interface for interrupt desactivation
8 void dispatch2 (uint32_t partition , uint32_t vint , uint32_t data1 , uint32_t data2 ,

↪→ uint32_t caller); //!< Dispatch & switch to given partition
9 void resume (uint32_t descriptor , uint32_t pipflags); //!< Resume interrupted

↪→ partition
10
11 void
12 dispatchGlue (uint32_t descriptor , uint32_t vint , uint32_t notify ,
13 uint32_t data1 , uint32_t data2);

100 2. HARDWARE ABSTRACTION LAYER

List of Figures

1.1 Monolithic kernel architecture . 6
1.2 Micro kernel architecture . 7
1.3 XNU kernel architecture . 8
1.4 Example of virtualization . 11
1.5 Example of abstraction . 11
1.6 Type 1 hypervisor . 13
1.7 Type 2 hypervisor . 13
1.8 Binary compilation and execution . 14
1.9 Process VM flowchart . 15
1.10 Simplified capability-based access control 22

2.1 Segmentation example . 31
2.2 Segment register structure . 32
2.3 Address translation through a MMU 33
2.4 Recursive hypervisor architecture . 35
2.5 Hierarchical TCB example . 35
2.6 Partition tree example . 36
2.7 Execution time cooperation . 38
2.8 Interrupts happening . 38
2.9 Hierarchical scheduling . 40

3.1 Single-core partition tree example . 42
3.2 Interrupt routing policy . 45
3.3 Pip design . 46
3.4 Example of implementation of a MAL function 47
3.5 VIDT structure . 48
3.6 Partition Descriptor structure . 49
3.7 Shadow List structure . 49
3.8 Amount of pages required to build a 4Mb partition 51
3.9 Unknown states during system calls 54
3.10 Single-thread model . 56
3.11 Multi-core, single-thread partition tree example 57
3.12 Multi-thread model . 57
3.13 Single-thread virtualization use case 58
3.14 Multi-thread virtualization use case 59

4.1 Collect and DeletePartition performance (CPU cycles) 63
4.2 Minimal LibC interface for Fibonacci/JS 65

101

LIST OF FIGURES

4.3 Dhrystone, AES and Fibonacci/JS benchmarks on bare-metal and Pip 65
4.4 Minako on Pip architecture . 67
4.5 Page swapping in Minako, part 1 . 69
4.6 Page swapping in Minako, part 2 . 69
4.7 Page swapping in the Linux port . 71
4.8 Dhrystone and AES benchmarks on Linux, real hardware 72
4.9 Dhrystone and AES benchmarks on Linux, QEMU 2.7.0 74
4.10 Speedup of VInt and VIPI towards faults 76
4.11 Overhead of multi-core models of Pip compared to single-core 77
4.12 Mandelbrot benchmark . 78
4.13 JPEG benchmark . 78

102 LIST OF FIGURES

	source: Thèse de Quentin Bergougnoux, Université de Lille, 2019
	d: © 2019 Tous droits réservés.
	lien: lilliad.univ-lille.fr

