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Foreword

A large part of my research activity in the last ten years has been devoted to the devel-
opment of algorithms for Level 1 (L1) trigger systems in CMS. Between 2013 and 2015 I
worked on the Phase 1 upgrade of the calorimeter trigger, on the development of e/γ and
hadronic tau trigger algorithms. These algorithms have been running during the Run 2 of
the LHC and now for the Run 3. Detailed information on these algorithms and on the L1
trigger of CMS can be found in [1, 2, 3, 4].

Since 2014 I have been working on the design of the trigger primitives generation (TPG)
system of the High-Granularity Calorimeter (HGCAL), the future endcap calorimeter de-
veloped for the Phase 2 upgrade of CMS. This activity started before the HGCAL project
was o�cially chosen by the CMS collaboration. Three di�erent calorimeter technologies
were presented to the collaboration and the HGCAL project was chosen in 2015. This
choice was followed the same year by the release of the Technical Proposal of the CMS
Phase 2 upgrades [5]. The following milestone was the release of the HGCAL Techni-
cal Design Report in 2018 [6]. Since then the work has shifted from prototyping towards
production. In that aspect the year 2022 is a turning point for many components of the de-
tector, that are being evaluated for their pre-production and production. More speci�cally
on the backend electronics and on the TPG system, algorithms, �rmware and hardware
are currently being reviewed for the hardware pre-series.

My main contributions, and those I have been coordinating, are related to the devel-
opments of TPG algorithms, their simulation and their �rmware implementation. Since
2016 I have been coordinating the HGCAL TPG subgroup responsible of the simulation
and algorithm developments. This document is consequently a summary of the past and
present algorithms developed for the HGCAL TPG system. Some limited �rmware and
hardware aspects are also presented in order to illustrate how algorithms, �rmware and
hardware are intertwined. It is voluntarily short and it is by no mean a complete overview
of the system. It covers mainly the aspects on which I have been directly or indirectly
involved.

Finally I would like to emphasize that the current design of the HGCAL TPG system is
the result of the work of many people, in particular PhD students, postdoctoral researchers
and engineers. Therefore this document includes not only my work but also, and more
importantly, the work from other people, without whom the HGCAL TPG couldn't be
built.
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Introduction

Algorithms used in L1 trigger systems are based on solid expertise and knowledge ac-
cumulated over the years, as well as on new ideas developed to cope with increases of
data volume and of data complexity. Not only physics, but also electronics and detector
expertises are required in their development, involving physicists and engineers. In that
sense the development of L1 trigger algorithms is di�erent from the development of o�ine
algorithms, as it relies on multiple technical domains.

It is also unique due to the strong requirement of reliability. It comes from the fact that
algorithms on the trigger path are often di�cult or even impossible to modify once they
have been implemented. This is indeed especially true for algorithms running on frontend
ASICs. Since every processing step towards a trigger decision is critical for the quality of the
recorded data, they should all be robust to expected and unexpected situations. In addition
to reliability and robustness trigger algorithms also need to be as e�cient as possible within
tight implementation limits of latency, logic resources and power consumption. It means
there is an equilibrium to be found between e�ciency, robustness and simplicity.

Reaching such equilibrium for the HGCAL TPG is a particularly challenging task. Both
the structure of the data to be processed by the system (highly-granular 3D data) and the
environment of the data (unprecedented levels of pileup) are unmatched in complexity.
Several trigger primitives reconstruction strategies have been imagined and developed dur-
ing the past years. This document is mainly covering the current status of the algorithms
and of the system, but also comparing them with earlier versions.

• The �rst chapter introduces the general context, with an overview of the HGCAL
detector.

• In the second chapter, the reconstruction of trigger primitives in the HGCAL is
discussed with a focus on algorithms, independently of the hardware and �rmware
constraints.

• The third chapter focuses on the frontend part of the trigger path, mainly addressing
the issue of the limited data bandwidth and the reduction of data volume it implies.

• The last chapter covers the hardware and �rmware implications of the reconstruction
algorithms in the backend electronics.
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1
The High-Granularity Calorimeter

1 Overview of the HGCAL upgrade

The LHC will undergo a major upgrade, currently planned to take place between the
years 2026 and 2029, and at the end of which it will enter its high-luminosity phase (HL-
LHC), or Phase 2. The future HL-LHC is designed to reach a nominal instantaneous
luminosity of 5× 1034 cm−2s−1, and up to 7.5× 1034 cm−2s−1 in its ultimate con�guration.
An integrated luminosity of 3000 fb−1 should nominally be collected during the Phase 2 and
up to 4000 fb−1 in the ultimate scenario. This increased luminosity will enable access to rare
processes and open up a large physics program. It includes searches for new physics beyond
the Standard Model (BSM) as well as precision measurements of the SM, in particular in the
electroweak and Higgs sectors. Nevertheless this high luminosity comes with a signi�cantly
increased level of pileup (PU): 140 simultaneous interactions per crossing on average in the
nominal scenario, and up to 200 in the ultimate scenario. This level of occupancy in the
detectors poses signi�cant challenges to the reconstruction of collision events, as well as to
the transfer and processing of their data.

The current CMS sub-detectors were not designed to sustain such high luminosities
and signi�cant upgrades of some of their components are required to be able to e�ciently
collect data during the HL-LHC. In particular the CMS ECAL crystals and the HCAL
plastic scintillators in the endcap region were designed for an integrated luminosity up
to 500 fb−1. Radiation damages beyond this integrated luminosity will be too important
and create unrecoverable losses in the response of these detectors. The entire endcap
calorimeters of CMS will therefore be replaced. The HGCAL, a highly granular sampling
calorimeter with high transverse and longitudinal segmentations, has been chosen by the
CMS collaboration in 2015 to replace the current endcap calorimeters [5]. The main drivers
of this choice were the radiation hardness of its sensitive materials as well as its intrinsic
capability to track particle showers. These tracking capabilities provide enhanced shower
identi�cation and rejection of PU. The rejection of PU is also increased by its precise timing
measurement capability at the level of a few tens of picoseconds.

The HGCAL covers the pseudorapidity range between 1.52 and 3. It uses silicon as
active material in the region receiving the largest lifetime dose of ionizing radiation and uses
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plastic scintillator deeper and further away from the beam axis, as indicated in Fig. 1.1.
While a total of 50 sensitive layers in each endcap was planned in the previous design, this
number has been reduced to 47 at the time of this writing. The electromagnetic section
(CE-E) is composed of 26 layers and the remaining 21 layers compose the hadronic section
(CE-H).
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Figure 1.1: Longitudinal cross section of the upper half of one endcap
calorimeter [7]. It consists of an electromagnetic (CE-E) compartment followed
by a hadronic (CE-H) compartment. The CE-H is instrumented partly with sil-
icon sensors and partly with scintillator tiles, while the CE-E is instrumented
entirely with silicon sensors. Since the publication of this drawing, three layers
have been removed.

The absorber in the CE-E is made of copper, copper-tungsten and lead plates, with a
total depth of about 27.7X0 and 1.5λ. Silicon sensors are produced from 8 inch wafers and
have an hexagonal shape to maximize the e�ciency of the sensor production. They contain
hexagonal cells, and depending on the location of the module in the detector two di�erent
cell sizes are used. This change of cell size is done to optimize the S/N ratio throughout
the detector. Low-density modules are located away from the beam pipe and have cells
of 1 cm2 area. High-density modules are located closer to the beam pipe and have cells
of 0.5 cm2 area. In addition, three di�erent silicon sensor thicknesses are used, depending
on the detector region, in order to adjust their radiation hardness to the expected hadron
�uence and ensure that the S/N ratio remains su�ciently high during the entire lifetime
of the detector.

The absorber in the CE-H is made of stainless steel plates, with a total depth of 8.5λ.
Silicon sensors or scintillator tiles with on-tile SiPM readout are mounted on copper cooling
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plates between stainless steel plates. The �rst CE-H layers are entirely based on silicon
modules, while deeper layers are mixing silicon modules in the higher-radiation region
(close to the beam pipe) and scintillator tiles in the low-radiation region. The layout of
one CE-E silicon layer and of one mixed layer in the CE-H are shown in Fig. 1.2.

Figure 1.2: Layout of one CE-E silicon layer (left) and of a 90◦ portion of one
layer combining silicon modules and scintillator tiles in the CE-H (right) [6].
Silicon modules are depicted in green and yellow, the two alternating colors
showing the division into 60◦ cassettes. The three di�erent shades correspond
to the di�erent sensor thicknesses, 120µm, 200µm and 300µm. Scintillator
tiles are depicted in red.

2 Frontend electronics

Two frontend (FE) ASICs are developed to collect and readout the energy deposited by
particle showers in the active materials. The �rst ASIC, called HGCROC [8], is the entry
point of the data acquisition chain. It contains both analogue and digital components and
is mainly responsible of collecting, amplifying and �ltering the charge current collected in
the silicon or generated in the SiPMs. It is also measuring the time of arrival (ToA) of the
pulses. The trigger data processing starts already there with a digital summation of the
charges deposited in groups of adjacent cells, called trigger cells (TC), and the compression
of the summed charges on a reduced number of bits. In parallel, the full-granularity data
is kept in circular bu�ers to accommodate for the latency of the L1 trigger and is sent out
when a L1 Accept (L1A) command is received.

One speci�c feature of this readout chip is the usage of Time-over-Threshold (ToT)
to measure deposited charges above a con�gurable threshold of typically 100 fC and up to
10 pC. For charges below this threshold a more standard mode, the ADC mode, is used. In
the ADC mode the deposited charge is measured from the amplitude of the pulse, digitized
with a 10-bit ADC. While when the preampli�er saturates, in the ToT mode, the time of
saturation is used as a proxy to measure the deposited charge, and digitized with a 12-bit
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TDC. This saturation can last up to 200 ns, which corresponds to charges of 10 pC, during
which the channel is blind to subsequent energy deposits.

The digitized data is processed on two parallel paths, the DAQ path with an output rate
of 750 kHz, and the trigger path with an output rate of 40MHz. Given the full event rate
in the trigger path and the limited number of output links associated to it (four 1.28Gbps
electrical links per HGCROC in low-density modules and two in high-density modules), its
input data needs to be reduced by up to a factor 35 (in high-density modules). This data
reduction is achieved by combining several lossy compression methods. The �rst step of
the trigger path is to rescale the ToT values such that their least signi�cant bit value (LSB)
is the same as the LSB used by the ADC. A con�gurable multiplicative factor is applied to
the ToT values, which are expanded to 17 bits. This is required in order to be able to sum
cell values within a given trigger cell that might be reconstructed with di�erent modes.
Cell values are then summed together and the resulting value is compressed on 7 bits with
a non-linear compression scheme. This non-linear compression is able to cover the large
dynamic range of the energy deposits and to keep enough precision in the low-end of the
spectrum. Fig. 1.3 summarizes the di�erent blocks composing the HGCROC. More details
regarding the TC summation and compression are given in Chapter 3. The compressed

Figure 1.3: Block diagram of the HGCROC [8]. It is composed of two data
paths: the DAQ path (on top), connected to the ECON-D and the trigger path
(at the bottom), connected to the ECON-T.

TC charges are sent on the 1.28Gbps electrical links to a second ASIC, the ECON-T. In
parallel, on the DAQ path, events for which a L1A command has been received are sent
to a separate concentrator chip, called ECON-D, which performs channel alignement and
zero suppression.

The ECON-T concentrates trigger data from several HGCROC chips. It covers 48
TCs corresponding to full silicon modules. The ECON-T �rst calibrates the input charges
received from the HGCROC and transforms them into transverse energy values. The
second step in the ECON-T consists in reducing further the data stream to be sent to
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the backend (BE) electronics. This data reduction can be done in several ways and the
baseline strategy, foreseen to be used at the time of writing this document, is to apply
a simple threshold on the TC transverse energy, selecting only TCs above this threshold.
Threshold values around 1.5mipT are typically used, where mipT = mip/cos(θ) and one
mip is the energy deposited by a minimum ionizing particle. More details on the di�erent
data reduction strategies considered for the ECON-T are provided in Chapter 3.

In parallel, the transverse energies of the 48 TCs are summed into a single value without
any threshold applied. The summed values are called module sums. Before the calibration
is applied and the TC energies are summed, the compressed 7-bit TC inputs are decom-
pressed on a linear scale. The calibrated TC output are then recompressed on 7 bits with
a similar compression scheme and the module sums are compressed on 8 bits. Finally, the
reduced TC data and the module sums are transmitted to lpGBT ASICs [9] on 1.28Gbps
electrical links, and then serialized to 10.24Gbps before being transmitted on optical links
to the BE electronics through the VTRX+ [10].

The overall schematic of the frontend system in the low-density region is shown in
Fig. 1.4.

3 Backend electronics

The backend electronics responsible of the reconstruction of the HGCAL trigger primitives
is composed of two processing stages. The �rst stage (Stage 1) receives the data coming
from the ECON-T chips, while the second stage (Stage 2) is connected to the central L1
trigger and delivers the HGCAL trigger primitives. The trigger primitives are of two types:

• clusters of TCs reconstructed in 3 dimensions,

• and projective towers with a transverse granularity similar to the current trigger
towers of the CMS calorimeter trigger (0.087 in η and φ).

Cluster primitives contain not only the position and energy of the clusters, but also a set
of cluster shape variables used downstream in the L1 trigger, for instance to identify the
type of shower [7, 12]. These shape variables are typically encoding the size of the clusters
in the transverse and longitudinal directions, as well as how the energy is distributed inside
the clusters. While clusters are built from TCs on which a threshold has been applied in
the ECON-T, towers are built from the module sums for which no suppression of energy
has been applied. Therefore, towers contain the total energy deposited in the calorimeter,
contrary to clusters for which energy is lost through TC suppression and through clustering
itself. Towers are therefore expected to be used for calorimeter-only jet triggers and energy
sum triggers, for which granularity is less important, while clusters will be used for particle
�ow reconstruction and the matching with the primitives from the inner tracker.

The Stage 1, in addition to receiving the ECON-T data and unpacking them, also
reduces further the stream of data and concentrates 120◦ sectors into single Stage 2 FPGA.
The system is therefore split into six subsystems covering a 120◦ region each. In order to
correctly reconstruct clusters at the boundaries between two 120◦ regions, some Stage 1
data are duplicated and sent to two Stage 2 FPGAs. The architecture of three of these
interlinked 120◦ subsystems, covering one endcap in total, is shown in Fig. 1.5. More
details on the current backend architecture are given in Chapter 4, as well as on other
architectures envisioned in the past.
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Figure 1.4: Schematic of the frontend system in the low-density region [11].
Data from the HGCROC are passed through the ECON chips and then to the
engine board through the wagon board. In the opposite direction, the clock and
fast commands are distributed through the Rafael ASIC. The engine board con-
tains the lpGBT and the VTRX+ and is connected to the BE electronics. The
wagon board is a passive board serving to connect the detector modules and the
engines.

Copies of the HGCAL trigger primitives data are sent, with a total latency budget
of 5µs, to two subsystems within the central L1 trigger: the correlator trigger and the
global calorimeter trigger (GCT). For each copy, a bandwidth of 11Tbps is allocated.
The correlator trigger receives primitives from all sub-detectors (all the calorimeters, the
muon system and the inner tracker), while the GCT processes only information from the
calorimeters. The correlator trigger will run particle �ow reconstruction algorithms making
use of the combined information of the calorimeters and of the inner tracker to reconstruct
and identify electrons, photons, hadronic taus and jets. The global calorimeter trigger,
on the contrary, will reconstruct calorimeter-only objects: e/γ candidates (without dis-
tinction between electrons and photons), hadronic taus, jets and energy sums. A diagram
summarizing the di�erent components of the future CMS L1 trigger system and their
interconnections is shown in Fig. 1.6.
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Figure 1.5: HGCAL TPG subsystem covering one endcap [12]. It is composed
of three sets of FPGAs, each set being responsible of the processing of one 120◦

sector. Some Stage 1 data at the boundaries between two sectors are duplicated
in order to reconstruct clusters in these boundary regions.

Figure 1.6: Diagram of the CMS Phase 2 L1 trigger system [7]. It receives
data from the di�erent sub-detector backend systems. It is composed of Global
Calorimeter, Muon and Track Triggers, and of a Correlator Trigger. These
subsystems provide information to the Global Trigger, which issues the �nal L1
trigger decision.
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4 Simulation

For the development and tuning of the HGCAL TPG algorithms and the study of their
performance, a full simulation of the HGCAL and of the rest of the Phase 2 CMS detector
has been used, based on the CMS software framework (CMSSW). The geometry of the
HGCAL has evolved in the past years and its description in CMSSW has been re�ned
and is still being re�ned as these lines are written. Most of the results presented in this
document are based on recent geometries described in the HGCAL TDR [6] or in the L1T
TDR [7]. Some of the studies have been repeated with di�erent versions of the HGCAL
geometry and didn't result to changes in the conclusions nor had impact on the choices
previously made.

The main samples used to develop and study the HGCAL TPG algorithms are particle
gun samples. In these samples, particles of a given type are generated with a given 4-
momentum distribution. Electromagnetic shower studies are based on electron and photon
gun samples, as well as charged pion samples for background de�nition in identi�cation
studies. These particles, in our case, are typically generated with a uniform distribution
in η and pT, with 5 GeV < pT ≤ 100 GeV. In addition, particle gun samples of quarks and
hadronically decaying tau leptons are also used for jets and tau lepton studies, as well as
VBF H → invisible samples at

√
s = 14 TeV. Finally, minimum bias samples are used to

de�ne background and compute trigger rates.
Events are simulated with 200 PU, corresponding to the ultimate HL-LHC scenario.

The detector response is simulated with GEANT4 [13] and an accurate simulation of the
electronics is also used. At the time of this writing, a bit-level emulation of the full trigger
path is being written. It is not yet available in production and only a bit-level emulation of
the trigger steps implemented in the HGCROC were available, the rest of the chain being
based on �oating point arithmetics.



2
Reconstruction of trigger primitives in

the HGCAL

The role of the HGCAL TPG system is to build objects that are used as primitives by the
central L1 trigger. These primitives contain information on local energy deposits. They
include typically their transverse energy and their position in η − φ coordinates, as well
as a certain number of bits used to identify the type of energy deposits. The central L1
trigger of CMS reconstructs higher-level physics objects, such as electrons, photons and
jets, from the HGCAL trigger primitives and those from the other subdetectors. It then
makes the decision to trigger on an event based on the high-level objects reconstructed in
this event.

Two types of primitives are reconstructed in the HGCAL:

• Three-dimensional (3D) clusters, which are dynamically built and ideally aggregate
the energy of single particle showers.

• Projective towers, which are static (�xed-size) objects built from a prede�ned grid in
the η − φ plane.

The main primitives on which most of the developments have been focused in the past
years are the 3D clusters, and they will be the focal point here. Projective towers are
simpler primitives and carry less granular information. They will nevertheless be useful in
commissioning phases and to compute quantities that don't require a �ne granularity such
as event energy sums based on calorimeters information.

The goal of the reconstruction at the L1 trigger is not very di�erent from the o�ine
reconstruction: reconstruct the particle content of collision events. There are nevertheless
a large number of implementation limitations coming from the hardware and �rmware.
The design of reconstruction algorithms at the L1 trigger is tightly tied to the design of
the system architecture, to the design of the �rmware within processing nodes, and to the
data �ow between processing nodes. In this chapter, nevertheless, a purely algorithmic
view of the HGCAL trigger primitives reconstruction is covered. Hardware and �rmware
aspects are covered in the next chapters.
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1 Noise suppression and resilience to pileup

Given the high-PU environment in which clusters will be built, a key aspect of any cluster-
ing algorithm in the HGCAL is its resilience to PU and to noise in general. The robustness
to PU can be controlled in two places in the reconstruction: before the trigger cells are
actually clustered and within the clustering algorithm itself. First of all, the majority of
PU energy deposits are low energy deposits, and applying energy thresholds is an easy
and e�cient way to reduce the contamination from PU. In addition to that, particle show-
ers have in general a high-density core and their energy density decreases further away
from this core. Therefore, constraining the transverse size of the reconstructed clusters,
and focusing on the reconstruction of the shower core, reduces the sensitivity to PU con-
tamination. It is also particularly e�cient to reduce the contamination from overlapping
high-energy showers.

Obviously these two main parameters, the trigger cell energy thresholds and the cluster
radius, have two opposite e�ects on the cluster energy reconstruction. Increasing the
thresholds and decreasing the radius reduce the contamination from noise and PU while
at the same time also reduce the fraction of signal energy aggregated in the cluster. These
e�ects are competing in terms of energy resolution: the resolution is improved when limiting
the integration of noise but it is degraded when limiting the integration of signal. For these
two parameters there are therefore optimal values, which depend on the level of PU and
noise, and of the signal energy.

It has to be noted that the optimal values of these two parameters depend also on the
Moliere radius of the detector (the radius in which 90% of the electromagnetic showers
energy is contained) and its transverse granularity. The Moliere radius is determined by
the stack of materials used in the detector, and in particular by the choice of absorber
material. It is equal to approximately 3 cm in the HGCAL [6], and the cell areas are either
1 cm2 or 0.5 cm2 depending on the region of the detector, such that the core of the showers
are su�ciently well sampled. Nevertheless, the granularity at the L1 trigger needs to be
reduced signi�cantly, as we will see in Chapter 3, down to a trigger cell granularity of 4 cm2.
As a consequence the energy of electromagnetic showers is mostly deposited in a single or
a few trigger cells in a given layer. The ability to limit overlaps between showers, using
energy thresholds and constrained cluster sizes, is therefore reduced compared to what can
be done in the o�ine reconstruction.

Thresholds and radii can be de�ned as constant across the detector and optimized
inclusively. In that case they are simple to optimize and to implement, but they don't
capture the dependency of PU with the pseudorapidity and with the depth in the detector.
This is at the moment what is applied to reconstruct electromagnetic showers. Clustering
radius and threshold have been optimized looking at the energy resolution and identi�cation
performance. The RMS and e�ective RMS of the pL1T /p

gen
T distribution, normalized by

its mean value, are used to measure the energy resolution. The e�ective RMS is the
smallest interval containing 68% of the distribution. It measures the core width of the
distribution and is less impacted by tails and outliers than the RMS. These values are
shown after energy calibration and energy correction are applied, as detailed in Section 2
of this chapter. The electromagnetic cluster identi�cation and background rejection is
provided by boosted decision trees (BDT) that will be discussed later in this chapter. Their
performance is quanti�ed by choosing certain signal e�ciency working points (typically
above 95%) and looking at the background e�ciency/rejection at those working points.
Scans of the resolution and background rejection as a function of the cluster radius and
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of the trigger cell threshold are shown in Figures 2.1 and 2.2. There is an increase of
the energy resolution and of the background e�ciency (i.e. a decrease of the background
rejection) when the values of these threshold and radius become too small or two large.
These e�ects come from the two competing e�ects discussed above and range from about
10% to a factor two or more in the vicinity of the optimal values.

Figure 2.1: Electron energy resolution (left) and background e�ciency (right)
as a function of the clustering radius in the (x/z, y/z) plane. The energy reso-
lution is measured with the RMS and the e�ective RMS of the pL1T /p

gen
T distribu-

tion, divided by the mean of the distribution. The background e�ciency is the
probability of misidentifying charged pion showers as electromagnetic showers
for a 95% selection e�ciency of electromagnetic showers. Electrons and pions
are generated with 10 GeV < pT ≤ 100 GeV and 1.6 < |η| < 2.9, and events are
simulated with 200 PU.

Figure 2.2: Charged pion
(background) cluster selection ef-
�ciencies for a 95% electro-
magnetic (signal) cluster selec-
tion e�ciency, as a function of
the clustering threshold in mip

T

units. Particles are generated
with 10 GeV < pT ≤ 100 GeV
and 1.6 < |η| < 2.9, and events
are simulated with 200 PU.

Capturing the dependency of the level of PU as a function of the pseudorapidity and
of the detector layer depth into clustering thresholds or radii requires more complex opti-
mization procedures because of the large number of parameters to optimize in that case.
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Hadron clusters are at the moment built using a radius varying with the depth in the
detector. But it has been loosely optimized by hand and a complete optimization has
not been tackled yet. The most advanced optimization procedure was investigated at the
beginning of the HGCAL TPG developments [5]. The clustering threshold was de�ned as
a function of (1) the pseudorapidity, (2) the detector layer and (3) the global level of PU in
the event. This procedure is making use of the energy distributions of PU as a function of
these three quantities, and more precisely making use of the percentile values of these PU
energy distributions. Thresholds values are de�ned such that a �xed fraction of the lowest
PU energy deposits are removed at any point in the detector. It e�ectively reduces the
multidimensional optimization space into a single value: the �xed fraction of PU hits to be
removed. And the dependency of the threshold is �xed by the PU energy distribution in
the detector. Thresholds chosen to reject 95% of the lowest PU energy hits are illustrated
in Fig. 2.3. A proxy variable was used to quantify the global level of PU in the event: the
number of hits in detector regions covered by processing boards. Although a full-�edged
optimization procedure was not implemented at that time, and the chosen percentile value
was particularly high, it demonstrated the feasibility of implementing complex threshold
dependencies for clustering. More developments towards more granular de�nitions of clus-
tering thresholds and clustering radii are expected in the future.

Figure 2.3: Clustering thresholds de�ned as the 95th percentile of the trigger
cell PU energy, in mip units [14]. The thresholds are shown as a function of
the number of hits per layer in prede�ned detector regions, for di�erent layers
and di�erent pseudorapidy rings.

2 Energy calibration and corrections

An accurate measurement of particle shower energies also implies the application of several
calibration and correction factors. First, the energy deposited in the active material needs
to be estimated from the collected charges. These calibration coe�cients depend on the
type of material, its thickness and the charge collection e�ciency (which decreases as the
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detector becomes more irradiated). This energy is usually expressed in mip units. Ionizing
deposits from charged particles in collision data will be used to extract intercalibration
factors and ensure the uniformity of the response across the detector [6].

Given the sampling nature of the HGCAL, the total shower energy needs to be estimated
from the energy deposited in each active layer. It is done by multiplying the measured
energy by layer-dependent weights related to the calorimeter sampling fraction. These
weights take into account the amount of material in the absorber layers and will be derived
from construction details. The values of these weights used in the current simulation are
shown in Fig. 2.4. Finally the absolute scale setting will be performed in situ using standard
candles, pT-balance techniques, etc.

Figure 2.4: Layer-dependent
calibration coe�cients based on
the material thicknesses between
active layers. The jumps in the
coe�cients re�ect the change of
absorber type and thicknesses in
the CE-E and in the two sections
of the CE-H.

Additional intermediate steps are necessary due to the imperfect reconstruction of the
energy deposited by particle showers. These steps are generally called energy corrections
rather than energy calibration. The �rst energy correction component takes into account
the fact that clusters do not integrate all the deposited energy from a given shower due to
thresholds applied on the energy hits as well as limited cluster radii. The calibrated energy
of the cluster needs therefore to be corrected to take into account these losses of energy.
The second component takes into account additional energy from PU integrated into the
cluster. Although PU contamination can be limited thanks to thresholds and limited
cluster sizes, it cannot be completely eliminated. Energy corrections need therefore to be
applied in order to subtract these remaining contaminations. These two energy correction
components can potentially be grouped together but it has to be noted that they are of
di�erent nature:

• The leakage correction is multiplicative as the energy missing in the cluster is at �rst
order proportional to the initial shower energy.

• The PU correction is additive since the PU contamination is at �rst order independent
from the initial shower energy.

Therefore if these two contributions are grouped together, the overall correction needs to
be energy-dependent since the relative importance of the two contributions depends on the
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energy (the PU correction is more important at low energy and the leakage correction is
more important at high energies).

Leakage energy corrections can be applied on the reconstructed cluster energy as global
corrections or layer by layer since di�erent correction factors can be expected for the dif-
ferent layers, in particular with clustering thresholds that depend on the layer. These
corrections can also depend on several quantities such as the cluster pseudorapidity, its
energy and its shape. The 3D shape of a cluster is an important information for its identi-
�cation, as will be discussed later in this chapter, but it also provides valuable information
for its energy correction. The shape of a cluster is usually encoded in several quantities such
as the widths in the three dimensions, the position of the shower maximum, the fraction of
energy deposited in the ECAL, the energy density, etc. The corrections �nally depend on
the type of shower, whether it is an electromagnetic or an hadronic shower, and two sets
of corrections need to be derived.

PU corrections should at least depend on the pseudorapidity as there is a strong depen-
dency on the level of PU energy with the distance from the beam axis. They can depend
on the global level of PU in the event as well, similarly to what is shown for thresholds in
Fig. 2.3. In principle, the level of PU energy also depends on the depth of the detector
layer. But since it is an additive correction, only an overall correction summed over all the
layers is needed (the layer-by-layer dependency is absorbed in the cluster sum).

At the moment one of the simplest possible correction schemes is used, applying layer-
by-layer weights to correct for threshold and leakage e�ects, and subtracting PU contami-
nations as a function of the pseudorapidity with a linear dependency:

Ecorr =
∑
layer i

wiE
i − (a|η|+ b)

The impact of such corrections on the energy reconstruction of electrons is shown in
Fig. 2.5, where the pL1T /p

gen
T distribution is shown before and after applying the energy

corrections. The e�ective RMS of this distribution divided by its mean is also shown as a
function of pgenT in Fig. 2.6, together with its mean value as a function of the pseudorapidity.

Figure 2.5: Distribution of the
pL1T /p

gen
T ratio for electrons gener-

ated with a uniform pT and η dis-
tribution between 10 GeV < pT ≤
100 GeV and 1.6 < |η| < 2.9,
before and after applying leakage
and PU corrections. Events are
simulated with 200 PU.
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Figure 2.6: Energy resolution as a function of pT (left) and energy response as
a function of |η| (right). The curves obtained before applying energy corrections,
after applying the leakage correction, and after applying both the leakage and PU
corrections are compared. The resolution is de�ned as the e�ective RMS of the
pL1T /p

gen
T distribution, normalized by its mean value. The response is de�ned

as the mean value of the pL1T /p
gen
T distribution. Electrons are generated with

10 GeV < pT ≤ 100 GeV and 1.6 < |η| < 2.9, and events are simulated with
200 PU.

More sophisticated methods, in particular using machine learning techniques, could be
used to improve further the energy resolution of the reconstructed clusters. These aspects
are covered a bit in Section 6 of this chapter.

3 Cluster identification

Once clusters have been reconstructed, it is critical to be able to identify whether the
particle that initiated the shower is an electromagnetic or an hadronic shower. Electro-
magnetic triggers are indeed the largest rate consumers, with for instance around 30% of
the total rate consumed by single and multi e/γ triggers during Run 2 [4]. And identifying
accurately electron and photon showers is one of the most e�ective way to reduce the rate
of these triggers. The importance of cluster shape variables has been mentioned for the
energy corrections applied to the reconstructed clusters. They are even more important for
their identi�cation. Indeed the shape of the reconstructed clusters strongly depends on the
di�erences in the development of electromagnetic and hadronic showers, both in the trans-
verse plane and in depth. Although much more information on the shower can be obtained
with the HGCAL compared to calorimeters with lower granularity and lower longitudinal
segmentation, it is more complex to leverage as the number of variables needed to encode
the 3D shape information of a cluster is larger and these variables are generally strongly
correlated. It means that applying simple independent cuts on these variables, as it was
typically done at the L1 trigger in the past, is ine�cient in exploiting 3D granular infor-
mation. In order to fully exploit the identi�cation capabilities of the HGCAL, the multiple
shape variables should be used together, which implies using multivariate identi�cation
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models like BDTs or neural networks.
Among the variables developed so far with the biggest impact in discriminating between

electromagnetic and hadronic showers there are:

• The lateral and longitudinal widths of the shower,

σ2
ξξ =

1∑
Ei

∑
i∈TCs

Ei · (ξi − 〈ξ〉)2

where 〈ξ〉 is the mean of the variable ξ weighted by energies and ξ is a position
variable like r =

√
(x/z)2 + (y/z)2, η, φ or z.

• The fraction of energy in the ECAL section E/(E + H), where E here denotes the
energy deposited in the CE-E and H the energy deposited in the CE-H.

• The fraction of energy deposited in consecutive layers around the electromagnetic
shower maximum Ei−j/(E + H) and in the �rst part of the CE-H, Hi−j/(E + H),
where Ei−j is the energy deposited in the CE-E layers i to j and Hi−j is the energy
deposited in the CE-H layers i to j. The list of such variables can be seen in Fig. 2.8.

• The ECAL bitmap, a set of bits encoding the presence or absence of energy deposits
above a certain threshold in each of the CE-E layers.

• The shower length, which is the number of consecutive layers containing energy in
the cluster.

• The barycenter position of the cluster in the longitudinal direction 〈z〉

These variables have already a good discrimination power by themselves, as is illustrated in
Fig. 2.7 for σrr and 〈z〉. But signi�cant improvements can be brought by their combination.

Of course the size of the identi�cation models implemented at the L1 trigger needs
to be kept as small as possible, which means they should be based on a relatively low
number of these shape variables. In order to choose the best combination of variables, their
importance in identi�cation models can be gauged with methods borrowed from the �eld of
explainable arti�cial intelligence (xAI), for instance with the SHAP method [15], as shown
in Fig. 2.8. The choice of optimal shape variables is actually one of the most critical part of
cluster identi�cation. It is driven by multiple objectives, in particular the raw identi�cation
performance and the hardware complexity induced by the calculation of these variables.
Given the large number of possible variable combinations, it is impossible to explore them
manually. And importance methods like SHAP, although useful and very informative, are
limited in choosing the best combination in such multi-objective framework. Therefore, a
special class of optimization algorithms, called multi-objective evolutionary algorithms are
also used to �nd the best trade-o� between performance and complexity [16].

4 2D and 3D clustering

The di�erent aspects of the reconstruction that have been described so far, the resilience
to PU, the energy calibration and correction and the cluster identi�cation, are general and
can be applied to any reconstruction and clustering algorithm. But di�erent clustering
strategies can be applied to actually reconstruct particle showers in 3D calorimeters. Given



4 - 2D and 3D clustering 21

Figure 2.7: Distributions of the lateral width (left) and of the barycenter in
the longitudinal direction (right) of reconstructed clusters. The distributions
of electromagnetic clusters and of PU clusters are compared. PU clusters are
de�ned here as any reconstructed cluster with pcluT > 20 GeV in minimum bias
events simulated with 200 PU. Electromagnetic clusters are de�ned as clusters
matched to a generated electron with 20 GeV < pgenT ≤ 100 GeV in electron gun
events simulated with 200 PU.

Figure 2.8: Feature importance calculated with SHAP values [15]. E and H
are the energies in the CE-E and CE-H sections, respectively. Ei−j and Hi−j
are the energies between layers i and j in the CE-E and in the CE-H sections,
respectively. σ2

ξξ are the variances, weighted by the energy, along the coordinate
ξ. The ECAL bitmap encodes the presence or absence of energy deposits above
a certain threshold in each of the CE-E layers. The shower length is the largest
number of consecutive layers containing energy in the cluster.
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the structure of the calorimeter organized in layers, the �rst possibility is to proceed in two
steps. In the �rst step energies are aggregated in two dimensions in each individual layers
in order to form 2D clusters. These 2D clusters are then linked together from one layer to
an other in order to form 3D clusters. This clustering strategy has been explored for the
HGCAL TDR released in 2018 [6, 17].

Di�erent 2D clustering algorithms were studied, mainly based on the distance between
energy deposits in a given layer and on how these energy deposits are connected together
(looking at the adjacency of the cells where the energy is deposited). In distance-based
clustering algorithms, energy deposits above a seeding threshold are promoted as cluster
seeds and energy deposits passing a (lower) clustering threshold are aggregated to these
seeds within a certain distance. In adjacency-based clustering algorithms, energy pass-
ing a clustering threshold and deposited in adjacent cells are clustered together. These
adjacency-based algorithms are also called topological clustering. These two generic clus-
tering strategies are very common in calorimeter reconstruction, both o�ine and at the
L1 trigger. But clustering energy hits based on their distance without requirement on
their connectivity, or clustering connected hits without constraints on their distance, both
su�er from important limitations. Indeed a distance-based clustering can cluster together
disconnected nearby showers, while an adjacent-based clustering can be very sensitive to
PU energy deposits and grow clusters in an uncontrolled manner. Although these issues
can be limited with properly tuned parameters, it is very sensitive to the type of shower
and to the environment. Therefore an adjacency-based clustering with distance constraints
is generally preferred to avoid uncontrolled growth of clusters in high PU environments.
An hybrid algorithm of this kind was developed for the reconstruction of the HGCAL
trigger primitives. Examples of clusters produced by this algorithm are shown in Fig. 2.9
This strategy shares some common features with the clustering in the existing calorimeter
trigger of CMS to reconstruct electrons/photons and hadronic tau leptons [1, 2, 4].

Once 2D clusters are reconstructed in individual layers, they need to be linked together
such that the full energy deposited by showers is aggregated in the longitudinal direction.
Several strategies have been studied here as well. The simplest one is to aggregate 2D
clusters along a trajectory based on their distance from this trajectory. In order to reduce
the complexity, trajectories are forced to be straight lines originating from the center of
the detector. It e�ectively reduces the trajectory space to two dimensions. It could be
for instance (η, φ), but the (x/z, y/z) coordinate system is preferred as it better matches
the physical space in which the showers are developing. This reduction of complexity has
nevertheless a cost in terms of �exibility of the reconstruction. It doesn't take into ac-
count the fact that particles don't originate exactly from the center of the detector (the
extreme case being long-lived particles) and that charged particles have bended trajecto-
ries. In those cases energy deposits in the (x/z, y/z) plane have distorted shapes, which
can potentially lead to unclustered energy. In order to seed such distance-based linking
procedure, the 2D clusters are ordered, for instance by pT. The highest-pT 2D clusters form
seeds around which lower and lower pT clusters are attached within a given distance. More
complex linking strategies using information on the density of 2D clusters can improve the
reconstruction performance and in particular the resilience to noise. They aggregate clus-
ters starting from denser regions and progressively move to sparser regions. Regions with
too low densities can eventually be discarded to �lter low-energy deposits. A well-known
density-based clustering algorithm, studied in this context of reconstructing 3D clusters
for the HGCAL TPG, is the DBSCAN algorithm [19].
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Figure 2.9: Example of 2D topological clustering with distance con-
straints [18]. The seed trigger cells are drawn in yellow while trigger cells above
the clustering threshold but below the seed threshold are drawn in blue. All trig-
ger cells are shown in the upper plot, while clustered trigger cells are shown in
the bottom plot.

5 Longitudinal seeding and clustering

Shortly after the HGCAL TDR release, a di�erent class of clustering algorithms has been
developed and chosen for the prototype �rmware being implemented as this text is written.
It has been used to produce the results described in the L1T TDR released in 2020 [7]. This
change was mostly driven by the �rmware complexity of the 3D linking algorithms described
in Section 4, which will be discussed in Chapter 4. The idea behind this alternative type
of clustering is to separate the seeding procedure from the actual clustering. The data
structure in the seeding step is also simpli�ed, using a 2D histogram.

The projection of energy in the 2D seeding histogram is following the same principle as
for the 3D linking described above. The projection is made in the longitudinal direction
towards the center of the detector such that the energy deposited by a given shower is
integrated mainly in one histogram bin. Performing the seeding with a sum of the shower
energies over the longitudinal direction makes the clustering less sensitive to noise and PU,
compared to a seeding based on single trigger cells or on 2D clusters. As detailed above
already, this kind of projection procedure is not perfect for particles that do not originate
from the center of the detector. But it is much less computationally demanding compared
to reconstructing the detailed trajectory of each individual cluster seed. Reducing the
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complex trigger cell point cloud into an histogram has also the advantage to provide a
�xed data structure well suited for FPGA implementations. In addition, �nding seeds is
made easier by the array structure of histograms, and strategies developed for standard
2D calorimeters can be applied. A search of seeds as local maxima with a 3× 3 window is
performed, associated with the application of a minimum threshold. In order to reduce the
sensitivity of the maximum �nder to local �uctuations, a smoothing of energy is applied
on the seeding histogram.

The coordinate system used to create the seeding histogram is important and should
follow the geometry of the trigger cells and the lateral development of showers. In terms of
seeding performance, using the (x/z, y/z) coordinates with histogram bin areas matching
roughly the area of trigger cells provides the best results. Nevertheless, due to data �ow
and �rmware constraints the (r/z, φ) coordinate system is currently used, where r is the
distance from the beam axis in the transverse plane (r2 = x2 + y2). More details about
these constraints are discussed in Chapter 4.

In the clustering step, trigger cells are aggregated around the identi�ed seeds. Cur-
rently a distance criteria is applied in the (x/z, y/z) plane. This distance can depend on
the detector layer although this layer-dependency has not been fully optimized yet (in par-
ticular a �xed distance is used to reconstruct electromagnetic showers). The dependency
with the detector layer can take into account the evolution of the shower spread in the
lateral direction, using smaller distances in the �rst layers and larger distances deeper in
the detector. And as discussed already in Section 1 of this chapter, this dependency with
the layer can also help mitigating the contamination of PU, mainly located in the �rst
detector layers.

Although the baseline seeding and clustering algorithm currently implemented in �rmware
has been made as simple as possible, variations around this idea of seeding-clustering have
been studied in the past and will continue to be developed in the future. For instance, a
similar strategy had been studied at the time of the CMS Phase 2 Technical Proposal [5, 14].
One of the main di�erences with the current algorithm was a seeding based solely on the
detector layers around the electromagnetic shower maximum. The goal was to �lter out
PU energies more e�ciently at the cost of a slightly reduced signal e�ciency. Based on the
same idea of �ltering out PU energy deposits in the seeding step, it is also possible to apply
layer weights when summing energies into seeding bins [20]. The weight pro�le can follow
the expected longitudinal pro�le of showers, and in particular electromagnetic showers. In
that case, larger weights are given to energies around the expected electromagnetic shower
maximum, while lower weights are applied to energies deposited in the �rst layers where
more PU is expected. Such weight pro�le is shown in Fig. 2.10. The selection of only a
subset of the detector layers around the shower maximum is actually just a special case of
such weighting technique with weights constrained to be equal to either 0 or 1.

6 Machine Learning in the context of trigger reconstruc-
tion

It was mentioned already in this chapter that machine learning techniques are used to
perform some of the L1 trigger tasks and in particular for the identi�cation of the recon-
structed clusters. Using multivariate techniques at the L1 trigger is not completely new.
BDTs were for instance developed in 2013 for the current electron and photon triggers as
well as for muon triggers [4]. Nevertheless the machine learning models are not directly
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Figure 2.10: Example of layer
weights that can be applied for the
seeding of electromagnetic show-
ers. The full curve shows the
longitudinal pro�le of unconverted
photons with 20 GeV < pT ≤
100 GeV in the absence of pile-up.
The dashed curves shows a seed-
ing window restricted to the elec-
tromagnetic shower maximum.

implemented in �rmware. Instead it is only their transfer function that is implemented
in the form of large lookup tables. The main drawback of these implementations is the
necessity to strongly compress the number of bits used to encode the input variables of the
BDTs, due to limitations in terms of block RAM sizes in the FPGAs. For instance, only 12
input bits in total are used for the current electron and photon identi�cation, distributed
among three variables. A larger number of input bits (30 bits) are used for the muon
trigger, but in that case the transfer function is stored in a dedicated memory module and
not within the FPGA matrix.

Since more recently, and in particular in the context of the Phase 2 trigger develop-
ments, the actual implementation of machine learning models, in particular BDTs and
neural networks, is considered. It has been made possible thanks to larger FPGA matrices
available nowadays as well as to the emergence of new tools to convert trained machine
learning models into �rmware [21, 22]. Given the high dimensionality and complexity of
the HGCAL data it is obvious that machine learning models will be used in several places
of the TPG reconstruction and of the central CMS L1 trigger. Indeed, simple cut-based
selections are not e�cient enough in reducing trigger rates in the HL-LHC environment.
Shallow models such as BDTs and fully connected neural networks are already foreseen in
some places of the trigger reconstruction, in particular for energy corrections and cluster
identi�cation as mentioned previously. It is indeed not possible to �nd just a couple of
variables that are powerful enough in discriminating di�erent types of showers. In addition
these variables are correlated between each other, and they need to be combined in order
to really bene�t from the HGCAL 3D information. These tasks can bene�t from multi-
variate machine learning models since such models are built to make use of correlations
between input variables. This is illustrated in Fig. 2.11, where the ROC curves obtained
with a BDT using 13 variables and with a single cut on the most discriminating variable
E/(E + H) are compared. Background clusters are de�ned here as any reconstructed
cluster with pcluT > 20 GeV in minimum bias events simulated with 200 PU. Although the
e�ciency of identifying such cluster as an electromagnetic cluster is not equivalent to e/γ
trigger rates, it provides a good proxy to assess the level of rate reduction that can be
obtained.

So far, only machine learning models using high-level input features, such as cluster
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Figure 2.11: ROC curves for the identi�cation of electromagnetic clusters
against PU clusters. The ROC curve obtained with a BDT is compared with the
one obtained using only the most important variable E/(E + H) (see Fig. 2.8
for the list of variables). PU clusters are de�ned here as any reconstructed
cluster with pcluT > 20 GeV in minimum bias events simulated with 200 PU.
Electromagnetic clusters are de�ned as clusters matched to a generated electron
with 20 GeV < pgenT < 100 GeV in electron gun events simulated with 200 PU.

shape variables, have been discussed. This strategy requires to manually design such
variables and to select the most e�cient ones for the task under consideration. Deep
neural networks (DNN), on the other hand, are able to process raw data directly, such as
energy hits. DNNs encode hierarchical models of the data and extract high-level features
from these raw data. In practice it means that DNNs can reconstruct the energy of particle
showers and identify their type directly from the deposited energies. In fact, DNNs can
even process data from the entire detector, reconstruct all the individual showers in the
detector, and associate energy hits to these reconstructed showers. This task is called object
segmentation. This kind of end-to-end reconstruction is mainly studied and developed in
the context of the o�ine reconstruction [23, 24]. It is at the moment not feasible at the
L1 trigger due to the gigantic data throughput, the limited hardware resources and the
limited processing latency. Nevertheless, even if object segmentation seems out of reach at
the moment at the L1 trigger, DNNs could still be used to process raw trigger cells data
from already reconstructed clusters, on a cluster-by-cluster basis. DNNs are much more
demanding in terms of FPGA resources compared to more classical shallow models, but
the computation of high-level input features is not needed in that case. For such strategy
mainly two types of networks can be used, convolutional neural networks (CNN) and graph
convolutional neural networks (GCNN).

Standard CNNs have been originally developed to process images and are therefore
based on input data organized in the form of grids of square pixels. Image-like data struc-
tures have the main advantage of being easily processed in FPGAs, but the HGCAL has
a more complex geometry and energy deposits cannot be encoded in a standard image
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without some information losses. GCNN on the other hand can work on irregular data
structures (graphs) and even for some classes of GCNN, called dynamical GCNN, on point
clouds without any prede�ned structure [25, 26]. In that case there is no information loss
due to the conversion to a data structure that doesn't match the detector geometry. Devel-
opments on GCNNs have been growing exponentially for the last few years, in particular
in the context of the o�ine reconstruction. Some attempts to use such networks in the
context of the L1 trigger have also been made [27]. They usually require much more hard-
ware resources than fully connected networks and BDTs, in particular in the cases where
the data structure is dynamically learnt by the network, typically using k-nearest neighbor
(kNN) algorithms. But given the continuous improvements in FPGA hardware and given
the current developments in neural network compression techniques, it is expected that
more and more complex machine learning models will be running in L1 triggers in the
future.

7 Conclusion

In this chapter the di�erent steps of the L1 trigger primitive generation in the HGCAL
have been described. In the past years di�erent strategies and methods were tested and
only the main general principles have been extracted and presented here. These develop-
ments did not follow a linear process and multiple paths have been explored, sometimes
leading to dead ends, sometimes abandoned and re-explored later. These trials and errors
were unavoidable and even necessary in the prototyping phase in which we were. This is
also exacerbated by the fact that �rmware implementations arrive in general with a delay
compared to simulations and performance studies, due to a longer development time. Al-
gorithms need then to be updated or eventually abandoned after feedback from �rmware
designers.

The two next chapters will touch a bit the hardware and �rmware aspects of the HGCAL
TPG. The two main things that put constraints on the trigger primitives reconstruction
are (1) the very high �ux of data that come out of the detector and (2) the fact that the
reconstruction algorithms need to run on FPGAs with an extremely low latency of the order
of the microsecond. Chapter 3 covers the frontend part of the trigger data processing and
in particular the reduction of the data �ow. Chapter 4 covers the implications of the data
structure coming out of the detector and of the backend electronics on the reconstruction
algorithms.
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3
Trigger data reduction in the frontend

In the previous chapter, the di�erent steps of the cluster reconstruction and identi�cation
developed for the HGCAL TPG have been presented. Di�erent strategies, in particular
for the clustering, have been described and can potentially be used. Nevertheless, very
little has been said on the actual implementation of these steps and on the constraints and
limitations generated by the hardware and �rmware.

The �rst set of constraints come from the FE electronics and, maybe more importantly,
from the limited bandwidth between the FE and the BE. The main consequence is that
the reconstruction algorithms cannot be directly applied on the full detector data. There
are several underlying reasons for that:

• Power consumption: the trigger data, sent at the frequency of 40MHz, have to be
reduced as soon as possible in the electronics chain to avoid consuming too much
power by moving, sending, receiving and processing these data. The total power
budget for the FE electronics is about 20mW per channel, which is limited by the
cooling power that can be installed.

• Routing: the number of routing lines required to transfer trigger data on the PCBs
and between PCBs is limited, in particular given the large number of FE ASICs.

• Cost: the optical links used to transfer trigger data between the FE and the BE, as
well as the FPGAs in the BE needed to receive these data are expensive items, and
their numbers need to be kept within a reasonable range. About 10000 lpGBT links
are currently allocated to transfer trigger data from the two endcaps.

• Space: the space allocated for the HGCAL TPG and DAQ in the CMS underground
services cavern (USC) is limited to 16 racks. Since the number of FPGAs required
to receive the trigger data coming from the FE is (at �rst order) proportional to the
amount of received data, it also puts limits on the size of these data.

For these multiple reasons, trigger data need to be reduced as much as possible and
as soon as possible in the electronics chain. Nevertheless, data reduction strategies are in
general lossy, which translates into degradations in the ability to reconstruct and identify
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particle showers. In order to limit the impact on the performance of the trigger system and
at the same time reduce su�ciently the data rate, several compression strategies based on
di�erent dimensions of the data need to be combined. These compression strategies can
be divided into three main classes:

• compression methods impacting the spatial granularity of input cells

• compression methods impacting the energy resolution of input cells

• compression methods reducing the population of input cells

1 Data reduction based on spatial granularity

Trigger cells are the core objects of the HGCAL TPG. Reducing the granularity of the
detector is the �rst and simplest data compression strategy applied in the trigger chain.
It provides a simple way of reducing the data throughput from the HGCROC by a factor
of 4 (in low-density modules) or 9 (in high-density modules). The size of trigger cells is
roughly equal to 2×2 cm2, to be compared with the Moliere radius equal to about 3 cm. It
means that electromagnetic showers deposit most of their energy in very few cells in each
layer. The consequence is a reduced capability to disentangle overlapping showers and to
�lter out PU energy deposits. It also impacts the granularity with which cluster shapes
are reconstructed and therefore reduces their power to discriminate electromagnetic and
hadronic showers.

Trigger cells are formed by summing together the deposited energy (more exactly the
digitized charges as no calibration is applied at this stage) in prede�ned groups of cells
geographically close to one another, as illustrated in Fig. 3.1. This summation requires
the input quantities to be at the same scale. Given that two digitization modes, the ADC
mode and the ToT mode, are used, a rescaling procedure needs to be applied before the
trigger cells are summed. Indeed, the digitized values obtained from these two modes are
using di�erent scales: their relationship with the input energy is di�erent. The main issue
is that the ToT response is highly non linear for low charges close to the ADC regime.
Restoring the linearity in the HGCROC before the TC summation would consume too
much power as it would need to be done for every sensor cell at a frequency of 40MHz.
Therefore the rescaling of the ToT values onto the ADC scale is only approximate, which
results in errors around the transition region between the ADC regime and the ToT regime.
In order to minimize the size of the errors, a plateau is used in this transition region. Two
possible versions of this plateau are shown in Fig. 3.2. The one chosen and implemented in
the HGCROC creates a balance between negative and positive errors, while the alternative
one creates only negative errors.

In addition to this simple granularity reduction strategy (building trigger cells), a more
sophisticated procedure has been developed, to be applied on top of the TC sums and
reduce further the granularity. The general idea is to sum groups of TCs into larger objects,
which correspond at �rst order to larger TCs, but to additionally retain some information
on the distribution of energy within these groups. As an example such information could
be the barycenter of the energy deposits in each group. A simpler alternative that has
been chosen and implemented in the ECON-T [29] is to tag the trigger cell containing
the largest energy deposit inside the group. In terms of information it is equivalent to
summing the energy of the group and concentrate the energy sum into the TC with the
largest energy. The implementation in the ECON-T can build STCs from 4 or 16 TCs,
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Figure 3.1: Low granularity (left) and high granularity (right) hexagonal
modules [6]. The sensor cells tiling within these modules is shown on top while
the grouping of sensor cells into trigger cells is illustrated on the bottom.

Figure 3.2: Digitised output as a
function of the input charge after
rescaling of the ToT values to the
ADC scale [28]. The ToT mode
is used typically above 100 fC when
the preampli�er saturates. Since the
ToT response is highly non linear for
low charges, a plateau is applied in
order to minimize errors in the tran-
sition region between the ADC and
the ToT modes. Two di�erent trans-
fer functions in this transition region
are shown.

depending on the level of data reduction required. There are other, more sophisticated
alternatives, for instance making use of the energy fraction deposited in the maximum cell.
But the simpler strategy described above has proven to provide the best trade-o� between
performance and data size. The objects formed in this way are called Super Trigger Cells
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(STC), and are illustrated in Fig. 3.3.

Figure 3.3: Illustration of Su-
per Trigger Cells (STC) formed
from four trigger cells in a sili-
con module. The TCs contained
in one of the STCs are shown in
white and the blue star indicates
the TC with the maximum energy
in this STC. The position of this
TC is retained in the STC infor-
mation.

2 Energy compression

A total of 19 or 21 bits, depending whether trigger cells are built from 4 or 9 sensor
cells, is needed to encode TC charge sums over the full dynamical range. In a module
containing 48 trigger cells, it corresponds to 36.48Gbps and 40.32Gbps, respectively. It is
nevertheless not feasible to send such wide data downstream in the trigger chain. Indeed
twelve 1.28Gbps output links are allocated per module to send trigger data out of the
HGCROC, corresponding to a bandwidth of 15.36Gbps. Among this total bandwidth,
only 13.44Gbps can e�ectively be used, the rest being needed for synchronization purpose.
The TC charge sums are therefore compressed by a factor of ∼ 3 immediately after their
formation in the HGCROC.

At the L1 trigger a precise resolution is usually not needed for particles with high
energy well above trigger thresholds. Therefore, high energies don't need to be encoded
with as much precision as lower energies. In addition, the absolute energy resolution in
calorimeters typically grows as

√
E or E for su�ciently large energies. It is therefore not

necessary to use a linear coding scheme that provides constant errors as a function of
the energy. A logarithmic encoding of the TC charges better follows both the intrinsic
calorimeter resolution and the trigger requirements, as the compression errors in that case
grow as E. But implementing a real logarithmic encoding is not viable in the FE, and
would also be too complex to decode in the BE. A simpler coding scheme, that follows
the same principle of increasing the absolute errors with the energy, is the �oating point
encoding. The �oating point encoding is based on two terms, an exponent term to encode
the position of the most signi�cant bit (MSB) and a mantissa term to encode the bits
right after the MSB. The least signi�cant bits are therefore dropped for high values, which
leads to truncation errors increasing in absolute value as the energy increases. Logarithmic
encoding and �oating point encoding share very similar transfer functions as can be seen
in Fig. 3.4, where examples of logarithmic and �oating point encodings are compared.

For a �xed total number of bits, the allocation of these bits to the exponent and to
the mantissa can vary. The choice of their relative allocation depends on the importance
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Figure 3.4: Response functions for loga-
rithmic and �oating point compressions on
7 bits. The �oating point compression is
using 3 mantissa bits and 4 exponent bits.
Both compression schemes shown here as
example cover inputs on 18 bits. A reduced
range is displayed in order to better visu-
alize the di�erences between the two com-
pression schemes. A �oating point com-
pression provides a very similar response
as a logarithmic compression while being
much less demanding in terms of power
and logic resources.

of limiting truncation or saturation e�ects. A lower number of mantissa bits gives larger
truncation errors, while a lower number of exponent bits provides a lower dynamic range
and gives larger saturation e�ects. Given the large range covered by energy hits in the
HGCAL, the number of bits used to encode the exponent is critical as too important
saturation e�ects at the trigger cell level can be disastrous for cluster energies. Reducing
the number of exponent bits can be harmless until it reaches a certain point where the
bulk of shower energy deposits become saturated. But the cluster energy resolution is then
strongly damaged below this point. On the other hand, truncation e�ects also impact
cluster energies, but they can be mitigated by a rounding mechanism such that positive
and negative rounding errors compensate in cluster energy sums. Reducing the number
of mantissa bits a�ects the cluster energy resolution in a much more gradual way. This is
illustrated in Fig. 3.5 where the energy response and resolution of reconstructed photon
clusters in particle gun events simulated without PU are shown for di�erent exponent and
mantissa sizes. There is a sharp increase of the resolution and drop of the response for
a number of exponent bits below 4, while their dependency with the number of mantissa
bits is much milder.

The number of bits to encode TC energies is limited to 7 bits due to bandwidth con-
straints in the output of the HGCROC. It has been chosen to share these 7 bits into 4
exponent bits and 3 mantissa bits. This 4E3M �oating point encoding can cover a lin-
ear range of 18 bits. The total TC sum dynamic range can potentially cover 19 bits for
low-density modules and 21 bits for high-density modules, so one or three of the least
signi�cant bits are truncated before compressing the energy into the 4E3M �oating point
format. This compression scheme ensures that the full dynamic range is covered, and
therefore eliminating saturation e�ects, at the price of a bit more rounding errors.

The �oating point encoding reduces signi�cantly the size of the data to be transmit-
ted, but requires to be decompressed in the later stages every time operations are done
on TC energies, in particular when summing together several energies or applying cali-
bration factors. It is for instance what is done in the ECON-T where TC sum values are
decompressed, calibrated and recompressed before being sent to the BE electronics [29].
Nevertheless the decompression of such �oating point format is relatively lightweight in
terms of needed logic operations.
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Figure 3.5: Energy response (left) and resolution (right) for photon showers as
a function of the numbers of bits used to encode the exponent and the mantissa
in a �oating point format. Photons are generated without PU with a uniform
distribution in 10 GeV < pT ≤ 150 GeV and 1.7 < |η| < 2.8. The response is
de�ned as the mean of the pL1T /p

gen
T distribution and the resolution is de�ned as

the RMS of this distribution divided by its mean. The three red lines indicate a
total number of bits (exponent + mantissa) of 6, 7 and 8.

Others, more sophisticated, way of compressing TC energy that had been considered
at the beginning of the HGCAL project are variable-length types of encoding, such as
Hu�man coding. These coding strategies o�er lossless compression of the data by making
use of their statistical properties and redundancy. The Hu�man encoding uses less bits
to code the most frequent patterns and uses more bits to code the less frequent patterns,
which reduces on average the size of the data. Such method is nevertheless too complex to
be implemented in the FE and in the BE, as it typically requires to pass through a binary
tree to encode and decode the data. It was therefore quickly abandoned.

3 Population-based data reduction strategies

The last way in which data can be reduced is by acting on the population of trigger cells,
selecting only a subset of all the original trigger cells. Usually only the trigger cells with
the highest energy deposits are selected. Two ways to perform such selection have been
developed and studied:

• Applying a threshold on the trigger cell energy and suppressing trigger cells falling
below this threshold.

• De�ning a �xed number of the highest-energetic trigger cells to select and suppressing
the lowest-energetic trigger cells.

The selection by threshold has the main advantage of being able to send more trig-
ger cell energies in a given bandwidth due to averaging e�ects across several consecutive
bunch crossings. Events with lower-energy deposits can free the bandwidth for events with
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higher-energy deposits, provided that a bu�ering mechanism is implemented. Its main
drawback is the variability, event-by-event, of the data size around an average value. This
average value and its variability depend on the running conditions of the LHC and of the
detector. This variability also implies that the data sent from di�erent locations in the
detector are asynchronous, and need to be synchronized at a later stage, typically in the
FPGAs receiving the data in the �rst stage of the BE. This task of synchronization is some-
thing highly demanding in terms of logic resources. This selection strategy also requires
additional latency, both in the FE in order to bene�t from the averaging e�ect through
bu�ering, and in the BE in order to synchronize and align all the data coming from the
FE.

Finally, since the data size depends on the running conditions of the LHC, and in
particular on the instantaneous luminosity and the level of PU, the threshold values and the
bandwidth allocation require a careful tuning. This tuning is performed for each individual
module, looking primarily at the average occupancy (the number of selected trigger cells
in the module) for di�erent threshold values and converting it into a number of links. A
su�cient margin (typically 30%) in the allocated bandwidth is added to reduce as much
as possible the probability of over�ow due to positive �uctuations of the occupancy. An
example of trigger cell occupancy map and the associated number of links in a CE-E layer
is shown in Fig. 3.6. Constraints coming from the architecture of the FE electronics system
are then considered to adjust the map of links and the threshold values.

The other selection strategy, selecting a �xed number of the highest-energetic trigger
cells does not bene�t from averaging e�ects across bunch crossings as the data size is by
de�nition �xed. Therefore more trigger cell energies are discarded in the case of busy
events compared to the application of a threshold, although the fact that the highest-
energetic cells are selected alleviates this truncation e�ect. Averaging e�ects could be
obtained by selecting the highest-energetic trigger cells across several consecutive bunch
crossings instead of a single bunch crossing. But this idea has been put aside as it creates
arti�cial correlations between consecutive bunch crossings. Such correlations would prevent
to emulate properly the trigger chain on recorded data since only a small fraction of the
bunch crossings are kept and stored. Nevertheless, despite its disadvantage, this selection
scheme creates a synchronous stream of data since a �xed number of trigger cells is sent
for each event. Such synchronous data stream doesn't require as complex �rmware in the
receiving stage of the BE compared to asynchronous streams. For the same reason the
data doesn't need to be bu�ered and events are sent within a 25 ns window. The latency
required to send and receive the data is thus minimal.

At the moment of writing this text, it is foreseen that the selection of TCs in the
ECON-T will be done by applying a threshold and selecting TCs with energies above this
threshold. But given the complexity expected to unpack an asynchronous stream of data
on the receiving stage of the BE, both options have been implemented in the ECON-T.
The threshold implementation is the simplest, its main complexity being in the bu�ering
mechanism. Selecting the highest-energetic trigger cells is more complex since trigger cells
need to be sorted from the highest energy to the lowest energy. Sorting is in general hungry
in terms of logic and/or latency. For our use case with a very high �ux of data, a relatively
low number of values to sort, and where �xed latencies are required, sorting networks
are the best class of sorting algorithms. They are particularly well-suited for ASIC and
FPGA implementations as they have an intrinsically parallel and pipelined architecture. In
particular bitonic sorters and odd-even mergesort sorters, although not being necessarily
the most e�cient sorting networks for every cases, are the best network architectures in
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Figure 3.6: TC occupancy (top) and number of elinks (bottom) per module
in a 120◦ sector of layer 9. These values have been obtained with a 1.5mip

T

threshold applied on the TC energies. An overhead of 30% is applied on the
occupancy when deriving the number of required elinks.

general. A Batcher odd-even mergesort architecture [30] has been chosen to perform the
TC sorting followed by the selection of the highest-energetic TCs. This implementation
has been called BestChoice.

Since the BestChoice selection scheme, implemented as an alternative to the threshold
selection, does not bene�t from bu�ering and averaging e�ects, its performance are quickly
degraded when the allocated bandwidth becomes too low compared to the number of hits
to be sent. It is especially true for large objects such as hadronic jets. Therefore, it has been
chosen to combine the BestChoice selection with the Super Trigger Cells data reduction
strategy described in Section 1. BestChoice would be used in the CE-E and STC would be
used in the CE-H. This combination provides similar performance as a threshold selection
for electrons and photons, hadronic taus and hadronic jets, and it is therefore a more
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viable alternative to the threshold selection. The single e/γ (electron/photon), single tau
and single jet trigger rates are compared for di�erent data reduction strategies in Fig. 3.7.
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Figure 3.7: Rates for single e/γ (top left), single tau (top right) and single jet
(bottom) triggers as a function of the o�ine threshold for a TC data reduction
in the ECON-T based on a threshold (1.35mip

T
), the BestChoice (BC) selection,

the SuperTC (STC) granularity reduction or on a combination of the BestChoice
and SuperTC (Mixed BC+STC) [31, 32]. The ratios with respect to the rates
obtained with a threshold are also shown. The "o�ine threshold" corresponds
to the o�ine pT for which a 95% signal e�ciency is obtained at a given trigger
rate.
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4 Impact of the detector design on compression algorithms

Some of the compression strategies presented above are local (at the level of single cells),
while other compression strategies work at the level of a population of cells. But in both
cases the design of the detector and of the FE electronics architecture can play an important
role on the feasibility and e�cacy of these compression algorithms.

The �rst most important design aspect is the choice of the geometry of the detector.
For the HGCAL, hexagonal modules have been chosen in the silicon section, mainly due to
a better silicon wafer e�ciency compared to square modules. Consequently, hexagonal cells
are used in these hexagonal modules. But hexagonal cells cannot be perfectly tiled inside
hexagonal modules, and the hexagonal tiling needs to be slightly broken at the boundaries
between modules. This tiling issue becomes more complex when considering granularity
reduction in trigger data. In that case sensor cells are grouped together into trigger cells,
and this grouping needs to be done in the most uniform way as possible. This grouping
also needs to be ideally done in a single FE ASIC, which means that trigger cells should
be entirely contained in a region covered by single ASICs. The tiling of sensor cells into
modules and their grouping into trigger cells have been subject to intense studies during
the year 2016 [20]. A module architecture emerged from these studies where the module
hexagon and the sensor cell hexagons are rotated between each other by 90◦, and the center
of the module matches a cell vertex. The module hexagon is virtually divided into three
diamond-shaped regions, rotated from one another by 120◦. A grid of 4 × 4 trigger cells
(being made of either 4 or 9 sensor cells) can then be de�ned in each of these diamond
regions. This module and trigger cell architecture is illustrated in Fig. 3.1.

It preserves a very good sensor cell and trigger cell uniformity, and the only minor gaps
from a perfect tiling are:

• slightly distorted sensor cell shapes and non-uniform areas at the edges of the mod-
ules,

• a threefold rotation of trigger cells within modules.

The choice of this speci�c module architecture has been strongly driven by trigger re-
quirements. These trigger requirements are largely due to the fact that FE ASICs cover
small regions. In particular the HGCROC covers 1/3 (for low-density modules) or 1/6
(for high-density modules) of one module. Trigger cells are built in the HGCROC and
should therefore be entirely contained in single HGCROCs. Although this is not a strict
requirement, as trigger cells could potentially be built in several steps, it simpli�es largely
the data �ow.

More generally, the area covered by FE ASICs and the number of FE processing stages
is a critical aspect of the detector design for what concerns the trigger data. Indeed
some data reduction algorithms are sensitive to the area (the number of cells) covered by
individual FE ASICs. The case of the TC building has already been mentioned, although it
is actually more an edge-related issue. But smaller coverage implies necessarily more edge
problems. The other data reduction algorithms impacted by the coverage of FE ASICs are
algorithms based on a population of cells. In particular, selecting a �xed number of the
highest energetic trigger cells among a set of input trigger cells is performing better with
a more global selection compared to a more local selection. If a �xed number of output
links is assumed in the whole HGCAL, partitioning them in smaller regions means that
fewer trigger cells can be sent in each region. At �rst sight the dependency between the
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region size and the number of trigger cells is linear. But non-linear e�ects arise due to the
fact that interesting energy deposits are local and dense. In that case, reducing too much
the region size implies that the energy deposited by a particle in one single region could
cover more trigger cells than what can be sent from this region. So even though the total
number of links in the whole detector stays the same, such selection algorithms are less
e�cient in �lling the available bandwidth with local high-energy deposits if the detector is
partitioned into smaller regions.

Similar conclusions holds when trigger cells are selected by applying a threshold on
their energy (trigger cells with an energy above a given threshold are selected), even though
such threshold is applied at the level of single cells. This is due to the fact that with such
selection strategy, bu�ers need to be used as the number of selected trigger cells varies
from one event to an other. The goal of these bu�ers is to absorb the positive �uctuations
above the average number of selected trigger cells. Assuming that the distribution of the
number of selected trigger cells above threshold follows a Poisson distribution, a smaller
region coverage implies larger �uctuations relatively to the average value. Therefore larger
bu�ers, relatively to the region size, need to be used to absorb �uctuations if smaller regions
are used.

In part for these reasons, compression methods that reduce the population of cells are
not applied in the HGCROC but rather in the second processing stage, in the ECON-T.
The role of the ECON-T is indeed to concentrate data from severals ROCs and therefore
covers larger regions of the detector.

5 Conclusion

Due to the limited bandwidth that can be allocated to send trigger data out of the detector,
the raw data produced by the detector needs to be signi�cantly reduced. Given the level of
data reduction required, a combination of multiple strategies staged on two FE ASICs have
been developed. These strategies play with di�erent aspects of the data in order to limit
as much as possible their impact on the reconstructed clusters and on the performance
of the trigger. The strategies implemented also take into account their implementation
complexity and the complexity they imply in the BE electronics. Although most of the
compression chain is now �nalized, there are still uncertainties at the moment of writing
this text regarding the algorithms to be used in the ECON-T. Their �nal con�guration
will take into account the expected trigger performance as well as constraints from the FE
system and from the BE system. Results and a decision are expected by the end of 2022.

This chapter has been describing how the data taken as input by the reconstruction
algorithms need to be altered due to hardware constraints and technical limitations on
the detector and in the FE electronics. The next chapter will cover the hardware and
�rmware constraints in the BE electronics and how they impact the implementation of the
reconstruction algorithms described in Chapter 2.
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4
Some hardware and firmware aspects of

clustering

The di�erent algorithmic steps composing the HGCAL TPG have been detailed in Chap-
ter 2. Among these steps the clustering step is the most critical part of the reconstruction
as many other steps, such as the application of energy corrections and the particle iden-
ti�cation, depend on the quality of the clustering. The implementation of a clustering
algorithm in a multi-stage trigger system composed of many FPGAs is far from being
straightforward. The hardware and �rmware put strong constraints on the algorithms that
can be implemented. It means also that the structure of an algorithm and the hardware
architecture on which the algorithm is implemented are interdependent. Some hardware
architectures are well suited for certain algorithms but not for other algorithms. The dif-
ferent types of hardware architectures associated with the clustering algorithms described
in Chapter 2 will be detailed here. But �rst the impact of the detector geometry and of
the structure of the data coming from the FE is discussed.

1 Data flow and system architecture

The most central architectural requirement is the presence of at least two processing stages
to be able to reconstruct 3D clusters. Indeed, in order to e�ciently build 3D clusters, data
from signi�cant portions of the detector need to be concentrated into single FPGAs. This
is particularly true for the HGCAL because of its non-projective geometry. Each optical
link from the FE transports data from only one to a few modules from a single layer.
Building 3D clusters directly in a single BE stage would require to receive all the FE links
in depth from at least a 60◦ sector, given the symmetries provided by an hexagonal tiling
and the way FE motherboards and lpGBT links are organized on the detector. But that
would make a total number of around 800 links, while a bit more than 100 transceivers at
most are available in state-of-the-art FPGAs (for instance 128 in the Xilinx VU13P FPGA,
planned to be used).

In the di�erent HGCAL TPG systems developed so far, two BE processing stages have
therefore been foreseen, called Stage 1 and Stage 2. The main goal of the Stage 1 is to
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concentrate the FE data and compress or truncate it further such that Stage 2 FPGAs have
access to large enough sectors of the detector. The Stage 2 is then designed to perform the
main reconstruction work of the HGCAL trigger primitives (the clusters and the towers).
Some steps of the clustering and of the reconstruction of the towers can nevertheless be
performed in the Stage 1 in some cases in order to reduce the load of the Stage 2.

Single Stage 2 FPGAs should cover in-depth sectors of at least 60◦ given the symmetries
of the detector originating from the hexagonal modules. In the case where the Stage 2
FPGAs have access to only sectors of one endcap, the data close to the boundary of
two sectors covered by two di�erent FPGAs need to be duplicated in order to correctly
reconstruct clusters in this transition region. It means that additional links and transceivers
are needed to transmit and receive the duplicated data. Also, these duplicated data need to
be processed twice, in the two di�erent FPGAs, which increases the overall logic resource
need of the system. Therefore the data from one full endcap should ideally be processed
by a single Stage 2 FPGA in order to eliminate data duplication completely and maximize
the resource e�ciency of the system. This is nevertheless not always possible, depending
on the level of data compression done in the Stage 1.

Each Stage 1 FPGA covers only a small fraction of the detector and receives data
organized by FE modules, packed into lpGBT links. In general the number of FE modules
covered by a Stage 1 FPGA di�ers from one to another since the bandwidth allocated
to each module varies. This allocation is for instance related to the module occupancy
for a TC selection based on a threshold, as shown in Fig. 3.6 in Chapter 3. In addition
even if the number of input links is the same for all the FPGAs the total average data
throughput is not necessarily the same. FE modules are packed di�erently into lpGBT
links in di�erent regions of the detector, and the packing e�ciency in lpGBT links varies
across the detector. As a consequence there are unavoidable variations in the quantity of
data processed by Stage 1 FPGAs as well as in the size of the physical regions covered
by these data. Small variations from one FPGA to an other can be absorbed, but these
variations must be as small as possible in order to minimize the hardware resource usage
in the di�erent FPGAs and the overall latency of the system.

In addition, since the Stage 2 needs to correlate data from the Stage 1, the data from
di�erent Stage 1 FPGAs must be sent in a uniform and consistent fashion. As an example,
if the Stage 1 sends TCs to the Stage 2, TCs from a given projective region (for instance
an r/z − φ window) must be sent at the same time from the di�erent Stage 1 FPGAs,
such that the Stage 2 can build 3D clusters with minimal latency and minimal resources.
This requirement also impacts how the FE links can be mapped to the Stage 1 FPGAs.
In the example above, the modules from di�erent projective regions should be uniformly
distributed across the di�erent Stage 1 FPGAs. Therefore the distribution of optical links
from the FE to the BE boards requires a careful optimization in terms of uniformity
of the data size and physical coverage of these data. An illustration of the connections
between the FE and the BE Stage 1, as optimized for the current architecture based on
longitudinal seeding and clustering, is provided in Fig. 4.1. This optimization is based on
a Stochastic Hill Climbing algorithm [33], uniformizing the average number of input TCs
in each projective region across all Stage 1 FPGAs.

An additional architectural feature, required to concentrate at least 60◦ sectors in depth
in single Stage 2 FPGA, is the implementation of time multiplexing between the Stage 1
and the Stage 2. The implementation of time multiplexing is common to all the versions
of the HGCAL TPG system proposed so far. The concept of time multiplexing trigger
(TMT) has been �rst used in the Phase 1 upgrade of the calorimeter trigger [4]. With a
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Figure 4.1: Mapping of the connections between detector modules and Stage 1
FPGAs in one 120◦ sector of layer 9. In each hexagonal module is indicated the
index of the Stage 1 FPGA receiving the trigger data from this module. There
are 14 FPGAs in total for each 120◦ sector. This mapping is optimized using
a Stochastic Hill Climbing algorithm [33], uniformizing the average number of
input TCs in each projective region across all Stage 1 FPGAs.

TMT architecture, data of a given bunch crossing can be sent over a period of time larger
than 25 ns. More data from each bunch crossing can therefore be sent, which enables the
concentration of larger detector regions into single FPGAs. Obviously since more latency
is needed to send the data of one bunch crossing and new data from consecutive bunch
crossings arrive every 25 ns, several copies of the receiver stage are needed in order to absorb
the �ux of data. A key quantity of a TMT is therefore its time multiplexing period, which
is expressed in number of bunch crossings. The TM period tells how many LHC clock
periods are needed to send the data from one bunch crossing. The number of duplicated
FPGAs in this system is therefore equal to the TM period. The concept of TMT, as
originally used in the Phase 1 upgrade, is illustrated in Fig 4.2.

2 2D and 3D clustering on two stages

Even though there are general architectural constraints coming from the detector geometry
and from the input data �ow, as listed above, there is still some �exibility in the choice of
clustering algorithm and in the way it is distributed across the system. And the distribution
of the algorithm steps on the di�erent processing nodes is a critical question when designing
trigger algorithms.

Distributing as much as possible di�erent algorithm steps on the di�erent processing
stages can ensure a better utilization of the overall hardware resources. But it also reduces
the �exibility in the design of the algorithm since it adds hardware frontiers between
algorithmic steps. In particular, having a projective view of the detector is not possible in
the �rst BE processing stage. Therefore, having a �rst reconstruction step at this stage is
only compatible with some speci�c reconstruction algorithms for which the �rst steps don't
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Figure 4.2: Time multiplexing trigger (TMT) concept as implemented in the
Phase 1 calorimeter trigger system [4]. Each Layer 1 board covers a small region
of the calorimeter. Each Layer 2 board covers the full detector, receives data
from all the Layer 1 boards and processes one every nine bunch crossings (the
TM period is 9). A de-multiplexing board regroups the data from di�erent bunch
crossings into a single location.

require a projective view of the detector in depth. The 2D and 3D clustering algorithm
described in Section 4 of Chapter 2 is one example of algorithm that can naturally be
distributed into two processing stages. 2D clusters are reconstructed in the Stage 1 and
the Stage 2 clusters them together to form 3D clusters. The 2D clustering is performed
independently in each layer and doesn't require a projective view in depth. The architecture
that was designed to implement such algorithm, and described in the HGCAL TDR, is
shown in Fig. 4.3. Stage 1 FPGAs can cover entire single layers, or half layers in the CE-E,
such that minimal data duplication is needed. In that case, the number of 2D clusters
reconstructed per event is su�ciently small such that the 2D clusters from one full endcap
can be sent to a single Stage 2 FPGA, with a TM period of 24.

As mentioned already the main advantage of such architecture is the distribution on
many FPGAs of the clustering steps. But in that case, due to bandwidth limitations
between the two processing stages, the 3D clusters are based on compressed information
resulting from the 2D layer clustering. In particular, the granular information of single TCs
aggregated into 2D clusters is not retained and only summary quantities are propagated.
It is in particular the case for cluster shape quantities, which are the main ingredients of
cluster identi�cation. As a consequence, 3D cluster quantities are necessarily computed in
two steps, �rst layer by layer and then combining the layer-based quantities. For quantities
using second order moments of the energy distribution within the cluster, like cluster
widths, a loss of information necessarily arises from this two-step calculation. This loss of
information results in a reduction of the discriminating power of these variables between
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Figure 4.3: BE components and architecture required for the implementation
of a 2D+3D clustering algorithm [6]. The components listed cover one endcap
and the other endcap components are identical in structure. FPGAs in the �rst
stage cover single or two layers in the CE-H and half layers in the CE-E. The
second stage FPGAs cover one full endcap. A time multiplexing period of 24 is
required to concentrate the full 2D cluster data into single Stage 2 FPGAs.

electromagnetic and hadronic showers.

Additional issues arise when implementing in �rmware the 2D and 3D clustering al-
gorithm described in Chapter 2. The �rst issue comes from neighbor �nding in irregular
geometries. Although a non-orthogonal coordinate system can be de�ned to navigate be-
tween TCs in the silicon section, as depicted in Fig. 4.4, the same coordinates cannot
be used in the scintillator section, which follows an (η − φ)-like geometry. And no sim-
ple coordinate system can accommodate the transition region between the silicon and the
scintillator modules. In order to cover mixed silicon-scintillator CE-H layers, the transition
region would need to be handled di�erently with TC neighbor information encoded into
lookup tables. Such special cases would necessarily require additional hardware resources.
These limitations could nevertheless be bypassed by forming 2D clusters independently in
the silicon and in the scintillator sections. These clusters would then be regrouped together
in the 3D step.

An other, more impactful, issue comes from the formation of 3D clusters from 2D
clusters. In the case of a distance-based 3D clustering as described in Section 4 of Chapter 2,
any 2D cluster can seed a 3D cluster or can be aggregated into a pre-existing 3D cluster.
The complexity of such algorithm is typically of O(N2). It can be reduced with a proper
indexing, based for instance on KD-trees, but building an index is also very resource
consuming. Density-based algorithms such as DBSCAN are even more demanding in terms
of logic resources. It wouldn't be a problem with a low multiplicity of 2D clusters. But
up to three hundred 2D clusters can typically be reconstructed per layer in the CE-E, as
shown in Fig. 4.5. Attempts have been made to implement such algorithms but the logic
resources required to handle such high multiplicity were found to be out of reach with
existing FPGAs.
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Figure 4.4: Non-orthogonal coordinate system used to navigate between hexag-
onal cells and between trigger cells. Due to the 120◦ rotations of trigger cells
within modules, their positions don't follow strictly the u and v axes, but these
coordinates can still be used to identify unique trigger cells.
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Figure 4.5: Multiplicity of 2D clusters reconstructed per endcap as a function
of the layer, in tt̄ events with 200 PU [6]. The red line shows the bandwidth
limit coming from the allocated number of links between the Stage 1 and the
Stage 2

3 Direct 3D clustering on a single stage

The last issue mentioned in the previous section has triggered the development of the 3D
clustering with longitudinal seeding described in Section 5 of Chapter 2. The key ingredient
for hardware implementation is the construction of a projective 2D histogram for seeding
and TC indexing. The seed search is facilitated in such 2D histogram and the multiplicity of
seeds is reduced thanks to the energy integration over the full detector depth. Additionally,
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the packing of TCs into histogram bins provides an easy way to geometrically index TCs
for clustering around the identi�ed seeds. The (r/z, φ) space has been chosen to implement
the histogram. Using the φ coordinate allows to better match the �rmware structure with
the division of the system into φ sectors. And r/z is used instead of η in order to better
correspond to the physical coverage of showers.

Although this 3D clustering could have been used to cluster 2D clusters and simply
replace the 3D step, it has been chosen to apply it directly on TCs. As explained in the
previous section, direct 3D clustering improves the computation of cluster shape variables
used for shower identi�cation. The main drawback of this choice is that all the algorithmic
steps are performed in a single processing stage, which means more limited FPGA resources.
Nevertheless this is alleviated with the implementation of one part of the seeding step in
the Stage 1. The histogram-based seeding �rst needs TCs to be distributed into histogram
bins. Given the irregular geometry of the detector and the fact that the histogram space
(r/z, φ) is di�erent from the TC space (x, y), this distribution of TCs to histogram bins is
complex and cannot be done with simple calculations. Large lookup tables are therefore
required to encode this mapping. The distribution of TCs along the �rst dimension of
the histogram r/z is done in the Stage 1, such that only the distribution along the second
dimension φ needs to be done in the Stage 2. After having distributed TCs into r/z rows,
the Stage 1 sends TCs row after row to the Stage 2, which can then process them in a
pipelined fashion.

An additional drawback of such architecture is that the complete TC data of a full end-
cap cannot be concentrated in single FPGAs with a reasonable time multiplexing period.
Therefore, Stage 2 FPGAs cover only a fraction of one endcap. The minimal sector size
required to build 3D clusters and to bene�t from the symmetries of the detector is 60◦, as
mentioned in Section 1. In the current design 120◦ sectors have been chosen, with a TM
period of 18 between the Stage 1 and the Stage 2, as shown in Fig. 4.6. Such larger sector
coverage compared to the minimum is bene�cial to avoid wasting too much bandwidth
with duplicated data.

Nevertheless the bandwidth available between the two stages is still limited and only a
fraction of the input TCs can be sent to the Stage 2. Therefore, in addition to the packing
of TCs into r/z rows, a truncation is performed for each of the row packets, with a �xed
number of TCs selected in each of these packets. This is currently done by sorting TCs by
energy and selecting the highest-energy ones in each of the packets. Such truncation can
obviously impact the cluster energy reconstruction in a negative way. But a maximum of
420 TCs can be sent from one Stage 1 FPGA to the Stage 2, while on average about 300
TCs above threshold arrive at the input. Given this 40% margin above the average and
the fact that only the lowest energy TCs are truncated, it ensures minimal degradation of
the performance. This truncation can be optimized by tuning its pro�le as a function of
r/z. 420 TCs can be sent in total but the way these 420 TCs are distributed among all
the r/z rows is �exible. Typically three types of truncation pro�les can be used, shown in
Fig. 4.7.

• A pro�le that follows the input distribution of TCs, driven by PU, with more input
TCs in the low r/z region (high η).

• A pro�le that follows the detector area covered by the r/z rows, which favors instead
the high r/z region.

• A uniform pro�le where the same number of TCs is sent for all the r/z rows.
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Figure 4.6: BE components and architecture developed for the implementation
of a 3D seeding and clustering algorithm [7]. The components listed here cover
one endcap and the other endcap components are identical in structure. FPGAs
in the �rst stage cover multiple detector modules in a 120◦ sector as illustrated
in Fig. 4.1. The second stage FPGAs cover full 180◦ sectors in depth (120◦+60◦

of duplicated data). A time multiplexing period of 18 is used.

None of the options degrade the cluster reconstruction, and in particular the reconstruc-
tion of electromagnetic clusters, as can be seen in Fig. 4.8 where the energy resolution
of electron clusters is compared for di�erent truncation pro�les and without any trunca-
tion. A tighter truncation in the high-η region can even help reducing PU contaminations,
although marginally.

In the end, the implementation of a direct 3D clustering with longitudinal seeding
requires to organize the cluster reconstruction by 120◦ sectors and to truncate further TC
data in the Stage 1. But the corresponding �rmware has been shown to be implementable
within the existing hardware and the truncation is not deteriorating the reconstruction
performance.

4 Conclusion

Although all the studied algorithms have been designed with an hardware architecture
in mind, it is only when they are actually implemented in �rmware that their feasibility
can really be assessed. At the time of writing, the key �rmware pieces of the longitudinal
seeding and direct 3D clustering are implemented [34]. These are mainly located in the
Stage 2, with one step in the Stage 1: the allocation of inputs TCs to r/z seeding rows.
It is showing that such algorithm will be implementable with the targeted FPGAs (Xilinx
VU13P) and hardware architecture.
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Figure 4.7: Examples of possible pro�les of the maximum number of TCs
selected per r/z bin in a Stage 1 FPGA (left) [12]. The bandwidth allocated for
each bin can be �at, favor the low-η region (area weighted) or favor the high-η
region (PU driven). The PU driven allocation follows the distribution of the
number of TCs per bin as produced by 200 PU events (right).

Figure 4.8: Energy resolution of electrons in particle gun events simulated
with 200 PU, as a function of the generated pT [12]. The energy resolution
is measured with the e�ective RMS of the pL1T /p

gen
T distribution, divided by the

mean of the distribution. The resolution curves are obtained using the three
di�erent truncation pro�les of Fig. 4.7 as well as without any truncation in the
Stage 1.

It is nevertheless obvious that algorithmic and �rmware developments won't stop. Al-
though the BE hardware needed to be de�ned now, together with a workable system,
algorithms will likely be improved and eventually totally transformed in the coming years
before the HL-LHC starts.
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General conclusion

The developments of the HGCAL TPG system started in 2014, before the Run 2 of the
LHC. Most of the ideas at that time were inspired by the Phase 1 calorimeter trigger
upgrade, trying to push things several steps further. The Phase 1 system upgrade was
already at the edge of the technology and introduced for the �rst time key new concepts
like time multiplexing trigger and dynamic clustering at the L1 trigger. The success of the
Run 2 prove that these developments were reliable and e�ective, and the HGCAL TPG
has been further built upon this success. New ideas have then been developed and the
HGCAL TPG system has been further consolidated until its current status. It is now
entering maturity towards its construction and operation. The entire set of processing and
reconstruction steps in the frontend and in the backend have been implemented. The main
uncertainty remaining is the ability to e�ciently unpack, in the Stage 1 FPGAs, the data
coming from the frontend electronics, which is directly linked to the TC data reduction
strategy applied in the ECON-T.

In the coming months and years the di�erent pieces of the system will progressively
be assembled and tested together in larger and larger test stands. The �rmware blocks
currently designed will be optimized further in order to bene�t as much as possible from the
available hardware. And the software emulation of the system, which is being developed
in parallel with the �rwmare, will be used for validation and for the tuning of parameters.

Of course, in parallel with these critical tasks targeting the construction of a full-scale
system, new algorithm ideas will emerge. And although the de�nition of the hardware is
now pretty well settled, the algorithms implemented within this hardware will likely evolve
further in the coming years. Among algorithm evolutions it is foreseen that machine
learning will play an increasingly important role. Future triggers will most likely be hybrid
systems containing both human-designed and machine-learnt algorithms. And the main
di�culty, as always, will be the mapping of these algorithms onto hardware.
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