
HAL Id: tel-04395864
https://hal.science/tel-04395864v1

Submitted on 15 Jan 2024 (v1), last revised 22 Apr 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Landscape Analysis and Solver Reconfiguration for the
Curriculum-Based Course Timetabling

Thomas Feutrier

To cite this version:
Thomas Feutrier. Landscape Analysis and Solver Reconfiguration for the Curriculum-Based Course
Timetabling. Operations Research [math.OC]. Université de Lille, 2023. English. �NNT : �. �tel-
04395864v1�

https://hal.science/tel-04395864v1
https://hal.archives-ouvertes.fr


Ecole Doctorale 631
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François BOULIER Examinateur
Professeur des Universités, Université de Lille
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Frédéric SAUBION Rapporteur
Professeur des Universités, Université d’Angers
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Introduction

This thesis presents work in the field of operational research, focusing specifically on combina-
torial problems. It focuses on a university timetabling problem called Curriculum-Based Course
Timetabling problem (CB-CTT). This thesis was conducted within the ORKAD (Operational Re-
search, Knowledge, And Data) team at the CRIStAL laboratory in Lille. The ORKAD team
specializes in solving combinatorial optimization problems by combining established resolution
methods from operational research with artificial intelligence techniques, enabling, for example,
to predict the performance of one solving method, and consequently to make informed decisions.
The ORKAD team area of expertise encompasses a broad range of domains, including single and
multi-objective combinatorial optimization problems, resolution methods, algorithm configuration,
and graph theory.

Timetabling problems are a well-explored domain in academic research and hold considerable
significance for various institutions, notably universities. This thesis centers its attention on the
Curriculum-Based Course Timetabling problem. In most cases, solving a combinatorial optimiza-
tion problem goes through two stages. First, an algorithm builds an initial solution by assessing
the problem constraints, ensuring its feasibility. This step, often referred to as the construction
phase, employs a variety of problem-specific algorithms to accomplish its task. For CB-CTT, cre-
ating an initial solution presents a complex challenge, nevertheless addressed by a highly efficient
algorithm. As a result, this thesis concentrates on the subsequent phase of optimization, building
upon the initial solution crafted during construction. Optimizing combinatorial problems can be
resource-intensive. In the literature, Hybrid Local Search (Müller [2009]) is recognized as the state-
of-the-art method and serves as the benchmark for assessing the performance of new algorithms.
In the context of CB-CTT, approximate methods are widely favored due to the problem classifi-
cation as NP-hard, indicating a high level of complexity. Indeed, metaheuristics are favored for
their time efficiency and their strong performance. HLS is interesting due to its intricate structure,
which incorporates three distinct heuristics. As a metaheuristic, it consistently yields good results.
Hence, Hybrid Local Search serves as the foundation upon which this thesis proposes a flexible and
tunable framework to solve CB-CTT problems.

Landscape analysis aims at characterizing instances by generating additional data from execu-
tions. This process involves new data, generally extracted from a graph that depicts the search
landscape. Such data helps in understanding the nature of the problem instance and how the solver
performs during the problem-solving process. This graph can be envisioned as an n-dimensional
space in which each node represents a feasible solution. Edges connect solutions that are consid-
ered close in terms of neighborhood in general. This thesis employs landscape analysis to address
the CB-CTT problem, introducing a landscape representation and a set of new features. Various
protocols for conducting landscape analysis are explored to identify relevant instance features. The
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acquired data is utilized for performance prediction enabling the assessment of protocol efficiency
and feature relevance. These models predict the final performance of solvers, such as HLS, on
CB-CTT instances.

Metaheuristics are efficient algorithms with many parameters and components. A set of pa-
rameters/components is called a configuration. For several years now, tuning techniques have been
used to fix these parameters. These techniques explore the configuration space to find configura-
tions that offer the best performance. Numerous techniques are available, using machine learning
models, statistical models, or metaheuristics-based models. Concerning HLS, an analysis of its
structure showed that it could offer better results by fine-tuning its parameters but also by mod-
ifying components of the inner heuristics. In addition, this thesis questions the fixed structure of
HLS.

To facilitate the manipulation of HLS components, the thesis introduces the Iterated Sequen-
tial Local Search (ISLS) framework. This framework offers structural flexibility and serves as a
generalization of local search methods. The original HLS heuristics are encapsulated within ISLS
as parameter-specific variants of ISLS. Leveraging ISLS, this thesis employs the irace tuning tool,
which is trained on instances that are generated and then selected. The goal is to identify im-
proved configurations by enforcing HLS heuristics during the tuning process. As a result, irace
generates HLS-like configurations with specific sub-heuristics disabled. That highlights that the
original structure of HLS may not be optimally suited for all real-world instances.
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Chapter 1 Chapter 1 provides an overview of the background against which this thesis work is
conducted. It begins by introducing combinatorial problems and presenting the solving methods
with a focus on metaheuristics divided into two groups nature-inspired algorithms and neighborhood-
based algorithms. Then, we provide an overview of the Curriculum-Based Course Timetabling (CB-
CTT) problem: its definition, historical context, and components such as curriculum. Additionally,
details are given about the inherent constraints of CB-CTT, namely, the hard and soft constraints.
Benchmarks of the literature are also presented since they are used for all the experiments detailed
in the manuscript. Finally, the Tabu Memetic Algorithm (Abdullah and Turabieh [2012]) and the
Hybrid Local Search (Müller [2009]), two metaheuristics designed for the CB-CTT, are presented
and described in details.

Chapter 2 Chapter 2 focuses on the works regarding search landscapes. It introduces the con-
cept of search landscapes, providing a formal definition and practical application guidelines. The
work aims to efficiently represent the landscape of a given problem instance, identifying specific
structures that exhibit distinct behaviors. To achieve this, a protocol has been developed and
involves creating a graph representation of the landscape. The chapter elaborates on the methodol-
ogy employed, including the experimentation with various sampler algorithms under different time
budgets to generate multiple graph versions. Furthermore, we explain the process of extracting
relevant features while capturing the characteristics of each problem instance. To demonstrate the
effectiveness of the protocol, the obtained data is employed to create performance prediction mod-
els, with each model using a different graph version. The chapter then compares the performance
of these models, determining the best features to incorporate to obtain the best models and the
most effective graph version. Ultimately, this analysis helps identify the best protocol to follow in
establishing an efficient performance prediction model.

Chapter 3 Chapter 3 concerns a study of all CB-CTT instances. There are three instance bench-
marks, one of which is automatically generated. The chapter commences by detailing De Coster
et al. [2022] approach to generating new artificial instances, considering instance feature values
of the real world. An initial feature-based analysis compares real-world and artificial instances,
revealing no significant distinctions. In addition, the work focuses on one particular aspect: the
feasibility of constructing a first solution. It should be noted that some instances, whether gener-
ated or not, may be infeasible, i.e. no initial solution can be found. Examining feasibility by type
of instance highlights differences in behavior. However, the differences are not the same depending
on the type of instance, real-world and artificial instances. Whether a predictive model trained
on artificial instances can predict the feasibility of real-world instances. This means that the two
sets are similar. Thus, the development of a predictive model of feasibility serves as a proxy for
determining whether artificial data are close enough to real-world data to perform well. The work
results in the development of a Selector, enhancing the performance of predictive models trained
on selected artificial instances. The entire process, from initial models through the Selector to the
final feasibility predictive model, undergoes evaluation for validation and robust performance.

Chapter 4 Chapter 4 focuses on the Iterated Sequential Local Search (ISLS) Framework. Within
this chapter, we present an analysis of the performance of simplified versions of the Hybrid Local
Search (HLS) based on the embedded heuristics. This analysis revealed that simpler versions of HLS
can outperform the original HLS itself. This analysis leads to a reevaluation of the fixed structure
of HLS and to the design of the ISLS framework. This chapter includes a detailed explanation
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of how, starting from HLS, we abstract layer by layer to obtain the structure of ISLS, and how
the local search heuristics of HLS have been encapsulated within a generic local search framework.
MH-builder, an ORKAD-developed platform, has been used to implement the ISLS framework and
the problem-specific components. Highlights are given on specific code details and optimizations
to demonstrate the implementation effectiveness.

Chapter 5 Chapter 5 focuses on the automatic configuration of the ISLS framework. It intro-
duces automatic algorithm configuration (AAC) and explains how this work aligns with existing
literature. Furthermore, it presents various widely-used AAC techniques, with a specific focus
on irace, the configuration tool utilized in this thesis work. This chapter presents results on the
automatic configuration of ISLS. This work used a simplified ISLS and shows the interest of the
proposed framework. The automatic algorithm configuration technique manipulates ISLS config-
urations where the number of heuristics is the same as for HLS and where the heuristics are the
same. However, the configurator can deactivate the heuristics and slightly modify their behavior.
This chapter validates the earlier observations and provides, as the best ISLS configuration, a Great
Deluge-based method where certain neighborhood operators are deactivated. This method consis-
tently outperforms the original HLS and its variants. The investigation into ISLS, constrained to
uphold the fixed HLS structure, reveals the necessity of structural flexibility, as individual com-
ponents can surpass it. This performance assessment employs two methods: average rank per
instance and rank based on average fitness. The chapter includes an ablation analysis, highlighting
the significance of specific parameters in achieving a performance improvement between HLS and
the proposed configuration.
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7 General Context

1.1 Introduction

In this chapter, we provide the foundation for the thesis work. The chapter begins by introducing the
field of combinatorial problems, presenting their inherent challenges and distinctive characteristics.
Then, the chapter presents the methodologies of the literature to efficiently solve combinatorial
problems. A focus is made on metaheuristics and local search tenchniques.

Furthermore, the chapter turns its attention to the focal problem addressed in this thesis: the
Curriculum-Based Course Timetabling problem. It begins by describing the problem, detailing
unique attributes, and situating it within the literature on timetabling and scheduling problems.
Concrete examples of algorithms are presented to facilitate the understanding of the problem intri-
cacies. Additionally, the chapter provides an overview of the diverse datasets associated with this
problem, highlighting their differences and origins.

Finally, the chapter concludes with a description of the solvers applied to address the Curriculum-
Based Course Timetabling problem. These methods encompass various approaches, underscoring
the multifaceted nature of problem-solving in this domain.

1.2 Combinatorial problems

Combinatorial optimization problems (COPs) belong to a category of optimization problems char-
acterized by discrete decision variables and a finite search space. However, in most cases, the search
space remains significantly vast, making an exhaustive search an impractical choice (Korte et al.
[2011]).

The main objective of combinatorial optimization is to identify the best solution based on one
or more criteria. These criteria are evaluated using a fitness or objective function, which assigns a
score to each solution based on the specified criteria. Thus, the goal is to determine a solution that
maximizes or minimizes this objective function, depending on the problem. This optimal solution
is generally called global optimum and is defined, for the case of minimization, as s∗ ∈ S such that
∀s ∈ S, f(s∗) ≤ f(s), where S is the set of all existing solutions.

Combinatorial optimization problems are generally classified according to their complexity. The
two main classes are P and NP. In complexity theory (Garey and Johnson [1979]), the class of
problems P includes all decision problems that can be solved in polynomial time on a deterministic
machine. The NP (Non-deterministic Polynomial) class of problems groups together decision prob-
lems that can be solved in polynomial time on a non-deterministic machine. Finally, the NP-hard
class is a class of problems that includes some NP problems and other problems that are even more
complex to solve. There are many examples of NP-hard combinatorial problems: the traveling
salesman problem, the knapsack problem, the permutation flowshop scheduling problem, etc...

As an example, the Traveling Salesman Problem (TSP) consists of finding the shortest route
for a salesman to visit all the cities only once and come back to his starting point. In the case of a
graph model, the nodes are the cities and the routes connecting them are the edges. These edges
are weighted based on the distance. The objective function of this problem refers to the distance
covered by the salesman at the end of the journey. In TSP, the objective is thus to discover a
Hamiltonian circuit that minimizes the total traveled distance. This problem is known to be NP-
hard (Garey and Johnson [1979]). Additionally, the TSP search space is huge, there are a total of
(n−1)!

2 potential solutions, where n represents the number of cities.
Another well-known NP-hard problem within the field of combinatorial optimization is the

Knapsack problem (Martello and Toth [1990]). The Knapsack problem consists in the selection of
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elements within the constraints of a weight limit. This weight limit sets the maximum capacity for
the knapsack. The goal is to optimize the overall value of the chosen items while ensuring that the
cumulative weight does not exceed the specified limit.

1.3 Solving Methods

Combinatorial optimization problems are certainly complex to solve, but there are many methods for
solving them efficiently. This section presents the two main types of methods used in combinatorial
optimization: exact methods and heuristics. More details are given about heuristics since they are
at the center of the manuscript.

1.3.1 Exact methods

An exact method is a method that returns a global optimum. The advantage of this type of method
is that we know the result is optimal. Generally, the main criticism directed towards exact methods
centers on their potentially substantial time and computational resource consumption. This critique
holds particularly true when tackling problems characterized by extensive instances and elevated
complexity levels. The most basic and naive example of an exact method is the exhaustive search.
This method lists all existing solutions of the search space, then evaluates them, and finally selects
the best one or ones. This algorithm is hardly ever used, as the search space is very large in
combinatorial problems. Exact resolution methods used in practice are more intelligent and limit
the number of solutions to be evaluated. To do this, they use mathematical guarantees that the
unexplored parts of the search space cannot contain the optimal global. As a result, these algorithms
operate in a way that reduces the search space. Branch and bound algorithms are examples of such
an approach (Lawler and Wood [1966]).

These methods consist of two primary components. The first step involves partitioning, where
the algorithm divides the main problem into sub-problems. Each of these sub-problems has its own
distinct set of solutions, all of which are valid solutions for the original problem. This partitioning
process can be recursive, meaning that the sub-problems themselves become the basis for further
sub-problems. The outcome is a tree structure, where the root represents the initial problem,
and the leaves correspond to specific sub-problems. The branches on this tree represent different
categories of problems, with nodes denoting each level of subdivision. The key objective is to
ensure that by considering all these leaves collectively, we comprehensively address every aspect of
the original problem. This comprehensive coverage is of utmost importance in this approach. The
second step is the pruning: if reliable information indicates that the global optimum is not in a
particular branch, then the algorithm does not evaluate the solutions in that branch. This is a very
simplified summary of the algorithm.

Another noteworthy algorithm is the cutting plane method (Kelley [1960]). This approach
involves representing the problem through a set of mathematical constraints. To simplify the
problem, certain constraints are initially relaxed. However, in each iteration, the method readjusts
these constraints to make progress toward the optimal solution. While the cutting plane method
can be effective, it is not frequently used as a standalone method due to its relatively lower efficiency.

In addition to the cutting plane method, other exact methods are recognized in the field. One
such method is the branch-and-cut technique (Padberg and Rinaldi [1991]), which combines cutting-
plane and branch-and-bound methods to achieve improved results. Similarly, column generation is
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employed, which also involves relaxing certain constraints to find an optimal solution. These ad-
vanced methods offer more sophisticated approaches to address complex combinatorial optimization
problems effectively.

1.3.2 Heuristics

In combinatorial optimization, a heuristic is an approximation algorithm to find a good enough so-
lution in a reasonable amount of time. They represent practical and often domain-specific strategies
used to explore and potentially find good solutions for a given problem. In contrast, a metaheuristic
is a strategic approach used at a higher level of abstraction to address optimization problems. Meta-
heuristics are applicable to different problems but may need to implement some problem-specific
heuristics or components. There are a large number of very different types of metaheuristics using
various strategies, see for example the recent reviews by Sorensen et al. [2017] and Hussain et al.
[2019].

The advantage of an approximate method is that it calculates an approximate solution to a
problem that is close to optimal in a relatively short time, compared with the time required by
exact methods. In most applied cases, industrial applications require solutions that are easy to
implement and easy to recalculate in the event of data changes. So an optimal solution that is
difficult to achieve is not necessarily the goal if it involves too much computational cost.

The two best-known metaheuristics are probably Hill Climbing and Simulated Annealing, which
are local search methods, sometimes referred to as neighborhood-based methods. This thesis focuses
mainly on this type of metaheuristic. In the following sections, we define how a local search works in
theory, and the neighborhoods it uses. In the end, we also present a type of algorithm called nature-
inspired algorithm that includes popular methods like the genetic algorithm type, an evolutionary
algorithm. It evolves a population of solutions using mutation and crossover mechanisms.

1.3.2.1 Local Search Methods

A local search is an approximate discrete solving method belonging to metaheuristics. Local search
methods are called neighborhood-based methods because they traverse the search space, moving
from a solution to a neighboring solution. These neighbors are solutions considered to be close to
the current solution and reachable by the use of a neighborhood operator.

This type of algorithm aims to gradually improve the quality of its current solutions and stops
when improvement is no longer possible/reachable or some termination criterion is reached. How-
ever, there are various strategies for selecting neighbors and accepting neighbors. Below, we give
details on how a local search works.

Initialization Phase The initialization phase provides heuristics with a first, initial solution.
The initialization phase can be a complex construction method to obtain a good initial solution
or it can be a simple random generation algorithm. Local search manipulates a constructed initial
solution and then explores the search space to improve it.

The construction phase plays a crucial role prior to the local search process, as many combi-
natorial problems are inherently challenging to solve, making it difficult to find a feasible solution.
Constructors, also known as initializers, are responsible for creating the initial solution, which serves
as the starting point for the optimization process.
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Various construction methods are employed in combinatorial optimization. One such method is
the greedy approach. It involves the step-by-step construction of an initial solution where the best
choice at each step is selected, independently of whether it is the best choice in the long run.

Additionally, techniques derived from graph theory are widely used in construction. For instance,
the combinatorial problem can be represented as a graph, where each node corresponds to an element
and a vertex coloring technique can be employed to produce a feasible solution (Burke et al. [2007]).

Exploration phase A local search is an algorithm that explores different solutions in the search
space to find a global optimum. Most local search algorithms follow the same procedure, repeating
the same pattern iteratively. During each iteration, it explores new neighbors, and selects one to
replace the current solution according to an acceptance criterion. Then, it continues this process
until a termination criterion is reached. The local search uses neighborhood operators to define
neighborhoods and generate solutions.

There are several local search methods. The best known are probably Hill Climbing, Simulated
Annealing (Kirkpatrick et al. [1983]), and Tabu search (Glover and Laguna [1998]).

Algorithm 1 Hill Climbing

1: procedure Hill Climbing(startSolution)
2: currentSolution← startSolution
3: while true do
4: L←NEIGHBORS(currentSolution)
5: for all x in L do
6: if EVAL(x) < EVAL(currentSolution) then
7: currentSolution← x
8: end if
9: end for

10: end while
11: return currentSolution
12: end procedure

The Hill Climbing and Simulated Annealing algorithms in a minimization context are detailed
in Algorithm 1 and Algorithm 2. Algorithm 1 illustrates the basic steps of Hill Climbing. This
Hill Climbing employs the best improvement strategy, meaning it selects the best neighboring
solutions from the current solution at each iteration, exhaustively exploring all possible neighbors.
Algorithm 1 further demonstrates a version of Hill Climbing with strict acceptance criteria, where
it only accepts neighbors that strictly improve upon the current solution.

Algorithm 2 details the Simulated Annealing (SA) algorithm. SA differs from Hill Climbing
in that it is willing to accept solutions that do not improve the current solution. It employs
the Metropolis metric, which considers the fitness difference and the current temperature to decide
whether or not to accept a non-improving solution. An important parameter in Simulated Annealing
is the temperature, which is initially set and gradually decreases with each iteration according to
a cooling rate. The acceptance of non-improving solutions becomes less likely as the temperature
decreases. The SA process concludes when the temperature reaches zero, indicating convergence.

The next paragraphs explain the notions of neighborhoods, operators, and landscapes in order
to define the concepts relevant to this manuscript.
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Algorithm 2 Simulated Annealing

1: procedure Simulated Annealing(startSolution, initialTemperature, coolingRate)
2: currentSolution← startSolution
3: currentTemperature← initialTemperature
4: while currentTemperature > 0 do
5: neighbor ← GenerateRandomNeighbor(currentSolution)
6: ∆← EVAL(neighbor)− EVAL(currentSolution)
7: if ∆ ≤ 0 or Random(0, 1) < e(−∆/currentTemperature) then
8: currentSolution← neighbor
9: end if

10: currentTemperature← currentTemperature · coolingRate
11: end while
12: return currentSolution
13: end procedure

Neighborhood In the context of combinatorial optimization, the size of the search space is a
function of the number of elements involved in solving a problem. The greater the number, the
larger the search space.

The neighborhood relation serves as a way of connecting solutions within this search space.
Local search methods commonly utilize neighborhood operators, which are algorithms that make
slight modifications to a solution, granting access to neighboring solutions.

Formally, the neighborhood relation is represented as: N : S → 2S , where S denotes the set of
all feasible solutions, and N assigns to each solution a space called the neighborhood, comprising a
subset of feasible solutions considered to be its neighbors.

Figure 1.1: Visualization of the neighborhood concept: each point represents a feasible solution. The
edges correspond to a neighborhood relation between the two nodes. There are three neighborhoods,
of the red, of the blue, and of the orange solution. The green solution is part of two neighborhoods
at the same time.

Figure 1.1 provides a simplified partial representation of a search space, illustrating a set of
feasible solutions. This figure visualizes the concept of neighborhoods: the red solution is linked to
other solutions by edges that represent a neighborhood relation, and the same applies to the blue
and orange solutions. Additionally, Figure 1.1 demonstrates that it is possible to be part of several
neighborhoods simultaneously, as seen with the green point.



12 General Context

Neighborhood Operator A neighborhood operator is an algorithm that helps the neighborhood-
based method to go from the current solution to a neighbor solution. So a neighborhood relation
between two solutions exists if there is a neighborhood operator capable of switching from one to
the other. The neighborhood of a solution depends entirely on which neighborhood operators the
local search uses. Local search methods may employ several operators, each specifically tailored to
the problem at hand.

Among the different types of operators for the TSP, there is the 2-opt. The concept is simple:
the operator reverses the order of passage between two nodes and picks the best such modification.

Figure 1.2: Example applying the 2-opt neighborhood operator on a TSP problem. Each node is a
city. The starting city is the red point. Arrows represent the path taken by the salesman.

Figure 1.2 shows a 4-city TSP problem where the 2-opt has changed the order of the travel. At
the beginning, it was:

red→ yellow → blue→ brown→ red

The 2-opt chose the nodes red and brown, so the order between them is reversed. The result is
consequently:

red→ blue→ yellow → brown→ red

Local optimum When exploring solutions, local search methods very often encounter local op-
tima. A local optimum can be defined as a solution s∗ ∈ S such that ∀s ∈ N(s∗), f(s∗) ≤ f(s).
Minimization is considered here. Thus, a local optimum is defined in relation to its neighboring
solutions, unlike global optima, which are defined as having no strictly better solution in the whole
search space (Section 1.2). A plateau is a set of pairwise neighboring solutions with the same fitness
value.

Figure 1.3 illustrates local optima, a global optimum, and a plateau in a 2D-representation of
search space.

1.3.2.2 Nature-Inspired Algorithm

A nature-inspired algorithm is a computational technique that emulates principles or behaviors ob-
served in natural systems to solve complex problems. There are various nature-inspired algorithms
available, such as genetic and evolutionary algorithms (GA) (Goldberg and Holland [1988]), particle
swarm optimization (PSO) (Kennedy and Eberhart [1995]), ant colony optimization (ACO) (Dorigo
and Di Caro [1999]), and genetic programming (GP) (Koza [1994]).

PSO simulates particles adjusting positions based on their experiences and neighbors to find
optimal solutions. ACO emulates ant foraging behavior, using pheromones to find the best paths
in a search space. Genetic programming is based on evolving computer programs or expressions to
discover adaptable solutions for various problems.

An evolutionary algorithm is a nature-inspired optimization technique that uses principles of
natural selection, mutation, and recombination to evolve a population of potential solutions. A
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Figure 1.3: Example of Local Optima, Global Optimum, and a Plateau. All red arrows indicate a
local optimum.

genetic algorithm (GA) is a specific type of evolutionary algorithm that uses genetic operators like
mutation and crossover to evolve a population of candidate solutions.

Genetic Algorithm Genetic algorithm is the most popular evolutionary algorithm which draws
inspiration from the evolution of the genome.

The algorithm is modeled on the evolution of a population over generations. That implies that
the fittest individuals, according to the value of the objective function, survive beyond generations.

Furthermore, as time progresses, the fittest individuals within the population cross-breed, giving
rise to a new generation that inherits traits from both parents. This process, known as crossover
in genetic algorithms, involves taking two solutions and combining them to produce children who
inherit parts of each parent solution. To ensure that all children are still feasible and adhere to
constraints when accepting a solution, it is often necessary to apply a repair algorithm. For instance,
in the context of the Traveling Salesman Problem (TSP), a child may adopt the path taken by the
salesman for the first 4 towns from one parent and the remaining path from the other parent.
This specific type of crossover is referred to as a single-point crossover. Figure 1.4 shows that the
repairing algorithm added new arrows to make it work.

Similar to the theory of evolution, genetic algorithms incorporate the concept of mutation.
Mutations occur randomly in DNA, contributing to the population diversification. In the genetic
algorithm, mutations are introduced to enable new variations along with crossover. Mutation
typically affects only a relatively small percentage of the new generation and is typically minimal
in magnitude. The parallel can be drawn with local search: mutation can correspond to selecting
randomly a neighboring solution.

By incorporating crossover and mutation, the genetic algorithm explores and exploits several
potential solutions, gradually converging towards improved solutions over successive generations.

The generic Genetic Algorithm loops through the steps listed below.

1. Initial Generation: Generate an initial population using a construction algorithm.
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Figure 1.4: Crossover Process. Red Arrows are the ones chosen to be inherited first. Then it adds
the blue ones if it is possible. Orange ones are the ones added.

2. Evaluation: Each solution is evaluated using the objective function.

3. Selection: The selection process is employed to keep the most promising solutions, ideally
maintaining some diversity in the population.

4. Crossover and Repair: The crossover is applied first, creating a new generation with new
solutions. The population then has the selected solutions and the new ones generated and
repaired by a repair function.

5. Mutation: The mutation is applied to solutions according to a predetermined probability. This
operator slightly modifies solutions to diversify the population. The probability of mutation
can vary based on the problem being addressed.

6. Repeat: The algorithm returns to the selection and repeats the steps iteratively until the
allotted time or stop criterion is reached.

The genetic algorithm often requires many generations to converge. In our work, we have not
used this type of algorithm because we decided to focus on local search during this thesis. However,
some methods of this type are effective on the problem addressed.

1.4 Curriculum-Based Course Timetabling

This section discusses the Curriculum-Based Course Timetabling problem. We explain the specific
details of this problem, including its constraints and its objective function, while also situating it
within the existing literature.

Additionally, we provide information about the state-of-the-art solving method that is the basis
for much of the work in this thesis. This includes an explanation of the process, heuristics, and
strategies used by the solver. Lastly, we present the benchmark used in this thesis. Our aim is to
provide all the necessary information to understand this thesis work, including the problem, the
solving method, and benchmarks.

1.4.1 Problem

This thesis focuses on a problem called Curriculum-Based Course Timetabling, abbreviated as
CB-CTT. This is a difficult problem categorized as NP-Hard (Burke et al. [2010b]). In practice,
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solving the Curriculum-Based Course Timetabling problem cannot be done in polynomial time.
Curriculum-Based Course Timetabling has been widely studied in the literature (Abdullah and
Turabieh [2012], Lü and Hao [2010], Bellio et al. [2013], Cacchiani et al. [2013]). Many different
solving methods have been developed, and research is still being conducted on this problem. CB-
CTT remains an important problem to solve because of scientific interest and out of practical
interest for better timetables for institutions, staff, and students.

The history of CB-CTT starts with an event: the International Timetabling Competition in
2007 (ITC 2007). The latter is a competition organized by PATAT, International Conference on the
Practice and Theory of Automated Timetabling. ITC aims to stimulate research around timetabling
problems. ITC 2002, the first edition, focused on only one timetabling problem. The second edition,
ITC 2007, had three different tracks, i.e. three timetabling problems with their specificities each.
The first one is an Examination Timetabling Problem, while the second is referred to as the Post-
Enrollment-based Course Problem. In this latter problem, students submit a list of their desired
courses, and the timetable is then created based on these selections. There is no pre-made package
of lectures used in this one. The third track concerned the Curriculum-Based Course Timetabling.

ITC 2007 formalized the CB-CTT problem and thus imposed specificities, constraint weights,
objectives to optimize, etc. The following sections focus on the aspects and specificities of the
problem that must be respected to solve it according to the rules set.

In order to approach more easily what the problem consists of, it is necessary to situate CB-CTT
in the field of timetabling problems.

Scheduling

Timetabling

University
Timetabling

University
Course

Timetabling

CB-CTT

Figure 1.5: Hierarchy of University Course Timetabling.

Figure 1.5 shows how to situate CB-CTT in the plethora of scheduling and timetabling prob-
lems (Schaerf [1999]). Indeed, Wren [1995] demonstrated in 1996 that timetabling problems are
complex scheduling problems.
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1.4.1.1 Definition

The Curriculum-Based Course Timetabling is basically a complex problem of assigning resources
to events. In this context of university timetabling, the events are class hours, called lectures. All
lectures last the same amount of time, usually one hour. There is no way in CB-CTT to force
explicitly two specific lectures to follow each other, to do two hours in a row for example. Lectures
are grouped by course. The notion of course comes from the University Course Timetabling, or
UCTT, problem class, Figure 1.5 highlights this legacy. UCTT is a problem type where lectures are
grouped by subject to stick as close as possible to concrete problems. Each course has one teacher
who teaches each lecture of that course. Thus, a course corresponds to a set of lectures taught
by a single teacher, for example, data science for group A taught by Mr. Stevenson. If group B
attends the data science course with another teacher, then it is a different course, because a course
is defined by its teacher.

An important notion that diverges from common UCTT problems is the curriculum, a package
of courses. A Curriculum-Based Course Timetabling problem has several curricula that include
courses. A curriculum represents a group of students where each individual attends the same
courses. A student can only enroll in one curriculum. However, it is acceptable for the same course
to be included in two or more curricula. In this case, all students in the curricula have classes at the
same time. This is a shared course. Teachers can perform an unlimited number of lectures and have
no maximum number of hours. In a CB-CTT problem, the teachers are linked to courses in the
statement. That means that the algorithm does not have the flexibility to change teachers if they
are not available. This represents an additional constraint and increases the difficulty. Figure 1.6
shows a graph representation of a simple CB-CTT problem. For example, course 1 is attended by
students of curricula 1 and 2. Each instance of CB-CTT includes a list of courses with the number
of lectures, the teacher linked, and curricula.

Curricula

Courses

Lectures

Figure 1.6: Graph representation of a CB-CTT example problem. Each color corresponds to the
teacher in charge. Each edge means a link of belonging.

Now that we have presented the layout and structures of the events or lectures, we must add
and detail the resources to be planned in the CB-CTT problem. The problem consists in assigning
a timeslot and a room for each lecture. Each room has a capacity, which is the maximum number
of students it can accommodate. Curriculum-Based Course Timetabling is a weekly problem.
Therefore, it is divided into days which are themselves divided into timeslots. One timeslot often
corresponds to one hour. CB-CTT has an unavailability mechanism. That means the problem
offers the possibility to the teachers, and only them, to have unavailable timeslots. Consequently,
teachers have certain timeslots where they cannot teach because they have unavailabilities. The
problem neglects the possibility of room unavailability for other reasons than those used by lectures.

The solution representation to a CB-CTT problem can be considered as a matrix where each
cell is either empty or filled by an event. Each row corresponds to one room, and the columns are
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timeslots. Figure 1.7 shows a representation of a solved toy problem. Each color is a course, there
is no curriculum to simplify. Names correspond to the name of the course.

Figure 1.7: Example of a solution for a CB-CTT toy problem. Each color and name represents a
course: Data Science, Communication, SQL database, and Programming. Each row corresponds
to a room and each column to a timeslot. Timeslots are ordered chronologically through the week.

1.4.2 Constraints

In Curriculum-Based Course Timetabling, a solution consists of scheduling lectures in timeslots
and available rooms following hard and soft constraints. These constraints have been proposed by
ITC 2007 (Di Gaspero and Schaerf [2006]).

1.4.2.1 Hard

The first type of constraint is called a hard constraint, and each hard constraint must be respected.
These rules define whether a solution is feasible or not. The ITC 2007 has set four hard constraints
that ensure the schedule is feasible.

The four hard constraints for CB-CTT are listed below.

1. Conflicts: Two lectures from the same course or the same curriculum or with the same
teacher cannot take place at the same time.

2. Room occupancy: Only one lecture can take place at a time in a room.

3. Availability: The lectures of a teacher must be scheduled when he is available.

4. Lectures: All lectures must be scheduled.

The last hard constraint prevents getting a partial solution. The others focus on avoiding
aberrant conflicts. For example, they prevent a group of students from having two lectures at the
same time, a room having two different lectures at the same time, and teachers teaching when they
are not there or two lectures at the same time. To summarize, a timetable is said to be feasible
when all the hard constraints are met.

1.4.2.2 Soft

Soft constraints represent the second type of constraints. Contrary to hard constraints, they are
optional and generally represent targets to strive for. The violations of each soft constraint are
represented as a function to minimize. Thus, soft constraints represent the desired aspects of the
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solution. The more the soft constraints are respected, the better the timetable is. The four soft
constraints are as follows.

1. RoomCapacity : One violation for each student without a seat during one lecture.

2. MinWorkingDays: A course has lectures that should be scheduled within a minimum number
of days in order to avoid students having all lectures of one course over one day, which would
be inconvenient. The number of violations corresponds to the difference between the given
minimum number and the real one.

3. CurriculumCompactness: Within each curriculum, lectures on the same day should be con-
secutive, more precisely if there is more than one lecture of one curriculum on the same day, it
is preferable for them to immediately precede or follow one another. One violation is counted
for each isolated lecture, which means a lecture without neighbor lectures within the same
curriculum.

4. RoomStability : Lectures of a course should be in the same room; one violation for every extra
room used.

Regarding the MinWorkingDays constraint, each course has a predefined value of MinWorkingDays
given in the problem file. Interestingly, RoomCapacity is a soft constraint. That implies solutions
can have lectures in rooms too small to accommodate all the students. It is a CB-CTT specificity,
since, for example, Post Enrollment-based Course Timetabling, which was one of the three tracks
in the ITC 2007, considers the number of seats as a hard constraint to be respected. This choice
increases the number of feasible solutions to the same problem and offers algorithms an additional
degree of freedom. The latter can, for example, schedule a lecture to avoid a gap in the timetable,
but a place is missing in the new room.

While hard constraints must be obeyed, soft constraints may be violated and only indicate some
preferred outcome. The fewer the violations, the better the timetable. This is the baseline for the
objective function that drives the optimization process.

1.4.3 Objective function

For a given CB-CTT problem, there may exist plenty of feasible solutions that respect hard con-
straints. The objective is to get a timetable that respects the soft constraints as much as possible,
thus minimizing the violations. Recall that CB-CTT is a single-objective problem, thus, with only
one objective function. For CB-CTT, ITC 2007 chose to consider aggregation of the soft constraints
corresponding to the weighted sum of the violation of each soft constraint:

Fitness(s) =RoomCapacity(s) ∗ ωrc (1.1)

+MinWorkingDays(s) ∗ ωmw (1.2)

+CurriculumCompactness(s) ∗ ωcc (1.3)

+RoomStability(s) ∗ ωrs (1.4)

where s is a Timetable

Thus, the CB-CTT objective function to optimize is a weighted sum of the constraint violations
where s represents a timetable. The weights, as used for ITC 2007, are set to 1, 5, 2, and 1.
The weights are different because the violations are not computed in the same way and have
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different domains. For example, RoomCapacity(s) returns the number of missing seats by lecture.
Consequently, the returned value is high. On the contrary, MinWorkingDays(s) returns the
difference between the desired number of days and the actual number for each run. However, the
problem is weekly, so the value returned by the course can not exceed 4.

Consequently, CB-CTT is a single-objective problem, because solvers only optimize one objective
function. However, it is relevant to understand that initially, the CB-CTT problem is multi-
objective where each objective function corresponds to one soft constraint. However, the choice has
been made to aggregate all soft constraints into a single fitness function. That lets us use methods
designed for single-objective problems.

1.5 Benchmarks

Benchmarks offer the opportunity to evaluate the performance of different algorithms on instance
sets. In this thesis, we use three groups of instances. This section explains the origin of the
instances.

1.5.1 ITC

The most used benchmark in the literature about Curriculum-Based Course Timetabling was pro-
vided at the ITC 2007 and is called ITC in this manuscript. It is composed of various CB-CTT
instances used to compare the solvers for the competition. This benchmark includes only 21 in-
stances, it is thus a small set of instances. These problem instances come from real-world problems
encountered by the University of Udine, Italy. Despite its small size, the ITC set is the most
commonly used in papers about CB-CTT until recently. Our work primarily used this set because
it was the only one available until 2022.

1.5.2 New Real-world

The benchmark called New Real-world is an additional set of instances proposed by De Coster et al.
[2022]. This team gathered 61 new real-world CB-CTT instances, from different institutions. For
example, there are new problems from Udine and Erlangen Universities. Some instances of this
benchmark are very different from ITC because the number of lectures to schedule is much higher.
Thus, New Real-world diversifies the types of problems encountered. New real-world instances offer
the opportunity to use machine learning to develop smarter solving methods as the number of
instances becomes larger.

1.5.3 Artificial

The last set of instances also comes from De Coster et al. [2022]. They have been automatically
generated. Chapter 3 details how they have been generated. The main idea consists in mimicking
the two previous sets. In any case, this set includes 6942 different problems. That amount of
instances represents the main benefit of the artificial instance automatic generation because it
offers such a large amount of data. Chapter 3 is devoted to the analysis of these benchmarks in
order to verify that they are usable for our work.
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1.6 CB-CTT Solving Methods

This section introduces two solving methods for the Curriculum-Based Course Timetabling problem.
The first method is a hybrid approach, primarily based on a genetic algorithm. The second method
is a metaheuristic that involves three local search algorithms, and it is used throughout this thesis.

The objective here is to demonstrate that there exist various approaches and strategies for
effectively solving CB-CTT instances. Each method offers unique characteristics and can be adapted
to tackle different challenges within the problem domain.

1.6.1 Tabu-based Memetic Algorithm

The Tabu-based Memetic Algorithm was proposed by Abdullah and Turabieh [2012] and designed
to solve the Curriculum-Based Course Timetabling problem.

First of all, memetic algorithms can be described as population-based metaheuristics that are
composed of an evolutionary system and include a local search algorithm, which are executed during
the cycle of the framework (Neri and Cotta [2012]).

The Tabu-based Memetic Algorithm has demonstrated high efficiency to solve ITC instances.
The primary objective of this section is to present how this method works, highlighting the various
approaches to solving diverse problems.

This method involves employing the mechanisms found in population-based methods, specifically
genetic algorithms (Section 1.3.2.2). These mechanisms include mutation and crossover operators.
However, the method also incorporates a tabu search mechanism that enables the focusing of the
search in a specific region of the search space, promoting intensification.

Parent Selection

Population

Mutation

Tabu-Search

Crossover

Roulette wheel

Figure 1.8: Composition of Tabu-based memetic algorithm.

Crossover The crossover involves taking two parent solutions and generating one or more child
solutions, it is adapted from an other work (Cheong et al. [2009]). This particular method uses
two parents to create two children.

The crossover operator initially copies parent 1 to create child 1. Then, in parent 2, it identifies a
fixed timeslot and determines which lectures are scheduled there and in which room. Subsequently,
the lectures scheduled for this timeslot in child 1 are removed, and the corresponding timeslot from
parent 2 is inserted in their place.
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To ensure that all hard constraints are still satisfied, a repair function is applied to Child 1,
which checks for any violations and resolves any instances of double-scheduled lectures. The same
steps are then performed for child 2, but with parent 1 and parent 2 reversed.

The advantage of this crossover method is its fast execution speed. Unlike crossovers that
divide and merge jobs, which often require time-consuming repair algorithms iterating through all
possibilities, this approach significantly reduces processing time.

Mutation In this method, the mutation phase involves randomly selecting a neighborhood struc-
ture and applying it to the current solution. Then, the algorithm accepts a new solution regardless
of its quality. Abdullah and Turabieh [2012] uses neighborhood structures that define a way of
changing the solution. These neighborhood structures are detailed later.

Tabu Search In this local search algorithm, during the first iteration, a neighborhood operator is
randomly selected from all available neighborhood structures. In subsequent iterations, the choice
of the neighborhood operator depends on the outcome of the previous iteration. If the selected
neighborhood led to an improving neighbor, that particular operator is saved and reused in the
next iteration to continue exploiting its promising results. However, if the operator generates a
poor-quality solution, it is not accepted, and the operator is placed in a tabu list to avoid reusing it
immediately. In the next iteration, a random neighbor is selected from the operators that are not
present in the tabu list.

To prevent the tabu list from growing excessively, its size is limited to be smaller than the number
of available neighborhood structures. If the list becomes full, the First-In-First-Out (FIFO) rule is
employed to free up space by removing the oldest elements from the list.

So in this algorithm, only strictly better solutions are accepted. It considers that as long as a
structure allows the solutions to be improved, we keep it. Otherwise, we change it. Tabu search is
applied to each new solution after the crossover and mutation phases.

1.6.1.1 Neighborhood structures

The mutation operator and the tabu search both use neighborhood structures as named by Abdullah
and Turabieh [2012]. They are listed below:

• Nbs1: Select two events at random and swap timeslots.

• Nbs2: Choose a single event at random and move to a new random feasible timeslot.

• Nbs3: Randomly select two timeslots. Then, perform a simple swap, exchanging all the events
in one timeslot with all the events in the other timeslot.

• Nbs4: Randomly select two timeslots, denoted as ti and tj (where j > i), from an ordered set
of timeslots t1, t2, t3, . . . , tp. First, reallocate all events from timeslot ti to timeslot tj . Next,
move the events that were originally in tj−1 to tj−2, and continue this process iteratively until
all events that initially belonged to tj+1 are allocated to ti.

• Nbs5: Select a random 10% subset of events, and from this subset, identify the event with the
highest penalty. Then, move this high-penalty event to a randomly selected feasible timeslot.

• Nbs6: Carry out the same process as in Nbs5 but with 20% of the events.
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• Nbs7: Move the highest penalty event from a random 10% selection of the events to a new
feasible timeslot that can generate the lowest penalty cost.

• Nbs8: Carry out the same process as in Nbs7 but with 20% of the events.

• Nbs9: Select two timeslots, ti and tj , based on the maximum number of enrolled lectures.
Next, identify the most conflicted lecture in ti and tj , and then apply a Kempe chain, as
proposed by Thompson and Dowsland [1996].

The first three neighborhood structures consist of simple kick operators that only move a single
element.

The objective of Nbs4 is to shift a sub-part of the timetable by one day, effectively moving all
events scheduled for Thursday to Wednesday.

Nbs5-8 are operators that analyze a sub-part of the problem and then move the event that
presents the most penalty cost, making them simple guided kicks. Nbs5-6 perform random moves,
while Nbs7-8 attempt to minimize the impact of the move on the overall schedule. All Nbs5-8
operators exclusively change timeslots.

Finally, Nbs9 relocates a set of scheduled events connected by hard constraints. This last
neighborhood structure is more complex because it utilizes the Kempe chain. We now explain the
principles of these operators as applied to our specific problem. Kempe chain has been proposed
to be used on timetabling problems by Thompson and Dowsland [1996] and Burke et al. [2010a].

The variation in the number of neighborhood structures offers an intriguing perspective on
the diverse methods for altering a solution. In this thesis, we did not employ these structures.
Nonetheless, the Kempe chain process represents one of the directions for exploration with more
sophisticated neighborhood operators.

Kempe chain operator The concept of a Kempe chain comes from the graph coloring problem.
However, CB-CTT uses it as a neighborhood operator.

A Kempe chain is a chain that includes all connected nodes in a graph. In CB-CTT, nodes are
lectures, and the edges represent conflicts arising from hard constraints. Specifically, two nodes are
connected if the two lectures cannot be scheduled at the same time. That occurs when the lectures
belong to the same curriculum or course, or have the same teacher.

Representing all kempe chains of an entire timetable would be a complex task and not useful
for later. So, Kempe Chains neighborhood operator focuses on two timeslots and one lecture. To
apply the Kempe chain operator: a starting lecture is fixed, and the corresponding graph represents
only the Kempe chain of events scheduled in the two selected timeslots.

After repairing the Kempe chain, a simple swap of timeslots is performed for the events included
in the chain. This swap is swift because most constraints have already been checked, and it allows
multiple events to be moved simultaneously. The remaining constraints are the required number of
rooms and teacher unavailability.

Overall, using Kempe chains as a neighborhood operator offers the advantage of fast swap
operations while maintaining adherence to critical constraints.

1.6.2 The Hybrid Local Search

This section focuses on the state-of-the-art solver for Curriculum-Based Course Timetabling (Müller
[2009]). This solver is used in each chapter of this thesis and it is thus necessary to know its design
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and the details of its components. After a brief presentation of this solver, a deep description is
provided.

1.6.2.1 Context

The literature on CB-CTT problem encompasses a wide range of methods aimed at its resolution,
spanning from genetic algorithms to heuristics. Among these methods, hybrid approaches have
emerged as particularly effective, surpassing other techniques in performance. Notably, Müller
[2009] developed this solver for the ITC 2007 competition and emerged as the winner of CB-CTT
track of the competition.

This solver consists of two main components. The first part involves the construction phase,
where an algorithm utilizes graph coloring techniques described by Müller [2005] to generate an
initial solution. The second part focuses on an optimization algorithm that iteratively refines the
solutions, and returns improving solutions in terms of fitness. This thesis focuses on the optimization
of a solution and not construction.

The optimization method employed in this solver is called Hybrid Local Search (HLS) in this
thesis, which derives from the utilization of three local search algorithms operating successively
in a loop. HLS has demonstrated its efficacy specifically in addressing the CB-CTT problem.
Furthermore, the solver is partially open-source, facilitating a better understanding of its inner
workings. The developer of HLS continues to update the solver, and it has also found applications in
other timetabling problems, including the ITC 2019 competition. The name of the solver currently
developed is Unitime1, an Apereo Sponsored Project2. This versatility offers promising prospects
for employing the solver in tackling novel timetabling challenges.

Our work strategically uses the version of HLS that won the ITC 2007 competition. In addi-
tion to the availability of more recent versions, we deliberately rely on this version, highlighting
its efficiency and robust performance. Finally, its open-source code offers an easier and clearer
understanding of all the mechanisms implemented.

1.6.2.2 Neighborhood Operators

Local search algorithms operate by iteratively moving from an initial solution to subsequent so-
lutions, exploring the search space based on a defined neighborhood relation. The Hybrid Local
Search method, specifically, incorporates six distinct neighborhood operators. In this thesis, we
have made the deliberate choice to retain these six operators, as they are widely recognized and
have been extensively studied by practitioners and researchers in the field (Song et al. [2021]).

The neighborhoods considered are listed below, and it is worth noting that some of them may
be referred to by different names in existing literature.

Time Move: A lecture and a timeslot are selected. The lecture is assigned to the timeslot.

Room Move: A lecture and a room are selected. The lecture is assigned to the room.

Lecture Room Move or Lecture Move: A lecture, a room, and a timeslot are selected. The
lecture is assigned to the room and timeslot. If the room is already used on this timeslot, the
timeslot and room of the selected lecture are swapped with those of the conflicting lecture.

1See more details in https://www.unitime.org/
2https://www.apereo.org/projects/unitime
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Room Stability Move: A course and a room are selected, then each lecture of the course is
assigned to the room. If the room is not available, the lectures of the course swap rooms with
the conflicting lectures.

MinWorkingDays Move: A course with a MinWorkingDays violation is selected. Lectures for
that course, on days with more than one lecture, are moved to another timeslot to minimize
MinWorkingDays violations. The room can be changed if it is already used by an other
lecture.

CurriculumCompactness Move: A curriculum with a CurriculumCompactness penalty is se-
lected. An isolated lecture within the curriculum is assigned to a different timeslot so that
it becomes adjacent to other curriculum lectures. Similar to other moves, the room can be
changed if it is not available.

These six operators represent various strategies or operations used within the timetabling problem
to enhance the overall solution. They can be divided into two groups: the random operators include
the Time Move, Room Move, and Lecture Move, while the remaining three belong to the specific
group dealing with soft constraints. That is because they create a neighbor that aims to improve
the solution by reducing the violation of a particular soft constraint.

1.6.2.3 Heuristics of Hybrid Local Search

Figure 1.9: Composition of the HLS method.

The Hybrid Local Search (HLS) consists of three distinct local search heuristics (Hill Climb-
ing, Great Deluge, and Simulated Annealing) executed sequentially and iteratively, as illustrated
in Figure 1.9. To ensure efficient execution, a fixed time limit of 5 minutes, as defined in the
ITC 2007 literature, is set as the termination criterion. Subsequent work has used this 5-minute
limit even with more powerful computers, effectively increasing the original computational budget
nowadays (De Coster et al. [2022], Song et al. [2021]). HLS ends immediately when the time limit is
reached, without waiting for the current local search iteration to conclude naturally. Additionally,
HLS can terminate its execution upon achieving a perfect solution that adheres to all soft con-
straint violations, resulting in a fitness value of zero. In the subsequent sections, we provide concise
descriptions of each heuristic employed within the HLS framework, highlighting their functioning
and distinctive characteristics.

Hill Climbing Hill Climbing is the best-known local search algorithm in the literature (Skalak
[1994]). It is also the simplest to implement. Hill Climbing is an iterative method that generates
a new solution by applying a neighborhood operator. If this new solution is better than the
previous one, then it becomes the new current solution. Hill Climbing in Hybrid Local Search has a
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specificity: it accepts any neighbor that has an equal or better score, this criterion is called neutral
acceptance. The choice is motivated by the recurring neutrality of timetabling problems, which
results in a large number of plateaus (Section 1.3.2.1). Thus, accepting equivalent solutions helps
to increase diversity and may lead to improvement.

Given the acceptance criterion and the high neutrality of the CB-CTT problem, HC has a
special ending criterion. In the literature, HC usually stops when there is no strictly local improving
neighbor. CB-CTT is very neutral, which means it has a lot of connected solutions for the same
score value. Thus, an HC with neutral acceptance would run in a loop because it would accept all
these equivalent neighbors. The termination criterion uses a fixed number of explored solutions.
This maximum number is fixed at 50,000 and is called maxIdle. That means Hill Climbing ends if
it does not find a global improving solution after 50,000 neighbors explored consecutively.

Algorithm 3 HLS Hill Climbing

1: procedure Hill Climbing(Timetable)
2: Current← Timetable
3: MaxIdle← 50, 000
4: IterWithoutImprovment← 0
5: while IterWithoutImprovment < MaxIdle do
6: Op← Random(Ops)
7: Neighbor ← Neighbors(Op,Current)
8: if EVAL(Neighbor) ≤ EVAL(Current) then
9: Current← Neighbor

10: if EVAL(Current) ≤ EVAL(BestF itnessHLS) then
11: IterWithoutImprovment← −1
12: end if
13: end if
14: IterWithoutImprovment+ 1
15: end while
16: Return Current.
17: end procedure

Algorithm 3 corresponds to the pseudo-code of the Hill Climbing used in Hybrid Local Search
and begins with an existing solution. Then, the process continues until the number of iterations
without strict improvement is reached comparing with the best solution found during the HLS run,
not the previous current solution as commonly. In Algorithm 3, one iteration corresponds to one
neighbor evaluated.

During each iteration, the Hill Climbing algorithm selects a neighborhood operator, Op among
all and uses it to generate a new neighbor solution. The quality of this new solution, evaluated
using the objective function (referred to as EVAL), is compared to the score of the current solution.

If the neighbor solution is better than the current one, it replaces the current solution. On the
other hand, if the neighbor solution is not better, the current solution remains unchanged, If the
new current solution is better than the best solution found by HLS, then the iteration count without
improvement is reset to -1. The count of iterations without improvement is always incremented by
one.
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Great Deluge The Great Deluge algorithm is a local search method originally proposed by Dueck
[1993]. In the literature, it is often considered as an alternative to Simulated Annealing, as it shares
the characteristic of accepting locally non-improving solutions.

The Great Deluge algorithm sets an initial Bound value that is greater than the fitness of
the best solution found during the execution of the Hybrid Local Search algorithm. Throughout
the execution, only solutions with a score strictly lower than Bound are accepted as the current
solution. The Bound value progressively decreases at each iteration. The execution of the Great
Deluge algorithm concludes when the Bound reaches a precomputed value called Lower Bound,
determined by the overall best fitness.

As a result, the Great Deluge algorithm gradually accepts fewer deteriorating solutions as the
Bound value decreases. Additionally, if the algorithm discovers a new best solution, the lower bound
value is adjusted accordingly, which extends the exploration process.

Algorithm 4 is a pseudocode representation of the Great Deluge algorithm in the Hybrid Local
Search. Parameter values have been tuned by Müller for ITC 2007.

Algorithm 4 HLS Great Deluge

1: procedure Great Deluge(Timetable)
2: Current← Timetable
3: UpperBoundRate← 1.15
4: LowerBoundRate← 0.9
5: CoolingRate← 0.9999999999874
6: At← HLSInformationV alue
7: if First Execution in HLS then
8: Bound← BestF itnessFound ∗ UpperBoundRate
9: end if

10: while Bound > BestF itnessFound ∗ LowerBoundRateat do
11: Op← Random(Ops)
12: Neighbor ← Neighbors(Op,Current)
13: if EV AL(Neighbor) ≤ Bound then
14: Current← neighbor
15: end if
16: Bound← Bound ∗ CoolingRate
17: end while
18: Bound← BestF itnessFound ∗ UpperBoundRateat

19: Return Current.
20: end procedure

Simulated Annealing Simulated Annealing is a widely recognized and effective method of local
search, initially proposed by researchers at IBM (Kirkpatrick et al. [1983]). This metaheuristic took
inspiration from the process of metallurgy, specifically the technique of cooling a solid material to
achieve a state of minimum energy.

Simulated Annealing (SA) has gained prominence as a powerful approach for solving NP-Hard
problems. Unlike some other optimization methods, SA incorporates a probabilistic acceptance
criterion, which allows it to explore and potentially accept new solutions that do not strictly improve
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the current solution. This flexibility enables SA to navigate complex problem spaces efficiently,
making it particularly well-suited for challenging optimization tasks.

The temperature-decreasing scheme utilized in SA plays a crucial role in the exploration-
exploitation trade-off. By gradually reducing the temperature, the algorithm effectively balances
the exploration of new solution areas at higher temperatures with the exploitation of promising
regions at lower temperatures. This adaptive nature contributes to the algorithm ability to find
high-quality solutions in complex problem domains.

In summary, Simulated Annealing proved to be a powerful optimization method, leveraging its
probabilistic acceptance criterion and temperature-decreasing scheme to tackle NP-Hard problems
effectively. Its ability to navigate diverse solution spaces makes it a valuable tool for addressing
complex optimization challenges.

Algorithm 5 HLS Simulated Annealing

1: procedure Simulated Annealing(Timetable)
2: Current← Timetable
3: CoolingRate← 0.82
4: MaxIterCooling ← InstanceDependentV alue1
5: MaxIterWithoutImprovment← InstanceDependentV alue2
6: IterWithoutImprovment← 0
7: if First Execution in HLS then
8: Temperature← 2.5
9: end if

10: while MaxIterWithoutImprovment < IterWithoutImprovment do
11: Op← Random(Ops)
12: Neighbor ← Neighbors(Op,Current)
13: if EV AL(Neighbor) ≤ EV AL(current) then
14: Current← neighbor
15: if EV AL(Neighbor) ≤ EV AL(current) then
16: IterWithoutImprovment← −1
17: end if
18: else if Uniform(0, 1) < exp

EV AL(current)−EV AL(Neighbor)
Temperature

19: Current← Neighbor
20: end if
21: IterWithoutImprovment+ 1
22: if IterWithoutCooling > MaxIterCooling then
23: IterWithoutCooling ← 0
24: Temperature← Temperature ∗ CoolingRate
25: end if
26: end while
27: Temperature← Reheat(Temperature)
28: Return Current.
29: end procedure

Algorithm 5 shows the Simulated Annealing version within HLS, with parameters set by Müller.
Notably, this method customizes parameters based on the specific CB-CTT instance, calculated by
summing lecture slots during construction.
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Both SA and HC share a common termination criterion: they stop when the limit of the
maximum explored solution is reached without improving the best HLS-found solution. With SA,
the maximum value is an instance-dependent complexity value (Müller [2009]).

Upon algorithm completion, SA adjusts its temperature for the next call by multiplying it with
an instance-dependent coefficient, effectively warming up the temperature.

1.7 Conclusion

The objective of this chapter was to establish the context for this thesis work. We defined combi-
natorial optimization problems and explored their classification into distinct groups.

Subsequently, we focused on the two families of methods commonly employed to address these
optimization challenges and elaborated on their respective working principles. Particular emphasis
was placed on metaheuristics, which excel at efficiently solving highly intricate problems, even
though the optimality of the results is not guaranteed.

The second section has provided a comprehensive overview of the Curriculum-Based Course
Timetabling (CB-CTT) problem and its significance within the field of timetabling problems.

CB-CTT is a single-objective minimization optimization problem, where the objective function
evaluates a solution based on the weighted sum of soft constraint violations. These constraints
capture the desired characteristics of the schedules, emphasizing the need for efficient optimization
techniques.

Furthermore, the presentation of different benchmarks, in the third section, highlights the ex-
tensive research that has been conducted on CB-CTT, indicating the breadth of work that can be
undertaken in this area.

Finally, the focus was on how to solve CB-CTT and detailed neighborhood structures and genetic
processes. Then a detailed explanation of the Hybrid Local Search (HLS) followed. Detailed
explanations were provided regarding the strategies, heuristics, and overall functioning of HLS,
aiming to facilitate a deeper understanding of this state-of-the-art method. This method won the
ITC 2007 and still represents a reference of performance for the work on the CB-CTT. Furthermore,
its complex structure of metaheuristics paves the way for several studies to improve the performance.

Overall, this section has set the stage for the subsequent work and analysis, providing the
necessary background and understanding of the CB-CTT problem and the selected optimization
methods.
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2.1 Introduction

A growing number of works focus on landscape analysis to describe search spaces in the litera-
ture (Ochoa et al. [2014], Thomson et al. [2020], Verel et al. [2010]). Some works leverage the
features from this analysis to make predictions or guide problem-solving strategies (Liefooghe et al.
[2019], Ochoa et al. [2009]).

Landscape analysis understanding how solving algorithms navigate the search space. This ap-
proach employs algorithms to explore the problem search space and collects data on, for example,
solution quality, neighborhood relations, and local optima solutions (Chapter 1). This thesis centers
on the Curriculum-Based Course Timetabling (CB-CTT) problem as detailed in Chapter 1. The
analysis in this Chapter primarily covers a subset of instances from the International Timetabling
Competition (ITC) 2007, aiming to represent a diverse set of real-world instances. This chapter
explores the landscape of CB-CTT instances and introduces performance prediction. Being able to
predict algorithm performance, especially final fitness, based on features computed in a short time
budget (e.g. 5 seconds) may help in choosing an appropriate solver or solving strategy. The longer
allowable time budget (e.g. 5 minutes) may then be spent on the promising choice.

The chapter presents landscape analysis protocols for some CB-CTT instances. It introduces
the Fitness Network model, representing the landscape using information given from exploration
algorithms. The chapter details the features extracted from this search space representation. It
analyzes the models and identifies three distinct zones within the search spaces, each with its
unique characteristics. Finally, the chapter develops prediction models for three efficient resolution
algorithms: HLS, a variant of HLS, and SA of HLS. Features are selected, and models are trained
with different protocol setups, including various samplers and exploration times. These models
provide valuable performance predictions.

2.2 Search Landscape

This section provides context for our work on landscapes. It begins by introducing the definitions
necessary for understanding of the results that follow. In addition, it details the concepts used to
motivate our work.

2.2.1 Definitions

Landscape analysis can provide valuable assistance in understanding the nature of the search space
as it helps us characterize the ruggedness of the landscape and identify connectivity patterns. By
computing various relevant metrics at both global and local levels, this analysis offers valuable
insights that serve different purposes. For instance, it allows for an a posteriori analysis to enhance
our understanding of solving algorithm behavior or enables performance prediction, as demonstrated
in this paper.

The concept of landscape closely relates to the algorithm used to explore the search space, as
illustrated by the following definitions. While exhaustive exploration provides a perfect model of
the landscape, other sampling methods only offer approximations of the landscape. That means our
representation and results could vary if the sampler or exploration algorithms used are not the same.
In our specific case, conducting exhaustive exploration proves computationally infeasible because
of the number of feasible solutions. Hence, we rely on Iterated Local Search as our chosen sampling
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method because it has already demonstrated a high exploration capacity when successfully applied
by Ochoa et al. [2017].

The following definitions span a spectrum, ranging from broader, more general concepts to more
specific ones.

Landscape A landscape (Stadler [2002]) may be formally defined as a triplet (S,N, f) where

• S is a set of solutions, or search space,

• N : S −→ 2S , the neighborhood structure, is a function that assigns, to every s ∈ S, a set
of neighbors N(s)

• f : S −→ R is a fitness function.

The landscape metaphor considers the fitness of a solution as the height of the landscape,
thus forming surfaces that can exhibit various characteristics, such as smoothness or ruggedness.
Plateaus within these surfaces can contribute to the search difficulty.

Figure 2.1: A hypothetical search landscape (image credit: Randy Olson) for a two-variable search
space (x and y axes). The z-axis is the fitness value. The colored lines indicate potential trajectories
of some algorithms in the search space.

Figure 2.1 illustrates a hypothetical landscape, where each intersection represents a solution
with a fitness value equivalent to its height. There are obvious limits to the metaphor since any
non-trivial landscape is actually highly multidimensional.

In our work, exhaustive exploration of the landscape is not feasible due to computational con-
straints. Hence, we employ the Iterated Local Search (ILS) algorithm to sample the search space.
Specifically, our focus lies on local optima (Ochoa et al. [2017]).
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Algorithm 6 Iterative Local Search

1: procedure ILS(Timetable, MaxTime)
2: Current← Timetable
3: start(Time)
4: while Time < MaxTime do
5: Current←Hill Climbing(current) ▷ Algorithm 3
6: Current← Perturbation(current)
7: end while
8: Return Current.
9: end procedure

Algorithm 6 outlines the ILS procedure, where the Current variable represents the current
timetable being evaluated. The algorithm iteratively applies Hill Climbing (Algorithm 3) for ex-
ploitation and a perturbation for exploration. The ILS sampler records every local optimum it
encounters (including fitness) as well as the sequence in which the local optima were encountered.

Plateau A plateau, sometimes called a neutral network, is usually defined as a set of connected
solutions with the same fitness value. Two solutions s1 and s2 are linked if they are neighbors, i.e.,
s2 ∈ N(s1). Depending on the neighborhood function, we may also have s1 ∈ N(s2).

In our work, plateaus are identified as consecutive sequences of solutions that exhibit an identical
fitness value. However, due to the trajectory-based nature of the sampling approach we use, it
poses a considerable challenge to say whether two distinct sequences, both characterized by the
same fitness values, truly belong to the same plateau. The inherent difficulty arises from the lack of
complete information about the landscape structure and the limitations imposed by the trajectory-
based exploration method.

Ruggedness of landscape Solving combinatorial optimization problems aims to find the global
optima, i.e., the solution(s) with the lowest score in the case of minimization. However, with
approximate methods, the exploration of the search space relies on neighborhood operator-based
moves, and the acceptance of a new neighbor as the current solution is a choice made by the
algorithm.

The outcome obtained from these methods depends on the problem and the relationships be-
tween the neighbors. This difficulty in finding the best solution is determined by the structure
of the search landscape. To understand this structure, various studies have explored the search
landscape, leading to the classification of landscapes into two classes: smooth and rough. In a
smooth landscape, the metaphor of a valley is perfect to explain the idea. The optimal solution is
located at the bottom of the valley, and the method needs to go down to reach it. Figure 2.2 shows
a representation of a smooth landscape with only 4 local optima, this type of landscape describes
generally an easy problem to solve.

On the other hand, in a rough landscape, there are many peaks and valleys and, therefore,
numerous local optima. Finding a good solution means having to go through worse neighbors before
reaching an even better solution. Considering the structure of the landscape is crucial because it
directly relates to the choice of neighborhood operators that allow for efficient exploration of the
search landscape.
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Figure 2.3: Rugged search landscape with a large number of local optimal.

Local Optima Network (LON) LONs (Tomassini et al. [2008]) provide compressed graph
models of the search space, where nodes are local optima and edges are transitions between them
according to some search operator. LONs for neutral landscapes have been studied before by Verel
et al. [2010]. The latter work introduces the concept of Local Optimum Neutral Network that
considers that a neutral network is a local optimum if all the configurations of the neutral network
are local optima. Another approach to neutrality in LONs is by Ochoa et al. [2017] who develop the
notion of Compressed LONs where connected LON nodes of equal fitness are aggregated together.
For our purposes, we consider two slightly different kinds of networks: Timeout Plateau Networks
and Fitness Networks.

Timeout Plateau In order to explore the landscape, this work employs two variants of Iter-
ated Local Search (ILS) to compare the resulting data. The first ILS variant we utilize, called
ILSneutral, incorporates a hill-climber that ceases its exploration if it remains on the same plateau
for an extended period of time, specifically 50,000 consecutive evaluations with identical fitness.
Additionally, the Hill-Climber in this variant accepts the first non-deteriorating move, which can
be an improving or a neutral neighbor. We refer to the plateaus discovered in this manner as
timeout plateaus since the hill-climber is unable to escape from them within a specified number of
iterations. However, it is important to note that these timeout plateaus are not necessarily sets
of local optima. Through exploratory analysis, we found that at least 1% of these solutions were
not actual local optima. To do this, we used data from the protocols presented in Section 2.2.2.2.
Then, for each solution of all the identified timeout plateaus, we looked at each of their neighbors
using the six neighborhood operators used in HLS. If there is a strictly best neighbor, the solution
is not a local optimum.

The second variant, ILSstrict, shares the same components as ILSneutral, but with the crucial
difference that it only accepts strictly improving solutions. Consequently, the timeout plateaus
identified in ILSstrict trivially consist of a single solution.



35 Solver Performance Prediction

Timeout Plateau Network A Timeout plateau network is a graph where each node is a con-
tracted timeout plateau, where an edge represents a transition between two such plateaus. In
practice, this transition is an ILS perturbation followed by a Hill Climbing. Timeout Plateau Net-
works are a set of independent chains, where each represents one ILS run. Therefore our Timeout
Plateau Networks do not exhibit much connectivity.

Fitness Network This is a simplification of Timeout Plateau Networks where all nodes with the
same fitness are contracted together. This provides a graph structure with much higher connectivity
than a Timeout Plateau Network. While it is not meant as an accurate representation of the
landscape, several different metrics related to connectivity between fitness levels can be computed.
Note that this is an even greater simplification than Compressed LONs (Ochoa et al. [2017]) which
only aggregate nodes sharing the same fitness that are connected together at the LON level.

2.2.2 Experimental Protocol

Experiments use 19 of the 21 instances proposed for ITC 2007. Instances 01 and 11 are set aside
since they are very easy to solve. The latter are optimally solved by all methods we tested. Thus,
predicting their fitness is too easy.

2.2.2.1 Performance Protocol

The objective of this protocol is to compute the performance of three solvers: Hybrid Local Search
(HLS), iterated Simulated Annealing (SA), and a variation of HLS called HLSstrict.

HLS combines the algorithms Hill Climbing (HC), Great Deluge, and Simulated Annealing in
an iterated sequence. In our experiments, we employ two versions of HLS. The default version,
referred to as HLS, accepts solutions that are equal to or better than the current solution during
the Hill Climbing phase. On the other hand, HLSstrict uses a strict acceptance criterion for Hill
Climbing.

Additionally, we test the performance of iterated Simulated Annealing (SA). This involves
reusing the SA component from HLS and incorporating it into a loop that terminates when the
runtime budget is reached. Only these three solving algorithms are considered, as preliminary work
has shown that they are both efficient and significantly different on the ITC instances.

All executions of the solvers were conducted on an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz.
Each solver was given a time budget of 5 minutes and tested 100 times on each instance.

By following this protocol, we aim to assess the performance of HLS, HLSstrict, and iterated
SA. The experiments provide valuable insights into the behavior and capabilities of these solvers in
solving the given ITC instances.

2.2.2.2 Sampling the Search Space

To explore our search space, we employ one of two Iterated Local Search (ILS) algorithms that are
based on algorithmic components from the Hybrid Local Search.

Both ILS variants include an Iterative Bounded Perturbation (IBP) technique (Müller [2009]).
The HC phase terminates when it reaches a local optimum or after evaluating 50,000 solutions
without any strict improvement. Figure 2.4 shows the process followed by ILS samplers.

The distinction between the two ILS samplers lies in their acceptance criteria. The first sampler,
ILSneutral, adopts the same strategy as HLS, accepting solutions that are equal to or better than the
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Hill-Climbing IBP

Iterative Local Search

Figure 2.4: Iterated Local Search sampler

current solution. On the other hand, the second sampler, ILSstrict, follows the strategy of HLSstrict
and only accepts strictly improving solutions.

The IBP technique operates by taking a baseline fitness value, denoted as FitFirstSol, which
corresponds to the fitness of the first solution obtained after the initial construction phase. It then
deteriorates the final solution found by the HC phase, denoted as FitLastSol, in order to reach a
solution with a fitness value equal to Bound = FitLastSol + 0.1(FitFirstSol − FitLastSol).

By utilizing these ILS algorithms and incorporating the IBP technique, we aim to effectively
explore the search space. The different acceptance criteria in ILSneutral and ILSstrict allow us to
compare the performance and efficiency of these approaches in finding high-quality solutions.

Due to memory constraints, ILSneutral only records fitness and size of all timeout plateaus met.
ILSstrict just saves the fitness of the last solution of each HC, its timeout plateaus have a size of 1.
Both ILS samplers are run 100 times with a time budget of {5, 10, 20, 30} seconds per run on each
instance. This budget was set in order to obtain enough predictive information on the landscape.
Each (time budget, sampler) pair produces one network, so we have 8 networks for each instance.

Timeout Plateau Network Each Timeout Plateau Network is constructed using data collected
from 100 individual runs. In the network, each node represents a timeout plateau, while each
directed edge corresponds to a transition involving a perturbation followed by a hill-climber step.
Initially, the weight assigned to each directed edge is set to 1.

Figure 2.5 shows a graphical representation of the timeout plateau obtained using ILSneutral
with a time budget 30 seconds. At this stage, the individual trajectories of the ILS sampler run
have no connectivity, one run corresponds to one chain in a graph representation (Figure 2.5 shows
100 independent chains), and further information extraction requires a contraction step. This step
aims to consolidate and enhance the understanding of the network by identifying connections and
relationships between different timeout plateaus.

Fitness Network Given the high level of neutrality observed in the problem, we have made the
broad assumption that all solutions with the same fitness value belong to a single wide plateau.
This hypothesis enables us to create a connected network more easily, capturing the relationships
between different plateaus.

The contraction process of the Timeout Plateau Network into a Fitness Network retains all the
necessary data for computing the metrics discussed in Section 2.2.3.2. The weights assigned to the
directed edges in the Fitness Network are determined by summing the weights of the contracted
directed edges.

To provide a visual representation of the Fitness Network, Figure 2.6 depicts the graph of a
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Figure 2.5: Timeout Plateau Network of Instance 12 built by ILSneutral with 30 seconds.
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Figure 2.6: Fitness Network of Instance 12 built by ILSneutral with 30 seconds.

fitness network. This graph showcases the interconnectedness between plateaus, illustrating the
transitions and pathways between different levels of fitness.

2.2.3 Data

This section serves as an introduction to the features used to describe each instance of CB-CTT
in the ITC dataset. Our goal is to provide an overview of the various features extracted from each
instance, which encompass both landscape analysis metrics and instance-specific characteristics.
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2.2.3.1 Instance features

The instance features encompass various aspects of the CB-CTT problem, providing valuable de-
scriptive information and quantifying its complexity. These features serve to characterize each
problem instance and offer insights into the scheduling requirements and constraints. Basic de-
scriptive data includes:

• Courses: the number of courses in the problem instance.

• Rooms: the number of rooms available for scheduling lectures.

• Constraints: the number of unavailability constraints placed on courses or rooms.

• Days: the number of days in the scheduling horizon.

• Periods Per Day: the Maximum Number of Periods available within each day for scheduling
courses.

• Teachers: the number of teachers available for teaching courses.

• Curricula: the number of Curricula, which are groups of related courses.

• Lectures: the total number of lectures that need to be scheduled.

• Min|Mean|Max RoomCapacity: the Minimum, Average, and Maximum Room Capacities
across all available rooms.

• Min|Max Student: the Minimum and Maximum Number of Students enrolled in each course.

• Min|Mean|Max Course by Curriculum: the Minimum, Average, and Maximum Number of
Courses associated with each curriculum. This helps assess the balance of courses across
curricula.

• Co cu Courses divided by Curricula: the ratio of Courses to Curricula. The value differs
from the Mean Course by Curriculum because some courses may belong to multiple curricula,
resulting in a different average value.

• Min|Max mwDays: the Minimum andMaximumMinimumWorking Days required for schedul-
ing each course. These features reveal how courses are distributed across the week.

• Lecture Occupancy: This metric divides Lectures by the number of timeslots, i.e. Days
multiplied by Periods Per Day. The idea is to represent what the readings might occupy if
everyone had a different timeslot and only one room was available.

• Min|Mean|Max LecturesbyCourse: the Minimum, Maximum, and Average Number of Lec-
tures required for each course in the problem instance. This metric illustrates the variation
in lecture requirements among different courses.

• TeachersNeeded: the Average number of teachers required for a single timeslot, calculated
by dividing the total number of lectures by the number of available timeslots. This feature
provides insights into teacher allocation demands and resource utilization.

In total, there are 24 distinct instance features, collectively capturing various aspects of CB-CTT
problem. These features enable an assessment of each instance characteristics and complexity.
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2.2.3.2 Landscape metrics

The LON model model introduces metrics derived from graph theory, which enable the character-
ization of the structure of combinatorial landscapes. These metrics, originally designed for LONs,
can also be effectively applied to our Fitness Networks.

By leveraging these metrics, we gain valuable insights into the organization and properties of
the search space, facilitating a deeper understanding of the combinatorial optimization problem at
hand.

Node-Level Metrics Node-level metrics include two sets of metrics. The first one relates to
what the nodes represent.

• Plateaus: Number of plateaus that have been contracted to form the node.

• Size: Sum of the number of accepted solutions in the contracted plateaus. This shows whether
solutions of this fitness are often found or not.

• Fit: Fitness represented.

• Loops: Number of consecutive loops on the same fitness. Increase by 1 each time that, after
a disruption phase and an intensification phase, an ILS sampler still returns the same fitness.
It is an estimator for attraction power.

The metric “Plateaus” corresponds to the size of nodes for Figure 2.6.

A second set of metrics relates to the connectivity of the nodes within the network.

• Degree in: Number of different nodes that lead to the current node. If the degree is low, it
means that this fitness is rarely found. The opposite is true. In the other case, many samplers
arrive at this solution.

• Degree out: Number of different nodes the current node leads to. The idea is close to Degree in
but concerns the moment when the samplers have moved from the current fitness to another
value.

• Weight out: Number of times through all runs where we escape from this fitness (without
loops)

• Weight in: Number of times through all runs where exploration went to this fitness (without
loops)

We also consider two variants of weight and degree metrics. For some given node, the better
(resp. worse) variant only considers arcs between this node and better (resp. worse) nodes.

The above metrics are computed for each node and five points corresponding to the quartiles
(Q1, median, and Q3) and the 10th and 90th percentiles of the distribution are used as features for
our models.
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Network Metrics Another set of metrics called Network Metrics describes the networks them-
selves, including:

• Mean fitness.

• Number of timeout plateaus.

• Number of nodes: The number of different fitnesses among the timeout plateaus found by
samplers.

• Number of edges: This corresponds to the number of different changes from one fitness to
another made by the samplers.

• Mean of the edge weights.

• Number of sink nodes: Sink nodes are defined as nodes that lack outgoing arcs to nodes with
better fitness, indicating that they represent local optima in the search space.

• Coefficient of assortivity: a measure of similarity between linked nodes (Ochoa et al. [2014]),
plays a significant role in characterizing the connectivity patterns within the network. The
coefficient of assortivity increases as the number of connected nodes with similar attributes
becomes more abundant.

• The transitivity coefficient or the clustering coefficient (Ochoa et al. [2014]): it quantifies
the probability of a link existing between neighboring vertices when one vertex is selected. It
provides insights into the level of local clustering or interconnectedness within the network.

By examining these metrics, we can gain a deeper understanding of the structural properties and
characteristics of the network, shedding light on the dynamics of the optimization process.

Finally, we use the PageRank centrality to analyze the networks since Herrmann et al. [2018]
showed that related metrics were useful when working with LONs. The higher the PageRank, the
more important and attractive the node concerned. Three measures summarize page rank into
features:

• The mean PageRank over nodes,

• The PageRank of best fitness node,

• The mean PageRank over sink nodes (nodes without arcs leading to a better fitness).

The landscape metrics are summarized in Table 2.1.

2.3 Results of Search Landscape Exploration

The experimental results can be divided into three main parts. Firstly, we show how our repre-
sentations allow us to highlight three major fitness groups. Secondly, we explore the impact of
the choice of sampler and the allocated exploration time on the portion of the landscape that is
explored. Finally, we leverage the data extracted from our representations and instance features to
construct a predictive model for the performance of three solvers on ITC instances in an efficient
manner.
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Table 2.1: Landscape metrics summary

Type Landscape Metric Description

Node-Level
Q1|Q2|Q3|10th|90th

Plateaus Number of plateaus.
Size Number of accepted solutions.
Fit Fitness represented.
Loops Number of edges that loop.
Degree inbetter |worse Number of different in-going arcs.
Degree outbetter |worse Number of different outgoing arcs.
Weight outbetter |worse Sum of weights of outgoing arcs.
Weight inbetter |worse Sum of weights of in-going arcs.

Network-Level

Plateaus Number of plateaus.
Fit The average fitness value within the network.
Nodes Number of nodes in the network.
Edges Number of edges
Sink Number of nodes without improving outgoing arcs.
Assortivity Measures similarity between linked nodes.
Transitivity Provides insights into local clustering.
Mean PageRank Average PageRank centrality over all nodes.
PageRankBest PageRank of the node with the best fitness.
Mean PageRankSink Average PageRank centrality over sink nodes

2.3.1 Identifying Major Sections of the Landscape

This section aims to identify the most relevant regions within our representation of the search
landscape. Referring back to Figure 2.6, we can observe a rough indication of three distinct groups
of nodes. The first is a group of rarely visited nodes with poor fitness. Then there is a group of
highly interconnected nodes with very diverse fitness. Finally, we can consider that the best nodes
form their own small group: this third group is connected to the highly-connected second group
but connections within the group are more rare and the size of nodes is smaller because they are
visited less often. However, this is a visual analysis, we now turn to a more rigorous analysis based
on landscape metrics. By analyzing the data, we can obtain factual insights that complement our
visual observations.

In order to identify and measure the most and least promising regions of the network, we have
plotted the cumulative distribution of several key features as a function of fitness. This allows us
to pinpoint low and high fitness regions with greater precision. Figure 2.7 presents the plots for a
representative instance, illustrating our approach.

Figure 2.7a plots the cumulative percentage distribution of the sum of plateaus and loops. For
the former, one node corresponds to the number of distinct timeout plateaus with the corresponding
same fitness value. Loops is a node-level metric presented in Section 2.2.3.2. It represents the
number of times the exploration algorithm, consecutively finds two timeout plateaus with the same
fitness. Figure 2.7b and Figure 2.7c respectively show the cumulative percentage, as a function of
node fitness, of the out-going degree of nodes and the weights of the out-going arcs connected to
nodes. These two features are measures of the density over the networks.

From the sigmoid shape of the distributions, we can identify three groups of nodes :
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Figure 2.7: Cumulative percentage of the sum of node size, degree, out-going edge weights as
a function of fitness for 30 seconds Instance 12 Fitness Network with ILSneutral. Vertical lines
represent fitness limits between groups.

• Group A: The first sub-network has a low local density. Its fitness values are little visited
and are the best found.

• Group B: This set of nodes represents a big part of network. Nodes correspond to interme-
diate fitness values, and solving methods often find them. Vertices are inter-connected and
arcs are frequently traveled, with high weights.

• Group C: The nodes in this group are almost all of size one. They represent the worst fitness
values found. They are not connected to each other because their arcs lead only to vertices
belonging to Group B.

The distributions across all instances display a consistent sigmoid shape, suggesting similar
behaviors and the presence of the same number of distinct groups.

This work focuses on ITC benchmark instances, which, at present, consist of a limited dataset.
Nevertheless, the objective is to design a methodology that exhibits adaptability to a broader range
of instances. Therefore, it becomes essential to streamline and automate the operations to the
greatest extent possible. To automate the grouping of nodes, we employ a method that involves
identifying two points of inflection, or kinks, on the curve. These kinks are determined based on
the distribution of the sum of plateaus, represented by the black curve in Figure 2.7a.

The first kink is determined by setting a threshold of 1% difference between consecutive fitness
values. If the difference exceeds this threshold, the corresponding fitness values are classified as part
of Group A, while the subsequent values are assigned to Group B. The second kink is identified
when the difference drops below 1%, and the remaining fitness values are classified as Group C.

In order to analyze the sub-networks A and B, we compute several features including the mean
fitness, number of nodes, number of plateaus, and the number of sink nodes. These features provide
insights into the characteristics of each sub-network. Overall, there are 8 features that are relevant
to the analysis of the sub-networks and are described in Table 2.2.
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Table 2.2: Eight additional features computed for sub-networks. X can either represent group A
or group B.

Feature Description

FitX Mean of the fitness nodes in the sub-network
NodeX Number of nodes in the sub-network

PlateausX Number of plateaus in the sub-network
SinkX Number of sink nodes in the sub-network

2.3.2 Effects of Sampler Choice on Sampled Fitness Values

In this analysis, we investigate the impact of different (sampler, time budget) pairs on the distri-
bution of fitness. The two samplers under consideration are ILSstrict and ILSneutral, which employ
different strategies for accepting neighboring solutions, namely strict or neutral acceptance.
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Figure 2.8: Fitness distribution for each (sampler, time budget) pair on instance 21 is depicted
here. Vertical lines indicate the mean fitness values achieved by each solver in 5 minutes, with red
representing HLSstrict, blue for HLS, and green for SA.

Figure 2.8 shows the fitness distribution of the timeout plateaus obtained by each sampler on
one representative instance as boxplots. As might be expected, we can observe a clear relationship
between the time budget and the skew of the distribution towards better solutions. This stands for
both samplers. The best solutions found with 20 and 30 second sampling runs reach, or are very
close to, the mean fitness value obtained by the solvers when run for 5 minutes. In addition, it
stands to reason that as time increases, timeout plateaus are added but those found within shorter
time budgets remain, only they represent a smaller proportion. The tighter time budgets also,
naturally, sample fewer solutions.

The fact that some sampling scenarios reach, or are very close to, the mean solver fitness likely
indicates that any feature that encodes some information about the best sample fitness is very
important to the model. In our case, this is exactly what FitA, the mean fitness of Group A, does.
This is investigated further in Section 2.4.

The boxplots also highlight the distinct behaviors of the two samplers. It is evident that
ILSneutral consistently discovers better solutions in terms of fitness within the same time frame.
Notably, Figure 2.8 demonstrates that as the time decreases, the disparity between the perfor-
mances of the two ILS samplers becomes more pronounced. This discrepancy can be attributed
to the neutral acceptance policy employed by ILSneutral, which leads to the exploration of plateaus
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located further down the landscape. These observations suggest that ILSneutral is not only more ef-
ficient but also more robust in finding improved solutions when faced with limited time constraints.
The neutral strategy enhances the performance of ILS and improves the sampling effectiveness
specifically in the most promising regions of the search space.

2.4 Performance Prediction

In the previous sections, we have focused on the analysis of the landscape of the Curriculum-Based
Course Timetabling (CB-CTT) problem, utilizing our representation and various landscape metrics.
This analysis has provided us with a rich dataset encompassing extensive information about each
instance of the problem. We have gained insights into the fitness distributions.

Building upon this understanding of the problem landscape, the focus of this section shifts
towards a crucial objective: predicting the performance of three solvers on the ITC instances. By
developing prediction models, we aim to estimate the final fitness achieved by each solver using a
subset of the available data.

The motivation behind performance prediction goes beyond its immediate practical implica-
tions. While accurate predictions can be immensely beneficial in guiding solver selection and
decision-making processes, they also serve as a means to validate the effectiveness of our land-
scape exploration. By successfully predicting solver performance, we substantiate the notion that
our exploration and analysis of the landscape have uncovered meaningful patterns and insights.

To accomplish this task, we employ a data-driven approach, leveraging the information ex-
tracted from our representation and instance features. Through careful feature selection and model
development, we aim to uncover the key factors that influence solver performance and ascertain the
most influential features in determining solution quality. Moreover, we investigate the impact of
different sampler configurations and time budgets on the performance prediction models, assessing
their effectiveness in accurately predicting solver performance for CB-CTT problem.

The outcomes of our prediction models offer some insights into the relationship between problem
characteristics, solver behavior, and fitness solutions. Moreover, they validate the usefulness of
exploring the landscape, and not only considering instance features, as the extracted features play
a an important role in accurately predicting solver performance.

Subsequent sections outline our methodology for performance prediction, present the results
obtained from our prediction models, and discuss the broader implications and potential applica-
tions of our findings. Through this analysis, we hope to enhance our understanding of the CB-CTT
problem and provide valuable insights for future works and practical applications.

2.4.1 Model Construction and Evaluation

Research papers have demonstrated a relationship between landscape data and the performance of
resolution algorithms (Daolio et al. [2017], Liefooghe et al. [2019], Thomson et al. [2020]). That
shows that machine learning models can learn from landscape data.

We employ a model-building process consisting of feature selection followed by linear regression
to predict the fitness value. Instance selection is a process often used to improve the performance of
predictive models. The linear regression model is used because it is a well-known and efficient type
of model that deals well with quantitative data. The objective is then to assess how the sampler
and its budget affect the quality of the prediction for different solvers.
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Pre-processing After merging all data, there are a total of 120 features, some of which may not
be useful. We first remove 21 features with a constant value: most of them are 90th percentile
features, i.e., they describe the top of the landscape.

Features are then standardized, thus each feature mean is equal to 0 and the standard deviation
is equal to 1. Remember that our dataset contains only 19 instances. This imbalance between the
number of instances and the number of features can potentially undermine the predictive power of
our models. Therefore, it is important to address this issue and aim to reduce the discrepancy for
more robust predictions.

After these two steps, features have to be selected in order to improve the potential success
of our models. We employ a correlation preselection approach to identify features that are highly
correlated with the fitness value, which represents the outcome variable for one of the three solvers
utilized. A fixed threshold of 0.9 is set to determine the features that meet this criterion.

We explored different threshold values, such as 0.8 and 0.7, in the correlation preselection
process. However, we found that using a relatively high threshold of 0.9 resulted in a more consistent
and stable feature selection. Lower thresholds introduced more fluctuation in the selected features,
potentially leading to less robust and reliable predictions. Therefore, we opted for the higher
threshold to ensure a more reliable subset of features for our prediction models.

Table 2.3: Selected features with respect to sampler and budget. A tick indicates a selected feature.

ILSstrict ILSneutral Feature Description
5s 10s 20s 30s 5s 10s 20s 30s

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Cu Number of Curricula
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ FitA Mean fitness of Group A
✓ ✓ ✓ ✓ ✓ ✓ ✓ FitB Mean fitness of Group B
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Fit Mean fitness

✓ SinkB Number of sink nodes in Group B
✓ CC Number of connected components

Table 2.3 provides a summary of the selected features based on the ILS sampler version and the
allocated budget. The selection process results in 3 to 6 features being chosen, with the number
of curricula, the mean fitness of all sampled timeout plateaus, and the mean fitness of groups A
and B consistently included. These latter two features not only capture fitness information but
also indirectly convey insights about the proportion of plateaus, as they are utilized in creating the
groups. Notably, the selected features exhibit a relative uniformity across different samplers and
budgets, with the absence of more complex features.

A potential limitation of using this restricted feature set is the presence of multicollinearity due to
the inclusion of different fitness-related features. Multicollinearity can complicate the interpretation
of regression coefficients. However, in this study, our primary focus is on the predictive accuracy
and precision of the models rather than the interpretability of the coefficients. As such, the issue
of multicollinearity does not pose a significant concern for our analysis.

Evaluation To ensure a robust evaluation of the models, particularly considering the limited
number of instances available, we employ complete 5-fold cross-validation.

Cross-validation uses complementary subsets of the data for training and testing in order to
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assess the model ability to predict unseen data. With a k-fold approach, data are partitioned into k
subsets, one of which is retained for testing, the remaining k− 1 being used for training the model.
The cross-validation process is repeated k times such that each subset is used once for testing. The
results are then averaged to produce a robust estimation. The specificity of the complete cross-
validation is to apply a k-fold on all possible cutting configurations (Kohavi et al. [1995]). Therefore(

m
m/k

)
configurations are considered instead of only k. In our case, with 19 instances and 5 folds,

we have
(
19
4

)
= 3876 configurations. This complete 5-fold cross-validation algorithm has two main

advantages. The first is to check whether the model can predict final fitness for new instance The
second smooths out the impact of how the data are split between training and test sets. When two
problem instances are very similar and are not in the same fold, information about the first helps
in prediction. However, our objective is to obtain a robust model for all problem instances and not
only very similar instances. Testing all combinations reduces this boosting effect.

The quality of the regression is assessed using the coefficient of determination, R2, a well-known
indicator for regression tasks.

R2 = 1−
∑n

i=1(yi − ȳ)2∑n
i=1(yi − ŷi)2

The coefficient of determination is a measure that indicates the proportion of the total variance in
the dependent variable explained by the independent variables in a regression model. The number
of data points in the dataset is n, representing the total observations or samples. yi is the i-th actual
value. ȳ is the mean of the observed values yi, representing the average value of the dependent
variable. Finally, ŷi corresponds to the predicted values for the i-th data point, derived from the
regression model.

2.4.2 Experimental Results

Using the gathered data and the selected features, we constructed a total of 72 linear regression
models. These models aim to predict the performance of three solvers (HLS, HLSstrict, and SA)
using two ILS samplers (ILSneutral and ILSstrict) across four different time budgets.

We specifically focus on the inclusion or exclusion of the FitA feature, given its observed sig-
nificant impact on the prediction performance. We can even imagine that in some cases, it is this
feature that directly may give the result of the prediction model. This feature, which represents the
mean fitness of Group A, exhibits the highest correlation with the final fitness values. The resulting
R² values for each model are displayed in Figure 2.9, where each line represents a specific (sampler,
solver) pair. By employing this approach, we ensure a robust evaluation, particularly considering
the limited number of instances available.

The results reveal a consistent trend of achieving relatively good to very good performance in
all cases, with R² values ranging from 0.62 to 0.97. This notable level of predictability can be
attributed to the feature selection process employed, as previously outlined. By preselecting the
most relevant features, the models are tailored to focus on the key variables that exert a significant
influence on the final fitness. Consequently, the models demonstrate good accuracy and reliability
in predicting the performance of the various solvers.

As anticipated, FitA proves to be an excellent standalone predictor of the final fitness achieved
by the different solvers. However, the models that incorporate all the selected features outperform
it, albeit marginally, suggesting the added value of utilizing the additional features. While models
excluding FitA exhibit slightly lower performance, they still remain competitive. An interesting
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Figure 2.9: R² values for models, where each point represents a (sampler, solver) pair.

deviation from this overall trend is observed in the models constructed using ILSneutral with a 5-
second sampling budget, where the exclusion of FitA leads to a significant decrease in R². This
particular scenario is characterized by sampling runs that did not reach the mean fitness of the
solvers, thereby rendering FitA a non-trivial and indispensable feature in this context. Furthermore,
in this context, opting for a model based on data from 5-seconds-ILSneutral proves to be significantly
more cost-effective than the 5-minute duration required by the solvers.

When comparing neutral versus strict acceptance sampling, ILSneutral consistently outperforms
ILSstrict, except in the specific scenario mentioned earlier. This result aligns with expectations,
as the landscape is known to exhibit neutrality. However, it is surprising that strict acceptance
still produces decent models despite this characteristic. This suggests that strict acceptance is able
to capture relevant information and provide valuable predictions, despite the landscape inherent
neutrality.

Next, let us examine the performance of models for the different solvers. Remarkably, the linear
regression models adequately predict the performance of all three solvers, despite the variations in
their sampling algorithms, as observed in other studies (Thomson et al. [2020], Feutrier et al. [2022])
and exploited in Chapter 4. It is worth noting that the prediction for SA, being the most distinct
from the sampling algorithm, is slightly less accurate compared to the other solvers. However, it
is interesting to observe that there is no significant difference in the prediction accuracy between
HLS with neutral (default version) and strict acceptance, suggesting that the two versions of HLS
have statistically similar performances. However, each HLS version has statistically different final
fitness based on Wilcoxon test results.

A general trend that holds for most cases, is that R² improves as the sampling budget increases,
which seems fairly intuitive. Perhaps surprisingly, however, predictive performance remains almost
flat (but very good) when all the selected features and neutral sampling are used. This robustness
with respect to time makes it easy to recommend using the smallest budget in this scenario.
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2.5 Conclusion

In this chapter, we proposed an approach to analyze the search landscape of the CB-CTT problem.
We introduced the concept of a Fitness Network to represent the landscape. Our approach allows
for the exploration of this landscape, employing two different explorers with varying time budgets.
This enables us to examine how exploration strategies affect the distribution of fitness.

Through our landscape analysis, we uncovered essential patterns and behaviors within the search
landscape. Additional features derived from the landscape analysis proved to be relevant in predict-
ing performance. Our predictive models effectively captured the relationship between the selected
features and the final fitness of the solvers.

Notably, our analysis revealed that the mean fitness of Group A emerged as a highly significant
predictor of performance. When combined with a modest time budget of just 5 seconds, this
feature led to accurate performance predictions. This finding underscores the value of an economical
approach, focusing on the mean fitness of Group A within a shorter time frame, to provide reliable
performance predictions.

Through our landscape analysis, exploratory strategies, and feature engineering, we gained
valuable insights into the dynamics of the search landscape. However, it is essential to emphasize
that, in this specific scenario, creating a predictive model avoids the need to run a solver that takes
5 minutes for each case. When compared to the 5-second runtime of the samplers, this approach
proves to be highly efficient and cost-effective.

Our findings may limit the direct practical implications of the landscape analysis in this context,
but they shed light on the specific feature that holds predictive power. This insight guides future
problem-solving scenarios, suggesting that focusing on the mean fitness of the solutions below the
10th percentile can be a reliable indicator of solver performance. Furthermore, this knowledge
allows for efficient resource allocation, as it demonstrates that good predictions can be obtained
with a minimal time budget.

Nonetheless, it is important to note that the development of efficient models is not necessarily
based on the inclusion of the mean fitness of sub-network A in training. By leveraging a well-
chosen set of features extracted from fitness networks and instances, it is possible to train models
that surpass the effectiveness achieved with just this singular feature. Such models may exhibit a
higher level of performance and predictive accuracy, demonstrating the versatility and potential for
optimization in the model-building process.
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3.1 Introduction

In the previous chapter, we developed a model to predict algorithm performance on instances based
on the search landscape. However, a limitation of our work was the availability of only a small
set of instances at that time. To effectively perform algorithm configuration, a significantly larger
sample is required to cover a wide range of possible cases.

Fortunately, the work of De Coster et al. [2022] has addressed this issue. They published a com-
prehensive study on the automatic selection of optimization algorithms applied on the Curriculum-
Based Course Timetabling problem. Their work encompasses various aspects, including instance
generation, training set creation, and data analysis, culminating in models that predict the most
suitable algorithm for each instance.

One notable outcome of their study was the identification of Hybrid Local Search (HLS), in-
troduced by Müller [2009], as the most commonly recommended method among four alternatives.
These alternatives included Simulated Annealing proposed by Bellio et al. [2016], an Answer Set
Programming approach employing a model developed by Banbara et al. [2019] and solved by Geb-
ser et al. [2012], as well as a fourth method based on a MaxSAT model, coded by Aśın Achá and
Nieuwenhuis [2014] and resolved by Berg et al. [2019]. This finding not only affirms our interest in
HLS but also validates our decision to use it as a baseline for our future algorithm configuration
experiments (see Chapter 4 and 5).

Moreover, the work of De Coster et al. [2022] provides an extensive collection of instances,
significantly expanding the range of available data for our work by tripling the number of real-
world instances and generating thousands of artificial instances. Their contribution in terms of
publicly available instances greatly enhances the scope and validity of future investigations.

Before directly using the instances generated by De Coster et al. [2022], it is crucial to recognize
that these instances were generated in the first place to behave similarly to real-world instances
while improving diversity. The training and testing sets are designed to encompass a broad spectrum
of problems in order to test solvers on diverse problems. As a result, some instances may differ
significantly from real-world instances. In the context of automatic configuration, training, and
testing sets must share similar characteristics.

This chapter focuses on an analysis of the instances generated by De Coster et al. [2022]. The
first part describes the process employed to generate these instances. Subsequently, we focus on an
examination of the dissimilarities observed in terms of instance features. Additionally, we explore
the concept of feasibility, which concerns all types of instances. In this thesis, an instance is deemed
feasible if, across 10 seeds and within a specified time limit matching the solver constraints (for
CB-CTT 5 minutes), the constructor proposed by Müller [2005] successfully generates at least one
solution. This notion of feasibility acts as a proxy for assessing the resemblance between the training
and test sets.

Then we present work that develops prediction models that form a part of a pipeline designed
to efficiently predict the feasibility of the CB-CTT instances. Furthermore, we construct a selector,
which serves as an additional filtering mechanism to refine the artificial CB-CTT instances. Through
these efforts, our objective is to establish a robust framework for predicting feasibility and enhancing
the quality of the generated instances.
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3.2 Artificial Instance Generation

In Chapter 1, an introduction is provided to the three benchmarks employed in the study: the
ITC (International Timetabling Competition), New Real-World, and Artificial benchmarks. The
ITC benchmark comprises 21 instances, originally presented during the International Timetabling
Competition held in 2007. These instances served to establish the CB-CTT (Curriculum-Based
Course Timetabling) problem as a benchmark widely recognized within the research community.
The remaining two benchmarks, New Real-World and Artificial were proposed by De Coster et al.
[2022].

The combined set of real-world instances amounts to 82, encompassing a wide range of scheduling
challenges faced by universities and institutions. The real-world benchmarks, including both the
ITC and new real-world instances, accurately represent the scheduling problems encountered by
universities. These instances effectively capture the challenges involved in transforming real-world
scheduling problems into CB-CTT format, making them a reliable and practical basis for evaluating
and addressing these complex issues. This set of instances serves as the standard on which the
solving methods must demonstrate superior performance, and as such, it is commonly used as the
testing set for machine learning in this field.

De Coster et al. [2022] work is part of a field of research that involves finding increasingly
complex and efficient ways of generating complementary instances for given problems. Instance
generation is based on instance space analysis, for example, i.e. the ability to represent instances in
a space and thus define them more easily in order to create new ones at a later stage (Smith-Miles
and Bowly [2015], Muñoz and Smith-Miles [2017]). De Coster et al. [2022] uses the results of two
research papers: Lopes and Smith-Miles [2010, 2013], which created and improved the instance
generator, even though De Coster et al. [2022] has tuned this generator to use the features they
selected.

In De Coster work, all real-world instances help to generate artificial ones, ensuring an adequate
volume of data for machine-learning methods while also validating the robustness of the results.
The artificial set consists of 6942 instances generated by De Coster et al. [2022]. The rest of
this section provides a brief overview of their process to facilitate understanding of the subsequent
analyses. The primary objective of their study was to create a diverse set of instances for automatic
algorithm selection. Their aim was twofold: to generate instances that closely resemble real-world
scenarios for effective learning and to introduce instances with unique characteristics that expand
the instance space.

The instance space refers to a spatial representation of the instances, and in their work, De Coster
et al. [2022] utilized Principal Component Analysis (PCA) on the instance features to position the
instances within this space. Now, let us examine the protocol followed by De Coster et al. [2022].

Algorithm 7 Artificial Instances Generation Procedure

1: Features← Extract(Instances)
2: Principal Component← PCA(features)
3: Estimator ← Gaussian Estimation(Principal Component)
4: NewPointsPCA← sample(Estimator)
5: NewPoints← Transform Back(NewPointsPCA)
6: NewInstances← generatorInstance(Newpoints)

The procedure for generating artificial instances detailed in Algorithm 7, as highlighted by De Coster
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et al. [2022] in their work, involves the following steps:

1. Feature Extraction: Initially, the relevant features are extracted from the 82 real-world in-
stances. Table 3.1 details these features.

2. Principal Component Analysis (PCA): The extracted features undergo Principal Component
Analysis, a technique designed to reduce the dimensionality of the feature space while captur-
ing the most significant patterns and variations in the data. PCA offers several advantages,
particularly in creating a reduced number of components that synthesize the behavior of data
features and their interrelationships. By identifying a set of principal components, PCA effec-
tively explains the majority of the variance in the feature space. These components represent
new dimensions that hold greater relevance for the data because each component includes a
significant portion of the behavior among all the extracted features.

3. Gaussian Estimation: An estimator, like a Gaussian distribution, is fitted to the principal
components derived from the PCA. Kernel density estimation is then applied to identify
the closest Gaussian distribution within the distribution of real-world instances on the new
principal components. By using Gaussian kernels in the kernel density estimation, we can
construct an estimator that not only generates solutions with closely aligned values within the
PCA-generated space but also enhances solution diversity. The Gaussian distribution proves
valuable for creating solutions, as it incorporates a density that diminishes as one moves
farther away from the origin points.

4. Sampling: The estimator generates nearly 7000 points based on its computed distribution.
These points have coordinates in PCA space.

5. Spatial transformation of original features: The generated or artificial points in the reduced
PCA space are transformed back to their original feature space using a specific procedure. This
involves repeating the matrix defined during the initial PCA step and applying its inverse to
the generated data. Through this process, the artificial instances are converted to the original
feature representation, resulting in a list of meaningful features for each generated instance.

6. Generation of new Instances: Finally, the newly generated points in the original feature space
are passed as inputs to a generator function. This generator function leverages the information
from the new points to create the desired number of artificial instances. These new instances
possess characteristics similar to the original instances while also introducing new variations
and filling the instance space.

By following this procedure, De Coster et al. [2022] were able to generate a large set of 6942
artificial instances. This approach allowed them to create real-world-like instances for effective
learning and algorithm selection while expanding the instance space and exploring new instance
characteristics.

De Coster et al. [2022] already remove obvious infeasible instances. That involves the instances
where Lectures is greater than Space and where the number of allowed Timeslots for one course
is fewer than the number of Lectures of this course.
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Table 3.1: List of Features used by De Coster et al. [2022] to generate instances. Feature names
and meanings are specified in columns 1 and 2 respectively. The third column shows whether the
features are used for the prediction presented in this chapter.

Feature Definition Used

Lectures
The number of lectures. This value helps define the
size of the problem.

✓

Courses The number of courses that defines how groups lectures. ✓

Rooms
The number of rooms. This value helps define the
size of the problem.

✓

Teachers
The number of teachers. The larger the number of
teachers in relation to the number of courses, the
better, as this reduces scheduling constraints.

✓

Curricula
The number of curricula. In general, the larger
the number, the more complex the problem.

✓

Working Days
The number of days. This value multiplied by
Periods per Day gives the total number of
timeslots.

✓

Periods per Day

The Periods per day value corresponds to how
a day is divided into timeslots. This value
multiplied by Days gives the total number of
timeslots.

✓

Unavailability
The number of unavailability constraints. Recall
one corresponds to a timeslot where a teacher is
unavailable.

Lectures / Course
(Min & Max)

Extrema number of lectures per course. This lets
you know whether a subject with certain constraints,
such as RoomStability, will be easy to meet.

Courses / Teacher
(Min & Max)

Extrema number of courses per teacher provide
insights into complexity. A higher number of courses
assigned to a teacher should increase complexity,
because the number of lectures per teacher increases.

Courses / Curriculum
(Min & Max)

The maximum and minimum number of courses
per curriculum serve as indicators of curriculum
composition. When considering a fixed number
of curricula, these values reveal whether one or
a few curricula include a lot of courses or if the
distribution is uniform.

Room Size
(Min & Max)

The size of the largest and smallest rooms
allows us to assess whether all the rooms share
identical dimensions, which can facilitate
compliance with RoomCapacity requirements.
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3.3 Analysis of Instances

This section presents two analyses of instances from different perspectives, focusing on their instance
features. The first analysis compares the characteristics of real-world instances with De Coster et al.
[2022] artificial data, providing insights into their similarities and differences. The second analysis
assesses the feasibility of instances based on their grouping. The objective is to examine and analyze
the instances, gaining a deeper understanding of their properties and implications.

3.3.1 Real-World versus Artificial Instances

This section presents an analysis of instances, specifically focusing on the comparison between Real-
World and Artificial CB-CTT instances. To conduct this analysis, we utilize the instance features
discussed in Chapter 2. These features serve as descriptive attributes that can be extracted directly
from the problem files without requiring any computational time, except for the time taken to read
the files. By leveraging these instance features, we gain valuable insights into the characteristics
and properties of the instances under investigation.

Unavailable
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Teacher

Space

Rooms

PeriodsPerDay

Lectures

Days

Curricula

Courses
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Figure 3.1: Normalized feature distributions for two sets of CB-CTT problems.

Figure 3.1 provides an overview of the distribution of instance features, as described in Sec-
tion 2.2.3.1, for both real-world and artificial instances. The distributions appear to be similar
between the two sets of instances, indicating that the artificial instances have been successfully
generated to resemble real-world instances. However, it is worth noting that the distribution of
features for the artificial instances is more spread out compared to the real-world instances. This
observation can be attributed to the characteristics of the Gaussian distribution estimator used,
which allows for the generation of more extreme values.

Moving on to Figure 3.2, it presents a visualization of the Principal Component Analysis (PCA)
for both real-world and artificial instances. PCA is a dimensionality reduction technique. In
our case, we are working with a table consisting of ten columns, where each row represents an
instance. That means each instance can be depicted in a 10-dimensional space, with each dimension
corresponding to a feature. To perform dimensionality reduction, PCA performs an eigenvalue
decomposition of the covariance matrix. This decomposition results in a set of eigenvalues and
their corresponding eigenvectors. These eigenvectors, referred to as the principal components,
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Figure 3.2: PCA Artificial versus Real.

are the key to dimensionality reduction. In our case, two dimensions that represent the most of
information in the form of the principal components are kept, allowing for easy visualization while
retaining the most important information.

Figure 3.2 demonstrates that the instance generator has effectively created visually similar prob-
lems, as the artificial instances fill in the gaps between and around the real-world instances. That
indicates artificial instances capture the essential characteristics of real-world instances while intro-
ducing additional variations to fill the instance space. The paper of De Coster et al. [2022] specifies
that their aim was also to fill the gap in instance space using their generators to diversify and
create a selection of robust algorithms for highly divergent instances. Overall, these figures provide
valuable insights into the comparison between real-world and artificial instances, highlighting their
similarities and the effectiveness of the instance generation process in creating representative and
diverse problem instances.

The key finding of the analysis is that the ranges of instance features for both artificial and real-
world instances are comparable. This suggests that the generation process of artificial instances has
been effective in capturing the characteristics of real-world instances. However, it is important to
note that using a Gaussian kernel in the generation process has resulted in creating instances that
exhibit greater divergence from the original data. While this diversification is a desired outcome,
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it also raises the concern that these new instances might be significantly different from the existing
data, potentially posing challenges when using them as a training set for machine learning models.

3.3.2 Feasibility Analysis

Preliminary work consisted of generating several initial solutions for each instance, whether real-
world or artificial. For this, the algorithm detailed in Müller [2005] and included in the Hybrid
Local Search framework has been employed. These executions revealed that the constructor, i.e.
the program that builds the initial solutions, was failing on some instances. This situation presents
a challenge as our focus has been primarily on optimizing solutions rather than constructing them.
Additionally, it becomes problematic because the objective of this thesis is to train methods to
perform well in real-world scenarios. If the generated instances are infeasible, meaning the con-
structor cannot build initial solutions, it can adversely affect the performance of complex pipelines
due to the absence of data and the computational time invested in solving these infeasible instances
becomes unproductive.

In the context of our work, a case-specific definition has to be formalized to define what means
feasibility. An instance is deemed infeasible if the constructor (Müller [2005]) fails to generate
an initial solution within 5 minutes. To ensure thorough analysis, runs of the constructor use 10
different seeds for each of the 7024 instances.

So feasibility is a characteristic that means the constructor cannot find a solution that respects
the hard constraints (Section 1.4.2.1), in a comparatively long computing time. If an instance is
infeasible, then the time allocated to the construction is wasted, so we want to be able to predict
this feasibility using instance features.

This scenario presents a concrete application of using generated instances as training sets for
machine learning models that predict feasibility. However, as mentioned in the previous section,
concerns were raised regarding the similarity of instances. The visualization using PCA revealed
instances that appeared highly unusual and distinct. Consequently, for this feasibility analysis, real
and artificial instances are treated separately to account for their potential differences in terms of
feasibility.

The first part of our analysis focuses on the global distribution of feasibility by type of instances.

Table 3.2: Frequency of infeasible and feasible instances by origin.

Artificial Real
Feasible Infeasible Feasible Infeasible

4370 2572 77 5

Table 3.2 shows the frequency of each feasibility by type of instances: real-world and artificial,
the generated instances. Thus, Table 3.2 shows that only 6% of the real-world instances are infea-
sible. That proves the infeasibility is not only due to the generator. Moreover, Table 3.2 shows
that, contrary to the Real-World instances, 38% of the generated instances are infeasible. So the
proportion is much higher. There are two possible causes. The first one is that the generator gener-
ated a high number of infeasible using infeasible real-world instances. However, Section 3.2 details
the process followed, so that makes this option impossible when using a Gaussian kernel because
proportions would be the same. The second is that the generator creates new instances that are
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also infeasible. But in this case, infeasibility is different than for real-world instances. Because it
is due to their creation rather than their difficulty to solve. In conclusion, this shows that there is
a notable difference in feasibility distribution between real-world and artificial data. In this thesis
work, we study whether feasibility is related to instance features, which could pave the way for
prediction.
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Figure 3.3: Scaled instance features distribution for the Artificial and Real-World sets and by class
of feasibility

Figure 3.3 shows the distribution of the values of instances features for real and generated
instances comparing also feasible and infeasible ones. Values of instance features are scaled by
the MinMax standardization process. That helps to highlight the difference between feasible and
infeasible. The scaling is done on all instances and values are, then, split by type of instances and
feasibility.

When comparing feasible versus infeasible instances, Figure 3.3 shows different distributions.
However, we see that the boxplots are visually the same for some instance features. The first
boxplot of Figure 3.3 focuses on generated instances. The latter shows infeasible instances seem
to have higher values for all features, except for Days and Timeslots. These observations are
confirmed by several Wilcoxon signed-rank tests with a threshold of 5%. This test is performed
as a two-sided test. They compare feasible and infeasible artificial instances for each feature.
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Wilcoxon results show that, except for Timeslots, distributions are all significantly different. Thus,
feasibility or infeasibility varies according to our selected instance features. This result implies
that a feasibility prediction model may perform well on this set. Moreover, the visual difference
observed for the real-world CB-CTT instances is more noticeable. That could be due to the low
frequency of infeasible instances in this set as shown by Table 3.2. For example, the Courses or
Rooms distributions do not overlap at all. On the contrary, the generated instances show a slight
change in the distribution. Contrary to the differences noted on the second Figure 3.3 boxplot,
Wilcoxon tests find Curricula, Days, Teacher, and Unavailable as significantly similar. So despite a
more noticeable visual difference, Wilcoxon tests assume that the samples are significantly similar
because the volume of real-world data is small, whereas Wilcoxon tests take this small sample size
into account and therefore more easily assume that the data are similar.

In summary, looking at the distributions and the Wilcoxon tests, constructing a model seems
to be highly possible given the divergent behavior. This model could be a random forest. Indeed,
a random forest can create efficient classification rules if some features appear to be discriminant.
If Wilcoxon tests denote a difference, the random forest should use these significant differences
to improve prediction power. Perhaps this type of model has more difficulty with artificial data
because the difference is less pronounced.

-5

0

5

0 5 10 15
PC1 (62.5% explained var.)

P
C

2 
(1

5.
4%

 e
xp

la
in

ed
 v

ar
.)

Feasible       Infeasible

Figure 3.4: Principal Components Analysis: Feasible versus Infeasible
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As explained in Section 3.2, the analysis of the distributions considering the instance features is
useful to have a first comparison to see independent possible discriminating features. In addition, it
is helpful to use a visualization provided by PCA to see if infeasible instances show a global pattern.
PCA considers and offers a visualization using all features at the same time taking into account
their interdependence relation. However, visualization using a PCA is only one way of representing
the data. Ideally, the space should be displayed using all the dimensions directly, without going
through a PCA, which is a tool for representing part of the information on the original dimensions.

Figure 3.4 shows the percentage of information represented by each axis or component. The
representation score is the sum of both axes which amounts to 78%. Figure 3.4 shows several
feasible and infeasible instances overlapping in a cluster of points more in the center. However, many
infeasible instances are located in the right part of the figure, away from the cluster. That confirms
the instance features surely discriminate and therefore may be used to predict the feasibility.

The analysis of feasibility has provided valuable insights into the characteristics and predictabil-
ity of instance viability. By examining the distribution of feasibility among real-world and artificial
instances, as well as exploring the relationships with instance features, we have gained a deeper
understanding of the challenges and opportunities in constructing feasible solutions. The findings
highlight the importance of distinguishing between real-world and artificial instances, as their fea-
sibility distributions can vary significantly. Moreover, the visualizations and statistical tests have
demonstrated that certain instance features exhibit discriminative behavior in determining feasi-
bility. That opens up possibilities for developing prediction models that can effectively assess the
viability of instances and guide decision-making processes.

3.4 Feasibility Prediction

In this section, we focus on the feasibility prediction in the context of our work. Building upon
our previous analysis, which demonstrated the discriminative nature of instance features (Sec-
tion 2.2.3.1), in determining feasibility, we now turn our attention to developing a predictive model.
Our analysis revealed distinct distributions and patterns in the values of instance features for fea-
sible and infeasible instances, indicating their potential as predictors of feasibility.

Why do we aim to predict feasibility? There is one logical reason. Firstly, it helps us save
computing time. Imagine spending five minutes on ten runs trying to find a solution, only to
discover that the constructor cannot create it. Predicting feasibility avoids this scenario, ensuring
that computers allocate more time to resolution. However, the primary motivation for employing
a machine learning process to predict feasibility is to identify artificial instances that are close to
real-world instances. Feasibility is employed as a measure of instance similarity because it serves
as a quantifiable behavior that appears to be influenced by the characteristics of the instance itself.

We have selected the random forest model as the classifier for predicting instance feasibility.
This type of model is well-suited for binary class forecasts, making it a good choice for our task.
Random forests have demonstrated strong performance in various domains and are widely used
in the literature for instance characterization and even automatic algorithm selection (De Coster
et al. [2022]). Leveraging the benefits of a set of decision trees, random forests offer robustness,
scalability, and the ability to handle high-dimensional feature spaces.

One drawback of this method, and many other models, is its difficulty in properly handling
an unbalanced dataset. That corresponds to a dataset where one class largely outnumbers the
other. That is why all models, in this paper, are trained on a balanced dataset obtained via under-
sampling, i.e., considering a smaller number of the over-represented class. We also tested using only
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stratified sampling but the performance was not good. In summary, an algorithm selects randomly
an equal number of instances of the two classes we want to predict. It is this set of an even 50-50
split that is used for the training set.

In this case, we chose the under-sampling, i.e. we reduced the majority class to have the same
number as the minority class. The major disadvantage of random sub-sampling is that it may
discard potentially useful data that could be important to the induction process. Another possible
solution would have been oversampling, i.e. generating solutions to increase the volume of data
available for the minority class. A popular oversampling technique is SMOTE (Synthetic Minority
Over-sampling Technique) (Chawla et al. [2002]), which creates artificial samples by randomly
sampling the characteristics of the minority class occurrences. A disadvantage of these methods is
the creation of a bias for the model in some cases. Moreover, the creation of multiple samples in
the minority class can lead to model overfitting.

3.4.1 Feasibility Models

The primary objective of this section is to develop robust prediction models that accurately deter-
mine the feasibility of instances. By achieving this goal, we desire to effectively filter out infeasible
instances, optimizing our resource allocation and computational efficiency. The models undergo
testing using real-world data, ensuring their ability to accurately predict feasibility for future real-
world instances. In total, three models are created, each denoted as FPX , representing feasibility
models trained on a specific subset of instances denoted as type X.

Three distinct models are developed to predict feasibility, enabling a comparative analysis of
their predictive power. The first model, referred to as FPR, is trained using a dataset comprising
82 real-world instances. Although this dataset is relatively small, it serves as our reference point
for comparison with the other models and is not specifically designed as a feasibility model.

The second model, named FPA, is trained exclusively only with artificial instances.

The third model, denoted as FPAC , also utilizes data from the generated instances. However,
unlike FPA, it is trained on a carefully selected subset of artificial instances.

Table 3.3: Table of Trained Models, Training Sets, and Objectives

Model Training Set Goal

FPR Real-world instances Reference model
FPA Artificial instances Naive model
FPAC Selected subset of artificial instances Improved model

Table 3.3 summarizes the three models used in the following sections, their training set, and
their goal. Although the table makes it explicit that the models are built on instance sets, it should
be noted that the sets go through the under-sampling algorithm described in the introduction to
the Section 3.4. Thus, these models are slightly different at each seed tested, as the under-sampling
does not select the same instances for training as indicated in Table 3.3.

In addition, all models are evaluated on real-world instances. Since FPR uses an under-sampled
percentage of real-world instances, its testing set is reduced, as testing and training do not need to
have any data in common.
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Figure 3.5: Procedure for the Selection of Generated Instances. The model FPR is trained and
then used to predict the feasibility of artificial instances. Instances whose feasibility has been well
predicted are in the AC set.

Generated Instance Selection Section 3.3.2 presented an analysis of the instances that showed
that the behavior of the generated instances appeared to be different, in terms of feasibility, from
real-world CB-CTT. Given the generation process, detailed in Section 3.2, we consider that some
generated instances are like real data, in terms of feasibility. Therefore, we aim to be able to identify
those real-like generated instances.

Figure 3.5 summarizes the process of artificial instance selection. Figure 3.5 shows that the
whole process begins with the training of model FPR on 2/3 under-sampled of real-world.

The second step involves using the FPR model to predict the feasibility of the artificial instances.
Subsequently, we identify and retain the artificial instances that are accurately predicted by FPR.
Figure 3.5 highlights that the correctly-predicted artificial instance set is called AC. On the other
hand, the other artificial set is called AU and is not used anyway. Once the set has been defined,

FPAC

Train 2/3 Test 1/3

Correctly-predicted
AC

Figure 3.6: Training a Feasibility Model with Carefully Selected Generated Instances.

we can create the model FPAC which, after under-sampling, is trained on the AU set. Figure 3.6
shows this process and, together with Figure 3.5, constitutes the complete process for creating the
model FPAC .

Our hypothesis is straightforward: if a generated instance is well-predicted by a model specif-
ically designed for real-world instances, then its feasibility should be similar to that of real-world
instances. Based on this premise, the set of artificial AC in Figure 3.5 is saved. This AC set selects
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approximately 58% of the generated instances, which amounts to 4446 problems.
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Figure 3.7: Scaled instance features distribution for the selected and non-selected Artificial and
Real-World sets and by class of feasibility

Figure 3.7 provides an overview of the distribution of instance features. Upon examination,
Figure 3.7 reveals no significant difference between the two sets of artificial instances: the selected
and non-selected subsets, except that the distributions es not selected are less spread. In other
words, there are fewer values outside the boxplots. While slight shifts in the distribution between
the unselected artificial and real-world instances are observed, the selected seems to align more
closely with the value space. However, this figure alone does not enable us to draw any conclusions
regarding the performance of the prediction models.

The analysis carried out so far does not indicate any particular behavior of AC, the selected
artificial instances, compared to the unselected set or AU within the set of selected instances.
Despite this, we proceeded to train a prediction model using these selected instances. The resulting
model of the set AC, FPAC shown in Figure 3.6, is now ready for testing.

3.4.2 Models Evaluation

Finally, we trained three models. This part contains details about their evaluation of their ability to
predict the feasibility of real-world instances. FPA and FPAC are evaluated 50 times with different
subsets of their training sets. Recall the under-sampling process; these subsets are balanced to have
the same number of infeasible and feasible instances. To obtain different training sets, different
seeds are tested and the under-sampling is rerun. Using different training subsets helps to test the
robustness. Then, the accuracy corresponds to the proportion of real-world instances well-predicted.
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The evaluation of the FPR model involves two distinct cross-validation techniques. First, a
3-fold cross-validation process is employed, where 2/3 of the available real data are utilized for
training, while the remaining 1/3 is set aside for testing. However, due to the limited number
of real instances, the model is also subjected to leave-one-out cross-validation. In this approach,
the model is trained on all real-world instances except one, which is subsequently used for testing.
These two evaluation methods serve specific purposes. Leave-one-out cross-validation is particularly
advantageous when working with small training and test sets, as it involves testing with just a
single instance. On the other hand, 3-fold cross-validation provides more realistic results by testing
the model across multiple groups. For FPR, both evaluation techniques are employed due to
the scarcity of real-world data. While leave-one-out is practical for small datasets, 3-fold cross-
validation allows for comparisons with other methods and offers a comprehensive assessment of the
model performance.

Table 3.4: Model Performance Metrics on real-world problems.

Model
Accuracy

Sensitivity Specitificity
Train Test

FPR 3-Fold 0.81 0.78 0.67 0.9
FPR LOOCV 0.75 1 1 1
FPA 0.82 0.36 0.33 0.6
FPAC 0.77 0.77 0.76 0.93

Table 3.4 contains the average details of each model. Moreover, it also includes the average
accuracy of the learning. Accuracy represents the proportion of instances whose feasibility has
been correctly predicted out of the total number of instances to be predicted.

Sensitivity, also known as True Positive Rate or Recall, is calculated as follows:

Sensitivity =
True Positives

Actual Positives

This metric quantifies the number of positive instances correctly predicted as positive, divided by
the total number of actual positive instances. In our context, an instance is classified as positive if
it is considered feasible.

Specificity, often referred to as True Negative Rate, is computed as follows:

Specificity =
True Negatives

Actual Negatives

It measures the number of negative instances correctly predicted as negative, divided by the total
number of actual negative instances. In our scenario, an instance is categorized as negative when
it is identified as infeasible.

Firstly, Table 3.4 shows that FPR has good accuracy. Notably, 3-fold cross-validation reduces
the sensitivity of FPR. That is probably due to the low number of instances in the real-world test.
We hypothesize that cross-validation is definitely not suitable for evaluating this model. Up to this
point, only the Leave-One-Out cross-validation method has consistently shown the effectiveness of
FPR. It is worth noting that this model serves as our reference for predicting feasibility in real-
world scenarios. The confirmation of our hypothesis and the analyses of the discriminating power
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of instance characteristics by at least one cross-validation method led us to further evaluate the
other models.

Table 3.4 shows that FPA presents a high accuracy for the training test. That means FPA

predicts efficiently the feasibility of a problem if it is artificial. The accuracy of the training is good,
above 0.8. Unfortunately, FPA fails to predict real-world feasibility. That confirms a difference
in the behavior or profile of these two sets of benchmarks, real-world versus artificial, despite the
process used by De Coster et al. [2022]. Indeed, the accuracy of this scenario is 0.36, which means
that a random classification would be more efficient. This behavior is logical if we take into account
the difference between the behaviors noted during the analyses.

Now let us look at model FPAC using generated instances. Table 3.4 clearly shows that the
model obtains a good accuracy, compared to the other model. Indeed, it has a score of 0.77. The
one trained on the real instances is much worse than the real one, when evaluation is done with
LOOCV, but proves that we can use some of the generated data to predict the behavior of real-
world instances. The performance of FPAC is better than FPR if we compare with the same
cross-validation method, specifically in terms of sensitivity.

The conclusion of this part is the success of our model using selected generated instances. One
of the next steps would be to create a finer selection to reach a model as efficient as FPR. Even if
we have the accuracy of the models and we have verified that their confusion matrix is balanced,
we look more deeply into the three models to understand the success or not of these models.

3.4.3 Prediction of Selected Artificial Instances

Figure 3.8: Process for constructing the selector of generated instances.

Section 3.4.1 has demonstrated the strong predictive performance of FPAC . Recall that the
instances used for selection were initially identified using FPR.

In the subsequent part of this section, we propose a model designed to determine whether
an artificial instance should be selected or not. This model exclusively utilizes the information
encapsulated within the instance features.

The motivation behind such a model is to eliminate the need for computing the feasibility of all
generated instances and relying on another model. Instead, having an initial artificial data sample
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categorized into two classes, namely selected and not selected, would be sufficient. This approach
streamlines the selection process and reduces dependence on additional models for determining the
instance state of selection.

As a reminder, the previous section presented a comparison between the selected and not selected
instances, revealing discernible differences. This divergence in behavior was already highlighted in
Figure 3.7. Consequently, we can leverage the instance features to develop a selector that chooses
if a new instance is selected to be part of the train test.

To build the dataset we use FPR that tells which artificial instances to choose according to the
prediction (Section 3.4.1). If an instance is well-predicted then it is selected. Following this process,
we create a dataset of artificial instances. Then we create a balanced training set of selected or not
selected that represents almost 66% of data. The Selector is then created and is a random forest
model that is specifically trained to perform the instance selection task.

The process for training the selector construction pipeline is illustrated in Figure 3.8, providing
a visual representation of the steps involved. This pipeline involves utilizing the predictions from
FPR, generating a balanced training set, and training the Selector to effectively discern between
selected and non-selected instances based on their distinctive features.

The Selector performance is evaluated using a 3-fold cross-validation. The cross-validation
procedure returns a sensibility of 0.73, a Specificity of 0.86, and an Accuracy of 0.82. Thus, we
can validate this model for use in future contexts. The fact that the Selector performance is good
confirms our analysis in Section 3.4.1 where we noticed a pattern difference between distributions
of the instance features of selected or not selected generated instances.

Hence, Selector demonstrates its effectiveness in efficiently identifying instances that exhibit
similar characteristics. In the following section, we implement the comprehensive process that
encompasses our two models: Selector and FPAC . The former is responsible for selecting instances
based on its predictions, which are then used as input for the latter model. The objective is to
test the scenario where Selector, identifies and selects instances, followed by training a feasibility
prediction model, FPAC , solely on the selected instances. This approach aims to verify that any
errors made by each individual model do not accumulate or compound during the selection and
feasibility prediction process. By ensuring that the errors of the two models do not amplify each
other, we can enhance the overall robustness and reliability of our predictions.

3.5 Pipeline Validation

To summarize the work already presented in this chapter, the objective of this chapter was initially
to assess the similarity between artificial and real-world instances. Preliminary findings indicated
a degree of similarity, despite the influence of using a Gaussian kernel for instance generation.
However, initial executions revealed that certain new instances (De Coster et al. [2022]) appeared
to be infeasible, making it exceedingly challenging to generate an initial solution that satisfied the
four hard constraints.

Recognizing the significance of identifying this feasibility aspect, we attempted to predict it
by leveraging the instance features. By using instance features, we aimed to develop a predictive
model that could discern the feasibility of instances more effectively. The most efficient model uses
a selected subgroup of artificial instances. Thus we have also proposed a model that selects the
generated instances for this model. This means that by creating a pipeline to predict the feasibility
of real-world instances, we have created a way to automatically select artificial instances in the
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future that are considered more similar to the real-world data. Both models use the same instance
features as explicable features and perform well.

This section presents a pipeline that includes two models in sequence. Then it evaluates the
feasibility prediction of the whole pipeline. The objective of this pipeline is to show that we can
use this pipeline as is in future work to create a filter that remains efficient despite two models in
sequence.

The created pipeline is described by Figure 3.9. In order to obtain statistically robust results,
the pipeline is executed 30 times.

Figure 3.9: Feasibility Pipeline. FPR is first trained on Real. Then, FPR is employed to generate
two types of artificial instances Correctly-predicted and not. After that, Selector is trained using
a part of Artificial to select remaining artificial instances. Finally, artificial instances selected by
Selector serve as the training dataset for FPAS , which is in end evaluated using the remaining
real-world data.

Firstly, the feasibility model FPR is trained on a balanced training set derived from real-world
instances. Subsequently, this model is employed to select the generated instances, following the
procedure outlined in Section 3.4.3. By running FPR on all the artificial data, instances whose
feasibility is accurately predicted are designated as selected, while others are deemed not selected.

For each generated instance, we obtain its corresponding category: selected or not. Selector is
then trained using a balanced training set constructed from this selection data frame. Then, it is
tested on the remaining instances.

The generated instances predicted as selected are set aside to form the training set for the
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final feasibility prediction model: FPAS . Finally, this model is tested on the real-world instances
not used at the beginning by FPR. This entire process is repeated 30 times, with each iteration
involving two balanced training sets: one for FPR and another for Selector. By repeating the
iterations, we assess the robustness of the pipeline.

Ultimately, the performance of the feasibility prediction using this pipeline is measured in terms
of mean sensitivity (0.74), specificity (0.80), and accuracy (0.74). These metrics provide an average
assessment of the pipeline effectiveness.

0.4

0.6

0.8

1.0

Accuracy Sensitivity Specificity

Figure 3.10: Performance of feasibility prediction at pipeline output.

Figure 3.10 shows the distribution of the three performance prediction metrics among the 30
repeats. Specificity concerns the class of infeasible instances. The pipeline, which connects and
chains the models together, delivers good results, reaching at least 0.74 in all three metrics. This
indicates its ability to predict feasibility.

A way to enhance the pipeline performance could consist of the incorporation of additional
instance features, drawing inspiration from the work of De Coster et al. [2022]. This approach aims
to leverage the benefits of augmenting the feature set in order to improve the predictive performance
of the pipeline.

3.6 Conclusion

In this chapter, the primary objective was to investigate whether the instances generated by De Coster
et al. [2022] could serve as viable training sets for configuration. We initiated our analysis by con-
trasting and examining these two sets. The evaluation of the instance features revealed that the
artificial instances exhibited significant variability and occupied distinct regions within the instance
space. This characteristic could pose challenges when aiming to achieve real-world performance.

Additionally, our initial experiment highlighted the prevalence of infeasibility as a concrete
obstacle. Consequently, it became imperative to swiftly identify and exclude infeasible instances,
both artificial and real.

After conducting a comprehensive analysis to identify patterns among the infeasible instances,
we opted to predict their feasibility. The underlying idea behind this decision was to develop a
model that could act as a filter for future instances while also assessing the similarity between the
training data (artificial instances) and real-world instances. By leveraging feasibility as a proxy, we
aimed to establish a connection and measure the degree of similarity.

Regrettably, the FPA proved ineffective in its current state. As a result, we embarked on
training a model directly on real-world instances to identify which artificial instances demonstrated
better feasibility prediction performance. These instances were deemed to bear closer resemblance
to real-world scenarios compared to others.
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Upon training the model using these selected artificial instances, we observed significant im-
provements in the results. This underscores the importance of carefully selecting artificial instances
before utilizing them directly.

As part of our future work, we are developing a model called Selector that employs instance
features to identify artificial instances exhibiting similar feasibility patterns, then it says if an
instance is selected or not.

To validate our approach, we performed a sequential execution of all these tasks to mitigate
any cumulative errors arising from Selector and feasibility prediction models, FPAS . The pipeline
results yielded positive outcomes, with all metrics reaching at least a mean value of 0.74.

Furthermore, we envision the possibility of incorporating additional instance features to augment
the model and further enhance its performance.
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4.1 Introduction

The analysis of methods used for combinatorial problem-solving can shed light on how solvers
work. That means investigating how the different components of this method interact, how they
collectively provide high-quality results, how they perform individually, and whether combining
them results in the overall method achieving the minimum quality provided by the best component,
or whether synergy is created and thus adds performance.

This chapter focuses on a state-of-the-art method for solving the problem addressed in this
thesis, namely Curriculum-Based Course Timetabling (CB-CTT). This method is Hybrid Local
Search (HLS) (Müller [2009]) and was introduced in Chapter 1. This metaheuristic is an iterative
method that executes a sequence of three local search algorithms: Hill Climbing, Great Deluge, and
Simulated Annealing. Each of these algorithms possesses mechanisms that differ from their basic
definitions in the literature. Therefore, these methods are considered part of Hybrid Local Search.

Hybrid Local Search is a method designed and optimized to win the International Timetabling
Competition (ITC) in 2007. While it is continually being developed to adapt to more recent editions
of the ITC, the method is tuned for the ITC benchmarks provided at that event. This resolution
method for CB-CTT can be considered complex, as it is a hybrid approach involving three different
local search methods. Therefore, when emphasizing the understanding of the components of this
algorithm, questions about the need for such complexity need to be raised. Does Hybrid Local
Search need to have these three components in this order? Can the parameters be further tuned?
Can all the strategies used in HLS be employed to create a more efficient method? All these
questions about the various modifications to be made to HLS lead the work in this thesis to analyze
HLS in terms of performance first, but above all, to analyze the structure of the solving method itself.
Several papers in the literature, such as Marmion et al. [2013], have explored the generalization
of local search methods into a single algorithm that can be instantiated for specific local search
purposes. Thus, HLS could be considered as a simple algorithm that iterates over a sequence of
local search algorithms. The conceptual abstractions and questions regarding the structure of HLS
underscore the need for a framework that enables a straightforward and practical implementation
of this generalization. To facilitate this process, a tool that simplifies the instantiation of the
generalization and allows for the examination of multiple scenarios is necessary.

This chapter provides an initial analysis of the components of Hybrid Local Search, representing
the first step in questioning the complexity of Hybrid Local Search. Additionally, this chapter
details how the Iterated Sequential Local Search framework was derived from the Hybrid Local
Search method. The latter can instantiate HLS but offers much greater flexibility to create new
algorithms using all the original HLS components. Finally, the chapter describes how, concerning
the literature, the generalization of local search algorithms has been possible and under which
conditions it applied to Hill Climbing, Great Deluge, and Simulated Annealing.

The first section of this chapter presents the preliminary experiments that analyze the individual
performances of the local search algorithms contained in Hybrid Local Search. The second section
focuses on explaining how it is possible to define and create a framework, Iterated Sequential Local
Search, that can instantiate HLS while offering additional flexibility to re-tune parameters and test
new structures. Finally, the last section explains the framework code, specific optimization features
that have been implemented, and the basic framework that has been used to save time. This is
followed by an explanation of how and what parameters are required to run the framework from
the command line.
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4.2 Preliminary Experiments

In Chapter 1, we provide a detailed exposition of the HLS algorithm. This discussion encompasses
its defining characteristics, the local search strategies it employs, and the neighborhood operators
it integrates. Chapter 1 provides an understanding of how HLS works factually.

HLS is an approximate solving method that won the International Timetabling Competition
in 2007. It remains a major approach in recent works related to the Curriculum-Based Course
Timetabling problem. For example, its performance is compared with exact methods and other
heuristic approaches in De Coster et al. [2022]. Additionally, HLS serves as a performance baseline
when new solvers are proposed (Coşar et al. [2023]). Recent work has even investigated how to
improve the performance of Hybrid Local Search by manipulating the selection of neighborhood
operators (Song et al. [2021]).

Hybrid Local Search is therefore still a timely method for solving the CB-CTT problem. This
section attempts to understand how this method works so well. To this end, the following work aims
to study the performance of HLS and compare it to its components, i.e. a version of HLS in which
some of its local search algorithms are disabled. This study provides additional information on the
success of HLS and how, in terms of performance, the three local search algorithms included in
HLS work together and separately. It is worth noting that no parameters are altered in this study,
maintaining the same values presented in Chapter 1. Furthermore, this study exclusively employs
the ITC benchmark, aligning with HLS design parameters. The objective is to gain insights into
HLS performance when applied to datasets for which it was originally tailored, thus providing a
comprehensive understanding of its operation in optimal conditions.

4.2.1 Experimental Protocol

This section presents the instances used and the methods evaluated. As introduced previously, the
main idea is to analyze the performance of the local search algorithms contained in Hybrid Local
Search to question their impact and understand which method contributes most and whether it is
necessary to use all three methods.

Chapter 1 details the Hybrid Local Search. The latter is an approximate method that executes
a sequence of three local search algorithms during a fixed amount of time, except if it finds a perfect
solution, when the algorithm stops and the objective function returns zero. In our protocol, we
are keeping the same code provided by Müller [2009]. Thus, Hill Climbing, Great Deluge, and
Simulated Annealing remain the same as the original HLS detailed in Chapter 1.

Hill Climbing is a local search method used for pure intensification. In other words, it does
not accept non-improving solutions. In the case of Hybrid Local Search, HC accepts improving
or equivalent solutions because of neutral acceptance criterion. Consequently, it generally returns
the first local optimum found, which has generally a poor fitness value. That is why studying
Hill Climbing alone is not meaningful, given its poor results. So, commonly, Hill Climbing is
almost always associated with another mechanism. This study combines the Hill Climbing and the
Great Deluge (GD) of HLS. Furthermore, since Great Deluge seems to accept more perturbations
than Simulated Annealing, then combining it with a pure intensification method could improve its
performance ensuring that Great Deluge always begins with an almost local optimum. Thus, this
work studies the performance of the algorithm iterating over the sequence HC then GD: HCGD.

The second algorithm investigated is the Simulated Annealing (SA) included in the Hybrid
Local Search. Simulated Annealing is commonly known in the field of combinatorial problems
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for being a local search method that mixes diversification and intensification and provides good
results in general (Hasançebi et al. [2010], Henderson et al. [2003], Rutenbar [1989]). Indeed, this
neighborhood-based method can escape from a poor local optimum with its metropolis acceptance.
That is why this study examines a Simulated Annealing that iterates on itself according to the HLS
stopping criteria. HLS Simulated Annealing has a mechanism that changes its parameters for the
next call which should help with the diversification when SA is called iteratively.

Figure 4.1 presents a representation of Hybrid Local Search to show how HLS has been sliced
up.

Hill-Climbing Great Deluge
Simulated
Annealing

Hybrid Local Search

HCGD

Figure 4.1: Hybrid Local Search and its sub-algorithms: HCGD and SA.

Figure 4.1 shows that HLS can be considered as an iterated method that executes HCGD and
then Simulated Annealing (SA). The idea is to deactivate either the HCGD box for studying SA
alone or the SA box for studying HCGD alone.

The experiments consist in running the HLS algorithm, the iterated HCGD algorithm, and the
iterated SA algorithm on each of the 21 instances of the ITC 2007. These are the instances on
which HLS has been optimized and for which it was initially coded. We considered as preferable
to test HLS under the conditions for which it was designed, and not to use the other benchmarks.
The particularities of these instances are presented in Chapter 1 and in Chapter 3.

Subsequently, 100 runs are performed on the HLS, HCGD, and SA algorithms for each instance
of the benchmark instances. Each of the 100 runs employs a distinct random seed, allowing us
to calculate average performance metrics. Each seed corresponds to a different initial solution.
However, the 100 runs of the three algorithms use the same seeds. These runs were executed on an
Intel Xeon Silver 4114 CPU operating at 2.20GHz. The outcome considered for evaluation is the
fitness of the best solution reached within a time limit of 300 seconds or 5 minutes.

4.2.2 HLS, HCGD, and SA Performance Results

All the runs performed represent 2100 executions of 300 seconds, i.e. 2100 fitness values returned
by the HLS, HCGD, or SA algorithms.

Table 4.1 provides summary statistics of the fitness values for the solutions returned by each
of the three methods. Table 4.1 contains, for each instance, the average fitness value obtained
over the 100 runs for each algorithm. In addition, Table 4.1 shows the standard deviation of this
fitness to give a better idea of convergence. For each row, Table 4.1 puts in bold algorithms that
correspond to the best algorithms according to the Friedman statistical significance test (Hollander
et al. [2013]). Table 4.1 also has three columns that show the ranking of the three methods to
summarize the order for each instance.
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Table 4.1: Fitness values of the best solution found by HCGD, SA, and HLS. Bold values mean
that the algorithm is statistically better than the others. The rank of each method is provided in
the three last columns. The four groups organize together instances with similar these rankings.

Group Inst
HCGD SA HLS Rank
Mean(sd) Mean(sd) Mean(sd) HCGD SA HLS

A
01 5(0) 5.1(0.2) 5(0) 1 3 1
11 0(0) 0(0) 0(0) 1 3 1

B

02 72.9(14.4) 61.6(8.3) 58.2(7.5) 3 2 1
03 93(9.9) 91(8.2) 84.9(5.9) 3 2 1
06 67(9.7) 51.7(5.4) 55.5(5.9) 3 1 2
07 32.2(9.2) 15.4(3.4) 20.1(4.4) 3 1 2
08 45.7(3.2) 42.8(2.5) 44.5(2.8) 3 1 2
10 40.8(9.1) 18.9(4.8) 21.5(5.1) 3 1 2
14 61.2(4) 59.9(3.6) 60.3(3.2) 3 1 2
15 92.2(9.9) 90.3(8.2) 85.1(5.8) 3 2 1
16 57.1(8) 38.8(4.9) 41.3(5.5) 3 1 2
17 87.3(7.5) 82.1(5.2) 84(5.4) 3 1 2
19 77.7(8.8) 70(4.9) 69.7(4.4) 3 1 1
20 52.1(13.3) 31.5(6) 36.5(6.8) 3 1 2
21 118.6(10.2) 106.6(6.5) 107.8(7.2) 3 1 2

C

05 331.9(13.6) 362.5(29.8) 335.9(14.1) 1 3 2
09 109.2(4) 110.3(4.7) 109.3(3.7) 1 3 1
12 345.4(9) 373.1(15.4) 350.7(8.8) 1 3 2
18 85(3.8) 92.6(5.3) 87.2(3.4) 1 3 2

D
04 40.9(3.2) 39.8(2.8) 40.9(2.6) 2 1 2
13 73.8(3.9) 73(4.7) 74(3.8) 2 1 2

Set of the 21 instances from the ITC 2007 dataset has been classified into four distinct groups
(A, B, C, and D). This classification is based on the performance ranks of the three optimization
algorithms: HCGD, SA, and HLS. The aim is to make it easier to read and see the main performance
behaviors of the three algorithms.

Group A consists of the two instances that can be considered very easy. In this group, the
ranks may not provide significant differentiation due to the similarity in fitness values among the
algorithms. Group B includes instances where HCGD ranks third among the three algorithms.
These instances are moderately challenging. Group C comprises instances where SA ranks last
among the three algorithms. This group represents cases where SA performs the least effectively.
Group D covers the remaining two instances, which exhibit their unique characteristics. This
classification of instances is not used in the next chapters, but it does highlight the overall behavior,
in terms of performance, of the three algorithms.

The first notable result is that HCGD performs badly when no longer associated with SA.
Indeed, Group B includes the majority of ITC 2007 instances, which means that it is often worse
than the other two algorithms.

SA consistently demonstrates superior performance compared to HLS and HCGD across most
of instances. Iterated Simulated Annealing of HLS emerges as the top-performing algorithm in 12
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instances, followed by HLS in 7 and HCGD in 4. This notable trend prompts us to focus on the
comparative analysis by assigning rankings to the algorithms for each instance.

Furthermore, Table 4.1 provides a detailed analysis of the rankings for each method across
instances. Another insightful perspective is to examine the average rank for each algorithm, moving
beyond the observation that SA frequently achieves the top rank.

Surprisingly, when summing the ranks, HLS edges ahead of SA by a single point, in contrast
to the initial expectation. A closer look at Table 4.1 reveals that HLS consistently secures either
the first or second rank, never falling to third place, while SA occasionally underperforms with
a third-place ranking in certain instances. The results presented in Table 4.1 illustrate that SA
performs well in the majority of instances, with a few instances presenting notable challenges.
These challenging instances are grouped in A and C, where HCGD emerges as the top-performing
algorithm. Additionally, HLS exhibits consistent performance across instances, shedding light on
Müller strategy of harnessing both HCGD and SA sequentially to secure victory in ITC 2007 (Müller
[2009]).

4.2.3 Conclusion and Motivation

In summary, these experiments have demonstrated that while Hybrid Local Search, as originally
proposed by Müller [2009], is a robust algorithm, it can be outperformed by one or two of its own
components executed solely. Notably, the results reveal that the Iterated Simulated Annealing, a
version of Hybrid Local Search without the use of HC or GD components, outperforms the original
method on more than half of the ITC 2007 instances. Surprisingly, in certain cases, instances fare
even better with HCGD.

Although Hybrid Local Search is a well-performing fixed algorithm, it can still be outperformed
by alternative algorithms. What is particularly intriguing is that lighter variants of Hybrid Local
Search, achieved by deactivating specific local search components while keeping their parameters
intact, yield superior solutions compared to the original method.

This realization has sparked the idea of creating an adaptable Hybrid Local Search framework,
where variants like Iterated Simulated Annealing or iterated HCGD can be easily generated. In
this endeavor, we do not limit ourselves to simply deactivating fixed algorithms without altering
their parameters. Instead, we would like to provide the flexibility to manipulate all the parameters
of each local search, redefine the established order of the local search sequence within HLS, and
even directly customize the local search algorithms themselves. The idea would be to extract the
most valuable elements from each local search, lighten the code, and enhance overall performance
while creating the best new solver.

4.3 The Iterated Sequential Local Search Framework

This section outlines work toward developing an adaptable framework capable of generating a wide
array of algorithms that iterate through a sequence of modular local search algorithms.

Section 4.3 starts by discussing the initial concepts that led us to transform a fixed-structure
Hybrid Local Search algorithm into a modular and highly configurable framework.

Subsequently, Section 4.3 focuses on the various parameters and considerations necessary to
adapt this generalization to our specific problem. Our leading goal is to demonstrate how this
framework, developed on the basis of the original Hybrid Local Search, can finally be used to
instantiate Hybrid Local Search (HLS).



76 Iterated Sequential Local Search Framework

Literature Context The development of the Iterated Sequential Local Search Framework is
rooted in the context of generalizing Hybrid Local Search (HLS), a method that combines various
local search techniques. This transformation aims to create adaptable software able to generate
efficient iterated methods tailored to specific problem domains. Addressing the need for such
adaptability and generality has been a central theme in the study of neighborhood-based algorithms,
leading to the emergence of various approaches.

One notable contribution in this field is the concept of Generalized Local Search Machines
(GLSM), as introduced by Hoos and Stützle [2004]. GLSM effectively manipulates Stochastic
Local Search (SLS) algorithms and hybridizes them, exemplifying the power of generalization.

Marmion et al. [2013] extended the concept of generalization to Iterated Local Search (ILS)
in their work on Generalized Local Search. Building upon the principles of ILS (Lourenço et al.
[2019]), their approach demonstrates the adaptability of generalization techniques across different
local search paradigms.

In the field of combinatorial optimization, Schaerf and Meisels [2000] also contributed to Gener-
alized Local Search, developing an abstract code that combines the strengths of strategies proposed
by Schaerf [1997] and Glover et al. [1993]. This abstract approach fosters flexibility and adaptability
by integrating diverse strategies.

These works on generalization highlight the importance of creating frameworks that transcend
specific algorithms. They provide a solid foundation for the development of novel and customized
local search methods to tackle complex optimization problems. In the following sections, we focus
on our contribution to this endeavor, where we outline how we have generalized the HLS method
within the Iterated Sequential Local Search Framework.

4.3.1 Hybrid Local Search Abstraction

In this part, the idea is to present the process that led to the Iterated Sequential Local Search
framework.

Thus, the first possible step towards abstraction is to consider that the three heuristics are each
only variants of some Local Search algorithms with a different set of parameters θx. For example,
θi corresponds to Hill Climbing from HLS, θj to Great Deluge, and θk to Simulated from HLS.

Initial
Solution

Local Search(θi) Local Search(θj) Local Search(θk)

Hybrid Local Search

Figure 4.2: Hybrid Local Search First Abstraction: Iterated Sequence of three Local Search algo-
rithms

Figure 4.2 shows a flowchart when we consider that each local search corresponds to a generic
local search algorithm with a particular set of parameters. Figure 4.2 highlights that Hybrid Local
Search is an algorithm that iterates on a sequence of local search algorithms. Thanks to this
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first abstraction, the framework enables the modification to change the order of the different local
search algorithms included. To change this order, the set of parameters given to each local search
must be changed. The order of the sequence can change the results because the synergies between
components might be not the same.

A second abstraction would concern the number of local search methods. Remember that
Section 4.2 has shown that deactivating one local search in HLS can improve its performance on
some instances. So, the next abstraction needs to be able to deactivate local search algorithms
as required. Deactivating one or more of the three local search algorithms could be done via a
θ0 set that goes directly to the next one. However, the aim is to develop a framework that is as
configurable as possible. The idea is therefore to set a number n of local search algorithms per
iteration. Recall that there is one sequence of local search algorithms that repeats at each iteration.
Depending on the n chosen, the framework requires n number of θx.

Initial
Solution

LS(θ1) LS(θn)

Iterated Sequential Local Search (n)

LS(θ2) LS(θl)... ...

Figure 4.3: Iterated Sequential Local Search. n represents the length of the sequence.

Figure 4.3 illustrates the principle behind our framework. It showcases an algorithm that
iteratively applies a sequence of local search algorithms in a loop. This sequence comprises n
neighborhood-based algorithms, which may be the same algorithm repeated several times or differ-
ent ones, it does not matter. Within this sequence, each local search algorithm starts from an input
solution and moves to a current solution before forwarding it as input to the next local search. Our
framework can emulate the behavior of Hybrid Local Search (HLS). For instance, when n equals 3,
and the three local search algorithms are, in this order, Hill Climbing (HC), Great Deluge (GD),
and Simulated Annealing (SA), it exactly operates as a Hybrid Local Search.

One potential concept for enhancing the modularity of the framework involves the creation of
sequences that can evolve with each iteration. However, at present, we have set aside this idea due
to the significant complexity it would introduce to the framework design. One drawback of creating
multiple sequences that follow one another would be that it could be considered as having one single
lengthy sequence. Nevertheless, when employing machine learning methods, the sequence evolution
could be guided by the behavior of the solutions during the run.

At this stage, each Local Search is defined by a set of parameters that determine whether it
behaves as Hill Climbing, Great Deluge, or Simulated Annealing. The details of how we achieve
this versatility in the Local Search algorithm are explained below in the next section.

4.3.2 Pattern Designation of Local Search

The previous section showed how starting from Hybrid Local Search, we obtained the idea and
overall structure of the Iterated Sequential Local Search framework presented in Figure 4.3. The
core abstraction consists of considering the main similarity between Hill Climbing, Great Deluge,
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and Simulated Annealing of the Hybrid Local Search. That is, to consider each as a local search
and thus, to consider each as a variant of a generic local search algorithm.

As mentioned earlier, prior work has focused on generalizing algorithms such as Iterated Local
Search, essentially an iterative process combining local search and perturbation phases. One ap-
proach might have been to create an algorithm that takes only one parameter. Then, depending on
the value of this parameter, the local search would launch Hill Climbing (HC), Great Deluge (GD),
or Simulated Annealing (SA) as described in Chapter 1. In this scenario, the generic local search
would have a fixed number of versions, three algorithms already implemented. Thus, no new local
search could be created by a new set of parameters. Only the behavior of HLS local search methods
would change, such as having a higher temperature at the beginning of Simulated Annealing. How-
ever, our goal is to achieve maximum abstraction to minimize redundancy in the code and enhance
modularity. As a result, we have chosen to develop an adaptable local search algorithm capable of
simulating the behaviors of HC, GD, or SA. This approach not only streamlines the coding process
but also improves the overall modularity of the framework.

Algorithm 8 Generic Local Search (GLS)

1: GLS INIT(parameters)
2: while not GLS TERMINATION(parameters) do
3: Neighbor ← Neighbors(Current)
4: if GLS ACCEPTANCE(Neighbor, Current, parameters) then
5: Current← Neighbor
6: end if
7: GLS UPDATE(parameters)
8: end while
9: Return Current

Algorithm 8 represents the Generic Local Search (GLS) that serves as an abstract representation
of every Local Search component within our Hybrid Local Search (HLS) framework. Our primary
objective in designing this algorithm was to create a significantly more flexible framework than the
original Hybrid Local Search code. This generalization of Local Search in Generic Local Search
(GLS) takes inspiration from the three approximate methods encapsulated within HLS.

GLS commences with the GLS INIT procedure, which initializes values and computes all the pa-
rameters required for the subsequent works of the GLS. Additionally, this procedure may encompass
operations that are executed exclusively during the first invocation.

Algorithm 8 follows an iterative pattern. This pattern continues until GLS TERMINATION
returns false. This procedure follows specific rules using parameter values. The core of the pattern
involves the manipulation of a single solution and the generation of a neighbor using a function
that employs one or more operators.

The neighbor generated in this process is then subjected to the GLS ACCEPTANCE procedure,
which returns whether the neighbor becomes the new current solution. For this, the procedure
requires the values of the parameters, the current solution, and the neighbor solution. If accepted,
the new solution undergoes fitness evaluation to assess if it represents a global improvement. For
example, in the context of Simulated Annealing, this step allows the best solution found to be
memorized throughout the execution.

The last procedure executed at each iteration in the algorithm is known as GLS UPDATE,
in charge of adjusting parameter values as each new neighbor is explored. These operations may
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be at specific intervals, typically every x iteration, and GLS UPDATE autonomously manages
this process based on its internal parameters. Furthermore, GLS UPDATE may include a set of
parameter modifications exclusively applied during the final exploration iteration, triggered when
the termination criterion is met. These modifications are often designed to prepare the parameters
for the subsequent call of the GLS.

Additionally, the parameters controlling the acceptance and termination functions are updated
as the algorithm progresses. Importantly, if the termination criterion is satisfied, the algorithm
returns the current solution, not necessarily the best solution saved. In contrast, Iterated Sequential
Local Search returns the best solution identified during its execution.

In the following paragraphs, we show how Algorithm 8 can instantiate any of the three local
search algorithms contained in Hybrid Local Search. We are going to use the pseudo-codes presented
in Chapter 1 but modified so that the similarity with Algorithm 8 is clear.

Hill Climbing As mentioned in Chapter 1, Hill Climbing of Hybrid Local Search is uncommon
due to the acceptance procedure that accepts equivalent neighbors. This type of HC is known in
the literature as neutral HC. This type of acceptance function is useful when facing very neutral
problems, where numerous solutions share the same fitness and where looking for a strictly improv-
ing solution first means traversing some of the plateau. Indeed, equivalent neighbors form plateaus
in the landscape. Therefore, this neutral acceptance implies that a bound must be set, in this
case, maxIdle, for the algorithm to stop, otherwise, it may loop over the same plateau defined in
Chapter 2.

Algorithm 9 presents the modified Hill Climbing pseudo-code of Hybrid Local Search presented in
Chapter 1. This pseudo-code has been modified in structure but works in the same way. Algorithm 9
represents the pseudo-code modified to externalize the repeating operations specific to Hill Climbing
in order to display the Generic Local Search presented in Algorithm 8.

Algorithm 9 clearly shows the same pattern as Generic Local Search for the main procedure.
Concerning the auxiliary procedures, GLS INIT prepares the two parameters used, i.e. theMaxIdle
at 50,000 and the IterWithoutImprovment at 0, these two parameters are only used to determine
whether the HC should end or not.

GLS UPDATE resets the value of IterWithoutImprovment to 0 if the new Current is better
than the best solution found overall, then increases the value by 1. The best solution fitness is
saved in the memory and is always readable by all procedures.

GLS ACCEPTANCE features the neutral Hill Climbing comparison of HLS. Algorithm 9 and
Algorithm 8 do not specify this, but on each acceptance, the new Current is compared with the
best solution found during all sequences handled by HLS or by the ISLS framework.

Finally, GLS TERMINATION checks whether or not the maximum number of iterations without
improvement has been reached.

Algorithm 9 clearly shows that it is possible to modify the HLS Hill Climbing pseudo-code while
preserving its specifics to adapt it to the formulation proposed by Algorithm 8.

Great Deluge The Great Deluge of HLS behaves like the method described by Dueck [1993].
However, it introduces a new parameter, at, which extends both the duration and the influence of
the Bound parameter. This extension occurs when several sequences of the global algorithm fail
to discover a new global optimum. Great Deluge accepts solutions below the Bound value. The
threshold progressively decreases with each iteration.
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Algorithm 9 Generic Local Search - Hill-Climbing

1: procedure GLS INIT(parameters)
2: MaxIdle← 50, 000
3: IterWithoutImprovement← 0
4: end procedure

1: procedure GLS UPDATE(parameters)
2: if Current < BestF itnessFound then
3: IterWithoutImprovement← 0
4: end if
5: IterWithoutImprovement+ 1
6: end procedure

1: function GLS ACCEPTANCE(Current, Neighbor, parameters)
2: Return Neighbor ≤ Current
3: end function

1: function GLS TERMINATION(parameters)
2: Return MaxIdle < IterWithoutImprovement
3: end function

1: function Hill-Climbing(Current)
2: GLS INIT(parameters)
3: while not GLS TERMINATION(parameters) do
4: Neighbor ← Neighbors(Current)
5: if GLS ACCEPTANCE(Current,Neighbor,parameters) then
6: Current← Neighbor
7: end if
8: GLS UPDATE(parameters)
9: end while

10: Return Current
11: end function

Algorithm 10 is a modified version of Great Deluge pseudo-code. It also exhibits the same
pattern as the algorithm described in Algorithm 8.

Great Deluge (GD) needs more input values, so GLS INIT sets the values of three parameters:
UpperBoundRate, LowerBoundRate, and CoolingRate which respectively set the value of the
Bound at the beginning, the value of the Bound where GD stops, and the coefficient that decreases
the Bound. The fourth parameter at is given by HLS or in our case by ISLS and corresponds to
the number of algorithm sequences executed without finding a new best optimum. Finally, if this
is the first time the GD has been executed, the Bound is calculated; otherwise, the value of the
parameter left over from the last execution is used.

GLS TERMINATION examines whether the Bound value reaches a specific threshold. The lat-
ter uses the best fitness found throughout the algorithm execution. If a better solution is discovered
during the algorithm run, this threshold decreases. This approach effectively prolongs the algorithm
execution when it has enhanced the overall score of ISLS. Furthermore, the threshold is adjusted
based on the variable at and is, therefore, lower if the global algorithm, the ISLS framework, has
encountered challenges in enhancing its score over a sequence. This stopping criterion takes into
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Algorithm 10 Generic Local Search - Great Deluge

1: procedure GLS INIT(parameters)
2: UpperBoundRate← 1.15
3: LowerBoundRate← 0.9
4: CoolingRate← 0.9999999999874
5: At← NumberSequenceWithoutGlobalImprovment
6: if First call then
7: Bound← BestF itnessFound ∗ UpperBoundRate
8: end if
9: end procedure

1: function GLS TERMINATION(parameters)
2: Return Bound > BestF itnessFound ∗ LowerBoundRateat

3: end function

1: function GLS ACCEPTANCE(Current, Neighbor, parameters)
2: Return Neighbor ≤ Bound
3: end function

1: procedure GLS UPDATE(parameters)
2: Bound ∗ CoolingRate
3: if GLS TERMINATION(parameters) then
4: Bound← BestF itnessFound ∗ UpperBoundRateat

5: end if
6: end procedure

1: function Great Deluge(Current)
2: GLS INIT(parameters)
3: while not GLS TERMINATION(parameters) do
4: Neighbor ← Neighbors(Current)
5: if GLS ACCEPTANCE(Current, Neighbor, parameters) then
6: Current← Neighbor
7: end if
8: GLS UPDATE(parameters)
9: end while

10: Return Current
11: end function

consideration the recent overall progress of the entire framework.

At each iteration, GLS UPDATE updates the Bound value and also performs a final update.
In fact, GLS UPDATE prepares Bound for its next call if the method is about to stop.

The GLS ACCEPTANCE procedure simply verifies whether the neighbor falls below a specified
threshold, the Bound value. This acceptance criterion provides a wider margin for perturbation
and maintains determinism, as the Bound consistently decreases predictably.

Simulated Annealing The Simulated Annealing of HLS does not behave exactly like the tradi-
tional Simulated Annealing. It is a local search that accepts better solutions based on the Metropolis
criterion but usually stops when the temperature gets too low. However, the HLS Simulated Anneal-
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ing stops after a set number of iterations without improvement, similar to the HLS Hill Climbing.
The cooling schedule and this number of iterations without improvement depend on the problem
size as explained in Chapter 1.

Simulated Annealing (Algorithm 11) has been adapted from its initial version described in Müller
[2009] to fit GLS (Algorithm 8). Algorithm 11 represents an algorithm that acts in the same way as
the HLS SA. Algorithm 11 shows the main function is again the same as for Generic Local Search.

GLS UPDATE configures the CoolingRate that is applied to decrease the temperature. Then
stores the values for the number of iterations between two cooling and the maximum number of
iterations without improvement. The procedure also initializes the counters for the cooling and
termination processes. GLS INIT configures the temperature value if this is the first call to SA, so
it requires a final update in GLS UPDATE.

GLS TERMINATION checks that the number of iterations without overall improvement has
not been reached. This limit varies according to the instance processed but is fixed per instance
and during the run.

GLS ACCEPTANCE tests with the metropolis metric whether the Neighbor is accepted or not.
For the update function, the change is more complex, as the updates are more numerous and

conditional. Thus, GLS UPDATE incorporates the necessary modifications to the parameters of
the termination criterion, here the procedure executes the count of the number of SA iterations
without global improvement. In addition, GLS UPDATE manages the counting of the number of
iterations since the last cooling, and performs it if the number is reached, then resets the counter
to 0. Finally, like GD, GLS UPDATE has a final update to prepare the value of Temperature
for the next SA call in ISLS. To do this, the value is reheated according to a process described in
Chapter 1.

4.4 Implementation of Iterated Sequential Local Search

This section presents some important points regarding the concrete implementation of the Iterated
Sequential Local Search. The algorithm was developed in C++ using the MH-builder platform
developed by the research team, ORKAD. The framework thus developed is the application of the
idea set out in Figure 4.3 and Algorithm 8 but applied to the CB-CTT. It is designed to offer
great flexibility, allowing a wide range of configurations. Configurators can customize the program
and create their local search algorithms. Also, this section includes a detailed description of the
parameters and how to use them as a user guide. The aim is to help the understandign of how it
works.

4.4.1 Framework: MH-builder

This thesis needs a framework as a base for implementing the Iterated Sequential Local Search
described above. The literature encompasses a plethora of frameworks designed to facilitate the
development of approximate methods for solving combinatorial problems more efficiently (Parejo
et al. [2012]).

Metaheuristic Framework Examples from Literature The EasyLocal++ framework pro-
posed by Di Gaspero et al. [2001], developed in C++, offers a Local Search generalization similar to
our Generic Local Search. It specializes in local search, providing flexibility for tailored algorithms.
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Algorithm 11 Generic Local Search - Simulated Annealing

1: procedure GLS INIT(parameters)
2: CoolingRate← 0.82
3: MaxIterCooling ← InstanceDependentV alue1
4: MaxIterWithoutImprovment← InstanceDependentV alue2
5: IterWithoutImprovment← 0
6: IterWithoutCooling ← 0
7: if First Call then
8: Temperature← 2.5
9: end if

10: end procedure

1: function GLS TERMINATION(parameters)
2: Return MaxIterWithoutImprovment < IterWithoutImprovment
3: end function

1: function GLS ACCEPTANCE(Current,Neighbor,parameters)

2: Return Uniform(0, 1) < exp
Current−Neighbor

Temperature

3: end function

1: procedure GLS UPDATE(parameters)
2: IterWithoutCooling + 1
3: if IterWithoutCooling > MaxIterCooling then
4: IterWithoutCooling ← 0
5: Temperature← Temperature ∗ CoolingRate
6: end if
7: if BestF itnessFound < Current then
8: IterWithoutImprovment+ 1
9: end if

10: if GLS TERMINATION(parameters) then
11: Temperature← Reheat(Temperature)
12: end if
13: end procedure

1: function Simulated Annealing(Current)
2: GLS INIT(parameters)
3: while not GLS TERMINATION(parameters) do
4: Neighbor ← Neighbors(Current)
5: if GLS ACCEPTANCE(Current,Neighbor,parameters) then
6: Current← Neighbor
7: end if
8: GLS UPDATE(parameters)
9: end while

10: Return Current
11: end function

Paradiseo (Cahon et al. [2004]), commonly used in C++, is now available in Python, enhancing
its accessibility. This versatile framework focuses on metaheuristics and excels in multi-objective



84 Iterated Sequential Local Search Framework

optimization, making it suitable for complex problems. It benefits from an active community.
jMetalPy (Beńıtez-Hidalgo et al. [2019]), a Python framework, is designed for multi-objective

optimization. Like Paradiseo, it offers diverse metaheuristics and includes benchmark problems for
algorithm evaluation. It is open-source, encourages contributions, and receives active development.

MH-Builder This thesis uses the MH-builder platform developed by the ORKAD research team.
MH-builder is a useful software written in C++ that facilitates the integration of various problem
domains and multiple algorithms for solving them. One notable advantage of MH-builder is its
ability to connect problems, solvers, and operators. In addition, parameters and algorithmic com-
ponents can be changed on the fly during execution. All that is required is to implement the
necessary code for loading the problem and defining the neighborhood operators. The platform
tackles the complex task of linking these components together, simplifying the development pro-
cess, and reducing the complexity of implementation.

A strength of the C++ language is its exceptional execution speed, particularly when the code
is optimized. This attribute makes C++ a popular choice for solving combinatorial problems
where performance is critical. Leveraging the efficiency of C++, MH-builder provides researchers
and practitioners with a robust and efficient framework to tackle a wide range of optimization
challenges.

By harnessing the power of MH-builder and the advantages offered by the C++ language, we
could investigate various problem domains, experiment with different algorithms, and optimize their
performance. The seamless integration and high-speed execution capabilities of MH-builder greatly
enhanced the work efforts, enabling me to efficiently address complex combinatorial problems and
achieve significant advancements in this thesis work.

4.4.2 Coding Specificity

Solution Representation MH-builder provides you with the flexibility to choose your preferred
solution representation during implementation. You simply need to create a function that calculates
the score of the solution and ensure that the operators utilize this representation optimally. The
most efficient and straightforward approach discovered for representing the problem is by using a
matrix. As explained in the first chapter, a matrix can efficiently represent a schedule, where each
row corresponds to a room and each column corresponds to a timeslot. With this structure, it
becomes easy to identify the day associated with a specific timeslot, especially when the number of
timeslots per day is known. Regarding the rows, rooms are often identified by names such as A203.
In the matrix, these strings are automatically converted into indices, allowing each cell to store the
corresponding lecture.

One drawback of this encoding is the potential memory usage for unused cells. However, in the
case of CB-CTT problems, which span over a week, the number of empty cells is not significant
enough to cause memory issues. By using the matrix representation in MH-builder, you can effec-
tively store and manipulate the necessary data for solving CB-CTT problems, achieving efficient
memory utilization, and facilitating the optimization process.

Neighborhood Operators And Evaluation For the neighborhood operators, we have imple-
mented them based on the descriptions provided in the first chapter of this thesis. These operators
perform the specific tasks outlined by Müller for the problem domain. To optimize the solver execu-
tion, we have directly incorporated the evaluation of a solution within the neighborhood operators.
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In essence, we have ensured that each new neighbor receives a score immediately without any
additional computational overhead. To achieve this, we examined the soft constraints affected by
each operator and developed data structures that track the real-time number of violations without
the need to analyze the entire schedule.

For instance, when a lecture, such as lecture 1 of course 1 belonging to curriculum 1, is moved
to a different room, we only need to update the violations related to Room Capacity and Room
Stability. Moreover, we update only the structure that stores Room Stability violations for course
1. By deducting the previous value and adding the new value, we can obtain the final score.

To optimize this process further, we have implemented a local count of violations for each
structure, such as curricula and courses. This approach eliminates the need for a costly calculation
of the objective function, resulting in improved performance and efficiency. For instance, concerning
RoomCapacity, each lecture scheduled has a local RoomStability violation counter.

By incorporating these optimizations, we have significantly reduced the computational time cost
associated with evaluating the solution fitness, enabling the solver to operate more efficiently.

In this section, not every mechanism is detailed and explained, as the emphasis is on coding
optimizations that help the framework achieve better performance. It is important to emphasize
that significant thought and consideration were given to the coding process to prioritize efficiency.
By adopting this approach, we aimed to maximize the number of explorations conducted per minute,
ensuring that our solver operates at its highest computational efficiency.

Heuristic In terms of coding heuristics, we employ a versatile modular heuristic approach. This
heuristic, depending on the provided parameters, can activate different functions to implement
acceptance and ending criteria, such as Hill Climbing, Great Deluge, or Simulated Annealing.

As highlighted earlier, the modular heuristic allows for the hybridization of methods. It goes be-
yond being only Simulated Annealing or Hill Climbing. It can incorporate probabilistic acceptance
using temperature while utilizing the bound from the Great Deluge as its end criterion, which dy-
namically evolves based on the best fitness value. This flexibility allows us to leverage the strengths
of various techniques and adapt the heuristic to different problem scenarios.

In our work, we have ensured that our approach can hybridize strategies from HLS (Hill Climb-
ing, Great Deluge, and Simulated Annealing). As part of this effort, we introduced the option of
strict acceptance for HLS, which has been observed to enhance performance in certain cases.

Additionally, we have incorporated the capability to modify the stopping criterion specifically
for Hill Climbing. In this context, HLS considers that if no local improvements are achieved within
a specified number of explorations, such as 50,000, the search process should end. This adjustment
ensures that the algorithm prioritizes finding significant improvements in the global context.

4.4.3 Framework Execution Parameters Overview

The following section focuses on the more practical part of ISLS framework. That means explaining
how to manipulate the input parameters to use this program efficiently. The aim is to produce a
concise manual. Admittedly, we have not used a parser that assigns automatically, consequently the
order is very important. Moreover it can be a bit daunting to understand a command line without
this part. An explanation of parameters may offer an overview of all current possibilities and even
the future, which has the framework developed using MH-builder, another framework developed by
the research team ORKAD. The parameters are given in order to make the explanations as clear
as possible.
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./exe ins01.txt 300 1 inst01_init_sol1.txt output1.txt

1 1 1 0 0 2 _ 1 1 50,000 _ 3 2 5 0.99 0.9 20 0.8 13 19 _

Figure 4.4: Example of a real call of Iterated Sequential Local Search

Figure 4.4 shows an example of a command line used in this thesis to run the Iterated Sequential
Local Search. Figure 4.5 shows a theoretical command line.

[EXE] [Instance] [Time Budget] [Seed] [Init_Sol] [Output]

[Neighborhood Operators] [NB_Heuristics] _ [PARAMETERS SETS] * [NB_Heuristics] _

Figure 4.5: Command-line arguments of Iterated Sequential Local Search

Instance The two figures show that after calling the compiled file, the first input is the access
path to the file of a Curriculum Based-Course Timetabling instance.

Time Budget The second parameter is the allocated time in seconds. As seen in the previous
sections, the program checks after each evaluation of a neighbor that it has not exceeded the time
limit, which is in milliseconds. If it does, the program stops the exploration and only displays the
value in the terminal in a fitness manner. If the value is zero, the algorithm stops immediately.

Seed To ensure the replicability of the results of the Iterated Sequential Local Search, we have
implemented the option of setting the seed. That also makes it possible to test average performance
on the same problem. The random mechanism uses every time the same object for each random
call, which validates the randomness control of our heuristic.

Initial Solution The fourth input parameter is the file path of the initial solution loaded. As a
reminder, we have not incorporated Muller constructor directly into the code. Figure 4.4 shows the
case where we generated solutions in a folder for each instance with different seeds.

We do not use more than 30 different seeds for each instance. So we made sure we used the same
seed number for the initial solution and for the Iterated Sequential Local Search. Thus, the diversity
was the greatest, because each run used a different initial solution and a different exploration seed.

Output Solution As before, this parameter is a path, ideally absolute. However, this parameter
corresponds to the output file created by the program to store the best solution found during
exploration. As a reminder, if our solver finds several optimal solutions, the first one found is
returned. The coding way accepts a new best solution only if the latter outperforms the current
best solution, found so far during the current run.

Neighborhood operator The next five parameters are boolean, accepting only 1 or 0. These
activation parameters are used to control the neighborhood operators. Their order is as follows:
Time Move, Room Move, RoomStability Move, MinWorkingDays Move, and Lecture Move. The
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first chapter of this thesis details how each works. Figure 4.4 shows an example where we have
disabled operators 4 and 5, i.e. MinWorkingDays Move and Lecture Move. Currently, the Iterated
Sequential Local Search can only deactivate or activate operators, which offers the opportunity to
select those that are most effective, for example. An improvement objective would be to offer more
neighborhood operators and to replace the boolean parameters with float parameters between 0 and
1. In this configuration, the values would correspond to the selection probability of each operator.
As a reminder, it is currently a uniform distribution that handles selection.

Number of Heuristics This parameter corresponds to the number of heuristics per loop in our
method. So recall that our solver creates an iterative solution optimization method. It is based on
the Hybrid Local Search algorithm, which executes three heuristics in succession at each iteration
of a loop: Hill Climbing, Great Deluge, and Simulated Annealing. Our algorithm accepts an integer
input value strictly greater than 1. This value informs the program of the number of parameters
it needs to read next. In this work, we have limited the number of algorithms per loop to three, as
we consider that a high value would prevent the repetition effect. Figure 4.4 shows an example in
which the created algorithm has two heuristics per sequence.

Depending on the number given to the previous parameter, the algorithm requests a group of
parameters delimited by an underscore each time.

Heuristics strategies The first two parameters in each of these groups are, in order: the code
for the acceptance criterion, then the code for the ending criterion.

Acceptance Condition The possible values of the Acceptance conditions are 0, 1, 2, and 3,
respectively for Strict acceptance, Neutral Acceptance, acceptance with the Bound, and probabilis-
tic acceptance with a temperature.

Ending Condition The possible values of ending conditions are also 0, 1, 2, and 3, respec-
tively for the Maximum Number of evaluations without local improvement, the Maximum Number
of evaluations without global improvement, the Bound reaches the lower bound, and the maximum
number of evaluation without global improvement using an instance depending coefficient. Please
note that to easily find the starting heuristics, the combination 1 1, 2 2, and 3 3 correspond to Hill
Climbing, Great Deluge, and Simulated annealing from HLS.

Parameter Heuristic The other parameters are conditional. In other words, write only those
that are necessary. We made this choice to avoid having a succession of zeros for each set.

The order in which to enter the parameters is given by Figure 4.6.

[MaxIdle] [UpperBoundRate] [CoolingRateBound] [LowerBoundRate]

[Temperature] [CoolingRateTemp] [CoolingScheduleTemp] [ReheatRate]

Figure 4.6: Order of parameters per heuristic for the Iterated Sequential Local Search

Table 4.2 summarizes which parameters are to be given according to each choice of heuristics
strategies. As a reminder, each choice of acceptance or ending strategy requires certain parameters,
as described in Section 4.3.2.
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Table 4.2: Parameters to be set according to the heuristics required

Criterion Value Parameter

Acceptation

0 No parameter
1 No parameter
2 UpperBoundRate, CoolingRateBound, LowerBoundRate
3 Temperature, CoolingRateTemp, CoolingScheduleTemp, ReheatRate

Ending

0 MaxIdle
1 MaxIdle
2 UpperBoundRate, CoolingRateBound, LowerBoundRate
3 InstanceRate

The different names of the parameters are quite transparent, but for those of the probabilistic
acceptance using the temperature inherited from Simulated Annealing, certain precisions seem to
be necessary. CoolingScheduleTemp corresponds to a coefficient that sets the number of evaluations
between two cooling phases. The ReheatRate is filled in at the end of the heuristic to raise the
temperature. Both are instance dependent coefficients.

Figure 4.4 shows that the first heuristic only requires the MaxIdle parameter as the ending
criterion was 1. The second heuristic required many more input parameters as it had the 3 2
combination which needs 7 parameters to work. As a reminder, these are always given in the order
provided by Figure 4.6.

4.5 Conclusion

This chapter focuses on an efficient method for tackling the Curriculum-Based Course Timetabling
problem. At its core lies the Hybrid Local Search algorithm; a metaheuristic approach that employs
a sequential loop of three distinct local search algorithms.

This chapter focuses on the performance analysis of Hybrid Local Search and its structure. More
specifically, the preliminary results questioned the use of three methods in Hybrid Local Search.
They showed that for the ITC benchmark, for which Hybrid Local Search was tuned, Hybrid Local
Search could be beaten by a simpler version of itself, i.e. iterated Simulated Annealing, on a majority
of instances. The results show that it is interesting to question the rigidity of the Hybrid Local
Search structure and to study variants using the components and strategies contained in Hybrid
Local Search but changing the structure, the number of algorithms per sequence, the parameters,
and the local search itself.

This section explores the generalization of the Hybrid Local Search (HLS) algorithm, giving rise
to the Iterated Sequential Local Search (ISLS) framework. ISLS offers a high degree of flexibility,
allowing the creation of new resolution algorithms while retaining the ability to instantiate the
original HLS. Additionally, we focus on the concept of generalizing local search algorithms into
a unified, adaptable algorithm, highlighting the possibility of employing a generic local search to
instantiate the three algorithms present in HLS.

In this chapter, we detail the implementation of the Iterated Sequential Local Search (ISLS)
framework on the MH-builder platform, developed by the ORKAD research team. The chapter
provides insights into coding considerations for optimizing performance and offers instructions for
running the framework from the command line. Additionally, parameter naming conventions are
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explained.
With the introduction of the Iterated Sequential Local Search (ISLS) framework, new possi-

bilities emerge. ISLS allows for the creation of new algorithms, featuring novel sequences of local
search methods, themselves incorporating acceptance and termination strategies from diverse Hy-
brid Local Search algorithms. This framework paves the way for automating the configuration of
solution algorithms for addressing the Curriculum-Based Course Timetabling problem.
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5.1 Introduction

Over the years, the field of automatic algorithm configuration has seen notable development, giving
rise to numerous methods with diverse strategies. These algorithms automatically design configu-
rations to improve the performance of the solving algorithms using these parameters. This thesis
focuses on the application of metaheuristics for solving combinatorial optimization problems. Such
methods involve a multitude of parameters that govern the behavior of the solving algorithm during
execution.

A configuration represents a set of parameters with fixed values, and determining the ideal con-
figuration for optimizing the performance of the resolution method is a task that can be tackled
through parameter tuning and parameter control (Eiben et al. [1999]). Parameter control involves
an online process where parameters are adjusted during runtime (Karafotias et al. [2014]). Con-
versely, parameter tuning, also known as algorithm configuration, is an offline process that seeks to
optimize and explore different configurations before concrete execution, ultimately selecting one or
more configurations (López-Ibáñez et al. [2016]).

Chapter 4 detailed our thesis work on metaheuristic abstraction, and more specifically the
abstraction of the Hybrid Local Search. It presented the Iterated Sequential Local Search (ISLS),
an algorithm that executes in a loop for a given time a sequence of local search algorithms where
their number and nature have to be specified. These local search algorithms follow the scheme
defined in the thesis: Generic Local Search. Depending on the given parameters, this algorithm
takes on the desired nature by hybridizing the acceptance and termination criteria of two different
local search algorithms. For example, the local search can implement the simple acceptance criterion
of Hill Climbing and the termination criterion of Simulated Annealing, while these two methods
are generally each on their own.

Hence, Chapter 4 illustrates ISLS as a framework capable of instantiating the state-of-the-art
method for addressing the Combinatorial Benchmark Curriculum-Based Timetabling (CB-CTT)
problem. ISLS is a highly parameterized framework that allows for the customization of each
local search behavior based on the specified values. Leveraging this flexibility, an automatic al-
gorithm configurator can harness the full potential of a framework like ISLS, thereby offering a
high-performance algorithm for CB-CTT. It is important to note that ISLS incorporates all com-
ponents of HLS, which represents the current state-of-the-art local search method. This chapter
employs an automatic algorithm configuration algorithm, irace, within the ISLS framework, using
a selected group of instances from Chapter 3 as training data. The goal is to craft a tailored
resolution algorithm optimized for CB-CTT, demonstrating superior performance compared to the
state-of-the-art.

This section begins by providing an overview of the background of our work in automatic
algorithm configuration, with a specific focus on configurators employing diverse methodologies
to identify optimal configurations. The subsequent portion of the chapter showcases the practical
application of ISLS and the irace configurator. This marks the first instance of creating an algorithm
based on ISLS, retaining the original sequence while exploring a subset of its parameters, and
achieving superior performance compared to the original HLS approach. To conclude, the chapter
ends with an ablation analysis, guided by literature (Fawcett and Hoos [2016]), aimed at pointing
out the parameters that bear the most significant impact in this specific context.
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5.2 Automatic Algorithm Configuration

This section focuses on the complexities of automatic algorithm configuration, beginning with a
precise formal definition. Subsequently, we explore the specific variant of Algorithm Configuration
employed in our work and dissect the various constituent sub-problems. To round off the discussion,
we explore existing algorithmic solutions proposed in the literature, offering insights into a select
few of these notable approaches.

5.2.1 Definition

In the field of operational research and discrete problem solving, the task of tuning algorithms is a
common challenge. Metaheuristics, in particular, offer a high degree of adaptability, enabling algo-
rithms to utilize diverse neighborhood operators, various stopping criteria, and adjustable execution
lengths. Moreover, heuristics, in their abstract nature, can modify entire operational components
when applied to specific real-world problems, with these modifications also regarded as parameters
to consider. This flexibility has paved the way for the fine-tuning of algorithm parameters, striving
to achieve optimal performance within constrained time limits for each distinct problem.

Combinatorial optimization is a domain where the use of metaheuristics introduces unique
challenges to be addressed. As a reminder, metaheuristics are generic algorithms applied to solutions
to systematically explore the search space and try to find the best solution within a limited time
budget. However, there is a plethora of diverse solution methods, each behaving differently based
on the values of specific parameters. Automatic Algorithm Configuration (AAC) is an approach to
determine the most suitable version of a heuristic for a given problem. An algorithm configuration
problem can be formally stated as follows (Hoos [2012]):

1. An algorithm A with a set of parameters that significantly affect its behavior.

2. A configuration space Θ consisting of different configurations. Each configuration θ in Θ
represents a unique set of values, with one value for each parameter pi.

3. A fitness function or objective function f is provided by the problem to evaluate the final
solution returned by a configuration.

4. A set of problem instances Itrain.

5. argminθ∈Θ(Cost Function) that represents the objective function of the AAC algorithm.

The parallel pursuit of cost minimization by Automatic Algorithm Configuration (AAC) and the
Combinatorial Curriculum Timetabling Problem (CB-CTT) aligns the algorithm configuration
problem with optimization objectives. In this context, AAC navigates through various configu-
rations, much like a local search exploring different timetables in the case of CB-CTT, both aiming
to optimize their respective objectives.

In automatic configuration, a configuration θ is defined as a list of values for each parameter.
The parameters can take different types, including cardinal, boolean, and numeric (integer or
real) with predefined ranges. Furthermore, it is common to specify forbidden configurations. For
example, when a local search is tuned, it must be forbidden to deactivate all neighborhood operators,
otherwise the algorithm does not work. In general, the main objective of automatic configuration
is to discover configurations that yield better performance compared to the initial configurations
provided for a given set of problem instances. In the context of this thesis, the primary goal
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of Automatic Algorithm Configuration is to obtain configurations that outperform Hybrid Local
Search (HLS), serving as the performance baseline. Consequently, the θ configuration of ISLS
that instantiates HLS, is consistently included among the initial configurations provided to the
configurator.

Automatic algorithm configuration operates on the basis of providing a configurator with a
predefined set of configurations for evaluation. To effectively explore the configuration space, the
configurator necessitates knowledge of the parameters, their allowable ranges, and the available
options. Additionally, an evaluation function is required to assess the performance of the solutions
produced by these configurations. Typically, the optimization focus lies on enhancing performance,
although in certain scenarios, such as with exact methods, the primary objective may be to minimize
execution time when performance remains consistent.

Set of Instances Itrain

Set of Configurations Θ

Cost Function f

Configurator Target Algorithm

Instance i

Configuration θ

Cost f

Figure 5.1: Generic Process of Automatic Algorithm Configuration

The principle of automatic algorithm configuration can be summarized by Figure 5.1, which
clearly shows that parameters, a target function, and instances are given to the chosen configurator,
which tests different configurations with the solver, often referred to as the target algorithm in
automatic configuration. There are many sub-problems of AAC whose objectives are to return the
best algorithm to use, and they generally follow the same schema detailed previously.

Figure 5.2: Automatic Algorithm Configuration sub-problems

Figure 5.2 illustrates the classification of major AAC types. AAC encompasses Algorithm
Configuration (AC), as well as Hyperparameter Optimization (HPO) and Algorithm Selection (AS).

Hyperparameter Optimization (HPO) HPO is also a very widely studied area of research,
with several reviews (Luo [2016], Yang and Shami [2020], Bischl et al. [2023]). Hyperparameter
Optimization (HPO) is a machine learning technique aimed at finding the best hyperparameter
settings for a model. Hyperparameters are pre-defined configuration settings, such as learning rates
and layer sizes, crucial for model performance. HPO methods systematically search for optimal hy-
perparameters, enhancing model convergence and generalization. Algorithm Configuration focuses
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on optimizing algorithm parameters for a specific problem, while Hyperparameter Optimization
fine-tunes hyperparameters of machine learning models for improved performance.

Algorithm Selection (AS) is indeed a subproblem of AC (Algorithm Configuration). However,
it is important to note that in our subsequent work, we do not focus on this specific type of AAC.
Algorithm selection has already received extensive attention and examination in prior studies (Ker-
schke et al. [2019], Kotthoff [2016]). Algorithm Selection can be considered as a subset of Algorithm
Configuration with a notably compact search space. That is because it primarily involves the selec-
tion of a single categorical parameter, which determines the choice of algorithm for a given instance.
Algorithm Selection can also be categorized as a form of instance-specific configuration. In essence,
it revolves around the task of configuring this single categorical parameter, the algorithm choice,
based on the unique characteristics of each input instance.

Online and offline Offline AAC involves optimizing algorithm configurations before the execu-
tion of the target algorithm. It explores a predefined set of configurations and returns the best one.
In contrast, Online AAC optimizes configurations during the runtime of the algorithm, adapting to
changing conditions or problem instances. It dynamically selects and adjusts configurations, offer-
ing real-time adaptability and potential for improved performance. In this thesis, offline Algorithm
Configuration (AC) techniques are predominantly employed for optimizing algorithm configura-
tions.

5.2.2 Methods

Automatic configuration is an extensive research field that focuses on finding the most efficient
methods for problem-solving. Numerous algorithms and tools have been developed and proposed
to tackle this challenge. This section provides a concise overview of selected methods in this
domain, as well as discusses the configurator we have chosen for our work and the reasons behind
our selection.

In this research field, in addition to the previously mentioned types of automatic algorithm
configuration methods, we can introduce the concept of model-based approaches. In our study,
we exclusively employ a model-based offline automatic algorithm configuration technique. The
key distinction between these two approaches lies in how the configurator operates. Model-based
configurators utilize statistical or machine models to assist in identifying promising configurations,
while model-free configurators do not rely on any models and instead employ alternative techniques.

In the literature, numerous configurators and algorithms have been developed to facilitate au-
tomatic configuration.

One of the earliest approaches to tune algorithms with a limited number of parameters was Cal-
ibra (Adenso-Diaz and Laguna [2006]). The idea involved combining Taguchi’s fractional factorial
experimental designs with a local search procedure. However, the main drawback of this method is
that it accepts too few parameters, which makes it unsuitable for our work. Nowadays, Automatic
Algorithm Configurations typically involve a large configuration space. Nevertheless, this method
highlights the strategy of using local search to guide towards promising solutions while employing
a design of experiments methodology to compare configurations.

The majority of the initial approaches developed for tuning in the literature adopted a similar
idea to Calibra and utilized the design of experiments methodology (DOE) (Coy et al. [2001], Ruiz
and Maroto [2005], Bartz-Beielstein [2003]). DOE is a statistical technique used to systematically
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plan and conduct experiments to gather data and gain insights into the behavior of a system or
process. It is commonly applied in algorithm tuning to efficiently explore the parameter space and
optimize algorithm performance.

Following the methods developed using local search, the literature has also explored the use of
evolutionary algorithms, particularly genetic algorithms. In the context of genetic algorithms, one
tuning method is the Gender-Based Genetic Algorithm (GGA) (Ansótegui et al. [2009]). To pro-
vide a simple overview, GGA is a population-based approach where configurations are represented
as individuals in two populations: competitive and non-competitive. GGA combines a strong in-
tensification procedure, which involves racing individuals from the competitive population, with
diversification from the non-competitive population. The competitive population undergoes a rac-
ing process on a random subset of instances, and this subset increases linearly with each generation
in GGA. This approach is designed to achieve a specific goal or outcome within the algorithm
tuning process.

In summary, a multitude of tuning methods exists within this field. Several comprehensive
reviews, including one by Schede et al. [2022], have cataloged and presented a summary table of
these tuning approaches by class. Some well-known methods, such as ROAR (Hutter et al. [2011]),
GPS (Pushak and Hoos [2020]), and BNT (do Nascimento and Chaves [2020]), have demonstrated
excellent results by employing diverse strategies to fine-tune algorithms. They use Racing and ILS,
exploit the configuration landscape structure, and leverage Bayesian Networks, respectively.

The subsequent section focuses on the presentation of three methods: SMAC, ParamILS, and
irace. These methods hold significance as they employ diverse approaches to explore configuration
space. In this thesis, irace is the chosen approach due to its distinct advantages.

SMAC The Sequential Model-based Algorithm Configuration has been proposed by Hutter et al.
[2011] and aims to predict the best configuration. SMAC uses a machine learning model that
predicts the performance of configurations. In most cases, it utilizes the random forest model.

The algorithm begins by generating random configurations, which are then evaluated on a
randomly selected set of instances. The results help to retrain the prediction model at each step. In
each iteration, the prediction model generates new promising configurations based on the previous
scores. Subsequently, these new configurations are tested, and statistical tests are applied to identify
the most efficient configurations for random instances. At the end of each iteration, the model is
retrained to enhance and update the knowledge about the configuration space and its relationship
with performance.

This tuning algorithm is known to be very effective for tuning hyperparameters in machine
learning methods. Auto-WEKA (Thornton et al. [2013]) and AutoSklearn (Feurer et al. [2015]),
two tools that have been developed using SMAC for tuning machine learning methods.

ParamILS ParamILS, a highly efficient algorithm proposed by Hutter et al. [2009], stands out
for its heuristic nature, employing neighbor-to-neighbor moves.

Understanding the operation of the algorithm is relatively straightforward. The process begins
by generating random configurations and evaluating them to identify the most promising ones.
Subsequently, new configurations are generated in close proximity to the previously selected ones,
with each new configuration serving as a neighbor. In ParamILS, a neighbor of a configuration
differs from it in the value of only one parameter.

These new configurations are generated through a random perturbation process, involving small
changes from one configuration to another. This stage is referred to as the perturbation phase in
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iterated local search (Lourenço et al. [2019]). Following the perturbation phase, a local search is
performed. This iterative process aims to improve the current configurations by examining their
neighboring configurations and replacing them with more efficient alternatives if found. The local
search continues until no further improvements can be made.

At the end of each iteration, a set of new configurations is obtained, which are neighbors to the
configurations selected during the perturbation phase. Once the budget is consumed, the algorithm
returns the best configuration discovered throughout the process.

irace irace, Iterated Racing for Automatic Configuration, a dedicated automatic configurator for
combinatorial optimization, uses racing competitions to efficiently discover well-tuned configura-
tions. Employing a racing competition-based strategy, irace evaluates configurations and optimizes
them based on statistical insights. Additionally, irace benefits from continuous development and
regular updates (López-Ibáñez et al. [2016]).

Figure 5.3: Scheme of the iterated racing algorithm (López-Ibáñez et al. [2016])

Firstly, we selected irace as our optimization tool due to its extensive documentation and user-
friendly interface. irace provides a well-established framework for automated algorithm configura-
tion. Some description of irace works can be found in López-Ibáñez et al. [2016].

The schematic process of irace is depicted in Figure 5.3. In the initial iteration, irace generates
a set of random configurations or utilizes pre-defined configurations, ensuring a sufficiently large
number of options. These configurations are then evaluated on a set of randomly chosen instances,
serving as training instances. As the evaluation progresses, irace employs statistical tests, such as
the Friedman test in most cases, to eliminate the worst-performing configurations.

With each subsequent iteration, irace consults the generated models to obtain new configura-
tions, subjecting them to evaluation and subsequently eliminating configurations through statisti-
cal tests. The models assume that each parameter follows a normal distribution, with the aim of
approximating the value of the best configuration. This iterative process allows the models to con-
tinuously refine their learning, incorporating the knowledge gained from the new best configuration
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while removing less promising alternatives.
However, it is important to note that the figure does not explicitly illustrate one good feature

of irace: its soft restart process when new configurations become too similar. This functionality
is integral to irace objective of achieving convergence without prematurely converging to local
optimum configurations. This capability serves as an additional advantage of using irace as an
algorithm configurator.

5.3 AAC of ISLS for the CB-CTT

This section builds upon the previous context-setting section, demonstrating the application of
ISLS AAC to the Curriculum-Based Course Timetabling (CB-CTT) problem.

We present the ISLS configuration space provided to irace, the AAC tool. This configuration
differs from the global configuration space of Iterated Sequential Local Search in Chapter 4. The
focus is on improving the Hybrid Local Search (HLS) structure rather than developing a new
algorithm using HLS components.

Following the configuration space presentation, we explain the experimental protocol for all irace
executions, detailing the instances used and their corresponding time constraints.

This section outlines the setup used to conduct AAC for ISLS in the context of CB-CTT.

5.3.1 Configuration Space

This section presents the selection of parameters used in this study.

Group Parameter Value

Neighborhood
Operators

Op1 (TimeMove) Boolean
Op2 (RoomMove) Boolean
Op3 (RsMove) Boolean
Op4 (MwMove) Boolean
Op5 (LMove) Boolean

Hill
Climbing

HC Boolean
NeutralStrict Boolean

IterHC (104; 5 · 104; 105)

Great
Deluge

GD Boolean
UpperBoundRate (1.10; 1.15; 1.50; 2)

Simulated
Annealing

SA Boolean
Reheat Coeff (1; 7; 14)

Table 5.1: Parameters set

Table 5.1 lists the twelve parameters used in this study and their ranges. Notably, the full
parameterization capability of the Iterated Sequential Local Search is not used here. The objective
is to question the structural complexity of the strategies implemented in the Hybrid Local Search
and not to create an overall best solver. It is also important to note that all the other parameters
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are set to the default HLS values. For example, the initial temperature of the SA, if it is activated,
is always 2.5.

Table 5.1 classifies them into 4 groups: the neighborhood operators and one group per heuristic.
Each neighborhood operator and each heuristic can be activated (1) or not (0), so it is managed
with a boolean value. If a heuristic is deactivated, HLS then moves to the next heuristic acti-
vated heuristic. Note that a security function prevents from deactivating all heuristics together. In
addition, the parameter NeutralStrict that controlled the criterion acceptance during the neigh-
borhood exploration is a Boolean value where 0 means that equivalent neighbors are accepted while
1 means that only strictly better neighbors are accepted. The other parameters are numerical.
In order to control the size of the configuration space, we decided for this first study to limit the
possible values. For each parameter, we allow at least one smaller and one larger value than the
value set in the original HLS.

These parameters can be categorized into two types: boolean activation parameters, which
determine the profitability of a particular tool in the Hybrid Local Search, and numerical parameters
that provide flexibility to the configurator. Even with limited ranges, increasing the length of a
heuristic can lead to the creation of more powerful configurations. This idea is inspired by the
findings from the previous section, indicating that a longer exploration length for SA, for instance,
can potentially outperform the original Hybrid Local Search.

Finally, the configuration space contains 2 449 configurations.

5.3.2 Experimental Protocol

Our goal is to investigate if specific configurations of HLS can improve the performance of the
original HLS on the 77 real-world instances used in the literature (Chapter 1). In order to find these
specific configurations, a configurator is run over the configuration space presented in Table 5.1.
The process of automatic configuration needs training instances independent of the ones used to
evaluate the final performance of the configurations. The framework used is the Iterated Sequential
Local Search (Chapter 4) tuned to simulate a basic HLS and only parameters in Table 5.1 are
tunable by the configurator.

Unlike the preliminary study presented in Chapter 4, here we use a part of all available instances
(Chapter 1). Firstly, this study uses about 3 000 artificial instances artificially generated from real-
world instances. The process of generation and how we selected them has been detailed in Chapter 3.
The artificial instances are used as the training set. That means irace tests new configurations on
some of these instances. Concerning the real performance, we use two sets: ITC and New real-world
instances.

For both real-world and artificial instances, we applied the construction heuristic of the orig-
inal HLS (Müller [2009]) to build and obtain solutions that are used as initial solutions of the
optimization process.

We utilize irace (López-Ibáñez et al. [2016]) as the automatic algorithm configurator in this
study. irace employs an iterated racing procedure and statistical tests to identify the best config-
uration from the configuration space. In the initial iteration, irace runs sampled configurations on
a set of instances, typically around five instances. After this iteration, configurations that are sta-
tistically dominated are removed from consideration. For the subsequent iterations, irace generates
new configurations based on the previously selected configurations from the last iteration. This
iterative process continues until the allocated budget for the configurator is used up.

For our experiments, we allocated a budget of 2 000 runs to irace, using selected artificial in-
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stances. Each run corresponds to the execution of one configuration on a single instance. Consid-
ering the conditional values between parameters, there are a total of 2 449 possible configurations.
In the first iteration, we provided irace with the configuration corresponding to the original HLS
(as shown in Table 5.2). When the budget is consumed, irace generates elite configurations that are
statistically equivalent to the training instances used. We select five of these elite configurations for
performance validation on the test instances. To assess the performance, both the original configu-
ration and the five elite configurations are executed 30 times, each with different seeds, on each of
the 77 real-world instances. The best fitness value reached for each run after 5 minutes is recorded
as the final result.

5.4 Experiments

This section focuses on the practical application of irace, the automatic algorithm configurator
introduced earlier in this thesis.

Specifically, we explore its application to selected artificial instances, as detailed in Chapter 3,
to improve the configurations of the Iterated Sequential Local Search (ISLS) framework.The work
presented here involves reducing the configuration space of ISLS to a structure based on HLS: a
sequence of Hill Climbing, Great Deluge, and Simulated Annealing, while allowing the configurator
to deactivate local search and neighborhood operators and manipulate certain parameters.

The primary goal is to expand upon the work presented in Chapter 4 by incorporating additional
parameters and evaluating their performance across various real-world instances. This study aims to
provide a detailed analysis of the obtained configurations and then to determine the best-simplified
version of HLS for real-world scenarios.

An additional objective is to validate the selected artificial instances, assessing if configurations
trained on this set consistently outperform HLS on real-world scenarios. Such validation would
enhance our confidence in the representativeness of the artificial instances.

5.4.1 Analysis of Configurations

Parameter HLSoriginal θ1 θ2 θ3 θ4 θ5

Op1 1 1 1 1 1 1
Op2 1 1 1 1 1 1
Op3 1 1 1 1 1 0
Op4 1 0 0 0 0 0
Op5 1 1 1 1 1 1
HC 1 0 1 1 0 1

Neutral0Strict1 0 NA 0 0 NA 0
IterHC 5 NA 5 1 NA 1

GD 1 1 1 1 1 1
UpperBoundRate 1.15 2 1.50 1.50 1.50 2

SA 1 0 0 0 0 0
Reheat Coeff 7 NA NA NA NA NA

Table 5.2: Parameter values of the original HLS and the five elites.
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Table 5.2 presents the configurations obtained from the irace executions, along with the reference
starting point. Each column represents a configuration, and irace returns several elite configurations
ranked from θ1 to θ5, considering θ1 as the best. Table 5.2 offers an overview of the converged
configurations.

Recall that an activation parameter set to 1 means the related mechanism is activated. The first
5 rows correspond to each operator: TimeMove, RoomMove, RsMove, MwMove, and LMove. RsMove,
MwMove, and LMove correspond respectively to Room Stability Move, MinWorkingDays Move, and
Lecture Move presented by Chapter 1. The subsequent groups of lines correspond to different
mechanism groups, with the next three linked to Hill Climbing, followed by two related to Great
Deluge, and the last two related to Simulated Annealing. As mentioned earlier, Table 5.2 displays
the elite configurations obtained from multiple irace runs with different seeds to ensure convergence.
To simplify the presentation, we have selected a run that best represents the results, although slight
variations in the numerical values may occur between runs.

One evident observation regarding these elite configurations is that irace appears to deem the
use of SA and Op4 as unworthy. Surprisingly, none of the five elite configurations includes Sim-
ulated Annealing. That is unexpected, as our previous manual evaluation of SA alone revealed
its competitive potential, nearly rivaling HLS on the ITC instances, evaluation done in Chapter 4.
However, Table 5.2 indicates that irace does not consider SA alone to be a winning strategy. This
difference in SA performance may be due to the instances, in fact, the addition of instances provided
by De Coster et al. [2022] adds instances where SA may be less efficient. To test this hypothesis,
SA is a baseline in the configuration tests.

Concerning Op4, i.e. MinWorkingDays Move, its systematic deactivation could mean that
this operator has no impact and is even too slow to be worthwhile. Op4 focuses on a subpart
of a timetable that violates one constraint and generates only improving solutions regarding this
constraint. It is thus more complex than others. Operators Op1, 2, and 3 are much simpler. We
hypothesize thus it is slower because of the complexity of its task. Indeed, it must find the lectures
of a course scheduled on the same day and place them on different days. It may seem more efficient
to perform a succession of simple random kicks.

Moreover, Table 5.2 underlines that only Great Deluge with a strong perturbation is always
privileged by irace. Indeed, all the proposed configurations use 1.5 or 2, the two largest values for
the GD UpperboundRate parameter. Great Deluge is a heuristic which, like Simulated Annealing,
accepts non-improving solutions if they have a fitness lower than a bound. The latter decreases
during the iterations. The larger the UpperboundRate, the more time the Great Deluge takes and
the more tolerant it is of large perturbations. That represents a clue to understanding what makes
better solvers, but should not be considered only individually. That may be due to several combined
effects.

5.4.2 Performance

This section evaluates the performance of configurations produced by irace. Two methodologies
are employed to assess these configurations against one another and against four baselines repre-
senting HLS and its simplified variants without behavioral parameters and neighborhood operator
deactivation.

The first methodology directly analyzes fitness performance to determine the most efficient
method in terms of average runs. The second methodology focuses on ranking the efficiency of
methods based on the average rank per instance, rather than average fitness.
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5.4.2.1 Analysis by Fitness Scores

The experiment resulted in 13,860 fitness scores. These scores were obtained from the execution of
9 solvers (original HLS, HC, GD, SA, and the 5 elites) on 77 real-world instances, each run with 30
different seeds. To compare the performance globally and make fair comparisons, we normalized
the fitness scores for each real-world instance using the Min-Max scaling method. Consequently,
each fitness value is in a range from 0 to 1. In this subsection, we compare the fitness scores of
the configurations, including baselines and the five elites. Subsequently, in the next subsection, we
focus on analyzing the computed ranks to re-rank the configurations and reduce outlier behaviors.
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Figure 5.4: Distribution Fitness Scaled per configuration over all instances.

0.00

0.25

0.50

0.75

1.00

HLS HC GD SA θ 1 θ 2 θ 3 θ 4 θ 5

F
itn
es
s

Figure 5.5: Distribution Fitness Scaled per configuration over ITC instances.

Figure 5.4, 5.5 and 5.6 show the distributions of normalized fitness scores of the configurations,
respectively over all, ITC, and newly added instances.

Figure 5.4, 5.5 and 5.6 highlight the fact that most elite configurations outperform baselines.
HLS, HC, GD, and SA are here to get reference points. The HC, GD and SA algorithms correspond
to their HLS implementation.

Firstly, Figure 5.4 shows that the five best methods are GD, θ1, θ2, θ3, and θ4, with a slight ad-
vantage for θ1 and θ4. After this visual analysis, we use statistical tests to validate this observation.
Without these, it is hard to make a definitive ranking. But the conclusion Figure 5.4 brings is that
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Figure 5.6: Distribution Fitness Scaled per configuration over New real-world instances.

irace has managed to generate simpler configurations than HLS. They outperform it and are more
stable. We can see that, once again, SA shows disappointing results, with a behavior close to HC.

The other two figures focus on the instance group distributions (Chapter 1). Figure 5.6 shows
the same behavior as Figure 5.4, so recall that the New group has 56 instances of the 77 real-world.
The behavior of this group is expected to influence the overall behavior. Figure 5.5 focuses on
the initial 21 instances provided by the ITC. Figure 5.5 still shows the same behavior for the best
configurations: GD, θ1, θ2, θ3, and θ4. However, there is a big difference concerning SA. Simulated
Annealing is very good on ITC instances. That corroborates our conclusions in the previous section.
So it could be the New instances that represent a higher difficulty for the Simulated Annealing
structure.

In order to rigorously compare the configurations, we calculate the ranks of the methods fol-
lowing the procedure below. We first use a Friedman statistical test, with a significance level of
0.05, to check that the distributions of the normalized fitness scores for each method are different.
The Friedman test obtains a p-value < 2.2 × 10−16, which means there is a statistical difference
in global performance between configurations. This test only tells us that a difference is present.
To obtain actual ranks, we proceed as follows. The mean of scaled fitness values for each solving
method is computed in order to sort configurations by ascending order of mean fitness. Recall
that CB-CTT is a minimization problem, so we look for the lowest values. The sorted algorithms
are compared using a Wilcoxon test (also known as the Mann-Whitney test) to check for actual
statistical difference. Again a significance level of 0.05 is used. The first ordered configuration
(the one with the best mean) is ranked 1 and is statistically compared with the following ordered
configurations until the Wilcoxon test rejects the equality hypothesis for one configuration. Then,
this configuration is ranked 2 and the previous ones are ranked 1. Then, we test the configuration
ranked 2 with the ordered configurations that follow. The procedure is detailed in Algorithm 12.
Table 5.3 reports the ranks calculated for each configuration. The activated heuristics are specified
between parentheses.

Table 5.3 (line All) confirms that elite configurations θ1, θ2, θ3 and θ4 outperform the other two.
Moreover, θ1 and θ4 are the elites that give the best performance to solve real-world instances. We
can remark that the order of elites given by irace is not confirmed here. This is due to a difference
between training and test instances. However, the main important result here is that it is possible
with fine-tuning to find configurations of HLS that better perform than the original one. To support
this conclusion, we compute the frequencies of the ranks of each configuration. Figure 5.7 shows
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Algorithm 12 Ranking Procedure

1: rank ← 1
2: index ref ← 1
3: methods←list of methods sorted by mean fitness
4: rank list[methods[1]]← rank
5: for index in index ref + 1 to |methods| do
6: method1← methods[index ref ]
7: method2← methods[index]
8: result←Wilcoxon.test(method1,method2)
9: if result : methods are not equivalent then

10: rank ← rank + 1
11: index ref ← index
12: end if
13: rank list[method2]← rank
14: end for
15: return rank list

Instance
Set HLS HC GD SA θ1 θ2 θ3 θ4 θ5

All 4 6 2 6 1 3 3 1 5
ITC 4 5 2 3 1 3 2 1 4
New 3 4 1 5 1 2 2 1 4

Table 5.3: Ranks on Normalized Fitness values.

the computed frequencies. If we focus on HLS ranks, we see that it is outperformed by at least one
other configuration on 42 instances (77− 35).

Table 5.3 also provides the rank if we separate the real-world instances into ones from the
ITC 2007 competition and the others (called New). The ranks are globally the same, but, surpris-
ingly, HLS gets better performance on the new instances even though it was manually tuned on the
ITC ones.

We notice that elite configurations θ1 and θ4, the best ones, do not have a Hill Climbing phase.
The three other configurations use a relatively quick HC according to their value of IterHC, and
all of them use neutral acceptance.

5.4.2.2 Analysis by Ranks

The limitation of considering the normalized fitness values across all instances is that it fails to
consider the variation in behavior for each instance. In this section, we address this limitation by
incorporating per-instance rank analysis, which allows us to use instance-specific information. To
achieve this, we perform a ranking procedure for each instance separately, utilizing the raw fitness
scores.

The aim is also to obtain a ranking that values the average rank per instance, as opposed to the
lowest average fitness. We therefore want a method that performs better on the largest number of
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Figure 5.7: Frequency of Rank by Config.

instances, not the largest number of runs.

We first analyze the distribution of per-instance ranks. Figure 5.8, 5.9, and 5.10 show these
distributions for each configuration, respectively over all instances, ITC instances, and newly added
real-world instances. Unlike the previous section, these figures display the distribution of ranks
rather than the scaled fitness values. Figure 5.8, 5.9, and 5.10 show similar behavior. The first
four elites and the original HLS have a median rank equal to 1. These figures show that in at least
50% of instances θ1 and θ4 are first in terms of rank. If we analyze the raw data, there are many
real-world instances where the configurations are equivalent, especially on the easier instances.
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Figure 5.8: Value of Ranking by Method over all real-world Instances.

We observe three main distinct behaviors. The first one relates to θ5. Its wider boxplot and
median at 2 indicate poorer performance compared to the other variants, which aligns with the
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Figure 5.9: Value of Ranking by Method over ITC real-world Instances.
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Figure 5.10: Value of Ranking by Method over New real-world Instances.

rank obtained from the normalized fitness values.

Original HLS, together with θ2 and θ3 have the same boxplots. However, this does not mean
that the ranks are distributed in the same way, only that they share the same summary statistics.
The two best variants are θ1 and θ4, both only use Great Deluge. These distributions of per-instance
ranks seem to match to a certain extent the results obtained on the ranks of normalized fitness
values. To further the observations from the analysis of Figure 5.8, we use a ranking method on the
sum of ranks per instance by each solver. In addition, we explicitly isolate the ITC 2007 instances
from the rest, to see whether HLS performs better on this subset of instances it was originally
designed to solve.

A notable difference in the results from the fitness distribution is related to SA. This time, its
behavior remains consistent across the sets of instances. It indicates that despite its performance
on some instances in the ITC set, SA does not perform as well on others. When considering the
fitness distribution of the previous section, SA showed a better fitness distribution on the ITC
sets. However, in this case, the ranks remain the same, meaning that regardless of the subgroup of
instances, SA performance varies significantly in terms of ranks and does not consistently excel.

Table 5.4 shows the ranking of each method considering ranks per instance. The ranking is also
performed on subgroups of instances. The first subset, named ITC, includes the initial CB-CTT
benchmark consisting of 21 instances from the University of Udine. The “New” group contains the
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Instance
Set HLS HC GD SA θ1 θ2 θ3 θ4 θ5

All 6 9 3 8 2 5 4 1 7
ITC 8 9 3 6 2 5 4 1 7
New 6 9 3 8 2 5 4 1 7

Table 5.4: Global Ranks on the ranks per instance.

remaining newer real-world instances (Chapter 1).
The new ranks provide additional information to complement the boxplots and previous ranks.

With this approach, the HLS, θ2, and θ3 are not considered statistically similar. Indeed, HLS is
ranked worse than four of the five elite configurations proposed by irace, all of which are algorith-
mically simpler. This time it was θ4 who came out on top.

5.4.3 Ablation

Ablation analysis (Fawcett and Hoos [2016]) is a method employed to investigate how modifying
specific parameters of a solver impacts its overall performance. It quantifies the ranking of the
importance of value changes in achieving improved configurations.

The ablation analysis takes a set of instances to test several configurations. Moreover, this
process needs two initial configurations. A starting configuration and a target configuration. The
method tests some configurations that are between these two initial configurations. The algorithm
tests the starting configuration, here HLS, on the given instances, here the real-world, test set.
During the first iteration, the method generates new configurations based on the HLS default
configuration, the starting method. But these configurations have one parameter value that differs
from the starting configuration, that value is set to the same value as in the target. After the
performance tests, statistical tests determine the best of the new configurations. The improvement
or degradation compared to the previous starting configuration is memorized. On the next iteration,
the new starting configuration is the one that is considered the best in the previous iteration. So, on
the second iteration, the starting configuration is a configuration that has the same parameters as
HLS except for one whose value is equal to the target. The program generates new configurations
similar in terms of parameters to this new starting configuration except for one of them. The
iterations continue until the target configuration is obtained again. At the end of the analysis, we
get information about the change of values and parameters that allowed us to go from HLS to the
best configuration.

Here we consider θ1 as the target. Indeed, we keep θ1, and not θ4, because it is the most efficient
according to irace on the train set. Anyway, θ1 and θ4 are very close as detailed previously.

Ablation analysis highlights the most important parameters and their values to improve perfor-
mance. In this paper, ablation analysis takes the set of instances called All in the previous section,
which contains all of the 77 feasible real-world instances. The ablation compares two solvers that
both have a Great Deluge phase, which is why this parameter is not studied by the algorithm. We
previously highlighted that the best configurations all activate this feature.

Figure 5.11 shows the order in which the parameters were changed. This is equivalent to giving
an order of importance for these two configurations. Furthermore Figure 5.11 gives the average
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Figure 5.11: Mean configuration cost computed by the ablation analysis.

scaled cost gain on the 77 real-world instances.
The ablation method shows that the most improving change of value from HLS is to set the

UpperBoundRate to 2. That means increasing the power of perturbation of the Great Deluge phase
contributes to the efficiency of GD. Additional runs showed that setting UpperBoundRate to 1.43
would increase performance in the case of θ4 configuration.

The second most important feature highlighted by ablation is MwMove, which corresponds to the
activation of the MinWorkingDays Move operator (Section 5.3.1). Ablation results conclude that
the improvement due to the activation of this operator is less significant than for UpperBoundRate.
However, it is still significant compared to the other two. That fact validates our analysis in the
previous section. This operator must slow down the solver a lot or not be efficient enough to
be worth it. The importance of deactivating SA is finally minimal. In Section 5.3.1, SA was like
MinWorkingDays move, always deactivated. And yet, these are not the most important parameters,
i.e. chosen first. So there may be combinations of parameters where SA and GD are effective. This
would require further experimentation to ascertain.

The last parameter chosen by ablation is HC. That means Hill Climbing has no concrete impact
on the performance when changing HLS to θ1. Ablation results advise setting this parameter to
1. Moreover, it considers that if HC is deactivated that decreases the performance of the solver.
However, our performance tests say that variants with HC are worse than GD only. In summary, the
ablation analysis showed that UpperBoundRate was the most important parameter in the success of
θ1 and θ4. That offers the opportunity to work in the future on SA and HC, and their parameters.
Consequently, these features become significantly important in this kind of study.

5.5 Conclusion

Experimental results have shown us three facts. The first is that irace seems to be able to use the
train set selected in Chapter 3, as the configurator returns configurations that perform better on
the real-world data. This shows that if a method is good on a sample of the training set then it is
also good on the test set. We therefore keep this test set for the future. However, it is important
to note that irace also returned θ5 which is very bad. So even if we have four statistically better
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elite configurations, it is important to note that there are differences between the training and the
test set, but these do not prevent us from obtaining new and better configurations.

The second discovery is that the structure of Hybrid Local Search is not optimal. It is possible to
create a method that outperforms it in number of runs and on a majority of instances. This method
uses fewer neighborhood operators and does not need Hill Climbing and Simulated Annealing. It
is a simple iterated Great Deluge. That highlights the usefulness of questioning complex algorithm
structures to ensure that each element is cost-effective to incorporate.

The latest discovery paves the way for the work that follows. Ablation analysis shows that
the most important parameter change according to it locally is to increase the value of a so-called
activation parameter. Then to deactivate the MinWorkingDays move and only then, with minimal
gain, to deactivate the other two heuristics. So, these results show that increasing the available
values of the behavior parameters increases performance. That is why the next step consists, this
time, of having wider ranges for the behavior parameters but also of increasing the number of
parameters. Ablation analysis has shown that these parameters have a strong importance and
that, consequently, tuning of them must be carried out to obtain the best results. Furthermore,
one of the limitations of our study could be overcome by using a larger number of parameters. SA
and HC do not have much impact on performance according to the ablation analysis so perhaps
tuning their parameters makes them more cost-effective to use.
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This thesis focuses on a university timetabling problem: the Curriculum-Based Course Timetabling
problem (CB-CTT) and its state-of-the-art solver: Hybrid Local Search (HLS). This thesis has two
main axes, the first being to study the search landscape to extract and understand the complexity
of the problem and to use this data to improve the performance of the solvers. The second focuses
on tuning HLS to improve its performance. This thesis conducts several studies to achieve these
objectives.

After describing the scientific context of this thesis to understand where our work stands con-
cerning the literature, this thesis details our analysis of the landscape of early CB-CTT instances
and shows that proposed landscape representation models contain relevant information that could
be used to create machine-learning models predicting HLS performance.

This thesis then details an analysis of instances using feasibility as a proxy to develop a selector
that selects the most similar artificial instances to the real-world. That creates a selected dataset
that is more appropriate for future tuning work.

Finally, this thesis explains how starting from HLS, we have developed and coded an Iterated
Sequential Local Search (ISLS) framework that is fully parameterizable and integrates a generic
local search that can instantiate HLS heuristics.

This thesis concludes with the first work using ISLS and the Automatic Algorithm Configurator
irace that shows that an improved HLS can be created using the data selected in the previous work
and using an ISLS forced to be HLS-like.

This chapter provides an overview of the primary contributions made in this thesis. Additionally,
it highlights work conducted during this thesis that, while valuable, was not incorporated into the
manuscript due to its preliminary nature. Lastly, the chapter outlines potential perspectives for
further research, offering suggestions for the continuation of this thesis.

6.1 Contributions

This section provides a concise overview of the contributions made within this thesis. It outlines the
primary contributions in alignment with the thesis plan structure, offering a clear and well-defined
identification of these contributions.

6.1.1 Search Landscape Analysis

In this section, we introduce the novel concept of Fitness Networks as a key contribution to our work.
These networks offer a way to represent the CB-CTT search landscape, providing valuable insights
into its underlying characteristics. To create Fitness networks, we employ Iterated Local Search
(ILS), running it multiple times on a given CB-CTT problem. During each ILS run, we record
transitions between solutions with different fitness levels. These transitions are used to construct
the initial Timeout Plateau Network, where nodes represent plateaus (set of solutions with the same
best fitness during a Hill-Climbing phase), and edges are formed by transitions within a single run
following a Hill Climbing and Perturbation phase. Subsequently, we contract the Timeout Plateau
Network by fitness, resulting in a highly connected representation model.

In Fitness Networks, three distinct groups of patterns are discerned. Group A consists of nodes
with low local density, representing the best solutions. Group B comprises interconnected nodes
with intermediate fitness values, often encountered during exploration. Group C represents the
poorest solutions, isolated from the rest, with arcs primarily connecting to Group B. An auto-
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mated method identifies these different groups by detecting kinks in fitness distributions along the
networks.

6.1.2 Performance Prediction Models Study

In the context of this work, a diverse set of features was computed from the Fitness Networks
to support the development of a prediction model. These features covered various aspects of the
network topology, including the count of nodes, plateaus, and sink nodes within the three groups
or whole network: Groups A, B, and C. Additionally, statistical measures such as quantiles, means,
quartiles, and other characteristics of the fitness distributions were computed for each of these
groups.

This contribution consists of predicting the performance of solvers, specifically HLS, HLSstrict,
and SA, by using landscape features as predictive indicators. By employing these landscape fea-
tures, the study seeks to identify and validate the relevant factors that significantly influence solver
performance. Predicting the minimum reachable fitness by a solving algorithm is the first step in
optimizing solver performance and enables early termination when the optimal fitness is approached.

To determine the optimal setup, we applied predictive modeling techniques to predict the min-
imum setup required for solving instances efficiently. We evaluated multiple protocols involving
different combinations of samplers, allocated exploration time, and features. This entailed using
two samplers, ILSstrict and ILSneutral, and various time budgets. We also considered several features,
including those derived from the network metrics and node fitness distributions.

Initially, the protocol relied on a single feature linked to the fitness of the best solutions discov-
ered during exploration in zone A. However, to further enhance prediction power and robustness,
we experimented with incorporating additional features.

Through this experimentation, we found that including more than one feature slightly increased
prediction power and overall robustness. In most cases, these extra features could also compensate
for the absence of the best single feature. This highlights the potential benefits of using a combina-
tion of features with a machine learning model to accurately predict the final fitness of a 5-minute
run of a complex algorithm like Hybrid Local Search.

Our contribution demonstrates the potential of leveraging landscape data and multiple features
for performance prediction, providing a promising avenue for optimizing resolution algorithms using
prediction.

6.1.3 Feature Analysis for Instances

During the course of our work, a large number of benchmark instances were proposed by De Coster
et al. [2022]. Most of these instances are artificial instances.

We analyzed the distribution of the instance features and used Principal Component Analysis
(PCA) to identify different patterns in the data.

Our observations showed that the artificial instances exhibited a scattered distribution in the
PCA-generated space, but they seemed to exhibit similar distributions as real-world instances in
the feature space.

Experiments on apply the HLS construction algorithm to these new instances revealed a notable
difference between the solutions obtained from artificial and real-world instances. Four real-world
instances were found to be infeasible, but a higher proportion of artificial instances also faced the
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same issue. Moreover, the distribution of instance features when comparing feasible and not feasible
instances was significantly different.

6.1.4 Feasibility Prediction and Instance Selection

This contribution focuses on proposing a protocol for predicting the feasibility of instances based
on their instance features. This protocol led to the training of the Selector model, which predicts
whether an instance should be selected for use in the training set.

The analysis of feasibility using statistical tests, boxplot visualizations, and PCA revealed dis-
tinct distributions of instance feature values when comparing feasible and infeasible instances. That
demonstrated the possibility of predicting instance feasibility. Predicting feasibility can help avoid
wasted time in experiments. However, our primary interest lies in the comparison between artifi-
cial and real-world data and determining if artificial instances are suitable for training automatic
algorithm configurators.

Consequently, this work produced three models, each trained on different datasets. The first,
referred to as FPR, is trained directly on real-world instances but is not intended for practical use
due to the risk of overfitting and high instance-specificity.

The other two models employ artificial data. The one that uses all artificial data without dis-
crimination exhibits poor performance and inefficacy. That indicates that many artificial instances
behave differently from real-world data concerning feasibility. The second model, FPAC , demon-
strates good performance. It is trained on a subset of artificial instances selected for their similarity
to real-world behavior. FPR assists in selecting these instances based on their ability to predict
their feasibility accurately.

These results highlight that artificial instances can be leveraged for training models or as a
training dataset for techniques applicable to real-world data, provided that selection criteria are
applied. Hence, we have introduced a specialized model, Selector, which uses well-predicted in-
stances to specialize and determine whether to select new instances. This model proves valuable
when newly generated instances are added to the benchmarks. Finally, we tested the entire pipeline.
The resulting model, FPAS , achieved good results with an average accuracy exceeding 0.74.

6.1.5 Iterated Sequential Local Search

During this thesis, our efforts to enhance the performance of HLS, the state-of-the-art method
for CB-CTT, led us to focus on tuning field. Before this, performance analyses of HLS and its
components had indicated that it was not optimal and could be outperformed. Starting from the
premise that HLS is a highly efficient method, owing to its overall process and heuristics, we decided
to create an HLS designed explicitly for tuning.

Tuning demands significant flexibility, especially when exploring highly diverse configurations.
Therefore, we envisioned not merely an HLS framework but an Iterated Sequential Local Search
framework (ISLS). This framework preserves the fundamental HLS concept of executing a sequence
of several different heuristics in a loop, maybe more than 3.

Moreover, relying on fixed heuristics with predetermined acceptance and termination strategies
would not have expanded the configuration space significantly. This led us to propose a generic
local search (GLS) capable of instantiating the HC, GD, and SA from the original HLS. GLS can
combine the acceptance criteria of one of the three basic heuristics with the termination criterion
of another, thereby creating new local searches. ISLS is developed within ORKAD’s MH-builder
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platform. It allows for HLS instantiation while providing high configurability, all while utilizing
HLS components exclusively.

6.1.6 Tuning ISLS

In this work, our focus was on tuning the parameters that enable or disable components within the
global Hybrid Local Search (HLS) algorithm. Our analysis concentrated on the utility of adding or
removing complexity from the solver.

To achieve this, we employed a configurator that could deactivate each neighborhood operator
and HLS local searches. Surprisingly, the optimal configurations obtained through irace were found
to be simpler than the basic HLS in various aspects.

The configurator, trained on artificial instances selected from a previous contribution, returned
a method that utilized only one local search, i.e. Great Deluge, and deactivated one operator.

We validated this configuration on real-world instances and observed significant improvements
in performance. The iterated Great Deluge outperformed the base HLS configuration in terms of
both the lowest average fitness and best average rank per instance.

This validation provided support for using the artificial data as a training set for tuning. More-
over, it demonstrated that a simpler method, the Great Deluge in this case, could surpass the
performance of HLS.

An ablation analysis further revealed that the most crucial factors for enhancing performance
were increasing the power of the Great Deluge and deactivating a specific operator. As a result,
there is a possibility of obtaining an improved HLS configuration by retaining the hybridization of
the Great Deluge and Simulated Annealing components while deactivating a particular operator.
This insight opens up avenues for refining and optimizing the HLS algorithm to achieve even better
results.

6.2 Research Perspectives

This section outlines research avenues in the context of this thesis. It includes a first part on
investigations already started and in need of further investigation. And secondly, perspectives on
as yet uninitiated research topics that could be carried out in the future.

6.2.1 Short-term Perspectives

In this section, we detail research endeavors undertaken during the thesis that have not been
integrated into the manuscript. These efforts encompass preliminary investigations into specific
aspects, which may yet evolve into more extensive studies.

Trajectory Analysis The main goal was to apply different heuristics, including HLS, SA, HC,
GD, and others, to ITC instances. The objective was to gather execution data in order to predict
promising trajectories. Upon completing the experiments, we obtained data on the evolution of
the best fitness, current fitness over time in seconds and iterations, and the number of evaluations
for each run. Surprisingly, our findings revealed significant variations within the trajectories of the
same method applied to the same instance. These trajectories displayed considerable variability.
Despite our efforts to investigate time series analysis and other predictive methods for discerning
the future behavior of data series, we encountered challenges. Unfortunately, we were unable to
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develop a tool that would enable us to predict whether a run would result in a favorable trajectory
or not. This limitation prevented us from drawing conclusive results from the trajectory analysis
work.

Fitness Landscape Extension This work builds upon the works presented in Chapter 2 but
with a broader scope, encompassing all feasible instances. The primary objective was to assess
whether our machine-learning tools and predictors could continue to yield good results.

During our initial experiments, we observed a decrease in the predictive capacity of our models.
However, this decrease was not drastic and could be attributed to the substantial increase in the
number of instances considered. In response to these preliminary findings, we conducted an in-
depth analysis of the instances to explore the possibility of employing clustering techniques. The
goal was to create clusters that would enable the training of performance prediction models specific
to each cluster.

The instance analysis resulted in a published contribution, which is detailed in Chapter 3.
Despite being incomplete work, this endeavor led to other published work that proved to be quite
time-consuming. Nonetheless, the clustering of instances to predict algorithm performance remains
a promising avenue for future exploration and one of our potential perspectives.

More Real-World Instances Increasing the robustness of our work was a primary objective,
driven by the need to accommodate new data. To achieve this, we initiated the process by retrieving
the university timetables from the new ITC 2019 benchmark and from Polytech Lille engineering
school. We initiated the process and created an in-development converter to transform these uni-
versity timetabling problems into CB-CTT problems. However, the need for numerous manual
adjustments due to the converter ongoing development made the process time-consuming, and its
cost-effectiveness was questionable. The addition of 60 new real-world instances from other insti-
tutions by De Coster et al. [2022] has not only diversified our dataset but has also reduced the
immediate need to further expand the volume of instances, contributing to the overall robustness
of our research.

Distance and Heuristics One of our recent major projects was to quantify the changes ex-
perienced by a solution based on the solver used or the heuristics applied. We aimed to leverage
the distance metrics introduced in our first published paper (Feutrier et al. [2021]) to compare the
initial and final solutions produced by local searches in the HLS structure.

The intended outcome was to demonstrate a correlation between the distance measures and
the solver employed. However, the results did not align with our expectations. Surprisingly, the
distance did not appear to be correlated with fitness, and it did not exhibit consistent behavior
across different solvers, including SA, HC, and GD. As a consequence, further investigation is
required to comprehend and address these deviations.

6.2.2 Medium-term Perspectives

This section introduces several unexplored possibilities for future work, distinct from the previous
section. The objective is to highlight the diverse perspectives that can be pursued as a consequence
of the work conducted in this thesis.
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Optimal Instance clustering The first idea for future work involves identifying the optimal
combination of data for effectively clustering problem instances. This entails collecting both in-
stance features and landscape data for each instance. Subsequently, various automatic clustering
algorithms like Kmeans, Hclust, DBSCAN, and Spectral Clustering would be tested to determine
the most suitable approach.

To give concrete application to instance clustering, two options are proposed. The first option
is to explore adapting performance prediction models on instances and train them based on clus-
ters, evaluating the differences in predictive power. This means reworking the work begun on the
extension of Chapter 2 to prediction.

The second option involves focusing on tuning. Clustering instances and then tuning the best
configuration for each cluster would allow for easy resolution of an instance by assigning it to
the cluster with its optimal configuration. To validate the effectiveness of clustering, the chosen
clustering methods should exhibit significantly better performance than the most efficient method
on all instances without clustering. This validation process will necessitate specialized cluster
methods that outperform the non-clustered approach across all instances.

The second option offers the chance to show the most suitable methods for various instance
types. For instance, it might reveal that Hill Climbing and Simulated Annealing are effective for
simpler instances, while Hill Climbing and the Great Deluge outperform in handling highly complex
instances.

Analysis of Neighborhood Operator The second idea combines analysis and tuning to en-
hance algorithm performance. In the first part, we aim to analyze the generated neighbors and
explore the direct relationship between the chosen neighborhood operator and the resulting solu-
tion. To achieve this, we will create a diverse set of initial solutions, including optimized solutions
obtained after a specific time budget (e.g., the best solution after 1 minute of Great Deluge and
after 3 minutes). This approach will provide us with a wide range of solutions. For each solution,
we will generate a set of neighbors using different neighborhood operators.

The goal is to examine the results in terms of soft constraints and distance. We seek to establish
a connection between each operator and the type of modification it introduces. For instance, does
the CurriculumCompactness Move operator primarily reduce soft constraints? Does it lead to
significantly different solutions, or are the changes minimal?

In the second part, we will use the insights from the analysis to select an adaptive online
operator. This involves manipulating the operator selection probabilities based on solution quality
and violation values for each soft constraint. The algorithm will dynamically adjust its neighborhood
based on the current situation.

To evaluate the effectiveness of the approach, we will compare the results with those obtained
from the Hybrid Local Search (HLS) and the basic Great Deluge (GD). Additionally, we will set
up an adaptive HLS and GD for comparison, as HLS using different methods may exhibit varying
behaviors due to their distinct strategies.

Instance Generation One of the promising future work perspectives is to shift the focus from
optimization to instance creation. The objective would be to leverage the work of De Coster et al.
[2022] presented in Chapter 3. This work enabled us to generate a large number of artificial data,
where feature value instances of new instances were created using a generator inspired from the
literature.
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There are two main objectives for this perspective. Firstly, we aim to manipulate the instance
generator code to ensure that instances are more frequently feasible and adhere to real-world rules.
This could be achieved through the use of machine learning tools or verification algorithms to
create feasible instances and manipulate the complexity within the generator. This would provide
an opportunity to generate new feasible instances for the train set.

The second objective is to create a procedure akin to SMOTE (Chawla et al. [2002]) for real-
world instances. This procedure would duplicate real-world instances while introducing simple
mutations to make them unique. The intention is to increase the volume of test data for more
significant testing. By duplicating and mutating instances, we can increase the dataset with diverse
variations while retaining the underlying characteristics of the real-world instances.

The idea is to use instance clusters to guide the duplication process and increase the number of
instances per cluster. As clusters are expected to group together similar instances, this approach
would ensure that the generated instances remain representative of the patterns in the real-world
data.

Automatic Algorithm Configuration with global ISLS Configuration Space and Time
Budget variation This work aims to expand upon the work presented in Chapter 5 by exploring
a more extensive configuration space with a strong emphasis on generating new local searches. This
larger configuration space includes providing irace with a more generous budget for discovering the
most effective ISLS configuration for real-world instances. After analyzing these configurations
and assessing their performance, we intend to find this HLS-independent algorithm capable of
outperforming it.

Subsequently, we will investigate the impact of time budget on the configurations generated by
irace. Preliminary analyses have shown that for easy instances, HLS often finds the best fitness in
under 1 minute. Thus, the following 4 minutes are useless.

To this end, we will experiment with different time budgets: 10, 30, 60, 420, 600, and 1200
seconds, mapping out the relationships between ISLS configurations and time budget. We will also
determine which elements to add in irace to utilize the available time effectively. An analysis of
these results will highlight the strategies and Hybrid Local Search that increase the performance
with enough time.

Finally, we will compare the top configurations across different time limits to demonstrate the
significant performance gains achieved with increased time allocation.

In summary, this work will harness the full range of ISLS flexibility to craft configurations finely
attuned to specific time constraints. These diverse configurations will offer a tangible understanding
of the most effective components within varying time frames and provide insights into which local
search strategies should be employed to achieve optimal performance over short or extended dura-
tions. Furthermore, it will shed light on the performance gains obtained as we transition between
different time budgets.
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Résumé Dans cette thèse, nous nous intéressons au problème du Curriculum-Based Course
Timetabling (CB-CTT), un problème d’emploi du temps universitaire appartenant à la famille des
problèmes d’ordonnancement. Le CB-CTT est donc un problème de recherche opérationnelle et plus
précisément d’optimisation combinatoire. Les métaheuristiques sont des méthodes de résolution qui
offrent de bonnes performances dans un délai raisonnable. Les métaheuristiques sont utilisées pour
leur généricité qui leur permet de s’adapter et d’être appliquées sur un grand nombre de problèmes
d’optimisation. Tout d’abord, nous analysons le paysage de recherche du CB-CTT pour caractériser
les instances de la littérature. Différents indicateurs sont ensuite utilisés pour construire un modèle
permettant de prédire la performance des algorithmes de résolution comme les métaheuristiques. De
plus, nous proposons une généralisation de la méthode plébiscitée par la littérature pour résoudre
le CB-CTT sous forme d’une recherche locale séquentielle itérée (ISLS : Iterated Sequential Local
Search) qui permet la conception de nouvelles versions de la méthode originelle et qui surpasse
ses performances. La prédiction de performance et la configuration automatique nécessitent de
nombreuses instances d’entrainement. Ainsi, nous proposons également une analyse statistique des
instances et définissons un modèle d’intelligence artificielle qui sélectionne les instances les plus
adaptées en terme de faisabilité.

Abstract This thesis focuses on the Curriculum-Based Course Timetabling (CB-CTT) problem,
a university timetabling problem belonging to the scheduling problems. The CB-CTT is, therefore,
an Operational Research problem, and more specifically a combinatorial optimization problem.
Metaheuristics are solving methods that offer good performance in a reasonable time. Metaheuris-
tics are used for their genericity, which allows them to be adapted and applied to a large number
of optimization problems. First, we analyze the search landscape of the CB-CTT to characterize
the instances of the literature. Several indicators are then used to build a model for predicting the
performance of solution algorithms such as metaheuristics. In addition, we propose a generalization
of the state-of-the-art method called Iterated Sequential Local Search (ISLS) for solving CB-CTT,
which allows the design of new versions of the original method and outperforms it. Performance
prediction and automatic configuration require numerous training instances. We therefore also pro-
pose a statistical analysis of the instances and define an artificial intelligence model that selects the
most suitable instances in terms of feasibility.
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