
HAL Id: tel-04392323
https://hal.science/tel-04392323v2

Submitted on 19 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bird-Eye Views of Object Oriented Software
Nour Jihene Agouf

To cite this version:
Nour Jihene Agouf. Bird-Eye Views of Object Oriented Software. Computer Science [cs]. Lille
University, 2023. English. �NNT : �. �tel-04392323v2�

https://hal.science/tel-04392323v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Université de Lille, Faculté des Sciences et Technologies

École doctorale MADIS Lille

Bird-Eye Views of Object-Oriented

Software
Vues à Vol d’Oiseau sur les Systèmes Orientés Objet

THÈSE

présentée et soutenue publiquement le 12 décembre 2023

pour l’obtention du

Doctorat de l’Université de Lille

(spécialité informatique)

par

Nour Jihene AGOUF

Composition du jury

Président : Jean-Michel Bruel (Professeur - Université de Toulouse)

Rapporteurs : Christelle Urtado (Professeur - IMT Mines Alès)
Jean-Remy Falleri (Professeur - Université de Bordeaux)

Directrice de thèse : Anne Etien (Professeur, Université de Lille)

Co-Directeur de thèse : Stéphane Ducasse (Directeur de Recherche, INRIA Lille)

Invité : Arnaud Thiefaine (Coach Craft – Arolla)

Centre de Recherche en Informatique, Signal, et Automatique de Lille — UMR 9189 CRIStAL

INRIA Lille - Nord Europe

EvreffervE

i

Acknowledgments

First and foremost, I extend my heartfelt gratitude to my esteemed supervisors,
Stéphane Ducasse, for his immense support from the inception of my Ph.D. jour-
ney, guidance throughout the entire research process, and securing funding for my
thesis. I will forever be grateful. To Anne Etien, whose continuous mentorship,
understanding, and empowering feminine energy that profoundly shaped my de-
velopment and enriched my experience. I am profoundly grateful for the immense
knowledge and expertise I have gained under their tutelage.

I would like to express my sincere appreciation to Arolla software company for
their generous sponsorship of my Ph.D. and to the remarkable individuals at Arolla,
notably Olivier Moglia, Cyrille Martraire, and Arnaud Thiefaine, for their support
and collaboration. Additionally, I am grateful to the entire RMoD team at Inria for
providing a nurturing and stimulating work environment, fostering my growth, and
fostering a good sense of community.

I am indebted to my beloved mother, whose support throughout my academic
pursuits has been a source of strength and inspiration. Her invaluable lessons on
the significance of hard work and perseverance have been instrumental in shap-
ing my character. I would also like to express my gratitude to my dear sister and
the exceptional group of supportive friends, both within France and internation-
ally, whose encouragement has made this journey all the more meaningful. To my
friends within the RMoD team, with whom I have shared countless meals, engag-
ing discussions, and joyous laughter, I am truly grateful for the camaraderie and
support they have provided.

Lastly, I would like to humbly acknowledge myself for maintaining self-belief,
patience, and a positive mindset throughout this arduous journey. These qualities
have been instrumental in overcoming challenges and persevering towards the suc-
cessful completion of my Ph.D.

iii

Abstract
Software maintenance is a challenging task. It requires reading and understanding
the software besides source code investigations and analysis. Maintainers usually
rely on tools such as IDEs, tests and debuggers to navigate through the source code,
understand its logic, detect different anomalies and correct them , etc. However,
such techniques can be time-consuming for maintainers and companies. In fact,
according to the existing literature, more than half of the time dedicated to software
maintenance is spent reading and understanding the source code before making any
changes or decisions on the software.

This thesis takes a distinct approach to software maintenance by offering novel
visualizations that answer to maintainers’ needs. Each visualization is dedicated to
a specific task inspired by the needs of the software maintainers of our industrial
partners. The research done in this thesis focuses on one main objective which is
detecting software violations. Our definition of violations, however, concerns three
main challenges: detecting architectural violations, naming conventions violations
and (anti-) naming patterns and finally, violations of clean code principles inside
classes. To address these challenges, targeted visualizations are proposed: Clis-
ervo for the detection of architectural violations in client-server software, Class-
Name Distribution (CnD) for the detection of naming violations, and innovation
of the patrimonial ClassBlueprint Visualization (CBv2) for detecting bad quality
classes’ source code. These visualizations assist maintainers in understanding and
improving software systems, ultimately leading to more efficient and sustainable
maintenance processes.

Each of the visualizations is validated independently with software maintainers
and a diversity of projects including the ones of our industrial partners.

Keywords: Program visualizations, program comprehension, software violations

v

Résumé
La maintenance logicielle est une tâche complexe. Elle requiert la lecture et la
compréhension du programme ainsi que des investigations et des analyses du code
source. Les mainteneurs se reposent généralement sur des outils tels que les envi-
ronnements de développement intégrés (IDEs), les tests et les débogueurs pour nav-
iguer à travers le code source, comprendre sa logique, détecter différentes anoma-
lies et les corriger, etc. Cependant, ces techniques sont chronophages pour les
mainteneurs et les entreprises. En effet, selon la littérature existante, plus de la
moitié du temps consacré à la maintenance logicielle est attribué à la lecture et à
la compréhension du code source avant de prendre des décisions ou d’apporter des
modifications au logiciel.

Cette thèse aborde la tâche de maintenance logicielle de manière nouvelle en
proposant des visualisations novatrices qui répondent aux besoins des mainteneurs.
Chaque visualisation est dédiée à une tâche spécifique inspirée des besoins des
mainteneurs de logiciels de nos partenaires industriels. La recherche menée dans
cette thèse se concentre sur un objectif principal qui est la détection de violations
logicielles. Notre définition des violations, cependant, concerne trois principaux
défis : la détection de violations architecturales, de violations de conventions de
nommage et de (anti-)patterns de nommage, ainsi que de violations des principes
du code propre à l’intérieur des classes. Pour relever ces défis, des visualisations
ciblées sont proposées : Cliservo pour la détection des violations architecturales
des programmes client-serveur. La ClassName Distribution (CnD) pour la détec-
tion de violations de nommage, et une amélioration de la ClassBlueprint originale
(CBv2) pour la détection du code des classes de mauvaise qualité. Ces visuali-
sations aident les mainteneurs à comprendre et à améliorer les systèmes logiciels,
conduisant finalement à des processus de maintenance plus efficaces et durables.

Chacune des visualisations est validée indépendamment auprès des mainteneurs
de logiciels et sur une diversité de projets, y compris ceux de nos partenaires in-
dustriels.

Mots clé: Visualizations des programmes, comprehension des programmes, vio-
lations logiciel

Contents

1 Introduction 1
1.1 Maintenance and Program Comprehension 1
1.2 Challenges in Early Stages of Maintainance 2
1.3 Modeling Bird-Eye View . 4
1.4 Contributions . 6
1.5 Structure of the Thesis . 6
1.6 List of Publications . 7

2 State of The Art of the Early Challenges in Maintenance 9
2.1 Software Architecture . 9
2.2 Assessing Identifier Names Quality 13
2.3 Software Visualization . 16
2.4 Conclusion . 17

3 A Visualization for Client-Server Architecture Assessement 19
3.1 Investigating the Role of Software Architecture in Software Main-

tenance . 20
3.2 Client-Server Architecture . 21
3.3 A Dedicated Client-Server Architecture Visualization: CLISERVO 24
3.4 Big-Picture Visualization Configuration in Action 29
3.5 Financial System: Server Focus Visualization Applied 32
3.6 Cliservo: Mining Architectural Insights on Industrial Projects . . . 33
3.7 Discussion . 35
3.8 Threats to Validity . 35
3.9 Conclusion . 36

4 Understanding Class Name Regularity: A Simple Heuristic and Sup-
portive Visualization 39
4.1 Complexity of Class Name Understanding 40
4.2 The ClassName Distribution Visualization (CnD) 46
4.3 An Example of a Pharo Project: Calypso 52
4.4 An Example of a Java Project: Lucene 55

4.5 Supporting Evolution . 59
4.6 The ClassName Distribution Tool 62
4.7 Visualization Algorithm Description 64
4.8 Conclusion . 67

5 Qualitative & Quantitative Evaluations of the ClassName Distribu-
tion Visualization 69
5.1 Qualitative Evaluation . 69
5.2 Quantitative Evaluation . 79
5.3 Discussion . 84
5.4 Threats to Validity . 86
5.5 Conclusion . 87

6 A New Generation of ClassBlueprint 89
6.1 Classes in Object-Oriented Programming 90
6.2 Limits of CLASS BLUEPRINT 90
6.3 The New Generation of CLASS BLUEPRINT Visualization 92
6.4 BLUEPRINTV2 in Practice . 99
6.5 Evaluation . 101
6.6 Threats to Validity . 109
6.7 Conclusion . 110

7 Conclusion 113
7.1 Summary . 113
7.2 Contributions . 115
7.3 Future Work . 116

Bibliography 3

List of Figures

3.1 A Typical example of the Client-Server Architecture layers 22
3.2 An annotated version of CLISERVO Big-Picture from Violation View-

point applied to WD: Four parts (Client, Server, Shared and Purga-
tory) and their relation/violation (L = Level). . Note that the class
names are deliberately blurred on purpose to respect the company
constraints. 24

3.3 Big-Picture in CLISERVO: It features four parts (Client Side, Server
Side, Shared and Purgatory) – the Server side includes layers b, d
and i; the Client side, a, c, h. 25

3.4 Illustration of the visualization Server-focus. 26
3.5 The Big-Picture of CLISERVO visualization for the OJ software

system in Global Component Overview (all nodes of the project) . 30
3.6 The server focus of CLISERVO visualization for the EGF software

system from the Violation viewpoint (limited to nodes participating
to the violations). 32

4.1 A schematic mini project composed of the A, B, C, D, E, and F
hierarchies (thick borders denote hierarchy roots). 45

4.2 ClassName Distribution for package P1 of Figure 4.1: 1 package
box, 5 suffix boxes, and 21 class boxes. 49

4.3 Visual patterns & hierarchies in ClassName Distribution of the Ca-
lypso project (v6) main packages. 52

4.4 The ClassName Distribution of the Lucene project version of June
2021(Extract). 56

4.5 The ClassName Distribution of the Calypso project (v8) main pack-
ages. 58

4.6 The ClassName Distribution of the Calypso project (v9) main pack-
ages. 60

4.7 Tool interface with TestAsserter suffix classes highlighted: the tool
surrounds with a white border irregularly named classes and dark-
ens the rest of the visualisation. 62

5.1 The ClassName Distribution of the Roassal-3 project. 71
5.2 The ClassName Distribution of the Stargate project. 74

6.1 A class blueprint from Lanza and Ducasse [2001] with 5 layers:
initialization, interface, internal implementation, accessor, and at-
tribute. 91

6.2 Layout of CLASS BLUEPRINT V2: class level is on the top, in-
stance level in the middle, and dead entity on the bottom. The
middle layer presents information via layers. 93

6.3 A colorless BLUEPRINTV2 with the graphical representations of
methods, attributes, and accessors using height and width metrics.
The arcs represent calls between methods and accesses to attributes. 94

6.4 Sketch of nodes: (a) For methods, size, border thickness, and color
convey information. (b) For attributes, size, and color. 95

6.5 Some examples of BLUEPRINTV2 on Citezen (a bib library) and
Microdown (a markup language). 97

List of Tables

5.1 Number of classes and renamed classes per project in addition to
the percentage of the renamed classes per project with some ap-
proximate values. 79

5.2 Quantitative analysis of Java projects. MC refers to Mono-classes,
H to Homogeneous hierarchies, NH to Nearly Homogeneous and
SV to Scattered Vocabulary. (Projects are ordered by their number
of classes) . 80

6.1 Methods and attribute properties. * mark new compared to CLASS

BLUEPRINT . 98
6.2 The number of packages and classes in each project, and of median

methods in each class, in addition to project domains. In the table,
the order is descending according to the number of classes in each
project. The abbreviations refer to VM (Virtual Machine), VCS
(Version Control), PM (Pattern Machine), DSL (Domain-Specific
Language). 103

Listings

4.1 Choosing the representing SP-fix 65
4.2 Attributing colors to hierarchies function 65
4.3 Attributing a type to a hierarchy 66

CHAPTER 1

Introduction

Contents
1.1 Maintenance and Program Comprehension 1

1.2 Challenges in Early Stages of Maintainance 2

1.3 Modeling Bird-Eye View . 4

1.4 Contributions . 6

1.5 Structure of the Thesis . 6

1.6 List of Publications . 7

1.1 Maintenance and Program Comprehension

Any software is susceptible to become legacy software. Parnas et al., [Parnas,
1994] state that software age over time, meaning that their structure and qual-
ity degrade and complexity increases unless work is done to maintain and reduce
it [Lehman, 1996]. By recognizing the propensity of software to become legacy
software, researchers and practitioners advocate for proactive maintenance prac-
tices, emphasizing the importance of reducing software complexity, optimizing
software structures, and improving software quality. Such measures contribute to
the longevity, stability, and maintainability of software systems, ensuring they can
effectively adapt to evolving requirements, technology advancements, and chang-
ing user needs throughout their lifespan.

One of the primary challenges software maintainers face is the comprehension
of abstractions and/or intricate code assets within the software before implementing
any further modifications [Pigoski, 1997, von Mayrhauser and Vans, 1995]. Indeed,
program comprehension plays a vital role in software maintenance, regardless of
the specific maintenance activity involved. It serves as a foundational process that
enables maintainers to understand and navigate the software codebase effectively.
Program comprehension is essential for various maintenance tasks. This under-
standing is crucial for maintainers to identify the root causes of issues, implement

2 Chapter 1. Introduction

necessary changes, and ensure the overall stability and reliability of the software
system. According to the existing literature, more than half of the time dedicated
to software maintenance is spent on reading and understanding the source code it-
self [Pigoski, 1997, Shari et al., 1998]. Software maintainers rely on tools such as
integrated development environments (IDEs) like Eclipse and IntelliJ, as well as
debuggers, to aid in source code comprehension [Maalej et al., 2014]. However,
this approach contributes to the time and energy-consuming nature of the mainte-
nance process.

In this thesis, we diverge from the conventional systematic and opportunistic
approach [Littman et al., 1987] that relies on tools such as IDEs, debuggers, and
executable tests for comprehending source code. Instead, we address the needs of
maintainers to comprehend aspects of the source code using Software Visualiza-
tions [Diehl, 2002, 2007a,b, Stasko et al., 1998, Ware, 2000, 2004]. The study of
software visualization is concerned with the representation of software systems by
employing visual abstractions of various artifacts related to software and its de-
velopment process [Diehl, 2007b]. These visual abstractions encompass aspects
such as the distribution of properties [Ducasse et al., 2006], evaluations of code
quality [Ducasse and Lanza, 2005, Tamer et al., 2021], and depictions of soft-
ware architecture [Boccuzzo and Gall, 2007, Kobayashi et al., 2013, Wettel and
Lanza, 2008]. The primary objective of software visualization is to provide a vi-
sual framework that facilitates a better understanding of software systems and aids
in the analysis, exploration, and communication of their underlying structures and
characteristics. The main motivation for using software visualization in this work
is to help software maintainers in comprehending different aspects of software sys-
tems during the software development process to facilitate software maintenance
tasks, hence minimizing the cost of maintenance and its evolution [Diehl, 2007b,
Gallagher et al., 2008].

1.2 Challenges in Early Stages of Maintainance

Understanding thousands of lines of source code takes an enormous amount of time
and effort [Maalej et al., 2014, Sommerville, 2000, Storey et al., 1999, Votipka
et al., 2020], and the understanding process purely depends on the experience,
skills, and even the mood of the maintainer [Sneed, 1996]. Roehm et al., [Roehm
et al., 2012] report that experienced developers understand abstractions of the code
while less experienced look further into the code details. In their study on how
professional developers comprehend source code, participants explained that un-
derstanding the rationale behind the code is very “exhausting”. Latozaz et al., [La-
Toza et al., 2006] support such findings. They recognize that understanding the
rationale behind the code is also a big problem. In fact, a complete understanding

1.2. Challenges in Early Stages of Maintainance 3

of the software is often not only unnecessary but impossible [Lakhotia, 1993]. This
phenomenon can be attributed to the inclination of developers to prioritize under-
standing the application architecture over delving into intricate code details.

In the realm of software maintenance, maintainers often need to extract spe-
cific information and artifact properties from the software codebase. This process
involves navigating through the source code or employing queries to retrieve the
desired information. By focusing on mining specific information, maintainers aim
to gain insights into various aspects of the software system, enabling them to make
informed decisions and perform targeted maintenance activities. For example, a
maintainer may be interested in identifying the most referenced class within the
codebase [Zaidman et al., 2005]. By mining this information, they can gain an un-
derstanding of the central components or core functionality of the software. This
knowledge is valuable when prioritizing maintenance efforts, as modifications to
heavily referenced classes may have a significant impact on the overall system
behavior. Similarly, maintainers may wish to determine which attribute within a
class is the most accessed. This information can provide insights into the crit-
ical data elements and their usage patterns. By identifying frequently accessed
attributes, maintainers can focus their attention on optimizing the performance or
ensuring the correctness of these crucial data components during maintenance ac-
tivities. In addition to class references and attribute access, maintainers may ex-
plore other specific information or artifact properties. They may seek to identify
invoked methods, locate potential code smells or anti-patterns, and detect unused
or uncover dependencies between different software components. These mining
activities allow maintainers to comprehensively understand the software system
structure, behavior, and potential issues such as dead code and code smells classi-
fication. This allows maintainers to gather valuable insights and make data-driven
decisions during the maintenance process. It helps in focusing their efforts on criti-
cal areas, prioritizing tasks, and optimizing their maintenance activities. Addition-
ally, it aids in identifying areas of improvement, potential risks, and opportunities
for enhancing software quality and performance. Hence, within the scope of this
thesis, our primary emphasis lies on extracting intricate information pertaining to
the software source code from the codebase, alongside identifying violations in-
herent within the code. In the scope of this thesis, the term violation encompasses
three distinct facets within the software. Firstly, architectural violations such as
illegal dependencies between software entities and/or suboptimal packaging struc-
tures. Secondly, violations pertain to deviations from naming conventions. Lastly,
violations encompass instances where good programming practices are not adhered
to. This forms the basis for our overarching research:

How can we assist software maintainers in understanding the software code
violations to eventually make the appropriate decisions?

4 Chapter 1. Introduction

Within this context of the architectural violations, [Samarthyam et al., 2016] re-
ports one of the main crucial tasks faced by software maintainers in codebase com-
prehension is the identification and rectification of architectural violations within
the software system. [Bass et al., 1998] clarify that these violations can manifest as
deviations from prescribed architectural patterns or design principles, compromis-
ing the maintainability, scalability, and overall quality of the software. This leads
us to the first research question:
RQ1. What visualization can help assist software maintainers in detecting soft-
ware architectural violations in client-server software?

Another significant challenge in software maintenance is the assessment and
appropriateness of class names’ nature within the codebase. Class names are the
primary key abstractions of the software components. Inaccurate or misleading
identifier names can hinder program comprehension and impede the maintenance
process [Nguyen et al., 2020]. This drives us to the second research question:
RQ2. How a visualization can help assist maintainers in assessing the regularity
of class name conventions and characterizing violations?

Finally, the interior quality of class implementations plays a crucial role in soft-
ware maintainability and readability [Lehman, 1980, Martin, 2003]. Maintainabil-
ity issues, such as overly complex or convoluted code, can hinder comprehension
and increase the effort required for future modifications. The third research ques-
tion that underpins this study is:
RQ3. How a visualization can assist software maintainers in enhancing the class
implementation interior quality?

Overall, these three research questions are interrelated as they all contribute to
the broader objective of assisting software maintainers in understanding and im-
proving software systems. By addressing architectural violations, assessing class
name regularity, and enhancing class implementation interior quality, the study
aims to enhance the challenges in software maintenance and contribute to the effec-
tiveness of software maintenance processes, leading to more efficient and sustain-
able software systems. In this thesis, we provide a set of dedicated visualizations
to answer our research questions, locate and highlight code change opportunities.

1.3 Modeling Bird-Eye View

To tackle the aforementioned challenges, we employ visualization techniques as
a means of mitigation. We present a collection of panoramic views referred to as

1.3. Modeling Bird-Eye View 5

Bird-eye views1, encompassing various perspectives of the software, with the pur-
pose of assisting software maintainers in achieving enhanced code comprehension.

In summary, each of the presented views in our study is designed to address
each of the research questions previously elucidated (Section 1.2). The first re-
trieves the high-level structural characteristics of the software, thereby emphasizing
and exposing architectural violations. By visualizing the overall system, the second
view concentrates on assessing naming conventions and identifying erroneous class
names, considering both package and inheritance perspectives. Lastly, we offer a
view that encompasses class elements, incorporating inheritance relationships to
optimize the retrieval of pertinent information, thus facilitating improved compre-
hension. This view serves the purpose of detecting violations of good programming
practices while providing in-depth insights. Through these tailored visualizations,
our study provides software maintainers with powerful tools for tackling the afore-
mentioned research questions and enhancing their understanding of the software
codebase. The visualizations are presented as follows:

1. Client-Server Visualization (Cliservo) [Agouf et al., 2023]: is a visualization
that illustrates the high-level architectural model of Client-Server software
based on low-level relations between software components and elucidates its
architectural violations;

2. ClassNames Distribution (CnD) [Agouf et al., 2022a]: is a package-centered
visualization based on the distribution of the vocabulary used in a project
taking an inheritance perspective. It presents a comprehensive depiction of
the entire system, enabling users to discern suboptimal class names and sub-
sequently undertake the necessary corrective actions;

3. ClassBlueprintV2 (CBv2) [Agouf et al., 2022b]: is a redesign of the patrimo-
nial ClassBlueprint [Ducasse and Lanza, 2005, Lanza and Ducasse, 2001]
which focuses on individual class structure visual representation. It classi-
fies class components (methods and attributes) into categories and puts light
on the call graph between these components. The ClassBlueprintV2 follows
its ancestor by offering a more precise categorization of method types and
metrics that help assess class code quality and detect bad practices.

This thesis represents a collaborative effort between the Evref (previously named
RMoD) 2 team within the research institution Inria-Lille3 and the Arolla software

1Bird Eye Views: A bird eye view refers to a high-level perspective or overview of a situation. It
provides a broad and panoramic understanding, allowing one to see the overall structure, patterns,
and relationships without delving into the fine details.

2https://rmod.gitlabpages.inria.fr/website/
3https://www.inria.fr/fr/centre-inria-de-luniversite-de-lille

6 Chapter 1. Introduction

company4 as the industry partner, renowned for their expertise in advanced soft-
ware development techniques. This unique collaboration bridges the gap between
academia and industry, providing valuable insights into the challenges faced by
software maintainers in real-world projects.

Furthermore, Evref maintained valuable partnerships with other industrial or-
ganizations such as Arolla, Berger Levrault, and Dedalus which further enhanced
the diversity of the issues addressed and resolved within this thesis. By harness-
ing the combined knowledge, this allowed for a broader exploration of software
maintenance problems across various domains and contexts, enriching the research
with a wider range of perspectives and insights. These additional collaborations al-
lowed us to work closely with these industrial partners, we gained privileged access
to actual software projects and had the opportunity to engage with the maintainers
directly. This direct interaction drove us to understand the pain points and strug-
gles experienced by software maintainers, facilitating in-depth discussions and the
exploration of suitable solutions.

1.4 Contributions

The contributions of this thesis can be summarized as follows:

• A visualization for Client-Server Architecture — a novel visualization for
the detection of architectural violations validated on real industrial projects
(Chapter 3);

• A visualization for naming convention assessment, the ClassNames Distri-
bution also helps in identifying naming (anti-)patterns. The visualization
is validated using both qualitative and quantitative evaluations on important
Pharo projects and a large set of Java projects (Chapters 4 & 5);

• An enhancement of a prominent visualization, the Class Blueprint (Best Con-
ference Paper for VISSOFT22) (Chapter 6);

1.5 Structure of the Thesis

The thesis is organized as follows:

• Chapter 2 discusses the state of the art in the scope of the elucidated chal-
lenges;

4https://www.arolla.fr

1.6. List of Publications 7

• Chapter 3 presents the Cliservo to analyzing the high-level structure of the
software.

• Chapter 4 presents the ClassNames Distribution to assessing the correctness
of class names.

• Chapter 5 validates the ClassNames Distribution using qualitative and quan-
titative evaluations on both Pharo and Java projects.

• Chapter 6 presents the new generation of the ClassBlueprintv2 in understand-
ing class interior decors and the call-graph between class entities.

• Chapter 7 summarizes and concludes the work presented in this thesis and
proposes future work.

1.6 List of Publications
The list of papers published in the context of the thesis is listed below in chrono-
logical order:

1. Nour Jihene Agouf, Stéphane Ducasse, Anne Etien, Abdelghani Alidra, and
Arnaud Thiefaine. Understanding Class Name Regularity: A Simple Heuris-
tic and Supportive Visualization. Journal of Object Technology, 21:1312–
1330, 2022a. doi: 10.5381/jot.2022.21.1.a2

2. Nour Jihene Agouf, Stéphane Ducasse, Anne Etien, and Michele Lanza. A
New Generation of Class Blueprint (best paper award). In IEEE Working
Conference on Software Visualization (VISSOFT), 2022b

3. Nour Jihene Agouf, Soufyane Labsari, Stéphane Ducasse, Anne Etien, and
Nicolas Anquetil. A visualization for client-server software assessement. In
IEEE Working Conference on Software Visualization (VISSOFT), 2023.

CHAPTER 2

State of The Art of the Early
Challenges in Maintenance

Contents
2.1 Software Architecture . 9

2.2 Assessing Identifier Names Quality 13

2.3 Software Visualization . 16

2.4 Conclusion . 17

This chapter provides an overview of relevant works that pertain to the sub-
jects addressed in this thesis. These topics encompass three main areas: software
architecture, the evaluation of identifier name quality (including classes, pack-
ages, methods, etc.), and a condensed work on software visualizations for assessing
source code quality. Through this comprehensive exploration of related works, we
aim to build upon existing knowledge, identify research gaps, and contribute to the
understanding and advancement of software architecture, identifier name quality
assessment, and class code quality.

2.1 Software Architecture
This section focuses on software architecture, which involves the design and struc-
ture of software systems. By reviewing this body of work, we aim to gain insights
into established practices, challenges, and potential solutions related to software ar-
chitecture. This section presents the related work to software architecture recovery
and the monitoring of the architecture of the software according to distinct software
metrics such as architectural smells and violated dependencies. We also present a
pile of work around software architecture visualizations.

2.1.1 Architectural Recovery
Several approaches recover software architecture from different perspectives [Ducasse
and Pollet, 2009a]. Some tools have been implemented to recover the architecture

10 Chapter 2. State of The Art of the Early Challenges in Maintenance

of the software such as Rigi [rigi design-recovery], SNIFF [Tak, 1996], Rose [Egyed
and Kruchten, 1999], Dali [Kazman and Carriere, 1998], and Software Book-
shelf [Finnigan et al., 1997]. In addition to more recent industrial tools that have
been proposed for the recovery of software architecture such as MicroART [Granchelli
et al., 2017] and ARCADE [Schmitt Laser et al., 2020]. The focus of these tools
primarily lies on the comprehension of the architecture. When it comes to address-
ing architectural violations, however, it may not be their direct functionality.

Other work relies on component-based software, Zhang et al., [Zhang et al.,
2010] propose the Dedal architecture recovery model for component-based devel-
oped software to support design decisions by separating the representations of ar-
chitecture specifications, configurations, and assemblies. Allier et al., [Allier et al.,
2011] help understand the architecture of a software system by grouping methods
in terms of their owner classes to identify the interfaces of service candidates based
on the internal structure of components.

A mix of industry and research approaches is beneficial for enhancing the gen-
eral understanding and analysis of software. When it comes to specific architectural
paradigms however like client-server and/or layered patterns, this blend might fall
short as they do not account for the unique characteristics, challenges, and needs
of each architecture type nor the detection of the architecture violations.

2.1.2 Monitoring Software Quality

When studying the architecture of software some researchers focus on assessing the
quality of the software through its architecture. Maria et al., outlines code smells
as indicators of architecture degradation [Macia et al., 2012]. Some of the code
smells presented in their paper are God classes, Large classes, misplaced classes,
and long parameter lists , etc. Meanwhile, the Hotspot Detector [Mo et al., 2015]
detects smells at file and package levels. Lippert et al., [Lippert and Roock, 2006]
also identified architectural smells at various levels: inside inheritance hierarchies,
inside and between packages, subsystems, and layers. The low-level source code
analysis is indeed an indicator of the quality of the global architecture of the soft-
ware.

The work presented by [Macia et al., 2012] in supporting the decision that code
smells could affect the overall architecture of the software with regard to classes
could be further exploited in the analysis of class code and their impact on the ar-
chitecture of the software since they present the building blocks of object-oriented
software.

In 2020, Randevix et al., [Randevik and Olson, 2020] extended the ArchUnit
Java library 1 to support validation of security architectural constraints and called it

1https://www.archunit.org/userguide/html/000_Index.html

https://www.archunit.org/userguide/html/000_Index.html

2.1. Software Architecture 11

SecArchUnit. The authors compare SecArchUnit with both SonarQube and PMD
and found that their tool was able to detect violations concerning the flow of infor-
mation in contrast to SonarQube and PMD. Additionally, The tool builds a model
of the entire system allowing architects to analyze the dependencies across several
classes.

Other commercial tools such as JArchitect 2 help in the static analysis of Java
applications. JArchitect is designed to identify quality issues and visualize vari-
ous aspects of software architecture thereby helping maintainers in monitoring and
improving the design of Java applications.

2.1.3 Using Metaphors

Some researchers propose visual aids in the forms of metaphors, for instance, the
prominent city metaphor popularized by Wettel et al., [Wettel and Lanza, 2007]. In
their work, they present the CodeCity [Wettel and Lanza, 2008] that displays soft-
ware classes as buildings and packages as the ground foundation on which they are
built [Wettel and Lanza, 2007]. CodeCity was later adopted by many researchers
to visualize the architecture of software programs [Kobayashi et al., 2013, Pfahler
et al., 2020] and was also applied to virtual reality [Fittkau et al., 2015].

In their work, Kobayashi et al., [Kobayashi et al., 2013] introduce the SArF map
clustering technique, inspired by the Codecity [Wettel and Lanza, 2007], and which
groups together classes with the same features on the same grounds, separated by
a street representing the relevance between these features.

Moreover, Sazzadul et al., propose EvoSpaces [Alam and Dugerdil, 2007] ap-
proach inspired by the city metaphor but dedicated to C/C++ projects. It displays
the architecture and metrics of software in 3D to help quickly understand the soft-
ware under analysis and the relationship between files. They also offer a night
view which displays the execution trace of the software. Another use of the City
metaphor is the CityVR proposed by Merino et al., [Merino et al., 2017] which is
an interactive 3D visualization tool that implements the city metaphor technique
using virtual reality. Dhambri et al., [Dhambri et al., 2008] propose the 3D VESO
visualization inspired by the city metaphor which detects and classifies software
anomalies with regard to the source code of the software (low-level).

Other original metaphors include Balzer et al., [Balzer et al., 2004] who in-
troduce the Software Landscapes visualization for the structure of large software
systems and Software Feather [Beck, 2014] which maps class and interface metrics
as feathers, one of its main purposes is for users to apprehend to recognize which
feather corresponds to which class in the system. Another metaphor derived from
nature is Software Forest where Atzberger et al., [Atzberger et al., 2021] display

2https://www.jarchitect.com

https://www.jarchitect.com

12 Chapter 2. State of The Art of the Early Challenges in Maintenance

software as a forest by mapping properties of entities such as the size and trend
data. Boccuzzo et al., present CocoViz [Boccuzzo and Gall, 2007], a visualiza-
tion inspired by daily life graphical elements (houses, spears, or tables) to convey
information about the program components and the program vulnerabilities.

The use of metaphors to represent software components can be a powerful tool
for conceptual understanding and communication, especially in helping stakehold-
ers from various backgrounds (including non-technical ones) grasp abstract soft-
ware concepts. However, as the statement suggests, this high-level representation
can gloss over the intricate details and inner workings of the software, leading
to potential shortcomings in deep analysis and understanding of the software and
its architecture. Moreover, the lack of a specialized approach that targets certain
types of architectures results in a deficiency of detailed information that could be
extracted from the software.

2.1.4 Dependencies

Anomalies in dependencies (overly complex dependencies, hidden or implicit de-
pendencies, unintended dependencies , etc) between software components can lead
to tight coupling between modules or components making the software harder to
understand, maintain, and modify. For instance, a release of a newly tested version
of the software eventually crashes because of a dependency on an outdated version
of a library. The risks of such a scenario might lead to unanticipated behavior.

Due to the importance of studying the dependencies between the components
of the software in both research and industrial companies, researchers propose sev-
eral visualizations for the analysis of these dependencies between components.
Hunter [Dias et al., 2020] which focuses on understanding the dependencies be-
tween software components. In their article, Dias et al., employ a distinct visual
approach to illustrate the structure and relationships within software components.
By using color variations, they differentiate between various file branches, allowing
users to quickly identify distinct segments or categories within the software’s struc-
ture. Simultaneously, the size of individual nodes signifies the volume of source
code lines present in each file. Larger nodes point to files with more lines of code,
hinting at potentially more complex or significant portions of the software. When
a file is selected the visualization highlights all dependencies of the file within the
displayed nodes. Such an approach however of studying dependencies is merely
for JavaScript projects. Also, the detection of improper dependencies is not auto-
mated hence the onus of identifying such dependencies ultimately falls on the user.
Tamer’s et al., [Tamer et al., 2021] propose a visualization to assess software qual-
ity and the dependencies of composed-based JavaScript React applications. Such
visualizations use the node-link diagram to demonstrate the connection between
software components. Dennie et al., [Reniers et al., 2011] present another approach

2.2. Assessing Identifier Names Quality 13

called SolidSX that offers a modular analysis of the structure, dependencies, and
metrics of software components. While these approaches have demonstrated effi-
cacy, they are specifically tailored for web application components and not suited
for object-oriented programs.

In the world of object-oriented programs, Daniel et al., [Daniel et al., 2014]
worked on visualizing Java projects using the Polyptychon tool but focusing on the
incremental exploration of a project by constraining dependencies. Given a hierar-
chical information space of software components, Polyptychon constrains the vis-
ible dependencies to be related to the child nodes of a specified components node.
Erdemir et al., [Erdemir et al., 2011] offer E-Quality, a graph-based visualization
that extracts quality metrics and class relations from Java source code and thus does
not extract quality metrics of the class body. Fontana et al., [Fontana et al., 2017]
propose the Arcan tool for the detection of architectural dependencies. Samarthyam
et al., [Samarthyam et al., 2016] motivate the need for refactoring of software code
smells that decay the system quality from a high-level perspective by analyzing
the impact of the evolution of both the Windows operating system and JDK. They
report an elevated complexity and unhealthy dependencies between modules. Such
approaches however study the dependencies independently from the architecture
of the software.

Despite the variety of available tools and methods, many existing approaches
analyze dependencies independently from the recovery of the software’s architec-
ture. Developers and architects often find it challenging to navigate the intricate
web of connections within a software system to ensure all components work co-
hesively. As a result, the understanding of dependencies remains isolated from
the broader architectural context of the software. Furthermore, the focus of some
approaches on specific programming languages or project types further limits the
applicability of these tools and methods in a broader context, underscoring the
need for more versatile and comprehensive approaches for analyzing software de-
pendencies and architecture.

2.2 Assessing Identifier Names Quality

While there is a large body of work on identifiers this section reports a state-of-the-
art around distinct identifier names.

2.2.1 Method names.

In a notable contribution to the field, Liu et al [Liu et al., 2019] introduced a pi-
oneering approach centred on the application of machine learning techniques to
identify and subsequently refactor inconsistent method names. By employing ma-

14 Chapter 2. State of The Art of the Early Challenges in Maintenance

chine learning algorithms, the authors adeptly enhance the automation of the re-
naming process, ensuring greater consistency and adherence to naming conventions
across software projects. Nguyen et al., [Nguyen et al., 2020] agree that misleading
names in projects confuse developers. They present a tool called MNire to suggest
and predict method names by extracting the tokens from the words used in different
contexts of the method: the body of the method (i), method parameter(s) type(s)
& return type (ii) and the enclosing class name (iii). From each context token, a
sentence is formed. The tool then summarizes these sentences from which it sug-
gests a method name using a machine learning model called Encoder-Decoder. To
check the consistency of the name they compute the similarity between the newly
suggested name and the actual name of the method.

They use the same method set as Liu et al., [Liu et al., 2019] and found that
their tool is more efficient in detecting inconsistent naming. The reason for such
an improvement is the use of program entity names.

Li et al., [Li et al., 2021] took the previous research to a further stage where
the proverb Show me your friends, I’ll tell you who you are can be applied to
method name consistency checking and suggestion. Indeed, they do not only study
the method program entities but also their surroundings: the caller and the callee
methods and the sibling methods in the enclosing class. They present a tool called
DEEPNAME, which was evaluated with a large dataset of over 14M methods, and
they found that for consistency checking it improves the state-of-the-art approaches
by 2.1% in recall, 19.6% in precision, and 11.9% in F-score.

Allamanis et al., [Allamanis et al., 2015] adopted a more semantical approach
to suggest accurate methods and class names. This approach uses a log-bilinear
neural language model that learns which names are semantically similar by calcu-
lating the statistical co-occurrences of the tokens in the source code. Semantically
similar tokens are assigned to locations that they refer to as embeddings. Therefore
tokens with similar embeddings tend to be used in a similar context. Furthermore,
they use a sub-token model which introduces neologisms–words that were not used
in the training corpus. Their results show that their model can suggest accurate
method names according to the source code of the method. However, For class
name suggestions, positive results were obtained using the sub-token model that
generates neologisms.

Alsuhaibani et al., [Alsuhaibani et al., 2021] gathered standards from the liter-
ature and asked 1100 professional software developers to determine whether these
standards are accepted and used in practice. They found that half of the organiza-
tions that participants work for do not define a strict method naming standard.

Isobe et al., [Isobe and Tamada, 2018] worked on retrieving names from obfus-
cated programs by identifier renaming methods (IRM). In their paper, they focus on
restoring method names from their operation code list, especially, de-obfuscating
verbs in method names and proposing verbs of similar meanings to the original

2.2. Assessing Identifier Names Quality 15

verbs.
Alsuhaibani et al., [Alsuhaibani et al., 2021] finding that many organizations

lack strict method naming standards highlights the broader issue in naming con-
ventions and in assessing these naming conventions, extending the concern to class
name identifiers.

2.2.2 About class names

Butler et al., proposed several studies around class names identifiers. In 2009, they
[Butler et al., 2009] found that flawed identifiers in Java classes were associated
with low-quality source code according to static analysis. They provide a list of
naming style violations (capitalization anomalies, consecutive underscores, dictio-
nary words, excessive words, external underscores, type encoding, long identifier
name, naming convention anomaly, number of words, numeric identifier name,
short identifier name) and correlated violations as found in FindBug reports. In
2010, they [Butler et al., 2010] extended their previous work on class name anal-
ysis to method identifiers: they investigated whether method identifier quality cor-
relates to low quality. They propose diagnostic tests to identify which particular
identifier naming flaws could be used as a lightweight diagnostic of potentially
problematic Java source code for maintenance. By 2011, Butler et al [Butler et al.,
2011a] unveiled an innovative approach, proposing an automated way to tokenize
identifier names. This advancement symbolizes the culmination of their ongoing
work, reflecting a natural progression from identifying and understanding the issue,
to providing practical, automated solutions for addressing identifier naming flaws.
This sequence of research and development not only underscores the team’s com-
mitment to enhancing code quality and ease of maintenance but also reinforces the
critical role of precise and consistent identifier naming in software development.

In the same year, the same authors [Butler et al., 2011b] studied the class nam-
ing conventions where they identified conventional patterns found in the use of
parts of speech. They also identified the origin of words used in class names within
the name of any superclass and implemented interfaces to identify patterns of class
name construction related to inheritance. They analyzed 120,000 unique class
names of 60 projects and investigated with one project whether classes following
unconventional naming schemes should be subject to renaming. They used a PoS
(part of Speech) tagger and identified the patterns by which component words from
the superclass or implemented interfaces are repeated in class identifier names. In
general, while the works of Butler et al., correlate bugs to class names, they do not
support the understanding of a naming convention and its violation within a hierar-
chy, and in the presence of packages that can impose local naming conventions or
the creation of subconcepts.

Singer and Kirkam [Singer and Kirkham, 2008] identified a link between Java

16 Chapter 2. State of The Art of the Early Challenges in Maintenance

class names and the micro-patterns found in the implementation using the approx-
imation that Java class names are of the form JJ*NN+, where JJ represents an
adjective and NN a noun. The link was based on the assumption that the rightmost
noun is an indicator of the class implementation, and no detailed analysis of the
class identifier names was undertaken. This study is a component of the research
conducted in this thesis, however, their work is limited to the analysis of Java class
names and does not encompass a comprehensive examination of Java class naming
conventions, patterns, and anti-patterns.

Identifier naming conventions were used by Abebe et al., [Abebe et al., 2009]
to identify smells. The smells are predicated on deviations from suggested identi-
fier naming conventions that arise from programming conventions, and, to a lesser
extent, deviation from established conventions arising from identifier naming prac-
tice. Again, none of the previously mentioned work discusses the regularity of
naming conventions and their violation patterns. Moreover on class names, Anslow
et al., [Anslow et al., 2008] present a short paper on class name visualizations: they
use a tag cloud to compare class words used in class names of Java 1.1 and 16 and a
tree map of the ordering of words used in class names of the Java API specification.
Yano et al., [Yano and Matsuo, 2015] adapted TF-IDF (a frequency-based informa-
tion retrieval filtering technique that extracts characterizing words for a document
in a group of documents) and extended SArF [Kobayashi et al., 2013], a CodeCity
like 3D [Wettel and Lanza, 2007] visualization, and proposed better map labeling.
Their visualization is related to lemmas of class/method names. This visualization
however does not help one to understand the inconsistencies in class names.

Despite all the deep dive into class identifiers, current research has not touched
much on the details of naming conventions and how they are violated within a hi-
erarchy, especially when dealing with packages that bring their own set of naming
rules or create subconcepts. There’s also a noticeable gap in comprehensive study
beyond just Java class names, extending to a detailed analysis of class naming con-
ventions, patterns, and anti-patterns. Finally, the visualizations used in the studies
do not aid in understanding the inconsistencies in class names nor the detection of
the naming (anti-)patterns.

2.3 Software Visualization

Visualizations facilitate program comprehension because they provide a graphical
view of the software rather than an alphabetical sequence of source code text. There
is an extensive body of work related to the software visualization [Caserta and Zen-
dra, 2011, Merino et al., 2019, Spence, 2001, Stasko et al., 1998, von Landesberger
et al., 2011, Ware, 2000]. Additionaly, several articles provide or visualize in-
formation on software files, classes, and/or packages. Many of these approaches

2.3. Software Visualization 17

address software co-change, looking at coupling from a temporal perspective [Ab-
deen et al., 2014, Beyer, 2005, Ducasse et al., 2006, Eick et al., 2002, Froehlich
and Dourish, 2004, Storey et al., 2005, Voinea et al., 2005, Xie et al., 2006]. Kienle
and Müller [Kienle and Müller, 2010] present requirements for reverse engineering
tools and their evaluation. According to Ghanam et al., [Ghanam and Carpendale,
2008] researchers and architects are more interested in visualizing the high-level
design of the software, which motivates the work of this thesis in presenting Bird-
eye views of software programs based on distinct problematic maintenance propo-
sitions.

Marcus et al., [Marcus et al., 2003] propose a matrix-based representation of
files. Each dot (small box) represents a line, and its color conveys one kind of
semantic information (if statement for example). They propose a 3D version of the
matrix-based structure. The idea behind the matrix-based presentation is to be able
to offer a compact representation of code entities.

Lanza’s Polymetric views enrich simple program visualizations such as inher-
itance trees with metrics [Lanza and Ducasse, 2003]. In Polymetric views, the
shape of the classes can represent class metrics such as the number of instance
variables, methods, and lines of code. Polymetric views leverage multiple soft-
ware metrics to provide a comprehensive visual representation of software entities
and relationships, enhancing understanding, and facilitating analysis and decision-
making in software development and maintenance. Fernandez extended VisualIDs
as a glyph technique to cope with structural software elements. The authors use
them to identify classes with the same dependencies and classes with a similar
set of methods [Fernandez et al., 2016a]. Glyph could be used to convey class
identifiers. Furthermore, Ignacio et al., [Fernandez et al., 2016b] extend visualIDs
as a glyph technique to cope with structural software elements. The authors use
them to identify classes with the same dependencies and classes with a similar set
of methods. These visualizations are undeniably of significance and have demon-
strated their efficacy, despite not centering on the specific code of the class itself.
In essence, while Lanza’s Polymetric views [Lanza and Ducasse, 2003] and Fer-
nandez’s glyph technique [Fernandez et al., 2016a] employ different visualization
strategies, both contribute significantly to the field of software visualization. They
offer unique, yet complementary, perspectives and tools for analyzing and under-
standing software structure.

Additionally, the ClassBlueprint [Ducasse and Lanza, 2005, Lanza and Ducasse,
2001] visualizes the internal implementation of a class in terms of method calls and
field accesses– in addition, methods are annotated with colors giving semantical in-
formation about the methods. While the ClassBlueprint has gained recognition in
the field of program visualization, the model has become antiquated as it does not
accommodate the representation of newly emerged concepts in classes such as dead
code identifications, tests and non-tested methods, cyclomatic complexity of meth-

18 Chapter 2. State of The Art of the Early Challenges in Maintenance

ods , etc. Anslow et al., [Anslow et al., 2013] propose the SourceVis visualization
platform which is designed for multiple users supporting multiple visualization
types and displaying such visualizations on large multi-touch tables. SourceVis
proposes a reimplementation CLASS BLUEPRINT based on its original layers. The
SourceVis platform aims to consolidate multiple visualizations for its users. Given
that a decade has passed since its original conception, updating the collection of
visualizations is advisable. Moreover, the authors might consider introducing new
visualizations to reflect the platform’s evolution and current trends.

2.4 Conclusion

In terms of the state-of-the-art of architectural recovery, some approaches are con-
sidered outdated by researchers (such as Rigi [rigi design-recovery]), hence the
emergence of new approaches to recover the software architecture. Including the
inception of some studies that monitor the quality of the software using metrics
from the low-level source code which influence the high-level conceptualization of
the software. Other innovative approaches view software concepts through real-
world objects using metaphors to convey information about software. Such aes-
thetic and illustrative representation can gloss over the intricate details and inner
workings of existing architectural patterns. This emphasizes the need to recover
software architectures according to their patterns type using visual aids, meaning
customized visualizations for different types of architectures (client-server, lay-
ered, micro-services , etc) which could give more insight into the architectures
of software and the different violations. In addition, to evaluations on real-world
projects as Merino et al., [Merino et al., 2018] state, most visualizations are poorly
evaluated as they found that 62% of the proposed software visualization approaches
(SOFTVIS/VISSOFT) either do not include any evaluation or include a weak eval-
uation (i.e., anecdotal evidence, usage scenarios).

Pertaining to software identifiers more particularly class name identifiers, many
researchers propose approaches that analyze class names, while others also offer
visualizations. According to the literature, however, none of these approaches takes
into account the influence of the hierarchy on the class names nor the packaging.
The class name is an indicator of the responsibility of the class however because its
behavior is primarily shaped by the hierarchy to which the class belongs as well as
its membership to the package such characteristics can have an impact on the class
name. Additionally, none of the previously mentioned approaches address the de-
tection of patterns and violations of naming conventions. Naming conventions are
adopted by companies however it is literally unclear whether these conventions are
in practice respected or violated.

2.4. Conclusion 19

Ultimately, merely studying the outside relationships of the components of the
software overlooks the details that could enhance the global architecture of the soft-
ware. Because classes represent the building blocks of object-oriented software,
assessing the quality of their codes gives more insight into the holistic view of the
software and its architecture. One of the pillar approaches in understanding the
internal structure of class codes is the ClassBlueprint visualization [Ducasse and
Lanza, 2005, Lanza and Ducasse, 2001]. The ClassBlueprint visualization goes
beyond mere structural visualization, it offers a deep dive into the responsibilities
and behaviors of classes based on their hierarchy and packaging. This aspect is
crucial in understanding how each component fits and functions within the grand
architectural layout, further enriching the bird’s eye view. Even so, it has been
more than twenty years since the visualization was first presented along with the
extensive evolution in practices applied to class code, which the visualization did
not pursue.

CHAPTER 3

A Visualization for Client-Server
Architecture Assessement

Contents
3.1 Investigating the Role of Software Architecture in Software Main-

tenance . 20

3.2 Client-Server Architecture . 21

3.3 A Dedicated Client-Server Architecture Visualization: CLISERVO . 24

3.4 Big-Picture Visualization Configuration in Action 29

3.5 Financial System: Server Focus Visualization Applied 32

3.6 Cliservo: Mining Architectural Insights on Industrial Projects . . . 33

3.7 Discussion . 35

3.8 Threats to Validity . 35

3.9 Conclusion . 36

Maintaining large legacy systems often requires understanding their architec-
ture [Clements et al., Lehman and Ramil, 2001, Lung and Kalaichelvan, 2000a,
Sommerville and Sawyer, 1997]. This is important since legacy system architec-
ture decay over time and architecture violations may dramatically impact planned
renovation actions [Medvidovic et al., 2003a, Perry and Wolf, 1992a]. Merely
reading source files is time-consuming and often highly inefficient.Visualizations
have been proposed as a tool to support architecture understanding [Diehl, 2007b,
Knight and Munro, 1999, Koschke, 2003, Langelier et al., 2005, Wettel and Lanza,
2007, 2008]. Such visualizations, however, do not take into account the specifici-
ties of client-server applications and thus miss the identification and understanding
of such software architecture violations.

In this chapter, we propose CLISERVO, a new visualization to help software
maintainers detect architectural violations in client-server systems. CLISERVO

classifies client-server entities into different levels of dependencies, shared enti-
ties, or ambiguous entities (e.g., entities that belong abnormally to different parts)
and highlights illegal dependencies between layers (Section 3.3). We first explore

22 Chapter 3. A Visualization for Client-Server Architecture Assessement

the role of software architecture in the context of software maintenance and in-
vestigate the needs that drive the selection of different software architectures (Sec-
tion 3.1). Additionally, we provide a comprehensive overview of the layered ar-
chitecture commonly adopted in client-server systems (Section 3.2.2). We present
both visualization configurations from different viewpoints (Sections 3.4 and 3.5)
and extract insights into the application of the CLISERVO on our industrial partners’
software. Indeed, we validate the visualization on three projects of our industrial
partners. (Section 3.6). We further discuss the threats to the validity of the experi-
ment (Section 3.8) and the conclusion in Section 3.9. This work has been published
in the IEEE Working Conference on Software Visualization (VISSOFT2023) [Agouf
et al., 2023].

3.1 Investigating the Role of Software Architecture
in Software Maintenance

During the software lifecycle, the architecture often becomes inaccurate, result-
ing in architectural erosions [Medvidovic et al., 2003b, Perry and Wolf, 1992b].
Consequently, recovering the existing architecture of legacy software is challeng-
ing [Ducasse and Pollet, 2009b]. Tools have been implemented to recover architec-
ture such as Rigi [rigi design-recovery], SNIFF [Tak, 1996], and Rose [Egyed and
Kruchten, 1999]. However, software architecture is a very fuzzy notion that lives
mostly in the mind of the beholder. There is no one-size-fits-all, universal, defini-
tion of what is software architecture (see for example the 4+1 model [Kruchten,
1995]). Moreover, software architecture is materialized by coding conventions
(such as class names, package dependencies, etc) that are often not documented,
not explicit in the code, and violated by programmers [Koschke and Simon, 2003].
Therefore, a high-level design description plays, de facto, an important role in
successfully understanding and reasoning about large and complex software sys-
tems [Clements et al., Lung and Kalaichelvan, 2000b].

Software architecture is a critical aspect of software system design, encom-
passing the foundational decisions that shape its overall structure and behavior. It
defines how the components, interactions, and functionality of a system are orga-
nized and managed. The choice of software architecture is influenced by various
criteria and considerations that developers carefully evaluate. Among the differ-
ent software architectures available, several widely used ones stand out. These
include Monolithic architecture, Microservices architecture, Service-Oriented Ar-
chitecture, and Client-Server Architecture, etc. Each architecture offers a distinct
approach to structuring and managing software systems, addressing specific re-
quirements and challenges. The selection of a software architecture is typically a
topic of discussion and analysis in the early stages of software development. De-

3.2. Client-Server Architecture 23

velopers engage in comprehensive assessments to determine the most suitable ar-
chitecture for their project. Factors such as system requirements, complexity, scal-
ability, integration needs, and development team expertise are taken into account
during this decision-making process. As the software evolves and requirements
evolve, developers may decide to migrate from one architecture to another. For ex-
ample, a development team may opt to migrate from a Monolithic architecture to a
more scalable and modular Microservices or Client-Server Architecture, following
established architectural patterns and practices such as integrating a communica-
tion protocol between the client and the server.

3.2 Client-Server Architecture

The client-server architecture is widely recognized as a reliable and efficient ap-
proach for designing and implementing software systems [Hanson, 2000]. It re-
volves around the separation of the user interface (client) from the back-end pro-
cessing and data management (server), enabling clear role differentiation and fa-
cilitating effective collaboration between client-side and server-side components.
Some of the key factors that drive the adoption of client-server architecture include
the scalability of the software since it distributes the processing functionalities and
data management across multiple servers which enables the systems to handle in-
creasing loads and accommodate a growing number of users without compromising
its performance and responsiveness. The client-server architecture offers modular-
ity in maintenance because of the separation between the client and server compo-
nents, thus, developers can update and enhance the user interface independently of
the server-side logic, simplifying the development process and facilitating easier
maintenance and updates.

3.2.1 Layered Design

The client-server applications typically exhibit a layered architecture where each
layer performs specific functions and interacts with adjacent layers in a well-defined
manner. Each layer is established based on predefined rules that are determined and
maintained by the software maintainers. The layered nature of client-server appli-
cations provides several benefits. It promotes modular design, allowing developers
to focus on specific layers and components independently. This modularization
enhances code maintainability, reusability, and testability. It also facilitates sys-
tem scalability and flexibility, as changes or updates in one layer typically do not
require modifications in other layers.

Figure 3.1 depicts an example of architectural layers in one of our industrial
partners projects. The project is composed of two main components: the Client

24 Chapter 3. A Visualization for Client-Server Architecture Assessement

application and the Server application. These two components establish communi-
cation and exchange information using a designated communication protocol and
corresponding interfaces. Each component, namely the Client and Server appli-
cations, is further structured into distinct layers, with each layer being assigned
specific responsibilities. In the Client application, the User Interface (UI) layer
interfaces with the Business layer (front-end), which, in turn, interacts with the
service interfaces. The interfaces within the Client application facilitate commu-
nication with the corresponding server-side components. The Server application,
on the other hand, comprises multiple layers, each fulfilling a specific role. These
layers include the implementations of the services, responsible for handling spe-
cific functions or operations, the Business layer (back-end) which encapsulates the
business rules and logic, and the Data Access Objects (DAOs) layer responsible for
managing the transfer of data objects.

UI

UI

UI

Business
UI

Service
Interface

Business
Back

Business
UI

Business
UI

Service
Interface

Service
Interface

Service
Implementation

Service
Implementation

Service
Implementation

Business
Back

Business
Back

DAO
Back

DAO
Back

Client Application Server Application

Subclasses
of RemoteServer

Subclasses
of AbstractBusiness

Subclasses
of AbstractDAO

Figure 3.1: A Typical example of the Client-Server Architecture layers

This layered organization promotes a clear separation of concerns and enables
modular development and maintainability. It allows for independent development
and testing of different layers, facilitating easier updates and modifications. By
dividing the application into well-defined layers, the project maintainers can focus
on specific functionalities within each layer, leading to improved code organization,
reusability, and scalability.

3.2.2 Data Transfer Objects taking Part in Client-Server Appli-
cations

The client-server architecture is a distributed application structure that divides tasks
or workloads between providers of a resource or service, called servers, and service

3.2. Client-Server Architecture 25

requesters, called clients. However, such an architecture mostly relies on three
main parts. The client part requests content or service from a server. In contrast,
the server part runs programs to answer client requests. Finally, the data transfer
objects (DTOs) are resources transferred by the client part to the server to execute
the programs on a given data or on the opposite transferred by the server to the
client to display them corresponding to the shared part of the system. In the next
section, we show that assigning a class of a given layer is a challenging task.

3.2.3 Challenges for Layers Identification

These three parts (client, server, and shared) may eventually be well-identified dur-
ing the design phase, through architectural rules. Some rules are structural e.g., a
DTO inherits from a specific class or a client class implements a dedicated inter-
face. Other rules concern the behavior, e.g., a class for which at least a method is
called by a server class, belongs to the server part or, a class for which at least a
method calls a client class is considered client side. However, these rules are not
always documented. And even so, over time and several evolutions, these rules are
violated. Thus in practice, the separation between the different parts is fuzzy and
is no more clearly identified. For example, on real systems, it is not rare that some
classes belonging to a (sub)package of a client may in fact play the role of server
and vice versa. Some DTOs may be only used by one part, or even not used by
either part. Finally, other elements that DTO may be shared between the client and
the server or may be so complex that some of their methods play the role of the
client and others of the server. The belonging of these elements to exactly one part
may often need further investigation.

If a class satisfies only an architectural rule defining a layer, it is easy to assign it
to this layer. In case a class satisfies several rules corresponding to different layers,
there is an ambiguity and it is not possible to clearly identify the layer the class
belongs to: violations are thus observed, since normally, a class should belong to a
single layer.

In the context of a future migration such as the migration from a client ap-
plication to another (e.g., from GWT to Angular [Verhaeghe et al., 2021]) or the
decomposition into micro-services of the server part, the shared elements which
are not DTOs or the violations between client and server parts are problematic. In
practice, they correspond to violations of software architectural rules.

3.2.4 Layers in the Server Part

Even when the client and server parts are clearly separated, for example, because
they structurally belong to two different projects, architecture violations may occur.
Indeed, the server part may be decomposed into several layers, such as the server

26 Chapter 3. A Visualization for Client-Server Architecture Assessement

interacting with the client part, the services corresponding to the core program,
and the database access objects (DAOs) corresponding to the interface between the
server and the database. Each part corresponds to a layer and the communications
between them are strictly defined. The server elements can call services, which in
their turn can call DAOs. All other communication between layers is considered a
violation. For example, a DAO is not allowed to have dependencies on services or
server elements.

Due to the challenges to assign classes to different architectural parts and un-
derstanding architecture violations, there is a need to support maintainers to under-
stand why a class may play different roles and how rules are violated.

3.3 A Dedicated Client-Server Architecture Visual-
ization: CLISERVO

We propose a dedicated visualization, CLISERVO, to support client-server navi-
gation and architectural violation identification. Figure 3.2 displays an annotated
version of one of the two views of CLISERVO applied to a real industrial system.
The remainder of the chapter presents in details the different aspects of the visual-
ization: Its two configurations, its two viewpoints, and the levels that can be applied
to support the understanding of application architects.

This visualization structures the software into layers and uses the traditional
node-link diagram to connect the layers’ components. Such layers rely on rules
that can be structural i.e., a class belongs to a specific hierarchy, or behavioral i.e.,
a class calls or is used by another one. The constraints imposed by the membership
to a specific hierarchy are stronger (since the behavior and the state of the classes
are shared) than those resulting from the use of/by a specific class. Consequently,
we consider that the assignment to a layer is sure when it relies on a structural rule,
and uncertain when it is based on behavioral rules. such rules take into account the
way the different framework expresses client-server relationships - e.g., inheritance
to certain classes as in frameworks such as GWT. In addition, these architectural
rules are often adapted to reflect the knowledge of the system based its maintainers.

CLISERVO offers two configurations: first, the Big-Picture showing all the parts
(client, server, shared and purgatory) (See 3.3.1) and the Server focus one showing
on the server side (See 3.3.2), as we will show now.

3.3.1 Configuration 1: Big-Picture with Four Main Layered Parts

In the Big-Picture configuration, CLISERVO splits the system into four main lay-
ered parts (see Figure 3.3): Client side, Server side, Shared Space and Purgatory.
The client and server parts are layered because each element implied in a relation

3.3. A Dedicated Client-Server Architecture Visualization: CLISERVO 27

Implementations

L1

Client Side

Server Side

Shared-Space

Purgatory

L1L2L3 L2 L3 L4

Interfaces

Class/package Class/Package in relation with selection

Only used by client
Not shared

Only used by server

Class/package violating name conventions

Figure 3.2: An annotated version of CLISERVO Big-Picture from Violation View-
point applied to WD: Four parts (Client, Server, Shared and Purgatory) and their
relation/violation (L = Level). . Note that the class names are deliberately blurred
on purpose to respect the company constraints.

P3P1
I1

I2

I3

IS4

I5

I6

I7

I8

I9

I10

I1Impl

I2Impl

I3Impl

I4Impl

I5Impl

I6Impl

I7Impl

I8Impl

I9Impl

I10Impl

P23

P3

P25

P1

P3P1

Client Side Server Side

Shared Space

a

c d

ef

Purgatory

P33 P34 P35

g
P50 P51 P51

h
i

b

Figure 3.3: Big-Picture in CLISERVO: It features four parts (Client Side, Server
Side, Shared and Purgatory) – the Server side includes layers b, d and i; the Client
side, a, c, h.

28 Chapter 3. A Visualization for Client-Server Architecture Assessement

may be called by other elements (acting as subsequent layers). We explain each
part:

• Client part: This layered part contains the core set of classes or interfaces,
establishing the communication with the server part (a). In addition, it in-
cludes the classes using this core, either directly or indirectly through other
classes (c, h). If the core part relies on a structural architectural rule, the
remainder is built successively, level by level by considering first the direct
clients of these original interfaces and then the direct clients of these result-
ing classes and so on.

• Server part: The server part has a similar structure as the client part. The
core part is composed of (implementation) classes that enable communica-
tion with the client part (b). The remainder of the server part contains classes
used by these original implementations directly or indirectly (d, i). This part
is built successively level by level.

• Shared part: This part contains DTO (Data Transfer Object) classes i.e.,
software resources which can be used by both client-server entities (e, f).
Hence, this part contains DTOs that are meant to be shared but may not be
actually shared in the project.

• Purgatory: The purgatory part gathers elements that are not DTOs and
whose classification into the client or the server parts is not clear (g). These
elements are used by at least one entity of the server part and use at least
one entity of the client part. Such entities are in relation with both client
and server entities leading to ambiguity about their layer affiliation. Further
analysis of such entities is needed to be attributed to their correct layer.

3.3.2 Configuration 2: Server-focus with Three Layers

It is possible to focus only on the server part, which is also composed of layers:
Server, Services and DAOs.

• Server: This layer corresponds to what has been previously described in the
Big-Picture visualization (Section 3.3.1). It includes the core part, i.e., the
(implementation) classes enabling communication with the client part, and
contains classes directly or indirectly used by the core (L1 and L2 respec-
tively).

• Services: This layer corresponds to the services of the server application. It
relies on a structural rule and thus corresponds to a specific class hierarchy.

3.3. A Dedicated Client-Server Architecture Visualization: CLISERVO 29

Services
Server

DAO
07/10 40

24

L1 L2

Figure 3.4: Illustration of the visualization Server-focus.

• Data Access Object (DAOs): Entities of this layer represent the classes
accessing the database of the software. They also result from a structural
rule and represent a specific class hierarchy, such as the AbstractDao class in
Hibernate.

3.3.3 Two Viewpoints for each Configuration
In addition to the Big-Picture and Server-focus configurations, the visualization
features two viewpoints: a general component overview view and a architectural
violation view. Both viewpoints use the same graphical elements (nodes and ar-
rows) to quickly convey information about the software, the main difference is that
the second viewpoint does not display all elements of the software but the necessary
information to detect violations.

• Big-Picture in architectural Violation View. When looking at violations
applied to the Big-Picture overview, only the elements in relation to the pur-
gatory are displayed in the client and server parts. Only the classes used by
the server part and using the client part are considered ambiguous and are put
in purgatory. However, all the elements in relation to these classes require
specific attention to determine which relation is a mistake to remove a class
from purgatory and put it either in the client or server part. In addition, the
DTO part is decomposed into three sets, (i) the DTOs only linked with the
client part, (ii) the DTOs only linked with the server part, and (iii) the DTOs
linked with neither the client nor the server part. Indeed, since DTOs are con-
sidered shared, these three cases correspond to violations. Finally, since the
client and server parts mainly rely on behavioral architectural rules, for each
class, we check if its position in the client or server part is consistent with the
name of the package in which it is. If it is not the case, there is a violation
that is expressed by displaying the class with another color. For example, a
class in the server part cannot be in a subpackage of a client package.

• Big-Picture in General Component View. The Big-Picture in the General

30 Chapter 3. A Visualization for Client-Server Architecture Assessement

Component View depicts ALL entities of the software, meaning entities in
violations and entities that are directly or indirectly in relation with the core
components (interfaces in client and their implementations in server). In-
cluding entities in purgatory. In this mode, the DTO part is not decomposed
into three layers but groups all DTO entities in one layer, highlighting the
ones in violation in a different color. This view could be of use in case the
user wishes to see the violations present in the system and how they interact
with the other components.

• Server-focus in architectural Violation View. In the Server-focused config-
uration from the architectural violation viewpoint, only the server elements
calling directly a DAO (without going through a class of the Services layer)
or called by a Services or DAO element are displayed in the visualization.
Similarly, only the service class called by a DAO is displayed. All other el-
ements respect the architectural rules and consequently are not displayed to
simplify the visualization and scale.

• Server-focus in General Component View. This view focuses on the server
part and offers a view of the entire entities in the layers of the server. Includ-
ing the different violations explained in the violation view. All elements with
respect or deviating from the architectural rules are consequently displayed.

In addition to the aforementioned viewpoints, the visualization also offers the
hybrid view that allows the selective display of violation view and general compo-
nent view in different layers of the software as shown in Figure 3.6.

3.3.4 Nodes, Links, and Interaction
Inside layers, we place nodes to represent classes or packages. Such nodes are
connected by links.

Nodes. The visualization presents classes, interfaces, and packages as nodes.
Except if the communication protocol or the used framework imposed that the com-
munication between the client and the server parts is performed through interfaces,
the other nodes inside the layers correspond to classes or packages. For readabil-
ity and scalability reasons, if the number of classes to represent in a layer is too
high, classes are grouped in their corresponding packages. This threshold can be
modified in the settings of the visualization. By default, we use 100.

The visualization is modular in displaying the following levels of the next dis-
tances of the core entities, meaning that the decomposition of the layers into levels
is built progressively level proceeding or following a level for client and server
parts, respectively. Consequently, new ambiguous entities in Purgatory may be
added at each iteration when a new distance is computed.

3.4. Big-Picture Visualization Configuration in Action 31

Links. Given the use of the conventional node-link diagram in the visualiza-
tion, it is evident that an arrowed line means the dependency between intercon-
nected nodes. To avoid overloading the visualization with links, by default, only
the dependencies from or to classes of the purgatory or in violation of a rule are
displayed. For instance, in Figure 3.2 the class ClientServiceFactory (selected class
in purgatory) depends on all 34 interfaces defined on client part, hence the red ar-
rows and green color of nodes. On the other hand, 14 class nodes on the server part
depend on ClientServiceFactory, hence the blue arrows and green color of nodes.

Interactions. Since the visualization is built as a tool, different interactions
with its elements are provided. We list a few of them:

• The user can explore (sub-)nodes or links i.e., investigate their properties and
possibly access the corresponding source code.

• The user chooses to hide or show the links coming out or into a single node.

• The user chooses to hide or show all links coming out or into a layer thus
improving clarity and to not clutter the visualization with links.

• A package node can be expanded to show its internal sub-nodes. Such an
expanding feature is also applicable to groups of nodes in layers.

• The user can progressively display the following nodes of the next depen-
dency level by interacting with it.

The visualization relies on an abstract representation of the software using the
Famix metamodel Ducasse et al. [2011] and is integrated into the Moose metaplat-
form Anquetil et al. [2020].1 Once the model is built, we import it into the Moose
platform.

3.4 Big-Picture Visualization Configuration in Action

In this section, we present the application of CLISERVO to industrial systems. For
confidential reasons, we changed the name of the software systems and cannot
mention the name of the companies. Moreover, to respect the company constraints
we blurred the names in the figures. While during our analyses we applied different
configurations of CLISERVO, for space reasons, we report the general overview of
CLISERVO visualization viewpoint on OJ project and the violation viewpoint on
WD project. These projects are presented in the next sections.

1Moose is an extensive platform for software and data analysis: https://moosetechnology.org

32 Chapter 3. A Visualization for Client-Server Architecture Assessement

3.4.1 OJ: Distribution System of Updates
OJ is a system of updates distribution, built for a list of clients such as small and
big city halls. It was initially developed by a single developer in 2008 replac-
ing an old updates downloading system. It was continuously maintained by the
same developer then maintainers changed throughout the years. However, only
ten maintainers were responsible for this system throughout the years, with few
system evolutions because the system was not exposed to changing needs. It was
conceived for one thing (distribution of updates) which is still functioning correctly.
The system is decomposed into two projects, the client and the server project. The
client project is built using GWT, and the server project is built in Java. The two
projects use the RPC protocol automatically generated by the framework to ensure
communication between the client and the server.

OJ counts 3277 classes spread in 599 packages. There are 3 packages named
client and 2 named server packages. Altogether, the client packages contain 1051

classes. The server packages count 102 classes.

Client Server

Shared Space

Purgatory

Core

Figure 3.5: The Big-Picture of CLISERVO visualization for the OJ software system
in Global Component Overview (all nodes of the project)

Analysis: Big-Picture in general component overview viewpoint. In Fig-
ure 3.5, we use the general component overview, where all the components are
displayed. We added all levels to the visualization, in addition to the core inter-
faces and implementations respectively. The server part holds only four levels,
whereas the client has five.

There are two main dashed boxes each containing at most five dashed smaller
boxes. The big left dash box corresponds to the client part. The right one refers
to the server. In each of these two boxes, the vertical dashed boxes on the right
for the client and the left for the server correspond to the core implementing the
communication protocol. The other dashed boxes correspond to the indirection
levels successively computed. In the server part, some classes are in red, meaning
that they are considered in the server part, but belong to client packages.

3.4. Big-Picture Visualization Configuration in Action 33

The DTOs have not been separated into several groups since they are all used
by both the client and the server parts.

The purgatory is empty meaning that all the communications between the client
and the server parts are done via the interfaces and the implementations as foreseen
by GWT. Consequently, the separation between the two parts is pretty clear and net.

The general architecture quality of the OJ system (resulting from its specific
development) is a kind of Graal for a client-server application: there is no serious
and random violations as in systems such as the one shown in Figure 3.2.

3.4.2 WD: a Multidisciplinary Healthcare Management System

With WD, doctors can plan meetings, enrol patients in a session, register proposed
decisions, and validate and publish decisions. This software system is largely used
in hospitals and has been developed around 18 years ago using a client-server ar-
chitecture. The client part has been developed with GWT, the server part is in full
Java, and the communication protocol uses RPC. The system evolved; new func-
tionalities have been added. But also, technology has changed: GWT is no more
maintained by Google. New versions of browsers do not support well the Type-
script code transpiled from Java. It becomes urgent to migrate the client part to a
new technology. In parallel, the company wants to modify the server part. How-
ever, after multiple evolutions, the client-server architecture drifted. It is impossible
to just remove the client parts and replace them.

WD counts 6030 classes spread in 1044 packages. There are 8 packages named
client and 7 named server. Altogether, the client packages contain 3016 classes. The
server packages count 389 classes.

Analysis: Big-Picture in violation viewpoint. As for OJ, in Figure 3.2, we
added four levels to the visualization, in addition to the core interfaces and imple-
mentations respectively. However, due to the state of the communication between
the client and the server parts, we used the violation viewpoint.

On top, there are the DTOs. As explained before, in the violation viewpoint,
they are separated into groups between those that are used only by the client (24),
those only used by the server (82) and those not shared (29). The other DTOs (192)
are not displayed in the visualization since, as expected, they are used by elements
of the client and the server parts. Only the link from the purgatory at the bottom
and the DTOs are displayed in the figure.

At the bottom, there is the purgatory containing the classes whose categorisa-
tion is ambiguous. At this level of indirection from the core, there are 91 classes.
They are used by the server part and they use the client part. Only the links from
the purgatory to the client classes or from the server classes are displayed. Since
the figure presents the violation viewpoint, all the classes in the client (respectively
server) part are targets (respectively source) of such a link. We see that the sepa-

34 Chapter 3. A Visualization for Client-Server Architecture Assessement

ration between the client and the server parts is unclear. The communication does
not always respect the framework and goes through other classes represented in
purgatory. In addition, a lot of classes in the server part belong to client packages.

Note that the violation viewpoint, in this case, enabled the architect to focus
on interest points to correct the architecture. When the violation viewpoint shows
no more entity, the separation between parts is clear, and adopting the general
component overview makes sense for OJ.

3.5 Financial System: Server Focus Visualization Ap-
plied

EGF is a financial management system for local authorities. Once again, for con-
fidential reasons, the name of the application has been changed and the figure
anonymized. This application has been developed in full Java using the RMI pro-
tocol. The client and the server parts are physically separated into two different
projects. This physical separation has consequences on the software logic: The
categorization of each entity is clear, it either belongs to the server or the client
part. Consequently, we focus on the server part, containing 4028 packages among
which 180 are named dao and 352 service for a total of 11424 classes.

Figure 3.6: The server focus of CLISERVO visualization for the EGF software sys-
tem from the Violation viewpoint (limited to nodes participating to the violations).

Analysis: Server focus in hybrid viewpoint. Figure 3.6 shows the Server-
Focused visualization on the EGF industrial case.

To better highlight the differences, the visualization is displayed in an hybrid
viewpoint: The server part is displayed in the violation viewpoint – this is why
the user can see the ratio of displayed classes in each layer. On the opposite, the
services and the DAO parts are displayed using the general viewpoint. All the
entities of these parts are displayed. Since they are too many, classes are grouped
by packages.

When the services bypass the services objects and talk directly to the DAO,
these DAO are displayed in dark red, or more precisely, the packages, containing

3.6. Cliservo: Mining Architectural Insights on Industrial Projects 35

these classes are like so. In addition, to know on which Service objects to focus
among all, entities in violation are in orange (those calling a server entity or called
by a DAO).

3.6 Cliservo: Mining Architectural Insights on In-
dustrial Projects

In this section, we report our analysis of the results of CLISERVO on industrial
projects. This was validated with the current maintainers of each project.

The validation followed the steps: (1) the authors performed the analysis of
the three systems using CLISERVO. This phase lasted half a day. The analysis
produced a list of potential violations and points to clarify; (2) all the raised points
were discussed and validated with the current maintainers of the systems during
half a day each. This phase leads to the opening of bug tickets or the identification
of serious and larger problems for some cases (i.e., migration to other front-ends).
The subsequent sections summarize our findings.

3.6.1 WD results
The results of the WD project are depicted in Figure 3.2. The tool helps the main-
tainers to reclassify the messy package structure where client and server names
were mixed in ad-hoc fashion. In addition, 29 unused DTOs were identified, 24
DTOs only used by the client, and 82 only used by the server. Furthermore, 91
purgatory elements were identified:

• 17 entities using only one client entity and only one server entity,

• 4 entities using only one client entity and used by very few server entities,

• 13 entities using several client entities but only used by one server entity,

• 2 entities using several client entities but very few server entities,

• 4 entities using both client and server entities and being used by very few
server entities,

• the rest are entities automatically categorized in purgatory because of indirect
relations. For instance, an entity using only clients is used by an entity in
purgatory.

Note that the server entities being used are mostly entities categorized in the
server part but in client packages depicted in orange in Figure 3.2. The tool helped

36 Chapter 3. A Visualization for Client-Server Architecture Assessement

current project maintainers identify the idle DTOs and those in violation because
they are not actually shared between both client and server parts. Moreover, they
were mostly interested in the ambiguous entities in Purgatory since their belonging
represents an important problem for them to eventually investigate and classify.

3.6.2 OJ results

The results of the OJ project are depicted in Figure 3.5. The OJ system is an ex-
ample of a well-conceived project with few evolutions and a limited number of dif-
ferent maintainers throughout the years. CLISERVO showed some classes in client
packages are referenced from the server side (colored in orange in Figure 3.5).
During the CLISERVO validation, the maintainers explained that these classes are
referenced by server entities to avoid code duplication: Instead of creating a new
class with the same code, maintainers preferred to refer directly to these classes.

The visualization also showed classes with the DTO keyword in their names
appearing in the server side instead of on top in the Shared Space. This means
that they do not follow the rules of inheritance on which the Shared Space is built.
This was a false positive of the way the classification is done by our tool. Indeed
the maintainer explained that such classes do not belong to the OJ system but to
a framework developed by the company from GWT components to share common
functionalities over projects.

3.6.3 EGF results

The tool helps the maintainers to spot violations. An exceptional class from the
DAO part is accessed by all the server implementation classes. One of the main-
tainers explained that each of their applications has some known and accepted de-
sign issues. This violation is one of them. However, CLISERVO also revealed seven
other direct links from the implementations to the DAOs layers which are indeed
considered as relations not respecting the architecture of their software.

Moreover, the tool showed eight direct links from classes in the first level of the
server (classes directly used by the implementations) to the DAOs. One maintainer
confirmed that such links do not represent violations because the calling classes
found in the server layer are de facto classes that belong to the Services layer, how-
ever, organized according to a different structural packaging set (classes of the ser-
vice subpackaging). Changing the rule of the Services layer to include classes with
such a structure helps avoid these false positives. Nonetheless, to our knowledge
of the system and communication with its maintainers, the naming conventions are
not perfectly respected so adjusting the tool to an inconsistent rule might produce
more unintended consequences.

3.7. Discussion 37

Finally, CLISERVO helped the maintainers identify five confirmed violations
coming from the DAOs to the services layer caused by the intertwining entities.
The fact that the code was too coupled and spaghetti-like made it impossible for
the maintainer to decide what to do.

3.7 Discussion

This chapter introduces a novel visualization technique, referred to as CLISERVO,
which facilitates the recovery of client-server application architecture. By extract-
ing structural and behavioral information from the software source code, CLIS-
ERVO constructs the different layers of the client-server components. Furthermore,
the visualization incorporates Data Transfer Objects (DTOs) present in the code-
base, identifying both violations and adherence to architectural rules. Ambiguous
entities that raise questions regarding their proper placement are also represented
in a dedicated category called "purgatory." To enhance scalability, ease of focus,
and usability, CLISERVO offers two configurations: the Big-Picture view, which
encompasses all software components (client, server, DTOs, and purgatory), and
the Server-focus view, which focuses solely on the server part.

The application of CLISERVO to industrial projects has yielded highly promis-
ing results. For example, in the WD project, the visualization exposed DTO-related
violations, including the presence of unused entities and entities exclusively used
by either the client or the server. These violations undermine the software ar-
chitectural integrity by introducing unnecessary complexity and consuming ad-
ditional memory and resources. Moreover, they hinder software comprehension
and navigation, especially in large-scale projects like WD, which comprise numer-
ous classes (6030 classes). On the other hand, when applied to the OJ project,
which demonstrates a well-conceived and maintained architecture, CLISERVO re-
vealed relatively few violations, primarily false positives stemming from design
decisions to avoid code duplication and the inclusion of DTO classes specific to
the core software on which OJ is built. This gives insight into the architecture
of the software. Additionally, by employing the server-focus configuration, CLIS-
ERVO exposed illegal dependencies between layers within the server part of the
EGF project, including seven direct links from service implementations to DTOs
and five violations from DTOs to the services layer.

Through the application of CLISERVO, this research contributes to the under-
standing and improvement of client-server architecture in software systems. The
visualization not only aids in detecting architectural violations but also facilitates
the identification of unnecessary elements, thereby enhancing the maintainability
and performance of client-server applications.

38 Chapter 3. A Visualization for Client-Server Architecture Assessement

3.8 Threats to Validity

In this section, we discuss the threats to the validity of the experiment.

Internal Validity: To what extent we can draw a causal link between the treat-
ment in the experiment and the response? The study exhibits robust internal valid-
ity as it employed a rigorous experimental design involving three different software
systems from diverse domains, two different companies, and three project teams.
The systems were real industry applications, and access was granted to their cur-
rent maintainers, who possessed distinct levels of knowledge about the software
systems. The study enabled architects to draw insightful conclusions and make
modifications to the client-server architecture. Furthermore, it is noteworthy that
the software systems are currently undergoing a remodularization phase in prepa-
ration for future migration. These factors contribute to the study internal validity
by providing a controlled environment for evaluating the impact of the tool on ar-
chitectural decision-making within real-world software systems.

External Validity: Are our results generalizable for practice modernization?
The CLISERVO visualization validation was applied on three industrial projects
since it was not possible to take open-source projects. Indeed, unfortunately, on
public repositories like GitHub, it is not easy to introduce search criteria relative
to architectural matters. In addition, once found, access to the developers or to
the architects of these projects is almost impossible. Consequently, we focused on
industrial partners. The variability of the application domains, the sizes, and the
development teams encourages us to believe in the generalization of the CLISERVO

visualization.

Construct Validity: Are we asking the right questions? CLISERVO enabled us
to identify both cases where the separation between the client and server is clear
respecting the used framework and others where it is not the case. The focus on
the server part highlighted an expected layered architecture but also enabled the
identification of architectural rule violations between these layers. This leads us to
the conclusion that the interest of the visualization is justified.

Reliability: To what extent can the results be reproduced when the research is
repeated under the same conditions? One potential reliability threat in this study
is the potential for variations in the interpretation of the results by maintainers. To
address this threat, efforts were made to provide clear guidelines to maintainers,
ensuring a standardized understanding and consistent results. By establishing ex-
plicit instructions for interpreting the visualization, potential discrepancies in the
findings were minimized, enhancing the reliability of the study. Additionally, the
availability of the CLISERVO on GitHub and its use of an importer specifically
designed for Java projects contribute to the reproducibility and consistency of the
study results across different projects and maintainers.

3.9. Conclusion 39

3.9 Conclusion
Understanding source code and recovering its architecture is a challenging task,
particularly for complex systems that have been developed over a long period of
time or have undergone numerous changes and modifications. We propose a novel
visualization called CLISERVO for recovering the architecture of client-server sys-
tems. CLISERVO help software maintainers detect architectural violations. It clas-
sifies client-server entities into different levels of dependencies, shared entities, or
ambiguous entities. In addition to the two configurations: Big Picture and Server-
focus, the visualization shows the system from two distinct viewpoints: General
Overview and Violation. We validated our approach on three real-world industrial
projects with their current maintainers. The validation with the maintainers shows
that, in a couple of hours, the CLISERVO users were able to spot architectural vio-
lations and to qualify architecture design decisions. It shows also that CLISERVO

users were able to conceptualize a coarse-grained quality model of the systems ar-
chitecture (ranging from 3277 to 6030 classes), clearly identifying situations where
future evolutions will be challenging. For future work, we plan to extend the view-
points and apply the visualization to a larger set of projects.

CHAPTER 4

Understanding Class Name
Regularity: A Simple Heuristic and

Supportive Visualization

Contents
4.1 Complexity of Class Name Understanding 40

4.2 The ClassName Distribution Visualization (CnD) 46

4.3 An Example of a Pharo Project: Calypso 52

4.4 An Example of a Java Project: Lucene 55

4.5 Supporting Evolution . 59

4.6 The ClassName Distribution Tool 62

4.7 Visualization Algorithm Description 64

4.8 Conclusion . 67

Good class names play a crucial role in software development as they serve
as a means of communication and documentation within the codebase. This puts
a strong emphasis on the understandability of source code. Class names consti-
tute one of the first information maintainers have access to. As such, they are
important to promote or hinder understandability of a project. Understanding the
convention(s) followed by class names is essential to guide maintainers and code
reviewers interpretation. Different developers may follow different conventions, or
conventions may evolve over time.

To assist code reviewers and software maintainers in understanding the logic
and regularity of class names, we present a new visualization, called ClassName
Distribution. It brings together package and inheritance as structural perspectives
on class names. ClassName Distribution allows one to spot naming irregularities
in large hierarchies scattered over multiple packages. We first start by presenting
the visualization (Section 4.2) and identifying recurrent patterns relative to concept
references in class names (Section 4.2.4). We then illustrate the visualization on an
important Pharo project continuously maintained by the community (Section 4.3).

42
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

We proceed with an illustration of the visualization on a large-scale Java project
(Section 4.4). We apply the visualization on distinct versions and monitor class
renamings over these versions (Section 4.5). Furthermore, to enhance familiarity
with our visualization, we provide an overview of the tool and its interactive fea-
tures (Section 4.6). The algorithm clarifying elements of the visualization creation
is presented afterward (Section 4.7). Both qualitative and quantitative evaluations
(Chapter 5) are presented in the next chapter. This work has been published in the
Journal of Object Technology (JOT) [Agouf et al., 2022a].

4.1 Complexity of Class Name Understanding

The class name is the first piece of information concerning the classes to which the
developers have access. A class name identifier is a sequence of “words” that are
easily identifiable thanks to the use of naming conventions, such as the camel case
or snake case style [Butler et al., 2011b]. For instance, considering the class name
FloatingPointException, the word sequence is Floating + Point + Exception [Butler
et al., 2011b, Liblit et al., 2006, Singer and Kirkham, 2008]. A class name should
be as precise as possible to explain the class behavior while remaining concise, in
the sense that it is briefly described, and consistent, in the sense that it is coherent
with the system naming convention [Deissenboeck and Pizka, 2006]. Precision and
conciseness can be in conflict so developers must make choices to determine the
correct class names. In the following, we discuss what is a correct name, and in par-
ticular, what can influence how classes are named. Finally, we specify consistent
naming or irregularities in class naming.

4.1.1 Illustrative Examples

Imagine the following situation: When reading a code editor project, a maintainer
reads a class named NavigationBrowser. He knows that the system was developed
using Model-View-Presenter. Now, by just reading the class name he cannot de-
cide whether NavigationBrowser is a model, a view, or a presenter. He is forced to
read the class definition to see that NavigationBrowser inherits from SpModelPresen-
ter and to understand that this class belongs to the Presenter part of the triad. A
consistent naming following the hierarchy convention such as NavigationBrowser-
Presenter conveys more precise information and does not force the maintainer to
navigate through the class definition.

Another interesting example drawn from a Pharo project is the package Tool-
DependencyAnalyser-UI. This package defines the class named DANode, with 21
subclasses using the suffix Node. This class inherits from TreeNodePresenter. But
in its package, all the subclasses of DANode are consistently named to convey

4.1. Complexity of Class Name Understanding 43

that they are nodes. In other packages, the names of subclasses of TreeNode-
Presenter terminate with the suffix Presenter. It appears that only in the package
Tool-DependencyAnalyser-UI, did developers introduce a new concept and it was
more important for them to convey the idea that a class represents a Node than a
Presenter.

Now in this example, the situation is a bit more complex because this exact
same package defines the DAPackageTreePresenter. Therefore, the maintainer may
wonder if this class should be renamed to Node or not. However, the class DA-
PackageTreePresenter does not inherit from TreeNodePresenter, but belongs to the
ComposablePresenter hierarchy.

Stepping back from this example, we see that (1) class names may miscommu-
nicate their roles, (2) developers may introduce new naming conventions and that
such conventions may be local to some packages only, and (3) maintainers need to
be able to get an overview of the names used by the classes within a project but
with a package view and taking hierarchies into account.

4.1.2 About Correct Class Names

In object-oriented languages, classes should have one responsibility [Wirfs-Brock
and McKean, 2003]. A class name should concisely explain this responsibility.
Consequently, a correct name is a name that enables the developer to understand at
a glance the purpose of the class or the concept behind it.

In practice, there is not always one responsibility in the class. In addition,
synonyms can be chosen. Consequently, there is not a single correct name per class,
and finding one can be complex since several factors may influence the naming as
we present hereafter.

4.1.3 Forces Influencing Class Naming

Class names are mainly influenced by three competing forces: packages within the
project, naming conventions, and inheritance hierarchies.

Package. Packages, as other grouping entities, such as modules or tags, provide
another abstraction level as they are not at the same conceptual level as classes.
Packages often reflect several organizations: they are units of code deployment
or units of code ownership. They can also encode team structure, architecture,
and stratification [Abdeen et al., 2009, Lanza and Marinescu, 2006, Martin, 2000].
Such roles often impose different naming conventions or new vocabulary on class
names. For example, it is not rare to see that inside one package classes inheriting
from a superclass get a new suffix but only within the package. This is because the
developer wanted to convey a new and different role for the classes.

44
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

In addition, in some object-oriented languages, such as Java, packages are
namespaces: the name of a class is unique inside a package and two classes in-
side the same project may have the same name.

Inheritance. Mostly, inheritance corresponds to a concept refining. Subclasses
refine a concept defined in the superclass. Consequently, it seems natural that in-
heritance influences class naming. In their study about the names of Java classes,
Butler et al., [Butler et al., 2011b] found that 70-80% of classes that extend a super-
class different from Object include one or more words repeated from the superclass
name. This is important since a developer can know at a glance to which main
concept a class is related.

However, inheritance may have several semantics. When a class extends an-
other class using subtyping the initial class name is often extended [LaLonde and
Pugh, 1991]. On the contrary, if inheritance is used for mere code reuse the initial
name is often fully dropped in the subclass. For example, in historical Smalltalk
systems, OrderedCollection is a subclass of ArrayedCollection, which itself is a sub-
class of Collection (subtyping), while Link (element of LinkedList) is the subclass of
Process (subclassing) [Goldberg, 1984].

Naming Convention. A good practice, both in industry and academia, is to use
English to name classes. This is to ease the understanding of the code, by inter-
national or outsourced teams, or to enhance the spread of open-source projects.
Since in English adjectives are put before the noun they qualify (e.g., BigClass or
SmallModel), this leads to the hypothesis that a particular role is given to the last
noun, meaning the suffix of a class name (last word). In FloatingPointException the
class suffix is Exception: this noun suffix stresses that the class is an exception.
This hypothesis is supported by the analysis conducted by Butler et al., showing
the importance of the suffix in the identifier names of Java classes [Butler et al.,
2011b]. Note that in other tongue languages as in French or in Spanish, it is not the
case; adjectives are mostly put after the name. In this work, we focus on the code
written in English and consequently adopting such a naming convention.

4.1.4 Limitations of the Various Forces in Presence
Inheritance. Often the class name structure evolves along an inheritance tree
when important new concepts are introduced. In addition, because of the name
length limit [Binkley et al., 2009], such new concepts may lead to the dropping of
old names, use of abbreviations, or focus only on new aspects. The problem is that
when a developer drops the superclass name from a subclass, he cuts the link to
the superclass. Doing so he makes a class name more difficult to understand. To
understand the class, another developer is forced to look for its superclass.

4.1. Complexity of Class Name Understanding 45

Naming Conventions. For various reasons, some conventions put the impor-
tant noun as the prefix and not the suffix. this is for example the case in Pharo,
for classes describing the architecture of every project which are named Baseline-
OfXXX. They are easily identified by their prefix. In Pharo, it is one of the few
well-known exceptions concerning suffix dominance. However, we observed that
such cases may often occur in Java (see Chapter 5).

Other Limitations. Other limitations also enter into the class naming.

• Name length: Class names are limited by the “reasonable” length of identi-
fiers. This “reasonable” length varies according to programmers, but it intro-
duces a limit on class names.

• Local/Global perspective. Naming regularities may significantly change
when considered from a local or a global perspective. Looking at names
within a single package is different from doing so across a full project.

4.1.5 Our Definition of Class Name Consistency

In this chapter, the following points define what we consider to be class name
consistency:

• Class name only. We exclusively focus on class names and not class com-
ments, method identifiers [Anquetil and Lethbridge, 1998] or method body
vocabulary [Antoniol et al., 2007].

• Following superclass pattern. Class names are consistent when the classes
of the same hierarchy follow the same naming pattern. By pattern here we
consider that class names follow either the same prefix or suffix across their
hierarchies, e.g.,Test* or suffix *Test for all the subclasses of the class Ab-
stractTest. Another example is the subclass DropListView of the class View,
which follows a consistent naming.

When a class suddenly drops a suffix from its superclass, we consider this
to be a class name inconsistency [Butler et al., 2011b]. For example, when
DropList, a subclass of the class View, is not named DropListView, there is an
inconsistent naming.

• Possible local redefinition. In addition to the simple pattern mentioned
above, we take also into account the possible influences of packaging and
inheritance as well as other conditions in some cases personalized by project
maintainers.

46
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

For example inside a package, if all the subclasses of the class Shape are now
prefixed using the word Arrow, it is not an inconsistency because we consider
that developers have the right to introduce new vocabulary. Note that this
local redefinition will be detected by our visualization but we will consider
it as a false positive.

As elaborated above and in the next sections, the inconsistencies that our ap-
proach detects are only based on the words and their sequences of class names
taking into account the inheritance hierarchies and package structure. It means that
we do not consider typos: a programmer can name all their classes *Comand, but if
he does it systematically we consider that the naming is consistent. However, any
deviation from the superclass pattern will be reported as inconsistencies. We also
propose a tool that helps the user quickly detect inconsistencies without having to
look deep into their project.

4.1.6 Class Name Assessment

Given all the competing forces influencing class naming, it is doubtful that one
could come up with one absolute naming convention even for a single project.
However, there is a need to assist developers or maintainers in detecting irregulari-
ties in class names and naming convention violations.

When auditing code, reviewers are often forced to manually browse the class
definition and figuratively climb the inheritance tree to understand the classes they
are facing. Checking class names manually is difficult even for a mid-size project
composed of several hundreds of classes, structured in multiple class hierarchies
of different depths, and distributed over many packages. Just looking at the class
name list, even on a per-package basis, might not reveal valuable clues about the
conventions used and whether they are consistently followed.

We propose the following rules to help developers review class names inside
their project:

• The main concept in a class name is expressed by either the prefix or the
suffix. In the remainder of the chaper, we will use the term spfix to refer to
either the prefix or the suffix.

• Inside a hierarchy, the spfix should be consistent, meaning that it should be
unique.

• Since concepts may emerge inside a hierarchy, the preceding rules may be
violated. Consequently, to ensure consistency inside a single package, each
hierarchy should correspond to one concept and have a single spfix.

4.1. Complexity of Class Name Understanding 47

4.1.7 A Schematic Project
Before introducing concepts useful to the detection of class name inconsistency,
let’s consider the hypothetical project depicted in Figure 4.1. It is composed of two
packages P1 and P2 and consists of 6 inheritance hierarchies: A, B, C, D, E, and
F. Inheritance hierarchies begin right under the Object class otherwise we would
always have exactly one inheritance hierarchy.

Inheritance hierarchy root classes are marked with a thick border. Each in-
heritance hierarchy is marked with a different color (A=yellow, B=green, C=red,
D=blue, E=pink, F=purple) to differentiate them.

P1

CX

C3XC1X C2X D2Y

C1Y

F4ZF3ZF2Z

C2Y

P2

FZ F1Z

DY

Object

D1Y

AZ EP

C3Y

BF

E3PE1P E2P

C4Y

F1Y

Figure 4.1: A schematic mini project composed of the A, B, C, D, E, and F hierar-
chies (thick borders denote hierarchy roots).

In this figure, class names follow several conventions: The first letter identifies
the inheritance hierarchy (A, B, . . .). Note that such a convention exists in real
projects, but there is no guarantee that it would be as strictly followed as in our
example. The last letter (X, Y, Z, P) represents a suffix. For example, the classes
AZ and F2Z have the same suffix as well as D1Y and C4Y. An optional number
differentiates sibling classes using the same prefix and suffix.

4.1.8 Class Name Inconsistency Detection
To help developers to detect inconsistencies in class naming, we introduce some
concepts and explain them using the schematic project of Figure 4.1.

48
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

Mono-class hierarchies. These are hierarchies consisting of only a root class (no
subclasses). In our hypothetical example, this is the case for inheritance hierarchies
A and B.

Mono-spfix hierarchies. These are hierarchies consisting of several classes that
all have the same spfix. Inheritance hierarchies D (suffix Y) and E (suffix P) are
examples of mono-spfix hierarchies. A mono-spfix hierarchy can share its spfix
with some other inheritance hierarchies (some C classes have the suffix Y).

Multi-spfix hierarchies. Such hierarchies consist of classes with different words
used as spfixes. Multi-spfix hierarchies are important in the sense that they do not
follow a clear naming schema and thus may hide a new naming convention or be
misnamed. Such hierarchies are exemplified by C (which uses the suffixes X and
Y) and F (with the suffixes Z and Y).

The following section tackles the problem of class name irregularities by pre-
senting a new visualization, named ClassName Distribution. It helps identify sus-
picious patterns and class name irregularities. It gives both a local view inside a
package, while providing a global view, all along the hierarchies at the level of the
project.

4.2 The ClassName Distribution Visualization (CnD)
The ClassName Distribution1 is a package-centered visualization based on the dis-
tribution of the vocabulary used in a project taking an inheritance perspective. This
vocabulary consists of the suffixes or prefixes of class names – last and first words
respectively, from the original name (using any conventions, camel case, snake
case, or others). Indeed if in Pharo, developers use a suffix convention, some
projects, in particular in Java, use a prefix convention for some of their hierar-
chies (e.g.,TestReader instead of ReaderTest). The visualization is also interactive
and navigable.

4.2.1 Visualization Constraints

Designing a new visualization should take into account several constraints:

• One important constraint of this work is the reproducibility of the visual-
ization. We want maintainers to be able to implement this visualization with
their graphical toolkit in a couple of days. Therefore, the layout of the visual-
ization and graphical elements should be as simple as possible. This follows

1https://github.com/NourDjihan/ClassNameAnalyser

https://github.com/NourDjihan/ClassNameAnalyser

4.2. The ClassName Distribution Visualization (CnD) 49

the design principles of Lanza visualizations such as system complexity and
evolution matrix [Lanza, 2001, 2003, Lanza and Ducasse, 2003].

• The visualization should not overwhelm users with too much information
(colors, shapes, positions). Its principles should be easy to understand while
being able to scale up to large hierarchies or large projects. Our goal is that
developers can take 15 minutes to comprehend it and start using it.

• The visualization should take into account screen limits: it should fit on a
normal screen and avoid forcing users to navigate or scroll when possible.
In addition, the numbers of colors on an average screen quality are limited.
There are problems with new colors emerging due to the proximity of differ-
ent colors. The visualizations should take such parameters into account.

• Furthermore, visualizations may want to exploit the Gestalt principles (such
as connectedness, similarity [Peterson and Berryhill, 2013], and proximity)
and pre-attentive processing [Healey et al., 1993].

Researchers in psychology and vision discovered many visual properties that
are pre-attentively processed, without actively thinking about them. They are
detected immediately by the visual system: viewers do not need to focus their
attention on a specific region in an image to determine whether elements with
the given property are present or not. An example of a pre-attentive task is
detecting a filled circle in a group of empty circles. Commonly used pre-
attentive features include length, width, size, shape, filed, curvature, inten-
sity, hue, orientation, motion, and depth of field [Healey et al., 1993, Treis-
man, 1985]. However, combining them can destroy their pre-attentive power
(in a context of filled squares and empty circles, a filled circle is usually not
detected pre-attentively).

We are now ready to describe first the layout of a ClassName Distribution (Sec-
tion 4.2.2) then its color assignment (see Section 4.2.3).

4.2.2 ClassName Distribution Layout

The ClassName Distribution represents the distribution of the class name spfixes
throughout the hierarchies of a project structured using packages. To this end,
it uses three central visual elements: class boxes within spfix boxes within pack-
age boxes. Figure 4.2 represents the ClassName Distribution for our hypothetical
project shown in Figure 4.1 and Figure 4.3 represents a real project (Calypso v.6.0,
described later).

50
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

Class boxes. Class boxes, the smallest boxes, represent the classes of the pack-
ages under consideration. They can be seen as atomic “dots”. Thicker borders iden-
tify inheritance hierarchy root classes. Except in special cases (see Section 4.2.3),
there is one color by inheritance hierarchy. Here, the colors match the ones in
Figure 4.1 (C=red, F=purple).

Spfix boxes. Spfix boxes, the intermediary boxes, represent class prefixes or suf-
fixes in a given project. They group class boxes (for the considered package) whose
name begins or ends with this spfix. The spfix boxes are colored according to the
dominant inheritance hierarchy (in the number of classes) that they contain across
the project. This ensures that a given spfix has the same color in all packages of the
project. For example, see the “Query” spfix (blue) in the first and fourth packages
of Figure 4.3.

On the visualization, spfix boxes are labeled with the prefix (P), suffix (S), or
(P+S) if the same word is used inside the same package as the prefix and suffix. If
over the whole visualization, only suffixes or prefixes are used, the letters between
parentheses are omitted to not overload the visualization. The user can choose to
use only suffix (which is the default mode), only prefix, or both, which is recom-
mended for Java projects. In that latter case, an algorithm determines for each class
if the prefix or the suffix should be taken into account (see Section 4.7).

Inheritance hierarchies (thus their colors) are ordered across the project from
larger (more classes) to smaller (fewer classes). Spfix boxes, which are also col-
ored, follow the same order that is dictated by their respective colors. This ensures
that in different packages, the same spfix always appears in the same order. These
consistent ordering and coloring schemes allow one to easily find an spfix in any
package. For example, see the “Scope” spfix (magenta) in various packages of
Figure 4.3.

Package boxes. Package boxes, the outermost boxes, represent packages and are
labeled with the package name. Since package names may be long and for space
reasons, we have chosen to possibly abbreviate them. Package boxes contain the
spfix boxes of all their classes. A ClassName Distribution can display several pack-
ages to offer a general overview of the project (e.g., Figure 4.3), or focus on a
particular package. Package boxes are displayed in decreasing order of size (in
number of classes).

4.2.3 Colors of the ClassName Distribution
The visualization assigns a color to each class: By default, the color of a class is
that of its hierarchy, but there are exceptions. Focusing on the regularity of class
name spfixes throughout inheritance trees, we distinguish three situations:

4.2. The ClassName Distribution Visualization (CnD) 51

Suffix: Y

LEGEND:
Root
class C1Y

Class named *Y from
C hierarchy. suffix is : Y

Package: P1

suffix boxclass box

DY D1Y C1Y

C2Y D2Y

Suffix: X

C1X

C2X C3X

CX

Suffix: F

BF AZ

Suffix: Z

F3Z F4Z

F2Z

C3Y C4Y

Suffix: P

E2P

E3PE1P

EP

package box

F1Y

suffix box

Figure 4.2: ClassName Distribution for package P1 of Figure 4.1: 1 package box,
5 suffix boxes, and 21 class boxes.

Mono-class hierarchies. Such hierarchies are composed of a single class. They
are of limited interest: they do contain class name irregularities. They are “colored”
white to reduce the number of used colors while still giving the information that
the class is the only one in its hierarchy. A mono-class box may be placed in a
dedicated spfix box if its spfix is shared by no other class in the same package.
This is the case for class BF in Figure 4.1. A mono-class box may also share its
spfix with other classes (from different inheritance hierarchies) and thus be placed
in the same spfix box as these. For instance, class AZ shares the Z suffix with F2Z,
F3Z, and F4Z.

Mono-spfix hierarchies. Mono-spfix hierarchies perfectly adhere to the same
naming schema. Since they have no irregularities, they are not noteworthy and are
“colored” in gray to avoid attracting attention, and reduce the number of colors
required for all hierarchies. See hierarchies D and E in Figure 4.1.

Multi-spfix hierarchies. By construction, their classes are grouped in separate
spfix boxes. Such hierarchies are assigned a “real” color (not white, nor gray) and
all their classes have the same color. In Figure 4.2, hierarchy C is colored in red
and its classes are grouped in two distinct spfix boxes X and Y.

Such inheritance hierarchies are mainly discovered when several spfix boxes of
the same color appear in a package. For example the several blue spfix boxes in the

52
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

first package of Figure 4.3.

(a) multi-spfix hierarchies are easily identifiable against mono-class and mono-
spfix hierarchies (colored in white and gray respectively).

(b) The color of the class boxes identifies the multi-spfix hierarchy to which the
corresponding class belongs.

For technical reasons such as screen quality and the inherent limitations of hu-
man eyes, only 24 colors are used and assigned to the 24 biggest multi-spfix hier-
archies of the project. All the other multi-spfix hierarchies are in black.

4.2.4 Pattern Definitions
The ClassName Distribution gives an overview of the system hierarchies, their
types (e.g., mono-spfix hierarchy, multi-spfix hierarchy, . . .), and the distribution
of their spfixes across packages.

Based on this visualization, the user can identify inconsistencies and decide
whether classes are poorly named or the naming was deliberate. To help users
in their tasks, we have detected some recurrent visual patterns that can be also
characterized by the definition of simple conditions. Such visual patterns may
exhibit not only coherent naming situations but also unstructured or inconsistent
naming.

• Homogeneous spfix pattern. Following our definition of class name con-
sistency, a homogeneous pattern reflects a consistently named hierarchy. All
the classes of the hierarchy share the same spfix, and this spfix is dominated
by consistent hierarchies. It corresponds to a mono-spfix hierarchy which
dominates its own spfix. Concretely, it is a set of gray classes inside a gray
spfix box. As explained before ClassName Distribution marks as gray mono-
spfix hierarchies, i.e., the hierarchies where all classes have the same spfix.
The spfix box is also gray, which means its dominant hierarchy is a mono-
spfix one. It shows that a project is following a naming convention (See
Figure 4.3).

• Blob spfix pattern. This expresses that inside a hierarchy, many classes of
the same package use the same spfix. Concretely, it corresponds to a large
spfix box where (almost) all classes are of the same color. A few classes of
a different color may be allowed. The hierarchy is not homogeneous (oth-
erwise it would be in gray), which means that somewhere in the hierarchy a
couple of classes do not respect the largely adopted convention. It can be on
purpose, or not. Ideally, there should be only one Blob of a given color per
package.

4.2. The ClassName Distribution Visualization (CnD) 53

These patterns are good in the sense that they indicate hierarchies are follow-
ing a naming convention. However, the violation of a naming convention can be
spotted by observing the visual patterns explained below:

• Scattered vocabulary pattern. In the same package, this pattern is rep-
resented by several spfix boxes of the same color containing several classes
colored as the spfix boxes. An illustrative example is presented in Figure 4.3.
It points to a multi-spfix hierarchy dominating several spfixes. This visual
pattern highlights that classes of the same hierarchy do not share the same
spfix inside the same package. From that perspective, it identifies an irregu-
lar naming convention. This pattern might include a Blob which means that
a naming convention was followed but not consistently enough.

• Intruder pattern. This is represented by one or a couple of class boxes of a
different color than the other classes within the same spfix box. It highlights
a class violating a naming convention or being placed within the wrong hi-
erarchy (possibly due to single inheritance). Indeed, the naming convention
imposes either that all the classes of the hierarchy have the same spfix and
thus are colored in gray or that new concepts inside a package have emerged,
which is revealed by a Blob spfix pattern. An intruder is a class that adopts an
spfix and thus a concept dominated by another hierarchy in the same package.
Intruders may also point to a bad design choice for example using inheritance
instead of delegation.

• Snowflake pattern. This is represented by several white classes within an
spfix box. This visual pattern highlights a set of mono-class hierarchies shar-
ing the same spfix. As an intruder, it may highlight a design issue. More
specifically, when the spfix box is white and contains only mono-classes, it
means that several classes share the same spfix and thus the same concept in
the same package while being fully independent of an inheritance point of
view; there may be a missed opportunity to group them in a new inheritance
hierarchy.

• Confetti pattern. This visual pattern highlights classes of the same package
but several different hierarchies that share the same spfix. As such, they may
represent the same concept. This can be the result of two orthogonal decom-
positions of the domain forced into a single inheritance hierarchy. Graphi-
cally, the confetti pattern is easy to spot because it consists of several classes
of different hierarchies (colors) within one spfix box.

These visual patterns do not always indicate a naming problem but they often
refer to possibly suspicious cases.

54
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization
Blob

Confetti

Scattered vocabularyIntruders

Homogeneous
Snowflake

Blob

Command

MorphQuery

Typos

Typo

Scope

Group

Figure 4.3: Visual patterns & hierarchies in ClassName Distribution of the Calypso
project (v6) main packages.

4.3 An Example of a Pharo Project: Calypso

We present the first example of the ClassName Distribution visualization on a real
project: Calypso v6. Calypso is an open-source project developed in Pharo. It
implements a set of tools to browse source code. Since Pharo 7, it is the default
IDE code browser suite. The latest version of Calypso (v9) consists of 758 classes
organized in 59 packages and 6,076 methods. It was initially developed by a single
engineer for two years, which motivates our choice of analyzing this project. Ca-
lypso is now maintained as an open-source project by a community as we will see
in Section 4.5.

We take the V6 version because the visualization has been used by Calypso
maintainers to rename classes over multiple versions as presented in the subsequent
section. In addition, it shows that a program being developed by a single developer
does not prohibit inconsistent naming.

In Pharo, there exists an implicit convention that the intent of a class is the
suffix of its name. Consequently, in the following analysis, only suffixes are taken
into account.

4.3. An Example of a Pharo Project: Calypso 55

4.3.1 Calypso Hierarchies Analysis

This section analyzes Calypso hierarchies. Figure 4.3 exhibits the following points
that we detail after:

• Some hierarchies are large (i.e., lot of classes of the same color) and in con-
trast, few classes are mono-classes (i.e., classes in white).

• Several hierarchies are consistently named (i.e., gray classes).

• Many classes are spread over several packages, such as the blue, magenta,
green, yellow, or red hierarchies.

• Many suffixes are spread over several packages such as Query, Command, or
Tests showing a kind of naming convention consistency. In contrast, inside
the same package, some suffixes are shared between hierarchies as in the first
package of the first row where the Variables suffix is shared between the blue
and light green hierarchies. This illustrates naming inconsistencies.

Large hierarchies. A color identifies a hierarchy with inconsistent naming (re-
member that consistent hierarchies are in gray). Figure 4.3 shows several of them.
The tool supports interactions such as the highlighting of specific hierarchies and
that such interactions help one to spot names (see Section 4.6). In addition, the
high quality of the screen resolution supports the crisp reading of names.

• The red hierarchy contains the SUnit2 test case subclasses. It has three dif-
ferent suffixes, namely Test, Tests, and Case. The Case suffix is due to the
superclass being named TestCase in SUnit. Developers usually do not use
this suffix but rather Test. The suffix Tests is less used and not promoted by
the tutorials on SUnit or its conventions. In particular, the plural should not
normally be used.

• The blue hierarchy is an important one, distributed over 13 packages (i.e.,
outer boxes). It has many suffixes such as Query, Classes, Variables, Methods
. . . (1st package). This hierarchy defines the query object.

• The yellow hierarchy is a Command hierarchy, which defines classes in many
packages and 17 suffix boxes. It is not homogeneous because of a typo: four
classes have a Comand suffix (3rdrow first package and 4th row 10th package,
from right; packages are annotated on the figure).

2SUnit is the test framework in Pharo

56
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

• The magenta hierarchy (Scope classes) is almost a mono-suffix hierarchy
but for two classes in the Example suffix of CNMTests package (2nd line, 2nd
package).

• The purple hierarchy (Morph classes3) is spread over 20 suffix boxes. Such
classes are grouped within a limited number of packages (9). The purple hi-
erarchy inherits from classes of this external package to define new graphical
elements (widgets).

• The pink hierarchy (Group classes) presented in the CBrowser, CSTFBrowser,
CSTQBrowser and CSPRBrowser packages is almost a mono-suffix hierarchy.
The spfix box and the hierarchy do not have the same color (respectively
gray and pink) because the Group suffix is shared by at least two hierarchies
and dominated by a homogeneous one. Concerning the pink hierarchy, it
is colored because the root class CmdMenuItem does not have the same suf-
fix (Group). It is the only inconsistency of the hierarchy, but the root class
belongs to another project.

Consistently named classes. Figure 4.3 shows multiple gray suffix boxes such as
Provider, Group, and Decorator. Such gray suffix boxes tell that these hierarchies are
consistently named. There are small hierarchies consisting of a couple of classes
(such as Filter) but also large ones that spread over multiple packages e.g., Provider,
Decorator.

4.3.2 Calypso Visual Pattern Analysis
We illustrate the visual patterns with Calypso. Figure 4.3 is annotated with visual
patterns to ease the reading.

Homogeneous spfix pattern. Concretely, this pattern occurs for example in the
first package for suffixes Group, Variable, Level, Hierarchy, Function, Plugin, and Fil-
ter.

Blob spfix pattern. For example, such a case is spotted in the yellow Command
suffix boxes distributed as Blobs in several packages. It is colored which means
that the hierarchy is not consistent. The classes that are not in a Blob are often
the ones with naming inconsistencies. Indeed, there is a misspelling: some classes
have the suffix Comand with a single m. The visualization is interactive; a left click
on the class highlights the hierarchy classes as shown in Figure 4.7 and puts the
suspicious cases in a thicker white border. This is a way to detect misspellings.

3Morphic is a core package of the system that defines all the UI element logic.

4.4. An Example of a Java Project: Lucene 57

Moreover, when there is more than one Blob of a single hierarchy per package
this indicates a possible violation of a naming convention, which is the case for
Tests and Case (e.g., big red suffix boxes in the CSQTests and CNMTests packages).
Classes of the Case suffix box should be renamed to have the Test suffix to follow
the Pharo naming convention.

Intruder pattern. We see an example of this pattern in the first package, with
light green classes inside blue suffixes. An intruder is a class that shares a suffix
with classes from another hierarchy, which may indicate a bad design, the class
being ill-named, or in the wrong hierarchy (possibly due to simple inheritance).
It is also the case of the purple class inside an orange Blob in the CSTFBrowser
package (first package of the second row).

Scattered vocabulary pattern. An example is the blue hierarchy in the first
package, including the Query Blob which means a naming convention was followed
but then split into several spfixes. Another example is the Morph hierarchy (purple)
in the second package of the first row (CBrowser), which introduces new suffixes
such as Tool and Switch. A closer look at classes of the Tool suffix box reveals a
clear violation of the Morph scheme where the class ClyTextMorphTool needlessly
introduces a new suffix by putting Morph in the middle of the name. The second
violation of the Morph naming is the absence of the suffix Morph illustrated by the
presence of View, Label, Button, and Dialog suffix boxes.

Snowflake pattern. An example is the spfix box named Change in the first pack-
age. The three classes ClyPackageChange, ClyClassChange and ClyMethodChange
were found to have similar getters and setters (affectedPackage, affectedClass, affected-
Method respectively), and a handlesAnnouncement method. It may indicate that
there was a missed opportunity to group these classes in a new inheritance hierar-
chy.

Confetti pattern. The colorful Example suffix (2nd row, 2nd package, last suffix)
is one occurrence of this pattern. It shows many hierarchies of different types
(multi-spfix and mono-classes), using the same spfix. This means that in the same
package, the suffix is associated with many hierarchies.

4.4 An Example of a Java Project: Lucene
We now report on the analysis of the Lucene project. Lucene is an open-source
library, in Java, for text indexation and search. We studied the 4,508 classes dis-
tributed over 287 packages of June 2021 version, without considering interface

58
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

Homogeneous

Blobs
Nearly homogeneous

IndexReader hierarchy

Query hierarchy

WithNestedTests hierarchy

Snowflake

Snowflake

DocIdSetIterator

Figure 4.4: The ClassName Distribution of the Lucene project version of June
2021(Extract).

classes (184 interfaces). This project illustrates that our visualization scales for big
projects and that it can be used for Java projects to identify class naming convention
violations.

The ClassName Distribution shown in Figure 4.4 considers the distribution of
both suffixes and prefixes. It corresponds only to an extract of the visualization.
Indeed, although it is possible to zoom in with the tool, it is not on paper, so we
display only a part of the project. A new screenshot of the whole project is available
online4. Moreover, as there are 61 multi-spfix hierarchies in this version of Lucene,
we colored only the 24 largest (totaling 2,458 classes, 54.52% of the project) due
to distinguishable color number limitation and color aliasing.

The other 37 multi-suffix hierarchies are represented in black (175 classes,
3.88% of the project). Finally, there are 149 mono-spfix hierarchies colored in
gray (908 classes, 20.14% of the project) and 967 mono-classes 21.45% of the
project.

Homogeneous hierarchies. Several hierarchies are homogeneous which indi-
cates that they follow a naming convention. Such patterns are exemplified by
gray spfix boxes such as Policy (1st package), Collector, and Rewrite (2nd package).
Classes of these spfix boxes follow the spfix naming convention and the location of
the spfix, as they only use the suffix, however, other hierarchies such as Task (2nd

4https://github.com/NourDjihan/ClassNamesDistribution-PaperData/\blob/master/
Lucene2021/Lucene2021.png

https://github.com/NourDjihan/ClassNamesDistribution-PaperData/ \blob/master/Lucene2021/Lucene2021.png
https://github.com/NourDjihan/ClassNamesDistribution-PaperData/ \blob/master/Lucene2021/Lucene2021.png

4.4. An Example of a Java Project: Lucene 59

row 4th package, marked with P+S) respect the use of only one spfix throughout
the inheritance tree, but do not fix its position. Some classes have the concept as a
prefix, others as a suffix.

Blobs. The biggest Blobs in the Lucene project belong to the red hierarchy (whose
root is the LuceneTestCase class). This hierarchy holds 1,504 classes, including
1,430 classes with Test as prefix (marked with the letter P above the spfix box).
Hence, classes of the LuceneTestCase hierarchy indeed follow a particular naming
pattern which is predominantly using the Test prefix. However, several classes of
the hierarchy use both Base and Case as prefix and suffix, respectively. Others
use Case only as suffix and Base only as suffix. Additional spfixes have very low
occurrences such as Function, Abstract and Unicode.

Nearly homogeneous. Several hierarchies are close to being homogeneous, where
the exception resides in one or a few classes using a second spfix.

Some of these hierarchies use only one suffix for almost all classes of the hierar-
chy but violate the spfix convention and introduce Wrapper as a second suffix. This
may indicate a kind of decorator pattern within the hierarchy that the developer
wants to make explicit.

For example, the IndexReader hierarchy (light pink in the 1st package) uses
Reader as suffix except for three classes such as SlowMultiReaderWrapper which
puts it in the middle and Wrapper as suffix.

A similar case is the Query hierarchy colored in blue, distributed over many
packages (1st row 2nd package, 2nd row 3rd package,. . .). Most classes of this
hierarchy use Query as a suffix which indicates a naming pattern. The Query spfix
is marked as it is being used as both a prefix and a suffix (P+S) but this is due to
the mono-classes using Query as the prefix. Inside the Query hierarchy, only three
classes are considered as introducing irregularities: MultiTermQueryConstantScore-
Wrapper, BlockScoreQueryWrapper and SpanMultiTermQueryWrapper. The two first
classes belong to the second package. They are not in the same spfix box once
again since the spfix detection is automatically performed by the tool.

In the util package, the Test spfix box contains in addition to the classes of the
LuceneTestCase hierarchy in red, some mono-classes (represented in white) but
also several classes in brown. The root class of the brown hierarchy WithNested-
Tests appears in the With spfix box. It is the only class with With as prefix and
Tests (plural) as suffix. The tool arbitrarily chooses the prefix. However, all the
subclasses of this root class have Test (singular) as a prefix making this hierarchy
nearly homogeneous.

60
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

Snowflake. Several Snowflake spfixes such as Segment, Index, Documents (1st
row, 1st package), Util, Utils and Ref (3rd package) may indicate classes having the
same behavior. This behavior is described by the name of spfix box. An inter-
esting case is that of Snowflake classes belonging to a colored spfix box, which is
the case for the Query spfix (2nd row 3rd package) including a query class. More-
over, the Iterator suffix box (3rd row 4th package) is dominated by the dark brown
hierarchy (DocIdSetIterator) and contains mono-classes such as CustomSeparator-
BreakIterator, WholeBreakIterator, LengthGoalBreakIterator, and SplittingBreakIterator.
A look at these class names raises the question of whether there was a missed op-
portunity to group these classes in a new hierarchy or if they should belong to the
dark brown hierarchy dominating the Iterator suffix.

Homogeneous

Query hierarchy

Morph hierarchy

Blob

Figure 4.5: The ClassName Distribution of the Calypso project (v8) main pack-
ages.

About DocIdSetIterator. The dark brown DocIdSetIterator hierarchy presents an
interesting case of the system architecture. This hierarchy is distributed over mul-
tiple packages. Its vocabulary consists of using the Enum and the Values suffixes
(1st packages of the first row), the Iterator suffix (2nd and 3rd packages), Spans
suffix (6th package 2nd row). . . . A closer look at this hierarchy shows that classes
using Spans as a suffix inherit from the Spans class which is a direct subclass of
the root DocIdSetIterator. In contrast, classes using the Enum suffix also inherit from

4.5. Supporting Evolution 61

PostingsEnum which is also a direct subclass of DocIdSetIterator Similarly, classes
using the Values suffix inherit from DocValuesIterator, which is also a direct sub-
class of DocIdSetIterator. This leads us to think that the hierarchy is composed of
several sub-hierarchies and needs to be decomposed.

4.5 Supporting Evolution
When the Calypso project was passed over to the community, maintainers found
inconsistent class names that had been revealed using a preliminary version of our
tool on Calypso v6 (July 2017) (Figure 4.3). To ensure consistency, many incon-
sistencies were corrected, leading to a new version of Calypso v8 (January 2020)
presented in Section 4.5.1. This renaming work was huge because the maintainers
did not know Calypso and had to understand the code in the presence of incon-
sistent class names. Moreover, this work was only tooled with a primitive version
of our tool. Consequently, some irregularities remained. Finally, in Section 4.5.2,
we show the latest version of Calypso v9 as of June 2021 after a final renaming
effort. This last renaming phase was performed by the maintainers using the visu-
alization proposed in this chapter as part of its evaluation as discussed in Chapter 5.
This section shows that our approach supports also the understanding of class name
evolution.

4.5.1 Calypso v8

When the community took over Calypso, some classes were renamed to improve
the understandability of the project. The resulting project is shown in Figure 4.5.
The new ClassName Distribution shows:

• More Homogeneous suffixes pattern (gray suffixes), for example the yellow
Command suffix is now gray. This is positive and points to an improved
naming quality.

• Less Scattered Vocabulary, in particular the blue hierarchy (1st package).
Globally, this hierarchy now has only three classes outside the Query suffix,
meaning that the hierarchy became more consistent, however three classes
are left to be studied. Similarly, the purple hierarchy (3rd package) saw the
number of different suffixes largely reduced to focus on the Morph suffix.
This hierarchy now has only six classes without the Morph suffix. For ex-
ample, the Morph hierarchy in package CBrowser went from eleven to two
suffixes. A new suffix Window emerges which did not exist in v6, due to the
definition of a new window class. Similarly in the v6, the ClyQuery hierarchy

62
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

Homogeneous

Nearly homogenous
Morph hierarchy

TestAsserter hierarchy violations

Figure 4.6: The ClassName Distribution of the Calypso project (v9) main pack-
ages.

exhibited several suffixes (32 classes in the Calypso-SystemQueries package
with 14 suffixes). In v8, the 32 classes of the hierarchy share the same suffix
Query.

• The Blobs of the red hierarchy TestAsserter went from using the Tests suffix,
which is a violation of the testing naming convention, to using the Test suffix.
However, some testing classes still violate this convention by using the Case
suffix.

• Fewer Intruders, for example the light green intruders in the blue suffix Vari-
ables (1st package) kept their suffix, therefore the suffix Variables is now light
green as blue classes were moved to the Query suffix.

4.5.2 Calypso v9

As explained above, while Calypso v8 underwent major class renaming, applying
the ClassName Distribution visualization revealed some remaining class name ir-
regularities. Figure 4.6 depicts the current version of Calypso v9 (2021) as a result
of an evaluation with the maintainers (see Chapter 5). Indeed, a glimpse at the

4.5. Supporting Evolution 63

visualization of v9 shows more gray classes and suffixes than in v8 which reveals
the will of its maintainers to continue ensuring the consistency of their system. We
notice:

• More Homogeneous hierarchies, in the first package both of Query and Scope
classes: blue and magenta respectively in the previous visualization became
fully consistent by using one suffix throughout each inheritance tree. More-
over, the orange hierarchy CmdToolContext also became Homogeneous by
using only one suffix Context.

• Less Scattered vocabulary: the Morph hierarchy colored in purple went from
having six classes using different suffixes other than Morph to three classes
using the Window and Tool suffixes. The light green ClyQueryResult hierarchy
grouped most of its classes under one suffix distributed over its packages,
which is in fact the suffix Result used by the root class itself, this hierarchy
becoming nearly homogeneous – one class away from being fully homo-
geneous, where the exception resides in the ClyExtensionLastSortedClasses
class using the Classes suffix instead. It is an oversight, and this class will be
renamed in v10alpha.

• Most of the Case Blobs of the red TestAsserter hierarchy are no longer present.
However, four classes using this suffix are clearly still violating the test nam-
ing convention. This is one point the maintainers are considering correcting.

• Fewer Intruders: the two green Intruders in Provider suffix have disappeared,
and are currently renamed to use the Annotation suffix instead of Provider.
The purple Intruder in the Browser suffix has also disappeared because of
two factors: the Morph hierarchy no longer uses this suffix and the orange
hierarchy which dominated the Browser suffix is now homogeneous and uses
the Context suffix instead.

• The Confetti case had vanished since both of ClyQuery and Scope hierarchies
became Homogeneous and the Result hierarchy no longer makes use of the
Example suffix.

The experiment in numbers. In total 91 classes were renamed between v8 and
v9, over 10% of the system classes and as such, it is a large renaming effort. We
cannot assess exactly the impact of the tool use but the maintainers reported that
it helped them to be more systematic and get a better overview of the naming
problems.

The visualization did not show any performance problems to render large projects.
For example, a visualization is displayed in under 2 seconds for the Calypso project
(around 700 classes).

64
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

4.6 The ClassName Distribution Tool

Figure 4.7: Tool interface with TestAsserter suffix classes highlighted: the tool
surrounds with a white border irregularly named classes and darkens the rest of the
visualisation.

The visualization presented in this chapter is proposed to the users via a tool.
Besides selecting the projects and the packages, the tool supports the visualization
configuration whether it should use prefix, suffix or both, the color palette to be
used and it also proposes specific actions to highlight certain aspects of the visual-
ization. After describing the basic architecture, we describe the features shown in
Figure 4.7.

A language-independent metamodel. The tool is implemented on top of the
Moose analysis platform developed in the Pharo language [Anquetil et al., 2020].
Therefore the tool is independent of the language used in the analyzed project. For
the moment, it was used for Java and Smalltalk projects. Figure 4.7 depicts the
ClassName Distribution tool user interface on a real project, Moose itself.

Importing models. The tool currently provides the possibility to visualize both
Pharo and Java projects. It relies on a model of the project. The import of the
models is performed differently for Java (1) and Pharo (2-5 in Figure 4.7) projects.
Everything that follows is the same for projects of both programming languages.

Configuration. The tool builds three ClassName Distributions at once: with suf-
fix, with prefix, and with both, following the algorithms explained in Section 4.7.2.

4.6. The ClassName Distribution Tool 65

The user has the choice to render the desired visualization according to the selected
radio button (6). By default, the suffix is selected.

By default the project root is Object, therefore root hierarchies are direct sub-
classes of the class Object. However, in some projects, many classes may inherit
from the same subclass of Object (for instance, Widget for a GUI project). The user
can define a new root class (7). If some classes do not inherit from the defined root,
then their root remains Object. Nevertheless, the visualization will be based on two
root classes – Object and the defined class. Changing the root class when a hierar-
chy contains multiple other sub-hierarchies is very helpful for a better overview of
these sub-hierarchies and the distribution of their spfix in the project. A click on
the “Visualize” button (8) renders the visualization (9).

Highlighting points of interest. To manipulate the visualization, a left-click on
a class box highlights the whole hierarchy of the class, and since a hierarchy is
represented by a color, then this highlights class boxes with the same color, red in
Figure 4.7. Classes with potential violation spfixes are also highlighted but with
white and thicker borders to attract the user’s attention. Potential class name vio-
lations are: (i) in contrast to the other classes of the hierarchy, a class does not use
the spfix of its root, or (ii) the spfix of the root is not used in the hierarchy and the
classes have a different spfix than most classes of the hierarchy. To unhighlight the
visualization, the user needs to left-click on a package box, a suffix box or a class
box. Moreover, a right-click on a class box shows the class definition. A mouse-
hover over a class box shows superclasses and subclasses of the class represented
by the box and its root in bold (10).

Help and utils. Different kinds of help are available to the user (11-13). Last but
not least, the list of visual patterns explained in Section 4.2.4 is found at the bottom
left of the tool (14) with their explanation (15). These patterns help in guiding
users to detect inconsistencies. When selecting a pattern, spfix boxes following that
particular pattern are highlighted for the user to check. Finally, the user can export
the visualization data such as the number of classes, packages, mono-classes, and
mono-spfix hierarchies . . . as a CSV file using the export to “CSV” button (16).

The tool works for both Pharo and Java projects. When it comes to the perfor-
mance of the visualization it purely depends on the size of the project. It is almost
instantaneous for almost all the studied projects. Evidently, if the project contains
more classes the tool takes more time to process the information before rendering.
This also applies to the identification of the patterns: the bigger the project is the
more time the tool needs to compute the selected pattern and highlight it visually.
For illustration purposes, the rendering of the Lucene project (4,508) takes only a
few seconds.

66
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

4.7 Visualization Algorithm Description

In this section, we describe the way the visualization is built. In particular, we
describe in pseudo-code the different algorithms.

The approach follows the process below to build the visualization:

1. Cleaning and tokenizing the class names,

2. Identifying the spfix,

3. Identifying the color of the class, and

4. Ordering the packages and spfix.

In the following subsections, we explain each step of the process. The following
section presents the tool as the users use it.

4.7.1 Cleaning and Tokenizing the Class Names

This step removes any digit or special character from the class name. The name is
then split into a list of class name words according to the camel case convention. In
a future version, we want to consider a list of exceptions, specified by the domain
expert that will be taken into account to avoid false positives. Thus, it would, for
example, be possible to make the distinction between 2D and 3D words and between
Model and ListModel.

4.7.2 Identifying the spfix

In the case where only the suffixes (respectively the prefixes) are taken into ac-
count, this step is reduced to a simple activity, associating to each class the last
(respectively the first) word composing its name as its spfix.

In the case where the project mixes prefixes and suffixes, we automated the
detection of the spfix for each class to avoid the user manually specifying it.

First, we compute the number of occurrences of the suffix of the studied class in
the whole hierarchy (line 2) and the same for the prefix (line 3). Inside a hierarchy,
in case the number of suffix occurrences is equal to the one of prefixes (Line 4),
the class is attributed to the spfix box in which it has more siblings. By siblings,
we mean classes of the same package which belong to the same hierarchy and
use the same spfix. Line 5 returns the spfix in which the associated box contains
more siblings of class than the other. Line 7 returns the spfix with the highest
occurrences in the hierarchy. If the occurrences are equal then the choice is
arbitrary.

4.7. Visualization Algorithm Description 67

1 function chooseSPFix(hierarchy,class,suffix,prefix)
2 occurOfS = occurrences of suffix in hierarchy
3 occurOfP = occurrences of prefix in hierarchy
4 if occurOfS == occurOfP then
5 return class.maxSiblings(suffix,prefix).
6 else
7 return hierarchy.maxOccurrences(suffix,prefix)
8 end
9 end

Listing 4.1: Choosing the representing SP-fix

4.7.3 Color Assignment
Color assignment is decomposed into two parts: first the identification of the color
per hierarchy and second the identification of the color per spfix box.

4.7.3.1 Identifying the Colors per Hierarchy.

As explained in Section 4.2.3, all classes belonging to the same hierarchy have the
same color. In contrast, except for the trait classes and classes with no hierarchies
that are colored in white, and mono-spfix hierarchies using only one spfix in gray,
each multi-spfix hierarchy that uses more than one spfix is assigned to a differ-
ent color (e.g., red, green, blue, . . .). Hence a color represents a hierarchy in the
visualization.

Technically, each hierarchy is represented as an object whose attributes are its
root class, the collection of the subclasses, the type of the hierarchy (e.g., mono-
class, or multi-spfix) and the color. Considering that we know for each class its
spfix (as computed by algorithm 4.1) we attribute to each hierarchy object a type
(trait, mono-class, mono-spfix, multi-spfix) (Line 3, Algo 4.3). Then, a color is
assigned to the hierarchies (Line 4). For the mono-class and the mono-spfix hi-
erarchies, classes are respectively colored in white and gray. Finally, we have to
assign color to the multi-spfix hierarchies. We have selected 24 main recognizable
colors for the palette of the visualization – it is possible to add more colors but then
it becomes hard for the human eye to distinguish between hierarchy colors. Con-
sequently, we sort the multi-spfix hierarchies according to the number of classes
they contain. The first 24 largest multi-spfix hierarchies are assigned a color from
the palette. Starting from the 25th multi-spfix hierarchy, complete hierarchies are
colored in black.

1 procedure coloring(hierarchies)
2 for i = 1 to hierarchies size do:

68
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

3 attributeHierarchyType(hierarchy[i])
4 assignColorTo(hierarchy[i])
5 end
6 end

Listing 4.2: Attributing colors to hierarchies function

1 procedure attributeHierarchyType(hierarchy)
2 if hierarchy.subclasses size == 1 then
3 if hierarchy.subclasses[1] isTrait() then
4 hierarchy.type = traitType
5 else
6 hierarchyType = monoClassType
7 end
8 else
9 if all hierarchy.subclasses and hierarchy.root have

the same spfix then
10 hierarchyType = monoSPFixType
11 else
12 hierarchyType = multiSPFixType
13 end
14 end

Listing 4.3: Attributing a type to a hierarchy

As detailed in algorithm 4.3, the type of the hierarchy depends on both the size
and spfixes of its classes.

In case the collection of subclasses of the hierarchy has only one element (Line
2, algorithm 4.3), meaning that there is only one class in the hierarchy, the class
itself is the hierarchy root. We check whether the class is a trait class (Line 3), in
which case we attribute the trait type to the hierarchy type property (Line 4). If not,
then the class is considered a mono-class therefore the hierarchy type is attributed
the mono-class type value (Line 6). To distinguish between traits and mono-classes
in the visualization, mono-classes have thicker borders.

In case the collection of subclasses has more than one element (Line 7), we first
check if all the classes in the hierarchy have the same spfix or not. If all classes
of the hierarchy including the root class have the same spfix then the hierarchy is
attributed the mono-spfix type (Line 9). In contrast, if one of the classes including
the root class of the hierarchy has a different spfix then the type of the hierarchy is
attributed the multi-spfix type value (Line 11).

4.8. Conclusion 69

4.7.3.2 Identification of Colors per SP-fix box

The color of an spfix box depends on the biggest hierarchy using this spfix. In
other words, the color of a specific spfix box follows the color of the hierarchy
that uses it the most in the whole project. The size of the hierarchy does not matter,
however, the number of classes using the spfix in each hierarchy does. For example,
if we have two hierarchies, H1 with 50 subclasses and H2 with 30 subclasses,
the two hierarchies use the same spfix with the occurrences of 10 and 15 classes
respectively. The shared spfix box follows the color of the H2 hierarchy since it
has more classes using it (15 > 10). In this case, we say H2 dominates the spfix or
the spfix is dominated by the H2 hierarchy.

4.7.4 Ordering Packages and SPFixes

We order packages by the number of classes they contain. Then for each package,
we create its package box and its name. For practical and display reasons, the
name of the package may be shortened using a contracting algorithm 5 that keeps
the starting letters of the package name in upper case and appends them to the last
word of the package name to easily identify the package. Inside the package boxes,
spfix boxes are always ordered in the same way. Thus for example, if an spfix is
dominated by a hierarchy colored in red, it is the first to be rendered in the package–
the absence of red at the very beginning of the package box means the absence of
the red hierarchy in the package. This makes it easy for users to detect hierarchies
and memorize the information of the visualization after a few interactions with the
tool. Consequently, for this purpose, spfix boxes are ordered by color and by the
number of classes in case they share the same spfix. Each box corresponding to an
spfix or a class is created.

4.8 Conclusion

Understanding whether classes are consistently named within a project is impor-
tant for developers. We presented one simple visualization that helps maintainers
or developers to understand the regularities and irregularities of class names in hi-
erarchies in the context of their packages. The CLASSNAME DISTRIBUTION aids
maintainers and developers in comprehending the patterns and deviations present
in class name hierarchies within their packages. We applied the visualization on
two projects – one written in Pharo and the other in Java. We also showed that the
visualization supports the evolution of projects: it helped the evolution of a large
project over several years. In the upcoming chapter, we get into the details of the

5https://github.com/NourDjihan/NameAbbreviator

70
Chapter 4. Understanding Class Name Regularity: A Simple Heuristic and

Supportive Visualization

evaluations of the visualization on a larger set of projects of distinct domains under
contrasting setups.

CHAPTER 5

Qualitative & Quantitative
Evaluations of the ClassName

Distribution Visualization

Contents
5.1 Qualitative Evaluation . 69

5.2 Quantitative Evaluation . 79

5.3 Discussion . 84

5.4 Threats to Validity . 86

5.5 Conclusion . 87

In the previous chapter, we introduced the CLASSNAME DISTRIBUTION visu-
alization tool, which facilitates the identification of incorrect class names in Pharo
and Java projects. So far, we have exclusively applied this visualization to two
projects in each programming language: Calypso 4.3 and Lucene 4.4, encompass-
ing various versions of the Calypso project 4.5. In this chapter, we extend the
application of the visualization to a broader range of projects. Specifically, we
have carefully chosen six significant projects from the Pharo community, and addi-
tionally, we have selected 50 open-source Java projects from GitHub. Through this
expanded scope, we aim to provide a more comprehensive evaluation and analy-
sis. Both qualitative 5.1 and quantitative 5.2 evaluation protocols and results are
explained in the following sections.

5.1 Qualitative Evaluation
In this section, we explain the qualitative evaluation which aims to delve in depth
into the quality of the class names of the selected projects. To evaluate our visual-
ization, we used two different setups:

• Domain Expert / Visualization Learners. The idea of this first setup is to
evaluate how experts of the code/domain who are also learners of the visual-

72
Chapter 5. Qualitative & Quantitative Evaluations of the ClassName

Distribution Visualization

ization use the tool to identify inconsistencies in the class naming hierarchy.
We presented the tool to Calypso as well as Roassal and Stargate experts.

• Non-Domain Expert / Visualization Experts. In this setup, we evaluate if
non-experts of the code/domain but experts of the visualization can identify
inconsistencies in class naming hierarchies that are then validated by experts.
Non-experts also used the tool on Spec and Morphic projects.

Due to the size of the community and the proximity to experts, we chose only
projects written in Pharo. In this section, we explain both protocols and present the
feedback from participants.

5.1.1 Protocol for Domain Expert / Visualization Learners

Protocol. For this setup, we first prepared a 10-minutes Powerpoint presentation
of the tool which includes (i) a summary of the approach principles (described in
Section 4.2) and (ii) instructions on how to use the tool (described in Section 4.6).
The presentation serves as a support guide for the tool.

For each project, we asked its practitioners (1 to 3 per project)1 to do the exper-
iment separately, to take notes of the changes each one would make, to record their
screen, and to freely express their thoughts aloud during the whole experiment
knowing that we will analyze their videos and that they will stay private. After
receiving the screen records of each project, we collected the changes proposed
by each participant. Collected data are thus twofold: first, a video showing the
practitioner using our tool, and second a list of changes to correct inconsistencies.
Depending on the cases, the changes may have been sent separately by email or
we identified them in analyzing the video. Due to the nature of the collected data
as well as the purpose of the evaluation, (i.e., showing the ability of domain ex-
perts/visualization learners that our visualization can help them detect class name
inconsistencies), it was not necessary to clean it. Then we set up one meeting per
project gathering all the experts participating in the experiment, never more than
two weeks after the experiment. To discuss the findings and to ask them if they
can agree on the changes to make. Meeting all the experts of the project enabled
us to discuss changes identified by only one expert and see if collectively they ac-
cept them or not. As explained later in the experiment, this meeting was also the
opportunity for us to understand why they refused some changes. According to the
final list of renamings, we made pull requests in each project GitHub repository
and checked if the changes were integrated into the projects.

1Each practitioner was selected according to his expertise in the project and his availability
during the experiment. Each of them has at least 10 years of experience in Pharo and more than 5
years of experience in the project.

5.1. Qualitative Evaluation 73

The time spent by participants using the tool independently varied from 20
minutes to 30 minutes.

RSInteraction Hierarchy

Scattered vocabulary

RSEvent Hierarchy

Layout hierarchy

Figure 5.1: The ClassName Distribution of the Roassal-3 project.

Choice of the projects. We chose four projects from the Pharo community with
the following criteria: (i) access to the developer or maintainers, (ii) diversity of the
projects in terms of domain and size, and (iii) different development teams. This
led to the choice of Calypso v8, Roassal-3, Stargate, and Willow. These projects
consist of 150 to over 700 classes packaged in two to 57 packages. They are all in
production and are respectively developed in France, Chile, and Argentina. Since
Stargate and Willow are being developed by the same team and the validation was
performed by the same expert, we describe the experiments of these two projects
together.

5.1.1.1 Calypso v8 Experience Feedback

As discussed in Sections 4.3 and 4.5, Calypso underwent major changes in class
names from v6 to v8. The experts were interested to see if there remain inconsis-
tencies in the naming conventions. We asked three of them to use the tool and do
the experiment on Calypso v8. In its v8 version, Calypso contains 57 packages and
716 classes.

74
Chapter 5. Qualitative & Quantitative Evaluations of the ClassName

Distribution Visualization

Proposed renaming. Some test classes (red hierarchy) were still using the Case
suffix, so they decided to rename them to remove Case but missed some as shown
in Figure 4.6. The ClyQueryResult (light green) had several other suffixes which
were changed to Result in the v9, as well as some classes of the ClassAnnotation
hierarchy which eventually used the Annotation suffix (green).

They also intended to use the visualization to drive another pass such as strength-
ening further the purple hierarchy (now mostly Morph suffix but still with a Window
and Tool suffixes). Thus, the goal is not to have all classes in gray but to ensure the
correctness and consistency of class hierarchies. Remember that the gray color is
an indicator of class names following the vocabulary pattern of their hierarchies,
so such a case is considered consistent. In contrast, the use of another color means
by definition that there is at least one inconsistency. However, this violation can be
considered a false positive by the expert. For example to express the presence of
several concepts in the same hierarchy (See Section 4.1.6).

Lessons drawn. There was no consensus on the identification of the classes to
rename even if the majority of classes to rename were identified by at least two
experts. However, (1) during the meeting, the experts agreed to rename almost all
the identified classes, and (2) they systematically proposed the same name in case
of renaming. Indeed, participants had the same logic when proposing new class
names, following the suffix vocabulary used in the class hierarchy.

It was also interesting to see during the experiment that some experts identified
not only inconsistencies in class naming but also errors in design. For example,
currently the Tag and Property hierarchies are mixed. One expert proposed to re-
name all properties to tags whereas another considered that it should not be an
inheritance, but a composition between Tag and Property. Such errors in design are
more difficult to repair. We did not anticipate them, but we are pleased if the tool
can also help in that.

5.1.1.2 Roassal-3 Experience Feedback

Roassal is an open-source visualization engine developed in Pharo. It forms part
of the Moose project to script interactive visualizations. Roassal focuses on phys-
ically shaping digital data for further analysis [Araya et al., 2013]. The Roassal
project consists of 326 classes organized in 24 packages. Figure 5.1 presents its
visualization.

In this experiment, the three practitioners changed the root class from Object to
RSObject. Indeed, almost all classes of the Roassal project inherit from RSObject,
which plays the role of the root class for the whole project. Hierarchies in this
project are built from RSObject and not directly from Object. Consequently, naming
conventions are adopted from there.

5.1. Qualitative Evaluation 75

Proposed renamings. There were a total of 39 renamings. Looking at the screen
records from this experience, participants were all intuitively interested in classes
of the RSInteraction hierarchy (in yellow in Figure 5.1) which had scattered vocab-
ulary and was proposed to be renamed eventually to use only one suffix Interaction.
This hierarchy consists of 45 subclasses, including five that already had the Inter-
action suffix, 27 classes that were renamed to use this suffix, and 13 classes that
remained the same – without the Interaction suffix (see below for an explanation).

Another hierarchy that had very scattered vocabulary was the RSEvent one (in
red in Figure 5.1): neither mouse nor key events use the Event suffix contrary to
the other classes of the same hierarchy. These classes have not been renamed but
only moved to a new Roassal3-Events package.

In the Layout hierarchy (in blue in Figure 5.1), three classes make the hierarchy
inconsistent: RSAbstractCompactTree (in the first package of the first row), RS-
SunburstExtentStrategy and RSSunburstConstantWidthStrategy (fifth package of the
3rd row) have been renamed to adopt Layout, the suffix of the root class of the
hierarchy. Here, it is not an addition of the suffix or a change in the order of the
words composing the name of the classes that have been performed, but a change
to use the suffix of the root class. Conceptually, the classes were strategies and
become layouts, illustrating a real issue in their naming.

Furthermore, the hierarchy root class RSAbstractChartElement (in purple) was
not only badly named and should use the suffix Plot instead, but needed to be de-
composed since it contained a sub-hierarchy using the suffix Tick. Tick and Plot are
two different concepts and need to be in two separate hierarchies. RSAbstractChart-
Element has been indeed renamed to RSAbstractChartPlot and its decomposition has
been discussed and taken under consideration for future versions of the software.

From an architectural point of view, they have also moved the mono-classes
in the first RLayout package to a new package called Roassal3-Layout-Utils, because
these classes are not used alone but were created to serve other layout classes. In
addition, the RSAbstractTick class should not inherit from RSAbstractChartElement.

Lessons drawn. The experiment was also the occasion to see that obsolete classes
of another version of Roassal were still present in the code. The tool helps the
developers to identify these errors based on class name inconsistencies but these
errors can only be identified by experts of the projects. Indeed, our visualization is
not focusing on the identification of obsolete classes and without prior knowledge,
it is uncertain that a non-expert would identify them.

The brown hierarchy in the third package of the first row follows the scattered
pattern. All the classes inherit from the RSObjectWithProperty class that plays a bit
the role of a root class, (i.e., classes of different concepts inherit from RSObject-
WithProperty). However, for the moment, our tool enables the user to declare only
one root class (besides from Object). It is part of our future work to enable the

76
Chapter 5. Qualitative & Quantitative Evaluations of the ClassName

Distribution Visualization

user to declare several of them. Nevertheless, in that case, some experts were not
sure whether the brown classes should inherit from RSObjectWithProperty or if these
properties should be added through stateful traits Tesone et al. [2020].

As mentioned before, some renamings of the RSInteraction or the RSEvent hier-
archies were not finally adopted by project maintainers. The reasons were different
according to the cases. First, there is a lot of documentation for some of these
classes. Consequently, renaming these classes would have a consequence on the
documentation, which is not directly taken into account by the refactoring tool,
and would have required more work to keep the documentation up to date. Second,
the experts of the project wanted to keep the class names simple and short. We
could not confirm if it is really simpler for a non-expert of the library when the
suffix representing the concept embedded in the class is omitted. The experts were
more familiar with the old names; they were reluctant to adopt some changes. Fi-
nally, they did not want to take the risk of changing these class names when many
other projects depend on them, even if Pharo supports class deprecation.

An important point reported by the experts was that our tool allowed them to
discuss their software, assessing some of their design decisions. This triggered
points such as the use of old classes that they were not aware of anymore. They
liked the idea to get an overview of the class names from a packaging point of view.

Provider hierarchySharing hierarchy

Locator hierarchy

Handler hierarchy

CriticalHealth hierarchy

Metric hierarchy

Figure 5.2: The ClassName Distribution of the Stargate project.

5.1. Qualitative Evaluation 77

5.1.1.3 Stargate and Willow

Stargate is a library supporting the creation of HTTP-based RESTful APIs. It is
composed of 18 packages and 151 classes. Willow provides a simple interface to
develop web applications, no matter the chosen front-end framework. It consists of
234 classes and two packages. These two projects are developed by Buenos Aires
Smalltalk under the MIT license. One expert accepted to use our tool on these two
projects.

Proposed renamings in Stargate. There was a total of 12 renamings for Stargate
and 12 for Willow. Globally, classes in Stargate were initially pretty well-named
as shown in Figure 5.2. Indeed, there are seven multi-spfix hierarchies. Among
them, there is the Test hierarchy (in red), which is fully consistent but as for the
other Pharo projects appears as a multi-spfix hierarchy since the root class suffix is
Asserter.

The Sharing hierarchy (in orange) has only one class that inherits from a class
with another suffix. However, this root class exists outside the project. Conse-
quently, no renaming has been proposed here.

The Provider hierarchy (in purple) has as root class MetricProvider, which has
been renamed to MetricsProvider, and four subclasses had Metrics as suffix. These
four classes have been renamed to add Provider as suffix. For example Memory-
Metrics became MemoryMetricsProvider. In parallel, the associated test classes have
been renamed: MemoryMetricsTest became MemoryMetricsProviderTest. Consequently,
the Provider hierarchy is consistent, after these renamings.

The two classes of the first package with the suffix Behavior (ResourceLocator-
Behavior and RESTfulRequestHandlerBehavior) have been renamed respectively to
AbstractResourceLocator and AbstractRESTfulRequestHandler. Consequently, the two
hierarchies Locator and Handler became consistent.

Finally, CriticalHealth (in blue) has been renamed to Critical. This renaming
does not make the hierarchy consistent in terms of the used suffix. However, it is
deliberate from the expert of the domain to keep the names as such since the first
word is the most relevant.

When investigating why the yellow Metric hierarchy has not been touched,
the maintainer explained that classes Gauge and Counter had exact proper names
in the modeling context. However, the other classes that use the Metric suffix
(LabeledMetric and TimestampedMetric) either add metadata over the others or act as
a composition of other metrics (CompositeMetric), so in that sense are generic and
hence justify the Metric suffix.

Proposed renamings in Willow. In the Willow project, the GRObject class serves
as a root class for several sub-hierarchies. It ensures consistent initialization be-

78
Chapter 5. Qualitative & Quantitative Evaluations of the ClassName

Distribution Visualization

havior on all platforms and provides error methods that signal an instance of WA-
PlatformError. It has been added as a root class for the project.

Three hierarchies used the Behavior suffix but only a few classes of these hier-
archies share this suffix making the hierarchies inconsistent.

One of them inherits from GRObject and has three sub-classes. The maintainer
of Willow chose to delete in the name of three of them the Behavior suffix. For
instance, SingleSelectionWebViewBehavior became SingleSelectionWebView. How-
ever, for the WebInteractionInterpreterBehavior class, he deleted the Behavior suffix
and added the Abstract prefix to identify this class as an abstract class. In addition,
the test class associated to SingleSelectionWebViewBehavior has also been renamed
to SingleSelectionWebViewTest.

WebTableColumnRendererBehavior is the root class of another hierarchy contain-
ing a unique subclass WebTableColumnRenderer. Once again the suffix Behavior was
deleted from the root class and the prefix Abstract has been added. The hierarchy
of this class is now fully consistent.

The third hierarchy is the one of the EventInterpreterDispatcherBehavior root
class. None of its subclasses use this suffix. Consequently, the expert decided
to remove the Behavior suffix of this root class. Nevertheless, when renaming this
root class, the maintainer also had to rename its subclass EventInterpreterDispatcher
to avoid a name clash between two classes of the same package. The maintainer
renamed the subclass into SingleEventInterpreterDispatcher, adding the Single prefix.

Finally, another hierarchy that had inconsistent naming was the TriggeringPolicy
hierarchy. This five-class hierarchy had two classes with the Policy suffix, while the
rest used the Trigger suffix. The maintainer followed the Policy naming convention
therefore the three remaining classes were renamed to use the Policy suffix instead
of Trigger. Consequently, this contributed to the full consistency of the hierarchy.

Lessons drawn. In contrast to the two previous projects, this experiment high-
lighted only inconsistencies in class naming and no errors in the design.

If in Pharo, the suffix defines the concept, it appears that in some cases, the
names inside a hierarchy have to stay inconsistent in the sense that their spfixes are
not unique within the hierarchy. In those cases, the different values of the last word
of the name are more important than keeping consistencies inside the hierarchy.
This is the case for the purple hierarchy in the Stargate project.

Whereas for the other projects the inconsistencies were mostly resolved by
adding a new spfix (suffix in those cases), in Stargate and Willow the inconsis-
tencies have been mostly solved by deleting the suffix.

Some renamings may lead to other renamings. Indeed, if there is a kind of
naming consistency inside the hierarchies, there is another one between a class and
its associate test class. Consequently, when renaming the class, the test class is

5.1. Qualitative Evaluation 79

also renamed even if it already has the suffix Test and is consistent inside its own
hierarchy.

5.1.2 Protocol for experiment with Non-Domain Expert / Visu-
alization Experts

Protocol. The purpose of this experiment is to check if users of our tool can eas-
ily identify inconsistencies in class names without having any knowledge about
the system architecture or the system naming convention. For this setup, no ex-
planation of the tool is useful because the users are tool experts (authors of the
paper). Each expert used the tool separately on each project. Then a discussion
followed to lead to a consensus. A pull request was made by a single tool expert
for each retained renaming proposal. The developers or maintainers of the project
then accepted or did not the renaming as any other pull request.

Choice of the project. We chose two Pharo projects in production with the fol-
lowing criteria: (i) none of the two tool experts should have worked on the project
before; (ii) the projects needed to be diverse in terms of size, domain, and develop-
ment team. This led to the choice of Spec, a UI Builder framework2 and Morphic,
a graphics and widget library that are part of Pharo3 projects.

Two of the authors applied the visualization to both of these projects, then sim-
ply made pull requests on their GitHub repositories. Most of the pull requests were
accepted by the domain experts who found these changes relevant.

5.1.2.1 Spec Project

Spec is a framework in Pharo for describing user interfaces. It allows the construc-
tion of a wide variety of UIs from small windows with a few buttons up to complex
tools such as an advanced debugger Fabry and Ducasse [2017]. The Spec2.0 project
consists of 795 classes.

We applied the ClassName Distribution to the Spec v2 beta project and pro-
posed an overall of 34 class renamings. All but two were accepted: one class
was SpTestApplicationWithLocale which inherits from SpApplication. This class im-
plements a method locale returning the current locale of the underlying platform
running Pharo. Spec developers considered the proposed name (i.e.,SpWithLocale-
TestApplication) inadequate and after further discussions preferred to keep the old
name because it stresses the use of the locale variable which they consider more
important. The second refused pull request was about the naming of the class

2hosted at http://github.com/pharo-spec/spec
3http://github.com/pharo-project/pharo

http://github.com/pharo-spec/spec
http://github.com/pharo-project/pharo

80
Chapter 5. Qualitative & Quantitative Evaluations of the ClassName

Distribution Visualization

Announcement. The Announcement hierarchy renaming was not accepted because
Announcement followed a different naming pattern convention based on the past
tense of the last word e.g.,FocusChanged and not FocusChangedAnnouncement.

Our analysis was made on the Spec 2.0 beta version of the project. The main
developer was more inclined to clean his code and offer its users better and more
consistent names. No real documentation such as books and tutorials was already
widely written and distributed. This probably eased the adoption of our suggested
changes.

5.1.2.2 Morphic Project

Morphic is the name given to the Pharo graphical interface. Morphic was ini-
tially developed by Maloney and Smith for the Self programming language, start-
ing around 1993. Maloney later wrote a new version of Morphic for Squeak. Even
if the basic ideas behind the Self version are still alive and well in Pharo Morphic,
the project has evolved over the years.

In its current version, the project consists of 405 classes spread over 20 pack-
ages. Concerning the hierarchies, there are relatively few. Some small hierarchies
are homogeneous. There are three big hierarchies that are not homogeneous. The
Morph hierarchy is spread over several packages and suffixes. Ten classes were
proposed to be renamed to remove inconsistencies and eight unnecessary suffixes.

Inside this hierarchy, the class WindowMorph was shortened to Window, thus
not following the superclass suffix. Our proposal to rename it to WindowMorph
was refused because the expert considered that because it belongs to the Morph
hierarchy it is obviously a morph and that he wanted to keep the class name short.
Consequently, four classes, subclasses of Window, were not renamed.

The Announcement hierarchy adopts a scattered vocabulary pattern exactly as
in the Spec project. A further 29 classes are concerned but are not proposed to be
renamed for the same reason the classes were not renamed in Spec; the naming pat-
tern is different. There are some classes with the Wrapper suffix. The mix between
Model and Wrapper inside the hierarchy is not clear for a non-expert of the domain.
However, as already seen in other projects the notion of wrapper introduces a kind
of decorator and seems to be an accepted naming inconsistency.

Finally, the class CalendarDayMorph is a mono-class, with the Morph suffix. It
is certainly a design mistake that it does not inherit from the Morph class since it
shares some instance variables with it. It was easy for a non-expert of the domain
to discover such an issue since it is manifested by a white box inside a colored spfix
box.

In total, 15 renamings have been proposed and accepted.

5.2. Quantitative Evaluation 81

5.1.3 Effective Class Renaming
Table 5.1 sums up these two experiments by gathering for all projects the number
of classes that have been renamed using the ClassName Distribution tool.

Project Classes Renamings Percentage
Calypso v8 716 91 ∼13%

Roassal 326 68 ∼21%
Spec 795 34 ∼4%

Morphic 403 15 ∼4%
Stargate 151 12 ∼8%
Willow 234 12 ∼5%

Table 5.1: Number of classes and renamed classes per project in addition to the
percentage of the renamed classes per project with some approximate values.

5.2 Quantitative Evaluation
We applied the ClassName Distribution visualization to a set of 50 Java projects.
We discuss in this section how we chose these projects. We then discuss the occur-
rences of the visual patterns with regard to the global Java naming patterns. Next,
we discuss correlations between the metrics of the visualization.

5.2.1 Choice of the projects
For the quantitative evaluation of the tool, we wanted to use the tool on represen-
tative Java projects. For this purpose, we have set up the GitHub advanced search
to select projects with more than (i) 1000 stars, (ii) 50 forks and 5,000 KB. The
number of stars and forks ensure us that the project is used or accepted by the com-
munity. The size in KB gives us an indication of the size of the project. Some of
the projects are currently still being maintained. The number of Java classes per
project is in a range of 179 - 13,653, with a median of 1,711.5 classes and 206.5
packages. Table 5.2 summarizes the data extracted from the selected Java projects.

5.2.2 Protocol
After selecting the projects, we clone each project from its GitHub repository. We
then create their ClassName Distributions and export all metrics such as the number
of classes, spfixes, types of hierarchies, hierarchy patterns as well as spfix pattern
occurrences into a CSV file. Since the sizes of the projects are very different, some
metrics are scaled to a percentage in the following way:

82
Chapter 5. Qualitative & Quantitative Evaluations of the ClassName

Distribution Visualization

Table 5.2: Quantitative analysis of Java projects. MC refers to Mono-classes, H
to Homogeneous hierarchies, NH to Nearly Homogeneous and SV to Scattered
Vocabulary. (Projects are ordered by their number of classes)

name #packages #classes avgChildren avgDepth #hierarchies %MC %H %NH %SV
elasticsearch 1,416 13,653 67 5 467 59.8 64.4 17.3 18.2
flink 1,193 9,154 59 6 404 71.7 81.6 8.9 9.4
hadoop 799 8,183 19 3 715 66.1 88.8 4.8 6.2
openSearch 594 6,627 41 4 266 60.5 64.6 16.9 18.4
sonarqube 645 6,075 37 2 129 82.0 82.1 8.5 9.3
geoserver 655 5,791 26 3 321 64.9 83.4 7.1 9.3
springframework 613 4,794 11 2 223 82.9 92.8 2.2 4.9
druid 321 4,784 121 3 43 44.7 53.4 13.9 32.5
keycloak 776 4,744 38 4 230 61.7 83.4 6.9 9.5
springboot 864 4,325 9 2 91 90.5 96.7 2.1 1
orientdb 439 3,966 40 3 144 57.9 75.6 7.6 16.6
skywalking 1,038 3,267 17 2 112 77.1 84.8 6.2 8.9
jobjc 414 3,014 19 2 111 77.7 81.9 8.1 9.9
cassandra 154 2,533 14 3 129 74.2 78.2 5.4 16.2
pmd 241 2,472 48 3 81 47.2 61.7 13.5 24.6
spotbugs 200 2,347 3 2 70 91.2 70 15.7 14.28
gobblin 403 2,328 4 3 172 76.5 87.2 6.3 6.3
plantuml 228 2,315 32 3 82 49.3 58.5 10.9 30.4
Activiti 354 2,308 23 3 92 66.5 90.2 5.4 4.3
pulsar 343 2,289 23 3 105 71.9 84.7 5.7 9.5
storm 368 1,908 14 2 93 79.8 80.6 9.6 9.6
optaplanner 732 1,883 24 3 65 61.5 95.3 0 4.6
dubbo 467 1,863 8 3 95 74.3 86.3 6.3 7.3
jpexsdecompiler 213 1,811 44 3 86 40.5 65.1 18.6 16.2
mapstruct 534 1,746 5 2 77 86.6 79.2 7.7 12.9
languagetool 189 1,677 30 3 53 58.3 88.6 3.7 7.5
jenkins 123 1,437 10 3 71 75.8 73.2 9.8 16.9
javaparser 126 1294 26 5 34 65.4 67.6 20.5 11.7
jstorm 263 1,289 13 2 70 73.3 72.8 11.4 15.7
nacos 279 1,178 9 2 56 74.7 87.5 0 12.5
exoPlayer 93 967 4 2 26 89.8 96.1 3.8 0
jadx 119 932 53 3 24 37.2 79.1 4.1 16.6
bytebuddy 53 896 11 2 24 79.4 95.8 0 4.1
yacysearchserver 105 858 7 2 41 81.8 65.8 19.5 14.63
lettucecore 85 755 17 2 37 65.6 78.3 10.8 10.8
maven 145 727 6 2 47 73.5 89.3 4.2 6.3

5.2. Quantitative Evaluation 83

name #packages #classes avgChildren avgDepth #hierarchies %MC %H %NH %SV
micrometer 93 566 12 2 11 78.9 72.7 9.1 18.1
osmdroid 93 477 19 2 17 57.4 76.4 17.6 5.8
arthas 93 474 12 2 18 70.8 77.7 16.6 5.5
dataX 164 460 10 2 25 70.4 96.0 0 4
Servicecomb 116 446 4 2 18 83.63 44.44 50 5.55
guice 42 419 2 2 8 91.8 87.5 12.5 0
javassist 42 415 7 2 14 79.5 42.8 28.5 28.5
conductor 121 401 5 2 18 75.5 72.2 5.5 22.2
halo 82 400 8 2 24 71.0 83.3 4.1 12.5
wechat 27 234 6 2 4 83.7 75.0 0 25
baritone 71 213 7 2 14 53.5 78.5 21.4 0
jsonschemapojo 29 192 1 1 4 94.7 100 0 0
processing 43 190 2 2 18 74.7 88.8 11.1 0
cryptomator 31 179 1 1 2 97.2 100 0 0
median 206.5 1,711.5 12.5 2 67.5 73.9 81.1 7.7 9.5

• Number of mono-spfix hierarchies (homogeneous), multi-spfix hierarchies,
hierarchies with a scattered vocabulary and nearly homogeneous hierarchies
are scaled to the global number of hierarchies,

• Blobs, Confetti, Intruders, Snowflakes and the suspicious spfixes are scaled
to the global number of spfixes in the project

• Multi-spfix classes, mono-spfix classes and mono-classes are scaled to the
number of classes in the whole project

Finally, we generate a heatmap using Pearson correlation between the metrics to
gain a better insight on the relation between the visualization and software metrics.

5.2.3 Java Projects Visual Patterns Analysis

Table 5.2 gathers some metrics concerning the projects. In addition to the names of
the projects, we provide information about their size (with the number of packages
and the number of classes), the hierarchies (with the average number of children
per class, the average depth in the inheritance tree and the number of hierarchies)
and the patterns (with the percentage of mono-classes MC, the percentage of homo-
geneous hierarchies H, the percentage of nearly homogeneous hierarchies NH, and
the percentage of the scattered vocabulary hierarchies SV).

Hierarchies. The analysis of the selected Java projects with regard to hierarchies
shows:

84
Chapter 5. Qualitative & Quantitative Evaluations of the ClassName

Distribution Visualization

• Size of the hierarchies: The average number of children goes from one to
121. In addition, the average number of inheritance levels ranges from one
to six. These two columns show that the inheritance and thus the hierarchy
notion is used differently according to the projects.

• Mono-classes: Only five projects have less than 50% of mono-classes. In
contrast, five of the selected projects have more than 90% of mono-classes.
These two observations show that many classes are mono-classes and thus
that the number of classes inside hierarchies is often smaller. Our tool is
relevant only for those classes.

• Homogeneous: Half of the projects in our dataset have more than 80% of
hierarchies using the same spfix, including six projects with more than 95%
of homogeneous hierarchies. This means that indeed Java projects follow
inheritance naming conventions, by dropping the description of the hierarchy
behavior in the names of subclasses (either in the suffix or prefix position).

• Multi-spfix hierarchies: With regard to the two most recurrent patterns rep-
resenting multi-spfix hierarchies, half of the projects have fewer than 8% of
hierarchies introducing a new spfix (nearly homogeneous), which is close to
the median of the scattered vocabulary with a value of 9.5%. Their presence
indicates small violations of naming conventions that can easily be corrected.

Visual patterns. For the sake of space, Table 5.2 provides only general data about
the projects without entering into the details of the visual patterns. However, com-
plete data are available4 and the analysis of the selected Java projects with regard
to the visual patterns shows:

• Use of visual patterns: Even if all the visual patterns do not appear in each
project, globally they appear for the Java projects as we already show it for
the Lucene project in Section 4.4.

• Intruders, Blobs and Confetti: The percentages of Intruders, Blobs and
Confetti are very small (between 0% and 1%).

• Snowflakes: The median value of snowflake spfixes from the dataset is more
than 20%, with a maximum value of 40%. This is reasonable compared to
the median percentage of mono-classes which is more than 70%. This means
that only 30% of classes are defined in hierarchies. The fact that more than
half of the classes do not belong to any hierarchy raises questions about the

4https://github.com/NourDjihan/ClassNamesDistribution-PaperData/\blob/master/
JavaProjects/JavaProjects.csv

https://github.com/NourDjihan/ClassNamesDistribution-PaperData/ \ blob/master/JavaProjects/JavaProjects.csv
https://github.com/NourDjihan/ClassNamesDistribution-PaperData/ \ blob/master/JavaProjects/JavaProjects.csv

5.2. Quantitative Evaluation 85

usage of inheritance and polymorphism in Java but this is outside the scope
of this article Tempero et al. [2008].

• Scattered vocabulary: In the projects of the dataset, the percentage of the
hierarchies with a scattered vocabulary ranges from a total absence to more
than 30%, with a 9.5% median. It may not only indicate inconsistencies in
class names but also presumably architectural inconsistencies, that can be
spotted when the used spfixes do not make sense when put together in the
same inheritance tree.

Details. Two projects (cryptomator and jsonschemapojo) have an average num-
ber of children and an average depth of inheritance tree equal to one. These two
projects have respectively two and four hierarchies with a total number of classes
of 179 and 192. Inheritance and polymorphism are perhaps underused and our tool
obviously does not detect naming inconsistencies since it is based on respecting
conventions within hierarchies.

One project (Javassist) has less than half of its hierarchies being homogeneous.
It also has the biggest percentage of nearly homogeneous hierarchies. A deeper
analysis would be useful for this project since the number of classes is reasonable
(i.e., 415) and on average the hierarchies are not large.

5.2.4 Correlations between metrics

The heatmap of the correlations5 between the metrics showed some intuitive re-
sults. The simplest correlation can be found between packages, classes, and sp-
fixes. Indeed, the correlation is positive, so the more packages a system has, the
more classes it contains and the more spfixes are used. These spfixes are indicators
of the system vocabulary and thus of the services that the system provides.

A positive correlation (0.84) exists between classes of multi-spfix hierarchies
and Blobs. The more classes there are in multi-spfix hierarchies, the more Blobs
the project contains. Knowing that Blobs are a group of seven or more classes of
the same hierarchy using the same spfix, this is considered a good indicator that
classes of multi-spfix hierarchies usually use the same spfix or extend the use of
the main spfix, and continue following the naming convention.

A positive correlation exists between suspicious spfixes and average children.
The suspicious spfixes refer to spfixes which are neither used by (i) the root class
nor (ii) most classes of the hierarchy. The more children a hierarchy has, the higher
the probability of introducing new vocabulary, and hence inconsistencies.

5Available online https://github.com/NourDjihan/ClassNamesDistribution-PaperData/blob/
master/JavaProjects/JavaProjectsHeatmap.png

https://github.com/NourDjihan/ClassNamesDistribution-PaperData/blob/master/JavaProjects/JavaProjectsHeatmap.png
https://github.com/NourDjihan/ClassNamesDistribution-PaperData/blob/master/JavaProjects/JavaProjectsHeatmap.png

86
Chapter 5. Qualitative & Quantitative Evaluations of the ClassName

Distribution Visualization

Another positive correlation between multi-spfix hierarchies and both nearly
homogeneous and scattered vocabulary supports the previous correlation. Since
spfixes of nearly homogeneous and scattered vocabulary are treated as suspicious
spfixes. A new vocabulary has probably emerged when new classes were added.
In some cases this is not a problem however, it may also indicate violations of the
naming convention or false inheritance.

The last correlation is a negative correlation between mono-classes and the av-
erage of children per project. Indeed, when a project contains more mono-classes,
the inheritance is not used often which decreases the number of children per hier-
archy.

We expected a positive correlation between the number of mono-classes and
the number of spfixes. The absence of this correlation strengthens our hypothesis
of missed opportunities to group mono-classes in hierarchies.

5.3 Discussion

Here we discuss some aspects of the proposed visualization.

5.3.1 About colors and sizes

During the design of ClassName Distribution, we experimented with several fea-
tures:

• To convey the depth of a class in its inheritance hierarchy we used its size
(the smaller, the deeper). This added more information but proved too cum-
bersome to interpret.

• At first, every hierarchy had a color, even the homogeneous ones. The result
was a flurry of colors, very distracting and drawing attention to the homoge-
neous hierarchies while the focus should be on consistency violations.

• There is a limited number of distinguishable colors on a screen. We chose a
limit of 24 colors.

5.3.2 About Prefix and Suffix

Our analysis of several Pharo points to a general adherence to a suffix convention–
see also the work of Butler et al., Butler et al. [2011b]. Concerning the Java
projects, we observed that box prefixes and suffixes can be used inside the same
project. Our tool automatically selects the prefix or the suffix according to the
algorithm detailed in Section 4.7.2.

5.3. Discussion 87

The automatic identification of the spfix enables the user to gain time consider-
ing that she does not have to manually specify it. However, sometimes the numbers
of occurrences of prefixes and suffixes are the same inside the hierarchy and the
number of siblings is also the same. In addition, sometimes the same word can be
used both as a suffix or as a prefix possibly inside the same package, such as Test.
The tool arbitrarily chooses the prefix or the suffix, but the user can set it manually.

5.3.3 About Blurry Domains

Some domains seem to naturally lead to non-homogeneous hierarchies. The Morph
concept is one of these. A Morph is its own model. While the MVC pattern clearly
separates the responsibilities, Morphs tend to blur the distinction. Therefore, the
class Browser in Calypso, which could be understood as a model of a code browser,
can be implemented as a subclass of Morph. This makes the code more difficult
to understand since the reader should always keep this in mind. Developers could
change the class suffix (i.e., Browser in BrowserMorph). Our visualization highlights
such issues and lets developers consider their naming conventions.

5.3.4 About Changing the Root Class

In some projects, designers decided to introduce a root class for a part or the whole
project. Such cases occur when the hierarchies are large or deep, describing several
concepts but with a common ancestor. Our tool considers that option. Specifying a
new root class reduces the noise in the visualization and removes from the analysis
very abstract classes like Object or RSObject.

However, the tool allows users to specify only one additional root class. The
users need to choose the one that introduces the most noise to remove it. In future
work, we plan to introduce the possibility for the user to add several root classes.

5.3.5 Renaming and Inconsistencies

Our tool enables the users to identify inconsistencies in class naming inside hierar-
chies. The experiments performed with experts of the domain or of the tool have
shown that this is helpful. However, even a consistent hierarchy can be renamed.
The hierarchy is consistent but the chosen spfix is not adapted or expressive enough.
This is for example the case of classes that, in Calypso until v8, end with P1, P2...
as suffixes (classes in the two last rows of packages) in Figures 4.3 and 4.5. In ver-
sion v9, Figure 4.6, these classes have been renamed with Mock, a more evocative
suffix. The name of the spfix on top of the corresponding box in the visualization
can help to identify such cases.

88
Chapter 5. Qualitative & Quantitative Evaluations of the ClassName

Distribution Visualization

5.4 Threats to Validity

There are several validity threats to the design of our experiments.
Internal Validity: Is there something inherent to how we collect and analyze the

data that could skew our findings? Regarding the tool, we used it both on Pharo
and Java projects. Both ecosystems have different cultures regarding inheritance
use and naming conventions. Pharo projects tend to have classes more structured
in hierarchies. Our experience with Java projects showed a lot more mono-classes.
Our tool supports different naming cultures by enabling the user to choose a visual-
ization taking into account prefix, suffix, or both spfixes. The presence of interface
implementation (Java), trait usage (Pharo), or multiple inheritances (C++) should
also be assessed.

Regarding the experiments with users (Domain Expert / Tool Learners and
Non-Domain Expert / Tool Experts), in fine, they both required access to experts
because, in the end, the proposed renaming should be accepted. Due to the size of
the community and our access to Pharo experts, we performed these experiments
only on Pharo projects. They have illustrated how our tool can help even experts
of the domain to identify inconsistencies in the class naming. With the quantitative
experiment done on Java projects, we show that the visual patterns also occur in
projects of this language.

External Validity: Are our results generalizable for practice modernization?
Concerning other object-oriented languages than Pharo and Java such as Python or
C++, we did not apply our tool because we do not have yet a parser to have the
abstract model of the project. Therefore, the external validity is limited in terms
of generalizing the results to software written in languages other than Pharo and
Java. The approach itself however can be applied to software written in any object-
oriented programming language as long as there is a naming convention supporting
the identification of words composing the class names: the uppercase letters in our
case or a separator between words in a snake format.

Regarding the number of experiments, we are aware of the fact that we experi-
mented on only a few projects hence the external validity is constrained by the small
sample size. However, even if it is easier to access experts in the Pharo community,
they have to be available. The presented projects are real-world, reasonably sized
projects with a couple of hundreds of classes, many contributors, a long history,
and very different domains. We tried to compensate for this threat by evaluating
different setups with two qualitative and one quantitative analysis. Concerning the
quantitative experiments, we clearly explained how the Java projects were chosen
and provided results for 50 projects. Yet as all experiments on software systems,
more cases should be considered and analyzed.

Reliability: To what extent can the results be reproduced when the research is
repeated under the same conditions? We provided users the link to the tool GitHub

5.5. Conclusion 89

repository for further usage, as we also explained each and every configuration of
the tool. Furthermore, we described the algorithms used to implement our approach
in Section 4.7. For reproducibility purposes, we ordered packages, spfixes, and
classes alphabetically, by size, and by color for the spfix boxes. The interaction of
the tool may have an impact on its users.

5.5 Conclusion
We conducted a consequent assessment of the visualization with real developers
and open-source software structured in two different setups: in the first one, we
asked domain experts to use the visualization. Three groups of engineers in differ-
ent countries and projects (France, Chile, and Argentina) applied our visualization
to the software they develop or maintain. We recorded individual video sessions
and assisted to final discussions within the team around class names. This resulted
in respectively 91, 68, and 24 class renamings in their projects. In the second setup,
as authors of the visualization and the tool we applied our tool to two projects we
didn’t know before. These two experiments led to 24 to 91 renamings per project
showing that (i) the visualization can help experts of a project to identify irregu-
larities in class naming and (ii) to use the visualization. It is not mandatory to be
an expert in the domain to propose relevant renamings. Finally, we applied our
visualization to 50 Java projects and identified the presence of the visual patterns
in most of them. This experiment shows that our visualization can be used both on
Pharo and Java while considering the specificities of these languages.

CHAPTER 6

A New Generation of ClassBlueprint

Contents
6.1 Classes in Object-Oriented Programming 90

6.2 Limits of CLASS BLUEPRINT . 90

6.3 The New Generation of CLASS BLUEPRINT Visualization 92

6.4 BLUEPRINTV2 in Practice . 99

6.5 Evaluation . 101

6.6 Threats to Validity . 109

6.7 Conclusion . 110

In object-oriented programming, classes are the primary abstraction mechanism
used by and exposed to developers [Shalloway and Trott, 2005] In the preceding
chapter, we underscored the paramount significance of well-chosen class names
and endeavoured to address the issue of erroneous class names. In the present
chapter, we delve into the intricacies of class content and explore their inherent
qualities. Indeed, understanding classes is key for the development and evolution
of object-oriented applications [Smith, 2020]. One challenge however faced by
developers is that while classes are conceptually structured entities, in integrated
development environments (IDEs), they are often represented as a blob of text.
IDEs typically present classes as textual files, which may contain a large amount of
code, making it difficult to grasp the structure and relationships within the class at
a glance. This representation of classes as text can hinder the developer’s ability to
quickly understand and navigate the codebase. It becomes challenging to visualize
the organization of the class, identify its methods and attributes, and comprehend
how such components interact with each other.

The idea behind the original CLASS BLUEPRINT [Lanza and Ducasse, 2001]
was to visualize the internal structure of classes in terms of fields, their accesses,
and the method call flow. Additional information was depicted using colors. This
visualization proved to be an effective means to support program comprehension.
Subsequent observations however revealed certain limitations (Section 6.2).

We propose CLASS BLUEPRINT V2 (in short BLUEPRINTV2), which in addi-
tion to the information depicted by CLASS BLUEPRINT also supports dead code

92 Chapter 6. A New Generation of ClassBlueprint

identification, methods under tests, and differentiation between class and instance
level components (Section 6.3). In addition, BLUEPRINTV2 enhances the under-
standing of fields by showing how fields of super/subclasses are accessed. We
present the enhanced visualization and detect some class conception patterns (Sec-
tion 6.4). Finally, we present both qualitative and quantitative evaluations and re-
port on a first validation with 26 developers and 18 projects (Section 6.5). This
work has been published in the IEEE Working Conference on Software Visualiza-
tion (VISSOFT2022) [Agouf et al., 2022b].

6.1 Classes in Object-Oriented Programming
In object-oriented programming (OOP), classes serve as the primary abstraction
mechanism that developers use and interact with [Shalloway and Trott, 2005]. The
concept of abstraction in object-oriented programming is fundamental as it helps
developers in representing real-world entities as objects characterized by certain
attributes and having a behaviour on their own [Gamma et al., 1995]. The signif-
icance of well-structured class code cannot be overstated as it enhances the read-
ability therefore the understandability of the class in its contextual domain and its
interdependencies with the other components. A well-structured class promotes its
reusability and extensibility because of its clear responsibility described in its co-
hesive methods which can be reused in other parts of the software and/or extended
to create new class behavior [Martin, 2009].

Conversely, intricate classes not only impose frustration upon software main-
tainers due to the arduous nature of comprehending their content but also result
in more profound ramifications that significantly amplify the time and effort re-
quired for maintenance tasks [Feathers, 2005]. These intricacies hinder class read-
ability and complicate its maintenance, impeding effective communication among
team members in collaborative maintenance scenarios. Moreover, complex code
exhibits heightened sensitivity to risks and the emergence of new issues during
maintenance, increasing the likelihood of unexpected bugs when modifications are
made to the codebase. Furthermore, in the pursuit of enhancing the trustworthiness
and reliability of software which is of paramount importance for its longevity, it
becomes harder to impose unit tests of big and complex classes.

6.2 Limits of CLASS BLUEPRINT

The CLASS BLUEPRINT visualization was created to help developers understand
class structures Ducasse and Lanza [2005], Lanza and Ducasse [2001]. It decom-
poses classes into layers representing the call-graph going through external, inter-
nal, and accessor methods. This decomposition into layers organizes the method

6.2. Limits of CLASS BLUEPRINT 93

call-graph and allows one to see which attributes are accessed by which methods,
directly or through their accessors (see Figure 6.1).

Figure 6.1: A class blueprint from Lanza and Ducasse [2001] with 5 layers: initial-
ization, interface, internal implementation, accessor, and attribute.

CLASS BLUEPRINT has a number of limitations:

a) Tests: does not show whether a method is covered by a test: When CLASS

BLUEPRINT was initially developed, continuous integration, version con-
trol, and tests were not common development practices. Hence, CLASS

BLUEPRINT did not take into consideration test classes or test methods.
Today, tests are the gate towards a better and faster understanding of the
software and ensure software robustness. Easily distinguishing tested and
untested methods indicated the degree of reliability of the class.

b) Dead Code: It does not heed dead code, i.e., if a method is used or not as
such it misses an opportunity to provide information about effective class
functionality: CLASS BLUEPRINT represents all methods of a class; even if
these methods are dead. However, dead code hinders the understanding of
classes Fard and Mesbah [2013], Mantyla et al. [2003]. Yamashita et al., re-
port that dead code detection is desired by software professionals Yamashita
and Moonen [2013]. It avoids project practitioners to waste time on reading,
understanding, and maintaining irrelevant code Eder et al. [2012].

c) Instance vs Static: The interplay between instance and class side (static) is
not supported. This is because all methods are classified into four layers only,
concealing the details about such a property in the class structure.

d) Cyclomatic Complexity: The method cyclomatic complexity is not revealed:
Beside lines of code, CLASS BLUEPRINT gave limited information about the
code quality such as method complexity Henderson-Sellers [1995], Shepperd

94 Chapter 6. A New Generation of ClassBlueprint

[1988]. The cyclomatic complexity measures the number of linearly inde-
pendent paths of a method Watson and McCabe [1996]. It is of interest to
practitioners responsible for maintenance activities since methods with high
cyclomatic complexity tend to be more difficult to understand and thus to test
and maintain.

e) Layer: The accessors layer takes an unnecessary amount of space for a poor
return of information. This layer covers the direct accesses of methods to at-
tributes since the connection from a method layer to an attribute layer passes
by the accessors layer.

f) Hooks: The reader has no clue if a given method is a hook in the system
(a method being already defined in the subclasses), and in general CLASS

BLUEPRINT disregarded the display of the superclass attributes used in the
class but focuses on the global inheritance relation between superclass and
subclass blueprints. CLASS BLUEPRINT did provide an inheritance perspec-
tive to highlight the inheritance relationships of a given class with its an-
cestors and descendants: The class blueprints of the different classes of the
hierarchy are gathered inside a single visualization. They are linked through
inheritance, but also access, when methods of the subclasses use attributes
defined in a superclass or invocation in case a method of a subclass, invokes
one inherited method for example. In practice, this representation with sev-
eral CLASS BLUEPRINT visualizations leads to complex visual elements and
makes the understanding more challenging [Diehl, 2007b].

Moreover, on the one hand, CLASS BLUEPRINT succeeded in conveying in-
formation about method redefinition, using colors to distinguish between ex-
tending and overriding methods. On the other hand, the CLASS BLUEPRINT

failed to stress out the methods redefined in the subclasses (overridden meth-
ods). Spotting overridden methods allows the user to detect interface classes
defining a generic behavior. This makes it easy for developers to understand
the hierarchy from the studied class without having to read the source code
of each and every subclass.

Our goal was to make up for all the above limitations, proposing a revisited and
modern class blueprint visualization.

6.3. The New Generation of CLASS BLUEPRINT Visualization 95

6.3 The New Generation of CLASS BLUEPRINT Vi-
sualization

As its ancestor, BLUEPRINTV21 focuses on individual class structure visual repre-
sentation. It supports the understanding of each class separately. The focus is put
on methods call-graph and how methods access the studied class attributes in ad-
dition to the superclass attributes. Methods and attributes are represented as nodes
whose color maps some semantic information. In addition, the node size conveys
some properties: The height of a method node reflects the number of lines of code,
and the width, the number of outgoing invocations. As for the attributes, the node
height corresponds to the number of direct accesses from methods within the class,
the width concerns the number of external accesses from methods of the same hi-
erarchy of classes. To ease the understanding, methods are positioned in different
columns depending on their interactions with methods of other classes, or their
nature (such as initializer, internal, getter, etc). BLUEPRINTV2 adds the following
features (see Figures 6.2 & 6.3):

Initialization Layer

Dead Method Layer

External Layer Internal Implementation
Layer

Attribute &
Accessor
Layer

Dead
Attributes

Class Side
Attributes

Superclass
Attributes

Class Side Method Layer

Figure 6.2: Layout of CLASS BLUEPRINT V2: class level is on the top, instance
level in the middle, and dead entity on the bottom. The middle layer presents
information via layers.

• Static (or class side) entities are placed in a dedicated area on top of the
visualization and separated from the instance side methods. The calls be-
tween the class and instance sides are represented. Class attributes are also
represented in a distinct area in the top right corner.

1The link to the GitHub repository of the visualization can be found here:
https://github.com/NourDjihan/ClassBlueprint. All the instructions on how to use the visual-
ization are explained in the Readme.

96 Chapter 6. A New Generation of ClassBlueprint

• Dead branches are identified and separated in a specific layer at the bottom
of the visualization (the cemetery). Dead attributes as well as their accessors
are also separated at the bottom right corner.

• Getters and setters are merged into annotations around attributes to gain
space. In addition, lazy initializers are handled as a kind of accessor.

• Superclass state usage: access to superclass attributes is represented in a
separated area on top of the one of instance side attributes layer. Accesses to
superclass state from local methods are represented.

Initialization Layer

Dead Method Layer

Internal Implementation Layer Attribute & Accessor Layer

Class Side Method Layer

Dead Attributes

External Layer

Superclass Attributes

Class Side Attributes

Figure 6.3: A colorless BLUEPRINTV2 with the graphical representations of meth-
ods, attributes, and accessors using height and width metrics. The arcs represent
calls between methods and accesses to attributes.

These points are described in the following subsections.

6.3.1 Layers

As its ancestor, BLUEPRINTV2 classifies methods in different layers represented
in columns.

Horizontal Layers. In addition, in BLUEPRINTV2 the visualization has been
split into 3 horizontal layers.

The top layer corresponds to the class side (static in Java). It gathers on the left
the methods connected within a call-graph and on the right the class side attributes.
In Java, the class side is specified with the static keyword. In Pharo, these are
entities of the metaclass.

6.3. The New Generation of CLASS BLUEPRINT Visualization 97

The bottom layer corresponds to dead code. Once again, methods and attributes
are separated (methods on the left, attributes on the right). It is possible to see a call-
graph in the dead code layer. Indeed, a method is considered dead if it is not called
in the project or if it is called only by dead methods. Consequently, dead branches
can also be identified. This definition of dead code may lead to false positives, in
particular in the case where API methods are called by external projects, not under
analysis.

Vertical Layers. First, on the left, the initialization layer gathers the methods
responsible for object creation and initialization (e.g. initialize methods in Pharo
and constructors in Java). Then comes the external layer containing methods that
compose the external interface of the class. Such methods are either invoked by
methods of the initialization layer or declared public or protected in languages sup-
porting modifiers, or invoked by methods outside the class. In third comes the
internal implementation layer representing the core of the class, i.e., methods that
are not supposed to be exposed to the outside of the class. It contains for exam-
ple private methods or methods invoked by other methods of the same class. We
removed the accessors layer: the setter and getter methods are on top and below
their attribute, respectively (see Figure 6.4). It compacts the visualization without
losing information: the developer can, at a glance, see if the attribute has a getter
or a setter, is directly accessed, or is used through its accessors (if present).

Attribute
Node

Setter

Getter

Method Node

Outgoing invocation

LoC

(a) (b)

Test covered
Border Thickness:

definition frequency

Border Color:
Cyclomatic complexity

Node Color:
Method / Attribute

property Hierarchy accesses

Method
annotation

Class accesses

Figure 6.4: Sketch of nodes: (a) For methods, size, border thickness, and color
convey information. (b) For attributes, size, and color.

The middle layer corresponds to instance side methods and not dead code. It
follows the vertical layer decomposition.

6.3.2 A Class Inside a Hierarchy

BLUEPRINTV2 puts the studied class in the perspective of its hierarchy. For this
purpose, first, the inherited attributes are separated from the ones defined in the
studied class and put in a different layer than the local attributes layer. In addition,

98 Chapter 6. A New Generation of ClassBlueprint

attributes accessed by at least one method in the subclasses of the studied class
are colored in dark green whereas the other ones are colored in dark blue. This
allows developers to see how the class is using a superclass state and if their state
is directly used in subclasses.

Second and as in the initial CLASS BLUEPRINT visualization, extending meth-
ods (performing a super invocation) are colored in orange and overriding methods
(method redefinition without super invocation) are colored in brown. In addition,
in BLUEPRINTV2 we introduced a color to spot overridden methods (e.g., methods
redefined in subclasses) are colored in pale orange. This information gives an idea
of how the methods of the class are extended. In addition, to indicate if an abstract
method is redefined in the subclasses, they are marked with a pale orange square (In
Pharo, classes may have abstract methods not redefined in the subclasses, moreover
even concrete ones).

6.3.3 Additional Indications

In addition to the extensions presented above, BLUEPRINTV2 introduces other new
features:

• Cyclomatic complexity. To complement the Lines of Code and fan-out of the
method, we indicate the method with high cyclomatic complexity by color-
ing their border in red. Indeed when a method has a cyclomatic complexity
higher than a given threshold fixed to five in Pharo, its border color is red.

The thresholds have been defined following JIT compiler practices Deutsch
and Schiffman [1984], Miranda [1987, 2011]. They can be changed if needed
as discussed in Section 5.3.

• Tested methods. To easily identify if a method is called from a test method,
in BLUEPRINTV2, tested method nodes have their superior third in green.
Note that we only use static information: it does not indicate whether the
associated test passes or not.

• Dead entities. An attribute is dead if it has no incoming accesses, meaning
that no external/internal method or accessor is accessing it. Because the
visualization treats only direct accesses, then an attribute only accessed by
its accessors it is not considered dead. A method is considered dead if the
method is not invoked by other methods. Note that an abstract method is dead
only if the method itself is not called and none of its reimplementations in
the subsystem are invoked. In addition, initialization and test methods are
not considered dead methods to limit false positives.

6.3. The New Generation of CLASS BLUEPRINT Visualization 99

• Monomorphic, Polymorphic, & Megamorphic entities. A monomorphic en-
tity refers to a method with a unique name within the entire project. Monomor-
phic methods are typically designed for specific and well-defined purposes,
and each method serves a unique functionality without being shared by other
methods. On the other hand, a polymorphic method is one that is moderately
named across the project. Polymorphic methods are often used in multiple
contexts or scenarios, providing a certain level of flexibility and adaptability
to various situations. While megamorphic entities are methods frequently
named in the system, meaning that several methods share the same name
throughout the entire project. Megamorphic methods are often employed as
general utility methods, serving common functionalities shared by multiple
components within the project.

(A): StartStopMarkupBlock (Microdown)

(F): SnippetFactory (Microdown)

(C): PhraseLibrary (Citezen)

(D): InlineParser (Microdown)

(B): FileFormatGenerator (Citezen)

(E): AuthorFocusedDocBuilder (Citezen)

Figure 6.5: Some examples of BLUEPRINTV2 on Citezen (a bib library) and Mi-
crodown (a markup language).

100 Chapter 6. A New Generation of ClassBlueprint

Properties Description
Constant Gray
* Dead code (attributes or methods) Black
* Invoked from a test Green annotation
Extending Orange
Overriding Brown
* Overridden Pale orange
Abstract Cyan
* Abstract and Reimplemented Inside pale orange square
Delegating Yellow
Internal Implementation Purple
* Test Method Pink
Setter or Getter Magenta
* Lazy Initializer Olive
Accessed locally Blue
* Accessed by subclass Green

Table 6.1: Methods and attribute properties. * mark new compared to CLASS

BLUEPRINT

6.3.4 Interactions

BLUEPRINTV2 is automatically computed and displayed for a class. It is an inter-
active visualization that is included in a tool to enable interactions.

Access to the code. A classic mouse hover displays the method name as de-
picted in Figure 6.5-(B). This example illustrates the event of a mouse hovering a
method node colored in white, displayed in the externals layer, and named treat-
String. Additionally, a Shift pressed with a mouse hover displays the method corre-
sponding code. Figure 6.5 illustrates three examples annotated with (A), (C), and
(E) displaying the source code of methods contained in each class. The StartStop-
MarkupBlock-(A) visualization shows the source code of an overridden class side
method named isAbstract. The PhraseLibrary-(C) class presents the source code of
the phraseFor: delegating method colored in yellow. Finally, the AuthorFocused-
DocBuilder-(E) class with the source code of an abstract initialization method col-
ored in cyan named extension.

Call-graph. To better follow the call-graph, a left-click on a method displays
in red its outgoing invocations as shown in Figure 6.5-(D). The InlineParser class
visualization shows the outgoing calls from the linkOrFigureProcess: method (with
red border) to three methods in the same internal implementation layer and its

6.4. BLUEPRINTV2 in Practice 101

access to most attributes of the instance side (eleven attributes). These remain red
until clicking again on the selected method. Thus clicking on another method adds
new invocations in red and so on. It enables the user to better see and understand
the call-graph of the studied method in the scope of the class.

Similarly, it is possible to highlight the incoming invocations of a method with
a right-click as shown for the locationMonthYear method in Figure 6.5-(D) (second
purple method of the first branch on the left of the class side methods). The in-
coming invocations of a method and the calling methods are highlighted in green.
Adding new methods in the call-graphs and deactivating is also possible.

6.4 BLUEPRINTV2 in Practice

This section presents some examples of the BLUEPRINTV2. Each example brings
attention to the internal structure of the class visualizations depicted in Figure 6.5.
The visualizations are grouped in one figure to gain space and to easily compare
different class structures since the visualizations are put close to each other. Each
visualization is annotated with a letter to ease reference hereafter.

6.4.1 A Simple Class

The visualization of the StartStopMarkupBlock class (Figure 6.5) from Microdown
project) shows that it has few methods. An initialization method is colored in
orange showing that it extends its super implementation. It has a thick border
because it is a megamorphic method called initialize. Three overridden methods
are colored in pale orange on the class side, external, and internal implementation
layers. Two overriding methods are colored in brown each defining a new behavior
in the externals layer. Moreover, two abstract methods colored in cyan with a pale
orange square indicate the presence of reimplementations in the subclasses. The
class contains a dead method colored in black at the bottom of the visualization.
Only three methods are under test (as identified by the green node annotation).

The class also contains three attributes each with both accessors however, these
attributes are all accessed directly from the class methods without using their ac-
cessors and are colored in green meaning that they are accessed directly in the
subclasses. Furthermore, the second attribute has a setter on top, colored in black
indicating that the setter is not used in the class nor by methods of other classes,
thus is dead. The other accessors are colored in magenta meaning that they are
used by methods of other classes.

102 Chapter 6. A New Generation of ClassBlueprint

6.4.2 A Class Defining and Redefining Hooks

The FileFormatGenerator class (from the Citezen project) specializes in several su-
perclass methods: it includes four methods extending an inherited behavior colored
in orange and nine methods in brown overriding their superclass methods. More-
over, the class provides 13 new methods colored in pale orange overridden in the
subclasses. With such data, we see that the class integrates well with its super-
class and defines some important methods for its subclasses. Only two methods
are tested (as indicated by the green annotation). The class accesses directly two
attributes of its superclasses. One of its attributes (colored in green) is heavily used
by its subclasses.

6.4.3 A Static Class: Playing a kind of Factory/Builder

The PhraseLibrary class from the Citezen project has an unconventional design.
Most of its methods are defined on the class side. It acts as a kind of object factory
composing kind of sentences. The PhraseLibrary has two instance side methods
in the externals layer colored in yellow delegating to the class side methods for
creational purposes. An example of a lazy initializer is depicted in the PhraseLibrary
class visualization: the setter of the first attribute of the class side (on top), colored
in olive under the attribute. The lazy initializer has no incoming calls inside the
class however, its olive color indicates its use in other classes.

6.4.4 A Large Internal Class with Dead Code

Classes such as the MicInlineParser class are referred to as Single Entry Lanza and
Ducasse [2001], indicating that the class has one or few entry points from its exter-
nals layer and a wide internal implementation layer, in this case, composed of 22
methods and many invocations between these methods. Such classes are designed
to deliver a one-complex functionality.

Yet, what draws attention to this class are the dead methods at the bottom layer
of the visualization. Indeed, three methods inside this class are not invoked and
not used in the project. Because dead code, when executed, is memory and time-
consuming this leads to believe that the class needs refactoring to improve the
overall performance of the program.

6.4.5 Accessing Superclass State

The AuthorFocusedDocBuilder class does not have class side nor dead nodes. Thereby,
the call-graph of the methods inside the class appears clearly going from the left ini-
tializers, passing by the externals, the internals, and finally the attributes. This class

6.5. Evaluation 103

contains many coloured nodes, for instance, in the initialization layer, a method
coloured in orange extends its superclass method and has direct access to both at-
tributes of the class.

The externals layer contains a complex big method buildBody coloured in brown
with a red border, which directly accesses most attributes of the class except for the
superclass attribute fieldOrder, and the instance side of attribute bodySpecification
accessed through its getter. Such a case of direct access and through the acces-
sor in the same class shows inconsistency in the design of the class. Nonetheless,
the superclass attributes are all accessed by methods of the subsystem, hence their
green colour. The width of the first four superclass attributes gradually changes
forming a cascade shape, this indicates which attribute is more accessed by meth-
ods of the subsystem.

6.4.6 A Factory Class with Tested Methods

Finally, the SnippetFactory class has an externals layer with 120 methods. This
class is a holder of ready-to-be-used document elements that are essentially used
by tests.

The externals layer contains constant methods in gray returning each prede-
fined value and methods colored in white, meaning that they do not belong to the
classifications defined in Table 6.1. Such methods contain a small portion of source
code, hence their small size, where each is performing an operation and returning
its result.

Moreover, almost all methods of the externals layer are annotated with green
on top indicating that each is called by at least one test method. This class also has
dead methods (bottom layer). Such dead methods are methods returning document
elements that are not used by the tests. They are effectively dead methods.

6.5 Evaluation

This section explains the process of the evaluation of the BLUEPRINTV2. We
proceeded with both qualitative and quantitative evaluations. Such evaluations try
to answer the following research questions:

• How does the visualization support the understanding of the class structure?

• How does the visualization help in assessing the quality of the class?

• How satisfied are the different profiles of participants with the proposed vi-
sualization?

104 Chapter 6. A New Generation of ClassBlueprint

6.5.1 Protocol

We invited developers from the Pharo community to participate in our research:
We sent an email welcoming participants that would be interested in evaluating a
new visualization. Twenty-six developers joined our evaluation. Then, to explain
and guide the participants through the experiment, we scheduled both group and
individual meetings according to the participants’ availabilities. If several partic-
ipants were available at the same time we proceeded with a group meeting. On
the opposite, we scheduled individual meetings. During those meetings, we first
explained the visualization and its motivations, then described to the participants
the process of the experiment:

a) Select a project they wish to analyze

b) Use the visualization on the selected project

c) Record their screen during the experiment

d) Write a report summarizing their findings

e) Fill in the post-experiment survey

The meetings took from 10 minutes when individually, to 25 minutes in groups.
This difference is principally due to the adaptation of the tool to the chosen project
and the possible interactions between participants while in groups. Nonetheless,
the content was the same for each participant.

Projects. The selected projects vary in number of packages, classes, and meth-
ods. Table 6.2 summarizes this variety of projects.

The same project could have been analyzed by more than one participant. For
example, Iceberg was analyzed by two participants, MooseIDE by three, and Opal-
Compiler by two; but separately.

Participants. The participants of the experiment come from diverse backgrounds
and have different statuses: interns, PhD students, developers, and researchers.
Consequently, their years of experience in programming also vary. Six participants
have between [1-5] years of experience. Nine participants between [6-10] years of
experience. Two participants have 14 and 15 years of experience each, and nine
participants have over 20 years of experience.

In regards to the projects, the participants either used these projects before,
developed them or are responsible for their maintenance. The expertise degree
of the participants on the selected projects is let to their own appreciation. The
survey showed that only 10% of the participants consider themselves newbies to

6.5. Evaluation 105

Project Classes Renamings Percentage
Avatar 2 18 6 Proxy

Sindarin 3 18 14 Debugging
MoTion 2 35 5 PM

Clap 5 47 8 Parsing
Slang 2 73 29 VM

Polyphemus 3 79 9 VM
AST-Core 3 101 21 DSL

Reflectivity 5 114 13 DSL
OpalCompiler 3 156 15 Compiling

Druid 1 170 12 VM
Seeker 2 236 9 Debugging

MooseIDE 16 250 8 Analysis
Polymath 60 309 11 Computing

Refactoring 12 378 6 Refactorings
AIPharo 85 424 6 AI
Roassal 39 445 12 Visualization
Iceberg 11 488 10 VCS
fylgja 73 941 15 Migration

microdown 29 268 11 Parsing

Table 6.2: The number of packages and classes in each project, and of median
methods in each class, in addition to project domains. In the table, the order is
descending according to the number of classes in each project. The abbreviations
refer to VM (Virtual Machine), VCS (Version Control), PM (Pattern Machine),
DSL (Domain-Specific Language).

106 Chapter 6. A New Generation of ClassBlueprint

the selected project, while 35% had some basic knowledge about the source code.
Another 10% of the participants with advanced knowledge of the project and finally
45% of the participants are project experts.

6.5.2 Data Collection
Once we received the data (screen records, reports, and survey filled by all partic-
ipants), we watched the screen records looking for participants’ behavior. Partic-
ularly, a focus has been put on (i) the participant’s first impression in regards to
the visualization, (ii) the most used features of the tool, and (iii) if other tools have
been used besides the BLUEPRINTV2 and what they are. We then, read the re-
ports to have a better insight into their actual impressions and findings. Finally, we
collected both data from the reports and the survey as explained in the next section.

6.5.3 Data Analysis
As mentioned prior, the evaluation of the BLUEPRINTV2 consists of two parts:
qualitative and quantitative. The qualitative evaluation is based on the screen
records and the reports sent by the participants. The quantitative evaluation is built
upon the post-experiment survey.

Qualitative evaluation. When observing the screen records of the participants,
it was brought to our attention that participants instinctively followed two comple-
mentary approaches: Flight over and Plunge in.

Flight over: The flight over consists of quickly navigating the visualizations of
the classes one by one. It allows the user to visually detect the important classes
and the less important ones based on the amount of information held by the visual-
izations (nodes and colors). It also allowed some users to detect:

• Empty classes: without methods nor attributes;

• Big classes: with lots of methods;

• Complex classes: with methods with high cyclomatic complexity i.e., method
nodes with red border;

• Class-side methods: with a considerable amount of method nodes placed in
the class side layer;

• Hook classes: with noticeable hook nodes colored in pale orange;

• Dying classes: with several dead methods, or attributes, positioned at the
bottom of the visualization;

6.5. Evaluation 107

• Tested classes: with tested methods i.e., the green annotation in method
nodes. More specifically, here, it is the proportion of tested methods that
have been appreciated by the participants.

Plunge in: The plunge in consists of focusing on some classes for further inves-
tigations. This provides the user with a more in-depth analysis of the class internal
structure, and the possibility to use more helpful interactions with the visualization
such as the shift + mouse hover to quickly view the source code of the methods.

• Code duplication: some duplicated code was detected by several participants
when method nodes have the same size and color, inside the same class or in
other neighbor classes.

• Complex classes: most participants reported finding complex methods inside
classes due to the size of the nodes or the red border color. They intend to
divide them into small blocks of source code.

• Dead method analysis: some participants were surprised to find many dead
methods. Such an outcome motivated them to inspect the senders of the
“dead methods” using other tools than the visualization, (e.g., system browser
and cross-referencer).

• Dead code detection: the detection of dead code was also surprisingly pos-
sible due to the length of the method nodes. One of the participants inves-
tigated long methods relatively used in his studied system and found a few
which contained internal dead code which was not removed.

• Commented methods: some participants identified peculiarly long methods
but not necessarily complex ones. Then, when navigating the source code of
the method nodes (through a mouse hover), participants found that the length
of the method node in fact reflects the long comment inside the method defi-
nition. One of the participants suggested adding an annotation at the bottom
of the method node (since the top might be full with the test annotation), to
demonstrate the presence of a comment.

Quantitative evaluation. Participants were asked to answer a post-experiment
survey to give feedback about the visualization using a five-Likert scale. We asked
the participants if:

• The visualization helps in understanding the code/state of a class is reused:
Most participants (46%) answered that they agree on this point, while others
(15%) strongly agreed. However, over 23% said that they disagree, and 15%
were undecided.

108 Chapter 6. A New Generation of ClassBlueprint

Some participants in their reports mentioned that they appreciated the fea-
ture of adding the superclass attributes in the visualizations. This helped
them understand which attributes of the superclass are used in the class un-
der analysis, and which methods are accessing them. Such a feature also
reduces the time spent on understanding the relation with the superclass.

• The visualization helped in understanding the reused code from the super-
classes: Over half of the participants (53%) were undecided, where 19%
disagreed, 23% agreed, and 3% strongly agreed. Because some projects did
not use inheritance, hence the visualization was not answering this question
which justifies the amount of indecision in this case.

• Did the visualization help in understanding class/instance side communica-
tion: Over 53% answered that they agree, and 19% strongly agreed. Other
participants of 19% answered that they were undecided about this point, and
a percentage of 7% answered that they disagree.

We believe that the classification of the class side methods on top and the
instance side methods in the middle reduces the cumbersome links between
method nodes in the middle layers. Moreover, the participant who analyzed
the Microdown project mentioned: “The MicAbstractDelimiter class shows the
nice interplay between class and instance side methods”.

• Is the design of the class well summarized in the visualization: Over 7% and
38% of the participants strongly agreed, and agreed, respectively. Among
the participants over 30% were undecided and 23% disagreed.

This is also understandable because the visualization summarizes the struc-
tural relationships and not the design of the class itself. In some cases, in-
deed the design is well shown for instance visitor classes, factory classes,
and builder classes, etc. But not all design is reflected by the class blueprint.
Nonetheless, one participant mentioned: “I was able to follow for each method
clearly what are the methods of the same class that are injected inside of it”,
referring to the outgoing invocations between methods.

• Does the visualization help in detecting dead code? Over 26% and 46% of
the participants answered that they strongly agree and agree, respectively.
However, 11% answered that they strongly disagree, 3,8% just disagree, and
another 11% were undecided.

All participants reported finding dead code in their projects. The partici-
pants who analyzed the same projects on the one hand found the same dead
methods and on the other hand different dead methods. This is one of the
reasons which motivated us to agree on analyzing the same project by two

6.5. Evaluation 109

or three participants. Including one participant who eventually refactored his
code and justified in his report: “The visualization also helped me quickly
identify dead code and eliminate it. As this is a new project (early stage of
development) I didn’t remove all dead methods or classes, but in other kinds
of projects I would do it”. Another participant expressed: “Dead methods
correspond mostly to unused code that I forgot to remove”.

• The visualization helps in detecting complex methods: Almost all partici-
pants appreciated this feature, including 46% who strongly agreed and 38%
who agreed to this assertion. The other participants were 11% undecided,
3% did not agree. The participant responsible for maintaining the Roassal
project mentioned and we cite: “With the height representing the lines of
code and with the red border. It was easy to find the complex methods in
this class. This is an anomaly because they are long examples that maybe
should be split into classes”. He found long complex methods that represent
examples of how to use Roassal.

When reading the reports not all participants found complex methods in their
projects, which might explain such a decision. However, several others men-
tioned the presence of complex methods in their projects, including some
who consider investigating the complexity of such methods for correction
purposes.

• The visualization helps in identifying tested/untested methods: Over half of
the participants also appreciated this feature, including 34% who agreed and
34% who strongly agree. The other 19% were undecided and only 7% dis-
agreed and very few of 3% strongly disagreed.

Some participants in their reports mentioned that the visualization helped
them identify the weak spots (not tested methods) in their source code, which
they intend to reinforce. The Microdown participant found this feature useful
and we quote: “In the MicHTMLDoc class we could exclusively see the tested
and untested methods”.

• The visualization is scalable for large classes: Among the participants, 3%
strongly agreed, and 42% agreed that the visualization was scalable for their
classes. The other 30% were undecided, 15% disagreed, and 7% strongly
disagreed.

This question is also relative to the project (in case the project contains big
classes), hence the diversity of answers. As with any visualization includ-
ing nodes and connections between those nodes, the bigger the class is the
harder it becomes to display all the pieces of information at once with a clear
classification of the layers and connections between the nodes. Nonetheless,

110 Chapter 6. A New Generation of ClassBlueprint

other participants found that the classification of the methods on the right and
attributes on the left in big classes helped them to (i) better see the attributes
and (ii) more clearly identify the access to these attributes, and (iii) better
distinguish the class side methods.

• The visualization is easy to use: Three-quarters of the participants (76%)
agreed that the visualization was easy to navigate and 15% strongly agreed.
For the disagreed participants of 7%, the difficulties mostly come from the
first interaction with the visualization and how to start using it.

• They would like to use the visualization in the future: Half of the participants
(50%) wish to re-use the visualization in their future work and over 15%
strongly agreed. Other answers include indecision with 26%, disagreeing,
and strongly disagreeing with the same percentage (3.8%).

When looking for clues in the reports to understand the reasons behind inde-
cision and disagreement, it was mostly because of big large classes. One
of the participants who analyzed Iceberg reported that some classes con-
tained more than 120 methods with hundreds of connections between method
nodes.

Nonetheless, the most appreciated feature (mentioned in all the reports) is
dead code detection. Others also found very useful the interactions with the
visualization (mouse hover to see the name of the method, shift + mouse
hover to see the source code of the method, the double click to open the
method in the system browser, the right-click to highlight the outgoing in-
vocations and left-click to highlight the incoming invocations). While others
found the colors very useful to have an understanding of the methods inside
its system and their relation with the super/sub implementations.

Very few participants reported finding dead attributes in their projects. Fur-
thermore, some participants reported finding some false positives in dead
methods. Such false positives are often due to methods that belong to an
API and that are not called in the system under analysis. Other cases were in
extension2 methods from a package that itself is not part of the analysis.

Finally, the absence of the green test annotation in method nodes allowed
users to consider reinforcing tests in these parts of the source code. Espe-
cially since tests measure the confidence that certain features are adequately
implemented. Some participants reported missing tests meaning that their
projects were not as expectedly well covered by tests and others added tests
to cover such methods.

2In Pharo, a class can be extended by methods that are packaged in another package than the
one of the class.

6.6. Threats to Validity 111

6.6 Threats to Validity

In order to ensure the credibility and reliability of the study’s findings, this section
addresses potential threats to validity.

Internal Validity: To what extent we can draw a causal link between the treat-
ment in the experiment and the response? Regarding the projects, they were se-
lected by the participants according to their previous experiences. The partici-
pants either used or developed these projects before. They considered their level
of knowledge of the projects as debutants, intermediaries, advanced, and experts.
The subjective nature of these classifications however introduces a potential threat
to internal validity.

The level of expertise in software programming has been collected for each par-
ticipant. Concretely, the expertise varies from two to thirty years. Our experiment
was not dedicated to a specific audience but to diverse profiles. We want to report
that we performed a first attempt to evaluate the use of the visualization to reverse
engineer unknown software with internship students (3rd year). Such an attempt
was unsuccessful since most of the students did not have enough concerns about
quality and good object-oriented design.

The project sizes vary from 18 to 941 classes. As explained in Section 6.5.3,
most participants flight over the whole or lot of classes and only plunged into the
classes they found worthy of the analysis (important classes, big classes, etc).

Obviously, the answers depend on the project the participants choose and their
expertise in the project or in software programming. However, the diversity of
the projects and the diversity of experiences of the participants limit the threat of
internal validity.

External Validity: Are our results generalizable for practice modernization?
Even though the evaluation was only based on Pharo projects, the visualization
also supports Java project analysis. However, for this work, we limited our choice
to only Pharo projects since we have easy access to experts. We plan in future
works to apply the visualization on Java projects when we have the possibility to
interact with Java maintainers to better adapt the visualization or add new features
according to their feedback if needed. Nonetheless, the approach itself can be
applied to any object-oriented program. For other programming languages such as
C++ and Python, the Pharo community does not have a parser yet.

Construct Validity: Are we asking the right questions? The answers to the
questions, presented in the quantitative evaluation (Section 6.5), may depend on
the projects analyzed by the participants and their expertise. Some projects do
not necessarily provide elements to answer all the questions. For instance, some
projects do not commonly use inheritance, consequently, methods overriding, ex-
tending their super implementations, and methods overridden in the subclasses may
be absent. Additionally, some classes do not have lots of class side methods. Thus,

112 Chapter 6. A New Generation of ClassBlueprint

it may be difficult to observe the communication instance/class sides. However, we
believe that the number of participants as well as the diversity of the projects and
participants reduce the threats.

Reliability: To what extent can the results be reproduced when the research
is repeated under the same conditions? The qualitative evaluation relies on the
feedback of users according to their projects. The anonymity does not enable the
reproduction of the research under the same conditions. Furthermore, we also sug-
gest that the results of these evaluations vary with the projects and the experiences
of the users even if we did our best to reduce this point by increasing the number
and the diversity of users and projects.

Nevertheless, for reproducibility purposes, the tool and all the artefacts used in
the evaluations are available online. With the tool, we provide full instructions on
how to start using the visualization in the Readme. The legend of the visualization
can also help the user through her navigation.

6.7 Conclusion

Understanding classes is important since they are the key abstractions in object-
oriented programming. Object-oriented programming late binding makes under-
standing more difficult than procedural. In particular, there is no specific reading
order that IDE could use to present information to developers.

CLASS BLUEPRINT Lanza and Ducasse [2001] proposed a compact view of
class call-graph based on layers. In this chapter, we identified the limits of CLASS

BLUEPRINT and proposed a new version. BLUEPRINTV2 supports dead code iden-
tification, methods under tests, and call flow between instance and class (static)
methods. It enhances field understanding by showing how fields of super/sub-
classes are accessed, as well as lazy initialization in a compact form. It also sup-
ports hook understanding from a superclass point of view.

We presented a first validation with developers. The evaluation is twofold qual-
itative and quantitative. The qualitative part enabled us to highlight two comple-
mentary approaches to use the proposed visualization. The Flight over consists of
quickly navigating the visualizations of the classes one by one, with a generalized
purpose in mind for the user. This approach leads to the detection of some issues
in existing classes or highlights the need for deeper analysis when needed. The
Plunge in corresponds to this deeper analysis, like complex class or dead code de-
tection. From a quantitative point of view, the feedbacks are mostly positive from
the uses of the visualization.

For future works, we believe that new features such as annotating commented
methods similar to the tested methods annotation feature would be beneficial. In
addition to highlighting if the method test passes or fails. Secondly, evaluating our

6.7. Conclusion 113

visualization on projects written in Java and other object-oriented languages gives
valuable insights into the potential improvements and optimizations needed for our
visualization approach to be more universally adaptable.

CHAPTER 7

Conclusion

Contents
7.1 Summary . 113

7.2 Contributions . 115

7.3 Future Work . 116

7.1 Summary
Any software is susceptible to becoming legacy software. As software ages over
time, legacies are characterized by a complex structure, degraded architecture, and
poor code quality. Such characteristics make the maintenance of these software
systems even more difficult and time-consuming according to the literature. The
task of merely reading the source code and looking for clues to make the right
decisions without compromising the overall software becomes arduous.

Many tools and approaches have been proposed by researchers to deal with dif-
ferent maintenance challenges. A significant focus has been put on enhancing the
comprehensibility of software programs by identifying specific maintenance tasks
and providing appropriate solutions. A community of researchers successfully be-
lieves that visualizations can be of great help when maintaining software since they
provide a visual approach to understanding software instead of sequentially reading
the source code. Furthermore, such a visual approach relies on representing soft-
ware artefacts using simple and familiar shapes and colours to distinguish between
these artefacts whether they are entities or entities’ properties , etc.

To mitigate the challenges faced by software maintainers of our industrial part-
ners as well as the challenges already existing in the literature, this thesis provides
a collection of panoramic views: three Birds Eye Views, each aiming to solve a
specific maintenance challenge successfully. Each Bird Eye View is targeted to
solve an instance of software violation: architectural (CLISERVO), coding stan-
dards (CLASSNAME DISTRIBUTION), and coding quality (BLUEPRINTV2).

In summary, this thesis contributes to the field of software maintenance by
bridging the gap between academia and industry, addressing real-world challenges,

116 Chapter 7. Conclusion

and providing visualizations to assist software maintainers in understanding the
codebase and identifying specific instances of architectural, naming and code-
based violations. The research conducted in this thesis aims to improve the ef-
fectiveness of software maintenance processes and contribute to the development
of more efficient software systems.

Chapter 2. presents an overview of the literature portraying works, methodolo-
gies, and studies related to our field of topic: software maintenance and visualiza-
tions. This chapter specifically focuses on software architecture, and assessing the
quality of software architecture through its code, encompassing identifier names
quality. While also presenting the most influential visualizations provided by the
visualizations community.

Chapter 3. presents a novel visualization dedicated to recovering client-server
architecture from layers perspective, distinct viewpoints, and configurations. The
main motivation underlying the conception of the CLISERVO visualization is the
identification of architectural violations which consist of suboptimal package struc-
ture and unjustifiable dependencies between components of the software layers.
The visualization was validated on industrial projects with the presence of their
maintainers to accept/reject the collected results by the visualization experts. The
validation presented satisfying results when applied to industrial projects and de-
tected several violations which were validated by the software maintainers.

Chapter 4. presents the second visualization of our Bird-Eye Views which con-
sist of the CLASSNAME DISTRIBUTION. A visualization which is dedicated to
the detection of violations of coding standards of software naming conventions.
The visualization depicts the whole project at a glimpse and uses boxes to iden-
tify the different packages, suffixes/prefixes, classes, and colours to identify each
of the hierarchies implemented in the project. Coloured hierarchies display poten-
tial violations and bring the maintainers’ attention to further investigations. In this
chapter, we also use the visualization to detect naming patterns and anti-patterns to
effectively highlight and understand naming practices in object-oriented software,
particularly Pharo and Java.

Chapter 5. validating software visualizations is not an easy task. According to
the literature, most software visualizations have not been effectively and efficiently
validated. This chapter is dedicated to the validation of the CLASSNAME DISTRI-
BUTION visualization which was applied to 6 important Pharo projects with their
maintainers from different countries (France, Chile, and Argentina) and a broader

7.2. Contributions 117

range of 50 Java projects carefully selected from GitHub repositories. The valida-
tion was divided into both qualitative and quantitative evaluations from which we
reported the analysis result of the selected projects, the detection of important nam-
ing violations, and finally the presence of naming patterns in almost all projects.

Chapter 6. presents our third Bird Eye View which consists of an enhancement
of an important and influential visualization: the CLASS BLUEPRINT. This chap-
ter first presents the limitations of the first version underlying the motivation be-
hind this work. With the contribution of the main authors of the first version,
we successfully enhanced the initial visualization and provided an up-to-date ver-
sion (BLUEPRINTV2). BLUEPRINTV2 provides a better classification of the class
methods (static/instance side) while ensuring to display the interplay between these
methods. It also considers the attributes of the superclass and their relations with
the class components. BLUEPRINTV2 goes further to detecting dead code and
methods with high cyclomatic complexity revealing violations with regard to code
practices. The visualization was also validated using both qualitative and quan-
titative evaluations providing a broader analysis and an in-depth analysis of the
visualization application. Both evaluations were successful in detecting violations
of code practices. Furthermore, the use of the visualization by the participants sur-
prisingly revealed two instinct modes: the Fly over where the user continuously
displays one visualization after another looking for important class visualization
such as God or complex classes, and the Plunge-in when finally the user selects a
class visualization to interact with on a deeper level.

7.2 Contributions

The contributions of this thesis can be summarized as follows:

• A visualization for Client-Server Architecture — a novel visualization for the
detection of architectural violations validated on real industrial projects;

• A visualization for naming convention assessment, the ClassNames Distri-
bution also helps in identifying naming (anti-)patterns. The visualization
is validated using both qualitative and quantitative evaluations on important
Pharo projects and a large set of Java projects;

• An enhancement of a prominent visualization, the Class Blueprint (Best Con-
ference Paper for VISSOFT22);

118 Chapter 7. Conclusion

7.3 Future Work
Here we discuss the future improvements of the work already presented in this
thesis as well as future ideas as a means of extension to provide more visualizations
to software maintainers.

7.3.1 Future Enhancements of the Bird-Eye Views
This section addresses some enhancements to the work presented in this thesis.

Extension of the CLISERVO validation. the validation of the CLISERVO visual-
ization can be extended and applied to a larger set of projects when access to more
maintainers is possible. This will help in enhancing the detection of the archi-
tectural violations and extend it to identifying more of the architectural violations
rather than the ones detected in this thesis. For instance, identifying architectural
violations in microservices applications. But first, a clear definition of what are
microservices architecture violation needs to be defined.

The validation of the BLUEPRINTV2 on Java projects. applying the visual-
ization on Java projects when the possibility to interact with Java maintainers is
possible to better adapt the visualization or add new features according to their
feedback if needed. For other programming languages such as C++ and Python,
the Pharo community does not have a parser yet.

New features to the BLUEPRINTV2. introducing new features such as anno-
tating commented methods similar to the tested methods annotation feature. In
addition to highlighting if the method test passes or fails.

Improving ClassName Distribution in a future version of the CLASSNAME

DISTRIBUTION, considering a list of exceptions specified by the domain expert
that will be taken into account to avoid false positives. Additionally, the current vi-
sualization of the CLASSNAME DISTRIBUTION is based on inheritance. Therefore,
for each hierarchy, we detect its root class and build the visualization accordingly.
Currently, the user has the possibility to change the root class according to her
needs. However, it would also be interesting to be able to provide more than one
root class. As it allows the users to have more control of the depicted visualization.

7.3.2 Future Explorations of Visualization tools
Many ideas could be exploited to build visualizations. A studied and well-defined
set of visualizations is already present in the Moose environment and probably

7.3. Future Work 119

extended in the future would benefit maintainers in understanding different aspects
of the software. To do so, the right questions must be asked depending on the needs
of the users and their goals.

Creating a metamodel for visualization tools. and yet the process of using a
metamodel for software visualization encompasses a few systematic steps such as
defining the aspects of the software to visualize, identifying both software compo-
nents and their relations that are taking part of the visualization. Besides defining
an abstract syntax that describes each of these elements. The main key in the visu-
alization metamodel is to be as extensible and flexible as possible to cover as many
visualization needs.

A what-if visualization. the big majority of the proposed visualizations display
software as they are. If a change happens to the software the user has to regenerate
a new visualization of the current state of the software. A what-if visualization
allows the user to simulate the change from the visualization itself which com-
putes the different changes that happen to the software and displays it to the user
directly without making the actual change to the software. This allows the user to
comprehend the consequences of her change, analyze it and make decisions based
on the results. A further idea would predict the potential future states of the soft-
ware based on the practices and changes that happened to the software since its
existence.

Real-Time collaboration. visualizations serve as visual aids for software main-
tainers with the responsibility of interpreting these visualizations. The interpreta-
tion is usually made in the form of a text report because most visualizations cannot
be annotated. Introducing user annotations into the visualization amongst team
members helps in better interpreting and studying the visualization effectively.

Visualizing microservices. just as we visualized client-server architecture in chap-
ter 3, visualizations can be applied to different kinds of software architecture. As
long as the architecture features and software rules are detectable. A visualization
can show the clusters of the microservices in the software and the global architec-
ture, meaning how they interact with the other components. The visualization can
also depict information about each microservice; about the quality, coupling and
cohesion, the complexity and highlight refactoring opportunities , etc.

Detecting code smells. after the collection of metrics from the literature that de-
scribe the distinct code smells, it could be interesting to have a full visualization

120 Chapter 7. Conclusion

that depicts all the code smells and bug opportunities in large-scale software from
a class code perspective.

Dynamic analysis. in this thesis, we only focused on the static analysis of soft-
ware, meaning visualizing the static state of software. Few works however focus on
visualizing the dynamic structure of software and computer artefacts. For instance,
assessing the memory leak in the RAM by highlighting parts of the software where
memory is allocated but not released. Or, the use of dashboards representing vari-
ous metrics to monitor the usage of CPU. Even so, dashboards are widely used to
monitor the state of software. Another example would be to visualize the data cir-
culation in the software, meaning a visualization that could answer the questions:
How does the data circulate in the program, where does it go and where does it
land at last.

Visualizing hexagonal architecture. such as visualizing the set of hexagones in
the software as hexagone shapes and in each shape a list of properties and their
corresponding percentage represented by a colored bar (coupling, cohesion, test ,
etc). The color can also highlight whether there is a need to maintain the hexagone.

Combining AI. with the growing interest and new technology related to AI such
as ChatGPT that generates code, a platform that generates program visualizations
from a simple description.

IDE plug-in. using our visualizations requires the user to obtain a Moose image
to visualize her software, create a Moose model, and import the model into the
image , etc. A more easy solution for our tools to be available for external usage is
to work on a plug-in with IDEs such as IntelliJ and Eclipse that can offer the same
visualization of the artefact directly on the IDE.

Survey. the text discusses the enthusiasm among researchers for developing new
software visualization methods. It highlights the importance of merging academic
and industrial approaches to fully comprehend the broader requirements of devel-
opers and software maintainers. The current issue is that academic tools are often
developed without considering real-world needs. One proposed solution to bridge
this gap is conducting surveys among participants from various backgrounds and
roles in labs and companies. These surveys can shed light on the actual needs and
challenges faced by developers and researchers in understanding and maintaining
large software programs. Despite the presence of empirical studies and surveys
in existing literature, there is a need for updated and more extensive research, as
current studies are either outdated or have limited participant diversity.

7.3. Future Work 1

In conclusion, this section discussed various ideas for future improvements con-
cerning the work presented in this thesis and proposed ideas on the broader aspect
of software visualization tools. By addressing the current limitations and contin-
uously striving to develop more user-friendly, comprehensive, and effective tools,
we can contribute to enhancing the understanding and maintenance of software,
ultimately benefiting both the academic and industrial communities.

Bibliography

Hani Abdeen, Stéphane Ducasse, Houari A. Sahraoui, and Ilham Alloui. Auto-
matic package coupling and cycle minimization. In Proceedings of the 16th
International Working Conference on Reverse Engineering (WCRE’09), pages
103–112, Washington, DC, USA, 2009. IEEE Computer Society Press. doi:
10.1109/WCRE.2009.13.

Hani Abdeen, Stéphane Ducasse, Damien Pollet, Ilham Alloui, and Jean-Rémy
Falleri. The package blueprint: Visually analyzing and quantifying packages
dependencies. Science of Computer Programming, 89:298–319, February 2014.
doi: 10.1016/j.scico.2014.02.016.

S.L. Abebe, S. Haiduc, P. Tonella, and A. Marcus. Lexicon bad smells in software.
In Working Conference on Reverse Engineering (WCRE ’09), pages 95–99, Lit-
tle, France, October 2009. doi: 10.1109/{WCRE}.2009.26.

Nour Jihene Agouf, Stéphane Ducasse, Anne Etien, Abdelghani Alidra, and Ar-
naud Thiefaine. Understanding Class Name Regularity: A Simple Heuristic and
Supportive Visualization. Journal of Object Technology, 21:1312–1330, 2022a.
doi: 10.5381/jot.2022.21.1.a2.

Nour Jihene Agouf, Stéphane Ducasse, Anne Etien, and Michele Lanza. A New
Generation of Class Blueprint (best paper award). In IEEE Working Conference
on Software Visualization (VISSOFT), 2022b.

Nour Jihene Agouf, Soufyane Labsari, Stéphane Ducasse, Anne Etien, and Nico-
las Anquetil. A visualization for client-server software assessement. In IEEE
Working Conference on Software Visualization (VISSOFT), 2023.

Sazzadul Alam and Philippe Dugerdil. Evospaces: 3d visualization of software
architecture. In SEKE, volume 7, page 500, 2007.

Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Suggest-
ing accurate method and class names. In Proceedings of the Joint Meeting on
Foundations of Software Engineering, pages 38–49. ACM, 2015.

Simon Allier, Salah Sadou, Houari Sahraoui, and Régis Fleurquin. From
object-oriented applications to component-oriented applications via component-
oriented architecture. In 2011 Ninth Working IEEE/IFIP Conference on Software
Architecture, pages 214–223. IEEE, 2011.

4 Bibliography

Reem S. Alsuhaibani, Christian D. Newman, Michael J. Decker, Michael L. Col-
lard, and Jonathan I. Maletic. On the naming of methods: A survey of profes-
sional developers. In International Conference on Software Engineering, 2021.

Nicolas Anquetil and Timothy C. Lethbridge. Assessing the relevance of identifier
names in a legacy software system. In Proceedings of the 1998 conference of the
Centre for Advanced Studies on Collaborative research, CASCON’98, pages
213–222. IBM Press, 1998. URL http://portal.acm.org/citation.cfm?id=783160.783164.

Nicolas Anquetil, Anne Etien, Mahugnon Honoré Houekpetodji, Benoît Ver-
haeghe, Stéphane Ducasse, Clotilde Toullec, Fatija Djareddir, Jèrôme Sudich,
and Mustapha Derras. Modular moose: A new generation of software reengi-
neering platform. In International Conference on Software and Systems Reuse
(ICSR’20), number 12541 in LNCS, December 2020. doi: 10.1007/978-3-030-
64694-3_8.

Craig Anslow, James Noble, Stuart Marshall, and Ewan Tempero. Visualizing the
word structure of java class names. In Companion to the 23rd ACM SIGPLAN
conference on Object-oriented programming systems, languages and applica-
tions, pages 777–778. ACM, 2008.

Craig Anslow, Stuart Marshall, James Noble, and Robert Biddle. Sourcevis: Col-
laborative software visualization for co-located environments. In 2013 First
IEEE Working Conference on Software Visualization (VISSOFT), pages 1–10.
IEEE, 2013.

Giuliano Antoniol, Yann-Gael Gueheneuc, Ettore Merlo, and Paolo Tonella. Min-
ing the lexicon used by programmers during sofware evolution. In ICSM 2007:
IEEE International Conference on Software Maintenance, pages 14–23, October
2007. ISBN 978-1-4244-1256-3. doi: 10.1109/ICSM.2007.4362614.

Vanessa Peña Araya, Alexandre Bergel, Damien Cassou, Stéphane Ducasse, and
Jannik Laval. Agile visualization with Roassal. In Deep Into Pharo, pages 209–
239. Square Bracket Associates, September 2013. ISBN 978-3-9523341-6-4.

Daniel Atzberger, Tim Cech, Merlin de La Haye, Maximilian Söchting, Willy
Scheibel, Daniel Limberger, and Jürgen Döllner. Software forest: A visualiza-
tion of semantic similarities in source code using a tree metaphor. In VISIGRAPP
(3: IVAPP), pages 112–122, 2021.

Michael Balzer, Andreas Noack, Oliver Deussen, and Claus Lewerentz. Software
landscapes: Visualizing the structure of large software systems. In IEEE TCVG,
2004.

http://portal.acm.org/citation.cfm?id=783160.783164

Bibliography 5

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison Wesley, 1998.

Fabian Beck. Software feathers figurative visualization of software metrics. In
2014 International Conference on Information Visualization Theory and Appli-
cations (IVAPP), pages 5–16. IEEE, 2014.

Dirk Beyer. Co-change visualization. In Proceedings of the 21st IEEE Inter-
national Conference on Software Maintenance, Industrial and Tool volume,
ICSM’05, pages 89–92, 2005. URL http://citeseer.ist.psu.edu/beyer05cochange.html.

Dave Binkley, Dawn Lawrie, Steve Maex, and Christopher Morrell. Identifier
length and limited programmer memory. Science of Computer Programming,
74(7):430–445, 2009.

Sandro Boccuzzo and Harald Gall. CocoViz: Towards cognitive software visual-
izations. VISSOFT 2007. 4th IEEE International Workshop on Visualizing Soft-
ware for Understanding and Analysis, 0:72–79, 2007. doi: 10.1109/VISSOF.
2007.4290703.

Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Relating identifier
naming flaws and code quality: An empirical study. In European Conference on
Software Maintenance and Reengineering (CSMR). IEEE Press, 2009.

Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Exploring the
influence of identifier names on code quality: An empirical study. In European
Conference on Software Maintenance and Reengineering (CSMR). IEEE Press,
2010.

Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Improving the
tokenisation of identifier names. In European Conference on Object-Oriented
Programming (ECOOP). Springer, 2011a.

Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Mining java class
identifier naming conventions. In International Conference on Software Mainte-
nance (ICSM), pages 1641–1643. IEEE Press, 2011b. URL https://ieeexplore.ieee.

org/document/6080776.

Pierre Caserta and Olivier Zendra. Visualization of the static aspects of software:
a survey. IEEE Transactions on Visualization and Computer Graphics, 17(7):
913–933, 2011.

P Clements, R Kazman, and M Klein. Evaluating software architectures: methods
and case studies. 2002.

http://citeseer.ist.psu.edu/beyer05cochange.html
https://ieeexplore.ieee.org/document/6080776
https://ieeexplore.ieee.org/document/6080776

6 Bibliography

Donny T Daniel, Egon Wuchner, Konstantin Sokolov, Michael Stal, and Peter
Liggesmeyer. Polyptychon: A hierarchically-constrained classified dependen-
cies visualization. In 2014 Second IEEE Working Conference on Software Visu-
alization, pages 83–86. IEEE, 2014.

Florian Deissenboeck and Markus Pizka. Concise and consistent naming. Software
Quality Journal, 14(3):261–282, 2006.

L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the
Smalltalk-80 system. In Proceedings POPL ’84, Salt Lake City, Utah, January
1984. doi: 10.1145/800017.800542. URL http://webpages.charter.net/allanms/popl84.

pdf.

Karim Dhambri, Houari Sahraoui, and Pierre Poulin. Visual detection of design
anomalies. In 2008 12th European Conference on Software Maintenance and
Reengineering, pages 279–283. IEEE, 2008.

Martin Dias, Diego Orellana, Santiago Vidal, Leonel Merino, and Alexandre
Bergel. Evaluating a visual approach for understanding javascript source code.
In 2020 IEEE/ACM 28th International Conference on Program Comprehension
(ICPC), 2020.

Stephan Diehl, editor. Software Visualization. Springer, 2002.

Stephan Diehl. Software Visualization. Springer-Verlag, Berlin Heidelberg, 2007a.
ISBN 978-3-540-46504-1.

Stephan Diehl. Software visualization: visualizing the structure, behaviour, and
evolution of software. Springer Science & Business Media, 2007b.

Stéphane Ducasse and Michele Lanza. The Class Blueprint: Visually supporting
the understanding of classes. Transactions on Software Engineering (TSE), 31
(1):75–90, January 2005. doi: 10.1109/TSE.2005.14.

Stéphane Ducasse and Damien Pollet. Software architecture reconstruction: A
process-oriented taxonomy. IEEE Transactions on Software Engineering, 35(4):
573–591, July 2009a. doi: 10.1109/TSE.2009.19.

Stéphane Ducasse and Damien Pollet. Software architecture reconstruction: A
process-oriented taxonomy. IEEE Transactions on Software Engineering, pages
573–591, 2009b.

Stéphane Ducasse, Tudor Gîrba, and Adrian Kuhn. Distribution map. In Pro-
ceedings of 22nd IEEE International Conference on Software Maintenance,
ICSM’06, pages 203–212, Los Alamitos CA, 2006. IEEE Computer Society.
doi: 10.1109/ICSM.2006.22.

http://webpages.charter.net/allanms/popl84.pdf
http://webpages.charter.net/allanms/popl84.pdf

Bibliography 7

Stéphane Ducasse, Nicolas Anquetil, Usman Bhatti, Andre Cavalcante Hora, Jan-
nik Laval, and Tudor Girba. MSE and FAMIX 3.0: an Interexchange Format
and Source Code Model Family. Technical report, RMod – INRIA Lille-Nord
Europe, 2011.

Sebastian Eder, Maximilian Junker, Elmar Jürgens, Benedikt Hauptmann, Rudolf
Vaas, and Karl-Heinz Prommer. How much does unused code matter for mainte-
nance? In 2012 34th International Conference on Software Engineering (ICSE),
pages 1102–1111. IEEE, 2012.

Alexander Egyed and Phillipe B. Kruchten. Rose/architect: a tool to visualize
architecture. In Proc. 32nd Annual Hawaii Conference on Systems Sciences,
1999.

Stephen Eick, Todd Graves, Alan Karr, Audris Mockus, and Paul Schuster. Visu-
alizing software changes. IEEE Transactions on Software Engineering, 28(4):
396–412, 2002.

Ural Erdemir, Umut Tekin, and Feza Buzluca. E-quality: A graph based object
oriented software quality visualization tool. In 2011 6th International Workshop
on Visualizing Software for Understanding and Analysis (VISSOFT), pages 1–8.
IEEE, 2011.

Johan Fabry and Stéphane Ducasse. The Spec UI Framework. Square Bracket
Associates, 2017. URL http://books.pharo.org.

Amin Milani Fard and Ali Mesbah. Jsnose: Detecting javascript code smells. In
2013 IEEE 13th international working conference on Source Code Analysis and
Manipulation (SCAM), pages 116–125. IEEE, 2013.

Michael C. Feathers. Working Effectively with Legacy Code. Prentice Hall, 2005.
ISBN 0-13-117705-2.

I. Fernandez, A. Bergel andJ. P. S. Alcocer, A. Infante, and T. Gîrba. Glyph-
based software component identification. In International Conference on Pro-
gram Comprehension (ICPC), pages 1–10, 2016a.

Ignacio Fernandez, Alexandre Bergel, Juan Pablo Sandoval Alcocer, Alejandro In-
fante, and Tudor Gîrba. Glyph-based software component identification. In
Proceedings of the 24th IEEE International Conference on Program Compre-
hension (ICPC ’16), 2016b.

P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. Mueller, J. Mylopoulos,
S. Perelgut, M. Stanley, and K. Wong. The software bookshelf. IBM Systems

http://books.pharo.org

8 Bibliography

Journal, 36(4):564–593, November 1997. URL http://researchweb.watson.ibm.com/

journal/sj/364/finnigan.htmlhttp://researchweb.watson.ibm.com/journal/sj/364/finnigan.pdf.

Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring. Exploring software
cities in virtual reality. In 2015 ieee 3rd working conference on software visual-
ization (vissoft), pages 130–134. IEEE, 2015.

Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda, Damian Tamburri,
Marco Zanoni, and Elisabetta Di Nitto. Arcan: A tool for architectural smells de-
tection. In 2017 IEEE International Conference on Software Architecture Work-
shops (ICSAW), pages 282–285. IEEE, 2017.

Jon Froehlich and Paul Dourish. Unifying artifacts and activities in a visual tool
for distributed software development teams. In Proceedings of the 26th Interna-
tional Conference on Software Engineering, pages 387–396, Washington, DC,
USA, 2004. IEEE Computer Society. ISBN 0-7695-2163-0.

Keith Gallagher, Andrew Hatch, and Malcolm Munro. Software architecture visu-
alization: An evaluation framework and its application. IEEE Transactions on
Software Engineering, 34(2):260–270, 2008.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Yaser Ghanam and Sheelagh Carpendale. A survey paper on software architecture
visualization. University of Calgary, Tech. Rep, page 17, 2008.

Adele Goldberg. Smalltalk 80: the Interactive Programming Environment. Addi-
son Wesley, Reading, Mass., 1984. ISBN 0-201-11372-4.

Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta, Lu-
dovico Iovino, and Amleto Di Salle. Microart: A software architecture re-
covery tool for maintaining microservice-based systems. In 2017 IEEE Inter-
national Conference on Software Architecture Workshops (ICSAW), pages 298–
302. IEEE, 2017.

M David Hanson. The client/server architecture. In Server Management, pages
17–28. Auerbach Publications, 2000.

C. G. Healey, K. S. Booth, and J. T. Enns. Harnessing preattentive processes for
multivariate data visualization. In GI ’93: Proceedings of Graphics Interface,
1993.

Brian Henderson-Sellers. Object-oriented metrics: measures of complexity.
Prentice-Hall, Inc., 1995.

http://researchweb.watson.ibm.com/journal/sj/364/finnigan.html http://researchweb.watson.ibm.com/journal/sj/364/finnigan.pdf
http://researchweb.watson.ibm.com/journal/sj/364/finnigan.html http://researchweb.watson.ibm.com/journal/sj/364/finnigan.pdf

Bibliography 9

Yosuke Isobe and Haruaki Tamada. Are identifier renaming methods secure? In
2018 19th IEEE/ACIS International Conference on Software Engineering, Ar-
tificial Intelligence, Networking and Parallel/Distributed Computing (SNPD),
pages 322–328. IEEE, 2018.

Rick Kazman and S Jeromy Carriere. View extraction and view fusion in architec-
tural understanding. In Proceedings. Fifth International Conference on Software
Reuse (Cat. No. 98TB100203), pages 290–299. IEEE, 1998.

Holger M. Kienle and Hausi A. Müller. The tools perspective on software reverse
engineering: Requirements, construction, and evaluation. In Advanced in Com-
puters, volume 79, pages 189–290. Elsevier, 2010.

Claire Knight and Malcolm Munro. Visualising software-a key research area. In
Proceedings of the IEEE International Conference on Software Maintenance,
page 437, 1999.

Kenichi Kobayashi, Manabu Kamimura, Keisuke Yano, Koki Kato, and Akihiko
Matsuo. Sarf map: Visualizing software architecture from feature and layer
viewpoints. In 2013 21st International Conference on Program Comprehension
(ICPC), pages 43–52. IEEE, 2013.

Rainer Koschke. Software visualization in software maintenance, reverse engineer-
ing, and re-engineering: a research survey. Journal of Software Maintenance and
Evolution: Research and Practice, 15(2):87–109, 2003. ISSN 1040-550X. doi:
10.1002/smr.270.

Rainer Koschke and Daniel Simon. Hierarchical reflexion models. In Working
Conference on Reverse Engineering, page 36. IEEE Computer Society, 2003.

Philippe B. Kruchten. The 4+1 view model of architecture. IEEE Software, pages
42–50, 1995.

Arun Lakhotia. Understanding someone else’s code: Analysis of experiences. J.
Syst. Softw., 23(3):269–275, 1993.

Wilf LaLonde and John Pugh. Subclassing ̸= Subtyping ̸= Is-a. Journal of Object-
Oriented Programming, 3(5):57–62, January 1991. URL http://scgresources.unibe.

ch/~scg/Literature/PL/LaLo91a-JOOP0305.pdf.

Guillaume Langelier, Houari A. Sahraoui, and Pierre Poulin. Visualization-based
analysis of quality for large-scale software systems. In ASE ’05: Proceedings of
the 20th IEEE/ACM international Conference on Automated software engineer-
ing, pages 214–223, New York, NY, USA, 2005. ACM. ISBN 1-59593-993-4.
doi: 10.1145/1101908.1101941. URL http://dx.doi.org/10.1145/1101908.1101941.

http://scgresources.unibe.ch/~scg/Literature/PL/LaLo91a-JOOP0305.pdf
http://scgresources.unibe.ch/~scg/Literature/PL/LaLo91a-JOOP0305.pdf
http://dx.doi.org/10.1145/1101908.1101941

10 Bibliography

Michele Lanza. The evolution matrix: Recovering software evolution using soft-
ware visualization techniques. In Proceedings of the International Workshop on
Principles of Software Evolution, IWPSE’01, pages 37–42, 2001. doi: 10.1145/
602461.602467. URL http://scg.unibe.ch/archive/papers/Lanz01cEvolutionMatrix.pdf.

Michele Lanza. Object-Oriented Reverse Engineering — Coarse-grained, Fine-
grained, and Evolutionary Software Visualization. PhD thesis, University of
Bern, May 2003. URL http://scg.unibe.ch/archive/phd/lanza-phd.pdf.

Michele Lanza and Stéphane Ducasse. A Categorization of Classes based on the
Visualization of their Internal Structure: the Class Blueprint. In Proceedings of
16th International Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA ’01), pages 300–311. ACM Press, 2001. doi:
10.1145/504282.504304.

Michele Lanza and Stéphane Ducasse. Polymetric views—a lightweight visual
approach to reverse engineering. Transactions on Software Engineering (TSE),
29(9):782–795, September 2003. doi: 10.1109/TSE.2003.1232284.

Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice.
Springer-Verlag, 2006. ISBN 3-540-24429-8. URL http://www.springer.com/alert/

urltracking.do?id=5907042.

Thomas D LaToza, Gina Venolia, and Robert DeLine. Maintaining mental mod-
els: a study of developer work habits. In Proceedings of the 28th international
conference on Software engineering, pages 492–501, 2006.

Manny Lehman. Programs, life cycles, and laws of software evolution. Proceed-
ings of the IEEE, 68(9):1060–1076, September 1980.

Manny Lehman. Laws of software evolution revisited. In European Workshop on
Software Process Technology, pages 108–124, Berlin, 1996. Springer.

Meir M Lehman and Juan F Ramil. Rules and tools for software evolution planning
and management. Annals of software engineering, 11:15–44, 2001.

Yi Li, Shaohua Wang, and Tien N Nguyen. A context-based automated approach
for method name consistency checking and suggestion. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pages 574–586.
IEEE, 2021.

B. Liblit, A.Begel, and E. Sweetser. Cognitive perspectives on the role of naming
in computer programs. In Annual Psychology of Programming Workshop, 2006.

http://scg.unibe.ch/archive/papers/Lanz01cEvolutionMatrix.pdf
http://scg.unibe.ch/archive/phd/lanza-phd.pdf
http://www.springer.com/alert/urltracking.do?id=5907042
http://www.springer.com/alert/urltracking.do?id=5907042

Bibliography 11

Martin Lippert and Stephen Roock. Refactoring in large software projects: per-
forming complex restructurings successfully. John Wiley & Sons, 2006.

David C Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway. Mental
models and software maintenance. Journal of Systems and Software, 7(4):341–
355, 1987.

Kui Liu, Dongsun Kim, Tegawende F. Bissyande andTaeyoung Kim, Kisub Kim,
Anil Koyuncu andSuntae Kim, and Yves Le Traon. Learning to spot and refactor
inconsistent method names. In Proceedings of ICSE’19, 2019.

Chung-Horng Lung and Kalai Kalaichelvan. An approach to quantitative software
architecture sensitivity analysis. International Journal of Software Engineering
and Knowledge Engineering, 10(01):97–114, 2000a.

Chung-Horng Lung and Kalai Kalaichelvan. An approach to quantitative software
architecture sensitivity analysis. International Journal of SE and Knowledge
Engineering, pages 97–114, 2000b.

Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. On the com-
prehension of program comprehension. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 23(4):1–37, 2014.

Isela Macia, Joshua Garcia, Daniel Popescu, Alessandro Garcia, Nenad Medvi-
dovic, and Arndt von Staa. Are automatically-detected code anomalies rele-
vant to architectural modularity? an exploratory analysis of evolving systems.
In Proceedings of the 11th annual international conference on Aspect-oriented
Software Development, pages 167–178, 2012.

Mika Mantyla, Jari Vanhanen, and Casper Lassenius. A taxonomy and an initial
empirical study of bad smells in code. In International Conference on Software
Maintenance, 2003. ICSM 2003. Proceedings., pages 381–384. IEEE, 2003.

Andrian Marcus, Louis Feng, and Jonathan I. Maletic. 3D representations for soft-
ware visualization. In Proceedings of the ACM Symposium on Software Visual-
ization, pages 27–ff. IEEE, 2003.

Robert C. Martin. Design principles and design patterns, 2000.
www.objectmentor.com.

Robert C. Martin. Agile Software Development: principles, patterns and practices.
Prentice-Hall, 2003.

Robert C Martin. Clean code: a handbook of agile software craftsmanship. Pearson
Education, 2009.

12 Bibliography

Nenad Medvidovic, Alexander Egyed, and Paul Gruenbacher. Stemming archi-
tectural erosion by architectural discovery and recovery. In Proceedings of the
2nd Second International Workshop from Software Requirements to Architec-
tures (STRAW), 2003a.

Nenad Medvidovic, Alexander Egyed, and Paul Gruenbacher. Stemming architec-
tural erosion by architectural discovery and recovery. In Proceedings of the 2nd
Second International Workshop from Software Requirements to Architectures,
2003b.

Leonel Merino, Mohammad Ghafari, Craig Anslow, and Oscar Nierstrasz. Cityvr:
Gameful software visualization. In 2017 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), pages 633–637. IEEE, 2017.

Leonel Merino, Mohammad Ghafari, Craig Anslow, and Oscar Nierstrasz. A sys-
tematic literature review of software visualization evaluation. Journal of systems
and software, 144:165–180, 2018.

Leonel Merino, Ekaterina Kozlova, Oscar Nierstrasz, and Daniel Weiskopf. VI-
SON: An ontology-based approach for software visualization tool discoverabil-
ity. In VISSOFT’19: Proceedings of the 7th IEEE Working Conference on Soft-
ware Visualization. IEEE, 2019. doi: 10.1109/VISSOFT.2019.00014. URL
http://scg.unibe.ch/archive/papers/Meri19b-vison.pdf.

Eliot Miranda. Brouhaha — A portable Smalltalk interpreter. In Proceedings
OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages 354–365, December
1987. doi: 10.1145/38765.38839.

Eliot Miranda. The cog smalltalk virtual machine. In Proceedings of VMIL 2011,
2011.

Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. Hotspot patterns: The formal
definition and automatic detection of architecture smells. In 2015 12th Working
IEEE/IFIP Conference on Software Architecture, pages 51–60. IEEE, 2015.

Son Nguyen, Hung Phan, Trinh Le, and Tien N Nguyen. Suggesting natural method
names to check name consistencies. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, pages 1372–1384, 2020.

David Lorge Parnas. Software aging. In Proceedings 16th International Confer-
ence on Software Engineering (ICSE ’94), pages 279–287, Los Alamitos CA,
1994. IEEE Computer Society.

http://scg.unibe.ch/archive/papers/Meri19b-vison.pdf

Bibliography 13

Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–52, October
1992a. URL http://www.bell-labs.com/user/dep/work/papers/swa-sen.ps.

Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17:40–52, 1992b.
URL http://www.bell-labs.com/user/dep/work/papers/swa-sen.ps.

Dwight J Peterson and Marian E Berryhill. The gestalt principle of similarity ben-
efits visual working memory. Psychonomic bulletin & review, 20(6):1282–1289,
2013.

Federico Pfahler, Roberto Minelli, Csaba Nagy, and Michele Lanza. Visualizing
evolving software cities. In 2020 Working Conference on Software Visualization
(VISSOFT), pages 22–26. IEEE, 2020.

T. Pigoski. Practical Software Maintenance. Best Practices Managing your Soft-
ware Investment. John Wiley and Sons, 1997.

Marcus Randevik and Patrik Olson. Secarchunit extending archunit to support
validation of security architectural constraints. Master thesis, University OF
Gothenburg, 2020.

Dennie Reniers, Lucian Voinea, and Alexandru Telea. Visual exploration of pro-
gram structure, dependencies and metrics with solidsx. In 2011 6th International
workshop on visualizing software for understanding and analysis (VISSOFT),
pages 1–4. IEEE, 2011.

rigi design-recovery. Rigi home page. URL http://www.rigi.csc.uvic.ca/.
http://www.rigi.csc.uvic.ca/.

Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. How do pro-
fessional developers comprehend software? In 2012 34th International Confer-
ence on Software Engineering (ICSE), pages 255–265. IEEE, 2012.

Ganesh Samarthyam, Girish Suryanarayana, and Tushar Sharma. Refactoring for
software architecture smells. In Proceedings of the 1st International Workshop
on Software Refactoring, pages 1–4, 2016.

Marcelo Schmitt Laser, Nenad Medvidovic, Duc Minh Le, and Joshua Garcia. Ar-
cade: an extensible workbench for architecture recovery, change, and decay
evaluation. In Proceedings of the 28th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 1546–1550, 2020.

http://www.bell-labs.com/user/dep/work/papers/swa-sen.ps
http://www.bell-labs.com/user/dep/work/papers/swa-sen.ps
http://www.rigi.csc.uvic.ca/

14 Bibliography

Alan Shalloway and James R Trott. Design patterns explained: A new perspective
on object-oriented design, 2/E. Pearson Education India, 2005.

L Phleeger Shari et al. Software engineering: Theory and practice. International
Edition, Prentice Hall, Inc, 1998.

Martin Shepperd. A critique of cyclomatic complexity as a software metric. Soft-
ware Engineering Journal, 3(2):30–36, 1988.

Jeremy Singer and Chris Kirkham. Exploiting the correspondence between micro
patterns and class names. In International Working Conference on Source Code
Analysis and Manipulation. IEEE, 2008.

J. Smith. Object-Oriented Programming: Understanding Classes for Software De-
velopment. ABC Publications, 2020.

Harry M Sneed. Object-oriented cobol recycling. In Proceedings of WCRE’96:
4rd Working Conference on Reverse Engineering, pages 169–178. IEEE, 1996.

Iain Sommerville and Peter Sawyer. Requirements engineering: a good practice
guide. John Wiley and Sons, Inc., 1997.

Ian Sommerville. Software Engineering. Addison Wesley, sixth edition, 2000.

Robert Spence. Information Visualization. Adisson-Wesley, 2001.

John T. Stasko, John Domingue, Marc H. Brown, and Blaine A. Price. Software
Visualization — Programming as a Multimedia Experience. The MIT Press,
1998.

Margaret-Anne D. Storey, F. David Fracchia, and Hausi A. Müller. Cognitive de-
sign elements to support the construction of a mental model during software
exploration. Journal of Software Systems, 44:171–185, 1999.

Margaret-Anne D. Storey, Davor Čubranić, and Daniel M. German. On the use
of visualization to support awareness of human activities in software develop-
ment: a survey and a framework. In SoftVis’05: Proceedings of the 2005 ACM
symposium on software visualization, pages 193–202. ACM Press, 2005. ISBN
1595930736. doi: 10.1145/1056018.1056045. URL http://portal.acm.org/citation.

cfm?id=1056018.1056045.

SNiFF+. TakeFive Software GmbH, 1996.

http://portal.acm.org/citation.cfm?id=1056018.1056045
http://portal.acm.org/citation.cfm?id=1056018.1056045

Bibliography 15

Hagen Tamer, Daniel van den Bongard, and Fabian Beck. Visually analyzing the
structure and code quality of component-based web applications. In 2021 Work-
ing Conference on Software Visualization (VISSOFT), pages 160–164. IEEE,
2021.

Ewan Tempero, James Noble, and Hayden Melton. How do java programs use
inheritance? an empirical study of inheritance in java software. In ECOOP
’08: Proceedings of the 22nd European conference on Object-Oriented Pro-
gramming, pages 667–691, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN
978-3-540-70591-8.

Pablo Tesone, Stéphane Ducasse, Guillermo Polito, Luc Fabresse, and Noury
Bouraqadi. A new modular implementation for stateful traits. Science of Com-
puter Programming, 195:1–37, 2020. doi: 10.1016/j.scico.2020.102470.

Anne Treisman. Preattentive processing in vision. Computer Vision, Graphics, and
Image Processing, 31(2):156–177, 1985. doi: 10.1016/S0734-189X(85)80004-
9.

Benoît Verhaeghe, Anas Shatnawi, Abderrahmane Seriai, Nicolas Anquetil, Anne
Etien, Stéphane Ducasse, and Mustapha Derras. Migrating GUI behavior: from
GWT to Angular. In International Conference on Software Maintenance and
Evolution, Luxembourg, 2021. URL https://hal.archives-ouvertes.fr/hal-03341866.

Lucian Voinea, Alex Telea, and Jarke J. van Wijk. Cvsscan: visualization of code
evolution. In SoftVis ’05: Proceedings of the 2005 ACM symposium on Software
visualization, pages 47–56, New York, NY, USA, 2005. ACM. ISBN 1-59593-
073-6. doi: 10.1145/1056018.1056025.

Tatiana von Landesberger, Arjan Kuijper, Tobias Schreck, Jörn Kohlhammer,
Jarke J. van Wijk, Jean-Daniel Fekete, and Dieter W. Fellner. Visual analysis
of large graphs: State-of-the-art and future research challenges. Comput. Graph.
Forum, 30(6):1719–1749, 2011.

Anneliese von Mayrhauser and A. Marie Vans. Program comprehension during
software maintenance and evolution. IEEE Computer, 28(8):44–55, 1995.

Daniel Votipka, Seth M Rabin, Kristopher Micinski, Jeffrey S Foster, and
Michelle M Mazurek. An observational investigation of reverse engineers’ pro-
cesses. In Proceedings of the 29th USENIX Conference on Security Symposium,
pages 1875–1892, 2020.

Colin Ware. Information visualization: perception for design. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2000. ISBN 1-55860-511-8.

https://hal.archives-ouvertes.fr/hal-03341866

16 Bibliography

Colin Ware. Information Visualisation. Elsevier, Sansome Street, San Fransico,
2004. ISBN 1-55860-819-2.

A. Watson and T. McCabe. Structured testing: A testing methodology using the
cyclomatic complexity metric. Technical report, National Institute of Standards
and Technology, Washington, D.C., 1996.

Richard Wettel and Michele Lanza. Visualizing software systems as cities. In
Proceedings of VISSOFT 2007 (4th IEEE International Workshop on Visualiz-
ing Software For Understanding and Analysis), pages 92–99, 2007. ISBN 1-
4244-0599-8. doi: 10.1109/VISSOF.2007.4290706. URL http://dx.doi.org/10.1109/

VISSOF.2007.4290706.

Richard Wettel and Michele Lanza. Codecity: 3d visualization of large-scale soft-
ware. In Companion of the 30th international conference on Software engineer-
ing, pages 921–922, 2008.

Rebecca Wirfs-Brock and Alan McKean. Object Design — Roles, Responsibilities
and Collaborations. Addison-Wesley, 2003. ISBN 0-201-37943-0.

Xinrong Xie, Denys Poshyvanyk, and Andrian Marcus. Visualization of CVS
repository information. In WCRE’06: Proceedings of the 13th Working Con-
ference on Reverse Engineering, pages 231–242, Washington, DC, USA, 2006.
IEEE Computer Society. ISBN 0-7695-2719-1. doi: 10.1109/{WCRE}.2006.
55.

Aiko Yamashita and Leon Moonen. Do developers care about code smells? an
exploratory survey. In 2013 20th working conference on reverse engineering
(WCRE), pages 242–251. IEEE, 2013.

Keisuke Yano and Akihiko Matsuo. Labeling feature-oriented software clusters for
software visualization application. In 2015 Asia-Pacific Software Engineering
Conference (APSEC), pages 354–361. IEEE, 2015.

A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Applying webmining tech-
niques to execution traces to support the program comprehension process. In
Proceedings IEEE European Conference on Software Maintenance and Reengi-
neering (CSMR’05), pages 134–142, Los Alamitos CA, 2005. IEEE Computer
Society Press.

Huaxi Zhang, Christelle Urtado, and Sylvain Vauttier. Architecture-centric
component-based development needs a three-level adl. In Software Architec-
ture: 4th European Conference, ECSA 2010, Copenhagen, Denmark, August
23-26, 2010. Proceedings 4, pages 295–310. Springer, 2010.

http://dx.doi.org/10.1109/VISSOF.2007.4290706
http://dx.doi.org/10.1109/VISSOF.2007.4290706

	Introduction
	Maintenance and Program Comprehension
	Challenges in Early Stages of Maintainance
	Modeling Bird-Eye View
	Contributions
	Structure of the Thesis
	List of Publications

	State of The Art of the Early Challenges in Maintenance
	Software Architecture
	Assessing Identifier Names Quality
	Software Visualization
	Conclusion

	A Visualization for Client-Server Architecture Assessement
	Investigating the Role of Software Architecture in Software Maintenance
	Client-Server Architecture
	A Dedicated Client-Server Architecture Visualization: Cliservo
	Big-Picture Visualization Configuration in Action
	Financial System: Server Focus Visualization Applied
	Cliservo: Mining Architectural Insights on Industrial Projects
	Discussion
	Threats to Validity
	Conclusion

	Understanding Class Name Regularity: A Simple Heuristic and Supportive Visualization
	Complexity of Class Name Understanding
	The ClassName Distribution Visualization (CnD)
	An Example of a Pharo Project: Calypso
	An Example of a Java Project: Lucene
	Supporting Evolution
	The ClassName Distribution Tool
	Visualization Algorithm Description
	Conclusion

	Qualitative & Quantitative Evaluations of the ClassName Distribution Visualization
	Qualitative Evaluation
	Quantitative Evaluation
	Discussion
	Threats to Validity
	Conclusion

	A New Generation of ClassBlueprint
	Classes in Object-Oriented Programming
	Limits of Class Blueprint
	The New Generation of Class Blueprint Visualization
	BlueprintV2 in Practice
	Evaluation
	Threats to Validity
	Conclusion

	Conclusion
	Summary
	Contributions
	Future Work

	Bibliography

