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Raphaël Cosson

En vue de l’obtention du grade de docteur de l’Université de Lille
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Université de Lille





Résumé

Cette thèse porte sur l’analyse de paysage de problèmes d’optimisation combi-
natoires multi-objectifs. La résolution de tels problèmes est une tâche difficile,
particulièrement en optimisation multi-objectif en raison de la nature contra-
dictoire des objectifs. Ces situations apparaissent fréquemment dans de nom-
breux scénarios réels et constituent un véritable défi pour les algorithmes. Les
approches de résolution reposent sur la découverte de solutions qui forment des
compromis intéressants. Parmi ces approches, les algorithmes évolutionnaires
s’avèrent particulièrement adaptés à leur résolution. Cependant, il existe de
nombreux algorithmes évolutionnaires et leur performance varie en fonction
du problème à résoudre.

Dans cette thèse, nous cherchons à comprendre la raison de ces variations
et à déterminer l’algorithme le plus intéressant pour un problème donné. Pour
cela, nous nous intéressons particulièrement à l’étude des caractéristiques in-
ternes aux instances de problèmes. Cette étude porte sur l’analyse de paysage
de problèmes d’optimisation multi-objectifs. L’analyse de paysage permet
de caractériser les structures locales internes à un problème d’optimisation.
L’intérêt est à la fois fondamental, pour mieux comprendre les difficultés
des algorithmes. De plus, elle offre un intérêt pour l’automatisation de la
sélection d’algorithmes. Cet aspect pratique est tout particulièrement im-
portant, puisqu’il permet de choisir l’algorithme le plus performant pour un
problème non rencontré auparavant.

Dans un premier temps, nous proposons une approche d’analyse de paysage
par décomposition de problèmes multi-objectifs. Cette approche est alors
étudiée sur une collection de problèmes d’optimisation aux caractéristiques
connues. L’approche est ensuite appliquée expérimentalement pour sélectionner
automatiquement le meilleur algorithme pour un problème donné. Dans un
troisième temps, les investigations précédentes sont approfondies, notamment
sur le coût de l’analyse du paysage et sa prise en compte dans le modèle de
sélection. Enfin, une nouvelle collection de problèmes combinatoires multi-
objectifs est proposée. Elle apporte un nouveau critère de difficulté pour les
algorithmes : l’hétérogénéité entre les objectifs. Nous montrons que cette
nouvelle propriété est observable par le biais de l’analyse de paysage par
décomposition.

Mots-clés Optimisation Combinatoire, optimisation multi-objectif, Algo-
rithmes évolutionnaires, Analyse de paysage, Sélection d’algorithmes.



Abstract

This thesis focuses on landscape analysis for multi-objective combinatorial op-
timization problems. Solving such problems is a difficult task, especially in a
multi-objective setting, due to the conflicting nature of the considered objec-
tives. Moreover, in a black-box setting, no knowledge about the problem can
be assumed, and one can only one probe the objective functions to evaluate
the quality of solutions. In such a setting, evolutionary algorithms constitute
a popular solving approach. However, one can find different evolutionary al-
gorithms, with different components and parameters, leading to a different
performance depending on the problem being solved.

Understanding the difference in performance and determining the most
interesting algorithm (or algorithm component) for a given problem instance
requires studying its intrinsic characteristics. In this context, fitness landscape
analysis has a fundamental interest as it helps to gain a fundamental under-
standing of what makes a problem difficult to solve. In addition, it offers new
opportunities for automated algorithm selection, when one has to decide the
best algorithm to execute for an unseen problem.

In this thesis, we propose a new landscape analysis methodology using the
decomposition paradigm for multi-objective problems. We study this approach
for a set of optimization problems with known characteristics. The method
is subsequently investigated on more complex tasks, in particular for solving
the algorithm selection problem. Then, we push our experiments further with
a study on the cost of the landscape analysis itself. Further cost reduction is
achieved by modifying the sampling methods necessary for landscape analysis
while maintaining a degree of robustness of the proposed landscape features.
Finally, a new collection of multi-objective combinatorial optimization prob-
lems is proposed, bringing a new challenge for algorithms by including het-
erogeneity between the objectives. We show that this property is observable
through decomposition-based landscape analysis.

Keywords: Combinatorial Optimization, Multi-objective Optimization,
Evolutionary Algorithms, Landscape Analysis, Automated Algorithm Selec-
tion.
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Introduction

Motivation

Multi-objective optimization problems require to optimize several objective
functions simultaneously. One major difficulty inherent to multi-objective op-
timization is the presence of conflicts between the objective functions. In
contrast to single-objective optimization, where one has to compute one sin-
gle optimal solution, multi-objective algorithms have to find a whole set of
solutions that minimize or maximize all objectives simultaneously. This set of
solutions is called the Pareto set or the efficient set. It constitutes the best
trade-offs between the conflicting objectives. The computation of the Pareto
set is not always feasible in a reasonable time. This is why a large body of
the literature in multi-objective optimization aims at finding a high-quality
approximation of the Pareto set.

Many algorithms have been proposed to approximate the Pareto set. Among
them, evolutionary algorithms are based on evolving a population of solutions.
These algorithms have numerous components and parameters. The actual ef-
ficiency of such algorithms varies with respect to the optimization problem.
It has been shown in recent years that these variations in performance can be
related to the internal structure of the optimization problems. This thesis is
concerned with fitness landscape analysis as a tool allowing to better charac-
terize the structure of an optimization problem and its relation to algorithm
performance. Fitness landscape analysis uses the concept of solution neighbor-
hood to define a multi-dimensional space. Then, the resulting landscape/space
can be analyzed, and numerical values called features can be extracted in order
to grasp the structure of a problem instance. In addition to the fundamental
interest in understanding optimization problems, fitness landscape analysis
highlights the difficulty of solving an optimization problem with a specific
structure. By connecting the landscape features with the algorithm behavior,
it is for instance possible to predict the expected performance of an algorithm.
As such, it becomes possible to address the problem of automated algorithm

1
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selection, which consists in deciding the best algorithm to select when solving
a given optimization problem instance.

In this thesis, we focus on deriving new fitness landscape analysis techniques
for multi-objective combinatorial optimization, as well as the design of an
effective approach to solve the algorithm selection problem. The main lines of
research considered in this thesis can be summarized as follows:

• How to design multi-objective landscape features?
Most of the work on multi-objective landscape analysis is based on two
concepts specific to multi-objective optimization, namely, dominance and
indicators. In this thesis, we aim to push further the available tools by
investigating the application of the so-called decomposition paradigm in
the design of informative landscape features.

• How to integrate landscape features for addressing high-level
optimization tasks ?
The features obtained by fitness landscape analysis can be used to ad-
dress the algorithm selection problem, which constitutes a challenging
high-level optimization task. A typical machine-learning-inspired ap-
proach consists in building an empirical performance prediction model to
capture the relation between the landscape and algorithm performance.
This applies both for single-objective and multi-objective optimization
problems. However, two difficulties are encountered: the importance of
the features and the evaluation of the prediction model. In fact, features
generally form of a large set of numerical values, and it is not always clear
why a particular feature set is accurate. Moreover, features complement
each others and their impact on a performance prediction model is to be
analyzed.

• What are the effects of the sampling strategies used for feature
computation?
Extracting landscape features requires to sample a set of solutions. Dif-
ferent sampling approaches have been proposed. However, the value of
the same feature can vary drastically depending on the sampling method
used to compute it. Hence, it is crucially important to understand the
impact of the sampling methods on feature computation cost and on
feature accuracy.

• How to reduce the computation cost in order to improve the
quality of automated algorithm selection?
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Feature sampling cost can directly influence the performance of the con-
sidered prediction models. As the goal is to determine the most suitable
algorithm for a given problem instance within a given budget, computing
features prior to the algorithm execution impacts the overall available
budget at the solving stage. The computation of features requires the
evaluation of a sample of solutions. The larger the sample, the more
accurate the features. However, the most accurate features may not be
useful if they require a large amount of budget. Conversely, reducing
the cost may reduce the model prediction quality, and the prediction
accuracy become questionable. To address this issue, we investigate a
metric to compare the efficiency of prediction models and we propose to
analyze the impact of the cost of computing features on their efficiency
and accuracy.

• How to construct benchmark problems with heterogeneous ob-
jectives in terms of their individual difficulty, and how hetero-
geneity impacts the landscape ?
Among the difficulties inherent to multi-objective optimization, the het-
erogeneity between objectives is an important issue. Heterogeneity can
take many aspects. One aspect is the difference in difficulty between
the objectives in terms of ruggedness and multi-modality, which has not
been explicitly explored so far. In this thesis, we introduce heterogeneous
multi-objective problems and we carefully examine the impact of hetero-
geneity on both the landscape properties and algorithm performance.

Overview of Contributions

Existing investigations on multi-objective landscape analysis are related to
two main concepts: the dominance relation and the use of quality indicator.
As it will be detailed later, dominance introduces a partial order among so-
lutions. Quality indicators are used to compare two sets of solutions and to
assess their performance. These two concepts are at the heart of several ex-
isting landscape-oriented approaches. In this thesis, we propose to investigate
the design of new landscape approaches based on the concept of decompo-
sition. This is in fact at the heart of different state-of-art multi-objective
algorithm such as MOEA/D. Therefore, our first contribution is an approach
using the decomposition paradigm to compute metrics characterizing the land-
scape. The proposed approach decomposes the objective space using a set of
weight vectors to generate a set of single-objective sub-problems. As the multi-
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objective problem is transformed into a set of single-objective sub-problems,
single-objective features can be computed for each sub-problem. Then, the
so-obtained single-objective sub-problems landscape features are aggregated
into multi-objective features. This approach is empirically analyzed from two
perspectives, before and after the aggregation, on a collection of bi-objective
benchmark problems with known properties.

In our second contribution, three approaches for multi-objective landscape
analysis, respectively indicator-based, dominance-based and decomposition-
based, are gathered to address two high-level tasks: predicting benchmark
parameters and automatically selecting the best algorithm for a given prob-
lem instance. Each of these tasks relies on the use of machine learning models.
In the first task, the model uses the landscape features to predict the bench-
mark parameters. In the second task, the features are used to predict the
expected performance of a set of algorithms. The first task highlights the abil-
ity of the features in characterizing and classifying problem instances based
on their respective landscape characteristics. The second task is an approach
to solve the algorithm selection problem. In this task, the machine learning
model uses algorithm performance on a set of problem instances to learn which
algorithm is expected to be the most efficient at a fixed budget. In this second
contribution, both tasks are analyzed through extensive experiments, showing
the importance of the considered feature sets and the synergy between them.

The third contribution aims at deepening our understanding of landscape
features. In fact, in the previously mentioned high-level tasks, the feature
computation costs are ignored in order to better study their accuracy. How-
ever, in practice, feature cost can be of critical importance. The feature cost
impacts both the features quality and the underlying algorithm selection ap-
proaches. Generally speaking, the larger the solution sample used for feature
value extraction, the more accurate the features. In our setting, algorithm
selection methods aim at predicting the most effective algorithm in order to
have the best approximation quality for a given fixed budget. Hence, feature
computation cost can negatively impact the efficiency of the considered pre-
diction models. As such, our third contribution includes the analysis of two
sampling strategies to provide an improved control over the sample size, and
the underlying feature cost. The impact of feature cost on algorithm selection
is then analyzed in a fine-grained manner.

In the last contribution of this thesis, we define a new collection of multi-
objective combinatorial optimization benchmark problems with heterogeneous
objectives. The proposed benchmark is thoroughly investigated with a land-
scape analysis approach. The proposed benchmark considers objectives with a
different level of difficulty. Heterogeneity can appear in several ways, such as
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different computation times or different relative scaling between the objectives.
In our case, heterogeneity is to be understood in terms of the differences in
difficulty between the objectives. We report a comprehensive fitness landscape
analysis using the proposed heterogeneous benchmark for bi-objective prob-
lems. To observe how heterogeneity impacts the landscape, problems with a
small number of variables are first fully enumerated, and then larger problems
are analyzed using the previously considered landscape features. Besides, two
state-of-the-art algorithms, namely NSGA-II and MOEA/D, are considered in
order to study how heterogeneity impacts the performance and behavior of
evolutionary algorithms.

Outline

The document is organized as follows. In Chapter 1, some general concepts
and definitions related to multi-objective optimization are provided. Different
solving approaches are described, as well as the main optimization benchmark
used in all our experiments. In Chapter 2, important notions related to fit-
ness landscape analysis are described before introducing our first contribution.
More specifically, using the decomposition paradigm, we design an approach to
compute multi-objective features and we perform a first experimental analy-
sis. In Chapter 3, the parameter prediction and automated algorithm selection
tasks are introduced. The proposed decomposition-based landscape features,
together with existing multi-objective features, are used to characterize black-
box optimization problems and to predict the best out of three competing
algorithms. In Chapter 4, the impact of the cost of the sampling method
is analyzed using two cost-adjustable strategies, highlighting the stability of
landscape features and their effect in the prediction tasks. In Chapter 5, we
propose a new multi-objective benchmark with a different tunable difficulty
for each objective, and we analyze the impact of such heterogeneity on the
landscape properties. Finally, in Chapter 6, we summarize our main results
and we discuss some perspectives.





Chapter 1

Background

In this chapter, we introduce the main concepts needed for understanding the
different studies presented in the following chapters. First, multi-objective
optimization is defined, together with the notion of dominance. Secondly,
some solving methods are presented, with a particular focus on evolutionary
algorithms. Three different multi-objective evolutionary algorithms are in-
troduced, with the algorithmic details of two state-of-the-art algorithms used
in the remaining of this thesis. Then, the fourth section explains the meth-
ods used to analyze the performance of multi-objective black-box optimization
algorithms. Finally, ρMNK-landscapes, a collection of multi-objective combi-
natorial benchmark problems, is defined and the motivations for using them
in the scope of our work is highlighted.

1.1 Multi-objective Combinatorial Optimization

1.1.1 General Concepts

An optimization problem can be defined by two components: a search space
X and an objective function f . The search space is the set of all solutions
x ∈ X and the objective function f : X → R assigns an objective value to
each solution. Among the possible solutions of a given problem, one has to
compute the ones which maximize (or minimize) the objective function. For
several optimization problems, the mathematical formulation of the problem
is given in a generic form and depends on specific input parameters/data. For
example, the well-known knapsack problem [72] needs a list of items with a
weight and a value per item. The optimization problem refers to the generic
formulation, whereas a problem instance refers to the problem under specific
parameters/data.

7
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The search space, also called decision space, is the set of all candidate
solutions. Given a set of n variables, where the number of variables n is
the problem dimension, the search space is typically composed of all possible
combinations of variables values. The second component of an optimization
problem is the objective function. The function assigns each solution with a
numerical value called fitness, rendering the relative quality of the solution.
Without loss of generality, we assume it is to be maximized. The formulation
of the objective function of an optimization problem may not be known by
the solver, and many often no properties about the function can be assumed.
This results in settings called black-box, where algorithms have no particular
knowledge about the objective function they need to solve. In other words,
in a black box optimization setting, an algorithm can only call the objective
function to evaluate the fitness of a solution.

The goal of an optimization algorithm is to obtain optimal solutions for a
given problem as efficiently as possible. The most common optimization cost is
the execution time of the algorithm. Each optimization problem belongs to a
class of complexity. The complexity classes indicate the minimal cost required
to solve any problem instance, as a function of the problem dimension. In the
following, we focus on hard problems for which the optimal solution cannot
be found in polynomial time. In the case of black-box problems, no specific
assumptions on the computation time of the objective function can be made.
Therefore, the optimization process seeks to minimize the number of calls to
the objective function, i.e., the number of solutions evaluated.

1.1.2 Definitions

This thesis is concerned with multi-objective combinatorial optimization prob-
lems. A problem is said to be multi-objective if there exists more than one ob-
jective function to optimize simultaneously. Consequently, the fitness of each
solution x ∈ X is a tuple of M values such that F (x) = (F1(x), . . . , FM(x)).

Definition 1 : Multi-objective combinatorial optimization problem

P =

{
maximize/minimize : F (x) = (F1(x), . . . , FM(x))

x ∈ X
(1.1)

WhereM is the number of objectives, X is the solution space, x = (x1, x2, ..., xn)
is a solution, F : X → Z is the objective function vector and F (x) =
(F1(x), ..., FM(x)) is the vector associated to x in the objective space Z = RM .

Without loss of generality, we consider that all objective functions are to be
maximized.
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1.1.3 Dominance Relation and Pareto Optimum

The main difference between single-objective optimization and multi-objective
optimization is the absence of total order between solutions. In fact, in the
single-objective case, each solution x in the search space X has a scalar ob-
jective value. For each pair of solutions x, x′ ∈ X , it is then possible to order
solutions as illustrated in Figure 1.1: x > x′ or x = x′ or x < x′. In the
case of multi-objective optimization, the order is not total. For example, Fig-
ure 1.2 illustrates three solutions of a bi-objective problem. The first objective
F1 actually corresponds to the objective of Figure 1.1. Considering only the
first objective, the yellow solution has the highest objective value and the red
has the lowest. However, this order is not preserved according to the second
objective F2. In a multi-objective problem, a solution can have a good quality
with respect to one objective and the worst quality with respect to another
objective. The objectives may be contradictory, such as for the yellow and
the red solutions, which are the best solutions according to the objectives F1

and F2 respectively. It is unlikely that a solution maximize all objectives si-
multaneously. In the example, as both the red and yellow solutions are better
than each other on one of the objectives, they are said to be incomparable.
Conversely, the green solution has a smaller objective values according to both
objectives in comparison to the yellow solution, it is therefore said that the
yellow solution dominates the green solution. As such, there is no total order
determining which solution is the best using the objective vector.

F1

> >

Figure 1.1: Total order for single-objective optimization.

The relationships determining incomparability and dominance came from
the Pareto dominance relation and are formally defined below. Because of
these relationships, we are not interested in a single solution but in a set of
optimal solutions called the Pareto set.

Definition 2 : Pareto dominance
Given two objective vectors z, z′ ∈ Z, z dominates z′ if zi ≥ z′i,∀i ∈ {1, ...M}
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F1

F2

Dominate

Incomparable

Incomparable

Figure 1.2: Lack of total order for multi-objective optimization. Red and
yellow solutions are incomparable. The yellow solution dominates the green
solution.

and ∃j ∈ {1, ...M} such that zj > z′j. A solution x ∈ X dominates x′ ∈ X if
the objective vector F (x) dominates F (x′).

Definition 3 : Incomparable solutions
Given two objective vectors z, z′ ∈ Z, z and z′ are incomparable if ∃i, j ∈
{1, ...M} such that zi > z′i and zj < z′j. A solution x ∈ X is incomparable to
x′ ∈ X if the objective vectors F (x) and F (x′) are incomparable.

Definition 4 : Dominated solutions
An objective vector z ∈ Z is said to be dominated by the objective vector z′ ∈ R
if ∀i ∈ {1, ...M} , zi ≤ z′i and ∃i ∈ {1, ...M} such that zi < z′i. A solution
x ∈ X is dominated by x′ ∈ X if the objective vector F (x) is dominated by
F (x′).

Definition 5 : Pareto optimal solution
A solution x ∈ X is said to be Pareto optimal if ∀x′ ∈ X , x ̸= x′, x is non-
dominated by x′.

Definition 6 : Pareto set
The Pareto set PS is the set of all non-dominated solutions
PS = {x|x ∈ X , x is Pareto optimal}
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Definition 7 : Pareto front
The Pareto front PF is the projection of all non-dominated solutions into the
objective space PF = {F (x) ∈ Z|x ∈ PS}

Definition 8 : Ideal point
The ideal point z∗ = (z∗1 , ..., z

∗
M) is the vector which maximizes all objective

functions independently, z∗i = maxx∈XFi(x),∀i ∈ {1, ...,M}

Definition 9 : Nadir point
The nadir point zn = (zn1 , ..., z

n
M) is the vector constituted by the worst values

from the Pareto front, which minimizes all objective functions independently,
zni = minx∈PFFi(x),∀i ∈ {1, ...,M}

1.2 Solving Methods

There are mainly three strategies to solve multi-objective optimization prob-
lems. Among these, a human, denoted as the decision-maker, acts at different
moments. The decision-maker knows the usefulness of the solutions once found
and can therefore provide guidance to the search. The three strategies are:

• A priori methods. The decision-maker determines priorities among the
objectives. An objective can be considered to be the most important.
Others objectives can be set as constraints (positive or negative), mean-
ing that the solution must reach a defined objective value which is not
necessarily the optimum. Alternatively, objectives can be aggregated
into a single-objective, such as with a weighted sum. The main advan-
tage of this approach is the creation of a total order between solutions.
Then, single-objective resolution methods can be applied to search the
optimal solution. On the other hand, the main difficulty lies in the mod-
elling of preferences between the objectives. A wrong characterization
will return a solution which is not good for the decision-maker. Both
steps, characterization and resolution, must be repeated to find a better
solution.

• A posteriori methods. No distinction is made between the objectives.
Therefore, all solutions from the Pareto set are possible candidates and
must be found. In this case, the decision maker acts at the end, deciding
among Pareto optimal solutions the one to use.

• Interactive methods. In this third strategy, the decision-maker and the
resolution method cooperate to obtain a good solution. Depending on
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intermediary results, the decision-maker refines the priorities between the
objectives, enabling the search to be adapted according to their needs.
Nevertheless, one constraint of this method is that the decision-maker is
present at the different stages of the search.

The choice of the approach depends on the known properties of the problem.
In this thesis, we only consider multi-objective algorithms belonging to the
posteriori methods. In particular, we considered only the first step, which
consist in finding the Pareto set.

1.2.1 Exact and Approximate Algorithms

One may consider two classes of algorithms when solving a optimization prob-
lem. On the one hand, exact algorithms seek the optimal solution or the set
of Pareto optimal solutions in the context of multi-objective optimization. On
the other hand, approximation algorithms seek to get as close as possible to the
optimum, without necessary reaching it. Although the exact set of optimal
solutions is preferable to an approximation, the complexity of optimization
problems is often a barrier to exact algorithms. For combinatorial problems,
designing an efficient exact algorithm is not always possible due to a number
of factors such as the cost of evaluation, the intrinsic computational complex-
ity of the problem, or the size of the search space. That is why in this thesis
we are interested in approximation algorithms. Among the class of approx-
imation algorithms, some guarantee a quality level called k-approximation,
i.e., the quality of the computed solution is at most a k multiplicative factor
from the optimal one. Finding such a k-approximation is not always trivial
nor possible, and it is often problem specific. Besides, such methods are not
compatible with black-box optimization.

In this thesis, we are interested in heuristic search algorithms, which can be
viewed as approximation algorithms that do not provide a theoretical guaran-
tee on the solution quality ratio. Evolutionary algorithms are such an example,
which form one of the main branches of meta-heuristics [13]. This family is
widespread due to its versatility. In fact, it can be successfully applied to
efficiently solve a wide range of optimization problems, and it constitutes a
popular approach for tackling multi-objective optimization problems, which is
the main concern of this thesis.

1.2.2 Evolutionary Algorithms

Evolutionary algorithms [29] are an important class of randomized/stochastic
heuristic algorithms. Originally inspired by the evolution of living species,
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these algorithms maintain a population of solutions which is used to gener-
ate new solutions called offspring. In preparation for the next iteration, the
newly generated solutions are first evaluated. Then, a new population is se-
lected among solutions from both the previous population and the generated
offspring, and so on. A general schema of how an evolutionary algorithm work
is presented in Figure 1.3.

Initialization
An evolutionary algorithm needs an initial population to start with. This
population will be evolved in the subsequent iterations. Most of the time,
the initial population is randomly generated. There exist alternative methods
to generate an initial population, such as a Latin hypercube [43] for non-
combinatorial problems or via problem-specific heuristics. The size of the
population is a parameter that influences performance. The larger the popu-
lation, the more diverse the solutions in the search space. Conversely, when
the population is small, the algorithm typically performs, for a same budget, a
greater number of iterations to improve the population. As a result, exploita-
tion is favored instead of exploration. The initialization is usually done only
at the beginning, however some heuristics may include a population restart
during execution. The goal of the restart is to avoid a situation in which the
algorithm stagnates when generations no longer produce interesting solutions.

Selection
Similar to the evolution of the living spices, the construction of new solutions
is based on two steps: reproduction between members of the population and
mutation. The selection step is to identify parent solutions from the popu-
lation that will be combined in the reproduction step to form new offspring
solutions. Selection operators choose among the population which parents are
promising. These solutions are not necessarily those with the best objective
values, because they can be local optima or solutions too regularly used in the
selection. There are many selection operators, and they are often stochastic
processes [103, 84, 45]. The most common/popular operators are:

• The roulette-wheel selection [60] randomly selects parents from the avail-
able solutions with a non-uniform distribution. The probability for an
individual to be selected is based on the objective values of each solution.

• The stochastic universal sampling [70] is a variant of roulette-wheel lim-
iting the risks of early convergence.
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Figure 1.3: General diagram of a multi-objective evolutionary algorithm
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• The linear selection [34] is also a variant of the roulette-wheel, using
the ranking of solutions instead of their objective values to define the
distribution of probabilities.

• The tournament selection [30] is a selection process which compares a
pair of solutions until only one is left. It can be modeled as a binary
tree. Each of the leaves represents a solution of the population. At each
node, two solutions are compared, and the best one is selected for the
next round.

• The random selection is, as the name suggest, a fully stochastic methods
to selects parents.

Notice that, in all the above selection operators, at the exception to random
selection, solutions need to be compared based on their fitness. In the case of
multi-objective optimization, the dominance relation can be used instead of
the fitness to compare solutions.

Reproduction
The reproduction step generates new solutions by recombination of parent
solutions. The solutions generated are called offspring. There are several
operators for reproduction [82, 85]. Two examples are given below.

• Single and multiple point crossover [25, 82]. For the single point crossover,
a random point is selected among the variables. In the newly generated
solution, all variable values before the point are taken from the first par-
ent and all variable values after the crossover point are taken from the
second parent. In the multiple point crossover, more than one point is
selected, and the variable values are taken between the crossover points
alternatively from the two parents.

• Uniform crossover [87]. Each variable of the offspring is selected at ran-
dom from the parents.

Mutation
The mutation operator is a unary operator. It induces a variation in the vari-
able values to generate a new solution. The goal of the mutation is to introduce
additional diversity, and potentially to improve parent/offspring solutions. In
the context of binary optimization problems, it is usual to use a mutation
operator which flips each variable with a given probability. The probability
is called the mutation rate. There are variants of this operator where the
mutation rate is not fixed, but is instead set dynamically [27].
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Evaluation
Once new solutions are generated, it is necessary to evaluate them. The eval-
uation is a call to the objective function having as input a given solution.
The evaluation must be done before the replacement step. For multi-objective
optimization, the evaluation is usually followed by an update of an archive.
The archive usually keeps track of all non-dominated solutions found so-far.
In the context of black-box optimization, the evaluation is considered to be
the most time-consuming step. Thus, the cost of the algorithm is computed
as a function of the number of calls to the objective function.

Replacement
The last step is to select among the current population and the offspring which
solutions to keep as a new population for the next iteration of the algorithm.
There are many approaches to replace the old population. When accepting
solutions that are not necessarily better than the previous ones, the algorithm
promotes exploration. On the contrary, keeping only the best solutions favors
exploitation, which might be at the cost of diversity. Once the replacement
step done, the algorithm repeats the previous steps until a stopping criterion
is satisfied.

1.3 Multi-objective Evolutionary Algorithms

Most multi-objective evolutionary algorithms fall into one of three categories
[104, 12, 26]. Dominance-based algorithms use the dominance relation as par-
tial order to evolve solutions. Indicator-based algorithms try to improve a
quality measure for comparing solutions. Decomposition-based algorithms
manage to decompose the multi-objective problem into several single-objective
sub-problems.

1.3.1 Decomposition-based Approaches

Among decomposition-based multi-objective evolutionary algorithms, the so-
called MOEA/D algorithm [104] has received a lot of attention due to its
ability to efficiently solve various problems. MOEA/D is based on the reso-
lution of single-objective sub-problems, which are scalar aggregations of the
initial objectives. Sub-problems are then solved by techniques dedicated to
single-objective optimization, while allowing cooperation among sub-problems
solving; so to improve the speed of convergence and the diversity of the popula-
tion. The MOEA/D algorithm has been improved many times [62, 102, 86, 73].
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The main steps of the algorithm are presented in Algorithm 1 and are discussed
below.

Algorithm 1 MOEA/D [104]

Input: F = (F1, ..., FM) : X −→ Z: fitness function
g(x,w) −→ R: aggregation function.
W = {w1, . . . , wµ}: weight vectors.
V : Neighborhood size.
C: stopping condition.

▷ set the initial solution for each weight vectors
P ← {random solution,∀i ∈ {1, ..., µ}}
S ← {F (p),∀p ∈ P} ▷ Evaluate the population
A← Non-dominated(S) ▷ Initialize archive
z∗ ← {max(Fi(s),∀s ∈ A) , ∀i ∈ {1, ...,M}} ▷ Initialize the reference point
repeat

for i ∈ {1, ..., µ} do ▷ for each sub-problem
▷ Extract the neighborhood of the current sub-problem

T ←
{
(j, P [j]), ∀j ∈ {1, ..., µ} , j ̸= i such that |i− j| < V

2

}
Parents← selection(T ) ▷ Select parents among the neighborhood
Offspring← crossover(parents)
pi ← mutate(offspring)
si ← F (pi) ▷ Evaluate new solution
if non-dominated(A, si) then

A← update A(A, si) ▷ update archive
z∗ ← update Z(z∗, si) ▷ update reference point

end if
for (j, sj) ∈ T do ▷ for each neighbors

if g(si, wj) is better than g(sj, wj) then
P [j]← pi
S[j]← si

end if
end for

end for
until C
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Decomposition into single-objective sub-problems

The MOEA/D algorithm transforms a multi-objective problem into several
single-objective sub-problems. The decomposition process is configured by a
set of µ weight vectors wi, i ∈ {1, . . . , µ} and an aggregation function g(x,w),
where x is a solution in the search space X . Each weight vector results in
a different single-objective sub-problem to be solved. The population size
of the algorithm is equal to the number of sub-problems. Each solution of
the population is the current best solution to the corresponding sub-problem.
At each generation, MOEA/D iterates over all sub-problems until a stopping
criterion is met. At each iteration, the algorithm attempts to improve the
current sub-problem. Two parent solutions are first selected to generate a new
offspring. The offspring is then modified through a mutation operator. If the
newly generated offspring improves the current sub-problem, it replaces the
previous best solution of the current sub-problem in the population.

If the number of weights µ is small, the algorithm spends more time gen-
erating new offspring. By contrast, when µ is large, the number of iterations
per sub-problem is reduced if the stopping condition is a fixed number of eval-
uation. However, the population is larger, hence it may cover the Pareto front
more efficiently. Similarly to the number of weight vectors, their distribution
alters the efficiency of the algorithm. In the most intuitive approach, weight
vectors are distributed uniformly, as illustrated in Figure 1.4. However, the
Pareto front may not be uniform. Thus, the algorithm computational efforts
devoted to some weight vectors may lead to a loss of function evaluations.
For bi-objective optimization problems, a set of uniformly distributed weight
vectors can be generated with the following equation:

wi =

(
1− i

µ− 1
,

i

µ− 1

)
,∀i ∈ {1, . . . , µ}

where the first and the last weight vectors (w0 = (1, 0) and wµ = (0, 1))
respectively correspond to the first and the second objective of the problem.
For more than two objectives, the generation of weight vectors is based on more
advanced procedures such as the simplex lattice design [88]. In this thesis, we
will only consider bi-objective problems in our experimentation, although most
of our contributions can apply for more objectives.

Single-objective sub-problems are defined by a single scalarizing function
using the weight vectors. Several scalarizing functions were proposed in the
literature. The two most current ones are the weighted sum and the Chebyshev
function.
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Figure 1.4: Decomposition of a bi-objective problem with 5 weight vectors.

• Given a weight vector w = (w1, . . . , wM), a solution x ∈ X and its ob-
jective value F (x) = (F1(x), . . . , FM(x)), the weighted sum aggregation
function is defined as follows:

WS(x,w) =
M∑
i=1

wi · Fi(x)

• The Chebyshev aggregation function compare solutions to an ideal refer-
ence point z∗ ∈ RM . Given a weight vector w = (w1, . . . , wM), a solution
x ∈ X and its objective value F (x), the Chebyshev aggregation function
is defined as follows:

g(x,w) = max
i∈{1,...,M}

wi ·
∣∣z∗i − Fi(x)

∣∣
The reference point z∗ = (z∗1 , . . . , z

∗
M) is expected to be an ideal point.

In a black-box scenario, since the maximal value of each objective is
unknown, the reference point is set as the best value found so far for
each objective:

z∗ = max
x∈X ′

Fi(x), ∀i ∈ {1, . . . ,M}

where X ′ is the set of solutions evaluated so far by the algorithm. As
the reference point may not be an ideal point once new solutions are
generated, it must be updated at each iteration of the algorithm.
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Cooperation between sub-problems

The specificity of the MOEA/D algorithm is that single-objective sub-problems
cooperate. Using an integer parameter V to define the size of the neighbor-
hood, all sub-problems are assigned V neighbors. In the bi-objective case,
when V is even and given ordered weight vectors W = {w1, . . . , wµ}, the
neighborhood T of a weight vector wi is the set of the V closest weight vectors
defined as follows:

Ti =

{
wj,∀j ∈ {1, ..., µ} , j ̸= i such that |i− j| < V

2

}
The cooperation affects both the selection and replacement step. For a current
sub-problem wi, only its neighborhood Ti, a subset of the population, can be
selected as a parent solution. In addition, newly generated solutions from the
weight vector wi are compared to solutions from the neighborhood Ti using
their respective scalarizing function; hence, possibly improving other weight
vectors than the one it was originally assigned to.

Replacement

In MOEA/D, the newly generated solution can replace one or more solutions.
Given the current weight vectors wi, solutions that may be replaced are the
previous best solutions of with respect to weight vectors wi and its neighbor-
hood Ti. The solution to be maintained for each weight vector is the one
optimizing the corresponding scalarizing function g(x,w).

MOEA/D variants

Many variants of MOEA/D exist in the literature [62, 63]. In the second
and third contribution (Chapter 3 and 4), two variants called MOEA/D-SS
and MOEA/D-SC [63] are considered. These are particular variants of a more
general framework, called MOEA/D-XY, which modifies the selection (X) and
replacement mechanisms (Y) of the standard version of MOEA/D. For both
MOEA/D-SS and MOEA/D-SC, the first S stand for selfish, meaning that
selected parents always include the solution from the current weight vector.
The second parent is selected among solutions of the neighbors Ti. The second
parameter Y affects the replacement strategy. The difference only appears in
MOEA/D-SS, as the replacement is the same for MOEA/D and MOEA/D-
SC. The replacement in the population is a selfish replacement. The newly
generated solution can only replace the previous solution of the current weight
vector. By removing the cooperation between sub-problems, the algorithm
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favors diversity in its population. A third variant is considered in combination
to MOEA/D-SC and MOEA/D-SS, to introduce a maximum number of re-
placement for a given solution. This third variant is called MOEA/D-NR [62].
It introduces the nr parameter to fix the maximal number of replacements to
avoid cases where a good solution outperforms most solutions of the closest
sub-problems, resulting in a loss of diversity in the population.

1.3.2 Dominance-based Approaches

A second class of approaches is based on the dominance relation. As men-
tioned earlier, the dominance defines a partial order between solutions. Among
dominance-based algorithms, NSGA-II [26] is used in Chapter 5. The main
steps of the algorithm are presented in Algorithm 2.

Algorithm 2 NSGA-II [26]

Input: F = (F1, ..., FM) : X −→ Y : fitness function
L: Population size.
C: stopping condition.

P ← {random solution,∀i ∈ {1, ..., L}} ▷ Initialize population
S ← {F (p),∀p ∈ P} ▷ Evaluate the population
A← Non-dominated(S) ▷ Initialize archive
repeat

▷ generate next Population by selection, recombination and mutation
P ′ ← generate()
S ← {F (p),∀p ∈ P ′} ▷ Evaluate new solutions
ranks← non-dominated-sorting(P ′, S)
dists← crowding distance(P ′, S)

▷ select solutions for the next generation of population
P ← sort(P ∪ P ′, ranks, distances)
A← update Archive(A,P ′) ▷ update archive

until C

The NSGA-II algorithm uses two sorting procedures as a mechanism to
select the solution to keep from the union of the previous population P and the
offspring P ′ generated in the current generation. The first sorting procedure is
the non-dominated-sorting detailed in Algorithm 3. The function returns the
Pareto rank for each solution: non-dominated solutions P 1 from the population
are assigned a rank of 1. From the remaining solutions of the population P \P 1,
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non-dominated solutions are assigned a rank of 2 and so on. As such, solutions
with the lowest Pareto rank are closer to the Pareto front.

Algorithm 3 Non-dominated sorting

Input: P : population of solution
S: multi-objective value of the population

R← 1
while P is not empty do

for p ∈ P do
if p is not dominated by P {p} then

ranks[p]← R
end if

end for
R← R + 1

end while

The second sorting procedure is the crowding distance detailed in Algo-
rithm 4. As several solutions of the population may have the same Pareto
rank, the crowding distance allows ordering solutions with a same rank. In
this procedure, solutions are first sorted in ascending order for the value of the
mj ∈ {1, . . . ,M} objective. Solutions on the boundary are set to an infinite
value of crowding distance and intermediary solutions to the normalized dif-
ference between the previous and the next solutions. As a result, solutions far
apart from others are more likely to be selected, thus increasing diversity in
the objective space.

1.3.3 Indicator-based Approaches

The last category of approaches is based on the use of an indicator. A quality-
indicator is a set function that allows simpler comparison between solutions
or set of solutions. Evolutionary algorithms from this category use a quality-
indicator such as the hypervolume [8, 105] or the R2 indicators [37, 17]. Most
of the time, an indicator transforms the multi-objective value into a single
value. Thus, the indicator defines a total order between solutions. Among
algorithms of this category, SMS-EMOA [12] is a popular example. From a
population P , offspring solutions P ′ are generated to form a larger population
P2 = P ∪P ′. Then, the algorithm removes solutions with the smallest measure
according to the indicator. Indicator-based algorithms are not considered in
the thesis. More information can be found in [31, 32, 54].
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Algorithm 4 Crowding distance

Input: P r: subset of the population of rank r
S: multi-objective fitness of the population subset

n← |P r|
for i ∈ {1, . . . , n} do

dists[i]← 0 ▷ initialize distances
end for
for mj ∈ {1, . . . ,M} do ▷ for each objective

sort(P r, S,mj) ▷ Sort the population by the mj objective value
dists[0] = dists[n] =∞
for i ∈ {2, . . . , n− 1} do

dists[i] = dists[i] +
Smj [i+1]−Smj [i−1]

Smj [0]−Smj [n]

end for
end for

1.4 Performance Analysis

The analysis and the comparison of algorithms require a fair comparison and
setting, that do not favor one algorithm over the other. As mentioned earlier,
evolutionary algorithms rely on a stopping condition. This condition must be
the same for all algorithms. It ensures that the execution time or that the
resources needed by the algorithms are the same. As for the measure, quality
indicators are often used for multi-objective optimization, since they make it
easier to compare sets of solutions.

1.4.1 Algorithm Budget and Stopping Condition

During the execution of an evolutionary algorithm, the algorithm iterates un-
til a stopping condition is satisfied. To allow simpler comparison of algorithm
performance, it is necessary to set comparable stopping conditions to algo-
rithms. As the execution time is the most common issue when solving difficult
problems, the execution time is considered as a budget and the algorithm stops
once the budget is exhausted. However, physical differences between computer
components impact the execution time, making it unreliable to use the exact
CPU time. In black-box settings, the evaluation of a solution is considered as
the most time-consuming operation. Such a setting allows us to consider the
number of calls to the objective function as the budget. Given a budget B,
once the algorithm has evaluated B solutions, the algorithm stops.
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1.4.2 Quality Indicators

One of the major difficulties in multi-objective optimization is the absence of
total order between solutions and between sets of solutions. As seen previ-
ously, it is possible to classify solutions according to the dominance relation.
However, this relationship remains a partial order. For two sets, e.g., the sets
of solutions found by two algorithms, it is necessary to compare them. For
example, in Figure 1.5, the set of red points contains various solutions dis-
tributed between the two objectives. In contrast, the set of green points has
fewer solutions with a higher concentration of solutions in the center of the
objective space. Green solutions have a slightly better aggregated value of the
objectives, e.g, the Euclidean distance between red solutions and ideal point
is smaller. Using only the dominance relation, all solutions from both the red
and green sets are incomparable. It is not reasonable to compare both sets
using solely the dominance relation. In fact, each set has its own strength; the
red set has a better diversity and the green set is closer to the ideal point.

f1

f2

0

ideal point

Figure 1.5: Example of two incomparable fronts; Green front has a concentra-
tion of solution around the center between objectives and a better convergence
to the ideal points, red front has more solutions and an improved diversity in
the objective space. All solutions are incomparable.

To compensate for the absence of total order, several quality indicators have
been proposed in the literature [109, 106]. Among these, the hypervolume [8,
108] measures the multidimensional portion of the objective space covered
by the solution set under consideration. This indicator is a unary indicator,
assigning to each approximation set a scalar value. According to the space
covered by the solutions of the approximation set, the larger the hypervolume,
the better the approximation. In Figure 1.6, the hypervolume of the red and
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Figure 1.6: Hypervolume of the two previous front from example 1.5. The
green respectively red area shows the area covered by the green and red front
approximation, respectively.

green set respectively corresponds to the highlighted red and green area. To
compute the hypervolume, a reference point zref is required.

f1

f2

0

ideal point

zref

Figure 1.7: Visual representation of the difference of hypervolume between the
green and red front. Green areas, respectively red areas, show the portion of
space covered by the green approximation but not by the red approximation.

The relative hypervolume deviation is a variant of the hypervolume indica-
tor. This variant allows us to compare two set of solutions directly. It computes
the difference of hypervolume, i.e., the difference in the covered space between
the two sets (Figure 1.7). It is especially useful to compare the quality of a
set in relation to the Pareto set. In the example, both approximations reach
a similar hypervolume. However, the hypervolume covered by the green set
slightly outperform the hypervolume of the red set.

On top of these considerations, for evolutionary algorithms, the perfor-
mance varies from one execution to another. To evaluate the performance,
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it is hence necessary to execute multiple runs using different random seeds.
Statistical tools, such as the mean or the standard deviation, are used on the
indicator distribution to draw conclusions on algorithm performance.

1.5 Performance Assessment and Benchmarks

For the development of most studies presented in this thesis, one of the first
(bottleneck) issues is to fix a collection of optimization problems on which
experimental results can be derived.

1.5.1 Importance of Benchmark

There are a number of studies [10] that highlight the advantages of the de-
velopment of benchmarks and their use. This is especially important for the
visualization and the comparison between publications. Some benchmarks
are made of a set of known problems, such as the black-box optimization
benchmarking test-suites (BBOB) [38, 16] for continuous optimization. Oth-
ers are framework-type benchmarks, such as the NK-landscapes [9] or the W-
Model [97]. In these case, the benchmark is a problem generator. It uses
several parameters to generate problem instances with specific characteristics.
In this thesis, the benchmark needs to have the following requirement:

1. Artificial combinatorial optimization problem: as per choice this study
focuses on landscape analysis for multi-objective combinatorial optimiza-
tion, this is a mandatory aspect for benchmarking the approaches under
consideration.

2. Scalability of the problem: the dimension and the number of objectives
must be tunable to generate a diversified set of problem instances.

3. Well-known problem characteristics and landscapes: as this thesis re-
lies on the design and the analysis of multi-objective landscape features,
insights on the problem structure simplify the understanding of the pro-
posed methods.

Following these requirements, we selected the ρMNK-landscapes as a multi-
objective problem generator. The benchmark is defined in the next section.
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1.5.2 ρMNK-Landscapes

ρMNK-landscapes constitute a multi-objective combinatorial optimization bench-
mark. It is actually a framework for generating multi-objective problems with
different characteristics. Generally speaking, NK-landscapes [46] are challeng-
ing single-objective combinatorial optimization problems. At first, they were
proposed to investigate the relationship between the epistasis and the land-
scape. The epistasis is a biological notion that characterizes the interactions
between genes (i.e., variables for combinatorial problems). NK-landscapes are
configured by two integers: n the number of binary variables and K the num-
ber of interaction between variables.

Given a number n of binary variables, an integer parameter K < n, a set of
K interactions Π(xj) ⊆ {x1, . . . , xn} \ {xj} for each variable xj, j ∈ {1, . . . , n}
with |Π(xj)| = K, and a real-valued sub-function fj defining the contribution
of each combination of values of xj and Π(xj), the (single-)objective function
F underling a NK-landscape (to be maximized), is defined as follows:

F (x) =
1

n
·

n∑
j=1

fj(xj,Π(xj)). (1.2)

It is important to notice that NK-landscapes are basically a linear combination
of non-linear sub-functions (contribution) of K + 1 variables.

MNK-landscapes [2] are an extension of the NK-landscapes for multi-
objective optimization. A MNK-landscape is defined as a vector function map-
ping every binary string x ∈ {0, 1}n intoM real numbers F = (F1, F2, . . . , FM) :
{0, 1}n → RM , where M is the number of objectives, n is the number of vari-
ables, K is the number of interactions per variable, and Fi is the i-th objective
function defined by, i ∈ {1, . . . ,M}:

Fi(x) =
1

n
·

n∑
j=1

f i
j(xj,Π(xj)). (1.3)

As in the single-objective case, Π(xj) denotes the set of k variables interacting
with xj within each of the sub-functions f i

j : {0, 1}K+1 → R.
An extension to MNK-landscapes adds correlation between objectives [94].

In ρMNK-landscapes, fitness components f i
j are not defined independently.

For all solutions x, its associated value f i
j(xj,Π(xj)) follows a multivariate

uniform distribution of dimension K, defined by a correlation matrix Cρ. This
is a symmetric positive-definite used to define random variables with specified
level of correlation [40]. When ρ = 0, no correlation is introduced, hence
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ρMNK-landscapes are similar to MNK-landscapes. For a positive value: 0 <
ρ < 1, objective values are positively correlated, leading to solutions with good
objective value for each objective. Inversely, when ρ is negative: −1 < ρ < 0,
objectives are conflicting and improving an objective seemingly reduces the
objective value for other objectives. It is important to remark that, in the
standard definition of ρMNK-landscapes and in order to control the objective
correlation, the size and the variables of Π(xj) do not depend on the objective
function, i.e., every variable has exactly the same set of interactions for each
objective, in contrast to MNK-landscapes.

1.6 Conclusion

In this chapter, we introduced various concepts related to multi-objective opti-
mization. These concepts include the definition of a multi-objective optimiza-
tion problem and their Pareto optimal solutions, defined by the dominance
relation. We introduced the main resolution approaches, and we thoroughly
explained how evolutionary algorithms operate to solve an optimization prob-
lem. MOEA/D and NSGA-II were presented in details, as both state-of-the-art
multi-objective evolutionary algorithms are used in the following chapters. As
this study focuses on black-box optimization, we emphasized the importance
of quality indicators and algorithm budget to analyze algorithm performance.
Finally, we discussed the importance of benchmark, and we introduced ρMNK-
landscapes, the multi-objective combinatorial benchmark used for experimen-
tal studies in the following chapters.

In the next chapter, we present the first contribution of this thesis. Inspired
by the decomposition paradigm from MOEA/D, we propose to decompose
the multi-objective optimization problem into single-objective sub-problems
to analyze the landscape. The presented approach is empirically tested and
analyzed on ρMNK-landscapes.



Chapter 2

Decomposition-based Landscape
Analysis

In this chapter, we present the first contribution of this thesis, which deals
with the design of a decomposition-based methodology for multi-objective
landscape analysis. Firstly, the necessary background on landscape analy-
sis is provided. Secondly, the new methodology for computing multi-objective
features is introduced. The proposed approach is inspired by the concept of
decomposition as introduced in the previous section within the state-of-the-
art MOEA/D algorithm. Thirdly, a first experimental analysis using ρMNK-
landscapes is conducted to highlight the relevancy of the proposed approach.

The contribution presented in this chapter has been published and pre-
sented at the European Conference on Evolutionary Computation in Combi-
natorial Optimization (EvoCOP 2021): “Decomposition-based landscape anal-
ysis for multi-objective optimization” and it was nominated for the best paper
award [21].

29
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2.1 Fitness Landscape Analysis

The concept of adaptive landscape (or fitness landscape) was introduced by S.
Wright in the field of evolutionary biology in the early thirties [101]. It consists
in representing living organisms using an abstract space with a neighborhood
relationship. This concept has also been established in other fields of science
such as molecular biology, statistical physics [36, 71, 46], or combinatorial op-
timization to interpret complex dynamic systems. In the field of combinatorial
optimization, the interest of this metaphor is to define an abstract structure
of the search space and to link it to the dynamics of search algorithms, in par-
ticular by extracting useful information about the difficulty for an algorithm
to optimize a given problem.

2.1.1 Definition and Background

With respect to single-objective optimization problems, a fitness landscape
can be defined as a triplet (X ,N , F ), where:

• X is the solution space (also called search space).

• N : X −→ 2X is a neighborhood relation which maps for each solution
x ∈ X a set of neighbors N (x).

• F : X −→ R the fitness function that associate a scalar value F (x) to
each solution x ∈ X .

The search space X and the fitness function F are in general defined very
naturally with respect to the optimization problem at hand. The neighbor-
hood relation can however be defined in several manners, as it is the case
when designing a local search algorithm. Depending on the problem at hand,
different neighborhood relations can be considered; hence, leading to different
landscapes.

In combinatorial optimization, the neighborhood function depends on how
solutions are represented. For binary optimization problems, a solution x ∈ X
is a binary vector x = {0, 1}n. The most common neighborhood relation is the
bit flip and, more generally, the distance between two solutions is the Hamming
Distance D. The Hamming Distance between two solutions x, y ∈ X 2 is the
number of bits that differs in x and y. When the Hamming Distance between
solutions x and y is D(x, y) = 1, x and y are said to be neighbors. In this
case, the neighborhood relation is symmetric, i.e., if y is in N (x) then x is in
N (y).
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It is important to notice that different neighborhood relations result in
different landscapes. Fitness landscapes are not necessarily three dimensional
landscapes. In the case of combinatorial problems using the hamming distance,
each solution is a binary vector with n neighboring solutions and therefore the
landscape has n+ 1 dimensions.
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Figure 2.1: Schematic transformation from the search space and fitness values
to a landscape.

In a three-dimensional landscape, such as in Figure 2.1, each of the solu-
tions is a point which can be sorted by their proximity. Due to the number of
dimension, it is not possible to easily visualize the landscape of combinatorial
problems. In the example, the resulting Γ = (S, V, F ) landscape graph is a
set of connected vertices (solutions), edges indicate the neighborhood relation
between two solutions and the value of all vertices is the fitness value.

2.1.2 Landscapes and Problem Structures

Fitness landscape analysis is particularly interesting for observing and char-
acterizing the structural properties of a given optimization problem instance.
Besides, the intrinsic characteristic of a problem are known to impact the per-
formance of the considered optimization process. In particular, the “no free
lunch” theorem [99, 100] states that all optimization algorithms have equiva-
lent average performance over the set of fitness functions F : X −→ Y , where
X is the solution space, Y the fitness space and both X and Y are finite sets.
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As a result, if there is an optimization algorithm A1 that outperforms the
algorithm A2 on a subset of F functions, then there is another subset of F
where A1 performs worse than A2. The consequences of this theorem have
been thoroughly discussed [74, 83, 42]. However, this theorem reinforces the
idea that the development of an algorithm requires knowing the characteristics
of the problem that is to be solved.

Local optima: Given an optimization problem P : X → R, a local optima
is a solution x ∈ X for which there exist no better solutions in its neighbor-
hood N (x). Therefore, the optimal solution of the problem is a local optima.
However, a local optima is not necessarily an optimal solution. To make a
distinction, the optimal solution is called global optima. In multi-objective
optimization, we make a distinction between Pareto Local Optima (PLO)
and single-objective local optima (SLO) which are local optima with re-
spect to only one objective. As illustrated in Figure 2.2, the landscape can
have more than one local optima. In the figure, each peak is a local opti-
mum. Evolutionary algorithms, especially basic search algorithms such as Hill

Figure 2.2: 3-dimensional representation of Local optimas.

Climbers [44], evolve a solution by selecting the best solution in the neigh-
borhood. Thus, once the solution is a local optima, algorithms get stuck and
cannot improve. In recent years, although a number of approaches have been
proposed to tackle this difficulty [39], landscapes with many local optima so-
lutions remain hard to solve in general.

Smooth and unimodal landscapes: A landscape is said to be unimodal
if the only local optima is the global optima. An example of a unimodal
landscape is illustrated in Figure 2.3. The landscape is smooth if for all so-
lutions from the search space, there is at least one neighbor which improves
the fitness, except for the global optima. Due to this characteristic, smooth
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and unimodal landscapes are considered to be easy to solve. It is possible to
determine the direction to evolve a solution towards the optimum. Therefore,
given any solution of the search space, there is a path leading to the global
optima by performing successive bit-flip operations.

Figure 2.3: 3-dimensional representation of a smooth landscape.

Rugged landscapes: One of the most important landscape characteristic
is about its ruggedness [41]. A landscape is said to be rugged when its local
structure is rough, as for example in Figure 2.4. Rugged landscapes are the
opposite of smooth landscapes. These landscapes are irregular, and neighbors
can have major gaps in their fitness. For Hill Climber algorithms, neighbors
improving the current solution are not necessarily the best direction to follow,
as the paths to arrive to the global optimal solutions are not made up solely
of improving solutions.

Figure 2.4: 3-dimensional representation of a rugged landscape.

Neutral landscapes: Another classical landscape property concerns neu-
trality [92], as illustrated in Figure 2.5. Neutral landscapes contain solutions
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whose fitness values are the same as their neighbors. Such landscapes contain
plateaus with a number of neighboring solutions of equal fitness. Such land-
scapes are also difficult to search for evolutionary algorithms, as there is no
relevant information to decide on the direction to take.

Figure 2.5: 3-dimensional representation of a neutral landscape.

2.1.3 Landscape Features

As mentioned previously, landscapes with more than three dimensions are dif-
ficult to interpret. Besides, the commonly used metaphor, with peaks and
valleys, can be misleading. Generally speaking, the definition of a fitness
landscape allows one to compute numerical features that provides useful infor-
mation about the optimization problem at hand. Such information might in
fact not be available or easy to derive from the original definition of the prob-
lem. More specifically, landscape features are in general defined by extracting
some statistical information describing the so-defined landscape. Such features
can be typically used for different purposes, e.g., differentiate between different
instances of the same problem, differentiate between different problem classes,
predict the performance of a given algorithm on a given instance, choose the
best performing algorithm among a given portfolio for a given instance, etc.

Global features, local features and sampling strategies: In order to
compute the features of a given landscape, the search space needs to be eval-
uated. When features are computed using the complete landscape as data,
then the features are termed global. Such metrics provide relatively precise
information about the landscape structure, but they heavily depend on the
full enumeration of the search space. While this can help to improve our un-
derstanding of problem structures, it is however not a reasonable approach for
landscapes with high dimensions. For problem with large dimensions, features
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Algorithm 5 Random walk [4]

Input: l ∈ N: length of the walk.
F : X −→ Y : fitness function.

x←random solution ▷ set the initial solution
S ← {(x, F (x))} ▷ evaluate the solution
c← 0
repeat

for xi ∈ N (x) do ▷ for each neighbors of x
S.append({(xi, F (xi))}) ▷ evaluate the solution

end for
c+ = 1
x← Uniform Random(N (x)) ▷ select the next solution at random

until c = l
return S

are typically computed using a sample of solutions. By using randomness in
the sampling strategy, and if the sample is large enough, the computed fea-
tures are expected to be representative of the landscape. Features computed
with a sample are termed local features. Several local features have been pro-
posed in the last decades. In fact, the so-called Exploratory landscape analysis
(ELA) [64, 48, 51] has emerged as a state-of-the-art methodology for single-
objective continuous optimization. The approach combine the extraction of
local landscape feature with the development of automated recommendation
systems integrating the so-considered features on the basis of statistical or
machine learning models in order to solve different challenging tasks.

There exist many sampling strategies, among them random and adaptive
walks [4, 47] are used in this work. Random and adaptive walks are iterated
process which move repeatedly in the landscape. The main steps of random
and adaptive walks are detailed in Algorithm 5 and Algorithm 6 respectively.
Both walks start with a random solution s0 and select the next solution si+1

in its neighborhood N (si). In a random walk, there is no particular criterion
to pick the next neighboring solution. Starting with a first (randomly chosen)
solution xt=0, at each iteration t ∈ {0, · · · , ℓ− 1}, the next solution xt+1 is
chosen uniformly at random among the neighbors N (xt) of the solution xt.
The walk length ℓ is a user-defined parameter. The longer the walk, the larger
the sample and the better the information.

In an adaptive walk, the next solution is a solution which improves the fit-
ness among the neighbors in N (xt). Unlike a random walk, the length ℓ of an
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Algorithm 6 Single-objective adaptive walk [47]

Input: F : X −→ Z: fitness function.

x′ ←random solution ▷ set the initial solution
S ← {(x, F (x))} ▷ evaluate the solution
repeat

x← x′

for xi ∈ N (x) do ▷ for each neighbors of x
S.append({(xi, F (xi))}) ▷ evaluate the solution

end for
x′ ← max({F (xi)|∀xi ∈ N (x)})

until f(x) > f(x′) ▷ (for maximisation)
return S

adaptive walk is determined by the number of steps required to fall into a local
optima xℓ. Multiple adaptive walks are performed to get reliable information.
In the case of a multi-objective problem, a multi-objective adaptive walk se-
lects a dominating neighbor and stops when all neighbors are dominated or
incomparable. We call such walk dominance walk.

2.1.4 Multi-objective Landscapes Features

The landscape of a multi-objective problem is similarly defined as a triplet
(X ,N , F ). However, the fitness function is actually multi-objective F : X →
RM . Thus, numerical features for single-objective problems are not compatible
with such a landscape. Two approaches have been proposed to overcome this
difficulty, and multi-objective features were developed [55]. Existing features
can be classified into two categories:

• Features based on dominance. This category extracts statistics on the
basis of the dominance relation when comparing a solution with its neigh-
bors. For example, one may compute some statistic about the number
of incomparable or dominating neighbors.

• Features based on indicators. Roughly speaking, the idea of these fea-
tures is to compute for each solution a numerical value using a quality
indicator as discussed earlier in Chapter 1, e.g., the hypervolume con-
tribution with respect to a given set. Hence, one may consider such
values to extract some statistics about the landscape instead of using
the original multi-dimensional objective vector.
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Besides these two main classes, one may find other features considered for
multi-objective optimization. For example, Kerschke et al. [50] proposes to
compute single-objective features independently for each objective. Such an
approach does not require new features dedicated to multi-objective optimiza-
tion, and it shows that the multi-objective landscapes generated by the combi-
nation of single-objective landscapes are strongly related to the single-objective
landscapes. However, this method is limited. For example, it is not clear that
the union of the different single-objective landscapes can fairly represent the
overall characteristic of the implied multi-objective landscape. In particular, it
may happen that a single-objective landscape appears to be easy to search for
a given algorithm; however, when combined with other objectives, the implied
multi-objective landscape may have a different degree of difficulty. Addition-
ally, in such an approach, a set of features L is computed for each objective,
resulting in M ∗ |L| features, and the number of features depends on the num-
ber of objectives. Therefore, the numerical characterization of the landscape
does not make it possible to compare the landscape for problems with different
dimensions in the objective space.

2.2 Decomposition-based Landscape Analysis

In this thesis, we get inspiration from the concept of decomposition used in a
number of multi-objective search algorithms [91] in order to design new high-
level multi-objective features. In fact, the concept of decomposition allows
designing algorithms that search for good-performing solutions in multiple re-
gions of the Pareto front. This is by decomposing the original multi-objective
problem into a number of scalarized single-objective sub-problems. Each sub-
problem is obtained by a different parameterization of the same underlying
scalarizing function. This is typically what the state-of-the-art MOEA/D al-
gorithm [104] performs, while introducing a cooperation mechanism among
sub-problem solving. In particular, this offers much flexibility for integrating
existing single-objective search operators and solvers, which is actually one
of the main reasons for the success of decomposition-based multi-objective
evolutionary algorithms. Let us however recall that the main goal of this
chapter is not to design a new multi-objective algorithm, but to design new
multi-objective features that can later feed the design of a general-purpose
landscape-aware solving approach.

Therefore, we propose to rely on the simple observation that each sub-
problem defined by decomposition also implies a single-objective landscape
that we can attempt to analyze and characterize. In other words, by study-
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ing the single-objective landscape implied by the sub-problems, we should be
able to extract some knowledge about the original multi-objective problem.
More precisely, the methodology that we adopt in the reminder of this contri-
bution consists in: (i) defining a number of single-objective landscapes using
decomposition, (ii) extracting features for each sub-problem landscape, and
(iii) aggregating those scalar features into new multi-objective features. These
steps are detailed below.

2.2.1 First Step: Decomposition using Weight Vectors

Firstly, we define µ scalarized single-objective sub-problems, where both the
scalarizing function and the µ value are user-defined parameters. There exists
several scalarizing functions, among them Weighted Sum and Chebyshev are
the most common as commented in Chapter 1. Let us recall that weighted sum
considers a convex combination of all objectives. It is well-known that such
a convex combination does not allow achieving all Pareto optimal solutions.
In contrast, it is also well known that any Pareto optimal solution can be
achieved by solving a well parameterized (with respect to the weight vectors)
Chebyshev function. Hence, in the rest of this thesis, we decide to use the
Chebyshev function. Notice that using a different aggregation function will
not lead to the same features values.

As all following studies suppose that we are in a black-box setting, we do
not know how solutions are distributed in the objective space. The difference of
maximal and minimal objective values may be different between the objectives.
In order to use weight vectors uniformly distributed in the objective space,
we consider the normalization of objective values as proposed in the original
MOEA/D article [104]:

f̂i(x) =
fi(x)−min∀x∈X fi(x)

max∀x∈X ′ fi(x)−min∀x∈X ′ fi(x)
(2.1)

where X ′ is the set of explored solutions. It is worth noticing that we do not
make any assumption about the original (black-box) multi-objective problem,
so that we have no information about what region every sub-problem is ac-
tually mapping. Hence, the value of µ as well as the procedure to generate
weight vectors can be a critical issue. This is studied in more details later
when reporting our empirical results.
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Figure 2.6: Scalar features computation for each sub-problems.

2.2.2 Second Step: Scalar Features Computation

Next, we define a landscape for every single-objective sub-problem j ∈ {1, . . . , µ},
for which we compute a number of underlying high-level scalar features. The
scalar features are single-objective features from the literature. In order to
differentiate them as they are computed on sub-problems, we call them scalar
features in the rest of the thesis. Following the standard literature on single-
objective landscape analysis [78], the landscape of sub-problem j can be de-
fined as a triplet (X ,N , g(·, wj)), such that N : X −→ 2X is a neighborhood
relation defined among solutions for the considered problem; e.g., 1-bit-flips
for binary strings, or swaps for permutations.

The considered sub-problem features are based on sampling the so-defined
landscape to compute some statistics. As explained in Section 2.1.3, we fol-
low the standard literature [78, 46, 96], and we consider two simple sampling
strategies, namely random walks (rws) and single-objective adaptive walks
(aws). More specifically, in this chapter, the sampling strategy is independent
for all sub-problems; a distinct walk is computed for each sub-problem as de-
fined by it parameterized Chebyshev function, as illustrated in Figure 2.6. For
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each weight vector wu with u in {1, . . . , µ}, its respective aggregation function
is generated, and is used in the walk to evaluate the single-objective value of
solutions. When a random walk is used, the cost of the sampling is of ℓ ∗ n
where n is the problem dimension and ℓ is the length of the walk. As a random
walk is computed for each weight vector, the cost of the sample is µ ∗ ℓ ∗ n.
In the case where an adaptive walk is used for each problem, the length of the
walk cannot be configured. The number of evaluated solutions is unknown.
Notice that the reference point z∗ required for computing the scalar fitness
values is updated on the basis of the best objective values seen so far during
the walk. In the following of this document, performing independent walks for
each sub-problems is alternatively called scalar walks.

2.2.3 Third Step: Scalar Features Aggregation

In the third step, as illustrated in Figure 2.7, scalar features computed on each
sub-problem are merged into a multi-objective feature. One of the difficulty

f1

f2 subproblem1

subproblem2

subproblemµ

Aggregation(Feat(x), Feat(y), ..., Feat(z)) Multi-Objective feature

sample x

sample y

sample z

Figure 2.7: Aggregation of the scalar single-objective features into a new multi-
objective feature.

in using landscape features is the number of numeral values generated. As
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the same feature is computed on µ sub-problems, it is necessary to aggregate
features into a single numeric value. For µ > 1, we need to aggregate these
µ-dimensional scalar features into 1-dimensional multi-objective features. For
this purpose, we use two standard statistics, namely the mean (avg) and the
standard deviation (sd). In addition, we use a polynomial regression in order
to fit each scalar feature as a function of the weight vector wj of sub-problem j.
The coefficient of the polynomial model are then used as additional aggregated
features. We consider a second order polynomial regression and propose to use
the first (p1) and the second (p2) coefficients.

2.2.4 List of Features

Given the previous methodology, we are then able to compute a set of multi-
objective features, as summarized in Table 5.2 and listed exhaustively in Ap-
pendix 6.2. More precisely, given a sub-problem j ∈ {1, . . . , µ} and a walk
(x0, x1, . . . , xℓ), we consider the following five classes of single-objective fea-
tures:

• Fitness value (fv *). In the first class, we compute some statistics
informing about the distribution of fitness values observed along the
walk. Let us recall, that the fitness values are not the original multi-
objective fitness but the fitness of the single-objective sub-problem.

• Fitness difference (fd *). In the second class, we compute the av-
erage fitness difference with the neighboring solutions for every xi, i ∈
{1, . . . , ℓ}: 1

|N (xi)|
∑

x∈N (xi)
(g(xi, wj)− g(x,wj)).

• Improving neighbors (in *). In the third class, we compute the num-
ber of improving neighbors for each solution xi, i ∈ {0, . . . , ℓ}. It is worth
noticing that the second and third classes of features require evaluating
the fitness value of neighbors from all solutions from the walk.

• Length of the adaptive walk (law *). The fourth class only contains
features extracted from the adaptive walk. In particular, we consider
the length of the adaptive walk as a feature to characterize the sub-
problem landscape. This length was shown to provide an estimation of
the number of local optima in single-objective landscape analysis [46].

Features normalization: For some features, the possible range of the fea-
ture value is related to the problem dimension n. For example, the number of
improving neighbors is at most n. Hence, given two problem instances with
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dimension n1 and n2, n1 ̸= n2, the number of improving neighbors can be the
same while the local structure is drastically different. To increase the compat-
ibility of the features on different problem instances, we consider the following
normalization methods:

• Fitness value: the fitness value of a solution is already normalized ac-
cording to equation 2.1.

• Fitness difference: instead of the exact value of fitness difference be-
tween two solutions x, x′, we consider the proportional fitness difference
fd(x, x′) = |F (x)−F (x′)|

F (x)
.

• Improving neighbors: we consider the number of improving neighbors
proportional to the dimension in(x) = 1

n
×
∑

x′∈N (x) 1 if F (x′) > F (x).

Statistics on the features: For each feature, we consider several statistics
tools. The functions are used to aggregate the intermediary feature values
per solution. All functions result in a different (single-objective) feature. The
functions are characterized by s in Table 5.2 and are:

• the min and the max (min, max)

• The mean (avg)

• The standard deviation (sd)

• the first auto-correlation coefficient [46, 96] (r1) used in the landscape
analysis literature for quantifying the ruggedness of the landscape. De-
noting by ḡ(·, wj) the average fitness value of solutions in the walk, the
first auto-correlation coefficient is defined as follows:

r1 =

∑ℓ−1
t=0 (g(xt, wj)− ḡ(·, wj)) · (g(xt+1, wj)− ḡ(·, wj))(∑ℓ−1

t=0 g(xt, wj)− ḡ(·, wj)
)2

• the kurtosis [110] (kr): it measures the tailed-ness of a distribution and

is defined as kr(X) =
[(

X−µ
σ

)4]
• the skewness [110] (sk): it measures the asymmetries in the distribution

and is defined as sk(X) =
[(

X−µ
σ

)3]
• the first coefficient a polynomial regression (c1) of fitness values.

As we have a total of 192 features, only a subset of them is considered in our
experiments.
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Table 2.1: A summary of the proposed decomposition-based landscape fea-
tures.

description sub-problem features MO features

Fitness values fv s fv s r

Fitness difference fd s fd s r

Improving neighbors in s in s r

Walk length
law s

law s r
(only for adaptive walk)

s ∈ {avg, sd, c1, r1,min,max, kr, sk} r ∈ {avg, sd, p1, p2}

2.3 Experimental Results

As a first step, we analyze the efficiency of the proposed features in capturing
the characteristics of multi-objective optimization problems, regardless of any
particular evolutionary algorithm. Therefore, we conduct a preliminary ex-
ploratory analysis in order to highlight the association between the designed
features and the properties of well-established benchmark landscapes.

As introduced in Chapter 1 and following previous works [55], we consider
ρMNK-landscapes [95] as a problem-independent model for constructing multi-
objective multimodal landscapes with objective correlation. Let us recall that
the benchmark has four parameters: the problem instance dimension n, the
correlation factor ρ, the number of objective M and the number of epistatic
interactions between variables K. Negative and positive values of ρ mean that
objectives are conflicting or non-conflicting respectively. Values of K from 0
to (n− 1) tune the landscape from smooth to rugged. In a black-box setting,
it is important to recall that parameters K and ρ are unknown.

We focus on bi-objective landscapes, i.e., M = 2. We used a Latin hy-
percube sampling [43] to generate a set of 1 000 balanced instances spanning
parameters ranges: n ∈ {50, 51, . . . , 200}, K ∈ {0, 1, 2, . . . , 8} and ρ ∈]− 1, 1].
The random walk length is set to ℓ = 1000 across all problem sizes. One
random walk and one single-objective adaptive walk are computed for each
sub-problem. The number of sub-problems is set to µ = 20 and weight vec-
tors are distributed uniformly as explained in Chapter 1. The neighborhood
relation is the standard 1-bit-flip.
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2.3.1 Distribution of Scalar Features

For our analysis, we first conduct an exploratory analysis to better visualize
and understand the proposed features. Next, we construct a regression model
to study the accuracy of features in grasping the global properties of ρMNK-
landscapes, and we analyze the correlation among features.

In Figures 2.8 and 2.9, we report the values of some single-objective fea-
tures as a function of sub-problems (horizontal axis), computed respectively
with adaptive walks and random walks. The blue curves correspond to ρMNK-
landscapes with K = 0, the green ones to K = 2 and the red ones to K = 4.
The color scales from red to orange, green to cyan, and blue to purple, respec-
tively, and correspond to the objective correlation parameter ρ varying from
1 to −1; i.e., from highly correlated to highly conflicting objectives. For ex-
ample, the standard deviation of fitness values from a random walk (fv rws sd,
bottom left), the average fitness difference from a random walk (fd rws avg,
second line, second column) and the standard deviation of improving neigh-
bors (in rdw sd, second line, third column) gives a clear differentiation between
landscapes with different K-values. The smaller the benchmark parameter K,
the smaller the standard deviation of fitness values and the average fitness
difference. Similarly, the standard deviation of fitness values from an adaptive
walk (vf aws sd, top left) and the length of an adaptive walk (law aws avg, top
right) seems to be clearly associated with parameter ρ. The flatter the curve
rendering the evolution of these two features as a function of weight vectors,
the higher the objective correlation ρ.

From our visual inspection, we can conclude that the landscape features
are representative of the different global benchmark parameters, which are un-
known in a black-box optimization scenario. However, this first analysis con-
siders the scalar features and not the aggregated 1-dimensional multi-objective
features, which are discussed next.

2.3.2 Correlation Analysis between ρMNK-landscapes
Parameters and Decomposition-based Features

We now report the Spearman correlation matrix among a subset of features
and parameters n, ρ and K for all problem instances in our data set and a
hierarchical clustering of the features in Figure 2.10. The 40 features selected
are either the most correlated or most anti-correlated with any of the previous
parameters: selected features scored a correlation of at least 0.7 for correlated
features or below −0.7 for anti-correlated feature. We used decomposition-
based features set with µ = 50 and using the scalar sampling previously in-
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Figure 2.8: Feature values of ρMNK-landscapes decomposed into 20 sub-
problems using an adaptive walk(n = 25, each color correspond to a particular
configuration of ρ and K).

troduced. This highlight similarities between features and ρMNK-landscapes
parameters. It is worth mentioning that among the subset of most correlated
or anti-correlated features, each subset of decomposition-based features are
represented (fv, fd, in, law).

Cluster associated with Epistasis

The largest cluster (top left of Figure 2.10) with more than 20 features is
strongly anti-correlated with ρ but is also partially correlated with K. Most
features from this cluster belong to the fitness value set fv and fitness dif-
ference set fd, as well as two features related to the improving neighbors set
(in). Increasing the number of variable interactions increases the ruggedness
of the landscape (i.e., flipping a few bits in the evaluated solution result in
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Figure 2.9: Feature values of ρMNK-landscapes decomposed into 20 sub-
problems using a random walk or an adaptive walk for the length of the
walk(n = 25, each color correspond to a particular configuration of ρ and
K).

big change in the fitness of the new solution). Therefore, the fitness differ-
ence, which grasp the average difference of fitness between a solution and its
neighbors, are related to K. The standard deviation of fitness or aggregat-
ing scalar features using standard deviation similarly characterize the epistasis
K. The first coefficient of polynomial regression ( c1 ) is particularly efficient
to characterize the number of interactions between variables. Two features;
computed with this function, (fd c1, in c1 ) are the most correlated with K.
This statistic approximate the feature’s growth on the adaptive walk. Dur-
ing the walk it becomes harder to find improving neighbors when K is high
as a small change in the actual solution may result of a large change in the
fitness. Therefore, the mean and standard deviation of improving neighbors
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Figure 2.10: Correlation matrices between a subset of Decomposition-based
features and parameter ρ,K, n using independent samplings for the µ = 50
weight vectors.

(in c1 avg, in c1 sd) both increase with K.

Cluster associated with Objective Correlation

The second cluster of features (center of Figure 2.10) is strongly correlated to
ρ. This cluster contains features from both fitness value fv and fitness differ-
ence fd. As the objective correlation impacts the shape of the Pareto front,
polynomial coefficients of the mean fitness value, used to aggregate features,
(fv avg p1 ) naturally belongs to this cluster. The most correlated features use
statistics such as the kurtosis and the skewness (kr, sk). They grasp variation
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of the shape of the Pareto front. Skewness capture the asymmetry of features
distribution. A skewness of sk = 0 is equivalent to a (almost) symmetric distri-
bution. When positively asymmetric sk > 0, the variation of values above the
mean is larger than below the mean. Using an adaptive walk initialized with
a random solution causes the positive asymmetry of the distribution, as only
improving neighbors are selected. However, when objectives are correlated
(i.e., positive ρ) solutions are concentrated and closer to the central weight
(0.5, 0.5). Thus, the difference in fitness and the asymmetry both increase.
Similarly, the kurtosis shows the concentration of values around the mean.
The higher the kurtosis value, the closer solutions are to the mean objective
value. Given a negative ρ, the objective space is sparse between the objectives.
Consequently, the range of objective values for a sub-problem is large. The
parameter ρ is also strongly correlated with the lengths of the adaptive walks.
Intuitively speaking, anti-correlated problem instances have a larger front, so
when using enough weights µ the variation of size between walks from the
extremities is a meaningful feature to characterize ρ.

Cluster associated with Problem Dimension

The third cluster (bottom right of Figure 2.10) is correlated with the problem
dimension n. It mostly contains features from the length of adaptive walk
set (law). Although we consider the dimension as a parameter known by
algorithms since the number of variables is necessary for their operation, we
can see that the dimension of the problem is strongly correlated with the length
of adaptive walks.

2.4 Conclusion

In this chapter, we defined the landscape of an optimization problem and why
we need multi-objective features. We proposed a new methodology based on
the concept of decomposition in order to define and to extract a number of new
features. The approach is based on aggregating a set of single-objective feature
computed with respect to a number of sub-problems obtained by decomposi-
tion in the objective space. We have shown that the so-designed features
allows one to characterize the landscape intrinsic parameters, using ρMNK-
landscapes as a target benchmark.

At this stage of the presentation, there are however a number of open
issues. Some parameters of the proposed approach can impact the feature
values. Among these parameters, the weight vectors distribution, the sampling
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method and the aggregation function are of specific interest. We will address
these issues further in Chapters 3 and 4. In the following chapter, we use
the designed decomposition-based features in order to address two high-level
tasks. The first task consists in predicting the benchmark parameters, and the
second task is a method to solve the algorithm selection problem. To better
appreciate the accuracy of the decomposition-based multi-objective features,
two others approaches for multi-objective landscape analysis are additionally
considered.





Chapter 3

Landscape Analysis for
High-Level Prediction Tasks

The contributions described in this chapter consist in using the decomposition-
based features in order to solve two high-level tasks. The first task consists
in predicting the benchmark intrinsic parameters. Specifically, in the case of
ρMNK-landscapes, we aim at predicting the two parameters ρ and K impact-
ing the landscape. The second task consists in selecting the best algorithm
from a portfolio for an unseen problem instance. In the adopted approach,
we manage to first predict the performance of each algorithm, and we then
select the best performing one. This task is known to apply for the Automated
Algorithm Selection problem. Both of these tasks are termed as of a higher
level, because they require the use of a machine learning models to make some
predictions. In these models, features act as input to characterize the prob-
lem landscape. In this chapter, some results were published along with some
results of Chapter 2 at the European Conference on Evolutionary Computa-
tion in Combinatorial Optimization (EvoCOP 2021): “Decomposition-based
landscape analysis for multi-objective optimization”.

51
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3.1 Description of High-Level Tasks

3.1.1 Predicting Benchmark Parameters

In a black-box setting, the intrinsic structure of a problem is unknown. In the
case of a problem generator such as ρMNK-landscapes, the structure is tunable
with two parameters: ρ and K. The parameter ρ controls the conflicting be-
havior between the objectives, and the parameter K increases the ruggedness
and multi-modality of the landscape. In Chapter 2, we showed that features
are correlated with benchmark parameters. In the first high-level task we shall
consider in this chapter, we push our analysis further by predicting the actual
parameter values using the designed features.

The two landscape parameters we would like to predict are ρ and K. The
two other parameters n and M are assumed to be known. In fact, the dimen-
sion n is necessary to construct the solutions, and the number of objectives
M can be easily known from the multi-objective nature of the problem. Thus,
we consider only parameters directly affecting the landscape. The approach
we adopt in the following is summarized in Figure 3.1. First, a set of prob-
lem instances are generated with different configurations of parameters ρ and
K. Secondly, landscape features are computed for each instance. Finally, two
machine learning models are trained to predict ρ and K, respectively.

(ρ, k)

problem
Instances

features

learning parameters
prediction

Figure 3.1: Schematic representation of the parameters’ prediction task.
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3.1.2 Automated Algorithm Selection

In the second task, we address the algorithm selection problem introduced
by Rice in 1976 [77]. Let P be a set of optimization problem instances, and
A a set of algorithms. Given an optimization problem instance p ∈ P , the
expected performance of the algorithm a ∈ A on p is E(a, p). The algorithm
selection problem is: find the algorithm abest ∈ A such that

abest = argmax
a∈A

(E(a, p)) (3.1)

It is well known that no algorithm outperforms all others on all problems [99].
In the case of evolutionary algorithms, performance depends on chosen com-
ponents and parameters, such as the crossover or the probability of mutation.
In this work, we consider as performance indicator the average relative hyper-
volume deviation rhv(a, p) at a fixed budget. The hypervolume deviation is
the normalized difference of hypervolume hv between an approximation of the
Pareto front S = a(p), a ∈ A and the (best known) Pareto front. The exact
Pareto front cannot be computed for large instances. Hence, we instead con-
sider the approximation P̃F (p). Given a problem instance p ∈ P , the Pareto
front approximation is the set of all non-dominated solutions derived from the
union of sets found by algorithms runs on the instance p.

rhv(a, p) =
hv(P̃F (p))− hv(a(p))

hv(P̃F (p))
(3.2)

In Figure 3.2, we summarize the main steps of the second task. The Ex-

problem
Instances features

Algorithm
performances learning Performances

Prediction
Expected best
Algorithm

Figure 3.2: Schematic representation of the automated algorithm selection
task.
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ploratory Landscape Analysis approach, to solve the automated algorithm se-
lection, has been considered by Mersmann [64] in the context of evolutionary
algorithms and requires two sets. The first set, is a set of problem instances P .
For each instance p ∈ P , landscape features are computed and are used as in-
put in the learning model. The second set is a set of algorithms A. For each
algorithm a ∈ A and for each instance p ∈ P , we compute the expected relative
hypervolume deviation E(rhv(a, p)). Then, the model is trained to predict the
expected relative hypervolume deviation of all algorithms given the features.
The chosen algorithm is the one with the best predicted value.

The stopping condition of all algorithms is a fixed budget in terms of calls
to the evaluation function. To predict the best performing algorithm, we
could have considered other models. While we use the expected algorithm
performance, there exists other approaches [11]. For example, the output
can be the difference of performance between algorithms ∀a1, a2 ∈ A2, a1 ̸=
a2,E(a1, p)− E(a2, p) or the output can be the rank of each algorithm on the
problem p, etc.

3.2 Evaluating Prediction Models

3.2.1 Prediction Accuracy

In order to assess the prediction accuracy, we consider three measures. The
first one is the coefficient of determination R2. If the R2 is low, i.e., R2

closes to 0, this tells us that the input of the machine learning model does
not explain well the output. On the contrary, when the R2 is close to 1,
the input data fits the prediction model. However, this measure has several
weaknesses, in particular over-fitting could lead to a R2 of 1. We also consider
two alternative measures: the percentage of times the selected algorithm does
not have the best hypervolume deviation in average, and the percentage of
times the selected algorithm is statistically outperformed by at least one other
algorithm. These two measures directly show the number of errors made by
the prediction model. However, they are limited as the scale of error is not
taken into account.

3.2.2 Accuracy of Automated Algorithm Selection

The merit indicator, which is a straightforward adaptation from [59], measures
the gap between: (i) the performance of the single best solver (SBS) having
the best performance on average over the training set (without model train-
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ing), and (ii) the performance of the virtual best solver (VBS), obtained by
a model that would make a perfect prediction. More precisely, let Itrain and
Itest be the set of training and testing instances, respectively, and let rhv(a, i)
be the average relative hypervolume deviation of a given algorithm a ∈ A on
instance i ∈ Itrain∪ Itest. For every algorithm a ∈ A and instance subset J , let
rhv(a, J) = 1

|J |
∑

i∈J rhv(a, i). We define SBS as the algorithm having the best

rhv value on the training set Itrain, i.e., SBS = argmina∈A
{
rhv(a, Itrain)

}
. We

define VBS as the virtual algorithm obtained by a perfect prediction model
(an oracle); i.e., the algorithm with the best rhv(·, i) value for each i ∈ Itest.
Finally, let the recommended Solver (RS) be the algorithm predicted by the
actual trained model. The merit indicator is computed as follows:

M =
rhv(RS, Itest)− rhv(V BS, Itest)

rhv(SBS, Itest)− rhv(V BS, Itest)
(3.3)

It should be clear that: (i) a merit of 0 indicates that the model does not
make any error, (ii) a merit in the range [0, 1[ indicates that the model is more
efficient than the SBS but worse than the VBS, (iii) a merit greater than 1
indicates that the model is worse than the SBS. Achieving a merit value of 0 is
clearly a very challenging task, and one seeks for a merit value below 1 (better
than the SBS) and as close to 0 as possible (the VBS).

3.3 Experimental Setup

3.3.1 Sets of Features

In the previous chapter, we introduced a new set of decomposition-based fea-
tures that we aim to analyze more deeply in this chapter. For completeness,
we also consider analyzing our proposed features together with other existing
features from the literature. Existing sets of features for landscape analysis
fall into three categories, and these three categories are closely related to the
paradigms used by multi-objective algorithms. The first set are features using
the decomposition paradigm [104], introduced in the previous chapter. The
second set are dominance-based features [55]. In this set, features computes
statistics on the number of dominating, dominated and incomparable solu-
tions locally in the neighborhood. Features from the third set are based on
the use of multi-objective quality indicator [55]. Subsequently, these three dif-
ferent sets are respectively called decomposition-based, dominance-based and
indicator-based feature sets.



Landscape Analysis for High-Level Prediction Tasks 56

Decomposition-based features: As introduced in Chapter 2, decomposition-
based features are computed from a 3-step procedure. First, the multi-objective
problem is split into µ single-objective sub-problems using the Chebyshev
aggregation function. Then scalar features are computed for each of the µ
sub-problems, and finally the features per sub-problems are aggregated. The
previously introduced single-objective features [78] are: the Fitness value
(fv *), the Fitness difference (fd *), Improving neighbors (in *) and
Length of the adaptive walk (law *). In addition to these scalar features,
we propose an additional feature based on decomposition; but which is not
inspired from the single-objective literature:

• Maximal distance between improving sub-problems (spd *). For
every solution x ∈ X , consider its neighbors N (x) and the ordered
weight vectors wi, i ∈ {1, . . . , µ}. We first compute for all neighbors in
N (x) which sub-problems fwi

are improved, i.e., g(x,wi) < g(x
′, wi), x

′ ∈
N (x). Then, the additional considered feature relates to the maximal
distance between the improved sub-problems, normalized by the number
of weight vectors µ.

Notice, however, that this feature cannot be computed when using an inde-
pendent sampling for each sub-problem (scalar walk) or when only one weight
vector µ = 1 is considered.

Dominance-based features: Dominance-based features use the dominance
relation to compare solutions and their neighborhood [55]. We considered five
subsets in the class of dominance-based features:

• The Proportion of dominated neighbors (inf *) is the proportion
of dominated neighbors for each solution in the sample.

• The Proportion of dominating neighbors (sup *) is the proportion
of dominating neighbors for each solution in the sample.

• The Proportion of incomparable neighbors (inc *) is the propor-
tion of incomparable neighbors for each solution in the sample.

• The proportion of locally non-dominated neighbors (lnd *) is the
proportion of solutions in the neighborhood of a given solution which are
non-dominated.

• The proportion of supported locally non-dominated neighbors
(lsupp *) report the proportion of supported non-dominated neighbors.
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A supported solution is a Pareto optimum whose objective vector belongs
to the convex hull of the Pareto front [28]. When computed locally,
given a solution s and its neighbors N (s), a neighbor si ∈ N (s) is a
supported solution if si is not dominated and if si is part of the convex
hull computed on all non-dominated neighbors among N (s).

Indicator-based features: Indicator-based features use the hypervolume
indicator to gather statistics on a given landscape [55].

• The solution hypervolume (hv *) refers to the hypervolume between
the fitness of a given solution and the reference point.

• The neighborhood’s hypervolume (nhv *) is the hypervolume be-
tween the set of neighbors N (s), for a given solution, s and the reference
point.

• The hypervolume difference (hvd *) is the difference of hypervolume
between a solution and each of its neighbors. For a given solution s,
hvd = {hv(s)− hv(si)|∀si ∈ N (s)}.

For indicator-based features, we set the hypervolume reference point to the
origin. The complete list of the dominance-based and indicator-based land-
scape features, with the detail of the used statistical tools, is available in
Appendix 6.2.

3.3.2 Sampling Strategies for Landscape Analysis

Features computation require a sample of evaluated solutions. The scalar walk
strategy, introduced in Chapter 2, computes independent sampling for each
weight vectors, but it is not suitable for dominance-based and indicator-based
features. These sets require a single sample for each problem instances. Thus,
we considered a random walk and a multi-objective adaptive walk, as proposed
initially [55] for dominance-based and indicator-based features. In the case of
decomposition-based features, in addition to the scalar walk, we propose a
method to compute features with a random and a multi-objective adaptive
walk. Since random and adaptive walks are often used in the literature to
compute features, the proposed method makes allows the use of the same
sample to compute decomposition-based features with the two others sets.

In this method, the sample is computed independently of the decomposition
process. For each solution of the sample, we compute the single-objective value
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of all sub-problems g(·, wj). Then, for each sub-problem, we compute single-
objective features. Finally, single-objective features of all sub-problems are
aggregated, as described in Chapter 2. The major difference with the scalar
walk method is that each solution is used in the features’ computation of
all sub-problems. All decomposition-based features are computed with the
three methods: scalar walk, random walk and adaptive walk, but for a few
exceptions. The first exception is the length of adaptive walk (law). It can
only be computed with a multi-objective adaptive walk or a scalar walk with
single-objective adaptive walks. It is also important to notice that the resulting
feature is drastically impacted by the sampling method. The second exception
is the maximal distance between improving sub-problems (spd), which can only
be computed with a random or an adaptive walk.

3.3.3 Machine Learning Models

Several techniques and machine learning methods for the task of selecting al-
gorithms have been applied in the literature [11]. Some models propose to
predict the ranking of algorithms according to their respective performance,
others models predict the difference in performance between algorithms or di-
rectly predict the performance value of each algorithm. Learning methods
include regression trees, or random forests. As mentioned earlier, there exists
other approaches which predict directly the best algorithm, hence classifica-
tion trees can also be used. It was shown at the Open Algorithm Selection
Competition [59] that a machine learning model’s accuracy is related to the
prediction scenario, i.e., the input and the output data. In the following, we
chose to use random forest regression [80] to predict algorithm performance
because it was shown to work relatively well in previous studies [95, 79, 20, 11].
Additionally, it has the advantage of easily returning importance measures on
the features used in input, providing insights of the relation between features
and algorithm performance.

3.3.4 Algorithm Portfolio

As mentioned in Chapter 1, the MOEA/D algorithm is based on a flexible
decomposition-based framework that can be configured in different manners.
In its baseline variant [104], MOEA/D first decomposes the problem into a
number of scalarized sub-problems, as discussed previously. Then, a solution is
evolved for each sub-problem in a cooperative way. The algorithm iterates over
the sub-problems and, at each iteration, an offspring is generated by means of
crossover and mutation on the basis of parent solutions selected from the so-
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called T -neighborhood; i.e., the sub-problems corresponding to the T closest
weights in the objective space. The new offspring can then replace any of the
sub-problem solutions in the T -neighborhood of the current sub-problem. This
corresponds to a standard evolutionary process, where selection and replace-
ment are performed iteratively over sub-problems. In [62], it is shown that
the selection and replacement underlying the standard MOEA/D framework
are key algorithm components that highly impact its performance. Several
generational variants are proposed therein, allowing to tune the selection and
replacement underlying the MOEA/D framework from fully cooperative (i.e.,
among all sub-problems) to fully selfish (i.e., independently of any other sub-
problem).

Interestingly, it was found that no variant outperforms the other indepen-
dently of the benchmark parameter values ρ and K for the considered ρMNK-
landscapes. Since such parameters are unknown in a black-box optimization
scenario, the study presented in [62] leaves open the challenging question of
which variant to choose in an automated manner. In addition, this constitutes
a perfect and typical setting for the main automated algorithm selection task
addressed in this chapter. In the following, We consider three representative
variants of the MOEA/D framework, exposing different degrees of coopera-
tion among sub-problem solving. These variants are denoted as follows: (i)
MOEA/D referring to the standard variant [104], (ii) MOEA/D-sc, a gen-
erational variant where selection is performed selfishly for every sub-problem
whereas replacement is performed cooperatively, and (iii) MOEA/D-ss, a
(selfish) generational variant exposing the lower degree of cooperation among
sub-problems. Besides population size, the three variants have the same set of
parameters. The parameter δ = 1 asserts that parents solutions belong to the
Ti closest sub-problems. Parameter nr = 2 indicates the maximal number of
replacement for each offspring. The mutation probability is set to pmut =

1
n
,

and we used a single-point crossover pcr = 1.
In order to highlight the relevance of this portfolio in studying the accuracy

of our features when integrated into a landscape-aware algorithm selection ap-
proach, we briefly report their relative performance using exactly the same
set of ρMNK-landscapes as in the previous chapter. Every algorithm is exe-
cuted 20 times on each instance, using a population size equals to n, and a
budget of 106 evaluations. The performance of an algorithm is computed as
its hypervolume relative deviation w.r.t. the best-found approximation set for
each instance. For a given instance, the hypervolume reference point is set
to the worst value seen across all runs for each objective. We then count the
number of times an algorithm is statistically outperformed using a two-sided
Mann-Whitney test with a p-value of 0.05 with Bonferroni correction. Results
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Table 3.1: Performance matrix of the three MOEA/D variants. The diagonal
in gray reports the number of times the corresponding algorithm is statistically
outperformed by another one (the lower, the better). The other cells report
how many instances (out of 1000) the algorithm in the corresponding line
is statistically better than the algorithm in the corresponding column (the
higher, the better).

MOEA/D-sc MOEA/D MOEA/D-ss
MOEA/D-sc 205 18 310
MOEA/D 85 137 312

MOEA/D-ss 120 119 622

are reported in Table 3.1.

We clearly see that each algorithm is outperformed by another one on a
subset of instances. The basic MOEA/D variant seems to have a reasonably
good behavior, since it is less often outperformed than the two other variants
overall (see diagonal). We also observe that there is a complex interaction be-
tween algorithm performance and the benchmark parameters ρ and K: (i) the
smaller K and ρ, the better MOEA/D and MOEA/D-sc against MOEA/D-
ss, (ii) the larger ρ (highly correlated), the better MOEA/D-ss, and (iii) the
larger K and the smaller ρ, the better MOEA/D-sc. Of course, this general
trend has some exceptions, but it shows the impact of the unknown benchmark
parameters on the relative performance of algorithms.

3.4 Results and Discussions

3.4.1 Predicting Benchmark Parameters

To investigate the accuracy of decomposition-based features, we consider a
typical machine learning task consisting in predicting the value of the (un-
known) global benchmark parameters K and ρ. We respectively construct a
random forest regression model [15] for K and ρ, using the whole set of multi-
objective features computed over all considered ρMNK-landscapes. Random
forest has the nice property of providing a measure of feature importance for
model fitting. In Table 3.2, we report the average R2 obtained by models
trained with features. Features have been computed a scalar walk, a random
walk and a multi-objective adaptive walk (dominance walk), respectively. The
set of features computed with a scalar walk consist of the union of the three
subset of features fitness difference, fitness value and improving neighbors com-
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Table 3.2: Average R2 obtained by random forest regression models trained to
predict benchmark parameters using decomposition-based features as input.
Features are computed respectively from a scalar walk, a random walk and a
dominance walk.

Scalar Walk
Random Walk Dominance Walk

µ = 3 µ = 20 µ = 100
Parameter ρ 0.95 0.97 0.93 0.96 0.95
Parameter K 0.91 0.96 0.91 0.97 0.85

Figure 3.3: Relative importance of decomposition-based features to predict ρ
(left) and K (right) for features computed with a random walk (* rws *) and
with an adaptive walk(* aws *). Only the ten most important features are
reported.

puted with a random scalar walk and the length of the walk computed with
an adaptive scalar walk. In Figure 3.3, we report the relative importance of
each feature extracted from the random forest models, using the Gini impurity
as a measure of quality. Values are averaged over 10 independent repetitions
of model fitting. Unlike Table 3.2, in Figure 3.3 models are trained with the
union of features computed from a random walk and features computed from
an adaptive walk.

Every sampling strategy reaches a relatively high R2 score. However, the
dominance walk and the scalar walk with a low value of µ = 3 or a high value
of µ = 100 have a lower R2 score than the random walk or a scalar walk with
µ = 20. The first notable observation is that feature importance, depicted
in Figure 3.3, is different depending on whether we aim at predicting the
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benchmark’s parameter ρ or K. The objective correlation ρ appears mostly
related to a single feature: the standard deviation of the number of improving
neighbors (in rws sd). By contrast, the parameter K is related to multiple dif-
ferent features, that mostly correspond to the fitness difference computed from
dominance walk, in particular the mean fitness difference (fd aws max avg).

3.4.2 Landscape-aware Algorithm Selection

In this section, we conduct a second set of experiments in order to study the
accuracy of the designed features when integrated into an automated algorithm
selection approach. We consider the more sophisticated task of selecting the
best performing algorithm among an algorithm portfolio (second task).

Experimental setup: We study the accuracy of the decomposition-based
features by investigating the selection of the best performing MOEA/D vari-
ant. For this purpose, we adopt the following standard supervised-learning
approach. We first train three models in order to predict the performance of
every considered MOEA/D variant. We use the average hypervolume devia-
tion as defined in the previous section as a measure of algorithm performance,
which then corresponds to our output prediction variable. Considering an un-
seen test instance, the landscape features are first computed, the performance
of each algorithm is then predicted on the basis of the trained models, and the
algorithm having the best prediction is selected as the recommended one. We
consider the same set of ρMNK-landscapes described in the previous section.
We adopt a standard validation methodology where an instance is selected for
training with probability 0.9 and for testing with probability 0.1. We use a
set of 100 random regression trees to learn and predict the expected relative
hypervolume deviation. Reported values are computed over 50 independent
folds.

We recall that the proposed multi-objective features rely on some weight
vectors µ. We consider a variable number of weight vectors in the range
µ ∈ {1, 2, 3, 4, 5, 6, 10, 20}. Additionally, we consider two alternatives for gen-
erating weight vectors, namely uniform or random. In a random setting, a
weight vector is generated uniformly at random. In a uniform setting, the
weight vectors are evenly distributed in the objective space. In particular, for
µ = 1, the weight vector selected in the uniform setting is (0.5, 0.5); i.e., the
“middle” of the objective space. In this case, the multi-objective features are
simply the same as the corresponding scalar features from the single scalarized
sub-problem. For µ = 2, our uniform setting corresponds to weight vector
(1, 0) and (0, 1). This means that our features are obtained by aggregating
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the scalar features computed independently for each objective of the original
multi-objective problem, similar to others study from the literature [50]. The
impact of this setting is carefully analyzed in our experiments.

Impact of the weight vector distribution: Our main results are sum-
marized in Figure 3.4, showing the prediction accuracy as a function of the
number of weight vectors µ and their type (random or uniform). For com-
pleteness, we also show the R2 coefficient obtained by the training models.
Different observations can be extracted from Figure 3.4.

First, we clearly see that the choice of the weight vector distribution is of
critical importance. In fact, a random choice does not obtain a good accuracy,
except when the number of weights µ is substantially large. By contrast, a
uniform strategy appears to perform reasonably well, even when the number
of weights is low. Interestingly, for uniform weights, the worst accuracy is
obtained with µ = 2. Notice that such a setting is even substantially outper-
formed by a random choice of weight vectors. This indicates that computing
scalar features independently for each objective is not a recommended strategy.
By contrast, computing features for decomposed sub-problems is effective even
when using a very low number of weights. This indicates that a decomposition-
based approach for multi-objective landscape analysis contains valuable infor-
mation about algorithm performance. Surprisingly, we found that a uniform
choice of few weight vectors with µ ∈ {1, 3} performs reasonably well, al-
though increasing µ > 3 allows to obtain a better accuracy. The relatively
good results achieved with µ = 1 are however to be interpreted very carefully,
taking into account that the shape of the Pareto front for ρMNK-landscapes,
although having different magnitude in the objective space, is roughly con-
vex, symmetric, and centered in the middle of the objective space, regardless
of the values of ρ and K [95]. Although this is a recurrent observation for
many multi-objective combinatorial optimization problems, one might need to
carefully choose µ when tackling problems with different Pareto front shapes.
Such considerations are left for future investigations.

At last, in order to further show the accuracy of the proposed multi-
objective landscape features, we experiment a baseline random forest model
using the (unknown) global benchmark parameters ρ and K as input vari-
ables to predict algorithm performance. By contrast with a black-box sce-
nario where the knowledge about ρ and K is not available, the accuracy of
such a ‘white-box’ model should highlight the relevance and reliability of the
proposed black-box features. We found that such a model trained with ρ and
K obtains an average merit of 0.41. Comparatively, black-box features obtain
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Figure 3.4: Merit (top right), R2 (top left), Error rate of selecting a non-
statistically better algorithm (bottom left) and Error rate of not selecting the
best algorithm (bottom right) according to the number of weight µ and their
distribution.

an average merit of 0.31, 0.37 and 0.29 respectively, for µ ∈ {1, 3, 20} uniform
weight vectors. This indicates that the proposed approach is very effective,
and that the designed high-level black-box features seem to provide more accu-
rate prediction models than the global benchmark parameters, hence allowing
to substantially improve over the single best solver, and also to get closer to
the ideal virtual best solver.
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Figure 3.5: Merit (top), R² (center), Error rate of selecting a non-
statistically better algorithm (bottom) according to the number of weights
µ for decomposition-based features with all sampling methods and dominance
features (hashed boxes).

Impact of the number of weight vectors: Reaching an R² score greater
than 0.75, decomposition-based features computed from a scalar walk (green
box in Figure 3.5) are suitable to predict algorithm performance. As µ in-
creases, the score increases, reaching an R² of 0.90 for µ = 100. Surprisingly,
when µ = 50 the distribution of the values of R² is large, with some cases below
0.25. The regression score shows that most of the variation between problem
instances are covered by landscape features. However, it does not correlate
with other accuracy measures. In particular, when µ = 100, we observe the
highest R2 score but according to other measures, features are less accurate.

The accuracy of the machine learning model reach an error rate with sta-
tistical difference around 5% for µ ∈ {1, 3, 20, 50}. Meaning that only 5% of
the prediction fail to predict a statistically better algorithm. As a comparison,
if the learning model always selects the best algorithm in average (MOEA/D),
the statistical error rate would be 13.7% and the percentage of error (predict-
ing exactly the best algorithm without statistical equivalence) would be 64%.
It implies that using the selected algorithm is often a better choice than using
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Table 3.3: Average decomposition-based features subset importance using the
Gini impurity as a measure of quality computed from a scalar sampling. The
gray row achieved the best result when comparing the average Merit.

µ law fv fd in
µ = 1 0.0994 0.1923 0.2747 0.4335
µ = 3 0.1059 0.3119 0.1709 0.4112
µ = 20 0.0963 0.2175 0.2362 0.4499
µ = 50 0.5130 0.1378 0.1332 0.2153
µ = 100 0.6721 0.0793 0.0733 0.1752

the best algorithm on average. However, a possible source of error for the
machine learning model is that both MOEA/D and MOEA/D-sc stand out
when ρ < 0.25 and no statistical difference was made in this configuration.

Using decomposition-based features with a scalar sampling is efficient,
reaching a merit of 0.289 for µ = 20 meaning that using the selected algo-
rithm instead of the single best algorithms (SBS) will reach a difference of
hypervolume three time smaller than the SBS. In the same way as for the
other tools to evaluate the model (R², error rate), the merit varies according
to µ, improving gradually when µ goes from 1 to 20 except for µ = 100 where
it is only at 0.37. This indicates that the decomposition-based approach with a
scalar walk is effective. The selected algorithm allows to substantially improve
over the single best solver and to get closer to the ideal virtual best solver.

Importance of Decomposition-based Features: Table 3.3 shows the
evolution according to µ of the average importance of each decomposition-
based feature’s subset, using the Gini impurity as a measure of quality. All
subsets are useful according to µ. As expected in the previous correlation anal-
ysis, the length of adaptive walk law provides very little information when µ
is too small (µ ≤ 3). On the other hand, when µ grows, its importance in the
prediction is greater, up to 67% for µ = 100. However, in this case, the merit
obtained is worse, and therefore the prediction is of poorer quality. The num-
ber of improving neighbors (in) is the most stable subset. It is useful for any
value of µ varying from 17% to 45%. The last two subsets, fitness value fv and
fitness difference fd have similar roles in regressions, they have a high impor-
tance between 17% and 31% when µ is low. However, when µ ∈ {20, 50, 100},
the length of the adaptive steps increases in importance, and the combined
importance of fv and fd fall below 15% when µ = 100.
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Table 3.4: Mean Merit for Dominance, indicator and decomposition-based
landscape analysis according to the number of weight µ and the sampling
strategy.

Merit
µ Set rnd ℓ = 50 rnd ℓ = 100 dom scalar

None Dominance ∪ Indicator 0.327 0.331 0.334
µ = 1 Decomposition 0.459 0.390 0.338 0.332
µ = 3 Decomposition 0.373 0.362 0.366 0.332
µ = 20 Decomposition 0.388 0.367 0.372 0.289
µ = 50 Decomposition 0.391 0.371 0.380 0.315
µ = 100 Decomposition 0.386 0.370 0.386 0.370

Impact of the sampling method for decomposition-based features:
We computed decomposition-based features from a dominance walk and ran-
dom walk (of size 50 and 100). All merit values computed on empirical per-
formance models with a k-fold cross validation are presented in Table 3.4 as
well as their relative rank in Table 3.5. Additionally, Figure 3.5 highlights the
difference in accuracy for each sampling method.

Generally speaking, decomposition-based features with other sampling meth-
ods than scalar walk are of lower quality, reaching in the best case a merit
of 0.327. This difference in performance is at first observed via the R2 score,
which is constantly dominated by features computed with a scalar walk. When
a dominance walk is used, the merit decreases with µ. When µ = 1 the error
rate and the merit values are comparable to a scalar walk with µ = 1. This
result can be explained by the similarity between a dominance walk and a
single-objective adaptive walk on the weight vector (0.5, 0.5) equidistant from
the two objectives. Random walks are less efficient. Intuitively, the size of
the random walk is a key factor in feature precision. This is confirmed in
our results, since ℓ = 50 performs worse than ℓ = 100. Although the com-
parison between scalar walk, dominance walk and random walk shows that
decomposition-based features are more efficient when computed from a scalar
walk, all methods manage to predict efficiently the best algorithm. Achieving
a merit of 0.338 for µ = 1 with adaptive walk, and on average a merit M < 0.4,
using the machine learning model to select the most suited algorithm outper-
form the best algorithm in average.
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Table 3.5: Features rank obtained from the Merit distribution for all set of
features according to µ and the sampling strategy.

Rank method
µ Set rnd ℓ = 50 rnd ℓ = 100 dom scalar

None Dominance ∪ Indicator 2 2 3
µ = 1 Decomposition 22 16 3 2
µ = 3 Decomposition 8 8 8 1
µ = 20 Decomposition 16 8 8 0
µ = 50 Decomposition 16 8 9 1
µ = 100 Decomposition 15 8 14 8

3.4.3 Comparison with Existing Multi-objective Features

Dominance and indicator-based features are extremely competitive with the
decomposition-based features computed with a scalar walk (Tables 3.4 and
3.5). We consider training machine learning models with the union of domi-
nance and indicators features. In Figure 3.5, dominance and indicator-based
features are the three hashed boxes on the left computed with a random walk
of size 50, a random walk of size 100 and a dominance walk, respectively in
color pink, brown, and blue. Results are similar, with decomposition-based
features reaching an average merit between 0.327 and 0.334. Dominance and
indicator-based features are also less restrictive in terms of the choice of sam-
pling method. Whether it is a random walk or a dominance walk, the results
are stable and of the same order of magnitude. Although the gap in accuracy is
small, our results show that using decomposition-based features with a scalar
sampling and a well configured µ can outperform dominance and indicator
features. This behavior is particularly pronounced in the ranks in Table 3.5.
Decomposition-based features for µ ∈ {3, 20, 50} are ranked 0 and 1, meaning
that it statistically outperforms dominance-based and indicator-based features,
which rank 2 at best.

3.5 Conclusion

In this chapter, we have investigated in more depth the accuracy of the pro-
posed set of decomposition-based features. Additionally, we proposed an alter-
native method to extract decomposition-based features with the most common
sampling strategies. To improve our understanding of decomposition-based
features, we performed two experiments: (i) predicting benchmark parame-
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ters and (ii) predicting the best algorithm for a given problem instance. In
these experiments, we studied how feature accuracy varies according to weight
vectors and to the sampling method. We showed that decomposition-based
features can efficiently predict benchmark parameters and predict the best
performing algorithm. Nevertheless, weight vectors used in the feature extrac-
tion is a critical component. Firstly, if the distribution of weight vectors is
not suitable, the accuracy decreases dramatically. The second critical com-
ponent in decomposition-based features is the choice of the number of weight
vectors. While features perform properly in average, this is only when the
number of weight vectors is correctly configured that decomposition-based
features showed to be particularly accurate. In addition, among the different
decomposition-based features, all features proved to be useful in the machine
learning model.

To push our analysis further, we also considered two other sets of fea-
tures: dominance-based features and indicator-based features. We showed
that the difference in accuracy between feature sets is relatively small. If a
random or a dominance walk is used in the computation, models trained with
decomposition-based features are comparable to dominance-based or indicator-
based features. When using a well configured scalar walk, decomposition-based
features allowed machine learning models to be slightly more accurate.

Until now, we considered conducting the landscape analysis to be cost-
free. It is however not the case in practice, since the computation of features
requires a sample of solutions, and this sample requires additional function
evaluations. Accordingly, in the next chapter, we will address the cost of
sampling on features accuracy in higher-level tasks. This will include methods
to reduce the sampling size and how features are impacted by such reductions.
Finally, an extension to the merit measure defined in this chapter is presented
in order to accurately measure the gain when predicting and selecting the
best performing algorithm while taking the cost of feature computation into
account.





Chapter 4

Feature Cost Analysis

The design of effective features enabling the development of automated landscape-
aware techniques requires addressing a number of inter-dependent issues. In
this chapter, we are interested in contrasting the amount of budget devoted to
the computation of features with respect to: (i) the effectiveness of the features
in grasping the characteristics of the landscape, and (ii) the gain in accuracy
when solving an unknown problem instance by means of a feature-informed
automated algorithm selection approach. We study simple cost-adjustable
sampling strategies for extracting different state-of-the-art features. Based
on extensive experiments, we report a comprehensive analysis on the impact
of sampling on landscape feature values, and the subsequent automated al-
gorithm selection task. In particular, we identify different global trends of
feature values leading to non-trivial cost-vs-accuracy trade-off(s). Besides, we
provide evidence that the sampling strategy can improve the prediction accu-
racy of automated algorithm selection. Importantly, this holds independently
of whether the sampling cost is taken into account or not in the overall solving
budget.

The contributions presented in this chapter are part of the paper “Cost-vs-
Accuracy of Sampling in Multi-objective Combinatorial Exploratory Land-
scape Analysis” published and presented at the Genetic and Evolutionary
Computation Conference (GECCO 2022) [22], with minor extensions.

71
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4.1 Motivations and Methodology

The combination of landscape features extraction with the development of
automated recommendation systems proved to be of importance for state-of-
the-art black-box optimizers. As observed in Chapter 3, algorithms expose
different performances as a function of the problem instance being solved.
Multi-objective features provide meaningful information of the (black-box)
landscape underlying a given instance. Following a standard supervised ma-
chine learning methodology, a model can then be trained on the basis of ex-
tensive experiments on a set of known instances. The training phase leads to
a mapping of (pre-computed) landscape feature values to the performance of
(pre-executed) algorithms for which the landscape features are pre-computed
and the available algorithms are executed, in order to elicit their performances.
Given a new unseen instance, features can thus be computed and provided as
input to the trained model in order to obtain a prediction about the most
suitable algorithm for solving the instance. A key ingredient for the success of
such approach relies on the ability to design cheap and meaningful features. In
this chapter, we are interested in studying the impact of feature extraction for
multi-objective combinatorial optimization and when applying in higher-level
tasks.

Extracting black-box features requires a particular sampling of solutions
from the search space. This consists in evaluating the objective values of a
carefully-chosen set of solutions, on the basis of which a numerical statistic,
constituting the feature value, is computed. The sampling has two critical
implications. First, the feature value can be different depending on the sam-
pling method [76] and the size of the sampling. This has a direct consequence
on the quality of the machine learning model, and hence on the accuracy of
an automated algorithm selection approach. Second, to tackle the algorithm
selection problem with machine learning, one has to accommodate the cost
of sampling, since the sample size impacts the overall budget, in terms of
the number of evaluations affordable to solve a new unseen instance. Conse-
quently, computing features that are both as informative as possible, and as
cheap as possible, is a critically important issue. This chapter aims at pushing
a step towards a better understanding of the impact of the sampling type and
cost on the design of a successful automated algorithm selection approach. In
particular, this questions about the impact of the sampling cost on feature
values, and rises a number of questions concerning the accurate choice of the
type of sampling method and the sample size.
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4.1.1 Background

In single-objective continuous optimization, eliciting the impact of sampling
is relatively well studied. On the one hand, different sampling techniques
such as uniform sampling, Latin hypercube, or Sobol sequence were studied
in the past [51, 65, 61]. Very recently, it was shown that, quoting the authors
in [75, 76], “feature values are not absolute . . . [and] cannot be interpreted as
stand-alone measures” independently of the method being used for sampling.
Such a statement was supported by an analysis of the high-level properties
of features, such as their expressiveness and their robustness, with respect to
sampling. On the other hand, the computational effort needed for feature
computation was studied in the past [81, 49, 75, 76, 58]. For instance, rec-
ommendations for computing cheap features are given in [49]. Reviewing all
the literature is out of the scope of this chapter, since our focus is on multi-
objective combinatorial optimization, but let us however remark that very few
features can be interchangeably considered for continuous and discrete do-
mains. In fact, sampling in discrete domains is fundamentally different from
sampling in continuous domains, and so are the existing features.

Relying on a sampling method is mandatory to explore the landscape. As
commented previously in different part of this thesis, the most common sam-
pling technique is to perform some particular walk over the landscape [96,
46, 78]. Roughly speaking, this is intended to inform about the challenges
that search algorithms have to face when exploring the landscape underly-
ing a black-box optimization problems, such as the landscape ruggedness or
the distribution of local optima. Although we can find a number of analy-
sis [90, 89, 93] with respect to feature sampling in single-objective combinato-
rial optimization, very few lessons can be learned when it comes to integrate
those features in an effective automated algorithm selection approach. In
multi-objective combinatorial optimization, which is our main focus, few stud-
ies can be reported. In a state-of-the-art feature-based approach [55], the cost
of sampling is shown to represent a relatively low proportion of the overall
budget dedicated to running the automatically-selected algorithm. In [57], a
similar observation is also reported. Despite such observations, the question
of how the sampling influences the accuracy of a feature-based automated
algorithm selection remains open.

4.1.2 Cost of Features

In Chapter 3, we have actually ignored the cost of feature computation. This
cost is mostly dependent on the considered sampling method used to extract
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Figure 4.1: Number of calls to the evaluation function required for each sam-
pling methods on ρMNK-landscapes with n ∈ {50, . . . , 200}.

the feature value. To illustrate, in Figure 4.1, we show the number of function
evaluations needed for the feature computation with respect to all sampling
methods considered in Chapter 3 (including all values of µ). As a reminder, in
all walks, when a solution is visited, all of its neighbors are evaluated. Let us
remind that algorithm performance was computed with a fixed budget of 106

function evaluations. In the automated algorithm selection, the predicted per-
formance is therefore fixed for the same budget. Decomposition-based features
computed with an adaptive scalar walks have a cost related to the number of
weights vectors µ. Intuitively, an adaptive walk is computed for each weight
independently, this lead to a drastic increase in cost as µ grows. When µ = 1,
the average cost per problem is above 103, equivalent to 0.1% of the algorithm
budget. When µ = 3 the average cost increases by a factor of 3, reaching 1%
of the budget and for µ = 20, the cost reaches 105. The remaining two values,
µ = 50 and µ = 100, are so expensive that the sampling consumes almost all
the budget or even exceeds the budget with an average size of 35% and 70%
of the number of function evaluations allowed to be computed. In comparison,
common sampling methods such as random walk and dominance walk require
less function evaluations. Random walks with a tunable budget (i.e., of size 50
and 100 in previous experiments) used roughly 104 evaluations, equivalently
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to 1% of the algorithm budget. It also has the advantage of having a cost only
related to the problem instance dimension n. Finally, the dominance walk has
a similar cost than a scalar adaptive walk with µ = 1. It varies between 103

and 104. Among the previously used sampling strategies, the most expensive
was the scalar walk when µ is large, reaching a cost between 10% and 100%
of the budget for algorithms runs. Thus, it is clear that when incorporating
the features cost into an automated algorithm selection approach, we should
carefully take into account the sampling cost.

4.1.3 Methodology

In the following, we provide the first in-depth investigations on the impact
of sampling in multi-objective combinatorial landscape analysis. We rely on
the fact that the computation of multi-objective landscape features are mainly
influenced by: the type of the walk, the length of the walk, and the explored
portion of the neighborhood. We hence propose to conduct a systematic em-
pirical analysis of the impact of each factor, with a particular focus on the
sampling cost issues. More precisely, our contribution can be summarized as
follows:

• Considering two conventional sampling methods from the literature, we
adjust the amount of budget devoted to the feature computation by: (i)
constraining the number of neighbors to be evaluated along the walk, and
(ii) controlling the length of the walk when the sampling method allows
us to do so. This departs from the usual way of computing landscape
features, where it is commonly believed that solely the overall amount
of budget can have an impact on feature values. Such settings are then
analyzed using an extensive number of features taken from the two state-
of-the-art sets: dominance- and indicator-based features [55], and the
decomposition-based features set [21] proposed in Chapter 2.

• These cost-adjustable features are analyzed in a fine-grained manner by
eliciting their correlation with the global problem characteristics, and in
a coarse-grained manner when integrated within an automated algorithm
selection approach. This allows us to contrast the amount of budget used
for feature computation with respect to: (i) the ability of feature values
to grasp the problem characteristics, and (ii) the gain in approximation
quality when solving an unknown problem instance using automated
(feature-informed) algorithm selection.
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• We report a comprehensive study using a broad range of ρMNK-landscapes
and a portfolio of three variants of the MOEA/D algorithm. We show
that different global trends of feature values and non-trivial cost-vs-
accuracy trade-off(s) can be distinguished. Depending on the feature
under consideration, increasing the walk length or increasing the num-
ber of visited neighbors do not always lead to more informative feature
values. Besides, controlling the cost of features computation can improve
the accuracy of the automated algorithm selection task. Interestingly,
this holds independently of whether the sampling cost is taken into ac-
count in the available budget, or not.

4.2 Sampling Strategies

Feature computations require two time-consuming steps: generating the sam-
ple of solution and computing the numerical features from the sample. This
second point does not require any calls to the fitness function, since all the
solutions used have already been evaluated during the first step. Therefore,
the cost of the second step relates only to the real time needed by the machine
to make the computation. As this study focuses on black-box complexity, the
real time of the machine is ignored and only the number of calls to the fitness
function is taken into account. Thus, in the rest of this chapter, only the cost
of the sampling step is taken into account. In order to simplify this work, we
focused on the most used sampling strategies for landscape analysis: random
walks and multi-objective adaptive walks. Despite that this work focus on
multi-objective optimization, the approach is compatible with single-objective
landscape analysis except for adaptive walks sampling strategies which slightly
differs between single-objective and multi-objective optimization. Additional
control parameters are introduced to the two sampling methods in order to
ensure a greater control on the cost.

4.2.1 Random and Adaptive Walks

Two methods are generally used in the literature [55, 21] in order to com-
pute the input walk, namely random walk and adaptive walk, as introduced
previously in Chapter 2. In brief, random walk select randomly a solution in
the neighborhood at each iteration. The number of iteration is a user-defined
parameter ℓ. In an adaptive walk, the next solution is selected among the
improving neighbors. In a multi-objective setting, improving neighbors are
considered with respect to the dominance relation [95, 55]. The walk ends if
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no solution improves the current solution. Unlike a random walk, the length
of an adaptive walk is determined by the number of steps required to fall into
a Pareto local optimal solution, hence the user do not control the length of
the walk.

4.2.2 Sampling Strategies with Truncated Neighborhoods

We apply simple modifications to the previous mechanisms in order to control
more finely the feature cost. We consider two options: (i) to control the walk
length ℓ, and (ii) to control the number of neighbors that need to be evaluated.

The first option is only possible when using a random walk, since the
termination step of an adaptive walk cannot be controlled explicitly. This is
however a natural option in order to adjust the overall budget, which was not
studied systematically. In fact, the length of a random walk is in general set
empirically by relying on the end user’s expertise. The second option applies
for both random and adaptive walks. More specifically, for any integer value
r ≤ |N |, let us call a truncated neighborhood, denoted Ñr, a neighborhood
obtained from the original neighborhood N by considering solely r neighbors,
i.e., ∀x ∈ X, Ñr(x) = {y1, y2, · · · , yr | ∀j ∈ [1..r], yj ∈ N (x)}. As such,
we use a truncated neighborhood having r solutions sampled uniformly at
random from N . Then, we compute the different features on the basis of the
so-defined truncated neighborhood. Algorithms 7 and 8 show the pseudocode
of the truncated random walk and the truncated dominance walk, respectively.

On the one hand, these modifications do not affect the sequence of solu-
tions of a random walk, since a random walk only requires picking a neighbor
at random. By contrast, for an adaptive walk, at most the r solutions of Ñr

are considered for selecting the (first) dominating neighboring (if any) at each

step t. This means that an adaptive walk using Ñr can stop earlier at any step
t, if the r randomly-selected neighbors do not include any locally dominating
solution, and even if there exist some solutions in N (xt)\Ñr(x

t) that dominate
xt. In particular, notice that the last solution of the so-obtained adaptive walk
is not necessarily a Pareto local optima with respect to the original neighbor-
hood N . On the other hand, independently of the walk type (i.e., random or
adaptive), for every solution xt in the so-computed walk, solely the r solutions

of Ñr(x
t) are evaluated when computing the statistic required for the final

feature value. In other words, although we follow exactly the same feature
specification as discussed previously, by replacing the (full) neighborhood by
its r-truncated variant, the so-computed feature values can be different.

Additionally, the previous simple modification reduces the feature budget
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to Θ(ℓ·r). However, it is not clear how this impacts the feature values, nor it is
clear how much the so-extracted values are still meaningful. Besides, one may
wonder whether a specific choice of the budget is to be preferred to accurately
characterize the underlying landscapes. In fact, different combinations of r
and ℓ values could be considered, while still constraining the overall budget to
the same pre-fixed value.

Algorithm 7 Truncated Random walk

Input: l ∈ N: length of the walk.
r ∈ [1,N]: proportion of explored neighborhood.
f : X −→ Z: fitness function.

x←random solution
S ← {(x, f(x))} ▷ evaluate the solution
c← 0
repeat
Ñr(x)← Random partition(N (x), r)

for xi ∈ Ñr(x) do
S.append({(xi, f(xi))}) ▷ evaluate the solution

end for
c+ = 1
x← Uniform Random(Ñr(x))

until c = l
return S

4.3 Modified Accuracy Indicators and Exper-

imental Settings

When taking the sampling cost into account, it is not clear how to adapt
indicators to evaluate the machine learning models. Some indicators, such as
the R2, only evaluate the learning model ability to make predictions, hence
can remain unchanged. The merit measures the gain of using the selected
algorithm with respect to using the best algorithm on average. In the following,
we propose a modification to include the cost of the sampling into the merit
indicator.
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Algorithm 8 Truncated Multi-objective adaptive walk

Input: f : X −→ Z: fitness function.

x←random solution ▷ set the initial solution
S ← {(x, f(x))} ▷ evaluate the solution
repeat

Dominating ← {}
Ñr(x)← Random partition(N (x), r)

for xi ∈ Ñr(x) do
S.append({(xi, f(xi))}) ▷ evaluate the solution
if xi dominate x then Dominating.append(xi)
end if

end for
x← Uniform Random(Dominating) ▷ select the next solution

until x = NULL
return S

4.3.1 Cost-integrated Merit Indicator

For performance assessment, we consider an adaptation of the merit mea-
sure [59]. We recall that the merit allows to compare the algorithm selected
by the machine learning model to the so-called single best solver (SBS) and
virtual best solver (VBS).

Let rhv(A, i) be the average relative hypervolume deviation of a given al-
gorithm A using the maximum allowed budget B on an instance i. Similarly,
let rhvc(A, i) be the average relative hypervolume deviation of the algorithm
A when subtracting the cost of feature computation FB, that is when running
the algorithm with a budget of B − FB. Let r̃hvc(A, J) and rhv(A, J) be the
average over a given set of instances J of the relative hypervolume deviation,
respectively, when the feature cost is or not taken into account. The single best
solver (SBS) is the algorithm with the best rhv value on the training set T ; i.e.,
SBS = argminA rhv(A, T ). Notice that the SBS does not need any feature
computation. The virtual best solver (VBS) is the oracle, providing the best
rhv(·, i,B) value for each testing instance i ∈ I. Let us call the Automated
Solver (AS) the algorithm selected by the trained model. The merit measures
the gain in quality of AS relatively to SBS and VBS. For the purpose of our
analysis, we consider the variant of the merit where the sampling cost is taken
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into account (m′):

m′ =
r̃hvc(AS, I)− rhv(VBS, I)
rhv(SBS, I)− rhv(VBS, I)

As for the merit introduced in Chapter 3, a cost-integrated merit of m′ = 0
corresponds to the perfect oracle and a cost-integrated merit m′ < 1 (respec-
tively m′ > 1) indicates that using the model performs better (respectively
worse) than SBS.

4.3.2 Parameter Setting

The ρMNK-landscapes are the same 1 000 bi-objective instances used in Chap-
ters 2 and 3. We consider a truncated neighborhood Ñr of size r = α ·n, where
the parameter α is in {0.05, 0.1, 0.25, 0.5, 1}. Notice that α = 1 corresponds
to the full original neighborhood, whereas for α = 0.05 a sample of 5% of the
original neighborhood is explored. The two types of walks are experimented.
For a random walk, the length is set in the range ℓ ∈ {5, 10, 25, 50, 100}. For
each instance, we thus obtain 1(rnd. walk) × 5(r) × 5(ℓ) + 1(adapt. walk) × 5(r) = 30
possible values for each of the three features set summarized in Appendix 6.2.

4.4 Preliminary Experimental Results

In the first part of this study, we compute features from several truncated
walks with different parameters. All multi-objective feature sets are used, i.e.,
dominance-based, indicator-based and decomposition-based features. Before
understanding the impact of the sample size in higher-levels tasks, we first
focus on two measures: (i) the variation in feature values and (ii) the variation
in feature correlations with benchmark parameters.

4.4.1 Random Walk Analysis

We start by studying the impact of the different sampling configurations when
a random walk is considered. We use two measures to elicit the relationship
between the setting of ℓ and r, and the behavior of the so-computed feature
values. Firstly, we compute the deviation of feature values with respect to
the highest budget-demanding setting of the sampling. More precisely, for
every instance, we compute the value Vmax for every feature f, obtained when
α = 1 and ℓ = 100. Then, we compute for every other value Vr,ℓ(f) of feature
f, obtained with other settings of r and ℓ, the relative deviation to Vmax(f),
that is, |Vmax(f)−Vr,ℓ(f)|/Vmax(f). Secondly, for each feature (in each sampling
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budget

Figure 4.2: Average feature relative deviation (top), and feature correlation
(bottom) with ρ (first and second subfigures) and K (third and fourth sub-
figures) for random walks. From left to right: nhv.sd, inc.avg, in.avg.p2 and
spd.avg.avg. The x-axis (in log-scale) refers to the number of evaluations of
the sampling.

setting), we compute the Spearman correlation between the feature value and
the value of ρ and K over the considered ρMNK.

Preliminaries: Before going into further details, we found that 30% of fea-
tures are neither correlated to ρ nor k, hence being of limited interest in the
following analysis, given the extensive number of considered configurations.
They mostly consist of features relating to the first auto-correlation coeffi-
cient ⋆.r1 or the kurtosis statistic ⋆.kr. Among the remaining features, we are
able to elicit 4 classes where we observe specific trends of feature values and
correlation as a function of the setting of ℓ and r. In the first and second
classes, containing respectively 20% and 15% of the overall features, feature
values depend exclusively on either ℓ or r. In the third and fourth classes,
containing respectively 15% and 20% of the features, they expose a more com-
plex dependency on the values of ℓ and r. These four classes are illustrated
in Figure 4.2, reporting the average values of the relative deviation over the
different instances (top), and the evolution of the Spearman correlation coeffi-
cients (bottom), as a function of the sampling cost. In Figure 4.2, two features
are taken from the decomposition-based set [21], namely the average maximal
distance between improving sub-problems spd.avg.avg and the average pro-
portion of improving neighbors for each sub-problem in.avg.p2. The two other
features are taken from the dominance- and indicator-based set [55], namely
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the average number of incomparable solutions inc.avg and the standard de-
viation of the neighborhood hypervolume nhv.sd. This is discussed in more
details below.

First and second feature classes: In the first class, illustrated by feature
nhv.sd in Figure 4.2 (first column), the feature values are mostly impacted
by the length of the walk ℓ, while being independent to the value of r. More
precisely, the higher the value of ℓ, the smaller the relative deviation, indepen-
dently of r. This indicates that the features converge to some fixed values as a
function of ℓ. However, the proportion of evaluated neighbors r has almost no
impact on the feature values, while implying a substantially higher cost. For
instance, computing nhv.sd using a 5%-truncated neighborhood and ℓ = 100
achieves a relative deviation lower than 0.05%, while being 20 times less ex-
pensive than a full neighborhood exploration. Besides, our observations with
respect to the relative deviation values stay consistent when looking at the
Spearman correlations. For instance, the nhv.sd feature is mostly correlated
with the parameter ρ of the considered landscapes. The correlation changes
consistently with respect to the relative feature deviation. In particular, the
larger ℓ, the higher the correlation with ρ. However, the neighborhood propor-
tion has almost no impact. Interestingly, exactly the opposite behavior can be
reported for other features, which constitute our second class of features repre-
sented by inc.avg in Figure 4.2 (second column). In this second class, feature
values appear to converge to some value as a function of the neighborhood
proportion r. However, longer walks have a very small impact on the feature
values while leading to a substantially higher cost. For instance, computing
the inc.avg feature using the full neighborhood and a very small random walk
of size ℓ = 5 achieves less than 2.5% deviation compared to the most expensive
setting, while requiring 20 times fewer evaluations. We also observe that the
evolution of the correlation coefficient with respect to ρ follows the same trend
as a function of ℓ and r.

Third and fourth feature classes: In the third class of features, repre-
sented by in.avg.p2 in Figure 4.2 (third column), both ℓ and r influences
substantially the feature value. Roughly speaking, a larger budget, i.e., larger
values of ℓ and r, leads to lower relative deviations. However, this trend
is not linear with ℓ and r. For instance, for a small neighborhood pro-
portion α ∈ {0.1, 0.05}, a clear gap is observed with the other values of
α ∈ {0.25, 0.5, 1}. A similar observation can be made for relatively small
walks of length ℓ ∈ {5, 10}. However, combining a random walk of length
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Table 4.1: Proportion of classes for each subset of features.

Classes
Features subsets

fv fd in spd inf sup inc hv hvd nhv lnd lsupp
Class 1
(length)

0.0 0.15 0.05 0.2 0.0 0.0 0.0 0.4 0.2 0.6 0.0 0.33

Class 2
(neighborhood)

0.0 0.36 0.05 0.2 0.2 0.0 0.2 0.0 0.2 0.0 0.4 0.33

Class 3
(linear)

0.77 0.1 0.23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Class 4
0.05 0.1 0.0 0.4 0.4 0.4 0.6 0.2 0.0 0.0 0.0 0.0

Mixed
shape

0.0 0.1 0.23 0.2 0.2 0.4 0.0 0.0 0.0 0.0 0.2 0.0

Unrecognizable
shape

0.16 0.15 0.41 0.0 0.2 0.2 0.2 0.4 0.6 0.4 0.4 0.33

ℓ = 25 and a neighborhood proportion of r = 25%, is enough to achieve a rela-
tive deviation lower than 3% while using 16 times fewer evaluations compared
against the most expensive setting. Notice that the correlation coefficient in-
creases consistently, as commented previously for the other classes. Finally, in
the fourth class of features, represented by spd.avg.avg in Figure 4.2 (fourth
column), the relative deviation decreases consistently with the cost of sam-
pling. However, the correlation coefficient does not follow the same trend in
the sense that intermediate settings can provide substantially higher correla-
tions. For instance, computing the spd.avg.avg feature using a small walk of
length ℓ ∈ {5, 10} and the full neighborhood shows significantly larger corre-
lation values compared against the most expensive setting, while requiring a
significantly lower budget.

Relation between features, statistical functions and the sample cost:
To improve our understanding of the relation between features and the sample
cost, we present in Table 4.1 the proportion of multi-objective features per
classes, for each feature subset. Similarly, we investigate the relation between
the used statistical function and feature classes in Table 4.2.

As the distribution of features into classes is not an automated process,
some difficulties were encountered for several multi-objective features. In Ta-
bles 4.1 and 4.2, a distinction was made between features that are difficult to
classify manually. While we observe a pattern most of the time, in some cases,
it is difficult to decide among which of the four categories the feature belong
to. These cases are called mixed shape in the Tables 4.1 and 4.2. In partic-
ular, it appends when the observed pattern varies between K and ρ or when
patterns are not consistent between the two observed measures (correlation or
average feature deviation). But in these cases, it is always possible to detect
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Table 4.2: Proportion of classes for each statistical function used in the com-
putation of the feature.

Classes
Statistics functions used in feature computation

.kr .sk .r1 .sd .avg .p1 .p2
Class 1
(length)

0.0 0.22 0.11 0.21 0.04 0.07 0.15

Class 2
(neighborhood)

0.0 0.22 0.0 0.13 0.34 0.0 0.15

Class 3
(linear)

0.0 0.0 0.0 0.26 0.17 0.38 0.38

Class 4
0.55 0.44 0.05 0.08 0.07 0.0 0.07

Mixed
shape

0.0 0.0 0.05 0.21 0.21 0.0 0.07

Unrecognizable
shape

0.44 0.11 0.77 0.08 0.13 0.53 0.15

the presence of patterns according to the size of the walk and the proportion
of the neighborhood explored. Conversely, some features do not belong to any
classes (Unrecognizable shape in the Tables). This manual classification is
approximate, and we aim to get insight of the relations between the feature,
the used statistic and the sample size.

In Table 4.1, each row corresponds to the set of variations for the same
feature set, and each column shows the proportion of features in the four
classes. Notice that the values have been rounded, which explain why their
sum is not exactly 100%. The observed metric has undoubtedly the highest
impact on the relation between the multi-objective feature and the sample
cost. For example, 77% of features from the fitness value fv are linear (class 3)
with the cost of the sample. Similarly, the difference of hypervolume hvd, the
proportion of incomparable neighbors inc, and the neighborhood hypervolume
nhv have most of their features in a single class. For some metrics, the multi-
objective features fall in different classes. For example, the fitness difference
fd has at most 36% of features in a single class. In these case, the relation
between the length of the walk ℓ and the proportion of visited neighbors r and
the feature is mostly impacted by statistical functions used in the computation.
We observe such results in Table 4.2. For example, the kurtosis kr and the
skewness sk are respectively a measure of the tailedness of a distribution and of
the asymmetries of a distribution. Half of the features computed using either
the kurtosis or the skewness end up in the fourth class. A second example
is the first auto-correlation coefficient r1. This function was proved to make
efficient features [96, 55, 46], however no patterns could be observed in most
features.
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Discussion: From the previous observations, we can say that there is a
complex interaction between the feature values and the sampling configuration.
In particular, a higher budget does not systematically lead to more consistent
values, independently of the considered feature. Moreover, the settings of ℓ
and r can lead to seemingly different features exposing different trade-offs both
in terms of feature values, feature cost, and feature ability to grasp the global
characteristics of the underlying landscape. Hopefully, our analysis suggests
that there could be some setting of ℓ and r leading to reasonably cheap and
accurate features. This will be studied in more details in Section 4.5. In the
following, we first complement our analysis with respect to the adaptive walk.

4.4.2 Adaptive Walk Analysis

Feature values: Firstly, we report in Figure 4.3 (left) the relative deviation
of features with respect to the values obtained using an adaptive walk with the
largest budget (ℓ = 100 and r = 100%). We observe that the relative deviation
spans a wide range (from 2% to more than 60%), as a function of r. Actually,
the largest deviations are with respect to very small r values. This is to
contrast with random walks where, although r was found to have a significant
impact, the range of the relative deviation is relatively small. This indicates
that the size of the r-truncated neighborhood is critical for an adaptive walk.
In general, the feature values converge as r increases. However, some features
are found to be less sensitive to r, as illustrated by the in.avg.p2 and the spd.avg
features, for which a small value of r allows to obtain a significantly lower
deviation range. Overall, an adaptive walk visiting 25% of the neighborhood
provides feature values which are relatively close to a full neighborhood (up
to 5%), while requiring a significantly lower budget. One should however keep
in mind that given the range of feature values, even such a small deviation is
not necessarily negligible.

Correlation values: Secondly, in Figure 4.3 (middle and right), we report
the evolution of the correlation between feature values and the benchmark
parameters ρ and K. In the situations where a feature shows a significant
(positive or negative) correlation with either ρ (e.g., rhv.sd or inc.avg) or K
(e.g., spd.avg) when using a full neighborhood, the strength of the correlation
decreases when extracting the feature with decreasing values of r. For the other
situations, no general tendency can be reported. From our collected data, we
can state that computing features with an adaptive walk using the original
neighborhood seems to expose the strongest correlation with the benchmark
characteristics.
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budget

Figure 4.3: Average feature relative deviation (left), and feature correlation
with ρ (middle) and K (right) for adaptive walks. The x-axis (in log-scale)
refers to the number of evaluations of the sampling.

4.5 Impact of Cost in High-Level Prediction

Tasks

In the previous sections, we studied the impact of the sampling cost/strategy
on feature values, as well as, on the correlation of feature value with the
landscape global parameters. In this section, we aim at analyzing the impact of
using different budgets/samplings when integrating the so-computed features
when performing other machine learning tasks, namely, predicting benchmark
parameters and selecting the best algorithm for a given problem instance.
Let us recall that the higher the feature cost, the smaller the budget of the
algorithm.

4.5.1 Predicting Benchmarks Parameters

Task description: This task informs about the power of a predictive model
as a function of the sampling. We train one model with each possible con-
figuration of the sampling in order to fit respectively parameters K and ρ of
the input benchmarks. As in Chapter 3, we use two random forest [15] re-
gression model for ρ and K. Each model is trained on the basis of the input
feature values, using a default value of 100 trees [69]. We then focus on the
models’ R2 values, as summarized in Figure 4.4. The higher the R2 value, the
more explainable the variance in the benchmark parameter (ρ or K), using
the underlying sampling.
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budget

Figure 4.4: Average R2 (over 50 repetitions) of random forest models for
predicting ρ (left) and K (right). The x-axis (in log-scale) refers to the number
of evaluations.

Results and discussion: From Figure 4.4, we observe that in comparison
to a random walk, an adaptive walk provides a poor trade-off in terms of the
R2 value and the implied budget for k. We also notice that the R2 has a
global tendency to increase as the budget underlying the sampling increases.
However, reasonably high R2 values are obtained at lower costs by adjusting
the sampling parameters. For instance, an adaptive walk with half of the
neighborhood (r = 50%) obtains almost the same R2 values (0.94 for ρ and
0.84 for K) while reducing the feature cost by half in average. Looking more
carefully at the random walk configurations, we find a number of settings of ℓ
and r that obtain the same high level of accuracy, but with a drastic saving in
the budget when compared against the most expensive setting. Interestingly,
we found that the configuration providing the best trade-offs are different
depending on the target prediction task. For K, a very small random walk
(ℓ = 5) and the full neighborhood exploration (r = 100%) provides among
the highest R2 values (0.97) while requiring 20 times less budget than the
most expensive setting. In fact, it appears that the most important sampling
parameter for predicting K is the proportion r of the neighborhood. For ρ,
a configuration using a walk length ℓ = 50 and very small proportion of the
neighborhood r = 10% provides among the highest R2 values (0.94) while
requiring 20 times less budget than the most expensive setting. Actually, the
R2 value with respect to ρ is mostly impacted by the length of the walk,
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Table 4.3: Merit average values without including sample cost for the different
sampling configurations.

Merit without feature cost (m′)
Random Walk Adaptive

r ℓ = 100 ℓ = 50 ℓ = 25 ℓ = 10 ℓ = 5 Walk

100% 0.513 0.517 0.555 0.573 0.573 0.617
50% 0.507 0.544 0.575 0.616 0.574 0.606
25% 0.507 0.561 0.566 0.637 0.631 0.626
10% 0.538 0.579 0.563 0.606 0.583 0.670
5% 0.547 0.572 0.550 0.637 0.644 0.690

provided that the proportion of evaluated neighbors is at least r = 10%.

4.5.2 Automated Algorithm Selection

Task description: The second and more sophisticated task aims at studying
the impact of the sampling cost when tackling the automated algorithm selec-
tion problem [77] using a feature-informed performance prediction approach.
For this purpose, we consider the exact same portfolio of algorithms as in
Chapter 3 and the same ρMNK-landscape instances. Following a standard
supervised machine learning approach, we split the 1000 ρMNK-landscape in-
stances into a training set T and a testing set I. We then train a multi-output
random forest regression model [15] in order to fit the relative hypervolume
deviation of the different algorithms on the basis of the feature extracted with
respect to each instance in the training set T . Afterward, given an unseen
instance from the testing set I, the features are first computed, and the per-
formance of each algorithm is then predicted on the basis of the so-trained
model. The algorithm with the best predicted performance is selected as the
recommended one. Since extracting the features has a cost, we distinguish
two scenarios for the purpose of our analysis. In the first scenario, the selected
algorithm is run with the maximum budget B, hence not counting the sam-
pling cost. In the second, more realistic scenario, the algorithm is run with
a budget of B − FB, where FB is the number of evaluations used to compute
the features. We adopt a standard repeated random hold-out strategy with a
90/10% split for training/testing, and we report the average merit value over
100 independent folds.
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Table 4.4: Cost-including merit average values for the different sampling con-
figurations.

Merit with feature cost (m)
Random Walk Adaptive

r ℓ = 100 ℓ = 50 ℓ = 25 ℓ = 10 ℓ = 5 Walk

100% 0.537 0.529 0.562 0.577 0.576 0.624
50% 0.521 0.552 0.580 0.620 0.577 0.610
25% 0.515 0.566 0.569 0.640 0.634 0.629
10% 0.544 0.583 0.566 0.609 0.585 0.672
5% 0.551 0.575 0.552 0.639 0.646 0.692

Results and Discussion: In Tables 4.3 and 4.4, we report the merit values
obtained for the different configurations. First, we observe that the merit value
m, taking into account the feature cost, is always worse than the merit without
cost m′. With no surprise, this indicates that reducing the budget devoted to
feature computation can help to improve the overall performance. More impor-
tantly, the merit m is always lower than 1. This means that a feature-informed
automated algorithm selection approach is always better than SBS, indepen-
dently of the experimented sampling configuration. This is especially inter-
esting for the cheapest configuration (ℓ = 5, r = 5%), implying an extremely
constrained feature budget of at most 50 evaluations. Besides, a random walk
provides better merit values than an adaptive walk. The merit increases when
the sampling size decreases. More precisely, the loss of accuracy is slightly
more important when the length of random walk is reduced. We also find that
using the most expensive sampling configuration (ℓ = 100, r = 100%) is not
the most efficient in terms of merit. In fact, a random walk with ℓ = 100 and
r = 25% requires four time less budget while providing the best merit values.
Surprisingly, this holds independently of whether the cost of sampling is taken
into account or not. This gain can be attributed to the fact that a relatively
small budget (i.e., 0.5% of the global budget) still allows computing informa-
tive features leading to accurate predictions, while leaving more chance for the
algorithm to converge. This is consistent with the results from our first task,
where we were able to elicit some cost-vs-accuracy trade-offs when varying the
sampling parameters ℓ and r for predicting the values of K and ρ.

Finally, we use the mean Gini impurity measure to extract the importance
of each feature from the trained random forest models. We then compute the
importance rank of each feature normalized in [0, 1], with 1 being the most
important feature. In Figure 4.5, we report the 10 most important features
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importance

Figure 4.5: Top 10 most important features. Line styles and shapes refer to
the feature categories.

when using the most expensive setting (ℓ = 100, r = 100%, left) and the
sampling providing the best merit (ℓ = 100, r = 25%, right). We clearly
see that the ten most important features are the same in both settings. This
indicates that using a restricted budget does not necessary lead to a major
change in feature importance. However, we can observe small variations in
the respective ranks of features. Besides, we found that five features fall into
the first category elicited in the analysis of Section 4.4. In particular, the
values of the four most important features hvd.sd, lsupp.sd, inc.sd, hv.sd are
highly impacted by the length of the walk ℓ. One feature fd.avg.p2 falls into
the second category where the proportion of neighbors r is found to have
the greatest impact on this feature value. Another feature inf.sd belongs to
the third category, increasing its accuracy according to the sampling size.
Finally, three features, namely hv.r1, in.sd.avg, and fv.r1.avg fall into the fourth
category, where the highest correlation with the landscape characteristics is
observed with a reduced sampling size.
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4.6 Conclusion

In this chapter, we conducted the first systematic analysis on the impact of
sampling on the extraction of multi-objective combinatorial landscape fea-
tures, and their integration into feature-informed performance prediction and
algorithm selection approaches. By adding a parameter to adjust the propor-
tion of the explored neighbors in random and adaptive walks, we investigated
the impact of the sample size on features computation. We provide evidence
that feature values, and their correlation with benchmark characteristics, ex-
pose complex dependencies with the sampling type and cost. In particular,
we showed that a random walk using a reasonably small proportion of neigh-
bors leads to cheap and informative feature values. Since a reduction in the
feature cost allows the selected algorithm to increase its budget, using fea-
tures computed with a cheaper cost is beneficial to the automated algorithm
selection task. Different questions are however left open. For instance, it
would be interesting to extend our analysis to other algorithms, benchmarks,
combinatorial domains and objective space dimensions. Following this line,
the next chapter proposes a new multi-objective combinatorial benchmark ex-
tending MNK-landscapes. The proposed benchmark introduces heterogeneity
by setting different levels of difficulty for each objectives.





Chapter 5

Heterogeneous Multi-objective
NK-Landscapes

Unlike the previous chapters, in this chapter, we consider the design and anal-
ysis of landscape features in the context of a heterogeneous multi-objective
problem. Heterogeneity in multi-objective optimization can be viewed from
different perspectives. We are interested in the heterogeneity arising in terms
of ruggedness and multi-modality. By adapting the multi-objective NK model,
a heterogeneous problem generator is defined and carefully studied through
global and local metrics. The new benchmark is thoroughly analyzed with
global features for small instances and local features for large instances. Be-
sides, we use the decomposition paradigm to understand the difficulties intro-
duced by the heterogeneous MNK model. Finally, we consider two algorithms,
namely MOEA/D and NSGA-II, to observe how heterogeneity impacts the
performance of evolutionary algorithms.

The contributions of this chapter were initially published in the Genetic
and Evolutionary Computation Conference (GECCO 2022) [23], which was
nominated for the best paper award. An extended version was submitted for
publication in the European Journal of Operational Research (EJOR). At the
time of writing, it is under revision.

93
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5.1 Motivations

We consider heterogeneous multi-objective problems where the objective func-
tions differ in one or several aspects, such as scaling, landscape, evaluation
time, or theoretical and practical difficulty [35]. Studies on multi-objective
evolutionary algorithms do not frequently pay attention to the heterogeneity
of the objectives, and to the way it might influence search difficulty. This is
particularly the case when considering multi-objective benchmarks, where the
focus is usually the global characteristics of the multi-objective landscape, or
the shape of the Pareto front. However, real-world problems might exhibit
a significant variability in the objectives’ characteristics, and recent research
has addressed the question of heterogeneous objectives and proposed multi-
objective approaches to deal with them [7]. Much of this previous research has
been, however, focused on problems where the heterogeneity arises in evalua-
tion times or latencies, that is, when each objective takes a different amount
of time to be evaluated [6, 5, 14, 19].

In this chapter, we are interested in problems where the multi-modality
and the ruggedness significantly differ among the objectives. As a representa-
tive class of problems, we select multi-objective NK-landscapes [1, 3, 53, 95],
and we build on recent results analyzing and characterizing this problem class
[21, 24, 56, 55]. The parameter K of the NK model critically influences the
characteristics of the fitness landscape. As K increases, the ruggedness and
the multi-modality of the landscape also increase. Therefore, we investigate
multi-objective NK-landscapes where each objective has a different number of
variable interactions K. Such a model serves as a framework to investigate
the impact of heterogeneous objectives, by allowing us to evaluate how the
difference in the amount of ruggedness among the NK models translates into
the difficulty of the multi-objective problem. Although our analysis could be
extended to an arbitrary number of objectives, as in the previous chapters, we
focus on bi-objective NK-landscapes. We conduct exhaustive experiments on
heterogeneous bi-objective NK-landscapes with different number of variable
interactions per objective, and different degrees of heterogeneity. Using tra-
ditional metrics from landscape analysis, we analyze the heterogeneous land-
scapes in terms of multi-modality and of the Pareto set structure. We further
analyze to what extent these metrics are impacted by the number of variable
interactions and by the degree of heterogeneity among the objectives. Firstly,
we introduce two decomposition techniques to better render the impact of
heterogeneity on the landscape, inspired by decomposition-based features pro-
posed in Chapter 2. The proposed techniques are global features based on the
full enumeration of the search space, and on the mapping of multi-objective
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local optimal solutions into the objective space to inform about their distribu-
tion.

Secondly, for problems with large number of variables, we investigate the
ability of existing multi-objective landscape features in capturing the degree of
heterogeneity. We consider the three sets of features investigated in Chapter 2,
3 and 4, namely dominance, indicator, and decomposition-based features. We
find that decomposition-based features are particularly well suited to cap-
ture heterogeneity. More importantly, this feature-based analysis allows us
to provide more insight into the impact of heterogeneity. On the large prob-
lem instances, we study the behavior of two state-of-the-art multi-objective
evolutionary algorithms, namely MOEA/D [104] and NSGA-II [26], when fac-
ing a range of large problems with different degrees of heterogeneity. While
MOEA/D is found to perform better regardless of the degree of heterogeneity,
the performances of both algorithms are found to be impacted by the degree
of heterogeneity similarly.

5.2 Problem Definition

We introduce heterogeneous multi-objective NK-landscapes, an extension of
MNK-landscapes introduced in Chapter 1, by defining each objective function
Fi, i ∈ {1, . . .m}, as follows:

Fi(x) =
1

n
·

n∑
j=1

f i
j(xj,ΠKi

(xj)). (5.1)

where the only change is in the definition of the interaction variables ΠKi
(xj).

It now denotes, for each decision variable xj, a set of Ki, i ∈ {1, . . .M}, other
interacting variables within sub-function f i

j with respect to the i-th objective.
In other words, a heterogeneous NK-landscape has now M possibly differ-
ent numbers of interactions (K1, K2, . . . , KM) respectively to the M objective
functions. Since higher values for parameter Ki mean higher non-linearity
(among variables), it is well-known that the single-objective landscape with
higher values of Ki are relatively more rugged, more multi-modal, and hence
more difficult to search [33, 66]. Consequently, having different Ki values
for the different objectives allows one to model heterogeneous multi-objective
landscapes with a variable difficulty among the objectives.

Notice that there might be different ways to define the sets ΠKi
(xj), j ∈

{1, . . . , n} with respect to each objective Fi, i ∈ {1, . . . ,m}. To reduce the vari-
ability of the variable interaction structure, the single-objective NK-landscapes
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(i.e., the Fi functions) underlying a given heterogeneous MNK-landscape are
built using a particular reduction process. More precisely, assume without
loss of generality that the Ki values are sorted in a non-decreasing order, i.e.,
K1 ≤ K2 ≤ . . . ≤ KM . Then, an initial single-objective NK-landscape in-
stance is first generated for the last objective FM with the highest ruggedness
KM using a standard procedure [9]. This means the set of interaction vari-
ables ΠKM

(xj) are first generated and fixed, as well as the output tables of
the contribution sub-functions fM

j . NK-landscapes instances with lower K are
then constructed by using a process called NK-model reduction [23]. For each
variable xj, the interacting variable among ΠKM

(xj) with the smallest mean
squared distance between each possible configuration of the other variables is
selected to be removed, that is:

xj = arg min
xj∈Π(xi)

∑
x̄∈xi∪Π(xi)/xj

(fi(xi, x̄ ∪ xj = 1)− fi(xi, x̄ ∪ xj = 0))2 (5.2)

where x̄ ∈ Xi ∪ Π(Xi)/Xj represents a configuration of the interactions of i
excluding j, and fi(x̄ ∈ Xi ∪ Π(Xi)/Xj) is the value of function fi for a par-
ticular configuration of the interacting variables. A new sub-function fj with
2M−1 values is then randomly generated for each variable and their set of in-
teractions ΠkM−1

(xj) to build a new NK-landscape defining objective function
FM−1. The process repeat to construct progressively all instances. This pro-
cess guarantees that, for any pair of NK models (NK1, NK2) generated from
a common initial instance and such that K1 < K2, the ΠNK1(Xj) variable
interactions of a variable Xj are a subset of ΠNK2(Xj).

Considering bi-objective MNK-landscapes, parameters K1 and K2 config-
ure the heterogeneity of the instance. For homogeneous instances, we set
K1 = K2. We define the total degree of variable interaction as T = K1 +K2,
and the degree of heterogeneity as D = |K2 − K1|. It is important to notice
that, given T and D, the sum T +D = max(K1, K2) · 2 must be even in order
to ensure feasibility, resulting in only two possible symmetrical pairs (K1, K2).
Fixing K1 < K2 sets the number of possible configurations to one, therefore
the total degree of variable interactions T and the degree of heterogeneity D
are two alternative parameters to characterize MNK-landscapes.

The two parameters T and D are actually important to define a diverse set
of benchmark instances where the impact of heterogeneity can be studied from
a number of orthogonal perspectives. In the following section, and similarly to
previous chapters, we restrict our analysis to heterogeneous MNK-landscapes
with two objectives (M = 2) and additionally, we consider the following sce-
narios:
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• Fixed total degree of variable interactions (T ),

• Fixed degree of heterogeneity (D),

• Increasing heterogeneity without fixing T nor D.

5.3 Landscape Analysis for Small Heteroge-

neous MNK-landscapes

In this section, we investigate small instances of heterogeneous multi-objective
NK-landscapes. We consider an instance to be small when the number of
variables is small and that the search space can be fully enumerated. Such
characteristic allows us to compute exact statistics on the landscape. In par-
ticular, we can compute all Pareto local optima solutions (PLO) and all single-
objective local optima solutions (SLO) by enumerating the search space. As
a reminder, a solution is a Pareto local optima if its neighbors do not domi-
nate it, and a solution x ∈ X is a single-objective local optima according to
the objective Fi if, for all solution in its neighbors x′ ∈ N (x), x has a better
objective value Fi(x) > Fi(x

′). The presence of Pareto local optima solutions
and single-objective local optima solutions are known for making it difficult
for algorithms to solve an instance.

We considered problems with N = 14 and K ∈ {1, . . . , 12}, such that
instances are generated by reducing an instance with K = 12. For each K
value, we generate 50 random instances, and apply the reduction for each of
them, obtaining 50× 12 = 600 (single-objective) NK models. Finally, in order
to create bi-objective MNK-landscapes, we pair each possible combination of
K values for each of the original instances, ending up with 50 instances of the
12×11

2
= 66 bi-objective problems.

5.3.1 Visual Inspection of the Objective Space

We start by analyzing the impact of heterogeneity on the structure of the
objective space. Given a fixed value of T = K1 + K2 = 13, we show in Fig-
ure 5.1 three exemplary heterogeneous MNK-landscapes in which the level
of heterogeneity varies, from slightly heterogeneous objectives (left) to highly
heterogeneous objectives (right). First, we observe that the distribution of
objective values is different for different levels of heterogeneity. For nearly ho-
mogeneous objectives (left), the ellipse surrounding the objective space looks
like a circle, where the range of objective values is the same for both objectives,
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Figure 5.1: Objective space for three heterogeneous MNK-landscapes with a
fixed total degree of variable interaction T = K1 + K2 = 13. The degree
of heterogeneity increases from left to right. Red points are Pareto optimal
solutions, blue points are single-objective local optima solutions w.r.t. the
first objective (which are not Pareto optimal), green points are single-objective
local optima solutions w.r.t. the second objective, orange points are Pareto
local optima solutions (that are not Pareto optimal, nor single-objective local
optima solutions for any objective), and gray points are non-local optimal
solutions.

similar to what we observe for homogeneous MNK-landscapes [95]. However,
as the degree of heterogeneity increases, the position of solutions in the objec-
tive space seems to squeeze for the objective with a smaller K. We attribute
this to the underlying distribution of objective values for NK models, for which
the range is known to increase with K.

Figure 5.1 additionally highlights Pareto optimal solutions, single-objective
local optima solutions for each objective and remaining Pareto local optima
solutions in different colors. We observe that the PF size and the number of
Pareto local optima solutions do not seem to significantly fluctuate with the
level of heterogeneity. However, the more homogeneous the objectives, the
better distributed the single-objective local optima solutions among both ob-
jectives (left). By contrast, for highly heterogeneous objectives (right), almost
all local optima are with respect to the second objective (f2), resulting in a
proportional increase of Pareto local optima solutions on top of the objective
space.

Pareto Local Optimal Solutions density: Before going into further de-
tails, we show in Figure 5.2 the mapping of solutions in the objective space, as
well as the density of Pareto local optima solutions, for the considered hetero-
geneous MNK-landscapes. The objective-values of all solutions are normalized
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Figure 5.2: Pareto local optima density in the objective space for HMNK-
landscapes with n = 14. Red points are Pareto local optimal solutions and
gray points are non-local optimal solutions. Density levels are computed with
a two-dimensional kernel density estimation [98].

according to the minimal and the maximal value of the objective, as introduced
in Chapter 1. For each objective i ∈ {1, . . . ,m}, the normalized F̂i-value of a
solution x is given by:

F̂i(x) =
Fi(x)−min∀x∈X Fi(x)

max∀x∈X Fi(x)−min∀x∈X Fi(x)
(5.3)

Pareto local optima solutions play an important role in the understanding
of the multi-objective landscape structure [55]. This is because the difficulty
of searching in a given landscape is typically a function of the number and dis-
tribution of Pareto local optima solutions. When increasing the heterogeneity
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among the objectives, a majority of Pareto local optima solutions tend to be
single-objective local optima with respect to the hardest objective. In the re-
minder of this section, we provide a more focused analysis on the distribution of
Pareto local optima solutions. In standard (homogeneous) MNK-landscapes,
the density levels of Pareto local optima solutions in the objective space are
known to be equally distributed among both objectives [95]. It appears in
Figure 5.2 on problems in the diagonal, by a blue filled-in area which expands
from the top-center of the objective space to the right-center as the number of
interactions is the same for each objective. When the degree of heterogeneity
increases, we observe that the density level rotates to the upper part of the
objective space. Rugged landscapes have a higher number of single-objective
local optima. All local optima are also a Pareto local optima, except in few
cases when two local optima are equivalent where only one of the two local
optima is a Pareto local optima. Thus, a variation in heterogeneity alters
the landscape by shifting the amount and distribution of Pareto local optima
solutions towards the most difficult objective.

5.3.2 Global Features

Experimental Settings: We computed global features on each of the bi-
objective problems instances and report the average values among the 50 in-
stances. The metrics are summarized in Table 5.1.

Table 5.1: Global landscape characteristics extracted from MNK-landscapes.

name description

PF size proportion of solutions in the Pareto front [52, 3]
supp proportion of supported solutions in R1 [52]
hv hypervolume covered by solution from R1 [3]
cc proportion of connected components in R1 [68]

sing proportion of isolated solutions (singletons) in R1 [68]
lcc prop. size of the largest connected component (lcc) in R1 [95]

lcc hv proportion of hypervolume covered by the lcc in R1 [57]

plo proportion of Pareto local optimal solutions (PLO) [67]
mean slo prop. single-objective local optima (SLO) per objective [57]

slo i proportion of SLO for objective fi
p slo i same as above, proportional to the number of PLO

plo not slo proportion of PLO that are not SLO for any objective
p plo not slo same as above, proportional to the number of PLO

slo dev deviation of the number of SLO per objective: | slo 1 − slo 2 |
p slo dev same as above, proportional to the number of PLO
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Structure of the Pareto set: Figure 6.2 (top right and center) summarizes
some metrics related to the structure of the Pareto set for all considered het-
erogeneous bi-objective problems: the number of solutions in the Pareto front,
and the number of connected components (cc) in the graph G = (PF,E)
where there is an edge e = (x, y) ∈ E if solutions x and y are neighbors.
The analysis reveals that the number of Pareto optimal solutions does not
vary significantly among the considered problems. For a fixed K1, it seems
to slightly decrease with K2 > K1, which confirms results from homogeneous
MNK-landscapes [3, 95]. However, this observation does not hold when fixing
K2 and varyingK1 < K2. This suggests that the “most-difficult” objective has
more impact on the cardinality of the Pareto set than the “easier” objective for
MNK-landscapes. We also observe that there are slightly fewer Pareto optimal
solutions as the degree of heterogeneity among the objectives increases. Simi-
larly, the proportion of supported solutions (supp) and the global hypervolume
(hv) reported in Appendix 6.2 do not reveal any significant variations. They
mostly relate to the shape of the PF, which does not reveal significant changes
in the benchmark. We can however notice that hv seems to increase with the
number of variable interactions, as for homogeneous MNK-landscapes [3].

In terms of connectedness of the Pareto set, it is reported to decrease with
the number of variable interactions for homogeneous MNK-landscapes in [95].
This is what we observe in Figure 6.2, where the number of connected compo-
nents (cc) increases with K1 and K2. We observe that related metrics in Ap-
pendix 6.2, such as the proportion of isolated Pareto-optimal solutions (sing),
and the size and hypervolume of the largest connected component (lcc hv),
vary accordingly. Interestingly, we do not observe any significant change with
respect to the difference between K1 and K2, suggesting that the connected-
ness is not impacted by the level of heterogeneity among the objectives.

Multi-modality: Let us now analyze how the non-linearity of objectives,
and their level of heterogeneity, influences the multi-modality of the landscape.
In Figure 6.2 (top left, and bottom), we report additional metric values related
to the number of local optimal solutions for the 50 folds of each pair of (K1, K2)
values. We focus on a subset of metrics.

For single-objective NK-landscapes, it is expected that higher K values re-
sult in more local optima [46]. For homogeneous MNK-landscapes, the number
of Pareto local optima solutions is also known to increase with K [95]. Overall,
all metrics related to the multi-modality show a regular variation according to
both K values: the larger K, the more the landscape is rugged. The number
of Pareto local optima solutions (plo, top right) varies significantly and, as
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Figure 5.3: Statistics computed from heterogeneous MNK-landscapes.

expected, it clearly depends on the value of K for both objectives. However,
the number of Pareto local optima solutions remains constant whatever the
level of heterogeneity among the objectives. Similarly, the mean proportion of
single-objective local optima solutions per objective (mean slo, bottom left)
significantly increases along K1 and K2. Our results reveal that the varia-
tion can be significant. As already illustrated in Figure 5.1, the number of
single-objective local optima for objective Fi (sloi) increases with Ki, and so
does its proportion among Pareto local optima solutions. Interestingly, we
also observe that the latter increases a bit more significantly as objectives get
more heterogeneous, that is when there is a large difference between K1 and
K2 (see, e.g., p slo 2, bottom center).

The metrics discussed above, such as plo or mean slo but also cc, mostly
capture this general characteristic of the landscape. Similar to the number of
Pareto local optima solutions, the number of Pareto local optima solutions that
are not single-objective local optima solutions for any objective plo not slo

increases with the total degree of interactions T . However, its normalized
variant p plo not slo decreases with T . This can be interpreted as follows:
for smoother landscapes with (K1 = 1, K2 = 2), 5% of Pareto local optima
solutions are also a single-objective local optima solution with respect to one
objective, whereas for highly rugged landscapes with (K1 = 11, K2 = 12),
more than 90% of Pareto local optima solutions come from single-objective
local optima solutions with respect to F1 or F2.

The total degree of variable interactions T captures the general trend of the
ruggedness, but fails to grasp the disparity among the objectives. For a low
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degree of heterogeneity, we already observed in Figure 5.1 that single-objective
local optima solutions are well-balanced between the objectives. To go further,
we compute the deviation between the number of single-objective local optima
solutions for each objective slo dev, together with its normalized variant, as
a proportion among Pareto local optima solutions, p slo dev. The latter is
reported in Figure 6.2 (bottom right) for different K1 and K2 values. Increas-
ing the heterogeneity D, such as K1 < K2, results in a strong concentration
of single-objective local optima solutions on the second objective. In other
words, slo dev increases with the objectives’ heterogeneity. Contrary to the
proportion of Pareto local optima which are not single-objective local optima
solutions, that decreases with the total degree of interactions T = K1 + K2,
the proportional variant p slo dev is mostly impacted by the degree of hetero-
geneity D = |K1 −K2|.

Correlation Analysis: To push our analysis further, we report in Figure 5.4
the correlation between the 17 considered metrics and: (1) the number of vari-
able interactions for the first objective K1, (2) the number of variable interac-
tions for the second objective K2, (3) the total number of variable interactions
for both objectives T = K1 +K2, and (4) the degree of heterogeneity among
the objectives D = |K1 − K2|. The correlations reveal five categories of ob-
servations. Firstly, as expected, the number of single-objective local optima
solutions (slo i) and their proportion within Pareto local optima (p slo i)
are highly correlated with Ki, forming two small clusters in the center. The
latter is normalized by the number of Pareto local optima solutions, which
results in an anti-correlated relationship between p slo i and the cluster with
K of the other objective. The number of Pareto local optima (plo), the aver-
age number of single-objective local optima solutions per objective (mean slo)

and the number of Pareto local optima which are not single-objective local op-
tima solutions (plo not slo) are all strongly correlated with T = K1 + K2.
So are the proportion of isolated solutions (sing) and the proportion of con-
nected components (cc) among Pareto optimal solutions, forming all together
a large cluster in the bottom right of the figure. This cluster is related to
both previous clusters, where K1 and K2 appear. Inversely, the proportion
of Pareto local optima which are not single-objective local optima solutions
(p plo not slo) decreases with T = K1 +K2. Similarly, the size of the largest
connected component (lcc) follows an opposite trend to the number of iso-
lated solutions (sing) and the proportion of connected component (cc). In a
fourth cluster, we observe that the deviation of single-objective local optima
solutions (slo dev) and its proportion (p slo dev) are strongly impacted by the
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Figure 5.4: Spearman correlation between landscape metrics, K1, K2, the total
degree of interactions K1 +K2, and the degree of heterogeneity |K1 −K2|.

degree of heterogeneity D = |K1 − K2|, when slo dev also reveals a medium
correlation with other benchmark parameters (K1, K2, and T = K1 + K2).
As such, for the same degree of heterogeneity, the range of the deviation of
single-objective local optima solutions for each objective is impacted by the
total degree of variable interactions. Finally, as previously mentioned, the
proportion of Pareto-optimal solutions and of supported solutions (supp), to-
gether with the hypervolume of the largest connected component (lcc hv) do
not change much with benchmark parameters.
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5.4 Distribution of Local Optima

To better analyze the structure of local optimal solutions and their mapping
into the objective space, we propose two different strategies based on the de-
composition paradigm. More specifically, we adopt an angle-based approach,
as well as a scalar -based approach. It is worth noticing that angular tech-
niques are, like the decomposition paradigm, at the heart of a number of
multi-objective evolutionary algorithms, such as RVEA [18]. We here get our
inspiration from such techniques, but with the purpose of designing new tools
informing about the structure and properties of multi-objective landscapes.

Distribution based on Angular Decomposition: Our first approach
consists in clustering the solutions on the basis of the angle that their objective-
values induce in the objective space. For this purpose, let us consider a set of
µ uniformly-distributed weight vectors wi, i ∈ {1, . . . , µ}. For each solution
x ∈ X , the angle Θi(x) between the objective vector F (x) and a weight vector
wi is defined by:

Θi(x) = cos−1
( |F (x)⊙ wi|
||F (x)|| · ||wi||

)
(5.4)

where || · || is the usual Euclidean norm and ⊙ is the scalar product. We then
propose to assign each solution to the weight vector minimizing the so-defined
angle, i.e., a solution x is assigned to the weight vector wi such that Θi(x)
is minimum, breaking ties arbitrary (see Figure 5.5 for an illustration). Let
us denote by Si the set of solutions assigned to the weight vector wi, i.e.,
Si = {x | i = argminj Θj(x)}, and let S⋆

i be the subset of Si containing
only Pareto local optima solutions. Intuitively speaking, S⋆

i , i ∈ {1, . . . , µ},
defines a partition of Pareto local optima solutions with respect to their angular
distance in the objective space, i.e., Pareto local optima solutions in the same
subset lay in the same region of the objective space defined with respect to the
angle of the corresponding weight vector. In Figure 5.6, we then report the
distribution of |S⋆

i |, i.e., the number of Pareto local optima solutions in each
angular region, as a function of the weight vectors, which allows us to analyze
the distribution of Pareto local optima solutions in the objective space.

In the left part of Figure 5.6, we report the average number of Pareto local
optima solutions over a set of heterogeneous instances having a fixed number
of variable interaction K1 = 1 for the first objective, while varying the number
of interactions K2 in the second (more difficult) objective. The distribution
of Pareto local optima solutions appears to have a normal shape, with most
Pareto local optima solutions being at the center of the objective space, i.e.,
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Figure 5.5: Illustration of the angular decomposition of the search space
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Figure 5.6: Distribution of the Pareto local optima solutions with µ = 25
uniformly distributed weight into the objective space with an angular decom-
position (first row). Number of Pareto local optima per weight vectors (second
row). Left sub-figures are for fixed K1 = 1. Center sub-figures are for fixed
T = K1 +K2 = 10. Right sub-figures are for fixed D = K2 −K1 = 2.

observe the peak around the weight vector (0.5, 0.5). Notice that the tail val-
ues indicate that Pareto local optima solutions span only a restricted part of
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the objective space. More importantly, the number of Pareto local optima
solutions increases consistently for higher values of K2, hence indicating that
the global difficulty of the multi-objective landscape also increases with K2.
In the center part of Figure 5.6, we see the Pareto local optima distribution for
instances with a fixed T = K1 +K2 but a varying difference of the degree of
heterogeneity D = K2 −K1. We clearly see that increasing the heterogeneity
degree D results overall in an increase (roughly up to 30%) of Pareto local op-
tima solutions at the most centered vectors. Interestingly, the position of the
highest peak deviates lightly from the most centered vector, and the increase
of Pareto local optima solutions is not systematic, in the sense that for some
weight vectors, the corresponding number of Pareto local optima solutions de-
creases as shown in the bottom sub-figure. In the last right part of Figure 5.6,
we show the Pareto local optima distribution for instances with a fixed degree
of heterogeneity D = K2 − K1, but a varying value of D = K1 + K2. As
expected, the number of Pareto local optima increases with T , which seems to
be the most impacting parameter. As commented previously, a heterogeneous
landscape still contains more Pareto local optima than a homogeneous one
with the same T , however this increment is not as large as when T increases.

Distribution based on Scalar Decomposition: The distributions ob-
served in the previous section inform about where the Pareto local optima
solutions lay over different regions of the objective space. However, they do
not fully inform about the difficulty of reaching some particular regions of the
objective space. For this purpose, we complement the Pareto local optima
distribution analysis by adopting a different decomposition technique. The
proposed approach is similar to decomposition-based features but focuses on
the metric distribution over ordered sub-problems instead of the aggregated
multi-objective feature. More specifically, we still consider a set of µ uniformly
distributed weight vectors wi, i ∈ {1, . . . , µ}. Using the Chebyshev scalarizing
function to define µ single-objective sub-problems, we then consider studying
the single-objective local optima for each sub-problem. We recall that since we
are considering small size instances in this section, this can be performed by full
enumeration of the search space. In particular, the number of local optima is
known to provide useful information about the ruggedness of a single-objective
landscape. This is shown in Figure 5.8 for different heterogeneous settings and
for µ = 25 sub-problems.
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Figure 5.7: Illustration of the distribution using a Chebyshev scalarizing func-
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Figure 5.8: Average number of local optima solutions using Chebyshev scalar-
izing function with µ = 25 uniformly distributed weight. The first row is
for varying the weight vector, and the second row is for varying K2. Left sub-
figures are for fixedK1 = 1. Center sub-figures are for fixed T = K1+K2 = 10.
Right sub-figures are for fixed D = K2 −K1 = 2.
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A number of observations can be extracted from Figure 5.8. Firstly, as
can be seen in the left sub-figures, the number of LO is not symmetric with
respect to the central weight vector, which is to contrast with the previous
observations for the Pareto local optima solutions. On the one hand, the higher
K2 the higher the number of LO solutions. On the other hand, the closer a
sub-problem is to the second objective (with higher K2), the more the number
of local optima. This indicates that the difficulty of sub-problems increases
gradually from the easiest objective (weight vector (1, 0) with K1 = 1) to
the hardest one (weight vector (0, 1) with K2 > 1). Notice however that the
number of local optima solutions with respect to sub-problems that are very
close to the first objective (with K1 = 1) do not seem to be significantly
influenced by the difficulty of the second objective (with K2). Besides, when
the total degree of interactions T is fixed (sub-figures in the middle), the
number of local optima solutions depends not only on the considered sub-
problem, but also on the degree of heterogeneity D. The more homogeneous
an instance, the smaller the difference in the number of local optima solutions
between the first/easiest and last/hardest sub-problem.

Finally, when the degree of heterogeneity D is fixed (sub-figures on the
right), the number of local optima solutions as a function of sub-problems have
a similar shape independently of T , but with a different magnitude. Notice
that for these instances with similar fixed D, the central sub-problems have a
slightly larger number of local optima solutions, even compared to the hardest
objective with K2 interactions. Remember that sub-problems are defined with
respect to the Chebyshev scalarizing function, which could explain why the
combination of a hard and an easy problem, respectively with K1 and K2

interactions, results in a single-objective landscape with an even larger number
of local optima solutions, hence being a priori more difficult to search.

In the next section, we propose to use some features in an attempt to
better quantify the variations in the distribution of Pareto local optima and
local optima solutions in the objective space by means of simple numerical
values.

Aggregating the Distribution of Local Optima into Multi-objective
Features: In the following, we propose to aggregate the previous distribu-
tions of Pareto local optima and local optima solutions into single numerical
values, forming a set of multi-objective global features that can be computed
by full enumeration of the search space. We follow the same approach as
for decomposition-based features used in Chapter 2. The resulting features
complement the existing ones while aiming at specifically capturing the prop-
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Figure 5.9: Aggregated multi-objective features as a function of K1 and K2

using the distribution of the number of Pareto local optima with respect to an
angular decomposition.

erties of heterogeneous landscapes. More precisely, the number of Pareto local
optima and local optima solutions computed previously are aggregated along
the weight vectors using the following descriptive statistics: the mean, the
standard deviation, the kurtosis, the skewness, as well as the first and second
coefficient of a second order polynomial regression to fit the single-objective
features as a function of the ordered indices of sub-problem weight vectors.
We thus end up with six features with respect to Pareto local optima, as
shown in Figure 5.9, and six features with respect to local optima, as shown
in Figure 5.10.

Several observations can be extracted for the general tendency of the fea-
ture values as a function of instance heterogeneity. First, the mean number
of Pareto local optima and the mean number of local optima (top left of Fig-
ures 5.9 and 5.10) increase with K1 and K2 (and hence with T ). However,
the tendency for the standard deviation (top center of Figures 5.9 and 5.10) is
different depending on whether Pareto local optima or local optima are con-
sidered. In fact, the standard deviation of the number of Pareto local optima
solutions increases with the total degree of interaction T . By contrast, the
standard deviation of local optima solutions is mostly impacted by the degree
of heterogeneityD. The kurtosis feature is mainly intended to capture the tails
of the underlying distribution. As can be seen in the top right of Figure 5.9,
the Pareto local optima distribution has a negative kurtosis with a small de-
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Figure 5.10: Aggregated multi-objective features as a function of K1 and K2

using the distribution of the number of local optima with respect to a Cheby-
shev decomposition.

gree of heterogeneity D, meaning that most Pareto local optima solutions are
around the center area of the objective space. By contrast, highly hetero-
geneous instances have high positive kurtosis values, indicating more Pareto
local optima solutions in the boundaries. As for local optima solutions (top
right of Figure 5.10), all kurtosis values are found to be negative. It is however
still possible to discriminate between homogeneous instances to heterogeneous
due to the asymmetric shape of the distribution observed previously. This is
actually captured by the skewness statistic, which is a standard measure of
the asymmetry of a distribution, showing that for heterogeneous instances,
the peak in the number of Pareto local optima peak is not perfectly centered
in the objective space, but slightly shifted towards the second (hardest) ob-
jective. The last statistics are the first and second coefficients of a second
order polynomial regression (bottom center and right of Figures 5.9 and 5.10).
They are found to be mostly related to the total number of interactions T
when computed with respect to Pareto local optima solutions. However, these
two features do not show a smooth behavior when computed with respect to
local optima solutions.

Summary and Outlook: From the observations provided by the angular-
and scalar-based decomposition techniques and the underlying multi-objective
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global features, we can conclude that Pareto local optima and local optima
solutions are distributed differently depending on the heterogeneity parame-
ters D and T (equivalently, K1 and K2). They also highly depend on the
considered region of the objective space. On the one hand, the number of
Pareto local optima solutions is higher in the center of the objective space,
while being overall positively correlated to T . On the other hand, the number
of local optima solutions (with respect to the Chebyshev scalarizing function)
is asymmetric with respect to the central objective space area, with the re-
gions near the hardest objective containing overall more local optima solutions
compared to the central area, except for specific combinations of D and T .
Interestingly, this suggests that identifying the Pareto set underlying hetero-
geneous landscapes might imply different levels of difficulty, not only from a
global perspective as a function of the heterogeneity parameters D and T , but
also from a more local perspective, in the sense that some areas of the Pareto
front might be more difficult to approach than others. It is worth noticing
that the analysis conducted in the previous section did not target the diffi-
culty of searching a given heterogeneous landscape, but rather the intrinsic
properties of the landscape obtained by fully enumerating the search space.
Hence, although being informative on the impact of objective heterogeneity on
the multi-objective landscape, the observations obtained in the scope of our
first empirical analysis need to be consolidated with further considerations
taking into account large scale problems, as well as existing algorithms. This
is precisely the aim of the next section.

5.5 Feature-based Analysis for Large Problems

In this section, we consider larger problems for which it is not possible to fully
enumerate the search space. Similarly to small problems, our main goal is
to provide new insights on how the heterogeneity in objective difficulty can
impact the landscape, hopefully confirming our previous observations. For
this purpose, we rely on existing state-of-the-art landscape features that can
be computed by sampling the search space.

5.5.1 Multi-objectives Features Behavior on Heteroge-
neous MNK-landscapes

In Table 5.2, we recall the subset of landscape features that we consider in
this chapter. Among decomposition-based features, we considered two main
feature subsets, namely, (i) the number of improving neighbors (in.*.*) nor-
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Table 5.2: Summary of the considered multi-objective landscape features.

Set name description

Decomposition

in.d.r Number of improving neighbors

Chapter 2
proportional to the dimension

fd.d.r proportional fitness difference with
the neighboring solutions

law.r Length of adaptive walk

Indicator

hv.s hypervolume covered by solutions

[55]
hvd.s hypervolume difference with the

neighboring solutions
nhv.s hypervolume of the neighboring

solutions

Dominance

inf.s proportion of neighbors dominated

[55]

by the current solution
sup.s proportion of neighbors dominating

the current solution
inc.s proportion of neighbors incomparable

to the current solution
d ∈ {avg,sd}, r ∈ {avg,sd,p1,p2}, s ∈ {avg,sd,r1}

malized by the total number of neighbors (i.e., the size of the neighborhood),
and (ii) the fitness difference between a solution and its neighbors (fd.*.*)
normalized by the fitness of the actual solution. Additionally, the length of a
single-objective adaptive walk (law.*) performed independently for each sub-
problem is considered (scalar walk). For each decomposition-based feature, we
consider the mean (avg) and the standard deviation (sd). Features are aggre-
gated with all originally proposed aggregation functions: the mean (avg), the
standard deviation (sd), and the first and second coefficient of a second order
polynomial regression (p1,p2).

Among indicator-based features, we consider: the hypervolume of a solu-
tion (hv.*), the difference of hypervolume between a solution and its neigh-
bors (hvd.*) and the hypervolume of neighboring solutions (nhv.*). For the
dominance-based features, we use: the proportion of neighbors dominated by
the current solution (inf.*), the proportion of neighbors dominating the cur-
rent solution (sup.*) and the proportion of neighbors incomparable to the cur-
rent solution (inc.*). Functions used for the indicator and dominance-based
features are: the mean (*.avg), the standard deviation (*.sd) and the first
auto-correlation coefficient (*.r1) [96].

Features were computed on 81 heterogeneous MNK-landscapes of dimen-
sion n = 50 with K1 and K2 varying in the set {1, 2, . . . , 9} as in Section 5.3.
All three feature sets were computed with a random walk of size ℓ = 200. The
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Figure 5.11: Pairwise Spearman correlation between features and benchmark
parameters. Decomposition, indicator, and dominance-based features are from
left to right respectively.

features of the first set use a Chebyshev decomposition with 25 uniformly dis-
tributed weight vectors and the reference point z⋆ is computed over the entire
sample for each instance such that z⋆i > Fi(x), i ∈ {1, . . . ,m} for each solution
x in the sample. The length of the adaptive walk was computed using a sin-
gle adaptive walk for each of the 25 weight vectors, and a dynamic reference
point which is updated each time the neighborhood of the current solution is
evaluated.

Correlation Analysis: We start our feature-based analysis by reporting in
Figure 5.11 the pairwise Spearman correlation matrices between the considered
features and the instance parameters K1, K2, T and D. One can see a number
of interesting observations. In the case of decomposition-based features, all
features from the fitness difference subset (fd.*.*) are strongly correlated with
at least one of the instance parameters. On the one hand, most features in
this subset are correlated (or anti-correlated in the case of fd.*.p2) with K1 ,
K2 and T . On the other hand, features that are aggregated with a standard
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deviation at the second level (fd.avg.sd and fd.sd.sd) are the only ones among
the fd.*.* subset that appear to be correlated with the degree of heterogeneity
D. Features relating to the number of improving neighbors in.*.* are not
very correlated with the instance parameters, except for the feature in.sd.avg,
which is found to be correlated with K1, K2 and T . As for the third subset
of decomposition-based features relating to the length of the adaptive walk
(law.*), we see that the average length (law.avg) is anti-correlated to K1 and
T , meaning that increasing the global ruggedness of the landscape T translates
into shorter adaptive walks, which is likely because it becomes easier to fall
into a local optima. Among the indicator-based features, those using the
first auto-correlation coefficient as an aggregation statistic (hv.r1, hvd.r1 and
nhv.r1) are all anti-correlated with K1. Actually, the hypervolume (hv.r1)
and the neighborhood hypervolume (nhv.r1) features are also anti-correlated
with K2 and T . The mean hypervolume difference and its standard deviation
(hv.avg, hvd.sd) are however strongly correlated with K1, K2 and T . Finally,
it is interesting to remark that the dominance-based features appear to have
a relatively low correlation with the instance parameters compared to the two
other sets, except for inf.r1 and inc.r1. Overall, it is interesting to remark that
few features seem to be (positively or negatively) correlated to the degree of
heterogeneity D = K2−K1, which was shown to be a key element in our small
size instance analysis. Interestingly, only the decomposition-based fd.avg.sd
and fd.sd.sd features are found to be highly correlated to D.

Feature-based Prediction of Heterogeneity: To provide additional in-
formation about the ability of the considered features in capturing instance
heterogeneity, we consider the task of predicting the initial instance parameters
(K1, K2, T , and D) using the so-computed feature values. For this purpose,
we use a single-output decision tree regressor with default parameters. We
actually trained four models using all features sets to predict respectively (i)
K1, (ii) K2, (iii) T , and (iv) D. For each model, we compute the mean R2

and the standard deviation over 50 independent repetitions of training as we
have 81 problem instances, results are computed on test data using a K-fold
cross-validation with K = 9. This is summarized in Table 5.3. Besides, we
report, in Figure 5.12, the fifteen features of the most important normalized
rank for each model using the mean Gini impurity as a measure of importance.

We see that all models reach a mean R2 value of at least 0.94, showing that
features are relatively successful in characterizing the original parameters of
the landscape. We can however report some differences between the accuracy
between the degree of heterogeneityD and the others parameters as it is harder
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Table 5.3: Mean R2 and standard deviation of multi-output random forest
regression models tasked to predict all benchmark parameters using as input
the union of decomposition, indicator and dominance-based features sets.

Parameter K1 K2 T D
Mean R2 0.96 0.98 0.98 0.94

Standard deviation R2 0.007 0.004 0.003 0.008
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Figure 5.12: Mean feature importance of random forest regression learning
models tasked to predict benchmark parameters using as input the union of
decomposition, indicator and dominance-based features sets.

to predict by a small margin. Both original parameters of the benchmark, K1
and K2 are accurately predicted by decision trees, but features inherently be-
hind those predictions are not the same. From Figure 5.12, we see that the
most important features for K1 are nhv.r1 and fd.sd.p1 which have a similar
rank. For K2 the most important feature is sup.r1 from the dominance set.
The main factor between features differences in K1 and K2 decision trees is
the asymmetry of used heterogeneous MNK-landscapes instances as we con-
sidered K1 < K2. Alternative parameters T and D reach respectively a mean
R2 of 0.98 and 0.94 with a standard deviation around 0.003 for T and 0.008 for
D. Features lead to fairly accurate predictions for both parameters. Notice
that the most important features (fd.avg.avg, fd.sd.avg) for T and (fd.sd.sd,
fd.avg.sd) for D are both the same decomposition features variation with a
different aggregation function, and they were found to be correlated respec-
tively with T and D. Interestingly, all feature sets are of importance to predict
each parameter.
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5.5.2 Impact of Heterogeneity on Algorithm Performance

In this section, we conclude our analysis by studying the impact of hetero-
geneity on multi-objective algorithm behavior. For this purpose, we consider
two well-established multi-objective evolutionary algorithms as detailed next.

Experimental Setup: We consider MOEA/D [62] and NSGA-II [26] intro-
duced in Chapter 1, which are respectively based on decomposition and dom-
inance. The two algorithms are implemented following the standard default
setting as described in their respective original papers. For both algorithms,
we use a population of size 100, and a uniform crossover followed by a uniform
bit-flip mutation where each bit is flipped with a rate of 1/n. For MOEA/D,
we use the Chebyshev scalarizing function with 100 uniform weight vectors, a
sub-problem neighborhood size of 6, a probability of mating with a solution
in the neighborhood δ = 0.9 and the maximal number of solutions replaced
by each offspring solution nr = 2 [104, 62]. The maximal budget is set to
106 evaluations per run. Each algorithm is independently executed 20 times
on each instances of dimension n = 50 with K1 and K2 varying in the set
{1, 2, . . . , 9}.

Algorithm Performance: To assess algorithm performance, we consider
two conventional quality indicators from multi-objective optimization [109].
The hypervolume relative deviation, as shown in the first row of Figure 5.13,
is the relative deviation between the hypervolume [107] of the approximation
found by an algorithm and the hypervolume of the reference set (obtained by
merging all runs of all algorithms for a specific instance). The second indicator
is the R2 indicator [37], as shown in the second row of Figure 5.13. The R2
assess the relative quality between a front and the ideal front. Given a set of
µ weight vectors W , a set of evaluated solutions A and the ideal front PF , the
indicator is defined as:

R2(A,W,PF ) =
1

µ

∑
wi∈W

(
max
r∈PF

(g(r, wi))−max
x∈A

(g(x,wi))

)
(5.5)

The smaller the value of the R2 indicator, the better the front approxima-
tion. It is interesting to notice that the R2 indicator has similarities with the
distribution statistics/features described in Sections 5.4, as it is based on a
Chebyshev scalarizing function with 100 weight vectors.

Although Figure 5.13 shows a clear difference in the relative performance
of MOEA/D and NSGA-II, which we will comment later, we first comment
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Figure 5.13: Hypervolume relative deviation (first row) and R2 indicators of
the approximations obtained by MOEA/D and NSGA-II on heterogeneous
MNK-landscapes.

that both algorithms interestingly have a similar behavior as a function of
the considered instances. For the instances with K1 = 1 (left sub-figures), the
hypervolume and the R2 indicators increase with K2 before slightly decreasing
for K2 > 7. Although the average indicator-values decrease when K2 is high,
the standard deviation of indicators appear to be relatively high. For the
instance with fixed T = 10 (sub-figures in the middle), the indicator-values
are relatively high, which indicates that both algorithms are struggling to find
a good approximation set, except when K1 = 1 and K2 = 9. Interestingly, the
homogeneous instance with K1 = K2 = 5 seems to be as difficult to solve than
heterogeneous instances.

We observe that the impact of the number of variable interactions on the
difficulty of the objective function is not to be thought as linear. In fact,
the relative difficulty of solving an NK-landscape with k = 2 compared to an
instance with k = 1, is believed to be considerably greater than the relative
difficulty of solving an instance with k = 3 compared to an instance with
k = 2. This may explain the observed difference in performance between a
completely heterogeneous instance (K1 = 1, K2 = 9) and the other instances
with T = 10. When the heterogeneity is fixed at D = 2, the approximation
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sets obtained by both algorithms appear to be far from the reference set, as
indicated by the relatively high indicator-values. The greater the value of T ,
the less likely the algorithms are to find a good approximation. Interestingly,
the indicator-values (and subsequently the solving difficulty) seem to increase
moderately with T when D is fixed.

As mentioned above, although both algorithms exhibit similar behavior on
heterogeneous MNK-landscapes, MOEA/D significantly outperforms NSGA-
II on most instances. Using a Wilcoxon statistical test with a p-value of
0.05 with Bonferroni correction, the approximations obtained by MOEA/D
are statistically better than those of NSGA-II, except for instances with T ≥
10 and D = 2. The easier the instance, the statistically better MOEA/D
over NSGA-II. When the overall difficulty is too high (high T values), both
algorithms struggle to find a good approximation set.

Chebyshev Deviation to the Pareto front: To better understand the
algorithms’ behavior according to the heterogeneity of the objectives, we con-
duct a fine-grained analysis of the distance between approximate solutions
found by an algorithm with respect to the reference set. We recall that, as the
Pareto front cannot be computed for large problems, we consider the reference
set as the aggregation of non-dominated solutions from all runs of both algo-
rithms. Then, we consider a normalized Chebyshev scalarizing function over
100 sub-problems with respect to 100 uniformly distributed weight vectors.
More precisely, to avoid any bias in the original Chebyshev scalar values, the
normalized Chebyshev function uses, instead of the original fitness value of a
solution x, the following normalization:

Fi, normalized(x) =
z∗i − Fi(x)

z∗i − znadi

(5.6)

where Fi is objective i and znad = (znad1 , . . . , znadM ) is a nadir point, i.e., znadi ≤
Fi(x) ∀x ∈ X , i ∈ {1, . . . ,m}.

For each algorithm run and each (single-objective) sub-problem corre-
sponding to the weight vector wi, we define the normalized Chebyshev dif-
ference D(wi|Q) between the approximation Q found by the algorithm and
the reference set R, as follows:

D(wi|Q) =
minx∈Q(g(x|wi))−minx∈R(g(x|wi))

minx∈R(g(x|wi))
(5.7)

Notice that the higher D(wi|Q), the further the solution found by the algo-
rithm for sub-problem wi from the best-found solution. In fact, averaging
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Figure 5.14: Single-objective normalized Chebyshev deviation between
MOEA/D and the approximated ideal front for instances with D = 2 in the
first row and T = 11 in the second row

equation (5.7) for all sub-problems wi, i ∈ {1, . . . , µ} exactly matches the R3
indicator from [37].

The values of the so-obtained Chebyshev differences are reported in Fig-
ure 5.5.2 and 5.5.2, respectively, for MOEA/D and NSGA-II. For the clarity
of the presentation, we do not show all possible configurations of K1 and K2,
but only a representative subset of instances with a fixed total degree of in-
teraction T = 11, and a fixed degree of heterogeneity D = 2. Additionally,
all figures are presented in the Appendix 6.2. As can be clearly observed, the
general tendency of the Chebyshev differences is similar for both algorithms
as a function of instance characteristics. When the total degree of interaction
is relatively low (K1 = 1, K2 = 3), we observe two peaks corresponding to the
extreme weight vectors. The left peak is slightly larger than the right one as
the second objective gets harder. However, both algorithms manage to reach
the reference set (or to be very close) in the regions corresponding to weight
vectors between 20 and 80. When the total degree of interaction T increases,
the Chebyshev difference increases for weight vectors corresponding to the cen-
ter of the objective space, and we observe wider peaks on the extremities as it
gets harder to approach the Pareto front. The heterogeneity D also affects the
Chebyshev difference for extreme weights vectors. For heterogeneous instances
with K1 ≤ 3, there is a tighter peak towards the easiest objective, and the
more homogeneous the instance, the smaller the difference between extreme
weight vectors.
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Figure 5.15: Single-objective normalized Chebyshev deviation between NSGA-
II and the approximated ideal front for instances with D = 2 in the first row
and T = 11 in the second row

Features-based Performance Prediction: We conclude our analysis by
studying how accurate the previously considered landscape features are for the
purpose of algorithm performance prediction. For this purpose, we proceed as
in Section 5.5.1, and we train different regression trees to predict the average
hypervolume relative deviation obtained for each algorithm using all feature
sets as input. We report the average R2 and the standard deviation of 50
independent repetitions of training with K-fold cross-validation with K = 9
as we have 81 problem instances. Additionally, we consider using parameters
(K1, K2, T , D) as input for decision trees to compare with features accuracy.
The achieved meanR2 values are reported in Table 5.4, and the most important
features are shown in Figure 5.16.

All regression trees reach a relatively high R2 around 0.9. This means
that 90% of the variance in hypervolume values are explained by the model,
and thus by the considered landscape features. Performances prediction mod-
els trained with benchmark parameters reach an R2 of 0.92 for predicting
MOEA/D hypervolume deviation and 0.91 for NSGA-II which is slightly higher
than when using features as input. The features’ importance presents few
distinctions between both algorithms. The two most important features for
MOEA/D are fd.avg.p1 and fd.sd.p1. Both were found correlated with K1
and K2 and are respectively the second and third most important features to
predict NSGA-II performances. In the latter, the most important features is
nhv.r1 from the indicator subset. Lastly, each features subset have at least
one features among the fifteen most important. This shows that each subset
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Table 5.4: Mean R2 and standard deviation of multi-output random forest
regression models for predicting algorithm performances independently using
as input benchmark parameters and the union of decomposition, indicator and
dominance-based features sets.

Parameters Features
Algorithm MOEA/D NSGA-II MOEA/D NSGA-II
Mean R2 0.92 0.91 0.91 0.89

Standard deviation R2 0.007 0.01 0.012 0.011
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Figure 5.16: Mean feature importance of random forest regression models for
predicting algorithm performances independently using as input the union of
decomposition, indicator and dominance-based features sets.

is of importance. The most important features appear to be from both the
indicator set and the decomposition set. Dominance-based features seem to
play a less important role when it comes to predict algorithm performance for
heterogeneous MNK-landscapes. This is to contrast with homogeneous MNK-
landscapes, where dominance-based features were found to be important for
performance prediction [55].
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5.6 Conclusion

In this chapter, we investigated the properties of multi-objective combina-
torial optimization problems, exposing different degrees of heterogeneity in
terms of objective difficulty. For small problems, we analyzed the impact
of heterogeneity on the multi-objective landscape using novel decomposition
techniques informing about the distribution of local optima in the objective
space. In particular, we found that heterogeneity introduces local differences
in the landscape, increasing the number of Pareto local optimal solutions and
single-objective optima mapping to specific regions of the objective space. For
large problems, we studied the ability of the three sets of multi-objective land-
scape features to capture heterogeneity, namely decomposition-based features
proposed in Chapter 2 and indicator-based and dominance-based features in-
troduced in Chapter 3. In particular, we showed that decomposition-based
and notably fitness difference features are relatively well-suited compared to
dominance- and indicator-based feature. Finally, we investigated the impact of
heterogeneity on two well-established multi-objective evolutionary algorithms,
i.e., MOEA/D and NSGA-II. We found that, although one algorithm outper-
forms the other, both algorithms behave similarly depending on the degree of
heterogeneity. In particular, increasing the difficulty of an objective without
changing the other makes it harder for an algorithm to approach the Pareto
front in the region close to the hardest objective’s optimum.

Our findings also suggest a number of challenging research questions. In
fact, heterogeneity in terms of objective difficulty was studied to a very small
extent, and our work is to be viewed as a first step toward more extensive
studies on the subject. In particular, through the different landscape analysis
provided in this chapter, it appears that heterogeneity has a local impact on
the shape of the Pareto front and on the difficulty of reaching specific regions.
In this respect, it is relatively challenging to design global features that can
capture this aspect, and any progress in this direction would be a nice contri-
bution. Besides, we have focused on the bi-objective case, for which standard
decomposition-based statistics were relatively well-suited to capture hetero-
geneity. Considering scenarios with more objectives is challenging from at
least two perspectives. First, the heterogeneity between (pairwise) objectives
can be thought in different ways, hence possibly leading to a broad range of
possible heterogeneous problem types. This raises the challenging question
of whether there are some heterogeneous scenarios that are more difficult to
solve than others. Second, it is unclear whether the considered landscape fea-
tures are still accurate in capturing the degree of heterogeneity and problem
difficulty as accurately as in the bi-objective case. In this respect, more in-
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vestigations are required to design new features dedicated to characterizing
heterogeneity when dealing with an increasing number of objectives. Finally,
our algorithm performance analysis suggests that some regions of the objective
space are consistently more difficult to reach than others. As such, algorithms
able to take into account the objective heterogeneity can lead to significantly
better performance. In particular, adaptive techniques that can accommodate
the search to the landscape heterogeneity are worth investigating in the future,
especially in a practical black-box scenario, where the degree of heterogeneity
might not be known beforehand.



Chapter 6

General Conclusion

Solving multi-objective combinatorial optimization problems is a challenging
task. As finding the exact Pareto set is in general very difficult to achieve,
especially in black-box optimization, a large body of the literature is devoted
to the design of efficient algorithms computing an approximation of the Pareto
set. In particular, multi-objective evolutionary algorithms constitute an effec-
tive option adopted in a number of settings. However, the performance of any
optimization algorithm depends heavily on the characteristics of the problem
instance being solved, and evolutionary algorithms stand for no exception. In
this context, fitness landscape analysis provides tools and techniques to cap-
ture the characteristics of a problem instance, and hence, to gain a better
fundamental understanding of what makes an instance difficult to solve by a
given algorithm. In other words, fitness landscape analysis is of special interest
in order to map algorithm performance with problem characteristics.

In this thesis, we were mainly interested in developing new fundamental
tools for multi-objective fitness landscape analysis, and their use for solv-
ing high-level optimization tasks. As such, we have described a number of
contributions organized in four main chapters: (1) New techniques based on
decomposition in order to define novel multi-objective landscape features, (2)
A landscape-aware approach for determining the effectiveness of an algorithm
according to a given multi-objective problem instance, (3) A detailed analysis
of the cost and stability of the designed landscape features, (4) A new multi-
objective optimization benchmark focusing on the heterogeneity among the
objectives.

In the reminder of this chapter, we first summarize in more detail the main
contributions of this thesis. Then, we discuss some open research questions.

125
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6.1 Contributions

Multi-objective landscape analysis based on decomposition: In our
first set of contributions (Chapter 2), we have described a new methodology
to compute multi-objective features. The proposed approach is based on de-
composing the original multi-objective problem into several single-objective
sub-problems. Each sub-problem implies a different landscape, so that a
number of single-objective landscape features can be computed accordingly.
Such single-objective (sub-problem) landscape features are finally aggregated
to form novel multi-objective features. The so-obtained decomposition-based
multi-objective features have been investigated empirically on an extensive set
of bi-objective pseudo-Boolean problems based on a well-established multi-
objective combinatorial optimization benchmark. Our empirical findings show
that the proposed decomposition-based features can accurately and success-
fully capture useful information about the considered multi-objective land-
scapes.

Solving high-level optimization tasks: In our second set of contributions
(Chapter 3), we have considered the solving of two high-level challenging tasks.
The first task consists in predicting the benchmark global parameters, which
aims at analyzing the effectiveness of features in characterizing a given problem
instance. The second task consists in addressing the algorithm selection prob-
lem, given a portfolio of competing algorithms and a given problem instance
to solve. To tackle both tasks, we follow a standard supervised machine learn-
ing approach where a learning model is trained with some landscape features
given as input. We considered the proposed decomposition-based features, as
well as the main existing multi-objective features taken from the specialized
literature, namely indicator-based and dominance-based features. Our empir-
ical findings showed that a feature-based automated approach is extremely
accurate for both tasks, and that the designed decomposition-based features
are highly valuable.

Analysis of feature computation cost: In the third set of contributions
(Chapter 4), we pushed our analysis further on the properties of existing multi-
objective landscape features and their ability to automatically select the best
algorithm. As such, we focused on the impact of the budget used to compute
and extract landscape features. We studied two simple cost-adjustable walks
as sampling methods, by controlling two parameters in the sampling phase,
namely, the length of walks and the proportion of the explored neighborhood.
As expected, the overall efficiency improves with the size of the sample used for
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feature computation. However, we find significant differences between the fea-
ture values depending on the sampling parameters. Some features are mostly
affected by the length of the walk while being insensitive to the proportion
of explored neighbors, whereas the situation is reversed for other features.
We thereby used the feature value convergence rate and the correlation with
the benchmark parameters in order to highlight the complex interaction be-
tween feature accuracy and sampling cost. Besides, specifically with respect to
automated algorithm selection, we proposed an indicator to measure perfor-
mance that take into account the cost of sampling. Our experimental findings
show that, by accurately setting the sampling parameters, it is possible to
find efficient trade-offs in terms of sampling cost and features quality when
performing the prediction and algorithm selection task. In other words, with
a well parameterized sampling method, using the prediction model remains a
far better option, even when counting with the cost of sampling, compared
to a simple feature-free strategy that consists in always picking the algorithm
that performs best in average.

Heterogeneous multi-objective NK-landscapes: The last set of contri-
butions (Chapter 5) consists in studying the heterogeneity in multi-objective
optimization. We introduced heterogeneous MNK-landscapes as a new bench-
mark exposing different levels of difficulty between the objectives. To un-
derstand how such heterogeneity impacts the landscape properties, we con-
sidered both a full enumeration approach for small problem instances, and
a sampling-based approach to compute features for large problem instances.
For small instances, our experimental findings indicate that the number and
the distribution of Pareto local optimal solutions is strongly influenced by ob-
jective heterogeneity. For large instances, using a set of decomposition-based
features, we were able to highlight the difference between landscapes with
different degrees of heterogeneity. While the proposed features succeeded in
grasping the overall structure of the considered landscapes, we showed that
there is still a need to design new features to fully capture the objective het-
erogeneity. Finally, for further understanding the impact of heterogeneity in
terms of solving difficulty, we investigated the performance of two state-of-the-
art algorithms. Overall, we showed that although the two algorithms have a
different performance, they consistently share the same behavior as a function
of the heterogeneity degree, in the sense that, it was harder for both of them
to approximate efficiently the Pareto front on the boundary near the most
difficult objective.
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6.2 Perspectives

Analyzing other multi-objective optimization problems: In our work,
we restricted our experiments to bi-objective landscapes. This is mainly to
keep our investigations more focused, and to be able to perform an extensive
and comprehensive analysis. A straightforward extension of our work would be
to consider optimization problems with more than two objectives. Notice that
although most of the proposed landscape features are still well-defined regard-
less to the number of objectives, it is still worth to investigate settings with a
variable number of objectives. This is to further confirm the relative accuracy
of the different considered features, especially when adopting an automated
feature-based approach for the algorithm selection problem. More generally,
other discrete representations, such as permutations, should be considered in
the future. Besides, the general principle guiding the design of the proposed
decomposition-based features can also apply for continuous domains, in the
sense that any existing single-objective feature could in theory be used as a
basis for defining an aggregated multi-objective feature. However, since the
sampling strategies used for extracting features with respect to continuous op-
timization problems could be seemingly different from the combinatorial case,
a lot of efforts remain to be accomplished before confirming the applicabil-
ity and the accuracy of our decomposition-based approach for multi-objective
continuous optimization.

A systematic approach to feature design and integration: Designing
landscape features is a difficult task. On the one hand, different approaches
might be adopted depending on the target optimization context. For instance,
one may want to design features with respect to a particular problem, a partic-
ular domain, a particular portfolio of algorithms, a particular class of solving
methods, etc. Hence, it is not always clear what constitutes a “good set” of
landscape features, and what formal properties it should verify independently
of the optimization context or task under consideration. On the other hand,
there are different design options that can typically lead to a relatively large
number of possible features. In the case of our work, we were specifically inter-
ested in black-box multi-objective combinatorial optimization problems, while
considering pseudo-boolean domains and a range of standard state-of-the-art
algorithms. This actually represents a relatively restricted setting, which has
the advantage of keeping our investigations focused. Nevertheless, even in such
a setting, designing informative cheap features was not easy to achieve. Be-
sides, the considered set of possible multi-objective features is still relatively
large, which is mainly because different multi-objective paradigms could be
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adopted, as well as different samplings, parameters, and feature options. As
such, we tried to provide a systematic understanding of what makes a fea-
ture meaningful and accurate for a given task. In this respect, using feature
importance as provided, e.g., by the underlying random forest models was in
particular very useful. A challenging future research direction is to set up
a more systematic methodology, to help the design and integration of new
features, which is as independent as possible of the optimization setting or
task. The general purpose would be to derive a more principled development
loop, where one is able to design a new feature, to study its properties, and
to consider integrating it in an existing set for accomplishing some specific
purpose. Such a loop could even be thought to operate in an automated man-
ner, for example by considering some feature subset selection techniques, or
some feature classification techniques, depending on the target optimization
setting. We believe that such a research path has to be accomplished in a
cooperative manner, for instance by providing the community with advanced
generic software tools, and easy (online) interfaces for accessing, analyzing and
integrating, landscape features and their corresponding data.

Improving automated algorithm selection: In our work, we have shown
that a feature-based approach for addressing the automated algorithm selec-
tion problem is particularly accurate. However, a number of important ques-
tions remain open. A straightforward extension of our work is to consider a
larger set of multi-objective algorithms. One interesting question is to study
more specifically what kind of features are more accurate for a given algo-
rithm, or a particular class of algorithms. In fact, besides allowing us to gain
a more in-depth understanding of what makes an algorithm successful, this
will eventually help designing new dedicated features, guided by the specific
behavior or trajectory of the considered algorithms. Another question is to
consider settings where the maximum affordable budget is not known before-
hand. In such a setting, new techniques have to be derived in order to take
the ability of a given feature into account to capture the anytime behavior
of an algorithm. This is actually a very challenging question that requires
new learning models and new landscape-guided automated selection method-
ologies. Finally, the automated selection methodology depends heavily on the
accuracy of the problem instance training set. An important question, which
is related to more general benchmarking aspects, is to be able to derive, in
a more systematic manner, a diverse set of training instances that cover ac-
curately the feature space. Different methods exist for this purpose, and it
is worth investigating their relevancy at the aim of designing more powerful
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automated algorithm selection approaches.

Addressing heterogeneity in multi-objective optimization: The last
chapter of this thesis was devoted to study heterogeneity in multi-objective
optimization. This is actually one important aspect that was addressed to a
relatively small extent in the past. A number of important questions remain
open, and different research perspectives can be considered in this context. In
the following, we discuss two important aspects.

Firstly, the proposed heterogeneous MNK-landscapes can be extended fol-
lowing different perspectives. For example, it remains unclear what is the
impact of using more than two heterogeneous objectives on the underlying
multi-objective landscape, neither how such a setting implies different degrees
of solving difficulties. One might also consider different ways of controlling
heterogeneity when defining the single-objective problems. For instance, one
could manage to have seemingly different interactions between the variables
depending on the objective and analyze how this could impact heterogene-
ity. More generally, when moving to different models, representations or do-
mains, one may wonder what could be a representative benchmark to model
heterogeneity, and whether the same features designed in our work are still
meaningful when considering different benchmark settings.

Secondly, to the best of our knowledge, there are no state-of-the-art algo-
rithm that were specifically designed to deal with objectives having a different
degree of ruggedness. Our experimentation using NSGA-II and MOEA/D
showed that both algorithms consistently face the same challenge of approxi-
mating the front in the boundary of the most difficult objective. This suggests
that enhanced methods could be designed by typically adapting the search
with respect to the regions of the objective space that are more difficult to
reach. This would in fact constitute a nice achievement in the relatively large
panel of multi-objective evolutionary algorithms. Besides, the information
gained from the designed landscape features is expected to provide new re-
search paths towards solving techniques accurately designed for heterogeneous
multi-objective optimization problems.
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Appendix

Summary of all multi-objective landscape features

During the thesis, a total of 125 features were considered and designed. The features vary according to
their type, the observed metric, the computed statistics and the aggregation functions in the case of the
decomposition-based features. Each of the following tables correspond to a type of features : dominance-
based, indicator-based, decomposition-based and the length of adaptive walk, which can be or not considered
in any of the previous sets.

Table 6.1: Table of dominance-based features.

Dominance-based features [55]

Observed value
statistical function

feature name
computed from the sample

Proportion of dominated neighbors

mean inf.avg
standard deviation inf.sd
first auto-correlation coefficient inf.r1
kurtosis inf.kr
skewness inf.sk

Proportion of dominating neigh-
bors

mean sup.avg
standard deviation sup.sd
first auto-correlation coefficient sup.r1
kurtosis sup.kr
skewness sup.sk

Proportion of incomparable neigh-
bors

mean inc.avg
standard deviation inc.sd
first auto-correlation coefficient inc.r1
kurtosis inc.kr
skewness inc.sk

Proportion of locally non-
dominated neighbors

mean lnd.avg
standard deviation lnd.sd
first auto-correlation coefficient lnd.r1
kurtosis lnd.kr
skewness lnd.sk

Proportion of supported locally
non-dominated neighbors

mean lsupp.avg
standard deviation lsupp.sd
first auto-correlation coefficient lsupp.r1
kurtosis lsupp.kr
skewness lsupp.sk
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Table 6.2: Table of indicator-based features.

Indicator-based features [55]

Observed value
statistical function

feature name
computed from the sample

Solution’s hypervolume

mean hv.avg
standard deviation hv.sd
first auto-correlation coefficient hv.r1
kurtosis hv.kr
skewness hv.sk

Hypervolume of the neighborhood

mean nhv.avg
standard deviation nhv.sd
first auto-correlation coefficient nhv.r1
kurtosis nhv.kr
skewness nhv.sk

Difference of hypervolume between
a solution and its neighbors

mean hvd.avg
standard deviation hvd.sd
first auto-correlation coefficient hvd.r1
kurtosis hvd.kr
skewness hvd.sk

Table 6.3: Table of additional features which do not belong to other subsets.

Observed value
statistical function

feature name
computed from the sample

Length of adaptive walks (when
computed from a multi-objective
adaptive walk)

mean law.avg
standard deviation law.sd
first auto-correlation coefficient law.r1
kurtosis law.kr
skewness law.sk
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Table 6.4: Table of the Maximum distance between improving ordered sub-problems, subset of decomposition-
based features .

Maximum distance between improving ordered sub-problem [22]

statistical function
feature name

computed from the sample

Mean spd.avg
standard deviation spd.sd
Minimum spd.min
Maximum spd.max
First auto-correlation [46] spd.r1
Kurtosis [110] spd.kr
Skewness [110] spd.sk

metric normalization : proportional to the number of sub-problems µ
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Table 6.5: Table of the fitness values subset of features (decomposition-based features set).

Fitness value features [21, 22]

statistical function aggregation function
feature name

computed from the sample between sub-problems

Mean

mean fv.avg.avg
standard deviation fv.avg.sd
1st polynomial coefficient fv.avg.p1
2nd polynomial coefficient fv.avg.p2

Standard deviation

mean fv.sd.avg
standard deviation fv.sd.sd
1st polynomial coefficient fv.sd.p1
2nd polynomial coefficient fv.sd.p2

Minimum

mean fv.min.avg
standard deviation fv.min.sd
1st polynomial coefficient fv.min.p1
2nd polynomial coefficient fv.min.p2

Maximum

mean fv.max.avg
standard deviation fv.max.sd
1st polynomial coefficient fv.max.p1
2nd polynomial coefficient fv.max.p2

First auto-correlation [46]

mean fv.r1.avg
standard deviation fv.r1.sd
1st polynomial coefficient fv.r1.p1
2nd polynomial coefficient fv.r1.p2

Kurtosis [110]

mean fv.kr.avg
standard deviation fv.kr.sd
1st polynomial coefficient fv.kr.p1
2nd polynomial coefficient fv.kr.p2

Skewness [110]

mean fv.sk.avg
standard deviation fv.sk.sd
1st polynomial coefficient fv.sk.p1
2nd polynomial coefficient fv.sk.p2

metric normalization : all original multi-objective values are normalized with f̂i(x) =
fi(x)−min∀x∈X fi(x)

max∀x∈X fi(x)−min∀x∈X fi(x)
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Table 6.6: Table of the fitness distance subset of features (decomposition-based features set).

Fitness distance features [21, 22]

statistical function aggregation function
feature name

computed from the sample between sub-problems

Mean

mean fd.avg.avg
standard deviation fd.avg.sd
1st polynomial coefficient fd.avg.p1
2nd polynomial coefficient fd.avg.p2

Standard deviation

mean fd.sd.avg
standard deviation fd.sd.sd
1st polynomial coefficient fd.sd.p1
2nd polynomial coefficient fd.sd.p2

Minimum

mean fd.min.avg
standard deviation fd.min.sd
1st polynomial coefficient fd.min.p1
2nd polynomial coefficient fd.min.p2

Maximum

mean fd.max.avg
standard deviation fd.max.sd
1st polynomial coefficient fd.max.p1
2nd polynomial coefficient fd.max.p2

First auto-correlation [46]

mean fd.r1.avg
standard deviation fd.r1.sd
1st polynomial coefficient fd.r1.p1
2nd polynomial coefficient fd.r1.p2

Kurtosis [110]

mean fd.kr.avg
standard deviation fd.kr.sd
1st polynomial coefficient fd.kr.p1
2nd polynomial coefficient fd.kr.p2

Skewness [110]

mean fd.sk.avg
standard deviation fd.sk.sd
1st polynomial coefficient fd.sk.p1
2nd polynomial coefficient fd.sk.p2

metric normalization : proportional fitness difference fd(x, x′) = |F (x)−F (x′)|
F (x)
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Table 6.7: Table of the Improving neighbors subset of features (decomposition-based features set).

Improving neighbors features [21, 22]

statistical function aggregation function
feature name

computed from the sample between sub-problems

Mean

mean fd.avg.avg
standard deviation in.avg.sd
1st polynomial coefficient in.avg.p1
2nd polynomial coefficient in.avg.p2

Standard deviation

mean in.sd.avg
standard deviation in.sd.sd
1st polynomial coefficient in.sd.p1
2nd polynomial coefficient in.sd.p2

Minimum

mean in.min.avg
standard deviation in.min.sd
1st polynomial coefficient in.min.p1
2nd polynomial coefficient in.min.p2

Maximum

mean in.max.avg
standard deviation in.max.sd
1st polynomial coefficient in.max.p1
2nd polynomial coefficient in.max.p2

First auto-correlation [46]

mean in.r1.avg
standard deviation in.r1.sd
1st polynomial coefficient in.r1.p1
2nd polynomial coefficient in.r1.p2

Kurtosis [110]

mean in.kr.avg
standard deviation in.kr.sd
1st polynomial coefficient in.kr.p1
2nd polynomial coefficient in.kr.p2

Skewness [110]

mean in.sk.avg
standard deviation in.sk.sd
1st polynomial coefficient in.sk.p1
2nd polynomial coefficient in.sk.p2

metric normalization : proportional to the number of dimension n
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Table 6.8: Table of the length of Adaptive walk subset of features (decomposition-based features set with
Scalar sampling method).

length of Adaptive walk [21, 22]

statistical function computed from aggregation function
feature name

the sample (if more than one walk is used) between sub-problems

Mean

mean law.avg.avg
standard deviation law.avg.sd
1st polynomial coefficient law.avg.p1
2nd polynomial coefficient law.avg.p2

Standard deviation

mean law.sd.avg
standard deviation law.sd.sd
1st polynomial coefficient law.sd.p1
2nd polynomial coefficient law.sd.p2

Minimum

mean law.min.avg
standard deviation law.min.sd
1st polynomial coefficient law.min.p1
2nd polynomial coefficient law.min.p2

Maximum

mean law.max.avg
standard deviation law.max.sd
1st polynomial coefficient law.max.p1
2nd polynomial coefficient law.max.p2

First auto-correlation [46]

mean law.r1.avg
standard deviation law.r1.sd
1st polynomial coefficient law.r1.p1
2nd polynomial coefficient law.r1.p2

Kurtosis [110]

mean law.kr.avg
standard deviation law.kr.sd
1st polynomial coefficient law.kr.p1
2nd polynomial coefficient law.kr.p2

Skewness [110]

mean law.sk.avg
standard deviation law.sk.sd
1st polynomial coefficient law.sk.p1
2nd polynomial coefficient law.sk.p2
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Additional statistics over Heterogeneous MNK-landscapes
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Figure 6.1: Additional Statistics computed over heterogeneous MNK landscapes of dimension 16. Number of
Pareto fronts per instance, computed using the non-dominated sort algorithm 3 (top left). Average Number of
local optima per instance (top right). Average Number of connected components (bottom left). Proportional
deviation of single-objective local optima between each objectives (bottom right).
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Figure 6.2: Additional Statistics computed over heterogeneous MNK landscapes of dimension 16. Hypervol-
ume of the Pareto front (bottom left). Number of supported solutions (top right). Proportion of isolated
Pareto-optimal solutions (bottom left). Hypervolume of the largest connected component (bottom right).
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Chebyshev Deviation to the Pareto Front for Heterogeneous MNK-landscapes

Figure 6.3: Single-objective normalized Chebyshev deviation between MOEA/D and the approximated ideal
front for all instances, sorted by increasing Degree of heterogeneity (D = 0 at the top) and by total degree of
interaction (lower T on the left).
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Figure 6.4: Single-objective normalized Chebyshev deviation between NSGA-II and the approximated ideal
front for all instances, sorted by increasing Degree of heterogeneity (D = 0 at the top) and by total degree of
interaction (lower T on the left).
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H. E., Zhang, Q., and Tanaka, K. Cost-vs-accuracy of sam-
pling in multi-objective combinatorial exploratory landscape analysis.
In GECCO 2022 - Genetic and Evolutionary Computation Conference
(Boston, MA, United States, July 2022), Association for Computing
Machinery, pp. 493–501.

[23] Cosson, R., Santana, R., Derbel, B., and Liefooghe, A. Multi-
Objective NK Landscapes with Heterogeneous Objectives. In Proceed-
ings of the Genetic and Evolutionary Computation Conference (New
York, NY, USA, 2022), GECCO ’22, Association for Computing Ma-
chinery, p. 502–510.

[24] Daolio, F., Liefooghe, A., Verel, S., Aguirre, H., and
Tanaka, K. Problem features versus algorithm performance on rugged
multiobjective combinatorial fitness landscapes. Evolutionary Computa-
tion 25, 4 (2017), 555–585.

[25] De Jong, K. A. An Analysis of the Behavior of a Class of Genetic
Adaptive Systems. PhD thesis, University of Michigan, USA, 1975.
AAI7609381.

[26] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A fast
and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions
on Evolutionary Computation 6, 2 (2002), 182–197.



Bibliography 146

[27] Doerr, B., Le, H. P., Makhmara, R., and Nguyen, T. D. Fast
genetic algorithms. CoRR abs/1703.03334 (2017).

[28] Ehrgott, M. Springer Berlin, Heidelberg, January 2005.

[29] Eiben, A. E., and Smith, J. E. Evolutionary Computing: The Ori-
gins. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 13–24.

[30] Fang, Y., and Li, J. A review of tournament selection in genetic
programming. In Proceedings of the 5th International Conference on
Advances in Computation and Intelligence (Berlin, Heidelberg, 2010),
ISICA’10, Springer-Verlag, p. 181–192.

[31] Fonseca, C., Fleming, P., Zitzler, E., Thiele, L., and Deb,
K. Evolutionary Multi-Criterion Optimization: Second International
Conference, EMO 2003, Faro, Portugal, April 8–11, 2003. Proceedings.
Springer Berlin, Heidelberg, 04 2003.

[32] Fonseca, C. M., and Fleming, P. J. An overview of evolutionary
algorithms in multiobjective optimization. Evol. Comput. 3, 1 (mar
1995), 1–16.

[33] Friedrich, T., Kötzing, T., Neumann, F., and Radhakrish-
nan, A. Theoretical study of optimizing rugged landscapes with the cga.
In Parallel Problem Solving from Nature – PPSN XVII (Cham, 2022),
G. Rudolph, A. V. Kononova, H. Aguirre, P. Kerschke, G. Ochoa, and
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[39] Hénaux, V., Goëffon, A., and Saubion, F. Evolving fitness
landscapes with complementary fitness functions. In Artificial Evolu-
tion (Cham, 2020), L. Idoumghar, P. Legrand, A. Liefooghe, E. Lutton,
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