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Abstract

Finding e�cient codes is crucial for achieving reliable communication over noisy channels.
While error-correcting codes for i.i.d. channels are well understood, the task of approximat-
ing the best code for a general channel, i.e. that maximizes the success probability of the
encoding and decoding process, is much less developed. This thesis addresses this coding
problem in several scenarios.

For point-to-point channels, optimal approximation algorithms for coding and list-decoding
are known. We study a generalization of the latter with a variable list size, compensated by
an increasing probability of failure. More generally, we study the coverage problem which
entails maximizing

∑
a∈[n]waϕ(|{i ∈ S : a ∈ Ti}|) over subsets S ⊆ [m] of cardinality k,

for a general nondecreasing concave function ϕ. We provide an approximation algorithm
for that problem of ratio αϕ := minx∈N∗ E[ϕ(Poi(x))]

ϕ(E[Poi(x)]) , which cannot be improved for sublin-
ear ϕ if P 6= NP.

For multiple-access channels, we show that the coding problem cannot be approximated
within any constant ratio under a complexity hypothesis on random k-SAT formulas.
Generalizing and abstracting quantum entanglement, non-signaling correlations can be
used to enhance communication. We show that optimal non-signaling assisted codes for
multiple-access channels can be found in polynomial time in the number of copies of the
channel. Applied to the binary adder channel, a non-signaling advantage on its capacity
region is established. We provide a general single-letter outer bound on the non-signaling
capacity region. When non-signaling assistance is not shared between encoders, we show
that the capacity region is not changed.

For broadcast channels, when restricted to deterministic channels, we provide a (1− e−1)2-
approximation algorithm for the unassisted coding problem, and we show that their capacity
region is not changed with non-signaling assistance. In the value query model, we show
that we cannot achieve a better approximation ratio than Ω

(
1√
m

)
for the general broadcast

channel coding problem, with m the output size of the channel.
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Résumé

La recherche de codes e�caces est essentielle pour obtenir des communications �ables sur
des canaux bruités. Alors que les codes correcteurs d’erreurs pour les canaux i.i.d. sont bien
compris, le problème d’approximer le meilleur code pour un canal générique, c’est-à-dire
qui maximise la probabilité de succès de la communication sur les canaux bruités, a été
beaucoup moins étudié. Cette thèse aborde ce problème de codage dans plusieurs scénarios.
Pour les canaux point-à-point, des algorithmes d’approximation optimaux pour le problème
du codage ainsi que le problème du décodage de liste sont connus. Nous étudions une
généralisation de ce dernier avec une taille de liste variable, compensée par une probabilité
d’échec croissante. Plus généralement, nous étudions le problème de couverture qui consiste
à maximiser

∑
a∈[n]waϕ(|{i ∈ S : a ∈ Ti}|) sur les sous-ensembles S ⊆ [m] de cardinal

k, pour ϕ une fonction croissante concave quelconque. Nous proposons un algorithme
d’approximation pour ce problème de ratio αϕ := minx∈N∗ E[ϕ(Poi(x))]

ϕ(E[Poi(x)]) , qui ne peut être
amélioré pour ϕ sous-linéaire si P 6= NP.
Pour les canaux à accès multiple, nous montrons que le problème du codage ne peut être
approximé avec un ratio constant sous une hypothèse de complexité sur des formules
k-SAT aléatoires. En généralisant et en abstrayant l’intrication quantique, les corrélations
non-signalantes peuvent être utilisées pour améliorer la communication. Nous montrons
que les codes optimaux avec assistance non-signalante pour les canaux à accès multiples
peuvent être trouvés en temps polynomial en le nombre de copies du canal. Appliqué au
canal additionneur binaire, l’utilisation de corrélations non-signalantes étend sa zone de
capacité. Nous fournissons une borne supérieure sur la zone de capacité avec assistance
non-signalante. Lorsque l’assistance non-signalante n’est pas partagée entre les encodeurs,
nous montrons que la zone de capacité n’est pas modi�ée.
Pour les canaux de di�usion, lorsque l’on se limite aux canaux déterministes, nous four-
nissons une (1 − e−1)2-approximation pour le problème du codage sans assistance, et
nous montrons que leur zone de capacité n’est pas modi�ée par l’assistance non-signalante.
Dans le modèle d’accès par valeur, nous montrons que nous ne pouvons pas obtenir un
meilleur ratio d’approximation que Ω

(
1√
m

)
pour le problème global du codage des canaux

de di�usion, où m est la taille de sortie du canal.
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Chapter1

Introduction

With the growing number of connected devices and the explosion in the amount of ex-
changed data, the need for e�cient and reliable communication has never been as critical
as in today’s world. Noise, coming from physical imperfection, signal interference, or even
lepidopterans [Hop81], is one of the major hurdles to overcome.
The Theory of Information established by Shannon in his seminal work [Sha48] provides
clear and de�nite answers to the amount of data that can be transmitted through noisy point-
to-point channels. The asymptotic rate at which information can be sent through multiple
independent copies of a channel is fully characterized by a mathematical quantity called
capacity. Although one cannot hope to surpass this fundamental limit, developing codes
achieving the channel’s capacity is not a simple task in practice, as the code construction by
Shannon was only probabilistic and the decoding is ine�cient as a function of the number
of copies of the channel.
Nonetheless, restricting the study to binary symmetric channels, the research in error-
correcting codes led to capacity-approaching solutions with e�cient encoding and decoding
procedures, such as low-density parity-check codes [Gal62], turbo codes [BG96] or more
recently polar codes [Ari09]; see [RU08] for a general review on error-correcting codes.
However, in some settings, it cannot be assumed that the channel copies are independent.
The �eld of one-shot information theory [RWW06, Tom12, TBR16] addresses this problem,
studying information theoretical quantities de�ned for a unique copy of an arbitrary channel.
Another approach, developed by Barman and Fawzi in [BF18], focuses on the algorithmic
aspects of coding for a single copy of a channel. The objective shifts to maximizing the
probability of successfully transmitting a message through that channel over all possible
encoders and decoders, known as the channel coding problem. As this algorithmic task
is NP-hard, they proposed a polynomial-time approximation algorithm achieving a ratio
of 1− e−1, which cannot be increased if P 6= NP thanks to a connection to the maximum
coverage problem [Fei98]. Note that this approach di�ers from algorithmic information
theory [Cha77], where information is de�ned using Turing machines rather than probability
theory.
Following this work, the `-list-decoding task [Eli57, Woz58], where the decoder is only
asked to output a list of ` possible guesses instead of giving the right input message,
was studied from an algorithmic point of view in [BFGG20]. Similarly, they developed a(

1− ``e−`

`!

)
-approximation algorithm running in polynomial time, and proved that this

1



1. Introduction

ratio cannot be increased under the unique games conjecture [Kho02]. More generally, a
larger class of combinatorial optimization problems, called maximum `-multi-coverage,
falls in the analysis of [BFGG20].
A natural extension of the maximum `-multi-coverage problem entails maximizing the
quantity

∑
a∈[n]waϕ(|{i ∈ S : a ∈ Ti}|) over subsets S ⊆ [m] of cardinality k, for a

general nondecreasing concave function ϕ; the maximum `-multi-coverage problem is
retrieved by taking ϕ(x) := min(x, `). In terms of channel coding interpretation, this
corresponds to what we call ϕ-list-decoding, where the length restriction on the list of
guesses of the decoder in `-list-decoding is replaced by a probability ϕ(`)

` of correctly
decoding a list of guesses of variable size `. This problem will be the �rst subject of study
of the thesis.
Shaking the physical foundations of the world at the beginning of the twentieth century,
the rise of quantum mechanics has revolutionized the comprehension of nature at atomic
and subatomic scale. One of its most intriguing characteristics is the notion of entanglement.
Two entangled particles have the particularity of being correlated, even when spread apart,
in a way that cannot be explained by non-quantum physics laws.
Einstein, Podolsky and Rosen [EPR35] �rst discovered that phenomenon, which implied
either that the quantum-mechanical description of physical reality was not complete or
that two incompatible physical quantities did not have simultaneously a concrete value.
Surprisingly and contrary to the original goal of what has become known as the Ein-
stein–Podolsky–Rosen paradox [EPR35], it is the latter that describes correctly the atomic
and subatomic physical reality.
Bell showed in [Bel64] that no hidden-variable theory, where we could associate unknown
local variables to each of the entangled particles, would be enough to explain their cor-
relation when spread apart. This nonlocal nature of quantum physics is in contradiction
with the usual principle of locality of classical physics, which states that any object can be
in�uenced only by its immediate surroundings. The results in [Bel64] were generalized into
the so-called CHSH inequality [CHSH69], which if violated, imply that a hidden-variable
theory cannot explain the correlations between the particles. These inequalities violations
were practically realized by Aspect et al. [ADR82], which �nally proved the nonlocal nature
of quantum physics.
Another particularity of quantum mechanics is that any measurement of physical properties
of a quantum system actually disturbs it. Furthermore, in the case of entangled particles,
measuring one of the particles will also a�ect the other. This spooky action at a distance,
as stated by Einstein [BBBE71], does not violate special relativity, as one cannot actually
transmit information through that process.
However, entanglement can be used to enhance communication. A qubit, the quantum
basic unit of information, cannot by itself convey more than one bit of information [Hol73].
However, Bennett and Wiesner showed in [BW92] that if quantum entanglement is shared
between the parties, in the form of what is called an EPR pair, then one can actually
transmit two bits of information using only one qubit. This is known today as superdense
coding. For point-to-point (classical) channels, quantum entanglement shared between
the sender and the receiver can increase the optimal success probability of channel coding
[CLMW10, PLM+11], although it does not increase the channel capacity [BBC+93, BSST99].
One can also abstract quantum entanglement into non-signaling correlations [Cir80, PR94].

2



In order to understand those, it is useful to look at the game interpretation of the previously
mentioned CHSH inequality. We consider a two-player game with Alice and Bob. A referee
gives a uniformly random bit x (resp. y) to Alice (resp. Bob), and their common goal is to
output respectively bits a and b such that a⊕ b = x ∧ y without communicating, where
⊕ denotes the exclusive disjunction. It is easy to see that no strategy can lead to a better
success probability than 3

4 , even assuming that hidden variables are shared between the
players. However, as shown in [CHSH69], if Alice and Bob share an entangled EPR pair,
they can apply well chosen measurements and achieve a success probability of cos2 (π

8
)
'

0.85, which in fact cannot be outperformed [Cir80]. Note that the correlation P (ab|xy)
describing the result of this quantum strategy con�rms that no information is transmitted
using quantum entanglement. Indeed, one can show that the marginal from a player is
independent of the other player’s input, that is to say that

∑
b P (ab|xy) =

∑
b P (ab|xy′)

and
∑
a P (ab|xy) =

∑
a P (ab|x′y) for all a, b, x, y, x′, y′. Non-signaling correlations are

de�ned as the set of all joint distributions P (ab|xy) that satisfy the previous equalities.
They naturally include quantum strategies, but are in fact stronger, as one can even achieve
a success probability of 1 for the CHSH game using a general non-signaling strategy, simply
by de�ning P (ab|xy) := 1

2 if a⊕ b = x ∧ y, and P (ab|xy) := 0 otherwise [PR94].
General non-signaling correlations are not representing physical reality, as they imply
stronger nonlocal behaviors than those occurring within quantum mechanics. However,
they present a strong theoretical interest. Notably, the description of the set of non-signaling
correlations is much simpler than with quantum ones, as they are characterized by simple
linear constraints; see [BCP+14] for a general review on nonlocality.
The approximation algorithm for the channel coding problem in [BF18] relies in fact on
non-signaling assisted codes. As �nding the best non-signaling assisted code for a channel
is a linear program, it can be solved exactly in polynomial time. They have developed a
strategy to transform that non-signaling assisted code into a classical one, losing at most a
factor 1− e−1 in the success probability. A more precise statement of this strategy actually
implies that the capacity regions with or without non-signaling assistance are the same,
retrieving back a result by [Mat12]. It should also be noted that non-signaling assistance
does not change the capacity region of the reverse task of channel simulation [CRBT22].
This unexpected link between approximation algorithms for the channel coding problem
and non-signaling correlations is the main motivation of the rest of the thesis. Speci�cally,
we will develop these analysis in the main network communication scenarios.
Network information theory, which aims at understanding communication over multiple-
sender multiple-receiver channels, was �rst studied by Shannon in the particular case of
two-way channels [Sha61] (known today as interference channels). Later, Cover [Cov72] in-
troduced broadcast channels, with multiple receivers but a single sender. Ahlswede [Ahl73]
and independently Liao [Lia73] studied the reverse scenario of multiple-access channels,
with multiple senders but a single receiver. These more complex channels allow a better
modelization of real-life interconnected communication.
Contrary to the point-to-point setting, nonlocality can increase the capacity of network
channels. Quek and Shor showed in [QS17] the existence of two-sender two-receiver
interference channels with gaps between their classical, quantum-entanglement assisted
and non-signaling assisted capacity regions. Following this result, Leditzky et al. [LALS20,
SLSS22] showed that quantum entanglement shared between the two senders of a multiple-
access channel can strictly enlarge its capacity region.
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1. Introduction

We will address the coding problem for both multiple-access channels and broadcast
channels. We will study the impact of non-signaling correlations on their capacities, as
well as their links to approximation algorithms of the related coding problems.

Contributions In Chapter 3 (based on [BFF21]), we consider the following generalization
of the maximum `-multi-coverage problem depending on a concave, nondecreasing function
ϕ: given subsets T1, . . . , Tm of a universe [n], positive weights wa on the universe [n]
and an integer k, the objective is to �nd a subset S ⊆ [m] of size k that maximizes
Cϕ(S) :=

∑
a∈[n]waϕ(|S|a), where |S|a := |{i ∈ S : a ∈ Ti}|; the maximum `-multi-

coverage problem is retrieved by taking ϕ(x) := min(x, `). For any such ϕ, we provide an
e�cient algorithm that achieves an approximation ratio equal to the Poisson concavity ratio
of ϕ, de�ned by αϕ := minx∈N∗ E[ϕ(Poi(x))]

ϕ(E[Poi(x)]) . Complementing this approximation guarantee,
we establish a matching NP-hardness result when ϕ grows in a sublinear way. Applied
to channel coding, and more speci�cally to ϕ-list-decoding, where the length restriction
on the list of guesses of the decoder in `-list-decoding is replaced by a probability ϕ(`)

`
of correctly decoding a list of guesses of variable size `, we obtain a tight approximation
guarantee αϕ for the class of channelsW of the formW (y|x) = 1

t for y ∈ Tx with |Tx| = t
andW (y|x) = 0 elsewhere. Our result goes beyond this particular setting and we illustrate
it with applications to distributed resource allocation problems, welfare maximization
problems and approval-based voting for general rules.
In Chapter 4 (based on [FF22, FF23]), we address the problem of coding for multiple-access
channels. We �rst show that it cannot be approximated in polynomial time within any
constant ratio, under a complexity hypothesis on random k-SAT formulas. Then, we study
the in�uence of non-signaling correlations between parties. We develop a linear program
computing the optimal success probability for coding over n copies of a multiple-access
channel W with size growing polynomially in n. Solving this linear program allows us to
achieve inner bounds for multiple-access channels. Applying this method to the binary
adder channel, we show that using non-signaling assistance, the sum-rate log2(72)

4 ' 1.5425
can be reached even with zero error, which beats the maximum sum-rate capacity of 1.5
in the unassisted case. For noisy channels, where the zero-error non-signaling assisted
capacity region is trivial, we can use concatenated codes to obtain achievable points in
the capacity region. Applied to a noisy version of the binary adder channel, we show
that non-signaling assistance still improves the sum-rate capacity. Complementing these
achievability results, we give an outer bound on the non-signaling assisted capacity region
that has the same expression as the unassisted region except that the channel inputs are not
required to be independent. Finally, we show that the capacity region with non-signaling
assistance shared only between each sender and the receiver independently is the same as
without assistance.
In Chapter 5, we address the problem of coding for broadcast channels. For the class
of deterministic broadcast channels, we describe a (1− e−1)2-approximation algorithm
running in polynomial time, and we show that the capacity region for that class is the same
with or without non-signaling assistance. Finally, we show that in the value query model,
we cannot achieve a better approximation ratio than Ω

(
1√
m

)
in polynomial time for the

general broadcast channel coding problem, with m the size of one of the outputs of the
channel.
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Introduction

Avec le nombre croissant d’appareils connectés et l’explosion du volume de données échan-
gées, le besoin de communication e�cace et �able n’a jamais été aussi critique que dans
le monde d’aujourd’hui. Le bruit, qui provient d’imperfections physiques, d’interférences
entre les signaux ou même de lépidoptères [Hop81], est l’un des principaux obstacles à
surmonter.
La théorie de l’information établie par Shannon dans son ouvrage fondateur [Sha48] apporte
des réponses claires et précises à la quantité de données pouvant être transmises par des
canaux point à point bruités. Le taux asymptotique auquel les informations peuvent être
envoyées par de multiples copies indépendantes d’un canal est entièrement caractérisé par
une quantité mathématique appelée capacité. Bien que l’on ne puisse espérer dépasser cette
limite fondamentale, le développement de codes permettant d’atteindre la capacité du canal
n’est pas une tâche aisée en pratique, car la construction du code par Shannon n’était que
probabiliste et le décodage est ine�cace en fonction du nombre de copies du canal.
Néanmoins, en limitant l’étude aux canaux symétriques binaires, la recherche sur les codes
correcteurs d’erreurs a conduit à des solutions approchant la capacité avec des procédures
de codage et de décodage e�caces, telles que les codes de contrôle de parité à faible
densité [Gal62], les codes turbo [BG96] ou, plus récemment, les codes polaires [Ari09] ;
voir [RU08] pour une revue générale des codes correcteurs d’erreurs.
Toutefois, dans certains contextes, on ne peut pas supposer que les copies du canal sont
indépendantes. Le domaine de la théorie de l’information à un coup [RWW06, Tom12,
TBR16] aborde ce problème, en étudiant les quantités de la théorie de l’information dé�nies
pour une copie unique d’un canal arbitraire. Une autre approche, développée par Barman
et Fawzi dans [BF18], se concentre sur les aspects algorithmiques du codage pour une
copie unique d’un canal. L’objectif consiste alors à maximiser la probabilité de transmettre
avec succès un message par ce canal pour tous les codeurs et décodeurs possibles, ce que
l’on appelle problème du codage de canal. Cette tâche algorithmique étant NP-di�cile,
ils ont proposé un algorithme d’approximation en temps polynomial atteignant un ratio
de 1 − e−1, qui ne peut être augmenté si P 6= NP grâce à un lien avec le problème de la
couverture maximale [Fei98]. Il convient de noter que cette approche di�ère de la théorie
algorithmique de l’information [Cha77], où l’information est dé�nie à l’aide de machines
de Turing plutôt qu’avec la théorie des probabilités.
Suite à ces travaux, le problème du décodage de listes de paramètre ` [Eli57, Woz58], où l’on
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1. Introduction

demande au décodeur de produire une liste de ` suppositions possibles au lieu de donner
le bon message d’entrée, a été étudié d’un point de vue algorithmique dans [BFGG20]. De
même, ils ont développé un algorithme d’approximation de ratio 1− ``e−`

`! fonctionnant en
temps polynomial, et ont prouvé que ce ratio ne peut pas être augmenté sous l’hypothèse
de la conjecture des jeux uniques [Kho02]. Plus généralement, une classe plus large de
problèmes d’optimisation combinatoire, appelée couverture multiple maximale de paramètre
`, relève de l’analyse de [BFGG20].
Une extension naturelle du problème de couverture multiple maximale de paramètre `
consiste à maximiser la quantité

∑
a∈[n]waϕ(|{i ∈ S : a ∈ Ti}|) sur les sous-ensembles

S ⊆ [m] de cardinal k, pour ϕ une fonction croissante concave quelconque ; le problème de
couverture multiple maximale de paramètre ` est retrouvé en prenant ϕ(x) := min(x, `).
En termes d’interprétation du codage de canal, cela correspond à ce que nous appelons le
décodage de liste de paramètre ϕ, où la restriction de longueur sur la liste de suppositions
du décodeur dans le décodage de liste de paramètre ` est remplacée par une probabilité
ϕ(`)
` de décodage correct d’une liste de suppositions de taille variable `. Ce problème sera

le premier sujet d’étude de la thèse.
Au début du vingtième siècle, la mécanique quantique a ébranlé les fondements physiques du
monde et révolutionné la compréhension de la nature à l’échelle atomique et subatomique.
L’une de ses caractéristiques les plus fascinantes est la notion d’intrication. Deux particules
intriquées ont la particularité d’être corrélées, même lorsqu’elles sont éloignées l’une de
l’autre, d’une manière qui ne peut être expliquée par les lois de la physique non quantique.
Einstein, Podolsky et Rosen [EPR35] ont été les premiers à découvrir ce phénomène, qui
impliquait soit que la description de la réalité physique par la mécanique quantique n’était
pas complète, soit que deux grandeurs physiques incompatibles n’avaient pas simultanément
une valeur concrète. De manière surprenante et contrairement à l’objectif initial de ce qui
est devenu le paradoxe d’Einstein-Podolsky-Rosen [EPR35], c’est ce dernier qui décrit
correctement la réalité physique atomique et subatomique.
Bell a montré dans [Bel64] qu’aucune théorie des variables cachées, où l’on pourrait associer
des variables locales inconnues à chacune des particules intriquées, ne su�rait à expliquer
leur corrélation lorsqu’elles sont éloignées l’une de l’autre. Cette nature non locale de
la physique quantique est en contradiction avec le principe de localité de la physique
classique, qui stipule que tout objet ne peut être in�uencé que par son environnement
immédiat. Les résultats de [Bel64] ont été généralisés dans ce que l’on appelle les inégalités
CHSH [CHSH69], qui, si elles sont violées, impliquent qu’une théorie des variables cachées
ne peut pas expliquer les corrélations entre les particules. Les violations de ces inégalités
ont été pratiquement réalisées par Aspect et al. [ADR82], ce qui a �nalement prouvé la
nature non locale de la physique quantique.
Une autre particularité de la mécanique quantique est que toute mesure des propriétés
physiques d’un système quantique le perturbe. En outre, dans le cas de particules intriquées,
la mesure de l’une des particules a�ectera également l’autre. Cette action étrange à distance,
comme l’a décrite Einstein [BBBE71], ne viole pas la relativité restreinte, car il est impossible
de transmettre des informations par ce biais.
Cependant, l’intrication peut être utilisée pour améliorer la communication. Un qubit,
l’unité quantique de base de l’information, ne peut à lui seul transmettre plus d’un bit
d’information [Hol73]. Cependant, Bennett et Wiesner ont montré dans [BW92] que si
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l’intrication quantique est partagée entre les parties, sous la forme de ce que l’on appelle
une paire EPR, il est possible de transmettre deux bits d’information en utilisant un seul
qubit. C’est ce que l’on appelle aujourd’hui le codage superdense. Pour les canaux point
à point (classiques), l’intrication quantique partagée entre l’émetteur et le récepteur peut
augmenter la probabilité de succès optimale du codage de canal [CLMW10, PLM+11], bien
qu’elle n’augmente pas la capacité du canal [BBC+93, BSST99].
On peut également abstraire l’intrication quantique en corrélations non-signalantes [Cir80,
PR94]. A�n de comprendre ces corrélations, il est utile d’examiner l’interprétation de
l’inégalité CHSH mentionnée précédemment sous forme de jeu. Nous considérons un jeu à
deux joueurs avec Alice et Bob. Un arbitre donne un bit uniformément aléatoire x (resp. y)
à Alice (resp. Bob), et leur but commun est de choisir respectivement les bits a et b tels que
a⊕ b = x ∧ y sans communiquer, où ⊕ dénote la disjonction exclusive. Il est facile de voir
qu’aucune stratégie ne peut conduire à une meilleure probabilité de succès que 3

4 , même en
supposant que des variables cachées sont partagées entre les joueurs. Cependant, comme le
montre [CHSH69], si Alice et Bob partagent une paire EPR intriquée, ils peuvent appliquer
des mesures bien choisies et atteindre une probabilité de succès de cos2 (π

8
)
' 0.85, ce qui

en fait ne peut pas être surpassé [Cir80]. Notons que la corrélation P (ab|xy) décrivant
le résultat de cette stratégie quantique con�rme qu’aucune information n’est transmise à
l’aide de l’intrication quantique. En e�et, on peut montrer que la marginale d’un joueur est
indépendante de l’entrée de l’autre joueur, c’est-à-dire que

∑
b P (ab|xy) =

∑
b P (ab|xy′) et∑

a P (ab|xy) =
∑
a P (ab|x′y) pour tous a, b, x, y, x′, y′. Les corrélations non-signalantes

sont dé�nies comme l’ensemble des distributions conjointes P (ab|xy) qui satisfont les
égalités précédentes. Elles incluent naturellement les stratégies quantiques, mais sont en fait
plus fortes, car on peut même obtenir une probabilité de succès de 1 pour le jeu CHSH en
utilisant une stratégie générale non-signalante, simplement en dé�nissant P (ab|xy) := 1

2
si a⊕ b = x ∧ y, et P (ab|xy) := 0 sinon [PR94].
Les corrélations non-signalantes générales ne représentent pas la réalité physique, car elles
impliquent des comportements non locaux plus forts que ceux qui se produisent dans le
cadre de la mécanique quantique. Cependant, elles présentent un grand intérêt théorique.
Notamment, la description de l’ensemble des corrélations non-signalantes est beaucoup
plus simple que celle des corrélations quantiques, car elles sont caractérisées par de simples
contraintes linéaires ; voir [BCP+14] pour une revue générale sur la non-localité.
L’algorithme d’approximation pour le problème du codage de canal dans [BF18] s’appuie
en fait sur des codes avec assistance non-signalante. Comme la recherche du meilleur code
avec assistance non-signalante pour un canal est un programme linéaire, il peut être résolu
exactement en temps polynomial. Ils ont mis au point une stratégie pour transformer ce
code avec assistance non-signalante en un code classique, en perdant au maximum un
facteur 1 − e−1 dans la probabilité de succès. Un énoncé plus précis de cette stratégie
implique en fait que les zones de capacité avec ou sans assistance non-signalante sont les
mêmes, retrouvant un résultat de [Mat12]. Il convient également de noter que l’assistance
non-signalante ne modi�e pas la zone de capacité de la tâche inverse de simulation des
canaux [CRBT22]. Ce lien inattendu entre les algorithmes d’approximation pour le problème
du codage de canal et les corrélations non-signalantes est la motivation principale du reste
de la thèse. En particulier, nous développerons ces analyses dans les principaux scénarios
de communication en réseau.
La théorie de l’information des réseaux, qui vise à comprendre la communication sur des
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1. Introduction

canaux à émetteurs multiples et à récepteurs multiples, a été étudiée pour la première fois par
Shannon dans le cas particulier des canaux deux-à-deux[Sha61] (connus aujourd’hui sous le
nom de canaux d’interférence). Plus tard, Cover [Cov72] a introduit les canaux de di�usion,
avec plusieurs récepteurs mais un seul émetteur. Ahlswede [Ahl73] et indépendamment
Liao [Lia73] ont étudié le scénario inverse des canaux à accès multiple, avec plusieurs
émetteurs mais un seul récepteur. Ces canaux plus complexes permettent une meilleure
modélisation des communications interconnectées réelles.
Contrairement à la situation point-à-point, la non-localité peut augmenter la capacité des
canaux en réseau. Quek et Shor ont montré dans [QS17] l’existence de canaux d’interférence
à deux émetteurs et deux récepteurs avec des écarts entre leurs zones de capacité classique,
avec assistance d’intrication quantique et avec assistance non-signalante. À la suite de ce
résultat, Leditzky et al. [LALS20, SLSS22] ont montré que l’intrication quantique partagée
entre les deux émetteurs d’un canal à accès multiple peut strictement agrandir sa zone de
capacité.
Nous aborderons le problème du codage pour les canaux à accès multiple et les canaux de
di�usion. Nous étudierons l’impact des corrélations non-signalantes sur leurs capacités,
ainsi que leurs liens avec les algorithmes d’approximation des problèmes de codage associés.

Résumé des chapitres Dans le Chapitre 3 (basé sur [BFF21]), nous considérons la géné-
ralisation suivante du problème de couverture multiple maximale de paramètre ` dépendant
d’une fonction croissante concave ϕ : étant donné des sous-ensembles T1, . . . , Tm d’un uni-
vers [n], des poids strictement positifs wa sur l’univers [n] et d’un entier k, l’objectif est de
trouver un sous-ensemble S ⊆ [m] de taille k qui maximise Cϕ(S) :=

∑
a∈[n]waϕ(|S|a),

où |S|a := |{i ∈ S : a ∈ Ti}| ; le problème de couverture multiple maximale de paramètre
` est retrouvé en prenant ϕ(x) := min(x, `). Pour tout ϕ de ce type, nous fournissons un
algorithme e�cace qui permet d’obtenir un rapport d’approximation égal au rapport de

concavité de Poisson de ϕ, dé�ni par αϕ := minx∈N∗ E[ϕ(Poi(x))]
ϕ(E[Poi(x)]) . En complément de cette

garantie d’approximation, nous établissons un résultat de NP-di�culté lorsque ϕ croît de
manière sous-linéaire. Appliqué au codage de canal, et plus spéci�quement au décodage de
liste de paramètre ϕ, où la restriction de longueur sur la liste de suppositions du décodeur
dans le décodage de liste de paramètre ` est remplacée par une probabilité ϕ(`)

` de déco-
der correctement une liste de suppositions de taille variable `, nous obtenons une stricte
garantie d’approximation αϕ pour la classe de canaux W de la forme W (y|x) = 1

t pour
y ∈ Tx avec |Tx| = t et W (y|x) = 0 ailleurs. Notre résultat dépasse ce cadre particulier et
nous l’illustrons par des applications aux problèmes d’allocation de ressources distribuées,
aux problèmes de maximisation de la prospérité et au vote basé sur l’approbation pour des
règles générales.
Dans le Chapitre 4 (basé sur [FF22, FF23]), nous abordons le problème du codage pour les
canaux à accès multiple. Nous montrons tout d’abord qu’il ne peut pas être approximé en
temps polynomial avec un ratio constant, sous une hypothèse de complexité sur des formules
k-SAT aléatoires. Ensuite, nous étudions l’in�uence des corrélations non signalantes entre
les parties. Nous développons un programme linéaire calculant la probabilité de succès
optimale pour le codage sur n copies d’un canal d’accès multiple W dont la taille croît
polynomialement en n. La résolution de ce programme linéaire nous permet d’obtenir
des bornes inférieures pour les canaux à accès multiple. En appliquant cette méthode au
canal additionneur binaire, nous montrons qu’en utilisant une assistance non-signalante, la
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somme des taux log2(72)
4 ' 1.5425 peut être atteinte même avec une erreur nulle, ce qui

dépasse la capacité maximale de la somme des taux de 1.5 dans le cas sans assistance. Pour
les canaux bruités, où la région de capacité avec assistance non-signalante et sans erreur
est triviale, nous pouvons utiliser des codes concaténés pour obtenir des points réalisables
dans la zone de capacité. Appliqués à une version bruitée du canal additionneur binaire,
nous montrons que l’assistance non-signalante améliore encore la capacité. En complément
de ces résultats de faisabilité, nous donnons une borne supérieure à la zone de capacité
avec assistance non-signalante qui a la même expression que la région sans assistance, sauf
que les entrées du canal ne sont pas obligées d’être indépendantes. En�n, nous montrons
que la zone de capacité avec assistance non-signalante partagée uniquement entre chaque
émetteur et le récepteur indépendamment est la même que sans assistance.
Dans le Chapitre 5, nous abordons le problème du codage pour les canaux de di�u-
sion. Pour la classe des canaux de di�usion déterministes, nous décrivons un algorithme
d’approximation de ratio (1− e−1)2 fonctionnant en temps polynomial, et nous montrons
que la zone de capacité pour cette classe est la même avec ou sans assistance non-signalante.
En�n, nous montrons que dans le modèle d’accès par valeur, nous ne pouvons pas obtenir
un meilleur ratio d’approximation que Ω

(
1√
m

)
en temps polynomial pour le problème

général du codage des canaux de di�usion, avec m la taille de l’une des sorties du canal.
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Chapter2

Background

In this chapter, we recall brie�y basic de�nitions and properties, as well as more unusual
results, used throughout the thesis. Rather than an introduction to each of those topics,
one should see this chapter as a toolbox and use it when needed in the other chapters.

2.1 Probability Theory

2.1.1 Usual Distributions and Properties

De�nition 2.1 (Usual Distributions). We will consider the following probability distribu-
tions:

1. The Bernouilli distribution Ber(p) is de�ned on {0, 1} with the mass function:

(1− p, p) .

2. The binomial distribution Bin(n, p) is de�ned on {0, . . . , n} with the mass function:((
n

k

)
pk(1− p)n−k

)
k∈{0,...,n}

.

3. The Poisson distribution Poi(λ) is de�ned on N with the mass function:(
λke−λ

k!

)
k∈N

.

Proposition 2.1 (Jensen’s Inequality [Jen06]). For X random variable and ϕ concave, we

have:

E [ϕ(X)] ≤ ϕ (E[X]) .

Proposition 2.2. For ϕ concave, and p ∈ [0, 1]m, we have:

E
[
ϕ

(
m∑
i=1

Ber(pi)
)]
≥ E

[
ϕ

(
Poi

(
m∑
i=1

pi

))]
.

11



2. Background

Proof. The notion of convex order discussed in [SS07] allows us to prove this result. We
say that X ≤cx Y ⇐⇒ E[f(X)] ≤ E[f(Y )] for any convex f . Thanks to Lemma 2.3
of [BFGG20], we have that for p ∈ [0, 1]:

Ber(p) ≤cx Poi(p) .

Since this order is preserved through convolution (Theorem 3.A.12 of [SS07]), and the fact
that

∑m
i=1 Poi(pi) ∼ Poi (

∑m
i=1 pi), we have:
m∑
i=1

Ber(pi) ≤cx Poi
(

m∑
i=1

pi

)
.

Applying this result to −ϕ, which is convex, concludes the proof.

2.1.2 Negatively Associated Random Variables

We present a weaker notion of independence for random variables which is called negative
association as introduced in [JDP83], for which the Cherno�-Hoe�ding bounds still hold.

De�nition 2.2. Random variables X1, . . . , Xn are said to be negatively associated if for
every pair of disjoints subsets I, J of [n] and (coordinate-wise) increasing functions f, g,
we have:

E[f({Xi : i ∈ I})) · g({Xi : i ∈ J})] ≤ E[f({Xi : i ∈ I})] · E[g({Xi : i ∈ J})] .

Proposition 2.3 (Property P1 of [JDP83]). A pair of random variable X,Y is negatively

associated if and only if:

∀x ∈ X ,∀y ∈ Y, PXY (x, y) ≤ PX(x)PY (y) .

Proposition 2.4 (Property P4 of [JDP83]). A subset of two or more negatively associated

random variables is negatively associated.

Proposition 2.5 (Property P5 of [JDP83]). A set of independent random variables is nega-

tively associated.

Proposition 2.6 (Property P6 of [JDP83]). Increasing functions de�ned on disjoint subsets

of a set of negatively associated random variables are negatively associated.

Proposition 2.7 (Property P7 of [JDP83]). The union of independent sets of negatively

associated random variables is negatively associated.

De�nition 2.3 (Permutation Distribution). Let x = (x1, . . . , xk) ∈ Rk. A permutation
distribution is the joint distribution of the vector X = (X1, . . . , Xk) which takes as values
all k! permutations of x with equal probabilities, each being 1

k! .

Proposition 2.8 (Theorem 2.11 of [JDP83]). A permutation distribution is negatively asso-

ciated.

Proposition 2.9 (Cherno�-Hoe�ding bound - version 1). Let X1, . . . , Xn be negatively

associated random variables such that 0 ≤ Xi ≤ B and E[Xi] = µ. Then for η ∈ (0, 1):

P
(∣∣∣∣∣ 1n

n∑
i=1

Xi − µ
∣∣∣∣∣ > η

)
≤ 2e−2( ηB )2

n .

12



2.1. Probability Theory

Proof. This usual version of the Cherno�-Hoe�ding bound for independent variables
(Theorem 2 of [Hoe63]) can be extended to negatively associated random variables directly
as pointed out by [DR98].

Proposition 2.10 (Cherno�-Hoe�ding bound - version 2). Let X1, . . . , Xn be negatively

associated Bernouilli random variables of parameter p. Then for 0 < ε ≤ 1
2 :

P
(

1
n

n∑
i=1

Xi > (1 + ε)p
)
≤ e−

pnε2
4 .

Proof. Usual proofs of the Cherno�-Hoe�ding bound work in the same way with negatively
associated variables as pointed out by [DR98]. So, one obtain as in the original proof
(Theorem 1 of [Hoe63]) that:

P
(

1
n

n∑
i=1

Xi > (1 + ε)p
)
≤ e−D((1+ε)p||p)n ,

with D (x||y) := x ln
(
x
y

)
+ (1− x) ln

(
1−x
1−y

)
the Kullback–Leibler divergence between

Bernoulli distributed random variables with parameters x and y. As D ((1 + ε)p||p) ≥ ε2p
4

for 0 < ε < 1
2 , we recover the expected bound.

2.1.3 Non-Signaling Probability Distributions

De�nition 2.4. We say that a conditional probability distribution P (an|xn) de�ned on
×n

i=1Ai ××n
i=1Xi is non-signaling if for all an, xn, x̂n, we have

∀i ∈ [n],
∑
âi

P (a1 . . . âi . . . an|x1 . . . xi . . . xn) =
∑
âi

P (a1 . . . âi . . . an|x1 . . . x̂i . . . xn) .

De�nition 2.5. Let P (an|xn) a conditional probability distribution de�ned on×n
i=1Ai××n

i=1Xi and P ′(a′n|x′n) de�ned on×n
i=1A

′
i ××n

i=1X
′
i . We de�ne P ⊗ P ′ the tensor

product conditional probability distribution de�ned on×n
i=1(Ai ×A′i)××n

i=1(Xi ×X ′i )
by (P ⊗ P ′) (a1a

′
1 . . . ana

′
n|x1x

′
1 . . . xnx

′
n) := P (an|xn) · P ′(a′n|x′n).

Proposition 2.11. If both P and P ′ are non-signaling, then P ⊗ P ′ is non-signaling.

Proof. Let an ∈×n
j=1Aj , a′n ∈×n

j=1A
′
j , xn ∈×n

j=1Xj , x′n ∈×n
j=1X

′
j and x̂i ∈ Xi,

13



2. Background

x̂′i ∈ X ′i . Using the fact that P, P ′ are non-signaling, we have:∑
âiâ′i

P (a1a
′
1 . . . âiâ

′
i . . . ana

′
n|x1x

′
1 . . . xix

′
i . . . xnx

′
n)

=
∑
âiâ′i

P (a1 . . . âi . . . an|x1 . . . xi . . . xn) · P ′(a′1 . . . â′i . . . a′n|x′1 . . . x′i . . . x′n)

=

∑
âi

P (a1 . . . âi . . . an|x1 . . . xi . . . xn)

 ·
∑

â′i

P ′(a′1 . . . â′i . . . a′n|x′1 . . . x′i . . . x′n)


=

∑
âi

P (a1 . . . âi . . . an|x1 . . . x̂i . . . xn)

 ·
∑

â′i

P ′(a′1 . . . â′i . . . a′n|x′1 . . . x̂′i . . . x′n)


=
∑
âiâ′i

(
P ⊗ P ′

)
(a1a

′
1 . . . âiâ

′
i . . . ana

′
n|x1x

′
1 . . . x̂ix̂

′
i . . . xnx

′
n) ,

(2.1)
so P ⊗ P ′ is non-signaling.

2.2 Information Theory

2.2.1 Information Quantities

Here, X,Y, Z will denote random variables over �nite sets X ,Y,Z and we will denote
their distributions by PX(x) = P(X = x), PX,Y (x, y) = P(X = x, Y = y), PX|Y (x|y) =
P(X = x|Y = y), . . .

De�nition 2.6 ((Shannon) Entropy H(X)). The (Shannon) entropy H(X) of X is de�ned
by:

H(X) := EX [− log(PX(X))] = −
∑
x∈X

PX(x) log(PX(x)) .

The entropy of two random variables X,Y is de�ned as H(X,Y ) := H((X,Y )).

De�nition 2.7 (Conditional Entropy H(X|Y )). The conditional entropy H(X|Y ) of X
given Y is de�ned by:

H(X|Y ) :=
∑
y∈Y

PY (y)H(X|Y = y)

=
∑
y∈Y

PY (y)
(
−
∑
x∈X

PX|Y (x|y) log
(
PX|Y (x|y)

))

= −
∑

x∈X ,y∈Y
PX,Y (x, y) log

(
PX|Y (x|y)

)
.

(2.2)

De�nition 2.8 (Mutual Information I(X : Y )). The mutual information I(X : Y ) of X
and Y is de�ned by:

I(X : Y ) :=
∑

x∈X ,y∈Y
PX,Y (x, y) log

(
PX,Y (x, y)
PX(x)PY (y)

)
.
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2.2. Information Theory

Proposition 2.12. Equivalently, we have:

I(X : Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y ) .

De�nition 2.9 (Conditional Mutual Information I(X : Y |Z)). The mutual information
I(X : Y |Z) of X and Y given Z is de�ned by:

I(X : Y |Z) :=
∑
z∈Z

PZ(z)I(X : Y |Z = z)

=
∑

x∈X ,y∈Y,z∈Z
PX,Y,Z(x, y, z) log

(
PX,Y |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z)

)
.

(2.3)

De�nition 2.10 (Markov chainX → Y → Z). We say thatX → Y → Z forms a Markov
chain if Z is conditionally independent of X given Y , that is to say:

∀x ∈ X ,∀y ∈ Y, ∀z ∈ Z, PZ|X,Y (z|x, y) = PZ|Y (z|y) .

2.2.2 Typical Sets

We consider typical sets as de�ned in Chapter 2.5 of [GK11]:

De�nition 2.11 (Typical set and conditional typical set). We have the following de�nitions:

1. T nε (X) := {xn : |π(x|xn)− PX(x)| ≤ εPX(x) for all x ∈ X}, with the empirical
distribution π de�ned by π(x|xn) := |{i:xi=x}|

n . This de�nition generalizes for any
t-uple of variables.

2. ∀yn ∈ T nε (Y ), T nε (X|yn) := {xn : (xn, yn) ∈ T nε (X,Y )}.

A crucial property of such typical sets is the typical average lemma:

Lemma 2.13 (Typical Average Lemma [GK11]). Let xn ∈ T nε (X). Then for any nonnega-

tive function g on X :

(1− ε)E[g(X)] ≤ 1
n

n∑
i=1

g(xi) ≤ (1 + ε)E[g(X)] .

In particular, with this tool, we can derive the following properties:

Proposition 2.14 (Properties of typical sets [GK11]). We have, among others, the following

statements about typical sets:

1. ∀xn ∈ T nε (X), 2−n(1+ε)H(X) ≤ PXn(xn) ≤ 2−n(1−ε)H(X)
.

2. lim
n→+∞

P (Xn ∈ T nε (X)) = 1.

3. |T nε (X)| ≤ 2n(1+ε)H(X)
.

4. For n su�ciently large, |T nε (X)| ≥ (1− ε)2n(1−ε)H(X)
.

5. If (xn, yn) ∈ T nε (X,Y ) then xn ∈ T nε (X) and yn ∈ T nε (Y ).

15



2. Background

6. ∀yn ∈ T nε (Y ), T nε (X|yn) ⊆ T nε (X).

7. ∀(xn, yn) ∈ T nε (X,Y ), 2−n(1+ε)H(X|Y ) ≤ PXnY n(xn|yn) ≤ 2−n(1−ε)H(X|Y )
.

8. ∀yn ∈ T nε (Y ), |T nε (X|yn)| ≤ 2n(1+ε)H(X|Y )
.

9. For ε′ < ε and n su�ciently large, we have that ∀yn ∈ T nε′ (Y ), |T nε (X|yn)| ≥
(1− ε)2n(1−ε)H(X|Y )

.

Proof. We reproduce the proof of the last statement here to emphasize on the fact that
there is an n0 such that for all n ≥ n0 and for all yn ∈ T nε′ (Y ), the property holds.
For any ε > ε′ > 0, let us show that there exists n such that we have:

∀yn ∈ T nε′ (Y ),P ((Xn, yn) ∈ T nε (X,Y )) ≥ 1− ε ,

where Xn are drawn from the distribution PXn|Y n=yn . This will imply the statement.
Indeed, we have that:

P ((Xn, yn) ∈ T nε (X,Y )) =
∑

xn∈T nε (X|yn)
PXn|Y n(xn|yn)

≤ |T nε (X|yn)|2−n(1−ε)H(X|Y ) ,

(2.4)

since PXn|Y n(xn|yn) ≤ 2−n(1−ε)H(X|Y ) as (xn, yn) ∈ T nε (X,Y ). Thus, we have that
|T nε (X|yn)| ≥ (1− ε)2n(1−ε)H(X|Y ). In order to prove our result, we take the proof in Ap-
pendix 2A of [GK11]. We take yn ∈ T nε′ (Y) andXn ∼ PXn|Y n(xn|yn) =

∏n
i=1 PX|Y (xi|yi).

Applied to our choice of variables, we have that P ((Xn, yn) /∈ T nε (X,Y )) is equal to:

P (∃(x, y) : |π(x, y|Xn, yn)− PXY (x, y)| > εPXY (x, y))
≤
∑
x,y

P (|π(x, y|Xn, yn)− PXY (x, y)| > εPXY (x, y))

=
∑
x,y

P
(∣∣∣∣π(x, y|Xn, yn)

PXY (x, y) − 1
∣∣∣∣ > ε

)

=
∑
x,y

P
(∣∣∣∣∣ π(x, y|Xn, yn)
PX|Y (x|y)π(y|yn)

π(y|yn)
PY (y) − 1

∣∣∣∣∣ > ε

)

≤
∑
x,y

P
(
π(x, y|Xn, yn)

π(y|yn) >
1 + ε

1 + ε′
PX|Y (x|y)

)

+
∑
x,y

P
(
π(x, y|Xn, yn)

π(y|yn) <
1− ε
1− ε′PX|Y (x|y)

)
,

(2.5)

since yn ∈ T nε′ (Y) and thus 1 − ε′ ≤ π(y|yn)
PY (y) ≤ 1 + ε′. However, since ε′ < ε, we

have 1+ε
1+ε′ > 1 and 1−ε

1−ε′ < 1. We will show that for all x, y with PY (y) > 0, we have
π(x,y|Xn,yn)

π(y|yn) →
n→+∞

PX|Y (x|y) in probability, with a convergence rate independent of
yn ∈ T nε′ (Y ), which will be enough to conclude the proof.
Let us �x some x, y with PY (y) > 0. Since yn ∈ T nε′ (Y ), we have in particular that
(1 − ε′)PY (y) ≤ π(y|yn) ≤ (1 + ε′)PY (y). Thus N := |{i : yi = y}| = nπ(y|yn) ≥
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(1− ε′)PY (y)n. Then we have:

π(x, y|Xn, yn)
π(y|yn) = 1

N

∑
i∈S

Zi with Zi := 1Xi=x and S := {i : yi = y} .

Thus, all Zi with i ∈ S are independent and follow the same law:

Zi :=
{

1 with probability PX|Y (x|y) ,
0 otherwise .

Furthermore, we have E[Zi] = PX|Y (x|y), and all Zi have the same variance σ2
x|y < +∞

(depending only on X,Y, x, y). Thus we can apply Chebyshev inequality:

P
(∣∣∣∣∣ 1
N

∑
i∈S

Zi − PX|Y (x|y)
∣∣∣∣∣ ≥ η

)
≤
σ2
x|y

Nη2 .

However, since N ≥ (1− ε′)PY (y)n, we get:

P
(∣∣∣∣π(x, y|Xn, yn)

π(y|yn) − PX|Y (x|y)
∣∣∣∣ ≥ η) ≤ σ2

x|y
η2(1− ε′)PY (y)n →

n→+∞
0 .

Thus, we have π(x,y|Xn,yn)
π(y|yn) →

n→+∞
PX|Y (x|y) in probability with a convergence rate

independent of yn ∈ T nε′ (Y ).

2.2.3 Channels

Formally, a channel W is a conditional probability distribution depending on n inputs
belonging to X n and m outputs belonging to Ym, so W := (W (ym|xn))xn∈Xn,ym∈Ym
with:

∀xn, ym,W (ym|xn) ≥ 0 and ∀xn,
∑

ym∈Ym
W (ym|xn) = 1 .

We will denote such a channel by W : X n → Ym. The tensor product of two channels
W : X n → Ym and W ′ : X ′n → Ym is denoted by W ⊗W ′ : (X n ×X ′n)→ (Yn ×Y ′n)
and de�ned by:

(W ⊗W ′)(ymy′m|xnx′n) := W (ym|xn) ·W ′′m|x′n) .

We denote by W⊗n the nth tensor product of W , i.e. W⊗n = W ⊗ . . . ⊗ W with n
occurrences of W .
Whenn = m = 1, we will speak of regular or point-to-point channels. Whenn > 1,m = 1,
we will speak of multiple-access channels. When n = 1,m > 1, we will speak of broadcast
channels. If both n,m are greater than 1, we will speak of interference channels. More
speci�cally, in this thesis, we will focus on the cases of n = 2,m = 1 and n = 1,m = 2,
which are at the core of the speci�city of network channels.

17



2. Background

2.2.4 Capacity Regions

De�nition 2.12 (Capacity Region C[S](W ) for a success probability S(W,k1, k2)). A rate
pair (R1, R2) is S-achievable (for the channel W ) if:

lim
n→+∞

S(W⊗n, d2R1ne, d2R2ne) = 1 .

We de�ne the S-capacity region C[S](W ) as the closure of the set of all achievable rate
pairs (for the channel W ).

De�nition 2.13 (Zero-error Capacity Region C0[S](W ) for S(W,k1, k2)). A rate pair
(R1, R2) is S-achievable with zero-error (for the channel W ) if:

∃n0 ∈ N∗,∀n ≥ n0, S(W⊗n, d2R1ne, d2R2ne) = 1 .

We de�ne the zero-error S-capacity region C[S](W ) as the closure of the set of all achievable
rate pairs with zero-error (for the channel W ).

Proposition 2.15 (Time-sharing). If the success probability S satis�es:

∀W,W ′,∀k1, k2, k
′
1, k
′
2, S(W ⊗W ′, k1k

′
1, k2k

′
2) ≥ S(W,k1, k2) · S(W ′, k′1, k′2) ,

then for all channelsW , C[S](W ) and C0[S](W ) are convex.

Proof. Let (R1, R2) and (R′1, R′2), two pairs of S-achievable rational rates for W , i.e.:

S(W⊗n, d2R1ne, d2R2ne) →
n→+∞

1 and S(W⊗n, d2R′1ne, d2R′2ne) →
n→+∞

1 .

Let λ ∈ (0, 1) rational and de�neRλ,i := λ ·Ri+ (1−λ) ·R′i, let us show that (Rλ,1, Rλ,2)
is achievable with non-signaling assistance. Let us call respectively ki := 2Ri , k′i :=
2R′i , kλ,i := 2Rλ,i = kλi · k

(1−λ)
i .

We have Rλ,in = λ ·Rin+ (1− λ) ·R′in = (λn) ·Ri + (1− λ)n ·R′i. This is the idea of
time-sharing: for λn copies of the channel, we use the strategy with rate (R1, R2) and for
the (1− λ)n other copies of the channel, we use the strategy with rate (R′1, R′2). There
exists some n such that λn, (1− λ)n, λnRi, (1− λ)nR′i are integers, since everything is
rational. This implies that kλni , k

′(1−λ)n
i , knλ,i are integers. Thus, by hypothesis, we have

that S(W⊗n, knλ,1, knλ,2) is larger than or equal to:

S(W⊗(λn), kλn1 , kλn2 ) · S(W⊗((1−λ)n), k
′(1−λ)n
1 , k

′(1−λ)n
2 ) →

n→+∞
1 · 1 = 1 .

Thus, since S(W⊗n, knλ,1, knλ,2) ≤ 1, we get the result S(W⊗n, knλ,1, knλ,2) →
n→+∞

1, so
(Rλ,1, Rλ,2) is S-achievable for the channel W . Finally, since C[S](W ) is de�ned as the
closure of S-achievable rates for the channel W , we get that C[S](W ) is convex.
For zero-error capacity regions, since by hypothesis there exists ranks n0, n

′
0 such that

S(W⊗n, d2R1ne, d2R2ne) = 1 for n ≥ n0 and S(W⊗n, d2R′1ne, d2R′2ne) = 1 for n ≥ n′0,
then in particular we get that for λn ≥ n0 and (1− λ)n ≥ n′0 that S(W⊗n, knλ,1, knλ,2) is
larger than or equal to:

S(W⊗(λn), kλn1 , kλn2 ) · S(W⊗((1−λ)n), k
′(1−λ)n
1 , k

′(1−λ)n
2 ) = 1 .
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It is in particular true for n ≥ n0 := max
(
d n
′
0

1−λe, d
n0
λ e
)

. As SNS(W⊗n, knλ,1, knλ,2) ≤ 1,
we have for all n ≥ n0 that SNS(W⊗n, knλ,1, knλ,2) = 1, i.e. (Rλ,1, Rλ,2) is S-achievable
with zero-error for the channel W . Finally, since C0[S](W ) is de�ned as the closure of
S-achievable rates with zero-error for the channel W , we get that C0[S](W ) is convex.

2.3 Channel Coding for Point-to-Point Channels

We recall here the main results from [BF18] on channel coding for point-to-point channels,
i.e. with one input and one output. Let us �rst recall the de�nition of the maximum success
probability S(W,k) of transmitting k messages using the channel W :

S(W,k) := maximize
e,d

1
k

∑
i,x,y

W (y|x)e(x|i)d(i|y)

subject to
∑
x∈X

e(x|i) = 1, ∀i ∈ [k]

∑
j∈[k]

d(j|y) = 1, ∀y ∈ Y

e(x|i), d(j|y) ≥ 0

(2.6)

Then, the following characterization of S(W,k) can be derived:

Proposition 2.16 (Proposition 2.1 of [BF18]). S(W,k) = 1
k max
S⊆X:|S|≤k

fW (S)with fW (S) :=∑
y∈Y maxx∈SW (y|x).

One can consider non-signaling assistance shared between the sender and the receiver,
which leads to the following maximum success probability:

SNS(W,k) := maximize
P

1
k

∑
i,x,y

W (y|x)P (xi|iy)

subject to
∑
x

P (xj|iy) =
∑
x

P (xj|i′y)∑
j

P (xj|iy) =
∑
j

P (xj|iy′)

∑
x,j

P (xj|iy) = 1

P (xj|iy) ≥ 0

(2.7)

A symmetrization can also be done to simplify the expression of the linear program de�ning
SNS(W,k):

19



2. Background

Proposition 2.17 (Appendix A of [BF18]).

SNS(W,k) = maximize
r,p

1
k

∑
x,y

W (y|x)rx,y

subject to

∑
x

rx,y = 1∑
x

px = k

0 ≤ rx,y ≤ px

(2.8)

Finally, the main tool we will use from [BF18] is the following random coding technique,
which describes how to �nd a classical code with a success probability close to the non-
signaling assisted one:

Theorem 2.18 (Theorem 3.1 of [BF18]). Given a solution r, p of the program computing

SNS(W,k), we have that:

ES
[
fW (S)
`

]
≥ k

`

(
1−

(
1− 1

k

)`)
· 1
k

∑
x,y

W (y|x)rx,y,

for the multiset S obtained by choosing ` elements of X independently according to the dis-

tribution

(px
k

)
x∈X .
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Chapter3

Tight Approximation Guarantees

for Concave Coverage Problems

Coverage functions are central objects of study in combinatorial optimization. Prob-
lems related to optimizing such functions arise in multiple �elds, such as operations
research [CFN77], machine learning [FK14], algorithmic game theory [DV15], and infor-
mation theory [BF18]. The most basic covering problem is the maximum coverage one.
In this problem, we are given subsets T1, . . . , Tm of a universe [n], along with a positive
integer k, and the objective is to �nd a size-k subset S ⊆ [m] that maximizes the coverage
function C(S) := |

⋃
i∈S Ti|. A fundamental result in the �eld of approximation algorithms

establishes that an approximation ratio of 1 − e−1 can be achieved for this problem in
polynomial time [Hoc97] and, in fact, this approximation guarantee is tight, under the
assumption that P 6= NP [Fei98].
Note that in the maximum coverage problem, an element a ∈ [n] is counted at most once
in the objective, even if a appears in several selected sets. However, if we think of elements
a ∈ [n] as goods or resources, there are many settings wherein the utility indeed increases
with the number of copies of a that get accumulated. Motivated, in part, by such settings,
we consider a generalization of the maximum coverage problem where an element a can
contribute by an amount that depends on the number of times it is covered.
Given a function ϕ : N → R+, an integer k ∈ N, a universe of elements [n], positive
weights wa for each a ∈ [n], and subsets T1, . . . , Tm ⊆ [n], the ϕ-MaxCoverage problem
entails maximizing Cϕ(S) :=

∑
a∈[n]waϕ(|S|a) over subsets S ⊆ [m] of cardinality k;

here |S|a = |{i ∈ S : a ∈ Ti}|.
This chapter focuses on functions ϕ that are nondecreasing and concave (i.e., ϕ(i+ 2)−
ϕ(i+1) ≤ ϕ(i+1)−ϕ(i) for i ∈ N). We will also assume that the function ϕ is normalized
in the sense that ϕ(0) = 0 and ϕ(1) = 1.1 Our approximation guarantees are in terms of
the Poisson concavity ratio of ϕ, which we de�ne as follows:

αϕ := inf
x∈N∗

E[ϕ(Poi(x))]
ϕ(E[Poi(x)]) = inf

x∈N∗
E[ϕ(Poi(x))]

ϕ(x) . (3.1)

1One can always replace a generic ϕ to a normalized one without changing the optimal solutions through
a simple a�ne transformation.

21



3. Tight Approximation Guarantees for Concave Coverage Problems

Here Poi(x) denotes a Poisson-distributed random variable with parameter x. We will
write αϕ(x) := E[ϕ(Poi(x))]

ϕ(x) , with αϕ(0) = 1, and hence (see Proposition 3.18), αϕ =
minx∈N∗ αϕ(x) = infx∈R+ αϕ(x).2

Our main result is that the ϕ-MaxCoverage problem admits an e�cient αϕ-approximation
algorithm, when ϕ is normalized nondecreasing concave, and this approximation guarantee
is tight when ϕ grows sublinearly. Formally,
Theorem 3.1. For any normalized nondecreasing concave function ϕ, there exists a αϕ-
approximation algorithm for the ϕ-MaxCoverage problem running in polynomial time.

Furthermore, for ϕ(n) = o(n), it is NP-hard to approximate the ϕ-MaxCoverage prob-

lem within a factor better than αϕ + ε, for any constant ε > 0, even restricted to instances

with unit weights and regular subsets.

Before detailing the proof of the theorem, we provide a few remarks and connections to
related work.

Applications and related work We can directly reduce the standard maximum cover-
age problem to ϕ-MaxCoverage by setting ϕ(j) = min(j, 1). In this case αϕ = 1− e−1.
One can also encapsulate, within our framework, the `-MultiCoverage problem studied
in [BFGG20] by instantiating ϕ(j) = min(j, `). In this setting, we recover the approx-
imation ratio αϕ = 1 − ``e−`

`! , which matches the approximation guarantee obtained
in [BFGG20] (see Proposition 3.31). Note that the hardness result in [BFGG20] was based
on the unique games conjecture, whereas here we prove that this guarantee is tight under
P 6= NP.
The initial motivation for studyingϕ-MaxCoverage was to generalize the `-MultiCoverage
problem studied in [BFGG20] as well as its `-list-decoding interpretation. In the channel
coding problem [BF18], we are given a noisy channel W (y|x), de�ned as a conditional
probability distribution, and the goal is to send a message chosen uniformly in [k] through
this channel. In order to do so, the sender encodes the input message in X , and the receiver
decodes back the output of the channel from Y to [k]. The objective is to �nd a code
that maximize the probability of successfully decoding the message. In the `-list-decoding
problem [Eli57, Woz58], instead of decoding the output into a single message, the decoder
outputs a list of size ` of possible messages, where ` is some �xed parameter common to
all lists. We consider that the decoding is successful if the initial message belongs to that
list. The generalization of that problem, which we call the ϕ-list-decoding problem, allows
decoding lists of any size. However, the decoding will be successful only with probability
ϕ(`)
` when the initial message belongs to that list, where ` is the size of that list. One can

see that with a coverage function ϕ(j) = min(j, `), we recover the `-list-decoding problem.
When the channel is of the form W (y|x) = 1

t for y ∈ Tx with |Tx| = t and W (y|x) = 0
elsewhere, the success probability of the ϕ-list-decoding problem for a code S ⊆ X can be
written as 1

kt

∑
y∈Y ϕ(|S|y), with |S|y = |{x ∈ S : y ∈ Tx}|, which is a particular instance

of the ϕ-MaxCoverage problem; see Section 3.3.1 for further details. Therefore, for that
class of channels, a tight approximation ratio αϕ follows from Theorem 3.1.

2We require ϕ to be de�ned for nonnegative integers and will extend it over R+ by considering its
piecewise linear extension.
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Another application of ϕ-MaxCoverage is in the context of multiwinner elections that en-
tail selecting k (out ofm) candidates with the objective of maximizing the cumulative utility
of n voters; here, the utility of each voter a ∈ [n] increases as more and more approved (by
a) candidates get selected. One can reduce multiwinner elections to a coverage problem
by considering subset Ti ⊆ [n] as the set of voters that approve of candidate i ∈ [m]
and ϕ(j) as the utility that an agent achieves from j approved selections.3 Addressing
multiwinner elections in this standard utilitarian model, Dudycz et al. [DMMS20] obtain
tight approximation guarantees for some well-studied classes of utilities. Speci�cally, the
result in [DMMS20] applies to the classic proportional approval voting rule, which assigns
a utility of

∑j
i=1

1
i for j approved selections. This voting rule corresponds to the coverage

problem with ϕ(j) =
∑j
i=1

1
i , which we denote as the Proportional Approval Voting

problem (PAV for short). Section 3.3.2 shows that Theorem 3.1 holds for all the settings
considered in [DMMS20] and, in fact, applies more generally. In particular, the voting
version of `-MultiCoverage (studied in [SFL16]) can be addressed by Theorem 3.1, but
not by the result in [DMMS20]. Such a separation also arises when one truncates the
proportional approval voting rule to, say, ` candidates, i.e., upon setting ϕ(j) =

∑min(j,`)
i=1

1
i .

Given that multiwinner elections model multiple real-world settings (e.g., committee selec-
tion [SFL16] and parliamentary proceedings [BLS17]), instantiations of ϕ-MaxCoverage
in such social-choice contexts substantiate the applicability of our algorithmic result.
Coverage functions arise in numerous resource-allocation settings, such as sensor allo-
cation [MW08], job scheduling, and plant location [CFN77]. The goal, broadly, in such
setups is to select k subsets of resources (out of m pre-speci�ed ones) such that the wel-

fare generated by the selected resources is maximized–each resource’s contribution to
the welfare increases with the number of times it is selected. This problem can be cast
as ϕ-MaxCoverage by setting n to be the number of resources, {Ti}i∈[m] as the given
collection of subsets, and ϕ(j) to be the welfare contribution of a resource when it is
covered j times.4 Here, we mention a speci�c allocation problem to highlight the relevance
of studying ϕ beyond the standard coverage and `-coverage formulations (see Section 3.3.4
for details): in the Vehicle-Target Assignment problem [Mur00, PM18] (VTA for short)
the resources are n targets and covering a target j times contributes ϕp(j) = 1−(1−p)j

p
to the welfare; here, p ∈ (0, 1) is a given parameter. Interestingly, we �nd that for this
problem, the approximation ratio αϕ we obtain can outperform the Price of Anarchy (PoA),
which corresponds to the approximation ratio of any method wherein the agents sel�shly
maximize their utilities (see Section 3.3.4 for further discussion of this point). By contrast,
in the resource allocation problem with ϕ(j) = min(j, `), the price of anarchy is equal to
αϕ; see [CPM19] for details. Another allocation problem studied in [PM18] corresponds
to ϕ-MaxCoverage with ϕ(j) = jd, for a given parameter d ∈ (0, 1). We refer to this
instantiation as the d-Power function.
Theorem 3.1 gives us a tight approximation bound of αϕ for all the above-mentioned
applications of ϕ-MaxCoverage. The values of αϕ for these instantiations are listed in
Table 3.1.

3Indeed, for a subset of candidates S ⊆ [m], the utility of a voter a ∈ [n] is equal to ϕ(|S|a), with
|S|a = |{i ∈ S : a ∈ Ti}|.

4Formally, to capture speci�c welfare-maximization problems in their entirety we have to a consider
ϕ-MaxCoverage with a matroid constraint, and not just bound the number of selected subsets by k. Details
pertaining to matroid constraints and the reduction appear in Section 3.1.1 and 3.3.3, respectively.
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ϕ-MaxCoverage ϕ(j) αϕ Derivation
MaxCoverage min(j, 1) 1− e−1 Prop. 3.31
`-MultiCoverage min(j, `) 1− ``e−`

`! Prop. 3.31
PAV

∑j
i=1

1
i αϕ(1) ' 0.7965 . . . Prop. 3.28

PAV capped at 3
∑min(j,3)
i=1

1
i αϕ(1) ' 0.7910 . . . Prop. 3.21

p-VTA 1−(1−p)j
p

1−e−p
p Prop. 3.32

0.1-VTA 1−(1−0.1)j
0.1

1−e−0.1

0.1 ' 0.9516 . . . Prop. 3.32
0.1-VTA capped at 5 1−(1−0.1)min(j,5)

0.1 αϕ(5) ' 0.8470 . . . Prop. 3.21
d-Power jd e−1∑+∞

k=1
kd

k! Prop. 3.33

Table 3.1 – Tight approximation ratios for particular choices of ϕ in the ϕ-MaxCoverage
problem.

It is relevant to compare the approximation guarantee, αϕ, obtained here with the ap-
proximation ratio based on the notion of curvature of submodular functions. Note that
if ϕ is nondecreasing and concave, then Cϕ is submodular. One can show, via a direct
calculation, that for such a submodular Cϕ the curvature (as de�ned in [CC84]) is given by
c = 1− (ϕ(m)− ϕ(m− 1)) for instances with at most m cover sets; see Proposition 3.19.
Therefore, the algorithm of Sviridenko et al. [SVW17] provides an approximation ratio
of 1− ce−1 for the ϕ-MaxCoverage problem. We note that the Poisson concavity ratio
αϕ is always greater than or equal to this curvature-dependent ratio (Proposition 3.22).
Speci�cally, for p-Vehicle-Target Assignment, it is strictly better for all p /∈ {0, 1} and
for `-MultiCoverage, it is strictly better for all ` ≥ 2 as remarked in [BFGG20]. Therefore,
for the setting at hand, we improve the approximation guarantee obtained in [SVW17].

Remarks on the Poisson concavity ratio αϕ. By Jensen’s inequality along with the
nonnegativity and concavity of ϕ, we have that αϕ ∈ [0, 1]. We show that αϕ can be
computed numerically up to any precision ε > 0, in time that is polynomial in 1

ε . In fact,
Proposition 3.17 shows that αϕ(x) ≥ 1− ε for all x ≥ Nε := d

(
6
ε

)4
e. Thus, we can iterate

over all x ∈ {1, 2, . . . , Nε} and �nd minx∈[Nε] αϕ(x) up to ε precision (under reasonable
assumptions on ϕ). This gives us a method to overall compute αϕ, up to an absolute error of
2ε: if αϕ ≤ 1− ε, then computing minx∈[Nε] αϕ(x) (up to ε precision) su�ces. Otherwise,
if αϕ ≥ 1 − ε, then αϕ(1) ≤ 1 provides the desired bound. Furthermore, we note that
Proposition 3.16 shows that even if we consider αϕ(x) over all x ∈ R+, an in�mum (i.e.,
the value of αϕ) is achieved at an integer.

Further hardness under Gap-ETH Theorem 3.1 shows that, under the assumption
P 6= NP, no polynomial-time algorithm can approximate ϕ-MaxCoverage within a better
ratio than αϕ for sublinear ϕ. One natural question that arises is whether relaxing the
running time constraint helps. More precisely, since there are

(m
k

)
= O(mk) choices of

k cover sets among the m available, a simple exhaustive search algorithm works in time
O(mk). We can ask if FPT algorithms with respect to k, running in time f(k) ·mo(k) with f
an arbitrary function, can do better. As in [DMMS20], we use the result of [Man20] to show
in Theorem 3.14 that such algorithms cannot approximate ϕ-MaxCoverage within a better
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ratio than αϕ for sublinear ϕ, under the Gap-ETH hypothesis [CCK+17]; see Section 3.2.3
for more details. This means that the brute-force strategy is essentially the best, if one
wants to get a better approximation ratio than αϕ.

Proof techniques and organization In Section 3.1, we present our approximation
algorithm for the ϕ-MaxCoverage. The algorithm is an application of pipage rounding, a
technique introduced in [AS04], on a linear programming relaxation of ϕ-MaxCoverage.
We show that the multilinear extension Fϕ of Cϕ is e�ciently computable and thus, we
can compute an integer solution xint from the optimal fractional solution x∗ satisfying
Cϕ(xint) ≥ Fϕ(x∗). Using the notion of convex order between distributions, we show
that Fϕ(x∗) ≥

∑
a∈[n]waE[ϕ(Poi(|x∗|a))], where |x|a =

∑
i∈[m]:a∈Ti xi. Comparing this

to the value
∑
a∈[n]waϕ(|x∗|a) taken by the linear program, we get a ratio given by the

Poisson concavity ratio αϕ. The concavity of ϕ is crucial at several steps of the proof: it
guarantees that the natural relaxation can be written as a linear program, it is used to relate
between sums of Bernouilli random variables and a Poisson random variable via the convex
order, as well as for the fact that we can restrict the in�mum in the de�nition of αϕ to
integer values of x. The generalization to matroid constraints follows in a standard way
and is presented in Section 3.1.1.
In Section 3.2, we present the hardness result for ϕ-MaxCoverage. For this, we de�ne a
generalization of the partitioning gadget of Feige [Fei98], extending also [BFGG20]. Roughly
speaking, for an integer xϕ ∈ N, it is a collection of xϕ-covers of the set [n] (an x-cover is a
collection of subsets such that each element a ∈ [n] is covered x times, or in other words, its
ϕ-coverage isϕ(x)n) that are incompatible in the sense that if we take an element from each
one of these xϕ-covers, then the ϕ-coverage is bounded approximately by E[ϕ(Poi(xϕ))]n.
Then, we construct an instance of ϕ-MaxCoverage from an instance of the NP-hard
problem Label Cover (as in [DMMS20]) using such a gadget with xϕ ∈ argminx∈Nαϕ(x).
Having set up the partitioning gadget, the analysis of the reduction can be obtained by
carefully generalizing the reductions of [BFGG20] and [DMMS20].
In Section 3.3, we present di�erent domains of application of our result.

3.1 Approximation Algorithm for ϕ-MaxCoverage

Fix a function ϕ : N → R+ that is normalized, nondecreasing and concave. The ϕ-
MaxCoverage problem is de�ned as follows. The input to the problem is given by positive
integers n,m, t andm subsets T1, . . . , Tm of the set [n] (described as characteristic vectors),
the weights wa ∈ Q∗+ for a ∈ [n] (described as a pair of bitstring of length t), as well
as an integer k ∈ {1, . . . ,m}. The output is a subset S ⊆ [m] of size k that maximizes
Cϕ(S) =

∑
a∈[n]waϕ(|S|a), where |S|a = |{i ∈ S : a ∈ Ti}|.

Note that the input to this problem can be speci�ed using n(m+ 2t) +O(lognmt) bits.
To reduce the number of parameters, we will assume that t is polynomial in n and m, so
that a polynomial-time algorithm for this problem means an algorithm that runs in time
polynomial in n and m. The counting function ϕ is �xed and does not depend on the
instance of the problem, but for a given instance the problem only depends on the values
ϕ(0), ϕ(1), . . . , ϕ(m). We assume that we have black box access to ϕ and to ensure that
all the algorithms run in polynomial time, we assume that ϕ(j) can be described with
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3. Tight Approximation Guarantees for Concave Coverage Problems

a number of bits that is polynomial in j and that this description can be computed in
polynomial time.
We now describe the approximation algorithm for ϕ-MaxCoverage that we analyze. As
described above, we follow the standard relax and round strategy, as in [BFGG20]. First,
we de�ne a natural convex relaxation.

De�nition 3.1 (Relaxed program).

maximize
∑
a∈[n]

waca

subject to ca ≤ ϕ(|x|a),∀a ∈ [n], with |x|a :=
∑

i∈[m]:a∈Ti

xi

0 ≤ xi ≤ 1, ∀i ∈ [m]
m∑
i=1

xi = k .

(3.2)

As previously mentioned, ϕ is de�ned on R+ by extending it in a piecewise linear fashion
on non-integral points. As such, the constraint ca ≤ ϕ(|x|a) is equivalent to m linear
constraints. In fact, we can de�ne ϕj to be the linear function ϕj(t) = (ϕ(j)−ϕ(j−1))t−
(j − 1)ϕ(j) + jϕ(j − 1) for j ∈ [m]. Since ϕ is concave, we have that for all t ∈ [0,m],
ϕ(t) = minj∈[m] ϕj(t). Thus, the constraint ca ≤ ϕ(|x|a) is equivalent to ca ≤ ϕj(|x|a)
for all j ∈ [m] and so the program from De�nition 3.1 can be stated as a linear program.
Overall there are n+m variables and (n+ 1)m+ 1 linear constraints, and by assumption
all the coe�cients can be described using a number of bits that is polynomial in n and m.
Hence, an optimal solution of this linear program can be found in polynomial time.
Observe that the program from De�nition 3.1 is indeed a relaxation of the ϕ-MaxCoverage
problem. To see this, given a set S of size k, consider the characteristic vector x ∈ {0, 1}m
de�ned by xi = 1 if and only if i ∈ S. Then for all a ∈ [n], we can set ca = ϕ(|x|a) =
ϕ(|S|a), and we get an objective value of

∑
a∈[n]waϕ(|S|a) which is exactly Cϕ(S). When

solving the program from De�nition 3.1, we get an optimal x∗ ∈ [0, 1]m which is in general
not integral. Next, we describe a method to round it to an integral vector xint ∈ {0, 1}m.

Rounding For a submodular function f : {0, 1}m → R , one can use pipage round-
ing [AS04, Von07, CCPV11] to transform, in polynomial time, any fractional solution
x ∈ [0, 1]m satisfying

∑m
i=1 xi = k into an integral vector xint ∈ {0, 1}m such that∑m

i=1 x
int
i = k and F (xint) ≥ F (x), where F corresponds to the multilinear extension of f ,

provided that F (x) is computable in polynomial time for a given x; see e.g., [Von07, Lemma
3.4]. The multilinear extension F : [0, 1]m → R of f is de�ned by F (x1, . . . , xm) :=
E[f(X1, . . . , Xm)], where Xi are independent random variables with Xi ∼ Ber(xi), i.e.,
Xi ∈ {0, 1} with P(Xi = 1) = xi. Note that F (x) = f(x) for an integral vector
x ∈ {0, 1}m.
We apply this strategy to Cϕ, which is shown to be submodular in Proposition 3.19, and
the solution x∗ of the linear programming relaxation from De�nition 3.1. Note that overall
the algorithm runs in polynomial time, since here F (x) is computable in polynomial
time for a given x (see Proposition 3.23). We now analyze the value returned by the
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algorithm. Using the property of pipage rounding, with the notation X = (X1, . . . , Xm)
and Ber(x) = (Ber(x1), . . . ,Ber(xm)), we get:

Cϕ(xint) = EX∼Ber(xint)[Cϕ(X)] ≥ EX∼Ber(x∗)[Cϕ(X)] .

Then, we only need to relate EX∼Ber(x∗)[Cϕ(X)] to the optimal value of the linear program-
ming relaxation 3.1, which can only be larger than the optimal value of theϕ-MaxCoverage
problem.

Theorem 3.2. Let x, c be a feasible solution of the program from De�nition 3.1 and let

X ∼ Ber(x). Recalling the de�nition of αϕ and αϕ(j) from (3.1), we have

EX∼Ber(x)[Cϕ(X)] ≥
(

min
j∈[m]

αϕ(j)
) ∑
a∈[n]

waca .

In particular, this implies that the described polynomial-time algorithm achieves an approx-

imation ratio of αϕ:

Cϕ(xint) ≥ αϕ
∑
a∈[n]

wac
∗
a ≥ αϕ max

S⊆[m]:|S|=k
Cϕ(S) .

Proof. By linearity of expectation and the fact that the weightswa are positive, it is su�cient
to show that for all a ∈ [n]:

E[Cϕa (X)] ≥
(

min
j∈[m]

αϕ(j)
)
ca ,

where Cϕa (S) := ϕ(|S|a). Note that |X|a =
∑
i∈[m]:a∈Ti Xi, and thus:

E[Cϕa (X)] = E

ϕ
 ∑
i∈[m]:a∈Ti

Xi

 = E

ϕ
 ∑
i∈[m]:a∈Ti

Ber(xi)


≥ E

ϕ
Poi

 ∑
i∈[m]:a∈Ti

xi

 thanks to Proposition 2.2

= E[ϕ(Poi(|x|a))] ≥ min(αϕ(b|x|ac), αϕ(d|x|ae))ϕ(|x|a)
thanks to Proposition 3.16

≥
(

min
j∈[m]

αϕ(j)
)
ϕ(|x|a) ≥

(
min
j∈[m]

αϕ(j)
)
ca .

(3.3)

3.1.1 Generalization to Matroid Constraints

Instead of taking a cardinality constraint k on the size of the subset S, we look now at
general matroid constraints on S. Speci�cally, as input, instead of k, we take a matroidM
de�ned on [m] and given by a set of linear constraints describing its base polytope B(M).
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The output is a set S ∈ M that maximizes Cϕ(S). Note that the cardinality constraint
considered above is the special case whereM is the uniform matroid (composed of all
subsets of size at most k) with its base polytope B(M) = {x ∈ [0, 1]m :

∑m
i=1 xi = k}.

We note that in order to establish Theorem 3.2, the cardinality constraint
∑m
i=1 xi = k

is not used. Thus, since the pipage rounding strategy applies to matroid constraints
M (see [Von07, Lemma 3.4]), the strategy and the analysis of its e�ciency generalize
immediately when applied to the following linear program:

De�nition 3.2 (Relaxed program for matroid constraints).

maximize
∑
a∈[n]

waca

subject to ca ≤ ϕ(|x|a),∀a ∈ [n]
0 ≤ xi ≤ 1, ∀i ∈ [m]
x ∈ B(M) the base polytope ofM .

(3.4)

Theorem 3.3. Let x, c a feasible solution of the program from De�nition 3.2 and X ∼
Ber(x). Then:

EX∼Ber(x)[Cϕ(X)] ≥
(

min
j∈[m]

αϕ(j)
) ∑
a∈[n]

waca .

In particular, this implies that the described polynomial-time algorithm achieves an approx-

imation ratio of αϕ:

Cϕ(xint) ≥ αϕ
∑
a∈[n]

wac
∗
a ≥ αϕ max

S∈M
Cϕ(S) .

3.2 Hardness of Approximation for ϕ-MaxCoverage

In this section, we establish an inapproximability result for the ϕ-MaxCoverage problem
with unit weights and regular subsets under cardinality constraints. Throughout this section,
we use Γ to denote the universe of elements and, hence, an instance of the ϕ-MaxCoverage
problem consists of Γ, along with a collection of regular subsets F = {Fi ⊆ Γ}mi=1 (i.e.
∀i ∈ [m], |Fi| = t for some t) and an integer k. Recall that the objective of this problem is
to �nd a size-k subset S ⊆ [m] that maximizes Cϕ(S) =

∑
a∈Γ ϕ(|S|a).

We establish the following theorem in this section:

Theorem 3.4. It is NP-hard to approximate the ϕ-MaxCoverage problem for ϕ(n) = o(n)
within a factor greater that αϕ + ε for any ε > 0, even restricted to instances with unit

weights and regular subsets.

Our reduction is based on a problem called h-AryLabelCover, which is equivalent to the
more standard GapLabelCover problem as will be shown in Appendix 3.5.3.
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De�nition 3.3 (h-AryLabelCover). An instance G = (V,E, [L], [R], {πe,v}e∈E,v∈e) of
h-AryLabelCover is characterized by an h-uniform regular hypergraph (V,E) and con-
straints πe,v : [L]→ [R]. Here, each h-uniform hyperedge represents a h-ary constraint.
Additionally, for any labeling σ : V → [L], we have the following notions of strongly and
weakly satis�ed constraints:

• An edge e = (v1, . . . , vh) ∈ E is strongly satis�ed by σ if:

∀x, y ∈ [h], πe,vx(σ(vx)) = πe,vy(σ(vy)) .

• An edge e = (v1, . . . , vh) ∈ E is weakly satis�ed by σ if:

∃x 6= y ∈ [h], πe,vx(σ(vx)) = πe,vy(σ(vy)) .

Proposition 3.5 (δ, h-AryGapLabelCover). For any �xed integer h ≥ 2 and �xed δ >
0, there exists an R0 such that for any integer R ≥ R0, it is NP-hard for all instances

G = (V,E, [L], [R], {πe,v}e∈E,v∈e) of h-AryLabelCover with right alphabet [R] to distin-
guish between:

YES: There exists a labeling σ that strongly satis�es all the edges.

NO: No labeling weakly satis�es more than δ fraction of the edges.

3.2.1 Partitioning System

In order to prove Theorem 3.4, we will need to generalize the partitioning system of
Feige [Fei98], a constant-size combinatorial object used to prove complexity hardness
results. Note that it was already generalized in [BFGG20], over which we base our version.
For any set [n] and Q ⊆ 2[n], we overload the de�nition Cϕ(Q) :=

∑
a∈[n] ϕ(|Q|a) with

the notations |Q|a := |{P ∈ Q : a ∈ P}| and Cϕa (Q) := ϕ(|Q|a). Let us take xϕ ∈
argminx∈N∗αϕ(x), thus αϕ = αϕ(xϕ).
We say that Q is an x-cover of x ∈ N if every element of [n] is covered x times, so
Cϕ(Q) = nϕ(x).

De�nition 3.4. An ([n], h,R, ϕ, η)-partitioning system consists ofR collections of subsets
of [n], P1, . . . ,PR ⊆ 2[n], that satisfy xϕn

h ∈ N, xϕ ≥ h and:

1. For every i ∈ [R],Pi is a collection of h subsets Pi,1, . . . , Pi,h ⊆ [n] each of size xϕn
h

which is an xϕ-cover.

2. For any T ⊆ [R] and Q = {Pi,j(i) : i ∈ T} for some function j : T → [h], we have∣∣∣Cϕ(Q)− ψϕ|T |,hn
∣∣∣ ≤ ηn where:

ψϕk,h := E
[
ϕ

(
Bin

(
k,
xϕ
h

))]
. (3.5)
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Remark. In particular, for any Q = {Q1, . . . , Qk} with Qi of size xϕn
h , we have that

Cϕ(Q) ≤ nϕ(k xϕh ). Indeed Cϕ(Q) =
∑
a∈[n] ϕ(|Q|a) with

∑
a∈[n] |Q|a =

∑
i∈[k] |Qi| =

k · xϕnh . By concavity of ϕ and Jensen’s inequality, this function is maximized when all
|Q|a are equals, where we get nϕ(k xϕh ).

Proposition 3.6. For every choice of R, h ∈ N with

h ≥ xϕ, η ∈ (0, 1), n ≥ η−2Rϕ(R)2 log(20(h+ 1))

such that
xϕn
h ∈ N, there exists a ([n], h,R, ϕ, η)-partitioning system, which can be found

in time exp(Rn log(n)) · poly(h).

The proof can be found in Appendix 3.5.4.

3.2.2 The Reduction

Proof of Theorem 3.4. Let ε > 0. Without loss of generality, we can assume that ε < 1.
We show that it is NP-hard to reach an approximation ratio greater than αϕ + ε for the
ϕ-MaxCoverage problem, via a reduction from δ, h-AryGapLabelCover.

• η = ϕ(xϕ)
4xϕ ε, so 0 < η ≤ ε < 1,

• h ≥ xϕ such that
∣∣∣ψϕh,h − αϕϕ(xϕ)

∣∣∣ ≤ η (see (3.5) for the de�nition of ψϕ); such a
choice exists thanks to Proposition 3.24,

• θ such that for all x ≥ θ, ϕ(x)
x ≤ η, which exists since ϕ(x) = o(x),

• ξ = xϕ
θ ,

• δ = η
2
ξ3

h2 ,

• R ≥ h large enough for Proposition 3.5 to hold.

Then, given an instance G = (V,E, [L], [R],Σ, {πe,v}e∈E,v∈e) of δ, h-AryGapLabelCover,
we construct an instance (Γ,F , k) of the ϕ-MaxCoverage problem with:

• n a large enough integer to have the existence of ([n], h,R, ϕ, η)-partitioning systems
using Proposition 3.6. Note that the size of these partitioning systems is independent
of the size of the instance G and that we can construct such a partitioning system in
constant time (with relation to the size of the instance G) thanks to Proposition 3.6.

• Γ = [n]× E,

• k = |V |,

• Consider a ([n], h,R, ϕ, η)-partitioning system, and call P = {P1, . . . ,PR} the
corresponding set of collections. De�ne sets T e,vjβ := Pπe,vj (β),j × {e} where
e = (v1, . . . , vh) ∈ E, j ∈ [h], β ∈ [L]. Then, take F vβ :=

⊔
e∈E:v∈e T

e,v
β as

cover sets and F := {F vβ , v ∈ V, β ∈ [L]}. Note that
∣∣∣F vβ ∣∣∣ =

∑
e∈E:v∈e

∣∣∣T e,vβ ∣∣∣ =∑
e∈E:v∈e

∣∣∣Pπe,vj (β),j

∣∣∣ = |{e ∈ E : v ∈ e}| · xϕnh which does not depend on v as the
hypergraph (V,E) is regular. Therefore, those subsets are indeed regular.
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3.2. Hardness of Approximation for ϕ-MaxCoverage

We will now prove that if we are in a YES instance, we have that there exists T of size k such
that Cϕ(T ) ≥ ϕ(xϕ)|Γ| (completeness). Moreover, if we are in a NO instance, then we
have that for all T of size k = |V |, Cϕ(T ) ≤ (αϕ + ε)ϕ(xϕ)|Γ| (soundness). Establishing
these two properties would conclude the proof. In fact, an algorithm for ϕ-MaxCoverage
achieving a factor strictly greater than αϕ + ε would allow us to decide whether we have
YES or a NO instance of the NP-hard problem δ, h-AryGapLabelCover.
In order to achieve this, let us de�ne Cϕ,e :=

∑
a∈[n]×{e}C

ϕ
a . In particular, we have

Cϕ =
∑
a∈ΓC

ϕ
a =

∑
e∈E C

ϕ,e. For T ⊆ F , we de�ne the relevant part of T on e by:

Te := {T e,vβ : v ∈ e, β ∈ [L], F vβ ∈ T } = {F vβ ∩ ([n]× {e}), F vβ ∈ T } .

Note that Cϕ,e(T ) = Cϕ,e(Te), and in particular Cϕ(T ) =
∑
e∈E C

ϕ,e(Te).

3.2.2.1 Completeness

Suppose the given h-AryLabelCover instance G is a YES instance. Then, there exists
a labeling σ : V 7→ [L] which strongly satis�es all edges. Consider the collection of
|V | subsets T := {F vσ(v) : v ∈ V }. Fix e = (v1, . . . , vh) ∈ E. Since e is strongly
satis�ed by σ, there exists r ∈ [R] such that πe,vi(σ(vi)) = r for all i ∈ [h]. Therefore,
we get that Te = {T e,viσ(vi)}i∈[h] = {Pr,i × {e}}i∈[h] is an xϕ-cover of [n] × {e}, and so
Cϕ,e(Te) = nϕ(xϕ). Thus Cϕ(T ) =

∑
e∈E C

ϕ,e(Te) = |E|ϕ(xϕ)n = ϕ(xϕ)|Γ|.

3.2.2.2 Soundness

Suppose the given h-AryLabelCover instance G is a NO instance. Let us prove the
contrapositive of the soundness: we suppose that there exists T of size k = |V | such that
Cϕ(T ) > (αϕ+ε)ϕ(xϕ)|Γ|. Let us show that there exists a labeling σ that weakly satis�es
a strictly larger fraction of the edges than δ.
For every vertex v ∈ V , we de�ne L(v) := {β ∈ [L] : F vβ ∈ T } to be the candidate set of
labels that can be associated with the vertex v. We extend this de�nition to hyperedges
e = (v1, . . . , vh) where we de�ne L(e) :=

⋃
i∈[h] L(vi) to be the multiset of all labels

associated with the edge. Note that |Te| = |L(e)|.
We say that e = (v1, . . . , vh) ∈ E is consistent if and only if there exists x 6= y ∈ [h] such
that πe,vx(L(vx)) ∩ πe,vy(L(vy)) 6= ∅. We then decompose E in three parts:

• B is the set of edges e ∈ E with |L(e)| ≥ h
ξ .

• N is the set of consistent edges e ∈ E with |L(e)| < h
ξ .

• I = E − (B ∪N) is the set of inconsistent edges e ∈ E with |L(e)| < h
ξ .

We want to show that the contribution ofN is not too small, which we will use to construct
a labeling weakly satisfying enough edges. This comes from the following lemmas:

Lemma 3.7.

∑
e∈E |L(e)| = |E|h
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3. Tight Approximation Guarantees for Concave Coverage Problems

Proof. Recall that our h-uniform hypergraph is regular; call d its regular degree. In particu-
lar, we have that d|V | = |E|h. Note also that

∑
v∈V |L(v)| = |T | = |V |. Thus:∑

e∈E
|L(e)| =

∑
e∈E

∑
v∈V :v∈e

|L(v)| =
∑
v∈V

∑
e∈E:v∈e

|L(v)| = d
∑
v∈V
|L(v)| = d|V | = |E|h .

Next, we bound the contribution of B:

Lemma 3.8.

∑
e∈B C

ϕ,e(Te) ≤ ε
4ϕ(xϕ)|Γ|.

Proof. We have:

∑
e∈B

Cϕ,e(Te) ≤
∑
e∈B

nϕ

(
|L(e)|xϕ

h

)
by remark on De�nition 3.4 and |Te| = |L(e)|

≤ |B| · nϕ
(∑

e∈B |L(e)|
|B|

xϕ
h

)
by Jensen’s inequality on concave ϕ

≤ |B| · nϕ
( |E|h
|B|

xϕ
h

)
since ϕ nondecreasing and

∑
e∈B
|L(e)| ≤ |E|h by Lemma 3.7

=
ϕ
(
|E|xϕ
|B|

)
|E|xϕ
|B|

xϕ|Γ| .

(3.6)
We have seen that

∑
e∈B |L(e)| ≤ |E|h, but

∑
e∈B |L(e)| ≥ |B|hξ by de�nition of B, so

we have that |B||E| ≤ ξ. Thus |E|xϕ|B| ≥
xϕ
ξ = θ. By de�nition of θ, we get that:

∑
e∈B

Cϕ,e(Te) ≤ ηxϕ|Γ| =
ε

4ϕ(xϕ)|Γ| .

In order to bound the contribution of I , we will prove a property on inconsistent edges:

Proposition 3.9. Let e = (v1, . . . , vh) ∈ E be an inconsistent hyperedge with respect to T .
Then we have that

∣∣∣Cϕ,e(Te)− ψϕ|L(e)|,hn
∣∣∣ ≤ ηn.

Proof. Since e is inconsistent, ∀x 6= y ∈ [h], πe,vx(L(vx)) ∩ πe,vy(L(vy)) = ∅. Therefore,
for every i ∈ [R], there is at most one v ∈ e such that i ∈ πe,v(L(v)), i.e., Te intersects with
Pi × {e} in at most one subset. This gives us a subset T ⊆ [R] and a function j : T → [h]
such that Te = {Pi,j(i) × {e} : i ∈ T}. As a consequence, |T | = |Te| = |L(e)| and by the
second condition of the partitioning system, we get the expected result.

Now, we can bound the contribution of I :

Lemma 3.10.

∑
e∈I C

ϕ,e(Te) ≤ (αϕ + ε
2)ϕ(xϕ)|Γ|.
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3.2. Hardness of Approximation for ϕ-MaxCoverage

Proof. Thanks to Proposition 3.9, we have:∑
e∈I

Cϕ,e(Te) ≤
∑
e∈I

(ψϕ|L(e)|,h + η)n ≤
∑
e∈E

(ψϕ|L(e)|,h + η)n ,

since I ⊆ E and ψϕ|L(e)|,h ≥ 0. But
∑
e∈E |L(e)| = |E|h by Lemma 3.7 and x 7→ ψϕx,h is

concave thanks to Proposition 3.26, so we can use Jensen’s inequality to get:∑
e∈E

ψϕ|L(e)|,h ≤ |E|ψ
ϕ∑

e∈E |L(e)|
|E| ,h

= |E|ψϕh,h ,

and thus: ∑
e∈I

Cϕ,e(Te) ≤ (ψϕh,h + η)n|E| ≤ (αϕϕ(xϕ) + 2η)|Γ| ,

by de�nition of h. This implies that the total contribution of inconsistent edges I is at most:∑
e∈I

Cϕ,e(Te) ≤ (αϕϕ(xϕ) + 2η)|Γ| ≤ (αϕ + ε

2)ϕ(xϕ)|Γ| ,

by de�nition of η.

Lemma 3.11.
|N |
|E| ≥ ξη.

Proof. Since we have supposed that
∑
e∈E C

ϕ,e(Te) = Cϕ(T ) > (αϕ + ε)ϕ(xϕ)|Γ|, and
with the help of Lemmas 3.8 and 3.10, we have that the contribution of N is:∑

e∈N
Cϕ,e(Te) >

ε

4ϕ(xϕ)|Γ| .

However, we have that for e ∈ N that:

Cϕ,e(Te) ≤ nϕ
(
|Te|

xϕ
h

)
= nϕ

(
|L(e)|xϕ

h

)
≤ nϕ

(
xϕ
ξ

)
≤ nxϕ

ξ
,

thanks to the remark on De�nition 3.4 and the bound |L(e)| < h
ξ . This implies that:

|N |
|E|
≥ ξ

xϕ

εϕ(xϕ)
4 = ξη .

Finally, we construct a randomized labeling σ : V 7→ [L] as follows: for v ∈ V , if L(v) 6= ∅,
set σ(v) uniformly from L(v), otherwise set it arbitrarily. We claim that in expectation,
this labeling must weakly satisfy δ fraction of the hyperedges.
To see this, �x any e = (v1, . . . , vh) ∈ N . Thus, there exists ∃x 6= y ∈ [h] such that
πe,vx(L(vx)) ∩ πe,vy(L(vy)) 6= ∅. Furthermore |L(vx)|, |L(vy)| ≤ h

ξ . Thus, we have that

πe,vx(L(vx)) = πe,vy(L(vy)) with probability at least 1
|L(vx)||L(vy)| ≥

(
ξ
h

)2
. Therefore:

EσEe∼E [σ weakly satis�es e] ≥ ξηEσEe∼E [σ weakly satis�es e|e ∈ N ] by Lemma 3.11

>
η

2
ξ3

h2 = δ .

(3.7)
In particular, there exists some labeling σ such that Ee∼E [σ weakly satis�es e] > δ, thus
the soundness is proved.
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3. Tight Approximation Guarantees for Concave Coverage Problems

Furthermore, the previous proof implies an additive inapproximability result:

Corollary 3.12. There is no additive polynomial-time approximation scheme (PTAS) for the

ϕ-MaxCoverage problem forϕ(n) = o(n) andαϕ < 1 if P 6=NP; that is to say, a polynomial-

time approximation that achieves an additive approximation error of ε · n, with n the size of

the universe, for all ε > 0.

Remark. Contrary to fully polynomial-time approximation schemes (FPTAS), a PTAS does
not necessarily run in polynomial time in 1

ε .

Proof. Let us �x ε := 1−αϕ
3 ϕ(xϕ) > 0, which does not depend on the instance of the

ϕ-MaxCoverage problem. Assume for the sake of contradiction that we have a polynomial-
time approximation that achieves an additive approximation error of ε ·n, with n the size of
the universe. In the previous proof (with the former ε de�ned in Section 3.2.2 chosen equal
to 1−αϕ

3 ), with such an additive approximation algorithm, one could distinguish between
YES and NO instances of δ, h-AryGapLabelCover. Indeed, a YES instance implies that
the associated ϕ-MaxCoverage instance has a solution of value ϕ(xϕ)|Γ|, where Γ is the
universe in that setting. On the other hand, a NO instance implies that all solutions of the
associated ϕ-MaxCoverage instance have a value smaller than or equal to 1+2αϕ

3 ϕ(xϕ)|Γ|.
Therefore, on a YES instance, our approximation algorithm would output a solution with a
value larger than or equal to 2+αϕ

3 ϕ(xϕ)|Γ|. This resulting inequality is enough to guarantee
that it does not come from a NO instance, as it is strictly larger than 1+2αϕ

3 ϕ(xϕ)|Γ|
since αϕ < 1. Thus, such an approximation algorithm would allow us to solve δ, h-
AryGapLabelCover in polynomial time, which is impossible if P6=NP.

3.2.3 Further Hardness Under Gap-ETH

The Gap Exponential Time Hypothesis (Gap-ETH for short) states that, for some constant
δ > 0, there is no 2o(n)-time algorithm that, givenn-variable 3-SAT formula, can distinguish
whether the formula is fully satis�able or that it is not even (1− δ)-satis�able. Gap-ETH
is a standard assumption in proving FPT hardness of approximation (see e.g. [CCK+17]).
Under such hypothesis, Manurangsi showed the following theorem:

Theorem 3.13 ([Man20], adapted to (δ, h)-AryGapLabelCover). Assuming Gap-ETH, for

every δ > 0, every h ∈ N, h ≥ 2 and any su�ciently large R ∈ N (depending on δ, h), no
f(k) · No(k)

-time algorithm can solve (δ, h)-AryGapLabelCover with right alphabet [R],
where k denotes the number of vertices in h-AryLabelCover, N is the size of the instance,

and f can be any function.

Such a statement can be made in terms of the (δ, h)-AryGapLabelCover problem, since it
can be shown to be equivalent to δ-Gap-Label-Cover(t, R) (see Appendix 3.5.3 for more
details).
Furthermore, in the previous reduction, the constructed instance (Γ, k,F) sizes satisfy
|Γ| = n|E| (with n a constant independent of the size of the instance), k = |V |, and
|F| = k · L. Therefore, plugin Theorem 3.13 in the previous reduction leads to the
following hardness result:
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Theorem 3.14. Assuming Gap-ETH and ϕ(n) = o(n), we cannot achieve an (αϕ + ε)-
approximation for the ϕ-MaxCoverage problem, even in f(k) ·mo(k)

-time, for any function

f , withm the number of cover sets and k the cardinality constraint.

3.3 Applications

In this section, we show how particular instances of ϕ-MaxCoverage encapsule and
generalize various problems across the �elds of information theory [CT01], computational
social choice [BCE+16] and algorithmic game theory [NRTV07].

3.3.1 Generalized List-Decoding

In the usual `-list-decoding problem [Eli57, Woz58], we are given a noisy channel W (y|x),
and the goal is to send a message chosen uniformly in [k] through this channel. In order to
do so, the sender encodes the input message in X , and the receiver decodes a list of size ` of
possible messages in [k] from the output of the channel in Y . The goal is to maximize the
probability of successfully decoding the message, which happens when the initial message
belongs to the decoded list. We consider the generalization of the `-list-decoding problem
that allows decoding lists of any size, with an associated cost function ϕ, which we call the
ϕ-list-decoding problem. Now, the decoding will be successful only with probability ϕ(`)

`
when the initial message belongs to a decoding list of size `. Formally, the problem can be
stated as:

max
{Ly}y∈Y ,S⊆X :|S|=k

1
k

∑
x∈S

∑
y∈Y:x∈Ly

ϕ(|Ly|)
|Ly|

W (y|x) ,

and can be directly reformulated as:

max
S⊆X :|S|=k

1
k

∑
y∈Y

max
Ly⊆X

ϕ(|Ly|)
|Ly|

∑
x∈Ly

1x∈SW (y|x) .

Let us show that with a coverage function ϕ(j) = min(j, `), we recover the `-list-decoding
problem. Indeed, let us consider an optimal solutionS ⊆ X , {Ly}y∈Y of theϕ-list-decoding,
with Ly the list of accepted messages when the output of the channel is y. If all lists Ly
are of size `, then as ϕ(`)

` = 1, we recover a solution of the `-list-decoding problem with
the same objective value. This shows in particular that the ϕ-list-decoding problem has an
objective optimal value at least as large as the usual `-list-decoding problem. Let us now
consider an arbitrary set {Ly}y∈Y , and let us look at a particular list Ly with Ly 6= `. Let
us show that we can e�ciently build another list of size ` while keeping a solution with an
objective value at least as good as with Ly . If |Ly| ≤ `, then ϕ(|L′y|)

|L′y| = 1. Therefore, adding

elements in Ly can only increase the objective value, as long as we keep ϕ(|Ly |)
|Ly | = 1, i.e.

that the list size is smaller than or equal to `. Thus, we can transform all the lists Ly with
|Ly| < ` into lists of size ` without decreasing the value of that solution. If |Ly| > `, then
ϕ(|Ly |)
|Ly | = `

|Ly | . We will keep only the ` most in�uencing messages in Ly and we will show
that it does not decrease the objective value. Speci�cally, let us sort the elements x ∈ Ly
in a nonincreasing order according to 1x∈SW (y|x) and keep the �rst ` elements of that
list. We call L′y the resulting list. We claim that replacing Ly by L′y will not decrease the
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3. Tight Approximation Guarantees for Concave Coverage Problems

objective value. Indeed, we have:

∑
x∈L′y

1x∈SW (y|x) ≥ `

|Ly|
∑
x∈Ly

1x∈SW (y|x) ,

asL′y contains the ` largest elements ofLy according to the weight 1x∈SW (y|x). Therefore,
since ϕ(|L′y |)

|L′y |
= 1, we have:

ϕ(|L′y|)
|L′y|

∑
x∈L′y

1x∈SW (y|x) ≥ ϕ(|Ly|)
|Ly|

∑
x∈Ly

1x∈SW (y|x) ,

thus replacing Ly by L′y does not decrease the objective value. This concludes the equiva-
lence of the `-list-decoding problem with the ϕ-list-decoding with ϕ(j) = min(j, `).
When the channel is of the form W (y|x) = 1

t for y ∈ Tx with |Tx| = t and W (y|x) = 0
elsewhere, the success probability of the ϕ-list-decoding problem for a code S ⊆ X can be
written as 1

kt

∑
y∈Y ϕ(|Sy|), with Sy := {x ∈ S : y ∈ Tx}, which is a particular instance

of the ϕ-MaxCoverage problem. Indeed, for a �xed code S, the objective value becomes:

1
k

∑
y∈Y

max
Ly⊆X

ϕ(|Ly|)
|Ly|

∑
x∈Ly

1x∈SW (y|x) = 1
kt

∑
y∈Y

max
Ly⊆X

ϕ(|Ly|)
|Ly|

∑
x∈Ly

1x∈S1y∈Tx

= 1
kt

∑
y∈Y

max
Ly⊆X

ϕ(|Ly|)
|Ly|

|Sy ∩ Ly| .
(3.8)

We will show that maxLy⊆X
ϕ(|Ly |)
|Ly | |Sy ∩ Ly| = ϕ(|Sy|), which will prove the claimed

rewriting of the ϕ-list-decoding for those particular channels. As ϕ(0) = 0 and ϕ is
concave, we have for all y ≥ x ≥ 0:

ϕ(y)− ϕ(0)
y − 0 ≤ ϕ(x)− ϕ(0)

x− 0 ,

i.e. xyϕ(y) ≤ ϕ(x). Therefore, we have that:

ϕ(|Ly|)
|Ly|

|Sy ∩ Ly| ≤ ϕ(|Sy ∩ Ly|) ≤ ϕ(|Sy|) ,

as ϕ is nondecreasing. Thus, maxLy⊆X
ϕ(|Ly |)
|Ly | |Sy ∩ Ly| ≤ ϕ(|Sy|), with the equality

obtained by choosing Ly := Sy .
Therefore, for that class of channels, a tight approximation ratio αϕ follows from Theo-
rem 3.1. As a consequence, the hardness part holds for the general ϕ-list-decoding problem,
whereas �nding an approximation algorithm achieving the ratio αϕ for all channels is left
as an open question.

3.3.2 Multiwinner Elections

As mentioned previously, multiwinner elections (with a utilitarian model for the voters)
entail selection of k (out of m) candidates that maximize the utility across n voters. Here,
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the utility of each voter a ∈ [n] increases with the number of approved (by a) selections.
The work of Dudycz et al. [DMMS20] study the computational complexity of such elec-
tions and, in particular, address classic voting rules in which—for a speci�ed sequence of
nonnegative weights (w1, w2, . . .)—voter a’s utility is equal to

∑j
i=1wi, when he approves

of j candidates among the selected ones. One can view this election exercise as a coverage
problem by considering subset Ti ⊆ [n] as the set of voters that approve of candidate
i ∈ [m] and ϕ(j) =

∑j
i=1wi. Indeed, for a subset of candidates S ⊆ [m], the utility of a

voter a ∈ [n] is equal to ϕ(|S|a), with |S|a = |{i ∈ S : a ∈ Ti}|.
Dudycz et al. [DMMS20] show that if the weights satisfy w1 ≥ w2 ≥ . . . (i.e., bear a
diminishing returns property) along with geometric dominance (wi · wi+2 ≥ w2

i+1 for
all i ∈ N∗) and limi→∞wi = 0, then a tight approximation guarantee can be obtained
for the election problem at hand. Note that the diminishing returns property implies
that ϕ(j) =

∑j
i=1wi is concave and limi→∞wi = 0 ensures that ϕ is sublinear (see

Proposition 3.27). Hence, Theorem 3.1, together with Proposition 3.28, can be invoked to
recover the result in [DMMS20] where we get αϕ = αϕ(1). In fact, Theorem 3.1 does not
require geometric dominance among the weights and, hence, applies to a broader class of
voting rules. For instance, the geometric dominance property does not hold if one considers
the voting weights induced by `-MultiCoverage, i.e., wi = 1, for 1 ≤ i ≤ `, and wj = 0
for j > `. However, using Theorem 3.1, we get that for this voting rule we can approximate
the optimal utility within a factor of αϕ = 1 − ``e−`

`! (see Proposition 3.31). Another
example of such a separation arises if one truncates the proportional approval voting. The
standard proportional approval voting corresponds to wi = 1

i , for all i ∈ N (equivalently,
ϕ(j) =

∑j
i=1

1
i ) and falls within the purview of [DMMS20]. While the truncated version

with ϕ(j) =
∑min(j,`)
i=1

1
i , for a given threshold `, does not satisfy geometric dominance,

Theorem 3.1 continues to hold and provide a tight approximation ratio that can be computed
numerically (see Proposition 3.21 and Table 3.1 for examples).

3.3.3 Resource Allocation in Multi-Agent Systems

A signi�cant body of prior work in algorithmic game theory has addressed game-theoretic
aspects of maximizing welfare among multiple (strategic) agents; see, e.g., [PM18]. Comple-
menting such results, this section shows that the optimization problem underlying multiple
welfare-maximization games can be expressed in terms of ϕ-MaxCoverage.
Speci�cally, consider a setting with n resources, k agents, and a function ϕ : N 7→ R+.
Every agent i is endowed with a collection of resource subsets Ai = {T i1, . . . , T imi} ⊆ 2[n]

(i.e., each T ij ⊆ [n]). The objective is to select a subset Ai ∈ Ai, for all i ∈ [k], so as
to maximize Wϕ(A1, A2, . . . , Ak) :=

∑
a∈[n]wa ϕ(|A|a). Here, wa ∈ R+ is a weight

associated with a ∈ [n] and |A|a := |{i ∈ [k] : a ∈ Ai}|. We will refer to this problem as
the ϕ-Resource Allocation problem.
Whileϕ-Resource Allocation does not directly reduce toϕ-MaxCoverage, the next theo-
rem shows that it corresponds to maximizing ϕ-coverage functions subject to a matroid con-
straint. Hence, invoking our result from Section 3.1.1, we obtain a tight αϕ-approximation
for ϕ-Resource Allocation (see Appendix 3.5.5 for the proof):

Theorem 3.15. For any normalized nondecreasing concave function ϕ, there exists a αϕ-
approximation algorithm for ϕ-Resource Allocation running in polynomial time. Further-
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more, for ϕ(n) = o(n), it is NP-hard to approximate ϕ-Resource Allocation within a

factor better than αϕ + ε, for any constant ε > 0.

3.3.4 Vehicle-Target Assignment

Vehicle-Target Assignment [Mur00, PM18] is another problem which highlights the
applicability of coverage problems, with a concave ϕ. In particular, Vehicle-Target
Assignment can be directly expressed as ϕ-Resource Allocation: the [n] resources
correspond to targets, the agents correspond to vehicles i ∈ [k], each with a collection of
covering choices Ai ⊆ 2[n], and ϕp(j) = 1−(1−p)j

p , for a given parameter p ∈ (0, 1). As
limit cases, we de�ne ϕ0(j) := limp→0 ϕ

p(j) = j and ϕ1(j) := 1. Since ϕp(j) is concave,
by Proposition 3.32 and Theorem 3.15, we obtain a novel tight approximation ratio of
αϕp = 1−e−p

p for this problem. Also, one can look at the capped version of this problem,
ϕp` (j) := ϕp(min(j, `)). In particular, we recover the `-MultiCoverage function when
p = 0. In Figure 3.1, we have plotted several cases of the tight approximations αϕp

`
in

function of ` for several values of `:

0 0.2 0.4 0.6 0.8 10.5

0.6

0.7

0.8

0.9

1

p

αϕp∞
αϕp1αϕp2αϕp3αϕp4αϕp5

Figure 3.1 – Tight approximation ratios αϕp
`
, where ` is the rank of the capped version of

the p-Vehicle-Target Assignment problem. When p = 0, we recover the `-coverage
problem.

Paccagnan and Marden [PM18] study the game-theoretic aspects of Vehicle-Target As-
signment. A key goal in [PM18] is to bound the welfare loss incurred due to strategic
selection by the k vehicles, i.e., the selection of each Ai ∈ Ai by a self-interested vehi-
cle/agent i ∈ [k]. The loss is quanti�ed in terms of the Price of Anarchy (PoA). Formally, this
performance metric is de�ned as ratio between the welfare of the worst-possible equilibria
and the optimal welfare. Paccagnan and Marden [PM18] show that, for computationally
tractable equilibrium concepts (in particular, for coarse correlated equilibria), tight price of
anarchy bounds can be obtained via linear programs.
Note that our hardness result (Theorem 3.1) provides upper bounds on PoA of tractable
equilibrium concepts–this follows from the observation that computing an equilibrium
provides a speci�c method for �nding a coverage solution. In [CPM19] and in the partic-
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ular case of the `-MultiCoverage problem, it is shown that this in fact an equality, i.e.,
PoA = αϕ if ϕ(j) = min(j, `) for all values of `. However, numerically comparing the
approximation ratio for Vehicle-Target Assignment, αϕp = 1−e−p

p , with the optimal
PoA bound, we note that αϕp can in fact be strictly greater than the PoA guarantee; see
Figure 3.2.
Another form of the current problem, considered in [PM18], corresponds to ϕd(j) = jd,
for a given parameter d ∈ (0, 1). We refer to this instantiation as the d-Power function
and for it obtain the approximation ratio αϕd = e−1∑+∞

k=1
kd

k! (Proposition 3.33). In this
case, the question whether the inequality PoA ≤ αϕ is tight remains open; see Figure 3.3.

0 0.2 0.4 0.6 0.8 10.5

0.6

0.7

0.8

0.9

1

p

αϕp = 1−e−p
p

PoA20

Curv = 1− c
e

Figure 3.2 – Comparison between the PoA and αϕ for the Vehicle-Target Assignment
problem. Using the linear program found in [PM18], we were able to compute the blue
curve PoA20, the Price of Anarchy of this problem for m = 20 players. Since the PoA only
decreases when the number of players grows, this means that PoA < αϕ in that case. As
a comparison, the red curve Curv depicts the general approximation ratio (see [SVW17])
obtained for submodular function with curvature c, with c = 1−ϕp(m) +ϕp(m−1) here.

3.3.5 Welfare Maximization for ϕ-Coverage

Maximizing (social) welfare by partitioning items among agents is a key problem in algo-
rithmic game theory; see, e.g., the extensive work on combinatorial auctions [NRTV07].
The goal here is to partition t items among a set of k agents such that the sum of values
achieved by the agents—referred to as the social welfare—is maximized. That is, one needs
to partition [t] into k pairwise disjoint subsets A1, A2, . . . , Ak with the objective of max-
imizing

∑k
i=1 vi(Ai). Here, vi(S) denotes the valuation that agent i has for a subset of

items S ⊆ [t].
When each agent’s valuation vi is submodular, a tight (1 − e−1)-approximation ratio
is known for social welfare maximization [Von07]. This section shows that improved
approximation guarantees can be achieved if, in particular, the agents’ valuations are ϕ-
coverage functions. Towards a stylized application of such valuations, consider a setting in
which each “item” b ∈ [t] represents a bundle (subset) of goods Tb ⊆ [n] and the value of
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Figure 3.3 – Comparison between the PoA and αϕ for the d-Power problem. Using the
linear program found in [PM18], we were able to compute the blue curve PoA20, the Price

of Anarchy of this problem for m = 20 players. Here, the question whether the inequality
PoA ≤ αϕ is tight remains open. As a comparison, the red curve Curv depicts the general
approximation ratio (see [SVW17]) obtained for submodular function with curvature c,
with c = 1− ϕd(m) + ϕd(m− 1) here.

an agent increases with the number of copies of any good a ∈ [n] that get accumulated.
Indeed, if each agent’s value for j copies of a good is ϕ(j), then we have a ϕ-coverage
function and the overall optimization problem is �nd a k-partition, A1, A2, . . . , Ak, of [t]
that maximizes

∑k
i=1

(∑
a∈[n] ϕ (|Ai|a)

)
, where |Ai|a := {b ∈ Ai : a ∈ Tb}.

In the current setup, one can obtain an αϕ approximation ratio for social-welfare maximiza-
tion by reducing this problem to ϕ-coverage with a matroid constraint, and applying the
result from Section 3.1.1. Speci�cally, we can consider a partition matroid over the universe
[t]× [k]: for a bundle/item b ∈ [t] and an agent i ∈ [k], the element (b, i) in the universe
represents that bundle b is assigned to agent i, i.e., b ∈ Ai. The partition-matroid constraint
is imposed to ensure that each bundle b is assigned to at most one agent. Furthermore, we
can create k copies of the underlying set of goods [n] and set T(b,i) := {(a, i) : a ∈ Tb} to
map the ϕ-coverage over the universe to the social-welfare objective. This, overall, gives
us the desired αϕ approximation guarantee.

3.4 Conclusion

We have introduced the ϕ-MaxCoverage problem where having c copies of element
a gives a value ϕ(c). We have shown that when ϕ is normalized, nondecreasing and
concave, we can obtain an approximation guarantee given by the Poisson concavity ratio

αϕ := minx∈N∗ E[ϕ(Poi(x))]
ϕ(E[Poi(x)]) and we showed it is tight for sublinear functions ϕ. The Poisson

concavity ratio strictly beats the bound one gets using the notion of curvature of submodular
functions, except in limit cases such as MaxCoverage where the bounds are equal.
An interesting open question is whether there exists combinatorial algorithms that achieve
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this approximation ratio. As mentioned in [BFGG20], for the `-MultiCoverage with ` ≥ 2,
which is the special case where ϕ(x) = min(x, `), the simple greedy algorithm only gives
a 1− e−1 approximation ratio, which is strictly less than the ratio αϕ = 1− ``e−`

`! in that
case. Also, for any geometrically dominant vector w = (ϕ(i+ 1)− ϕ(i))i∈N which is not
p-geometric, such as Proportional Approval Voting, the greedy algorithm achieves an
approximation ratio which is strictly less than αϕ (see Theorem 18 of [DMMS20]).
Another open question is whether the hardness result remains true when ϕ(n) 6= o(n). A
good example is given by ϕ(0) = 0 and ϕ(1 + t) = 1 + (1− c)t with c ∈ (0, 1). We know
that the problem is hard for c = 1 but easy for c = 0. One can show that the approximation
ratio achieved by our algorithm is αϕ = 1− c

e in that case (which is the same approximation
ratio obtained from the curvature in [SVW17]), but the tightness of this approximation
ratio remains open.
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3.5 Appendix

3.5.1 General Properties

In this section, we will assume that ϕ is speci�ed over nonnegative integers (i.e. ϕ :
N → R+) and that it is nondecreasing, concave, and normalized (i.e. ϕ(0) = 0 and
ϕ(1) = 1). We will consider its piecewise linear extension on R+ by de�ning ϕ(x) :=
λϕ(bxc) + (1 − λ)ϕ(dxe); here, parameter λ ∈ [0, 1] satis�es x = λbxc + (1 − λ)dxe.
Note that the piecewise linear extension is also nondecreasing and concave.

Proposition 3.16. For all x ∈ R+, we have αϕ(x) ≥ min(αϕ(bxc), αϕ(dxe)); here,
αϕ(0) := lim

x→0
αϕ(x) = 1.

Proof. For any x ≥ 1, consider parameter λ ∈ [0, 1] such that x = λbxc + (1 − λ)dxe.
Since x 7→ E[ϕ(Poi(x))] is concave (Proposition 3.25), the following bound holds for all
x ≥ 1:

E[ϕ(Poi(x))] ≥ λE[ϕ(Poi(bxc))] + (1− λ)E[ϕ(Poi(dxe))]
= λαϕ(bxc)ϕ(bxc) + (1− λ)αϕ(dxe)ϕ(dxe) by de�nition of αϕ(x)
≥ min(αϕ(bxc), αϕ(dxe)) (λϕ(bxc) + (1− λ)ϕ(dxe))
= min(αϕ(bxc), αϕ(dxe))ϕ(x) ,

(3.9)
sinceϕ linear between integers. Therefore,αϕ(x) = E[ϕ(Poi(x))]

ϕ(x) ≥ min(αϕ(bxc), αϕ(dxe)).

We will show next that αϕ(x) is nonincreasing from 0 to 1, which implies that for x ∈ [0, 1),
we have αϕ(x) ≥ min(αϕ(bxc), αϕ(dxe)). Since ϕ is linear between integers, ϕ(0) = 0
and ϕ(1) = 1, we have that ϕ(x) = x for all x ∈ [0, 1]. Therefore:

αϕ(x) = E[ϕ(Poi(x))]
x

= e−x
+∞∑
k=1

ϕ(k)
k

xk−1

(k − 1)! = e−x
+∞∑
k=0

ϕ(k + 1)
k + 1

xk

k! .

In particular, αϕ(x) is well-de�ned at 0 and αϕ(0) = e−0∑+∞
k=0

ϕ(k+1)
k+1

0k
k! = 1. Now,

consider the derivative:

α′ϕ(x) = e−x
(
−

+∞∑
k=0

ϕ(k + 1)
k + 1

xk

k! +
+∞∑
k=1

ϕ(k + 1)
k + 1

xk−1

(k − 1)!

)

= e−x
+∞∑
k=0

(
ϕ(k + 2)
k + 2 − ϕ(k + 1)

k + 1

)
xk

k! .
(3.10)

Note that ϕ(k+2)
k+2 −

ϕ(k+1)
k+1 = ϕ(k+2)−ϕ(0)

(k+2)−0 − ϕ(k+1)−ϕ(0)
(k+1)−0 ≤ 0; the last inequality follows

from the concavity of ϕ. Hence, α′ϕ(x) ≤ 0. That is, αϕ(x) is nonincreasing from 0 to
1.

Proposition 3.17. For any ε > 0, the bound 1− αϕ(x) ≤ ε holds for all x ≥
(

6
ε

)4
.

Proof. Write X ∼ Poi(x) and note that P(X ≤ x(1− δ(x))) ≤ exp
(
− xδ(x)2

2(1+δ(x))

)
, for any

positive function δ(·) which satis�es δ(x) < 1, for all x > 1; see for instance [Can17].
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Therefore:

E[ϕ(X)] ≥ e−x
+∞∑

k=dx(1−δ(x))e
ϕ(k)x

k

k! since ϕ nonnegative

≥ ϕ(x(1− δ(x)))
+∞∑

k=dx(1−δ(x))e
e−x

xk

k! since ϕ nondecreasing

≥ ϕ(x(1− δ(x)))(1− P(X ≤ x(1− δ(x))))

≥ ϕ(x(1− δ(x)))
(

1− exp
(
− xδ(x)2

2(1 + δ(x))

))
.

(3.11)

Next, we will show that ϕ(x(1−δ(x)))
ϕ(x) ≥ 1− δ(x)+ 1

x
1−δ(x) . Towards this end, we will �rst bound

ϕ(x+y)−ϕ(x) in terms ofwxk = ϕ(x+k)−ϕ(x+k−1), which constitutes a nonincreasing
sequence (since ϕ is concave):

ϕ(x+ y)− ϕ(x) ≤ ϕ(x+ byc+ 1)− ϕ(x+ byc) +
byc∑
k=1

wxk ≤ (byc+ 1)wx1 .

Applying this bound to x(1− δ(x)) and xδ(x) gives us:

1− ϕ(x(1− δ(x)))
ϕ(x) = ϕ(x)− ϕ(x(1− δ(x)))

ϕ(x) ≤ (bxδ(x)c+ 1)wx(1−δ(x))
1

ϕ(x)

≤ xδ(x) + 1
ϕ(x)

ϕ(x(1− δ(x)))
x(1− δ(x)) ≤ xδ(x) + 1

x(1− δ(x)) =
δ(x) + 1

x

1− δ(x) . (3.12)

Here, wx(1−δ(x))
1 = ϕ(x(1−δ(x))+1)−ϕ(x(1−δ(x)))

(x(1−δ(x))+1)−(x(1−δ(x))) ≤
ϕ(x(1−δ(x)))−ϕ(0)

x(1−δ(x))−0 = ϕ(x(1−δ(x)))
x(1−δ(x)) follows

from the concavity of ϕ and ϕ(x(1−δ(x)))
ϕ(x) ≤ 1 from the fact that ϕ is nondecreasing.

Inequalities (3.11) and (3.12) lead to following upper bound on 1− αϕ(x) in terms of δ(x):

1− αϕ(x) = 1− E[ϕ(Poi(x))]
ϕ(x) ≤ 1−

(
1−

δ(x) + 1
x

1− δ(x)

)(
1− exp

(
− xδ(x)2

2(1 + δ(x))

))

≤
δ(x) + 1

x

1− δ(x) + exp
(
− xδ(x)2

2(1 + δ(x))

)
. (3.13)

Speci�cally setting δ(x) = x−
1
4 , we have (for all x ≥ 16): δ(x) ≤ 1

2 , 1
x ≤ x−

1
4 , and

exp
(
− xδ(x)2

2(1+δ(x))

)
≤ exp

(
−
√
x

4

)
≤ 2x−

1
4 . Hence, inequality (3.13) reduces to

1− αϕ(x) ≤ 2x−
1
4

1− 1
2

+ 2x−
1
4 ≤ 6x−

1
4 for all x ≥ 16.

If ε ≥ 1, we have 1−αϕ(x) ≤ 1 ≤ ε. Otherwise, we have that
(

6
ε

)4
≥ 64 ≥ 16. Therefore,

given any ε > 0, for all x ≥
(

6
ε

)4
we have 1− αϕ(x) ≤ ε.
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Proposition 3.18. We have that αϕ = infx∈R+ αϕ(x) = minx∈N∗ αϕ(x).

Proof. Thanks to Proposition 3.16, we have that infx∈R+ αϕ(x) = infx∈N∗ αϕ(x), and
thanks to Proposition 3.17, sinceαϕ(x) ≤ 1, we have that infx∈N∗ αϕ(x) = minx∈N∗ αϕ(x).

Proposition 3.19. Cϕ is submodular, its curvature is at most c = 1− (ϕ(m)−ϕ(m− 1))
and it cannot be improved for a general instance withm cover sets.

Proof. We will use the following straightforward lemma:

Lemma 3.20 (Properties of |S|a = |{i ∈ S : a ∈ Ti}|.). We have:

1. |S|a ≤ |S|,

2. |S ∪ S′|a ≤ |S|a + |S′|a. If S ⊆ T then |S|a ≤ |T |a and |S ∪ {x}|a ≤ |S|a + 1,

3. If S ⊆ T , x 6∈ T then |S|a = |T |a ⇒ |S ∪ {x}|a = |T ∪ {x}|a.

Let us show �rst the submodularity of Cϕ. Let S ⊆ T ⊆ [m] and x 6∈ T :

Cϕ(S ∪ {x})− Cϕ(S)− (Cϕ(T ∪ {x})− Cϕ(T )) =
=

∑
a∈[n]

wa[ϕ(|S ∪ {x}|a)− ϕ(|S|a)− (ϕ(|T ∪ {x}|a)− ϕ(|T |a))] . (3.14)

Let us call g(a) := ϕ(|S ∪ {x}|a)− ϕ(|S|a)− (ϕ(|T ∪ {x}|a)− ϕ(|T |a)):

1. If |T |a = |S|a then thanks to Lemma 3.20, we have that |T ∪ {x}|a = |S ∪ {x}|a, so
g(a) = 0

2. Else, we have that |T |a > |S|a:

a) If |S ∪ {x}|a = |S|a, then we add elements of T − S using Lemma 3.20 to get
that |T ∪ {x}|a = |T |a, so g(a) = 0 in that case.

b) Else |S ∪ {x}|a 6= |S|a. So with |S|a = k, we get that |S ∪ {x}|a = k + 1 and
|T |a > |S|a so |T |a ≥ k + 1.

i. If |T ∪ {x}|a = |T |a, then g(a) = ϕ(k + 1) − ϕ(k) ≥ 0 since ϕ is
nondecreasing.

ii. Else |T ∪ {x}|a 6= |T |a so with |T |a = ` with ` ≥ k + 1, we get that
|T |a = `+ 1. So we have that:

g(a) = ϕ(k + 1)− ϕ(k)− (ϕ(`+ 1)− ϕ(`))

= ϕ(k + 1)− ϕ(k)
(k + 1)− k − ϕ(`+ 1)− ϕ(`)

(`+ 1)− ` ≥ 0 ,
(3.15)

by concavity of ϕ: its slopes are nonincreasing.

44



3.5. Appendix

So in all cases, we have g(a) ≥ 0 soCϕ(S∪{x})−Cϕ(S)− (Cϕ(T ∪{x})−Cϕ(T )) ≥ 0:
Cϕ is submodular.
Let us now compute its curvature:

c = 1− min
i∈[m]

Cϕ([m])− Cϕ([m]− {i})
Cϕ({i})− Cϕ(∅) .

Let i ∈ [m] �xed:

Cϕ([m])− Cϕ([m]− {i})
Cϕ({i})− Cϕ(∅) =

∑
a∈[n]wa[ϕ(|[m]|a)− ϕ(|[m]− {i}|a)]∑

a∈[n]wa[ϕ(|{i}|a)− ϕ(|∅|a)]

=
∑
a∈Ti wa[ϕ(|[m]|a)− ϕ(|[m]− {i}|a)]∑

a∈Ti wa

=
∑
a∈Ti wa[ϕ(|[m]|a)− ϕ(|[m]|a − 1)]∑

a∈Ti wa
,

(3.16)

since a ∈ Ti. But |[m]|a ≤ m and ϕ concave, so ϕ(|[m]|a)) − ϕ(|[m]|a − 1) ≥ ϕ(m) −
ϕ(m− 1) for all a ∈ [n]. As a consequence we have that:

Cϕ([m])− Cϕ([m]− {i})
Cϕ({i})− Cϕ(∅) ≥ ϕ(m)− ϕ(m− 1) ,

and this lower bound is true for its minimum over i. Thus we get that c ≤ 1− (ϕ(m)−
ϕ(m−1)). Also one can �nd instances for allm such that this bound is tight: take T1 = {a}
and ∀j ∈ [m], a ∈ Tj for instance.

Proposition 3.21. Let ` ∈ N∗. if ∀x ≥ `, ϕ(x) = ϕ(`) + a(x − `) for some 0 ≤ a ≤
ϕ(`)− ϕ(`− 1), then αϕ(x) is nondecreasing from ` to +∞ and:

αϕ(x) = ϕ(`) + a(x− `)
ϕ(x) − e−x

ϕ(x)

(∑̀
k=0

(ϕ(`) + a(x− `)− ϕ(k)) x
k

k! − a
x`+1

`!

)
.

In particular, αϕ = minx∈[`] αϕ(x), and the argmin can be computed numerically.

Proof. One can compute a closed form value for αϕ(x) using the fact that ϕ is linear from
`:

αϕ(x) = e−x

ϕ(x)

+∞∑
k=0

ϕ(k)x
k

k! = e−x

ϕ(x)

∑̀
k=0

ϕ(k)x
k

k! +
+∞∑
k=`+1

(ϕ(`) + a(k − `)) x
k

k!


= ϕ(`)− a`

ϕ(x) + e−x

ϕ(x)

∑̀
k=0

(ϕ(k)− ϕ(`) + a`) x
k

k! + ax
+∞∑
k=`+1

xk−1

(k − 1)!


= ϕ(`) + a(x− `)

ϕ(x) + e−x

ϕ(x)

(∑̀
k=0

(ϕ(k)− ϕ(`) + a(`− x)) x
k

k! + ax
x`

`!

)
,

(3.17)
and thus we get:

αϕ(x) = ϕ(`) + a(x− `)
ϕ(x) − e−x

ϕ(x)

(∑̀
k=0

(ϕ(`) + a(x− `)− ϕ(k)) x
k

k! − a
x`+1

`!

)
.
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Let us show that it is nondecreasing from ` to +∞ by computing its derivative. Indeed, for
x ≥ `, we have that ϕ(x) = ϕ(`) + a(x− `) and ϕ′(x) = a, so:

αϕ(x) = 1− e−x
(∑̀
k=0

xk

k! −
1

ϕ(x)

(∑̀
k=0

ϕ(k)x
k

k! + a
x`+1

`!

))
.

Thus:

α′ϕ(x) = e−x
(∑̀
k=0

xk

k! −
1

ϕ(x)

(∑̀
k=0

ϕ(k)x
k

k! + a
x`+1

`!

))

− e−x
(
`−1∑
k=0

xk

k! −
1

ϕ(x)

(
`−1∑
k=0

ϕ(k + 1)x
k

k! + a(`+ 1)x
`

`!

))

+ e−x
a

ϕ(x)2

(∑̀
k=0

ϕ(k)x
k

k! + a
x`+1

`!

)

= e−x
(
x`

`! −
1

ϕ(x)

(
`−1∑
k=0

(ϕ(k)− ϕ(k + 1))x
k

k! + ϕ(`)x
`

`! + (a(x− `)− a)x
`

`!

))

− e−x
(

a

ϕ(x)2

(∑̀
k=0

ϕ(k)x
k

k! + a
x`+1

`!

))

= e−x
(
x`

`! + 1
ϕ(x)

(
`−1∑
k=0

(ϕ(k + 1)− ϕ(k))x
k

k!

)
− ϕ(x)− a

ϕ(x)
x`

`!

)

− e−x a

ϕ(x)2

(∑̀
k=0

ϕ(k)x
k

k! + a
x`+1

`!

)

= e−x
(

1
ϕ(x)

(
`−1∑
k=0

(ϕ(k + 1)− ϕ(k))x
k

k!

))

+ e−x
a

ϕ(x)2

(
ϕ(x)x

`

`! −
∑̀
k=0

ϕ(k)x
k

k! − a
x`+1

`!

)
.

(3.18)
If a = 0, then it is nonnegative since ϕ nondecreasing and nonnegative. Otherwise, suppose
that a > 0. Then:

αϕ(x) = ae−x

ϕ(x)2

(
`−1∑
k=0

(
ϕ(x)ϕ(k + 1)− ϕ(k)

a
− ϕ(k)

)
xk

k! + (ϕ(x)− ϕ(`)− ax) x
`

`!

)

≥ ae−x

ϕ(x)2

(
`−1∑
k=0

(ϕ(x)− ϕ(k)) x
k

k! − a
x`

(`− 1)!

)
,

(3.19)
since ϕ(k+1)−ϕ(k)

a ≥ ϕ(k+1)−ϕ(k)
ϕ(`)−ϕ(`−1) ≥ 1 by concavity of ϕ. Thus:

αϕ(x) ≥ ae−x

ϕ(x)2

(
`−1∑
k=0

(ϕ(`)− ϕ(k)) x
k

k! + a

(
(x− `)

`−1∑
k=0

xk

k! −
x`

(`− 1)!

))
,

but:

(x− `)
`−1∑
k=0

xk

k! −
x`

(`− 1)! = `
∑̀
k=1

xk

k! − `
`−1∑
k=0

xk

k! −
x`

(`− 1)! = −` ,

46



3.5. Appendix

so:

α′ϕ(x) ≥ ae−x

ϕ(x)2

(
`−1∑
k=0

(ϕ(`)− ϕ(k)) x
k

k! − a`
)

≥ ae−x

ϕ(x)2

(
`−1∑
k=0

(ϕ(`)− ϕ(k)) x
k

k! − (ϕ(`)− ϕ(`− 1))`
)

≥ ae−x

ϕ(x)2

(
`−1∑
k=0

(ϕ(`)− ϕ(k)) x
k

k! −
`−1∑
k=0

(ϕ(`)− ϕ(`− 1))x
k

k!

)

since x
k

k! ≥
`k

k! ≥ 1 for k ≤ `

= ae−x

ϕ(x)2

(
`−1∑
k=0

(ϕ(`− 1)− ϕ(k)) x
k

k!

)
≥ 0 since ϕ nondecreasing .

(3.20)

Thus, αϕ(x) is nondecreasing from ` to +∞, and we get that αϕ = minx∈[`] αϕ(x).

Proposition 3.22. The Poisson concavity ratio αϕ is always greater than or equal to the

curvature-dependent ratio de�ned in [SVW17]: if ϕ is linear from m with slope 1 − c =
ϕ(m)− ϕ(m− 1), then we have αϕ ≥ 1− ce−1

.

Proof. Note that by Proposition 3.19, the curvature of Cϕ is equal to c, so the e�ciency
of the algorithm described in [SVW17] is indeed 1− ce−1. Thanks to Proposition 3.21, we
have that αϕ = minx∈[`] αϕ(x), so we only have to show that:

min
`∈[m]

αϕ(`) ≥ 1− ce−1 .

Let us denote by ϕ(`,a) the function which is equal to ϕ for k ≤ ` and linear from ` with
nonnegative coe�cient a: ∀k ≥ `, ϕ(`,a)(k) = ϕ(`) + a(k − `). Note that we ask that
0 ≤ a ≤ ϕ(`)− ϕ(`− 1) in order to ϕ(`,a) to be nondecreasing concave, and ` ≥ 1.
This is done in two steps:

1. Let 1 ≤ ` ≤ m, then:

αϕ(`) = E[ϕ(Poi(`))]
ϕ(`) = E[ϕ(Poi(`))]

ϕ(`,1−c)(`)
≥ E[ϕ(`,1−c)(Poi(`))]

ϕ(`,1−c)(`)
= αϕ(`,1−c)(`) ,

since ϕ(`,1−c)(x) ≤ ϕ(x) for all x. Note that we have:

ϕ(`)− ϕ(`− 1) ≥ ϕ(m)− ϕ(m− 1) = 1− c ,

by concavity of ϕ. So, we only have to show that for all 1 ≤ ` ≤ m, we have
α(`,1−c) := αϕ(`,1−c)(`) ≥ 1− ce−1.

2. Let us show that α(`,1−c) := αϕ(`,1−c)(`) ≥ 1− ce−1 for 1 ≤ ` ≤ m.
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Using the closed-form expression of Proposition 3.21 on ϕ(`,1−c) evaluated at `, one
gets:

α(`,1−c) = αϕ(`,1−c)(`) = 1− e−`
(
`−1∑
k=0

(
ϕ(`)− ϕ(k)

ϕ(`)

)
`k

k! −
1− c
ϕ(`)

``+1

`!

)
.

The worst case occurs when ϕ(`,1−c) is linear between 1 and `, which we call ϕ(`,1−c)
lin .

Indeed, with b := ϕ(`)−1
`−1 , for 1 ≤ k ≤ `, we have that ϕ(`,1−c)

lin (k) = 1 + b(k − 1).
But:

`−1∑
k=0

(
ϕ(`)− ϕ(k)

ϕ(`)

)
`k

k! ≤ 1 +
`−1∑
k=1

(
ϕ(`)− (1 + b(k − 1))

ϕ(`)

)
`k

k! ,

since ϕ(k) ≥ 1 + b(k− 1), because ϕ(k)−ϕ(1)
k−1 ≥ ϕ(`)−ϕ(1)

`−1 = b by concavity of ϕ. In
that case, the expression can be simpli�ed:

α(`,1−c) ≥ α
ϕ

(`,1−c)
lin

(`) = 1− e−`
(

1 +
`−1∑
k=1

(
b(`− k)
ϕ(`)

)
`k

k! −
1− c
ϕ(`)

``+1

`!

)

= 1− e−`
(

1 + b`

ϕ(`)

`−1∑
k=1

`k

k! −
b`

ϕ(`)

`−1∑
k=1

`k−1

(k − 1)! −
1− c
ϕ(`)

``+1

`!

)

= 1− e−`

ϕ(`)

(
ϕ(`) + b`

(
``−1

(`− 1)! − 1
)
− (1− c)`

`+1

`!

)

= 1− e−`

ϕ(`)

(
1 + b(`− 1) + b

(
``

(`− 1)! − `
)
− (1− c)`

`+1

`!

)

= 1− e−`
1− b+ (b− (1− c)) ``+1

`!
ϕ(`) .

(3.21)

We have also that b ≥ ϕ(`) − ϕ(` − 1) ≥ 1 − c since ϕ concave. As a function of

(b− (1− c)) for c �xed, we get g(x) := 1− e−`
c+x
(
``+1
`! −1

)
1+(x+(1−c))(`−1) . In particular, we

have that α
ϕ

(`,(1−c))
lin

(`) = g(b− (1− c)), since ϕ(`) = 1 + b(`− 1). We have that

g′(x) = −e−`
`

(
``

`!−1
)

+(1−c) `
`+1
`! (`−1)

(1+(x+(1−c))(`−1))2 ≤ 0, so g is nonincreasing: it is thus enough
to show that g(c) ≥ 1 − ce−1 to get the result, since α(`,1−c) ≥ g(b − (1 − c)) ≥
g(c) ≥ 1− ce−1. But:

g(c) = 1−
c `
`+1

`!
1 + `− 1e

−` = 1− c`
`

`! e
−` ≥ 1− ce−1 ,

since ``

`! e
−` is a decreasing sequence.

Proposition 3.23. Let F (x) := EX∼x[Cϕ(X)] for x ∈ {0, 1}m. We have an explicit

formula for F :

F (x) =
n∑
a=1

m∑
k=0

 1
m+ 1

m∑
`=0

ω−`km+1
∏

j∈[m]:a∈Tj

(1 + (ω`m+1 − 1)xj)

ϕ(k) ,
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with ωm+1 := exp
(

2iπ
m+1

)
. Thus, F is computable in polynomial time in n andm.

Proof. Recall that Cϕ(S) =
∑n
a=1C

ϕ
a (S), so by linearity of expectation we focus on

EX∼x[Cϕa (X)]. But Cϕa (X) = ϕ(|X|a) where |X|a = |{i ∈ [m] : Xi = 1 and a ∈ Ti}|.
Thus:

EX∼x[Cϕa (X)] =
m∑
k=0

PX∼x(|X|a = k)ϕ(k) .

Let us compute the distribution of |X|a. We have |X|a =
∑
i∈[m]:a∈Ti Xi andXi ∼ Ber(xi).

Thus, |X|a ∼ Poi Bin((xi)i∈[m]:a∈Ti), which is known as the Poisson binomial law. Thanks
to [FW10], we have that:

PX∼x(|X|a = k) = 1
m+ 1

m∑
`=0

ω−`km+1
∏

j∈[m]:a∈Tj

(1 + (ω`m+1 − 1)xj) ,

where ωm+1 := exp
(

2iπ
m+1

)
, and the result is proved.

Proposition 3.24. We have that

|E[ϕ(Bin(n, x/n))]− E[ϕ(Poi(x))]| ≤ xϕ(n)
2n + xn+1

n! .

In particular when ϕ(n) = o(n):

lim
n→∞

E[ϕ(Bin(n, xϕ/n))] = E[ϕ(Poi(xϕ))] = αϕϕ(xϕ) .

Proof. Thanks to [BH84, TT19], the total variation distance between Bin(n, x/n) and Poi(x)
is bounded in the following way:

∆(Bin(n, x/n), Poi(x)) ≤ 1− e−x

2x n ·
(
x

n

)2
≤ x

2n .

Thus with B ∼ Bin(n, x/n) and P ∼ Poi(x):

|E[ϕ(B)]− E[ϕ(P )]| =
∣∣∣∣∣
+∞∑
k=0

ϕ(k)P(B = k)−
+∞∑
k=0

ϕ(k)P(P = k)
∣∣∣∣∣

=
∣∣∣∣∣
+∞∑
k=0

ϕ(k)(P(B = k)− P(P = k))
∣∣∣∣∣

≤
+∞∑
k=0

ϕ(k)|P(B = k)− P(P = k)|

≤ ϕ(n)∆(Bin(n, x/n), Poi(x)) +
+∞∑

k=n+1
ϕ(k)P(P = k)

≤ xϕ(n)
2n + e−x

+∞∑
k=n+1

k
xk

k! since ϕ(k) ≤ k

= xϕ(n)
2n + xe−x

+∞∑
k=n

xk

k!

≤ xϕ(n)
2n + xn+1

n! →
n→∞

0 when ϕ(n) = o(n) ,

(3.22)
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by a standard upper bound on the remainder of the exponential series.

Proposition 3.25. The function g : x 7→ E[ϕ(Poi(x))] onR+
is C∞ nondecreasing concave.

Proof. Since we have that 0 ≤ ϕ(k) ≤ k for k ∈ N, in particular g(x) = e−x
∑+∞
k=0 ϕ(k)xkk!

is C∞. It is thus enough to compute its �rst and second derivatives:

g′(x) = − e−x
+∞∑
k=0

ϕ(k)x
k

k! + e−x
+∞∑
k=1

ϕ(k)kx
k−1

k!

= − e−x
+∞∑
k=0

ϕ(k)x
k

k! + e−x
+∞∑
k=0

ϕ(k + 1)x
k

k!

= e−x
+∞∑
k=0

(ϕ(k + 1)− ϕ(k))x
k

k! .

(3.23)

But ϕ(k + 1)− ϕ(k) ≥ 0 since ϕ nondecreasing, so g′(x) ≥ 0 and g is nondecreasing.
The calculus of g′′ is the same where we replace ϕ by ψ(k) := ϕ(k + 1)− ϕ(k) which is a
nonincreasing function by concavity of ϕ. Thus:

g′′(x) = e−x
+∞∑
k=0

(ψ(k + 1)− ψ(k))x
k

k! ≤ 0 .

since ψ(k + 1)− ψ(k) ≤ 0, and so g is concave.

Proposition 3.26. The function gq : n 7→ E[ϕ(Bin(n, q))] de�ned on N is nondecreasing

concave. As a consequence, one can uses Jensen’s inequality on the piecewise linear extension

of gq which is also continuous.

Proof. We have Bin(n, q) ≤st Bin(n + 1, q) and E[ϕ(Bin(n, q))] ≤ E[ϕ(Bin(n + 1, q))]
since ϕ is nondecreasing, ie gq(n+ 1)− gq(n) ≥ 0: gq is nondecreasing.
We show then the concavity, i.e. gq(n + 2) − gq(n + 1) ≤ gq(n + 1) − gq(n). Let us
de�ne ψ(x) = ϕ(x + 1) − ϕ(x), which is nonincreasing since ϕ concave. Let us take
Xk,q ∼ Bin(k, q). Then:

gq(n+ 1) = E[ϕ(Xn+1,q)]

=
n∑
i=0

E[ϕ(Xn,q +X1,q)|Xn,q = i]P(Xn,q = i)

=
n∑
i=0

E[ϕ(i+X1,q)− ϕ(i)]P(Xn,q = i) +
n∑
i=0

ϕ(i)P(Xn,q = i)

=
n∑
i=0

E[ϕ(i+X1,q)− ϕ(i)]P(Xn,q = i) + gq(n) .

(3.24)
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Thus:

gq(n+ 1)− gq(n) =
n∑
i=0

E[ϕ(i+X1,q)− ϕ(i)]P(Xn,q = i)

=
n∑
i=0

q(ϕ(i+ 1)− ϕ(i))P(Xn,q = i)

= qE[ψ(Bin(n, q))] .

(3.25)

Then thanks to the fact that Bin(n, q) ≤st Bin(n+1, q) andψ is nonincreasing, we have that
E[ψ(Bin(n, q))] ≥ E[ψ(Bin(n+1, q))], i.e. gq(n+2)−gq(n+1) ≤ gq(n+1)−gq(n).

Proposition 3.27. With wi := ϕ(i)− ϕ(i− 1), we have:

lim
i→+∞

wi = 0 ⇐⇒ ϕ(n) = o(n) .

Proof. (⇒) Let ε > 0, let us �nd a rank N such that for n ≥ N , ϕ(n)
n ≤ ε. Let N0 the

rank from which wi ≤ ε
2 and N1 the rank from which 1

n

∑N0−1
i=1 wi ≤ ε

2 . We have

ϕ(n)
n

= 1
n

n∑
i=1

wi ≤
1
n

N0−1∑
i=1

wi + 1
n

n−1∑
i=N0

ε

2

≤ ε

2 + ε

2 = ε for n ≥ max(N0, N1) =: N .

(3.26)

(⇐) Since wi = ϕ(i)− ϕ(i− 1) is nonnegative and nonincreasing (respectively because
ϕ is nondecreasing and concave), then the sequence w has a limit L ≥ 0. But

ϕ(n)
n

= 1
n

n∑
i=1

wi ≥ L .

Since the left hand side tends to 0 by hypothesis, this means that L = 0.

Proposition 3.28. If wi := ϕ(i) − ϕ(i − 1) is geometrically dominant, i.e. it satis�es
∀i ∈ N∗, wi

wi+1
≥ wi+1

wi+2
, then αϕ = αϕ(1).

Remark. Proposition 3.28 and in particular its proof uses similar ideas to the sketch provided
in [DMMS20].

Proof. Let g(k) := E[ϕ(Poi(k))], and thus αϕ(k) = g(k)
ϕ(k) . Let us show that for k ∈ N∗,

αϕ(k) ≥ αϕ(1), which will be enough to conclude. In order to show this, we will need the
following lemmas:

Lemma 3.29. ∀k < i ∈ N, wi ≥ wk+1wi−k and thus ∀k, j ∈ N, ϕ(k + j) − ϕ(k) ≥
wk+1ϕ(j).
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Proof. We have that:
wi = wi

wi−1

wi−1
wi−2

. . .
wi−k+1
wi−k

wi−k .

But for j ∈ [k]:
wi−j+1
wi−j

≥
w(i−1)−j+1
w(i−1)−j

≥ . . . ≥
w(k+1)−j+1
w(k+1)−j

,

since w is geometrically dominant and k + 1 ≤ i. Thus applying this bound on each term
of the previous product, we get:

wi ≥
wk+1
wk

wk
wk−1

. . .
w2
w1
wi−k = wk+1

w1
wi−k = wk+1wi−k .

In particular, ∀k, j ∈ N, we get:

ϕ(k + j)− ϕ(k) =
k+j∑
i=k+1

wi ≥ wk+1

j∑
i=1

wi = wk+1ϕ(j) .

Lemma 3.30. The piecewise linear extension on [1,+∞[ of w, de�ned on integers with

w(k) := wk, is convex.

Proof. We will show that ∀k ∈ N∗, wk+2−wk+1 ≥ wk+1−wk which implies the convexity
of its piecewise linear extension on [1,+∞[. For k ∈ N∗ we have:

wk+1
wk+2

− 1 ≤ wk+1
wk+2

(
wk+1
wk+2

− 1
)
≤ wk+1
wk+2

(
wk
wk+1

− 1
)

= wk − wk+1
wk+2

,

since w is nonnegative nonincreasing (respectively ϕ nondecreasing concave) and wk+1
wk+2

≤
wk
wk+1

since w is geometrically dominant. Then, multiplying by −wk+2 ≤ 0 gives the
expected result wk+2 − wk+1 ≥ wk+1 − wk.

We have g(k + 1) = E[ϕ(Poi(k + 1))] = E[ϕ(Poi(k) + Poi(1))] since Poi(k + 1) ∼
Poi(k) + Poi(1). Thus:

g(k + 1)− g(k) = EX,X′∼Poi(k),Y∼Poi(1)[ϕ(X + Y )− ϕ(X ′)]
= EX∼Poi(k),Y∼Poi(1)[ϕ(X + Y )− ϕ(X)]
≥ EX∼Poi(k),Y∼Poi(1)[wX+1ϕ(Y )] by Lemma 3.29
= EX∼Poi(k)[w(X + 1)]EY∼Poi(1)[ϕ(Y )] ,

(3.27)

by independence of w(X + 1) and ϕ(Y ). Since w is convex on [1,+∞[ by Lemma 3.30 and
Poi(k) + 1 ∈ [1,+∞[, we have that E[w(Poi(k) + 1)] ≥ w(E[Poi(k) + 1]) = w(k + 1) =
wk+1 thanks to Jensen’s inequality. Note that g(0) = E[ϕ(Poi(0))] = ϕ(0) = 0. Then:

g(k) =
k−1∑
i=0

g(i+ 1)− g(i) ≥
(
k−1∑
i=0

wi+1

)
E[ϕ(Poi(1))] = ϕ(k)g(1) .

Therefore:
αϕ(k) = g(k)

ϕ(k) ≥ g(1) = g(1)
ϕ(1) = αϕ(1) .
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3.5.2 Calculations of αϕ

Proposition 3.31. For ` ∈ N∗ and ϕ(j) = min(j, `), we have that αϕ = 1− ``e−`

`! .

Proof. Thanks to Proposition 3.22, we have that αϕ = minx∈N∗ αϕ(x). Let us compute
E[ϕ(Poi(x))]:

E[ϕ(Poi(x))] = e−x
+∞∑
k=0

ϕ(k)x
k

k!

= e−x
∑̀
k=0

k
xk

k! + e−x
+∞∑
k=`+1

`
xk

k!

= e−xx
`−1∑
k=0

xk

k! + `e−x
+∞∑
k=`+1

xk

k!

= e−x
[
(x− `)

`−1∑
k=0

xk

k! − `
x`

`!

]
+ `e−x

+∞∑
k=0

xk

k!

= `− e−x
[

x`

(`− 1)! − (x− `)
`−1∑
k=0

xk

k!

]
.

(3.28)

Let us show that x 7→ αϕ(x) takes its minimum in `, where we have indeed:

αϕ(`) = 1
`

(
`− e−`

[
``

(`− 1)! − (`− `)
`−1∑
k=0

`k

k!

])
= 1− e−` `

`

`! .

Thanks to proposition 3.21, x 7→ αϕ(x) is nondecreasing from ` to +∞. Suppose now that
` ≥ 2 (otherwise the result is already proved). Since x 7→ αϕ(x) is di�erentiable, we have
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for 1 ≤ x ≤ `:

α′ϕ(x) = − `

x2 + e−x
[
x`−1

(`− 1)! −
`−1∑
k=0

xk

k! + `
`−2∑
k=0

xk

(k + 1)! + `

x

]

− e−x
[
x`−2

(`− 2)! −
`−2∑
k=0

xk

k! + `
`−3∑
k=0

xk

(k + 2)k! −
`

x2

]

= `

x

(
e−x

(
1 + 1

x

)
− 1
x

)

+ e−x
[(

`

`− 1 − 1
)

x`−2

(`− 2)! + `
`−3∑
k=0

(
xk

(k + 1)! −
xk

(k + 2)k!

)]

= `

x

(
e−x

(
1 + 1

x

)
− 1
x

)
+ e−x

[
x`−2

(`− 1)! + `
`−3∑
k=0

xk

k!

( 1
k + 1 −

1
k + 2

)]

= `

x

(
e−x

(
1 + 1

x
+ x`−1

`! + x
`−3∑
k=0

xk

k!
1

(k + 1)(k + 2)

)
− 1
x

)

= `e−x

x2

((
1 + x+ x`

`! +
`−3∑
k=0

xk+2

(k + 2)!

)
− ex

)

= `e−x

x2

(∑̀
k=0

xk

k! − e
x

)
≤ 0 .

(3.29)
since the partial sum of the exponential series is bounded by its total sum. Thus αϕ(x) is
nonincreasing from 1 to `, and nondecreasing after, so it takes indeed its minimum in `
and the proposition is proved.

Proposition 3.32. For p ∈ (0, 1) and ϕ(j) = 1−(1−p)j
p , we have that αϕ = 1−e−p

p .

Proof. By de�nition:

αϕ(x) = E[ϕ(Poi(x))]
ϕ(x) =

∑+∞
k=0 ϕ(k)e−x xkk!

ϕ(x)

=
1− e−x

∑+∞
k=0(1− p)k xkk!
pϕ(x)

= 1− e−xe(1−p)x

pϕ(x) = 1− e−px

pϕ(x) .

(3.30)

If x ≥ 1, αϕ(x) = 1−e−px
1−(1−p)x = 1−e−px

1−e−qx with q = ln
(

1
1−p

)
> 0 and:

α′ϕ(x) = pe−px(1− e−qx)− qe−qx(1− e−px)
(1− e−qx)2 = pe−px − qe−qx + (q − p)e−(p+q)x

(1− e−qx)2 .

Let us take t = p
q ∈ (0, 1), since q = ln

(
1

1−p

)
> p > 0, x1 = −px and x2 = −(p + q)x.

Then by strict convexity of the exponential function, we have:

etx1+(1−t)x2 < tex1 + (1− t)ex2 = pe−px + (q − p)e−(p+q)x

q
.
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But tx1 + (1 − t)x2 = −p2x
q + −(q−p)(p+q)x

q = −p2x
q + −(q2x−p2x)

q = −qx, so we get
pe−px − qe−qx + (q − p)e−(p+q)x > 0, and α′ϕ(x) > 0. Thus, αϕ(x) increases from 1 to
in�nity and takes its minimum in 1:

αϕ = αϕ(1) = 1− e−p

p
.

Proposition 3.33. For d ∈ (0, 1) and ϕ(j) = jd, we have that αϕ = e−1∑+∞
k=1

kd

k! .

Proof. We have for x ≥ 1:

αϕ(x) = E[Poi(x)d]
ϕ(x) =

e−x
∑+∞
k=0 k

d xk

k!
ϕ(x) = e−x

+∞∑
k=0

kd
xk−d

k! .

Then:

α′ϕ(x) = − αϕ(x) + e−x
+∞∑
k=1

(k − d)kdx
k−d−1

k!

= − αϕ(x) + e−x
+∞∑
k=0

(k + 1− d)(k + 1)d xk−d

(k + 1)!

= − αϕ(x) + e−x
(

(1− d)x−d +
+∞∑
k=1

(k + 1− d)(k + 1)d−1x
k−d

k!

)

= e−xx−d
(

1− d+
+∞∑
k=1

(
k + 1− d
k + 1 (k + 1)d − kd

)
xk

k!

)
.

(3.31)

But the function f(k) = k+1−d
k+1 (k + 1)d − kd is positive on R∗+, so we get that α′ϕ(x) > 0

for x ≥ 1, thus αϕ(x) is increasing from 1 to +∞, so αϕ = αϕ(1) = e−1∑+∞
k=1

kd

k! .

3.5.3 NP-hardness of δ, h-AryGapLabelCover

Proof of Proposition 3.5. We reduce from the Label Cover problem described in [DMMS20]
which is known to be an NP-hard problem. The main idea of this reduction is the usual
equivalence between bipartite graphs and hypergraphs.

De�nition 3.5. A Label Cover instance L = (A t B,E, [L], [R], {πe}e∈E) consists of a
bi-regular bipartite graph (A t B,E) with right degree t, alphabet sets [L], [R] and for
every edge e ∈ E, a constraint πe : [L]→ [R]. A labeling of L is a function σ : A→ [L].
We say that σ strongly satis�es a right vertex v ∈ B if for every two neighbors u, u′ of v, we
have π(u,v)(σ(u)) = π(u′,v)(σ(u′)). Moreover, we say that σ weakly satis�es a right vertex
v ∈ B if there exists two neighbors u, u′ of v such that π(u,v)(σ(u)) = π(u′,v)(σ(u′)).

Theorem 3.34 (δ-Gap-Label-Cover(t, R) from [DMMS20]). For any �xed integer t ≥ 2
and �xed δ > 0, there exists R0 such that for any integer R ≥ R0, it is NP-hard for Label

Cover instances L = (A t B,E, [L], [R], {πe}e∈E) with right degree t and right alphabet

[R] to distinguish between:
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YES: There exists a labeling σ that strongly satis�es all the right vertices.

NO: No labeling weakly satis�es more than δ fraction of the right vertices.

The reduction is the following. From δ-Gap-Label-Cover(t, R), we take h = t and the
same parameters δ,R. Given an instance L = (A t B,E, [L], [R], {πe}e∈E), we take
G = (A,E′, [L], [R], {π′e′,v}e′∈E′,v∈e′) with E′ = {N(b), b ∈ B} with N(b) the set of
neighbors of b inL, and π′e′,v = π′N(b),v := πv,b since v ∈ N(b). Since (AtB,E) is bipartite
and biregular, we get that our hypergraph has all hyperedges of size h = |N(b)| = t, and
that it is regular from the regular left degree of (A tB,E). By construction, the notion of
weakly and strongly satis�ed is the same in both cases, as well as the labelings, and thus
we have the NP-hardness of δ, h-AryGapLabelCover.
Note that both problems are in fact linearly equivalent since we could do the same reduction
backwards.

3.5.4 Proof of Existence of Partitioning Systems

Proof of Proposition 3.6. The existential proof is based on the probabilistic method. We
take Pi an h-equi-sized uniform random xϕ-cover of [n]. Hence in the collection Pi =
(Pi,1, . . . , Pi,h), each of the h subsets is of cardinality xϕn

h . Write P = (P1, . . . ,PR). We
have that for any a ∈ [n],P(a ∈ Pi,j) = xϕ

h . Note that these events are independent for
di�erent is.
By construction, the �rst condition is ful�lled. Let us prove the second one.
Fix T ⊆ [R] and Q := {Pi,j(i) : i ∈ T} for some function j : T → [h]. We have for
a ∈ [n]:

E[Cϕa (Q)] = E[ϕ(|Q|a)] = E
[
ϕ
(∣∣∣{i ∈ T : a ∈ Pi,j(i)}

∣∣∣)] .
But the random variables {Xa

i := 1a∈Pi,j(i)}i∈T are independent and Xa
i ∼ Ber(xϕh ), so

Xa :=
∣∣∣{i ∈ T : a ∈ Pi,j(i)}

∣∣∣ =
∑
i∈T X

a
i ∼ Bin(|T |, xϕh ), and thus:

E[Cϕa (Q)] = E
[
ϕ

(
Bin

(
|T |, xϕ

h

))]
= ψϕ|T |,h .

Since |Q|a ≤ |Q| ≤ R and ϕ nondecreasing, we have 0 ≤ Cϕa (Q) ≤ ϕ(R). The random
variables {Cϕa (Q)}a∈[n] are not independent in general. However, we will show that
they are negatively associated (see De�nition 2.2), thus we can apply the version of the
Cherno�-Hoe�ding bound described in Proposition 2.9 to get:

P

∣∣∣∣∣∣ 1n
∑
a∈[n]

Cϕa (Q)− ψϕ|T |,h

∣∣∣∣∣∣ > η

 ≤ 2 exp
(
−2
(

η

ϕ(R)

)2
n

)
.

Note that Cϕa (Q) = ϕ(|Q|a) = ϕ(Xa) is a nondecreasing function of {Xa
i }i∈[R], since

ϕ is nondecreasing and Xa =
∑
i∈T X

a
i . Thus in order to show that {Cϕa (Q)}a∈[n] are

negatively associated, it su�ces to show that {Xa
i }i∈[R],a∈[n] are negatively associated by

Proposition 2.6.
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For �xed i ∈ [R], {Xa
i }a∈[n] are negatively associated because it corresponds to a permuta-

tion distribution of (0, . . . , 0, 1, . . . , 1), with n− xϕn
h zeros and xϕn

h ones, since it describes
a random subset of size xϕn

h ; see De�nition 2.3 and Proposition 2.8. Then, using the fact
that the families {Xa

i }a∈[n] are mutually independent, we obtain that {Xa
i }i∈[R],a∈[n] are

negatively associated by Proposition 2.7.
Since there are at most (h+ 1)R choices of T and Q, a union bound gives:

P
(
∃C,Q :

∣∣∣Cϕ(Q)− ψϕ|T |,hn
∣∣∣ > ηn

)
≤ 2(h+ 1)R exp

(
−2
(

η

ϕ(R)

)2
n

)
.

Thus with probability at least 9/10, we have that
∣∣∣Cϕ(Q)− ψϕ|T |,hn

∣∣∣ ≤ ηn, since we have
taken n ≥ η−2Rϕ(R)2 log(20(h+ 1)). So there must exists some choice of P that satis�es
the �rst and second constraints of partitioning systems. Thus, we can enumerate over all
choices of P in time exp(Rn log(n)) · poly(h) to �nd such a partitioning system.

3.5.5 Proof of Theorem 3.15

Proof. We show that ϕ-Resource Allocation corresponds to ϕ-MaxCoverage under a
matroid constraint. Given an instance of ϕ-Resource Allocation, consider the partition
matroidM on [

∑
i∈[k]mi] := [m1]+. . .+[mk], where (Bi)i∈[k] := ([mi])i∈[k] is a partition

of the ground set and the cardinality constraint for each i is to di = 1.
Here, I ⊆ [

∑
i∈[k]mi] is an independent set of the matroid if and only if |I ∩Bi| ≤ di = 1,

for all i ∈ [k]. This corresponds to each agent i ∈ [k] selecting at most one element from the
available mi choices. In other words, we have a bijection f between tuples (A1, . . . , Ak) ∈
A1× . . .×Ak and maximal independent sets (bases) ofM such thatWϕ(A) = Cϕ(f(A)).
Therefore, Theorem 3.3 leads to a polynomial-time αϕ-approximation algorithm for ϕ-
Resource Allocation.
For the hardness part of the theorem, the proof is exactly the same as in Theorem 3.4, but
instead of F := {F vβ , v ∈ V, β ∈ [L]} and k = |V |, we take k = |V | to be the number of
agents and Ai := {F viβ , β ∈ [L]} where V = {v1, . . . , vk}. Hence, instead of subsets of F
of size k, we only consider one set F vβ ∈ F , for each v ∈ V . The function we maximize in
the reduction remains unchanged.
To establish completeness, we note that the subset described is already of the right form
and, hence, the arguments continue to hold. For proving soundness, the constraint on the
shape of the subset of F only helps us, since it gives more constraints on the given subset
from which we want to construct a labeling. Therefore, the NP-hardness follows.
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Chapter4

Multiple-Access Channel Coding

With Non-Signaling Correlations

Multiple-access channels (MACs for short) are one of the simplest models of network
communication settings, where two senders aim to transmit individual messages to one
receiver. The capacity of such channels has been entirely characterized by the seminal works
by Liao [Lia73] and Ahlswede [Ahl73] in terms of a simple single-letter formula. From the
point of view of quantum information, it is natural to ask whether additional resources,
such as quantum entanglement or more generally non-signaling correlations between the
parties, change the capacity region. A non-signaling correlation is a multipartite input-
output box shared between parties that, as the name suggests, cannot by itself be used to
send information between parties. However, non-signaling correlations such as the ones
generated by measurements of entangled quantum particles, can provide an advantage for
various information processing tasks and nonlocal games. The study of such correlations has
given rise to the quantum information area known as nonlocality [BCP+14]. For example,
in the context of channel coding, there exists classical point-to-point channels for which
quantum entanglement between the sender and the receiver can increase the optimal success
probability for sending one bit of information with a single use of the channel [PLM+11,
BF18]. However, for classical point-to-point channels, entanglement [BBC+93, BSST99]
and even more generally non-signaling correlations [Mat12] do not change the capacity of
the channel.
In the network setting, behavior is di�erent. Quek and Shor showed in [QS17] the exis-
tence of two-sender two-receiver interference channels with gaps between their classical,
quantum-entanglement assisted and non-signaling assisted capacity regions. Following
this result, Leditzky et al. [LALS20, SLSS22] showed that quantum entanglement shared
between the two senders of a MAC can strictly enlarge the capacity region. This has been
demonstrated through channels that are constructed from two-player nonlocal games,
such as the Magic Square game [Mer90, Per90, Ara02, BBT05], by translating known gaps
between classical and quantum values of games into MAC capacity gaps. Other instances
of network channels for which entanglement increases the capacity region were studied
in [Noe20, ND20, YRB20, YRB23]. This raises the following natural question: Can non-
signaling correlations lead to signi�cant gains in capacity for natural MACs? Can we �nd a
characterization of the capacity region of the MAC when non-signaling resources between
the parties are allowed?
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Contributions We focus here on the MAC with two senders and we allow arbitrary
tripartite non-signaling correlations between the two senders and the receiver. This is the
most optimistic setting, in the sense that we only enforce the non-signaling constraints
between the parties, and also the mathematically simplest setting. Even if not all non-
signaling correlations are feasible within quantum theory, the setting we study here can be
seen as a tractable and physically motivated outer approximation of what can be achieved
with quantum theory. In fact, the quantum set is notoriously complicated and deciding
membership in this set is not computable [JNV+20]. We note that very recently, Pereg et
al. [PDB23] found a regularized characterization for the capacity of MACs with quantum
entanglement shared between the two senders. Unfortunately, even the associated single-
letter inner bound is very di�cult to evaluate for any �xed channel.
We �rst show that the multiple-access channel coding problem, which entails maximizing
the success probability of sending a �xed number of messages through a MAC, cannot be
approximated in polynomial time within any constant ratio, under a complexity hypothesis
on random k-SAT formulas; see Theorem 4.5.
We denote by SNS(W,k1, k2) the success probability of the best non-signaling assisted
(k1, k2)-code for the MACW . Contrary to the unassisted value that we denote S(W,k1, k2),
SNS(W,k1, k2) can be formulated as a linear program; see Proposition 4.7. Furthermore,
using symmetries, we have developed a linear program computing SNS for a �nite number
of copies of a MAC W with a size growing polynomially in the number of copies; see
Theorem 4.12 and Corollary 4.13. Using this result, we describe a method to derive inner
bounds on the non-signaling assisted capacity region achievable with zero error; see
Proposition 4.17. Applied to the binary adder channel, which maps (x1, x2) ∈ {0, 1}2 to
x1 + x2 ∈ {0, 1, 2}, we show that the sum-rate log2(72)

4 ' 1.5425 can be reached with
zero error, which beats the maximum classical sum-rate capacity of 3

2 ; see Theorem 4.18.
For noisy channels, where the zero-error non-signaling assisted capacity region is trivial,
we can use concatenated codes to obtain achievable points in the capacity region; see
Proposition 4.20. Applied to a noisy version of the binary adder channel, we show that
non-signaling assistance still improves the sum-rate capacity.
In order to �nd outer bounds, we de�ne a relaxed notion of non-signaling assistance and
characterize its capacity region by a single-letter expression, which is the same as the
well-known expression for the capacity of the MAC (see Theorem 4.1) except that the
inputs X1 and X2 are not required to be independent; see Theorem 4.25. This gives in
particular an outer bound on the non-signaling assisted capacity region; see Corollary 4.32.
The main open problem that we leave is whether this outer bound on the non-signaling
capacity region is tight. We give an example of a channel for which the relaxed notion
of non-signaling assistance gives a strictly larger success probability than non-signaling
assistance but we do not know if such a gap can persist for the capacity region.
We also study the case where non-signaling assistance is shared only between each sender
and the receiver independently. Note that no assistance is shared between the senders. We
show that this capacity region is the same as the capacity region without any assistance;
see Theorem 4.34 and Corollary 4.35. We note that a similar setting with independent
entangled states between each sender and the receiver was studied by Hsieh et al. [HDW08]:
a regularized characterization of the capacity region is obtained for any quantum MAC in
this setting. It is possible to show using their result that for a classical MAC, this type of
entanglement does not change the capacity region given in Theorem 4.1.
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Organization In Section 4.1, we de�ne precisely the di�erent notions of MAC capacities:
the classical capacity (i.e. without any assistance) as well as the non-signaling assisted
capacity. In Section 4.2, we show that no polynomial-time constant approximation for
multiple-access channel coding exists if a complexity hypothesis on random k-SAT formulas
is true. In Section 4.3, we address computational complexity questions concerning the
probability of success of the best classical coding strategy and the best non-signaling
strategy for a MAC. In Section 4.4, we develop numerical methods to �nd inner bounds on
non-signaling assisted capacity regions, and apply those to the binary adder channel and
a noisy variant. In Section 4.5, we de�ne our relaxation of non-signaling assistance, we
characterize its capacity region by a single-letter formula, and apply those to the binary
adder channel. Finally, in Section 4.6, we show that the capacity region with non-signaling
assistance shared only between each sender and the receiver independently is the same as
without assistance.

4.1 Multiple-Access Channels Capacity Regions

4.1.1 Classical Capacities

The coding problem for a MAC W : X1 ×X2 → Y can be stated in the following way. We
want to encode messages from [k1] into X1 and messages from [k2] into X2 independently.
They are given as inputs to W , which results in a random output in Y . From this output,
we want to decode back the original messages in [k1] and [k2]. We will call e1 : [k1]→ X1
the �rst encoder, e2 : [k2]→ X2 the second encoder and d : Y → [k1]× [k2] the decoder.
The scenario is depicted in Figure 4.1.

e1

W

e2

d

x1

x2

y

i1

i2

(j1, j2)

Figure 4.1 – Coding for a MAC W .

We want to maximize over all encoders e1, e2 and decoders d the probability of successfully
encoding and decoding the messages through W , i.e. the probability that j1 = i1 and
j2 = i2, given that the input messages are taken uniformly in [k1] and [k2]. We call this

61



4. Multiple-Access Channel Coding With Non-Signaling Correlations

quantity S(W,k1, k2), which is characterized by the following optimization program:

S(W,k1, k2) := maximize
e1,e2,d

1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)d(i1i2|y)

subject to
∑
x1∈X1

e1(x1|i1) = 1,∀i1 ∈ [k1]

∑
x2∈X2

e2(x2|i2) = 1,∀i2 ∈ [k2]

∑
j1∈[k1],j2∈[k2]

d(j1j2|y) = 1, ∀y ∈ Y

e1(x1|i1), e2(x2|i2), d(j1j2|y) ≥ 0
(4.1)

Proof. One should note that we allow randomized encoders and decoders for general-
ity reasons, although the value of the program is not changed as it is convex. Besides
that remark, let us name I1, I2, J1, J2, X1, X2, Y the random variables corresponding to
i1, i2, j1, j2, x1, x2, y in the coding and decoding process. Then, for given e1, e2, d and W ,
the objective value of the previous program is:

P (J1 = I1, J2 = I2) = 1
k1k2

∑
i1,i2

P (J1 = I1, J2 = I2|I1 = i1, I2 = i2)

= 1
k1k2

∑
i1,i2,x1,x2

e1(x1|i1)e2(x2|i2)P (J1 = i1, J2 = i2|i1, i2, X1 = x1, X2 = x2)

= 1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)P (J1 = i1, J2 = i2|i1, i2, x1, x2, Y = y)

= 1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)d(i1, i2|y) .

(4.2)

The (classical) capacity region of a MAC W , as de�ned for example in [CT01], can be
reformulated in terms of the previous success probability S using De�nition 2.12 and by
C(W ) := C[S](W ), and its zero-error equivalent is de�ned by C0(W ) := C0[S](W ).
The capacity region C(W ) is characterized by a single-letter formula:

Theorem 4.1 (Liao [Lia73] and Ahlswede [Ahl73]). C(W ) is the closure of the convex hull
of all rate pairs (R1, R2) satisfying:

R1 < I(X1 : Y |X2) , R2 < I(X2 : Y |X1) , R1 +R2 < I((X1, X2) : Y ) ,

for (X1, X2) ∈ X1×X2 following a product law PX1 ×PX2 , and Y ∈ Y the outcome ofW
on inputs X1, X2.

We will also consider what we call the sum success probability Ssum(W,k1, k2), de�ned
using P(J1=I1)+P(J2=I2)

2 rather than P (J1 = I1, J2 = I2) as an objective value, which leads
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to the following optimization program:

Ssum(W,k1, k2) := maximize
e1,e2,d1,d2

1
2k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)d1(i1|y)

+ 1
2k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)d2(i2|y)

subject to
∑
x1∈X1

e1(x1|i1) = 1, ∀i1 ∈ [k1]

∑
x2∈X2

e2(x2|i2) = 1, ∀i2 ∈ [k2]

∑
j1∈[k1]

d1(j1|y) = 1, ∀y ∈ Y

∑
j2∈[k2]

d2(j2|y) = 1, ∀y ∈ Y

e1(x1|i1), e2(x2|i2), d1(j1|y), d2(j2|y) ≥ 0
(4.3)

Note that we used independent decoders d1(j1|y), d2(j2|y) rather than a global d(j1j2|y)
here. This does not change the value of the optimization program. Indeed, since the
program is convex, an optimal solution can be found on the extremal points of the search
space. Thus, if we had used the variable d(j1j2|y), we could always take it to be a function
d from Y to [k1]× [k2]. Taking d1, d2 as the �rst and second coordinates of that function
satis�es the equality d(j1j2|y) = d1(j1|y)d2(j2|y), and therefore, the value of the program
is the same in both cases. Note that it is also true for the program computing S(W,k1, k2).
As for the usual (joint) success probability, we can de�ne the sum-capacity region using
De�nition 2.12 by Csum(W ) := C[Ssum](W ). It turns out those two notions of success
de�ne the same capacity region:

Proposition 4.2. C(W ) = Csum(W )

Proof. Let us focus on error probabilities rather than success ones. Call them respectively
E(W,k1, k2) := 1− S(W,k1, k2) and Esum(W,k1, k2) := 1− Ssum(W,k1, k2). Let us �x a
solution e1, d1, e2, d2 of the optimization program computing S(W,k1, k2). Let us remark
�rst that:

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2) = k1k2 ,

thus, the value of the maximum error for those encoders and decoders, which we call
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E(W,k1, k2, e1, d1, e2, d2), is:

1− 1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)d1(i1|y)d2(i2|y)

= 1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)

− 1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)d1(i1|y)d2(i2|y)

= 1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2) [1− d1(i1|y)d2(i2|y)] .

(4.4)

Similarly, the value of the sum error for those encoder and decoders, which we call
Esum(W,k1, k2, e1, d1, e2, d2), is:

1− 1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)d1(i1|y) + d2(i2|y)
2

= 1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)
[
1− d1(i1|y) + d2(i2|y)

2

]
.

(4.5)

However, for x, y ∈ [0, 1], we have that:

1− xy ≥ max (1− x, 1− y) ≥ 1− x+ y

2 ,

and:
1− xy ≤ (1− x) + (1− y) = 2

(
1− x+ y

2

)
.

This means that, for all e1, d1, e2, d2, we have:

Esum(W,k1, k2, e1, d1, e2, d2) ≤ E(W,k1, k2, e1, d1, e2, d2) ,

and:
E(W,k1, k2, e1, d1, e2, d2) ≤ 2Esum(W,k1, k2, e1, d1, e2, d2) ,

so, maximizing over all e1, d1, e2, d2, we get:

Esum(W,k1, k2) ≤ E(W,k1, k2) ≤ 2Esum(W,k1, k2) .

Thus, up to a multiplicative factor 2, the error is the same. In particular, when one of those
errors tends to zero, the other one tends to zero as well. This implies that the capacity
regions are the same.

4.1.2 Non-Signaling Assisted Capacities

Three-party non-signaling assistance We now consider the case where the senders
and the receiver are given non-signaling assistance. This resource, which is a theoretical
but easier to manipulate generalization of quantum entanglement, can be characterized as
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follows. A tripartite non-signaling box is described by a joint conditional probability distri-
bution P (x1x2(j1j2)|i1i2y) such that the marginal from any two parties is independent of
the removed party’s input, i.e., we have:

∀x2, j1, j2, i1, i2, y, i
′
1,

∑
x1

P (x1x2(j1j2)|i1i2y) =
∑
x1

P (x1x2(j1j2)|i′1i2y) ,

∀x1, j1, j2, i1, i2, y, i
′
2,

∑
x2

P (x1x2(j1j2)|i1i2y) =
∑
x2

P (x1x2(j1j2)|i1i′2y) ,

∀x1, x2, i1, i2, y, y
′,

∑
j1,j2

P (x1x2(j1j2)|i1i2y) =
∑
j1,j2

P (x1x2(j1j2)|i1i2y′) .

(4.6)

This implies that one can consider for example P (x1x2|i1i2) since it does not depend
on y, or even P (x1|i1) since it does not depend on i2, y. Then, in our coding scenario,
when the senders and the receiver are given non-signaling assistance, it means that they
share a tripartite non-signaling box, the behavior of which is described by P . In this case,
the expression e1(x1|i1)e2(x2|i2)d(j1j2|y) in (4.1) is replaced by P (x1x2(j1j2)|i1i2y), as
depicted in Figure 4.2.

e1 e2 d

i1 i2

(j1, j2)

W

x1
x2

y

P (x1x2(j1j2)|i1i2y)

i1 i2

(j1, j2)

W

x1
x2

y

Figure 4.2 – A non-signaling box P replacing e1, e2 and d in the coding problem for the
MAC W .

The cyclicity of Figure 4.2 is at �rst sight counter-intuitive. Note �rst that P being a
non-signaling box is completely independent of W : in particular, the variable y does not
need to follow any law in the de�nition of P being a non-signaling box. Therefore, the
remaining ambiguity is the apparent need to encode and decode at the same time. However,
since P is a non-signaling box, we do not need to do both at the same time. Indeed,
∀y, P (x1x2|i1i2) = P (x1x2|i1i2y) by the non-signaling property of P . Thus, one can get
the outputs x1, x2 on inputs i1, i2 without access to y, as that knowledge won’t a�ect the
laws of x1, x2. Then y follows the law given by W given those x1, x2. Finally, given access
to y, the decoding process is described by:

P ((j1j2)|i1i2yx1x2) = P (x1x2(j1j2)|i1i2y)
P (x1x2|i1i2y) = P (x1x2(j1j2)|i1i2y)

P (x1x2|i1i2) ,

so we recover globally P ((j1j2)|i1i2yx1x2) × P (x1x2|i1i2) = P (x1x2(j1j2)|i1i2y) the
prescribed conditional probability. The non-signaling condition ensures that it is possible
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4. Multiple-Access Channel Coding With Non-Signaling Correlations

to consider the conditional probabilities of each party independently. This clari�es how
one can e�ectively encode and then decode messages through a non-signaling box.
As in the unassisted case, we want to maximize over all non-signaling boxes P the proba-
bility of successfully encoding and decoding the messages through W , i.e. the probability
that j1 = i1 and j2 = i2, given that the input messages are taken uniformly in [k1] and [k2].
We call this quantity SNS(W,k1, k2), which is characterized by the following optimization
program:

SNS(W,k1, k2) := maximize
P

1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)P (x1x2(i1i2)|i1i2y)

subject to
∑
x1

P (x1x2(j1j2)|i1i2y) =
∑
x1

P (x1x2(j1j2)|i′1i2y)∑
x2

P (x1x2(j1j2)|i1i2y) =
∑
x2

P (x1x2(j1j2)|i1i′2y)∑
j1,j2

P (x1x2(j1j2)|i1i2y) =
∑
j1,j2

P (x1x2(j1j2)|i1i2y′)∑
x1,x2,j1,j2

P (x1x2(j1j2)|i1i2y) = 1

P (x1x2(j1j2)|i1i2y) ≥ 0
(4.7)

Since it is given as a linear program, the complexity of computing SNS(W,k1, k2) is poly-
nomial in the number of variables and constraints (see for instance Section 7.1 of [GM07]),
which is a polynomial in |X1|, |X2|, |Y|, k1 and k2. Also, as it is easy to check that a
classical strategy is a particular case of a non-signaling assisted strategy, we have that
SNS(W,k1, k2) ≥ S(W,k1, k2).
As for the unassisted case, we de�ne the non-signaling assisted capacity region using
De�nition 2.12 and SNS by CNS(W ) := C[SNS](W ), and its zero-error equivalent is de�ned
by CNS

0 (W ) := C0[SNS](W ).

Independent non-signaling assistance One can also consider the case where non-
signaling assistance is shared independently between the �rst sender and the receiver
as well as between the second encoder and the receiver, which we call independent non-
signaling assistance. The precise scenario is depicted in Figure 4.3:
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e1 d1 e2 d2

i1 i2

j1 j2

W

x1

x2

y

P 1(x1j1|i1y) P 2(x2j2|i2y)

i1 i2

j1 j2

W

x1

x2

y

Figure 4.3 – Non-signaling boxes P 1, P 2 replacing e1, d1 and e2, d2 in the coding problem
for the MAC W .

This leads to the following de�nition of the success probability SNSSR(W,k1, k2):

maximize
P 1,P 2

1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)P 1(x1i1|i1y)P 2(x2i2|i2y)

subject to
∑
x1

P 1(x1j1|i1y) =
∑
x1

P 1(x1j1|i′1y)∑
j1

P 1(x1j1|i1y) =
∑
j1

P 1(x1j1|i1y′)∑
x1,j1

P 1(x1j1|i1y) = 1

∑
x2

P 2(x2j2|i2y) =
∑
x2

P 2(x2j2|i′2y)∑
j2

P 2(x2j2|i2y) =
∑
j2

P 2(x2j2|i2y′)∑
x2,j2

P 2(x2j2|i2y) = 1

P 1(x1j1|i1y), P 2(x2j2|i2y) ≥ 0

(4.8)
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4. Multiple-Access Channel Coding With Non-Signaling Correlations

As before, one can also consider the sum-success probability SNSSRsum (W,k1, k2):

maximize
P 1,P 2

1
2k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)P 1(x1i1|i1y)
∑
j2

P 2(x2j2|i2y)

+ 1
2k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)P 2(x2i2|i2y)
∑
j1

P 1(x1j1|i1y)

subject to
∑
x1

P 1(x1j1|i1y) =
∑
x1

P 1(x1j1|i′1y)∑
j1

P 1(x1j1|i1y) =
∑
j1

P 1(x1j1|i1y′)∑
x1,j1

P 1(x1j1|i1y) = 1

∑
x2

P 2(x2j2|i2y) =
∑
x2

P 2(x2j2|i′2y)∑
j2

P 2(x2j2|i2y) =
∑
j2

P 2(x2j2|i2y′)∑
x2,j2

P 2(x2j2|i2y) = 1

P 1(x1j1|i1y), P 2(x2j2|i2y) ≥ 0

(4.9)

We de�ne the independent non-signaling assisted capacity (resp. sum-capacity) region
using De�nition 2.12 by CNSSR(W ) := C[SNSSR ](W ) (resp. CNSSRsum (W ) := C[SNSSRsum ](W )).
It turns out those two notions of success de�ne the same capacity region:

Proposition 4.3. CNSSR(W ) = CNSSR
sum

(W )

Proof. Given non-signaling boxes P 1, P 2, the maximum success probability of encoding
and decoding correctly with those is given by:

SNSSR(W,k1, k2, P
1, P 2) := 1

k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)P 1(x1i1|i1y)P 2(x2i2|i2y) .

This should be compared to the sum success probability of encoding and decoding correctly
with those, which we call SNSSRsum (W,k1, k2, P

1, P 2) and is equal to:

1
2k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)P 1(x1i1|i1y)
∑
j2

P 2(x2j2|i2y)

+ 1
2k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)P 2(x2i2|i2y)
∑
j1

P 1(x1j1|i1y) .
(4.10)

Similarly to what was done in Proposition 4.2, we focus on error probabilities rather than
success probabilities. We have that:

1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)
∑
j1,j2

P 1(x1j1|i1y)P 2(x2j2|i2y) = 1 ,
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4.1. Multiple-Access Channels Capacity Regions

so we get that ENSSR(W,k1, k2, P
1, P 2) is equal to:

1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)
∑
j1,j2

P 1(x1j1|i1y)P 2(x2j2|i2y)

− 1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)P 1(x1i1|i1y)P 2(x2i2|i2y)

=
∑

i1,i2,x1,x2,y

W (y|x1x2)
∑

(j1,j2)6=(i1,i2)
P 1(x1j1|i1y)P 2(x2j2|i2y) .

(4.11)

On the other hand, since:∑
j1,j2

P 1(x1j1|i1y)P 2(x2j2|i2y)− P 1(x1i1|i1y)
∑
j2

P 2(x2j2|i2y)

=
∑

j1 6=i1,j2
P 1(x1j1|i1y)P 2(x2j2|i2y) ,

(4.12)

and symetrically, we get that ENSSRsum (W,k1, k2, P
1, P 2) is equal to:

1
2k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)
∑

j1 6=i1,j2
P 1(x1j1|i1y)P 2(x2j2|i2y)

+ 1
2k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)
∑

j1,j2 6=i2
P 1(x1j1|i1y)P 2(x2j2|i2y)

= 1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)
∑

j1 6=i1,j2 6=i2
P 1(x1j1|i1y)P 2(x2j2|i2y)

+ 1
k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)
∑

(j1,j2)∈S P
1(x1j1|i1y)P 2(x2j2|i2y)

2 ,

(4.13)

with S := {(j1, i2) : j1 ∈ [k1]− {i1}} ∪ {(i1, j2) : j2 ∈ [k2]− {i2}}. However, we have
that:∑
j1 6=i1,j2 6=i2

P 1(x1j1|i1y)P 2(x2j2|i2y) +
∑

(j1,j2)∈S P
1(x1j1|i1y)P 2(x2j2|i2y)

2

≤
∑

j1 6=i1,j2 6=i2
P 1(x1j1|i1y)P 2(x2j2|i2y) +

∑
(j1,j2)∈S

P 1(x1j1|i1y)P 2(x2j2|i2y)

=
∑

(j1,j2)6=(i1,i2)
P 1(x1j1|i1y)P 2(x2j2|i2y)

≤ 2

 ∑
j1 6=i1,j2 6=i2

P 1(x1j1|i1y)P 2(x2j2|i2y) +
∑

(j1,j2)∈S P
1(x1j1|i1y)P 2(x2j2|i2y)

2

 .

(4.14)
This implies that:

ENSSR
sum (W,k1, k2, P

1, P 2) ≤ ENSSR(W,k1, k2, P
1, P 2) ≤ 2ENSSR

sum (W,k1, k2, P
1, P 2) ,

and by maximizing over all P 1 and P 2:

ENSSR
sum (W,k1, k2) ≤ ENSSR(W,k1, k2) ≤ 2ENSSR

sum (W,k1, k2) .

Thus, as before, the capacity regions are the same.
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4. Multiple-Access Channel Coding With Non-Signaling Correlations

4.2 Hardness of Approximation for Multiple-Access

Channel Coding

Since MACs are more general than point-to-point channels (by de�ning W (y|x1x2) :=
Ŵ (y|x1) for Ŵ a point-to-point channel and looking only at its �rst input), computing
S(W,k1, k2) is NP-hard, and it is even NP-hard to approximate within a better ratio than
1− e−1, as a consequence of the hardness result for point-to-point channels from [BF18].
On the other hand, it has been shown in [LALS20] that it is NP-hard to decide whether a
rate pair belongs to the classical capacity region of a MAC.
The goal of this section is to show that, under some reasonable hardness assumptions,
the multiple-access channel coding problem cannot be approximated in polynomial time
within a Ω(1) factor. We will achieve this through a simple reduction from the bipartite
version of the densest k-subgraph problem [FKP01], where one aims at �nding a subgraph
of k vertices with the highest number of edges. In the bipartite version, given a bipartite
graph G = (A t B,E) and two parameters k1 and k2, the goal is to �nd subsets S ⊆ A
and T ⊆ B such that |S| = k1, |T | = k2 with the maximum number of edges contained
in S ∪ T , i.e. |(S × T ) ∩ E|. With a simple reduction from the maximum edge biclique
problem [Pee03], the bipartite densest subgraph problem is NP-complete.
A well-known result by Alon et al. [AAM+11] shows that, under the following complex-
ity hypothesis on random clauses with k literals (k-SAT formulas) introduced by Feige
in [Fei02], there is no polynomial-time Ω(1)-approximation algorithm for the bipartite
densest subgraph problem; see [AAM+11] for further details.

Hypothesis 4.1 ([Fei02]). For some constant c > 0, for every k, for ∆ a su�ciently large

constant independent of n, there is no polynomial-time algorithm that on most random k-SAT
formulas with n variables and m = ∆n clauses outputs typical, but never outputs typical
on k-SAT formulas with at leastm2−c

√
k
satis�able clauses.

We will consider the following reformulation of the multiple-access channel coding problem:

Proposition 4.4. Given a MACW and integers k1, k2, the multiple-access channel coding

problem entails maximizing:

fW (S, T ) := 1
|S||T |

∑
y∈Y

max
x1∈S,x2∈T

W (y|x1x2) ,

over all sets S ⊆ X1, T ⊆ X2 with |S| = k1, |T | = k2.

Proof. As the multiple-access channel coding problem is a convex program, its optimal
solution can be found on integer solutions, i.e. when e1, e2 and d are functions. Note that
this restriction does not a�ect the hardness of the problem as a deterministic code with a
better or equal value can be retrieved easily from any code.
Therefore, given encoders e1, e2, the objective value becomes:

max
d

1
k1k2

∑
i1,i2,y

W (y|e1(i1)e2(i2))1d(y)=(i1,i2) = 1
k1k2

∑
y

max
i1,i2

W (y|e1(i1)e2(i2)) ,
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4.2. Hardness of Approximation for Multiple-Access Channel Coding

by taking d(y) ∈ argmaxi1,i2{W (y|e1(i1)e2(i2))}. Finally, optimizing over functions e1, e2
is the same as optimizing over sets S, T of size k1, k2 (corresponding to their images). Thus,
we have that the multiple-access channel coding can be reformulated as:

max
S⊆X1,T⊆X2:|S|=k1,|T |=k2

1
|S||T |

∑
y∈Y

max
x1∈S,x2∈T

W (y|x1x2) .

The previously mentioned hardness of approximation for the bipartite densest subgraph
problem from [AAM+11] will imply the following hardness of approximation for the
multiple-access channel coding problem:

Theorem 4.5. Under Hypothesis 4.1, there is no polynomial-time Ω(1)-approximation algo-

rithm for the multiple-access channel coding problem.

Proof. Given a bipartite graph G = (A t B,E), we de�ne its associated MAC WG on
X1 := A,X2 := B and Y := A×B in the following way:

W ((a′, b′)|ab) =


1a=a′1b=b′ if (a, b) ∈ E ,

1
|A||B|

otherwise .
(4.15)

It is indeed a MAC as
∑
a′,b′W ((a′, b′)|ab) =

∑
a′,b′ 1a=a′1b=b′ = 1 if (a, b) ∈ E and∑

a′,b′W ((a′, b′)|ab) =
∑
a′,b′

1
|A||B| = 1 otherwise.

We claim the following linear relation between the objective functions of the bipartite
densest subgraph problem on G and the multiple-access channel coding problem on WG:

Lemma 4.6. For G = (A tB,E), S ⊆ A and T ⊆ B:

fWG
(S, T )− 1

|S||T |

1− 1
|A||B|

= |(S × T ) ∩ E|
|S||T |

.

Proof of Lemma 4.6. We have that:

fWG
(S, T ) = 1

|S||T |
∑
a′,b′

max
a∈S,b∈T

W ((a′, b′)|ab)

= 1
|S||T |

 ∑
(a′,b′)∈(S×T )∩E

max
a∈S,b∈T

W ((a′, b′)|ab) +
∑

(a′,b′) 6∈(S×T )∩E
max

a∈S,b∈T
W ((a′, b′)|ab)


= 1
|S||T |

 ∑
(a′,b′)∈(S×T )∩E

1 +
∑

(a′,b′) 6∈(S×T )∩E

1
|A||B|


= 1
|S||T |

(
|(S × T ) ∩ E|+ |A||B| − |(S × T ) ∩ E|

|A||B|

)
= 1
|S||T |

+ |(S × T ) ∩ E|
|S||T |

(
1− 1
|A||B|

)
,

(4.16)
which implies the claimed equality.
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Let us now assume that a polynomial-time constant approximation of the multiple-access
channel coding problem exists. Let us call λ ∈ (0, 1) the ratio of that algorithm. Then,
for any G = (A t B,E), k1, k2, we can apply our algorithm to WG, k1, k2 and get
Sapprox, Tapprox of size k1, k2 such that:

fWG
(Sapprox, Tapprox) ≥ λ · max

S,T :|S|=k1,|T |=k2
fWG

(S, T ) .

But, thanks to Lemma 4.6, we have that:

maxS,T :|S|=k1,|T |=k2 fWG
(S, T )− 1

k1k2

1− 1
|A||B|

=
maxS,T :|S|=k1,|T |=k2 |(S × T ) ∩ E|

k1k2
.

So in all, we have:

|(Sapprox × Tapprox) ∩ E|
k1k2

=
fWG

(Sapprox, Tapprox)− 1
k1k2

1− 1
|A||B|

≥
λ ·maxS,T :|S|=k1,|T |=k2 fWG

(S, T )− 1
k1k2

1− 1
|A||B|

= λ ·
maxS,T :|S|=k1,|T |=k2 fWG

(S, T )− 1
k1k2

1− 1
|A||B|

−
1−λ
k1k2

1− 1
|A||B|

= λ ·
maxS,T :|S|=k1,|T |=k2 |(S × T ) ∩ E|

k1k2
−

1−λ
k1k2

1− 1
|A||B|

,

(4.17)

and thus:

|(Sapprox × Tapprox) ∩ E| ≥ λ · max
S,T :|S|=k1,|T |=k2

|(S × T ) ∩ E| − 1− λ
1− 1

|A||B|
.

Let us consider instances of the bipartite densest subgraph problem with |E| ≥ min(k1, k2),
which implies directly that maxS,T :|S|=k1,|T |=k2 |(S × T ) ∩ E| ≥ min(k1, k2) by picking
min(k1, k2) edges and taking their endpoints to construct S and T . As |A||B| ≥ 2, we
have that 1−λ

1− 1
|A||B|

≤ 2. Then:

|(Sapprox × Tapprox) ∩ E| ≥ λ · max
S,T :|S|=k1,|T |=k2

|(S × T ) ∩ E| − 2

≥ (1− c)λ · max
S,T :|S|=k1,|T |=k2

|(S × T ) ∩ E|+ cλmin(k1, k2)− 2 for any c ∈ (0, 1)

=
(

1− 2
λmin(k1, k2)

)
λ · max

S,T :|S|=k1,|T |=k2
|(S × T ) ∩ E| ,

(4.18)
by choosing c = 2

λmin(k1,k2) . Finally, for instances such that k1, k2 ≥ 4
λ , we have that:

|(Sapprox × Tapprox) ∩ E| ≥ λ

2 · max
S,T :|S|=k1,|T |=k2

|(S × T ) ∩ E| .

Therefore, if a polynomial-time approximation of the multiple-access channel coding
problem of constant ratio λ exists, then we have a polynomial-time λ

2 -approximation of
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the bipartite densest subgraph problem for instances satisfying |E| ≥ min(k1, k2) and
k1, k2 ≥ 4

λ . Note that the bipartite densest subgraph problem can be solved in polynomial
time for instances which do not satisfy these constraints (as 1

λ is constant). Thus, we
have in all a constant polynomial-time approximation for the bipartite densest subgraph
problem, which is in contradiction with Hypothesis 4.1 as proved in [AAM+11]. Hence,
under Hypothesis 4.1, there is no polynomial-time Ω(1)-approximation algorithm for the
multiple-access channel coding problem.

4.3 Properties of Non-Signaling Assisted Codes

4.3.1 Symmetrization

One can prove an equivalent formulation of the linear program computing SNS(W,k1, k2)
with a number of variables and constraints polynomial in only |X1|, |X2| and |Y| and
independent of k1 and k2:

Proposition 4.7. For a MACW : X1 ×X2 → Y and k1, k2 ∈ N∗, we have:

SNS(W,k1, k2) = maximize

r,r1,r2,p

1
k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y

subject to

∑
x1,x2

rx1,x2,y = 1
∑
x1

r1
x1,x2,y = k1

∑
x1

rx1,x2,y∑
x2

r2
x1,x2,y = k2

∑
x2

rx1,x2,y∑
x1

px1,x2 = k1
∑
x1

r2
x1,x2,y∑

x2

px1,x2 = k2
∑
x2

r1
x1,x2,y

0 ≤ rx1,x2,y ≤ r1
x1,x2,y, r

2
x1,x2,y ≤ px1,x2

px1,x2 − r1
x1,x2,y − r

2
x1,x2,y + rx1,x2,y ≥ 0

(4.19)

Proof. One can check that given a solution of the original program, the following choice of
variables is a valid solution of the second program achieving the same objective value:

rx1,x2,y :=
∑
i1,i2

P (x1x2(i1i2)|i1i2y) , r1
x1,x2,y :=

∑
j1,i1,i2

P (x1x2(j1i2)|i1i2y) ,

r2
x1,x2,y :=

∑
j2,i1,i2

P (x1x2(i1j2)|i1i2y) , px1,x2 :=
∑

j1,j2,i1,i2

P (x1x2(j1j2)|i1i2y) .

(4.20)
Note that px1,x2 is well-de�ned since

∑
j1,j2,i1,i2 P (x1x2(j1j2)|i1i2y) is independent of y

as P is a non-signaling box.
For the other direction, given those variables, a non-signaling probability distribution
P (x1x2(j1j2)|i1i2y) achieving the same objective value is given by, for j1 6= i1 and
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j2 6= i2:

P (x1x2(i1i2)|i1i2y) := rx1,x2,y

k1k2
,

P (x1x2(j1i2)|i1i2y) :=
r1
x1,x2,y − rx1,x2,y

k1k2(k1 − 1) ,

P (x1x2(i1j2)|i1i2y) :=
r2
x1,x2,y − rx1,x2,y

k1k2(k2 − 1) ,

P (x1x2(j1j2)|i1i2y) :=
px1,x2 − r1

x1,x2,y − r
2
x1,x2,y + rx1,x2,y

k1k2(k1 − 1)(k2 − 1) .

(4.21)

This symmetrization can also be done for the program computing SNSSRsum (W,k1, k2):

Proposition 4.8.

SNSSR
sum

(W,k1, k2) = maximize

r1,r2,p1,p2

1
2k1k2

∑
x1,x2,y

W (y|x1x2)
(
p2
x2r

1
x1,y + p1

x1r
2
x2,y

)
= 1

2k1

∑
x1,y

W 1
p2,k2

(y|x1)r1
x1,y + 1

2k2

∑
x2,y

W 2
p1,k1

(y|x2)r2
x2,y

with W 1
p2,k2

(y|x1) := 1
k2

∑
x2

W (y|x1x2)p2
x2

and W 2
p1,k1

(y|x2) := 1
k1

∑
x1

W (y|x1x2)p1
x1

subject to

∑
x1

r1
x1,y = 1,

∑
x2

r2
x2,y = 1∑

x1

p1
x1 = k1,

∑
x2

p2
x2 = k2

0 ≤ r1
x1,y ≤ p

1
x1 , 0 ≤ r

2
x2,y ≤ p

2
x2

(4.22)

Proof. One can check that given a solution of the original program, the following choice of
variables is a valid solution of the second program achieving the same objective value:

r1
x1,y :=

∑
i1

P 1(x1i1|i1y) , p1
x1 :=

∑
j1,i1

P 1(x1j1|i1y) ,

r2
x2,y :=

∑
i2

P 2(x2i2|i2y) , p2
x2 :=

∑
j2,i2

P 2(x2j2|i2y) .
(4.23)

Note that p1
x1 and p2

x2 are well-de�ned since
∑
j1,i1 P

1(x1j1|i1y) and
∑
j2,i2 P

2(x2j2|i2y)
are independent of y as P 1 and P 2 are non-signaling boxes.
For the other direction, given those variables, non-signaling probability distributions
P 1(x1j1|i1y) and P 2(x2j2|i2y) achieving the same objective value are given by, for j1 6= i1
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and j2 6= i2:

P 1(x1i1|i1y) :=
r1
x1,y

k1
,

P 1(x1j1|i1y) :=
p1
x1,y − r

1
x1,y

k1(k1 − 1) ,

P 2(x2i2|i2y) :=
r2
x2,y

k2
,

P 2(x2j2|i2y) :=
p2
x2,y − r

2
x2,y

k2(k2 − 1) .

(4.24)

4.3.2 Properties of SNS(W,k1, k2), CNS(W ) and CNS
0 (W )

Proposition 4.9. For a MACW : X1 ×X2 → Y and k1, k2 ∈ N∗, we have:

1.
1

k1k2
≤ SNS(W,k1, k2) ≤ 1.

2. SNS(W,k1, k2) ≤ min
(
|X1|
k1
, |X2|
k2
, |Y|k1k2

)
.

3. If k′1 ≤ k1 and k′2 ≤ k2, then SNS(W,k′1, k′2) ≥ SNS(W,k1, k2).

4. For W ′ : X ′1 × X ′2 → Y ′ and k1, k2 ∈ N∗, we have SNS(W ⊗W ′, k1k
′
1, k2k

′
2) ≥

SNS(W,k1, k2) · SNS(W ′, k′1, k′2). In particular, for any positive integer n, we have

SNS(W⊗n, kn1 , kn2 ) ≥
[
SNS(W,k1, k2)

]n
andSNS(W⊗W ′, k1, k2) ≥ SNS(W,k1, k2).

Proof. 1. We will start by proving that SNS(W,k1, k2) ≥ 1
k1k2

. Take px1,x2 := k1k2
|X1||X2| ,

r1
x1,x2,y := px1,x2

k2
, r2

x1,x2,y := px1,x2
k1

and rx1,x2,y := px1,x2
k1k2

= 1
|X1||X2| . One can

easily check that it is indeed a valid solution of the linear program computing
SNS(W,k1, k2). Thus we have:

SNS(W,k1, k2) ≥ 1
k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y

= 1
k1k2

∑
x1,x2

1
|X1||X2|

∑
y

W (y|x1x2)

= 1
k1k2

∑
x1,x2

1
|X1||X2|

= 1
k1k2

.

(4.25)

Furthermore, in order to show that it is at most 1, let us consider an optimal solution
of SNS(W,k1, k2). We have:

SNS(W,k1, k2) = 1
k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y ≤
1

k1k2

∑
x1,x2,y

W (y|x1x2)px1,x2

= 1
k1k2

∑
x1,x2

px1,x2

∑
y

W (y|x1x2) = 1
k1k2

∑
x1,x2

px1,x2 = 1 ,

(4.26)
since

∑
x1,x2 px1,x2 = k1

∑
x1,x2 r

2
x1,x2,y = k1k2

∑
x1,x2 rx1,x2,y = k1k2.
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2. First let us show that SNS(W,k1, k2) ≤ |X1|
k1

(the case SNS(W,k1, k2) ≤ |X2|
k2

is
symmetric):

SNS(W,k1, k2) = 1
k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y

≤ 1
k1k2

∑
x1,x2,y

W (y|x1x2)r2
x1,x2,y

≤ 1
k1k2

∑
x2,y

∑
x′1

W (y|x′1x2)

 · (∑
x1

r2
x1,x2,y

)

= 1
k1k2

∑
x2,y

∑
x′1

W (y|x′1x2)

 · ( 1
k1

∑
x1

px1,x2

)

= 1
k2

1k2

∑
x1,x2

px1,x2

∑
x′1

(∑
y

W (y|x′1x2)
)

= |X1|
k2

1k2

∑
x1,x2

px1,x2 = |X1|
k1

.

(4.27)

Let us show now that SNS(W,k1, k2) ≤ |Y|
k1k2

:

SNS(W,k1, k2) = 1
k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y

≤ 1
k1k2

∑
y

(
max
x1,x2

W (y|x1x2)
) ∑
x1,x2

rx1,x2,y

≤ 1
k1k2

∑
y

∑
x1,x2

rx1,x2,y = |Y|
k1k2

.

(4.28)

3. Let us assume that k′1 ≤ k1 and that k′2 = k2, since this latter case will follow by
symmetry. Consider an optimal solution of SNS(W,k1, k2) = 1

k1

∑
i1∈[k1] f(i1) with:

f(i1) := 1
k2

∑
x1,x2,y,i2

W (y|x1x2)P (x1x2(i1i2)|i1i2y) ,

and P non-signaling. Let us consider S ∈ argmax
S′⊆[k1]:|S′|=k′1

∑
i1∈S′ f(i1). Then, by

construction, we have that 1
k′1

∑
i1∈S f(i1) ≥ 1

k1

∑
i1∈[k1] f(i1) = SNS(W,k1, k2),

since we have taken the average of the k′1 largest values of the sum.

Let us de�ne the strategy P ′ on the smallest set X1×X2× (S × [k2])×S× [k2]×Y :

P ′(x1x2(j1j2)|i1i2y) := P (x1x2(j1j2)|i1i2y) + C(x1x2j2|i1i2y) ,

with C(x1x2j2|i1i2y) := 1
k′1

∑
j′1∈[k1]−S

P (x1x2(j′1j2)|i1i2y) . (4.29)
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P ′ is a correct conditional probability distribution. Indeed, it is nonnegative by
construction, and we have that

∑
x1,x2,j1∈S,j2 P

′(x1x2(j1j2)|i1i2y) is equal to:

∑
x1,x2,j1∈S,j2

P (x1x2(j1j2)|i1i2y) +
∑

x1,x2,j1∈S,j2
C(x1x2j2|i1i2y)

=
∑

x1,x2j2

∑
j1∈S

P (x1x2(j1j2)|i1i2y) +
∑

x1,x2,j2

∑
j1∈S

1
k′1

∑
j′1∈[k1]−S

P (x1x2(j′1j2)|i1i2y)

=
∑

x1,x2,j2

∑
j1∈S

P (x1x2(j1j2)|i1i2y) +
∑

x1,x2,j2

∑
j′1∈[k1]−S

P (x1x2(j′1j2)|i1i2y)

=
∑

x1,x2,j1,j2

P (x1x2(j1j2)|i1i2y) = 1 .

(4.30)

Let us show that P ′ is non-signaling:

a) First with x1:

∑
x1

P ′(x1x2(j1j2)|i1i2y) =
∑
x1

P (x1x2(j1j2)|i1i2y) +
∑
x1

C(x1x2j2|i1i2y)

=
∑
x1

P (x1x2(j1j2)|i1i2y) + 1
k′1

∑
j′1∈[k1]−S

∑
x1

P (x1x2(j′1j2)|i1i2y)

=
∑
x1

P (x1x2(j1j2)|i′1i2y) + 1
k′1

∑
j′1∈[k1]−S

∑
x1

P (x1x2(j′1j2)|i′1i2y)

since P is non-signaling.
=
∑
x1

P ′(x1x2(j1j2)|i′1i2y) .

(4.31)

b) Then with x2:

∑
x2

P ′(x1x2(j1j2)|i1i2y) =
∑
x2

P (x1x2(j1j2)|i1i2y) +
∑
x2

C(x1x2j2|i1i2y)

=
∑
x2

P (x1x2(j1j2)|i1i2y) + 1
k′1

∑
j′1∈[k1]−S

∑
x2

P (x1x2(j′1j2)|i1i2y)

=
∑
x2

P (x1x2(j1j2)|i1i′2y) + 1
k′1

∑
j′1∈[k1]−S

∑
x2

P (x1x2(j′1j2)|i1i′2y)

since P is non-signaling.
=
∑
x2

P ′(x1x2(j1j2)|i1i′2y) .

(4.32)
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c) Finally with (j1j2), we have that
∑
j1∈S,j2 P

′(x1x2(j1j2)|i1i2y) is equal to:∑
j2

∑
j1∈S

P (x1x2(j1j2)|i1i2y) +
∑
j2

∑
j1∈S

C(x1x2j2|i1i2y)

=
∑
j2

∑
j1∈S

P (x1x2(j1j2)|i1i2y) +
∑
j2

∑
j1∈S

1
k′1

∑
j′1∈[k1]−S

P (x1x2(j′1j2)|i1i2y)

=
∑
j2

∑
j1∈S

P (x1x2(j1j2)|i1i2y) +
∑
j2

∑
j′1∈[k1]−S

P (x1x2(j′1j2)|i1i2y)

=
∑
j1,j2

P (x1x2(j1j2)|i1i2y)

=
∑
j1,j2

P (x1x2(j1j2)|i1i2y′) since P is non-signaling.

=
∑

j1∈S,j2
P ′(x1x2(j1j2)|i1i2y′) .

(4.33)
Thus P ′ is a correct solution of the program computing SNS(W,k′1, k2), and it
leads to the value:

SNS(W,k′1, k2) ≥ 1
k′1k2

∑
x1,x2,y,i1∈S,i2

W (y|x1x2)P ′(x1x2(i1i2)|i1i2y)

≥ 1
k′1k2

∑
x1,x2,y,i1∈S,i2

W (y|x1x2)P (x1x2(i1i2)|i1i2y)

= 1
k′1

∑
i1∈S

f(i1) ≥ 1
k1

∑
i1∈[k1]

f(i1) = SNS(W,k1, k2) .

(4.34)

4. Consider optimal non-signaling probability distributions P and P ′ reaching respec-
tively the values SNS(W,k1, k2) and SNS(W ′, k′1, k′2). Then by Proposition 2.11,
P ⊗ P ′ is a non-signaling probability distribution on (X1 ×X ′1) × (X2 ×X ′2) ×
(([k1]× [k′1])× ([k2]× [k′2])) × ([k1] × [k′1]) × ([k2] × [k′2]) × (Y × Y ′), which is
trivially in bijection with (X1 ×X ′1) × (X2 ×X ′2) × ([k1k

′
1]× [k2k

′
2]) × [k1k

′
1] ×

[k2k
′
2] × (Y × Y ′). This will be a feasible solution of the program computing

SNS(W ⊗W ′, k1k
′
1, k2k

′
2). Thus, we get that SNS(W ⊗W ′, k1k

′
1, k2k

′
2) is larger

than or equal to (where the �rst sums are over all indices x1x
′
1, x2x

′
2, yy

′, i1i
′
1, i2i

′
2):∑(

W ⊗W ′
)

(yy′|x1x
′
1x2x

′
2)
(
P ⊗ P ′

)
(x1x

′
1x2x

′
2(i1i′1i2i′2)|i1i′1, i2i′2yy′)

=
∑(

W (y|x1x2) ·W ′(y′|x′1x′2)
) (
P (x1x2(i1i2)|i1i2y) · P ′(x′1x′2(i′1i′2)|i′1i′2y′)

)
=

 ∑
i1,i2,x1,x2,y

W (y|x1x2)P (x1x2(i1i2)|i1i2y)


×

 ∑
x′1,x

′
2,y
′,i′1,i

′
2

W ′(y′|x′1x′2)P ′(x′1x′2(i′1i′2)|i′1i′2y′)


=SNS(W,k1, k2) · SNS(W ′, k′1, k′2) .

(4.35)
In particular, applying this n times on the same MAC W gives the �rst corollary, and
the second one comes from the fact that SNS(W ⊗W ′, k1, k2) ≥ SNS(W,k1, k2) ·
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SNS(W ′, 1, 1) = SNS(W,k1, k2), since SNS(W ′, 1, 1) = 1 by the �rst property of
Proposition 4.9.

Corollary 4.10. 1. CNS(W ) is convex.

2. If (R1, R2) is achievable with non-signaling assistance, then we have R1 ≤ log2 |X1|,
R2 ≤ log2 |X2| and R1 +R2 ≤ log2 |Y|.

3. If (R1, R2) is achievable with non-signaling assistance, then for allR′i ≤ Ri, (R′1, R′2)
is achievable with non-signaling assistance.

Proof. 1. It comes directly from Proposition 2.15 and the fourth property of Proposi-
tion 4.9.

2. By the second property of Proposition 4.9, we have SNS(W⊗n, kn1 , kn2 ) ≤ |X
n
1 |
kn1

. In
particular, if R1 > log2 |X1|, then k1 > |X1| and we get that SNS(W⊗n, kn1 , kn2 ) ≤(
|X1|
k1

)n
→

n→+∞
0, so R1 > log2 |X1| is not achievable with non-signaling assistance.

Symmetrically, R2 > log2 |X2| is not achievable with non-signaling assistance.
Furthermore, if one takesR1+R2 > log2 |Y|, then in particular k1k2 > |Y|, so by the
second property of Proposition 4.9, SNS(W⊗n, kn1 , kn2 ) ≤ |Yn|

kn1 k
n
2

=
(
|Y|
k1k2

)n
→

n→+∞
0.

Thus, R1 +R2 > log2 |Y| is not achievable with non-signaling assistance.

3. Since (R1, R2) is achievable with non-signaling assistance, we have by de�nition
that SNS(W⊗n, d2nR1e, d2nR2e) →

n→+∞
1. But, for all positive integers n, we have

that d2nR′1e ≤ d2nR1e and d2nR′2e ≤ d2nR2e, so by the third property of Propo-
sition 4.9, we have that SNS(W⊗n, d2nR′1e, d2nR′2e) ≥ SNS(W⊗n, d2nR1e, d2nR2e).
Thus SNS(W⊗n, d2nR′1e, d2nR′2e →

n→+∞
1 since it is upper bounded by 1, and so

(R′1, R′2) is achievable with non-signaling assistance.

Proposition 4.11. CNS
0 (W ) is the closure of the set of rate pairs (R1, R2) such that:

∃n ∈ N∗,SNS(W⊗n, d2R1ne, d2R2ne) = 1 .

Proof. If (R1, R2) is such that ∃n0 ∈ N∗, ∀n ≥ n0, SNS(W⊗n, d2R1ne, d2R2ne) = 1, then
in particular ∃n ∈ N∗,SNS(W⊗n, d2R1ne, d2R2ne) = 1. So, CNS

0 (W ), which is the closure
of the former rate pairs, is in particular included in the closure of the latter rate pairs.
For the other inclusion, consider a rate pair (R1, R2) and let us assume that there exists
some positive integer n such that SNS(W⊗n, d2R1ne, d2R2ne) = 1. Let us show that for
any (R′1, R′2) such that R′1 < R1 and R′2 < R2:

∃n0 ∈ N∗,∀n ≥ n0, SNS(W⊗n, d2R′1ne, d2R′2ne) = 1 ,

which is enough to conclude, since we consider only closure of such sets.
First, for all positive integersm, we have that SNS(W⊗nm, d2R1nme, d2R2nme) = 1. By the
fourth property of Proposition 4.9, we have that SNS((W⊗n)⊗m , d2R1nem, d2R2nem) ≥
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[
SNS(W⊗n, d2R1ne, d2R2ne)

]m
= 1, so SNS((W⊗n)⊗m , d2R1nem, d2R2nem) = 1 since

SNS(W,k1, k2) ≤ 1 by the �rst property of Proposition 4.9. But (W⊗n)⊗m = W⊗nm, and
d2R1nem ≥ d2R1nme, d2R2nem ≥ d2R2nme, so by the third property of Proposition 4.9, we
have SNS(W⊗nm, d2R1nme, d2R2nme) ≥ 1, so SNS(W⊗nm, d2R1nme, d2R2nme) = 1.
Then, consider some r ∈ {0, . . . , n − 1}. By the fourth property of Proposition 4.9, we
have that:

SNS(W⊗(nm+r), d2R1nme, d2R2nme) = SNS(W⊗nm ⊗W⊗r, d2R1nme, d2R2nme)
≥ SNS(W⊗nm, d2R1nme, d2R2nme) = 1 ,

(4.36)

so SNS(W⊗(nm+r), d2R1nme, d2R2nme) = 1.

But d2R1nme = d2
R1nm
nm+r (nm+r)e = d2

R1
1+δ (nm+r)e with δ = r

nm ≤
1
m , and symmetrically

d2R1nme = d2
R1
1+δ (nm+r)e. Thus in particular, for all R′1 ≤ R1

1+ 1
m

and R′2 ≤ R2
1+ 1

m

, we have

that for all n′ ≥ nm,SNS(W⊗n′ , d2R′1n′e, d2R′2n′e) = 1. So for any (R′1, R′2) such that
R′1 < R1 and R′2 < R2, there is large enough m such that R′1 ≤ R1

1+ 1
m

and R′2 ≤ R2
1+ 1

m

,
and thus we get the expected property on (R′1, R′2) for n0 := nm.

4.3.3 Linear ProgramWith Reduced Size for Structured Channels

Although SNS(W,k1, k2) can be computed in polynomial time in W , k1 and k2, a channel
of the form W⊗n has exponential size in n. Thus, the linear program for SNS(W⊗n, k1, k2)
grows exponentially with n. However, using the invariance of W⊗n under permutations,
one can �nd a much smaller linear program computing SNS(W⊗n, k1, k2).

De�nition 4.2. LetG a group acting on X1,X2,Y . We say that a MACW : X1×X2 → Y
is invariant under the action of G if:

∀g ∈ G,W (g · y|g · x1g · x2) = W (y|x1x2) .

In particular, for W⊗n : X n1 ×X n2 → Yn, the symmetric group G := Sn acts in a natural
way in any set A raised to power n. So for σ ∈ Sn, we have that:

W⊗n(σ · yn|σ · xn1σ · xn2 ) =
n∏
i=1

W (yσ(i)|x1,σ(i)x2,σ(i)) =
n∏
i=1

W (yi|x1,ix2,i)

= W⊗n(yn|xn1xn2 ) ,
(4.37)

and so W⊗n is invariant under the action of Sn.
Let Z := {X1,X2,Y,X1 × Y,X2 × Y,X1 × X2,X1 × X2 × Y}. Let us call OG(A) the
set of orbits of A under the action of G. Then, one can �nd an equivalent smaller linear
program for SNS(W,k1, k2):

Theorem 4.12. Let W : X1 × X2 → Y a MAC invariant under the action of G. Let us
name systematically w ∈ OG(X1 × X2 × Y), u ∈ OG(X1 × X2), u1 ∈ OG(X1), u2 ∈
OG(X2), v1 ∈ OG(X1 × Y), v2 ∈ OG(X2 × Y), v ∈ OG(Y). We will also call zA the

projection of z ∈ OG(B) onA, forA,B ∈ Z andA projection of B; note that zA ∈ OG(A),
since by de�nition of the action, the projection of an orbit is an orbit. Let us �nally call
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W (w) := W (y|x1x2) for any (x1, x2, y) ∈ w, which is well-de�ned since W is invariant

under G. We have that SNS(W,k1, k2) is the solution of the following linear program:

maximize

r,r1,r2,p

1
k1k2

∑
w∈OG(X1×X2×Y)

W (w)rw

subject to

∑
w:wY=v

rw = |v|, ∀v ∈ OG(Y)

∑
w:wX2Y=v2

r1
w = k1

∑
w:wX2Y=v2

rw, ∀v2 ∈ OG(X2 × Y)

∑
w:wX1Y=v1

r2
w = k2

∑
w:wX1Y=v1

rw, ∀v1 ∈ OG(X1 × Y)

∑
u:uX2=v2

X2

pu =
|v2
X2
|

|v2|
k1

∑
w:wX2Y=v2

r2
w, ∀v2 ∈ OG(X2 × Y)

∑
u:uX1=v1

X1

pu =
|v1
X1
|

|v1|
k2

∑
w:wX1Y=v1

r1
w, ∀v1 ∈ OG(X1 × Y)

0 ≤ rw ≤ r1
w, r

2
w ≤

|w|
|wX1X2 |

pwX1X2
, ∀w ∈ OG(X1 ×X2 × Y)

|w|
|wX1X2 |

pwX1X2
− r1

w − r2
w + rw ≥ 0, ∀w ∈ OG(X1 ×X2 × Y) .

(4.38)

Corollary 4.13. For a channelW : X1 × X2 → Y , SNS(W⊗n, k1, k2) is the solution of a

linear program of size bounded byO
(
n|X1|·|X2|·|Y|−1

)
, thus it can be computed in polynomial

time in n.

Proof. We use the linear program obtained in Theorem 4.12 with G := Sn acting on W⊗n
as described before. The number of variables and constraints is linear in the number of
orbits of the action ofSn on the di�erent setsA ∈ Z , where hereZ := {X n1 ,X n2 ,Yn,X n1 ×
Yn,X n2 ×Yn,X n1 ×X n2 ,X n1 ×X n2 ×Yn}. For example, forA ∈ X n1 ×X n2 ×Yn, we have
that:

|OSn(X n1 ×X n2 × Yn)| =
(
n+ |X1||X2||Y| − 1
|X1||X2||Y| − 1

)
≤ (n+ |X1||X2||Y| − 1)|X1||X2||Y|−1 .

So the number of variables and constraints is O(n|X1|·|X2|·|Y|−1). Note also that all the
numbers occurring in this linear program are integers or fractions of integers, with those
integers ranging in [(|X1||X2||Y|)n], thus of size O(n log(|X1||X2||Y|)). So the size of
this linear program is bounded by O(n|X1|·|X2|·|Y|−1), and thus SNS(W⊗n, k1, k2) can be
computed in polynomial time in n; see for instance Section 7.1 of [GM07].

In order to prove Theorem 4.12, we will need several lemmas. For all of them, A and B will
denote �nite sets on which a group G is acting, and xG will denote the orbit of x under G:

Lemma 4.14. Let τ ∈ OG(A × B), and call ν := τA and µ := τB. For x ∈ ν, let us call
Bx
τ := {y : (x, y) ∈ τ}. Then, |Bx

τ | = |Bx′
τ | =: cντ for any x, x′ ∈ ν, and furthermore, we
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4. Multiple-Access Channel Coding With Non-Signaling Correlations

have that cντ = |τ |
|ν| . Symmetrically, the same occurs for Ayτ := {x : (x, y) ∈ τ} with y ∈ µ,

where one gets that |Ayτ | = |Ay
′
τ | =: cµτ = |τ |

|µ| for y, y
′ ∈ µ.

Proof. Let x, x′ ∈ ν. Thus there exists g ∈ G such that x′ = g · x. Let:

f : Bx
τ → Bx′

τ

y 7→ g · y .

First, f is well de�ned. Indeed, if y ∈ Bx
τ = {y : (x, y) ∈ τ}, then we have that g · y ∈

{y : (g · x, y) ∈ τ} = Bx′
τ , since τ ∈ OG(A × B). Let us show that f is injective. If

g · y = g · y′, then g−1 · (g · y) = (g−1g) · y = y, g−1 · (g · y′) = y′, so y = y′. Thus we
get that |Bx

τ | ≤ |Bx′
τ |. By a symmetric argument with x′ replacing x and g−1 replacing g,

we get that |Bx′
τ | ≤ |Bx

τ |, and so |Bx
τ | = |Bx′

τ | =: cντ .

Furthermore, {Bx
τ }x∈ν is a partition of τ , so

∑
x∈ν |Bx

τ | = |ν|cντ = |τ |, and cντ = |τ |
|ν| .

Lemma 4.15. For any (x, y) ∈ A× B and v(x,y)G variable indexed by orbits of A× B, let
us de�ne the variable vx,y :=

v(x,y)G

|(x,y)G| . We have:

∑
x∈A

vx,y = 1
|yG|

∑
τ∈OG(A×B):τB=yG

vτ ,∀y ∈ B .

Proof. ∑
x∈A

vx,y =
∑

τ∈OG(A×B):τB=yG

∑
x∈A:(x,y)∈τ

vx,y

=
∑

τ∈OG(A×B):τB=yG

∑
x∈A:(x,y)∈τ

vτ
|τ |

since (x, y)G = τ

=
∑

τ∈OG(A×B):τB=yG
cy
G

τ

vτ
|τ |

by Lemma 4.14, since y ∈ τB

=
∑

τ∈OG(A×B):τB=yG

|τ |
|yG|

vτ
|τ |

= 1
|yG|

∑
τ∈OG(A×B):τB=yG

vτ .

(4.39)

Lemma 4.16. For any τ ∈ OG(A×B), µ ∈ OG(B) and vx,y variable indexed by elements

of A× B, let us de�ne vτ :=
∑

(x,y)∈τ vx,y . We have:∑
τ∈OG(A×B):τB=µ

vτ =
∑
y∈µ

∑
x∈A

vx,y .

Proof. ∑
τ∈OG(A×B):τB=µ

vτ =
∑

τ∈OG(A×B):τB=µ

∑
(x,y)∈τ

vx,y =
∑
y∈µ

∑
x∈A

vx,y .
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Proof of Theorem 4.12. Let rx1,x2,y, r
1
x1,x2,y, r

2
x1,x2,y, px1,x2 a feasible solution of the pro-

gram de�ned in Proposition 4.7, and call S := 1
k1k2

∑
x1,x2,yW (y|x1x2)rx1,x2,y its value.

De�ne:
rw :=

∑
(x1,x2,y)∈w

rx1,x2,y , r1
w :=

∑
(x1,x2,y)∈w

r1
x1,x2,y ,

r2
w :=

∑
(x1,x2,y)∈w

r2
x1,x2,y , pu :=

∑
(x1,x2)∈u

px1,x2 .
(4.40)

Let us show that rw, r1
w, r

2
w, pu is a feasible solution of the program de�ned in Theorem 4.12,

and that its value S∗ := 1
k1k2

∑
wW (w)rw = S.

First, we have S∗ = S. Indeed:

S∗ = 1
k1k2

∑
w

W (w)rw = 1
k1k2

∑
w

W (w)
∑

(x1,x2,y)∈w
rx1,x2,y

= 1
k1k2

∑
w

∑
(x1,x2,y)∈w

W (y|x1x2)rx1,x2,y

= 1
k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y = S .

(4.41)

Then, all the constraints are satis�ed. Indeed, thanks to Lemma 4.16, we have for the �rst
constraint: ∑

w:wY=v
rw =

∑
y∈v

∑
x1,x2

rx1,x2,y =
∑
y∈v

1 = |v| .

For the second constraint (and symmetrically for the third constraint), we have:∑
w:wX2Y=v2

r1
w =

∑
(x2,y)∈v2

∑
x1

r1
x1,x2,y =

∑
(x2,y)∈v2

k1
∑
x1

rx1,x2,y = k1
∑

w:wX2Y=v2

rw .

For the fourth (and symmetrically for the �fth), we have:∑
w:wX2Y=v2

r2
w =

∑
(x2,y)∈v2

∑
x1

r2
x1,x2,y =

∑
(x2,y)∈v2

1
k1

∑
x1

px1,x2

= 1
k1

∑
x2∈v2

X2

∑
y:(x2,y)∈v2

∑
x1

px1,x2

= 1
k1

∑
x2∈v2

X2

|v2|
|v2
X2
|
∑
x1

px1,x2 thanks to Lemma 4.14

= 1
k1

|v2|
|v2
X2
|

∑
u:uX2=v2

X2

pu .

(4.42)

Finally for the last constraints, we only need to compute:∑
(x1,x2,y)∈w

px1,x2 =
∑

(x1,x2)∈wX1X2

∑
y:(x1,x2,y)∈w

px1,x2 =
∑

(x1,x2)∈wX1X2

|w|
|wX1X2 |

px1,x2

= |w|
|wX1X2 |

pwX1X2
,

(4.43)
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which implies that the linear inequalities on px1,x2 , rx1,x2,y, r
1
x1,x2,y, r

2
x1,x2,y get transposed

respectively to the values |w|
|wX1X2 |

pwX1X2
, rw, r

1
w, r

2
w. Indeed, for instance, one has for any

x1, x2, y that px1,x2 − r1
x1,x2,y − r

2
x1,x2,y + rx1,x2,y ≥ 0. Thus for some orbit w:

∑
(x1,x2,y)∈w

(
px1,x2 − r1

x1,x2,y − r
2
x1,x2,y + rx1,x2,y

)
≥ 0 ,

and then |w|
|wX1X2 |

pwX1X2
− r1

w − r2
w + rw ≥ 0, which was what we wanted to show.

Now let us consider a feasible solution rw, r
1
w, r

2
w, pu of the program de�ned in Theo-

rem 4.12, with a value S∗ := 1
k1k2

∑
wW (w)rw. De�ne:

rx1,x2,y :=
r(x1,x2,y)G

|(x1, x2, y)G| , r1
x1,x2,y :=

r1
(x1,x2,y)G

|(x1, x2, y)G| ,

r2
x1,x2,y :=

r2
(x1,x2,y)G

|(x1, x2, y)G| , px1,x2 :=
p(x1,x2)G

|(x1, x2)G| .
(4.44)

Let us show that rx1,x2,y, r
1
x1,x2,y, r

2
x1,x2,y, px1,x2 is a feasible solution of the program de�ned

in Proposition 4.7, and that its value S := 1
k1k2

∑
x1,x2,yW (y|x1x2)rx1,x2,y = S∗.

First we have S = S∗. Indeed:

S = 1
k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y = 1
k1k2

∑
x1,x2,y

W (y|x1x2)
r(x1,x2,y)G

|r(x1,x2,y)G |

= 1
k1k2

∑
w

∑
(x1,x2,y)∈w

W (y|x1x2) rw
|w|

= 1
k1k2

∑
w

∑
(x1,x2,y)∈w

W (w) rw
|w|

= 1
k1k2

∑
w

|w|W (w) rw
|w|

= 1
k1k2

∑
w

W (w)rw = S∗ .

(4.45)

Then, all the constraints are satis�ed. Indeed, thanks to Lemma 4.15, we have for the �rst
constraint: ∑

x1,x2

rx1,x2,y = 1
|yG|

∑
w:wY=yG

rw = |y
G|
|yG|

= 1 .

For the second constraint (and symmetrically for the third constraint), we have:

∑
x1

r1
x1,x2,y = 1

|(x2, y)G|
∑

w:wX2Y=(x2,y)G
r1
w = k1

|(x2, y)G|
∑

w:wX2Y=(x2,y)G
rw

= k1
∑
x1

rx1,x2,y .

(4.46)
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For the fourth (and symmetrically for the �fth), we have:∑
x1

r2
x1,x2,y = 1

|(x2, y)G|
∑

w:wX2Y=(x2,y)G
r2
w = 1

|(x2, y)G|
1
k1

|(x2, y)G|
|(x2, y)GX2

|
∑

u:uX2=(x2,y)GX2

pu

= 1
k1

1
|(x2, y)GX2

|
∑

u:uX2=(x2,y)GX2

pu

= 1
k1

1
|xG2 |

∑
u:uX2=xG2

pu since (x2, y)GX2 = xG2

= 1
k1

∑
x1

px1,x2 .

(4.47)
Finally, to conclude with the last constraints, one has only to see that for any x1, x2, y:

|(x1, x2, y)G|
|(x1, x2, y)GX1X2

|
p(x1,x2,y)GX1X2

= |(x1, x2, y)G|
|(x1, x2)G| p(x1,x2)G = |(x1, x2, y)G|px1,x2 ,

which implies that the linear inequalities on |w|
|wX1X2 |

pwX1X2
, rw, r

1
w, r

2
w get transposed

respectively to the values px1,x2 , rx1,x2,y, r
1
x1,x2,y, r

2
x1,x2,y . Indeed, for instance, one has for

any w that |w|
|wX1X2 |

pwX1X2
− r1

w − r2
w + rw ≥ 0. But for any (x1, x2, y) ∈ w, one has that

rx1,x2,y = rw
|w| , r

1
x1,x2,y = r1

w
|w| , r

2
x1,x2,y = r2

w
|w| . Thanks to the previous inequality, we have

that px1,x2 =
pwX1X2
|wX1X2 |

, and thus:

px1,x2 − r1
x1,x2,y − r

2
x1,x2,y + rx1,x2,y =

pwX1X2

|wX1X2 |
− r1

w

|w|
− r2

w

|w|
+ rw
|w|
≥ 0 ,

which was what we wanted to show.

4.4 Non-Signaling Achievability Bounds

4.4.1 Zero-Error Non-Signaling Assisted Achievable Rate Pairs

We will now present a numerical method to �nd e�ciently inner bounds on CNS
0 (W ).

Thanks to Corollary 4.13, we know how to decide in polynomial time in n, k1, k2 whether
SNS(W⊗n, k1, k2) = 1. However, by Proposition 4.11, if SNS(W⊗n, k1, k2) = 1, then we
have that

(
log(k1)
n , log(k2)

n

)
∈ CNS

0 (W ), which describes a way of computing achievable
points for that capacity region. More precisely, this leads to the following result:

Proposition 4.17 (Inner Bounds on CNS
0 (W )). Let us de�ne the zero-error non-signaling

assisted n-shots capacity region CNS
0,≤n(W ) in the following way:

CNS
0,≤n(W ) :=

{( log(k1)
n

,
log(k2)
n

)
: SNS(W⊗n, k1, k2) = 1

}
.

Then, we have that ∀n ∈ N, CNS
0,≤n(W ) ⊆ CNS

0 (W ), and that one can decide in polynomial

time in n, k1, k2 if

(
log(k1)
n , log(k2)

n

)
∈ CNS

0,≤n(W ).

This implies that we can �nd e�ciently achievable rate pairs for MACs.
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Application to the binary adder channel The binary adder channel WBAC is de�ned
by:

∀x1, x2 ∈ {0, 1},∀y ∈ {0, 1, 2},WBAC(y|x1x2) := 1y=x1+x2 .

Its classical capacity region C(WBAC) is well known and consists of all (R1, R2) such
that R1 ≤ 1, R2 ≤ 1, R1 + R2 ≤ 3

2 , as a consequence of Theorem 4.1. Its zero-error
classical capacity C0(WBAC) is not yet characterized. A lot of work has been done in �nding
outer and inner bounds on this region [Lin69, vT78, KL78, Jr.78, KLWY83, vdBvT85, BB98,
UL98, AB99, MÖ05, OS15]. To date, the best lower bound on the sum-rate capacity is
log2(240/6) ' 1.3178 [MÖ05].
Thanks to Proposition 4.17, we were able to compute the regions CNS

0,≤n(W ) for n going
up to 7, which led to Figure 4.4. The code can be found on GitHub. It uses Mosek linear
programming solver [AA00].
Note that the linear program from Theorem 4.12 has still a large number of variables and
constraints although polynomial in n. Speci�cally, for n = 2, it has 244 variables and 480
constraints; for n = 3, it has 1112 variables and 2054 constraints; for n = 7, it has 95592
variables and 162324 constraints; �nally, for n = 8, it has 226911 variables and 383103
constraints.
The �rst noticeable result coming from these curves is that the zero-error non-signaling
assisted sum-rate capacity beats with only 7 copies the classical sum-rate capacity of 3

2 ,
even without a zero-error constraint, with a value of 2 log2(42)

7 ' 1.5406, coming from the
fact that SNS(W⊗7

BAC, 42, 42) = 1 and Proposition 4.11. This implies that CNS
0 (WBAC) has

larger sum-rate pairs than C(WBAC), and that CNS(WBAC) is strictly larger than C(WBAC).
This sum-rate can even be increased up to log2(72)

4 ' 1.5425, since we have computed
SNS(W⊗8

BAC, 72, 72) = 1, which is the largest number of copies we have been able to
manage with our e�cient version of the linear program from Theorem 4.12. This should be
compared with the upper bound on the non-signaling assisted sum-rate capacity coming
from Proposition 4.26, which is log2(3) ' 1.5850 for R1 = R2.
Another surprising property is the speed at which one obtains e�cient zero-error non-
signaling assisted codes compared to classical zero-error codes. Indeed, with only three
copies of the binary adder channel, one gets that SNS(W⊗3

BAC, 4, 5) = 1, which corresponds
to a sum-rate of 2+log2(5)

3 ' 1.4406, which already largely beats the best known zero-error
achieved sum-rate of log2(240/6) ' 1.3178 [MÖ05]. These results are summarized in the
following theorem:

Theorem 4.18. We have that

(
log2(72)

8 , log2(72)
8

)
∈ CNS

0 (WBAC) but
(

log2(72)
8 , log2(72)

8

)
6∈

C(WBAC), and as a consequence, we have that C(WBAC) ( CNS(WBAC).

Proof. Since 28 log2(72)
8 = 72 and numerically SNS(W⊗8

BAC, 72, 72) = 1 thanks to Corol-
lary 4.13, we get that

(
log2(72)

8 , log2(72)
8

)
∈ CNS

0 (WBAC) by Proposition 4.11. However,
log2(72)

8 + log2(72)
8 > 3

2 so
(

log2(72)
8 , log2(72)

8

)
6∈ C(WBAC) by Theorem 4.1 applied to

WBAC. Since C(WBAC) ⊆ CNS(WBAC) and CNS
0 (WBAC) ⊆ CNS(WBAC), we thus get that

C(WBAC) ( CNS(WBAC).
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Figure 4.4 – Capacity regions of the binary adder channel WBAC. The black dashed curve
depicts the classical capacity region C(WBAC), whereas the grey dashed curve shows the
best known inner bound border on the zero-error classical capacity region C0(WBAC), made
from results by [MÖ05, vdBvT85, KLWY83]; see [MÖ05] for a description of this border.
On the other hand, the continuous curves depict the best zero-error non-signaling assisted
achievable rate pairs for respectively 2, 3 and 7 copies of the binary adder channel.

4.4.2 Non-Signaling Assisted Achievable Rate Pairs With Non-Zero

Error

We have analyzed the non-signaling assisted capacity region through zero-error strategies
and applied it to the BAC. However, if some noise is added to that channel, its zero-error
non-signaling assisted capacity region becomes trivial (see Proposition 4.21). Thus, the
previous method fails to �nd signi�cant inner bounds on the non-signaling assisted capacity
region of noisy MACs.
In this section, we use concatenated codes to obtain achievable rate pairs, and apply it to a
noisy version of the BAC:

De�nition 4.3 (Concatenated Codes). Given a MAC W and a non-signaling assisted code
P , letW [P ] : [k1]× [k2]→ [`] withW [P ](j|i1i2) :=

∑
x1,x2,yW (y|x1x2)P (x1x2j|i1i2y):
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P (x1x2j|i1i2y)

i1 i2

j

W

x1
x2

y

:=W [P ]

i1 i2

j

Note that W [P ] is a MAC since W [P ](j|i1i2) ≥ 0 and:∑
j

W [P ](j|i1i2) =
∑

x1,x2,y

W (y|x1x2)
∑
j

P (x1x2j|i1i2y)

=
∑
x1,x2

(∑
y

W (y|x1x2)
)
P (x1x2|i1i2) since P is non-signaling

=
∑
x1,x2

P (x1x2|i1i2) = 1 .

(4.48)
The following proposition states that combining a classical code to a non-signaling strategy
leads to inner bounds on the non-signaling assisted capacity region of a MAC:

Proposition 4.19. If P is a non-signaling assisted code for the MAC W , we have that

C(W [P ]) ⊆ CNS(W ).

Proof. Let (R1, R2) ∈ C(W [P ]). Then, by de�nition, we have that:

lim
n→+∞

S(W [P ]⊗n, d2R1ne, d2R2ne) = 1 .

Let us �x ε > 0. For a large enoughN , we have S(W [P ]⊗N , d2R1Ne, d2R2Ne) ≥ 1−ε. Let
us call `1 := d2R1Ne and `2 := d2R2Ne. Thus, there exists encoders e1 : [`1] → [k1], e2 :
[`2]→ [k2] and a decoder d : [`]→ [`1]× [`2] such that:

1
`1`2

∑
i1,i2,j

W [P ](j|i1i2)
∑

a1∈[`1],a2∈[`2]
e1(i1|a1)e2(i2|a2)d(a1a2|j) ≥ 1− ε .

In particular, we have:

1
`1`2

∑
x1,x2,y

W (y|x1x2)

 ∑
i1,i2,j,a1,a2

P (x1x2j|i1i2y)e1(i1|a1)e2(i2|a2)d(a1a2|j)

 ≥ 1−ε .

De�ne P̂ (x1x2(b1b2)|a1a2y) :=
∑
i1,i2,j P (x1x2j|i1i2y)e1(i1|a1)e2(i2|a2)d(b1b2|j). One

can easily check that P̂ is non-signaling, and thus:

SNS(W⊗N , `1, `2) ≥ 1
`1`2

∑
x1,x2,y

W (y|x1x2)
∑
a1,a2

P̂ (x1x2(a1, a2)|a1a2y) ≥ 1− ε .
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This implies that lim
n→+∞

SNS(W⊗n, d2R1ne, d2R2ne) = 1, i.e. (R1, R2) ∈ CNS(W ).

Thanks to Proposition 4.19, we have for any non-signaling assisted code P , C(W⊗n[P ]) ⊆
CNS(W⊗n). But if (R1, R2) ∈ CNS(W⊗n), we have that (R1

n ,
R2
n ) ∈ CNS(W ). Thus,

applying Theorem 4.1 on W⊗n[P ] leads to inner bounds on CNS(W ):

Proposition 4.20 (Inner Bounds on CNS(W )). For any number of copies n, number of

inputs k1 ∈ [|X1|n] and k2 ∈ [|X2|n], non-signaling assisted codes P on inputs in [k1], [k2]
forW⊗n, and distributions q1, q2 on [k1], [k2], we have that the rate pairs (R1, R2) satisfying
the following constraints are in CNS(W ):

R1 ≤
I(I1 : J |I2)

n
, R2 ≤

I(I2 : J |I1)
n

, R1 +R2 ≤
I((I1, I2) : J)

n
,

for (I1, I2) ∈ [k1] × [k2] following the product law q1 × q2, and J ∈ [`] the outcome of

W⊗n[P ] on inputs I1, I2. In particular, the corner points of this capacity region are given by:(
I(I1 : J |I2)

n
,
I(I2 : J)

n

)
and

(
I(I1 : J)

n
,
I(I2 : J |I1)

n

)
.

Proof. The achievable region comes from the previous discussion. We just need to prove
that the corner points are of the given form. If R1 = I(I1:J |I2)

n , constraints on R2 and
R1 + R2 leads to a maximum R2 = min

(
I(I2:J |I1)

n , I((I1,I2):J)
n − I(I1:J |I2)

n

)
. However,

I((I1, I2) : J) − I(I1 : J |I2) = I(I2 : J) by the chain rule. We only need to show that
I(I2 : J) ≤ I(I2 : J |I1) and the proof will be complete, since the other corner point is
symmetric. We have:

I(I2 : J) = H(I2)−H(I2|J) = H(I2|I1)−H(I2|J)
≤ H(I2|I1)−H(I2|JI1) = I(I2 : J |I1) ,

(4.49)

the second equality coming from the fact that I1 and I2 are independent, and the inequality
coming from the fact that H(A|BC) ≤ H(A|B) for any A,B,C .

Application to the Noisy Binary Adder Channel We will now apply this strategy to
a noisy version of the BAC. We will consider �ip errors ε1, ε2 of inputs x1, x2 on WBAC,
which leads to the following de�nition of WBAC,ε1,ε2 :

∀y, x1, x2,WBAC,ε1,ε2(y|x1x2) := (1− ε1)(1− ε2)WBAC(y|x1x2)
+ ε1(1− ε2)WBAC(y|x1x2)
+ (1− ε1)ε2WBAC(y|x1x2)
+ ε1ε2WBAC(y|x1x2) .

(4.50)

First, let us note that the zero-error non-signaling assisted capacity region of WBAC,ε1,ε2 is
trivial for ε ∈ (0, 1):

Proposition 4.21. If ε1, ε2 ∈ (0, 1), then CNS
0 (WBAC,ε1,ε2) = {(0, 0)}.
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Proof. If SNS(W⊗n, k1, k2) = 1, then ∀yn, xn1 , xn2 : W⊗n(yn|xn1xn2 ) > 0 =⇒ rxn1 ,xn2 ,yn =
pxn1 ,xn2 . Indeed, we have for an optimal p, r that:

SNS(W⊗n, k1, k2) = 1
k1k2

∑
xn1 ,x

n
2 ,y

n

W⊗n(yn|xn1xn2 )rxn1 ,xn2 ,yn

≤ 1
k1k2

∑
xn1 ,x

n
2 ,y

n

W⊗n(yn|xn1xn2 )pxn1 ,xn2 = 1 ,
(4.51)

which implies the previous statement. But, for W⊗nBAC,ε1,ε2
, one can easily check that

for all yn, xn1 , xn2 , W⊗n(yn|xn1xn2 ) > 0 since ε1, ε2 ∈ (0, 1). Indeed, one can �ip the
inputs to a valid preimage of the output. Thus if SNS(W⊗nBAC,ε1,ε2

, k1, k2) = 1, we have
that ∀yn, xn1 , xn2 , rxn1 ,xn2 ,yn = pxn1 ,xn2 . In particular, this implies that

∑
xn1 ,x

n
2
rxn1 ,xn2 ,yn =∑

xn1 ,x
n
2
pxn1 ,xn2 , therefore 1 = k1k2, so k1 = 1 and k2 = 1. Thus SNS(W⊗n, 2nR1 , 2nR2) =

1 implies that (R1, R2) = (0, 0).

We have then applied the numerical method described in Proposition 4.20 to WBAC,ε1,ε2

for the symmetric case ε1 = ε2 = ε := 10−3. Since it is hard to go through all non-
signaling assisted codes P and product distributions q1, q2, we have applied the heuristic
of using non-signaling assisted codes obtained while optimizing SNS(W⊗n, k1, k2) in the
symmetrized linear program. We have combined them with uniform q1, q2, as the form of
those non-signaling assisted codes coming from our optimization program is symmetric.
We have evaluated the achievable corner points for all k1, k2 ≤ 2n for n ≤ 5 copies which
led to Figure 4.5: Compared to the noiseless binary adder channel, we can �rst notice
that the classical capacity region is slightly smaller, with a classical sum-rate capacity of
1.478 at most. On the other hand, although the zero-error non-signaling assisted capacity
of WBAC,ε,ε is completely trivial, we have with our concatenated codes strategy found
signi�cant rate pairs achievable with non-signaling assistance. In particular, we have
reached a non-signaling assisted sum-rate capacity of 1.493 which beats the best classical
sum-rate capacity. Thus, it shows that non-signaling assistance can improve the capacity
of the noisy binary adder channel as well.

4.5 Relaxed Non-Signaling Assisted Capacity Region and

Outer Bounds

A natural question that arises when studying the strength of non-signaling assistance is
whether a result similar to Theorem 4.1 can be found to describe by a single-letter formula
the non-signaling assisted capacity region of MACs. In particular, dropping the constraint
that (X1, X2) is in product form in Theorem 4.1 seems to be a particularly good candidate
to characterize the non-signaling assisted capacity region of MACs, as this looks quite
similar to allowing correlations between parties.
We have not been able to show the equivalence between this region and the non-signaling
assisted capacity region; however, it turns out to be equivalent to the capacity region
de�ned by a slight relaxation of non-signaling assistance, which we call SNS(W,k1, k2). In
particular, this will give us the best known outer bound on the non-signaling capacity.
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Figure 4.5 – Capacity regions of the noisy binary adder channel WBAC,ε,ε for ε = 10−3.
The black dashed curve depicts the classical capacity region C(WBAC,ε,ε) which was found
numerically using Theorem 4.1. The red point depicts the zero-error non-signaling assisted
capacity region (Proposition 4.21). The blue curve depicts achievable non-signaling assisted
rates pairs obtained from C(W⊗5

BAC,ε,ε[P ]) through the numerical method described in
Proposition 4.20.

De�nition 4.4.

SNS(W,k1, k2) := maximize
r,p

1
k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y

subject to
∑
x1,x2

rx1,x2,y ≤ 1
∑
x1,x2

px1,x2 = k1k2∑
x1

px1,x2 ≥ k1
∑
x1

rx1,x2,y∑
x2

px1,x2 ≥ k2
∑
x2

rx1,x2,y

0 ≤ rx1,x2,y ≤ px1,x2

(4.52)

The following proposition shows that this is indeed a relaxation of the non-signaling
constraint.

Proposition 4.22. SNS(W,k1, k2) ≤ SNS(W,k1, k2).
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Proof. Let us take a solution (px1,x2 , rx1,x2,y, r
1
x1,x2,y, r

2
x1,x2,y)x1∈X1,x2∈X2,y∈Y of the linear

program computing SNS(W,k1, k2). Let us show that (px1,x2 , rx1,x2,y)x1∈X1,x2∈X2,y∈Y is
a solution of the linear program computing SNS(W,k1, k2) with a same objective value,
from which the proposition follows.
They have indeed the same value, since the de�nition which is the same for both programs
depends only on rx1,x2,y . Let us show that all constraints are satis�ed for the solution
(px1,x2 , rx1,x2,y)x1∈X1,x2∈X2,y∈Y .
We have

∑
x1,x2 rx1,x2,y = 1 ≤ 1 so the �rst constraint is satis�ed. We have then that:∑

x1,x2

px1,x2 = k1
∑
x1,x2

r2
x1,x2,y = k1k2

∑
x1,x2

rx1,x2,y = k1k2 ,

so the second constraint is satis�ed.
For the third constraint (and symmetrically the fourth constraint), we have:∑

x1

px1,x2 = k1
∑
x1

r2
x1,x2,y ≥ k1

∑
x1

rx1,x2,y .

Finally, we have directly 0 ≤ rx1,x2,y ≤ px1,x2 , so the last constraint is satis�ed.

We can now de�ne the relaxed non-signaling assisted capacity region of a MAC W using
De�nition 2.12 by CNS(W ) := C[SNS](W ).

Proposition 4.23. CNS(W ) is convex.

Proof. We only need to show that for all MACs W,W ′ and integers k1, k2, k
′
1, k
′
2:

SNS(W ⊗W ′, k1k
′
1, k2k

′
2) ≥ SNS(W,k1, k2) · SNS(W ′, k′1, k′2) ,

thanks to Proposition 2.15. Let us consider optimal solutions (px1,x2 , rx1,x2,y)x1∈X1,x2∈X2,y∈Y

and (p′x′1,x′2 , r
′
x′1,x

′
2,y
′)x′1∈X ′1,x′2∈X ′2,y′∈Y ′ of the programs computing SNS(W,k1, k2) and

SNS(W ′, k′1, k′2) respectively. We construct a solution of the program computing the
success probability SNS(W ⊗W ′, k1k

′
1, k2k

′
2) by de�ning:

p∗x1x′1,x2x′2
:= px1,x2p

′
x′1,x

′
2

and r∗x1x′1,x2x′2,yy
′ := rx1,x2,yr

′
x′1,x

′
2,y
′ ,

as W ⊗ W ′ : (X1 × X ′1) × (X2 × X ′2) → (Y × Y ′). It is straightforward to check
that it is a valid solution. Indeed, linear constraints are preserved by product, except for
coe�cients k1, k2 which are replaced by products k1k

′
1 and k2k

′
2. Therefore, we have that

SNS(W ⊗W ′, k1k
′
1, k2k

′
2) is larger than or equal to:

1
k1k′1k2k′2

∑
x1,x′1,x2,x′2,y,y

′

(
W ⊗W ′

)
(yy′|x1x

′
1x2x

′
2)r∗x1x′1,x2x′2,yy

′

= 1
k1k′1k2k′2

∑
x1,x′1,x2,x′2,y,y

′

W (y|x1x2)W ′(y′|x′1x′2)rx1,x2,yr
′
x′1,x

′
2,y
′

=
(

1
k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y

)
·

 1
k′1k
′
2

∑
x′1,x

′
2,y
′

W ′(y′|x′1x′2)r′x′1,x′2,y′


= SNS(W,k1, k2) · SNS(W ′, k′1, k′2) .

(4.53)
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A direct property that follows from this de�nition and Proposition 4.22 is the fact that the
non-signaling assisted capacity region is included in the relaxed non-signaling assisted
capacity region.

Corollary 4.24. CNS(W ) ⊆ CNS(W ).

We present now the main result of this section, the characterization of CNS(W ) by a
single-letter formula.

Theorem 4.25 (Characterization of CNS(W )). CNS(W ) is the closure of the convex hull of
all rate pairs (R1, R2) satisfying:

R1 < I(X1 : Y |X2) , R2 < I(X2 : Y |X1) , R1 +R2 < I((X1, X2) : Y ) ,

for (X1, X2) following some law PX1X2 onX1×X2, and Y ∈ Y the outcome ofW on inputs

X1, X2.

Remark. Note that the only di�erence with the classical capacity region of MACs in Theo-
rem 4.1 is that the joint distribution of X1 and X2 does not have a product form constraint
here.

The proof of Theorem 4.25 will be divided in Proposition 4.31 (outer bound part) and
Proposition 4.33 (achievability part). But �rst, let us apply these results to the binary adder
channel.

Application to the Binary Adder Channel Let us determine the relaxed non-signaling
assisted capacity of the binary adder channel which will be plotted in Figure 4.6.

Proposition 4.26. CNS(WBAC) has the following description:

CNS(WBAC) =
⋃

q∈[ 1
2 ,

2
3 ]
{(R1, R2) : R1 ≤ h (q) , R2 ≤ h (q) , R1 +R2 ≤ q + h (q)} .

Remark. Note that for q = 1
2 , the bound becomes R1 ≤ 1, R2 ≤ 1, R1 +R2 ≤ 3

2 and when
q = 2

3 the bound becomes R1 ≤ log2(3)− 2
3 , R2 ≤ log2(3)− 2

3 , R1 +R2 ≤ log2(3).

Proof. We use the characterization of CNS provided by Theorem 4.25.
Let us consider an arbitrary PX1X2 = (p00, p01, p10, p11). First, we have that I((X1, X2) :
Y ) = H(Y ) − H(Y |X1X2) = H(Y ) since Y is a deterministic function of (X1, X2).
Then, we have that I(X1 : Y |X2) = H(Y |X2) − H(Y |X1X2) = H(Y |X2) for the
same reason. Furthermore, given X2, Y is a deterministic function of X1, so we have
I(X1 : Y |X2) = H(Y |X2)−H(Y |X1X2) = H(X1|X2). Symmetrically we have as well
I(X2 : Y |X1) = H(X2|X1). In all, CNS(WBAC) is equal to:⋃

PX1X2

{(R1, R2) : R1 ≤ H(X1|X2), R2 ≤ H(X2|X1), R1 +R2 ≤ H(X1 +X2)} .
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Let us call B1(PX1X2) := H(X1|X2), B2(PX1X2) := H(X2|X1) and B12(PX1X2) :=
H(X1 + X2) the three bounds. Let us call PX1X2

= (p11, p10, p01, p00). One can notice
that:
B1(PX1X2

) = H(X1|X2) = H(1−X1|1−X2) = H(X1|X2) = B1(PX1X2) ,
B2(PX1X2

) = H(1−X2|1−X1) = H(X2|X1) = B2(PX1X2) ,
B12(PX1X2

) = H(X1 +X2) = H(1−X1 + 1−X2)
= H(2− (X1 +X2)) = H(X1 +X2) = B12(PX1X2) .

(4.54)

Since B12(PX1X2) = H(X1 +X2) = H(p00, p11, p01 + p10), it is concave in PX1X2 as H
is concave and (p00, p11, p01 + p10) is linear in PX1X2 . Also, B1(PX1X2) = H(X1|X2) =
−D(PX1X2 ||I ⊗ PX2) is concave in PX1X2 as the divergence D is jointly convex and
I ⊗ PX2 is linear in PX1X2 . By symmetry, B2(PX1X2) is as well concave in PX1X2 . Let us
consider any of those three bounds, which we call B. We have by concavity of B and the
fact that B(PX1X2) = B(PX1X2

):

B(PX1X2) =
B(PX1X2) +B(PX1X2

)
2 ≤ B

(
PX1X2 + PX̂1X̂2

2

)

= B

(
q

2 ,
1− q

2 ,
1− q

2 ,
q

2

)
,

(4.55)

with q = p00 + p11. This holds for the three bounds at the same time, so we can re-
strict ourselves to the distributions of the form

(
q
2 ,

1−q
2 , 1−q

2 , q2

)
for some q ∈ [0, 1], i.e.,

PX1X2(0, 0) = PX1X2(1, 1) = q
2 and PX1X2(0, 1) = PX1X2(1, 0) = 1−q

2 .
We have PY (0) = PY (2) = q

2 and PY (1) = 1− q, so:

B12(PX1X2) = H(Y ) = −q log
(
q

2

)
− (1− q) log(1− q)

= −q (log(q)− 1)− (1− q) log(1− q)
= q + h (q) .

(4.56)

We have PX2(0) = PX1X2(0, 0) + PX1X2(1, 0) = q
2 + 1−q

2 = 1
2 so PX2(1) = 1

2 . Thus:

B1(PX1X2) = H(X1|X2) = 1
2H(X1|X2 = 0) + 1

2H(X1|X2 = 1) .

We have PX1|X2=0(0) = PX1X2 (0,0)
PX2 (0) = q so H(X1|X2 = 0) = h (q). On the other

hand, we have PX1|X2=1(1) = PX1X2 (1,1)
PX2 (1) = q so we get as well H(Y |X2 = 1) = h (q),

and B1(PX1X2) = H(X1|X2) = h (q). Symmetrically, we also get B2(PX1X2) = h (q).
Therefore, we get that CNS(WBAC) is the closure of the convex hull of:⋃

q∈[0,1]
{(R1, R2) : R1 < h (q) , R2 < h (q) , R1 +R2 < q + h (q)} .

However this set is already convex, so we have:

CNS(WBAC) =
⋃

q∈[0,1]
{(R1, R2) : R1 ≤ h (q) , R2 ≤ h (q) , R1 +R2 ≤ q + h (q)} .
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Finally, we can restrict ourselves to q ∈
[

1
2 ,

2
3

]
, since h is increasing from 0 to 1

2 (thus
q 7→ q + h (q) as well), and the fact that q 7→ q + h (q) achieves its maximum for q = 2

3
with 2

3 + h
(

2
3

)
= log2(3) and then decreases (whereas h is decreasing from 1

2 to 1), which
completes the proof.

As before, one can also de�ne a symmetrized version of the relaxed linear program com-
puting the value SNS(W⊗n, k1, k2) in polynomial time in n and compute the zero-error
n-shots capacity region by looking at the rates where SNS(W⊗n, k1, k2) = 1. We have
computed this up to 7 copies of the binary adder channel, which led to Figure 4.6:
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Figure 4.6 – Comparison of relaxed and regular non-signaling assisted capacity regions
of the binary adder channel. The black dashed curve depicts the classical capacity region
C(WBAC), whereas the grey dotted curve depicts the relaxed non-signaling assisted capacity
region CNS(WBAC) as described in Proposition 4.26. In particular, the curved corners are
obtained by taking R1 = h(R2) for R2 ∈

[
1
2 ,

2
3

]
and symmetrically by switching the roles

played by R1 and R2. The continuous blue (respectively red) curve depicts the zero-error
(respectively relaxed) non-signaling assisted achievable rate pairs for 7 copies of the binary
adder channel.

The �rst noticeable result coming from these curves is that the values SNS and SNS di�er.
While the highest sum-rate of 2 log2(42)

7 ' 1.5406 is achieved on 7 copies of the binary
adder channel with zero-error and non-signaling assistance, coming from the fact that
SNS(W⊗7

BAC, 42, 42) = 1, we have that SNS(W⊗7
BAC, 44, 44) = 1 > SNS(W⊗7

BAC, 44, 44) '
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0.9581 which implies that a sum-rate of 2 log2(44)
7 ' 1.5598 is achieved on 7 copies of

the binary adder channel with zero-error and relaxed non-signaling assistance. It also
largely beats the best found sum-rate of log2(72)

4 ' 1.5425 achieved on 8 copies with the
regular version. However the fact that the non-signaling assisted capacity region is strictly
contained in the relaxed one is still open, as the same rates could potentially be achieved
by the cost of using more copies of the channel.

4.5.1 Outer Bound Part of Theorem 4.25

In order to prove Proposition 4.31, we use a connection between hypothesis testing and
relaxed non-signaling assisted codes as established in [Mat12] for point-to-point channels.

De�nition 4.5 (Hypothesis Testing). Given distributions P (0) and P (1) on the same
space C , we de�ne β1−ε(P (0), P (1)) to be the minimum type II error

∑
r∈C TrP

(1)(r)
that can be achieved by statistical tests T which give a type I error no greater than ε, i.e.∑
r∈C TrP

(0)(r) ≥ 1− ε.
In other words, we have that:

β1−ε(P (0), P (1)) = minimize
Tr

∑
r∈C

TrP
(1)(r)

subject to
∑
r∈C

TrP
(0)(r) ≥ 1− ε

0 ≤ Tr ≤ 1 .

(4.57)

Lemma 4.27. For any relaxed non-signaling assisted code (px1,x2 , rx1,x2,y)x1∈X1,x2∈X2,y∈Y
with (k1, k2) messages and a probability of success 1 − ε, if PX1X2(x1, x2) = px1,x2

k1k2
and

Y ∈ Y is the outcome ofW on inputs X1, X2, we have:

β1−ε
(
PX1X2Y , PX1X2 × PY |X2

)
≤ 1
k1

β1−ε
(
PX1X2Y , PX1X2 × PY |X1

)
≤ 1
k2

β1−ε (PX1X2Y , PX1X2 × PY ) ≤ 1
k1k2

.

(4.58)

Remark. These three bounds are actually achieved with the same statistical test.

Proof. This result is a direct generalization of Theorem 9 in [Mat12] for point-to-point
channels, itself a generalization of Theorem 27 in [PPV10] without non-signaling assistance.
Let us name W0 := W and W1 a MAC yet to be de�ned. The coding strategy described by
rx1,x2,y and px1,x2 leads to a probability of success on channel i ∈ {0, 1} given by:

1− εi = 1
k1k2

∑
x1,x2,y

rx1,x2,yWi(y|x1x2)

=
∑

x1,x2,y:px1,x2>0

rx1,x2,y

px1,x2
Wi(y|x1x2)px1,x2

k1k2
since 0 ≤ rx1,x2,y ≤ px1,x2

=
∑

x1,x2,y

Tx1,x2,yWi(y|x1x2)px1,x2

k1k2
,

(4.59)
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with Tx1,x2,y := rx1,x2,y
px1,x2

if px1,x2 > 0, and Tx1,x2,y := 0 otherwise.

If now Y is the output of the channel Wi, the joint distribution of X1, X2, Y is given by
P

(i)
X1X2Y

(x1, x2, y) = Wi(y|x1x2)PX1X2(x1, x2) = Wi(y|x1x2)px1,x2
k1k2

.
On the other hand, we have that for all x1, x2, y, 0 ≤ Tx1,x2,y ≤ 1 since 0 ≤ rx1,x2,y ≤
px1,x2 . So we get that:

1− εi =
∑

x1,x2,y

Tx1,x2,yP
(i)
X1X2Y

(x1, x2, y) .

Since
∑
x1,x2,y Tx1,x2,yP

(0)
X1X2Y

(x1, x2, y) ≥ 1− ε0 and 0 ≤ Tx1,x2,y ≤ 1, we have:

β1−ε0(P (0), P (1)) ≤
∑

x1,x2,y

Tx1,x2,yP
(1)
X1X2Y

(x1, x2, y) = 1− ε1 .

Let us now consider three general cases, depending on the fact that W1 does not depend on
x1, x2 or both: W1(y|x1x2) := Q(1)(y|x2); W1(y|x1x2) := Q(2)(y|x1); W1(y|x1x2) :=
Q(0)(y). These will give respectively the three bounds we want.
First, let us consider the case where W1(y|x1x2) := Q(1)(y|x2) (the second case where
W1(y|x1x2) := Q(2)(y|x1) being symmetric), we have that:

1− ε1 =
∑

x1,x2,y

Tx1,x2,yQ
(1)(y|x2)px1,x2

k1k2
= 1
k1k2

∑
x2,y

Q(1)(y|x2)
∑
x1

Tx1,x2,ypx1,x2

= 1
k1k2

∑
x2,y

Q(1)(y|x2)
∑
x1

rx1,x2,y ≤
1

k1k2

∑
x2,y

Q(1)(y|x2) 1
k1

∑
x1

px1,x2

= 1
k1

∑
x1,x2

px1,x2

k1k2

∑
y

Q(1)(y|x2) = 1
k1

∑
x1,x2

px1,x2

k1k2
= 1
k1

.

(4.60)
For the third case, when W1(y|x1x2) := Q(0)(y), we have:

1− ε1 =
∑

x1,x2,y

Tx1,x2,yQ
(0)(y)px1,x2

k1k2
= 1
k1k2

∑
y

Q(0)(y)
∑
x1,x2

Tx1,x2,ypx1,x2

= 1
k1k2

∑
y

Q(0)(y)
∑
x1,x2

rx1,x2,y ≤
1

k1k2

∑
y

Q(0)(y) = 1
k1k2

.
(4.61)

In those three cases, we have respectively P (1)
X1X2Y

= PX1X2×Q
(1)
Y |X2

;PX1X2×Q
(2)
Y |X1

; and
PX1X2 ×Q

(0)
Y . Specializing those cases with Q(1)

Y |X2
:= PY |X2 ;Q(2)

Y |X1
:= PY |X1 ;Q(0)

Y :=
PY and using the fact that β1−ε0

(
P (0), P (1)

)
≤ 1− ε1 concludes the proof.

Lemma 4.28. For any relaxed non-signaling assisted code (px1,x2 , rx1,x2,y)x1∈X1,x2∈X2,y∈Y
with (k1, k2) messages and a probability of success 1 − ε, if PX1X2(x1, x2) = px1,x2

k1k2
and

Y ∈ Y is the outcome ofW on inputs X1, X2, we have:

log(k1) ≤ I(X1 : Y |X2) + h(ε)
1− ε ,

log(k2) ≤ I(X2 : Y |X1) + h(ε)
1− ε ,

log(k1) + log(k2) ≤ I((X1, X2) : Y ) + h(ε)
1− ε .

(4.62)
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Proof. Thanks to Lemma 4.27, with the fact that PX1X2 = PX1|X2 ×PX2 = PX2|X1 ×PX1 ,
we have already:

β1−ε
(
PX1X2Y ,

(
PX1|X2 × PY |X2

)
× PX2

)
≤ 1
k1

,

β1−ε
(
PX1X2Y ,

(
PX2|X1 × PY |X1

)
× PX1

)
≤ 1
k2

,

β1−ε (PX1X2Y , PX1X2 × PY ) ≤ 1
k1k2

.

(4.63)

Following the steps of section G in [PPV10], since any hypothesis test is a binary-output
transformation, by data-processing inequality for divergence, we have that:

d
(
1− ε||β1−ε

(
PX1X2Y ,

(
PX1|X2 × PY |X2

)
× PX2

))
= d

(
β1−ε (PX1X2Y , PX1X2Y ) ||β1−ε

(
PX1X2Y ,

(
PX1|X2 × PY |X2

)
× PX2

))
≤ D

(
PX1X2Y ||

(
PX1|X2 × PY |X2

)
× PX2

)
= I(X1 : Y |X2) ,

(4.64)

where the binary divergence is de�ned by d(a||b) := a log
(
a
b

)
+ (1 − a) log

(
1−a
1−b

)
and

satis�es d(a||b) ≥ −h(a)− a log(b), and thus:

log
(1
b

)
≤ d(a||b) + h(a)

a
= d(a||b) + h(1− a)

a
.

This leads to:

log(k1) ≤ 1
log

((
β1−ε

(
PX1X2Y ,

(
PX1|X2 × PY |X2

)
× PX2

))) ≤ I(X1 : Y |X2) + h(ε)
1− ε .

Similarly for the two other inequalities, since D
(
PX1X2Y ||

(
PX2|X1 × PY |X1

)
× PX1

)
=

I(X2 : Y |X1) and D (PX1X2Y ||PX1X2 × PY ) = I((X1, X2) : Y ), we get:

log(k1) ≤ I(X1 : Y |X2) + h(ε)
1− ε ,

log(k2) ≤ I(X2 : Y |X1) + h(ε)
1− ε ,

log(k1) + log(k2) ≤ I((X1, X2) : Y ) + h(ε)
1− ε .

(4.65)

In order to show additivity of the outer bound, we use the following lemma.

Lemma 4.29. For any distribution PXn
1 X

n
2
of (Xn

1 , X
n
2 ), if Y n ∈ Yn is the outcome ofWn

on inputs Xn
1 , X

n
2 , we have:

I(Xn
1 : Y n|Xn

2 ) ≤
n∑
i=1

I(X1,i : Yi|X2,i)

I(Xn
2 : Y n|Xn

1 ) ≤
n∑
i=1

I(X2,i : Yi|X1,i)

I((Xn
1 , X

n
2 ) : Y n) ≤

n∑
i=1

I((X1,i, X2,i) : Yi) .

(4.66)
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Proof. Consider n copies of W . Let us write X1,−i := X1,1 . . . X1,i−1X1,i+1 . . . X1,n and
Zn := Z1 . . . Zn. We have:

I(Xn
1 : Y n|Xn

2 ) = I(Xn
1 : Y n|Xn

2 )

=
n∑
i=1

I(Xn
1 : Yi|Xn

2 Y
i−1) by the chain rule

=
n∑
i=1

I(X1,i : Yi|Xn
2 Y

i−1) +
n∑
i=1

I(X1,−i : Yi|Xn
2 Y

i−1X1,i)

=
n∑
i=1

I(X1,i : Yi|Xn
2 Y

i−1) ,

(4.67)

where the last equality comes from Lemma 4.30. As a result,

I(Xn
1 : Y n|Xn

2 ) =
n∑
i=1

H(Yi|Xn
2 Y

i−1)−H(Yi|Xn
2 Y

i−1X1,i)

=
n∑
i=1

H(Yi|Xn
2 Y

i−1)−H(Yi|X2,iX1,i)

since X2,−iY
i−1 → (X1,i, X2,i)→ Yi Markov chain.

≤
n∑
i=1

H(Yi|X2,i)−H(Yi|X2,iX1,i) =
n∑
i=1

I(X1,i : Yi|X2,i) .

(4.68)

Symmetrically, by switching the roles of X1 and X2, we get the second part of Lemma 4.29.
For the sum-rate case:

I((Xn
1 , X

n
2 ) : Y n) =

n∑
i=1

I((Xn
1 , X

n
2 ) : Yi|Y i−1) by the chain rule

=
n∑
i=1

I((X1,i, X2,i) : Yi|Y i−1) +
n∑
i=1

I((X1,−i, X2,−i) : Yi|Y i−1X1,iX2,i)

=
n∑
i=1

I((X1,i, X2,i) : Yi|Y i−1)

since (X1,−i, X2,−i)→ Y i−1X1,iX2,i → Yi Markov chain.

=
n∑
i=1

H(Yi|Y i−1)−H(Yi|Y i−1X1,iX2,i)

=
n∑
i=1

H(Yi|Y i−1)−H(Yi|X1,iX2,i) since Y i−1 → (X1,i, X2,i)→ Yi Markov chain.

≤
n∑
i=1

H(Yi)−H(Yi|X2,iX1,i) =
n∑
i=1

I((X1,i, X2,i) : Yi) .

We next prove a technical lemma that was used in the previous proof.

Lemma 4.30. For any distribution PXn
1 X

n
2
of (Xn

1 , X
n
2 ), if Y n ∈ Yn is the outcome ofWn

on inputs Xn
1 , X

n
2 , we have I(X1,−i : Yi|X1,iX

n
2 Y

i−1) = 0.
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Proof. Let us show that, conditioned on any particular instance of X1,i = xi,1, Xn
2 = xn2 ,

Y i−1
1 = yi−1, X1,−i and Yi are independent.

We have:

P
(
Yi = yi|X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
= P (Yi = yi|X1,i = xi,1, X2,i = x2,i)

= W (yi|x1,ix2,i) ,
(4.69)

by de�nition of the law of Yi. On the other hand, we have that:

P (Xn
1 = xn1 , X

n
2 = xn2 , Y

n = yn) = P (Xn
1 = xn1 , X

n
2 = xn2 )

n∏
j=1

W (yj |x1,jx2,j) .

Thus, we have that P
(
X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
is equal to:

∑
x1,−i,xn2 ,yi,...,yn

P (Xn
1 = xn1 , X

n
2 = xn2 )

n∏
j=1

W (yj |x1,jx2,j)

=
∑

x1,−i,xn2

P (Xn
1 = xn1 , X

n
2 = xn2 )

i−1∏
j=1

W (yj |x1,jx2,j)
n∏
j=i

∑
yj

W (yj |x1,jx2,j)


=

∑
x1,−i,xn2

P (Xn
1 = xn1 , X

n
2 = xn2 )

i−1∏
j=1

W (yj |x1,jx2,j) .

(4.70)

And then, P
(
X1,−i = x1,−i|X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
is equal to:

∑
xn2

P (Xn
1 = xn1 , X

n
2 = xn2 )

∏i−1
j=1W (yj |x1,jx2,j)∑

x1,−i,xn2
P (Xn

1 = xn1 , X
n
2 = xn2 )

∏i−1
j=1W (yj |x1,jx2,j)

.

But:

P
(
X1,−i = x1,−i, Yi = yi|X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
=

∑
xn2

P (Xn
1 = xn1 , X

n
2 = xn2 )

∏i
j=1W (yj |x1,jx2,j)∑

x1,−i,xn2
P (Xn

1 = xn1 , X
n
2 = xn2 )

∏i−1
j=1W (yj |x1,jx2,j)

= P
(
X1,−i = x1,−i|X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
W (yi|x1,ix2,i)

= P
(
X1,−i = x1,−i|X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
× P

(
Yi = yi|X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
.

(4.71)

Thus, conditioned on any particular instance ofX1,i = xi,1, X
n
2 = xn2 , Y

i−1
1 = yi−1, X1,−i

and Yi are independent, and so I(X1,−i : Yi|X1,iX
n
2 Y

i−1) = 0.

Combining the previous results gives the desired outer bound.
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Proposition 4.31 (Outer bound part of Theorem 4.25). If a rate pair is achievable with

relaxed non-signaling assistance then it is in the closure of the convex hull of all (R1, R2)
satisfying:

R1 < I(X1 : Y |X2) , R2 < I(X2 : Y |X1) , R1 +R2 < I((X1, X2) : Y ) ,

for (X1, X2) following some law PX1X2 onX1×X2, and Y ∈ Y the outcome ofW on inputs

X1, X2.

Proof. Consider (R1, R2) achievable with relaxed non-signaling assistance: we have a
sequence of relaxed non-signaling assisted codes for n copies of the MAC W with k1 =
2nR1 , k2 = 2nR2 messages and an error probability εn →

n→+∞
0, along with associated

distributions of Xn
1X

n
2 Y

n.
Thus combining Lemma 4.28 and Lemma 4.29, we have that:

R1 ≤
1
n

I(Xn
1 : Y n|Xn

2 ) + h(εn)
1− εn

≤ 1
n

∑n
i=1 I(X1,i : Yi|X2,i) + h(εn)

1− εn
,

R2 ≤
1
n

I(Xn
2 : Y n|Xn

1 ) + h(εn)
1− εn

≤ 1
n

∑n
i=1 I(X2,i : Yi|X1,i) + h(εn)

1− εn
,

R1 +R2 ≤
1
n

I((Xn
1 , X

n
2 ) : Y n) + h(εn)
1− εn

≤ 1
n

∑n
i=1 I((X1,i, X2,i) : Yi) + h(εn)

1− εn
.

(4.72)
Then let us consider some random variableQ uniform on [n] and independent of (Xn

1 , X
n
2 , Y

n).
Then we can write:

n∑
i=1

I(X1,i : Yi|X2,i) =
n∑
i=1

I(X1,i : Yi|X2,i, Q = i) = nI(X1,Q : YQ|X2,Q, Q) .

Since YQ conditioned on X1,Q and X2,Q still follows the law of the MAC W (y|x1x2), we
can take X1 = X1,Q, X2 = X2,Q, and then the output of the channel Y satis�es Y = YQ,
and thus we obtain:

R1 ≤
I(X1 : Y |X2, Q) + h(εn)

n

1− εn
.

Doing this similarly on the other conditional mutual informations, we get:

R1 ≤
I(X1 : Y |X2, Q) + h(εn)

n

1− εn
,

R2 ≤
I(X2 : Y |X1, Q) + h(εn)

n

1− εn
,

R1 +R2 ≤
I((X1, X2) : Y |Q) + h(εn)

n

1− εn
.

(4.73)

By taking the limit as n goes to in�nity, since the limit of εn is 0, then the limit of h(εn)
n is

0 as well and we get that (R1, R2) must be in the set of rate pairs such that:

R1 ≤ I(X1 : Y |X2, Q) ,
R2 ≤ I(X2 : Y |X1, Q) ,

R1 +R2 ≤ I((X1, X2) : Y |Q) ,
(4.74)
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for some uniform Q in a �nite set, (X1, X2) any joint law depending on Q, and Y the
output of W on inputs (X1, X2).
Finally, in order to show that this is the right region, one has only to see that the corner
points of this region, such as for instance (I(X1 : Y |Q), I(X2 : Y |X1, Q)), are �nite
convex combination of the points (I(X1 : Y |Q = q), I(X2 : Y |X1, Q = q)) which are all
in the capacity region of the theorem by taking (X1X2) ∼ PX1X2|Q=q . This implies that
(R1, R2) is in the convex hull of that region, so we can drop the random variable Q and
the proof is completed.

The main consequence of that outer bound on the relaxed non-signaling assisted capac-
ity region is that it holds also for the non-signaling assisted capacity region thanks to
Corollary 4.24:

Corollary 4.32 (Outer Bound on the Non-Signaling Assisted Capacity Region). If a rate
pair is achievable with non-signaling assistance, then it is in the closure of the convex hull of

all (R1, R2) satisfying:

R1 < I(X1 : Y |X2) , R2 < I(X2 : Y |X1) , R1 +R2 < I((X1, X2) : Y ) ,

for (X1, X2) following any law PX1X2 on X1×X2, and Y ∈ Y the outcome ofW on inputs

X1, X2.

4.5.2 Achievability Part of Theorem 4.25

In order to construct the relaxed non-signaling assisted code for achievability, we will use
the notions of jointly and conditional typical sets described in Section 2.2.2:

Proposition 4.33 (Achievability part of Theorem 4.25). If a rate pair is in the closure of the
convex hull of (R1, R2) satisfying:

R1 < I(X1 : Y |X2) , R2 < I(X2 : Y |X1) , R1 +R2 < I((X1, X2) : Y ) ,

for (X1, X2) following some law PX1X2 onX1×X2, and Y ∈ Y the outcome ofW on inputs

X1, X2, then it is in CNS(W ).

Proof. Let us �x ε, ε′ ∈ (0, 1) such that ε′ < ε ≤ 1
2 . Let n ∈ N which will be chosen large

enough during the proof.
We consider n independent random variables (X1,iX2,iYi) ∼ PX1X2Y , following the
distribution PX1X2Y (x1,i, x2,i, yi) = W (yi|x1,ix2,i)PX1X2(x1,i, x2,i). We call PXn

1 X
n
2 Y

n

the law of their product. We have then PXn
1 X

n
2

(xn1 , xn2 ) :=
∏n
i=1 PX1X2(x1,i, x2,i). If Ŷ is

the output of W⊗n on Xn
1X

n
2 , we have that:

PXn
1 X

n
2 Ŷ

(xn1 , xn2 , yn) = W⊗n(yn|xn1xn2 )PXn
1 X

n
2

(xn1 , xn2 )

= W⊗n(yn|xn1xn2 )
n∏
i=1

PX1X2(x1,i, x2,i)

=
n∏
i=1

W (yi|x1,ix2,i)PX1X2(x1,i, x2,i)

=
n∏
i=1

PX1X2Y (x1,i, x2,i, yi) .

(4.75)
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Thus, Ŷ follows the product law of Yi, i.e. Ŷ = Y n.
Let us consider C1, C2, C3 some positive numbers independent of n and ε which we will
de�ne later, k1 = 2nR1 , k2 = 2nR2 integers with (R1, R2) positive rates such that:

R1 ≤ I(X1 : Y |X2)− 1
n
− C1ε ,

R2 ≤ I(X2 : Y |X1)− 1
n
− C2ε ,

R1 +R2 ≤ I((X1, X2) : Y )− 1
n
− C3ε .

(4.76)

We de�ne a solution of SNS(W⊗n, 2nR1 , 2nR2) in the following way:

pxn1 ,xn2 :=


2n(R1+R2)PXn1 X

n
2

(xn1 ,xn2 )∑
(xn1 ,x

n
2 )∈T nε (X1,X2) PXn1 X

n
2

(xn1 ,xn2 ) if (xn1 , xn2 ) ∈ T nε (X1, X2) ,

0 otherwise .

and:

rxn1 ,xn2 ,yn :=
{
pxn1 ,xn2 if (xn1 , xn2 , yn) ∈ T nε′ (X1, X2, Y ) ,
0 otherwise .

By construction, the constraint 0 ≤ rxn1 ,xn2 ,yn ≤ pxn1 ,xn2 is satis�ed. We have also that:

∑
xn1 ,x

n
2

pxn1 ,xn2 =
∑

(xn1 ,xn2 )∈T nε (X1,X2)

2n(R1+R2)PXn
1 X

n
2

(xn1 , xn2 )∑
(xn1 ,xn2 )∈T nε (X1,X2) PXn

1 X
n
2

(xn1 , xn2 ) = 2n(R1+R2) ,

which is equal to k1k2. If (xn1 , xn2 , yn) ∈ T nε′ (X1, X2, Y ), we have that (xn1 , xn2 ) ∈
T nε′ (X1, X2) ⊆ T nε (X1, X2), so in that case:

rxn1 ,xn2 ,yn =
2n(R1+R2)PXn

1 X
n
2

(xn1 , xn2 )∑
(xn1 ,xn2 )∈T nε (X1,X2) PXn

1 X
n
2

(xn1 , xn2 ) .

If yn 6∈ T nε′ (Y ), then for all (xn1 , xn2 ), (xn1 , xn2 , yn) /∈ T nε′ (X1, X2, Y ), so
∑
xn1 ,x

n
2
rxn1 ,xn2 ,yn =

0 ≤ 1 in that case.
Otherwise, if yn ∈ T nε′ (Y ), then:

∑
xn1 ,x

n
2

rxn1 ,xn2 ,yn = 2n(R1+R2)

∑
(xn1 ,xn2 )∈T n

ε′ (X1,X2|yn) PXn
1 X

n
2

(xn1 , xn2 )∑
(xn1 ,xn2 )∈T nε (X1,X2) PXn

1 X
n
2

(xn1 , xn2 )

≤ 2n(R1+R2)
∑

(xn1 ,xn2 )∈T nε (X1,X2|yn) PXn
1 X

n
2

(xn1 , xn2 )∑
(xn1 ,xn2 )∈T nε (X1,X2) PXn

1 X
n
2

(xn1 , xn2 )

≤ 2n(R1+R2) 2−n(1−ε)H(X1,X2)

2−n(1+ε)H(X1,X2)
|T nε (X1, X2|yn)|
|T nε (X1, X2)| since (xn1 , xn2 ) ∈ T nε (X1, X2)

= 2n(R1+R2+2εH(X1,X2)) |T nε (X1, X2|yn)|
|T nε (X1, X2)| .

(4.77)
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But |T nε (X1, X2|yn)| ≤ 2n(1+ε)H(X1,X2|Y ) and for a large enough n, |T nε (X1, X2)| ≥
(1− ε)2n(1−ε)H(X1,X2) ≥ 2n((1−ε)H(X1,X2)− 1

n), so in that case:

∑
xn1 ,x

n
2

rxn1 ,xn2 ,yn ≤ 2n(R1+R2+2εH(X1,X2)) 2n(1+ε)H(X1,X2|Y )

2n((1−ε)H(X1,X2)− 1
n)

= 2n(R1+R2−I(X1,X2:Y )+ 1
n

+C3ε) ≤ 1 ,

(4.78)

since I(X1, X2 : Y ) = H(X1, X2)−H(X1, X2|Y ) and R1 +R2 ≤ I(X1, X2 : Y )− 1
n −

C3ε, with C3 := H(X1, X2|Y ) + 3H(X1, X2).
Let us focus on the constraint

∑
xn1
pxn1 ,xn2 ≥ k1

∑
xn1
rxn1 ,xn2 ,yn (the symmetric constraint∑

xn2
pxn1 ,xn2 ≥ k2

∑
xn2
rxn1 ,xn2 ,yn will be achieved for symmetric reasons).

Let us �x (xn2 , yn). If (xn2 , yn) 6∈ T nε′ (X2, Y ), then for all xn1 , (xn1 , xn2 , yn) 6∈ T nε′ (X1, X2, Y ),
thus rxn1 ,xn2 ,yn = 0 and the constraint is ful�lled. Let us assume that (xn2 , yn) ∈ T nε′ (X2, Y ).
Since rxn1 ,xn2 ,yn > 0 implies that (xn1 , xn2 , yn) ∈ T nε′ (X1, X2, Y ), we have that:

∑
xn1

rxn1 ,xn2 ,yn =
∑

xn1∈T
n
ε′ (X1|xn2 ,yn)

rxn1 ,xn2 ,yn =
∑

xn1∈T
n
ε′ (X1|xn2 ,yn)

pxn1 ,xn2 .

Thus: ∑
xn1
pxn1 ,xn2

k1
∑
xn1
rxn1 ,xn2 ,yn

≥ 1
k1

∑
x1∈T nε (X1|xn2 ) PXn

1 X
n
2

(xn1 , xn2 )∑
x1∈T nε′ (X1|xn2 ,yn) PXn

1 X
n
2

(xn1 , xn2 )

≥ 1
k1

∑
x1∈T nε (X1|xn2 ) PXn

1 X
n
2

(xn1 , xn2 )∑
x1∈T nε (X1|xn2 ,yn) PXn

1 X
n
2

(xn1 , xn2 )

≥ 1
k1

2−n(1+ε)H(X1,X2)

2−n(1−ε)H(X1,X2)
|T nε (X1|xn2 )|
|T nε (X1|xn2 , yn)|

≥ 2n(−R1−2εH(X1,X2)) |T nε (X1|xn2 )|
|T nε (X1|xn2 , yn)| .

(4.79)

But |T nε (X1|xn2 , yn)| ≤ 2n(1+ε)H(X1|X2Y ) and for a large enough n we have ∀xn2 ∈
T nε′ (X2), |T nε (X1|xn2 )| ≥ (1− ε)2n(1−ε)H(X1|X2) ≥ 2n((1−ε)H(X1|X2)− 1

n), so we get with
C1 := 2H(X1, X2) + H(X1|X2Y ) + H(X1|X2) (symmetrically C2 := 2H(X1, X2) +
H(X2|X1Y ) +H(X2|X1)):

∑
xn1
pxn1 ,xn2

k1
∑
xn1
rxn1 ,xn2 ,yn

≥ 2n(H(X1|X2)− 1
n
−H(X1|X2Y )−R1−C1ε)

= 2n(I(X1:Y |X2)− 1
n
−C1ε−R1) ≥ 1 .

(4.80)

For a large enough n, all constraints are satis�ed, thus (pxn1 ,xn2 , rxn1 ,xn2 ,yn) is a valid solution.
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Then:

SNS(W⊗n, 2nR1 , 2nR2) ≥ 1
2n(R1+R2)

∑
(xn1 ,xn2 ,yn)∈T n

ε′ (X1,X2,Y )
W⊗n(yn|xn1xn2 )rxn1 ,xn2 ,yn

=
∑

(xn1 ,xn2 ,yn)∈T n
ε′ (X1,X2,Y )

PXn
1 X

n
2 Y

n(xn1 , xn2 , yn)
PXn

1 X
n
2

(xn1 , xn2 )
PXn

1 X
n
2

(xn1 , xn2 )∑
(xn1 ,xn2 )∈T nε (X1,X2) PXn

1 X
n
2

(xn1 , xn2 )

=
∑

(xn1 ,xn2 ,yn)∈T n
ε′ (X1,X2,Y ) PXn

1 X
n
2 Y

n(xn1 , xn2 , yn)∑
(xn1 ,xn2 )∈T nε (X1,X2) PXn

1 X
n
2

(xn1 , xn2 ) →
n→+∞

1 ,

(4.81)
since typical sets cover asymptotically the whole probability mass. Thus, we get that
SNS(W⊗n, 2nR1 , 2nR2) →

n→+∞
1 since SNS(W⊗n, 2nR1 , 2nR2) ≤ 1. Therefore, for su�-

ciently large n we can achieve a rate pair arbitrarily close to the outer bound. Finally, since
CNS(W ) is closed and convex, a rate pair that is in the closure of the convex hull of the
initial region is also in CNS(W ), and thus the proof is completed.

4.6 Independent Non-Signaling Assisted Capacity Region

The goal of this section is to show that independent non-signaling assistance does not
change the capacity region of a MAC W , i.e. that CNSSR(W ) = C(W ). In order to prove
this result, we will need some properties in the one-sender one-receiver case from [BF18]
recalled in Section 2.3.
Let us state our result on independent non-signaling assistance, which says that even in
one-shot scenarios, the success probability with and without that assistance are close:

Theorem 4.34. For any `1, k1, `2, k2, Ssum(W, `1, `2) is larger than or equal to:

min
(
k1
`1

(
1−

(
1− 1

k1

)`1)
,
k2
`2

(
1−

(
1− 1

k2

)`2))
SNSSR
sum

(W,k1, k2) .

In particular, this will imply that the capacity regions are the same:

Corollary 4.35. CNSSR(W ) = C(W ).

Proof. We will show that CNSSRsum (W ) = Csum(W ), which is enough to conclude thanks to
Proposition 4.2 and Proposition 4.3. We apply Theorem 4.34 on the MAC W⊗n.

Let us �x k1 = 2nR1 , k2 = 2nR2 and `1 = 2nR1
n , `2 = 2nR2

n . Since:

k

`

(
1−

(
1− 1

k

)`)
≥ k

`

(
1− e−

`
k

)
≥ 1− `

2k ,

and 1− `1
2k1

= 1− `2
2k2

= 1− 1
2n , we get:

(
1− 1

2n

)
SNSSR

sum (W⊗n, 2nR1 , 2nR1) ≤ Ssum

(
W⊗n,

2nR1

n
,
2nR2

n

)
.
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As 1− 1
2n tends to 1 when n tends to in�nity, we get that ∀ε > 0, ∃N ∈ N,∀n ≥ N :

(1− ε)SNSSR
sum (W⊗n, 2nR1 , 2nR1) ≤ Ssum(W⊗n, 2n(R1− log(n)

n
), 2n(R2− log(n)

n
)) .

Thus, if lim
n→+∞

SNSSRsum (W⊗n, 2nR1 , 2nR1) = 1, we have that for all R′1 < R1 and R′2 < R2:

lim
n→+∞

Ssum(W⊗n, 2nR′1 , 2nR′1) ≥ 1− ε .

Since this is true for all ε > 0, we get in fact that lim
n→+∞

Ssum(W⊗n, 2nR′1 , 2nR′1) = 1. This
implies that CNSSRsum (W ) ⊆ Csum(W ), and thus that the capacity regions are equal as the
other inclusion is always satis�ed.

In order to prove Theorem 4.34, we will need the following lemma:

Lemma 4.36. If S1, S2 are classical codes (i.e. multisets with elements in X1,X2) of size
`1, `2:

Ssum(W, `1, `2) ≥ 1
2

fW 1
S2,`2

(S1)

`1
+
fW 2

S1,`1
(S2)

`2

 ,

whereW 1
S2,`2

is the channel de�ned byW 1
S2,`2

(y|x1) = 1
`2

∑`2
i2=1W (y|x1S

i2
2 ) and similarly

forW 2
S1,`1

.

Proof. Let us de�ne e1(x1|i1) := 1
S
i1
1 =x1

and e2(x2|i2) := 1
S
i2
2 =x2

. Then for �xed y, let
us take jy1 ∈ argmaxi1{

∑`2
i2=1W (y|Si11 S

i2
2 )}, jy2 ∈ argmaxi2{

∑`1
i1=1W (y|Si11 S

i2
2 )} and

then de�ne d(j1|y) := 1j1=jy1 , d(j2|y) := 1j2=jy2 . We have then:

Ssum(W, `1, `2) ≥ 1
`1`2

∑
i1,i2,x1,x2,y

W (y|x1x2)1
S
i1
1 =x1

1
S
i2
2 =x2

1i1=iy1 + 1i2=iy2
2

= 1
`1`2

∑
i1,i2,y

W (y|Si11 S
i2
2 )

1i1=iy1 + 1i2=iy2
2

= 1
`1`2

∑
y

1
2

∑
i2

W (y|Si
y
1

1 S
i2
2 ) +

∑
i1

W (y|Si11 S
iy2
2 )


= 1
`1`2

∑
y

1
2

max
i1

∑
i2

W (y|Si11 S
i2
2 ) + max

i2

∑
i1

W (y|Si11 S
i2
2 )


= 1

2

∑y maxi1
[

1
`2

∑
i2 W (y|Si11 S

i2
2 )
]

`1
+
∑
y maxi2

[
1
`1

∑
i1 W (y|Si11 S

i2
2 )
]

`2


= 1

2

(∑
y maxi1 W 1

S2,`2
(y|Si11 )

`1
+
∑
y maxi2 W 2

S1,`1
(y|Si22 )

`2

)

= 1
2

fW 1
S2,`2

(S1)

`1
+
fW 2

S1,`1
(S2)

`2

 .

(4.82)
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We have now all the tools to prove Theorem 4.34:

Proof of Theorem 4.34. Let us consider an optimal solution r1, r2, p1, p2 of the program of
Proposition 4.8 computing SNSSRsum (W,k1, k2).
Let us �x some multiset S2 with elements in X2 of size `2. Note that r1 and p1 are a feasible
solution of the program of Proposition 2.17 computing SNS(W 1

S2,`2
, k1). As a result, we

can apply Theorem 2.18 and get the following statement. For the multiset S1 obtained by
choosing `1 elements of X1 independently according to the distribution

(
p1
x1
k1

)
x1∈X1

, we

have:

ES1

fW 1
S2,`2

(S1)

`1

 ≥ k1
`1

(
1−

(
1− 1

k1

)`1)
· 1
k1

∑
x1,y

W 1
S2,`2(y|x1)r1

x1,y .

Now, let S2 be the multiset obtained by choosing `2 elements ofX2 independently according
to the distribution

(
p2
x2
k2

)
x2∈X2

. We have:

ES2

[
1
k1

∑
x1,y

W 1
S2,`2(y|x1)r1

x1,y

]
= ES2

 1
k1

∑
x1,y

1
`2

`2∑
i2=1

W (y|x1S
i2
2 )r1

x1,y


= 1
`2

`2∑
i2=1

E
X
i2
2 ∼

p2
x2
k2

[
1
k1

∑
x1,y

W (y|x1X
i2
2 )r1

x1,y

]
= E

X2∼
p2
x2
k2

[
1
k1

∑
x1,y

W (y|x1X2)r1
x1,y

]

= 1
k1

∑
x1,x2,y

p2
x2

k2
W (y|x1x2)r1

x1,y = 1
k1

∑
x1,y

W 1
p2,k2

(y|x1)r1
x1,y .

(4.83)
Thus in all, we have:

ES2

ES1

fW 1
S2,`2

(S1)

`1

 ≥ ES2

[
k1
`1

(
1−

(
1− 1

k1

)`1)
· 1
k1

∑
x1,y

W 1
S2,`2(y|x1)r1

x1,y

]

= k1
`1

(
1−

(
1− 1

k1

)`1)
· ES2

[
1
k1

∑
x1,y

W 1
S2,`2(y|x1)r1

x1,y

]

≥ k1
`1

(
1−

(
1− 1

k1

)`1)
· 1
k1

∑
x1,y

W 1
p2,k2

(y|x1)r1
x1,y ,

(4.84)

and symmetrically for ES1

[
ES2

[
f
W2
S1,`1

(S2)

`2

]]
. Since there exists codes S∗1 , S∗2 such that:

1
2

fW 1
S∗2 ,`2

(S∗1)

`1
+
fW 2

S∗1 ,`1
(S∗2)

`2

 ≥ ES1,S2

1
2

fW 1
S2,`2

(S1)

`1
+
fW 2

S1,`1
(S2)

`2

 ,
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and by applying Lemma 4.36, we get:

Ssum(W, `1, `2) ≥ 1
2

fW 1
S∗2 ,`2

(S∗1)

`1
+
fW 2

S∗1 ,`1
(S∗2)

`2


≥ ES1,S2

1
2

fW 1
S2,`2

(S1)

`1
+
fW 2

S1,`1
(S2)

`2


= 1

2

ES2

ES1

fW 1
S2,`2

(S1)

`1

+ ES1

ES2

fW 2
S1,`1

(S2)

`2


≥ k1

2`1

(
1−

(
1− 1

k1

)`1)
· 1
k1

∑
x1,y

W 1
p2(y|x1)r1

x1,y

+ k2
2`2

(
1−

(
1− 1

k2

)`2)
· 1
k2

∑
x2,y

W 2
p1(y|x2)r2

x2,y

≥ min
(
k1
`1

(
1−

(
1− 1

k1

)`1)
,
k2
`2

(
1−

(
1− 1

k2

)`2))
SNSSR

sum (W,k1, k2) ,

(4.85)

which concludes the proof.

Remark. In the whole proof of Theorem 4.34, as well as the properties it depends on, we
have never used the fact that the output of the channel y was the same for both decoders d1
and d2. This implies that the result also holds for interference channels, i.e. two-sender two-
receiver channels W (y1y2|x2x2). Speci�cally, non-signaling assistance shared between
the �rst sender and the �rst receiver and independently shared between the second sender
and the second receiver does not change the capacity region of interference channels.

4.7 Conclusion

In this chapter, we have addressed the computational complexity of the multiple-access
channel coding problem, by showing that no polynomial-time constant approximation
exists if a complexity hypothesis on random k-SAT formulas is true. Then, we studied
the impact of non-signaling assistance on the capacity of multiple-access channels. We
have developed an e�cient linear program computing the success probability of the best
non-signaling assisted code for a �nite number of copies of a multiple-access channel. In
particular, this gives lower bounds on the zero-error non-signaling assisted capacity of
multiple-access channels. Applied to the binary adder channel, these results were used
to prove that a sum-rate of log2(72)

4 ' 1.5425 can be reached with zero error, which beats
the maximum classical sum-rate capacity of 3

2 . For noisy channels, we have developed
a technique giving lower bounds through the use of concatenated codes. Applied to the
noisy binary adder channel, this technique was used to show that non-signaling assistance
still improves the sum-rate capacity. We have also found an outer bound on the non-
signaling assisted capacity region through a relaxed notion of non-signaling assistance,
whose capacity region was characterized by a single-letter formula. Finally, we have shown
that independent non-signaling assistance does not change the capacity region.
Our results suggest that quantum entanglement may also increase the capacity of such
channels. However, even for the binary adder channel, this question remains open. One
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could also ask if such e�cient methods to compute the best non-signaling assisted codes
can be extended to Gaussian multiple-access channels. Finally, establishing a single-letter
formula for the non-signaling assisted capacity of multiple-access channels is the main
open question left here. It remains open even for the binary adder channel. Proving that
non-signaling assistance and relaxed non-signaling assistance coincide asymptotically
would directly answer this question and show that the capacity region is described in
Theorem 4.25.
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Chapter5

Broadcast Channel Coding With

Non-Signaling Correlations

Broadcast channels, introduced by Cover in [Cov72], describe the simple network commu-
nication setting where one sender aims to transmit individual messages to two receivers.
Contrary to point-to-point channels [Sha48] or multiple-access channels [Lia73, Ahl73], the
capacity region of broadcast channels is known only for particular classes such as the de-
graded [Ber73, Gal74, AK75], deterministic [Mar77, Pin78] and semi-deterministic [GP80].
Only inner bounds [Cov75, vdM75, Mar79] and outer bounds [Sat78, Mar79, NG07, GN20]
on the capacity region are known in the general setting.
On the one hand, it is natural to ask whether quantum-entanglement or even non-signaling
correlations change the capacity region of broadcast channels. It is known that gaps exist
between the classical, quantum-entanglement assisted and non-signaling assisted capac-
ity regions of two-sender two-receiver interference channels [QS17] and MACs [LALS20,
SLSS22]; see Chapter 4 for a detailed analysis of non-signaling assistance on MACs. How-
ever, the in�uence of nonlocal resources on broadcast channels has been comparably less
studied. We only know that quantum entanglement shared between decoders does not
change the capacity region [PDB21].
On the other hand, from an algorithmic point of view, a crucial question in information
theory is the complexity of the channel coding problem, which entails maximizing the
success probability that can be achieved by sending a �xed number of messages over a
channel. However, as solving exactly this problem is NP-hard, a natural question that arises
is its approximability. For point-to-point channels, Barman and Fawzi found in [BF18]
a (1 − e−1)-approximation algorithm running in polynomial time. They showed that
it is NP-hard to approximate the channel coding problem in polynomial time for any
strictly better ratio. For `-list-decoding, where the decoder is allowed to output a list of `
guesses, a polynomial-time approximation algorithm achieving a 1− ``e−`

`! ratio was found
in [BFGG20], and it was shown to be NP-hard to do better in Chapter 3; see Theorem 3.1.
For multiple-access channel coding, the complexity of the problem can be linked to the
bipartite densest subgraph problem [FKP01], which cannot be approximated within any
constant ratio under a complexity hypothesis on random k-SAT formulas [AAM+11]; see
Theorem 4.5 from Chapter 4. However, the approximability of broadcast channel coding
has not been addressed in the literature.
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In the point-to-point scenario studied in [BF18], the existence of a constant-ratio ap-
proximation algorithm is linked to the equality of the capacity regions with and without
non-signaling assistance. Indeed, giving non-signaling assistance to the channel coding
problem turns it into a linear program, thus computable in polynomial time. In fact, it is
equal to its natural linear relaxation, which is a common strategy towards approximating
an integer linear program. Showing that this approximation strategy guarantees a constant
ratio is the key ingredient in proving the equality of the capacity regions with and without
non-signaling assistance. This raises the following questions on broadcast channels: Does
the capacity region of the broadcast channel change when non-signaling resources between
parties are allowed? What is the best approximability ratio of the broadcast channel coding
problem? How those two questions are related?
Contributions In this chapter, as a �rst result, we prove that the sum success probabilities
of the broadcast channel coding problem are the same with and without non-signaling
assistance between decoders; see Theorem 5.4. This strengthens a result by [PDB21]
establishing that entanglement between the decoders does not change the capacity region.
The main focus of this chapter is to study the in�uence of sharing a non-signaling resource
between the three parties. Our main result shows that for the class of deterministic broadcast
channels, non-signaling resources shared between the three parties does not change the
capacity region; see Theorem 5.10 and Corollary 5.11. In order to prove this result, we
consider the algorithmic problem of optimal channel coding for a deterministic broadcast
channel. For this problem, we describe a (1− e−1)2-approximation algorithm running in
polynomial time. This is achieved through a graph interpretation of the problem, where
one aims at partitioning a bipartite graph into k1 and k2 parts, such that the resulting
quotient graph is the densest possible; see Proposition 5.7 and Theorem 5.8. To prove our
result on the limitations of non-signaling assistance for deterministic broadcast channels,
we use the same ideas as the ones involved in the analysis of the approximation algorithm.
As far as hardness is concerned, we consider the subproblem of broadcast channel coding
where the number of messages one decoder is responsible of is maximum. This subproblem
can be interpreted as a social welfare maximization problem. In the theory of fair divi-
sion [BT96, Mou03], social welfare maximization entails partitioning a set of goods among
agents in order to maximize the sum of their utilities. The social welfare problem has been
extensively studied through black box approach [BN05], which led to a precise analysis
of achievable approximation ratio as well as hardness results [DS06, MSV08], depending
on the class of utility functions considered and the type of black box access to them. We
re�ne the hardness result for the class of fractionally sub-additive utility functions to the
subclass coming from the broadcast channel coding subproblem interpretation. Speci�cally,
we show that in the value query model, we cannot achieve a better approximation ratio
than Ω

(
1√
m

)
in polynomial time, with m the size of one of the outputs of the channel:

see Theorem 5.14. Following the previous discussion on the links between constant-ratio
approximation algorithms and non-signaling capacity regions, this hardness result is a �rst
step towards showing that sharing a non-signaling resource between the three parties of a
broadcast channel can enlarge its capacity region.

Organization In Section 5.1, we de�ne precisely the di�erent versions of the broadcast
channel coding problem depending on the choice of objective value, and show that they
all lead to the same capacity region. In Section 5.2, we de�ne the di�erent non-signaling
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assisted versions of the broadcast channel coding problem. In particular, we show that
the sum success probabilities with and without non-signaling assistance shared between
decoders are the same, and that it implies that the related capacity regions are the same. In
Section 5.3, we address both algorithmic aspects and capacity considerations of deterministic
broadcast channels. Speci�cally, we describe a (1−e−1)2-approximation algorithm running
in polynomial time for that class, and we show that the capacity region for that class is
the same with or without non-signaling assistance. Finally, in Section 5.4, we show that in
the value query model, we cannot achieve a better approximation ratio than Ω

(
1√
m

)
in

polynomial time for the general broadcast channel coding problem, with m the size of one
of the outputs of the channel.

5.1 Broadcast Channel Coding

5.1.1 Broadcast Channels

The coding problem for a broadcast channel W : X → Y1 × Y2 can be stated in the
following way. We want to encode a pair of messages belonging to [k1]× [k2] into X . The
pair is given as input to W , which results in two random outputs in Y1 and Y2. From
the output in Y1 (resp. Y2), we want to decode back the original message in [k1] (resp.
[k2]). We will call e : [k1] × [k2] → X the encoder, d1 : Y1 → [k1] the �rst decoder and
d2 : Y2 → [k2] the second decoder. The scenario is depicted in Figure 5.1.

e W

d1

d2

x

y1

y2

(i1, i2)

j1

j2

Figure 5.1 – Coding for a broadcast channel W .

We will call p1(W, e, d1) (resp. p2(W, e, d2)) the probability of successfully decoding the
�rst (resp. second) message, i.e. that j1 = i1 (resp. j2 = i2), given that the encoder is e
and the decoder is d1 (resp. d2). We will also consider p(W, e, d1, d2), the probability of
successfully decoding both messages, i.e. that j1 = i1 and j2 = i2, given that the encoder
is e and the decoders are d1, d2.
We aim to �nd the best encoder and decoders according to some �gure of merit. However,
to do so, we need a one-dimensional real-valued objective to optimize. This leads to two
di�erent quantities.

5.1.2 The Sum Success Probability Ssum(W,k1, k2)

We will focus �rst on maximizing p1(W,e,d1)+p2(W,e,d2)
2 over all encoders e and decoders

d1, d2. We will call Ssum(W,k1, k2) the resulting maximum sum probability of successfully
encoding and decoding the messages through W , given that the input pair of messages is
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taken uniformly in [k1]× [k2]. Ssum(W,k1, k2) is the solution of the following optimization
program:

maximize
e,d1,d2

1
k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d1(i1|y1) + d2(i2|y2)
2

subject to
∑
x∈X

e(x|i1i2) = 1, ∀i1 ∈ [k1], i2 ∈ [k2]

∑
j1∈[k1]

d1(j1|y1) = 1, ∀y1 ∈ Y1

∑
j2∈[k2]

d2(j2|y2) = 1, ∀y2 ∈ Y2

e(x|i1i2), d1(j1|y1), d2(j2|y2) ≥ 0

(5.1)

Proof. One should note that we allow in fact non-deterministic encoders and decoders for
generality reasons, although the value of the program is not changed as it is convex. Besides
that remark, let us name I1, I2, J1, J2, X, Y1, Y2 the random variables corresponding to
i1, i2, j1, j2, x, y1, y2 in the coding and decoding process. Then, given e, d1, d2 and W , the
objective value of the previous program comes from:

p1(W, e, d1) = P (J1 = I1) = 1
k1k2

∑
i1,i2

P (J1 = i1|I1 = i1, I2 = i2)

= 1
k1k2

∑
i1,i2,x

e(x|i1i2)P (J1 = i1|i1, i2, X = x)

= 1
k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)P (J1 = i1|i1, i2, x, Y1 = y1, Y2 = y2)

= 1
k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d1(i1|y1) ,

(5.2)

and symmetrically for p2(W, e, d2), which leads to the announced objective value.

One can rewrite this optimization program in a more convenient way, proving that
Ssum(W,k1, k2) depends only on the marginals of W :

Proposition 5.1.

Ssum(W,k1, k2) = maximize

e,d1,d2

1
2k1k2

∑
i1,x,y1

W1(y1|x)d1(i1|y1)
∑
i2

e(x|i1i2)

+ 1
2k1k2

∑
i2,x,y2

W2(y2|x)d2(i2|y2)
∑
i1

e(x|i1i2)

subject to

∑
x∈X

e(x|i1i2) = 1,∀i1 ∈ [k1], i2 ∈ [k2]

∑
j1∈[k1]

d1(j1|y1) = 1,∀y1 ∈ Y1

∑
j2∈[k2]

d2(j2|y2) = 1,∀y2 ∈ Y2

e(x|i1i2), d1(j1|y1), d2(j2|y2) ≥ 0

(5.3)
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Proof. It follows from the de�nitions W1(y1|x) :=
∑
y2 W (y1y2|x) and W2(y2|x) :=∑

y1 W (y1y2|x).

5.1.3 The Joint Success Probability S(W,k1, k2)
We will now focus on maximizing p(W, e, d1, d2) over all encoders e and decoders d1, d2.
We will call S(W,k1, k2) the resulting maximum probability of successfully encoding and
decoding the messages throughW , given that the input pair of messages is taken uniformly
in [k1]× [k2]. S(W,k1, k2) is the solution of the following optimization program:

S(W,k1, k2) := maximize
e,d1,d2

1
k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d1(i1|y1)d2(i2|y2)

subject to
∑
x∈X

e(x|i1i2) = 1,∀i1 ∈ [k1], i2 ∈ [k2]

∑
j1∈[k1]

d1(j1|y1) = 1,∀y1 ∈ Y1

∑
j2∈[k2]

d2(j2|y2) = 1,∀y2 ∈ Y2

e(x|i1i2), d1(j1|y1), d2(j2|y2) ≥ 0
(5.4)

The proof is the same as in the sum probability scenario. We de�ne the (resp. sum) capacity
region using De�nition 2.12 by C(W ) := C[S](W ) (resp. Csum(W ) := C[Ssum](W )).
The objective values of those two optimization programs are not the same, but S(W,k1, k2)
and Ssum(W,k1, k2) still characterize the same capacity region [Wil90]:

Proposition 5.2. For any broadcast channelW , C(W ) = Csum(W ).

Proof. Let us focus on error probabilities rather than success ones. Call them respectively
E(W,k1, k2) := 1− S(W,k1, k2) and Esum(W,k1, k2) := 1− Ssum(W,k1, k2). Let us �x a
solution e, d1, d2 of the optimization program computing S(W,k1, k2). Let us remark �rst
that: ∑

i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2) = k1k2 ,

thus, the value of the maximum error for those encoder and decoders is:

E(W,k1, k2, e, d1, d2) := 1− 1
k1k2

 ∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d1(i1|y1)d2(i2|y2)


= 1
k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)

− 1
k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d1(i1|y1)d2(i2|y2)

= 1
k1k2

 ∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2) [1− d1(i1|y1)d2(i2|y2)]

 .

(5.5)
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Similarly, the value of the sum error Esum(W,k1, k2, e, d1, d2) is equal to:

1− 1
k1k2

 ∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d1(i1|y1) + d2(i2|y2)
2


= 1
k1k2

 ∑
i1,i2,x,y1,y2

W (y1y2)e(x|i1i2)
[
1− d1(i1|y1) + d2(i2|y2)

2

] .

(5.6)

However, for x, y ∈ [0, 1], we have that:

1− xy ≥ max (1− x, 1− y) ≥ 1− x+ y

2 ,

and:
1− xy ≤ (1− x) + (1− y) = 2

(
1− x+ y

2

)
.

This means that, for all e, d1, d2, we have:

Esum(W,k1, k2, e, d1, d2) ≤ E(W,k1, k2, e, d1, d2) ≤ 2Esum(W,k1, k2, e, d1, d2) ,

so, maximizing over all e, d1, d2, we get:

Esum(W,k1, k2) ≤ E(W,k1, k2) ≤ 2Esum(W,k1, k2) .

Thus, up to a multiplicative factor 2, the error is the same. In particular, when one of those
errors tends to zero, the other one tends to zero as well. This implies that the capacity
regions are the same.

5.2 Non-Signaling Assistance

In this section, we will consider the broadcast channel coding problem with additional
resources, in order to determine how these resources a�ect its success probabilities as well
as the capacity regions that can be de�ned from them.

5.2.1 Non-Signaling Assistance Between Decoders

Here, we consider the case where the receivers are given non-signaling assistance. This
resource, which is a theoretical but easier to manipulate generalization of quantum entan-
glement, can be characterized as follows. A non-signaling box d(j1j2|y1y2) is any joint
conditional probability distribution such that the marginal from one party is independent
of the other party’s input, i.e. we have:

∀j1, y1, y2, y
′
2,

∑
j2

d(j1j2|y1y2) =
∑
j1

d(j1j2|y1y
′
2) ,

∀j2, y1, y2, y
′
1,

∑
j1

d(j1j2|y1y2) =
∑
j1

d(j1j2|y′1y2) .
(5.7)
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Thus, when receivers are given non-signaling assistance, the product d1(j1|y1)d2(j2|y2) is
replaced by the non-signaling box d(j1j2|y1y2). Thus, we de�ne the joint and sum success
probabilities SNSdec(W,k1, k2) (resp. SNSdecsum (W,k1, k2)) by:

maximize
e,d1,d2

1
k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d(i1i2|y1y2)

(
resp. maximize

e,d1,d2

1
2k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)
∑
j2

d(i1j2|y1y2)

+ 1
2k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)
∑
j1

d(j1i2|y1y2)
)

subject to
∑
x

e(x|i1i2) = 1∑
j2

d(j1j2|y1y2) =
∑
j1

d(j1j2|y1y
′
2)

∑
j1

d(j1j2|y1y2) =
∑
j1

d(j1j2|y′1y2)

∑
j1,j2

d(j1j2|y1y2) = 1

e(x|i1i2), d(j1j2|y1y2) ≥ 0

(5.8)

The (resp. sum) capacity region with non-signaling assistance between decoders is de�ned
using De�nition 2.12 by CNSdec(W ) := C[SNSdec ](W ) (resp. CNSdecsum (W ) := C[SNSdecsum ](W )).
We will now show that sum and joint capacity regions with non-signaling assistance
between decoders are the same.

Proposition 5.3. For any broadcast channelW , CNS
dec

sum
(W ) = CNS

dec(W ).

Proof. Given an encoder e and a non-signaling decoding box d, the maximum success
probability of encoding and decoding correctly with those is given by:

SNSdec(W,k1, k2, e, d) := 1
k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)d(i1i2|y1y2) .

This should be compared to the sum success probability SNSdecsum (W,k1, k2, e, d) of encoding
and decoding correctly with those:

1
k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)
[∑

j2 d(i1j2|y1y2) +
∑
j1 d(j1i2|y1y2)

2

]
.

Similarly to what was done in Proposition 5.2, we focus on error probabilities rather than
success probabilities. This leads again to:

ENSdec(W,k1, k2, e, d) = 1
k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2) [1− d(i1i2|y1y2)] ,
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and ENSdecsum (W,k1, k2, e, d) equal to:

1
k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)e(x|i1i2)
[

1−
∑
j2 d(i1j2|y1y2)

2 +
1−

∑
j1 d(j1i2|y1y2)

2

]
.

But we have that:

1− d(i1i2|y1y2) ≥ max

1−
∑
j2

d(i1j2|y1y2), 1−
∑
j1

d(j1i2|y1y2)


≥

1−
∑
j2 d(i1j2|y1y2)

2 +
1−

∑
j1 d(j1i2|y1y2)

2 ,

(5.9)

since d(j1j2|y1y2) ∈ [0, 1], and we have that:

1−
∑
j2

d(i1j2|y1y2) + 1−
∑
j1

d(j1i2|y1y2)

= 1− d(i1i2|y1y2) + 1−
∑

(j1,j2)∈S
d(j1j2|y1y2)

≥ 1− d(i1i2|y1y2) ,

(5.10)

with S := {(i1, j2) : j2 ∈ [k2]− {i2}} t {(j1, i2) : j1 ∈ [k1]− {i1}}.
Thus, this implies that:

ENSdec
sum (W,k1, k2, e, d) ≤ ENSdec(W,k1, k2, e, d) ≤ 2ENSdec

sum (W,k1, k2, e, d) ,

and by maximizing over all e and d:

ENSdec
sum (W,k1, k2) ≤ ENSdec(W,k1, k2) ≤ 2ENSdec

sum (W,k1, k2) .

As before, this implies that the capacity regions are the same.

We will now prove that sum success probabilities of the broadcast channel coding problem
are the same with and without non-signaling assistance between decoders. In particular,
this implies that non-signaling resources shared between decoders does not change the
capacity region. Note that, after the publication of [PDB21], Pereg et al. added a remark to
the arXiv version of their paper that their result stating that entanglement shared between
decoders does not change the capacity of a broadcast channel could be generalized to non-
signaling assistance. The theorem below strengthens this result showing that non-signaling
assistance between the decoders cannot increase the sum success probability even in the
one-shot setting and for arbitrary broadcast channels.

Theorem 5.4. For anyW,k1, k2, we have Ssum(W,k1, k2) = SNS
dec

sum
(W,k1, k2). As a con-

sequence, C(W ) = CNS
dec(W ).

Proof. In the sum scenario, since the objective function does not depend on the product
d1(j1|y1)d2(j2|y2) but only on the marginals d1(j1|y1) and d2(j2|y2), the non-signaling
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box won’t give additional decoding power. Indeed, for any encoder e and non-signaling
decoding box d, we have that:

SNSdec
sum (W,k1, k2, e, d) := 1

2k1k2

∑
i1,x,y1

W1(y1|x)

∑
j2

d(i1j2|y1y2)

∑
i2

e(x|i1i2)

+ 1
2k1k2

∑
i2,x,y2

W2(y2|x)

∑
j1

d(j1i2|y1y2)

∑
i1

e(x|i1i2) .

(5.11)
Thus, by choosing d1(j1|y1) :=

∑
j2 d(j1j2|y1y2) and d2(j2|y2) :=

∑
j1 d(j1j2|y1y2),

which are well-de�ned since d is a non-signaling box, we have Ssum(W,k1, k2, e, d1, d2) =
SNSdecsum (W,k1, k2, e, d). By optimizing over all e and d, SNSdecsum (W,k1, k2) ≤ Ssum(W,k1, k2).
Since the inequality is obvious in the other direction, as d(j1j2|y1y2) := d1(j1|y1)d2(j2|y2)
is always a non-signaling box, we have that Ssum(W,k1, k2) = SNSdecsum (W,k1, k2). This
implies in particular that the capacity regions are the same, i.e. Csum(W ) = CNSdecsum (W )
Finally, since C(W ) = Csum(W ) by Proposition 5.2 and CNSdecsum (W ) = CNSdec(W ) by Propo-
sition 5.3, we get that C(W ) = CNSdec(W ).

5.2.2 Full Non-Signaling Assistance

In this section, we will consider the case where the sender and the receivers are given non-
signaling assistance. This means that a three-party non-signaling box P (xj1j2|(i1i2)y1y2)
will replace the product e(x|i1i2)d1(j1|y1)d2(j2|y2) in the previous objective values. A
joint conditional probability P (xj1j2|(i1i2)y1y2) is a non-signaling box if the marginal
from any two parties is independent of the removed party’s input:

∀j1, j2, i1, i2, y1, y2, i
′
1, i
′
2,

∑
x

P (xj1j2|(i1i2)y1y2) =
∑
x

P (xj1j2|(i′1i′2)y1y2) ,

∀x, j2, i1, i2, y1, y2, y
′
1,

∑
j1

P (xj1j2|(i1i2)y1y2) =
∑
j1

P (xj1j2|(i1i2)y′1y2) ,

∀x, j1, i1, i2, y1, y2, y
′
2,

∑
j2

P (xj1j2|(i1i2)y1y2) =
∑
j2

P (xj1j2|(i1i2)y1y
′
2) .

(5.12)
The scenario is depicted in Figure 5.2.
The cyclicity of Figure 5.2 is at �rst sight counter-intuitive. Note �rst that P being a
non-signaling box is completely independent of W : in particular, the variables y1, y2 do
not need to follow any laws in the de�nition of P being a non-signaling box. Therefore, the
remaining ambiguity is the apparent need to encode and decode at the same time. However,
since P is a non-signaling box, we won’t need to do both at the same time, although
the global correlation between the sender and the receivers will be characterized only by
P (xj1j2|(i1i2)y1y2). Indeed, ∀y1, y2, P (x|(i1i2)) = P (x|(i1i2)y1y2) by the non-signaling
property of P . Thus, one can get the output x on input (i1i2) without access to y1, y2, as
that knowledge won’t a�ect the law of x. Then (y1, y2) follows the law given by W given
that x. Finally, given access to y1, y2, the decoding process is described by:

P (j1j2|(i1i2)y1y2x) = P (xj1j2|(i1i2)y1y2)
P (x|(i1i2)y1y2) = P (xj1j2|(i1i2)y1y2)

P (x|(i1i2)) ,
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e d1 d2

j1 j2

(i1, i2)

W

y1
y2

x

P (xj1j2|(i1i2)y1y2)

j1 j2

(i1, i2)

W

y1
y2

x

Figure 5.2 – A non-signaling box P replacing e, d1, d2 in the coding problem for the
broadcast channel W .

so we recover P (j1j2|(i1i2)y1y2x))× P (x|(i1i2)) = P (xj1j2|(i1i2)y1y2), and therefore,
the process is not cyclic. Non-signaling boxes de�ne exactly the conditional probability
distributions where it is possible to consider the conditional probabilities of each party
independently. This clari�es how one can e�ectively encode and then decode messages
through a non-signaling box.
We will call the maximum sum success probability SNS

sum(W,k1, k2), which is given by the
following linear program, where the constraints translate precisely the fact that P is a
non-signaling box:

SNS
sum(W,k1, k2) := maximize

P

1
2k1k2

∑
i1,x,y1

W1(y1|x)
∑
i2,j2

P (xi1j2|(i1i2)y1y2)

+ 1
2k1k2

∑
i2,x,y2

W2(y2|x)
∑
i1,j1

P (xj1i2|(i1i2)y1y2)

subject to
∑
x

P (xj1j2|(i1i2)y1y2) =
∑
x

P (xj1j2|(i′1i′2)y1y2)∑
j1

P (xj1j2|(i1i2)y1y2) =
∑
j1

P (xj1j2|(i1i2)y′1y2)

∑
j2

P (xj1j2|(i1i2)y1y2) =
∑
j2

P (xj1j2|(i1i2)y1y
′
2)

∑
x,j1,j2

P (xj1j2|(i1i2)y1y2) = 1

P (xj1j2|(i1i2)y1y2) ≥ 0
(5.13)

Since it is given as a linear program, the complexity of computing SNS
sum(W,k1, k2) is poly-

nomial in the number of variables and constraints (see for instance Section 7.1 of [GM07]),
which is a polynomial in |X |, |Y1|, |Y2|, k1 and k2.
Similarly, we de�ne the maximum joint success probability SNS(W,k1, k2) in the following
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way:

SNS(W,k1, k2) := maximize
P

1
k1k2

∑
i1,i2,x,y1,y2

W (y1y2|x)P (xi1i2|(i1i2)y1y2)

subject to
∑
x

P (xj1j2|(i1i2)y1y2) =
∑
x

P (xj1j2|(i′1i′2)y1y2)∑
j1

P (xj1j2|(i1i2)y1y2) =
∑
j1

P (xj1j2|(i1i2)y′1y2)

∑
j2

P (xj1j2|(i1i2)y1y2) =
∑
j2

P (xj1j2|(i1i2)y1y
′
2)

∑
x,j1,j2

P (xj1j2|(i1i2)y1y2) = 1

P (xj1j2|(i1i2)y1y2) ≥ 0
(5.14)

We can rewrite both these programs in more convenient and smaller linear programs:

Proposition 5.5.

SNS
sum

(W,k1, k2) = maximize

p,r,r1,r2

1
2k1k2

(∑
x,y1

W1(y1|x)r1
x,y1 +

∑
x,y2

W2(y2|x)r2
x,y2

)
subject to

∑
x

rx,y1,y2 = 1∑
x

r1
x,y1 = k2∑

x

r2
x,y2 = k1∑

x

px = k1k2

0 ≤ rx,y1,y2 ≤ r1
x,y1 , r

2
x,y2 ≤ px

px − r1
x,y1 − r

2
x,y2 + rx,y1,y2 ≥ 0

(5.15)

SNS(W,k1, k2) = maximize

p,r,r1,r2

1
k1k2

∑
x,y1,y2

W (y1y2|x)rx,y1,y2

subject to

∑
x

rx,y1,y2 = 1∑
x

r1
x,y1 = k2∑

x

r2
x,y2 = k1∑

x

px = k1k2

0 ≤ rx,y1,y2 ≤ r1
x,y1 , r

2
x,y2 ≤ px

px − r1
x,y1 − r

2
x,y2 + rx,y1,y2 ≥ 0

(5.16)
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Proof. One can check that given a solution of the original program, the following choice of
variables is a valid solution of the second program achieving the same objective value:

rx,y1,y2 :=
∑
i1,i2

P (xi1i2|(i1i2)y1y2) ,

r1
x,y1 :=

∑
j2,i1,i2

P (xi1j2|(i1i2)y1y2) ,

r2
x,y2 :=

∑
j1,i1,i2

P (xj1i2|(i1i2)y1y2) ,

px :=
∑

j1,j2,i1,i2

P (xj1j2|(i1i2)y1y2) .

(5.17)

For the other direction, given those variables, a non-signaling probability distribution
P (xj1j2|(i1i2)y1y2) is given by, for j1 6= i1 and j2 6= i2:

P (xi1i2|(i1i2)y1y2) = rx,y1,y2

k1k2
,

P (xj1i2|(i1i2)y1y2) =
r2
x,y2 − rx,y1,y2

k1k2(k1 − 1) ,

P (xi1j2|(i1i2)y1y2) =
r1
x,y1 − rx,y1,y2

k1k2(k2 − 1) ,

P (xj1j2|(i1i2)y1y2) =
px − r1

x,y1 − r
2
x,y2 + rx,y1,y2

k1k2(k1 − 1)(k2 − 1) .

(5.18)

As before, we de�ne the (resp. sum) capacity region with non-signaling assistance using
De�nition 2.12 by CNS(W ) := C[SNS](W ) (resp. CNS

sum(W ) := C[SNS
sum](W )).

Proposition 5.6. For any broadcast channelW , CNS(W ) = CNS
sum

(W ).

Proof. Let us show that:

2SNS
sum(W,k1, k2)− 1 ≤ SNS(W,k1, k2) ≤ SNS

sum(W,k1, k2) .

This will imply in particular that:

lim
n→+∞

SNS(W⊗n, d2R1ne, d2R2ne) = 1 ⇐⇒ lim
n→+∞

SNS
sum(W⊗n, d2R1ne, d2R2ne) = 1 ,

thus de�ne the same capacity region.
Let us consider an optimal solution px, rx,y1,y2 , r

1
x,y1 , r

2
x,y2 of the program computing

SNS
sum(W,k1, k2). We have:

SNS
sum(W,k1, k2) = 1

k1k2

( ∑
x,y1,y2

W (y1y2|x)
r1
x,y1 + r2

x,y2

2

)
.
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However r1
x,y1 + r2

x,y2 ≤ px + rx,y1,y2 so we get that:

SNS
sum(W,k1, k2) ≤ 1

2k1k2

( ∑
x,y1,y2

W (y1y2|x) (px + rx,y1,y2)
)

= 1
2 + 1

2

[
1

k1k2

( ∑
x,y1,y2

W (y1y2|x)rx,y1,y2

)]

≤ 1
2 + 1

2SNS(W,k1, k2) ,

(5.19)

since px, rx,y1,y2 , r
1
x,y1 , r

2
x,y2 is a valid solution of the program computing SNS(W,k1, k2).

On the other hand, consider now px, rx,y1,y2 , r
1
x,y1 , r

2
x,y2 an optimal solution of the program

computing SNS(W,k1, k2). We have that rx,y1,y2 ≤ r1
x,y1 , r

2
x,y2 so we have that rx,y1,y2 ≤

r1
x,y1+r2

x,y2
2 and thus:

SNS(W,k1, k2) = 1
k1k2

( ∑
x,y1,y2

W (y1y2|x)rx,y1,y2

)

≤ 1
k1k2

( ∑
x,y1,y2

W (y1y2|x)
r1
x,y1 + r2

x,y2

2

)
≤ SNS

sum(W,k1, k2) ,

(5.20)

since px, rx,y1,y2 , r
1
x,y1 , r

2
x,y2 is a valid solution of the program computing SNS

sum(W,k1, k2).
This prove the inequalities 2SNS

sum(W,k1, k2)− 1 ≤ SNS(W,k1, k2) ≤ SNS
sum(W,k1, k2), and

thus concludes the proof.

5.3 Approximation Algorithm for Deterministic Broadcast

Channel Coding

In this section, we will address the question of the approximability of S(W,k1, k2), in
the restricted scenario of a deterministic broadcast channel W . Speci�cally, we study the
problem of �nding a code e : [k1] × [k2] → X , d1 : Y1 → [k1], d2 : Y2 → [k2] that
maximizes the program computing S(W,k1, k2). Note that the restriction to deterministic
codes does not a�ect the value of the objective of the program which is convex, and that the
problem is as hard as �nding any code maximizing the program computing S(W,k1, k2),
as a deterministic code with a better or equal value can be retrieved easily from any code.
We say that W is deterministic if ∀x, y1, y2,W (y1y2|x) ∈ {0, 1}. We can then de�ne
(W1(x),W2(x)) as the only pair (y1, y2) such that W (y1y2|x) = 1, which exists uniquely
as W is a conditional probability distribution. Thus, the deterministic broadcast channel
coding problem can be de�ned in the following way:

De�nition 5.1 (DetBCC). Given a deterministic channel W and integers k1 and k2, the
deterministic broadcast channel coding problem, which we call DetBCC, entails maximizing

S(W,k1, k2, e, d1, d2) := 1
k1k2

∑
i1,i2

1d1(W1(e(i1i2)))=i11d2(W2(e(i1i2)))=i2

over all functions e : [k1]× [k2]→ X , d1 : Y1 → [k1], d2 : Y2 → [k2].
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5.3.1 Reformulation as a Bipartite Graph Problem

We will reformulate DetBCC as a bipartite graph problem. But �rst, let us introduce some
notations:

De�nition 5.2 (Graph notations). Consider a bipartite graphG = (V1tV2, E ⊆ V1×V2):

1. GP1,P2 , the quotient of G by partitions P1,P2 of respectively V1, V2, is de�ned by:

GP1,P2 := (P1 t P2, {(p1, p2) ∈ P1 × P2 : E ∩ (p1 × p2) 6= ∅}) .

2. eG(P1,P2) := |EGP1,P2 | is the number of edges of GP1,P2 .

3. NP1,P2
G (p) := NGP1,P2 (p) is the set of neighbors of p in the graph GP1,P2 .

4. Similarly, degP1,P2
G (p) := degGP1,P2 (p) is the degree, i.e. the number of neighbors,

of p in the graph GP1,P2 .

5. We will use V1, V2 in previous notations when we do not partition on the left and right
part respectively (or identify those to trivial partitions in singletons). For instance,
GV1,V2 = G.

6. We will use the notations e(P1,P2), NP1,P2(p) and degP1,P2(p) when the graph G
considered is clear from context.

Now, let us remark that a deterministic channel W , up to a permutation of elements of X ,
is characterized by the following bipartite graph:

De�nition 5.3 (Bipartite Graph GW associated with the deterministic channel W ).

GW := (Y1 t Y2, E = {(y1, y2) ∈ Y1 × Y2 : ∃x ∈ X , y1 = W1(x) and y2 = W2(x)}) .

Indeed, permuting the elements of X does not change GW nor S(W,k1, k2). As a conse-
quence, up to a multiplicative factor k1k2, we will show that DetBCC is equivalent to the
following bipartite graph problem:

De�nition 5.4 (Densest�otientGraph). Given a bipartite graphG = (V1tV2, E) and
integers k1, k2, the problem Densest�otientGraph entails maximizing eG(P1,P2), the
number of edges of the quotient graph of G by P1,P2, over all partitions P1 of V1 in k1
parts and P2 of V2 in k2 parts.

Proposition 5.7. Given a deterministic channel W and integers k1, k2, it is equivalent to
solve DetBCC onW,k1, k2 or DensestQuotientGraph on GW , k1, k2. That is to say, given
an optimal solution of one of those problems, one can e�ciently construct an optimal so-

lution of the other. Furthermore, their optimal values satisfy k1k2DetBCC(W,k1, k2) =
DensestQuotientGraph(GW , k1, k2).

Proof. Consider an optimal solution e, d1, d2 of DetBCC. Note that d1 de�nes a partition
P1 of Y1 in k1 parts and d2 de�nes a partition P2 of Y2 in k2 parts, with P ibb := {yb ∈ Yb :

124



5.3. Approximation Algorithm for Deterministic Broadcast Channel Coding

db(y) = ib} for b ∈ {1, 2}. Then we have:

k1k2S(W,k1, k2, e, d1, d2) =
∑
i1,i2

1i1=d1(W1(e(i1,i2)))1i2=d2(W2(e(i1,i2)))

=
∑
i1,i2

1
W1(e(i1,i2))∈Pi11

1
W2(e(i1,i2))∈Pi22

.
(5.21)

However, since we consider an optimal solution, we have that:

1
W1(e(i1,i2))∈Pi11

1
W2(e(i1,i2))∈Pi22

= max
x∈X

1
W1(x)∈Pi11

1
W2(x)∈Pi22

,

as e(i1, i2) appears only here in the objective value. Thus:

k1k2S(W,k1, k2, e, d1, d2) =
∑
i1,i2

max
x∈X

1
W1(x)∈Pi11

1
W2(x)∈Pi22

=
∑
i1,i2

1∃(y1,y2)∈EGW :y1∈P
i1
1 and y2∈P

i2
2

=
∑
i1,i2

1
EGW ∩

(
Pi11 ×P

i2
2
)
6=∅

= eGW (P1,P2) ,

(5.22)

which proves that given an optimal solution of DetBCC, one can e�ciently construct a
solution P1,P2 of Densest�otientGraph such that:

eGW (P1,P2) = k1k2DetBCC(W,k1, k2) .

For the other direction, consider an optimal solution P1,P2 of Densest�otientGraph.
We have as before that:

eGW (P1,P2) =
∑
i1,i2

max
x∈X

1
W1(x)∈Pi11

1
W2(x)∈Pi22

.

Now, let us de�ne e(i1, i2) ∈ argmaxx∈X1W1(x)∈Pi11
1
W2(x)∈Pi22

and db(yb) the index ib
such that yb ∈ P ibb , for b ∈ {1, 2}. With those de�nitions, we get again that:

max
x∈X

1
W1(x)∈Pi11

1
W2(x)∈Pi22

= 1
W1(e(i1,i2))∈Pi11

1
W2(e(i1,i2))∈Pi22

= 1i1=d1(W1(e(i1,i2)))1i2=d2(W2(e(i1,i2))) ,
(5.23)

and thus we have:

eGW (P1,P2) =
∑
i1,i2

max
x∈X

1
W1(x)∈Pi11

1
W2(x)∈Pi22

=
∑
i1,i2

1i1=d1(W1(e(i1,i2)))1i2=d2(W2(e(i1,i2)))

= k1k2S(W,k1, k2, e, d1, d2) ,

(5.24)

which proves that given an optimal solution of Densest�otientGraph, one can e�-
ciently construct a solution e, d1, d2 of DetBCC such that:

k1k2S(W,k1, k2, e, d1, d2) = Densest�otientGraph(GW , k1, k2) .
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In particular, this implies that the optimal objective values satisfy:

k1k2DetBCC(W,k1, k2) = Densest�otientGraph(GW , k1, k2) .

Therefore, the solutions of both problems constructed throughout the proof are in fact
optimal.

Remark. Note that all bipartite graphs can be written as GW for some deterministic broad-
cast channel W , with W unique up to a permutation of X .

5.3.2 Approximation Algorithm for Densest�otientGraph

In this section, we will sort out how hard is Densest�otientGraph, and thanks to
Proposition 5.7, how hard is it to solve DetBCC.

Theorem 5.8. There exists a polynomial-time (1−e−1)2
-approximation algorithm forDens-

estQuotientGraph. Furthermore, it is NP-hard to solve exactly DensestQuotientGraph.

Corollary 5.9. There exists a polynomial-time (1−e−1)2
-approximation algorithm for Det-

BCC. Furthermore, it is NP-hard to solve exactly DetBCC.

The approximation algorithm is a two-step process. First, we consider the problem of
maximizing

∑k2
i2=1 min

(
k1,degV1,P2(P i22 )

)
over all partitions P2 of V2 in k2 parts. We

will show that this is a special case of the submodular welfare problem, which can be
approximated within a factor 1 − e−1 in polynomial time [Von08]. We then choose the
partitionP1 on V1 in k1 parts uniformly at random. This partition pair will give an objective
value e(P1,P2) within a (1− e−1)2 factor from the optimal solution in expectation.

Proof of Theorem 5.8. Consider �rst the hardness result. Let us show that the decision
version of Densest�otientGraph is NP-complete. It is in NP, the certi�cate being the
two partitions and the selection of edges between those partitions. It is NP-hard as one
of its particular cases is the SetSplitting problem (see for instance [GJ79]), in the case
where k1 = 2 and k2 = |V2|, by interpreting the neighbors of v2 ∈ V2 as a set covering
elements of V1.
We will show nonetheless that this problem can be approximated within a factor (1−e−1)2

in polynomial time. First we consider the case where k2 = |V2|. We can then always
assume that the right partition is P2 := {{v2} : v2 ∈ V2}, which leads necessarily to a
greater or equal number of edges in the quotient graph that with any other right partition.
So, in that setting, we only need to �nd a partition of V1 in k1 parts maximizing the number
of edges between vertices in the right part and the quotient of the left vertices.
First, the maximum value we can get is upper bounded by

∑
v2∈V2 min (k1,deg(v2)). In-

deed, each vertex of v2 van be connected at most to the k1 parts of V1, so its contribution is
bounded by k1, and there needs to be an edge to each part it is connected, so its contribution
is also bounded by deg(v2). Let us show that if we take a partition P1 of V1 uniformly at
random, we get:

EP1 [e(P1, V2)] ≥
(

1−
(

1− 1
k1

)k1
) ∑
v2∈V2

min (k1, deg(v2))

≥ (1− e−1) max
P1

e(P1, V2) .
(5.25)
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We have e(P1, V2) =
∑
v2∈V2 degP1,V2(v2), so by linearity of expectation EP1 [e(P1, V2)] =∑

v2∈V2 EP1 [degP1,V2(v2)]. However degP1,V2(v2) = |{i1 ∈ [k1] : N(v2) ∩ P i11 6= ∅}|.
Recall also that for any v1, P

(
v1 ∈ P i11

)
= 1

k1
since the partition is taken uniformly at

random. Thus, we get:

EP1 [degP1,V2(v2)] = EP1

[
|{i1 ∈ [k1] : N(v2) ∩ P i11 6= ∅}|

]
= EP1

 k1∑
i1=1

1
N(v2)∩Pi11 6=∅


=

k1∑
i1=1

EP1

[
1
N(v2)∩Pi11 6=∅

]
=

k1∑
i1=1

P
(
N(v2) ∩ P i11 6= ∅

)

=
k1∑
i1=1

(
1− P

(
N(v2) ∩ P i11 = ∅

))

=
k1∑
i1=1

1−
∏

v1∈N(v2)
P
(
v1 6∈ P i11

)
=

k1∑
i1=1

1−
∏

v1∈N(v2)
P
(
v1 6∈ P i11

) = k1

(
1−

(
1− 1

k1

)deg(v2)
)
,

(5.26)
since P

(
v1 6∈ P i11

)
= 1− 1

k1
and |N(v2)| = deg(v2). So, in all:

EP1 [e(P1, V2)] =
∑
v2∈V2

EP1 [degP1,V2(v2)] = k1
∑
v2∈V2

(
1−

(
1− 1

k1

)deg(v2)
)
.

However, the function f : x 7→ 1−
(
1− 1

k1

)x
is nondecreasing concave with f(0) = 0,

so f(x)
x ≥

f(y)
y for x ≤ y. In particular, we have that:

f(min(k1,deg(v2))) ≥ min(k1,deg(v2))
k1

f(k1) ,

and thus:

EP1 [e(P1, V2)] ≥ k1
∑
v2∈V2

(
1−

(
1− 1

k1

)min(k1,deg(v2))
)

≥ k1

∑
v2∈V2 min(k1,deg(v2))

k1

(
1−

(
1− 1

k1

)k1
)

≥
(

1−
(

1− 1
k1

)k1
) ∑
v2∈V2

min (k1, deg(v2))

≥ (1− e−1) max
P1

e(P1, V2) .

(5.27)

Let us now consider the general case with k2 unconstrained. We apply the previous
discussion on the graph GV1,P2 for some �xed partition P2 of V2. Since eGV1,P2 (P1,P2) =
e(P1,P2), we have the upper bound:

max
P1

e(P1,P2) ≤
k2∑
i2=1

min
(
k1,degV1,P2(P i22 )

)
,
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and the previous algorithm gives us a partition P1 of V1 such that:

e(P1,P2) ≥ (1− e−1)
k2∑
i2=1

min
(
k1, degV1,P2(P i22 )

)
.

Therefore, let us focus on the following optimization problem:

max
P2

k2∑
i2=1

min
(
k1, degV1,P2(P i22 )

)
,

We will give a (1 − e−1)-approximation algorithm running in polynomial time for this
problem. In all, this will allow us to get in polynomial time a partition pair (P1,P2) such
that:

e(P1,P2) ≥ (1− e−1)
k2∑
i2=1

min
(
k1, degV1,P2(P i22 )

)

≥ (1− e−1)2 max
P2

k2∑
i2=1

min
(
k1, degV1,P2(P i22 )

)
≥ (1− e−1)2 max

P1,P2
e(P1,P2) .

(5.28)

The problem maxP2

∑k2
i2=1 min

(
k1,degV1,P2(P i22 )

)
is a particular instance of the submod-

ular welfare problem from [Von08]. Note that degV1,P2(P i22 ) = deg
V1,{P

i2
2 ,V2−P

i2
2 }

(P i22 ),
as the degree of P i22 does not depend on the rest of the partition P2. Then, h(S2) :=
min

(
k1,degV1,{S2,V2−S2}(S2)

)
, for S2 ⊆ V2, is a nondecreasing submodular function, as

S2 7→ degV1,{S2,V2−S2}(S2) is a nondecreasing submodular function on V2 and min(k1, ·)
is nondecreasing concave. Thus, we want to maximize

∑k2
i2=1 h(Si2) where (Si2)i2∈[k2] is a

partition of items in V2 among k2 bidders. It is a particular case of the submodular welfare
problem where each nondecreasing submodular utility weight is the same for all bidders and
equal to h. Thus, thanks to [Von08], there exists a polynomial-time (1−e−1)-approximation
of maxP2

∑k2
i2=1 min

(
k1,degV1,P2(P i22 )

)
.

5.3.3 Non-Signaling Assisted Capacity Region for Deterministic

Channels

Thanks to Theorem 5.8 and Proposition 5.7, there exists a constant-factor approximation
algorithm for the broadcast channel coding problem running in polynomial time. We aim
to show here that the non-signaling assisted value is linked by a constant factor to the
unassisted one. Indeed, the hope is that the non-signaling assisted program is linked to the
linear relaxation of the unassisted problem, thus is likely a good approximation since the
broadcast channel coding problem can be approximated in polynomial time.
This turns out to be true, and will be proved through the following theorem:

Theorem 5.10. IfW is a deterministic broadcast channel, then for all `1 ≤ k1 and `2 ≤ k2:(
1− kk1

1 e
−k1

k1!

)(
1−

(
1− 1

`1

)k1
)(

1−
(

1− 1
`2

)k2
)

SNS(W,k1, k2) ≤ S(W, `1, `2) .
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Corollary 5.11. For any deterministic broadcast channelW , CNS(W ) = C(W ).

Proof. We apply Theorem 5.10 on the deterministic broadcast channel W⊗n.

We �x k1 = 2nR1 , k2 = 2nR2 and `1 = 2nR1
n , `2 = 2nR2

n . Since 1−
(
1− 1

`

)k
≥ 1− e−

k
` ,

we get:(
1− kk1

1 e
−k1

k1!

)(
1− e−n

)2 SNS(W⊗n, 2nR1 , 2nR1) ≤ S
(
W⊗n,

2nR1

n
,
2nR2

n

)
.

As
(

1− k
k1
1 e−k1

k1!

)
(1− e−n)2 tends to 1 when n tends to in�nity, we get ∀ε > 0, ∃N ∈ N,

∀n ≥ N :

(1− ε)SNS(W⊗n, 2nR1 , 2nR1) ≤ S(W⊗n, 2n(R1− log(n)
n

), 2n(R2− log(n)
n

)) .

Thus, if lim
n→+∞

SNS(W⊗n, 2nR1 , 2nR1) = 1, we have that for all R′1 < R1 and R′2 < R2:

lim
n→+∞

S(W⊗n, 2nR′1 , 2nR′1) ≥ 1− ε .

Since this is true for all ε > 0, we get in fact that lim
n→+∞

S(W⊗n, 2nR′1 , 2nR′1) = 1. This
implies that CNS(W ) ⊆ C(W ), and thus that the capacity regions are equal as the other
inclusion is always satis�ed.

Let us now prove the main result:

Proof of Theorem 5.10. The proof will be done in three parts. We will work on the graph
GW (see De�nition 5.3).

1. First, we prove that for any partition P2 of Y2 in `2 parts:

S(W, `1, `2) ≥
(

1−
(

1− 1
`1

)k1
) ∑`2

i2=1 min
(
k1, degY1,P2(P i22 )

)
k1`2

.

2. Then, we show that there exists a partition P2 such that:∑`2
i2=1 min

(
k1, degY1,P2(P i22 )

)
k1`2

≥
(

1− kk1
1 e
−k1

k1!

)(
1−

(
1− 1

`2

)k2
) min

(
k1k2,

∑
y1 min(k2, deg(y1))

)
k1k2

.

(5.29)

3. Finally, we prove that:

min
(
k1k2,

∑
y1 min(k2,deg(y1))

)
k1k2

≥ SNS(W,k1, k2) .
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By combining these three inequalities, we get precisely the claimed result.

1. This part shares a lot of similarities with the proof of Theorem 5.8, which we will
adapt to this particular situation. Let us show that if we take a partition P1 of Y1 of
size `1 uniformly at random, we get, for some �xed P2 of size `2:

EP1 [eGW (P1,P2)] ≥ `1
k1

(
1−

(
1− 1

`1

)k1
)

`2∑
i2=1

min
(
k1, degY1,P2(P i22 )

)
.

Since `1`2S(W, `1, `2) = maximize
P1 in `1 parts,P2 in `2 parts

eGW (P1,P2) by Proposition 5.7, this
will imply that:

S(W, `1, `2) ≥ 1
`1`2

EP1 [eGW (P1,P2)]

≥
(

1−
(

1− 1
`1

)k1
) ∑`2

i2=1 min
(
k1, degY1,P2(P i22 )

)
k1`2

.

(5.30)

We have that eGW (P1,P2) =
∑`2
i2=1 degP1,P2(P i22 ), so by linearity of expectation,

we have that EP1 [eGW (P1,P2)] =
∑`2
i2=1 EP1 [degP1,P2(P i22 )], so we will focus on

the contribution of one particular P i22 .
Then, we have that degP1,P2(P i22 ) = |{i1 ∈ [`1] : NY1,P2(P i22 ) ∩ P i11 6= ∅}|. Recall
that P

(
v1 ∈ P i11

)
= 1

`1
for any v1 since the partition is taken uniformly at random.

Thus:
EP1 [degP1,P2(P i22 )] = EP1

[
|{i1 ∈ [`1] : NY1,P2(P i22 ) ∩ P i11 6= ∅}|

]
= EP1

 `1∑
i1=1

1
NY1,P2 (Pi22 )∩Pi11 6=∅

 =
`1∑
i1=1

EP1

[
1
NY1,P2 (Pi22 )∩Pi11 6=∅

]

=
`1∑
i1=1

P
(
NY1,P2(P i22 ) ∩ P i11 6= ∅

)
=

`1∑
i1=1

(
1− P

(
NY1,P2(P i22 ) ∩ P i11 = ∅

))

=
`1∑
i1=1

1−
∏

v1∈N(Pi22 )

P
(
v1 6∈ P i11 )

) = `1

1−
(

1− 1
`1

)degY1,P2 (Pi22 )
 .

(5.31)
So, in all we have that:

EP1 [eGW (P1,P2)] =
`2∑
i2=1

EP1 [degP1,P2(P i22 )]

= `1

`2∑
i2=1

1−
(

1− 1
`1

)degY1,P2 (Pi22 )
 .

(5.32)

However the function f : x 7→ 1 −
(
1− 1

`1

)x
is nondecreasing concave with

f(0) = 0, so f(x)
x ≥

f(y)
y for x ≤ y. In particular, we have that:

f(min(k1,degY1,P2(P i22 ))) ≥
min(k1, degY1,P2(P i22 )))

k1
f(k1) ,
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and thus:

EP1 [eGW (P1,P2)] ≥ `1
`2∑
i2=1

1−
(

1− 1
`1

)min(k1,degY1,P2 (Pi22 ))


≥ `1
∑`2
i2=1 min(k1,degY1,P2(P i22 ))

k1

(
1−

(
1− 1

`1

)k1
)

= `1
k1

(
1−

(
1− 1

`1

)k1
)

`2∑
i2=1

min
(
k1, degY1,P2(P i22 )

)
,

(5.33)
which concludes the �rst part of the proof.

2. Let us take P2 a partition of Y2 of size `2 uniformly at random, and let us prove that:

E

 `2∑
i2=1

min
(
k1, degY1,P2(P i22 )

)
is greater than or equal to:

`2
k2

(
1− kk1

1 e
−k1

k1!

)(
1−

(
1− 1

`2

)k2
)

min
(
k1k2,

∑
y1

min(k2,deg(y1))
)
.

First,
∑`2
i2=1 min

(
k1, degY1,P2(P i22 )

)
=
∑`2
i2=1 ϕ(degY1,P2(P i22 )) with ϕ(j) :=

min(k1, j) which is a concave function. Recall the de�nition of the Poisson concavity
ratio 3.1 αϕ = infx∈R+

E[ϕ(Poi(x))]
ϕ(x) which is equal to 1− k

k1
1 e−k1

k1! for that particular
function. Let us �nd the law of degY1,P2(P i22 ):

degY1,P2(P i22 ) =
∑
y1

1
N(y1)∩Pi22 6=∅

=
∑
y1

(
1− 1

N(y1)∩Pi22 =∅

)

=
∑
y1

(
1− 1∀y2∈N(y1),y2 6∈P

i2
2

)
=
∑
y1

Ber
(

1−
(

1− 1
`2

)deg( y1)
)

(5.34)

Thus:

E
[
ϕ(degY1,P2(P i22 ))

]
= E

[
ϕ

(∑
y1

Ber
(

1−
(

1− 1
`2

)deg(y1)
))]

≥ E
[
ϕ

(
Poi

(∑
y1

(
1−

(
1− 1

`2

)deg(y1)
)))]

by Proposition 2.2

≥ αϕϕ
(∑
y1

(
1−

(
1− 1

`2

)deg(y1)
))

by de�nition of αϕ.

(5.35)
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But:∑
y1

(
1−

(
1− 1

`2

)deg(y1)
)
≥
∑
y1

(
1−

(
1− 1

`2

)min(k2,deg(y1))
)

≥
(

1−
(

1− 1
`2

)k2
)

1
k2

∑
y1

min (k2,deg(y1)) ,

(5.36)
as before. Since ϕ is concave and ϕ(0) = 0, we have in particular that for all
0 ≤ c ≤ 1 and x ∈ R, ϕ(cx) ≥ cϕ(x). We know also that ϕ is nondecreasing. This
implies that:

ϕ

(∑
y1

(
1−

(
1− 1

`2

)deg(y1)
))

≥ ϕ
((

1−
(

1− 1
`2

)k2
)

1
k2

∑
y1

min (k2,deg(y1))
)

≥
(

1−
(

1− 1
`2

)k2
)
ϕ

(
1
k2

∑
y1

min (k2,deg(y1))
)
,

(5.37)

as 0 ≤ 1−
(
1− 1

`2

)k2 ≤ 1. Thus E
[
ϕ(degY1,P2(P i22 )))

]
is larger than or equal to:

αϕ

(
1−

(
1− 1

`2

)k2
)

min
(
k1,

1
k2

∑
y1

min (k2,deg(y1))
)

= 1
k2

(
1− kk1

1 e
−k1

k1!

)(
1−

(
1− 1

`2

)k2
)

min
(
k1k2,

∑
y1

min (k2, deg(y1))
)

(5.38)

since αϕ = 1− k
k1
1 e−k1

k1! .

Finally, E
[∑`2

i2=1 min
(
k1,degY1,P2(P i22 )

)]
=
∑`2
i2=1 E

[
ϕ(degY1,P2(P i22 ))

]
, so we

get that:

E

 `2∑
i2=1

min
(
k1, degY1,P2(P i22 )

)
is larger than or equal to:

`2
k2

(
1− kk1

1 e
−k1

k1!

)(
1−

(
1− 1

`2

)k2
)

min
(
k1k2,

∑
y1

min (k2,deg(y1))
)
.

Thus, in particular, there exists some partition P2 that satis�es the same inequality,
which concludes the second part of the proof.

3. Let us consider an optimal solution rx,y1,y2 , px, r
1
x,y1 , r

2
x,y2 of the program computing

SNS(W,k1, k2), so that SNS(W,k1, k2) = 1
k1k2

∑
x rx,W1(x),W2(x).

a) It comes directly from rx,y1,y2 ≤ px that:∑
x

rx,W1(x),W2(x) ≤
∑
x

px = k1k2 .
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b)
∑
x rx,W1(x),W2(x) =

∑
y1

∑
x:W1(x)=y1 rx,y1,W2(x) and we have that:

i.
∑
x:W1(x)=y1 rx,y1,W2(x) ≤

∑
x:W1(x)=y1 1 = deg(y1) ,

ii.
∑
x:W1(x)=y1 rx,y1,W2(x) ≤

∑
x:W1(x)=y1 r

1
x,y1 ≤

∑
x r

1
x,y1 = k2 ,

so
∑
x:W1(x)=y1 rx,y1,W2(x) ≤ min(k2, deg(y1)), and thus:∑

x

rx,W1(x),W2(x) ≤
∑
y1

min(k2,deg(y1)) .

In all, we get that:

SNS(W,k1, k2) = 1
k1k2

∑
x

rx,W1(x),W2(x) ≤
min

(
k1k2,

∑
y1 min(k2,deg(y1))

)
k1k2

,

which concludes the third and last part of the proof.

5.4 Hardness of Approximation for Broadcast Channel

Coding

Since broadcast channels are more general than point-to-point channels (by de�ning
W1(y1|x) := Ŵ (y1|x) for Ŵ a point-to-point channel and taking W2(y2|x) = 1

|Y2| a
completely trivial channel), computing a single value S(W,k1, k2) is NP-hard, and it is
even NP-hard to approximate within a better factor than 1− e−1, as a consequence of the
hardness result for point-to-point channels from [BF18].
The goal of this section is to give some evidence for the hardness of approximation of the
general broadcast channel coding problem, speci�cally that it cannot be approximated in
polynomial time within a Ω(1) factor. It will be a good insight that non-signaling assistance
will enlarge the capacity region of the channel as discussed in the introduction.
Formally, one would want to show that it is NP-hard to approximate this problem within a
Ω(1) factor in polynomial time. As a �rst step towards this goal, we will prove a Ω

(
1√
m

)
-

approximation hardness in the value query model.
First, let us introduce formally the problem:

De�nition 5.5 (BCC). Given a channel W and integers k1, k2, the broadcast channel
coding problem, which we call BCC, entails maximizing:

S(W,k1, k2, e, d1, d2) := 1
k1k2

∑
i1,i2,y1,y2

W (y1y2|e(i1, i2))1d1(y1)=i1,d2(y2)=i2 ,

over all functions e : [k1]× [k2]→ X , d1 : Y1 → [k1] and d2 : Y2 → [k2].

As in the deterministic case, we restrict ourselves to deterministic encoders and decoders,
which does not change the value nor the hardness of the problem. Also, it can be equivalently
stated in terms of partitions corresponding to d1, d2 as:
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Proposition 5.12 (Equivalent formulation of BCC). Given a channel W and integers k1
and k2, the broadcast channel coding problem, which we call BCC, entails maximizing:

1
k1k2

∑
i1,i2

max
x

∑
y1∈P

i1
1 ,y2∈P

i2
1

W (y1y2|x) ,

over all partitions P1 of Y1 in k1 parts and P2 of Y2 in k2 parts.

5.4.1 Social Welfare Reformulation

The social welfare maximization problem is de�ned as follows: given a set M of m items
as well as k bidders with their associated utilities

(
vi : 2M → R+

)
i∈[k]

, the goal is to
partition M between the bidders to maximize the sum of their utilities. Formally, we want
to compute:

maximize
P partition in k parts of M

k∑
i=1

vi
(
P i
)
.

Let us show that the subproblem of BCC restricted to k2 = |Y2| can be reformulated as a
particular instance of the social welfare maximization problem. In that case, it is easy to
see that P2 = ({y2})y2∈Y2 is always an optimal solution. Indeed, for any partition P2, we
have:

1
k1|Y2|

∑
i1,i2

max
x

∑
y1∈P

i1
1 ,y2∈P

i2
2

W (y1y2|x) ≤ 1
k1|Y2|

∑
i1,i2

∑
y2∈P

i2
2

max
x

∑
y1∈P

i1
1

W (y1y2|x)

= 1
k1|Y2|

∑
i1

∑
y2∈Y2

max
x

∑
y1∈P

i1
1

W (y1y2|x) .

(5.39)
Therefore, the objective function becomes:

S1(W,k1,P1) := 1
k1

k1∑
i1=1

f1
W (P i11 ) with f1

W (S1) := 1
|Y2|

∑
y2

max
x

∑
y1∈S1

W (y1y2|x) .

Hence, up to a multiplicative factor k1, maximizing S1(W,k1,P1) over all partitions P1
of size k1 is a particular case of the social welfare maximization problem with a common
utility f1

W for all k1 bidders.

5.4.2 Value Query Hardness

Let us �rst introduce the value query model. As described in [DS06, MSV08], a value query
to a utility v asks for the value of some input set S ⊆M , and gets as response v(S) ∈ R+.
In the value query model, we aim at solving the social welfare maximization problem
accessing the data only through value queries to (vi)i∈[k].
This is more restricted than using any algorithm, but in such a model, it is possible to show
unconditional lower bounds on the number of queries needed to solve a given problem
within an approximation rate. In the case of the social welfare maximization problem
with XOS utility functions, the approximation rate achievable in polynomial time has
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been proved in [DS06, MSV08] to be of the order of Θ
(

1√
m

)
. Speci�cally, in [DS06], a

Ω
(

1
m

1
2

)
-approximation in polynomial time was given, and in [MSV08], it has been shown

that any Ω
(

1
m

1
2−ε

)
-approximation for ε > 0 requires an exponential number of value

queries. We will adapt their proof in the particular case of one common XOS utility function
of the form f1

W for some broadcast channel W . But �rst, let us introduce the de�nition of
XOS functions and prove that f1

W is one of those.

De�nition 5.6. A linear valuation function (also known as additive) is a set function
a : 2M → R+ that assigns a nonnegative value to every singleton {j} for j ∈M , and for
all S ⊆M it holds that a(S) =

∑
j∈S a({j}).

A fractionally sub-additive function (XOS) is a set function f : 2M → R+, for which there is
a �nite set of linear valuation functions A = {a1, . . . , a`} such that f(S) = maxi∈[`] ai(S)
for every S ⊆M .

Remark. Note that the size of A is not bounded in the de�nition.

Proposition 5.13. f1
W is XOS.

Proof.

f1
W (S) = 1

|Y2|
∑
y2

max
x

∑
y1∈S1

W (y1y2|x) = max
λ:Y2→X

aλ(S) , where

aλ(S) = 1
|Y2|

∑
y2

∑
y1∈S

W (y1y2|λ(y2)) =
∑
y1∈S

[
1
|Y2|

∑
y2

W (y1y2|m(y2))
]

=
∑
y1∈S

aλ({y1})) with aλ({y1})) = 1
|Y2|

∑
y2

W (y1y2|λ(y2)) ∈ R+

(5.40)

So f1
W is the maximum of the set of aλ for λ ∈ XY1 , which are linear valuation functions,

thus f1
W is XOS.

Let us now state the value query hardness of approximation of the broadcast channel
problem:

Theorem 5.14. In the value query model, for any �xed ε > 0, a Ω
(

1
m

1
2−ε

)
-approximation

algorithm for the broadcast channel coding problem on W,k1, k2, restricted to the case of

|Y2| = k2 andm = |Y1| = k2
1 , requires exponentially many value queries to f1

W .

Remark. As our problem is a particular instance of the social welfare maximization problem
with XOS functions, the polynomial-time Ω

(
1
m

1
2

)
-approximation from [DS06] works also

here.

Proof. The proof is inspired by Theorem 3.1 of [MSV08]. We will show using probabilistic
arguments that any Ω

(
1

m
1
2−ε

)
-approximation algorithm requires an exponential number

of value queries. Let us �x a small constant δ > 0. We choose k1 ∈ N as the number of

135



5. Broadcast Channel Coding With Non-Signaling Correlations

messages (the bidders) and the output space Y1 := [m] with m := k2
1 (the items). Then,

we choose uniformly at random an equi-partition of Y1 in k1 parts of size k1, which we
name T1, . . . , Tk1 .
Let us de�ne now Y2 := [m + k1 + 1]. We take X := Y2 = [m + 1 + k1] as well. We
can now de�ne our broadcast channel W , with some positive constant C to be �xed later
to guarantee that W is a conditional probability distribution. Let us de�ne its value for
y2 = 1:

W (y11|x) := C ×


m2δ

1y1=x when 1 ≤ x ≤ m ,
1

m
1
2−δ

when x = m+ 1 ,

1y1∈Tj when 1 ≤ j := x− (m+ 1) ≤ k1 .

Then, we de�ne other y2 inputs as translations of W (y11|x). Speci�cally, we de�ne:

W (y1y2|x) := W (y11|ty2−1(x)) with ts(x) := 1 + [(x− 1 + s) mod (m+ k1 + 1)] .

All coe�cients are nonnegative. So W will be a channel if for all x,
∑
y1,y2 W (y1y2|x) = 1.

However, one has, for some �xed x0:

∑
y1,y2

W (y1y2|x0) =
∑
y1

∑
y2

W (y1y2|x0) =
∑
y1

∑
y2

W (y11|ty2−1(x0)) =
∑
y1

∑
x

W (y11|x)

= C
∑
y1

 ∑
1≤i≤m

m2δ
1y1=i + 1

m
1
2−δ

+
∑

1≤j≤k1

1y1∈Tj


= C

 ∑
1≤i≤m

m2δ +m× 1
m

1
2−δ

+
∑

1≤j≤k1

k1


= 1 ,

(5.41)
by choosing C = 1

m1+2δ+m
1
2 +δ+m

, which does not depend on x0. Thus, we have de�ned a
correct instance of our problem. Note that on this instance, we have:

f1
W (S) = 1

|Y2|
∑
y2

max
x

∑
y1∈S

W (y1y2|x) =
∑
y2

max
x

∑
y1∈S

W (y11|ty2−1(x))

= m+ k1 + 1
|Y2|

max
x

∑
y1∈S

W (y11|x) since ty2−1 bijection

= C(m+ k1 + 1)
|Y2|

×max


m2δ|{i} ∩ S| for 1 ≤ i ≤ m

1
m

1
2−δ
|S|

|Tj ∩ S| for 1 ≤ j ≤ k1

(5.42)

Let us also consider an alternate broadcast channelW ′, with the only di�erence that 1y1∈Tj
is replaced by 1

m
1
2

, for j ∈ [k1]. For that channel, the constant C remains the same (since
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∑
j

∑
y1 1y1∈Tj = k1 × k1 = k1 ×m× 1

k1
=
∑
j

∑
y1

1
m

1
2

), so we get that:

f1
W ′(S) = C(m+ k1 + 1)

|Y2|
×max


m2δ|{i} ∩ S| for 1 ≤ i ≤ m

1
m

1
2−δ
|S|

1
m

1
2
|S| for 1 ≤ j ≤ k1

= C(m+ k1 + 1)
|Y2|

×max

m
2δ|{i} ∩ S| for 1 ≤ i ≤ m
1

m
1
2−δ
|S|

(5.43)

since 1
m

1
2
|S| ≤ 1

m
1
2−δ
|S|. Let us consider normalized versions v(S) := |Y2|

C(m+k1+1f
1
W (S)

and v′(S) := |Y2|
C(m+k1+1f

1
W ′(S), so distinguishing between v and v′ is the same as distin-

guishing between f1
W and f1

W ′ . We will prove that it takes an exponential number of value
queries to distinguish between v and v′. On the one hand, one can easily show that the max-
imum value of the social welfare problem with v′ is (k1− 1)m2δ + 1

m
1
2−δ

(m− (k1− 1)) =

O(m
1
2 +2δ), obtained taking (k1 − 1) singletons as the �rst components of the partition

(the bidders), giving the rest of Y1 (the items) to the last. On the other hand, the maximum
value of the social welfare problem with v is k1 × k1 = m, obtained with the partition
T1, . . . , Tk1 . The fact that it requires an exponential number of value queries to distinguish
between the two situations will imply that one cannot get an approximation rate better
than Ω

(
1

m
1
2−2δ

)
in less than an exponential number of value queries.

We will now prove that distinguishing between v and v′ requires an exponential number of
value queries. Note �rst that v(∅) = v′(∅) = 0, so we do not need to consider empty sets.
Let us �x some non-empty set S ⊆ [m]. Let us de�ne the random boolean variables Xi

j :=
1i∈Tj for j ∈ [k1] and i ∈ [m]. By construction of the random equi-partition T1, . . . , Tk1 ,
(Xi

j)i∈[m] is a permutation distribution (see De�nition 2.3) of (0, . . . , 0, 1, . . . , 1) with
m− k1 zeros and k1 ones, each Xi

j following a Bernouilli law of parameter p := 1
k1

. Thus
it is negatively associated by Proposition 2.8, and the sub-family (Xi

j)i∈S is negatively
associated as well by Proposition 2.4. Note in particular that |Tj ∩ S| =

∑
i∈S X

i
j is a sum

of negatively associated Bernouilli variables of the same parameter p, so the version of the
Cherno�-Hoe�ding bound from Proposition 2.10 holds.

Let us �rst assume that S is of size 0 < |S| ≤ m
1
2 +δ . Then, we have that 1

m
1
2−δ
|S| ≤ m2δ ,

so we get that v′(S) = m2δ . On the other hand, we have that:

v(S) = max
{
m2δ

|Tj ∩ S| for 1 ≤ j ≤ k1
(5.44)
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Thus, v(S) is di�erent from v′(S) if and only if ∃j ∈ [k1], |Tj ∩ S| > m2δ . But, we have:

P
(
∃j ∈ [k1], |Tj ∩ S| > m2δ

)
≤
∑
j∈[k1]

P
(
|Tj ∩ S| > m2δ

)
by union bound

=
∑
j∈[k1]

P
(∑
i∈S

Xi
j > m2δ

)
=
∑
j∈[k1]

P

 1
|S|

∑
i∈S

Xi
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m2δ

[S| − 1
p

 p
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P

 1
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Xi
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m2δ

|S|
p

 p
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j∈[k1]

exp

−p|S|4

(
m2δ

p|S|

)2
 by Proposition 2.10

=
∑
j∈[k1]

exp
(
− 1

4p|S|m
4δ
)
≤
∑
j∈[k1]

exp
(
−m

−δ

4 m4δ
)

since 1
p|S|

= k1
|S|
≥ m−δ

= m
1
2 e−

m3δ
4 .

(5.45)
Thus, this event occurs with exponentially small probability (on the choice of the partition
T1, . . . , Tk1 ).

Let us now study the case of S of size |S| > m
1
2 +δ . Then, we have that 1

m
1
2−δ
|S| > m2δ ,

so we get that v′(S) = 1
m

1
2−δ
|S|. On the other hand, we have that:

v(S) = max


1

m
1
2−δ
|S|

|Tj ∩ S| for 1 ≤ j ≤ k1
(5.46)

Thus, v(S) is di�erent from v′(S) if and only if ∃j ∈ [k1], |Tj ∩ S| > 1
m

1
2−δ
|S|. But, we
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have:

P
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∑
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exp
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exp
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(5.47)
Thus, this event occurs with exponentially small probability as well. We have then that for
all set S, P (v(S) 6= v′(S)) ≤ pleak := m

1
2 e−

m3δ
4 , which is an exponentially small bound

that does not depend on S.
Hence, for every set S, only with exponentially small probability pleak can one distinguish
between v and v′. For some �xed algorithm A, let us consider the sequence L of queries
made by A before it is able to distinguish between v and v′: L := (S1, . . . , Sn), with
v(Si) = v′(Si) for i ∈ [n] and v′(Sn+1) > v(Sn+1). L is independent of T1, . . . Tk1 as no
information from this partition is leaked before Sn+1. Thus, for such an algorithm to be
correct, it should work for any equi-partition T1, . . . Tk1 . We have:

P
(
∃i ∈ [n] : v(Si) 6= v′(Si)

)
≤

n∑
i=1

P
(
v(Si) 6= v′(Si)

)
= npleak by union bound.

In particular, this implies that:

P
(
∀i ∈ [n] : v(Si) = v′(Si)

)
≥ 1− npleak .

So, if 1−npleak > 0, i.e. n < 1
pleak

, then there exists some equi-partition T1, . . . Tk1 such that
our algorithm outputs a sequence L of queries of length n before being able to distinguish
between v and v′. In particular, we can take n = 1

2pleak
so that L is of exponential size.

Hence, for any algorithm A, there exists some equi-partition T1, . . . Tk1 such that A needs
an exponential number of value queries to distinguish between v and v′. This concludes
the proof of the theorem for any deterministic algorithm.
Finally, the hardness result holds also for randomized algorithms. Indeed, let us call As,
the running algorithm conditioned on its random bits being s. As is deterministic so the
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previous proof holds: with high probability p, the sequence of b 1−p
pleak
c queries does not

reveal anything to distinguish between v and v′, although it is of exponential size in m.
Then, averaging over all its random bitstrings, the same result holds, as pleak is independent
of the equi-partition T1, . . . , Tk1 .

5.4.3 Limitations of the Model

The main weakness of the previous result is that it highly relies on the restriction that
one has access to the data only through value queries. Indeed, if one has access to the
full data, it is possible to read the partition T1, . . . , Tk1 which gives the optimal solution
directly. This weakness comes from the fact that our utility function f1

W can be described by
polynomial-size data, as it is characterized by a broadcast channel W , whereas one usually
consider any XOS functions, in particular with some having inherently an exponential-size
de�ning set of linear valuation functions.
On the other hand, one can also remark that when f1

W is written as a maximum of linear
valuation functions, then that de�ning set of linear valuation functions is of exponential
size. Hence, we think that it is still relevant to study the value query complexity of such a
family of functions, as it is not clear how one could recover the partition in polynomial
time from this exponential-size set of linear valuations without any additional information.

5.5 Conclusion

In this chapter, we have studied several algorithmic aspects and non-signaling assisted
capacity regions of broadcast channels. We have shown that sum success probabilities of the
broadcast channel coding problem are the same with and without non-signaling assistance
between decoders, and that it implied that non-signaling resource shared between decoders
does not change the capacity region. For the class of deterministic broadcast channels, we
have described a (1− e−1)2-approximation algorithm running in polynomial time, and we
have shown that the capacity region for that class is the same with or without non-signaling
assistance. Finally, we have shown that in the value query model, we cannot achieve a
better approximation ratio than Ω

(
1√
m

)
in polynomial time for the general broadcast

channel coding problem, with m the size of one of the outputs of the channel.
Our results suggest that non-signaling assistance could improve the capacity region of
general broadcast channels, which is left as a major open question. An intermediate result
would be to show that it is NP-hard to approximate the broadcast channel coding problem
within any constant ratio, strengthening our hardness result without relying on the value
query model. Finally, one could also try to develop approximations algorithms for other
sub-classes of broadcast channels, such as semi-deterministic or degraded ones. This could
be a crucial step towards showing that the capacity region for those classes is the same
with or without non-signaling assistance.
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Chapter6

Conclusion

In this thesis, we have studied several channel coding problems, with and without non-
signaling assistance, from the point of view of algorithmic approximation and of capacity
regions.
In Chapter 3, we have introduced a generalization of the maximum `-multi-coverage prob-
lem which entails maximizing the quantity

∑
a∈[n]waϕ(|{i ∈ S : a ∈ Ti}|) over subsets

S ⊆ [m] of cardinality k. We have shown that when ϕ is normalized, nondecreasing
and concave, we can obtain an approximation guarantee given by the Poisson concavity

ratio αϕ := minx∈N∗ E[ϕ(Poi(x))]
ϕ(E[Poi(x)]) and we showed it is tight for sublinear functions ϕ if

P 6= NP. Applied to channel coding, and more speci�cally to ϕ-list-decoding, where the
length restriction on the list of guesses of the decoder in `-list-decoding is replaced by a
probability ϕ(`)

` of correctly decoding a list of guesses of variable size `, we have obtained
a tight approximation guarantee αϕ for the class of channels W of the form W (y|x) = 1

t
for y ∈ Tx with |Tx| = t and W (y|x) = 0 elsewhere. A natural open question is whether
the NP-hardness guarantee can be extended for ϕ(n) 6= o(n). Another open problem is to
extend the αϕ-approximation algorithm for ϕ-list-decoding on all channels.
In Chapter 4, we have shown that the multiple-access channel coding problem cannot be
approximated within any constant ratio under a complexity hypothesis on random k-SAT
formulas. We have shown that optimal non-signaling assisted codes for multiple-access
channels can be found in polynomial time in the number of copies of the channel. Applied
to the binary adder channel, a non-signaling advantage on its capacity region has been
established. We have provided a general single-letter outer bound on the non-signaling
capacity region. When non-signaling assistance is not shared between encoders, we have
shown that the capacity region is not changed. A remaining open question is whether
quantum entanglement may increase the capacity of the binary adder channel. Also,
establishing a single-letter formula for the non-signaling assisted capacity of multiple-
access channels is the main open question left here, which could be obtained by achieving
the provided single-letter outer bound on the non-signaling capacity region.
In Chapter 5, for the class of deterministic broadcast channels, we have provided a (1−e−1)2-
approximation algorithm for the unassisted coding problem, and we have shown that their
capacity region is not changed with non-signaling assistance. In the value query model,
we have shown that we cannot achieve a better approximation ratio than Ω

(
1√
m

)
for the

general broadcast channel coding problem, with m the output size of the channel. Our
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results suggest that non-signaling assistance could improve the capacity region of general
broadcast channels, which is left as a major open question. An intermediate result would
be to show that it is NP-hard to approximate the broadcast channel coding problem within
any constant ratio, strengthening our hardness result without relying on the value query
model.
Throughout this thesis, we have shown that links between approximation algorithms for
channel coding and non-signaling assisted capacity regions are fruitful in both directions.
On the one hand, the existence of approximation algorithms with constant ratio for channel
coding results often in the absence of non-signaling advantage on the related capacity
regions. On the other hand, the hardness of approximation within any constant ratio for
the channel coding problem results often in the existence of a non-signaling advantage on
the related capacity regions. Although not a formal equivalence, this strong link between
those apparently unrelated domains may be the key to address unsolved problems from
both topics. In particular, the step achieved in the understanding of the in�uence of non-
signaling correlations on broadcast channels, solved now for deterministic channels, goes
in that direction, and could be extended to other classes of channels. We believe that this
connection deserves more attention. In fact, as the complexity-theoretic point of view on
entangled multiplayer games was extremely fruitful [JNV+20], we expect the algorithmic
study of problems arising in information theory to achieve important insights.
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Conclusion

Dans cette thèse, nous avons étudié plusieurs problèmes de codage de canal, avec et sans
assistance non-signalante, du point de vue de l’approximation algorithmique et des zones
de capacité.
Dans le Chapitre 3, nous avons introduit une généralisation du problème de couverture
multiple maximale de paramètre ` où l’on maximise

∑
a∈[n]waϕ(|{i ∈ S : a ∈ Ti}|) sur

les sous-ensembles ⊆ [m] de cardinal k. Nous avons montré que lorsque ϕ est normalisée,
croissante et concave, nous pouvons obtenir une garantie d’approximation donnée par le
rapport de concavité de Poisson αϕ := minx∈N∗ E[ϕ(Poi(x))]

ϕ(E[Poi(x)]) et nous avons montré qu’elle est
optimale pour les fonctions sous-linéaires ϕ si P 6= NP. Appliqué au codage de canal, et
plus spéci�quement au décodage de liste de paramètre ϕ, où la restriction de longueur
sur la liste de suppositions du décodeur dans le décodage de liste de paramètre ` est
remplacée par une probabilité ϕ(`)

` de décoder correctement une liste de suppositions
de taille variable `, nous avons obtenu une stricte garantie d’approximation αϕ pour la
classe de canaux W de la forme W (y|x) = 1

t pour y ∈ Tx avec |Tx| = t et W (y|x) = 0
ailleurs. Une question ouverte naturelle est de savoir si la garantie de NP-di�culté peut
être étendue pour ϕ(n) 6= o(n). Un autre problème ouvert consiste à étendre l’algorithme
d’approximation αϕ pour le décodage de listes de paramètre ϕ sur tous les canaux.
Dans le Chapitre 4, nous avons montré que le problème du codage des canaux à accès
multiple ne peut être approximé avec un ratio constant sous une hypothèse de complexité sur
les formules k-SAT aléatoires. Nous avons montré que les codes optimaux avec assistance
non-signalante pour les canaux à accès multiple peuvent être trouvés en temps polynomial
en le nombre de copies du canal. Appliqué au canal additionneur binaire, un avantage
non-signalant sur sa zone de capacité a été établi. Nous avons fourni une borne supérieure
générale à une seule lettre pour la zone de capacité non-signalante. Lorsque l’assistance
non-signalante n’est pas partagée entre les encodeurs, nous avons montré que la zone de
capacité n’est pas modi�ée. La question de savoir si l’intrication quantique peut augmenter
la capacité du canal additionneur binaire reste ouverte. En outre, l’établissement d’une
formule à une seule lettre pour la capacité avec assistance non-signalante des canaux à
accès multiple reste la principale question ouverte de ce chapitre. Cette dernière pourrait
être obtenue en montrant que la borne supérieure à une seule lettre fournie pour la zone
de capacité non-signalante peut en fait être atteinte.
Dans le Chapitre 5, pour la classe des canaux de di�usion déterministes, nous avons
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fourni un algorithme d’approximation de ratio (1− e−1)2 pour le problème du codage sans
assistance, et nous avons montré que leur zone de capacité n’est pas modi�ée par l’assistance
non-signalante. Dans le modèle d’accès par valeur, nous avons montré que nous ne pouvons
pas obtenir un meilleur ratio d’approximation que Ω

(
1√
m

)
pour le problème de codage du

canal de di�usion général, avec m la taille de sortie du canal. Nos résultats suggèrent que
l’assistance non-signalante pourrait améliorer la zone de capacité des canaux de di�usion
généraux, ce qui reste une question ouverte majeure. Un résultat intermédiaire consisterait
à montrer qu’il est NP-di�cile d’approximer le problème de codage des canaux de di�usion
pour n’importe quel ratio constant, ce qui renforcerait notre résultat de di�culté sans
s’appuyer sur le modèle d’accès par valeur.
Tout au long de cette thèse, nous avons montré que les di�érents liens entre les algo-
rithmes d’approximation pour le codage de canal et les zones de capacité avec assistance
non-signalantes sont fructueux dans les deux sens. D’une part, l’existence d’algorithmes
d’approximation à rapport constant pour le codage de canal se traduit souvent par l’absence
d’avantage non-signalant pour les zones de capacité correspondantes. D’autre part, la
di�culté d’approximation pour un ratio constant quelconque pour le problème du codage
de canal se traduit souvent par l’existence d’un avantage non-signalant dans les zones de
capacité correspondantes. Bien qu’il ne s’agisse pas d’une équivalence formelle, ce lien
étroit entre ces domaines apparemment sans rapport peut être la clé pour résoudre des
problèmes non résolus dans les deux domaines. En particulier, l’étape franchie dans la
compréhension de l’in�uence des corrélations non-signalantes sur les canaux de di�usion,
résolue à présent pour les canaux déterministes, va dans cette direction et pourrait être
étendue à d’autres classes de canaux. Nous pensons que ce lien mérite plus d’attention.
En fait, comme le point de vue de la théorie de la complexité sur les jeux multijoueurs
intriqués a été extrêmement fructueux [JNV+20], nous nous attendons à ce que l’étude
algorithmique des problèmes posés par la théorie de l’information aboutisse à des résultats
importants.
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