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Habilitation à diriger des recherches
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Abstract

I present an overview of the research I have conducted for the past ten years in
algebraic, bijective, enumerative, and geometric combinatorics. The two main
objects I have studied are the permutahedron and the associahedron as well as
the two partial orders they are related to: the weak order on permutations and
the Tamari lattice. This document contains a general introduction (Chapters 1
and 2) on those objects which requires very little previous knowledge and should
be accessible to non-specialist such as master students. Chapters 3 to 8 present
the research I have conducted and its general context. You will find:

• a presentation of the current knowledge on Tamari interval and a precise
description of the family of Tamari interval-posets which I have introduced
along with the rise-contact involution to prove the symmetry of the rises
and the contacts in Tamari intervals;

• my most recent results concerning q, t-enumeration of Catalan objects and
Tamari intervals in relation with triangular partitions;

• the descriptions of the integer poset lattice and integer poset Hopf algebra
and their relations to well known structures in algebraic combinatorics;

• the construction of the permutree lattice, the permutree Hopf algebra and
permutreehedron;

• the construction of the s-weak order and s-permutahedron along with the
s-Tamari lattice and s-associahedron.

Chapter 9 is dedicated to the experimental method in combinatorics research
especially related to the SageMath software. Chapter 10 describes the outreach
efforts I have participated in and some of my approach towards mathematical
knowledge and inclusion.
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INTRODUCTION

It is impossible to be a mathematician without being a poet in soul.
– Sofia Kovalevskaya, Sónya Kovalévsky: Her Recollections of Childhood

Ten years ago, I defended my PhD thesis on “orders on permutations”. I stud-
ied especially the relation between the weak order and the Tamari lattice. My
approach was mostly combinatorial. The weak order is a partial order on permu-
tations known as the “bubble sort order”. The minimal element is the identity
permutation 1 . . . n while the maximal element is n(n−1) . . . 1. Each cover relation
switches two values in consecutive positions. In particular, any descending path
from the maximal element to the identity defines a sorting network corresponding
to a specific implementation of the bubble sort algorithm (see Section 1.2 for more
details).

The Tamari lattice [Tam62] is a partial order that can be defined especially on
binary trees or on any objects counted by the Catalan numbers. The cover relation
is the well known binary tree rotation used in particular in sorting algorithms to
balance binary trees [AL62]. As I explain in Chapter 2, it is a quotient lattice
of the weak order. The construction uses the binary search tree insertion: each
binary tree is associated with an interval of permutations which corresponds to a
lattice congruence class.

The combinatorial relation between the weak order and the Tamari lattice
extends to geometry and algebra. The Hasse diagram of the weak order is the
skeleton of a polytope, the permutahedron, which can be constructed as the convex
hull of the permutations of size n seen as points in Nn. Similarly, the Tamari
lattice corresponds to the associahedron. This polytope was described originally by
Tamari himself in his thesis [Tam51] and later independently by Stasheff [Sta63].
Nowadays, many realizations are known [Lod04, HLT11] and it has become a
major object in discrete geometry and combinatorics [PSZ23].

In Section 2.5, I explain how the combinatorial construction of the congruence
classes also translate into a geometrical one by “removing” faces of permutahe-
dron to obtain the associahedron. Besides, in Sections 1.5 and 2.7, I show the
connection between the combinatorial aspects and some Hopf algebraic structures
on permutations and binary trees [MR95, DHT02, LR98, HNT05].

This combinatorial, algorithmic, geometric, and algebraic correspondence has
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motivated my work for the past years. I have formed collaborations to deepen my
understanding especially of the geometrical aspects and get a broader view of the
questions at stake. Indeed, even if we can explain the correspondence in many
different cases, it still amazes us and leaves many open questions. For example,
partial orders structures appear when looking at the skeletons of polytopes. In
some cases, this partial orders are lattices. Then, they often also correspond to
algebraic structures such as Hopf algebras. But we do not yet understand what
the lattice property brings to the geometric or the algebraic aspects. I do not
think these questions have easy answers. They are part of the general pursuit
of mathematicians and computer scientists to create connections between distant
topics, a pursuit where I believe combinatorics has an essential role to play.

In my work, I have tried to create some of these connections using a combi-
natorial and algorithmic approach. I have introduced new objects and structures
to allow for new points of view: the Tamari interval-posets [CP15, Pon19], the
lattice and Hopf algebra of integer posets [CPP19, PP20], the permutrees [PP18,
PPTJ23], the s-weak order [CP19] [CP22, CP23]. In this document, I present
an overview of this work and I attempt to explain the context and mathematical
journey that led to each of these constructions and results. I have tried to avoid
technical details to keep a broader view and show the ideas behind the objects,
especially through examples. Each chapter ends with some open questions and
perspectives. Besides, some chapters are completed by SageMath worksheets with
computed examples [PonSage23].

Part I: Permutahedra and Associahedra

This part is here is to introduce the two main characters of this story and give
the notions needed to understand my work. I have tried to make it easy to follow
even for non-specialist.

Chapter 1: Permutahedra

I present the permutahedron and the weak order and especially the different points
of view (geometrical, combinatorial, and more) through which I have studied them.

Chapter 2: Associahedra

I present the associahedron and the Tamari lattice in their aspects more relevant
to my work: mostly through their relations with the permutahedron and the weak
order.
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Part II: Bijections on Tamari Intervals and More

This part presents the work I have conducted in relations to intervals of the Tamari
lattice in a bijective combinatorial approach.

Chapter 3: Intervals of the Tamari Lattice

I give a general overview of the state of knowledge in enumerative and bijective
combinatorics on Tamari intervals, especially by listing the different families I
know to be in bijection with intervals of the Tamari lattice. I present the func-
tional equations satisfied by those families giving a general explanation on its
combinatorial meaning. I then define three families of combinatorial objects, in
bijection with Tamari intervals, that were introduced in my work: Tamari interval-
posets [CP15], closed flows [CCP14], and grafting trees [Pon19]. The main result
is given in Theorem 1: Tamari interval-posets are in bijection with intervals of the
Tamari lattice.

Chapter 4: Statistics and Bijections on Tamari Intervals

I present the results of [Pon19] where I define the rise-contact involution on Tamari
intervals, answering a conjecture of [PR12] and [BFP11]. I explain how to read
certain interesting statistics on Tamari intervals and show how natural involutions
of Catalan objects extend in this context. The main results are given in Theo-
rems 4 and 5 which express the properties of the rise-contact involution and its
generalization to m-Tamari intervals.

Chapter 5: q, t-Catalan

I present the results of [Pon22] and [LMP23] in relations to q, t-Catalan numbers.
I start by giving the general background on this topic, in relation with represen-
tation theory and symmetric functions, especially its link to the enumeration of
intervals of the Tamari lattice. I explain the interpretation of the ζ-function I
obtained in [Pon22]. The main results of this chapter have been obtained in col-
laboration with my student Löıc Le Mogne on the q, t enumeration of triangular
Dyck paths in [LMP23]. We have especially Theorem 7 and Conjecture 8 which
express the relations between triangular q, t enumerations and certain intervals of
the ν-Tamari lattices.

Part III: Quotients and Sublattices

This part explores a certain framework to understand the weak order and Tamari
lattice as part of bigger structures, in particular using the technologies of subposets,
sublattices and lattice quotients.
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Chapter 6: Integer Posets

I present the work of [CPP19] and [PP20] where we introduce a new family of
objects called the integer posets. I explain how many combinatorial objects can
be understood as integer posets: permutations, binary trees, binary sequences,
intervals of the weak order, faces of the permutahedron and associahedron and
more. Our main result is then given in Theorem 9: we can define a weak order on
integer poset and it is a lattice. The classical weak order as well as the Tamari
lattice are sublattices of this lattice. We also find many lattice structures like a
lattice of weak order intervals or the facial order as subposets. Besides, integer
posets can also be endowed with a Hopf algebraic structure and we construct new
Hopf algebras using this technology as in Theorem 10.

Chapter 7: Permutrees

I present the results of [PP18] and [PPTJ23]. We study certain lattice quotients
of the weak order which we call the permutree lattices. The permutrees inter-
polate between permutations, binary trees and binary sequences. We give their
combinatorial description and many properties. In particular, we build polytopes
called the permutreehedra in Theorem 11 and Hopf algebras in Theorem 12. The-
orem 13 is a first step towards the characterization of permutrees in all Coxeter
groups using an automaton on reduced words of the symmetric group.

Part IV: Generalizations

Chapter 8: The s-Weak Order and s-Permutahedra

I present results which were initially published in [CP19] and are being fully writ-
ten in [CP22] and [CP23]. We define the s-weak order, which is a generalization of
the weak order on certain decreasing trees. This is motivated by the definition of
the ν-Tamari lattices. Our main results are expressed in Theorem 14: the s-weak
order is a lattice, and Theorem 15: the ν-Tamari lattice is a sublattice of the
s-weak order. Besides, we obtain a certain complex, the s-permutahedron, which
we believe to be a polyhedral complex. Conjecture 17 expresses that a realization
as a polyhedral subdivision of the permutahedron should exists in all dimensions.

Part V: Experimental Approach

This part explores some attendant aspects of my research which I consider to be
essential, especially the experimental approach of my research methodology and
the general philosophy in which I conduct my work.
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Chapter 9: Epistemology of the Experimental Approach

I give a general overview of my research methodology using computer exploration
and experimentation. This is nourished especially by the collaboration I have
started with the mathematician historian and philosopher Emmylou Haffner. I
explain what code I have written, why, and how I make it available for further
research.

Chapter 10: Outreach

I give an overview of the outreach activities I have conducted these past ten years
in particular regarding experimental mathematics and support of free software
and I explain what this commitment has meant for me as a scientist.
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CHAPTER 1

PERMUTAHEDRA

It is a narrow mind which cannot look at a subject from various points of view.
– George Eliot, Middlemarch

Geometrically, the permutations of 1, . . . , n form a set of n! points in Nn. This
set actually lies in a hyperplane of dimension n − 1 as the sum of coordinates
is always

∑n
1 i = n(n+1)

2
. Moreover, the points are in convex position and the

convex hull is a polytope called the permutahedron. As an example, the images of
Figure 1.1 can be obtained with SageMath using the following code.

P3 = Polyhedron ( l i s t ( Permutations ( 3 ) ) )
P3 . p l o t ( )

P4 = Polyhedron ( l i s t ( Permutations ( 4 ) ) )
P4 . p l o t ( )

Figure 1.1: The permutahedra of dimensions 2 and 3 drawn by SageMath

The permutahedron is a central object in my work. It has various properties
connecting combinatorics, geometry and algebra. In this chapter, we recall some
of these properties, highlighting the different point of views that will arise in the
rest of the manuscript.
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10 CHAPTER 1. PERMUTAHEDRA

1.1 As a reflection group

The group of permutations of size n is called the Symmetric group. It is a reflection
group: it is generated by a set of of geometric reflections. The permutahedron is
actually the convex hull of the orbit of the identity through the reflections. The
reflections are defined by the hyperplanes xi = xj for all i ̸= j. Figure 1.2
illustrates the case of dimension 2 (n = 3). We can see that the 3 reflections
corresponding to the 3 hyperplanes x1 = x2, x1 = x3 and x2 = x3. In green,
we write the coordinates of the vertices of the permutahedron. In red, we write
the inverse permutation of the green permutation. We will see that it is useful
to keep both representations in mind. Each reflection xi = xj corresponds to a
transposition (i, j) applied either on the positions of the green permutation, or on
the values of the red permutation.

x1 = x3

x1 = x2

x2 = x3

(1,2,3)

(1,3,2)

(2,3,1)

(2,1,3)

(3,1,2)

(3,2,1)

123

132

312

321

213

231

Figure 1.2: The permutahedron as a reflection group.

1.2 As a partial order and sorting networks

The skeleton of a polytope is the graph structure given by the vertices and edges
of the polytope. By choosing a starting point (the identity) and orienting the
edges away from the starting point, one defines a partial order, or poset, on the
vertices. In the case of the permutahedron, the skeleton of the polytope actually
corresponds to the Hasse diagram of the partial order, i.e., the graph of the cover
relations of the poset. Recall that a cover relation in a poset is a relation x ≺ z
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such that there is no y with x ≺ y ≺ z. The cover relations are the minimal set
of relations which generate the poset through transitivity.

As there are two usual ways of labeling the vertices of the permutahedron (ei-
ther using the coordinates or the inverse permutation), this defines two isomorphic
partial orders on permutations known as the left and right weak order. The cover
relations correspond to simple transpositions si = (i, i+1). On the left weak order,
these transpositions are applied to the left of the permutation i.e., exchanging the
values i and i+ 1. On the right weak order, the transpositions are applied to the
right exchanging the values at positions i and i+1. Figure 1.3 shows the left and
right weak order on S3 with s1 in red and s2 in blue. Figure 1.4 shows the left
and right weak order on S4 with s1 in blue, s2 in red, and s3 in green.

123

213 132

312 231

321

123

213 132

231 312

321

Figure 1.3: The left and right weak orders on S3.

1234

2134 1324 1243

3124 2314 2143 1423 1342

3214 4123 2413 3142 2341 1432

4213 4132 3412 3241 2431

4312 4231 3421

4321

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

Figure 1.4: The left and right weak orders on S4.
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Each cover relation adds an inversion to the permutation, i.e., two values which
appear in reverse order. The weak order is graded by the number of inversions,
with the maximal number of inversions being n(n−1)

2
and attained in the maximal

permutation n n − 1 . . . 1. Moreover, we can give an alternative definition of
the weak order using inclusion of inversions. For two permutations σ and τ , we
define that σ ≼ τ if and only if inv(σ) ⊆ inv(τ). The definition of inv depends
on the version of the weak order we consider. In the left weak order, we use
position inversions invpos(σ) := {(i, j); i < j and σ(i) > σ(j)}. In the right
weak order, which is the one we will mostly use in this manuscript, we consider
value inversions invval(σ) := {(a, b); a < b;σ−1(b) < σ−1(a)} (in other words,
σ(b) appears before σ(a) in σ). Note that value inversions are sometimes called
coinversions in the literature. We find the names position and value inversions
less ambiguous especially because we work mostly with the right weak order and
the value inversions.

For example, the position inversions of σ = 2314 are (1, 3) and (2, 3). It is
smaller than 3412 in the left weak order as the position inversions of 3412 are
(1, 3), (1, 4), (2, 3), and (2, 4). On the other hand, the value inversions of 2314
are (1, 2) and (1, 3). It is smaller in the right weak order than 2431 whose value
inversions are (1, 2), (1, 3), (1, 4) and (3, 4). It is an easy exercise to show that the
cover relations of the order defined by inclusion of the inversions are indeed the
simple transpositions.

This also allows for an interpretation of the weak order as a sorting network.
A sorting network is a series of comparisons and exchange to apply on a list of
entries to sort the list. Each descending path from the maximal permutation
to the identity “sorts” the permutation so each of these paths corresponds to a
sorting network. They are actually sorting networks corresponding to different
possible implementations of the well known (inefficient) bubble sort algorithm.
The complexity O(n2) of the algorithm corresponds to the height of the weak

order, i.e., the maximal number of inversions n(n−1)
2

.

1.3 As a lattice

The weak order admits an extra algebraic structure: it is a lattice. A lattice can
be defined as a partial order which admits two binary operations:

• the meet, written ∧, which computes the greatest lower bound of two ele-
ments x and y;

• the join, written ∨, which computes the lowest upper bound of two elements
x and y.

The best way to understand this condition is to look at a counter example. Fig-
ure 1.5 shows the Hasse diagram of a poset which is not a lattice. Look for example
at elements 4 and 5. We take the intersection of the ideals generated by the two
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elements, i.e., the elements of the poset which are at the same time smaller than
or equal to 4 and 5. This set is {1, 2, 3} and does not have a maximal element.
This poset is actually isomorphic to the Bruhat order on S3 (or strong order)
which is another well known partial order on permutations.

1

2 3

4 5

6

Figure 1.5: An example of a non-lattice

On the contrary, the meet and join of any two elements of the weak order is
well defined. This was proved in [GR70] in the context of analyzing voting systems
(this is also where the name permutahedron was introduced). The first step in the
proof is to characterize inversion sets. This is done in [GR70, Theorem 2, page
26]: a set I of tuples (i, j) with 1 ≤ i < j ≤ n is the inversion set of a permutation
if and only if I is transitive ((i, j) ∈ I and (j, k) ∈ I with i < j < k implies
(i, k) ∈ I) and the complementary of I is transitive. The complementary of I is
the set of tuples (i, j) with 1 ≤ i < j ≤ n which are not in I, they correspond
to the non-inversions of the permutation. Inversion sets can then be used to
explicitly compute the join of two permutations σ and µ. Let Iσ and Iµ be the
respective inversion sets, then Iσ∪Iµ is not necessary transitive and so it is not an
inversion set. Nevertheless, we can prove that the transitive closure of Iσ ∪ Iµ is
an inversion set and it gives the permutation σ ∨ µ. We have not specified here if
we were working with values or positions for the inversion sets: it is not necessary
as the characterization and proof are the same.

As an example, in the right weak order the meet of 3214 and 3142 is 3124
and the join is 3421. Looking at values inversions, we have invval(3214) =
{(1, 2), (1, 3), (2, 3)} and invval(3142) = {(1, 3), (2, 3), (2, 4)}. Their union {(1, 2),
(1, 3), (2, 3), (2, 4)} is not a inversion set because it is not transitive. The transitive
closure adds the inversion (1, 4) and is the inversion set of 3421. The left and right
weak orders are implemented in SageMath and we show examples in [PonSage23].
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1.4 As a Coxeter group

Reflection groups are also part of a larger family of groups, the Coxeter groups.
A Coxeter group is a group which admits a certain presentation through a finite
set of generators s1, . . . , sn with relations (sisj)

mi,j = 1 where mi,i = 1 and 2 ≤
mi,j ≤ ∞. Finite Coxeter Groups have been classified. The symmetric group Sn

corresponds to the type An−1. Its generators are the simple transpositions and
satisfy the braid relations

s2i = 1; (1.1)

(sisj)
2 = 1 if i+ 1 < j; (1.2)

(sisi+1)
3 = 1. (1.3)

Each element of the group corresponds to an infinite set of words on the gen-
erators si. A word is said to be reduced if it is of minimal length. For example,
in S3, s1, s

3
1, and s1s2s1s1s2 are three words corresponding to the permutation

213 with respective lengths 1, 3, and 5, but only s1 is reduced. We say that 213
is of length 1. The weak order can be seen as an oriented version of the Cayley
graph of the Symmetric group using the Coxeter presentation. A path in the
permutahedron skeleton graph corresponds to a word of generators in the group.
If the path is following the weak order orientation, i.e., if it is only going up in
the poset, it is a reduced word. In particular, for each element, the set of reduced
words corresponds to the set of oriented paths from the identity to the element.
Depending on the version of the weak order we are working with (left of right),
the correspondence between paths and words changes slightly. In the right weak
order, generators are added to the right of the word while going along the path,
while they are added to the left in the left weak order.

For example, in Figure 1.3, we can see that on the left weak order, the permu-
tation 312 is obtained by a path starting at 123 and going through a red edge first
(s1) and then a blue edge (s2). As we are on the left weak order, the reduced word
corresponding to 312 is s2s1. On the right weak order, the path s1 then s2 goes
to 231. Indeed, the reduced word of 231 is s1s2, it is the inverse of 312 = s2s1.
Similarly, we can read that, in both the right and left weak orders, the maximal
permutation 321 has 2 reduced words: s1s2s1 and s2s1s2.

The symmetric group is just one example of a finite Coxeter group. These have
been classified [Cox35] into 4 infinite families (An, Bn, Dn, In) and 6 exceptional
groups (E6, E7, E8, F3, H3, H4). Other finite Coxeter groups are products of these
classified families. We represent Coxeter groups through their Dynkin diagrams
as in Figure 1.6. The generators si are the vertices of the diagram. If there
is no edge between two vertices i and j, then their corresponding generators si
and sj commute (mi,j = 2). Otherwise, mi,j is equal to 3 by default or to the
edge label. If the diagram is disconnected, then the group is a product of the
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connected components. Figure 1.6 represents the possible connected diagrams of
finite Coxeter groups corresponding to the classified families.

Figure 1.6: The possible connected Dynkin diagrams of finite Coxeter groups

Image under CC BY-SA 3.0 from Wikimedia Commons

All finite Coxeter groups admit a faithful representation as a reflection group.
In particular, as explained in [Hoh12], you can construct a group permutahedron
by taking the convex hull of the orbit of a generic point. Besides, you can also
define a weak order as in type A by interpreting the skeleton of the polytope as the
Hasse diagram of a partial order. This order can be defined without any reference
to geometry: we say that µ ≼ σ in the right (resp. left) weak order if and only
if there exist a reduced word of µ which is prefix (resp. suffix) of a reduced word
of σ. For example, we have 2314 ≼ 2431 (in the right weak order of type A) and
indeed 2314 = s1s2 is a prefix of s1s2s3s2 = 2431. This order has been proved to
be a lattice by Björner [Bjo84] for all finite Coxeter groups.

The work I present here mostly concerns the Symmetric group, otherwise called
“type A case” in reference to the Coxeter classification. Nevertheless, to study
the weak order lattice and the permutahedron, it is important to keep in mind all
the aforementioned point of views, and especially this interpretation as a Coxeter
group. Besides, the Coxeter approach is a strong motivation of my work. Indeed,
the combinatorial work in type A often lays the ground to a more general approach
through Coxeter groups. Type A offers many combinatorial tools that are only
partially available in other types . Many proofs can be done in a simple elementary
way relying on intuition and exploration. They open the door to what might be
true for other Coxeter groups and sometimes to more generic proofs.

1.5 As a Hopf algebra

Hopf algebras are algebraic structures that have raised the interest of the combina-
torial community for the past decades. They can be seen as a generalization of the
classical notion of generating functions studied by Flajolet and Sedgewick [FS09]
in the context of algorithmic analysis. A generating function can be understood
as a formal sum over an infinite combinatorial set where each object of size n is
represented by a single monomial zn. The result is a power series where the coef-

https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:Finite_coxeter.svg
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ficient of zn is the number of objects of size n. In that sense, generating functions
are a way to encode recurrences of integer sequences into an algebraic object. Hopf
algebras encode a larger class of structural inductions on combinatorial objects.

Formally, a combinatorial Hopf algebra is defined as a vector space over a set
of combinatorial objects. So instead of working with polynomials or power series,
we directly sum the objects themselves and work with formal linear combinations
of combinatorial objects. A Hopf algebra H is a special case of a bialgebra. It
is endowed with two operations: a product · : H

⊗
H → H and a coproduct

∆ : H → H
⊗
H. These two operations are respectively associative and co-

associative and admits respectively a unit and a co-unit. Besides, the coproduct
needs to be an algebra morphism. In other words, for any two elements x and
y in H, then ∆(x · y) = ∆(x) · ∆(y). We don’t go into details into the axioms
satisfied by bialgebras and Hopf algebras as they are not completely relevant to
our work. We refer the reader to [Hiv06] for a more comprehensive presentation.

The initial motivation for the study of Hopf algebras in combinatorics comes
from the study of symmetric functions and can be traced back to MacMa-
hon [Mac15] and later to Rota [JR79]. The connection with the permutahe-
dron comes from the Malvenuto-Reutenauer Hopf algebra on permutations [MR95]
which we call FQSym after [DHT02] who redefine the algebra using the notion
of polynomial realization with words. We write Fσ the elements of FQSym using
the basis F. The product is defined by the shifted shuffle product on permutation.
We show an example below:

F231 ·F12 = F23145+F2341 +F24315+F23451+F42315 (1.4)

+ F24351+F42351 +F24531+F42531+F45231

=
∑

23145≼Rµ≼R45231

Fµ . (1.5)

The letters of the second permutation are shifted then the sum runs over
all permutations such that the order of the small letters (here 1, 2, and 3 in
red) corresponds to the first permutation and the order of the big letters (here
4 and 5) corresponds to the second permutation as in the shuffle of two decks of
cards. This is actually a sum over an interval of the right weak order between
the element where the letters of the second permutation are in the rightmost
positions (here 23145) and the element where they are in the leftmost positions
(here 45231). So, in some sense, the weak order encodes the structure of the Hopf
algebra.

As FQSym is a Hopf algebra, the basis F also admits a coproduct. It actually
corresponds to a product in the dual basis G. The product in G is called the
convolution product on permutations and corresponds to a sum in the left weak
order.
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G312 ·G12 = G31245+G41235+G41325+G51234+G42315 (1.6)

+G51324+G52314+G51423+G52413+G53412

=
∑

31245≼Lµ≼L53412

Gµ . (1.7)

In the convolution product, the role of the values and positions are switched:
here the orders of the letters placed in the first 3 positions is given by the first
permutation 312 whereas the order of the letters in the last 2 positions is given by
the second permutation 12. The basis G is isomorphic to F using the inversion of
permutation just like between the right and left weak orders. This makes FQSym
an auto-dual Hopf algebra whose structure is given by the weak order. Besides, the
weak order can be used to define multiplicative basis hence proving that FQSym
is free.

1.6 Faces of the permutahedron

The permutahedron can be defined by its vertices, the permutations, as we have
seen. As a polytope, it can also be defined through a list of inequalities. For
example, on the left of Figure 1.7, we cut the plane defined by x1 + x2 + x3 = 6
(where the permutahedron of dimension 2 lives) into two half planes using the
value of x1 + x2. Looking again at Figure 1.2, it is clear that permutahedron of
dimension 2 is defined by 6 such inequalities.

Figure 1.7: Inequalities in the plane defined by x1 + x2 + x3 = 6.

In dimension 2, this is an easy exercise to find those inequalities. For example,
we always have x1+x2 = 6−x3 and as 1 ≤ x3 ≤ 3, we find 3 ≤ x1+x2 ≤ 5 which
corresponds to the right image of Figure 1.7. In general, for the permutahedron
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of dimension n − 1 we find 2n − 2 inequalities. They correspond to all non-
empty proper subsets of [n] := {1, 2, . . . , n}. For each subset J , the corresponding
inequality is given by

∑
j∈J xj ≥

(|J |+1
2

)
[Rad52].

The extremal points of the polytope are the points where some inequalities
are equalities. They correspond to the faces of the polytope and are polytopes
themselves. For example, in dimension 2, the permutahedron has 13 faces : 1
face of dimension 2 (the full polytope), 6 faces of dimension 1 (the 6 edges corre-
sponding to the 6 inequalities), and 6 faces of dimension 0 (the 6 vertices, a.k.a
the permutations). They are counted by the Fubini numbers [A670] and have a
nice combinatorial interpretation as ordered partitions. The general idea is the
following: when you are on the edge between permutation 123 and permutation
213, the order between 1 and 2 is not defined but they are both before 3, this is
the ordered partition {1, 2}, {3} which we write 12|3. The dimension of the face
is given by n − ℓ where ℓ is the number of parts in the ordered partitions. We
illustrate this in Figure 1.8.

1|2|3

2|1|3 1|3|2

2|3|1 3|1|2

3|2|1

123

12|3 1|23

2|13 13|2

23|1 3|12

Figure 1.8: Ordered partitions as faces of the permutahedron.

This combinatorial interpretation allows for extra structures that extend the
ones on permutations. For example, one can define a lattice structure, the facial
weak order such that the weak order is a sublattice. It was shown in [KLN+01]
for type A and in [DHP16] for all Coxeter groups. A Hopf algebra structure can
also be defined on faces that extend the Malvenuto-Reutenauer one on permuta-
tions [Cha00].



CHAPTER 2

ASSOCIAHEDRA

L’algèbre n’est qu’une géométrie écrite, la géométrie n’est qu’une algèbre figurée.
– Sophie Germain, Oeuvres philosophiques.

In his thesis [Tam51] and later on in [Tam62], Dov Tamari introduces a certain
partial order, the “associativity posets”, on the different ways to parenthesize a
word of a given length n. He is studying how to replace the usual associativity
of a binary operation (ab)c = a(bc) by a substitution rule setting some early
foundations for what is known nowadays as term rewriting systems. For example,
there are 5 ways to parenthesize a word of length 4:

((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd)).
In general, the number of configurations is counted by the famous Catalan

numbers [A108]

Cn =
1

n+ 1

(
n

2n

)
. (2.1)

By orienting the rewriting such that (ab)c ≺ a(bc) as shown in Figure 2.1, we
obtain the partial order known as the Tamari lattice. Indeed, it was conjectured
by Tamari in his thesis to be a lattice and he later gave several proofs [FT67, HT72]
with his students Friedman and Huang.

According to Stasheff [Sta12], in his thesis, Tamari also describes the geometry
of the lattice and gives the first known depiction of the associahedra. Just like
the weak order, the Tamari lattice Hasse diagram corresponds to the oriented
skeleton of a polyotpe. This polytope is the associahedron. It was also introduced
independently by Stasheff [Sta63] about 10 years after Tamari’s thesis and is
sometimes known as the Stasheff polytope.

The Tamari lattice and associahedron are now major objects of interest in the
combinatorics community. See for example the the collection of papers gathered
in [MPS12] to honor the memory of Tamari and the recent survey on Loday’s
realization of the associahedron [PSZ23]. The relations between the Tamari lat-
tice and the weak order has been nourishing many of the questions I considered
these last 10 years. In this chapter, I present an overview of the combinatorial,

19
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((ab)c)d

(a(bc))d

a((bc)d)

(ab)(cd)

a(b(cd))

(((ab)c)d)e

((a(bc))d)e

((ab)(cd))e(a((bc)d))e

(a(b(cd)))e

((ab)c)(de)

(a(bc))(de)

(ab)((cd)e)

(ab)(c(de))a(((bc)d)e)

a((b(cd))e)a((bc)(de))

a(b((cd)e))

a(b(c(de)))

Figure 2.1: The Tamari lattice on parenthesized words

geometrical, and algebraical links between these two structures. This gives the
ground motivation of the work I present afterwards.

2.1 As a sublattice

We say that a permutation σ of size n contains a pattern µ of size k ≤ n if there
is a subword w of σ with |w| = k such that the relative order between the letters
of w is given by µ. In other words, the standardized permutation of w is µ. For
example, the permutation 4213 contains the pattern 312 because the subword 413
is such that the highest value appears first (4), then the smallest one (1), then
the intermediate one (3), which corresponds to the permutation 312. In [Knu98],
Knuth shows that the so-called stack sortable permutations are the permutations
avoiding the pattern 231 if we read the values from left to right and 312 if we read
the values from right to left. Both families are counted by the Catalan numbers.
Actually, the set of permutations avoiding any pattern of size 3 is always counted
by the Catalan numbers (see [Mac15] for the permutations avoiding 123 and the
introduction of [SS85] for a more general explanation).

Now, if we select right-stack sortable permutations in the right weak order, i.e.,
the permutations avoiding 312, the induced partial order is actually a sublattice
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of the weak order.
If L is a lattice, then I ⊂ L is a sublattice if for any two elements x and y

in I, then x ∧L y and x ∨L y are also in I. In particular, note that even if I is a
lattice (using the order induced by L), it might not be a sublattice of L. See for
example the subposet on Figure 2.2: it is indeed a lattice but not a sublattice of
the lattice on the left because c ∧ d = b is not part of the subposet.

a

b

c d

e

a

c d

e

Figure 2.2: Example of a lattice which is not a sublattice.

In the case of 312-avoiding permutations, we can show that they form a sublat-
tice of the right weak order using inversion sets as in Section 1.3. A permutation
avoids 312 if for all a < c where (a, c) is a (value) inversion, then (a, b) is also a
value inversion for all b with a < b < c. This property is actually stable when
taking the transitive closure of the union of two inversion sets. This shows that
the join of two 312 avoiding permutations is also a 312 avoiding permutation. A
similar proof can be done for the meet. We thus obtain a lattice where the number
of elements is given by the Catalan numbers: this is actually the Tamari lattice
as we explain in Section 2.2. See the example on Figure 2.3.

123

213 132

231

321

1234

2134 1324 1243

2314 2143 1342

3214 2341 1432

3241 2431

3421

4321

Figure 2.3: The Tamari lattice as a sublattice of the right weak order.
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2.2 As a quotient lattice

The classical algorithm of binary search tree insertion gives another connection
between the weak order and the Tamari lattice. We consider here planar rooted
binary trees, which are counted by the Catalan numbers. Recursively, a binary
tree is either a leaf (an empty tree) or a non-empty binary tree with a left and a
right subtree. We usually do not draw the empty children and the size is given
by the number of non-empty nodes. A binary tree whose non-empty nodes are
labeled with numbers is said to be a binary search tree if for all nodes λ labeled
by x, the nodes in the left subtree of λ are labeled with values smaller than
or equal to x while the nodes on the right subtree of λ are labeled with values
greater than x. This structure is used for sorting algorithms through binary search
tree insertion: a number is inserted through the root and “falls down” following
branches depending on its value and the label of the node (left if it is smaller,
right if it is bigger) until it reaches a leaf, i.e., an empty spot. In Figure 2.4, we
show the step by step binary search tree insertion of the values of a permutation
(from right to left).

13524 4 → 13524 2

4

→ 13524 2

4

5 →

13524

2

3

4

5

→ 13524 1

2

3

4

5

1

2

3

4

5

13254

31254 13524

31524 15324

35124 51324

53124

Figure 2.4: Binary search tree insertion and linear extensions

x

y

A B

C →

x

yA

B C

Figure 2.5: Binary tree rotation
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This algorithm is used in conjunction with binary tree rotation (see Figure 2.5)
in [AL62] to obtain efficient sorting algorithms. Besides, it actually defines a
surjection between permutations and binary trees: the image of a permutation is
the tree obtained by inserting the values from right to left. Technically, what we
obtain is a labeled tree but there is only one way to label a given tree with 1, . . . , n
such that it is a binary search tree. It consists of labeling the nodes in in-order,
we call it a standard binary search tree.

It was shown in[BW91] that the pre-image of a given binary tree is an interval
in the right weak order which corresponds to the linear extensions of the standard
binary search tree: all possible ways to “read” a permutation such that a node
label is read before its parent. For example, the permutation 12354 is not a
linear extension of the tree of Figure 2.4 because 3 appears after its parent 2.
In [HNT05], the authors call this pre-image the sylvester class of the tree (from
the french word “sylvestre”), it is the transitive closure of the following rewriting
rule on permutations:

. . . ac . . . b . . . ≡ . . . ca . . . b . . . (2.2)

with a < b < c.

A congruence relation on a lattice is said to be a lattice congruence if x ≡ x′

and y ≡ y′ implies that x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′. This induces a lattice
structure on the congruence classes which is called a lattice quotient of L. Lattice
quotients have been studied in a combinatorial context by Reading [Rea04]. In
particular, if the congruence classes are intervals and satisfy some extra order-
preserving conditions, then they form a lattice quotient. The sylvester classes
satisfy the conditions and the quotient lattice we obtain is actually the Tamari
lattice as illustrated on Figures 2.6 and 2.7. Classes are represented by binary
trees and the cover relation is the binary tree rotation depicted on Figure 2.5. This
description of the lattice is actually very close to the original one from Tamari
depicted on Figure 2.1. Indeed the binary tree is just the symbolic expression tree
following the associative rule of the parenthesis. In particular, the substitution
rule (ab)c→ a(bc) is exactly the binary tree rotation of Figure 2.5.

To connect with the previous section, note that the 312-avoiding permutations
are the minimal elements of the sylvester classes (the maximal elements are the
132-avoiding permtuations). The construction by quotient means in particular
that the subposet of 312 avoiding permutations is indeed the Tamari lattice. Note
that it does not imply that it forms a sublattice. To conclude, a similar construc-
tion can be made on the left weak order using the bijection between permutations
and decreasing binary trees (labeled binary trees where labels are strictly decreas-
ing from root to leaves) as a surjective map between permutations and binary
trees defining a lattice congruence.
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Figure 2.6: The Tamari lattice as a quotient of the right weak order (n = 3)
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Figure 2.7: The Tamari lattice as a quotient of the right weak order (n = 4)
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2.3 Other lattice descriptions

The Tamari lattice is defined on Catalan objects. As such, there are at least
as many descriptions of the lattice as there are objects counted by the Catalan
numbers, which is to say a lot. For example, it is very common to see the lattice
described on triangulations of a regular polygon where the cover relations is a flip
of the triangulation. In my work, I often use the description in terms of Dyck
paths. A Dyck path is a path formed by two types of steps, “up” and “down”,
such that the path starts and finishes on the x axis but never goes below. The
cover relation that gives the Tamari lattice is the Dyck path Tamari rotation which
consist of lifting the portion of the path following a down step (the portion is taken
until the path reaches again the level of the down step). We show an example
on Figure 2.8 where we also represent the Dyck path as a binary word where 1
means “up” and 0 “down”. The Tamari lattices for n = 3 and 4 on Dyck paths
are shown on Figure 2.9.

−→
1101 0 11100100 1001100 −→ 1101 11100100 0 1001100

Figure 2.8: Tamari rotation on Dyck paths

Figure 2.9: The Tamari lattice on Dyck paths
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2.4 Loday’s associahedron

Loday gave the first explicit realization of the associahedron such that every vertex
of the Tamari lattice has integer coordinates and corresponds to an extrema of the
polytope [Lod04, PSZ23]. Each tree of size n corresponds to a point (v1, . . . vn)
in Nn where vi is equal to the product of the number of leaves in the left subtree
times the number of leaves in the right subtree of the node labeled by i in the
standard binary search tree labeling. We give an example on Figure 2.10 where
we have made the leaves (empty trees) explicit.

6

5 8

4 7

2

1 3

3

2

1

(1, 2, 3)

3

1

2

(2, 1, 3)

1

3

2

(3, 1, 2)

2

1 3

(1, 4, 1)

1

2

3

(3, 2, 1)

(1, 4, 1, 4, 5, 18, 1, 2)

Figure 2.10: Coordinates of binary trees in Loday’s associahedron.

On the right of Figure 2.10, we show all the coordinates for the Tamari lattice
on size 3. You can check that the sum of the coordinates for each point is equal to 6
like in the permutahedron. Actually, the four points on the left have permutation
coordinates: the inverse permutation of their unique linear extension. They are
vertices of both the associahedron and the permutahedron. This is true for all
singletons: binary trees with a single linear extension. Figure 2.11 presents the
associahedra of dimensions 2 and 3 drawn with SageMath, the code is available
here [PonSage23].

2.5 As a removahedron

As we have seen, certain vertices of the associahedron correspond to vertices of
the permutahedron. As we show on Figure 2.12, we can actually embed the per-
mutahedron inside the associahedron. Geometrically, this means that the list of
inequalities defining the associahedron are a subset of the inequalities of the per-
mutahedron we saw in Section 1.6. The associahedron is then a special case of
removahedron as defined by Pilaud [Pil17].
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Figure 2.11: The associahedra of dimensions 2 and 3 drawn by SageMath

Figure 2.12: Permutahedra inside of associahedra

In dimension 2, the inequality which is “removed” is x1+x3 ≥ 3 corresponding
to the ordered partition 13|2. In general, all inequalities corresponding to faces
where no vertex is a singleton binary tree are removed [HLT11]. So faces of
the associahedron are a subset of faces of the permutahedron. They also admit a
combinatorial interpretation in terms of Schröder trees. A Schröder tree is a rooted
planar tree such that each node has at least two children. We label the “valleys”
of the tree, i.e., the gap between two subtrees, with increasing labels from left
to right. This way, labeled binary Schröder trees actually correspond to binary
search tree (the label of the node is the label of the unique valley underneath).
They correspond to the vertices of the associahedron, i.e., faces of dimension 0.
The other (non binary) trees are the faces of dimensions greater than 0. More
precisely, the dimension is the number of valleys minus the number of internal
nodes. Just like ordered partitions are “in between” permutations in the weak
order, Schröder trees are “in between” binary trees. They correspond to partial
rotations where a node is merged with its parent and not yet rotated to its right.
We illustrate this on Figure 2.13.

The inequalities defining the associahedron are given by the Schröder trees
with exactly two internal nodes. They correspond to certain two-parts ordered
partitions (in red on Figure 2.13). Recall that any non-empty proper subset J
of [n] defines a permutahedron inequality corresponding to a two-parts ordered
partition. For the associahedron, we only keep the subsets that are intervals.
Indeed, in dimension 2, the only subset that is not kept is {1, 3} (ordered partition



28 CHAPTER 2. ASSOCIAHEDRA

Figure 2.13: Faces of the associahedron as Schröder trees.

13|2). In Schröder trees, the subset J correspond to the part that is bellow the
second internal node. There is no way to get a two-nodes Schr̈oder tree with the
bellow part being {1, 3}. Indeed, it would have to be bellow the label 2 but could
not be to its left (because 3 > 2) nor to its right (because 1 < 2).

2.6 As a Cambrian lattice

We have seen in Section 1.4 that the weak order and the permutahedron can be
defined for any Coxeter group. This is also true for the Tamari lattice, which
then becomes a special case of the Cambrian lattices defined by Reading [Rea06].
There are different ways to define and understand Cambrian lattices. We can see
them as a special class of quotient lattices of the weak order. Indeed, the sylvester
congruence, which defines the Tamari lattice, is characterized by two initial merge
as we illustrate on Figure 2.14.

A lattice congruence can be described by a list of merged edges in the Hasse
diagram: two elements are in the same class if they are connected by a path of
merged edges. For example, in Figure 2.14, 1342, 3142, and 3412 are in the same
class. On the other hand, 3214 is alone in its class. You can check that these
are the same classes as in Figure 2.7. This representation is possible because
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1234

2134 13241243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

1 2 3

Figure 2.14: Initial merges (in bold red) generating the sylvester congruence (in
bold red and blue) and corresponding orientation of the Dynkin diagram.

all congruence classes form intervals of the lattice. A natural question is then:
if I merge a single edge, what other edges need to be merged so that the final
congruence is a lattice congruence? We say that the other necessary edges are
forced by the original one. This has been answered in general by Reading for
the weak order using arc diagrams [Rea04]. The sylvester congruence is then the
smallest lattice congruence containing the two initial edges in red on Figure 2.14:
1324 – 3124, and 1243 – 1423.

These are the right sides of the two initial hexagons of the lattice. In type A,
the weak order of size n always starts with n−2 hexagons which correspond to the
braid relations sisi+1si = si+1sisi+1. The sylvester congruence is then generated
by n − 2 merges: si+1 – si+1si for 1 ≤ i < n − 1. For n = 4, this gives indeed
the edge between s2 = 1324 and s2s1 = 3124, and the edge between s3 = 1243
and s3s2 = 1423. This easily generalizes to all finite Coxeter groups and can be
encoded by an orientation of the Dynkin diagram. Indeed, each edge between
i and j of the diagram is labeled with k ≥ 3 and corresponds to the relation
(sisj)

k = 1. In the weak order, it then corresponds to a polygon with 2k edges. If
k is odd, one side is given by

si − sisj − · · · − (sisj)
k−1
2 − (sisj)

k−1
2 si,

where − represents an edge in the weak order. The other side is

sj − sjsi − · · · − (sjsi)
k−1
2 − (sjsi)

k−1
2 sj.

Then an orientation of the Dynkin diagram defines a lattice congruence by
deciding which side of the polygon to merge. If the orientation is i → j, then
all edges between sjsi and (sisj)

k−1
2 (for k odd) are merged. If the orientation
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is i ← j, then all edges between sisj and (sisj)
k−1
2 are merged. For type A, the

polygon is always an hexagon and there is only one edge to merge. The orientation
corresponding to the sylvester congruence is written on the right of Figure 2.14.
We present another Cambrian congruence for type A3 on Figure 2.15.

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

1 2 3

Figure 2.15: Another Cambrian congruence on A3 with corresponding orientation

The lattices corresponding to Cambrian congruences are called the Cambrian
lattices. Not only do they define some “Tamari” lattices for all Coxeter groups,
they also define generalizations of the classical Tamari lattice in type A with
different orientations of the Dynkin diagram. They share some of its properties.
For example, their elements are always counted by the Catalan numbers: you
can check that there are 14 classes on Figure 2.15. The unoriented graphs of the
lattice Hasse diagram are isomorphic and they give different realizations of the
associahedron [HLT11].

The orientation of the Dynkin diagram somehow indicates in which order si and
sj much appear in the reduced word to avoid certain patterns. This is formalized
through the system of c-sorted words described by Reading [Rea06]. Each orienta-
tion defines a Coxeter element by reading a linear extension of the oriented Dynkin
diagram. For example, for the Tamari orientation of Figure 2.14, this would be
c = s1s2s3. For the orientation of Figure 2.15, this would be c′ = s1s3s2 = s3s1s2.
By taking an infinite concatenation of the Coxeter element, you get the c∞ word,
for respective previous examples,

c∞ = s1s2s3|s1s2s3|s1s2s3| . . .
c′∞ = s1s3s2|s1s3s2|s1s3s2| . . . .

Now each reduced word can be read as a subword of c∞. Let us call I1 the
subset of letters used from the first copy of c, I2 from the second copy and so
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on. A reduced word is said to be c-sortable if it exists as a subword of c∞ with
I1 ⊂ I2 ⊂ I3 . . . . For example, s1s2s1 = 3214 is both c-sortable and c′-sortable as
we have (for both c and c′) I1 = {s1, s2} and I2 = {s1} ⊂ I1. On the other hand,
s2s3 = 1342 is c-sortable but not c′-sortable. Indeed, for c′, we have I1 = {s2} and
I2 = {s3}. Elements of the group which have at least one c-sortable reduced word
generalize the 312-avoiding permutations for Cambrian lattices: they correspond
to the minimal elements of the Cambrian congruence classes.

2.7 As a sub and quotient Hopf algebra

In [LR98], Loday and Ronco describe a Hopf algebra on binary trees as a quotient
Hopf algebra of the Malvenuto-Reutenauer Hopf algebra on permutations that we
described in 1.5. They also note the correspondence between the Hopf algebraic
relations and the geometrical relations between the permutahedron and associa-
hedron. The Loday-Ronco Hopf algebra is studied in [HNT05] where it is called
PBT: they show how it can be constructed using sylvester classes and binary
search tree insertions. Indeed, we can define a basis P indexed by binary trees
as a sum over elements from the basis F of FQSym: the sum is over all linear
extension of the standard binary search tree. See the example below.

P = F2143+F2413+F4213 . (2.3)

You can check that the binary search tree insertion of Section 2.2 gives the binary
tree for all three permutations. The basis P forms a sub Hopf algebra of FQSym.
As the product between two elements of F is an interval in the weak order, the
product of two elements of P gives a sum over sylvester classes which is an interval
of the Tamari lattice, see the example on Figure 2.16.

P P = P +P +P +P +P +P

Figure 2.16: Product of PBT as an interval of the Tamari lattice
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Besides, the basis P admits a dual basis Q which forms a quotient Hopf algebra
of FQSym. This is the original Loday-Ronco algebra which can be described
through decreasing binary trees mimicking the relation between the left weak
order and the Tamari lattice.

2.8 The cube

The associahedron can be seen as an intermediate step between the permutahedron
and the cube. Indeed, the cube corresponds to the boolean lattice which is also a
sublattice and a quotient lattice of both the weak order and the Tamari lattice.
The cube appears as a sublattice if you take permutations avoiding both patterns
312 and 213, see Figure 2.17 for an example. In terms of quotient, the cube is given
by the minimal lattice congruence obtained by merging both sides of all initial
hexagons of the weak order. This congruence is actually a surjective map between
permutations and binary sequences based on the recoils of the permutation. To a
permutation of size n, we associate a binary sequence v1 . . . vn−1 with vi = + if
i + 1 appears after i in the permutation and vi = − otherwise (i and i + 1 form
a recoil). A compatible map also exists on binary trees using the canopy of the
binary tree. The congruence classes of the recoils map are then unions of sylvester
classes. Besides, the cube is also a removahedron which can be constructed from
the associahedron by removing more inequalities. And finally, it also corresponds
to the Hopf algebra of recoils [GKL+95] which is a sub hopf algebra of FQSym
and PBT.

2.9 m-Tamari and ν-Tamari

We finish this chapter with two generalization of the Tamari lattice that we study
in our work. The m-Tamari lattice appears in [BP12]. It is best described on
m-ballot paths: they are paths between (0, 0) and (mn, n) made of vertical and
horizontal steps and which stay above the line y = x

m
. In particular, an m-ballot

path of size n has n vertical steps and n×m horizontal steps. For m = 1, they are
exactly Dyck paths (where “up” is vertical and “down” is horizontal). A rotation
operation can be defined for all m which is very similar to the Dyck path rotation
and also gives a lattice. See the example for m = 3 and n = 3 on Figure 2.18.
Actually, by replacing every vertical step by a series of m up steps, we obtain an
upper ideal of the classical Tamari lattice of size n×m.

Another way to understand m-ballot paths is to say that they are all the paths
above the path represented by (10m)n (where 1 means vertical and 0 horizontal).
In [PV17], Préville-Ratelle and Viennot show that you can define a lattice on
paths above any initial down path. This is what we call the ν-Tamari lattice
(where ν represents the initial down path). The rotation is a generalization of
the Dyck path rotation. At each point, we compute the number of horizontal
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Figure 2.17: The boolean lattice as a sub and quotient lattice of the weak order.

steps that can be taken to the right until crossing the initial down path. This
is the distance between the point and the original path. A rotation switches an
horizontal step with the portion of path directly following the step, where the
path is taken up to next point at a similar distance. We show an example on
Figure 2.18. Just like the m-Tamari lattices, the ν-Tamari lattices can also be
seen as a “piece” of a larger Tamari lattice. They also have interesting properties.
For example, Ceballos, Padrol, and Sarminento provide a geometric realization of
the ν-Associahedron [CPS16].
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Figure 2.18: The m-Tamari lattice and a ν-Tamari lattice
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CHAPTER 3

INTERVALS OF THE TAMARI LATTICE

There are times when I feel like I’m in a big forest and don’t know where I’m
going. But then somehow I come to the top of a hill and can see everything more
clearly.
– Maryam Mirzakhani, Brillant 10, 2005.

In [Cha05], Chapoton proves that the number of intervals in the Tamari lattice
satisfies a surprisingly nice formula:

In =
2

n(n+ 1)

(
4n+ 1

n− 1

)
=

2(4n+ 1)!

(n+ 1)!(3n+ 2)!
(3.1)

where In is the number of couples of elements x, y, in the Tamari lattice on size n,
with x ≼ y. I write “nice formula” because not only is it a closed product formula,
but it is almost a rather simple binomial coefficient. It suggests that a bijective
proof is within reach. I write “surprisingly” because it is not at all common for
combinatorial lattices to admit such a formula. For example, there is no such
formula (and no hope for a product formula) for the intervals of the weak order.
Similarly, other weak order lattice quotients, especially other type A Cambrian
lattices do not have such a formula.

We write below the first numbers of the sequence [A260],

1, 1, 3, 13, 68, 399, 2530, 16965, 118668. (3.2)

As referenced in the OEIS, these numbers also count the number of simple, rooted,
planar, triangular maps. The formula can indeed be found in [Tut62, formula 1.5].
Again, this is a surprising link between two structures that come from very dif-
ferent backgrounds. It turns out that these numbers are found in many different
contexts. Along with my co-authors, I have introduced some objects in bijection
with Tamari intervals: Tamari interval-posets [CP15], closed flows [CCP14] and
grafting trees [Pon19]. In this chapter, I give a general overview of the current
knowledge on objects counted by the Tamari interval numbers and thus place my
own contributions in the global context to extract some interesting questions to
explore.

37
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3.1 Generating functions, Catalan numbers and

Tamari intervals

As we have seen in Chapter 2, the number of elements in the Tamari lattice is
counted by the Catalan numbers (7.3). This is probably one of the most famous
sequences in combinatorics. In his book [Sta15], Stanley gives 214 objects counted
by the Catalan numbers. One reason to find the Catalan numbers “everywhere”
is that they encode the simplest possible binary structure. Indeed, let F (z) be
the generating functions of Catalan numbers,

F (z) :=
∑
n≥0

Cnz
n, (3.3)

Where Cn is equal to (7.3). Then, F satisfies the following functional equation

F (z) = 1 + zF (z)2. (3.4)

From there, it is immediate to find a recursive formula for Cn. To find the closed
product formula, one needs to solve the quadratic equation and expand the solu-
tion using Newton binomial theorem. I have actually used this several times in
talks for high schoolers and general audience as it is a very nice and understand-
able proof mixing combinatorics and analysis. In particular, this means that all
Catalan objects can be decomposed into two smaller objects just like a binary tree
can be decomposed into a left and a right subtree.

The formula (3.1) looks very much like the Catalan formula. It is actually the
solution of another functional equation which requires an extra parameter x. Let

ϕ(z) :=
∑
n≥0

Inz
n, (3.5)

where In is (3.1). Then, ϕ(z) = Φ(z, 1) where

Φ(z, x) = 1 + zxΦ(z, x)
xΦ(z, x)− Φ(z, 1)

x− 1
. (3.6)

We give this exact functional equation in [CP15, Theorem 3.2] and this was al-
ready proven by Chapoton in [Cha05] where he also solves it to obtain (3.1).
The extra parameter is called the catalytic parameter: it is necessary to keep this
extra parameter to express the functional equation. Just like the Catalan func-
tional equation (3.4), this is quadratic, but the right part of the product is now
transformed through a divided difference using the catalytic parameter.

To understand what it means in terms of combinatorics, we can compare a
simple example on both Catalan objects and Tamari intervals. In the generating
function of Catalan, an object of size k corresponds to a monomial zk. The product
in the functional equations means that it can be combined to an object of size
n−1−k to form a new object corresponding to a monomial z× zk× zn−1−k = zn.
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In the case of Tamari intervals, two objects of respective size k and n− 1− k are
represented by two monomials xv1zk and xv2zn−1−k. But the right monomial is
transformed through the divided difference into a sum zn−1−k(1+x+x2+· · ·+xv2).
It means that the combinations of two smaller objects now gives a set of v2 + 1
objects of size n which all carry an extra parameter. One way to prove that a
combinatorial family is counted by In is then to exhibit the underlying Catalan
binary decomposition and the extra catalytic parameter.

3.2 A map of maps using maps and trees

On Figure 3.1, I present an non-exhaustive landscape of objects counted by In with
their bijections. I have written in blue the objects whose definitions are directly
related to the Tamari lattice itself and in red the ones coming from planar maps.
The study of planar maps, i.e. graphs embed in the plane, is a field by itself which
is connected to the study of the Tamari lattice through this surprising connection
between Tamari intervals and triangulations (simple, rooted, planar, triangular
maps). Coming from the Tamari side, my knowledge of the map aspect is limited
and the landscape concentrates more on the Tamari related aspects. Besides, this
landscape is restricted for now to families counted by In thus excluding bijections
on subsets of intervals or generalizations which are also numerous.

couples of Binary treescouples of Dyck paths

[BFP11] [Cha05]

Functional equation

uniquely sorted permutations extended fighting fish

Tamari interval-posets

grafting trees

closed forest flows

Tamari interval diagrams

triangulations

blossoming trees

realizers of triangulations sequent calculus

[Def20]

[DH23]

[DH23]

[Pon19]

[CCP14]

[Com19]

[Zei19]

[CP15]

[Tut62]

[Sch90]

[BB09]

[PS03]

[FFN23]

[Pon19]

sticky trees

bridgeless maps

[Fan18]

[Fan18]

[Wor80, Fus10]

Figure 3.1: Landscape of bijections between objects counted by Tamari intervals

A first comment on this landscape is the great variety of objects that appear.
On top of the red (maps) and blue (Tamari) ones, we see sequent calculus from
the work of Noam Zeilberger [Zei19] and extended fighting fish [DH23], which
represent certain branching surfaces or, equivalently, walks in the quarter plane.
In Chapter 4, we explore some specific interesting statistics on intervals and see
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how they relate to some of these objects. Besides, this landscape concentrates on
combinatorics: the In numbers also appear in some algebraic settings which we
explore in Chapter 5.

As we have said, Chapoton is the first to count Tamari intervals [Cha05]. He
proves that they satisfy the functional equation (3.6) and notes the connection
with maps but does not provide a direct bijection. The proof of Chapoton is
based on binary trees and the catalytic parameter is the number of nodes on the
left branch of the maximal tree in the interval. A bijection between triangulations
and intervals is later given by Bernardi and Bonichon [BB09] using Schnyder
woods or realizers: this is a way to encode a triangulation with three intertwined
planar trees. The bijection uses Dyck paths. A triangulation can be represented
by multiple set of realizers: Tamari intervals then correspond to minimal realizers
while general realizers correspond to couples of Dyck paths (P,Q) where P is
below Q.

The functional equation can also be expressed in terms of Dyck paths. The
catalytic parameter then corresponds to some statistic of the lower Dyck path
called the number of contacts. This is what is done in [BFP11] where the authors
solve a more a general functional equation corresponding to intervals in the m-
Tamari lattices. We discuss it in Section 3.6. In this paper, they also notice that
another statistic called the initial rise could serve as a catalytic parameter. We
have explored this question in [Pon19] and discuss it in Chapter 4.

My main contribution to the landscape of Figure 3.1 is the introduction of
Tamari interval posets. At the end of my thesis, I started a collaboration on
Tamari intervals with Grégory Châtel, who was also a PhD student in my institu-
tion. We introduced Tamari interval-posets in a conference paper [CP13]. In the
full version [CP15], we extend this definition to m-Tamari intervals. In [CCP14]
and [Pon19], I present other useful objects in bijection with Tamari interval-posets.
Nevertheless, even though they give interesting insights about intervals, these ob-
jects did not permit to obtain a direct bijective proof of Chapoton’s formula (3.6).
This could be done indirectly through the bijection with maps and their inter-
pretation with blossoming trees but was not completely satisfactory. This is now
solved by a very recent work of Fang, Fusy and Nadeau [FFN23] which is actually
still in writing: this is a direct bijection between blossoming trees (which can be
counted directly by (3.1)) and Tamari interval posets.

3.3 Tamari interval-posets

Tamari interval-posets of size n are partial orders on [n] satisfying certain condi-
tions. We write a ◁ b to say that a is smaller than b in the poset (to differentiate
from the symbol ≺ used for the Tamari lattice and the weak order) and a < c if a
is smaller than c as integers. The definition stated in [CP15, Definition 2.7] says
that a partial order on [n] is a Tamari interval-poset if for all a < b < c,
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a ◁ c⇒ b ◁ c; (3.7)

c ◁ a⇒ b ◁ a. (3.8)

We give an example on the right of Figure 3.2. We see that we have 1 ◁ 5
which implies b ◁ 5 for 1 < b < 5. Similarly, we have 10 ◁ 5 which implies
b ◁ 5 for 5 < b < 10. Besides, Tamari interval-posets have been integrated into
SageMath. The examples of this Section can be found in [PonSage23]. The main
result of [CP15] is

Theorem 1 (Theorem 2.8 from [CP15]). Tamari interval-posets are in bijection
with intervals of the Tamari lattice.

The bijection is built from binary trees using the connection between the
Tamari lattice and the weak order. Recall that each binary tree can be seen
itself as a poset whose linear extensions are the permutations of the sylvester
class (see Figures 2.4, 2.6, and 2.7). Let [T, T ′] be a Tamari interval expressed as
a couple of binary trees. We construct a new poset called the decreasing forest
of T , F≥(T ), by keeping all decreasing relations (c ◁ a with a < c) of the binary
tree seen as a poset. For example, on Figure 3.2, you see that 6, 7, 8, 9, and 10 are
below 5 in the binary tree: they are decreasing relations and are kept in F≥(T ).
On the other hand, the increasing relation 2 ◁T 5 is not part of F≥(T ). Similarly,
we construct the increasing forest, F≤(T

′), of the maximal tree in the interval T ′

by keeping its increasing relations. The interval-poset is constructed by taking
relations from both the decreasing forest of T and the increasing forest of T ′.

We usually draw it as in Figure 3.2 as the union of the Hasse diagrams of
increasing relations (in blue, oriented from left to right) and decreasing relations
(in red, oriented from bottom to top). For example, 9 ◁ 10 is drawn on Figure 3.2
even though it is not a cover relation as we have 9 ◁ 8 ◁ 10, because it is a
cover relation of the increasing forest. This representation is very useful for many
constructions on interval-posets.

The linear extensions of a Tamari interval-poset correspond to an interval of
the weak order. More precisely, the linear extensions of the decreasing forest of
a binary tree T correspond to the interval between the minimal permutation of
its sylvester class and the maximal permutation of the weak order. For exam-
ple, for the tree T of Figure 3.2, the linear extensions of F≥(T ) are the interval
[1 3 4 2 6 7 9 8 10 5, 10 9 8 7 6 5 4 3 2 1]. Similarly, the linear extensions of
the increasing forest of a binary tree T ′ correspond to the interval between the
identity and the maximal permutation of the sylvester class of T ′. For T ′ as in
Figure 3.2, we get the interval [1 2 3 4 5 6 7 8 9 10, 9 8 10 6 7 3 4 2 5 1]. The
linear extensions of the Tamari interval-poset are then the intersections between
the two intervals, here [1 3 4 2 6 7 9 8 10 5, 9 8 10 6 7 3 4 2 5 1].

In particular, if you take two trees T and T ′ which are not comparable in
the Tamari lattice, then F≥(T ) and F≤(T

′) have no linear extensions in common:
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T → F≥(T ) T ′ → F≤(T
′) [T, T ′]
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(picture from [CP15])

Figure 3.2: Construction of Tamari interval-posets from binary trees

T =

3

1

2

F≥(T ) =

1

2 3
Linear extensions: 213, 231, 321.

T ′ =
2

1 3
F≤(T

′) =

1 2

3
Linear extensions: 123, 132, 312.

Figure 3.3: Decreasing and increasing forests of two incompatible trees.

the intersection of the intervals is empty. In this case, you cannot construct the
interval-poset because the relations of F≥(T ) and F≤(T

′) are incompatible. For
example, on Figure 3.3, we see that 2 ◁ 1 in F≥(T ) while 1 ◁ 2 in F≤(T

′): we
cannot construct a poset with both relations.

The interval-poset conditions (3.7) and (3.8) directly come from the increas-
ing and decreasing forests construction. In particular, if an increasing forest is
compatible with a decreasing forest (i.e., they share a common linear extension),
then the result of their union is always an interval-poset. Besides, the construc-
tion of the forests is actually a very classical bijection between binary trees and
planar forests. The decreasing forest is the “left sibling – right child” while the
increasing forest is the symmetric “right sibling – left child”: for each node, its
left (resp. right) subtree becomes its left (resp. right) sibling while its right (resp.
left) subtree becomes its child. In particular, the nodes on the left (resp. right)
branch become the roots of the trees in the forest. This bijection easily translates
to Dyck paths as illustrated on Figure 3.4.

To recover the functional equation (3.6), we describe a composition of Tamari
interval-posets that translates into the product and divided difference. This is
illustrated on Figure 3.5. The catalytic parameter is the number of connected
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Result: the final forest of the Dyck path.
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Result: the initial forest of the Dyck path.
(pictures from [Pon19])

Figure 3.4: Bijection between Dyck paths and decreasing and increasing forests

components in the decreasing forest: i.e. the poset where you keep only the
decreasing relations (in red). Following the bijection with binary trees, this cor-
responds to the number of nodes on the left branch of the minimal tree. On the
example of Figure 3.5, it is equal to 2 for the interval on the left and to 3 for
the interval on the right. The composition adds an extra node (the node 4) and
creates a set of interval-posets where nodes 1 to 3 correspond to the left interval
while nodes 5 to 8 correspond to the right one. Increasing relations have been
added between all nodes from the left interval to the node 4. The set is over all
possible ways to add decreasing relations between the right interval and the new
node 4. In the generating function, the left interval would be the monomial x2z3

while the right is x3z4. The composition gives the polynomial
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Figure 3.5: Composition of interval-posets

x2z3xz
x4z4 − z4

x− 1
= x3z8(1 + x+ x2 + x3) (3.9)

= x3z8 + x4z8 + x5z8 + x6z8. (3.10)

This composition (and associated decomposition) allows us to recover the func-
tional equation (3.6). It also gives a natural way to write the generating function
Φ(z, x) of Tamari intervals as a sum over binary trees

Φ(z, x) =
∑
T

zsize(T ) BT (x) (3.11)

where the sum is over binary trees and BT (x) is a polynomial defined recursively
such that BT (1) is the number of trees smaller than or equal to T in the Tamari
lattice. The recursive definition (Definition 1.1 of [CP15]) is given by BT (x) = 1
if T is empty and otherwise

BT (x) = xBL(x)
xBR(x)− BR(1)

x− 1
. (3.12)

As we see on Figure 3.1, Tamari interval-posets have allowed us and others to
create new bijective connections between Tamari intervals and other combinatorial
families. They also give a nice characterization of some special families of intervals:
exceptional intervals and modern intervals which have appeared in the work of
Rognerud [Rog20, Rog21].

3.4 Closed flows

In [Cha14], Chapoton studies certain polynomials appearing in the context of the
Pre-Lie operad. They can be interpreted using flows on planar forests. It appeared
that some of these polynomials were related to the Tamari lattice and actually to
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the Tamari polynomials that we defined in [CP15]. This lead us to define a simple
bijection between closed flows and Tamari interval-posets [CCP14].

A flow can be seen as some fluid going up a tree. Each node of the tree can be
a source or a leak by respectively adding or subtracting to its incoming flow. On
each edge, the flow must be weakly positive. We show an example on Figure 3.6.
The value added /removed to the incoming flow is written on each vertex. By
definition, we state that the only possible value for a leak is −1 but sources do
not have an upper limit. The exit rate is the sum of the out flow for all trees. We
say that a flow on a forest is closed if the exit rate is 0. In [CCP14], we present a
bijection between closed flows and Tamari interval-posets and obtain the following
as a consequence.

Theorem 2 (Theorem 4.1 from [CCP14]). The number of closed flows on a given
forest is the number of trees smaller than or equal to a certain tree in the Tamari
lattice.

We illustrate the bijection on Figure 3.6. The general idea is the following:
the flow forest gives the increasing forest of the interval-poset through a classical
bijection. Then each vertex of the flow corresponds to a vertex of the Tamari
interval-posets. We add the decreasing relations by reading the leaks in decreasing
order. Each leak i is connected to the closest possible source k and all relations
j ◁ i for i < j ≤ k are added to the interval-poset.

3.5 Grafting trees

The composition of Tamari interval-posets of Figure 3.5 can be seen as a bijection
between interval-posets of size n and triples (I, J, r) such that I and J are Tamari
interval-posets with size(I) + size(J) = n and r is an extra parameter between 0
and the so-called contacts of J . The contacts are the catalytic parameter, they
correspond to the number of nodes on the left branch of the lower binary tree, or
equivalently to the number of non-initial contacts between the lower Dyck path
and the origin, or the number of connected components in the decreasing forest
of J . This gives a recursive decomposition of Tamari interval-posets which can be
encoded in a labeled binary tree where the label is the parameter r. We show this
on Figure 3.7.

In [Pon19], I call these trees grafting trees. They are a direct combinatorial
interpretation of the functional equation (3.6). The tree itself is the upper tree of
the interval. The label of a node i is the number of children of i in the decreasing
forest of the interval-poset. They can be interpreted as a list of rotations to apply
to the minimal tree of the Tamari lattice to reach the lower binary tree of the
interval. In particular, if all the labels are 0, then the lower binary tree of the
interval is the minimal element of the Tamari lattice.

Grafting trees are all labeled binary trees such that for each node v, the label
ℓ(v) satisfies 0 ≤ ℓ(v) ≤ size(TR(v)) −

∑
w∈TR(v) ℓ(w) where TR(v) is the right
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Figure 3.6: Bijection between closed flows and Tamari interval-posets
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Figure 3.7: Example of grafting tree with corresponding interval-poset decompo-
sition.

subtree of v. For example, on Figure 3.7, the label of the root must be comprised
between 0 and 3 because the right subtree has 4 nodes and labels summing to 1.
If labels all have maximal values, then it corresponds to the interval [T, T ] made
of a single tree.

As they directly translate the functional equation, grafting trees are very natu-
ral objects to consider when working with Tamari intervals. I use them in [Pon19]
to describe certain involutions as I explain in Chapter 4. They also make a con-
nection to maps as there is an easy bijection between grafting trees and (1, 1)-
description trees found in [CS03].

3.6 Interval-posets in m-Tamari

In [BP12], Bergeron and Préville-Ratelle conjecture that the number of intervals
of the m-Tamari lattices of Section 2.9 is given by

Im,n :=
m+ 1

n(mn+ 1)

(
(m+ 1)2n+m

n− 1

)
. (3.13)

This is proved in [BFP11] using an m-generalization of the functional equa-
tion (3.6)

Φ(m)(z, x) = 1 + B(m)(Φ,Φ, . . . ,Φ) (3.14)
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(picture from [CP15])

Figure 3.8: Decomposition of m-binary trees and example for m = 2.

where B(m) is an (m+ 1) linear form defined by

B(m)(f, g1, . . . , gm) = zxf∆(g1∆(. . .∆(gm)) . . . ), (3.15)

and

∆(g) =
xg(x)− g(1)

x− 1
. (3.16)

In other words, the product and divided difference are applied m times. The
authors of [BFP11] prove that the intervals of the m-Tamari lattices satisfy the
functional equation using m-Dyck paths and the contact statistic as a catalytic
parameter. Then they solve the equation with a guess-and-check approach to
obtain (3.13). Note that unlike the classical case, this is not a simple equation
and requires advanced techniques.

As the m-Tamari lattices can be seen as a special interval of the Tamari lattice,
we can express intervals of the m-Tamari lattice as some subfamily of Tamari
interval-posets. This is what we do in [CP15]. This requires to characterize the
binary trees which appear in them-Tamari lattice and see how they are in bijection
with (m+ 1)-ary trees. We introduce the notion of m-binary trees and show how
each tree can be decomposed into a set of m “roots” and m + 1 subtrees as we
illustrate on Figure 3.8.

This gives the following bijection.

Theorem 3 (Theorem 4.6 of [CP15]). Intervals of the m-Tamari lattice in size n
are in bijection with Tamari interval-posets of size n ×m such that, for all 1 ≤
i ≤ n, we have

im ◁ im− 1 ◁ . . . ◁ im− (m− 1). (3.17)

See an example on Figure 3.9 for m = 2 and n = 11: you can check that we
have 2i ◁ 2i − 1 for all i. Using this, we recover the functional equation (3.14)
and, for each element of the lattice, find a recursive formula generalizing (3.12).
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In [Pon19], we also explain how this translates to grafting trees. An m-Tamari
interval poset corresponds to a grafting tree such that ℓ(vi) ≥ 1 if i ̸≡ 0 mod m.
See the example on Figure 3.9 for m = 2: the labels of all odd value nodes are
greater than or equal to 1. In particular, this implies that the grafting tree is an
m-binary tree. We call these trees the m-grafting trees.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20 21

22

2

1 3

0 1 2

0 0 2 0

1 1 1 1

0 1 0 0 0

1 0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Figure 3.9: An m-Tamari interval-poset and its corresponding grafting tree.

3.7 Open questions

On Figure 3.10, we present the bijection of Bernadi and Bonichon [BB09] directly
between Tamari interval-posets and triangulations. We show the 13 intervals for
size 3 and one example in size 4. There seems to be a direct link between the
decreasing and increasing forests of Tamari interval-posets on one side and two
of the trees of the realizers of the triangulation on the other side. On the last
example, we see that the red tree of the triangulation (rooted on the bottom left)
is exactly the decreasing forest of the interval-poset. The blue tree (rooted on the
bottom right) is a bit different from the increasing forest but each node v has the
same number of children in both the realizer and the interval-poset.

I never had to time to fully formalize and prove this description and to explore
it. This leaves some questions open. Triangulations have a clear symmetry of
order 3, what is this symmetry on Tamari interval-posets? Basically, what is the
“third tree” (in green, rooted at the top) on the Tamari interval-posets? What is
the connection between this bijection and the new bijection of [FFN23]? Beside,
neither [BB09] nor [FFN23] (to our knowledge) generalize to m-Tamari. The main
open question then remains: is there a “map” interpretation of the intervals of
the m-Tamari lattices and a bijective proof of (3.13)?
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Figure 3.10: Bijection between interval-posets and triangulations



CHAPTER 4

STATISTICS AND BIJECTIONS ON TAMARI

INTERVALS

I counted everything. I counted the steps to the road, the steps up to church, the
number of dishes and silverware I washed . . . anything that could be counted, I
did.
– Katherine Johnson

Having multiple combinatorial families to represent Tamari intervals is useful
when we try to understand their inner structure. Indeed, each family has natural
statistics and symmetries. By combining them, we sometimes reveal more proper-
ties. When solving the functional equation (3.14), the authors of [BFP11] noticed
that there was a symmetry between the contacts of the lower path and the initial
rises of the upper path. This was the result of an analytic proof (on intervals of
m-Tamari) and they did not have a combinatorial explanation, even form = 1. As
the contacts are the catalytic parameter of the functional equation, this suggests
that another decomposition of Tamari intervals is possible based on the initial
rises. In [CCP14], we provide this decomposition and note that it actually gives
an involution on Tamari intervals. But it is only in [Pon19] that I provide a “nat-
ural way” to see this involution using grafting trees. This also led me to define
a very interesting transformation on grafting trees related to m-Tamari intervals.
It is the key element to prove combinatorially the symmetry of the two statistics
in the m-Tamari case as it was stated in [BFP11] and to solve a more general
conjecture of Préville-Ratelle [PR12, Conjecture 17].

In this chapter, I give an overview of my results in [Pon19]. I show the two
natural involutions on Tamari intervals that led to the rise-contact involution. I
explain their effects on different interesting statistics and then show how to gen-
eralize the involution to m-Tamari intervals. Note that the rise-contact involution
has been implemented into SageMath. The computations originally provided with
the paper [Pon19] are here [PonSage18], the specific examples of this Chapter are
available here [PonSage23].
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4.1 Contacts, descents, and complement involu-

tion

We have mentioned many times that the functional equation of the Tamari inter-
vals requires a catalytic parameter. Different choices are possible for the statistic
it refers to. In [BFP11] and [CP15], the number of non initial contacts of the
lower path is taken, i.e., the number of time the path comes back to the x axis.
For short, we call it the contact value of the interval. On binary trees, this is the
number of nodes on the left branch of the lower tree. On Tamari interval-posets,
this is the number of components in the decreasing forest (in red).

We can actually do more and construct a contact vector c0, c1, . . . cn−1, that
completely characterizes the lower path of the interval. The first value of the vector
is the contact value. Then note that each up step of the path defines a smaller
Dyck path by taking the portion of the path following the up step until it reaches
its corresponding down step. For example, on the first interval of Figure 4.1, the
subpath following the first up step of the lower Dyck path is given by 101100. It
has two non-initial contacts which gives c1 = 2. The second up step precedes a
peak, so it defines an empty subpath and we have c2 = 0 and so on.

1
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6

7

8

Contact vector: 4, 2, 0, 1, 0, 0, 1, 0
Descent vector: 1, 2, 0, 3, 2, 0, 0, 0 (reversed)

↓ Ψ
1

2 3

4

5 6

7

8

Contact vector: 1, 2, 0, 3, 2, 0, 0, 0
Descent vector: 4, 2, 0, 1, 0, 0, 1, 0 (reversed)

Figure 4.1: The complement involution on Tamari intervals
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This is even easier to read on the Tamari interval-poset. As we said, c0 is the
number of connected components of the decreasing forest (the graph in red). In
the first interval of Figure 4.1, it is indeed 4, with the components being {1, 2, 3, 4},
{5}, {6, 7} and {8}. Then ci is the number of children in the decreasing forest of
the vertex i. We can see in the example, that 1 has two children (2 and 3), giving
c1 = 2, while 2 has no children, giving c2 = 0, and so on.

The Tamari lattice is trivially isomorphic to its revered order. Indeed , if two
binary trees are such that T ≼ Q, it is immediate that their mirror images T ′

and Q′ where the left and right subtrees have been recursively exchanged are such
that Q′ ≼ T ′. This is a trivial involution on binary trees but not so natural on
Dyck paths. On the other hand, it is easy to define on Tamari interval-posets.
Sending the interval [T,Q] to [Q′, T ′] corresponds to relabeling the poset such
that i becomes n+ 1− i. This “switches” the increasing and decreasing relations
of the poset. We show the involution on Figure 4.1: see that we had 7 ◁ 8 and
6 ◁ 8 on the the first interval, which corresponds to the relations 2 ◁ 1 and 3 ◁ 1
on its image. We call this involution the complement of the interval-poset and
write it Ψ.

As the involution transforms the decreasing forest in red into the increasing
forest in blue on the second interval, it is clear what the image of the contact vector
is. Where we looked at components and children in decreasing forest, we now
look at the increasing forest, reading the vertices in decreasing order. This gives
another obvious choice for the catalytic parameter: the number of components
of the increasing forest, which is the number of nodes on the right branch of the
upper tree in the interval. A little observation indicates that this is the length of
the final descent in the upper path. More precisely, the complement involution
exchanges the contact vector of the lower path with the reversed descent vector
of the upper path (the number of down steps following each up step from right to
left). See for example that in the second interval of Figure 4.1, the final up-step
of the upper path is followed by 4 down steps, the previous one by 2 down steps
and so on.

4.2 Rises, descents, and left-branch involution

The surprising result of [BFP11] is that the initial rise of the upper path could
serve as a catalytic parameter (and not only the final descent). The initial rise
is the number of initial up steps. Of course, reversing the path gives a natural
involution on Dyck paths which sends the final descent to the initial rise but it is
not compatible with the Tamari order. In other words, if D ≼ D′ in the Tamari
lattice, it is not the case in general for their reversed version. Nevertheless, using
the representation of Tamari intervals as grafting trees, we find that the equivalent
of “reversing the path” is actually easy to define and exchanges the descent vector
with the rise vector. The general idea is to reverse the upper Dyck path and let
the lower Dyck path naturally “follow”.



54CHAPTER 4. STATISTICS AND BIJECTIONS ON TAMARI INTERVALS

2

1 0

0 0 1

0 0

1

2

3

4

5

6

7

8

Contact vector: 4, 0, 1, 0, 2, 0, 0, 1
Rise vector: 1, 2, 0, 3, 2, 0, 0, 0
Descent vector: 4, 0, 1, 0, 0, 2, 0, 1 (reversed)

↓ Φ (reverse dashed edges)
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Contact vector: 4, 2, 0, 1, 0, 0, 1, 0
Rise vector: 4, 0, 1, 0, 0, 2, 0, 1
Descent vector: 1, 2, 0, 3, 2, 0, 0, 0 (reversed)

Figure 4.2: The left-branch involution on Tamari intervals

Remember that the shape of the grafting tree corresponds to the upper binary
tree while the labels give the lower element of the interval. Dyck pack reversal
easily translates to binary trees through an involution known as the “left-branch
involution” which consists of reversing all nodes of every “left” branch of the tree.
We illustrate this on Figure 4.2: we have written the left branches with dashed
lines to make it easier to follow. The labels move along with their nodes and the
result is again a grafting tree corresponding to a Tamari interval where the descent
and rise vectors have been exchanged. We call this the left-branch involution on
Tamari intervals and write it Φ.

The natural question is: what happens to the contact vector? To answer, we
need to understand how the contact vector can be read directly on the grafting
tree. This is actually quite easy. The contact value is given by the size of the
tree minus the sum of the labels. On the example of Figure 4.2, this is 8− 4 = 4.
Then, the value ci is the label on the node i. Reading the nodes from left to right
on the first tree of Figure 4.2, we obtain indeed 0, 1, 0, 2, 0, 0, 1. You can check
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that it corresponds to the contact vector of the lower Dyck path. Following the
involution Φ, it is clear that the contact value c0 stays the same. The rest of
the contact vector is permuted as the nodes have changed their positions but the
values themselves stay the same.

4.3 Distance and Tamari inversions

Another interesting statistic appears in the work of Préville-Ratelle [PR12]: the
distance. In Chapter 5, we discuss in more details the algebraic context in which
the statistic appears, in relations with qt-Catalan numbers. For now, we only give
its combinatorial definition and how it can be computed on different objects. The
distance of a Tamari interval is the length of the maximal chain in the lattice
between its lower element and upper element. For example, if the interval is
reduced to a single element, then the distance is 0, if it corresponds to an edge,
the distance is 1. If the interval is a pentagon (with one size of length 3 and
another of length 2), then the distance is 3. On a Tamari interval, seen as a
couple of Dyck paths or binary trees, this statistic is not so easy to compute as
one need to find this maximal chain and prove that it is indeed maximal. It turns
out that it has a very simple interpretation on Tamari interval-posets as well as on
grafting trees. Besides, it also appear in the study of extended fighting fish where
the distance is the area of the final surface [DH23].

We call a Tamari inversion on an interval-poset, a couple (a, c) with 1 ≤ a <
c ≤ n such that: there is no b with a ≤ b < c and c ◁ b, and no b with a < b ≤ c
with a ◁ b. We show an example on Figure 4.3. In particular, (i, i+ 1) is always
a Tamari inversion if you do not have i ◁ i+1 nor i+1 ◁ i. We prove in [Pon19,
Proposition 28] that the number of Tamari inversions give the distance of the
interval. The intuition is that Tamari inversions correspond to rotations that can
be applied one by one from the lower element to the upper element.
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Tamari inversions: (4, 7), (5, 6), (5, 7).

Figure 4.3: Tamari inversions on an interval-poset and grafting tree

The distance can also easily be read on the grafting tree. It somehow computes
a certain deficit between the labels and the maximum value they could take.
Remember that a label on a node needs to be smaller than or equal to the size of
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its right subtree minus the sum of the labels. For example, on the root node v4
of the grafting tree of Figure 4.3, we need ℓ(v4) ≤ 4− 1. The actual label is 2, so
there is a “deficit” of 1. The deficit di is then the size of the right subtree of vi
minus the sum of its labels minus the label ℓ(vi). The only other non-zero value
besides d4 on Figure 4.3 is d5 = 3− 1− 0 = 2. Then the distance is the sum of all
deficits. Actually each value di gives the number of Tamari inversions (i, ∗).

Using this characterization, it is easy to see that the two previous involutions
Ψ and Φ preserve the distance statistic. For the complement Ψ: the definition of
Tamari inversions is symmetric towards the increasing and decreasing relations.
Each Tamari inversion (a, c) in I corresponds to a Tamari inversion (n+1− c, n+
1 − a) on Ψ(I). For the left-branch involution Φ, we see that even though the
shape of tree is changed, the size of the right subtrees and their labels are not.

4.4 The Rise-contact involution

Using Φ and Ψ, we obtain the following result.

Theorem 4 (Theorem 54 of [Pon19]). Let β be the rise-contact involution defined
by β := Φ ◦Ψ ◦ Φ. Then β is an involution on Tamari intervals which exchanges
the contact value and the initial rise (these are the first values of the contact and
rise vectors) and the values of the contact vector and rise vector (the order is not
kept) while keeping the distance.

The rise-contact β is the conjugate of the Ψ involution by Φ and so is trivially
an involution. This proves [PR12, Conjecture 17] for the case m = 1. We show
an example of the complete involution on Figure 4.4.

4.5 The expand-contract operation on m-Tamari

intervals

It is possible to define generalizations of the contact and rise vectors on intervals
of the m-Tamari lattice. In [PR12, Conjecture 17], Préville-Ratelle conjectures
that they are equi-distributed and symmetric (when forgetting the order of the
values in the vector). This generalizes the symmetry found in [BFP11]. This
suggests that a rise-contact involution also exists on m-Tamari intervals. But
the generalization is not direct. Indeed, even though m-Tamari intervals can be
trivially interpreted as intervals of a Tamari lattice on size n×m, this set is not
stable by the rise-contact involution we defined previously. The idea behind the
generalization is to find another interpretation of the m-Tamari intervals as a
subset of intervals in n×m stable through the rise-contact involution.

To do that, we use the characterization of m-grafting trees of Section 3.6. We
have the following issue: the rise vector of an m-grafting tree is m-divisible (all
values are multiples of m) but not the contact vector. This dissymmetry comes
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Figure 4.4: The rise-contact involution on Tamari intervals

from the interpretation of m-ballot paths as Dyck path of size n×m by replacing
each up step by m up-steps. This actually changes the rise vector but not the
contact vector. To solve this, we apply a simple transformation on the labels of m-
grafting tree: ℓ′(vi) = mℓ(vi) if i ≡ 0 mod m, and ℓ′(vi) = m(ℓ(vi)− 1) otherwise.
This is the expand operation. The inverse operation is called the contract. We
illustrate this on Figure 4.5. In [Pon19], we prove that the expand / contract
operations define a bijection between m-grafting trees and grafting trees of size
n×m whose contact and rise vectors are m-divisible. In particular, this new set of
intervals is now stable through the classical rise-contact involution β which gives
the following result.

Theorem 5 (Theorem 74 of [Pon19]). The m-rise-contact βm := expand ◦β ◦
contract is an involution on m-Tamari intervals exchanging the m-contacts and
the m-rises and proving Conjecture 17 of [PR12].
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Figure 4.5: The expand operation on m-grafting trees

4.6 Open questions

In [Pon19], the ideas are more important than the proofs. The definition of the
expand operation especially is very simple. The proof that it is a bijection (es-
pecially that the result is a grafting tree) is only a slightly technical proof by
induction. But somehow, we miss some combinatorial insight. What “are” the
expanded m-grafting trees? Can they be used for other purposes? (For example,
to obtain a bijective proof of the formula counting intervals). I would also like to
study and understand the meaning of these different involutions in the ν-Tamari
lattices. It seems possible to define an expand operation there too and some sort
of rise-contact involution.



CHAPTER 5

Q, T -CATALAN

You must give me leave to judge for myself, and pay me the compliment of believing
what I say.
– Jane Austen, Pride and Prejudice

The enumeration of Tamari intervals is related to diagonal harmonic polyno-
mials. This algebraic background may give us a hint on why we find such nice
formulas as they also appear as the dimensions of certain spaces and can be ob-
tained through symmetric functions. In particular, the study of those polynomials
motivated the definition of the m-Tamari lattices in [BP12]. In his thesis [PR12],
Préville-Ratelle gives a good introduction to the algebraic questions and their
relations to combinatorics, stating many problems and conjectures.

The combinatorial aspects of these questions have been an important moti-
vation for my work. In the year 2021–2022, I obtained a délégation CNRS (sab-
batical) to work in Montreal with François Bergeron in particular. He introduced
me to his recent work on triangular partitions [BM22] which gives an interesting
generalization of Dyck paths with many open questions. I spent most of the year
working on these questions. In this chapter I present the general background of
q, t-Catalan combinatorics and their relation to Tamari intervals and triangular
partitions. I give an overview of two papers [Pon22] and [LMP23]. The first one
is a short note on a description of the Zeta function (from [Hag08]) which I had
known for some years and put in writing recently. The second is the result of
my collaboration on triangular partitions with Löıc Le Mogne who joined me in
Montreal for his Master internship and is now doing a PhD under my supervision.
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5.1 Background on diagonal harmonic polyno-

mials

5.1.1 The q, t-Catalan and the Tamari intervals

Let us work on a ring of multivariate polynomials in multiple set of variables. This
ring is naturally graded by the degrees of the polynomials in the different sets of
variables. The action of the symmetric group Sn which permutes simultaneously
all sets of variable is called the diagonal action and is compatible with the degree
graduation. Invariant polynomials under this action are called diagonal polyno-
mials. The coinvariant spaces are the graded quotient of the ring by the ideal of
invariant polynomials. They can be realized as diagonal harmonic polynomials.
We are interested in the computation of the dimensions of those spaces.

When working with a single set of variables, this is the classical theory of
harmonic polynomials. This was studied in the 1950 by Shephard-Todd, Weyl,
and Chevalley in connection with invariant theory and reflection groups [Hum90,
Bro10]. The extension of the theory to multi sets of variables has been studied
in the past years in different fields: combinatorics, but also quantum mechanic,
representation theory, algebraic geometry.

In two sets of variables, the dimensions of the coinvariant spaces are given by
(n+1)(n−1) which is the number of parking functions. They can be understood as
some Dyck paths with increasing labels on up steps. The connection with com-
binatorics is explained in [Hag08, Hag20]. It comes from the work of Bergeron,
Garsia and Haiman using advanced algebraic tools such as representation theory.
The symmetric functions are often used to express the characters of the symmet-
ric groups through the Schur functions. In the study of coinvariant spaces also,
symmetric functions play an essential role through a basis of modified Macdonald
polynomials. This allows to compute the dimensions of the spaces in the form of
polynomials in q and t such that the values for q = t = 1 are the Catalan numbers.
These are symmetric, Schur-positive polynomials.

This last sentence has many repercussions for combinatorics. The q, t-Catalan
enumeration means that the polynomials could be obtained by sending each com-
binatorial object of a Catalan family to a monomial qitj where i and j are specific
statistics on the object. These statistics have been proved to be the area and dinv.
The area of a Dyck path is a very natural statistic counting the number of squares
below the path. The dinv (and its equivalent the bounce) is a more mysterious
statistic: we give different interpretations in Section 5.2. The representation the-
ory behind the definition tells us that the two statistics are symmetric but there
is, to this day, no direct combinatorial proof.

A simple proof would not only be satisfactory for the mind, it could also
lead to a better understanding of those polynomials and give better computation
techniques. Indeed, as we explain in Section 5.1.2, there are generalizations of
the q, t symmetry and the polynomials are very difficult to compute. This is
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where the “Schur positivity” comes into play and gives interesting combinatorial
questions. It tells us that the qitj monomials can be “put together” to form Schur
polynomials. Each Catalan object belongs to a certain subset corresponding to
a specific Schur monomial but we do not know how to partition the objects into
such sets and which Schur monomials appear in the q, t enumeration of a Catalan
number. Obtaining a combinatorial interpretation (or an algorithm) to compute
those monomials would be a huge progress.

In [BP12], Bergeron and Préville-Ratelle work with 3 sets of variables instead
of 2 and connect the theory of coinvariant spaces with the Tamari lattice. Indeed,
now the dimensions of the spaces are given by polynomials in 3 symmetric variables
q, t, and r. The values of the polynomials when q = t = r = 1 are the number of
intervals of the Tamari lattice (andm-Tamari lattice for a certainm generalization
of the coinvariant spaces). The 3 variables then correspond to 3 statistics on
Tamari intervals. One of them is the distance of the interval which we studied in
Chapter 4, it somehow generalizes the notion of area of a Dyck path: the distance
of the interval between the minimal element of the lattice and a Dyck path P is
the area of P . The second statistic is the dinv of the maximal element of the
interval. The third statistic has no interpretation so far.

Besides, the polynomials are also Schur positive. Moreover, they correspond
to “the same” Schur functions as the 2 variables case. Indeed, Schur functions
are formal objects that form a basis of symmetric functions in an infinite number
of variables. They are indexed by integer partitions and can be expanded into
any number of variables. If the integer partition has k parts, expanding the Schur
function in less than k variables gives 0. The Schur polynomials appearing in the
q, t-Catalan enumeration are then the expansion in 2 variables of certain Schur
functions sλ where λ has, at most, two parts. The Schur polynomials in the q, t, r
enumeration of Tamari intervals are these same Schur functions expanded in 3
variables plus some extra terms sλ where λ has 3 parts.

5.1.2 Triangular partitions and Dyck paths

An integer partition λ of size n is a list of positive integers λ1 ≥ λ2 ≥ · · · ≥ λk
with

∑
i λi = n where k is called the length of the partition. For convenience,

we often consider partitions ending with an infinite number of 0 parts (λj := 0
for j > k). A sub-partition µ of λ is a partition such that µi ≤ λi for all i ≥ 0.
Dyck paths of size n are trivially in bijection with sub-partitions of the staircase
integer partition (n, n−1, . . . , 1). Indeed, we often represent partitions using their
Ferrers diagram as on Figure 5.1 : each line of the diagram contains λi boxes. The
top partition of Figure 5.1 is then (2, 1). If µ is a sub-partition of λ, its Ferrers
diagram is contained in the Ferrers diagram of λ. The frontier between the two
partitions draws a path below the initial partition (in red on Figure 5.1). When
λ is the staircase partition, we obtain a Dyck path by a simple rotation. See for
example the 5 sub-partitions of (2, 1) corresponding to the 5 Dyck paths of size 3.
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The Dyck paths of size 4 are the sub-partitions of (3, 2, 1).

Figure 5.1: Dyck paths of size 3 as sub-partitions of (2, 1)

This suggests a natural generalization of Dyck paths: changing the partition λ.
This includes in particular the case of rational Dyck paths. Let a and b be two
co-prime integers. Bizley [Biz54] gives a nice enumeration for paths made of north
and east steps, above the line y = a

b
x and ending in (a, b),

1

a+ b

(
a+ b

a, b

)
. (5.1)

These are called the rational Catalan numbers. Indeed, for a = n and b = n + 1,
we recover the Catalan numbers. In our settings, this is counting the parti-
tions whose Ferrers diagrams fit below the line between (0, b) and (a, 0). They
are all sub-partitions of the maximal fitting partition which we call a ratio-
nal partition. Combinatorial properties of rational Dyck paths are known for
being related to representation theory and coinvariant spaces (See for exam-
ple [ALW16, ALW15, TW18]). In particular, there exists a q, t enumeration that
generalizes the q, t-Catalan case with similar open questions. In [Ber17], Bergeron
summarizes some of these questions (both algebraic and combinatorial) in the
rectangular case (where the co-prime condition for a and b is dropped).

The work of [BHM+23] suggests that the connection between combinatorial
enumeration, representation theory and symmetric functions exists beyond the
rectangular and rational cases: by taking paths below any line. This motivated the
work of Bergeron and Mazin on triangular partitions [BM22]. A integer partition
is said to be triangular if it is the maximal partition fitting below the line joining
(r, 0) and (0, s) for r and s non-negative real numbers. In particular, r and s are
not required to be integers. We show an example on Figure 5.2 next to a partition
which is not triangular.

In [GHSR20], the authors use a formula from Gorsky and Negut [GN15] to
obtain a q, t-enumeration of the sub-partitions of any partition λ, thus generalizing
the q, t-Catalan numbers. But the signification of each q, t monomial is not clear
and coefficients are not always positive. Conjecture 7.1.1 from [BHM+23] states
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Figure 5.2: The triangular partition (4, 3, 1) and the non-triangular parti-
tion (4, 4).

that the coefficients might be positive if the partition lies under a certain convex
curve. In the case where the partition is triangular, the authors obtain an explicit
formula using symmetric functions and prove a combinatorial interpretation of the
statistics corresponding to q and t (generalizing the area and dinv). In [BM22,
Conjecture 1], Bergeron and Mazin further conjecture that this q, t-enumeration
is Schur-positive.

5.2 Understanding the “dinv”

5.2.1 Zeta function and area sequences

In the q, t-Catalan enumeration, the combinatorial interpretation for the q expo-
nent comes naturally: it is the area of the Dyck path. If we see Dyck paths as a
sub-partition µ of a partition λ, this is the number of boxes which are part of λ
but not of µ: the red boxes on Figure 5.1 and 5.3. Even in the classical case, the
interpretation of the second statistic is more difficult. In [Hag03], Haglund gives a
first conjectural interpretation of the exponent of t as the bounce statistic. At the
same period, Haiman finds another interpretation that we now call the dinv. This
leads Haglund to come up with a bijection from Dyck paths of size n to them-
selves sending the area and bounce to the dinv and area respectively. This is the
zeta map ζ [Hag08, page 50]. In particular, it proves that the area, the dinv, and
the bounce are equi-distributed (but not the q, t-symmetry). As q, t-enumerations
arose in more general settings, some generalization of the ζ map also appeared.
In [ALW15], the author describe a general ζ map for all rational Dyck paths. They
conjecture that it is bijective but it appears a difficult question. It was eventually
solved in [TW18].

I discovered the q, t-enumeration of Catalan number at some time during my
thesis. I found the problem of finding a combinatorial proof of the symmetry
fascinating and tried to solve it. I did not succeed but I came up with a bijective
map that I soon discovered was the ζ map (more precisely ζ−1). As it was not
a major result, I did not care to write it at the time. I finally did last year
in [Pon22] after discussing it with Hugh Thomas as he had actually never seen
this description anywhere. As I explain below, it is based on the area sequence
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Area sequence: 01211123301101221
Area: 22

Figure 5.3: A Dyck path (as a sub-partition) with its area and area sequence.

of Dyck paths. We read the sequence value by value and make an insertion in a
new area sequence that we build iteratively. The process is very simple and can
be easily implemented. I actually provide the full implementation with the paper
in [PonSage22].

The area sequence of a Dyck path is a very common way to represent Dyck
paths and to compute the area. It consists of “counting the boxes”: when rep-
resented as in 5.3, we read the number of red boxes, line by line, from top to
bottom. This gives a bijection between Dyck paths of size n and sequences of
integers a1, . . . , an where a1 = 0 and 0 ≤ ai+1 ≤ ai + 1. The area is of course the
sum of the ai. The dinv is also easy to compute from the area sequence: it is the
number of couples (ai, aj) with i < j and aj = ai or aj = ai − 1. On Figure 5.3,
the dinv is 65.

I define an operation called the insertion on the area sequence. If a1 . . . an is an
area sequence, then inserting in position i gives the new sequence
a1 . . . ai(ai + 1)ai+1 . . . an. By convention, inserting in position 0 adds a 0 at the
beginning of the sequence. I then explain how we can control the increase of the
dinv through the insertion and I define specific insertion points such that if the
last inserted value increased the dinv by vi, then the new sequence has vi+1 inser-
tion points corresponding to potential increases of the dinv of 0, 1, . . . vi+1. From
an area sequence a1 . . . an, we can then construct a new sequence by inserting at
the insertion point in the image which increases the dinv by exactly ai.

Theorem 6 (Theorem 6 of [Pon22]). The insertion process described previously
defines a bijection on area sequences such that the dinv of the image is the area
of the sequence.
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We show an an example on Figure 5.4 where insertion points are made visible.
We prove that this map is actually ζ−1. In particular, we give a direct proof that
the area of the new sequence is the bounce of the original one.

0 ·10·0
01 ·20 ·1 0·0
012 ·30 ·2 0 ·1 0·0
0121 0 0 ·2 1 ·0 0·1
01211 0 0 1 ·1 0 ·2 1·0
012111 0 0 1 ·2 2 ·0 0 1·1
0121112 0 0 1 ·3 2 ·1 2 ·0 0 1·2
01211123 0 0 1 ·4 2 ·2 2 ·1 2 ·0 0 1·3
012111233 0 0 1 2 ·3 2 ·2 2 ·1 0 1 ·4 2·0
0121112330 0 0 1 2 2 2 0 1 2 ·1 3·0
01211123301 0 0 1 2 2 2 0 1 2 ·2 3 ·1 3·0
012111233011 0 0 1 2 2 2 0 1 2 3 ·2 4 ·0 3·1
0121112330110 0 0 1 2 2 2 0 1 2 3 4 ·1 5 ·0 3
01211123301101 0 0 1 2 2 2 0 1 2 3 4 ·2 5 ·1 5 ·0 3
012111233011012 0 0 1 2 2 2 0 1 2 3 4 ·3 5 ·2 5 ·1 5 ·0 3
0121112330110122 0 0 1 2 2 2 0 1 2 3 4 5 ·3 6 ·0 5 ·2 5 ·1 3
01211123301101221 0 0 1 2 2 2 0 1 2 3 4 5 6 ·1 5 5 ·2 6 ·0 3

Figure 5.4: An example of the inverse zeta map bijection

5.2.2 The deficit in triangular Dyck paths

In [BHM+23], the authors generalize the dinv statistic to all triangular Dyck paths
by counting the p-balanced hooks in the Ferrers diagram of the sub-partition. This
is reformulated in [BM22, Section 4.1] and given a new name: the sim statistic.
Remember that a triangular partition is the maximal partition lying under a given
line. Actually, for any given triangular partition, there is an infinite number of
lines to choose from. The authors of [BM22] provide a very simple criteria for
deciding if a a given partition is triangular using the hooks of the different cells.
They also define a certain notion of mean slope as an explicit line choice. A cell
of a sub-partition is said to be similar if its hook is “compatible” in a certain sens
with the mean slope of the triangular partition. The number of similar cells is
called the sim. It corresponds to the known dinv statistic on regular and rational
Dyck paths. We show an example on the left of Figure 5.5: the similar cells are
colored in green while the non similar cells are in yellow with dotted pattern.

In [LMP23], we present a new combinatorial interpretation of the similar cells
using a new statistic called the deficit. The cells of the Ferrers diagram of a
partition λ can be filled with numbers to form a tableau. It is called a standard
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Figure 5.5: Similar cells, Triangular young tableau and deficit

Young tableau if it contains exactly the numbers 1, . . . , n such that the numbers
are increasing on each line and each column. Let θ be a standard Young tableau
of shape λ where λ is a triangular partition. We say that there is a θ-inversion
in a sub-partition µ of λ if there is a cell c inside µ with a higher value in θ
than another cell c′ outside of µ. For example, on the right of Figure 5.5, we see
that 15 is inside the sub-partition while 14 is outside. Then the cell which lies at
the “hook” of c and c′ is said to be a deficit cell. The number of deficit cells gives
the deficit of the triangular Dyck path with tableau θ.

In the example of Figure 5.5, we see two deficit cells: the cell number 2 which
is at the hook of 15 and 14, and the cell number 10 which is at the hook of 16
and 14. These are the two cells which were identified as non similar cells on the
left. Indeed, we prove that on a certain tableau that we call the triangular tableau,
the deficit cells are exactly the non similar cells. This tableau is constructed
using the mean slope defined by Bergeron and Mazin (or more precisely, a slight
irrational deformation): we move the slope towards the origin and number the
cells in decreasing order as we touch them. Using an irrational slope ensures that
slope touches the cells one by one. We show an example on Figure 5.6.

1 2 4 7
3 5 8
6

1 2 4 7
3 5 8
6

1 2 4 7
3 5 8
6

1 2 4 7
3 5 8
6

(pictures from [LMP23])

Figure 5.6: Construction of the triangular tableau

This interpretation has been very useful and it also opens new horizons. In-
deed, we might wonder what are the q, t-enumerations of other standard Young
tableau of shape λ, using the tableau deficit to compute the power of t. Most of
the time, it is not symmetric but it actually defines a certain family of tableaux,
which we call the similar-symmmetric tableaux, or sim-sym, on which we recover
the original q, t-enumeration. Characterizing those tableaux seems to be a difficult
question: we find some of them as “slope tableaux” using a similar construction as
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for the mean slope, but not all of them. We were nevertheless able to characterize
them in the case of triangular partitions of length 2.

5.3 Lattice interval enumeration and Schur-po-

sitivity

We have briefly explained the relations between the q, t-enumeration of Dyck
paths, the symmetric functions and representation theory. In the case of triangular
partitions, these relations are still conjectural (especially concerning representa-
tion theory). When I met him in Montreal, François Bergeron was working on this
question. In particular, he was able to compute, or partially compute, a certain
Schur-positive symmetric function for each triangular partition. The expansion
in two variables of those functions are the q, t enumeration of triangular Dyck
paths. The question he asked me was: what happens in 3 variables? For classical
Dyck paths and m-Dyck paths, we know we obtain an enumeration on Tamari
and m-Tamari intervals but what happen on the other cases?

The most natural choice is to look at the intervals of the ν-Tamari lattice that
we mentioned in Section 2.9. In certain cases, it gives the wanted enumeration
but not in all cases. For some partitions, we have the right number of intervals
but loose the q, t-symmetry or the Schur-positivity. In other cases, the number
of intervals does not correspond to the expansion of the symmetric function. I
spent lots of time trying to find a lattice structure that would give the proper
q, t-interval enumeration. Even though I was able to compute some examples (I
actually explain that in Chapter 9), I could not find a proper general definition.

Around this time, I was joined by Löıc Le Mogne who started his internship
and was interested in working on these questions. I asked him to look at the case of
triangular partitions of length 2. Indeed, this case is much easier than the general
case but still largely non-trivial. As we came up with the definition of sim-sym
tableaux, it appeared to us that a certain maximal chain in the ν-Tamari lattice
defines a Young tableau, which we call the top-down tableau, which sometimes
is sim-sym. In particular, in the length 2 case, the top-down tableau is always
sim-sym but does not necessarily corresponds to the triangular tableau. We then
state the following theorem.

Theorem 7 (Theorem 5 of [LMP23]). The q, t-enumeration of intervals of the
ν-Tamari lattice on triangular 2-partitions is symmetric and Schur-positive.

The statistic corresponding to q is the distance while the statistic correspond-
ing to t is the number of similar cells using the top-down tableau. The proof of
the theorem has been obtained by Löıc Le Mogne based on case-by-case analysis
using the structure of the lattice. It will appear in the long version of the paper.

Using this result and some extra computation, we express a new conjecture on
q, t-enumerations of intervals.
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Conjecture 8 (Conjecture 4 of [LMP23]). Let λ be a triangular partition such
that the top-down tableau of λ is sim-sym, then the q, t-enumeration of ν-Tamari
intervals is symmetric and Schur-positive.

5.4 Open questions

We have seen already that the general field of q, t-Catalan combinatorics has many
open questions as we can read in [PR12] and [Ber17]. Some of these questions are
very difficult but they often leave a trace of more approachable problems. The
study of triangular partitions and our own results are still very new and we have
many leads to investigate:

• We would like to better understand sim-sym tableaux. In particular, there
should be a bijection between elements of similar area and sim using different
tableaux.

• The question of finding the “good” lattice structure is still open. Even if the
general case is difficult, we have had new ideas on how to approach it. One
would be to further study the length 2 case. Indeed, we might be able to
define a different lattice for each sim-sym tableau and prove that they give
a similar enumeration of intervals.

• I did not have the time yet to investigate the ζ function on triangular parti-
tions. I do not know if the general definition of sweep maps from [ALW15]
which was later proven to be bijective in [TW18] works for triangular parti-
tions (it is said to work on the rectangular and rational cases). In any case,
it needs specific investigation to understand how it is or could be defined
and what it tells us on the combinatorics of the triangular case.

• There are some notions of contacts and rises on triangular Dyck paths, in
relation in particular with triangular parking functions. We need to further
investigate the expressions that arise in the symmetric functions related to
triangular partitions and look for proper combinatorial interpretation. In
particular, we need to look at classical bijections and correspondences of the
classical case and see how they generalize.

• Similarly, we need to investigate how to get “triangular versions” of some
classical Catalan objects, in particular objects that are in relations with
Tamari intervals as in Figure 3.1.
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CHAPTER 6

INTEGER POSETS

Definitions belong to the definers, not the defined.
– Toni Morrison, Beloved.

As I presented in the previous chapters, Tamari interval-posets were the result
of a collaboration with Grégory Châtel. This started around 2012 while I was
finishing my thesis and Gréory Châtel was a fellow student. Around 2013, we
started working with Vincent Pilaud to understand the connection between our
work on Tamari intervals and Cambrian lattices [Rea06]. We wanted to answer the
following questions: can the intervals of the Cambrian lattices be seen as interval-
posets? Can we use this characterization to count the intervals? Is it possible to
define other algebraic structures, such as Hopf algebras, on intervals? The short
answers are: yes, no, yes. In particular, there is a specificity of the Tamari lattice
for counting intervals. Nevertheless, as we started exploring those questions, it
appeared that many combinatorial objects that were considered very different in
nature could be seen as integer poset. It became interesting to study this specific
family and how it related to previously known algebraic structures, especially
lattices and Hopf algebras. This collaboration resulted in 3 papers [PP18, CPP19],
and [PP20].

This chapter is dedicated to [CPP19] where we explore the lattice structure of
integer posets, and [PP20] which is about Hopf algebraic aspects. The results from
both papers were originally presented in a FPSAC conference poster [PP18b]. The
paper [PP18] describes some family of objects called the permutrees, we present it
in details in Chapter 7. Even though it was written before the two other papers,
the original motivation came from the study of integer posets. We start here
by explaining how many objects can be described in terms of integer posets. We
then give the main ideas to construct the lattice and Hopf algebra of integer posets
through the notion of integer relations.

71
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6.1 Generalizing the Tamari interval-posets

We have defined Tamari interval-posets as posets on integers satisfying certain
relations. Besides, the linear extensions of a Tamari interval-poset give a certain
interval of the weak order. Actually, any interval of the weak order can be encoded
as the linear extensions of a certain poset on integer. Tamari interval-posets are
just a special case.

Indeed, let us consider permutations as a linear order on integers: they cor-
respond to a special case of partial orders on integers where the order is total.
Similarly, standard binary search trees define a poset by orienting all edges to-
wards the root. The linear extensions are the sylvester class of the tree. This is
also the case of binary sequences: we interpret any − sign by an increasing relation
and any + sign by a decreasing relation. In this case, linear extensions also give a
certain interval of the weak order corresponding to the recoil class we mentioned
in Section 2.8. We show examples of these constructions on Figure 6.1. In this
chapter, we always represent integer posets by writing the integers in their natu-
ral order on a line and writing all relations (not just cover relations) by dividing
them intro increasing relations (in blue, from left to right, on top) and decreasing
relations (in red, from right to left, on bottom).

4312 1 2 3 4

4

2 5

1 3 7

6 8

1 2 3 4 5 6 7 8

−−+−+ 1 2 3 4 5 6

Figure 6.1: Permutations, binary trees, and binary sequences as integer posets

Now we can construct interval-posets of the corresponding lattices (the weak
order, the Tamari lattice, and the boolean lattice). For each interval e ≼ f , we take
the decreasing relations of the smaller element e and the increasing relations of the
larger element f as illustrated on Figure 6.2 for permutations. This always give
a certain poset on integers and we characterize the obtained families depending
on the considered lattice. The conditions that need to be satisfied are always
local conditions on triplets a < b < c. Basically, the increasing (resp. decreasing)
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relation a ◁ c (resp. c ◁ a) implies something on the increasing (resp. decreasing)
relations a ◁ b and b ◁ c (resp. c ◁ b and b ◁ a). We illustrate the different
conditions in Figure 6.3.

σ′ = 4231

2431 4213

2413

σ = 2143

1 2 3 4

1 2 3 4

1 2 3 4

Figure 6.2: Construction of a weak order interval-poset

intervals of intervals of intervals of
permutations binary trees binary sequence
(weak order) (Tamari lattice) (boolean lattice)

a b c ⇒ a b c or a b c a b c

a b c

a b c ⇒ a b c or a b c a b c

a b c

Figure 6.3: Conditions on interval-posets

We then obtain three families of integer posets representing three families of
intervals in the weak order, the Tamari lattice and the boolean lattice respectively.
In [CPP19], we call them WOIP for weak order interval-posets, TOIP for Tamari
order interval-posets and BOIP for boolean order interval-poset. The elements of
those latices (permutations, binary trees, and boolean sequences) are the maximal
posets (posets with the maximal number of relations) that we can construct sat-
isfying the interval conditions (we call them WOEP, TOEP, and BOEP where the
E stands for element). In particular, you can always recover the element from the
increasing (resp. decreasing) relations. For a permutation, this means recovering
the permutation from the inversions. For a binary tree, this corresponds to the
bijection between the tree and its decreasing / increasing forest. Besides, we can
also characterize faces of the corresponding polytopes as special kind of intervals:
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the WOFP [CPP19, Proposition 2.10] are the interval-posets corresponding to the
faces of the permutahedron, the TOFP [CPP19, Proposition 2.10] correspond to
faces of the associahedron, while all BOIP are actually faces of the cube.

The nice enumeration of Tamari intervals come from the fact that the increas-
ing and decreasing relations form a forest of rooted trees. It is not the case for
the weak order especially and the characterization does not lead to interesting de-
compositions in terms of enumeration. Nevertheless, all this objects are known to
appear in different algebraic structures: lattices and Hopf algebras. This is what
motivates the following sections which proposes a general framework to define
these structures.

6.2 Integer Relations

6.2.1 As a lattice

Let S be a set of size n and R a binary relation on S, i.e., a set of couples (x, y)
with x ∈ S and y ∈ S. We write x R y if x is in relation with y and x ̸R y if
not. We consider only reflexive relations, i.e., x R x for all x ∈ S. But R is in
general not symmetric so xR y does not imply y R x. The boolean lattice is a well
known structure on binary relations where the order is given by inclusion of the
relations. The minimal element is the empty relation, while the maximal is the
relation R where xRy for all x and y in S. The meet and join are given by taking
respectively the intersection and union of relations.

We now consider the case where S = 1, . . . , n and we say that R is an in-
teger relation. In this case, the set S is actually endowed with 2 relations: the
relation R and the natural order relation between integers. This allows for a new
lattice definition which we call the weak order on integer relations as it is indeed
a generalization of the weak order on permutations as we explain in Section 6.4.

We see the integer relation R as the union of two subrelations : the increasing
relation RInc, i.e., the couples a R b with a < b and decreasing relation RDec, i.e.,
the couples b R a with a < b. We say that a relation R is smaller than or equal
to a relation S, R ≼ S, if and only if RDec ⊆ SDec and SInc ⊆ RInc (Definition 1.1
of [CPP19]).

We present the example for relations of size 2 on Figure 6.4. We show both
the classical boolean lattice on the left and the weak order on the right. On
the boolean lattice, the minimal element is the empty relation and at each step,
one relation is added. On the weak order, the minimal element is the relation
containing all possible increasing relations and at each step, either one increasing
relation is removed or one decreasing is added. In particular, the weak order
on integer relations is isomorphic to the classical boolean lattice. Indeed, it is
a product of the reversed boolean lattice on increasing relations by the boolean
lattice on decreasing relations. It then forms a cube of dimension n(n− 1).

Note that we always represent relations as in Figure 6.4. Integers 1 to n are
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1 2

1 2
1 2

1 2

1 2

1 2 1 2

1 2

Figure 6.4: The boolean lattice (on the left) and the weak order (on the right) on
integer relations.

written on a single line. Each increasing relation a R b is shown as a blue arc
(from left to right) over the vertices while each decreasing relation b R a is a red
arc (from right ro left) under the vertices.

As it is isomorphic to the boolean lattice, the weak order on integer relation
is a lattice. We can easily compute the join in the meet as shown on Figure 6.4:
the meet is obtained by taking the union of increasing relations and intersection
of decreasing relations. The join is the symmetric operation.

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4

Figure 6.5: Join and meet on integer relations
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1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 31 2 3

1 2 3

1 2 31 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

FR
1 2
· FR

1
= FR

1 2 3
+ FR

1 2 3
+ FR

1 2 3
+ · · ·+ FR

1 2 3
.

(picture from [PP20])

Figure 6.6: Product in the Hopf algebra of integer relations as an interval

6.2.2 As a Hopf algebra

LetR be the set of all integer relations,Rn the set of integer relations of size n, and
k a field. Then we can define a Hopf algebra on the vector space kR :=

⊕
n≥0 kRn.

The product (on the fundamental basis FR) is given by what we call the
shifted shuffle of two relations R of size n and S of size m [PP20, Definition 3].
This is a set containing all relations T such that the subrelation of T on 1, . . . , n
is R and the subrelation on n+1, . . . , n+m is the shifted version of S, written S.
In other words, an relation T of the shifted shuffle is obtained by concatenating
R and S and adding some increasing relations from R to S and some decreasing
relations from S to R. In particular, the shifted shuffle has cardinality 22mn.

The product between R and S is the sum over all the elements of the shifted
shuffle. This actually gives a sum over an interval of the weak order on integer
relations. The minimal element is given by R\S, the relation where all increasing
relations have been added between R and S and no decreasing relations. While
the maximal element is R/S, the relation where all decreasing relations have been
added between S and R and no increasing relations. See an example on Figure 6.6.
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The coproduct on kR is defined using the notion of total cuts of a relation
(Definition 10 of [PP20]). A total cut on relation R of size n is a partition of
1, . . . , n into two sets X and Y such that for all x ∈ X and y ∈ Y , we have x R y
and y ̸R x. In particular, there are always two trivial total cuts: the case where
either X or Y is the empty set. The coproduct is the sum over all the total cuts,
where the relation R is divided into the two (standardized) subrelations given by
the total cut. For example, we have

△
(
FR

1 2 3

)
= FR

1 2 3
⊗ FR∅ + FR

1
⊗ FR

1 2
+ FR

1 2
⊗ FR

1
+ FR∅ ⊗ FR

1 2 3

where the total cuts are ({1, 2, 3},∅), ({1}, {2, 3}), ({1, 3}, {2}), and (∅, {1, 2, 3}).
We prove in [PP20, Proposition 15] that the product and coproduct indeed de-

fine a graded Hopf algebra on kR. The correspondence with the weak order allows
us to define multiplicative bases and obtain that the Hopf algebra is freely gener-
ated by certain elements indexed by under-indecomposable relations (relations T
which cannot be written as T = R\S).

6.3 Integer Posets

6.3.1 As a lattice

A poset is a binary relation which is reflexive, antisymmetric and transitive. As we
only consider reflexive integer relations, we are interested in studying the induced
subposets of the lattice of integer relations on antisymmetric and transitive integer
relations.

1 2 3 1 2 3

1 2 3

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

Figure 6.7: Meet of two transitive relations.

We write An the set of antisymmetric integer relations of size n. It is easy to
prove that it forms a sublattice of the weak order on integer relations [CPP19,
Proposition 1.4]. Indeed, suppose that T = R∧S is not an antisymmetric relation.
This means that we have x and y with x T y and y T x. We suppose x < y. The
decreasing relations of T are the intersection of the decreasing relations of R and S,
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(picture from [CPP19])

Figure 6.8: The weak order lattice on integer posets

so we have y R x and y S x. As the increasing relations of T are the union of the
increasing relations of R and S, we have the relation (x, y) in at least one of R
or S. So one of R or S is also not antisymmetric.

On the other hand, transitive relations Tn do not form a sublattice of the
lattice of integer relations. Indeed, it is well known that the union of two transitive
relations is not itself transitive. Nevertheless, the weak order on transitive integer
relations is still a lattice. We explain a process to construct the meet of two
transitive relations as illustrated in 6.7. Let R and S be two transitive relations.
Their meet as integer relations is not transitive. We first apply a transitive closure
on the increasing relations. The result is still not transitive as there might be a
chain involving a decreasing relation. In this case, we remove the problematic
decreasing relations.

This operation is called the transitive decreasing deletion and we prove
in [CPP19, Proposition 1.14] that it indeed gives the meet of the two relations
in the poset of transitive relations. Beside, this is compatible with the antisym-
metry condition: the antisymmetic (transitive) relations form a sublattice of the
transitive relations. This gives the main theorem of [CPP19].
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Theorem 9 (Theorem 1 from [CPP19]). The weak order on integer posets is a
lattice.

See Figure 6.8 for an example in size 3. Note that this was later generalized
to other finite Coxeter groups in [GP20].

6.3.2 As a Hopf algebra

Looking at integer posets in the Hopf algebra of integer relations, we obtain the
two following properties [PP20, Proposition 30]:

• if at least one integer poset appears in the product of two relations R and S,
then both R and S are integer posets;

• the coproduct of an integer poset only contains integer posets.

This allows us to define a Hopf algebra on integer posets as a quotient of the
Hopf algebra of binary relations by the ideal generated by relations which are not
posets. In other words, we just “remove” the non-posets from the result of the
product. For example, the result of the product of Figure 6.6 in the Hopf algebra
of integer-posets is now given by a sum over the interval of Figure 6.9.

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

(picture from [PP20])

Figure 6.9: Interval corresponding to the product of integer posets.
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6.3.3 General audience paper

The lattice aspects of this work concerning binary integer relations and integer
posets have been turned into a general audience paper published in the magazine
Interstices [PonMisc17]. This was an occasion to present the notion of poset using
the illustration of the closet-poset of Figure 6.10.

Figure 6.10: The Closet-Poset

6.4 Induced structures on permutations, binary

trees and more

Permutations seen as WOEP (see Section 6.1) form a sublattice of the lattice of
integer posets [CPP19, Proposition 2.3]. This is the weak order. Indeed the order
is given by the inclusion of the inversions. Moreover, the WOIP and TOIP induce
some subposets. They are both lattices but only TOIP forms a sublattice. This led
us to study more precisely in which cases we obtain a sublattice and to describe
processes to compute the meet (and the join) when the induced poset is a lattice
but not a sublattice.

This motivated the definition of permutrees which we describe precisely in
Chapter 7. Recall by looking at Figure 6.3 that, in a weak order interval, for each
increasing relation a ◁ c we need to have a ◁ b or b ◁ c for a < b < c (with
symmetrical conditions on decreasing relations). In the case of Tamari interval-
posets, we “force” to always have b ◁ c. We could also force to always have a ◁ b.



6.4. INDUCED STRUCTURES ON PERMUTATIONS, BINARY TREES ANDMORE81

In the boolean lattices, we force to have both. It is quite natural to “mix” the
forcing conditions of the different objects. For example, in size 4, we can decide
that each increasing relation a ◁ c with a < 2 < c forces the relation 2 ◁ c,
whereas each increasing relation a ◁ c, with a < 3 < c forces the relation a ◁ 3.

We encode the rules into a decoration. Each decoration gives a certain family of
intervals and elements: the permutrees. In particular, this includes and generalizes
the Cambrian trees defined by Reading in [Rea06]. In [CPP19, Theorems 2.77,
2.82, 2.85, and 2.88], we study the relations between the lattices on intervals
and elements and the lattice of integer posets. We find in particular a sufficient
condition on the decoration to obtain sublattices of the lattice of integer posets:
it needs to be covering: for each b, with 1 < b < n, either a ◁ b or b ◁ c should
be explicitly forced (or both). We obtain like this that the Tamari lattice, the
Cambrian lattice, and the boolean lattice as well as their lattices of intervals are
sublattices of the lattice of integer posets.

Besides, using the characterization of the faces of the permutahedron asWOFP,
of the associahedron as TOFP, we obtain induced subposets of the integer posets
which are lattices. For the permutahedron, this is the facial order defined
in [KLN+01] and more generally in [DHP16]. The facial order on the faces of
the associahedron is found in [DHP16, NT06, PR06]. This construction also gen-
eralizes to the faces of the permutreehedron (we define this polytope in the next
Chapter).

In [PP20], we study the induced Hopf algebraic structures and obtain the
following.

Theorem 10 (from [PP20]). The intervals of weak order, Tamari lattice, boolean
lattice and more, can be endowed with Hopf algebraic structures.

For the intervals of the weak order, we are able to quotient the Hopf algebra
of integer posets to obtain a Hopf algebra of weak order intervals (WOIP). The
process is very similar to the quotient from integer relations to integer posets:
we “remove” the non-weak order intervals from the product of two weak order
intervals in the Hopf algebra of integer posets. Besides, the WOIP Hopf algebra
can also be obtained as a subalgebra of the integer-posets algebra by constructing
certain fibers of a deletion process defined in [CPP19]. Using similar processes,
we reconstruct the Malvenuto-Reutenauer Hopf algebra on permutations [MR95]
and the Chapoton Hopf algebra on faces of the permutahedron [Cha00].

We then prove in [PP20, Proposition 84] that the TOIP (intervals of the Tamari
lattice) form a sub Hopf algebra of the Hopf algebra of weak order intervals.
Similarly, we recover the Loday-Ronco Hopf algebra [LR98] and a Hopf algebra
on the faces of the associahedron [Cha00]. All these constructions generalize to
permutrees.
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6.5 Open questions

In [Foi13], Foissy describes a Hopf algebra of double posets and a specific case
where one of the poset is actually linear. By looking at the product, it is clear
that it is not the same as the one we define. It still raises questions on these
structures. Indeed, there are different ways to define products and co-products on
double relations (and more generally on k-tuples of binary relations). One choice
gives our Hopf algebra, another gives Foissy Hopf algebra. It would be interesting
to classify these different possibilities: which ones are self dual? In case they are
not, what is the dual? In which case can we obtain Hopf algebras on posets, on
permutations or permutations intervals? What are the structures that we recover
or define this way?



CHAPTER 7

PERMUTREES

Mathematical science shows what is. It is the language of unseen relations between
things. But to use and apply that language, we must be able to fully to appreciate,
to feel, to seize the unseen, the unconscious.
– Ada Lovelace

In [CP17], Châtel and Pilaud present a Hopf algebra on Cambrian trees. Cam-
brian trees are certain non rooted binary trees which can be used to represent the
elements of the Cambrian lattices of Reading [Rea06]. The Cambrian lattices are
lattice quotients of the weak order and each Cambrian tree represent a class. In
particular, Cambrian trees can be represented as integer posets (see Chapter 6).
While working on integer posets, it appeared that we could define a more gen-
eral family: the permutrees. The name “permutree” comes from “permutation”
and “tree”. Indeed, permutrees are a family that regroups permutations, rooted
binary trees, Cambrian trees, binary sequences, and interpolations between these
objects. A permutree comes with a certain decoration. Each decoration defines a
specific family of permutrees, a lattice quotient of the weak order and a polytope.
Besides, we are able to define a Hopf algebra of permutrees (using all decorations)
which is a subalgebra of a certain decorated version of the Malvenuto-Reutenauer
Hopf algebra on permutations [MR95].

In this chapter, we present the results of two papers: first [PP18] (also pre-
sented at EUROCOMB in [PP17]) in collaboration with Vincent Pilaud,
then [PPTJ23] (also presented at FPSAC in [PPTJ21]) in collaboration with Vin-
cent Pilaud and Daniel Tamayo Jiménez. I consider this second paper as a first
step towards defining permutrees for all finite Coxeter groups.

7.1 Lattice quotients and decorations

In Section 2.6, we explain how Cambrian lattices can be constructed as quotients
of the weak order defined by a certain orientation of the Dynkin diagram of the
group. In type A, this means choosing an orientation i→ i+1 or i← i+1 for each
1 ≤ i < n−1. If we have i→ i+1, we contract the edge between the permutations

83
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si+1 = 1 . . . i(i + 2)(i + 1) . . . n and si+1si = 1 . . . (i + 2)i(i + 1) . . . n. This is the
“right” side of the initial hexagon formed by si and si+1. Symmetrically, if we
have i ← i + 1, we contract the edge between the permutations si = 1 . . . (i +
1)i(i+2) . . . n and sisi+1 = 1 . . . (i+1)(i+2)i . . . n, the “left” side of the hexagon.
We then take the lattice congruence generated by these contractions.

For Cambrian congruences, each edge needs to to be oriented in exactly one
direction. The permutree congruences are the generalizations where we now allow
an edge to not be oriented or to be oriented in both directions. See on Figure 7.1
the examples on size 4 for the orientations 1 ← 2 −− 3 and 1 ↔ 2 −− 3. The
initial contracted edges are in red. Other contracted edges are in blue. Two
permutations are in the same class if there is a path of contracted edges between
them.

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

1234

21341324 1243

23143124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

Figure 7.1: Two examples of permutree congruences.

These congruences form a subfamily with interesting properties of the set of
all lattice congruences of the weak order studied by Reading in [Rea04]. We show
all possible permutree congruences for size 4 on Figure 7.2. We see that they are
ordered by refinement: orienting an edge in the Dynkin diagram corresponds to
contracting a side of a polygon and to merge some congruence classes. The most
refined congruence corresponds to the case where no edge is contracted: this is
the trivial congruence where each permutation is its own class and we have n!
classes. If all edges are contracted, we obtain the cube congruence we described in
Section 2.8 with 2n−1 classes. If exactly one edge is contracted for each hexagon,
this is a Cambrian congruence. If we contract always the same size, this is the
sylvester congruence. In both cases, the number of classes is given by the Catalan
numbers. In Section 7.2, we explain how in general we can associate each class
with a tree satisfying certain properties called a permutree.

To each orientation of the Dynkin diagram, we associate a certain word δ ∈
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Figure 7.2: The permutree congruences, for all decorations δ ∈ ·
{ , , , }2 · .
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{ , , , }n called the decoration using the following rules
i −− i+ 1 δi+1 = ;
i→ i+ 1 δi+1 = ;
i← i+ 1 δi+1 = ;
i↔ i+ 1 δi+1 = .

These symbols correspond to certain type of nodes in the permutrees as we
explain in Section 7.2. The first and last symbols δ1 and δn are set to by
convention. We could actually use any symbols: the first and last symbol of
the word only play a role for the combinatorial definition but do not change the
corresponding Dynkin diagram orientation nor the congruence of the weak order.
Using this convention, the orientations 1 ← 2 −− 3 and 1 ↔ 2 −− 3 of Figure 7.1
correspond to the words and respectively.

We can use the decorations to interpret the minimal elements of the congruence
classes in terms of pattern avoidance. Recall that the minimal elements of the
sylvester classes are the 312-avoiding permutation. In case of permutrees, we need
to specify the value of the middle element of the pattern. Minimal permutations
in the permutree classes are the ones avoiding cab subwords with a < b < c and
δb ∈ { , } and bca with a < b < c and δb ∈ { , }. For example, 2413 is
not minimal in its class for δ = because it contains 241 and δ2 = .
This characterization is given in [PP18, Corollary 2.14]. We use it in [PPTJ23]
to characterize the reduced words of the minimal class elements as explained in
Section 7.7.

7.2 Permutree insertion and permutree lattice

j

<j >j

?
j

?

?

j
<j >j

?

j
<j >j

<j >j

Figure 7.3: The labeling rules on permutrees.

Permutrees are directed (from bottom to top) planar non rooted trees, labeled
by exactly the numbers 1, . . . , n and such that each node is of certain type defined
by a symbol in { , , , }. The image of the symbol represents the incoming
/ outgoing edges and implies certain rules illustrated on Figure 7.3. A node
has one incoming edge and one outgoing edge. A node has two incoming edges
and one outgoing edge. A node has one incoming edge and two outgoing edges.
And a node has two incoming edges and two outgoing edges. The nodes coming
from or going to the left of a given node i must be labeled with values smaller
than i. Symmetrically, the nodes coming from or going to the right of a given
node i must be labeled with values bigger than i. The decoration is the words of
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node symbols read from 1 to n (from left to right). We say that the symbols
and are down symbols as they have two incoming edges. Similarly, we write
that and are up symbols. In particular is both an up and a down symbol
while is neither.

Permutrees are actually better understood as the result of a certain insertion
algorithm from permutations that we illustrate on Figure 7.4. The algorithm takes
a permutation σ of size n and a decoration δ ∈ { , , , }n and constructs a
permutree with decoration δ. We often write the decoration directly on the values
of the permutation for convenience. A value v is underlined if δv is a down symbol
and overlined if δv is an up symbol. For example the decorated permutation
2751346 corresponds to the decoration .
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(picture from [PP18])

Figure 7.4: The insertion algorithm on the decorated permutation 2751346.

The algorithm is as follows. For all 1 ≤ i ≤ n, we place the symbol δi at
position (σi, i). The values 1, . . . , n on the y-axis are called the levels of the nodes.
We trace a red line below any down symbol and above any up symbol. The label
of the node is the value σi in the permutation and is written below (or above) the
red line. These lines correspond to certain “walls” that cannot be crossed by the
edges of the permutree. They enforce the labeling rules attached to the nodes.
We start an edge at every interstice between the red lines at the bottom of the
picture including the borders. We then “grow” the tree by attaching edges to the
first available entry point they see without crossing a red line.

The result is a leveled permutree. Decorated permutations are in bijection
with leveled permutrees. The permutree itself is the graph in black oriented
from bottom to top. By “forgetting” the levels, we obtain a surjection between
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decorated permutations and permutrees. The fiber of a permutree is the set of
the linear extensions of the graph. These fibers correspond to the permutree
congruence defined in Section 7.1. Indeed, if δ = n, then there is no red line and
the permutree is a linear graph labeled by the permutation (see the first example of
Figure 7.5). If δ = n, the algorithm is the binary search tree insertion described
in Section 2.2 (see the second example of Figure 7.5). If δ ∈ { , }n, this is the
Cambrian tree insertion that can be found in [CP17]. If δ = n, each node is
directly attached to the previous one and is either above or below: this gives a
binary sequence as described in Section 2.8.
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Figure 7.5: Leveled permutrees corresponding to a permutation (left), a leveled
binary tree (middle left), a leveled Cambrian tree (middle right), and a leveled
binary sequence (right).

The description of the permutree congruence classes as the linear extensions of
permutrees gives the characterization of the minimal (and also maximal) elements
which we explained in Section 7.1. Actually, it describes the possible local moves
on any decorated permutation within a congruence class. Indeed, the permutree
congruence is the transitive closure of two local rules

. . . ac . . . b . . . ≡ . . . ca . . . b . . . , (7.1)

. . . b . . . ac . . . ≡ . . . b . . . ca . . . , (7.2)

where a < b < c and the written decoration on b are the necessary requirements
(there an be extra decorations on a, b and c). See the example given on Figure 7.6.
We have that 7251346 ≡ 2751346 as we are able to exchange 7 and 2 because they
have a witness on the right (either 4 or 6) with a down decoration. You can
check indeed that the two levels permutrees are different but that the underlying
permutrees are similar. Similarly, we have 2751346 ≡ 2715346 because 5 and 1
can be exchanged thanks to the witness 2 to the left with an up decoration.

Each decoration δ defines a lattice congruence [PP18, Proposition 2.13]. We
thus obtain δ-permutree lattices (see Figure 7.7). The rotation on permutrees is
natural generalization of the rotation on binary trees.
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7251346 ≡ 2751346 ≡ 2715346

Figure 7.6: The permutree congruence on decorated permutations.

7.3 Numerology

There is a very natural question: given a certain decoration δ, how many δ-
permutrees are there? This also corresponds to counting the equivalence classes. It
is known for some decorations giving specific subfamilies: the factorial numbers for
permutations, the Catalan numbers for binary and Cambrian trees, and the powers
of 2 for the binary sequences. In general, we call this the factorial-Catalan number
C(δ) and provide a recursive formula which interpolates between the factorial and
Catalan numbers.

Indeed, the Catalan numbers satisfy a well known recursion

Cn =
n−1∑
k=0

CkCn−1−k (7.3)

with C0 = 1. On the other hand, the factorial numbers satisfy

n! = n(n− 1)! =
n∑
i=1

(n− 1)!. (7.4)

The idea is then to mix those two summations depending on the actual symbols
of δ. The first essential property is given in [PP18, Corollary 2.21]: only the
positions of the and matter. In particular a symbol can be changed into
a without changing the value of C(δ).

Besides, the case of the symbol is actually trivial. If δi = , we have that
C(δ) = C(δ1 . . . δi−1 )C( δi+1 . . . δn). For example, for δ = , we indeed
get

C(δ) = C( )C( )C( ) = 23. (7.5)

Then for δ ∈ { , , }n, we get a recursive formula summing over all possi-
bilities to remove one symbol,
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(picture from [PP18])

Figure 7.7: The δ-permutree lattices, for the decorations δ = (left) and
δ = (right)

C(δ) =
∑
δi=

C(δ1 . . . δi−1δi+1 . . . δn) +
∑

δi∈{ , }

C(δ1 . . . δi−1)C(δi+1 . . . δn). (7.6)

When the removed symbol is , we simply sum on the decoration of size n− 1 as
in (7.4). When the removed symbol is or , the word is split into two parts
as in (7.3). Using these rules, we can compute the number of permutrees for the
examples of Figure 7.7.

C( ) = 2C( ) +C( )C( ) +C( ) (7.7)

= 2× 5 + 2 + 6 = 18 (7.8)

C( ) = C( )C( ) (7.9)

= 2× 5 = 10 (7.10)
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7.4 Permutreehedra

The weak order, the Tamari lattice, the Cambrian lattices, the boolean lattice: the
Hasse diagrams of these lattices all correspond to the skeletons of certain polytopes
which are all generalized permutahedra [Pos09]. A generalized permutahedron is a
polytope where every edge follows the direction of a permutahedron edge ei − ej.
When we drew our first permutree lattices, they “looked nice” in the sense that
it felt like it was the graph of a polytope. For example, in size n, any element is
adjacent to n−1 elements: this is a characteristic of vertices in a simple polytope.

Indeed, we realized that we could generalize Loday’s construction of the asso-
ciahedron (See Section 2.4) and obtain a geometrical realization of the permutree
lattices. More precisely, for every decoration δ, we define a polytope PT(δ) called
the permutreehedron as the convex hull of the vertices a(T) for T a δ-permutree.
Each coordinate of a(T) is computed as follows:

a(T)i =


1 + d if δi = ,

1 + d+ ℓr if δi = ,

1 + d− ℓr if δi = ,

1 + d+ ℓr − ℓr if δi = ,

where d is the number of descendants of i , ℓ and r are the number of left and right
descendants of i, and ℓ and r are the number of left and right ascendants of i. For
example, the coordinates of the permutree of Figure 7.4 are [7,−4, 3, 8, 1, 12, 1].

Theorem 11 (Theorem 3.4 of [PP18]). For each decoration δ, The permutreehe-
dron PT(δ) is the polytope corresponding to the δ-permutree congruence.

The word “corresponding” here refers to the polyhedral fan of the polytope.
In [Rea05], Reading gives the explicit fan corresponding to any lattice quotient of
the weak order of a Coxeter group. In particular, this describes the δ-permutree
fan of which the permutahedron fan is a refinement. Our theorem states that the
permutreehedron indeed realizes the permutree fan. This includes in particular
that the Hasse diagram of the lattice is the skeleton of the polytope.

Beside, we can also construct the permutreehedron as a removahedron as in
Section 2.5. Recall that the faces of the permutahedron can be represented by
ordered partitions (see Section 1.6). The facets correspond to partitions of 1, . . . , n
into two sets I and J . For the permutreehedron, we only keep the facets that
correspond to an edge cut of a permutree. For each oriented edge between two
vertices of a permutree, the edge cut partitions 1, . . . , n into two sets I and J .
I contains all the vertices connected to the source of the edge and J all other
vertices. For example, on the tree of Figure 7.4, the different values for I are
{2, 3, 4, 5, 6, 7}, {1, 2}, {1, 2, 3}, {5}, {1, 2, 3, 4, 5}, and {7}. These are all the
facets containing the tree.

Figure 7.8 shows all permutreehedra for decorations of size 4. You can see the
correspondence with Figure 7.6. When we add an orientation to an edge of the
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Dynkin diagram, this corresponds combinatorially to coarse the lattice congruence,
i.e., to merge some congruence classes together. Geometrically, this corresponds
to removing some facets so that the polytopes can be seen inside one another.

In [PS19], Pilaud and Santos proved that all lattice congruence of the weak
order can be realized a generalized permutahedra. But their realization is not
the same as the one of permutreehedra. In particular, the quotientopes are not
removahedra. Actually, it was proven in [APR21] that the permutree congruences
are exactly the congruences that can be realized as removahedra.

7.5 Schröder permutrees

We define a concept of Schröder permutree which are the equivalent of Schröder
trees for the permutrees (see Section 2.5). They correspond to permutrees where
some nodes have been merged together. It gives a combinatorial description to the
faces of the permutreehedra. Most properties and operations on permutrees easily
generalize to Schröder permutrees. We have an insertion algorithm (from ordered
partitions), a congruence relation, and a counting formula. The congruence is a
lattice congruence from the facial weak order and thus we obtain a facial order on
Schröder permutrees as illustrated on Figure 7.9.

(picture from [PP18])

Figure 7.9: The Schröder permutree lattices for 3, 3, 3

7.6 Hopf algebras

We have seen in Section 1.5 the definition of the Malvenuto-Reutenauer Hopf al-
gebra (FQSym) and how it relates to the weak order. In particular, the sylvester
congruence not only define a lattice congruence but also the Loday-Ronco Hopf
algebra on binary trees as a subalgebra of FQSym (or, dually, a quotient Hopf
algebra). The same construction extends to permutrees. For this, we use a dec-
orated version of FQSym. Basically, the product is now defined on decorated
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permutations and the decoration moves along with the value it is attached to as
in the following example.

F231 ·F12 = F23145+F2341+F24315+F23451+F42315 (7.11)

+ F24351+F42351+F24531+F42531+F45231 .

Conversely, on the co-product (or the product in the dual Hopf algebra), the
decoration is attached to its position as in

G312 ·G12 = G31245+G41235+G41325+G51234+G42315 (7.12)

+G51324+G52314+G51423+G52413+G53412 .

We define a basis indexed by permutrees. The element indexed by a per-
mutree T is a sum over all decorated permutations σ whose insertion algorithm
results in T : these are the linear extensions of the tree or, equivalently, all the
elements of the permutree class. See the example below for the tree of Figure 7.4.

P = F2135476+F2135746+F2137546+ · · ·+ F7523146+F7523416+F7523461 .

Theorem 12 (Theorem 4.5 of [PP18]). The elements (PT ) where T is a permutree
form a Hopf subalgebra of the decorated version of FQSym.

On Figure 7.10, we show two operations on permutrees (grafting and cutting)
which give a direct combinatorial descriptions of the product and coproduct. Be-
sides, by duality, the dual Hopf algebra is a quotient of the decorated dual of
FQSym and we also obtain direct descriptions of the operations.
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(picture from [PP18])

Figure 7.10: Grafting two permutrees (left) and cutting a permutree (right).

A similar construction can be made on Schröder permutrees using a decorated
version of the Chapoton Hopf algebra on the faces of the permutahedra [Cha00].
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7.7 Reduced words and other groups

Cambrian lattices are defined for all finite Coxeter groups. In particular, the
minimal elements of each class are proved to be the c-sortable elements as we
explain in Section 2.6. The concept of permutree congruence can also easily be
extended to other finite Coxeter groups but the identification of minimal class
elements turns out to be more difficult than for the the Cambrian case.

Indeed, the c-sorting algorithm can be seen as a generalization of classical
stack sorting (which would correspond to the choice of s1 . . . sn−1 as a Coxeter
element in type A). From an algorithmic point of view, the c∞ word is a sorting
network. At each step, we try to apply a certain operation if possible. The list
of operations to “try” is decided in advance and does not depend of the success /
failure of the previous operations. The list of operations actually applied give us
a subword of c∞ which identifies if an element is minimal in its Cambrian class or
not. The most natural question would then be: is there such a sorting network
for all permutree congruences? We give a negative answer in [PPTJ23, Remark
5.9] which indicates that the characterization of the permutree classes in general
is a difficult problem.

Our approach in [PPTJ23] is to study the reduced words of minimal permuta-
tions in the permutree classes in type A. The basic case corresponds to orienting
exactly one edge of the Dynkin diagram, i.e., to contract the side of exactly one
hexagon. We can then construct the U(j) automaton of Figure 7.11 which corre-
sponds to orienting the edge (j − 1)← j.

start . . .

sj−1

sj

sj

sj

sj+1

sj+1

sj+1

sj+2

sj+2

sn−1

sn−2

sn−1

sn−1

sn−1

Figure 7.11: The automaton U(j) to.

Even though we have not explicitly drawn the looping transitions, this is a
complete automaton: at each state, any transposition si can be read. Only the
transitions that result in a change of state are written explicitly. The states of the
first and second line are accepting states whereas the states in the third line are
rejecting states.

Theorem 13 (Theorem 1.1 of [PPTJ23]). A permutation is minimal in its per-
mutree class if and only if it admits a reduced word accepted by the automaton.

For example, in size 4, for U2, corresponding to the orientation 1 ← 2 −− 3
of Figure 7.1 (left), the reduced word s2s1s3 is accepted which means that the
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permutation 3142 is minimal in its class. On the other hand, s1s2 (permutation
2314) and s2s1s2s3 (permutation 3241) are rejected by the automaton. You can
check that it is the case of all their reduced words and they are not minimal in
their classes.

We actually provide an algorithm so that, given a permutation, only one re-
duced word needs to be tested in the automaton. This offers a new characteriza-
tion of minimal permutree classes elements besides the pattern avoidance, just like
stack sortable permutations correspond to 231-avoiding permutations. By taking
products of automata, we generalize our algorithm to all permutree congruences
in type A.

7.8 Open questions

We believe that similar automata can be found for other types of finite Coxeter
groups. Daniel Tamayo worked on this subject during his thesis under the su-
pervision of Vincent Pilaud and myself. We were able to find a general rule for
type B. For type D, we could find some automata that worked in small sizes but
we do not have a general rule at this date. From our observations, the general case
automata (if they exist) in types different than A and B are much more elaborate.
In type A especially, many simplifications arise, giving very simple automata.

More generally, there are still many areas to explore for permutrees in other
Coxeter groups. For example, can we obtain the permutreehedron as Coxeter
removahedra and do the results of [APR21] can be extended? We would also like
to consider permutrees as subsets of root systems like in the work of Gay and
Pilaud [GP20].
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CHAPTER 8

THE S-WEAK ORDER AND S-PERMUTAHEDRA

I just knew there were stories I wanted to tell.
– Octavia E. Butler

As I was working on the m-Tamari lattices by the end of my thesis, I wondered
what was the equivalent of the weak order in the m-Tamari case. This is indeed
a very natural question considering the many links between the weak order and
the Tamari lattice in combinatorics, geometry and algebra. I studied the m-
permutations, i.e., the permutations with m copies of each letter. I was interested
in the lattice properties and at the same time, Novelli and Thibon were working
on m versions of the Hopf algebraic structures. In this context, the notion of
metasylvester congruence was introduced in [NT20]. This lead me to define the
metasylvester lattice in [Pon15].

Even though I am very interested in all the geometric aspects related to my
work, my own background and approach is very much on the combinatorial side.
In 2014, I could “see” that this new lattice of mine was “nice” and looked like a
permutahedron that had been cut into smaller pieces, but I had no idea how to
formalize that property. Around this time, I attended a talk by Cesar Ceballos
at Séminaire Lotharingien de Combinatoire where he presented the results he ob-
tained with Padrol and Sarmiento on the realization the ν-Tamari lattices [CPS16].
I went to talk to him right after to show him my own work and see if we could work
on a geometric realization together. This resulted in a fruitful collaboration which
is still going on with many fascinating results and open questions. We presented a
first version of our work at FPSAC 2019 [CP19]. In 2022, we released the first pa-
per [CP22] of a series of at least two. It covers the combinatorial aspects of [CP19]
and is a generalization of [Pon15]. We are working at the moment on the second
paper [CP23] where we cover the combinatorial definition of the s-permutahedra
complex. In this Chapter, I present an overview of all these results as well as the
many different leads for future work. Computations and examples are available
here [PonSage22b].
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8.1 The metasylvester lattice

As the m-Tamari lattice is an upper ideal of the Tamari lattice of size n ×m, it
is a sublattice and a quotient lattice of a certain upper ideal in the weak order.
It is actually more natural to look at the reversed m-Tamari which is a sublattice
of the weak order on permutations where every letter is repeated m times as in
Figure 8.1.

1122

1212

2112 1221

2121

2211

2

1

2

1

2

1

Figure 8.1: The lattice of 2-permutations (left) with metasylvester classes and the
corresponding s-weak order.

The metasylvester congruence [NT20] is a monoid congruence defined as the
transitive closure of the following rules

. . . ac . . . a ≡ . . . ca . . . a (8.1)

. . . b . . . ac . . . b . . . ≡ . . . b . . . ca . . . b . . . (8.2)

where a < b < c. As an example, the classes on Figure 8.1 are the red shapes. As
both local moves require to have a letter repeated, when m = 1, on the classical
weak order, each permutation is its own class. Besides, a sylvester class as defined
by (2.2) in Section 2.2 is a union of metasylvester classes.

The metasylvester congruence is not a lattice congruence. Indeed, it is not com-
patible with the meet operation. For example, take σ = 121332 and µ = 131223.
We have that σ ≡ 332112 and µ ≡ 311223. But σ ∧ µ = 112323 is not equiva-
lent to 332112 ∧ 311223 = 311223. Nevertheless, the join operation is compati-
ble and actually the maximal elements of the class have a nice characterization.
They are Stirling permutations, i.e., permutations avoiding the pattern 121. They
form a sublattice of the weak order and are in bijections with m-decreasing trees.
In [Pon15] I call this lattice the metasylvester lattice. This is actually a special
case of the s-weak order which I defined with Ceballos in [CP19] and [CP22].
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8.2 The s-weak order

Let s be a sequence of s non negative integers. We define the s-decreasing trees.
They are ordered rooted trees on n nodes labeled 1 to n such that the node i has
s(i) + 1 children and so that the labels are decreasing from the root to the leaves.
In particular, there are (1 + s(n))(1 + s(n) + s(n− 1)) · · · (1 + s(n) + · · · + s(2))
s-decreasing trees for a given sequence s. When s does not contain any zeros,
then s-decreasing trees are in bijection with s-permutations: permutations where
each letter i appears s(i) times and avoiding the pattern 121. The bijection is
illustrated on Figure 8.2.

4

3 4 4 2

3 1 3 2

1

313442
(picture from [CP22])

Figure 8.2: An s-decreasing tree and the corresponding s-permutation.

When s = (m,m . . . ,m), the s-permutations are the maximal elements of the
metasylvester classes and so we have a lattice structure. This generalizes easily for
all s without zeros: the s-permutations form a sublattice of the weak order. This
is not the case when s contains zero but we can still extend the definition. We
generalize the notion of tree inversion which was already introduced in [Pon15].
Basically, the tree-inversions are a multiset where each inversion (b, a) appears
with a certain cardinality #(b, a). The cardinality of (b, a) expresses where is
a regarding b in the tree. If it is to the left or in the first subtree of b, then
#(b, a) = 0. If it is to the right of b or in the last subtree, we have #(b, a) = s(b).
The intermediate values correspond to the case where a belongs to a middle child
of b. We show an example on Figure 8.3.

In particular, when s = (1, 1, . . . , 1), then s-decreasing trees are decreasing
binary trees, in bijection with permutations. In this case, the tree-inversions are
the classical value inversions of permutations: each cardinality #(b, a) can either
be 0 (no inversion, a is before b) or 1 (b is before a). Another interesting case
is when s contains some zeros: if s(b) = 0, then the node b has one child and
#(b, a) = 0 for all a < b, independently of the position of a.

The tree-inversions form a multiset and we can generalize the notion of inclu-
sion of classical sets. For two multisets T and S, we have T ⊆ S if, for all a < b,
#T (b, a) ≤ #S(b, a). This gives a partial order on s-decreasing trees which we call
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s = (0, 0, 2, 1, 3)

5

4 3

2

1

T 5
0 =

4

(strict) left child

T 5
1 = ∅

middle children

T 5
2 =

3

2

1

T 5
3 = ∅ (strict) right child

#(5, 4) = 0 #(5, 3) = 2 #(5, 2) = 2 #(5, 1) = 2
#(4, 3) = 1 #(4, 2) = 1 #(4, 1) = 1

#(3, 2) = 2 #(3, 1) = 2
#(2, 1) = 0

(picture from [CP22])

Figure 8.3: An s-decreasing tree and its tree-inversions.

the s-weak order as it is a direct generalization of the classical weak order. See
some examples on Figure 8.4.

Theorem 14 (Theorem 1.21 of [CP22]). The s-weak order is a lattice.

Our proof is based on a generalization of the notion of a transitive relation to
a multiset of inversions: it is transitive if for all c > b > a, #(b, a) > 0 implies
that #(c, a) ≥ #(c, b). In the classical case where cardinalities are either 0 or 1,
this indeed says that if (b, a) and (c, b) are inversions, we have #(c, a) = 1: (c, a)
is also an inversion. A multiset of inversions is an s-tree inversion set if it is
transitive and co-transitive (the non-inversions are also transitive). We actually
call this second property the planarity of the set, it translates to: for all c > b > a
such that #(c, a) = i, either #(b, a) = s(b) or #(c, b) ≥ i. It is easy to see that
the tree-inversions of an s-decreasing tree satisfy these properties as illustrated
on Figure 8.5. We prove that they are sufficient properties and give an explicit
construction to recover the tree from the tree-inversions.

To prove that the s-weak order is a lattice, we then generalize the notions
of union and transitive closure to multisets of inversions. The join of two s-
decreasing trees is obtained by taking the transitive closure of the union of their
tree-inversions. We also characterize the tree-ascents, i.e., the cover relations of
the poset. Basically, a cover relation corresponds to moving a node i to the right.
There are some technicalities in when and how we can do this move: nodes move
by taking along their middle children but leave behind their left child. The nodes
are not allowed to move if they have a strict right child. For example, on the tree
of Figure 8.3, 1 and 2 are allowed to move to the right of 5 but not 3 because 2 is
a strict right child of 3 (while 1 is not a strict right child of 2 because s(2) = 0).

Furthermore, we prove that the s-weak order is polygonal, semidistributive and
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(picture from [CP22])

Figure 8.4: Examples of s-weak lattices.
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a a
transitivity

b

c

b

planarity

c

b a

(picture from [CP22])

Figure 8.5: Illustration of the transitivity and planarity conditions on s-tree in-
version sets.

congruence uniform. These are all interesting lattice properties that are defined
in particular in [Rea16]. It implies some properties on the the lattice congruences
of the s-weak order. Our proof is based on the notion of HH lattices found
in [CLM04]. It also uses some useful properties of the intervals of the s-weak order
found in [Lac22] who studies some topological properties of the lattice based on
our initial extended abstract [CP19].

8.3 Link with the ν-Tamari lattice

In [Pon15], I claimed that the m-Tamari lattice was both a sublattice and a
quotient lattice of the metasylvester lattice. In [CP22], we generalize and prove
this result on the s-weak order. We define the s-Tamari trees: there are the trees
such that #(c, a) ≤ #(c, b) for all a < b < c. This means that a node a cannot
move faster to the right than a node b of greater value.

Theorem 15 (Theorem 2.2 of [CP22]). The set of s-Tamari trees form a sublattice
of the s-weak order.

This is illustrated on Figure 8.6. We give explicit descriptions of the cover
relations and prove that this is isomorphic to a certain ν-Tamari lattice as defined
in Section 2.9 where ν is simply the reversed sequence s.

Besides, when s does not contain any zeros, then the s-Tamari lattice is a
quotient lattice of the s-weak order and we give direct characterization of the
congruence classes. In particular, the minimal elements of the classes are the
s-decreasing trees.
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(picture from [CP22])

Figure 8.6: s-decreasing trees and s-Tamari trees for s = (0, 2, 3). On the left
picture, the non s-Tamari trees are in black.

8.4 Pure intervals and s-permutahedra

Looking at the examples of Figure 8.4, a geometrical structure seems to appear.
Indeed, the lattices can be drawn in a way that “cuts” the plane into smaller
polygonal areas. These polygons are glued together in a “nice” way and form a
bigger polygon. All examples of Figure 8.4 are for n = 3. For bigger n, we notice
the same phenomenons of cutting a polytope of dimension n − 1 into smaller
polytopal cells. This is what we call a polytopal complex. The road from seeing to
proving turned out to be a much longer path than we initially thought and at this
date, we still have no final proof that the s-weak order defines a polytopal complex.
Nevertheless, in [CP19] and [CP23] we define what we call a combinatorial complex:
the s-permutahedron as shown on Figure 8.7.

In [CP22], we proved that the s-weak order is a polygonal lattice. This means
that if a tree T is covered by two trees S and S ′, then the interval between T and
S ∨S ′ is a polygon: it is formed by two chains that meet only in their extremities.
The polygons that appear have been characterized by Lacina [Lac22]: there are
either squares, hexagons or pentagons. We believe that that this generalizes to
other dimensions: if a tree T is covered by k trees S1, . . . , Sk, then the interval
between T and ∨ki=1Si is the skeleton of a k dimensional polytope which is a
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Figure 8.7: The s-permutahedron complex for s = (0, 2, 2).
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Figure 8.8: Example of a pure interval. On the left, the minimal tree with colored
tree-ascents and on the right the corresponding interval.

generalized permutahedra.

This is what we call a pure interval of the s-weak order. More precisely, a pure
interval is defined by an s-decreasing tree T with a set of selected tree-ascents.
Each tree-ascent gives a covering element S and the pure interval is the interval
between T and the join of the covering elements S. We show an example on
Figure 8.8. Our paper [CP23] studies the combinatorial properties of the pure
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intervals. The s-permutahedra is the set of pure intervals on which we can define
notions of containment, intersection and dimension.

The “dimension” of a pure interval is the number of selected tree-ascents. At
this stage, this is a formal notion which should later correspond to the actual
dimension of the polytope.

Not all intervals are pure intervals (just like not all intervals of the weak order
are faces of the permutahedron). The first question we ask is then: if T ≼ S, how
can we tell if this corresponds to a pure interval? We prove that there is a simple
characterization using the variations of the interval, i.e., the inversions (b, a) such
that #T (b, a) < #S(b, a). We define a notion of essential variation and show
in particular that the selected tree-ascents of the pure interval are the minimal
essential variations of the interval. This characterization leads to our main result
in this paper.

Theorem 16 (from [CP23]). The intersection of two pure intervals is a pure
interval.

Besides, the dimension of the intersection is always smaller than or equal to the
dimensions of the initial pure intervals. We reach equality only if one pure interval
is already included in the other. You can check this property on Figure 8.7: the
2-dimensional faces can intersect only in an edge (pure interval of dimension 1)
or in a tree (pure interval of dimension 0). To prove that the s-permutahedra is
indeed a polytopal complex, we need to prove further that each pure interval can
be realized as a polytope. We have serious leads for this result which I explain in
Section 8.5. We hope to develop them in a sequel paper.

We can extend the definitions of pure intervals to the s-Tamari lattice and thus
define the s-associahedron (see Figure 8.9). In this case, we can actually prove
that it is a polytopal complex through a direct bijection with the ν-associahedron
of Ceballos, Padrol and Sarmiento [CPS16].
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Figure 8.9: The s-associahedron complex for s = (0, 2, 2).
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s = (0, 0, 2) s = (0, 1, 2) s = (0, 2, 2) s = (0, 4, 3)

s = (0, 2, 2)

s = (0, 2, 2, 2)

s = (0, 3, 3, 3)
(pictures from [CP19])

Figure 8.10: Some realizations for s-permutahedra and s-associahedra.

We express a conjecture at the end of [CP19] which should also appear in [CP23].

Conjecture 17 (from [CP19] and [CP23]). A geometric realization of the s-
permutahedron as a polytopal subdivision of permutahedron exists in all dimen-
sions.

By removing some facets, one should obtain a realization of the s-associahedron.
We have such a realization for dimensions 2 and 3 as we show on Figure 8.10. More
can be found on this webpage1.

8.5 Perspectives

Our work on the s-weak order and s-permutahedra is still in progress. We are
finishing our second paper at the moment and hope to have at least 2 more.
Besides, our initial extended abstract [CP19] has raised the interest of the scientific
community. For example, Lacina [Lac22] explored some topological properties of
the lattice. At the moment, the group of [GDMP+23] is working on a positive

1https://www.lri.fr/˜pons/static/spermutahedron/

https://www.lri.fr/~pons/static/spermutahedron/
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solution of our conjecture. I present here the current state of our (and other’s)
research and the perspectives we would like to explore.

8.5.1 Ascentopes

We do not prove yet in [CP23] that the s-permutahedra is a polytopal complex.
Nevertheless, we actually have a polytopal construction for each pure interval
which we call the ascentope. An ascentope is a certain removahedron defined
using an s-decreasing tree T and a set of selected tree-ascents. Experimentally, our
construction gives a geometrical realization of the pure intervals. See Figure 8.11
for an example in 3 dimensions. We can compute the skeleton of the polytope and
check that it corresponds to the Hasse diagram of the interval. We also computed
f -vectors for big examples such as the one of Figure 8.12. The f vector gives the
number of faces in each dimension. As we understand the faces combinatorially,
we can check that the geometric results are consistent with our combinatorial
construction: it is the case on all the examples we have computed.
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Figure 8.11: A pure interval and its corresponding ascentope

The next step is obviously to prove that this construction is indeed a realization
of the pure intervals and to study the properties of this family of polytopes. Note
that the ascentope realization does not solve the more general conjecture which
requires to construct the polytopal complex as a polytopal subdivision. Indeed,
there is no indication that the ascentopes can be “glued” together. Nevertheless,
it would prove that the s-permutahedra is indeed a polytopal complex for all s.

8.5.2 Solving the conjecture

Since 2019 and [CP19], I have been mentioning the conjecture of the polytopal
subdivision realization a few times. In particular, I had started discussing this
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10

7 9 5

6 3 8 4

2 1

f vector = (1, 2178, 9801, 19008, 20790, 14082, 6099, 1680, 282, 26, 1)

Figure 8.12: A pure interval of dimension 9 with the f vector of its ascentope.

with Éva Philippe who is a PhD student in Paris (under the supervision of Arnau
Padrol). Around the same time, Rafael González D’León launched a research
project to strengthen the links between France and South American research in
combinatorics. As I was traveling to Colombia for the ECCO conference in 2022,
I planed a few extra days of research over there. I also presented the conjecture
during an “open problem” session at the conference.

Following this, Rafael González suggested that we look at the problem through
the lens of flow polytopes. These are certain polytopes defined by flows on a graph
which can be used to obtain triangulations and polytopal subdivisions [MM19].
This looked very promising and I invited Éva Philippe and my PhD student Daniel
Tamayo to join the research discussions. Together with an extended group of re-
searchers, they came up with a certain flow polytope which gave a dual realization
of the s-permutahedra. Even though the proof is not finalized yet, they were able
to show me explicit bijections and coordinates to construct the polytopal sub-
division. Their paper is in writing [GDMP+23] and would partially solve the
conjecture.

The construction of [GDMP+23] only works for an s which do not contain zeros.
The next natural step would then be to see if the result can be extended to the zero
case. Besides, we also conjectured that the realization should give a realization
of the s-associahedron. Is it the case? Can it be proved using flows? What is
the link with the current realization of Ceballos, Padrol and Sarmiento [CPS16]?
In both cases, Tropical geometry seem to be necessary to compute the vertices
coordinates. Is there a realization which does not rely on this?

Besides, what are the polytopes we obtain for each pure interval? Are they
removahedron or even generalized permutahedron? Are they related to the ascen-
topes that we have been defining with Cesar Ceballos?

Finally, the dual of the s-permutahedron seems to have interesting properties.
It looks like a certain Shi-arrangement where some walls have been removed. We
would like to study this construction to better understand its properties.
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8.5.3 Lattice quotients and geometric realizations

We have proved that the s-Tamari lattice is a lattice quotient of the s-weak order
when s does not contain any zeros. What are the other lattice quotients? In
particular, Tamayo, Philippe and Pilaud have been working on some s-Permutrees
with interesting combinatorial and geometrical properties. When s contains some
zeros, the Tamari case defines another lattice which is not isomorphic to ν-Tamari:
what is it? What are the elements counted by? Does it have an interpretation in
terms of paths?

8.5.4 Other groups and other lattices

An natural question is also to look at other Coxeter groups. For this, the per-
spective of the generalized Shi-arrangement would be a good starting point. Do
we also find polytopal subdivision? This is the case in type B for the Ceballos,
Padrol and Sarmiento realization of the ν-Tamari lattices [CPS16]. More gen-
erally, our approach through pure intervals works in many other combinatorial
lattices with nice geometric realization. Is there a way we can extend our proof
and characterizations to these other cases?
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CHAPTER 9

EPISTEMOLOGY OF THE EXPERIMENTAL

APPROACH

To me programming is more than an important practical art. It is also a gigantic
undertaking in the foundations of knowledge.
– Grace Hopper

In 2010, I started a research internship at the end of my master degree that
would eventually lead to my PhD. My first assignment was to attend a workshop
on the open source mathematical software SageMath. At the time, I had no ex-
perience with SageMath nor even with the python language (on which SageMath

is based). Nevertheless, with a strong background in computer science, I had no
difficulties to learn the system. By the end of my internship, I had actually devel-
oped the first draft of what is now an external package on bases for multivariate
polynomials [PonSage16].

Already, at this early stage of my research career, it felt natural to me to ap-
proach mathematical knowledge and research through experimentation and code.
Indeed, it has since become an essential part of my research methodology. In other
words: I have written some code related to all my research and all my papers.
Computer exploration and experimentation is as essential to me as having a pen
and paper. Moreover, I believe that, to a certain degree, experimentation is part
of any mathematical research, whether a computer is used or not. On the other
hand, as it is used on early stages of the research, it can often be absent of the final
result. This creates a difficult problem for historians and philosophers who try
to understand how mathematical knowledge is created. For us mathematicians,
and especially mathematicians who use computers, this creates another challenge:
how do we value this work? In particular, how do we value the necessary technical
work to create the tools that are needed?

A first step, in my opinion, is to make this work visible and to explain the exper-
imental process in mathematics. Indeed, it has appeared to me that many people
do not associate experimentation with mathematics and do not really understand
what we mean by that. And probably, different mathematicians have different
practices and mean different things. This has led me to have an introspective
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approach of my own methods and to discuss it with historians and philosophers.
In this context I was invited by Emmylou Haffner to give a talk at a seminar of
mathematical history and philosophy in SPHERE [PonMisc22]. Emmylou Haffner
studies ancient mathematican’s drafts to understand the creative process [Haf22]
like in this post where she looks at Elie Cartan’s drafts [Haf17]. The seminar was
coordinated by Arilès Remaki whose thesis focuses on Leibnitz [Rem21] and espe-
cially on the combinatorial explorations that led to his work. Looking at Leibnitz’s
drafts with combinatorial pictures and computational tables makes an interesting
connection with our own exploratory methods now enhanced by computer.

In this chapter, I use the research example that I presented in [PonMisc22]
to explain my research approach and unfold the early stages of research creation
through experimentation using both the computer and “pen and paper”. Then I
give an overview of the research code that I have written for the past ten years
and of the good practices that I have put in place to share, reuse and valorize this
work.

9.1 The experimental process

When I gave this talk at the SPHERE seminar, I was in the middle of a research
project that led to what I presented in Chapter 5. In particular, I was looking at
a certain lattice structure on triangular Dyck paths which would give a combina-
torial interpretation to some Schur expansions computed by François Bergeron. I
decided to present this problem as a typical example of research investigation.

9.1.1 To understand objects

Looking at my drafts, it became apparent that my first task had been to “under-
stand” the paper [BM22] that Bergeron presented to me when I arrived in Canada.
On Figure 9.1, I show some initial drafts kept in my written notes. We see that
I am recomputing some of the examples of [BM22] to familiarize myself with the
material. I also started to code at this stage. I implemented several classes to
represent triangular partitions and triangular Dyck paths along with methods to
compute the properties described in the paper. For example, below is a piece of
code which is part of the triangular partition class to test if another partition is
similar in the sense of [BM22]

de f i s s i m c e l l ( s e l f , i , j , tau ) :
r e turn s e l f . c e l l m i n s l o p e ( i , j ) < tau . mean slope ( ) \
and tau . mean slope ( ) <= s e l f . c e l l max s l op e ( i , j )

de f s im c e l l s ( s e l f , tau ) :
f o r i , j in s e l f . c e l l s ( ) :

i f s e l f . i s s i m c e l l ( i , j , tau ) :
y i e l d ( i , j )
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Figure 9.1: Pictures of early drafts of triangular partitions and Dyck paths
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de f i s s i m i l a r ( s e l f , tau ) :
r e turn a l l ( s e l f . i s s i m c e l l ( i , j , tau ) \
f o r i , j in s e l f . c e l l s ( ) )

The constant back and forth between my manual computations and examples
and the automated ones is what ensures me that I am progressing on solid grounds.
The manual computation and often manual enumeration of objects gives me the
time to understand the processes to the point where I can code and automate
the task. Doing so assures me that I have not overlooked a crucial detail or
misunderstood a definition. Besides, sometimes the error is not mine. In the early
paper draft printed to me by Bergeron, a typo had replaced a “≤” sign by a “<”
sign: I was able to spot it when I tested the definition.

9.1.2 To eliminate false statements and generate counter
example

Once I had read the paper, I wanted to study lattice structures on triangular
Dyck paths to see if I could find a q, t enumeration of intervals that would be
symmetric and Schur positive (as in the classical and m-Tamari cases). As there
was a general definition of Tamari in [PV17], my first attempt was to look at it
and see if it “worked”. I manually computed the first non-trivial example (see
Figure 9.2) and noticed that, in this case, I had a q, t symmetry.

Here, the manual computation helps me understand how the ν-Tamari lattice
translates into triangular partitions and gives me some initial insights on how the
q, t symmetry could work. Of course, the immediate next step is to implement
this. Below are the methods I used to generate the ν-Tamari lattice of triangular
Dyck paths.

de f pa th tamar i r o ta t e ( s e l f , l i n e ) :
L = s e l f . s k ew pa r t i t i on ( ) . row lengths ( )
p = l i s t ( s e l f . path ( ) )
v = L [ l i n e ]
p [ l i n e ]−=1
i = l i n e −1
whi le i >= 0 and L [ i ] > v :

p [ i ]−=1
i−=1

return TriangularDyckPath ( s e l f . p a r t i t i o n ( ) , p )

de f path tamari up ( s e l f ) :
f o r l , c in s e l f . path ( ) . c o rne r s ( ) :

y i e l d s e l f . pa th tamar i r o ta t e ( l )
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Figure 9.2: A manual computation of q, t symmetry on intervals of ν-Tamari

Once I had this, it quickly appeared that the ν-Tamari lattice did not give the
desired q, t interval enumeration. It is actually very common that the computer
exploration is here to save us time by rejecting false hypothesis early on. Not only
does it tell us that some ideas are just wrong but it also exhibits interesting counter
examples. In this case, the partition (3, 2, 2, 1) was the first truly interesting
example where ν-Tamari would fail to provide a symmetric q, t enumeration of
intervals. I could then concentrate my efforts on this particular partition.

The partition (3, 2, 2, 1) has 23 subpartitions and we expect to find 161 intervals
in the “good” lattice: 161 is the result of a certain expansion of a Schur functions in
3 variables q, t, r and computing the polynomial for q = t = r = 1. This is exactly a
case which is “in between” manual and automatic exploration. Indeed, 23 elements
is rather small and manageable by hand while 161 starts to be a bit too big. My
research at this point illustrates that. I was literally looking for the right lattice
by manually guessing what the correct cover relations might be using my intuition
and some indication from the Schur computation (see Figure 9.3). I would then
hard code the lattice inside my program and compute the q, t enumeration of
intervals.

Doing so, I was actually able to find a working structure for (3, 2, 2, 1) but
could not deduce a general rule. But the multiple attempts has left me with a
better knowledge of what works and what does not.
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Figure 9.3: Manual attempt to obtain the desired lattice structure on partition
(3, 2, 2, 1).

9.1.3 To find ideas and emit conjectures

Even though we are often wrong, we are thankfully sometimes right. There again,
conjectures arise from a combination of manual and computer testing. By man-
ually enumerating triangular Dyck paths along with their similar cells as in Fig-
ure 9.4, I came up with the idea of the deficit that I explain in Section 5.2.2. Only
by computer exploration was I able to “check” that it was true with the following
code.

de f t e s t d e f i c i t c e l l s ( tdp ) :
r e turn a l l ( tdp . i s s i m c e l l ( i , j ) != tdp . i s d e f i c i t c e l l ( i , j ) \
f o r i , j in tdp . path ( ) . c e l l s ( ) )

de f t e s t d e f i c i t c e l l s p a r t i t i o n (p ) :
f o r tdp in p . t r i angu l a r dyck pa th s ( ) :

i f not t e s t d e f i c i t c e l l s ( tdp ) :
r e turn tdp

return True

# te s t ed 3 . . 1 2
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de f t e s t a l l p a r t i t i o n s d e f i c i t c e l l s (n ) :
f o r p in Tr i angu l a rPa r t i t i on s (n ) :

p r i n t (p)
r = t e s t d e f i c i t c e l l s p a r t i t i o n (p)
i f r != True :

r e turn r
re turn True

Figure 9.4: Manual enumeration of triangular Dyck paths to define the tableau
deficit.

This was proved to be true by Löıc Le Mogne in our paper [LMP23] (this is an
extended abstract, the complete proof will actually appear in our future complete
paper).

Similarly, the final conjecture of [LMP23] which I explain in Section 5.3 has
also been made possible by computer exploration. For example, the following
function tests that the ν-Tamari enumeration of intervals is Schur positive for all
triangular partitions whose top-down tableau is sim-sym.

# t e s t ed 3 . . 2 1
de f tes t schur pos i t ive PRVsimsym (n , q , t ) :

f o r t r in Tr i angu l a rPa r t i t i on s (n ) :
d = PRV q t d i s t r ibut ion ( t r )
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i f t e s t s ymmet ry d i s t r i bu t i on (d ) :
p r i n t ( t r )
P = t r . p a t h t ama r i l a t t i c e ( )
d2 = PRV poset d i s t r ibut ion ( tr ,P)
pol = sum(d2 [ k ]∗ q∗∗k [ 0 ] ∗ t ∗∗k [ 1 ] f o r k in d2 )
S = schur . f rom polynomial ( po l )
i f not a l l ( c>0 f o r p , c in S i f l en (P) <= 2 ) :

r e turn t r
re turn True

The upper line is a comment which indicates which sizes have been tested.
My research code is often full of testing functions with comments to keep track of
positive / negative results. I also wrote the following function which tested that
the Schur expansion I had corresponded to the actual Schur functions that had
been sent to me by Bergeron.

de f test PRV polynomials ( pols , q , t ) :
wrong = [ ]
f o r key in po l s :

t r = Tr i angu l a rPa r t i t i on ( key )
d = PRV q t d i s t r ibut ion ( t r )
i f t e s t s ymmet ry d i s t r i bu t i on (d ) :

p r i n t ( t r )
P = t r . p a t h t ama r i l a t t i c e ( )
d2 = PRV poset d i s t r ibut ion ( tr ,P)
pol1 = sum(d2 [ k ]∗ q∗∗k [ 0 ] ∗ t ∗∗k [ 1 ] f o r k in d2 )
pol2 = po l s [ key ] . expand ( 3 ) ( q , t , 1 )
i f not pol1 == pol2 :

wrong . append ( t r )
re turn wrong

The interesting anecdote is that this function did not give a positive answer.
Indeed, two of the Schur functions did not correspond. But it actually appeared
that those Schur functions are very difficult to compute on the algebraic side.
The functions I had received from Bergeron were actually missing some terms
that he could not get at the time using his computational methods. I was able
to guess the missing terms using my conjecture. This not only strengthened my
belief that the conjecture was true but also gave indications that the combinatorial
computation (as inefficient as it is) would actually turn out to be more efficient
than the algebraic computation which requires extensive computational power to
reduce very big matrices.

9.1.4 To solve and to prove

As we saw, computer exploration helps us sort out positive and negative results
before we even try to prove anything. This is of course useful at the investigation
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stage but not only. Indeed, once we have a result that seems to be right and we
are trying to prove it, we need to polish our statement as much as possible. Can
we reduce the hypothesis? This other statement seems to just be a rephrasing,
is this the case? I believe my statement A implies B, does the computer confirm
that B is true? Finding the route to the final proof, we might extract lemmas or
other statements and the computer tests will be of great assistance. I consider
that I have a certain pool of objects on which I can experiment to observe the
results and guide me through my understanding1.

9.2 What to do with the code?

My current file for research code on triangular partitions has more than 2500
lines, not including the code written by my student Löıc Le Mogne. The code
related to [CP22] and [CP23] is about 4500 lines. This contains implementations
of the objects at stake and many test functions, failed attempts, leads, and so on.
Very much like a draft paper, it is often badly written, with few comments and
explanations. What is the value of this code? Does it have any and how can we
use it?

9.2.1 Contributions to open-source

Computer exploration and experimental mathematics has developed with the gen-
eral access to computer systems. As many mathematicians started to code, at-
tempts to share the produced code has arisen. I have been using the SageMath

computer system since the beginning of my thesis. I believe in the open-source phi-
losophy that the code we produce should be made accessible to all. Some objects
are wildly used in combinatorics: permutations, Dyck paths, binary trees, and so
on. They can be used in SageMath as the result of previous developments by other
researchers. SageMath actually contains the basic grounds for most mathematical
topics as can be read in [ZFM+13].

I have myself contributed to SageMath whenever I felt that the code I had de-
veloped could be useful to others. My larger contribution is the implementation of
Tamari interval-posets [PonSage14] following my paper [CP15]. Providing a direct
implementation into SageMath was very useful in a research perspective: it helped
Tamari interval-posets to become a major objects in the study of Tamari intervals
as it could be used directly for computations. The initial class has been enriched
by others, especially Frédéric Chapoton who works on this subject. Following
my second paper [Pon19], we added together the rise-contact involution which
I had implemented during my investigations [CPSage18]. Previously, I had also
contributed to several methods on binary trees [PonSage13]. These are just some
examples, I have authored about 15 contributions and participated in about 50.

1Note that I am not talking about formal proof assistants. This is another area altogether
which I have not had time to explore.
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9.2.2 Other good practices

The road from writing research code for oneself and contributing to an open-
source software (or develop a full independent software) is not easy. For one
thing, much of the code we write for research does not belong to a general soft-
ware like SageMath. A big portion of the code corresponds to failed attempts, or
constructions that would eventually emerge in a different form in the final prod-
uct. At this stage, it is not always easy to identify what part of our code should
belong the common shared knowledge of a software like SageMath. Besides, the
code we write for research almost never follows the coding standard of a final
SageMath contribution or of a software that could be distributed. There is often
a long road of cleaning and documenting and testing. This takes a very long time
that we, realistically, might not have. The result is that some useful, imperfect,
code might never get shared.

Even if the quality is low, I believe that research code is worth sharing, espe-
cially when it leads to a published paper. Indeed, if I used this code for my own
investigation, it could be useful for others. The objects used in the paper might
turn out to be reused in another paper. Somebody else might decide to turn them
into a proper software contribution. Or maybe, another researcher just needs to
compute extra examples for their own purpose. This is why I have taken the habit
to publish the research code along with the paper even if it is not a proper contri-
bution to an existing software or a finished product. I first started a single GitHub
repo where I would just post my research scripts organized by thematics along with
some examples and presentations written with Jupyter notebooks [PonSage18].

I provided an open license directly on the GitHub repo making it explicit that
the code can be reused and, for example, integrated into another open-source
software. To be fully efficient, one also needs to provide some environment infor-
mation about how to run the code . I thus chose to include a Docker file which
contains for example what SageMath version has been used to write the code.

It became apparent that having only one repo for everything was not practi-
cal: I would often upgrade SageMath but not fix all my previous codes and the
environment information would then be out of date. For my latest papers, I chose
to create one repo per paper: this is what I did for [PonSage22] as an annex
to [Pon22]. I also have a specific code repo for this document [PonSage23]. Fi-
nally, when I published the code related to [CP22], I decided to create a specific
archive of the code at the time of publication [PonSage22b] using Zenodo. Indeed,
as this code is still prone to be changed, it provides a link to a specific state of
the software.

As a summary, here is a list of codes related to my different papers:

• Code related to Tamari interval-posets ([CP15] and [Pon19]) is available
on my general repo [PonSage18] with multiple demo notebooks. Some of
it has been turned into SageMath contributions especially in [PonSage14]
and [CPSage18]).
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• Code related to [PP18, CPP19, PP20] with a demo notebook is available on
my general repo [CPSage18].

• Code related to [Pon22] with a demo notebook is available on a specific
repo [PonSage22].

• Code related to [CP22, CP23] with multiple demos is available on a specific
repo and as a Zenodo archive [PonSage22b].

Note that the code related to [LMP23] that I mention in Section 9.1 is not yet
published. Indeed, only an extended abstract has been published and the final
paper is still in the making. Besides, Löıc Le Mogne also wrote some code and I
would like to merge our contributions.

One reason for sharing this code is re-usability which is why I make the effort
of providing a running environment and often some demo notebooks that I edit
as I write the corresponding papers. Speaking with historians and philosophers of
mathematics, I also see another purpose. This “unclean” code is an equivalent of
an early draft. It contains mistakes, failed attempts, ideas that sometimes were
never fully developed. In other words, it contains some information about the
process itself. Wether we share those codes or not, they hold an epistemic value
and should at least be kept.
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CHAPTER 10

OUTREACH

Se vouloir libre, c’est aussi vouloir les autres libres.
– Simone de Beauvoir, Pour une morale de l’ambigüıté.

In the past 10 years, I have been a promoter of the software SageMath and more
generally of open-source development and free software. This has also led me to
think more of my role as a scientist and the science community we build. In 2018,
I gave the opening keynote at the programming event PyCon Fr. I developed
the idea that scientists and open source developers share a common ethic and
motivation: we want to create knowledge and share it, we want contribute and to
collaborate, we want our work to last to be re-used and improved.

Following this idea, it is important for me to take an active part in science
communication and outreach at different levels. Within the math community, I
work at promoting open-source software and programming knowledge in general.
Within the scientific community at large, I have made presentations to explain
the process of experimental mathematics. I also talk to general audiences and
especially to middle and high schools to explain and share what research in math-
ematics and computer science mean. In this chapter, I give a general overview of
this work.

10.1 Advocate for open science

Open science is the general idea that science productions should be made accessible
to all: papers, data, software, etc. In mathematics and computer science, it
concerns especially open-source software. Between 2015 and 2019, I have been part
of the OpenDreamKit project which was coordinated in my university Paris-Saclay
and included 18 institutions and about 50 participants. We received significant
funding that was used mostly for two things: hiring full paid developers to work
on open-source software and organizing events within the different communities
to foster collaboration and development.

I was the local coordinator for Paris-Saclay as well as the work package leader
for “Community Building, Training, Dissemination, Exploitation, and Outreach”.
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In the 4 years of the project, we were part of 110 events: either organized by
members of the project or where they participated in a significant way. I was my-
self part of 23 events. For example, I co-organized the event “Free Computational
Mathematics at CIRM” in 2019. The project also included 3 reviews in front of a
European commission in which I took an active part presenting the activities of
the project.

My implication as a promoter of open science goes beyond my role in the
project. I have organized several Sage Days workshop, even before the begining
of OpenDreamKit. In 2015, I organized a joint event at PyCon US to help build
relations between the SageMath community and the open-source community at
large. At this occasion, I gave a presentation at the main conference to explain the
concept of experimental mathematics [PonMisc15] to many non-mathematicians.

I also participate in the effort to build a better scientific ecosystem, especially
concerning scientific publications. I was an editor for the Journal of Open Source
Software between 2019 and 2022 to help better recognize the role of open-source
development in scientific progress. I have also accepted a role as backend editor
for the new journal Combinatorial Theory which is owned directly by its editorial
board and charge no fees neither for readers nor writers.

10.2 Talking about research to non researchers

I also invest myself in promoting and explaining research to non researchers, es-
pecially in schools. I took part several times to the MATh.en.JEANS project either
by giving research talks to the schools, or by proposing research projects to pupils
and meeting them throughout the year. Besides, I gave several general audience
presentations and was invited to create an educational video with a professional
team for the YouTube channel Le Myriogon [Myr21]. I presented a simple bi-
jection on permutations that I explained using playing cards as you can see on
Figure 10.1.

Figure 10.1: Des Cartes bien à leur place for Le Myriogon youtube channel

https://www.youtube.com/watch?v=RcXmhKF9ewo
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10.3 Building a more inclusive community

An open-source software is often free in the sense of “free of charge” (French
word: “gratuit”) and always free in the sense “free to be reused and shared”
(French word: “libre”). But this is not enough to make it equally accessible to
all. This is also true for mathematics and computer science in general. Technical
and societal barriers exist which affect certain demographics more than others.

Women especially suffer from negative stereotypes early on in relations to sci-
ence and mathematics. This affects their own confidence and ability to solve
problems [DCL02], the way they are perceived by others [MDB+12], and their
career choices [NAV21]. Danica Savonick and Cathy N. Davidson have collected
several studies on gender bias in academia and its combinations with other bias
such as racism [SD16]. As a result, women are largely underrepresented in mathe-
matics and computer science [BW18]. I have myself expressed the burden of being
the only woman in a blog post [PonMisc17b]. This has led me to take different
actions. I have participated in many events such as the exhibition organized by
Femmes et mathématiques [FetM22] to help make women in science more visible,
especially to young girls. But I am also interested in building a better environment
for current women scientists. For example, I run the PyLadies parisian chapter
between 2016 and 2020 where I organized weekly meetup with many women de-
velopers. I noticed that even at a very high level, women lack confidence in their
ability to code and would be reluctant to join coding events such as Sage Days

which often show a worst gender disparity than classical mathematics events. As
part of the OpenDreamKit project, I organized in 2017 and 2019 Women in Sage
events which were Sage Days workshops targeted at women. They were a great
success. You can see some pictures on Figure 10.2 and read the reports I published
online [PonMisc17c, PonMisc19].

Actual borders are physical barriers that stop people from doing research.
Indeed, most resources are concentrated in “western” countries. In many parts
of the world, students and researchers lack funding, basic infrastructure or even
access to advanced education. This is visible in open-source software: see the
big African gap on the SageMath developer map on Figure 10.3. In 2019, two
Nigerian women were supposed to join us at our Women in Sage event organized
in Archanes, Greece. Their trip was fully paid by the OpenDreamKit project
but they could not get their Visa in time. Nevertheless, the same year we had 3
Nigerian researchers coming to our other event “Free Computational Mathematics
at CIRM”. They enjoyed the event very much and we decided to co-organize Sage
Days in Nigeria the following summer. I did not attend myself as I was literally
having a baby the same week. The project funded the trip of some SageMath

instructors and relied on Ibadan university for local organization. It was a great
success (see [Bra19]) and also an indicator for the need of such events in West
Africa as well as a lesson for us SageMath developers on how we can improve our
software to allow an easier access.



130 CHAPTER 10. OUTREACH

Figure 10.2: Pictures taken at Women in Sage in 2017 and 2019

Figure 10.3: The SageMath developer map taken from https://www.sagemath.

org/ in June 2023

In 2021, I co-organized and participated remotely to a Women in Sage event in
Senegal organized by Eliza Lorenzo. She was a participant to the Women in Sage
event I held in Paris in 2017. I had advertised the event to my contacts in Nigeria
and some researchers from Ibadan were able to attend. This shows that these
events create a good dynamic that can help West African researchers to reinforce
their scientific network. Thanks to these events, I formed connections with two
researchers: Ini Adinya from Nigeria and Olivia Nabawanda from Uganda with
whom I try to build a scientific collaboration despite the systemic difficulties.

Thanks to OpenDreamKit, I was also able to attend the event ECCO (Colom-
bia) in 2016 and 2018 as a SageMath instructor. These were extremely reward-

https://www.sagemath.org/
https://www.sagemath.org/
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ing experiences (see [PonMisc16, PonMisc18]). The Colombian community in
combinatorics has made great work in building an inclusive space and bringing
Colombian and international students together. Following these events, I became
a co-organiser for ECCO 2022, especially in charge of the CIMPA application and
funding. I am now part of the ECCO Steering committee whose role is to organize
future events. Besides, ECCO 2018 is where I met Daniel Tamayo Jiménez who
is now finishing his PhD under my supervision and joined supervision of Vincent
Pilaud.

10.4 Political mathematics

There is a general belief that mathematics is politically neutral. Indeed, a theorem
expresses a certain truth under some hypothesis, can it be racist or sexist? I do
not believe this is the right question. Theorems are written by people in a certain
context. Us, mathematicians, are part of a society which is, by nature, political.
In [God01, God03], Roger Godement writes extensive preambles and notes to
its books on Mathematical analysis. He questions the scientific responsibility of
scientists in the creation of deadly weapons such as nuclear bombs. He also shows
how political contexts and decisions impact what kind of science is considered
good or interesting and thus developed.

In algebraic combinatorics, the long term applications of what we do, if they
exist, may seem too far in the future to raise our concern. But this should not
blind us in the illusion that what we do has no political implication. Defending
fundamental science and the pursuit of knowledge for its own sake is already a
political statement. Defending open-source software and open science is a political
statement. Besides, there is the question of how we do mathematics, who do we
teach it to, how do we teach it, etc. Federico Ardila develops this idea in [Ard20]
and asks important questions about power.

Without any advanced statistical examination, I can say that I teach com-
puter science mostly to young men and thus I am participating in a system which
deprives young women of a useful knowledge in our society (I have chosen the
gender disparity but, of course, many other inequalities are just as problematic).
The academic system we are part of has some positive values and qualities and
also some important setbacks. Of course, we cannot solve it all by ourselves. But
we can choose to place our scientific activity in the general context of society and
not see it as neutral. We can think about what we do and improve when we
can. This is the choice I am always trying to make. This is also why I chose to
include this last chapter. Not only does it relay some important activities I have
run for the last 10 years but I consider these activities to be part of my scientific
commitment just as much as my mathematical results.
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CLOSING REMARKS

Truth is a matter of the imagination.
– Ursula K. Le Guin, The Left Hand of Darkness.

I consider algebraic combinatorics to lie at the intersection of algorithmics
and mathematics. My goal is to understand the inner structure of objects to
exhibit the connection between topics that seem distant in nature. This is the
case with the Tamari lattice and the Tamari intervals especially which I present
in Chapters 3, 4, and 5. They appear in the context of planar maps as well as
in representation theory. If I sometimes answer questions as in [Pon19], most of
my papers actually create new structures, like permutrees [PP18], or the s-weak
order [CP22]. My hope is that those new objects deepen our understanding of the
permutahedron and associahedron and create new points of views to explore.

My motivation comes from difficult open questions. I have mentioned the q, t-
symmetry of Catalan numbers in Chapter 5. To finish this document, I present
two other open problems which have caught my attention recently. The Tamari
lattice and its generalization the ν-Tamari lattice can be understood in the more
general framework of pipe dreams and subword complexes [CLS14]. More precisely,
pipe dreams are certain objects associated to permutations (each permutation
gives a collection of pipe dreams). All pipe dreams of a given permutation are
related through flips and we can define a poset of increasing flips. For specific
permutations, this gives the Tamari and ν-Tamari lattices. In general, this is not
a lattice but, in [Rub12], Rubey conjectures that it is indeed a lattice when flips
are restricted to chute moves. Beside, interesting geometrical structures appear
which look like polyhedral complexes based on pure intervals like in our work on
s-permutahedra [CP23].

The second problem is related to the flip distance of triangulations. In [STT88],
Sleator, Tarjan, and Thurston prove a fundamental result on the associahedron.
The diameter, i.e., the maximal rotation distance between two binary trees, is
linear in the dimension n. The exact value was computed by Pournin in [Pou14].
But it leaves open the following: what is the complexity of computing the minimal
rotation distance between two given trees? This is the same as computing the
minimal flip distance between two triangulations of a convex polygon. When
the polygon is not convex, it is NP-complete [AMP15] but the proof cannot be
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extended to the convex case. Besides, remember that the associahedron is in
between the permutahedron and the cube. In the permutahedron, the diameter
is the maximal number of inversions, n(n−1)

2
. In the cube, it is n. The minimal

distance is also easy to compute in both those polytopes. Indeed, the distance
between two permutations σ and µ is the number of inversions of µσ−1, and can be
computed in O(n2). In the cube, the distance between two binary sequences is just
the number of bits which are different. So it is computed in O(n) where n is the
size of the sequence. It is interesting to notice these questions are easy in those
two polytopes but difficult for the associahedron. What about permutreehedra
and other generalized permutahedra? Can we use what we understand from the
relations of these polytopes with the permutahedron and the cube to study those
questions?

Solving such problems is a long term goal that fuels my current research. With
each attempt, come new ideas that will flourish in unexpected manners, adding
to the general understanding of the underlying structures. Besides, in addition to
working on these questions myself, I believe that my role is to foster the scientific
environment that makes progress possible. Encourage seminars, collaborations,
workshops, open discussions, and freedom of investigation. This is the role I
take especially as PhD advisor. With each of my students, I have tried to find
the right balance between providing problems and questions and giving them the
opportunity to express their own ideas and build their own research path. When
I ask an open question, I do not always expect a final answer. I expect attempts
and ideas. Then I am here to guide them through it, in a collaborative manner, to
see where it could lead us. Sometimes, it eventually answers the original question,
sometimes it opens new routes that we had not seen beforehand.

Someone told me an anecdote that they were once asked “In your field, what
do you think the next breakthrough is going to be?”. I do not believe this is an
interesting question. Breakthroughs do not happen because we chase after them
(and their very nature makes them impossible to predict). They happen because
we let our mind open to new ideas and keep inventing new truths.
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CIMPA stands for “Centre International de Mathématiques Pures et Appliquées”.
It is an originally French organization (now funded by France, Spain, Nor-
way, and Switzerland) whose goal is to promote mathematical research in
developing countries. 131

Docker is a system that provides easy to deploy virtual machines called containers
with specific environments. A Docker file is a simple configuration file that
describes the needed environment (sofware versions, installation commands,
etc.). 124

ECCO stands for “Encuentro Colombiano De Combinatoria”. It is a summer school
organized in Colombia every other year welcoming both Colombian and
international students to follow advanced lectures in combinatorics. 130,
131

GitHub is a private online platform used to host code and text-based projects
using the git version management system. 124

Jupyter is an open-source software used to create interactive web-based note-
books as computing environments in many languages . 124

MATh.en.JEANS is a French organization which organizes mathematical research
projects in schools involving researchers and pupils. The researchers propose
mathematical problems on which the pupils work throughout the year. Once
a year, pupils present their results in special events.. 128

OpenDreamKit stands for “Open Digital Research Environments Toolkit for the
Advancement of Mathematics”. It is a H2020 European project which
funded many different open-source software and associated communities in
mathematics. https://opendreamkit.org/. 127–130

PyCon is a the name given to general conferences about the Python programming
language. The main even is the yearly event PyCon US which often welcomes
a few thousand participants. PyCon Fr is also organized every year with a
few hundred participants. 127, 128
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PyLadies is an international mentorship program to support women who code in
python. 129

Sage Days are workshop dedicated to the software SageMath. They often include
introduction talks and also development time around specific topics.. 128,
129

SageMath is a free open source mathematical software created in 2005 and mostly
written in python. It includes a wide range of mathematics and is built on
top of many other open-source packages. Its stated mission is to “create
a viable free open source alternative to Magma, Maple, Mathematica and
Matlab”. It has been developed mostly by researchers, based on free contri-
butions evaluated through code-reviews. 2, 9, 13, 26, 27, 41, 51, 115, 123,
124, 127–130

Zenodo is a general-pupose open repository which allows researcher to deposit
research data. It provides a version number and a DOI. 124, 125
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United States, 2019. Séminaire Lotharingien de Combinatoire.

[Cox35] H. S. M. Coxeter. The Complete Enumeration of Finite Groups of
the Form Ri2=(RiRj)kij=1. Journal of the London Mathematical
Society, s1-10(1):21–25, 1935. doi:10.1112/jlms/s1-10.37.21.

[CP15] Grégory Châtel and Viviane Pons. Counting smaller elements in the
Tamari and m-Tamari lattices. Journal of Combinatorial Theory,
Series A, 134:58–97, 2015. doi:10.1016/j.jcta.2015.03.004.

[CP17] Grégory Chatel and Vincent Pilaud. Cambrian Hopf algebras. Ad-
vances in Mathematics, 311:598–633, April 2017. doi:10.1016/j.

aim.2017.02.027.

[CP19] C. Ceballos and V. Pons. The s-weak order and s-permutahedra.
In 31st International Conference on ”Formal Power Series and Al-
gebraic Combinatorics” (FPSAC 2019), volume 82B, page Art. 76,
Hanover, United States, 2019. Séminaire Lotharingien de Combina-
toire.

https://doi.org/10.1007/s00283-017-9761-7
https://doi.org/10.1006/aima.1999.1868
https://doi.org/10.7146/math.scand.a-18001
https://doi.org/10.1016/j.aam.2003.09.002
https://doi.org/10.1016/j.aam.2003.09.002
https://doi.org/10.1007/s10801-013-0437-x
https://doi.org/10.1007/s10801-013-0437-x
https://doi.org/10.1112/jlms/s1-10.37.21
https://doi.org/10.1016/j.jcta.2015.03.004
https://doi.org/10.1016/j.aim.2017.02.027
https://doi.org/10.1016/j.aim.2017.02.027


144 OTHER BIBLIOGRAPHIC REFERENCES

[CPS16] C. Ceballos, A. Padrol, and C. Sarmiento. Geometry of $\nu$-
Tamari lattices in types A and B. Transactions of the American
Mathematical Society, November 2016. doi:10.1090/tran/7405.

[CS03] Robert Cori and Gilles Schaeffer. Description trees and Tutte for-
mulas. Theoretical Computer Science, 292(1):165–183, January 2003.
doi:10.1016/S0304-3975(01)00221-3.

[DCL02] Myriam Désert, Jean-Claude Croizet, and Jacques-Philippe Leyens.
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