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ABSTRACT 

Nowadays, exciton polaritons that arise through the strong coupling between excitons 

and photons are major candidates to demonstrate a wide array of fundamental phenomena and 

potential applications that range from Bose-Einstein-like condenstation to analogue 

Hamiltonian simulators and chip-scale interferometers. In the present thesis, we investigate 

the effect of surrounding environment on the dynamic of laser cooled and trapped polariton 

and polaron in nanostructures. We consider the system of interest as a TLS with ground state 

g and first excited state e . We begin our analysis studying the dynamical behavior of a 

system of laser cooled and trapped polariton within semi-classical approach. Later, we 

introduce a magnetic field which we consider as a trap and perform the Vonn Neumann 

entropy. We found that the probability of finding cooled and trapped polariton in the excited 

state and energy of the system is controlled by the surrounding environment. Based on the 

matrix representation of the system’s Hamiltonian, we identified and formulated the Landau 

Zener problem in cooling and trapping of polariton.  Motivated by the fact that (i) polaron can 

be considered as TLS, (2i) polaron are fermions which satisfied the Fermi-Dirac statistics and 

(3i) polaritons became intermediate particles due to laser cooling and trapping process thereby 

satisfying Fermi-Dirac statistics althougth they are bosons, we extended our study to polaron. 

Due to their physical properties, we found interesting the use of two dimensional (2D) 

transition metal dichalcogenides (TMDs) materials of 
2MX  types as new playground for 

laser cooling and trapping of polariton as well as polaron. Using Landau-Zener-Stückelberg 

Interferometry theory (LZSIT) in one hand and both the quantum mechanical Schrödinger 

approach (QMSA) and the improved wigner-Brillouin theory (IWBT) on the other hand, we 

investigated Landau energy levels (LELs) and transition probabilities in both diabatic and 

adiabatic basis of the laser cooled and trapped polariton and polaron. We showed that the 

effect of surrounding environment on the dynamic of laser cooled and trapped polariton and 

polaron is considerably reduced in 2D TMDs materials of our choice as compared to that of 

nanostructures. In addition, laser cooling and trapping phenomenon is highly appreciated in 

2D TMDs material
2MoSe which stands therefore as appropriate candidate for quantum 

implementation and simulation nanodevices. 

Keywords: polariton, polaron, surrounding environment, laser cooling and trapping, 

transition metal dichalcogenides, Landau-Zener-Stückelberg. 
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RESUME 

De nos jours, les exciton-polaritons résultant de l’interaction excitons photons sont des 

entités atomiques permettent de mettre en evidence plusieurs phénomènes physiques et leurs 

potentielles applications allant de la condensation de Bose-Einstein aux simulateurs 

d’Hamiltoniens analogiques et interféromètres quantiques. La présente thèse a porté en 

l’étude de l'effet de l'environnement sur la dynamique du polariton et du polaron refroidis et 

piégés par la lumière laser dans les nanostructures. Nous avons considéré notre système 

d'intérêt comme un système à deux niveaux avec un état fondamental g  et un premier état 

excite e . L’étude commence par l’analyse de comportements de la dynamique du polariton 

refroidi et piégé par laser dans une approche semi-classique. Par la suite, nous avons introduit 

dans le système un champ magnétique faible, considéré comme un confinement, et avons 

évalué l'entropie de Vonn Neumann. Nous avons montré que la probabilité de trouver le 

polariton refroidi et piégé dans l'état excité ainsi que l'énergie du système sont contrôlées par 

l'environnement extérieur. Sur la base de la représentation matricielle du Hamiltonien du 

système, nous avons identifié et formulé le problème de Landau Zener dans le refroidissement 

et le piégeage laser du polariton. Motivé par le fait que (i) le polaron peut être considéré 

comme un système à deux niveaux, (2i) le polaron est un fermion qui satisfait la statistique de 

Fermi-Dirac et (3i) le polaritons refroidi et piégé par la lumière laser est considéré comme une 

particule intermédiaire, satisfaisant la statistique de Fermi-Dirac bienqu’étant un boson, nous 

avons étendu notre étude au polaron. En raison de leurs propriétés physiques, nous avons 

trouvé intéressant l'utilisation de dichalcogénures métaux de transition (DMTs) 

bidimensionnels (2D) de types 
2MX comme nouvel environnement pour le refroidissement et 

le piégeage laser du polariton et du polaron. Sous la base d'une part de la théorie de 

l'interférométrie de Landau-Zener-Stückelberg et d'autre part l'approche de la mécanique 

quantique de Schrödinger et la théorie de Wigner-Brillouin améliorée, nous avons étudié les 

niveaux d'énergie de Landau et les probabilités de transition dans les bases diabatique et 

adiabatique du polariton et polaron refroidi et piégé par la lumière laser. Nous avons montré 

que l'effet de l'environnement extérieur sur la dynamique du polariton et du polaron refroidi et 

piégé par laser est considérablement réduit dans les DMTs 2D de notre choix par rapport à 

celui des nanostructures. De plus, le phénomène de refroidissement et de piégeage laser des 

entités atomiques est très apprécié dans le DMT 2D 
2MoSe  qui se présente donc comme le 
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matériau approprié pour l’implémentation des ordinateurs quantiques et les nanodispositifs de 

simulation. 

Mots clés: polariton, polaron, environnement extérieur, refroidissement et piégeage laser, 

dichalcogénures métaux de transition, Landau-Zener-Stückelberg. 
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GENERAL INTRODUCTION 

Nowadays, with the rapid development of optical techniques (Zhang et al., 2012), many 

experiments are accomplished with polaritons and polarons in a controlled manner using laser 

radiation. The ability of light to exert pressure on matter, known as laser cooling and trapping 

(Shore and Knight, 1993; Shimizu and Sasada, 1998) has becomes of particular interest in 

physical science and applications. The idea that light exerts pressure on matter arose when 

Keppler (1619) suggested that it was the pressure of sunlight that made comet tails stream away 

from the sun (Minogin and Letokhov, 1987). Investigations of the actions of light on matter have 

yielded many important results. The light force acting on the matter has been divided into two 

main forces. The first one is the scattering force which drives the atomic particle in the direction 

of radiation propagation (Menz et al., 2019). The second one is the dipole force which pushes the 

atomic particle toward extrema of the radiation intensity distribution.  

The understanding of the dynamic of light-matter (polariton and polaron) interaction has 

ended up to a wide range of nanotechnologies, which has attracted a lot of research works and 

created opportunities for numerous of applications. These include sensing (Chung et al., 2011), 

imaging (Zhang and Liu, 2008), subwavelength aperture transmission (Barnes et al., 2003), nano-

photon detectors (Luo et al., 2015; Tang et al., 2008), nanoscale optical trapping (Novotny et al., 

1997; Ye et al., 2013) and optical non linearities (Nahata et al., 2003). Laser cooled and trapped 

polaritons and polarons have been found as appropriate candidate for quantum computation 

implementation. Unfortunately, a number of processes and particularly the surrounding effect of 

environment limit both polaritons and polarons lifetime thereby yields decoherence problem.  

Quantum decoherence, sometimes called dynamical decoherence or environment induced 

decoherence (Paz and Zurek, 2001; Zureck, 2003; Schlosshauer, 2004) is the most significant 

obstacle of expanding quantum technology (Roszak et al., 2015). It appears as a result of an 

interaction of the quantum system of interest with an environment (Joos et al., 2003; 

Schlosshauer, 2007). In general, perfect isolation of a real physical system is not possible. Even 

the simplest quantum system, like the spin of an electron, may be in weak though continuous 

interaction with the environment. In laser cooling and trapping of polariton or polaron, several 

potential sources of decoherence include fluctuation in the ion trap potential (Schneider and 
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Milburn, 1998), quantum jump to auxiliary electronic levels (Meekhof et al., 1996), the 

instabilities of the trap drive frequency and voltage amplitude (Monroe et al., 1995; Roos et al., 

1999).  

Several theoretical approaches have been proposed to overcome limitations due to 

surrounding environment. The first concrete decoherence models and numerical estimates of 

decoherence rates were worked out by Joos and Zeh (1985) and Zurek (1986). Zurek (1986) 

introduced a broader audience of physicists to decoherence theory. Such dissemination and 

maturing of decoherence theory came at a perfect time, as the period saw the blossoming of 

quantum information (Berthiaume and Brassard, 1992; Bernstein and Vazirani, 1993 ; Simon, 

1994), as well as experimental advances in the creation of superpositions of mesoscopically and 

macroscopically distinct states (van der Wal et al., 2000). In quantum computation, the quantum 

states relevant to quantum information processing and Schrödinger-cat-type experiments require 

the insights of decoherence theory. Conversely, the new experiments served as a fertile ground 

for testing the predictions of decoherence theory. Accordingly, these developments led to a rapid 

rise in interest and research activity in the field of decoherence. Today, decoherence has becomes 

a central topic of modern quantum mechanics and is studied intensively both theoretically and 

experimentally in several research field allowing complete analysis of atomic particles in 

interaction in order to provide possibility for successful implementation of quantum computers.  

In condensed Matter and Nanomaterials Laboratory at the University of Dschang, important 

efforts are made in solving the decoherence effets. Kenmoe et al. (Kenmoe et al., 2015) 

demonstrate that some specific problem of LZ transitions in a qubit coupled to an environment 

(problem known as dissipative) can be marched onto the frame of original problem without 

dissipation. By using a variational method of Pekar type, Kenfack et al. (2015) studied the 

transition probability and decoherence time of levitating polaron in helium film thickness. Fotue 

et al. (2020) by utilizing the modified Lee Low and Pines variationnal method, they used the 

symmetric quantum dot as main confinement of bipolarons quasiparticules in order to encrase 

their their stability and reduce the environmental decoherence effect. Vubangsi et al. (2021) 

studied the effect of surrounding environment, a compositional gradient, on the quantum 

mechanical properties of semiconductor heterostructures using a model anharmonic oscillator  

with asymptotically decreasing effective mass. Pernel Nguenang et al. (2021) investigate the 
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influence of surrounding environment, here the external voltage or driving terms, on the energy 

level of a simple Josephson-junction circuit. Other interesting research works carried by many 

other young research and experts based on quantum decoherence are encountered in the 

Condensed Matter and Nanomaterial Laboratory at the Universty of Dschang. 

Surprisingly, theoretical investigaion based on laser cooling and trapping of atomic entities 

like polaritons and polarons by several authors did not considered the surrounding effect of 

environment, the target element in successfull realization of quantum computers (Shimizu and 

Sasada, 1998). An observation which attracted our attention thereby standing as our motivation to 

investigate decoherence probleme in cooling and trapping of polariton and polaron. In many 

cases, the interaction between light and matter can be reduced to the concept of the two-level 

system (TLS). A TLS is not only the key element in various fields of contemporary physics, like 

radiation-matter interactions and collision physics, but also the fundamental building block of 

modern applications ranging from quantum control to quantum information processing. The TLS 

interacting with the periodically driven fields is an important prototype of a large number of 

quantum phenomena in nearly every subfield of optics and physics (Allen and Eberly, 1997).  We 

considered the resulted laser cooled and trapped polariton and polaron as TLS, with ground state 

g and first excited state e . From the rotating wave approximation (RWA) and using classical 

electromagnetism formulas, cooled and trapped polariton’s most important parameters including 

force, torque, transition probability of finding the system in the excited state and total energy are 

carefully determined. Withing the previous theoretical analysis, the Hamiltonian of laser cooled 

and trapped polariton is formulated in it matrix form. Yield the prediction of the possibility to 

formulate Landau-Zener (LZ) problem in laser cooling and trapping of polariton.  

According to a variety of physical areas, LZ processes play an important role, e.g., in 

artificial atoms (Zenesini et al., 2009) and also Bose-Einstein condensates in optical lattices (You 

and Nori, 2011), which can behave like controllable quantum TLSs (Buluta et al., 2011 ; 

Shevchenko  et al., 2010). LZ and so far Landau-Zener-Stückelberg (LZS) problems have been 

studied by several groups (Oliver  et al., 2005 ; Sillanpää et al., 2006 ; Wilson et al., 2007 ; 

Izmalkov et al., 2008 ; Shytov, 2004). The standard LZ problem for an isolated TLS can be 

solved exactly. For some many-level systems, the LZ transition probability can also be calculated 

exactly for some initial states (Saito, 2006). LZ transitions controlled by classical field have been 
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demonstrated by Wubs et al. (2005). In a quantum photon field, Keeling and Gurarie (2008) 

found that varying the LZ sweep rate produces collapses and revivals of the coherent field 

amplitude. In addition, it has always been expected that polaritons are ultimately quantum 

particles theoretically capable of entanglement. This means that, within the LZ theory, it  could 

be possible to predict other important physical phenomena due to laser cooling and trapping of 

polaritons with application in quantum phase transition, quantum computing, optoélectronic and 

interferometry to cite a few.  Thus, LZ model is a reasonable and unique model to describe laser 

cooling and trapping of polariton and so far polaron in order to capture the essential physics and 

provide great insight on the mathematical analysis related to the development of nanoscale 

devices using cooled and trapped polaritons and polarons.   

 While a tremendous progress in the development of quantum technologies is apparent, it is 

still unclear which material platform is the most suitable for the realization of future quantum 

computers (Nielsen, 2010). Number of theoretical as well as practical research works [(Bechtold 

et al., 2015; Xue et al., 2020) have demonstrated the use of semiconductors materials in the 

development of the above mentioned quantum devices. Nevertheless, their crystalline structures 

are enriched by a variety of intrinsic defects, such as vacancies, adatoms, grain boundaries and 

substitutional impurities (Hu, 2019), leading to scattering phenomena including scalabilities and 

decoherence effects (Barreiro et al., 2011) which limit the performance of quantum operation. 

These defects motivate the search for new materials and techniques to make a great variety of 

novel experiments feasible.  

 Recently, two-dimensional (2D) transition metal dichalcogenides (TMDs) materials 

(Bhimanapati et al., 2015) stand as a diagnostic tool for understanding quantum dynamics, 

yielding a robust scenario for readout fidelity (Choi et al., 2017; Koshelev et al., 2018). In fact, 

2D TMDs materials are totally different and novel systems that bear exciting similarities with 

graphene (Montambaux, 2018). Due to their fascinating properties such as (i) their unique 

optoelectronic features in the monolayer limit, (2i) the flexibility of their excitonic binding 

energies and (3i) their high oscillator strength, they possess advantages of being unique candidate 

which serve as new playgrounds for measuring and testing physical phenomena that may not be 

reachable in their precursors (graphene). These include the possibility of probing geometrical 

properties of the wave functions, of manipulating edge states, of performing interference 
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experiments in reciprocal space and of controlling crossing and avoided crossing points of energy 

levels in electronic spectrum of 2D material (Montambaux, 2018).   The above mentioned 

properties and thereby applications constitute our raison of choosing 2D TMDs materials as 

appropriate candidate which can allow successful implementation of quantum computation 

devices. 

 The main objective of the present thesis is to investigate the effect of surrounding environment 

on the dynamic of laser cooled and trapped polariton and polaron in nanostructures. To get to the 

main objective, specific objectives include: 

 Investigate the effect of surrounding environment in laser cooling and trapping of 

polariton and polaron, 

 Formulate Landau-Zener problem in cooling and trapping of polariton for robust control 

of polariton’s dynamic throght Landau-Zener-Stückelberg Majorana interferometry 

(LZSMI) theory and predict other important physical phenomena due to laser cooling and 

trapping of polariton, 

 Investigate LELs and transition probabilities in both diabatic and adiabatic basis of laser 

cooled and trapped polariton embedded in 2D TMDs materials using LZSMIT, 

 Investigate LELs of laser cooled and trapped polaron embedded in 2D TMDs material 

under the influence of triangular quantum well potential using both QMSA and IWBT. 

The entire thesis is organized in three main chapters. Chapter one is devoted to literature 

review on light matter interaction. In particular, we provide a brief overview on the coherent 

dynamic of polariton and polaron considered as TLS focusing on the diabatic and adiabatic basis. 

Further, we provide generalities on the analytical solvable models always used in theoretical 

analysis in light-matter interaction processes, thereby spreading the day-to-day evolurion of laser 

cooling and trapping polariton and polaron phenomena. At the end, a generality on the quantum 

description of polariton and polaron in microcavities is presented. We consider monolayer 2D 

TMDs, and focus on their composition or construction, synthesis methods and applications. An 

overview is also carried out on nanomaterials and quantum wells.  

Chapter two presents mathematical tools and methods used in the whole thesis. As a typical 

mathematical tool, the classical electromagnetism allow complete understanding of the origin of 
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radiation force and torque applied to atomic particle in presence of radiation field. Practical 

investigation of laser cooling and trapping phenomena originate decoherence state of the system. 

Quantum investigation of decoherecnce effet leads to the utilization of the RWA based on the 

JCM. The efficient theoretical description of the above mentioned system requires the transition 

to the reasonable model which describes laser cooling and trapping of atomic particles process in 

order to capture the essential physics. In the framework of LZ (LZSI) theory based on Whittaker 

method that uses Weber’s differential equation base on parabolic cylinder functions, LZS 

transition probabilities and total energy are investigated. In this same chapter, analytical results 

obtained through our analysis are also presented.  

Chapter three is devoted to numerical results achieved. Here, graphical representation of 

particular parameters of interest which are transition probabilities, total energy of the system, 

entropy and LELs are depicted versus various some parameters of interest in different coupling 

states of the laser cooled and trapped polaritons and polarons with surrounding environment.  

The present thesis ends with a general conclusion thereby presenting a brief summary of the 

thesis with concluding remarks, and outlines the perspectives for future research works and 

applications. 
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CHAPTER ONE  

LITTERATURE REVIEW 

Introduction 

The interaction of a single dipole with a monochromatic radiation field presents an 

important theoretical problem in Physic (Fortier, 2007). Electromagnetic (EM) interaction can be 

used to act on atomic particles, to manipulate them, to control their various degrees of freedom. 

With the development of laser sources, the field of laser cooling and trapping of atomic particle 

has considerably expanded during the last few years (Chu, 1998; Cohen-Tannoudji, 1998; 

Phillips, 1998). Methods have been developed to trap atoms, to cool them to very low 

temperatures. 

The importance of laser cooling to Physics has been recognized by the Nobel Prize 

committee three times in the last decade. The first recognition has been attributed to Chu, Cohen-

Tannoudji and Phillips in the year 1998 for their research work entitled ‘for the development of 

methods to cool and trap atoms with laser light’ (Chu, 1998; Cohen-Tannoudji, 1998; Phillips, 

1998). In 2001, the second recognition was awarded to Cornell, Ketterle and Wieman for the 

achievement of BEC in dilute gases of alkali atoms and for early fundamental studies of 

properties of the condensates (Cornell and Wieman, 2002; Ketterle, 2002). And finally, Glauber, 

Hall and Hänsch received the third recognition for their contribution to quantum theory of optical 

coherence and their contribution to the develop ent of laser-based precision spectroscopy 

including the optical frequency comb technique (Cornell and Wieman, 2002; Ketterle, 2002). Up 

to dates, due to laser cooling and trapping techniques, experiments with atomic particles with 

single photons are now carried out regularly in a handful of laboratories around the world 

(Fortier, 2007) and number of applications and development of laser cooling and trapping 

techniques continues to expand.  

The aim of this chapter is to present an overview on laser cooling and trapping of atomic 

particles. We will focus on two important aspects: (i) the coherent dynamic of atomic particles 

interacting with radiation field (considered here as TLS) and (2i) generalities on laser cooling and 

trapping of atomic particles. In this chapter, an overview of monolayers 2D TMDs is also 
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presented, since these 2D materials have been found as attractive milieu for realization of laser 

cooling and trapping of atomic particles phenomena.  

 

I.1. Coherent dynamic of two-level systems 

I.1.1. The two-level systems 

In quantum mechanics, a TLS, also known as a two-state system is a quantum system that 

can exist in any quantum superposition of two independent quantum states (Griffiths, 2004).  The 

quantum TLS (Figure 1) is usually called qubit in quantum information and computation and 

represents the individual unit of classical information which takes one of the two independent 

possible values  1,0  (Preskill, 2015).  A TLS has many important applications in many research 

fields such as nuclear magnetic resonance, laser optics and so on. Many physical phenomena can 

be modeled to as a TLS problem (Basdevant, 2016). The advantage of TLS is that the 

wavefunction can be expressed in term of two coupled ordinary first-order differential equations. 

The general solution of these equations is a linear combintion of two Floquet modes whose 

functional forms are known. Another advantage of developping theory using TLS is that the 

model is mathematically less challenging than the continuum wave mechanics approach, 

requiring only basic linear algebra instead of calculus and differential equations. 

 

 

 

 

 

 

 

Figure 1. Modelling of an atomic transition in term of two-level system 

 

I.1.2. The Fock space 

A Fock space is an infinite-dimensional vector space and is a natural tool for quantum 

field theory. It is of fundamental importance since it represents typical state space for gases of 

g  

e  

E  
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particles, thermal baths, etc. This Mathematical construction is used to construct the quantum 

states of a multi-particle systems from a single particle system (LeBlanc, 2012). The Fock space 

has been named in 1932 (Fock, 1932). The creation and annihilation operators are used to 

account for the introduction and removal of particles, allowing the description of a system with a 

variable number of particles (LeBlanc, 2012). The Fock space is an algebraic construction used in 

quantum mechanics to construct the quantum states space of a variable or unknown number of 

identical particles from a single particle Hilbert space H (Reed and Simon, 1975). Informally, a 

Fock space is the sum of a set of Hilbert spaces representing zero particle states, one particle 

states, two particle states, and so on.  

 

I.1.2.1. The diabatic basis  

We begin this section by given a brief definition of the diabatic state. This is an electronic 

state that does not change character as a function of molecular geometry. Diabatic state provides 

a framework for obtaining quantitative predictions about electron transfer (ET) dynamics. 

Qualitatively, in contrast to adiabatic, a diabatic electronic state is one that does not change its 

physical character as one moves along a reaction coordinate. Diabatic electronic states play an 

important role in a variety of research fields. Therfore, diabatic electronic states are often used in 

chemistry for the construction of potential energy surfaces (Kim et al., 2000), in spectroscopy for 

the assignment of vibronic transitions and rationalization of the rates of interstate transitions 

(Ichino et al., 2006). The impotance of the diabatic electronic states is also relevant in electronic 

since they typically have a small derivative coupling, simplifying the description of electronic 

transitions (Müller and Stock, 1997 ; Butler, 1998) and in scattering theory  as they connect to 

clearly-defined product channels (Cohen and Micha, 1992 ; Tully, 2000 ; Mahapatra et al., 2001). 

Finally, diabatic states play a qualitative role in our understanding of molecular bonding (Aqvist 

and Warshel, 1993), ET (Sidis, 1992) and proton tunnelling (Kuznetsov and Ulstrup, 1999).  

 

I.1.2.2. The adiabatic basis 

Another canonical choice for the basis consists of the eigenstates of the Hamiltonian in 

the adiabatic basis. The adiabatic basis is usually a particularly good choice when the diabatic 

basis is not, namely, in the case when the external field is changing slowly. Thus, the dynamics is 

called adiabatic and its solution can be approximated with the adiabatic states. Often this 

https://en.wikipedia.org/wiki/Algebra
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Quantum_state
https://en.wikipedia.org/wiki/Subatomic_particle
https://en.wikipedia.org/wiki/Hilbert_space
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corresponds to the parameter region of strong coupling. This adiabatic basis transformation also 

has fundamental role in both the Dykhne-Davis-Pechukas theory (DDPT) (Laloe, 2012) and in 

the plane-curve representation of time-dependent two-level problems 

 

I.2. Laser  

I.2.1. History 

In 1704, Newton characterized light as a stream of particles. The Young's interference 

experiment in 1803 and the discovery of the polarity of light convinced other scientists of that 

time that light was emitted in the form of waves. Maxwell theoretically formulated the concept of 

EM radiation, of which light is an example in 1880. At the turn of the 20th century, the black 

body radiation phenomenon challenged the waveform light theory. Additional work undertaken 

by Hertz on the photoelectric effect and Planck on the formulation of the distribution of the 

radiation emitted by a black body or perfect absorber of radiant energy complemented further the 

understanding of light propagation. The significance of Planck's constant in this context is that 

radiation such as light, is emitted, transmitted and absorbed in discrete energy packets or quanta, 

determined by the frequency of the radiation and the value of Planck's constant. The observations 

that the number of electrons released in the photoelectric effect is proportional to the intensity of 

the light and that the frequency or wavelength of light determines the maximum kinetic energy of 

the electrons, indicated a kind of interaction between light and matter that could not be explained 

in terms of classical physics. In 1905, Albert Einstein explains that light can be regarded 

alternatively as composed of discrete particles (photons), equivalent to energy quanta. In 

explaining the photoelectric effect, Einstein assumed that a photon could penetrate matter, where 

it would collide with an atom. Since all atoms have electrons, an electron would be ejected from 

the atom by the energy of the photon, with great velocity. Einstein also predicted in 1917 that, 

when there exists the population inversion between the upper and lower energy levels among the 

atom systems, it was possible to realize amplified stimulated radiation, which is laser light. 

Stimulated EM radiation emission has the same frequency (wavelength) and phase (coherence) as 

the incident radiation.  

 

 



  

11 
 

I.2.2. Definition and properties 

The term laser is an acronym for light amplification by stimulated emission of radiation 

(Gould, 1959; Taylor, 2000). Lasers are devices that produce intense beams of light. The 

wavelength (color) of laser light is extremely pure (monochromatic) when compared to other 

sources of light, and all of the photons (energy) that make up the laser beam have a fixed phase 

relationship (coherence) with respect to one another. Light from a laser typically has verylow 

divergence (directionality). It can travel over great distances or can be focused to a very small 

spot with a brightness which exceeds that of the sun (high collimated). It comes that, properties 

of laser light include (i) coherence, (2i) collimation, (3i) monochromaticity and (4i) 

directionality. In the former, photons are emitted in phase. Phase is the position of a point in time 

on a waveform cycle. Collimation corresponds to the phenomenon in which photons travel in 

parallel, and therefore diverge very little as they propagate away from the laser device. It is this 

collimation that results in the narrow beam diameter of laser.  Monochromaticity consists of one 

specific wavelength or single colour of light while the later, that is uniform polarization, is the 

electric field of the photons usually oscillates in a specific direction perpendicular to the direction 

of the beam.  

 

I.2.3. Components, design and types of typical laser system  

A laser consists of three main components as illustrated in Figure 2 above. These consist 

of (i) excitation source, which supplies the necessary energy,  (2i) lasing medium or gain 

medium, which determines the wavelength of the laser produced and (3i) optical resonator, which 

contains the lasing medium with two parallel mirrors on either side, thus, causing the photons to 

pass repeatedly back and forth between the two. One of the mirrors is partially transparent, 

allowing some of the photons to exit the device to form the laser beam. This is termed the output 

coupler. Since the discovery of the laser, literally thousands of types of lasers have been 

discovered. Lasers can be broadly classified into four categories including gas discharge lasers 

(Dzyubenko et al., 2017), semiconductor diode lasers (Arrigoni et al., 2009), optically pumped 

lasers (Taylor, 2000), and other. Lastly is a category which includes chemical lasers (Minucci and 

Olivia, 1993), gas-dynamics lasers (Minucci and Olivia, 1993), x-ray lasers (Hecht, 2008), 

combustion lasers and others developed primarily for military applications. 
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  Figure 2. Graphical design and components of typical laser device 

 

I.2.4. Applications of laser light  

Lasers have become so much a part of daily life that many people may not realize how 

ubiquitous they are. Laser applications are so numerous and can be classified between industrial 

applications, scientific applications and clinical and medical applications. 

 

I.2.4.1. Industrial applications 

High-power lasers have long been used for cutting and welding materials. Today the frames 

of automobiles are assembled using laser welding robots. Complex cardboard boxes are made 

with laser-cut dies, and lasers are routinely used to engrave numbers and codes on a wide variety 

of products. Some less well-known applications include 3D stereolithography (SL) and 

photolithography (PL). The former, also known as stereolithography apparatus, optical 

fabrication, photo-solidification, or resin printing is a form of 3D printing technology used for  

creating models, prototypes, patterns, and production parts in a layer by layer fashion 

using photochemical processes by which light causes 
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chemical monomers and oligomers to cross-link together to form polymers (Patent, 1986). Other 

industrial laser applications include marketing, scribing and non contact measurement.  

Laser marketing is a process where lasers are used extensively in production to apply 

indelible, human and machine readable marks and codes to a wide variety of products and 

packaging (Klavins et al., 2019; Greats impressions, 2013). Typical applications include marking 

semiconductor wafers for identification and lot control, removing the black overlay on numeric 

display pads, engraving gift items, and scribing solar cells and semiconductor wafers. 

Information can be placed in direct text (letters, numbers, and images) or encrypted (barcode or 

QR code). Laser scribing (Nisar et al., 2013) is similar to laser marking, except that the scan 

pattern is typically rectilinear (Figure 3), and the goal is to create microscoring along the scan 

lines so that the substrate can be easily broken apart (Jenne et al., 2020). A wide variety of 

materials, including metal, wood, glass, silicon and rubber are amenable to laser scribing. Each 

material has different absorption and thermal characteristic, and some even have directional 

preferences due to crystalline structure. Consequently, the type of laser used depends, to some 

extent, on the material to be marked. Other considerations are the size of the pattern, the speed of 

the scan, cosmetic quality, and cost. Noncontact measurement is another industrial laser 

application. There are many types of laser-based noncontact measurement techniques in use 

today including scatter measurement (Lipi et al., 2012; Sicker et al., 2016), polarimetry (Bornhop 

and Dotson, 2006; Mishchenko et al., 2011), ellipsometry and interferometric measurement 

(Bunch and Hellemans, 2004). 
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Figure 3. Laser scribe and break method. Laser scribing (a) and mechanical breaking with the help of crack rullers 

(b). [as investigated by Nisar et al.(2013)]. 

 

I.2.4.2. Scientific applications  

In the field of science and technology, lasers are used extensively in the scientific laboratory 

for a wide variety of spectroscopic and analytic tasks. Of particular interest are confocal scanning 

microscopy and time-resolved spectroscopy (TRS). The later is a technique used to observe 

phenomena that occur on a very short time scale. This technique has been used extensively to 

understand biological processes such as photosynthesis, which occur in picoseconds or less. 

Scanning microscopy, another interesting laser scientific application, is used to build up a 3D 

image of a biological sample. Annother interesting laser scientific and technological application 

is the microarray scanning (MS). In deoxyribonucleic acid (DNA) research, a microarray is a 

matrix of individual DNA molecules attached, in ordered sets of known sequence, to a substrate 

which is approximately the size of a microscope slide.  

 

I.2.4.3. Clinical and medical applications  

One of the earliest applications of lasers in medicine was photocoagulation, using an argon-

ion laser to seal off ruptured blood vessels on the retina of the eye. The laser beam passed 

(a) 

Computer Laser head 

Laser beam 

Cutt path 

Specimen 

Scannind 

direction 

Control 

pannel 

Crack ruller 

(b) 



  

15 
 

through the lens and vitreous humor in the eye and focused on the retina, creating scar tissue that 

effectively sealed the rupture and staunched the bleeding. Today, lasers are used extensively in 

analytical instrumentation, ophthalmology, cellular sorting, and of course, to correct vision. Flow 

cytometry (FC) is a technique used for measuring single cells. Not only it is a key research tool 

for cancer and immunoassay disease research, but it is also used in the food industry for 

monitoring natural beverage drinks for bacterial content or other disease causing microbes. In a 

basic cytometer, the cells flow, one at a time, through a capillary or flow cell where they are 

exposed to a focused beam of laser light. Lasers are used in a variety of surgical and dental 

procedures from cutting tissue, vaporizing tumors, removing tattoos, removing plaque, removing 

cavities, removing hair and follicles, resurfacing of skin and of course, correcting vision. In many 

ways, medical applications are like materials processing applications. In some cases material is 

ablated. In others tissue is cut or welded, and in yet others, photochemical changes are caused in 

blood vessels to encourage shrinkage and absorption. Understanding tissue absorption 

characteristics and reaction to wavelength and power are keys. Cosmetic treatment of wrinkles, 

moles, warts, and discolorations is often accomplished with near infrared and infrared lasers. 

Lasers are also used to treat macular degeneration, an overgrowth of veins and scar tissue in the 

retinal region, a condition associated with advancing age.  

 

I.3. Polaritons 

I.3.1. Definition, schematization and types 

Polaritons (Figure 4) are the eigenmodes of systems consisting of strong interaction 

between semiconductor excitons, coulomb bound electron-hole pairs, and cavity photons (Tao et 

al., 2016).  

Usually, one indicates the type of the crystal excitation which participates in the formation 

of polaritons by adding prefixes. Therefore, it is distinguishable several types of polaritons, 

including exciton polaritons (Pekar, 1958), Plasmon polaritons (Ebbesen et al., 1998), optical 

phonon polaritons, intersubbands polaritons (Manceau et al., 2017), Bragg polaritons (Klingshirn 

2012), plexcitons, Mangnon polaritons and cavity polaritons (Ebbesen et al., 1998). The 

quasiparticles, which appear as a result of interaction between an EM field and the resonances of 

magnetic permeability, are known as magnetic polaritons. 
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   Figure 4. Schematic representation of exciton-photon interaction or polariton formation. 

 

I.3.2. Properties 

Polaritons inherit the properties of both photons and medium excitations. This mixed 

character of polaritons leads to many interesting physical properties. In regard of their properties, 

polariton are found to be squeezed with respect to state of certain intrinsic photon-exciton mixed 

bosons. In general, squeezing is time periodic during a polariton period. The problem of 

examining squeezing effect of polariton in homogeneous dielectric medium has been 

independently investigated by Abram (1987) and Glauber and Lewenstein (1989). Artoni and 

Birman (1990) interpreted the effect firstly as sudden transition and secondly as quantum 

correlation in polariton states between intrinsic photon-exciton mixed bosons of opposite wave 

vectors.    

 

I.4. Polarons 

I.4.1. Definition, schematization and types 

Polarons are quasiparticles which describe interactions between free electrons and 

induced polarization resulting from electrons/ions or electrons/atoms coupling in solid materials 

(Landau, 1993; Landau, 1948). There are a number of polaron-type quasiparticles that result from 

other interactions, such as a spin polaron (electron interacting with atomic magnetic moments) 
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(Devreese, 2008; Kaminski and Sarma, 2002), a piezopolaron and so on. For more about various 

types of polarons, readers should refer to Devreese (2008). A polaron may be large (Devreese, 

2008) or small (Devreese, 2008), depending on how its radius compares to the lattice constant. 

Other than size, the most important differences between large and small polarons are in their 

electrical transport: large polarons tend to have band-like transport, while small polarons usually 

undergo hopping transport. Two polarons of like charge can bind into a bipolaron (Figure 6) 

(Devreese, 2008), and two polarons of opposite charge can bind into a polaronic exciton.  

  

 

 

 

 

 

 

 

Figure 5. Artist view of a Polaron. A conduction electron in an ionic crystal or a polar semiconductor repels the 

negative ions and attracts the positive ions. A self-induced potential arises, which acts back on the electron and 

modifies its physical properties.[As indicated by Devreese (2003)] 

                                         

 

 

 

 

 

              (a) 

                                                                                                              (b) 

Figure 6. Cartoon illustrating bipolaron formation. a) Two separated polarons each in its own polarisation well. b) 

Bipolaron where two electrons are localized in the same potential well  (Devreese, 2008). 
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I.4.2. Properties  

We presented above majors differences between small polaron or Holstein polaron 

(Holstein-Hubbard model) and large polaron or Fröhlich polaron.  The polaron character is well 

pronounced only for strong-coupling. In regard of their properties, polaronic entities are 

characterized by their binding (or self-) energy, their effective mass and their characteristic 

response to external electric and magnetic fields (Devreese, 2005). 

 

I.5. Laser cooling and trapping of polaritons and polarons 

I.5.1. Historical review 

The field of laser cooling and trapping of atomic particles has blossomed during the last 

decade (Chu, 1995). The first experiments were carried out with ions following the idea of 

Wineland and Dehmelt (1975) although the possibility of laser cooling atoms was suggested at 

the same time by Hansch and Schawlow (1975). Ions can be trapped for long periods in ultra-

high vacuum and then cooled down at nearest zero temperature. Whereas, for neutral atoms, 

trapping was not achieved until after the pioneering experiments in which an atomic beam was 

slowed using light forces (Foot, 1991). Since then, laser cooling and trapping of atomic particles 

has became a very active and increasingly visible field of research and this was highlighted by 

the Nobel prize in physics in 1997, awarded to Chu, Cohen-Tannoudji, and Phillips, and by the 

realization of BEC and the corresponding Nobel prize in 2001 to Cornell, Ketterle, and Wieman 

(Kaiser et al., 2003). Most of the research work has been focused towards understanding the 

atomic physics of laser cooling and trapping processes themselves (Foot, 1991). Thus, in the 

issue on mechanical effects of light (1985) (Meystre and Stenholm, 1985), several contributions 

focused on light forces on two-level atomic transitions, with mainly theoretical papers and a few 

experiments testing general principles. Just a few years later, 1989, a second special issue on 

laser cooling and trapping of atoms proved how active this field had become. Here several 

contributions presented experimental results on cooling of atoms and ions, while theory papers 

analyzed the effect on the atomic motion caused by the coupling between the atom’s complex 

internal structure and light fields (Andrews and Bradshaw, 2016). 
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I.5.2. Interaction of polariton and polaron with a quasi-resonant light beam: the light force 

According to the momentum conservation, when a photon is absorbed its momentum kp   

is transferred to the atom (Figure 7) retaining both its magnitude and direction [Figure 7 (a, b)]. 

This tiny momentum kick due to absorption of a single photon alters the velocity of an atom by 

recoil velocity scm
m

k
vrec /1


 which can be compared with typical velocities of a few 

sm /100  in room temperature atoms. The absorption is followed by spontaneous emission with a 

natural lifetime  /1 of the excited state, where  is its decay rate (or width), and thus the 

atom recoils once more. Since the spontaneous emission is isotropic, the recoil of the atom 

associated with this process is in a random direction, thus there is no net change of momentum on 

average. Thus overall the change of the atomic momentum is solely the effect of absorption 

(Figure 7c). In laser cooling experiments, atoms in an atomic beam are slowed by the light force 

from resonant scattering of a counter propagating laser beam. Each absorbed photon gives the 

atom a kick in the direction opposite to its motion and the emitted photons go in all directions, so 

the net effect of many photons is a force on the atom which slows it down.  

If we cool the further atomic particle by applying the laser cooling process in all three 

dimensions using a configuration of three orthogonal standing waves along the cartesian axes, all 

from the same laser, then the interaction of an atomic beam with a counter propagating laser 

beam slows the atomic particle down and can produces a cloud of stopped atoms with a velocity 

spread much less than at room temperature. When the laser frequency is detuned below the 

atomic resonance frequency, the Doppler effect shifts an atom closer to resonance with 

whichever beam the atom is moving towards. Thus, the resultant force damps the velocity. This 

force slows the atom down whichever direction it moves in. So in the intersection of the laser 

beams the light exerts a frictional or damping force on the atoms.  

Accompanying the cooling process by the scattering force, there is always some diffusion or 

heating which limits the lowest temperature which can be reached. The diffusion arises from the 

recoil of the atom from the spontaneous photons which can be modelled by a random walk in 

momentum space with step length equal to the photon momentum k .  
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Figure 7. A simplified depiction of the light pressure acting on the two-level atom. (a) the resonant photon 

approaches an atom of mass m in its ground state and in rest; (b) as a result of absorption the atom, now in the 

excited state, gains a momentum kick, kvm  ; (c) recoil momentum due to the isotropic spontaneous emission 

averages out over many absorption/emission cycles thus, after n cycles the atom gains momentum knvm  along 

the propagation direction of incoming photons. The wavy arrow is for photon, the thick one for momentum 

[Kowalski et al. (2010)]. 

 

I.5.3. Typology of laser cooling of two-level systems  

I.5.3.1. Doppler cooling 

Doppler cooling is a mechanism which can be used to slow the motion of atoms. The term is 

sometimes used synonymously with laser cooling, although laser cooling includes other 

techniques. The so-called Doppler cooling is the simplest cooling mechanism which has been 

initially proposed by Hänsch and Schawlow (1975) for free atoms and by Wineland and Dehmelt 

(1975) for trapped atomic particles. Doppler cooling involves light with frequency tuned slightly 

below an electronic transition in an atomic particle. Doppler cooling occurs when atoms are 

irradiated with counterpropagating laser waves detuned below resonance. Owing to the Doppler 

effect, a moving atomic particle will tend to absorb photons into the laser wave 

counterpropagating its velocity rather than into the copropagating wave. Therefore, it encounters 

a force opposed to its velocity and becomes cooled (Castin et al., 1989; Phillips and Metcalf, 

1982).  
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I.5.3.2. Sub-doppler cooling 

Sub-Doppler cooling is a mechanism that can be used to cool a substance to a temperature 

lower than the Doppler cooling limit. The Sub-Doppler laser cooling has been a well established 

and widespread technique since the late 1980s (Lett et al., 1988). The cooling process consists in 

using light polarization gradients and optical pumping to cool down atoms below the Doppler 

temperature limit 
B

DL
K

T
2





(Dalibard and Cohen-Tannoudji, 1989), where 

BK is the Boltzmann 

constant and  is the natural linewidth.  

 

I.5.3.3. Subrecoil cooling 

Sub-recoil cooling is a cooling process which results in a delocalization of atoms in the laser 

wave (Lawall et al., 1995). Subrecoil cooling corresponds to a situation where the de Broglie 

wavelength 
DB of the atoms is larger than the wavelength 

L of the laser used to cool them. The 

spatial extent of the wave packets describing the center of mass of the atom can no longer be 

neglected and a full quantum treatment of atomic motion is needed (Lawall et al., 1995).  

 

 

 

 

 

 

 

 

Figure 8. A few important landmarks in the temperature scale corresponding to various temperature selection or 

cooling types. 
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I.6. Trapping techniques 

I.6.1. Optical trapping 

The motion of a TLS in a spatially inhomogeneous laser field is generally governed by the 

dipole gradient force, the radiation pressures force and the momentum diffusion (Balykin et al., 

2000). For an atom slowly moving in a far-detuned laser field the optical excitation is low. As a 

result, the radiation pressure force originating from the absorption of the laser light and the 

heating caused by the momentum diffusion are small. Accordingly, the motion of a cold atom in 

a far-detuned inhomogeneous laser field at not too long interaction time is basically governed by 

the dipole gradient force. The minima of the potential produced by the dipole gradient force in a 

far-detuned laser field can thus be used for optical trapping of cold atoms at time intervals limited 

by the heating due to the momentum diffusion (Balykin et al., 2000). Conceptually, the simplest 

optical trap for cold atoms can consist of a single focused laser beam formed by a TEM Gaussian 

laser mode (Balykin et al., 2000).  

 

 

 

 

 

 

 

Figure 9. Scheme of an atom waveguide based on the optical mode EH11 propagating in the dielectric waveguide 

(left) and the optical potential for atoms (right) (Ol’shanii et al., 1993; Balykin et al., 2000). 

 

I.6.2. Magnetic trapping 

Magnetic trapping of atomic particles was proposed at least as early as 1960 (Heer, 1963). 

Despite considerable development in the theory of magnetic trapping (Goluband and Pendlebury, 

1979; Kugler et al., 1978), the successful trapping of cold neutrons (Kugler et al., 1978) and 

serious attempts to trap atoms (Martin, 1975), no such trapping has been reported until the first 
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observation of magnetically trapped neutral atoms by Migdall and co-workers in the year 1985 

(Migdall et al., 1985). In general, all static magnetic traps use nonuniform stationary magnetic 

fields for trapping atoms. The most important static magnetic trap of the first kind is the so-called 

spherical quadrupole trap proposed by Paul (Niehues, 1976). In this trap, two opposite circular 

currents produce a static magnetic field in the form of a spherical quadrupole (Figure 10a). The 

radii of the circular currents are taken to be approximately 
5

4
of the distance between the planes 

of the currents in order that the trap can have the same potential well depth along and across the 

symmetry axis (Balykin et al., 2000).  

The magnetic bottle constitutes another type of magnetic trap of particular interest in this 

section. A magnetic bottle is an arrangement that permits to confine charged particles. A particle 

inside a magnetic bottle makes a circular motion following magnetic field lines which have a sort 

of cylindrical symmetry as it’s shown in figure 10b. Based on figure 10b, trapping atomic 

particles can be as simple as putting a gas of atoms in a storage vessel that has walls that inhibit 

sticking. However, EM fields can also be configured to confine atoms with much less 

perturbation to their internal structure and minimal heating from the surrounding environment.  

 

Figure 10. Magnetic field  in a sphericalquadrupole magnetic trap generated by two Helmholtz coils (a) [Balykin et 

al. (2000)] and magnetic bottle atoms trap (b). 

 

Another interesting type of magnetic trap to be mentioned in the present thesis is the 

usually called Ioffe-Pritchard (IP) trap (Figure 11) (Cavazos, 2015; Bolpasi et al., 2012). The 

original configuration for the IP trap consists of 4 straight, current carrying bars which create a 

confining quadrupole field in the radial direction. A pair of coils known as pinch coils (PI) are 
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also used to add a curvature to the field in the axial direction and therefore to provide the axial 

confinement. 

 

Figure 11. (a) One pair of Ioffe racetracks of length l and width d used to create the 2D linear quadrupole field. (b) 

The corresponding case of two pairs of racetracks with the same dimensions. (c) Racetrack coils of zero length as 

presented in this paper. The The arrows indicate the direction of the current [Bolpasi et al.(2012)]. 

 

I.6.3. Magneto-optical trapping (MOT)  

Magneto-optical trapping is a trapping technique that uses 3D magneto-optical trap. This 

(Figure 12) is an apparatus that uses laser cooling with magneto-optical trapping in order to 

produce samples of cold trapped neutral atoms at temperatures as low as several microkelvins, 

two or three times the recoil limit (Kowalski et al., 2010). By combining the small momentum of 

a single photon with a velocity and spatially dependent absorption cross section and a large 

number of absorption-spontaneous emission cycles, atoms with initial velocities of hundreds of 

metres per second can be slowed to tens of centimetres per second. In a three dimensional (3D) 

optical molasses (OM) arrangement, three pairs of mutually orthogonal and counterpropagating 

laser beams intersect in a vacuum chamber containing vapor of the studied element. The laser 

beams, tuned below the resonance, create a viscous region where the inhibiting force is exerted 

on the atoms. However, the radiation pressure itself does not allow for their spatial confinement. 

The atoms are still able to move slowly in any direction and eventually they diffuse out of the 

region. In order to both cool and confine atoms, the force has to be additionally position-

dependent. Operation of the MOT is based on manipulations of the external and internal degrees 

https://en.wikipedia.org/wiki/Laser_cooling
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https://en.wikipedia.org/wiki/Photon
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of freedom of atoms by means of carefully prepared optical and magnetic fields (Cohen-

Tannoudji, 1997).  

 

Figure 12. An experimental setup of a magneto-optical trap. The laser field is produced by three pairs of counter-

propagating laser beams with circular polarizations  (Krieger, 2006). 

 

I.7. Bose-Einstein condensation of two-level systems 

I.7.1. Historical review of Bose-Einstein condensation 

BEC (Bose, 1924; Einstein, 1924; Einstein, 1925) was observed in 1995 in a remarkable 

series of experiments on vapors of Rubidium (
87

Rb) (Figure 13) (Anderson et al., 1995) and 

Sodium (
23

Na) (Davis et al., 1995) in which the atoms were confined in magnetic traps and cooled 

down to extremely low temperatures, of the order of fractions of microkelvins. The first evidence 

for condensation emerged from time-of-flight measurements. The atoms were left to expand by 

switching off the confining trap and then imaged with optical methods. A sharp peak in the 

velocity distribution was then observed below a certain critical temperature, providing a clear 

signature for BEC. In the same year, first signatures of the occurrence of BEC in vapors of 

lithium were also reported (Bradley et al., 1995). The experimental and theoretical research on 
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this unique phenomenon predicted by quantum statistical mechanics is much older and has 

involved different areas of physics [for an interdisciplinary review of BEC, readers should refer 

to Griffin et al. (1995)]. In particular, from the very beginning, superfluidity in helium was 

considered by London (1938) as a possible manifestation of BEC. Evidence for BEC in Helium 

later emerged from the analysis of the momentum distribution of the atoms measured in neutron-

scattering experiments (Sokol, 1995).  

A rather massive amount of work has been done in the last couple of years, both to 

interpret the initial observations and to predict new phenomena. In the presence of harmonic 

confinement, the many-body theory of interacting Bose gases gives rise to several unexpected 

features (Dalfovo and Giorgini, 1999). This opens new theoretical perspectives in this 

interdisciplinary field, where useful concepts coming from different areas of physics such as 

atomic physics, quantum optics, statistical mechanics, and condensed-matter physics are now 

merging together. The natural starting point for studying the behavior of these systems is the 

theory of weakly interacting bosons which, for inhomogeneous systems, takes the form of the 

Gross-Pitaevskii theory (GPT). This is a mean-field approach for the order parameter associated 

with the condensate. It provides closed and relatively simple equations for describing the relevant 

phenomena associated with BEC. In particular, it reproduces typical properties exhibited by 

superfluid systems, like the propagation of collective excitations and the interference effects 

originating from the phase of the order parameter. The theory is well suited to describing most of 

the effects of two-body interactions in these dilute gases at zero temperature and can be naturally 

generalized to also explore thermal effects (Dalfovo and Giorgini, 1999).  
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Figure 13. (Color) Images of the velocity distribution of rubidium atoms in the experiment by Anderson et al. 

(1995), taken by means of the expansion method. The left frame corresponds to a gas at a temperature just above 

condensation; the center frame, just after the appearance of the condensate; the right frame, after further evaporation 

leaves a sample of nearly pure condensate. The field of view is 200 mm3270 mm, and corresponds to the distance 

the atoms have moved in about 1/20 s. The color corresponds to the number of atoms at each velocity, with red being 

the fewest and white being the most. From Cornell (1996), in Dalfovo and Giorgini (1999). 

 

I.7.2. Experimental realization of Bose-Einstein condensation  

In 1995, a series of spectacular experimental developments changed the face of physics forever 

(Stickney, 2007). In this year the first true BEC was created by Eric Cornell and Carl Wieman in 

Boulder, Colorado. Later that year Wolfgang Ketterle also created a BEC in Cambridge, 

Massachusetts. Two technical developments made this possible. The first was the advent of laser 

cooling and trapping in the mid 1980’s (Stickney, 2007) (Figure 14). The second was the 

development of magnetic trapping and RF-forced evaporative cooling. The combination of these 

two experimental techniques allowed physicists to cool a gas from hundreds of degrees Kelvin to 

a few nano Kelvin without using any conventional cryogenic techniques.  
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  Figure 14. An atom chip [From Stickney (2007)] 

 

I.7.3. Applications of Bose-Einstein condensates 

The overall phenomenon of BEC is closely related to superconductivity and that 

application would trump everything else. The primary application of atomic BEC systems is in 

basic research areas at the moment, and will probably remain so for the foreseeable future. BEC 

is a tool for lithography, but that's not likely to be a real commercial application any time soon, 

because the throughput is just too low. Recently, an arbitrary pattern nanolithography system 

using interferometry of BECs has been proposed, since atomic interferometry using BEC has 

been demonstrated under various configurations (Debs et al., 2011; Muntinga et al., 2013), thus 

paving the way for the feasibility of the concept. 

One of the hottest areas in BEC at the moment is the use of Bose condensates (and the 

related phenomenon of degenerate Fermi gases) to simulate condensed matter systems. One can 

easily makes an optical lattice from an interference pattern of multiple laser beams that looks to 

the atoms rather like a crystal lattice in a solid looks to electrons: a regular array of sites where 

the particles could be trapped, with all the sites interconnected by tunneling. The big advantage 

BEC/ optical lattice systems have over real condensed matter systems is that they are more easily 

tunable. Possibilities for easily variations of the lattice spacing, the strength of the interaction 
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between atoms, and the number density of atoms in the lattice, allowing possibilities to explore a 

range of different parameters with essentially the same sample, which is very difficult to do with 

condensed matter systems where one needs to grow all new samples for every new set of values 

in exploration.  

There is a great deal of work using BEC systems to explore condensed matter physics. 

essentially making cold atoms look like electrons. The fiew years old review article, by 

Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger (Bloch et al., 2008) covers a lot of this 

work. There is also a good deal of interest in BEC for possible applications in precision 

measurement. At the moment, some of the most sensitive detectors ever made for things like 

rotation, acceleration, and gravity gradients come from atom interferometry, using the wavelike 

properties of atoms to do interference experiments that measure small shifts induced by these 

effects. One area of interest is high precision measurement schemes, for which BECs are 

particularly well suited because they are extremely cold and have laser like coherence properties. 

More information based on this BEC application can be found in the papers of Dunningham et al. 

(2005), Hardesty (2016) and Ball (2014). The other really hot area of BEC research is in looking 

for ways to use BEC systems for quantum information processing. In most of the experimental 

implementations of quantum computation up to now, a qubit is represented by a single or a few 

particles (Shi, 1999). But representing qubits in terms of macroscopic quantum coherence of a 

many-body system, such as superconducting state or BEC may have various advantages, 

including the simplification of the operations, easier manipulation, and being robust against some 

microscopic details and thus reduces errors. While quantum computation based on Josephson-

junction (Ioffe it et al., 1999; Mooij et al., 1999) involves superconducting states, atomic Bose-

Einstein condensates are more controllable at present day.  

 

I.8. Nanostructures 

I.8.1. Definition  

Nanostructured materials are the fundamental components of nanoscience and 

nanotechnology.  There have been several definitions given for nanostructures in recent years. 

Different organizations have differences in opinion when defining nanostructures. Thus, a single 

internationally accepted definition for nanostructures does not exist. For us to properly define 
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nanomaterials, we have to define nanoscale dimensions first. Generally, the International 

Organization for Standardization (ISO) defines a nanostructured material as a material with any 

external nanoscale dimension or having internal nanoscale surface structure. Similarly, the 

European Commission describes nanostructures as a manufactured or natural material that 

possesses unbounded, aggregated or agglomerated particles with external dimensions between 1-

100 nm size ranges. Generally, the use of different definitions across various jurisdictions acts as 

a major hindrance to regulatory efforts as it causes legal hesitation in utilizing regulatory 

techniques for identical nanostructures. Nanoparticles, quantum dots, nanoplates, nanofibers, 

nanowires, and other related terms have also been defined based on the ISO definition (Bleeker et 

al., 2013). 

 

I.8.2. Classification of nanostructures 

I.8.2.1. Classification of nanostructures based on dimension 

Nanostructures are structures between 1 and 100 nm in size that are made up of carbon, 

composite, metal, metal oxide, organic, or inorganic material. Nanostructures differ in shape, 

dimension, and size. Many nanostructures and nanomaterials have been reported and it is 

expected that their diversity will increase in the near future. Depending on their dimensions, 

nanostructures are classified into one of four categories (Ramrakhiani, 2012):  

- 0D, where length, height, and breadth parameters are fixed at a single point, for instance 

at a dot,  

- 1D, where only one parameter exists, for instance grapheme, 

- 2D, where parameters of length and breadth exist, for instance carbon nanotubes, 

transition metal dichalcogenides (TMDs), 

- 3D, where all three parameters exists, for instance Pd and ZnO NPs.  

Generally, electrons in 0D nanostructures are trapped in a dimensionless space while 1D 

nanostructures have electrons that can be moved along the (x)-axis no more than 100 nm. 

Accordingly, 2D and 3D nanostructures have electrons that can be moved along the (x, y)-

axis and (x, y, z)-axis, respectively (Ramrakhiani, 2012). 
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I.8.2.2. Classification of nanostructures based on material composite 

Nanostructures have different shapes, sizes, structures and origins. They can be spherical, 

conical, spiral, cylindrical, tubular, flat, hollow, or irregular in shape and be from 1 to 100 nm in 

size. Most nanostructured materials can be generally classified into four material-based 

categories: organic, inorganic, composite and carbon-based. 

 

I.8.3. Properties of nanostructures 

Properties are essentially about cause and effect. A material left completely undisturbed 

doesn’t display its properties. However, if we probe something, the response will reveal the 

characteristic properties of the object. More accurately, however, we should specify its 

reflectance, hardness, heat capacity and so on as precisely defined properties that can be 

measured in a specific setup. All the materials- may be metals, semiconductors or insulators. 

Thus geometrical structure, chemical bonds, ionization potential, electronic properties, optical 

properties, mechanical strength, melting point, magnetic properties etc. are all affected by the 

particle sizes.  

 

I.8.3.1. Mechanical properties of nanostructures 

Mechanical properties include elastic, inelastic (plastic, fracture, or viscoelastic), and 

strength. Elastic and inelastic properties are needed to predict deformation from an applied load 

in the elastic and inelastic regimes, respectively. The strength property is needed to predict the 

allowable operating limit. Some of the properties of interest are hardness, elastic modulus, 

bending strength (fracture stress), fracture toughness and fatigue strength. Micro/nanostructures 

have some surface topography and local scratches dependent upon the manufacturing process. 

Surface roughness and local scratches may compromise the reliability of the devices and their 

effect needs to be studied. 

Lot of techniques are used to measure mechanical properties of nanostructures materials. 

These include tensile tests and bending tests (Johansson et al., 1988), resonant structure tests for 

measurement of elastic properties (Johansson et al., 1988 ), fracture toughness tests (Wilson et 
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al., 1995), and fatigue tests (Komai et al., 1998). Most recently, a few researchers have measured 

mechanical properties of nanoscale structures using atomic force microscopy (AFM) 

(Sundararajan Bhushan, 2002) and nanoindentation (Li et al., 2003). For stress and deformation 

analyses of simple geometries and boundary condition, analytical models are more appropriate. 

For analysis of complex geometries, numerical models are used. The conventional finite element 

method (FEM) can be used down to a few tens of nanometers, although its applicability is 

questionable at the nanoscale. FEM has been also used for simulation and prediction of residual 

stresses and strains induced in MEMS devices during fabrication (Hsu and Sun, 1998), to 

perform fault analysis in order to study MEMS faulty behavior (Kolpekwar et al., 1998), to 

compute mechanical strain resulting from the doping of silicon, and to analyze micromechanical 

experimental data (Wilson and Beck, 1996) and nanomechanical experimental data. FEM 

analysis of nanostructures has been carried out to analyze the effect of types of surface roughness 

and scratches on stresses in nanostructures (Bhushan and Agrawal, 2003).  

 

I.8.3.2. Thermal properties of nanostructures 

It is found that melting point is lowered with decreasing particle size. It may be reduced to 

half of the original. The specific heat and thermal expansion may increase up to 50% or more 

with reducing particle size.  

 

I.8.3.3. Optical properties of nanostructures 

Enhanced luminescence with fast response has been observed by decreasing size of 

nanocrystals. This is because of changes in electronic structure and useful in fast response 

devices with emission of desired color. Nanoparticles may be used in lasers also since these can 

operate at lower threshold. Confinement of photons and phonons in nanoparticles also affect the 

Raman spectra. Nonlinear optical properties are also observed in semiconductor clusters in glass 

or polymer matrix.  
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I.8.3.4. Magnetic properties of nanostructures 

Saturation magnetization values of nanoparticles are smaller but coercive values are much 

larger than their polycrystalline counterparts. This is due to their high surface to volume ratio and 

increased effective anisotrophy. Curie temperature of ferromagnetic materials decreases with 

decreasing size of nanoparticles, and hence the substance remains paramagnetic even below usual 

Curie temperature showing super paramagtetism. In nanocrystalline phase, each particle is a 

single ferromagnetic domain.    

 

I.8.3.5. Electrical properties of nanostructures 

Electrical properties are affected by the size in nanometer range. Electrical conductivity is 

reduced by decreasing the size of nanocrystals. Ferroelectric materials become non-ferroelectric 

at reduced sizes (20 nm). 

 

I.8.4. Synthesis of nanostructures 

Various syntheisis methods found in both physical and chemical area of science are presented in 

Table 1. Figure 15 illustrate the general synthesis process of nanostructures as mentionned by 

Meera Ramrakhiani (2012).  

Table 1. Physical and chemical synthesis methods of nanostructures materials. Source. Meera 

Ramrakhiani (2012) 

Area of science Synthesis methods 

 

 

 

Physical methods 

 Consolidation 

 Gas aggregation of monomer  

 Inert gas evaporation  

 Sputtering  

 Ion beam method 

 Ball milling  
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 Lithography 

 

 

Chemical methods 

 Chemical precipitation and capping 

 Sol-gel method 

 Micro-emulsion 

 Condensed phase synthesis  

 Reduction technique  

 Electro-chemical deposition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. General process of nanostructures synthesis. Source. Ramrakhiani (2012) 
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I.8.5. Characterization of nanostructures 

In order to understand the inter-relationship between structure and properties, 

nanocrystalline materials need to be characterized on both atomic and nanometer scales. The 

characteristic of above involves determining the shapes and sizes of nanoparticles and 

understanding of the inter-particle interactions. This information is important both from the 

scientific and the industrial application point of view. A number of experimental techniques have 

been employed to yield structural information on nanocrystalline materials. These include ‘direct’ 

microscopic techniques such as (i) atomic force microscopy, (2i) transmission electron 

microscopy, (3i) scanning electron microscopy and (4i) field ion microscopy. In addition to these, 

many indirect techniques are also used to obtain the information about the nanomaterials 

structures. A few indirect techniques are (i) absorption spectra, (2i) diffraction of X-rays, 

electrons or neutrons, (3i) Rutherford back scattering, (4i) Raman spectroscopy, (5i) Auger 

electron spectroscopy and (6i) Photoluminescence and Photoluminescence excitation. X-ray 

diffraction patterns for various sizes of nanocrystals show that the peaks are broadened as the 

crystal size is reduced. The absorption edge or peak is shifted towards higher energy side by 

reducing the size indicating the widening of the forbidden energy gap of the material. These 

techniques are complementary to each other. Depending on the system to be studied, one 

technique may be better than the other. 

 

I.8.6. Quantum well     

I.8.6.1. Definition and schematization 

Quantum wells are 2D structures for which the bound states are characterized by standing 

waves in the confined directions and running in the other two. More precisely, a quantum well is 

a potential well with only discrete energy values. The classic model used to illustrate a quantum 

well is depicted in Figure 16 below.  
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Figure 16. Simple illustration of a quantum well potential. Source. Irnova (2018). 

 

I.8.6.2. Fabrication  

There are 3 main approaches to growing a quantum well material system: lattice-matched, 

strain-balanced, and strained (Sayed and Bedair, 2019). In the former, the well and the barrier 

have a similar lattice constant as the underlying substrate material (Sayed and Bedair, 2019). 

With this method, the bandgap difference there is minimal dislocation but also a minimal shift in 

the absorption spectrum. In a strain-balanced system, the well and barrier are grown so that the 

increase in lattice constant of one of the layers is compensated by the decrease in lattice constant 

in the next compared to the substrate material. The choice of thickness and composition of the 

layers affect bandgap requirements and carrier transport limitations. This approach provides the 

most flexibility in design, offering a high number of periodic QWs with minimal strain relaxation 

(Sayed and Bedair, 2019). A strained system is grown with wells and barriers that are not similar 

in lattice constant. A strained system compresses the whole structure. As a result, the structure is 

only able to accommodate a few quantum wells (Sayed and Bedair, 2019). 

 

I.8.6.3. Quantum well models 

I.8.6.3.1. The infinite quantum well model 

The simplest model of a quantum well system is the infinite well model (Fox and 

Ispasoiu, 2006). The walls/barriers of the potential well are assumed to be infinite in this model. 

This approximation is rather unrealistic, as the potential wells created in quantum wells are 
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generally of the order of a few hundred milli-electronvolts, which is far smaller than the infinitely 

high potential assumed. However, as a first approximation, the infinite well model serves as a 

simple and useful model that provides some insight into the physics behind quantum wells (Fox 

and Ispasoiu, 2006).   

 

I.8.6.3.2. The finite quantum well model 

The finite quantum well model provides a more realistic model of quantum wells. Here 

the walls of the well in the heterostructure are modeled using a finite potential
0V , which is the 

difference in the conduction band energies of the different semiconductors. Since the walls are 

finite and the electrons can tunnel into the barrier region. Therefore the allowed wave functions 

will penetrate the barrier wall.   

 

I.8.7. Applications of nanostructures 

Because of the very fine grain sizes, nanocrystalline materials exhibit a variety of 

properties that are different and often considerably improved in comparison with those of 

conventional coarse-grained polycrystalline materials. The fascinating field of nanotechnology 

has wide range of applications. Use of nanoscale materials may improve the performance of 

presently available devices. The nano-version of Silica, Titanium dioxide, Clays, Powdered 

metals, polymers and chemical products will be established in near future. New materials with 

difference performance characteristics may also be developed from nanostructured materials. On 

the other hand some new products have come up such as nanotubes, bucky balls, dendrimers, and 

quantum dots to cite a fiew. which are at research level.  

 

I.8.7.1. Tougher and harder cutting tools  

Cutting tools made of nanocrystalline materials, such as Tungsten carbide, Tantalum 

carbide, and Titanium carbide, are much harder, much more wear-resistant, erosion-resistant, and 

last longer than their conventional (large-grained) counterparts. They also enable the 

manufacturer to machine various materials much faster, thereby increasing productivity and 

https://en.wikipedia.org/wiki/Electronvolt
https://en.wikipedia.org/wiki/Quantum_tunneling
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significantly reducing manufacturing costs. Also, for the miniaturization of microelectronic 

circuits, the industry needs microdrills with enhanced edge retention and far better wear 

resistance. Since nanocrystalline carbides are much stronger, harder, and wear-resistant, they are 

currently being used in these microdrills.  

 

I.8.7.2. Ductile, machinable ceramics 

Ceramics are very hard, brittle, and difficult to machine. These characteristics of ceramics 

have discouraged the potential users from exploiting their beneficial properties. However, with a 

reduction in grain size, these ceramics have increasingly been used. Zirconia, a hard, brittle 

ceramic, has even been rendered superplastic. However, these ceramics must possess 

nanocrystalline grains to be superplastic. In fact, nanocrystalline ceramics, such as Silicon nitride 

(Si3N4) and Silicon carbide (SiC), have been used in such automotive applications as high-

strength springs, ball bearings, and valve lifters, because they possess good formability and 

machinabilty combined with excellent physical, chemical, and mechanical properties. They are 

also used as components in high-temperature furnaces.  

 

I.8.7.3. Phosphors for high-definition TV and flat-panel displays 

The resolution of a television or a monitor depends greatly on the size of the pixel. These 

pixels are essentially made of materials called "phosphors," which glow when struck by a stream 

of electrons inside the cathode ray tube. The resolution improves with a reduction in the size of 

the pixel, or the phosphors. Nanocrystalline Zinc selenide, Zinc sulfide, Cadmium sulfide, and 

Lead telluride synthesized by the sol-gel technique are candidates for improving the resolution of 

monitors. The use of nanophosphors is envisioned to reduce the cost of these displays so as to 

render high-definition televisions and personal computers affordable to be purchased by an 

average household. Also, the flat-panel displays constructed out of nanomaterials possess much 

higher brightness, contrast and fast response than the conventional ones owing to their enhanced 

electrical and magnetic properties.  
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I.8.7.4. Optical filters and attenuators  

Optical transparency of nanocrystalline ceramics can be controlled by grain size. By 

changing the size, optical filters for different colors can be made. These are also useful for 

sunscreens and so on.  

 

I.8.7.5. Lasers with low threshold current 

Double heterostructure lasers made from quantum well and quantum dots can be operated 

at extra low threshold current, which are used in compact disk players optical communications 

etc.  

 

I.8.7.6. Elimination of pollutants 

Nanocrystalline materials possess extremely large grain boundaries relative to their grain 

size. Hence, nanomaterials are very active in terms of their chemical, physical, and mechanical 

properties. Due to their enhanced chemical activity, nanomaterials can be used as catalysts to 

react with such noxious and toxic gases as carbon monoxide and nitrogen oxide in automobile 

catalytic converters and power generation equipment to prevent environmental pollution arising 

from burning gasoline and coal.  

 

I.8.7.7. High-power magnets 

The strength of a magnet is measured in terms of coercivity and saturation magnetization 

values. These values increase with a decrease in the grain size and an increase in the specific 

surface area (surface area per unit volume of the grains) of the grains. It has been shown that 

magnets made of nanocrystalline yttrium-samarium-cobalt grains possess very unusual magnetic 

properties due to their extremely large surface area. Typical applications for these high-power 

rare-earth magnets include quieter submarines, automobile alternators, land-based power 

generators, and motors for ships, ultra-sensitive analytical instruments, and magnetic resonance 

imaging in medical diagnostics. 
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I.9. 2D Transition metal dichalcogenides  

I.9.1. Definition, composition and types 

Transition metal dichalcogenides (TMDs) are 2D nanostructures materials of the type 

MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (usually 

S, Se or Te). The first element corresponds to groups 104  of the transition metal series. 

Generally, TMDs materials containing group 74  transition elements have a layered structure, 

while those with group 108 transition metals have non-layered structures (Han et al., 2015). 

Depending on their chemical compositions and structural configurations, atomically thin 2D 

materials can be categorized as metallic, semi-metallic, semiconducting, insulating, or 

superconducting. Unlike graphene, many 2D TMDs are semiconductor in nature. 

 

I.9.2. Synthesis of 2D transition metal dichalcogenides 

There are many different techniques used for the development of 2D TMDs materials. These 

consist of: 

- mechanical exfoliation method (MEM),  

- liquid exfoliation method (LEM),  

- sulfurization (or selenization)  

- vaporization of metal oxide with chalcogen precursor, 

- chemical vapor deposition, 

- metal-organic chemical vapor deposition (MOCVD). 

MEM: MEM is typically adopted to prepare single-layer TMDs samples. Within this method, 

the single crystal TMDs samples prepared by the mechanical exfoliation method are of good 

quality, and can be used for studying their basic properties (Yin  et al., 2012; Li et al, 2012) by 

optical microscopy, atomic force microscopy, scanning tunneling microscopy, transmission 

electron microscopy and so on. However, the size of the TMDs materials prepared by the MEM 

is quite small approximately on the tens of microns scale, posing a limitation to real device 

applications.  
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CVD: CVD method is the most effective way to achieve large area growth. This method can 

be divided into two types: the sulfurization (or selenization) of metal thin films and vapor phase 

reaction of metal oxides with chalcogen precursor. The CVD is one of the most effective methods 

to achieve large area growth of atomically thin 2D TMDs for the successful device applications. 

The simplest form of CVD to grow 2D TMDs is the co-evaporation of metal oxides and 

chalcogen precursors that lead to vapor phase reaction followed by the formation of a stable 2D 

TMD over a suitable substrate. The growth mechanism of CVD method differs in each synthesis 

process as the materials forming process also depends on (1) properties of substrate, (2) 

temperature and (3) atomic gas flux (for further informations, redears should refer to (Lee, et al., 

2012). 

MOCVD: MOCVD is similar to a conventional CVD except those metal-organic or organic 

compound precursors (OCP) are used as the source materials. In MOCVD reaction, the desired 

atoms are combined with complex organic molecules and flown over a substrate where the 

molecules are decomposed by heat and the target atoms are deposited on the substrate atom by 

atom. The quality of films can be engineered by varying the composition of atoms at atomic 

scale, which results in the desired thin film with high crystallinity. The advantages of MOCVD in 

2D TMDs growth are: (i) it can achieve large-scale and uniform growth of 2D TMDs, (ii) it 

provides a precise control over both metal and chalcogen precursors and thereby controls the 

composition and morphology of 2D TMDs (Kang, et al., 2015). In addition, the MOCVD method 

is versatile, highly scalable, and provides significant stoichiometric control over the films, but the 

use of toxic precursors, slow film growth rate and high production cost set it back for the 

widespread use. 

 

I.9.3. Properties of transition metal dichalcogenides 

Among several properties that possesses TMDs, the most important are Mechanical and 

optical properties. The strength of the strongest single layer membranes is 11% of their Young's 

modulus, corresponding to the upper theoretical limit, which indicates that the material is highly 

crystalline and almost defect-free. This results show that single-layer MoS2 could be suitable for 

a variety of applications, such as reinforcing elements in composites and for the fabrication of 

flexible electronic devices (Bertolazzi et al., 2011). The various electronic properties of TMDs 
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arise from the filling of the non-bonding d  bands from the group 104 species. When the 

orbitals are partially occupied, the TMDs display metallic properties, whereas when they are fully 

occupied, they exhibit semiconducting ones. The influence of the chalcogen atoms on the 

electronic structure is minor compared with that of the metal atoms. However, it is observed that 

the broadening of the d bands decreases the bandgap by increasing the atomic number of the 

chalcogen (Chhowalla et al., 2013). The bulk TMDs material has an indirect bandgap according 

to both the theoretical calculations and experimental results (Cong et al., 2014; Li et al., 2007; 

Lee et al., 2012; Li  et al., 2012). 

 

I.9.4. Applications of transition metal dichalcogenides 

2D TMDs materials are considered attractive for diverse applications including electronics 

[Radisavljevic et al. (2011); Wang et al. (2012); , optoelectronics (Yin et al., 2012; Lee et al., 

2012; Zhong et al., 2010), sensing (He et al., 2012; Li et al., 2012a; He et al., 2012b) and energy 

devices (Du et al., 2010) (Figure 18).  
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Figure 17. Various gas, chemical and biosensors constructed using 2D TMDs materials like MoS2, WS2, etc. 

[Reprinted with permission from Perkins et al. (2013), American Chemical Society, American Chemical Society 

(Loan, et al., 2014), John Wiley and Sons (Cho, et al., 2015), Nature Publishing Group]. 

 

Conclusion 

This chapter focused on generalities on quantum population transfer in atomic particles 

and particularly two-level system while interacting with laser light. We begin with coherent 

dynamic of atomic particles (TLS) where specific mathematical models and basis of theoretical 

investigations are presented.  Further, a review on laser cooling and trapping of atomic particles 

is presented. Of course, concepts and techniques for both cooling and trapping phenomena are 

presented, and thus an important landmark in the temperature scale corresponding to various 
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temperatures selection or cooling types is depicted, followed by important applications. Finally, 

we present a large literature review on nanostructures and particularly 2D TMDs materials 

thereby reporting their applications. 
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CHAPTER TWO 

METHODS AND MODELS 

Introduction 

The physics of light-matter interactions is a rapidly developing interdisciplinary research 

area, combining methods and phenomena both from condensed matter physics and quantum 

optics (Shahnazaryan, 2017). The background, challenges and complete overview based on laser 

cooling and trapping of atomic particles have been carefully discussed in the previous chapter. 

There, a perefect classification of different laser cooling types and trapping systems are discussed 

with illustrations. BEC with applications as similar as 2D TMDs materials with properties also 

constitute part of the previous section. The present chapter for instance, presents some 

mathematical tools and methods that are useful in assessing effect of surrounding environment in 

laser cooling and trapping of atomic entities and particularly polaritons and polarons, so as to 

achieve our main objective. To make things easier for readers, we divided the chapter in three 

main sections. The first section presents some mathematical solvable models such as Rabi, 

Jaynes-Cummings and Landau-Zener models. This is for readers to have a lucid idea on 

mathematical approach and theoretical formulation made in the present thesis. The second section 

presents methods and models with analytical results based on the semiclassical approach of laser 

cooling and trapping of TLS in general and particularly polaritons and polarons. The main 

purpose of this section is to clarify for readers the origin of the force and torque in laser cooling 

and trapping phenomena. The last section is devoted to the presentation of quantum mechanical 

approach of laser cooled and trapped polariton and polariton. This section is the main section 

where we developed our model and thus possesses important mathematical methods and 

formalism which allow robust control of the dynamic of laser cooled and trapped polariton and 

polaron.  
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II.1. Mathematical solvable models 

II.1.1. Rabi and Jaynes-Cummings models 

The Rabi model (RM) (Rabi, 1936) is the semi-classical version of the model which 

describes the simplest interaction between a TLS with laser light. The quantized version of the 

Rabi model was investigated by Jaynes and Cummings in 1963 (Jaynes and Cummings, 1963). 

The model represents the only model where rotating wave approximation (RWA) can be apply. 

The initial goal of Jaynes and Cummings while introducing such a model was to study the 

relationship between the quantum theory of radiation and the corresponding semi-classical (SC) 

theory. The Jaynes-Cummings Hamiltonian (JCH) is expressed in Eq.1, where a and a are the 

destruction and creation operators for a single bosonic mode of frequency   ,  21
2

1
 i  

are pseudo-spin operators defined so as to satisfy the commutation relations   3,    and 

     2,3  
 with level splitting 2 , and g  denotes the coupling parameter which control 

the light matter interaction.  

 3 1JCH a a g a a                                                                                                       (1). 

The Jaynes Cummings Model (JCM) has been very successfully applied to understand a 

range of experimental phenomena, such as vacuum Rabi mode splitting (VRMS) (Shimizu and 

Sasada, 1998) and quantum Rabi oscillation (QRO). In fact, the model is easy to solve, allowing 

the physical properties of the model to be readily obtained and compared with a large number of 

experiments. The basic physics explored in the JCM includes Rabi oscillations, collapses and 

revivals of quantum state populations, quadrature squeezing, entanglement, Schrödinger cat states 

and photon anti-bunching.  Circuit quantum electrodynamics (QED), two-dimensional electron 

gases and trapped ions supported by the concepts of quantum metamaterials and quantum 

simulations (Pedernales et al., 2015) have emerged as platforms for faithful representations of 

abstract models, quite analogous to the possibilities established by the advent of cold atom 

physics. The impact on practical applications is even greater. This is because the TLS appearing 

in the SC and quantum Rabi models is a qubit which is the building block of quantum 

information technologies with the ultimate goal to realize quantum simulations and quantum 

computations. The RM forms the connecting link in the interplay of mathematics, physics, and 

technology. 
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II.1.2. Landau-Zener model 

Landau–Zener model (LZM) is an analytic solution to the equations of motion governing 

the transition dynamics of a TLS, with a time-dependent Hamiltonian varying such that the 

energy separation of the two states is a linear function of time (Landau, 1932; Zener, 1932; 

Stûckelberg, 1932; Majorana, 1932). The Schrödinger equation (SE) for a TLS can be reduced to 

a second order complex ODE. One common strategy for its solution is to try to transform the 

equation into a form for which the solutions are known. The model functions describing the time-

dependence of the external field are typically assumed to be analytic. They are of such form that 

the ODE belongs to the class of hypergeometric differential equations, basically the most general 

class of ODEs in mathematical physics for which the solutions are currently well characterized. 

Focusing ourselves on the second order ODE for amplitude, the two-level SE consists of two 

coupled differential equations, first-order in time with probability amplitudes which can be 

coupled. Yield a single second ODE for either one of the probability amplitudes. Giving the 

ground state g , the ODE obtained with the real-symmetric traceless Hamiltonian of the form 

Eq.2 is given by relation Eq.3, and similar equation holds for excited state e but with energy 

( )t replace by ( )t . LZ model is obtained from Eq.2 given that energy  ( )t and coupling 

 ( )V t  are expressed as 0( )t t  and 0( )V t V . 0 and 0V are again real constants. This gives a 

model for the time-dependencies of the system. 

 
   
   
t V t

H t
V t t





 
  

 
                                                                                                     

          (2),
 

. .
.. . .

2 2

1 1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

( ) ( )

V t V t
C t C t i t i t t V t C t

V t V t
  

 
      
 
 

                                       
            (3). 

 

II.1.3. The Schmidt decomposition  

The Schmidt decomposition (SD), named after its originator Erhard Schmidt, refers to a 

particular way of expressing a vector in the tensor product of two inner product spaces. It is a 

widely employed tool of quantum theory which plays a key role for distinguishable particles in 

https://en.wikipedia.org/wiki/Analytic_solution
https://en.wikipedia.org/wiki/Two-state_quantum_system
https://en.wikipedia.org/wiki/Hamiltonian_%28quantum_mechanics%29
https://en.wikipedia.org/wiki/Erhard_Schmidt
https://en.wikipedia.org/wiki/Coordinate_vector
https://en.wikipedia.org/wiki/Tensor_product
https://en.wikipedia.org/wiki/Inner_product_space
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scenarios such as entanglement characterization, theory of measurement and state purification 

(Sciara et al., 2017).  

We begin with a review. We recall the notation of the intrinsically symmetric particle-

based approach introduced by Lo Franco and Compagno (2016). Hereafter, we mean by 

symmetric states or symmetric Hilbert space, the symmetric or antisymmetric behavior of the 

system states depending on the bosonic or fermionic nature of the particles, respectively. The 

overall state of two identical particles, one in the state   and other in state  , is completely 

characterized by enumerating the one-particle states and represented as , . Two particles in 

, are not independent and their overall state is a whole which cannot be written as a tensorial 

product of one-particle states, i.e.  , . However, a nonseparable external 

symmetric product of one-particle states can be introduced as  :, . Analogously, we 

have    


:, . The probability amplitude of finding the two particles in 

,  if they are in , , is obtained by the symmetric two-particle scalar product defined by Lo 

Franco and Compagno (2016) in terms of one-particle amplitudes Eq.4. This probability 

amplitude immediately shows that the generic state , is symmetric, i.e.  ,,  . The 

state , spans a linear symmetric two-particle Hilbert space 
 2
H . A symmetric inner product 

between state spaces of different dimensionality can also be introduced (Lo Franco and 

Compagno, 2016) as indicated in Eq.5. 

 ,,                                                                                       (4). 

 kkkk  ,,                                                                      (5). 

In the above equations, the quantity  is a constant which can takes the value 1  for 

bosons and 1 for fermions. In
 2
H , it is possible to choose an orthonormal two-particle basis 

 ji, , i and j  being single-particle states, where an arbitrary state of two identical particles 
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can be expressed as 
  

ij ij jic ,2
. From Eq.5, one then gets the reduced (single-particle) 

density matrix via partial trace (Lo Franco and Compagno, 2016) as given in Eq.6. Here

    
j

jj 22 .  

        
j

Trjj  1221

2

1

2

1
                                                                                      (6). 

We emphasize that now partial trace depends on the single-particle basis being local or 

nonlocal. It then comes the following theorem: ‘within a symmetric two-particle Hilbert space

 2
H , a pure state of two d-level identical particles   can always be written in the (SD) Eq.7. 

The Schmidt coefficients 
i  are the square roots of the eigenvalues of the reduced density matrix 

and the states  i  its eigenstates. The state i


belongs to the basis i  and the symmetric two-

particle basis  ii


,  is the Schmidt basis. 

ii
i

i ,
2

1
  , 








 1,0

i

ii                                                                                       (7). 

 

II.2. Semiclassical approach of laser cooling and trapping of two-level systems 

II.2.1. Dipole approximation of the force and corresponding torque 

Early in 1619, Johannes Kepler suggested that the mechanical effect of light might be 

responsible for the deflection of the tail of comets entering our solar system. Also, the classical 

Maxwell theory showed in 1873 that the radiation field carries with it momentum and that “light 

pressure” is exerted on illuminated objects. Later, in 1905, Einstein introduced the concept of the 

photon and showed that energy transfer between light and matter occurs in discrete quanta (Dion 

et al., 2016). Force and torque were found to be of great importance in microscopic events, and 

particularly in laser cooling and trapping of TLS. The net force acting on a charge q at position 
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R  moving with the velocity V  when it is interacting with the EM field E  and B  is entirely 

determined by the help of classical Lorentz equation (Eq.8). 

 )()()( RBVREqrFq  .                                                                                                       (8). 

A quantized TLS is well described by a dipole. To derive the EM force acting on a dipole, 

we consider two oppositely charged particles q  and q  with masses m placed at 
2

R
d  and 

2

R
d  respectively. That is separated by a tiny distance d , and illuminated by an arbitrary EM 

field E  and B , as shown in Figure 18. The resultant force on the two charges is expressed by 

Eq.9. In both Eq.8 and Eq.9, R is for the center of mass coordinates. The two particles are bound 

to each other by a dipole momentum. 

)
2

()
2

(
d

RF
d

RFF qq  
.                                                                                                     (9). 

 

Figure 18. Graphical representation of the system use to derive mechanical force and torque when an atom interacts 

with light in the dipole approximation. 

 

When the field is almost constant within the distance of d , we can expand Eq.9 in powers 

series of d  and truncate the higher term beyond the second order. It comes the following: 



  

51 
 

           RF
d

RF
d

RFRF
d

RF
d

RF
d

RF qRqRqqqqq 









82822

2
''

2
'                   (10),        

           RF
d

RF
d

RFRF
d

RF
d

RF
d

RF qRqRqqqqq  









82822

2
''

2

'          (11). 

The substitution of Eq.10 and Eq.11 into Eq.9 and taking into account Eq.8, conducts to 

the following expression of the mechanical force. 

     BRdqEdBVdqEdRFRF
d

F RRRRqRqR  


2
                             (12), 

where R
dt

dR
V  .                                                             

Taking into consideration some mathematical formulas, such as the derivation of a 

product of two functions u  and v , and also introducing the third derivative term so as to obtain

dy

dt

dt

dx

dy

dx
  (for functions x and y  for example) (Djelouah, 2013), then the expression of the 

force F gives Eq.13 where the dots denote the differentiation with respect to time.  

   BRBEREF     1                                                                                 (13). 

In Eq.13 above, the parameter   represents the dipole moment and expressed explicitly 

by qd . It time derives expression is   and one can easily obtains
dt

d
  . Jeffry (2002) 

shown that the sinusoidal plane wave constitutes the particular solution of the wave equation if 

the relation that follows, call dispersion relation, 
c

k


 is verified. Again, Fujii (2014) also 

shows that 0


Ek  for a plane wave. Since cBE  , one can write, 0


Bk . The final 

expression of the force acting on a dipole electric moment takes the form of Eq.14. 

    oin
moving

Lorentzoin FFFBRBEF homhom    .                                           (14). 

In Eq.14, to the right hand side, the first term oinF hom represents the inhomogeneous field-force, 

the second LorentzF  the Lorentz force and the third 
oin

movingF hom
can be consider as the inhomogeneous 
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field-force on the moving dipole moment which perceives the magnetic field in the reference 

frame as the electric field due to the Lorentz transformation. 

Besides the force, an EM field E and B can also carry angular momentum which exerts a 

mechanical torque on an irradiated structure. This torque can be calculated from classical 

electromagnetism, as similar as we did for the mechanical force. The mechanical torque N acting 

on the charges in the electric dipole moment, for respective charges q  at 
2

d
R   and q  at 

2

d
R  is given in Eq.15. 


























 

222

d
RF

d
RF

d
N qq .                                                                                       (15). 

Performing similar expansions as in Eq.10 and Eq.11, and taking the difference, yield Eq.16. 

    BVEqd
d

BVEq
d

RF
d

RF RRqq 
















 

4
2

22

2

                                   (16). 

Taking into account considerations of the above section and from the plane electromagnetic wave 

0 E and 0 B , it comes Eq.17 below.                                                                                

     BRBEBVEqd R    .                                                                 (17). 

Therefore,  

B
d

BqVqE
d

RF
d

RF qq 

























 

4
22

22
                                                       (18).      

And the net mechanical torque, acting on the dipole which interacts with light expressed in Eq.17 

takes the form of Eq.19. 

















 B

dd
BREN

42
)(                                                                                 (19). 

To the right hand side of Eq.19, the first term is a torque on the dipole moment in the electric 

field, the second term is the contribution from the Lorentz transformation of the magnetic field 
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and the third one is another torque from the Lorentz torque induced by the inhomogeneous 

magnetic field. The parameter   still represents the dipole moment and expressed explicitly by

qd  with time derivative . If we apply Eq.19 to an interaction between laser light and an 

atom, and specifying a monochromatic radiation with an angular frequency 
l  , then the 

wavelength  of the laser light is much larger than the dimensions of the atomic TLS d . As 

already said in the first part for a plane wave, when E  and B  are the fields of an identical 

electromagnetic wave (EMW), the amplitude satisfies BcE  . 

The proper use of Eq.13 and Eq.19 requires additional approximations. In a semi classical 

treatment, the system is considered as sitting at point R , with a well defined velocityV . The 

position and the momentum must be replaced by their corresponding operators and the atom is 

described by a wave packet of spatial extension R  and linear momentum extension p  (Xiao-

Guang and Chang-Pu, 1996). But, since both position and linear momentum seems to be small 

compared to the wave length, then one can apply the point like description. For such an approach 

to be valid, two essential conditions must be simultaneously fulfilled (Xiao-Guang and Chang-

Pu, 1996):  

i. the dimensions of the atom must be small compared to the laser optical wavelength λ, 

ii. the displacement velocity of the atom must be smaller compared to that of light (laser 

light). 

Moreover, like has suggested Jeffry (2002), the velocity of the system is much smaller than 

that of light c . So, from i  and ii , it comes c and d respectively. The second 

inequality conducts to the condition  1dk  . Then, the third term of Eq.13 and that of Eq.19 

are smaller compared to their respectives first term. The third term of Eq.13 also smaller than the 

first term. These can be interpreted by the following mathematical relations: 

EK
d

B
dd





















 2

2

824
                                                                                             (20), 

  EKE                                                                                                                   (21), 
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EKB 


                                                                                                                       (22). 

From the following discussions, the net mechanical force and torque giving by Eq.10 and Eq.19 

take the expressions Eq.23 and Eq.24. 

  Lorentzoin FFBEF 


hom                                                                                     (23), 

EN                                                                                                                                    (24). 

Trapping can also be looking as a simple conservation of atoms in bottles which walls are 

immaterial rather than materials substances. For trapping material, we choosed a magnetic field 

which we looked as a trap as has suggested Gov and Shtrickman (1999), who also gave an 

explanation of the physical mechanism underlying the operation of magnetic trap. Our motivation 

for choosing this type of trap, as similar as did Gov and Shtrickman (1999), comes from the fact 

that magnetic trap is the natural candidate for trapping both microscopic particles and large scale 

objects (Harrigan, 1983 ; Hones and Hones, 1995) in one hand and the electromagnetic field can 

be used to confine particles with less perturbation to their internal structure and minimal heating 

from the surrounding environment in the other hand.  The appropriate way to describe their 

operation is in terms of classical mechanics in which the particle is realized in the trap by 

pointing its magnetic moment antiparallel to the direction of the magnetic field. The Hamiltonian 

for interaction of a magnetic moment 
B  known as Bohr magneton with a homogeneous 

magnetic field B  is given by Eq.25 that fellows, where we suggested the field to be directed by 

3  
which is the Pauli operator in the z direction. 

3  BH BB
                                                                                                                         (25). 

But, it has been found that, inside the trap, the particle experiences lateral oscillations 

which are slow compared to their precision. Therefore the particle may be considered as 

experiencing a slowly rotating magnetic field. As a result, the magnetic moment 
B  points 

antiparallel to the local magnetic field lines and the Hamiltonian of the system can just take the 

normal form (Eq.26) which follows;  
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3  BH BB
                                                                                                                          (26). 

These expressions for the Hamiltonian of the interacting system correspond to the spin fiability 

frequency is giving by Eq.27. 

3


  B
I

h B
B                                                                                                                        (27), 

where I is the related spin equal to 2
1  for polaritons. From the previous relations, the 

Hamiltonian 
BH  that characterizes the field-polariton interaction takes the form of Eq.28. 

3
2




 B
BH                                                                                                                            (28). 

In the relation above, BBB    is the magnetic field frequency, giving that  is the 

gyromagnetic factor, 
B the Bohr magneton and B the magnetic field defined by Eq.29 bellow: 

        
1

cos cos sin sin
2

B BB kz t i kz t                                                                              (29). 

To clearly understand the effect of magnetic field in laser cooling and trapping of 

polariton, we consider two important assumptions. At first, we assumed that since laser cooling 

and trapping processes are always carried on in the real environment, therefore the Hamiltonian 

of the magnetic trap should be of the real part. Secondly, we consider that for a weak magnetic 

field with frequency B ,   0sin tB  as 1B .  Thus, the second term to the right hand side 

of Eq.25 vanishes and the magnetic field expression becomes     
1

cos cos
2

BB kz t . The 

graphical representation for the simplified expression of the magnetic field is illustrated in Figure 

19.                                   
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Figure 19. Graphical representation of the magnetic trap used to trap cooled polariton choosing  for and 

schematization of trapped atomic entities.  

  

II.2.2. The semiclassical Jaynes-Cummings Hamiltonian  

In this section, we consider an EM wave propagating toward the z-direction with an 

electric field described by Eq.30.  

 kztEE l  cos0
                                                                                                                  (30).

      

In Eq.30,   is still the well known electric dipole moment along the direction of the electric field, 

and 
0E  the amplitude of the electric field. l is the laser frequency. The laser light propagating 

toward the z-direction with an electric field E  interacts with the atomic particle (essentially 

polariton or polaron) at the position 0z . The Hamiltonian of the system, i.e. atomic particle 

light interaction is giving by Eq.31.
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'HHH                                                                                                                                 (31). 

In Eq.31, exc phH H H   is a time-independent Hamiltonian of a atomic particle (here a TLS) 

given that 
excH is the exciton Hamiltonian expected as a two-level Hamiltonian and phH is the 

photon Hamiltonian. 'H is the time-dependent Hamiltonian due to an interaction between TLS 

and the EM wave. The time dependent Hamiltonian of the radiation field is expressed by Eq.32. 

twEtwEH ll coscos. 00
'                                                                                                (32).   

Since only the electric dipole transition has been considered, the contribution of the magnetic 

field is neglected. In addition, the effect of the surrounding environment on the system of laser 

cooled and trapped polariton is taking into account through the interaction Hamiltonian 
IH  

Eq.33. 

   aagH I                                                                                                                 (33). 

 In Eq.33, g  is the coupling strength constant between the polariton and photon, a  and a  are 

the photon creation and annihilation operators, respectively. The complete Hamiltonian of the 

system of cooled and trapped polariton (Eq.31) interacting with surrounding environment 

becomes as given in Eq.34. 

   0' cosexc ph I exc lH H H H H H a a g a a E t     

                                     (34), 

By introducing the magnetic field in the system, characterized by the magnetic field 

Hamiltonian Eq.28, the total Hamiltonian of the system of laser cooled and trapped polariton with 

magnetic field is given by Eq.35 in which all the parameters have been identified in the above 

sections.   

    1 3 0' cos
2

B
exc ph I B exc lH H H H H H H a a g a a E t


      

              

(35). 
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II.2.3. The wavefunction 

The wavefunction of the laser cooled and trapped TLS is investigated by solving the time 

dependent Schrödinger equation (TDSE) (Eq.36) for the giving Hamiltonians Eq.34 and Eq.35.  




H
t

i 



                                                                                                                               (36). 

In general, solution of the above equation, for a TLS Hamiltonian 
0H  is given by Eq.37. 

iii wH 000    , 2,1i                                                                                                              (37). 

In Eq.37 i0 and i are eigenfunctions and energies for the eigenstates 1  and 2  

respectively  21   . From here, it comes that the solution for the Schrodinger Eq.36 

considering the total Hamiltonian Eq.35 is a linear combination of the wave function for Eq.37 as 

in Eq.38. 

    
















 titatita


2

022
1

011 expexp





                                                                   (38), 

where  ta1
and  ta2

in Eq.38 are the probabilities amplitudes of the eigenstates 1  and 2  

respectively. In order to obtain the amplitude probabilities transition  ta1  and  ta2 , we must 

solve the Schrodinger Eq.36. To avoid difficulties, it’s necessary for us to write the total 

Hamiltonians Eq.34 and Eq.35 in the matrix form. This constitutes the main purpose of the next 

section. 

 

II.2.4. Matrix representation of the semiclassical Jaynes-Cummings Hamiltonian 

The matrix representation for Hamiltonians of kind Eq.34 and Eq.35 is widely explained 

in reference (Xiao-Guang and Chang-Pu, 1996). In order to find the easiest manner to solve the 

Schrodinger equation (Eq.36) with the help of Hamiltonians Eq.34 and Eq.35, we decompose the 

equivalent Hamiltonians in diagonal and off-diagonal parts. We started by making a review of the 

two-dimensional complex vector space 2C and complex matrix space  CM ,2  within our 

necessity. Firstly, we introduce the Pauli matrices  321 ,,   defined by Eq.39: 
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
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
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
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01

10
1 , 




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 
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0
2

i

i
 , 












10

01
3 .                                                                           (39); 

And also set the pseudo-spin matrices 
  and 

  with the unit matrix 
2l  as indicated in Eq.40 

below: 

  









00

10

2

1
21  i ,    










01

00

2

1
21  i , 1

10

01
2 








l                             (40). 

Let consider now  1,0  a basis of 2C  by use of Dirac’s notation (Eq.41): 











0

1
0 ,  










1

0
1                                                                                                                   (41), 

It comes from Eq.41 that, 

101  ,  011                                                                                                                (42). 

Thus, 
1  is considered as the ‘flip operator’ an equivalent term with quantum creation and 

annihilation operators in the classical electromagnetism. Giving that the energies of the ground 

and excited state are 
1 and 

2  respectively with  21   , then we can write the relation in 

Eq.43, where 
120    is the Bohr’s frequency. Since Eq.42 is satisfied, then the time 

dependent Hamiltonian 'H can takes the matrix form Eq.44. 



























22
0

0
22

021

021





H                                                                                         (43). 

 

  






















0exp
2

exp
2

0
cos

0

0

10
'

ti
E

ti
E

tEH

l

l

l







 .                                              (44). 

From Eq.43 and Eq.44, and following the expression of the interaction Hamiltonian (Eq.33), the 

total Hamiltonian of the system is then given by Eq.45. 
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





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
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
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
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 NtEga
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H

l
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
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




22
cos

cos
22

021
0

0
021

                                                                    (45). 

Since our Hamiltonian has to be hermitian, then Eq.45 becomes Eq.46 which is the most 

appropriate form of the Hamiltonian Eq.34 in the matrix representation, 




























 Nega

egaN
H

tiRabi

tiRabi

l

l













222

222
021

021

                                                                    (46). 

Taking into consideration the effect of magnetic trap in the Hamiltonian Eq.46 conducts to the 

final expression of the total Haimiltonian of laser cooled and trapped two level atomic entity 

Eq.47.  

                                          (47). 

Unfortunately we cannot solve Eq.36 exactly at the present time using both Hamiltonians Eq.46 

and Eq.47. In addition, Eq.36 must be non–integrable. Therefore we must apply some 

approximate method in order to obtain an analytic approximate solution. For simplicity, we 

focused our choice to the RWA. The next section is devoted to explain the RWA method.  

 

II.2.5. Rotating wave approximation 

Let us recall in this section the Euler formula Eq.48. 

  iii eeie  cos2sincos                                                                                  (48). 

From Eq.48, its comes Eq.49 below: 

   iiiii eeeee   21cos2                                                                                     (49). 
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
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 Nega

egaN
H
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

2222

2222
021

021

1



  

61 
 

Because ie goes away from ie by two times speed, so we neglect this term. We call this 

approximation the RWA illustrated in Figure 20.  

 

 

 

 

 

 

 

 

Figure 20. Schematization of the Rotating Wave Approximation (RWA) 

 

Based on the above approximation, it’s then possible to solve the Schrödinger equation 

(Eq.36) using the Hamiltonians Eq.46 and Eq.47 within the RWA. From Eq.40, it’s easy to see 

that 












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























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
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 ti

t
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l

l

l

e
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e
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2

2
'
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0

222

222

0

0












                                       (50). 

In Eq.50, 
0ERabi   is the Rabi frequency of oscillation of the system. If we set Eq.51 then, the 

Schrodinger equation 
d

i H
dt


 for the total Hamiltonian H  at unite   gives Eq.52. 

 




















ti

ti

l

l

e

e

2

2

0

0
.                                                                                                                  (51), 

ie                        1z  

ie  


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
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


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
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

222

222
021

021

Rabi

Rabi

t
i                                                                                   (52). 

The solution for the equation Eq.48 using the RWA and considering Eq.48 takes the form 

of Eq.53.  

teeititee ti
ti

Rabilti
i ll

2
sin

2
sin

2
cos 2

0

1

0

2
02

0
01

2 









 







 







 









 












             (53). 

In Eq.53, we considered that   22

0 Rabil   . Identifying Eq.47 with Eq.53 taking into 

account the fact that we have set 1 lead to the Eq.54 and Eq.55 for the transition 

probabilities amplitudes.  

  






 














 

 tittita ll

2
sin

2
cos

2
exp 00

1


                                                                (54), 

and 

  ttita lRabi

2
sin

2
exp 0

2









 






                                                                                    (55). 

Thus, solution of the Schrödinger equation (Eq.36) based on the Hamiltonian of the type 

Eq.34 using the RWA conducts to the expression of wavefunction of the cooled and trapped 

polariton with laser, given that the subscript ' 'cp stands for cooled polariton: 

       teeititeet cp

N
it

ti

cp

Rabi
cp

cp

cp

N
it

ti 


























 sin
2

sin
2

cos 02
2

2

01
2

2 0

2

0

1 








      (56), 

where   l
,    0l

, 
4

2
4

2
2

2
2 Rabi
cp g


 .  

 Following the same mathematical approach in the case of Hamiltonian Eq.31, then the 

wavefunction of laser cooled and confined in the magnetic field is expressed in Eq.57. To avoid 

confusion with that of cooled polariton, the supscript ' 'cp is changed to '1' . 
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
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 



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










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

          (57). 

Here,    01 lB
, 

2
2

2

4
g


 , and 

4

2
22

1
2
1

Rabig


               

Even at the present level, complete expressions of the force and corresponding torque can not be 

obtained without the well known of the dipole moment induced by the radiation field. We then 

concentrate ourselves in the next section in evaluating the dipole moment induced by laser light.  

 

II.2.6. Dipole moment induced by laser light on the two-level systems 

From Eq.54 and Eq.55 above, it’s become easy to find the dipole moment induced by 

electromagnetic wave laser light. The expectation value of such dipole moment is expressed by 

Eq.58. 

             ttatatitatat 0122
*
10211

*
2 expexp                                                            (58). 

Since   2112
then, it comes for the result of Eq.59 bellow, 

      CCtititt l
lRabi .expsincos1

2

0 















 


                                             (59). 

The development of Eq.59 considering the trigonometric relations Eq.60 and Euler’s formulas 

Eq.61, allow the obtention of the final result Eq.62. 

  2sin
2

1
cossin  ,    

2

2cos1
sin2 




                                                                           (60), 

   ii ee cos2 ,    ii eei sin2                                                                                 (61), 

    tEtEtt ll
l 





 sinsincoscos1 0

2

0
0

2










                                             (62). 

This expression for the dipole moment can also take the form Eq.63, 
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  tEtEt ll  sincos 0
''

0
'                                                                                          (63), 

where 

 tl 





 cos10

2
' 

 , tE 


 sin0

2
'' 

                                                                   (64). 

The first and the second term of  Eq.64 are respectively the dispersive and dissipative 

components of the polarizability of the atom. Achieving calculus on the dipole moment induced 

by laser light on the atom, the mechanical force and torque calculation looks very simple, from 

where we easily evaluate the linear and angular momentum and also energy. The dipole moment 

induced by a system of two opposite charge can just be understood physically as the separation of 

positive and negative electrical charges within a system; that is a measure of the system’s overall 

polarity. The importance of the evaluation of this parameter in this work comes from the link 

between a particular force produced by a system of two opposite charge particles, energy and the 

proper dipole moment induced.  For two opposite charges  q  and  q  separated with a 

distance d the dipole moment induced by the system is given by qd  and the force is 

expressed by qEF  . From the Lorentz model of the atomic polarizability, the electric field is 

replaced by 



E  which means that E  . Also, from the relation between energy and force, 

i.e FdWU  , it’s comes the importance of performing calculus on the induced dipole moment 

in the system of cooled and trapped atomic entities with laser light. 

We now consider a plane electromagnetic wave E and B, in which the complex electric 

field vanishes in the z direction as given in Eq.65 bellow , where 
xE0
 and 

yE0
 are constants. 

  0,exp),exp( 00 ikzEikzEE yx 


                                                                                         (65),   

The corresponding complex magnetic field is obtained from Maxwell’s relation Eq.66: 



 Ecurl
i

B
l

1
                                                                                                                         (66). 
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For 
c

E
B

y

ox

0
  and 

c

E
B x

oy
0 , the appropriate magnetic field takes the form of Eq.67,  

 0),exp(),exp( 00 ikzBikzBB yx 


                                                                                         (67). 

Substitution of Eq.61 into Eq.23 and Eq.24 conducts to the final expressions of the 

average values of the force and its corresponding torque acting on the system of laser cooled and 

trapped polariton without magnetic field Eq.68 and Eq.69 respectively.  

 tkFF cp

cp

Rabi
Lorentz

zz 


 2sin
4

2
                                                                                                (68), 

   tEEEENN cpxyyx

cp

z 


  2sin
4

2
                                                                                (69). 

When the confinement is introduced in the system, that is the magnetic field with 

Hamiltonian Eq.28, substitution of Eq.61 into Eq.23 and Eq.24 conducts to the final expressions 

of the average values of the force and its corresponding torque acting on the system of laser 

cooled and trapped polariton and confined in the magnetic field which we considered as a trap 

Eq.70 and Eq.71 respectively.  

 tkBBF Rabi
xyyxz 1

1

2
** 2sin

4
Re

2
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







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
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                                                                           (70),

 

     tEEEEEN xyyxz 1
**

1

2

2sin
22

1






                                                                          (71). 

                           

II.2.7. Transition probabilities and energies 

From the definition of the transition probability amplitude, for a wave function describes 

by Eq.72, the probability of founding the system characterizes by the wave function Eq.72 in the 

state i  is usually evaluated using Eq.73. 

  
i

iiat  ,  ni ,...,2,1                                                                                                       (72), 
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*2

iiii aaap                                                                                                                           (73). 

The energy receives by the polariton from the plane wave radiation field when its cool is 

given by Eq.74 and its average value expressed by Eq.75. 

















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



EEU  Re
2

1
                                                                                                (74). 


t

UdtU
0

                                                                                                                  (75). 

From the wavefunction above, the transition probability amplitudes of finding the cooled 

and trapped polariton in the ground and excited states are defined as in Eq.76 and Eq.77 bellow. 
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                                                                             (76), 
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



sin
2

2

2

2
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                                                                                             (77). 

Futhermore, from Eq.77, the transition probability of finding the system in the excited 

state is expressed by Eq.78. 

2

2
*
222 aaaP                                                                                                                            (78). 

Simple substitution of Eq.çà into Eq.78 yields Eq.79. 
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2
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4 2

2
2

2

t
ta
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

                                                                                                     (79). 

From Eq.74, the energy received by the atomic entity from the plane wave radiation field 

when it is cooled takes the form of Eq.80. 

 tkcU cp

cp

Rabi 


 2sin
4

2
                                                                                                           (80), 

And the average value is expressed by Eq.81. 

 tU cp

cp

Rabi 


 2cos1
8 2

2
                                                                                                      (81). 
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When a magnetic field, looked as a trap is introduced in the system, similar analysis conducts to 

the transition probability of finding the system in the excited state Eq.82 and total energy of the 

system Eq.83. 

 
 

2

2cos1

4
1

2
1

2
2

2

t
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

                                                                                                      (82). 
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t



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

                                                                                        (83). 

 

II.3. Quantum mechanical approach of laser cooling and trapping of two-level systems 

II.3.1. Quantum Rabi model of polariton 

II.3.1.1. Derivation of the quantum Rabi Hamiltonian of cooled and trapped polariton 

We recall to readers that, our choice is due to the fact that polariton is composite exciton 

and photon wich is relatively free of decoherence that plagues other quantum systems. The 

purpose therefore in this section is to define the correct Hamiltonian describing the dynamics of a 

single exciton-polariton interacting with radiation field. To generalize the phenomenon and to set 

calculations which will be usefull in the next section where we introduce our model, we consider 

that our exciton-polariton is embeded inside a microcavity. We leave out the procedure of 

quantization of the field, which can be find in any book of quantum optics (Scully and Zubairy, 

1997). The full Hamiltonian describing an atom interacting with an EM field is given by Eq.84.  

  elHaaxUxqAp
m

H 







 

2

1
)()(

2

1 2
                                                                   (84). 

In Eq.84, the parameters p  , q , x and m are respectively momentum, charge, position and 

mass of the atom. a  and a  are the photon creation and annihilation operators for microwaves 

photons of frequency  respectively and 
elH is the Hamiltonian describing the electronic state of 

the atom. The vector potential )(xA is expressed in Eq.85, where   is the polarization vector and 

)(xf  is a function describing the field along the mode in the cavity. 

  axfaxfAxA )()()( 0                                                                                                  (85).       
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It gives the effective mode volume Eq.86 which is related to the constant 
0A as it’s in Eq.87. 

 xdxfV 32
)(                                                                                                                          (86), 

V
A

 0

0
2


                                                                                                                            (87). 

Under the assumption that only one polaritonic transition couples to the mode, the 

electronic states may be labeled   and the electronic hamiltonian in Eq.88 can be written as 

given in Eq.88, where 
120    is the transition frequency and 

z is the z  Pauli’s operator.   

zelH 
2

0


                                                                                                                             (88). 

By neglecting the multi-photon processes and assuming that the external atomic potential is zero, 

the complete Hamiltonian of the system is therefore (see Eq.89): 

IntPhexc HHHH                                                                                                                 (89), 
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22
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                                                                                                                   (90),
 









 

2

1
aaHPh                                                                                                                     (91), 

                                                                      (92). 

 

In matrix representation, within the atomic basis states, the interaction Hamiltonian Eq.92 

is (Scully and Zubairy, 1997)  
   aaxgH Int )( , where  21

2

1
 i  are defined in 

the previous section as pseudo-spin operators used so as to satisfy the commutation relations 

  3,    
;      2,3

 and the parameter   )(xg  known as the coupling strength 

constant is given in Eq.93. 

     axfpaxfpA
m

q
H Int )(ˆ)(ˆ

0 
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 
V

xfp
m

q
xg

0

2
)(ˆ)(





                                                                                        (93). 

In deriving Eq.75, we adjusted the phases of the states   such that  xg  is real. If we further 

assume that  xg  is to a good approximation independent of x , the atomic kinetic energy 

operator is a constant of motion and can be omitted, as may the constant vacuum term
2

 . We 

then arrise at unit  to the resulting Hamiltonian Eq.94 which corresponds to the quantum Rabi 

Hamiltonian. 

    


 aagNH z  1
2

0                                                                     (94). 

Solution of TDSE (Eq.36) using the above hamiltonian (Eq.94) is not possible if we do not 

perfom some approximation. Here again, our interest is turned to the RWA which constitute the 

purpose of the next section. 

 

II. 3.1.2. Rotating wave approximation and Jaynes Cummings Hamiltonian 

As compared to the semiclassical approach, there is a litle difference of applying the 

RWA in quantum mechanical approach. Let consider the fundamental relations of the Heisenberg 

algebra in the Fock space: 

    aaN, ,   aaN , ,   1, aa                                                                                         (95). 

Here the Fock space F is a Hilbert space over C , given by Eq.96, where 0 is the vacuum and n

is given by Eq.97. 

  1,0vectF                                                                                                                          (96),    

 
0

!n

a
n

n

 , for 0n                                                                                                             (97). 
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On this space, the operators a , a and N are represented in their matrix forms by Eq.98, using 

Eq.95. 











00

10
a , 










01

00
a ,  








 

10

00
1 Naaaa                                                          (98). 

We can add a phase to  aa,  and thus, aeb i ,  ib a e    ,  aabbN   where  is 

constant. We then have Heisenberg algebra: 

    bbN, ,   bbN , ,   1, bb                                                                                          (99). 

The main problem at this stage is to solve the TDSE (Eq.100) exactly. 





H

t
i     










 

 aagNz  1
2

0
                                  (100). 

Based on the fact that Eq.101 is satisfied, we neglect the middle terms to the right hand 

side of Eq.101 and set Hamiltonian Eq.102.                

    






  aaaaaa                                                (101), 

  


 aagNH z  1
2

0                                                                     (102). 

Such an approximation is called the RWA in quantum mechanical formalism and the resulted 

Hamiltonian Eq.102 is called the JCH. It is then possible for us to solve the TDSE (Eq.100) using 

Hamiltonian (Eq.102) following the Jaynes-Cummings approach. 

 

II.3.2. Jaynes-Cummings model 

II.3.2.1. Matrix representation of the Jaynes-Cummings Hamiltonian  

Hamiltonian Eq.102 can simply takes the form of Eq.103.  

 
 


 aagaaH z 

2

0                                                                                      (103). 
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Based on Eq.103 and following the analysis of Larson (2005), we observed that the form of the 

coupling term is such that the number of excitation 
3

2

1
 aaN

 
in the system is preserved 

and is customary to work within the interaction picture Eq.104 where  0
 is the atom-

field detuning. 

  


 aagNHH z 
2

0                                                                                  (104). 

Since N  is a constant of motion, it is enough to solve the system for one particular value 
2

1
n  

of N . Thus, in the interaction picture, the Hamiltonian is of block-diagonal form with 22  

blocks Eq.105 with eigenvalues given in Eq.102. 
























2

2

ng

ng
Hn

                                                                                                                 (105). 

ngE 2

2

2








 
                                                                                                                (106). 

 

II.3.2.2. The Von neumann entropy 

 In cooling and trapping process, the level of disorder of a system is well observed by 

evaluating its entanglement which is a phenomenon, as a non local between two (or more) 

quantum systems. In most cases, specification of amount of entanglement is achieved by use of 

appropriate mathematical models.  For TLSs, various acceptable models for entanglement 

measurement have been proposed. That is entanglement formation and distillation (Woolters, 

1998), concurrence, negativity (Vidal and Werner, 2002) and Von Neumann entropy. In the 

present study, we focused our attention to the Von Neumann entreopy. We justify our choice by 

the fact that it’s introduced in the system a weak magnetic field. Moreover, its seems more 

appropriate the use of Von Neumann entropy, a very useful operational measure of the disorder 

of a system of a qubit. For a given density operator   the Von Neumann entropy is expressed by 
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Eq.107 where the symbol ''Tr  stands for trace as indicated above, and  S ranges from 0 (for a 

separable state) to 1 (for a maximally entangled state). 

    lnTrS                                                                                                                      (107). 

Based on the previous section, the density matrix in Eq.107 has the form of Eq.108 where 

)(1 ta and )(2 ta are the transition amplitude of finding the cooled and trapped system in both 

ground and excited states respectively, assuming the system as a TLS. The transition amplitude 

values )(1 ta and )(2 ta are obtained by solving the Schrödinger Eq.104 using the JCH Eq.102. 














 2

2

2

1

)(0

0)(

ta

ta
                                                                                                             (108). 

From Eq.57, and given the expressions of wavefunction Eq.56 and Eq.57, the entropy of 

the system takes the form of Eq.109 given that the transition probability amplitudes are described 

in Eq.110 in the case of laser cooled and trapped polariton without magnetic trapping and Eq.111 

in the case of laser cooled and trapped polariton with magnetic field. 

       2

2

2

2

2

1

2

1 lnln tatatataS                                                                                       (109).    
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


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


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



                                                             (111). 

  

II.3. 3. Landau-Zener model 

II.3.3.1. Landau-Zener problem in cooling and trapping of polariton  
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To introduce the LZ problem in cooling and trapping of polariton, we reconsider the 

Hamiltonian of block-diagonal form with 22  blocks Eq.105.  
























2

2

ng

ng
Hn

                                                                                                                (112). 

Eq.112 is similar to that described by Avishai (2014) after performing two different types of 

changes; i.e. 2/2/ t  and ngV   nomatter the difference in sign. The Hamiltonian 

Eq.112 is also similar to that had obtained Liu et al. (2001) if one does not consider any energy 

difference in the level bias (see Yan and Wu, 2008). This means that the nonlinear parameter 

describing the level energy dependence on the population transfer vanishes. Similar 

transformations can be applied in case of Hamiltonians defined by Hicke et al. (2005), Yang et al. 

(2017) and Dodonov et al. (2016) to cite a few, who analyzed some physical phenomena with the 

aid of LZ model. It comes clear that, after we emphasized substitution describes in this 

paragraph, our problem coincides with that of LZ described by Avishai (2014). Thereby arizes 

LZ problem in cooling and trapping of polariton. To go further, eigenvalues of Hamiltonian 

Eq.112 are giving in Eq.113.Graphical representation of these eigenvalues (Figure 21) presents 

crossing and avoided crossing of energy levels for two different values of the detuning between 

exciton and photon, i.e. 0  (crossing) and 2  (avoided crossing). The figure appears 

more appropriate to jusitfy the apprearence of LZ problem in cooling and trapping of polariton. 

ngE 2

2

2








 
                                                                                                                (113).                                                                                                          
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Figure 21. Eigenvalues of Hamiltonian are plotted as a function of the coupling strength. Avoided crossing of energy 

levels is observed for n = 1 and Δ = 2. The dashed black lines correspond to the diabatic transition and the solid blue 

and red lines are the adiabatic transition. The figure shows that, for low coupling strength constant  0g  , 

crossing and avoided crossing are well observable; as the coupling increases, the similitude diminishes and tends to 

identity for very important values g . 

 

II.3.3.2. Adiabatic-impulse approximation and Landau-Zener Hamiltonian 

Nomatter we successfully formulated LZ problem in cooling and trapping of polariton, it 

is not yet possible to arize to the LELs with Hamiltonian Eq.160. The Hamiltonian has to be 

writen in the best and well accepted form. In order to get the best equation for theoretical and 

numerical calculations, we rewrite Eq.112 in term of pseudo-spin operators 
i   3,2,1i (see 

Eq.114)  

131
2

 ngH 


 .                                                                                                            (114).  

In addition, we introduce the laser light Hamiltonian for cooling process. The Hamiltonian of 

radiation field is given by Eq.115.   

 0 1sinLaser lH E t                                                                                                             (115). 
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Therefore, the model Hamiltonian for the system takes the form of Eq.116 where ng0 . 

  3 0 1sin
2

lH A t   


                                                                                                 (116).                                                                                                                   

We have already mentioned above that the subscript l  indicates the laser light. For the model to 

be simple, we assume that A  , where the quantity 
0E is known as the Rabi frequency. 

We can then construct the polariton-field Hamiltonian by introducing a time-dependent 

parameter. The total Hamiltonian of Eq.116 changes to the appropriate form Eq.117 below. 

 tH  


 3
2 1                                                                                                                (117).                                                                                                              

In Eq.117,  3,2,1ii  and   are similar parameters well defined above. There have 

been several works (Buluta et al., 2011) in which the parameter    0 sin lt A t     is 

introduced for a TLS. The parameter is identified as the bias, which is the total environment 

coupled to the single qubit. The corresponding instantaneous eigenvalues are expressed in Eq.118 

and depicted in Figure 22. The figure shows that the laser frequency 
l  can be strongly 

influenced by the avenue of the multi-crossing, which manifests itself as stronger of the energy 

levels [Figure (22d)]. In Figure (22b), one can see the anti-crossing points between the adiabatic 

energy levels (the red and blue solid curves) corresponding to the LZ transition to the region. An 

important point to note here is that, because of the relation in Eq.118, there are two ways to 

obtain a large effective driving field in the quantum model, namely by having a multi-crossing 

scenario. The accumulated Stückelberg phases increase with the laser amplitude, point out the 

LZS interferometry transition [see Figure 22]. 

 2
2

2
tE 







 
                                                                                                              (118). 
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Figure 22. Eigenvalues of Hamiltonian are plotted versus time Eq.118. Multilevel crossing of energy level for 

different values of laser frequency: (a) 0.1l  rad/s and (b) 0.2l   rad/s. Modulation dynamic phase for 

different values of amplitude of laser field: (c) 0.5 V/m and (d) 2 V/m. Here, the following values have 

been choosed: 0.5  eV and 0.1g n  . 

  

Nomatter Eq.117 is as similar as that of LZ after performing some changes, it is not yet 

appropriate in determining cooled and trapped polariton parameters within the formalism such as, 

and particularly, LELs. In general, concrete calculations of LELs using Hamiltonian of Eq.117 

present significant difficulties, nomatter the corresponding Hamiltonian is that of TLS. Part of 

those difficulties regroups the Schrodinger equation which can be written as a second-order 

differential equation with periodic coefficients and the Hill equation which is not solvable in 

analytic closed form (Buluta et al., 2011 ; Grifoni and Hänggi, 1998). Yet, different theoretical 
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approaches can be used to obtain approximate analytical results of various parameters, such as 

transition probability, entropy, entanglement and so on.  Some of those methods include 

traditional method, such as Landau method (Kami and Nikitin, 1994) that uses perturbation 

theory and complex integral method to express non-adiabatic transition probabilities. The group 

consists also of Stenholm’s method in which the Hamiltonian is written in term of Pauli matrices 

and the London phase operator method that consists to carry calculations on Eq.117 by writing it 

in term of London phase operator. Another interesting method consists to apply various 

approximations such as linear diabatic potentials, constant diabatic coupling and the straight-line 

trajectory with constant velocity for the relative notion to Landau’s expression of non-adiabatic 

transition probability, known as LZ method.  

One key relation for purposes of deciding the suitability of a given method or approach is 

the link between the laser frequency 
l  and the energy splitting   (Sillanpää et al., 2005 ; Oliver 

et al., 2005). The link is l  (Sillanpää et al., 2005 ) and l  (Oliver et al., 2005) 

for a qubit. Similarly, the velocity of passing the avoided level region should be such that 

2lA  and 2lA  for slow and fast driving regime, respectively. For our model, a 

theoretical approach that can be used is the adiabatic impulse approximation (AIA) which is the 

commonless method weither the polariton is driven through the avoided crossing or not. The 

method does not depend on the nature of particles studied. Perharps, the model is an intuitive 

mathematical tool which describes the dynamic of a TLS driven by a radiation field. Based on the 

AIA formalism, Hamiltonian Eq.117 has to be linearized. Doing it, we assume that the energy 

levels 
E  obtained from Eq.117 has minimum distance of which is realized at a particular time 

lkt  /2
  Zk . Accordingly, it follows the two expressions  0arcsin /lt A     and

 0arcsin /lt A      . The phases acquired during the adiabatic stages are giving by 

 dttE
t

t 
2

1
1  and  dttE

lt

t






/2

2

1

2

 . Considering the non-adiabatic region in the vicinity 

point 
2,1t  such that '2,11 ttt  , 1'tl , then the bias  t can be linearized as  1,2 ' 't t t   , 

where  

1,2cosl lA t   ,                                                                                                                      (119), 

with  
2

1,2 0cos 1 /lt A   . 
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From here, the linearized expression for the Hamiltonian Eq.117 is exactly that of LZ 

problem after performing the sweep velocity or LZ velocity . The convenient Hamiltonian is 

rewritten as given in Eq.120 and stands as the best formulation (Hamiltonian) of LZ problem in 

laser cooling and trapping of polariton. From Hamiltonian Eq.120, it can be then possible to 

investigate the most important laser cooled and trapped polariton parameters such as LELs and 

transition probabilities. LELs of the system are theoretically expressed as     22''  ttE  . 

In Eq.120, 
3,1  are Pauli matrices, 't is the energy difference between the two diabatic 

(crossing) basis states (i.e. the eigenstates  and  of 
3 operator), controlled by the 

surrounding environment which depends linearly on time 't , and  is the constant gap between 

the two instantaneous eigenenergy states  and  at the center of the avoided crossing 0' t .  

 
'

'

1 3
2 2

t
H t


 


                                                                                                                (120). 

 

II.3.3.3. Transition probabilities 

II.3.3.3.1. Transition probabilities in the diabatic basis 

Through the AIA, we get the best Hamiltonian describing the laser cooling and trapping 

polariton process. Therefore, it becomes important to investigate the cooled and trapped polariton 

wavefunction. We find more interesting the use of LZ approach since we face the LZ problem. 

Theoretical analysis of LZ problem is studied in detail by Zener (1932), Shevchenko et al. (2010) 

and Keeling and Gurarie (2008) to cite a few. We begin by introducing the wavefunction  't

(Eq.121) which represents the variable indicating how the polariton manifests itself when it is 

cooled and trapped using laser light. In Eq.(121), the parameters  1 'C t and  2 'C t are 

superposition coefficients in the diabatic basis. 

     10 '
2

'
1

' tCtCt                                                                                                         (121). 

The Hamiltonian of the system of cooled and trapped polariton Eq.120 can be expressed by a 

22  matrix that is quite concise and convenient to deal with (Eq.122). Without loss of 

generality,   and   are assume positive and have both the dimension of frequency.        

   
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                                                                                  (122). 
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The Schrödinger equation (Eq.104) takes then the following form Eq.123. 
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                                                                                     (123). 

Eq.123 can be decomposed in the following two differencial equations (Eq.124). 
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                                                                                       (124).     

From the second expression of Eq.124, it follows that, 

 
 

 ''

'

'2
' 2

2
1 tC

t

dt

tdC
itC








                                                                                              (125),   

And simple substitution of Eq.125 into the first equation of system Eq.124 conducts to Eq.126 ; 
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
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t
i

dt

tCd 
                                                                                     (126). 

Following the notation of Danga et al. (2016), we introduce for convenience the scale 

dimensionless quantities 't   and 





 . It comes relation in Eq.127.  
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                                                                                  (127). 

It is evident to observe from Eq.127 that the two first term in the cote correspond to a complex 

number. Thus, one can writes ibaiZ 
2

1

4

2
 given that 

4

2
a and 

2

1
b  ; and finally, 

Eq.127 becomes as illustrated in Eq.128. 

 
  0

4

1
2

2

2

2
2









 




CZ

d

Cd
                                                                                              (128). 

Eq.128 is the well known ordinary differential equation, which solutions are also well 

known parabolic cylinder functions (PCFs). PCFs are also known as Weber parabolic cylinder 

functions:  zaU , ,  zaV , ,  zaU , and  zaW , . These notations are due to Miller (1952, 1955). 

An older notation, due to Whittaker (1902), for  zaU ,  is  zD
. The notations are related by 

   zDzaU
a

2

1,


 . Whittaker’s notation  zD
 is useful when   is a nonnegative integer 
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(Hermite polynomial case). Similar analysis is carried in case of amplitude  '1 tC . Following the 

approach of Zener (1932), we carefully introduce the boundary conditions defined by 

  11 C and   02 C . Then, the amplitude value of the corresponding laser cooled and 

trapped polariton wave function is expressed via the parabolic cylinder function  zD
  

(Gradshteyn and Ryzhik, 1994 ; Beals and Wong, 2010) Eq.129. 

   

   



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
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
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4/3

2/1
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2

2

2

2




















i

i

i

i

eDeeC

eDeC

                                                                               (129).

 

Thus, the transition probability in the diabatic basis is given by Eq.130. 

   
2

2

2 2
/4 3 /4

1 /2
2

2

i

d i
P e D e 




 

 
                                                                                   (130).                                    

 

II.3.3.3.2. Transition probabilities in the adiabatic basis 

In the adiabatic basis, we introduce the instantaneous eigenstates 
i   2,1i of the time 

varying Hamiltonian matrix Eq.122, defined by Eq.131. 

   '' tEtH iii      2,1i .                                                                                                    (131). 

Since the Hamiltonian changes in time, then the eigenvectors and the adiabatic states 
2,1  will 

change with the same parameter. For theoretical simplifications, we express the state vector  't  

in Eq.121 as a superposition of the adiabatic states    '' tCt i ,   2,1i  where C are 

coefficients or transition amplitudes. A strict comparison between  '2,1 tC  and  'tC  leads to the 

conclusion that the adiabatic states appear as an orthogonal rotation of the original diabatic states. 

This assumption is mathematically expressed by Eq.132 which follows: 

 
 

    
 

















'
2

'
1'1

'
2

'
1

tC

tC
tR

t

t





.                                                                                                    (132).   

The first term to the right hand-side of Eq.132 is giving by Eq.133 and the mixing angle 

 't is defined by Eq.134.      
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      
    





 


''

''
'1

cossin

sincos

tt

tt
tR




 ,                                                                                         (133), 

 
'

'2tan
t

t





 ,     









2
0 ' 

 t .                                                                                         (134).     

This mixing angle determines the construction of the adiabatic states via the diabatic basis. The 

link between the superposition coefficients for the diabatic basis     '
2

'
1 , tCtC  and adiabatic 

basis     '' , tCtC 
 is labeled in term of   'tR  as shown in Eq.135 below, provided that the 

transformation matrix   'tR  is expressed as given in Eq.136.  

 
 

    
 




















'

'
'

'
2

'
1

tC

tC
tR

tC

tC
 ,                                                                                                      (135), 

      
   










''

''
'

cossin

sincos

tt

tt
tR




 ,                                                                                            (136), 

The unitary matrix    'tR  rotates the polariton system from a diabatic basis to an 

adiabatic basis. Joining Eq.131 and Eq.137 together, we obtain Eq.137, which represents the most 

appropriate form in the matrix representation of Hamiltonian Eq.122 in adiabatic basis. 

According to Eq.135 and Eq.137, the Schrödinger equation in the adiabatic basis, expressed as 

             '''''

'
tCtRtHtCtR

dt

d
i   , takes the form of Eq.138. 


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HRR .                                                                                         (137). 
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d

d
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22
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.                                                                   (138). 

As mentioned by Ostrovsky et al. (2007), the condition for the adiabatic evolution, 1  , 

states that    '' tt    , with  
222

1







  and      2/12'2' tt   . Thus, following the 

methodology used in the previous section for the diabatic representation (Eq.123) and for the 

same boundary conditions defined by   11 C and   02 C , we carefully obtaine the 

transition amplitude of the laser cooled and trapped polariton in term of PCFs within the Wittaker 

representation  zD
 (Beals and Wong, 2010 ) given by Eq.139.  
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                      (139).    

 The transition probability in the adiabatic basis thus corresponds to the following equation: 

         
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                                (140). 

 

II.3.4. Dissipative Landau-Zener model 

 In physics, one of the most common realizations of strong coupling regime emplies an 

employement of various low-dimensionnal semi-conductor structures embeded into a microcavity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

or irradiated by a strong optical field (Shahnazaryan, 2017). To set the stage and to introduce our 

notation in this section, we recall that the Hamiltonian Eq.118 corresponds to LZ Hamiltonian for 

an isolated cooled and trapped polaritonic system. While in practices, the cooled and trapped 

polaritonic system will be influenced by its surrounding environment which may affect the 

quantum phase of the superposition after the effective interaction between the levels or may 

cause spontaneous decay. For a polariton cooled and trapped in a solid-state environment, all 

these processes may occur simultaneously and hinder qubit manipulation. In the context of solid-

state quantum information processing, a realistic study of qubit manipulation via LZ transition 

should include the influence of environmental degrees of freedom. The environment of quantum 

system can often be described as a bath of harmonic oscillators. In some situations, it is known 

that the dominant environmental effect can be best modeled as a spin bath instead, for example, 

for molecular magnets and for josephson-phase qubits. 

 Due to (i) their unique optoelectronic features in the monolayer limit, (2i) the flexibility of 

their bandgap energy, (3i) their high oscillator strength, (4i) the fact that they are excellent 

platform for strong light-matter interactions and quantum confinement and (5i) the possibilities to 

be studied when embedded in optical microcavities, the surrounding environment is modified and 

changed to two-dimensional (2D) monolayers TMDs materials.  In fact, 2D monolayers TMDs 

are a certain class of postgraphene 2D materials which stands out as an excellent platform where 
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strong light-matter interactions (Rahmani and Jagadish, 2018) and quantum confinement at the 

single layer limit can be studied when embedded in optical cavities. Compounds in the TMDs 

family exhibit a wide range of electrical properties depending on polytype and the number of 

transition metal d-electrons, and include metallic (Wilson and Yoffe, 1969), half-metallic 

(Shishidou et al., 2001), semiconducting (Radisavljevic et al., 2011), superconducting (Ye et al., 

2012) and charge density wave (Yoon et al., 2011) behavior. Those of TMDs in quasi-2D 

geometries have been pointed out by Pu et al. (2012) and Fuhrer and Hone (2013), where electron 

mobility, symmetry, thickness-dependent evolution of electronic, phonons structures and effect of 

quantum confinement was recognized as the main ingredient properties that are most relevant in 

device applications.  

 We promptly introduce 2D TMDs monolayers into a cavity. In a typical process, the resulting 

system is mechanically deposited onto a substrate
2SiO . With the help of a laser pump, laser light 

is directed on the multilayer TMDs through a large orifice, for cooling process (Figure 23a). 

Within our philosophy, we suppose that on-chip coherent light conducts to ultrafast excitation of 

the monolayer TMD, leading to the formation of the exciton. We suppose that strong light (on-

chip light) matter (exciton) interaction results to microcavity hybrid (half matter and half light) 

quasiparticle formation called polariton (Figure 23b).  The original microcavity polariton is 

considered as a TLS (Ghoshal et al., 2011; Fujii and Suzuki, 2011) with ground state g  and 

excited state e  (Figure 23c) as we did in the previous sections.  In the cavity, each monolayer 

TMD looks like a spin-oscillator. Thus, the ensemble of multilayer TMDs embedded in the 

microcavity results to both ensembles of polaritons and spin-oscillators (Figure 23d). The entire 

system is cooled down by using electromagnetic radiation (laser). The advantage of our model is 

that the combination of properties inherited from its both counterparts such as ultrasmall effective 

mass, strong interparticle interactions and enhanced decoherence time, make microcavity 

polariton unique testbed for observation of various collective quantum phenomena such as BEC, 

superfluidity, spin currents, optical spin hall effect, quantum transport to cite a few 

(Shahnazaryan, 2017). 
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Figure 23. Step by step formalism used in the methodological approach. (a) Multilayer transition metal 

dichalcogenides embedded in a 2D microcavity and cooled down to zero temperature; the entire system is putted 

onto a substrate
2SiO . (b) Polariton formation due to strong light (on-chip light) matter (exciton) interaction. (c) 

Polariton looked as a TLS with ground state g  and first excited state e . (d) Spin oscillators and polariton 

formation at room temperature in 2D microcavity. (e) Coherent state population transfer at zero temperature due to 

laser light. 

 

II.3.4.1. Hamiltonian of cooled and trapped polariton in Transition Metal Dichalcogenides  

 Theoretical analysis of the previous model (Figure 23) is performed based on two main 

considerations. Firstly, we focus our attention only on the polariton at the center of the system. 

This consideration is inspired from the central spin model investigated and discussed by 

Prokof’ev and Stamp (2000). Furthermore, we suppose that there is no interaction between the 

considered polariton in the center of the system with its neighbors due to cooling process. Still, 

the cooled and trapped polariton is treated here as a TLS (Lopez-Sanchez et al., 2013). We begin 

with the general Hamiltonian which characterizes the cooled and trapped polariton in 2D TMDs 

milieu Eq.141, given that the first two terms to the right hand side of Eq.141 represent the LZ 

 
Substrate 

 
 

 

Polariton 

Spin oscillator 

1  e  

01    

0  g  

 

 

+ 
- 

On-chip coherent light 

(a) 
(b) 

(c) 

(d) (e) 

Multilayers TMDs 



  

85 
 

Hamiltonian of hot (no cooled and trapped with laser) polariton in term of Pauli operators and the 

thirth is that of radiation field (laser light).  

  0 sin
2

z x l xH n E t    


                                                                                   (141).                                                                                                                                     

In Eq.141, 
0E is the laser amplitude and  is the laser dipole moment, 

l been the laser 

frequency. The parameter   is the coupling strength constant between cavity photons and 2D 

TMDs bands. It’s also known as the vacuum Rabi frequency for 2D TMDs at center zone.  is 

the nearest-neighbor intra-layer hopping or the effective hopping integral. While  is the 

detuning between exciton and photon. Other parameters in Eq.141 are well defined in the 

previous sections. The Hamiltonian Eq.141 can takes the reduced form of Eq.142 after 

substitution
0 n   . We assumed that the Rabi frequency

0Rabi E  . Based on these 

substitutions, we construct the time dependent Hamiltonian of the polariton embedded in TMD in 

interaction with laser field. This is expressed in Eq.143:  

  0 sin
2

z l xH t   


                                                                                              (142), 

 
2

z xH t  


                                                                                                                 (143). 

In the above equation, the parameter    0 sinRabi lt t    has been identified by 

Lopez-Sanchez et al. (20 13) as the bias, which is the total TMDs environment couples to the 

qubit. In order to get the best mathematical model equation for theoretical analysis, we recall the 

Hamiltonian Eq.143 and linearized it.  Following the AIA as detailed above, we obtained the 

more appropriate expression of laser cooled and trapped polariton in 2D TMDs materials 

expressed in Eq.144. 

'

2 2
x z

t
H


 


                                                                                                                  (144). 

LELs are calculated using Hamiltonian Eq.144. In particular, based on quantum mechanic 

theory, these represent eigenvalues of Hamiltonian Eq.144. Therefore, from relation Eq.144, the 

corresponding instantaneous LELs are expressed as given in Eq.145, 
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   
2 21

'
2

t                                                                                                                  (145), 

where  ,i i x z   are the same Pauli matrices defined above, 't is the energy difference 

between the two diabatic basis states  and  of 
3  of the polariton condensate in TMDs, and 

 is the constant gap between the two instantaneous eigenenergy states  and  at the center of 

the avoided crossing  ' 0t  and modulated by the photon’s frequency.  

 

II.3.4.2. The Brunsdobler-Elser conjecture 

The Brunsdobler-Elser conjecture is a mathematical approximation applied in cooling and 

trapping system in order to take into account the effect of surrounding environment known here 

as 2D TMDs. The effect of the surrounding environment is considered through it Hamiltonian 

envH  in the Hilbert space of dimension M and qubit-interaction Hamiltonian
envqH 

. Eq.144 

takes then the form of Eq.146. We assume the most general linear coupling between the qubits 

operators x ,  y i        and z and the environment operators  , ,x y z   . We 

take the qubit-environment coupling as indicated in Eq.147 and we denote by k the eingenstates 

of the environment operator Hamiltonian
envH .  

'

2 2
x z env q env

t
H H H


  


                                                                                               (146), 




 
zyx

envqH
,,


                                                                                                                    (147). 

An important assumption underlying our model Hamiltonian Eq.146 is that the qubit-

environment interaction Eq.147 and the environment itself are not affected by the driving. Then, 

at very large times t , the cooled and trapped polariton Hamiltonian is dominated by the 

time-dependent part, so that all states of the system plus environment belong to one of two bands: 
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an ‘up cluster’ k  and a ‘down cluster’ k , with energies moving upward and downward 

respectively. 

 

II.3.4.2.1. The Brunsdobler-Elser conjecture in the diabatic basis 

The dissipative LZ problem is a scattering problem in the restricted sense that changes in 

the qubit’s state will occur only during a finite time interval arround 0t . In order to exploit the 

fact that the qubit will not flip for sufficiently large t , we decompose Hamiltonian Eq.146 into 

its diabatic states. These are the eigenstates of the total Hamiltonian Eq.146 in the limits t . 

Initially and finally, the Hamiltonian is dominated by the term proportional to 
z , so that the 

diabatic basis for the qubit is simply given by the states   and  . For the environment, by 

contrast, there is no corresponding growing energy scale for large t . Its diabatic states are 

influenced by the coupling to the qubit and depend on the qubit’s state. For the up cluster, these 

diabatic eigenstates of the environment are those which diagonalize the Hamiltonian projected to 

the subspace  , i.e  H .  They are eigenstates of z
envH   and we denote them by k  

and their energies by 
k . The diabatic environment sates for the down cluster k  are defined 

likewise so that Eq.148 is satisfied. 

   
 kkH k

z
env                                                                                                          (148). 

The diabetic state of the qubit plus it environment read as given in Eq.149a and Eq.149b. 

  kk                                                                                                                      (149a), 

  kk                                                                                                                      (149b). 

In the above equations (Eq.149a and Eq.149b), the labels ,...2,1,0k  are assigned such that the 

energies 
k are in increasing order. At asymptotically large times, t , the diabatic states 

diagonalize the total Hamiltonian Eq.146 and hence coincide with adiabatic eigenstates which 

diagonalize  tH  at a given time t . Note that 0  kk , although in general '
'

kkkk 
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. A state of particular interest is the adiabatic ground state 0 which has energy 









0
2

'


t
.  

At zero temperature, it is the natural initial state for the LZ dynamics. From here, we can now 

split the Hamiltonian Eq.146 into two parts, one that is diagonal in the spin index while the other 

is off-diagonal. The former part consists of all terms proportional to 
z  and is diagonal in the 

diabatic basis. The latter part corresponds to Eq.150 and will be called the bit-flip interaction, 

since it contains all interaction terms of the Hamiltonian Eq.146 that induce a population change 

in the state of the qubit. 

y
y

x
xx  




2
                                                                                                        (150). 

An important feature of the diabatic basis Eq.149 is that all matrix elements of  vanish within 

each cluster, i.e., Eq.151 is satisfied. 

0''   kkkk                                                                                              (151). 

 

II.3.4.2.2. The Brunsdobler-Elser conjecture in the adiabatic basis 

In the above section, we have achieved a useful formulation of the dissipative LZ problem 

in terms of two groups of diabatic states. If the group of upward moving parallel levels would 

consist of merely one state, then transition probabilities could be computed with the simple 

independent-crossing formula, for which Brundobler and Elser (1993)
 
conjectured that it holds 

even when successive level crossings are not independent. Recent proofs show that the 

independent-crossing formula indeed holds exactly, even in more general situations (Shytov, 

2004; Dobrescu and Sinitsyn, 2006).  As stated above, for dissipative LZ transitions, there are 

two continua of states that cross with constant velocity. For the dissipative LZ problem, if at 

t  the system starts in a state  k  whose diabatic energy is nondegenerate, then the 

following transition probabilities at t are exact (see Eq.152). 
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                                                                       (152). 

For the transition to lower states within the initial band of states ( 'k k 
), we cannot 

make any statement. The second line of Eq.152 asserts that, states of the up cluster that lie above 

the initial state will finally be unpopulated. This no-go theorem was formulated by Sinitsyn 

(2004) and we think that it is more aptly described by the name ‘no-go-up theorem’. A case of 

particular interest is that of the initial state  0 , which is the ground state of the entire system. 

For all bath models employed below, the ground state is unique, so that relation Eq.152 applies. 

Then, final states with 
 kk ' do not exist, while the occupation of final states with

 kk '  

forbidden by the no-go-up theorem. Thus, provided that the final qubit state is  , the 

environment will end up in its ground state. It is the final transition probabilities 


P and 


P  

for the qubit that interest us most, irrespective of the final state of the environment. By tracing out 

the environment, i.e., by performing the sum over '
k , we find the Eq.153 below, where the 

expectation value 2W is given in Eq.154, recalling that the parameter  is the bit-flip interaction. 











 P

W
P 1

2
exp

2






                                                                                              (153), 

  004 22 W                                                                                                              (154). 

At this level, the essential steps that remain are first to identify and characterize the 

diabatic ground state  0 and to compute the expectation value 2W . We recall to readers that 

our system consists of the laser cooled and trapped polariton interacting with an ensemble of spin 

oscillators. This means that, our surrounding environment is a spin bath. The total Hamiltonian of 

the system is again that of Eq.146, but now with bath Hamiltonian Eq.155 and qubit-bath 

coupling Eq.156:  

1 , ,

N
j

env j
j x y z

H B





 

                                                                                                                 (155), 
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, , 1

N
j

q env j
x y z j

H 
 



  
 

                                                                                                             (156), 

where j

 are the Pauli matrices for the thj bath spin or spin operators and 
j

 are coupling 

constants. The second sum of Eq.156 defines the environment operator  as a linear 

combination of the spins operators j

  with coupling constants
j

 . The bit-flip interaction takes 

the form of Eq.157. 

 
12

N
x j y j

x j x x j y y
j

       



                                                                                             (157). 

We start from here to determine the eigenstates of the qubit plus the spin bath. It has been 

revealed that (Majorana, 1932), for large t , the time-dependent term in Eq.175 dominates and so 

provides the diabatic qubit states  and  . Therefore, the diabatic spin-bath states are 

determined by the operator Eq.158 where, ' '  refers to s and ' '  to s  .  

,( ) spin j
j

s H t s H   ,s                                                                                                   (158), 

where  

,
, ,

z j

spin j j z j
x y z

H B




  



                                                                                                         (159), 

is the state of the thj bath spin. The explicit expression for the ground state of 
,spin jH  is not 

required in determining LZ transition probabilities. Indeed, it suffices to know that the ground 

state satisfies the eigenvalues equation ,spin j j jH g g

    . Therefore, we have the following 

expressions: 

x

jj

j x j

j

B
g g

E
 



                                                                                                                (160), 

y

jj

j y j

j

B
g g

E
 



                                                                                                                (161), 

z

jj

j z j

j

B
g g

E
 



                                                                                                                (162). 
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Due to the fact that the spins oscillators do not interact with each other, as the entire 

system is carried to zero temperature with cooling process, then the diabatic ground state 1 is the 

direct product of the spin diabatic ground state jg  . Therefore, simple substitution of relation 

Eq.157 into Eq.154 arises to the expression for the ground state expectation value 2W defined by 

Eq.163.  
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                                         (163). 

As the system is carried to zero temperature, meaning that interactions between internal 

elements are very low so that they can be neglected, then we assume that 0x y

j j   . The 

ground state expectation value takes then the form of Eq.164. 

2 2W                                                                                                                                    (164).  

Such an approximation has been given the name of pure dephasing by Majorana (1932). 

With such an approximation, Majorana (1932) indicates that the tunneling probability P


 

equals to the standard LZ probability. In the same way, Qiao Chen et al. (2018) in their recent 

perturbation calculations for dissipative LZ transitions in a spin bath obtained the same bath 

independent transition probability, assuming that   is small. The transition probability in Eq.153 

takes the forms of Eq.165 and Eq.166 in both diabatic and adiabatic basis respectively.  

2

exp
2

DP




 
  

 
                                                                                                                    (165), 

2

1 1 exp
2

A DP P




 
     

 
                                                                                                  (166). 

 

II.3.5. Fröhlich model of polarons 

II.3.5.1. The Fröhlich Hamiltonian 

Fröhlich proposed a model Hamiltonian for the “large” polaron through which its 

dynamics is treated quantum mechanically, the so called Fröhlich Hamiltonian. The polarization, 
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carried by the longitudinal optical (LO) phonons, is represented by a set of quantum oscillators 

with frequency 
Lo , the long wavelength LO-phonon frequency, and the interaction between the 

charge and the polarization field is linear in the field as given by Eq.167 (Fröhlich, 1954).   

 
2

2

ik r ik r

Lo k k k k k k
k k

P
H a a V a e V a e


                                                                           (167). 

In Eq.167, r is the position coordinate operator of the electron with band mass  , p  is its 

canonically conjugate momentum operator and 
ka ( 

ka ) is the creation (annihilation) operators 

for longitudinal optical phonons of wave vector k  and energy
Lo . The parameters kV are 

Fourier components of the electron-phonon interaction and kV  their complex conjugates. 

 

II.3.5.2. Optical absorption of Fröhlich polarons and canonical transformation method 

The optical absorption of large polarons as a function of the frequency of the incident 

light is performed using the canonical-transformation formalism by Devreese, Huybrechts and 

Lemmens (DHL). An introduction of laser radiation in the polaronic system leads to the creation 

of perpendicular magnetic field. In fact, the electric field E


and magnetic field B


are linked 

through the relation


 Ecurl
i

B
l

1
. Due to the presence of magnetic field, the entire system is 

looked as a magneto-polaron. As the system is cooled down with laser, its called, for simplicity, 

magneto-polaron condensate. A simple calculation, which is developed below in full detail, gives 

a result for the absorption coefficient. We start from the Hamiltonian Eq.168 of the electron-

phonon system interacting with light and written down using the vector potential of an 

electromagnetic field  tA  at unit h where CC is the acronym of complex conjugate. 

    







 

k

ikr
kk

k

kkLo CCeaVaatA
c

e
pH 



2

2

1
                                                  (168). 

The electric field is related to the vector potential as given by Eq.169. Within the electric 

dipole interaction the electric field with frequency   is given by Eq.170 where the vector 

potential is expresse in Eq.171.  

   
t

tA

c
tE






1
                                                                                                                        (169), 
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   tEtE  cos                                                                                                                        (170), 

   tE
c

tA 


 sin                                                                                                                 (171). 

 

II.3.5.3. Time-dependent Schrödinger equation   

Within the perpendicular magnetic field B , we adjust the triangular quantum well potential 

(Figure 24) in the system ellucidated in the above section. The Hamiltonian that clearly describes 

the magneto-polaron condensate under the influence of a triangular quantum well potential  U r

is encoded in the Fröhlich Hamiltonian and its given by Eq.172,  where r and P  are still the 

electron position and momentum operators, e

o

m

m
  (giving that 

em  is the electron band mass and 

0m  is the electron rest mass) is the polaron mass and 
ka (

ka ) are the creation (annihilation) 

operators of longitudinal optical (LO) phonon with wave vector q and energy Lo at unit  .  

Still, kV  and CC are complexe conjugates of the Fourier components of the electron-phonon 

interactions and complex conjugate. 

     rUCCeaVaatA
c

e
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k

ikr
kk

k

kkLo 







  



2

2

1
                                      (172).                  

In the above expression, the magnetic field is taken along the z direction. The first term 

to the right hand side of Eq.172 is the single electron’s Hamiltonian or energy, the second term is 

the LO phonon Hamiltonian, the third term is the electron-LO interaction term and the last term, 

the expression )(rU , is the potential field Hamiltonian which gives the final expression of the 

total Hamiltonian of the system and thus dictates that of the energy levels. We choose the 

triangular quantum well potential with constant electric field  and an infinite barrier F at 0Z

. Theoretical expression of the corresponding triangular quantum well potential is defined in 

Eq.173, where  is a constant which characterizes the electric field frequency.  

( ) 2
FZ

U r


 

 


                                                                                                              (173). 
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From this expression of the perturbed system’s Hamiltonian Eq.173, the energy is derived 

and it dependence on the quantum well is depicted in Eq.173. It is important to note that, 

theoretical investigation of the unperturbed polaron system’s energy is presented in detail by 

Devreese (2015), Tkach et al. (2015) and Fai et al. (2005) and will be used in this paper for more 

detail analysis and theoretical predictions. Result of Eq.173 has been obtained by solving the 

Schrödinger Eq.174 given that 
2

cste


   . For further information concerning the 

Schrödinger equation, readers should refer to Erbil (2017) and McMahon (2006).     

 
   

2

2 2

2
0Z

d Z
FZ E Z

dZ

 
                                                                                        (174). 

The parameter  in Eq.174 is the wave function which describes the probability of the 

system quantum state as a function of position, momentum, time and/or spin. In order to solve the 

Schrödinger Eq.174, we first consider arrangement in Eq.175 and perform the changes in Eq.176 

and Eq.177. 
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                                                              (175), 

 

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

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
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U nz 3

1

2

2


                                                                                                 (176), 

dz

dU

dU

d

dz

d
                                                                                                                            (177). 

It comes from the above the final expression of Schrödinger equation given in Eq.178, 

which is the well-known Airy function with solutions given in Eq.179. In Eq.179, the parameter 

C is the normalized constant, since the wave function has to be zero at the infinite barrier.  

  0
2

2

 UU
dU

Ud
                                                                                                                   (178), 

   UCAU i                                                                                                                         (179). 
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From Eq.179 and considering changes in Eq.176, it comes the expression of the 

wavefunction for Schrödinger Eq.191 and expressed in Eq.180.  

  
 
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2

2


                                                                                    (180). 

The eigein energies are obtained from the consideration that   00 z . This conducts 

to the relation Eq.181, where 
na expressed in Eq.182 are the zeroes of the Airy function. 

0niaA                                                                                                                                   (181), 
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
                                                                                                       (182). 

Simple analysis of Eq.213 results to the eigein energies Eq.183 of the system.  
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                                                                                               (183). 

In contrast, 
na initial estimate for the thn zero of Airy function are given in Eq.184 where 

 zf  is kindly expressed in Eq.185. 
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                                                                                                               (184), 

  







  1086423

2

33443020

751623755968

6967296

108056875

82944

77125

36

5

48

5
1 zzzzzzzf             (185). 

Based on Eq.184 and Eq.185 it comes that 
na has the form of Eq.186 and finally, the 

energy levels take the form of Eq.187. with 1,0n for both ground and excited state of the 

system. 
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                                                                                                                 (186), 
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                                                                            (187). 

Within the influence of triangular quantum well potential and perpendicular magnetic 

field, the complete Hamiltonian describing the sytem takes the form of Eq.188, which is as 

similar as that of Eq.187. The only difference being the fact that the magnetic field is not equal to 

zero, thereby conducting to the annulation of the cooling effect. 
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                                         (188). 

From this expression of the perturbed system’s Hamiltonian (Eq.188), the energy of the 

system is derived and it dependence on the quantum well is depicted in Eq.189. In Eq.189, 

ceBc / is the cyclotron frequency. 
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Figure 24. Graphical representation of the laser field amplitude used to cool the system of magneto-polaron at 

nearest zero temperature as a function of time. 
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II.3.5.4. Density functional perturbation and improved wigner-brillouin theories 

To investigate fundamentals (Fobasso et al., 2019)  in a more practical environment 

thereby open door to possible new features for electronic and optoelectronic devices, we consider 

that the polaron results from a peculiar coupling which emerges between electron and longitudinal 

optical (LO) phonons in 2D TMDs. A model Hamiltonian is developed at different levels to 

present theoretical description of the system. While the laser radiation of amplitude 
0E  is 

introduced in the system, the laser reduces the motion of the entire system of magneto-polaron 

embedded in 2D TMDs milieu under the influence of triangular quantum well potential. We 

consider such a phenomenon as the cooling process and the entity arising from it as a cooled 

magneto-polaron or more appropriately magneto-polaron condensate, no matter the one particle 

task. We consider the one dimensional cooling process of the system, that is the z-direction, as 

mentioned in the previous section. Due to the dimensionality of the 2D material, only the two 

substrates with the highest magnetic quantum numbers are involved in the dynamics, called the 

ground state g  and the excited state e . This assumption stands as the main reason of 

considering our system as a TLS. The model we employed in this part of the paper is based on 

the Fröhlich Hamiltonian. Within the framework of the continuum model describing the 

magneto-polaron condensate interacting with vibrational modes of 2D TMDs materials under the 

influence of a triangular quantum well potential, the Hamiltonian of the system is theoretically 

expressed by Eq.190 at unit  . Expressions Eq.190 and Eq.172 are alike with the same terms. In 

contrast, the Fourier components of the electron-phonon interaction
kV  are changed to the 

parameter  G q  which corresponds to the polar-optical coupling with LO phonons in 2D TMDs 

materials, known elsewhere (Sohier et al., 2016) as the Fröhlich interaction and which is the main 

purpose of the next section.  
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II.3.5.4.1. Density functional perturbation theory calculations 

We now present analytical model calls density functional perturbation theory (DFPT) 

which explains how we get to the best formulation of the Fröhlich interaction  G q in 2D 

TMDs. The tensor of Born effective charge is noted by m
aZ for monolayer. The index a  runs over 

the atoms of the unit cell. The relative dielectric permittivity tensor (simply called dielectric 

tensors hereafter) for monolayer is noted m . By symmetry, the tensor is isotropic in the plane, 

but we allow for different properties in the out-of-plane direction. The tensors thus have the 

generic forms of Eq.191. 
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                                                                      (191). 

In-plane and out-of-plane, variables are separated according to the notation  zrr p ,  

and  zp qqq , . We use Gaussian centimeter-gram-second (CGS) units. We consider LO 

phonons in a 2D material of thickness d . Its dielectric tensor m  has the form of Eq.191, with in-

plane and out-of-plane dielectric constants 
m
p  and m

z  respectively. Above and below are two 

semi-infinite spaces with isotropic dielectric properties represented by the dielectric constants
2  

and 
1  respectively. The origin of the polar-optical coupling is the polarization density  zrP p ,  

Eq.192 generated by the atomic displacement pattern associated with a LO phonon of in-plane 

momentum 
pq (Figure 25), where A  is the area of the unit cell,  zf  the outof-plane profile of the 

polarization (normalized to unity) and pM the polaron mass. Other parameters in Eq.192 such as 

e , ,p

a

q LOe and 
,pq LO denote respectively the electronic charge, eigenvectors of the system of 

polaron associated with LO-phonon coupling in 2D TMDs under the influence of triangular 

quantum well potential and the photon frequency associated with LO phonon coupling. 
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Such a polarization density induces a potential     pp riq

pFrpFr ezqVzrV
,

,,   with the same 

periodicity. The associated EPC can then be written as given in Eq.193.  

      dzzzqVqg elpFrp
D

Fr ,2

                                                                                                           (193), 

where  zel  is the plane-averaged electronic density. By using this expression, we neglect the 

details of the wave functions and the associated band dependency. In the out-of-plane direction, 

we consider the electronic density and the polarization to be uniform over the thickness t of the 

material Eq.194, where  is the Heaviside function. 
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This approximation should be satisfactory in the long-wavelength limit, since  zqV pFr ,  

varies mildly in the out-of-plane direction. The potential 
FrV  must fulfill the Poisson Eq.195, 

where  z  is a position-dependent dielectric tensor.  

      rPrVz Fr .4.                                                                                                        (195). 

The central objects of the problem are the phonon-induced polarization density and the 

dielectric tensor. As one travels along the out-of-plane direction, both those quantities change. 

Inside the 2D material,   mz   and the polarization density is finite and oscillating in the plane. 

Outside the 2D material,    1 z  (where   is the identity matrix) and the polarization density 

is zero. Other requirements on the potential are that the associated in-plane electric field  rE //  

and out-of-plane electric displacement  rD  should be continuous. After performing 

calculations, it comes the following expression Eq.196. 
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D
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c
qg


2 ,   peffeffpeff qrq  0                                                                         (196), 

In the above, the constant 
zc corresponds to the magnitude of the bare Fröhlich 

interaction. It depends on 
12 the Born-effective charges and the phonon displacements. The 
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parameters in Eq.196 that is the effective screening  0

eff and the effective thickness  effr are 

expressed by following relations given that 12 is the average dielectric constant. 
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In the simple effective isotropic model [see Sohier et al.(2016)], the final expression of 

the polar-optical coupling with LO phonons in 2D TMDs materials or Fröhlich interaction is 

given by Eq.202.          

qr

c
qG

effeff

z




0
)(


                                                                                                               (202). 

In Eq.219, 
zc  still describes the bare magnitude of the polar-optical coupling which 

depends on the Born effective charges and the phonon displacement. Other terms in Eq.219 are 

given in Eq.203 and Eq.204 respectively for TMDs materials, given that 
iso  and 

isod  are dielectric 

constant and thickness of 2D TMDs materials in the isotropic model.  2,1ii represents 

dielectric constant above  1i and below  2i the 2D TMDs material respectively.  

 21
0

2

1
 eff                                                                                                                        (203), 
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isoisoeff dr 
2

1
                                                                                                                           (204). 

 

 

 

 

 

 

 

 

 

 

Figure 25. Model of the Fröhlich interaction in a polar 2D material of thickness t . LO phonons generate a periodic 

polarization density      pp riq

pp ezqPzrP
.

,,   inside the 2D material.The dielectric properties of the 2D material 

are represented by the dielectric tensor 
m with in-plane and out-of-plane dielectric constant 

m
p and 

m
z  (denoted for 

simplicity p and z in the text) respectively. Above and below the two half spaces in which the polarization is zero, 

and the dielectric constant are 2 and 1  respectively. The sympbol I denote the identity matrix.The two tick and 

black horizontal lines represent surfaces charged at the interface of 2D material due to the abrupt variations in the 

polarization density [from Sohier et al. (2016)].  

 

II.3.5.4.2. Improved Wigner-Brillouin theory 

The impoved wigner-Brillouin theory (IWBT) (Chen et al., 2018) is a mathematical tool 

most suitable in determining LELs of laser cooled and trapped polarons embedded in 2D TMDs 

materials. Based on Hamiltonian Eq.207, we performed LELs using IWBT. Due to the 

introduction of laser, energy levels of the system are Landau levels (LLs) shifted over ( )Z nE by 
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the interaction of the electron with LO -phonons. Within second-order perturbation theory, the 

energy shift of the thn LLs is given by Lindemann et al. (1983)
 (
Eq.205).  
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n
D

qM
E                                                                                                           (205), 

where, 

  0;; nHqmqM Inm                                                                                                             (206), 

is the matrix element of the electron-phonon interaction operator 
IH  (the third term in Eq.207) 

between an electron in Landau levels (LLs) m and n  and one phonon state with momentum q . 

The energy denominator in Eq.205 is given by Eq.207; 

 nmD cnLonm                                                                                                   (207), 

with the energy shift 
0EE nn  obtained within the IWBPT. Eq.205 is a non-linear equation 

which is then solved for
n . For the LLs below the LO-phonon continuum, the energy 

denominator is
nmD  and therefore, we insert Eq.208 into Eq.205 thereby resulting to Eq.209, 

where  ur is the electron position operator at imaginary time itu  , which has been given by 

Devreese et al. (1973) and Peeters and Devreese (1982) (see Eq.210). 
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In Eq.210, 
x  and 

y are the center of orbit operators and obey the commutation relation

  cyx i , . For 2D system,      uyquxqurq yx . . Following the calculations of Peeters 

and Devreese (1985), we obtain the result of Eq.211. 
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We insert the above result into Eq.209 and substitute 
q

(...) with qdq
2

1
. We obtain 

the final result for the LLs below the LO-phonon continuum Eq.212. 
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For the LLs above the LO-phonon continuum, the denominator 
nmD can become zero and can 

even change sign. Therefore, in order to obtain the energy correction, we then take the principal 

value as given in Eq.213. 
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Because Eq.208 becomes invalid for LLs above the LO-phonon continuum, we should 

calculate the explicit expression for the matrix element  qM nm
and then perform the q  integral. 

Inserting the interaction Hamiltonian of electron and phonon 
IH into the matrix element, we 

obtain Eq.214. 
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Let now insert the electron position operators Eq.210 (Devreese et al., 1973; Peeters and 

Devreese, 1982) into the above formula, we obtain Eq.216. 
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where 
yx iqqq 
.  CC   is creation (annihilation) operator for a Landau state, and they obey 

the commutation relation   1, CC . In Eq.216, we need the expectation value. Thus, 
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Inserting Eq.218 into Eq.212, we finally obtain the energy shift in monolayer TMD above the 

LO-phonon continuum Eq.219. 
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It comes from here that, the final expression of LELs of the system of magneto-polaron 

condensate, in 2D TMDs materials under the influence of triangular quantum well potential and 

in the presence of perpendicular magnetic field is given in Eq.220 where the last term to the right 
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hand side is depicted in Eq.212 below LO-phonon coupling and Eq.218 above LO-phonon 

coupling.  
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Conclusion 

We present different mathematical tools needed in order to solve the problem treated in 

this thesis, namely effect of surrounding environment in laser cooling and trapping of atomic 

particles and particularly polariton and polaron. We propose several methods and showed how it 

is possible to investigate the dynamic of a laser cooled and trapped polariton within both SC 

approach and LZ formalism. In particular, based on classical electromagnetism approach with the 

help of RWA, we carefully investigate the effect of surrounding environment in laser cooling and 

trapping of polariton in one hand and decoherence in the system of laser cooled and trapped 

polariton when it is confined in a magnetic field which we consider as a trap. This is done by 

theoretical calculations of cooled and trapped polariton parameters which are (i) force and 

corresponding torque, (2i) transition probabilities of founding the system in the excited state, (3i) 

total energy of the cooled and trapped polaritonic system and (4i) Von Neumman entropy. Due to 

the consideration that laser cooled and trapped polariton is a TLS, we formulated LZ problem in 

laser cooling and trapping of polarion.  From the Jaynes-Cumming and LZ models, we used 

LZSIT based on AIA in order to investigate LELs of cooled and trapped polariton. Later, 

regarding their physical properties which include (i) their unique optoelectronic features in the 

monolayer limit, (2i) their high oscillator strength, (3i) the fact that they are excellent platform 

for strong light-matter interactions and quantum confinement, (4i) the possibility to be studied 

when embedded in optical cavities and (5i) the flexibility of their band gap energy, we consider 

that the polariton results from peculiar coupling between exciton and photon in 2D TMDs 

materials. We use the same LZSI theory based on AIA for the investigation of LELs. Under the 

influence of a triangular quantum well and permendicular magnetic field, the IWBT is considered 

in performing LELs calculations of cooled and trapped magneto-polaron. The choice of this 

entity comes from the fact that, in one hand, the introduction of laser radiation in the system 



  

106 
 

conducts to the braking down of Pauli exclusion principle thereby makinglaser cooled and 

trapped polariton to behaves like intermediate particle which satisfies both Fermi-Dirac and 

Bose-Einstein statistics, and, on the other hand, polaron is a fermion which satisfies Fermi-Dirac 

statistic.  
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CHAPTER THREE  

RESULTS AND DISCUSSIONS 

Introduction 

In the previous chapter, we present in detail the general mathematical tools and formalism 

used in this thesis in order to get to our main objective. In addition, the previous chapter presents 

analytical results on essential parameters investigated within our study. These include forces and 

corresponding torques, transition probabilities of laser cooled and trapped polaritons and energy 

of the system. Throught LZ approach, LELs of both laser cooled and trapped polariton and 

polaron in both diabatic and adiabatic basis are also investigated in the previous chapter. In this 

chapter then, numerical results are presented and discussed in otrher to support our analytical 

results and bring insight to our philosophy.   

 

III.1. Laser cooling and trapping of polariton 

III.1.1. Laser cooling and trapping of polariton without magnetic field 

III.1.1.1. Force and torque 

Laser cooling and trapping is the physical phenomenon that can be used to decrease 

considerably the motion of atomic particles. Just like momentum, and considering their link, 

force is a characteristic of motion that can be transferred. This radiation pressure has as origin the 

interaction between matter and laser light, with exchanges of discrete packets of light usually 

called photons. Various curves are plotted in Figure 26. For numerical purpose, let yx EE *
 and

xy EE *
. Then we may write oyox EE  and

2

0

22

00 EEEEE oyoxyx  .  We observe that 

without interaction, when ( 0g ), the polariton is subjected to a decreasing force, which becomes 

constant with decreasing coupling constant. It becomes more difficult to cool and trap polariton 

than electron because the environment strongly affects the process. Compared to the force, the 

torque increases with coupling strength constant. Also, the torque and force change considerably 

with the Rabi frequency particularly for weak coupling constant. Therefore, the laser does not 
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have any effect for strong interaction. Both force and torque change sign but not periodically. 

Thus, the polariton dynamics does not depend on the laser amplitude but on its frequency.  

 

 

Figure 26. a) Force and b) torque versus coupling constant for different values of Rabi frequency. 
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We observe that without interaction the particle accelerates ( 0F ). When the interaction 

increases, the polariton decelerates and modulates the force, which vanishes for higher coupling 

constant strength. The Rabi frequency also decelerates the motion of the electron, which is 

obvious. The physical interpretation is that the environment can be used to cool and trap electrons 

and also as a control parameter of the cooling and trapping of particle. Negative and positive 

torque is clearly observed with increasing coupling constant strength. This implies that even if the 

particle is stable for strong coupling, it has a rotational tendency; perhaps due to state variation of 

the polariton. It is known that atoms can undergo transitions between different states when a 

photon with energy is emitted or absorbed. 

 

III.1.1.2. Transition probability and energy 

Figure 27 represents the transition probability of finding a cooled and trapped polariton in 

the excited state as a function of photon frequency for different values of Rabi frequency. 

Various curves are plotted by setting the oscillating frequencies of the laser radiation at the 

resonance (
Rabi 0

). In Figure 27, it is observed that, with no environmental effects  0 , 

the probability is higher and decreases with increasing environmental effects. The probability 

decreases and collapses for large environment effects. We may also see that the Rabi frequency 

decreases the probability amplitude. This means that the transition probability for finding the 

cooled and trapped polariton in the excited state is mostly governed by the environment. Figure 

28 shows that strong coupling constant decreases the probability of finding the polariton in the 

excited state. Compared to the case of weak coupling presented above, the probability to find the 

polariton in the excited state decreases with Rabi frequency. In addition, in this case compared to 

weak coupling, the polariton shuttles rapidly between ground and excited states. The coupling 

strength constant can be used to control electron state under laser radiation.  
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Figure 27. Probabilities of finding the coherently two-level of polariton in the excited state versus photon frequency 

  for 1g .   

 

Figure 28. Probabilities of finding the coherently two-level of polariton  in the excited state versus photon frequency 

  for 6.1g . 
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Energy stands as the most important parameter in laser cooling and trapping phenomena. In 

Figure 29, we plotted the energy produced by a system of cooled ande trapped polariton against 

frequency. The results we obtained are similar to those observed in the previous section. The 

evolution of energy completely depends on the environment. Consequently, considering the case 

in which the effects of environment are taken into consideration in the system, the energy 

produced for weak interaction (Figure 29) is similar to that produced without coupling constant in 

terms of energy amplitude (Figure 30). However, energy is very sensitive to weak environment. 

Figure 30 shows that, in the absence of environment (g = 0), the amplitude of the energy is 

minimum. However, the energy increased because of environment effect. This result confirms an 

existence of transition probability due to environment. For both cases, the atomic particle 

(exciton) under laser light gains and loses energy. This implies that there is an absorption and 

emission of photon. This result clearly justifies the transition probability behavior. Previous work 

(Letokhov et al., 1976) has demonstrated cooling and trapping electron using laser techniques to 

increase the phase space density of particle beams in storage rings. Therefore, it become 

interesting to take a moment looking on numerical results for laser cooled and trapped polaritons 

and confined in magnetic field. 

 

Figure 29. Energy representation of the system of cooled and trapped as a function of photon frequency   at the 

limit of weak interaction  35.0g . 
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Figure 30. Energy representation of the system of cooled and trapped polariton for different frequency of photon   

and coupling constant 0g  

 

III.1.2. Laser cooling and trapping of polaritons with magnetic field 

III.1.2.1. Force and torque 

The importance to show variation of the force and its corresponding torque with several 

parameters of the system as presented in the figures below come from the fact that, force is a 

characteristic of motion that can be transferred. In this particular case, this force has as origin the 

interaction between the system of polariton, laser light which exchanges packet of discrete 

particles usually call photons and the magnetic field considered as a trap. The action of rotational 

force upon confined particles is perfectly characterized and measured. For the torque to be plotted, 

we again, as in the case of the force assume that yx EE *
 and xy EE *

, yields oyox EE  and

2

0

22
EEEEE oyoxoyox  . In Figure 31 and Figure 32, one can perfectly observe how 

much the magnetic field, choosing here as the trap plays an important role in cooling and trapping 

phenomenon. It’s well seen that, a previous cooled polariton trapped by a magnetic trap is 

subjected to an increasing force (Figure 31). In contrast, the torque decreases progressively and 
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tends to be stable at nearest zero point (Figure 32).  Also, it is important to note that, either in 

case of the force or that of the torque, the curves vary considerably with coupling strength 

constant g  proving how much its important to trap a polariton that has interacted with it 

surrounding environment at low coupling strength constant g . Anyway, the magnetic field 

added in the system of laser cooled and trapped polariton so as to trap it reduces progressively the 

effect of surrounding environment and therefore increase in similar way the force necessary to 

cool the system. As consequence, the torque reduces, meaning that the trap removes rotational 

tendency behaviour of particles.  

 

Figure 31. Graphical represention of the force versus Rabi frequency respectivley 

 

Figure 32. Graphical represention of the torque versus Rabi frequency respectivley 
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I.1.2.2. Transition probability and energy 

The results above, which corresponds to graphical representation of both force and torque as 

a function of environment, shows how important it is to confined atomic entities, previously 

cooled and trapped with laser radiation. Here, we simulated the transition probability of finding 

the polariton in the excited state curve (Figure 33) for both low and strong interaction with 

surrounding environment, and that for the energy of the system (Figure 34), for some values of 

magnetic field B . As a fact, we consider the magnetic field frequency BB   . Choosing the 

gyromagnetic factor 1.0  and Bohr magneton 5.0 . We then observed that, the probability 

of founding the system in the excited state has maximum value at the beginning of trapping 

process. This value of transition probability for the system to be found in the excited state start 

decreases progressively after a doorway value, 4B , of the magnetic field and tend to collapse 

for high value magnetic field, 20B . We may also see that the surrounding environment 

decreases the transition probability amplitude of founding the system of cooled polariton in the 

excited state. In the region 2010  B , the slope between the two curves is very weak. Thus, in 

this region of the magnetic field, the environment has similar effect in cooling and trapping 

process for both low and strong interaction with the laser cooled and trapped polariton. In 

addition, the polariton is trapped rapidly, i.e. is shuttles quickly from excited to ground state, in 

case of low interaction with surrounding environment.  

In Figure 34, to investigate energy of the system of cooled and trapped polariton, we choose 

different types of frequencies in the system. When we compare both Figures 34 (a and b), we 

observe that when the interaction of the polariton with environment increases, the energy reduces 

considerably. This result confirms that the polariton under laser light gains energy. Figure 35a 

shows that surrounding environment reduces the effect of magnetic field in the system of cooled 

and trapped polariton. It’s also found that, weak magnetic field is more appropriate in cooling 

and trapping processes. In Figure 35b instead, we observe that surrounding environment does not 

affect cooling and trapping polariton process for very low value of magnetic field ( 1B ). This 

result confirms that the cooled polariton is well attracted and confines at bottom of the trap with 

much less perturbation to their internal structure and minimal heating from the surrounding 

environment. 
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Figure 33. Graphical representation of transition probability versus magnetic field in both low ( 35.0g ) and 

strong ( 6.1g ) interaction with environment respectively. 
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Figure 34. Graphical representation of laser cooled and trapped polariton. a and b: energy versus photon and Rabi 

frequencies for some values of magnetic field respectively.  
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III.1.2.3. Entropy 

To bring insight to our discussions above, we plot in Figure 35 the Von Neumann entropy 

S  against the induced photon’s frequency (Figure 35a) and coupling strength constant g (Figure 

35b). We recall to readers that the choice of this parameter has been debated in the previous 

chapter. Here again, we consider all parameters as addimensionless parameters. We can see that 

the entropy makes quasi-period oscillation. This means that the deformed field can help to realize 

and stabilize the degree of entanglement between the atom and the field at a high level. 

Sometimes (Figure 35b), for low values coupling strength constant (i.e. 1g ), the atom- field 

system becomes maximally entangled. We also plotted in Figure 36, the time evolution of the 

Von Neumann entropy for different values of coupling strength constant g . We observe that in 

Figure 36a, the entropy S suddenly increases for low values of the magnetic field B  (a amount 

near its maximum value of 75.0 ) in case of low interaction with environment. In contrast, the 

rough evolution of the entropy S in case of strong coupling constant g (Figure 36a) is rather 

observed for high values of the magnetic field B .  For various curves, we choose the magnetic 

field parameter, i.e. the gyromagnetic factor   and the Bohr magneton   to be 2.0  and 

5.0 .  

In the actual system, the atom is steady when it is in the ground state. However, when the 

atom is in the excited state, some factors such as the spontaneous emission, the collision between 

atoms and so on, will lead to the decay of the upper-level. In this case, the entropy S  attains a 

stable behavior after some fluctuations at the beginning of the interaction [see Figure 35(a, b)]. 

As it’s seen, the presence of the magnetic trap not only disappears the rapidly oscillations of S in 

the initial times, but also leads to a reduction of the amount of entanglement. The entanglement 

decays to the asymptotic value in both larger values of coupling strength constant and photon’s 

frequency.  So far, it’s observes that, these figures [Figure 36 (a, b)] seems like those obtain by 

Dehghani et al. (2016), for graphical representation of time evolution of fidelity for a TLS. Bear 

in mind that entanglement between the atom and field is maximized i.e. the quantum state Ψ (t) 

becomes maximally entangled, for low value coupling strength constant, its then comes that, the 

system become more entangled for low value of the fidelity.  
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Figure 35. a. Graphical representation of entropy (Von Neumann entropy) in function of photon’s frequency for 

some values of magnetic field B . b. Graphical representation of the entropy in function of coupling strength constant 

for some value of magnetic field B .  
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Figure 36. Time evolution of entropy (Von Neumann entropy) for some values of magnetic field B . a and b: 

case of low and strong interaction with the surrounding environment respectively. In each case, we choose 

2.0  and 5.0  
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Perharps, nomatter the results above, the entropy of the system (Figure 35) could not 

attempts the value of 0. Physical interpretation wich arises from such a result is that there still 

exist in the confinement physical phenomena and particularly collision between atomic 

entities. This means that the dynamic of the laser cooled and trapped polariton and confined in 

magnetic field which we considered as a trap, is still controlled by effect of surrounding 

environment. Due to the above results, we are kindly motivated to look for a more appropriate 

model which could allow perfect isolation of the system from surrounding environment in 

order to achieve coherent control of the state of laser cooled and trapped of polariton. A 

search which conducts to the formulation of LZ problem in laser cooling and trapping of 

polariton, thereby investigating LELs and transition probability in both diabatic and adiabatic 

basis. These parameters are numericamlly depicted in the next section in order to justify our 

hypothesis which consist on formulating LZ problem in laser cooling and trapping of 

polariton.  

 

III.2. Transition between semiclassical and quantum mechanical theories in laser cooling 

and trapping of polariton 

III.2.1. Landau energy levels 

For LELs obtained from Hamiltonian Eq.120, i.e     22''  ttE  , we start with 

the case of weak coupling ( 1g n ) between the qubit and the cavity laser, where strong 

driving would requires a multi-crossing scenario (Figure 37c) as obtained from 0.1g n  . In 

some recent studies (Niemczyk et al., 2010 ; Forn-Diaz et al., 2010), the value 0.1g n   has 

been identified as being in the ultra-strong-coupling regime in the Rabi model. However, for 

purposes of this study, this value of g n  can be considered to lie in the weak-coupling 

regime. The qubit exhibits the characteristic LZS-Rabi oscillation when 0.1g n  which is in 

accordance with the result of Shevchenko et al. (2010). When the coupling between cavity 

laser and qubit increases [Figure 37 (a-b-c)], the number of pulse of energy decreases, thus 

strong coupling destroys the interference pattern. In other word, the polariton predicts the 

decoherence phenomenon. The increase of laser amplitude induces the multicrossing, and 

then, the cooling of polariton develops the crossings. The weak amplitude of laser alters the 

crossings and the behavior of the system follows adiabatically.  
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Figure 37. Eigenvalues of Hamiltonian versus time. The dashed black lines correspond to the diabatic transition 

and the solid blue and red lines are the adiabatic transition. (a)-(b) corresponds to the coupling 5g  and 

3g  respectively for strong amplitude of the laser field. (c)-(d) corresponds to the coupling 5g   and 3g 

, respectively for a weak amplitude of the laser field. The following parameter values have been chosen: 2   

and 0.7l  .  

 

III.2.2. Transition probabilities 

III.2.2.1. Transition probabilities in the diabatic basis 
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In Figure 39 and Figure 42 the diabatic and adiabatic tunneling probabilities, respectively, 
dp  

and AP , are plotted for different values of the amplitude of laser / l  in both low regime 

 / 1lg n   and strong regime  / 1lg n   exciton-photon coupling strength. Doing 

it, we set / 1l  . In the first case, that is in Figure 39, in the field regime
0 / 2lE   , and 

in the domain 0t  , almost nothing happens and the ground-state is entirely populated. 

Around the crossing time 0t   , there is a sharp increase in population from a minimum 

value to a maximum value as the exciton-photon coupling increases. In the strong exciton-

photon coupling regime ( / 1lg n  ), the interference phenomenon alters as it’s depicted 

in Figure 39c (first panel of Figure 39), leading to a dramatic destruction of populations with 

consequence destruction of coherence state of the entire system. In addition, for the field 

regime
0 / 2.3lE   , as illustrated in the second panel of Figure 39, the coupling does not 

affect considerably the coherence state of the system, which looks more stable for low 

exciton-photon coupling.  On the other hand, for very high value laser amplitude or very small 

laser frequency, i.e. by choosing
0 / 4lE   , the observed transition clearly exhibits long-

period highly regular temporal oscillations through an avoided crossing. This is well shown in 

the third panel of Figure 39. These oscillations show significant laser frequency and exciton-

photon coupling dependence. Despite this fact, there is a striking correlation between the 

confinement and changes in the population transfer from ground to excited state of the 

system. 

The amplitude evolution of the tunneling probability that the qubit is in state  is 

depicted in Figure 40 for diabatic basis and Figure 43 for adiabatic basis. It is shown that at 

intermediate amplitude of the laser, the dynamics depends strongly on the qubit-cooling laser 

coupling strength / lg n  . By changing / lg n  , the LZ transition switches with a crossing 

shift at different position of / l . Thus, the LZ dynamics can be manipulated via the qubit-

cooling laser coupling strength, at which the qubit levels cross during the above frequency 

variation in the field. As the amplitude of laser is adjusted (increases progressively at 

/ 2l   and / 4l  ), the shifted crossing appear smoothly in such a way that high 

among of the population is cooled and trapped down; the whole system being transferred from 

ground to excited state at very strong cooling regime. In contrast, if the system is cooled and 

trapped down in an environment with whom it’s interacts strongly  / 1lg n  , important 
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modifications are observed leading to the splitting polariton states. Low  / 2l   to strong 

( / 4l  ) critical amplitude of laser field is analyzed. Analyzing this situation in the 

adiabatic basis leads to an observation that, in general, higher trapping frequencies lead to 

larger probability for adiabatic transfer. This can be intuitively understood by imaging that 

very tight cooling forces the polariton state to overlap and thus increases the interference 

signal. Typically, the Landau-Zener-Stückelberg interferometry (LZSI) process is observable 

at the first panel of Figure 39(a) and Figure 42(a) with low exciton-photon coupling

 / 0.2lg n    and moderated amplitude of laser  0 / 0.5lE   .  

 

 

Figure 38. Graphical representation of Landau-Zener probability for the cooled and trapped polariton to be 

found in both ground and excited states in the diabatic basis for different values of laser frequencies : (a) 

0.1l  , (b) 0.2l  and (c) 0.8l   for weak 0.3  and strong 1 amplitude of electric field, 

respectively at the upper and down panel. Here, the following parameter values have been chosen: 0.2  , 

0.5t   and 1n  . 
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Figure 39. Landau-Zener dynamics in the diabatic basis as a function of time for different values of exciton-

photon coupling: (a) / 0.2lg n   , (b) / 1lg n    and (c) / 1.8lg n   at low (          .), 

intermediate (          .) and strong 
0( / 4)lE   amplitude of laser field.. Here, the following 

parameter value has been chosen: / 0.2l   
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Figure 40. Landau-Zener dynamics in the diabatic basis as a function of the amplitude of laser field for a weak 

(          ) (a), intermediate (        ) (b) and strong ( / 4lg n   ) (c). Here, the following 

parameter values have been chosen: / 1l  , 0.5t   . 

 

II.2.2.2. Transition probability in the adiabatic basis 

In Figure 41, the parameters of interest are amplitude of oscillations and laser 

frequency. The instantaneous transition probability of the upper/lower level as a function of 

coupling strength is observed at a different laser frequency condition, i.e at Weak

 0.1 /l rad s  , intermediate  0.2 /l rad s  and Strong  0.8 /l rad s  laser frequencies 

and in both low ( 0.3)  and strong ( 1) regime amplitude of oscillation. Collapse and 

revival of the amplitude of the oscillation between qubit states   and   induces LZ 

transitions.  It is evident that the transition probability is strongly influenced by the avenue of 

the multi-crossing, which manifests itself as lower of the amplitude of oscillation, as it’s 

depicted in  first panel of Figure 41 [see Figure 41(a, b)]. As the laser frequency value 

increases, the multi-crossing phenomenon alters in Figure 41c (first panel of Figure 41). An 

important result here is that, the accumulated Stückelberg phases decrease with the laser 

frequency. In the strong regime of the amplitude of oscillation, as illustrated in the second 

panel of Figure 41, starting at the crossing point, the qubit state is swept by the laser field. 

After the LZ transition at the crossing point, the resulting superposition state of ground and 

excited state accumulates a phase. The qubit state is subsequently driven away from the 

crossing point and then returns to the starting flux position, i.e at the crossing point (see 

Figure 41a in the second panel of Figure 41). Such a period of qubit evolution refers to the 



  

126 
 

Mach-Zehnder (MZ) interferometer. The corresponding qubit transition probability induced 

by a periodic laser frequency, results in an equivalent optical cascade of MZ interferometer, 

with no crossing energy levels (Figure 41c of the second panel of Figure 41). The discussions 

above predict the effect of accumulated phase in the dynamical behavior of the complete 

system. Yield the coherent measurement of the state of the system. 

In Figure 43 for instance, the subscript ‘A’ indicates the adiabatic basis. From Figure 

39 and Figure 42, we see that both diabatic and adiabatic transition probabilities display 

similar shape before the crossing (anti) time. By varying the laser amplitude, that is by 

choosing 
0 / 2lE   (firs panel of 42), 

0 / 2.3lE   (second panel of Figure 42) and 

0 / 4lE   (third panel of Figure 42) respectively, we arise at the same interpretation as it 

was in the case of diabatic basis. This means that the adiabatic transition probability strongly 

depends on both the exciton-photon coupling and laser frequency. The above discussions 

show that analysis of cooling and trapping of polariton using LZ theory in the case of diabatic 

basis is more appropriate in low exciton-photon coupling and in the regime of laser frequency

0 / 2.3lE   . In general, the laser amplitude is properly adjusted to avoid the complete 

destruction of population of the system for both diabatic and adiabatic analysis. 

The ground state polariton of the system changes adiabatically from the last panel of 

Figure 42, when
0 / 4lE   and / 0.2l  .  However, the presence of overlapping polariton 

states can change the situation. If the polariton states are separated, the polariton eigenstates 

are free with no contribution from the LZS interference. It may be possible to control the 

ramp exciton-photon coupling to cross one of them diabatically, and the other adiabatically. 

However, for high exciton-photon coupling, / 1.8lg n   , both polariton states are clearly 

broadened and it may no longer be possible to do it. Consequently, the LZ theory is 

applicable. The numerical results also reveal progress increase of population in excited state 

as the laser field increases. Hence, the total population found in the excited state is controlled 

by laser light. Thus, Figure 39 and Figure 42 nicely demonstrate how tight amplitude of laser 

effectively makes the LZSI wider. 
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Figure 41. Transition probabilities versus coupling strength constant  g in both Weak  0.1 /l rad s  , 

intermediate  0.2 /l rad s  and Strong  0.8 /l rad s  laser frequencies regime. Here, the following 

parameter values have been chosen: / 2.3l  . 
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Figure 42. Landau-Zener dynamics in the adiabatic basis as a function of time for different values of exciton-

photon coupling: (a) / 0.2lg n   , (b) / 1lg n    and (c) / 1.8lg n   at low (          .), 

intermediate (          .) and strong  (        .) amplitude of laser field. Here, the following 

parameter value has been chosen:         . 
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Figure 43. Landau-Zener dynamics in the adiabatic basis as a function of the amplitude of laser field for a weak 

(           (a), intermediate (        ) and strong ( / 4lg n   ) (c) coupling. Here, the following 

parameter values have been chosen: / 1l  ,  

 

 Moreover, since both states g  and e  contribute to the Stückelberg oscillations, it’s 

possible to conclude at posteriori that for the qubit-oscillator coupling, a RWA is justified 

(Saito et al., 2006). In fact, all those graphical representations for LZS transition probabilities 

of the polariton in both diabatic and adiabatic basis indicate that the dynamic of the system 

consists of two transitions. In the specific regime with corresponding value laser frequency, as 

presented in the above discussions, the two transitions are essentially independent of each 

other. Therefore, one can investigate analytical expressions of same transition probabilities 

within the RWA. This means that, we pursued the main objective of the present thesis with 

another concise end precise mathematical approach thereby allowing arising to quantum error 

corrections requierement. This indicate that our theoretical formulation allow coherent control 

and precise measument. It is nice that the argument can be turned around, and from the same 

Hamiltonian Eq.61, we arize to the same dynamical behavior with the help of LZ theory is 

investigated. The present theoretical formulation provides an independent and simple method 

to determine LZ transition probabilities for a system of cooled and trapped polariton, taking 

into account the effect of surrounding environment in a particular regime (low or strong 

coupling). Due to its suitability, our formalism can then be used to investigate the effet of 

surrounding environment in the dynamic of laser cooled and trapped polariton.  
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III.3. Laser cooling and trapping of polariton in 2D transition metal dichalcogenides 

Due to their physical properties including (i) their unique optoelectronic features in 

monolayer limit; (2i) their high oscillator strength; (3i) the fact that they are excellent 

platform for strong light-matter interaction and quantum confinement; (4i) the fact that they 

can be studied when embedded in optical microcavities and (5i) the flexibility of their band-

gap energy, we found interesting the use of two dimensional (2D) transition metal 

dichalcogenides (TMDs) materials of 
2MX  types as new playground for laser cooling and 

trapping of polariton. We suppose that the polariton results form a peculiar coupling between 

exciton and photons in 2D TMDs.  Yields the necessity to investigate LELs of laser cooled 

and trapped of polariton in 2D TMDs materials and transition probabilities in both diabatic 

and adiabatic basis. The next section is devoted to present numerical results to bring insight 

on our philosophy. 

 

III.3.1. Landau energy levels 

For numerical purpose, we consider 2D TMDs materials of 2H types. These include: 

molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2), tungsten disulfide (WS2), 

and tungsten diselenide (WSe2). The 2D TMDs parameters used are widely indicated in Table 

2.  

Table 2. Transition metal dichalcogenides parameter constants such as energy band gaps and 

interlayer Hopping integral. 

2D Materials 
2MoS  

2WS  
2MoSe  

2WSe  

 eV  1.860 2.080 1.640 1.742 

 eV  1.137 1.436 0.951 1.233 

 

In Figure 44, graphical representations of LELs are plotted without laser radiation in 

the system. The figures present crossing and avoided crossing of energy levels for two 

different values of the detuning between exciton and photon. For the control of dynamic state 

where   , the level crossing can results in trivial dynamics at 0  and when the photon 

frequency is twice that of the band gap value of the corresponding material. This is an 
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indication that, as 0  , the spatial crossing between interspin levels becomes spatial 

anticrossing.    

Despite the difference observed between avoided crossings of energy levels, the 

figures present identical behavior each other’s.  This difference is based on the difference in 

the energy band gap within several materials. In the avoided crossing region, LELs present 

ground state energy level (red curves) and excited state energy level (blue curves). These 

features are signatures of the lower polariton (LP) and upper polariton (UP) quasiparticle 

eigenstates in the 2D microcavity. A result which is not surprising since it corresponds to the 

properties of microcavity polaritons as presented by Sanvitto and Kéna-Cohen (2016). The 

anti-crossing between LP and UP branches is the consequence of strong light matter coupling 

in 2D microcavity. Similar result has been reported by Anderson et al. (1995). Based on this 

assertion and following the analysis of Anderson et al. (1995),  it’s then comes that, such a 

behavior for LELs indicates that the 2D microcavity is populated with polaritons at room 

temperature (hot polaritons), in the regime dominated by coherent exchange between coherent 

on-chip light and matter excitations.  

Figure 45 illustrates that LELs are modified due to cooling process in the system. The 

crossing (avoided crossing) points are shifted in front of the initial place of occurrence 

[compared on that of hoot polaritons (Figure 44)] with an important value displacement d

which depends to the material type.  The shift d in 
2MoSe  is larger than in other 2D TMDs 

materials of our choice, i.e.  
2MoS , 

2WS and 
2WSe . The result illustrates hypersensitivity of 

the material 
2MoSe  with laser. Physical interpretation of such a result is that, 

2MoSe  is the 

more indicated 2D TMD material for cooling process.  

In Figure 46, we depicted graphical representation of LELs versus laser frequency for 

particular values of coupling strength constant or vacuum Rabi frequency . The values of 

1 (considered here as low interaction) and 1 (strong interaction) are choosing. Result 

indicates the modification of LELs due to radiation field. In general, the plots in Figure 46 

illustrate that the energy of the system increases with laser field. Moreover, the general state 

of the system is progressively condensate to zero temperature. Such a state of the system is 

the evidence that LELs are strongly influenced by the laser frequency
l , which conducts to a 

complete population transfer from excited state to ground state. The results are indications 

that one assists to the formation of the coherent state of the system due to cooling with laser. 

This is the proof that the internal structure of the cooled and trapped polariton is less 
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perturbed. Yield possibility for successful implementation of quantum computation and 

simulation devices using the resulted microcavity cooled polariton in 2D TMDs materials. In 

addition, the complete population transfer from excited state to ground state, thereby 

indicating that only the ground state becomes efficiently populated, means that nonlinear 

growth of the ground state is driven by Bose stimulation. A result which has also been 

revealed by Sanvitto and Kéna-Cohen (2016). Thus, in contrast to organic materials and wide-

bandgap semiconductors whose do not seem to offer feasible road toward number of quantum 

polariton features, hybrid materials or monolayers TMDs offer fascinating possibility which 

consist to exploit defect states at the edge of dichalcogenide flakes (Liu et al., 2015). 

Cooled and trapped polariton in microcavities 2D TMDs material found their 

applications not only in quantum computation and simulation devices implementation, but 

also in the realization of interferometers. In fact, in low regime polariton laser coupling, LELs 

are influenced by the avenue of multi-crossing scenarios, with consecutive LZ transition. This 

shows the possibility to investigate local interferometry application. Cooled and trapped 

polaritons in 2D TMDs are therefore candidate for interferometers fabrication. Figure 48 

depicts the time dependent LELs for some values of laser frequency and in both low [fist 

panel of Figure 48, i.e. Figure 48(a, b)] and strong [second panel of Figure 48, i.e. Figure 48 

(c, d)] coupling constant or vacuum Rabi frequency .  

Because we already argued that laser cooled and trapped polariton is more substantial 

in 2D 
2MoSe , then we focus our investigations in Figure 47 only for this material. The figures 

[Figure 47 (a and b)] illustrate that the system undergo Rabi oscillations between ground and 

excited states. Such a phenomenon, in the quantum regime is an indication that the polariton 

condensate can be used as a quantum bit. In addition, the essential components of quantum 

computers, for instance, is the controlled NOT gate (CNOT) (Monroe et al., 1995). Therefore, 

laser cooled polariton in microcavities 2D TMDs material can readily undergoes large 

nonlinearities thereby opening up the possibility of realizing completely passive quantum 

gates (Sanvitto and Kéna-Cohen, 2016). 

In general, the time-dependent LELs of laser cooled and trapped polariton for different 

values laser frequencies in low coupling regime are very different to that in strong coupling 

regime. Muti-crossing scenario is slightly influenced by laser frequency in low coupling 

regime. At strong coupling regime, Figure 47 (c, d) illustrates two different possibilities that 

correspond to diabatic from adiabatic transition between consecutive crossings, which is 
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expected due to LP and UP quasiparticle eigenstates in the 2D microcavity. Physically, the 

difference observed in both panel of Figure 47 [first panel (low regime) and second panel 

(strong regime)] is explained as a valley-sensitive cavity rate model due to coherent exchange 

and incoherent scattering. This confirms the presence of valleys zones namely K and 'K . In 

addition, for a perfect coherent state of the system, the figure [Figure 47 (a, b)] indicates that 

it is of particular interest to investigate polariton condensate in 2D TMDs materials at low 

coupling with surrounding environment.  

 

Figure 44. Graphical representation of LELs versus vacuum Rabi frequency . Crossing and avoided crossing 

of energy levels are observed for    (resonance) and 2    respectively. These figures are plotted for

30n . The crossed energy levels, solid black lines, correspond to the diabatic transitions; while the avoided 

crossed energy levels, the solid red and blue lines, indicate adiabatic transitions. The figure shows that, for a hot 

polariton, there is no important difference on LELs behavior for different surrounding environment. The figure 

well illustrates that for low value vacuum Rabi frequency, crossing and avoided crossing are perfectly 

distinguished; while for high value vacuum Rabi frequency, such a difference diminished and crossing and 

avoided crossing energy levels come more closer each other. 
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To go further, 2D map of LELs as a function of coupling strength constant between 

cavity photons and 2D TMDs bands with photon frequency is illustrated in Figure 49 for 

2MoSe 2D material. We identify two main regions with antibunching on the diagonal [blue 

coloration and yellow colloration)] and bunching on the anti-diagonal (green region). When 

we move away both below and above the green region, the brightness decreases considerably 

leading to complete destruction of yellow coloration thereby resulting to the red coloration 

observed above the anti-digonal. This means that the population of polariton condensates 

dramatically changes with radiation field in 2D TMDs embedded in 2D microcavity. At zero 

laser field, the upper valley ( K ) is highly populated. When laser field is applied, the 

population decreases in the upper valley ( K ) and increases in the opposite valley, i.e. the 

lower valley ( 'K ). Thus, the contribution of laser light from the valley electric dipole moment 

results in an additional downshift of the population in the 'K  valley. The applied laser field 

induces unequal population transfer within the two valleys, yielding an augmentation of 

energy in the valley 'K , which is the origin of the fine structure observed in Figure 49. The 

bunching region on the anti-diagonal (green coloration) stands as the Brillouin zone or the 

equilibrium region. It’s the interband between the K valley (blue coloration) and the K’ valley 

(yellow til red colorations). In general, the curve of Figure 49 does not show the interference 

fringes, but the oscillatory bands describe the periodic phenomena which can induce the 

interference fringes. Another important issue based on the observation above, the 

antibunching behavior of polariton condensate in microcavities 2D TMDs which is a distinct 

signature of non-classical effects, corresponds to the measure of intensity correlations as a 

function of time delay. Based on the formulation of Shevchenco et al. (2010), the 

measurement reflects the coherence character of the states of polariton condensates in 2D 

TMDs microcavities. These distinguishable K and K’ valleys due to population transfer from 

the excited to ground state of the polariton condensate in 2D TMDs material give access to 

valley-selective excitation and detection schemes and the outlook for optical valleytronics as 

indicated by Maragkou (2015). This study which permits to access and manipulate polariton 

condensates in 2D TMDs embedded in 2D microcavities allow us to understand the limit of 

the dynamics of the states of spin, the robustness of the spectroscopy of the information and 

the calibration of the states in the significant zones. The study also stands as a road toward 

probing others fundamental laser excitations in 2D TMDs materials and the interplay between 

cooled and trapped polariton particles. 
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As we move progressively from low to strong coupling regime, LELs crossing 

disappears in the same manner. This result confirms signature of quantum chaos in the 

system. Such a result has been debated by several authors like Prokof’ev and Stamp (2000) 

and Bose (1924). The result predicts the appearance of the butterfly effect in cooling and 

trapping of polariton process in 2D TMDs materials embedded in 2D microcavity. In contrast 

to the result of Einstein (1925), high among of avoided level crossing observed in WS2 TMDs 

does not mean high energy LZ transition. This is not surprising since there is no universal 

definition of what one means by avoided crossing (Amo et al., 2009a). In general, crossing 

and avoided crossing of energy values can be understood in terms of time independent 

perturbation theory at the textbook level. Thus, energy levels have the tendency to avoid 

crossing in other to preserve the interference pattern and diverse from each other as the 

perturbed parameter varies. Figure 47 presents multi crossing of energy levels, with an 

accumulated phase for the system coupled in both low and strong regime coupling. An 

important point to note here is the double LZ transition accompanied with two avoided 

crossing points in the strong driven. Each avoided crossing point is equivalent to a "mirror" 

characterized by a transparency determined by LZ probability, leading to LZS interferometry. 

This interference result is a pronounced super-polariton cooling in the time evolution of the 

probability. Typically, interferometry process is amplified with laser frequencies, particularly 

matching in Figure 46. The left avoided crossing therefore splits the state into two half parts 

while the right crossing can either plays a role of another splitter or detects interference 

between transmitted (diabatic) and reflected (adiabatic) paths. Must favorable, as the LZS 

interferometry of the microwave dressed states is discussed in 2D TMDs, one can create 

and/or adjust the position and gap size of the avoided crossings as one desires. Generally, it is 

noticeable that, cooled and trapped polariton can leads to a broad range of phenomena related 

to BEC such as superfluidity (Amo et al., 2009a; Amo et al., 2009b), vortex formation 

(Byrnes et al., 2014) and the possibility to observe Berezinskii-Kosterlitz-Thouless and 

Barden-Cooper-Schrieffer physics (Carusotto and Ciuti, 2013).  



  

136 
 

 

Figure 45. Graphical representation of energy versus vacuum Rabi frequency or coupling strength constant. The 

tick lines correspond to Landau energy levels of cooled poariton and the dashed lines are Landau energy levels 

of hoot polariton. The figures are plotted for corresponding band gap values of each transition metal 

dichalcogenide materials. Here, we choose 5n  . 
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Figure 46. Graphical representation of LELs versus laser frequency for particular values of coupling strength constant or vacuum Rabi frequency . The values of 1.0

corresponds to low interaction, while 6.1 corresponds to strong interaction. 
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Figure 47. Graphical representation of energy as a function of time, for some values of laser frequency, for both 

low coupling regime (a, b) and strong regime (c, d). Here, the value of 5n  is choose. For others parameters 

value such as the Hopfield integral and energy band gap (Hopfield, 1958) , we focus ourselves to the 2D material 

2MoSe . 
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Figure 48. Graphical representation of energy as a function of time, for very important value of laser frequency 

15laser , for both low coupling regime (a) and strong regime (b). Here, the value of 5n  is choose. For 

others parameters value such as the Hopfield integral and energy band gap, we focus ourselves to the 2D 

material
2MoSe . 
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Figure 49. 2D map of LELs as a function of coupling strength constant (  ) and laser frequency.  

This figure shows oscillatory bands describing periodic phenomena which can induce the interference fringes in 

2D TMDs due to crossing (avoided crossing) of LELs. For any value of laser frequency and small value of 

coupling strength the LEL is low. On the contrary the LEL is strong for large coupling strength and strong laser 

frequency values. Both parameters present similar effects on the LELs. The colobar scale has the units of energy. 

 

III.3.2. Transition probabilities  

In Figure 50, we depicted graphical representation of transition probability versus 

coupling constant (Figure 50a) and versus laser frequency (Figure 50b).  Figure 50a presents 

consistent modification of the transition probability that the system is been found in the 

excited state with laser light. The red line in the figure characterizes the transition probability 

for the hot polariton, that is the probability of the polaritonic system in TMDs 
2MoSe without 

laser light. The blue line for instance characterizes the transition probability of the polaritonic 

system in 2D 
2MoSe  embedded in microcavity and cooled down to zero temperature with 

laser, in such a way that its form a polariton condensate.  

As the laser light is introduced in the system, one assists therefore to a population 

transfer from excited state to ground state. This assertion is shown on the Figure 50a by a 

final transition probability which undergoes abrupt, nearly vertical jump down to 0DP (red 



  

141 
 

curve) and up to 1DP (blue curve). In the former, the probability is varied to the minimum 

from the maximum value, indicating complete population transfer to the ground state. This 

means that all particles in the system are cooled down to zero temperature. As an important 

assumption based on this result, 
2MoSe  is appropriate 2D TMDs material for optoelectronic 

and photonic devices construction.  

Both transition probability curves cross with each other with certain symmetry. The 

symmetry observed means a reversible process. So, as the laser field is removed in the 

system, particles become again free and regain their mobility thereby jumping from ground to 

excited state progressively. Moreover, the figure shows that complete population transfer 

from excite to ground state and vice-versa is possible in 2D material
2MoSe embedded in 2D 

microcavity at zero temperature, only at low coupling strength or vacuum Rabi frequency 

 0.1  . This result confirms our hypothesis labeled in the above section of the present 

thesis that consist on investigating polariton condensate in 2D TMDs at low coupling strength 

or vacuum Rabi frequency.  

In the adiabatic basis, we concentrated mostly on the transition probability for the 

polariton condensate. We then plot graphical representation of the polariton condensate in the 

adiabatic basis as a function of laser frequency. Such a consideration arises from the fact that 

Figure 50a allows us to get important features which arise from hot and cool polariton 

(Klembt et al., 2015; Keeling and Marchetti, 2017). 

At this level of presentation, in order for readers to be more familiar to our theory, two 

essentials results are considered. Firstly, the performance of our theory does not modified 

within the effect of 2D material TMDs environment. For instance, almost all important 

physical mechanism observed out of 2D TMDs material are still observed in 2D TMDs 

materials milieu. This means that the 2D TMDs materials are appropriate candaites for the 

conservation of mathematical formalism. Secondly, within all 2D TMDs material of 2H-

types, including (i) molybdenum disulfide (MoS2), (2i) molybdenum diselenide (MoSe2), (3i) 

tungsten disulfide (WS2), and (4i) tungsten diselenide (WSe2), material molybdenum 

diselenide (MoSe2) is the best 2D TMD in the preservation of mathematical formalism with 

high precision. As consequence, material molybdenum diselenide (MoSe2) is the most 

preferable 2D material to investigate laser cooling and trapping of polariton processes so as to 

acheve coherent control of the state of the system for practical applications and particularly 

quantum computers implementation. 



  

142 
 

 

 

Figure 50. Graphical representation of transition probability versus vacuum Rabi frequency. 
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III.4. Laser cooling and trapping of polaron 

The polaron problem has not yet been solved and continues to attract much attention 

despite the apparent simplicity of its formulation. It plays an important role in solid state 

physics, statistical mechanics and quantum field theory because it can be considered as the 

simplest example of a non-relativistic quantum particle interacting with a quantum field. 

Many sophisticated mathematical techniques have been tested for the first time using this 

problem as a model. A brilliant example of this is Feynman's functional integration method, 

which was first applied to the polaron problem, before becoming one of the main methods 

used in statistical mechanics and quantum field theory. In addition, the polaron theory is an 

expanding field of investigation in solid state physics because polarons are not only 

theoretical constructions but also practically observable physical objects (Devreese, 1976). 

More generally, electron-phonon interactions of Polaron-type play a very important role in the 

properties of small-scale quantum systems.  

As we have mentioned already elsewhere in the present thesis, in quantum information 

science, the construction and manipulation of a qubit in nanostructures are two important 

subjects. Investigating those subjects is necessary and valuable not only to understand 

quantum mechanics but also to exploit additional information processing methods (Cuilan, 

2013). For reminder, a single qubit can be realized by a TLS such as a spin-half particle or a 

two-level atom. We recall that it is very important for a quantum system to be well isolated 

from any environmental interaction which would destroy its states. However, quantum 

systems are very frail and the interaction of a quantum memory with its environment destroys 

the quantum coherence of the stored information. A phenomenon which is called 

decoherence. So a great deal of considerable efforts (Barnes, 1999 ; Tolkunov, 2004 ; 

Grodecka, 2006 ; Lovric, 2007) have been made to investigate the quantum decoherence and 

how to prolong decoherence time, in recent years for successful quantum computers 

implementation. Several schemes have been proposed for realizing quantum computer.  

Motivated by the fact that (i) polaron can be considered as TLS, (2i) polaron is 

fermion which satisfied the Fermi-Dirac statistics and (3i) polariton becames intermediate 

particles due to laser cooling and trapping process thereby satisfying Fermi-Dirac statistics 

(nomatter being bosons) yields our interest to study these atomic entities using the same 

mathematical formalism applied to polariton. The objective being to investigate decoherence 

issues when embedded in a practical environment, i.e 2D TMDs for successful 

implementation of quantum computers. 
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For numerical considerations, we adjust the triangular quantum well potential in the 

system. Therefore, we suppose that the entire system is influenced by a triangular quantum 

well potential with constant electric field  and an infinite barrier F at 0Z . We turned our 

attention to the energy of the system as its cooled and trapped with laser light. In general, for 

graphical representations, the x axis  ranges within the values 0 and . But in this thesis, 

we calibrate the x axis  within the interval  2;4 so that the curves could be more 

appreciated. In both graphical implementations, LLs are shifted and undergo diabatic and 

adiabatic transitions because of a quantum potential well in the limit of large magnetic field.  

 

III.4.1. Laser cooling and trapping of polarons without magnetic field  

Without cooling process, the system avoids magnetization since the magnetic and 

electric fields are linked by the relation
c

B
E  , given that c is the light velocity. Figure 51, 

which depicts graphical representation of LELs versus potential barrier F, presents a crossing 

of LELs at very low value potential barrier. This means that, the potential barrier dictate the 

dynamic behavior of the system of polariton. As the potential barrier incrases, energies levels 

avoid crossing. 

 

 

Figure 51. Graphical representation of energy levels versus potential field barrier F. 
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III.4.2. Laser cooling and trapping of polarons with magnetic field 

In Figure 52, we depict LELs versus laser frequency for some values of laser 

amplitudes E and triangular quantum well potential barrier F .  

 

 

 

 
 

Figure 52. Graphical representation of Landau energy levels versus laser frequency for some values of triangular 

quantum well potential 15F  [Figure 49 (a,e,e)] and 25F [Figure 49 (b,d,f)] and for some values laser 

amplitude 5E  (first panel of Figure 49), 15E (second panel of Figure 49) and 35E (Third panel of 

Figure 49).  
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In the first panel [Figure 52 (a,b)] the value of 5E of laser amplitude is choosed. In 

the second panel [Figure 52 (c,d)], we choosed the laser amplitude value of 15E while in 

the third panel [Figure 52 (e, f)], the laser amplitude value of 35E  is choosed. In all cases, 

the triangular potential barrier is choosing to be 15F [Figure 52 (a, c, e)] and 25F

[Figure 52 (b, d, f)]. The figure well indicates crossing and avoided crossing of LELs. In 

presence of laser radiation and thus magnetic field, there is no consistent modification of 

energy of the system due to triangular quantum well potential. This means that, there is a 

modification of the state of the system with increasing values of F . In contrast, we observe 

few modification of the dynamic behavior of the system as the laser amplitude increases. In 

general, nomatter the introduction of triangular quantum well potential and low magnetic 

fields acting as traps in the system, no complete population transfer from excited state to 

ground state is observed. Therefore, the system still influenced by surrounding 

environnement. 

 

III.5. Laser cooling and trapping of polarons in 2D transition metal dichalcogenides 

2D TMDs (Chang and Chen, 2011) constitute a class of layered 2D material that has 

gained theoretical and experimental popularity since they constitute a perfect environment 

where bandgap energy of TLSs such as polarons can be studied. Thus, a variety of techniques 

have been proposed and include alteration of chemical composition (Yin et al., 2012), 

tailoring of the geometrical shapes of materials (Lee et al., 2012) and changing of lattice 

constant with mechanical stain (Shi  et al., 2013; Lee et al., 2012). Most of polarons based 

studies have concentrated on electron transport properties. Among the properties requiring 

further investigations, attention is focused on the crucial aspect of electron-phonon coupling 

(EPC).  Models of EPC have been proposed in 2D TMDs (Sakar and Pal, 2017). When a 

magnetic field is applied across the 2D TMDs monolayer, a nonlocal magneto-polaron is 

found and the effects related to the EPC increases.  

Recently, LLs calculations based on the IWBT has conducted to the bandgap energy 

modulation in monolayer 2D TMD MoS2 by engineering EPC in the presence of 

perpendicular magnetic field. In our group (Fobasso et al., 2019), we examined the possibility 

of controlling the dynamic of polaron in an asymmetric quantum dot using laser light in the 

presence of external magnetic field. Fundamental as well as first state energies investigations 

have shown that Landau energies are kindly influenced by laser parameters and particularly 
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laser frequency. In the present thesis, we joined both ideas to bring insight in laser cooling 

and trapping of polaron in 2D TMDs materials under the influence of a triangular quantum 

well potential. The main reason of introducing such a potential in our analysis is mentioned in 

the previous chapter. In addition, the considered polaron results from a peculiar coupling 

which emerges between electron and longitudinal optical (LO) phonons in monolayer 2D 

TMDs. The main reason which constitutes the center of interest of these changes is to 

investigate fundamentals (Fobasso et al., 2019)  in a more practical and experimental 

environment thereby open door to possible new features for electronic and optoelectronic 

devices. In contrast to the modified Lee-Low Pines (LLP) method used (Fobasso et al., 2019), 

we perform 2D TMDs parameters analysis, that is LELs, using both QMSA and the IWBT.  

 

III.5.1. Landau energy levels 

We now present numerical results for the Landau energy of the magneto-polaron 

condensate in 2D TMDs under the influence of triangular quantum well potential using LELs 

specified in Eq.220. Physical aspects that gained our attention are: (i) effects of triangular 

quantum well potential on the magneto-polaron; (2i) effects of cooling and trapping due to 

laser radiation and magnetic trap respectively on the magneto-polaron under the influence of 

triangular quantum well potential. As we did in the case of polariton, for numerical 

implementations, we focus ourselves on monolayer 2D TMDs of 2H types (
2MoS , 

2MoSe , 

2WS and 
2WSe ). The material parameters used are presented in Table 3 (Chen et al., 2018).  

We promptly replaced the light velocity c  by the bare Fröhlich interaction
zc . We find this 

change more instructive in order to inspect a more realistic result. We choose a very small 

value of the imaginary time u  0u and large value cyclotron frequency
c  c

. 

These approximations simplified our results and we do not find necessary to investigate 

analysis in a particular LO-phonons continuum, since the resulted expression of  
nzE is a 

constant either below or above LO-phonons continuum with a perfect choice of 
LO  at unit 

 .  It comes the final expression of LELs of magneto-polaron condensate in 2D TMDs materials 

under the influence of triangular quantum well potential Eq.230 below. 

 
21
33

2

3 4 11 2

2 2 8
n c

nF
E n F Const



    

         
     

                                    (230). 
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We then begin our discussions with a series of numerical results providing LELs versus 

triangular quantum well potential’s parameter F (Figure 53 and Figure 54). In Figure 54, 

LELs are plotted versus triangular quantum well potential’s parameter F for some arbitrary 

values of magnetic field B  0.5; 0.7; 0.9B B B   . The energy diagrams reveals two 

distinct group of 2D materials including less and most influenced materials by triangular 

quantum well potential. The first one regroup 
2MoS and 

2MoSe [first and second panels of 

(Figure 54)] while the other consist of 
2WS and 

2WSe [third and fourth panels of (Figure 54)]. 

Clearly, the dynamical behavior of 2D WX materials is more affected within the surrounding 

effect of the triangular quantum well potential than that of MoX  where
2 2,X S Se . Indeed, 

in almost all cases, crossing disappears progressively to an avoided crossing profit with large 

magnetic field. The result indicates the appearance of quantum chaotic effect as has been 

mentioned by Prokof’ev and Stamp (2000) and Bose (1924) thereby predicting the appearance 

of butterfly effect, which is the popular embodiment of chaos theory as presented by Devane 

(2008). We predicted such a result also by studying cooling and trapping of polaritons in 2D 

TMDs in the previous sections LZS theory. Thus, one can expected that, in the presence of 

triangular quantum well potential, the magnetic field reacts on a polaronic system as similar 

as the laser affects a polaritonic system, both systems being embedded in 2D TMDs materials.  

Hight among of avoided level crossing observed in 
2 2( , )WX X S Se 2D TMDs 

materials predicts the preservation of the conserved magneto-polaron condensate. We 

interpreted this transition as the onset of dynamic where the influence of surrounding 

triangular potential well slows down the motion of electrons and eventually freeze the system. 

However, at the same time, our numerical simulations clearly reveal that the dynamic of the 

polaron in MoX is not modified enough in the presence of surrounding triangular quantum 

well potential. This implies that, in the presence of a triangular quantum well potential, it’s 

preferable to study the dynamic of a polaron in 2D TMD 
2MoSe material. In order to address 

effect of laser on the system under the influence of triangular quantum well potential, we 

depicted LELs as a function of triangular quantum well potential’s parameter F for some 

arbitrary values of laser amplitude 
0E  (0.5 , 1.5and 3 ) (Figure 55). Doing it, we assumed that

 0 cosc l

eEeB
t

 
    . As similar as in case of Figure 54, crossing and avoided crossing 

are observed, thereby induces diabatic and adiabatic transition, respectively. LELs increase 
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with triangular quantum well potential’s parameter F . This result is a proof that the system is 

progressively cooled down to zero temperature. 

There is a shift of LELs in 2D TMDs within the confinement well observed through 

the displacement of the crossing point, with value directly proportional to the laser amplitude. 

There is a shift in the energy in both
2MoSe , 

2MoS and 
2WS with laser field amplitude. The 

shift in 
2WS is larger than in 

2MoSe  and
2MoS , which indicates that the bare Fröhlich 

interaction in 
2MoSe and 

2MoS  is larger than in
2WS . In the third panel of Figure 54, the 

crossing point is completely disappears, resulting in complete destruction of the coherent state 

of the system. As an important result, it’s come that laser cooling of polarons in 2D TMDs in 

the presence of magnetic field is more indicated with laser of low amplitude to expect the 

degeneracy point. Moreover, if we apply a triangular quantum well potential, then one has to 

consider the triangular quantum well potential of low confinement.     

 

 

Figure 53. Graphical representation of Landau energy levels versus triangular quantum well’s parameter F  

without the effect cooling process account.  
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In Figure 56 and Figure 57, the main features observed are as follow: (i) rapid 

stückelberg oscillations whose amplitudes diminish with laser frequency, yields interference 

phenomenon and possibilities to realize interferometers with such a system; (2i) energy levels 

suddenly decreases up to  nearest zero value, when the laser frequency reaches the value of 

0.7laser  ; (3i) as the laser frequency increases (far from the value 0.7laser  ), Stückelber 

oscillations approach a stable value close to zero. This is an indication that the system is 

completely cooled down. Thus, the population of the excited state (blue solid curve) is 

completely transferred to the ground state which becomes the cooled and trapped magneto-

polaron. It follows that, for important value laser frequency, the sensitivity of the magneto-

polaron under the influence of triangular quantum well potential decays significantly. Indeed, 

each absorbed photon causes recoil that reduces energy of the system without any 

modification of its physical characteristics. Thus, it is more suitable to carry cooling and 

trapping process with a critical value laser frequency.  

As the triangular quantum well potential’s parameter F increases, one assists to the 

destruction of the coherent state of the system. In fact, the figures (Figure 56 and Figure 57) 

well illustrate that, as the parameter F  increases, excited state energy level shifts upward. 

This means that the probability that the system is found in the excited state increases. The 

physical interpretation which arises from this result is that, the entropy of the system increases 

interestingly. It then follows a sharp increase in population transfer from ground state to 

excited state. So, yield the alteration of interference patterns due to strong dephasing. 

Consequently, for extremely strong quantum well’s parameter F , it becomes more difficult to 

control the dynamic of the magneto-polaron, no matter it’s cooled down with laser.  

For a better appreciation of the effect of laser on the system, LELs versus laser 

frequency are plotted for ground state g  (Figure 58a) and excited state e   (Figure 58b) 

energy levels. We use the same parameters values as in case of Figure 56 and Figure 57, 

except that now we adjusted the curves of all 2D TMDs of our choice in one figure for a 

particular state system. In both figures, i.e. in Figure 58a and Figure 58b, the coherence of the 

system’s state is more appreciated within the material
2MoSe . This indicates once more 

hypersensitivity of the system with laser.  Thus, as similar as the case of polaritonic system, 

2D TMD material 
2MoSe is the more appropriate 2D TMD environment to form polaron 

condensate with laser. Therefore, either for polaritonic or polaronic system, laser cooling and 

trapping phenomenon is more appreciable if the system is embedded in 2D TMD
2MoSe .  
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Figure 54. Graphical representations of Landau energy levels as a function of triangular quantum well’s 

parameter F for some arbitrary values of magnetic field B  0.5; 0.7; 0.9B B B   . Here, other 

parameters used are 2  , 
191.6 10e   and

83 10 /c m s  . 
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Figure 55. Landau energy levels versus triangular quantum well’s parameter F for some arbitrary values of 

laser field amplitude E  0.5; 1.5; 3E E E   . 
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Figure 56. Landau energy levels as a function of laser frequency for some values of triangular quantum well’s parameter F . Case study of 2D TMDs materials MoX , 

giving that 
2 2,X S Se . 
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Figure 57. Landau energy levels as a function of laser frequency for some values of triangular quantum well’s parameter F . Case study of 2D TMDs materials WX , giving 

that 
2 2,X S Se . 
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Figure 58. Ground state (a) and first excited state (b) Landau energy levels of magneto-polaron condensate under the 

influence of triangular potential field. 
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Conclusion 

In the present chapter, we have presented the results obtained from our study. Considering 

the effect of surrounding environment in laser cooling and trapping processes, we investigated 

laser cooled and trapped polariton parameters including force and it corresponding torque, 

transition probability of finding the system in the excited state and the system’s energy using 

semi-classical approach. We observed that the probability of finding cooled and trapped polariton 

in the excited state is controlled by the surrounding environment even when the system is 

confined in a magnetic potential which we consider as a trap. Looking for ways to avoid or 

minimize effect of surrounding environment in laser cooling and trapping of both polariton and 

polaron entities, we reconsider the approach used and through the system’s Hamiltonian, we 

found a very close connection between semi-classical and quantum mechanical approaches. 

Doing it, we successfully formulate the LZ problem in laser cooling and trapping polaritonic 

system. In addition, 2D TMDs materials of 2H types, and particularly 
2MoSe  , 

2MoS , 
2WS  and 

2WSe , are considered as appropriate milieu where to carry laser cooling and trapping phenomena 

due to their physical properties for practical applications of laser cooled and trapped atomic 

particles and particularly polaritons and polarons.  To go further and to open door to novel 

applications of laser cooled and trapped atomic particles with concise and precise theoretical 

formulation and analysis, we introduce polarons as new atomic particles in cooled and trapped 

processes using LZ formalism. Based on combined QMSA and IWBT, LELs of laser cooled and 

trapped polaron in monolayer 2D TMDs are investigated within additional influence of 

perpendicular magnetic field.  
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GENERAL CONCLUSION  

The research work reported in the present thesis is focused on investigating the effect of 

surrounding environment on the dynamic of laser cooled and trapped polariton and polaron in 

nanostructures.  

Considering the system of interest as a TLS with ground state g and first excited state e , 

we begin our analysis studying the dynamical behavior of a system of laser cooled and trapped 

polariton within semi-classical approach. Later, we introduce a magnetic field in the system 

which we consider as a trap and perform the Vonn Neumann entropy.We justified our choice by 

the fact that it’s introduced in the system a weak magnetic field. Based on the matrix 

representation of the system’s Hamiltonian, we identified and formulated the Landau Zener 

problem in cooling and trapping of polariton.  Motivated by the fact that (i) polaron can be 

considered as TLS, (2i) polaron are fermions which satisfied the Fermi-Dirac statistics and (3i) 

polaritons became intermediate particles due to laser cooling and trapping process thereby 

satisfying Fermi-Dirac statistics althougth they are bosons, we extended our study to polaron. 

Due to their physical properties, we found interesting the use of two dimensional (2D) transition 

metal dichalcogenides (TMDs) of 
2MX  types as new playground for laser cooling and trapping 

of polariton as well as polaron. Using LZSIT in one hand and both the QMSA and the IWBT on 

the other hand, we investigated LELs and transition probabilities in diabatic and adiabatic basis 

of the laser cooled and trapped polariton and polaron. 

We found that the surrounding environment possesses a fatal effect on the dynamic of 

laser cooled and trapped polaritonic entity. The effect of the environment in laser cooling and 

trapping phenomena is well corrected by adding in the cooled system a weak magnetic field, 

which behaves like a confinement. Although we could not achieved complete population transfer 

from excited to ground states, the amount of energy produced increases considerably due to the 

introduction of magnetic trap in the system.  

Through LZSMI theory, we proved theoretically and numerically the applicability of LZ 

theory for the analysis of single laser cooled and trapped polariton’s dynamic. Afterward, we 

introduced the laser field in the system and show that crossing and avoided crossing of energy 
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eigenstates can be seen as a function of laser amplitude for both diabatic and adiabatic basis. 

Studying energy levels of the upper/lower channel in both diabatic and adiabatic basis at a 

different gate voltage condition, we showed certain dissimilarities in the dynamic of cooled and 

trapped polariton at both weak and strong coupling due to crossing and avoided crossing of 

multiple LZ transitions. As main result, we pointed out the braking down of the Pauli Exclusion 

Principle proving the applicability of LZSMI theory for the analysis of polariton’s dynamic 

through a model which satisfies both Bose-Einstein and Fermi-Dirac statistics. The above result 

unveil novel and plethora applications of laser cooled and trapped polariton. We found the 

generation of arbitrary waveforms of interferometric signals including signusoidals for weak 

coupling and strong laser amplitude; thereby come s the possibility to investigate interferometry 

applications. We also find the use of laser cooled and trapped polariton for applications in optics, 

quantum computation, communication and simulation. 

In 2D TMDs materials of 2H types, LELs of the laser cooled and trapped polaritonic 

system are investigated under two main mathematical approaches including the AIA and the 

Brundobler-Elser conjecture. We found that LELs are modified by 2D material environment with 

consistent conservation of novel interference pattern. Landau energy corrections is higher in 

2MoSe material than others 2D TMDs of our choice, that is 2WS , WSe2, and MoS2. The 

modulation of such Landau energy for multicrossing scenario, due to an interaction between 

polaritonic state and TMDs materials, has conducted to Raman spectroscopy. We predict the 

possibility to observe butterfly effect in the system of laser cooled and trapped of polariton in 2D 

TMDs embedded in 2D microcavity.  We adjusted the influence of the 2D TMDs environment in 

laser cooling and trapping of polaron to that of triangular quantum well potential. Within 

combined QMSA and IWBT, LELs of the system, called for simplicity magneto-polaron 

condensate are investigated. We clearly observed that the dynamic of polaron is controlled by 

triangular quantum well potential swept by a laser radiation field.  We observed rapid 

Stückelberg oscillations and energy gap modulation which amplitude decrease progressively with 

amplitude of magnetic field and laser frequency up to a value where the system arises to it 

coherence state. This means that one arrive at a complete population transfer from excited state to 

ground state.  Our numerical results have shown a strong dephasing between the levels under the 

influence of the triangular quantum well potential’s parameter F. Various Landau levels (LLs) are 
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found with increased magnetic field and laser parameter. The quantum confinement is an 

important parameter to lift the degeneracy of the LLs resulting in an anticrossing and crossing. 

The dephasing effect due to the quantum well’s parameter plays an important role in the 

magneto-polaron energy corrections, which are also affected by the amplitude of the laser field. 

Our results are strictly valid as the whole system riches the magneto-polaron condensation in 

monolayer material 
2MoSe compared to

2MoS , 
2WS  and 

2WSe , while the magnetic and laser 

parameters are increasing for strong quantum well confinement. In general, the 2D TMDs 

environment increases considerably the stability of laser cooled and trapped polariton and 

polaron called therefore polariton condensate and magneto-polaron condensate (under the 

influence of perpendicular magnetic field) respectively. This lead to wide array of fundamental 

phenomena and potential applications that range from Bose-Einstein-like condenstation including 

superfluidity, vortex formation and the possibility to observe Berezinskii-Kosterlitz-Thouless and 

Barden-Cooper-Schrieffer Physics to quantum computation, simulation and valleytronics. 

In the present thesis, we focus ourvelves on the plane lectromagnetic radiation field. 

Doing it, we then neglect other laser radiation modes including the plane polarized electric mode, 

transverse electric mode and transverse magnetic mode laser radiation. In the whole study, we 

consider that the laser radiation propagates in the z direction and the light-matter interaction 

takes place at the position 0z . While it will be interesting to in vestigate the effect of 

surrounding environment on the dynamic of laser cooled and trapped polariton and polaron using 

other polarized laser radiation than the plane electromagnetic mode radiation and in the 

consideration that the laser radiation propagates in other direction than the z direction such as 

the x direction, y direction and the entire space [ ),,( zyx direction].  In 2D TMDs materials 

of our choice, theoretical investigation of the dynamic of laser cooled and trapped polariton is 

discussed under two main assumptions. At first, we focused our attention on the polariton only at 

the center of the system. At second, we consider that there is not interaction between the 

polariton in the center of the system with it neighbors due to cooling process. These theoretical 

assumptions are made just for theoretical simplification. In the case of polaron cooled and 

trapped in 2D TMDs materials with radiation field under the influence of triangular quantum 

weel potential, we performed analysis by choosing a very small value of the imaginary time and 

large value cyclotron frequency in order to focus at the zone center thereby avoiding study 
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neither below nor above longitunal optical phonons continuum. For instance other type of 

quantum well potential including the square potential, ellipsoidal potential, quadratic potential to 

cite a fiew can be considered as additional confinement in laser cooling and trapping of polaron 

in 2D TMDs materials. The above consideration can also be avoided. These facts can open door 

to other interesting theoretical formulations based on laser cooling and trapping of polariton and 

polaron with large variety of applications.  
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